SECOND EDITION

Laurentiu Spilca

Foreword by Ben Evans

M MANNING

In an app that behaves normally, you

: will see this pattern. The memory fills,
Normal behavior /\ and at a certain point, the GC cleans the
unneeded data, freeing up the memory.
Heap } Metaspace ><_

These are moments when the GC
cleaned the unneeded data, making
space for new data to be added in
memory.

20 PM 5:20:25

O Heap size @ Used heap

Abnormal behavior

| Heap | Metaspace X

10 GBA : / When an app has a memory leak,

the used memory continuously
grows. The GC attempts to free

5 GB \/ the memory but can’t deallocate
enough objects since the app holds

the references for most of them.

2147100 F

[H Heap size [Used heap

A comparison between the memory usage for a healthy app versus an app suffering from a
memory leak. The GC frees unneeded data from memory for a healthy app, and the allocated
space never fills up. An app with a memory leak prevents the GC from removing enough data.

At some point, the memory fills up completely, generating an Out0fMemoryError.

Praise for the first edition

Definitely a must read for every Java developer, who needs to tune performance of the Java production
system.

—Amrah Umudlu, Software Engineer, Azericard LLC

A compendium of immense value for java programmers—finally a book that illustrates how to
effectively troubleshoot and reason about your Java apps in production! This distilled wisdom could
save the day!

—Atul Shriniwas Khot, Software Architect, SquareOne Insights

Regardless of whether you are a seasoned engineer or a_Junior Developer; you should read this book if you
want to have an in-depth understanding of the debugging processes, principles and techniques, within
Java applications. Highly recommended.

—Giorgi Tsiklauri, Independent Software Consultant, Engineer, Lecturer

This is a must-read for all Software Engineers regardless of experience level, who want to be well-
equipped to troubleshoot and resolve Java applications issues with severily ranging from simple to
extremely complex, like multithreading or memory leaks.

—Latif Benzzine, Lead Software Engineer, Cognizant

The most comprehensive guide to understanding and debugging Java applications to date.

—Peter Szabo, Senior Software Engineer, Tesco Technology

The book that demystifies debugging. A daring work of scholarship and exploration into the depths of
Java codebases, distilling concrete knowledge in the most accessible way possible.

—NMichael Kolesidis, Software Engineer, Okto

Laurentiu’s book is packed with extremely valuable tips and tricks for every level.

—Alex Gout, Senior Data Engineer, Shopify

Troubleshooting Java

SECOND EDITION

LAURENTIU SPILCA

FOREWORD BY BEN EVANS

MANNING
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit www.manning.com.
The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964
Email: orders@manning.com

© 2026 Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the
publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

& Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books
we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our
responsibility to conserve the resources of our planet, Manning books are printed on paper that is at
least 15 percent recycled and processed without the use of elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book was correct
at press time. The author and publisher do not assume and hereby disclaim any liability to any party for
any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result
from negligence, accident, or any other cause, or from any usage of the information herein.

Manning Publications Co. Development editor: Marina Michaels

20 Baldwin Road Technical editor: Nicholas A Watts
PO Box 761 Review editor: Dunja Nikitovi¢
Shelter Island, NY 11964 Production editor: Andy Marinkovich
Copy editor: Lana Todorovic-Arndt
Proofreader: Keri Hales
Typesetter: Tamara Sveli¢ Sabljic
Cover designer: Marija Tudor

ISBN 9781633435575
Printed in the United States of America

brief contents

~

10
11

Starting to know your apps 3

Understanding your app’s logic through debugging
techniques 25

Finding problem root causes using advanced debugging
techniques 53

Making the most of logs: Auditing an app’s behavior 76

Identifying resource consumption problems using profiling
techniques 105

Finding hidden problems using profiling techniques 129
Investigating locks in multithreaded architectures 157

Investigating deadlocks with thread dumps 180

Profiling memory-related problems 201
Investigating memory problems with heap dumps 211
Analyzing potential JVM problems with GClogs 228

12

13

appendix A
appendix B
appendix C
appendix D
appendix E

BRIEF CONTENTS

Uncovering system-level failures and service communication

problems 253

Measuring data consistency and transactions 276

Toolsyou’llneed 298

Opening a project 299

Recommended further reading 301
Understanding Java threads 303
Memory managementin Javaapps 319

contents

Sforeword Xl

preface Xt

acknowledgments XUl

about this book XUl

about the author XX1

about the cover illustration XX11

PART 1 REVISITING THE FOUNDATION FOR CODE
INVESTIGATION .uceeeeesccenscccssccossccossccossccsssccesscaes]

Starting to know your apps 3

1.1 How to more easily understand yourapp 5
1.2 Typical scenarios for using investigation techniques 10
Demystifying the unexpected output 11 = Getting familiar with
your external libraries 15 = Clarifying slowness 16
Understanding app crashes 18
1.3 Alasagame changer in troubleshooting apps 19
1.4

What you will learn in this book 23

Understanding your app’s logic through debugging
techniques 25

2.1 When analyzing code is not enough 27

viii CONTENTS

2.2 Investigating code with a debugger 31

What is the execution stack trace, and how do I use it? 37
Navigating code with the debugger 43

2.3 When using the debugger might not be enough 50

Finding problem root causes using advanced debugging
techniques 53
3.1 Minimizing investigation time with conditional
breakpoints 54
3.2 Using breakpoints that don’t pause the execution 62

3.3 Dynamically altering the investigation scenario 65

3.4 Rewinding the investigation case 69

Making the most of logs: Auditing an app’s behavior 76

4.1 Investigating issues with logs 80

Using logs to identify exceptions 84 = Using exception stack
traces to identify what calls a method 86 = Measuring time spent
to execute a given instruction 87 = Investigating problems in
multithreaded architectures 88

4.2 Implementing logging 89
Persisting logs 89 = Defining logging levels and using logging
Jframeworks 90 = Problems caused by logging and how to avoid
them 97

Identifying resource consumption problems using profiling
techniques 105
5.1 Where would a profiler be useful? 106

Identifying abnormal usage of resources 106 = Finding out
what code executes 107 = Identifying slowness in an app’s
execution 108

5.2 Usingaprofiler 108

Installing and configuring VisualVM 109 = Observing the CPU
and memory usage 111 = Identifying memory leaks 121

5.3 Using Al assistance 126

CONTENTS ix

Finding hidden problems using profiling techniques 129

6.1 Sampling to observe executing code 130
6.2 Profiling to learn how many times a method is executed 138

6.3 Usinga profiler to identify SQL queries an app executes 142

Using a profiler to retrieve SQL queries not generated by a
Jframework 143 = Using the profiler to get the SOL queries
generated by a framework 148 = Using the profiler to get
programmatically generated SQL queries 151

Investigating locks in multithreaded architectures 157
7.1 Monitoring threads forlocks 158

7.2 Analyzing thread locks 163
7.3 Analyzing waiting threads 171

Investigating deadlocks with thread dumps 180

8.1 Getting a thread dump 181

Getting a thread dump using a profiler 182 = Generating
a thread dump from the command line 183

8.2 Reading thread dumps 187

Reading plain-text thread dumps 188 = Using tools to
better grasp thread dumps 194

Profiling memory-related problems 201
9.1 Sampling to identify memory allocation problems 202

9.2 Profiling to find the culprit 207

Investigating memory problems with heap dumps 211
10.1 Obtaining a heap dump 212
Configuring an app to generate a heap dump when it

encounters a memory problem 212 = Obtaining a heap
dump using a profiler 214 = Obtaining a heap dump

with the command line 214

10.2 Reading a heap dump 216
10.3 Using the OQL console to query a heap dump 221

CONTENTS

Analyzing potential JVM problems with GC logs 228
11.1 Enabling GClogs 229

11.2 Storing GClogsin files 235
11.3 Particular configurations for storing GClogs 239

11.4 Analyzing GClogs 241

Troubleshooting performance lags with GC pause times 241
Identifying memory leaks with heap usage logs 243
Identifying insufficient memory with full GC events 244
Tuning parallelism in GC 247

Uncovering system-level failures and service communication
problems 253

12.1 Troubleshooting communication patterns: RPC and
messaging 254
Working with trace IDs and spans 255 = Openlelemetry,
Jaeger, Zipkin, and other utilities 259

12.2 Serialization mismatches and versioning problems 262

12.3 Understanding systemic failure modes 265

Cascading failures 265 = Retry storms 269
Timeout mismatches 271

Measuring data consistency and transactions 276

13.1 Troubleshooting inconsistencies across services 277

Inspecting time-based anomalies in event flows 277
Applying domain invariants to identify invalid states 282

13.2 Tracking and correlating multistep transactions 284

Reviewing audit logs to reconstruct transaction steps 285
Replaying events or examining event logs for missing messages 289

13.3 Measuring and monitoring consistency guarantees 292

Verifying data integrity using checksums or hashes 293

13.4 Running reconciliation jobs to compare expected vs. actual
state 296

appendix A
appendix B
appendix C
appendix D
appendix E

CONTENTS

Tools you'll need 298

Opening a project 299

Recommended further reading 301
Understanding Java threads 303
Memory management in Java apps 319
references 331

index 332

Joreword

You may already be familiar with Laurentiu Spilcd from his books Spring Security in
Action and Spring Start Here, but if not, Troubleshooting Java provides a great introduction
to his unique style of writing and pervasive humor. If you’re a newcomer to Java devel-
opment, you may well find his careful coverage of concepts extremely useful, especially
when combined with thorough coverage of the available (free) tools and how to use
them. In addition, the book includes many examples and demonstrations of what can
go wrong, to help you build experience and confidence in using the tools.

Part 1 focuses on debuggers and covers common tools like the Intelli] CE debugger—
both their capabilities and their limitations. Unlike many other resources, Laurentiu
covers several debugger techniques that go well beyond the basics, such as conditional
breakpoints and nonpausing breakpoints. There’s also solid coverage of the basics of
troubleshooting Java applications using logs.

In part 2, the key topic of resource consumption and its central role in troubleshoot-
ing is front and center. The free VisualVM tool serves as a primary means of under-
standing this area and its related concepts. There is in-depth coverage of important
topics such as CPU sampling and instrumentation and how to use the tools effectively.
One essential, but often overlooked, area—the handling of external dependencies—is
neatly showcased via the example of an SQL database using Hibernate. The subject of
multithreaded programming, and especially troubleshooting locks, follows naturally
from CPU profiling.

Part 3 is devoted to memory-related issues, including tracking down memory leaks
with sampling and profiling techniques, as well as creating and navigating heap dumps.
Practical techniques, such as filtering out JDK types and using the capabilities of
VisualVM to consider live objects, are also covered, as well as the use of OQL to query

FOREWORD xiii

heap dumps. Just as in part 1, the use of logs (in this case, GC logs) forms the subject of
the last chapter in part 3.

To conclude, Laurentiu takes us on a quick tour through larger-scale systems, start-
ing with an introduction to distributed tracing as a key technique, before tying it all
together by discussing distributed transactions across heterogeneous systems. Through-
out the book, Laurentiu makes careful and tactical use of Al tools, stressing the lack of
magic bullets and focusing on practical use cases. While these tools cannot replace a
human user, they can make a proficient engineer more productive and able to concen-
trate on the higher-level concerns. The end result is a book that is suitable for newcom-
ers but is also forward-looking and recognizes how modern tooling can complement
and enhance the intuition, experience, and problem-solving insight of working soft-
ware engineers.

—BEN Evans
Java CHAMPION AND AUTHOR OF
The Well-Grounded Java Developer

preface

What does a software developer do for a living? “Implement software” is most likely the
answer many would give. But what does implementing software really mean? Is it only
writing code? Not quite. While the code is the visible result of a developer’s work, the
activity of writing it takes only a small fraction of the time. Most of a developer’s day
is spent designing solutions, reading existing code to understand how it behaves, and
learning new concepts. Writing code is simply the outcome of successfully doing all of
these.

That’s why programmers often spend far more time reading code than writing it.
Clean coding as a discipline grew out of this realization: it is more efficient to write
solutions from the start in a way that makes them easier to read later. Still, not all code
is clean, and not all systems are simple. You will always face situations where you need to
dig into an unfamiliar solution and uncover how code really works.

The truth is, a software developer spends much of their career investigating how
applications behave. We trace through our own code and third-party dependencies to
understand why something doesn’t work as expected. Sometimes, we do it to fix prob-
lems and other times just to learn. Often, reading code isn’t enough. We need to go
deeper—using debugging, profiling, or log analysis—to understand what is happen-
ing inside the JVM or how the environment affects the application. Knowing the right
techniques, and when to apply them, can save enormous amounts of time. Optimizing
this investigative activity is one of skills with the greatest strategic effect a developer can
build.

The goal of this book is to help you optimize the way you investigate software sys-
tems. You will find relevant techniques illustrated with practical examples—debugging,
profiling, log analysis, and how to combine them effectively. Along the way, I share tips

xiv

PREFACE XV

and practices that will help you become faster and more confident in tackling difficult
problems.

In this second edition, we also explore a new and increasingly important partner in
troubleshooting: artificial intelligence. Al tools have become part of the developer’s
daily toolkit, capable of analyzing logs, suggesting hypotheses, or even pointing out
suspicious code paths. They can accelerate investigation dramatically. But Al does not
replace your judgment. Just like a detective uses assistants and tools but still solves the
case, you remain the expert who interprets the evidence and makes the decisions. Used
wisely, Al can help you focus on the most meaningful parts of the investigation and
reach insights faster.

My goal remains the same: to make you more efficient as a developer. But in today’s
landscape, efficiency also means knowing how to use Al without becoming dependent
on it. With the techniques and mindset in this book, you will be better equipped to
find root causes quickly, learn continuously, and solve even the toughest problems with
confidence.

I hope this edition brings you both practical value and inspiration for your daily
work.

acknowledgments

This book wouldn’t be possible without the large number of smart, professional, and
friendly people who helped me out throughout its development process.

Aheartful thank you goes to my wife Daniela, who was there for me, helped with valu-
able opinions, and continuously supported and encouraged me.

I’d like to thank the entire Manning team for their huge help in making this a valu-
able resource. I specifically want to mention Marina Michels and Nick Watts for being
incredibly supportive and professional. Their advice brought great value to this book.

I also thank my friend Ioana Go6z for the drawings she created for the book. She did
a great job turning my thoughts into the cartoons you’ll discover here and there in the
book.

Next, I thank everyone who reviewed the manuscript and provided useful feedback.
To Alok Ranjan, Andrew Oswald, Becky Huett, Burkhard Nestmann, Chris Allan, Cur-
tis Krauskopf, Faiz Gouri, Frank Beutelschiess, German Gonzalez-Morris, Jason Clark,
Jitender Jain, Lars Opitz, Max Loukianov, Mebin Jacob, Naga Rishyendar Panguluri,
Nancy Al Kalach, Nicolas Bievre, Prashant Gupta, Purushotham Krishnegowda, Ravi
Laudya, Sachin Handiekar, Sanjay Belaturu Krishnegowda, Sathiesh Veera, Sumit Bhat-
nagar, Vamsi Kavuri, William Brawner, Heinz Kabuz, and Vlad Mihalcea, your feedback
helped me improve the content of this book.

Finally, thanks to Ben Evans for taking the time to review the book and write its
foreword.

xvi

about this book

Because you opened this book, I assume you are a developer working with a JVM lan-
guage. You might use Java, but you could just as well be coding in Kotlin or Scala.
Regardless of the JVM language, you will find the content valuable. This book teaches
practical investigation techniques that help you identify the root causes of problems
and also learn new technologies more effectively.

As a software developer, you've probably noticed how much of your time is spent
understanding what your application actually does. Whether you are reading code,
debugging, analyzing logs, or checking performance, chances are you spend far more
time on these activities than on writing new code. That’s why becoming more efficient
at investigating and analyzing application behavior pays off so quickly—it helps you
solve problems faster and with greater confidence.

This second edition also includes a new dimension: how to take advantage of Al as a
partner in troubleshooting. Al can process large volumes of logs, highlight unusual pat-
terns, or suggest possible causes. It won’t replace your skills, but it can accelerate your
work and allow you to focus on the insights that matter.

This book discusses and illustrates through examples topics such as

Simple and advanced debugging techniques

Efficient use of logs to understand application behavior
Profiling CPU and memory resource consumption

Profiling to locate executing code

Profiling to understand how an app interacts with persisted data

Analyzing communication between services

xvii

ABOUT THIS BOOK

Monitoring system events

Using Al to assist in log analysis, root-cause identification, and knowledge
discovery

Who should read this book?

This book is for any developer working with Java or another JVM language such as
Kotlin or Scala. Regardless of your level of experience, you will find value—whether
you are learning investigation techniques for the first time or refreshing skills you
already use. Beginners and intermediate developers are likely to benefit the most, but
even seasoned engineers may discover new tips, tools, or perspectives to sharpen their
troubleshooting practice.

While the book is written with JVM developers in mind, many of the techniques—
such as debugging strategies, log analysis, and profiling—apply broadly to software
development in other languages as well. This edition also introduces ways to incorpo-
rate Al into troubleshooting, which is useful for any developer looking to work more
efficiently in modern environments.

The only prerequisite for this book is a basic understanding of the Java language.
All examples are presented in Java (for consistency), but the ideas can be applied in
any JVM language. If you are comfortable with fundamental concepts such as classes,
methods, variables, and basic control flow (loops and conditionals), you will have no
difficulty following the discussions.

How this book is organized: A road map

This book is divided into four parts, each with its own focus. Think of them as stages in
your journey from local detective work to system-wide investigations. You don’t have to
read them in order (though that’s how I recommend it), but the sequence is designed
to build your skills step by step.

Part I—We start at the beginning: the everyday techniques you’ll use most often.
Debugging and logging are your bread and butter as a developer. Here you’ll
learn not just how to set a breakpoint, but how to use advanced debugging tricks
(such as conditional and nonblocking breakpoints) and how to make logs work
for you instead of against you. This part is about building your investigative
reflexes—the same way a detective first learns how to look for fingerprints.

Part 2—In this part, we move to profiling. Profiling sounds fancy, but it’s really
just asking, What’s eating my CPU? What’s this app actually doing when I’'m not
looking? You’ll learn how to track resource consumption, find hidden perfor-
mance bottlenecks, and even spot suspicious SQL queries. We’ll also use these
chapters to introduce Al assistance—because sometimes you really do want a
sidekick who can sift through mountains of data while you focus on the bigger
picture.

Part 3—Memory is where things get subtle (and sometimes sneaky). Here we dive
into heap dumps, GC logs, and techniques for finding leaks or tuning memory

ABOUT THIS BOOK Xix

usage. It’s not always glamorous but knowing how to read the JVM’s diary of what
happened inside memory can save you from days of head-scratching.

Part 4—Finally, we zoom out. Real-world systems are rarely just one app; they’re
networks of services talking to each other. In this part we explore systemic prob-
lems: failed communication between services, data inconsistencies, cascading
failures, retry storms, and all the other fun surprises of distributed computing.
If part 1 was about using a magnifying glass, part 4 is about climbing a hill and
seeing the whole landscape.

Each chapter stands on its own, so if you’re currently battling memory leaks, go straight
to part 3. If distributed tracing is your headache today, jump to part 4. But if you follow
the road map in order, you’ll gradually develop a complete troubleshooting toolkit—
from quick debugging to understanding system-level chaos.

About the code

This book provides about 20 projects. We use them to study various investigation tech-
niques throughout the book. You are not expected to write these projects yourself but
can run and use them to test specific techniques discussed. Even if the Java technol-
ogies we employ here are less relevant for the techniques I teach, I chose to use the
latest long-term supported Java version (Java 17) and Spring, one of the most used Java
application frameworks today.

Each project is built with Maven, making it easy to be imported in any IDE. I have
used Intelli] IDEA to write the projects, but you can choose to run them in Eclipse,
Netbeans, or any other tool of your choice. Appendix A includes an overview of the
recommended tools.

This book contains many examples of source code, both in numbered listings and
in line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new fea-
ture adds to an existing line of code. In many cases, the original source code has been
reformatted; we’ve added line breaks and reworked indentation to accommodate the
available page space in the book. In rare cases, even this was not enough, and listings
include line-continuation markers (). Additionally, comments in the source code
have often been removed from the listings when the code is described in the text. Code
annotations accompany many of the listings, highlighting important concepts.

You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/troubleshooting-java-second-edition. The
complete code for the examples in the book is available for download from the Man-
ning website at www.manning.com/books/troubleshooting-java-second-edition.

liveBook discussion forum

Purchase of Troubleshooting Java, Second Edition includes free access to liveBook, Man-
ning’s online reading platform. Using liveBook’s exclusive discussion features, you

https://livebook.manning.com/book/troubleshooting-java-second-edition
www.manning.com/books/troubleshooting-java-second-edition

ABOUT THIS BOOK

can attach comments to the book globally or to specific sections or paragraphs. It’s a
snap to make notes for yourself, ask and answer technical questions, and receive help
from the author and other users. To access the forum, go to https://livebook.manning
.com/book/troubleshooting-java-second-edition.

Manning’s commitment to our readers is to provide a venue where a meaningful dia-
logue between individual readers and between readers and the author can take place. It
is not a commitment to any specific amount of participation on the part of the author,
whose contribution to the forum remains voluntary (and unpaid). We suggest you try
asking the author some challenging questions lest their interest stray! The forum and
the archives of previous discussions will be accessible from the publisher’s website for as
long as the book is in print.

https://livebook.manning.com/book/troubleshooting-java-second-edition
https://livebook.manning.com/book/troubleshooting-java-second-edition

about the author

LAURENTIU SPILCA is a dedicated development lead and
trainer at Endava, and a Java Champion. He has experi-
ence with dozens of projects that employed various tech-
nologies of the Java ecosystem. Laurentiu believes it’s
important to not only deliver high-quality software but
also share knowledge and help others to up-skill, which
has driven him to design and teach courses related to
Java technologies, and deliver various presentations and

workshops.
Twitter handle @laurspilca
YouTube handle @laurspilca

about the cover tllustration

The figure on the cover of Troubleshooting Java, Second Edition is “Homme de 1'Istrie,”
or “Man from Istria,” taken from a collection by Jacques Grasset de Saint-Sauveur, pub-
lished in 1797. Each illustration is finely drawn and colored by hand.

In those days, it was easy to identify where people lived and what their trade or station
in life was just by their dress. Manning celebrates the inventiveness and initiative of the
computer business with book covers based on the rich diversity of regional culture cen-
turies ago, brought back to life by pictures from collections such as this one.

xxii

Part 1

Reuvisitting the foundation
Jor code investigation

Tle ability to investigate code is one of the most important skills a developer
can have. Whether you’re fixing a bug, adding a new feature, or just trying to
understand how things work, knowing how to read and explore your app’s behav-
ior is key.

In this part of the book, we go back to the basics—debugging and logging—
but with a fresh twist. These classic tools have helped developers for decades.
Debugging lets you pause and step through code, while logs give you a record
of what happened. But today, there is something changing the game—artificial
intelligence.

What if you could ask an Al to pick the best place to set a breakpoint? Or to
read your logs and explain what went wrong? Or to summarize a messy piece of
code so you can understand it faster?

This is no longer science fiction. In the pages ahead, you’ll learn how tradi-
tional tools and Al work together to make troubleshooting easier, faster, and even
a bit more fun.

Chapter 1 explains why code investigation matters. Chapters 2—4 dive into
techniques—both familiar and new—that will help you solve problems with more
confidence.

Starting to know

Your apps

This chapter covers

Troubleshooting and why you should learn it
The definition of a code investigation technique
Code investigation techniques used to
understand Java apps

Software developers have various responsibilities. Most of these responsibilities
depend on how they understand the code they are working with. They also spend a
significant amount of time analyzing code to identify and resolve problems, imple-
ment new capabilities, and learn new technologies. Because time is precious, devel-
opers need efficient investigation techniques to be productive. Learning how to be
efficient in understanding your (or others’) code and how your apps execute it is
the main topic of this book.

I'recall a quote from Robert C. Martin’s book, Clean Code: A Handbook of Agile Soft-
ware Craftsmanship (Pearson, 2008). He said, “Indeed, the ratio of time spent reading
versus writing is well over 10 to 1. We are constantly reading old code as part of the
effort to write new code. . . . [Therefore,] making it easy to read makes it easier to

CHAPTER 1 Starting to know your apps

write.” Well, I believe there is much more to add here besides reading the code. The
real deal is to investigate the code, and we combine several techniques to do that.

NOTE Software developers generally spend more time
understanding how the software works than writing
code to implement new features or correct errors.

Troubleshooting is one of the most valuable skills a developer can master. Regardless
of whether you’re writing brand-new code or maintaining a complex system in pro-
duction, things will go wrong. Maybe a service starts timing out. Maybe the app works
on your machine but crashes in QA. Maybe everything looks fine, but users still report
incorrect results. Troubleshooting is the skill that helps you make sense of these situa-
tions. It’s about investigation, not guesswork.

Atits core, troubleshooting means understanding how a system behaves, comparing
that to how it should behave, and then identifying what’s different. It’s a combination
of logic, observation, and sometimes a bit of intuition. Unlike fixing a syntax error or
a failed unit test, real troubleshooting usually begins when you don’t know yet what’s
wrong. And that’s where many developers get stuck.

DEFINITION Troubleshooting means understanding how a system behaves, com-
paring that to how it should behave, and then identifying what’s different.

Learning to troubleshoot effectively makes you faster, more confident, and more inde-
pendent. It gives you the tools to work on unfamiliar codebases, solve production prob-
lems, and even spot design flaws before they become outages. It’s a skill that sets senior
engineers apart, not because they know all the answers, but because they know how to
investigate.

But let’s turn our heads toward something of the same importance—the era we live
in today. Al has become a powerful assistant for developers, and troubleshooting is one
of the areas where it can truly shine. Whether you're inspecting a stack trace, asking
for aregex fix, or trying to understand a cryptic configuration error, an Al assistant can
help you move faster.

But make no mistake: Al won’t do the job for you. It can point you in the right direc-
tion, summarize logs, or suggest solutions. However, it won’t understand your system’s
business rules, history, or architectural decisions. It won’t recognize that a seemingly
minor inconsistency is the key to the whole mystery.

Think of it as of investigating a crime scene—the Al is a capable partner, helping
process evidence and suggesting leads, but you are the detective. You ask the right ques-
tions. You connect the dots. And when you know what you’re doing, Al can make you

11

How to more easily understand your app 5

faster and more effective than ever. But if you don’t have a solid foundation in trouble-
shooting, no Al will save you from chasing red herrings.

TIP Use Al to learn, upskill, and solve things yourself with its help. Be the
puppeteer, not the puppet. This approach will maximize your efficiency.

There is another aspect I want to clarify before we dig in. Often, software developers
use the word debugging for any investigation techniques; however, this is only one of
the various tools available for examining logic implemented as code. While debugging
should mean “finding problems and solving them,” developers use it to describe differ-
ent purposes for analyzing how code works:

Learning a new framework
Finding the root cause of a problem

Understanding existing logic to extend it with new capabilities

How to more easily understand your app

First, it is essential to understand what investigating code and app execution are and
how developers do it. This section looks at several commonly encountered scenarios in
which you can apply the techniques you’ll learn from this book.

I define investigating code as being the process of analyzing a software capability’s spe-
cific behavior. You might wonder, “Why such a generic definition? What is the investi-
gation’s purpose?” Early in the history of software development, looking through code
had one precise purpose: finding and correcting software errors (i.e., bugs). For this
reason, many developers still use the term debugging for these techniques. Look at the
way the word debugis formed:

de-bug = take out bugs, eliminate errors

In many cases today, we still debug apps to find and correct errors. But unlike the early
days of software development, apps are more complex now. In many cases, develop-
ers find themselves investigating how a particular software capability works to learn
a specific technology or library. Debugging is no longer only about finding a particu-
lar problem; it is also about correctly understanding its behavior (figure 1.1; see also
http://mng.bz/M012).

Finding issues Understanding
software
(4
. g; % Figure 1.1 Code investigation
J is not only about finding
- P Learning Reviewing problems in software. Today,
£ = code apps are complex. We often
e use investigation techniques to
‘S understand an app’s behavior or
simply learn new technologies.

http://mng.bz/M012

CHAPTER 1 Starting to know your apps

We analyze code in apps for the following reasons:

To find a particular problem

To understand how a particular software capability works so we can enhance it

To review code for correctness

To learn a specific technology or library

To optimize performance

To eliminate vulnerabilities and improve security

To enhance maintainability
Many developers also investigate code for enjoyment, because exploring how code
works is fun. It can sometimes become frustrating as well, but nothing compares to

the feeling of finding the root cause of a problem or finally understanding how things
work (figure 1.2).

How [feel when I investigate code What | really look like

Figure 1.2 Investigating code doesn’t require much physical effort, but debugging sometimes makes
you feel like Lara Croft or Indiana Jones. Many developers enjoy the unique sensation of solving the puzzle
of software problems.

There are various investigation techniques we can apply to investigate how software
behaves. As discussed later in the chapter, developers (especially beginners) often

How to more easily understand your app 7

wrongly consider debugging equivalent to using a debugger tool. The debugger (or a
debugging tool) is a software program you can use to read and more easily understand
the source code of an application, usually by pausing the execution on specific instruc-
tions and running the code step by step. It is a common way to investigate software
behavior (and usually the first one a developer learns). But it is not the only technique
you can use, and it doesn’t help you in every scenario. We’ll discuss both standard and
more advanced ways of using a debugger in chapters 2 and 3.

Modern investigation techniques can be significantly enhanced through collabora-
tion with Al In this book, we explore various Al tools to elevate the way we analyze code
and track application executions. By integrating Al, we augment traditional trouble-
shooting methods, making our work more efficient and less stressful. This approach
allows us to identify problems faster and more accurately. Figure 1.3 illustrates the
diverse investigation techniques you’ll learn throughout the book.

profile.ifPresentOrElse (Reading code
p ->
{
healthMetric.setProfile (p) ;
healthMetricRepository.save (healthMetric) ;
I
0 ->{
throw new NonExistentHealthProfileException() ;

b

Profiling

. Thread
o Debugging state
° analysis
o
Log Memory
analysis state .
E | analysis

Mocking
and
stubbing

Figure 1.3 Code investigation techniques. Depending on the case, a developer can choose from one or more of
these techniques to understand how a certain capability works.

When a developer fixes a bug, they spend most of their time understanding a partic-
ular feature rather than making the correction. The changes they make sometimes

CHAPTER 1 Starting to know your apps

reduce the problem to a single line of code. This correction can be a missing condi-
tion, an instruction, or a misused operator. It’s not writing the code but rather under-
standing how the app works, which occupies most of a developer’s time.

NOTE In many situations, I've seen developers advised to improve their cod-
ing speed to become more efficient. While that’s excellent advice, I strongly
believe that improving your troubleshooting skills should come first. Most of a
developer’s time isn’t spent writing new code but reading existing code, under-
standing how the application behaves, and figuring out why things don’t work
as expected. That means sharpening your ability to investigate and reason
through problems will make you faster and more effective much sooner than
focusing solely on typing speed or code generation. Troubleshooting well is a
force multiplier that saves time not just when something breaks, but also when
you're trying to extend or refactor existing logic.

In some cases, simply reading the code is enough to understand it, but reading code
is not like reading a book. When we read code, we don’t read nice short paragraphs
written in a logical order from top to bottom. Instead, we step from one method to
another, from one file to another; we sometimes feel like we advance in a vast labyrinth
and get lost. (On this subject, I recommend an excellent book, The Programmer’s Brain,
by Felienne Hermans [Manning, 2021]).

In many cases, the source code is written in a way that doesn’t make it easy to read.
Yes, I know what you are thinking: it should be. And I agree with you. Today, we learn
many patterns and principles for code design and how to avoid code smells, but let’s be
honest: developers still don’t use these principles properly in too many cases. Moreover,
legacy apps usually don’t follow these principles, simply because the principles didn’t
exist many years ago when those capabilities were written. But you still need to be able
to investigate such code.

Take a look at listing 1.1. Suppose you find this piece of code while trying to identify
the root cause of a problem in an app you’re working on. This code definitely needs
refactoring. But before you can refactor it, you need to understand what it is doing. I
know some developers out there can read through this code and immediately under-
stand what it does, but I’'m not one of them.

Listing 1.1 Hard-to-read logic that requires use of a debugger

public int m(int f, int g) {

try {
int[] far = new int[f];
far[g] = 1;
return f;

} catch(NegativeArraySizeException e) {
f = -f;
g = -g;
return (-m(f, g) == -f) ? -g : -f;

} catch(IndexOut0fBoundsException e) {

How to more easily understand your app 9

return (m(g, 8) ==0) 2 f : g;
}
}

To easily understand the logic in listing 1.1, I use a debugger, a tool that allows me to
pause the execution on specific lines and manually run each instruction while observ-
ing how the data changes, to go through each line to observe how it works with the
given input, as discussed in detail in chapter 2. With a bit of experience and some
tricks mentioned in chapters 2 and 3, by parsing this code a few times, you will find that
it calculates the maximum between the given inputs. This code is part of the project
da-chl-exI provided with the book.

As discussed, you can use Al assistants to help you understand the easier parts of your
code. But remember that your purpose is to learn how it works and not that it’s given
to you what it does. So never use a prompt where you ask directly for the final result,
such as

@ What does this code do?
.°.°. provided code .°.°.

Instead, prefer prompts that help you understand what’s going on:

@ Explain this piece of code step by step so that | understand what it does:
.°.°. provided code .°.°.

If you go with the option of getting straight away with what the code does, several things
might happen that will not help you either short or long term:

The answer might be wrong. Remember, Al can make mistakes and sometimes
hallucinate. Don’t just take what it says for granted.

If the answer is not right but looks right, you might in fact spend more time figur-
ing out how that particular piece of code affects the execution.

Even if the answer is the right one, you might not understand how code does
what it does, which might not help you get its purpose into the whole context.

But some scenarios don’t even allow you to navigate through the code, or they make
navigating more challenging. Today, most apps rely on dependencies such as libraries
or frameworks. In most cases, it’s still difficult to follow the source code that defines
a framework’s logic, even when you have access to the source code (when you use
an open source dependency). Usually, frameworks and libraries tend to have certain
layers of abstraction that make them extensible and easy to configure. However, this
aspect can add complexity when investigating code functionality.

In many cases, you don’t even know where to start, and you must use different tech-
niques to understand the app. For example, you could use a profiling tool (as you’ll
learn in chapters 5 through 8) to identify what code executes before deciding where to
start the investigation.

10

1.2

CHAPTER 1 Starting to know your apps

NOTE Troubleshooting is particularly more complicated when you need to
work with source code that doesn’t belong to your application. In many cases,
you have to deal with libraries’ or frameworks’ implementations.

In situations where an application crashes and is no longer running, traditional debug-
ging methods are no longer viable. This situation leads us to the concept of postmor-
tem investigation. For example, if a production service crashes due to an unexpected
memory error, developers must perform a postmortem investigation to determine the
cause and implement a fix.

Postmortem investigation refers to the process of troubleshooting an application
after it has crashed. This type of investigation is necessary when the app is no longer
running, such as after a crash in a production environment. The goal is to quickly
identify the root cause of the crash using data collected during or after the event, such
as logs, heap dumps, or thread dumps. These tools, explored in chapters 8 to 11, are
essential for diagnosing problems and preventing future crashes.

Tools commonly used in postmortem investigations include

Output—The result or outcome produced by the app after execution (if
applicable)

Logs—Capture application activity up to the point of failure

Heap dumps—Provide a snapshot of the application’s memory

Thread dumps—Show the state of all threads at a particular moment

DEFINITION Postmortem investigation means troubleshooting a situation or
behavior that caused an app crash after the event took place. Since the app is
no longer running, a postmortem investigation limits you to only part of the
techniques you can use and is usually more difficult to troubleshoot than other
situations.

Typical scenarios for using investigation techniques
Let’s discuss some common scenarios for using code investigation approaches. We
must look at some typical cases from real-world apps and analyze them to emphasize
the importance of this book’s subject matter:
To understand why a particular piece of code or software capability provides a
different result than expected
To learn how the technologies the app uses as dependencies work
To identify causes for performance problems such as app slowness
To find root causes for cases in which an app suddenly stops
For each presented case, you'll find one or more techniques helpful in investigating
the app’s logic. Later, we’ll dive into these techniques and demonstrate with examples

how to use them.

121

Typical scenarios for using investigation techniques 11

Demystifying the unexpected output

The most frequent scenario in which you’ll need to analyze code is when some logic
ends up with an output that is different than expected. This might sound simple, but it
isn’t necessarily easy to solve.

First, let’s define output. This term might have many definitions for an app. Output
could be some text in the app’s console, or it could be some records changed in a data-
base. We can consider output that an HTTP request the app sends to a different system
or some data sentin the HTTP response to a client’s request.

DEFINITION Qutput is any result of executing a piece of logic that might result
in data change, the exchange of information, or action against a different com-
ponent or system.

How do we investigate a case in which a specific part of the app doesn’t have the
expected execution result? We do so by choosing the proper technique based on the
expected output. Let’s look at some examples.

SCENARIO 1: THE SIMPLE CASE

Suppose an app should insert some records into a database. Yet, the app adds only part
of the records. That is, you expected to find more data in the database than the app
actually produces.

The simplest way to begin analyzing this problem is using a debugging tool to follow
the code execution and understand how it works (figure 1.4). You’ll learn about the
main features of a debugger in chapters 2 and 3. With the debugger, you add a marker
(named breakpoint) at a specific line of code of your choosing to pause the app exe-
cution at that line. Then, the debugger allows you to continue the execution manually.
You run code instructions one by one to observe how the variables’ values change and
then evaluate expressions on the fly.

You can mark an instruction with a breakpoint to tell
the debugger to pause the execution before executing.

public int m(int €, int g) { f: 160

try {
int[] far = new int[f];
farlgl] = 1;
return f;
} catch(MegativeArraySizeException e) {
£ ==f
g = -g;
@ return (-m(f, q) == -f) ? -q : -f; Figure1.4 Usinga
} catch(IndexOut0fBoundsException e) { debugger, you can pause
@ return (mlg, 9:8) ==08) 2 f: g; the execution before a
3 particular instruction and
then observe how the app’s
The debugger shows the value in each logic changes the data
variable, which you can use to understand by manually running the

how the app execution changes the data. instructions step by step.

12

CHAPTER 1 Starting to know your apps

This scenario is the simplest, and by learning how to use all the relevant debugger
features properly, you can find solutions to such problems in no time. Unfortunately,
other cases are more complex, and a debugger tool isn’t always enough to solve the
puzzle and find the cause of the problem.

TIP In many cases, one investigative technique
isn’t enough to understand the app’s behavior.
You'll need to combine various approaches to
understand more complex behavior faster.

SCENARIO 2: THE WHERE-SHOULD-I-START-DEBUGGING CASE?

Sometimes, you won’t be able to use a debugger simply because you don’t know what
to debug (i.e., what part of the code). Suppose your app is a complex service with many
lines of code. You investigate a problem where the app doesn’t store the expected
records in a database. It’s definitely an output problem, but out of the thousands of
lines of code defining your app, you don’t know what part implements the capability
you need to fix.

I remember a colleague who was investigating such a problem. Stressed from being
unable to find where to start the debugging from, he exclaimed: “I wish debuggers had
away for you to add a breakpoint on all the lines of an app so you could see what it actu-
ally hits.”

My colleague’s statement was funny, and he was obviously joking, because having
such a feature in a debugger wouldn’t be a solution. We have other ways to approach
this problem. You would most likely narrow the possibilities of lines where you could
add a breakpoint by using a profiling tool (or profiler for short).

A profileris a tool you can use to identify which code executes while the app is run-
ning (figure 1.5). This is an excellent option for our scenario because it would give you
an idea of where to start the investigation with a debugger. We’ll discuss using a profiler
in chapters 5 through 8, where you’ll learn that you have more options than simply
observing the code in execution.

SCENARIO 3: A MULTITHREADED APP

Oh no! My skin gets goosebumps every time I think about such problems, and if you’ve
ever encountered such cases, you probably know what I mean. Situations become even
more complicated when dealing with logic implemented through multiple threads,
or a multithreaded architecture. In many such cases, using a debugger is not an option in
most cases because multithreaded architectures tend to be sensitive to interference.

Typical scenarios for using investigation techniques 13

The sampling capability of a profiling tool
shows the code in execution.

Name

= == JPS event loop
= ¥ java.lang.Thread.run ()
= % io.netty.utilinternal.ThreadExecutorMap$2run ()
| E ¥ jo.netty.util.concurrent.SingleThreadEventExecutors4run ()
: EI % io.netty.channel.nio.NioEventLooprun ()
: E} 24 io.netty.channel.nio.NioEventLoopselect ()
: sun.nio.ch.SelectorImplselect ()
- i (B self time
: () self time
. (D selftime
: (D self time
&:‘:) Self time

Figure 1.5 Identifying code in execution with a profiler. If you don’t know where to start debugging, the
profiler can help you to identify the code that is running and give you an idea of where you can use the
debugger.

In other words, the way the app behaves is different when you use the debugger. Devel-
opers call this characteristic a Heisenberg execution or Heisenbug (figure 1.6). The name
comes from the twentieth-century physicist Werner Heisenberg, who formulated the
uncertainty principle, which states that once you interfere with a particle, it behaves
differently, so you cannot accurately predict both its velocity and position simultane-
ously. If you are a modern physics fan, you might know what I mean and enjoy the
following article; if not, don’t worry about it (https://plato.stanford.edu/entries/
qt-uncertainty/). A multithreaded architecture might change its behavior if you inter-
fere with it, just the way quantum mechanics particles behave differently if you inter-
fere with them.

Multithreaded functionality presents a wide range of complex scenarios, which, in
my opinion, makes it one of the most challenging aspects to test. While profilers can
sometimes help, they may interfere with the app’s execution, potentially skewing the
results. An alternative approach is to implement logging within the app (covered in
chapter 4). For certain problems, you can simplify the debugging process by reducing
the number of active threads to one, allowing for more straightforward investigation
using a debugger.

SCENARIO 4: SENDING THE WRONG CALLS TO A GIVEN SERVICE

You may need to investigate a scenario where the app doesn’t correctly interact with
another system component or an external system. Suppose your app sends HTTP

https://plato.stanford.edu/entries/qt-uncertainty/
https://plato.stanford.edu/entries/qt-uncertainty/

CHAPTER 1 Starting to know your apps

When nothing interferes with the app

T AM

—) B

Instruction A on thread T1 most likely
happens before instruction B on thread T2.

T2 B
® .

When a debugger interferes with the app

With a breakpoint, you pause the execution
before instruction A on thread T1. Because
of this interference, instruction B on thread
T2 executes before A on thread T1. The app’s
behavior changes, and you can no longer
investigate the initial scenario.

Debugger
T breakpoint

o>

T2 B
@

Figure 1.6 A Heisenberg execution. In a multithreaded app, when a debugger interferes with the app’s
execution, it might change how the app behaves. This change doesn’t allow you to correctly investigate
the initial app behavior that you wanted to research.

requests to another app. You get notified by the maintainers of the second app that the
HTTP requests don’t have the right format (maybe a header is missing, or the request
body contains wrong data). Figure 1.7 illustrates this case.

You have to investigate why
the app sends an HTTP request
with incorrect data to another
system component.

Sends a wrong
App HTTP request Other app
<+ <+

Figure 1.7 A wrong output can be your app sending erroneous requests to another system component.
You may be asked to investigate such behavior and find its root cause.

122

Typical scenarios for using investigation techniques 15

This is a wrong output scenario. How could you approach it? First, identify what part of
the code sends the requests. If you already know, you can use a debugger to investigate
how the app creates the request and determine what is going wrong. If you need to
find what part of the app sends a request, you may need to use a profiler, as you’ll learn
in chapters 5 through 8. You can use a profiler to determine what code acts at a given
time in the execution process.

Here’s a trick I always use when dealing with a complex case such as this one, in which
I can’t straightforwardly identify where the app sends the request to/from: I replace the
other app (the one my app wrongly sends requests to) with a stub.

DEFINITION A stub is a fake application that can be controlled to help identify
the problem.

For example, to determine what part of the code sends the requests, I can make my stub
block the request, so my app indefinitely waits for a response. Then, I use a profiler to
determine what code is being stuck by the stub. Figure 1.8 shows the usage of a stub.
Compare this figure to figure 1.7 to understand how the stub replaced the real app.

You can create a fake app to replace
the component your app calls.

This is called a stub. You control the
stub to make your investigation easier.

Sends a wrong
App HTTP request Stub
—_—_—
—> —>
<+’ <’

For example, you can make the stub
indefinitely block the HTTP request.
In such a case, your app will remain
blocked right on the instruction that
sends the request. You can easily use
a profiler to identify that instruction.

Figure 1.8 You can replace the system component your app calls with a stub. You control the stub to
determine where your app sends the request from quickly. You can also use the stub to test your solution
after you correct the problem.

Getting familiar with your external libraries

Another use of investigative techniques for analyzing code (one which I absolutely love
and wish more developers would try) is learning how certain technologies work. Some
developers joke that 6 hours of debugging can save 5 minutes of reading the docu-
mentation. While it’s true that reading documentation is also essential when learning

16

1.2.3

CHAPTER 1 Starting to know your apps

something new, some technologies are too complex to learn just from reading books
or the specifications. I always advise my students and colleagues to dive deeper into a
specific framework or library to understand it properly.

TIP For any technology (framework or library) you learn,
spend some time reviewing the code you write. Always try
to go deeper and debug the framework’s code.

I’ll start with my favorite, Spring Security. At first glance, Spring Security may seem triv-
ial. It’s just implementing authentication and authorization, isn’t it? In fact, it is—until
you discover various ways to configure these two capabilities into your app. You mix
them wrong, and you may get in trouble. When things don’t work, you must deal with
what isn’t working, and the best choice to deal with what isn’t working is by investigat-
ing Spring Security’s code.

More than anything else, debugging helped me to understand Spring Security. To
help others, I put my experience and knowledge into a book, Spring Security in Action,
second edition (Manning, 2023). In it, I provide more than 70 projects for you to not
only re-create and run, but also to debug. I invite you to debug all examples provided in
the books you read to learn various technologies.

The second example of technology I learned mostly through debugging is Hiber-
nate. Hibernate is a high-level framework used to implementan app’s capability to work
with an SQL database. Hibernate is one of the best-known and most-used frameworks in
the Java world, so it’s a must-learn for any Java developer.

Learning Hibernate’s basics is easy, and you can do this by simply reading books. But
in the real world, using Hibernate (the how and the where) includes so much more
than the basics. And for me, without digging deep into Hibernate’s code, I definitely
wouldn’t have learned as much about this framework as I know today.

My advice for you is simple: for any technology (framework or library) you learn,
spend some time reviewing the code you write. Always try to go deeper and debug the
framework’s code. This will make you a better developer.

Clarifying slowness

Performance problems occur occasionally in apps, and like any other problem, you
need to investigate it before you know how to solve it. Learning to properly use differ-
ent debugging techniques to identify the causes of performance problems is vital.

In my experience, the most frequent performance problems that occur in apps are
related to how quickly an app responds. However, even if most developers consider

Typical scenarios for using investigation techniques 17

slowness and performance equal, that’s not the case. Slowness problems (situations
in which an app responds slowly to a given trigger) are just one kind of performance
problems.

For example, I once had to debug a mobile app that was consuming the device’s
battery too quickly. I had an Android app using a library that connected to an external
device via Bluetooth. For some reason, the library was creating lots of threads without
closing them. These threads, which remain open and run without purpose, are called
zombie threads and typically cause performance and memory problems. They are also
usually challenging to investigate.

However, this type of problem, in which the battery is being consumed too fast, is
also an app performance problem. An app using too much network bandwidth while
transferring data over the network is another good example.

Let’s stick to slowness problems, which are encountered the most. Many developers
fear this type of problem. Usually, that’s not because they are complex to identify, but
because they can be challenging to solve. Finding the cause of a performance problem
is usually an easy job with a profiler, as you’ll learn in chapters 5 through 8. In addition
to identifying which code executes, as discussed in section 1.2.1, a profiler also displays
the time the app spends on each instruction (figure 1.9).

A profiler shows the execution time for each
instruction, enabling quick identification
of the source of a slowness problem.

J

Name

= ™= JPS eventloop | 15,812 ms (100%

Total Time \<

= %9 java.ang.Thread.run () [15,812 ms (100%)
= ¥ io.netty.util.internal. ThreadExecutorMaps$2run () S 15,812 ms (100%)
=- R io.netty.util.concurrent.SingleThreadEventExecutor$drun () == = = 15,812 ms (100%)

[=- 8 io.netty.channel.nio.NioEventLooprun () [15,812 ms (100%)

- & io.netty.channel.nio.NioEventLoopselect () B 15,812 ms (100%)

(5 sun.nio.ch.Selectorimplselect () || 15,812 ms (100%)

- (@ self time 0.0ms (0%)

(D selftime 0.0ms (0%)

(D self time 0.0ms (0%)

= (D self time 0.0ms (0%)

® self time 0.0ms (0%)

Figure 1.9 Investigating slowness problems with a profiler. The profiler shows you the time spent on each
instruction during code execution. This profiler feature is excellent for identifying the root causes of performance

problems.

In many cases, slowness problems are caused by I/O calls, such as reading or writing
from a file or a database or sending data over the network. For this reason, developers

18

1.24

CHAPTER 1 Starting to know your apps

often act empirically to find the cause of the problem. If you know what capability is
affected, you can focus on the I/O calls that capability executes. This approach also
helps in minimizing the scope of the problem, but you usually still need a tool to iden-
tify its exact location.

Understanding app crashes

Sometimes apps completely stop responding for various reasons. These kinds of
problems are usually considered more challenging to investigate. In many cases, app
crashes occur only under specific conditions, so you can’t reproduce (make the prob-
lem happen on purpose) them in the local environment.

Every time you investigate a problem, you should first try to reproduce it in an envi-
ronment where you can study the problem. This approach gives your investigation
more flexibility and helps you to confirm your solution. However, we 're not always lucky
enough to be able to reproduce a problem. And app crashes are usually not easy to
reproduce.

We find app crash scenarios in two main flavors:

The app completely stops.

The app still runs but doesn’t respond to requests.

When the app stops completely, it’s usually because it encountered an error that pre-
vented it from recovering. Most often, a memory error causes such behavior. For a Java
app, the situation in which the heap memory fills and the app no longer works is repre-
sented by an 0ut0fMemoryError message.

To investigate heap memory problems, we use heap dumps, which provide a snapshot
of what the heap memory contains at a specific time. You can configure a Java process to
automatically generate such a snapshot when an Out0fMemoryError message occurs and
the app crashes.

Heap dumps are powerful tools that give you plenty of details about how an app pro-
cesses the data internally. We’ll talk more about how to use them in chapter 10. Butlet’s
take a quick look at a short example.

Listing 1.2 shows a short code snippet that fills the memory with instances of a class
named Product. You can find this app in project da-ch1-ex2 provided with the book. The
app continuously adds Product instances to a list, causing an intended Out0fMemory-
Error message.

Listing 1.2 An app example causing an Out0flMemoryError message

public class Main {
Declares a list that stores
private static List<Product> products = references of Product objects
new ArrayList<>();
Adds Product instances
public static void main(String[] args) { continuously to the list until the
while (true) { heap memory completely fills
products.add(

Al as a game changer in troubleshooting apps 19

new Product(UUID.randomUUID().toString()));

1 Each Product instance has a String
attribute. We use a unique
random identifier as its value.

Figure 1.10 shows a heap dump created for one execution of this app. You can easily see
that Product and String instances fill most of the heap memory. A heap dump is like
a map of the memory. It gives you many details, including the relationships between
instances, as well as values. For example, even if you don’t see the code, you can still
notice a connection between the Product and the String instances based on how close
the numbers of these instances are. Don’t worry if these aspects look complex. We’ll
discuss in detail everything you need to know about using heap dumps in chapter 10.

The number of string instances is close
to the number of Product instances, so
a relationship between them is possible.

Most of the memory is filled with
String and Product objects.

Main (pid 8908)
Heap Dump
&j Objects = ‘ ﬁ:l | Preset: All Objectsw| Aggregation: &, @ Details! EIFrewew % Fields B, Referen... ﬁ GCRo... @ Hierarchy

Name

(E3] &, byte[] 641,447,121 B (48.6%)
& &% jovalang String «—— o 310,004,896 B (

[(4 Product [] 10,678,411 (256,281,864 B (

E:] ﬁ:‘, java.lang.0 bject[] 4,008 111,124,520 B

H @_, java.lang.reflect. Method 1,620 236,520 B

[&, java.uti.HashMap$Hode 3,629 159,676 B

[+ &J java.uti.HashMapSH ode[] 526 128,368 B

E:] &. java.util.concurrent.ConcurrentH ashMap$Hh ode 2,362 103,928 B

[# &, java.lang.invokelLambdaForm SN ame 1,869 (0%) 93,450 B (0%)

Figure 1.10 A heap dump is like a map of the heap memory. If you learn how to read it, it gives you invaluable
clues about how the app internally processes data. A heap dump helps you investigate memory or performance
problems. In this example, you can easily find which object fills most of the app’s memory and that the Product and
String instances are related.

If the app still runs but stops responding to requests, then a thread dump is the best tool
to analyze a thread dump is the best tool for analyzing what is happening. Figure 1.11
shows an example of a thread dump and some of the details this tool provides. Chapter
8 discusses generating and analyzing thread dumps to investigate code.

1.3 Al as a game changer in troubleshooting apps

We’ve recently entered a new era in software development—the artificial intelligence
(AI) era. AI has revolutionized many aspects of software development, and trouble-
shooting is no exception. By employing Al tools, developers can diagnose problems
faster, automate repetitive tasks, and gain deeper insights into complex problems. This

20

CHAPTER 1 Starting to know your apps

A thread dump clearly
shows the state of each
thread.

Name

[=- B3 "main" prio=5 tid=3] RUNNABLE

=

at sun.security.provider.SHA2 im plCom pressCheck (SHAZ java:200)

-+

at sun.security.provider.SHA2implCom press [SHAZ java:198

=3

¥-a sun.security.provider.SHA2im pIDigest (SHAZ java:111

-+

at sun.security.provider.DigestBaseengineDigest (DigestBase java:210)

You can also at sun.security.provider.DigestBaseengineDigest (DigestBase.java:189)

easily see

-+

- at java.security.MessageDigest$D elegate.engineDigest (MessageDigest.javaia)

what the thread . [at java.security.MessageDigest.digest (MessageDigest java:385)

was dOing when E-] at sun.security.provider.HashDrbggenerateAlgorithm (HashDrbg.java:224)
the dump was - at sun.security.provider.AbstractDrbgengineN extBytes (AbstractDrbg.java:
taken. Podu gt sun.security.provider.AbstractD rbgengineN extBytes (AbstractDrbg.j

=3

ligg

33)

sun.security.provider.D REGengineN extBytes (DREG. java:

- gt java.security.SecureRandom nextBytes (SecureRandom.java:/51)
[#- at java.util.UUID randomUUID (UUID java:150

+- at Main.main (Main java:ll)
"Reference Handler" daemon prio=10 tid=2 RUNNABLE
~oat java.lang.ref.Reference. waitf orReferencePendinglList (ative Method)

at java.lang.ref.Reference. processPendingReferences (Reference.javai24l)

at java.lang.ref.Reference$ReferenceHandler. run (Ref

"Finalizer" daemon prie=8 tid=3% WAITING

at java.lang.Object.wait (lative Meth

od)

- at java.lang.ref.ReferenceQueue. remove (Re

at java.lang.ref.ReferenceQueue. remove (Re

]

- at java.lang.ref.Finalizer$FinalizerThread. run

Figure 1.11 A thread dump provides details about the threads that were running when the dump was
taken. It includes thread states and stack traces, which tell you what the threads were executing

or what blocked them. These details are valuable for investigating why an app is stuck or is having
performance problems.

section explores how Al including tools such as ChatGPT, can enhance the debugging
and troubleshooting process in Java applications.

Some may argue, “Why AI? Isn’t this just hype?” Well, do you still find developers often
using Notepad, vi, or a similar text editor to write code? No. Today, we all use IDEs that
integrate in one place and provide us with several capabilities to make our lives easier with
reading and writing code. We always transition to better tools and techniques to make our
job easier, and that’s why, in the future, Al tools will be part of what we’ll commonly use.

NOTE Start using and adapt quickly to the new Al tools. Failing to adapt and
rejecting their evolution will only drag you behind.

Al as a game changer in troubleshooting apps 21

Let me provide an initial use case of Al in troubleshooting. Section 1.2 described sev-
eral types of troubleshooting situations. In this book, we’ll focus on identifying which
situation you’re in and how to start troubleshooting. This experience will help you
better understand the problems and how to deal with them over time. Remember that
Al tools may prove extremely helpful in such situations.

The first tip is to use an Al prompt to get some ideas about where to start. For exam-
ple, you can use ChatGPT or a similar tool to describe your problem and identify some
starting points. I have tried this since these tools became popular and have made a habit
of using them. Overall, I feel they have helped me improve the speed of understanding
the capabilities I learn or the behavior I investigate. Let me tell you a story.

The mystery of a legacy bug

It was a typical Monday morning at the software development firm. The office was
buzzing with the usual chatter of developers, product managers, and designers, all
discussing their weekend escapades and gearing up for another busy week. In the
corner of the office, Sarah, a seasoned Java developer, was already hard at work, her
brow furrowed in concentration as she stared at lines of code on her screen.

Sarah had been assigned to work on a legacy Java application that the company had
maintained for years. The application was critical to their business, serving thou-
sands of customers daily. However, over the past week, the app had started behaving
erratically—occasionally crashing without any clear reason. The logs were sparse,
and traditional debugging methods had yielded no clues. Sarah knew she was deal-
ing with an elusive bug, the kind that seemed to lurk in the shadows, striking without
warning. She tried various troubleshooting techniques, but nothing worked, and her
frustration was growing.

Just then, Michael, a junior developer, walked by her desk. Noticing her frustration, he
paused and asked, “Hey, Sarah, everything okay?”

Sarah gave a weary smile. “Just wrestling with this legacy bug. I've tried everything—
breakpoints, code reviews, even a profiler. Nothing. It’s like the bug doesn’t want to be
found.”

Michael nodded sympathetically. “Have you tried using ChatGPT? | heard it can help
suggest possible causes for bugs based on the problem description.”

Sarah was skeptical. She had heard about Al tools like ChatGPT but never considered
them seriously for debugging. However, at this point, she was willing to try anything.
“Why not,” she thought. “It can’t hurt to give it a shot.”

She opened ChatGPT and began typing a detailed description of the problem.

“I'm working on a legacy Java application that's been crashing intermittently with no
clear pattern. The logs are sparse, and traditional debugging methods haven’t been
helpful. The app uses older versions of Hibernate and Spring, and it interfaces with
an Oracle database. Error messages are inconsistent, and the crash seems to occur
after a series of complex transactions.”

22

CHAPTER 1 Starting to know your apps

(continued)
Within seconds, ChatGPT responded:

“It sounds like you might be dealing with a memory leak or a race condition. Given
that the application is using older versions of Hibernate and Spring, it’s possible
there could be a configuration issue or a hidden bug in those libraries. Have you
checked for any misconfigured session factories or potential infinite loops in transac-
tion handling?”

Sarah’s eyes widened. The suggestion about the session factory misconfiguration
struck a chord. She hadn’t considered that angle. Excited, she dove back into the
code, focusing on the Hibernate configuration files. As she combed through the files,
she noticed something peculiar—a session factory was set to open a new session
for every transaction, without properly closing the previous ones. This configuration
could easily lead to memory problems and random crashes.

“Could it really be that simple?” she muttered to herself.

She quickly adjusted the configuration, making sure each session was properly
closed after use. Then, she redeployed the application and waited, her heart racing.
Minutes passed. Then an hour. The app continued running smoothly, with no crashes
in sight.

Michael, noticing her excitement, walked over. “Did it work?”

Sarah nodded, grinning from ear to ear. “I think it did! It looks like the issue was a mis-
configured session factory, just like ChatGPT suggested. | can’t believe | didn’t think
of it earlier!”

Michael smiled. “Sometimes, it takes a fresh perspective. Even if it comes from
an Al.”

Even if Sarah’s story is fictitious, I made it similar to several situations I've been through
or witnessed since Al tools became a thing. And I advise you to try it yourself. In fact,
we’ll analyze different ideas further in this book. I will start with just a few helpful
points (which we’ll also detail more later in the following chapters) when using an
Al prompt to help you identify the kind of problem you are solving and how to begin
investigating it:

Always be as descriptive as possible when creating the prompt. Give as many details as

you can. I shortened Sarah’s prompt in our story, but assume she gave even more

details about her specific case.

Be careful with the details you provide. Remember never to share sensitive informa-
tion in the prompt, even if you want to be as descriptive as possible. Sensitive
details might be related to the company you work for (like package names, which
may contain the company name in some cases) or private details such as keys and
passwords. Imagine Sarah might have also copied and pasted some code. She
should be careful with what exactly she puts in the prompt to avoid any sensitive

14

What you will learn in this book 23

details. You should also review the policies of the company you’re working for,
as some may have stricter guidelines regarding the use of certain Al tools. It’s
important to exercise caution and ensure that you always comply with the compa-
ny’s internal regulations.

Use Al-generated responses as a guide but never rely on them blindly. Al tools can some-
times produce incorrect or misleading information, a phenomenon known as A/
hallucination. This means the Al might fabricate details that seem plausible but
are not grounded in reality. Additionally, the accuracy of the output depends
heavily on the input quality (i.e., your prompt). Always verify the information
and cross-check it with reliable sources to ensure accuracy.

Use multiple prompts to fill in gaps according to the response you get. Even if I made the
story short in this case, don’t be discouraged if the solution doesn’t enlighten
from the start. Sometimes, you need to continue the discussion and get more
involved.

What you will learn in this book

This book is designed for Java developers with varying experience levels, ranging from
beginners to experts. You’ll learn various code investigation techniques, the best sce-
narios in which to apply them, and how to apply them to save you troubleshooting and
investigation time.

If you are a junior developer, you’ll most likely learn many things from this book.
Some developers master all these techniques only after years of experience; others
never master them. Even if you are an expert, you may find familiar concepts, but
there’s still a good chance you’ll discover new and exciting approaches.

When you finish the book, you will have learned the following skills:

Applying different approaches to using a debugger to understand an app’s logic
or find a problem

Correctly choosing which app investigation techniques to use to make your inves-
tigation faster and utilize Al tools to help you get on the fastest track from the
beginning

Investigating hidden functionality with a profiler to better understand how your
app or a specific dependency of your app works

Analyzing code techniques to determine whether your app or one of its depen-
dencies causes a particular problem

Investigating data in an app’s memory snapshot to identify potential problems
with how the app processes data

Using logging to identify problems in an app’s behavior or security breaches

Analyzing logs and large data for troubleshooting purposes using Al tools

24

CHAPTER 1 Starting to know your apps

Summary

You can use various investigation techniques to analyze software behavior.
Depending on your situation, one investigation technique may work better than
another. You need to know how to choose the correct approach to make your
investigation more efficient. Al tools can be extremely helpful in determining
where to start and which troubleshooting techniques to apply.

For some scenarios, using a combination of techniques can help identify a prob-
lem faster. Learning how each analyzing technique works gives you an excellent
advantage in dealing with complex problems.

In many cases, developers use investigation techniques to learn new things rather
than solve problems. When learning complex frameworks such as Spring Secu-
rity or Hibernate, simply reading books or the documentation isn’t enough. An
excellent way to accelerate your learning is to debug examples that use the tech-
nology you want to understand better.

A situation is easier to investigate if you can reproduce it in an environment
where you can study it. Reproducing a problem not only helps you find its root
cause more easily, butit also helps you verify that a solution works when applied.

Understanding yowr
app’s logic through
debugging techmiques

This chapter covers

When to use a debugger and when to avoid it
Using a debugger to investigate code

Enhancing your debugging techniques with Al
assistants

Not long ago, during one of my piano lessons, I shared the sheet music of a song I
wanted to learn with my piano teacher. I was so impressed when he just played the
song while reading the music sheet for the first time. “How cool is that?” I thought.
“How does someone gain this skill?”

Then, I remembered that some years ago, I was in a peer-programming session
with one of the newly hired juniors in the company I was working for. It was my turn
at the keyboard, and we were investigating a relatively large and complex piece of
code using a debugger. I started navigating through the code, pressing relatively
quickly the keyboard keys that allowed me to step over, into, and out of specific lines
of code. I'was focused on the code but was quite calm and relaxed, almost forgetting

25

26

CHAPTER 2 Understanding your app’s logic through debugging techniques

I had someone near me (which was rude). I heard this person say, “Wow, stop a bit.
You’re too fast. Can you even read that code?”

I realized that situation resembled my experience with my piano teacher. How can
you acquire this skill? The answer is easier than you think: work hard and gain experi-
ence. While practicing is invaluable and takes a lot of time, I have some tips to share that
will help you improve your technique much faster. This chapter discusses one of the
most important tools used in understanding code—the debugger.

DEFINITION A debugger is a tool that allows you to pause
the execution on specific lines and manually execute each
instruction, while observing how the data changes.

Using a debugger is like navigating with Google Maps: it helps you find your way
through complex logic implemented in your code. It’s also the most used tool for
understanding code.

A debugger is usually the first tool developers learn to use to help them understand
what code does. Fortunately, all IDEs come with a debugger, so you don’t have to do
anything special to have one. In this book, I use Intelli] IDEA Community in my exam-
ples, but any other IDE is quite similar and offers (sometimes with a different look) the
same options we’ll discuss. Although a debugger seems to be a tool most developers
know how to use, you may find (in this chapter and in chapter 3) some new techniques.

Section 2.1 discusses how developers read code and why. In many cases, simply read-
ing the code isn’t enough to understand it. Enter the debugger or a profiler (which
we’ll talk about later, in chapters 5-8). In section 2.2, we continue the discussion by
applying the simplest techniques for using a debugger with an example.

If you are an experienced developer, you might already know
these techniques. But you may still find it useful to read through
the chapter as a refresher, or you could go straight to the more

/ advanced techniques for using a debugger discussed in chapter 3.

OK! Let’s see!

2.1

When analyzing code is not enough 27

When analyzing code is not enough

Let’s start by discussing how to read code and why sometimes reading just the logic
isn’t enough to understand it. In this section, I'll explain how reading code works and
how it is different from reading something else, like a story or a poem. To observe this
difference and understand what causes the complexity in deciphering code, we’ll use a
code snippet that implements a short piece of logic. Understanding what’s behind the
way our brain interprets code will clarify the need for tools such as a debugger.

Any code investigation scene starts with reading the code. But reading code is differ-
ent from reading poetry. When reading a verse, you move through the text line by line
in a given linear order, letting your brain assemble and picture the meaning. If you read
the same verse twice, you might understand different things.

With code, however, it’s the opposite. First, code is not linear. When reading code,
you don’t simply go line by line. Instead, you jump in and out of instructions to under-
stand how they affect the data being processed. Reading code is more like a maze than
a straight road. And, if you’re not attentive, you might get lost and forget where you
started. Second, unlike a poem, the code always means the same thing for everyone.
That meaning is the objective of your investigation.

Just like you’d use a compass to find your path, a debugger helps you identify more
easily what your code does. As an example, we’ll use the decode(List<Integer> input)
method. You can find this code in project da-ch2-ex1 provided with the book.

Listing 2.1 An example of a method to debug

public class Decoder {

public Integer decode(List<String> input) {
int total = 0;
for (String s : input) {
var digits = new StringDigitExtractor(s).extractDigits();
total += digits.stream().collect(Collectors.summingInt(i -> i));

}

return total;
¥
¥

If you read from the top to the bottom line, you must assume how some things work
to understand the code. Are those instructions really doing what you think they’re
doing? When you are not sure, you must dive deeper and observe what the code actu-
ally does—you have to analyze the logic behind it. Figure 2.1 points out two uncertain-
ties in the given code snippet:

What does the StringDigitExtractor() constructor do? It might just create an
object, or it might also do something else. It could be that it somehow changes
the value of the given parameter.

28 CHAPTER 2 Understanding your app’s logic through debugging techniques

What s the result of calling the extractDigits() method? Does it return a list of
digits? Does italso change the parameter inside the object we used when creating
the StringDigitsExtractor constructor?

Does this constructor only

create an object, or does it

also do something else?
public class Decoder {

public Integer decode(List<String> input) {
int total = 0;
for (String s : input) {
var digits =(ﬁew StringDigitEXtractor(s{)kxtractDigits()i
total += digits.stream() .collect (Collectors.summingInt (i -> i));

}
return total; What does this method
} really do? Does it use the
} String parameter value?

Figure 2.1 When reading a piece of code, you often need to figure out what happens behind the scenes
in some of the instructions composing that logic. The method names are not always suggestive enough,
and you can’t totally rely on them. Instead, you need to go deeper into what these methods do.

Even with a small piece of code, you may have to dive deeper into the instructions.
Each new code instruction you examine creates a new investigation plan and adds to
its cognitive complexity (figures 2.2 and 2.3). The deeper you go into the logic and the
more plans you open, the more complex the process becomes.

You take a piece of stone,

chisel it with blood, Reading poetry is linear.
grind it with Homer’s eye, You read each verse one
burnish it with beams by one, from top to bottom.

until the cube comes out perfect.

Next you endlessly kiss the cube
with your mouth, with others’ mouths,
and, most important,

with infanta’s mouth.

Then you take a hammer

and suddenly knock a corner off.
Figure 2.2 Compare
how you read poetry
with how you read
code. You read poetry
line by line, but when
you read code, you
jump around.

All, indeed absolutely all will say
what a perfect cube

this would have been

if not for the broken corner.

(“A Lecture on the Cube,” N. Stanescu)

When analyzing code is not enough 29

Reading code is not linear. Any instruction

might create a separate cognitive plan.

Sometimes you need to dive into those plans
/ to understand the full picture.

: / First plan
public class Decoder {

public Integer decode (List<String> input)

int total = 0; Second plan
for (String s : input) {

var digits = new StringDigitExtractor(s) .extractDigits() ;

total += digits.stream().collect (Collectors.summingInt (i s 1)) ;
- \

} s N

return total; _- \

} B R
} public List<Integer> extractDigits() {

List<Integer> list = new ArrayList<>();

for (int i = 0; i < input.length(); i++) {
if (input.charAt (i) >= '0' && input.charAt (i) <= '9"') {
list.add(Integer.parselnt (String.valueOf (input.charAt (i))));

}

return list;

[
[
|
[
|
I
[}
[
[
[
[
[
|

Figure 2.3 Reading code is different from reading poetry and is much more complex. You can imagine reading
code as reading in two dimensions. One dimension is reading a piece of code top to bottom. The second dimension
is going into a specific instruction to understand it in detail. Trying to remember how things work for each plan and
how it assembles makes understanding code just by reading it very difficult.

Reading poetry always has one path. Code analysis, however, creates many paths
instead through the same piece of logic. Did I say two plans earlier (figure 2.3)? Well,
every time you go deeper, you leave one plan behind. So when you look at a particular
piece of code, you see the current plan, and you know the method you see hides its
own plan. But each time you jump into a method, you also leave behind one plan. The
more you jump into methods, the more plans you open.

The more plans you open, the more complex the debugging process is. And the
opposite is also true: the fewer new plans you open, the less complex the process is. You
must choose between skipping over a certain instruction, making the overall investi-
gation process simpler, or going into detail to understand each individual instruction
better and raise the process complexity.

30

CHAPTER 2 Understanding your app’s logic through debugging techniques

TIP Always try to shorten the reading path by minimizing the
number of plans you open for investigation. Use a debugger to
help you more easily navigate the code, keep track of where you
are, and observe how the app changes the data while executing.

Reading code today can be significantly enhanced using Al tools such as ChatGPT or
other large language model (LLM) tools. Remember, you can always use a prompt to
get ideas about a code snippet. For example, you may start by providing a prompt as
given in the following snippet.

Can you help me understand what this method does? Please provide me step-by-step
explanation of the code?

public Integer decode(List<String> input) {
// whole method from Listing 2.1 provided
// but content erased from here to save space

3

Your LLM tool should give you an answer containing a detailed description of the
method and the assumptions made. The summary and assumptions made may look
like as follows:

@ The decode method
Takes a list of strings as input.
Iterates through each string in the list.

For each string, extracts all numeric digits using StringDigitExtractor
.extractDigits().

Sums up the extracted digits for each string.
Accumulates these sums into a total.
Returns the total sum of all digits extracted from all the strings.

Assumptions

To fully understand how this method works, we need to make a few assumptions
about the StringDigitExtractor class and its extractDigits() method, as they
are not defined in the code you provided:

StringDigitExtractor is a class that takes a string as an argument in its
constructor.

extractDigits() is a method in StringDigitExtractor that returns a collection
of numeric digits (likely as integers or numeric strings) found within the input
string.

2.2

Investigating code with a debugger 31

With these assumptions, the method effectively calculates the sum of all digits found in
the entire list of strings.

Observe that the LLM tool correctly intuited the purpose of the decode () method.
However, because you have only provided the first cognitive plan, the LLM tool made
some assumptions and also provided you with the list of assumptions.

In my experience, the tool will always deliver a list of assumptions if it makes any
assumptions. In case it doesn’t, but you believe it might have, you can continue the con-
versation with a prompt asking for possible assumptions that have been made.

If the result doesn’t satisfy your expectations, the casual flow is to continue the con-
versation by providing more information from the next cognitive plans until you reach
a conclusion.

TIP Remember that the majority of LLM tools can easily extract text from
an image. If you cannot easily copy and paste the code but can extract it in an
image (presumably with a screen capture), you can provide that image instead
to obtain the same result.

Investigating code with a debugger

This section discusses a tool that can help you to minimize the cognitive effort of read-
ing code to understand how it works—a debugger. All IDEs provide a debugger, and
even if the interface might look slightly different from one IDE to another, the options
are generally the same. I'll use Intelli] IDEA Community in this book, but I encourage
you to use your favorite IDE and compare it with the examples. You’ll find they are
pretty similar.

A debugger simplifies the investigation process by

Providing you with a means to pause the execution at a particular step and exe-
cute each instruction manually at your own pace.

Showing you where you are and where you came from in the code’s reading path;
this way, the debugger works as a map you can use, rather than trying to remem-
ber all the details.

Showing you the values that variables hold, which makes the investigation easier
to visualize and process.

Allowing you to try things on the fly by using watchers and evaluating expressions.

Let’s take the example in project da-ch2-ex1 again and use the most straightforward
debugger capabilities to understand the code.

Listing 2.2 A piece of code we want to understand

public class Decoder {

public Integer decode(List<String> input) {
int total = 0;
for (String s : input) {

32

CHAPTER 2 Understanding your app’s logic through debugging techniques

var digits = new StringDigitExtractor(s).extractDigits();
total += digits.stream().collect(Collectors.summingInt(i -> 1));

3

return total;
¥
}

I’'m sure you're wondering, “How do I know when to use a debugger?” This is a fair
question I want to answer before we continue. The main prerequisite is knowing what
piece of logic you want to investigate. As you’ll learn in this section, the first step in using a
debugger is selecting an instruction where you want the execution to pause.

NOTE Unless you already know which instruction
you need to start your investigation from, you can’t
sy usea debugger.

In the real world, you’ll find cases in which you don’t know up front the specific piece of
logic you want to investigate. In this case, before you can use a debugger, you must apply
other techniques to find the part of the code you want to explore using the debugger
(addressed in later chapters). In chapters 2 and 3, we focus only on using the debugger,
so we’ll assume you somehow found the piece of code you want to understand.

Going back to our example, where do we start? First, we need to read the code and
figure out what we do and don’t understand. Once we identify where the logic becomes
unclear, we can execute the app and tell the debugger to pause the execution. We can
pause the execution on those lines of code that are not clear to observe how they change
the data. To tell the debugger where to pause the app’s execution, we use breakpoints.

DEFINITION A breakpoint is a marker used on lines where we

want the debugger to pause the execution so we can investigate
.5 the implemented logic. The debugger will pause the execution
1~ before executing the line marked with the breakpoint.

In figure 2.4, I shaded the code that is pretty easy to understand (considering you
know the language fundamentals). As you can see, this code takes a list as an input,
parses it, processes each item in it, and somehow calculates an integer that the method

Investigating code with a debugger 33

returns in the end. Moreover, the process the method implements is easy to ascertain
without a debugger.

1. The method takes a list
of strings as a parameter.

public class Decoder {

public Integer decode(List<Strings input) {
int total = 0;
for (String s : input) {
var digits = new StringDigitExtractor(s).extractDigits();
total += digits.stream() .collect (Collectors.summingInt (i -> 1)) ;

}

return total;

}
}

3. The method returns an

2. The method iterates integer value, which is a sum
over the List parameter of something calculated for each
string in the List parameter.

Figure 2.4 Assuming you know the language fundamentals, you can easily see that this code takes a
collection as an input and parses the collection to calculate an integer.

In figure 2.5, I shaded the lines that usually cause difficulties in understanding what
the method does. These lines of code are more challenging to decipher because they
hide their own implemented logic. You may recognize digits.stream().collect
(Collectors.summingInt(i -> 1)) asit’s been part of the Stream API provided with the
JDK since Java 8. But we can’t say the same thing about new StringDigitExtractor(s)
.extractDigits(). Because this is part of the app’s codebase we are investigating, this
instruction might do anything.

The way a developer writes the code may also add additional complexity. For exam-
ple, starting with Java 10, developers can infer the type of a local variable using var.
Inferring the variable type is not always a wise choice because it can make the code even
more difficult to read (figure 2.5), adding another scenario in which using the debug-
ger would be beneficial.

TIP When investigating code with a debugger, start
from the first line of code that you can’t figure out.

34

CHAPTER 2 Understanding your app’s logic through debugging techniques

While training junior developers and students over the many years, I have observed
that they often start debugging on the first line of a specific code block. Although this
method is acceptable, it’s more efficient if you first read the code without the debugger
and try to figure out whether you can understand it. Remember, you can use Al help for
this purpose, as discussed in section 2.1. Then, start debugging directly from the point
that causes difficulties. This approach will save you time as you may notice you don’t
need the debugger to understand what happens in a specific piece of logic. After all,
even if you use the debugger, you only need to go over the code you don’t understand.

In some scenarios, you add a breakpoint on a line because its intent is not obvious.
Sometimes, your app throws an exception; you see that in the logs, but you don’t know
which previous line is causing the problem. In this case, you can add a breakpoint to
pause the app’s execution just before it throws the exception. But the idea stays the
same: avoid pausing the execution of the instructions you understand. Instead, use
breakpoints for the lines of code you want to focus on.

What happens for every
string in the list? How is
the string turned into
a number?

public class Decoder {

public Integer decode (List<Strings> input)
int total = 0;
for (String s : input) {
var digits = new StringDigitExtractor(s) .extractDigits() ;
total += digits.stream() .collect (Collectors.summingInt (i -> 1i));

}

return total;

}
1

Figure 2.5 In this piece of code, | shaded the lines that are more difficult to understand. When you use a
debugger, add the first breakpoint on the first line that makes the code more challenging to understand.

A useful strategy is to reduce the number of variables displayed in the IDE’s scope to
focus only on the ones that are relevant. An LLM can analyze your code and help iden-
tify variables relevant to the debugging process, suggesting the removal of those that
aren’t necessary. Focusing on essential variables only simplifies debugging by removing
irrelevant data, which lets you concentrate on what’s important.

For this example, we start by adding a breakpoint on line 11, presented in figure 2.6:

var digits = new StringDigitExtractor(s).extractDigits();

Generally, to add a breakpoint on a line in any IDE, you click on or near the line
number (or even better, use a keyboard shortcut; for Intelli], you can use Ctrl-F8 for

Investigating code with a debugger 35

Windows/Linux, or Command-F8 for macOS). The breakpoint will be displayed with
a circle, as presented in figure 2.6. Make sure you run your application with the debug-
ger. In Intelli], look for a small bug icon near the one you use to start the app. You
can also right-click the main class file and use the Debug button in the context menu.
When the execution reaches the line you marked with a breakpoint, it pauses, allowing
you to navigate further manually.

1. Add a breakpoint on the line where you 2. Run the app with the debugger.
want the debugger to stop the execution.
This line should be the first instruction
that creates concerns.

Bl Gl Edit View Nevigale Code fnabze Refoctor Buid Fun Jook NCS Window Help dethl-e - Decoderjos ¢ =] *

da-chZ-ex! src main jave main & Decode:

A Men = | b & GG~ wE TQ

Peoject]

G —| B Decolersa
= da-ch2-ex! T4 MANNINGT Debugsng A
ey

import java.util.list;

import java.util.stream.Collectors;

£ Dezoder
& Mein
& SrngDigitEtractar

public class Decoder {

[Ty
test

public Integer decode(List<String> input) {
int total = G;
el for (String s : input) {
. L}:::::I:f_:":m,c.u @ var digits :Llst<integer> = pew StringDigitExtractor(s).extractDigits();
1 total += digits.stream().collect(Collectors.summingInt(i -> i));
¥

farget
o ta-ch-eximl

return total;
;

i
I

Figure 2.6 Click near the line number to add a breakpoint on a specific line. The area where the IDE displays the
breakpoint is also called the “gutter.” Then, run the app with the debugger. The execution pauses on the line you
marked with a breakpoint and allows you to control it manually.

Since the shortcuts can change and differ depending on the operating system you
use (some developers even prefer to customize them), I’'m not going to discuss them
here. However, I advise you to check your IDE’s manual and learn to use the keyboard
shortcuts.

NOTE Remember, you must execute the app using the Debug option to have
an active debugger. If you use the Run option, the breakpoints won’t be consid-
ered since the IDE doesn’t attach the debugger to the running process. Some
IDEs may run your app by default and attach the debugger, but if that’s not the
case (like for Intelli] or Eclipse), then the app execution won’t pause at the
breakpoints you define.

36

CHAPTER 2 Understanding your app’s logic through debugging techniques

Attaching a debugger in Java (locally) means that your IDE connects to your running
Java program to control and inspect it. Behind the scenes, when you run your app in
debug mode, the JVM starts with special settings that allow it to accept debugger con-
nections (through a local port). When the IDE attaches, it connects to this port and
uses the Java Debug Wire Protocol (JDWP) to communicate. This approach lets you
pause the program, step through code, inspect variables, and set breakpoints.

DEFINITION Attaching a debugger means the IDE connects to the JVM in a
special way to let you watch and control how your code runs.

When the debugger pauses the code execution on a specific instruction from the line
you mark with a breakpoint, you can use the valuable information the IDE displays.
Figure 2.7 shows that my IDE displays two essential pieces of information:

The value of all the variables in scope—Knowing the variables in scope and their
values helps you understand what data is being processed and how the logic
affects it. Remember that the execution is paused before the execution of the
line marked with a breakpoint, so the data state remains the same.

The execution stack trace—It shows how the app executes the line of code where the
debugger paused the execution. Each line in the stack trace is a method involved

The execution paused
on the line you marked
with a breakpoint.

B He B Ve Meuste Dode Sabge Befactor Bub Run Tooks VO3 Wke Help

s Dacahe

& Ducodurjon

public class Decoder {

@ public Integer decode(lList<String> input) {
int total = 8; fotaol: O
for (String s : input) { yt: size = 4 s: “gblc’
& | var digits EEEINEEEE - ne ingDigitExtracto .extractDigits();

total += digits.stream().collect{Collectors.summingInt(i —> iJ);

u drch-enTimd }

return total;

P Vatabtes

The debugger also shows the stack trace, When the debugger pauses the app execution
which displays the execution path so that on a specific line, you can see the values
you can easily see who called the method of all the variables in the scope.

you are investigating.

Figure 2.7 When the execution is paused on a given line of code, you can see all the variables in scope
and their values. You can also use the execution stack trace to remember where you are as you navigate
through the lines of code.

221

Investigating code with a debugger 37

in the calling chain. The execution stack trace helps visualize the execution path,
without needing to remember how you got to a specific instruction when using
the debugger to navigate through code.

TIP You can add as many breakpoints as you want,
but it is best to use a limited number at a time and
focus only on those lines of code. | usually use no
more than three breakpoints at the same time. |
often see developers add too many breakpoints,
forget them, and get lost in the investigated code.

Generally, observing the values of the variables in scope is easily understandable. But,
depending on your experience, you may or may not be aware of what the execution
stack trace is. Section 2.2.1 addresses the execution stack trace and why this tool is
essential. We’ll then discuss navigating the code using essential operations such as step
over, step into, and step out. You can skip section 2.2.1 and go directly to 2.2.2 if you
are already familiar with the execution stack trace.

What is the execution stack trace, and how do I use it?

The execution stack traceis a valuable tool you use to understand the code while debug-
ging it. Just like a map, the execution stack trace shows the execution’s path to the spe-
cific line of code where the debugger paused it, helping you decide where to navigate
further.

Figure 2.8 shows a comparison of the execution stack trace and the execution in a
tree format. The stack trace shows how methods called one another up to the point
where the debugger paused the execution. In the stack trace, you can find the method
names, the class names, and the lines that caused the calls.

NOTE In our examples, you’ll notice that the main() method consistently
appears as the first line in the execution stack. However, in real-world appli-
cations, multiple threads often run concurrently, each maintaining its own
execution stack (see appendixes D and E for more details). For instance,
in a typical thread-perrequest web application, a new thread is spawned for
each incoming HTTP request. Therefore, the starting point of an execution
stack varies depending on which thread is executing the specific piece of code
you’re analyzing. In our examples, you always see the main() method as the
first line of the execution stack. Remember that a real-world app has multiple
threads executing, and each thread has their own stack (also see appendixes
D and E). For example, a standard thread-per-request web app will create a
new thread for each HTTP request. So, the starting point of an execution stack
depends on which thread executes the piece of code you investigate.

38

We read the execution stack from bottom to top.
The bottom layer in the stack is the first layer.

The first layer is the one where the execution began.
The top layer (the last layer) is the method where

CHAPTER 2 Understanding your app’s logic through debugging techniques

This is a tree representation of the
execution stack trace. Method main ()

in class Main calls method decode () in
class Decoder. Further, method decode ()

the execution is currently paused. calls method extractDigits () in class

StringDigitsExtractor. The execution
is paused in method extractDigits ().

Debug: 5 Main

(s Debugger Console = |2 ¥ + N ¥ ¥ H

1" Frames Threads maln ()

» “"main"@71 in group "main”; RUNNING - + T calls

extractDigits:15, StringDigitExtractor (main)

- decode:12, Decoder (decode ()
main:11, Main (main}
@
% calls
%
a extractDigits ()

» Execution paused in method extractDigits ()

The execution stack trace shows the class names
and the line in the file where the method was called.

Figure 2.8 The top layer of the execution stack trace is where the debugger paused the execution. All other
layers in the execution stack trace are where the methods represented by the above layers were called. The
bottom layer of the stack trace (the first layer) is where the execution of the current thread began.

One of my favorite uses of the execution stack trace is finding hidden logic in the exe-
cution path. In most cases, developers simply use the execution stack trace to under-
stand who calls a particular method. But you also need to consider that apps that use
frameworks (such as Spring, Hibernate, etc.) sometimes alter the execution chain of
the method.

DEFINITION The execution stack traceis a breadcrumb trail of method calls that
tells you how your program got to where it is.

For example, Spring apps often use code that is decoupled in what we call aspects (in
Java/Jakarta EE terminology, we call them interceptors). These aspects implement logic
that the framework uses to augment the execution of specific methods in certain con-
ditions. Unfortunately, such logic is often difficult to observe since you can’t see the
aspect code directly in the call chain when reading the code (figure 2.9). This charac-
teristic makes it challenging to investigate a given capability.

Let’s take a code example to examine this behavior and how the execution stack
trace is helpful in such cases. You can find this example in project da-ch2-ex2 provided
with the book (appendix B provides a refresher for opening the project and starting
the app). The project is a small Spring app that prints the parameter’s value in the
console.

Investigating code with a debugger 39

The apparent flow of method execution

| calls |

methodl () J L method?2 ()
It looks like method 1
directly calls method 2.
How the code really executes
/2 \
calls } calls
methodl () aspect () ——— method2 ()

L Instead, method 1 calls the logic
implemented by an aspect. The aspect

might further call the second method.

Figure 2.9 An aspect logic is completely decoupled from the code. For this reason, when reading the
code, it is difficult to see that there’s more logic that will execute. Such cases of hidden logic executing
can be confusing when investigating a certain capability.

Listings 2.3, 2.4, and 2.5 show the implementation of these three classes. As presented
in listing 2.3, the main() method calls ProductController’s saveProduct() method,
sending the parameter value "Beer".

Listing 2.3 The main class calls the ProductController’s saveProduct() method

public class Main {

public static void main(String[] args) {
try (var ¢ =
new AnnotationConfigApplicationContext(ProjectConfig.class)) {
c.getBean(ProductController.class).saveProduct("Beer");

}
} Calling the saveProduct() method
} with the parameter value “Beer”

In listing 2.4, you can see that ProductController’s saveProduct() method simply calls
the ProductService’s saveProduct () method with the received parameter value.

Listing 2.4 ProductController calling ProductService

@Component
public class ProductController {

private final ProductService productService;

public ProductController(ProductService productService) {
this.productService = productService;

40

CHAPTER 2 Understanding your app’s logic through debugging techniques

3
ProductController calls
public void saveProduct(String name) { the service and sends

productService.saveProduct(name); the parameter value.
}.
}

Listing 2.5 shows the ProductService’s saveProduct() method that prints the parame-
ter value in the console.

Listing 2.5 ProductService printing the value of the parameter

@Component
public class ProductService {
public void saveProduct(String name) { Prints the parameter
System.out.println("Saving product " + name); value in the console
¥

}

As presented in figure 2.10, the flow is quite simple:
The main() method calls the saveProduct() method of a bean named Product-
Controller, sending the value "Beer" as a parameter.

Then, the ProductController’s saveProduct() method calls the saveProduct()
method of another bean, ProductService.

The ProductService bean prints the value of the parameter in the console.

1. The main () method calls the 2. The saveProduct () method in
saveProduct () method in ProductController calls the
ProductController, saveProduct () method in
sending the value “Beer” as ProductService, with the value
the parameter value. of the parameter it received.

Main \/l ProductController f\/ ProductService
calls calls
main () saveProduct () saveProduct ()

3. The ProductService’s saveProduct ()
method prints the value of the parameter
in the app’s console.

Figure 2.10 The main() method calls saveProduct() of bean ProductController, sending the

value "Beer" as the parameter value. The ProductController’s saveProduct() method calls the
ProductService bean, sending the same parameter value as the one it receives. The Product-Service
bean prints the parameter value in the console. The expectation is that "Beer" will be printed in the console.

Investigating code with a debugger 41

Naturally, you would assume the following message is printed when you run the app:

Saving product Beer

However, when you run the project, the message is different:

Saving product Chocolate

How is that possible? To answer this question, the first thing to do is use the execu-
tion stack trace to find out who changed the parameter value. Add a breakpoint on
the line that prints a different value than you expect, run the app with the debugger,
and observe the execution stack trace (figure 2.11). Instead of having the Product-
Service’s saveProduct() method from the ProductController bean, you find that an
aspect alters the execution. If you review the aspect class, you will, indeed, see that the
aspect is responsible for replacing "Beer" with "Chocolate" (see listing 2.6).

dochex? wr o man e sevices 8 ProducSevics | B svefodic Al M| »

Progect = G T =t — @ ooducsevives
iy dach2een?
,,,_' ' @Component
i public class ProductService {
aop

mef-'s_ public void saveProduct(String name) {
[| System.out.println("Saving product " + name);

services

& Productienice
Detug &, Mam
(3 Duogge Ditomas = |2 2 2 LB % B
& Fame Theak anabies

" AN in e " RUNNING v $ 4 T+ P Ethae
Bp= 1 i “esecutinn o Services ProcuctSenice savePraductiString])

saveProductd, PracuctSenice
invake:-1, ProduciSerice§ 57 astClassBy SpringCGLIBS Sab064276

cF..

R

The execution stack trace is much larger than you would expect when reading the code.
It clearly shows that ProductService’s saveProduct () method is not called directly
from ProductController. Somehow, an aspect executes in between the two methods.

Figure 2.11 The execution stack trace shows that an aspect has altered the execution. This aspect is
the reason that the parameter value changes. Without using the stack trace, finding why the app has a
different behavior than expected would be more difficult.

Listing 2.6 shows the aspect that alters the execution by replacing the value Product-
Controller sends to ProductService.

42

CHAPTER 2 Understanding your app’s logic through debugging techniques

Listing 2.6 The aspect logic that alters the execution

@Aspect
©@Component
public class DemoAspect {

@Around("execution(* services.ProductService.saveProduct(..))")
public void changeProduct(ProceedingJoinPoint p) throws Throwable {
p.proceed(new Object[] {"Chocolate"});

Aspects are quite a fascinating and useful feature in Java application frameworks today.
But if you don’t use them properly, they can make apps difficult to understand and
maintain. Of course, in this book, we are discussing relevant techniques that can help
you to identify and understand code even in such cases. But, trust me, if you need to
use this technique for an application, it means the application is not easily maintain-
able. A clean-coded app (without technical debt) is always a better choice than an app
in which you must invest effort to debug later. If you're interested in better under-
standing how aspects work in Spring, I recommend reading chapter 6 of another book
I wrote, Spring Start Here (Manning, 2021).

Besides the code, remember that an LLM can understand execution stack traces and
variables in scope as well. So, assume you paused the app’s execution on a given line,
but you can’t understand the execution stack trace, or you want to check the variable-
in-scopes’ values. These are details you can also provide in your prompt. Most likely, the
easiest way to provide these details is a screen capture. Provide the screen captures with
the details in the prompt, asking questions that can give you more ideas or help you
advance faster through your investigation.

The following is an example of a prompt you can use to help identify inconsistencies
in your code. While you can use it with a general Al chat tool such as ChatGPT, it will
usually work more effectively with an Al agent integrated into your IDE, such as GitHub
Copilot or the Intelli] IDEA AI Assistant. These tools often have access to your source
code context automatically or make it easier to provide that context.

@ | paused the method’s execution on line 26. | attached the source code for the
current class and a print screen of the variables’ values. Do you expect these are
correct values for the variable in scope | provided in the attached screen capture? If
there’s any inconsistency, please help me understand where and why.

An answer to such a prompt, if there were any problems, could look like the following:

@ Thanks for the information. Based on the source code you provided for UserService
and the variable values in the screenshot, here’s what | observe:

You're paused at line 26 inside the createAccount method. At this point, the user
object has the following values:

You're clearly creating a new user, so user.getId() being null is expected—good.

222

Investigating code with a debugger 43

However, the value of user.getEmail() looks suspicious. Earlier in the method, |
see you're calling user.setEmail(input.getEmail().trim().toLowerCase());, but
input.getEmail() is "Admin@Company.Com" (as seen in your screenshot).

That means after .trim() and .toLowerCase(), the expected value should be
"admin@company.com", which does match the value in your current variable. So from
that point of view, it seems consistent.

That said, there’s a subtle risk: you're directly using input.getEmail() without
checking if it's null. If the input were missing or malformed, this could lead to a
NullPointerException.

Now your job is to follow the logic and verify whether the Al assistant’s explanation is
correct. Keep in mind that the Al can be wrong, often due to missing context. It’s your
responsibility to recognize when that happens and supply the missing information.

The key idea to remember is that you’re not using the Al to solve the case for you—
you’re using it to help you understand parts that seem confusing or complex. In the
end, you're the one solving the problem.

Here’s another example of prompt you could use with the details a debugger
provides.

| expected the console to display X, but it displayed Y. Can you help me figure out
why? | attached a screenshot of the execution stack trace.

Remember to provide as much context as needed for the Al to be helpful. Of course,
you won’t always be able to share the entire source code, and that’s okay. Just include
whatever parts you believe are relevant.

The good news is that you don’t have to rely solely on copy-pasting. You can upload
files that contain the necessary information or even share screenshots. For example,
most IDEs make it easy to save the execution stack trace to a file, which is especially
useful when the trace is too large to copy and paste. In such cases, simply save the stack
trace and upload the file instead.

Navigating code with the debugger

This section, discusses the basic ways you navigate code with a debugger. You'll learn
how to use three fundamental navigation operations:

Step over—Continue executing the nextline of code in the same method.

Step into—Continue the execution inside one of the methods called on the cur-
rent line.

Step out—Return the execution to the method that called the one you are
investigating.

To start the investigation process, you must identify the first line of code where you
want the debugger to pause the execution. To understand the logic, you need to nav-
igate through the lines of code and observe how the data changes when different
instructions execute.

44

CHAPTER 2 Understanding your app’s logic through debugging techniques

Navigation operations can be used in any IDE through buttons on the GUI or key-
board shortcuts. Figure 2.12 shows how these buttons appear in the Intelli] IDEA Com-
munity GUI, the IDE I use.

B bk bde dew bzvgzbe Cove fmabge Zefecoe Bald Mun leok WUs Window Hep liechioe] - Jecoosgma

da-chi-exl s mmn o gees mar 8 Decoger

Project = % & Decoderne

public class Oecoder {

@ public Integer decode(List<String> input) { dnput: size = 4

int total = B; total: 8

for (String s : input) { dnput: size = 4

& g qnkstctor _
e i

“fast

actor xtractDigits();
total += digits.stream().collect(Collectors.summingInt(i -> 1}J;

1

return total;

Use the navigation instructions to tell the debugger to
continue the execution. The most essential navigation
instructions are step over, step in, and step out.

Figure 2.12 The navigation operations help you walk through the app logic in a controlled way to
identify how the code works. To navigate through code, you can use the buttons on the IDE’s GUI
or use the keyboard shortcuts associated with these operations.

TIP Even if at the beginning you find it easier to use the

buttons on the IDE’s GUI, | recommend you use the keyboard
shortcuts instead. Once you get comfortable using the keyboard
shortcuts, you'll see they are much faster than a mouse.

Figure 2.13 depicts the navigation operations. You can use the step over operation to
go to the nextline in the same method. Generally, this is the most commonly used nav-
igation operation.

Sometimes you need to better understand what happens with a particular instruc-
tion. In our example, you may need to enter the extractDigits() method to clearly

Investigating code with a debugger

Step over allows you to continue the execution in the same method with
the next line of code without entering any details from the current line.

public class Decoder {

public Integer decode (List<String> input) {
int total = 0;
for (String s : input)

var digits = new StringDigitExtractor(s) .extractDigits() ;

total += digits.stream().collect (Collectors.summingInt (i -> 1)) ;

- ~
} /// ~ o
Step - - N -
over return total; - ~
} =T
P
} | public List<Integer> extractDigits () {
| List<Integer> list = new ArrayList<s>();
I for (int i = 0; i < input.length(); i++) {
} if (input.charAt (i) >= '0' && input.charAt (i) <= '9') {
| list.add(Integer.parselnt (String.valueOf (input.charAt(i))));
\ }
I}
|
Step into } return list;

|

Step out
Step out allows you to return to a prior method that called
the one you are currently investigating.
For example, if you stepped into the extractDigits ()

method, you can use step out to return to the decode ()
method that you were previously investigating.

Step into allows you to enter the instruction on which the execution is currently stopped. For example,
you may step into the extractDigits () method to understand what happens behind that method call.

Figure 2.13 Navigation operations. Stepping over allows you to go to the next instruction in the same method.
When you want to start a new investigation plan and go into detail in a specific instruction, you can use the step

into operation. You can go back to the previous investigation plan with the step out operation.

understand what it does. In such a case, you use the step into operation. When you

want to return to the decode () method, you can use step out.

45

You can also visualize the operations on the execution stack trace, as presented in

figure 2.14.

Ideally, you start with using the step over operation as much as possible when trying

to understand how a piece of code works. The more you step into, the more investiga-

tion plans you open, and thus the more complex the investigation process becomes

(figure 2.15). In many cases, you can deduce what a specific line of code does only by

stepping over it and observing the output.

46

CHAPTER 2 Understanding your app’s logic through debugging techniques

= By stepping over,
Debug: _ 7, Main you remain in
(2 Debugger BHcnsole = 22 ¥ + 2+ %7 % H the same plan
= or close the plan
& Frames Threads if that layer’s
[—— method returns
Ip " "main"@1 in group "main”: RUNNING v + Y or throws an
— — — — exception.
extractDigits:15, StringDigitExtractor (main) 4\/
m decoden2, Decoder (main) Step over
main:11, Main (main) Step out Step into
@
%
o}
»
Stepping out closes an investigation plan. Stepping into opens a new investigation plan.
A stack layer dissapears as you return to The execution stack trace becomes bigger.
the previous one. You go down in the You go up in the stack trace.

execution stack trace.

Figure 2.14 The navigation operation as seen from the execution stack trace point of view. When you
step out, you go down in the stack trace and close an investigation plan. When you step into, you open a
new investigation plan, so you go up in the stack trace, and it becomes bigger. When stepping over, you
remain in the same investigation plan. If the method ends (returns or throws an exception), stepping over
closes the investigation plan, and you go down in the stack trace just like you did when you stepped out.

I TOLD YOU TO STOP
DEEPLY DEBUGGING MANY
LAYERS AT ONCE!

Figure 2.15

The movie Inception
(2010) portrays the
idea of dreaming in

a dream. The more
layers your dream

has, the longer you
stay there. You can
compare this idea with
stepping into a method
and opening a new
investigation layer.
The deeper you step
in, the more time you’ll
spend investigating
the code.

Investigating code with a debugger 47
Figure 2.16 shows the result of using the step over navigation operation. The execu-

tion pauses on line 12, one line below where we initially paused the debugger with the
breakpoint. The digits variable is now initialized as well, so you can see its value.

Bl iie pot Wew Dawgete Loce fnahge Hebsctor Wuld Mun look VS Mncow Help di-chi-ssd-Uscodenime

daerhPorart e e s man e

public class Decoder {

;@ public Integer decode(List<String> input) { dnput: size = 4

int total = 0; total: 8
for (String s : input) { dnput: size = 4 s: "able"™
L] var digits ! List<integer: ew StringDigitExtractor(s).extractDigits();

callect(Collectors.summingInt(i -> i))}; tof

> WL brirae

T Semetehem andd Corasien

Dbl =, Maie

G Debupgs ERGonssle: = O3 12 How BOF

maing, Main s

: = \ If you step over line 11, the variable
digits is now in scope, so the debugger
shows its value, too.

Figure 2.16 When you step over a line, the execution continues in the same method. In our case, the
execution paused on line 12, and you can see the value of the digits variable that was initialized by line
11. You can use this value to deduce what line 11 does without having to go into more detail.

Try continuing the execution multiple times. You’ll observe that, on line 11, for each
string input, the result is a list that contains all the digits in the given string. Often, the
logic is easy enough to understand simply by analyzing the outputs for a few execu-
tions. But what if you can’t figure out what a line does just by executing it?

If you don’t understand what happens, you need to go into more detail on that line.
This should be your last option since it requires that you open a new investigation plan,
which complicates your process. But, when you have no other choice, you can step into
an instruction to get more details on what the code does. Figure 2.17 shows the result of
stepping into line 11 of the Decoder class:

var digits = new StringDigitExtractor(s).extractDigits();

If you stepped into an instruction, take the time to first read what’s behind that code
line. In many cases, looking at the code is enough to spot what happens, and then you
can go back to where you were before stepping into. I often observe students rushing
into debugging the method they stepped into without first taking a breath and reading
that piece of code. Why is it important to read the code first? Because stepping into a

48 CHAPTER 2 Understanding your app’s logic through debugging techniques

B ® Droodujest B on et
import java.util.lList;
— public class StringDigitExtractor {
private Tinal String input;
o —
|..;¢- public StringDigitExtractor(String input) {
o - chlme it this.input = input;

t

11 Ext

e Scrutche and Conecien

When stepping into a line,

the execution continues | List<Integer> List = new Array);
in the method callM I B; input.Llength();
that speciﬁc line. if (imput.charAt(i) »>= '@' && input.charAt(i) <= '9') {

list.add(Integer. parselnt(String. valuedf(input.chardt(i))));
}.

Observe that a new level r

appears in the execution

stack. You can always use return List;
the execution stack as b

a map of the opened +

investigation plans.

Figure 2.17 Stepping into allows you to observe the entire execution of the current instruction. This opens a new
investigation plan, allowing you to parse the logic behind that particular instruction. You can use the execution
stack trace to retrace the execution flow.

method opens another investigation plan, so if you want to be efficient, you have to
redo the investigation steps:

Read the method and find the first line of code you don’t understand.

Add a breakpoint on that line of code, and start the investigation from there.

Often, if you stop and read the code, you’ll find that you don’t need to continue that inves-
tigation plan. If you already understand what happens, you simply need to return to where
you were previously. And you can do this using the step out operation. Figure 2.18 shows
what happens when using step out from the extractDigits() method: the execution
returns to the previous investigation plan in the decode(List <String> input) method.

TIP The step out operation can save you time. When
entering a new investigation plan (by stepping into

a code line), first read the new piece of code. Step
out of the new investigation plan once you
understand what the code does.

Investigating code with a debugger 49

When you step out of the extractDigits () method,
the execution returns to the previous investigation plan.

£ T @ — 1§ SringDigrbdractorjee ¥ Decoderjavs

package main;

v import java.util.List;
import java.util.stream.Collectors;

P public class Decoder {

@ public Integer decode(List<String> input) { input: size = 4
int total = 0; ftotal: &
for (String s : input) { input: size = 4 s: "oblc'
(-1 “ var digits INESIEEE = new StringDigitExtractor(s).extractDigits();
total += digits.stream().collect(Collectors.summingInt(i -> i});
}

B Serabehes and Lencos

return total;

R The execution stack trace shows that the execution

plan of the extractDigits () method was closed
and the execution returned to the decode () method.

Figure 2.18 The step out operation allows you to close an investigation plan and return to the previous one in the
execution stack trace. Using step out is helpful to save time since you don’t have to step over each instruction
until the current execution plan closes by itself. Stepping out offers a shortcut to return to the previous execution
plan you were investigating.

Why is the next execution line not always the next line in the method?

When discussing code navigation with a debugger, | often talk about the “next execu-
tion line.” | want to make sure I’'m clear about the difference between the “next line”
and the “next execution line.”

The next execution line is the line of code the app executes next. When we say the
debugger paused the execution on line 12, the next line is always line 13, but the next
execution line can be different. For example, if line 12 doesn’t throw an exception, as
shown in the following figure, the next execution line will be 13, but if line 12 throws
an exception, the next execution line is line 18. This example is available in project
da-ch2-ex3.

When using the step over operation, the execution will continue to the next execution
line.

50

2.3

CHAPTER 2 Understanding your app’s logic through debugging techniques

(continued)

p.;ckage main;
If line 12 throws an

import ... exception, the next
execution line is
public class Decoder { line 18.
public Integer decode(List<String> input) { dnput: size
try {
int total = B;
for (String = @ input) { dinpur: size = 1
& var digits ' List<lnteger> = npew StringDigitExtractor(s).extractDigits();
total += digits.stream().collect(Collectors.summingInt(i -> i});
T

} catch (Exception e) { &: "jova.long.NullPointerException

Dubuz ©, Man
G fehunger Plfanar = 3 4 3 H o B

F Trmes Thnests arizhiar

£ "mnlang HulDiresrFacachinn

T AT a0 s lo-date GROmEN g8

In this figure, we step over from line 12, and line 12 throws an exception; the execution continues
on line 18, which is the next execution line. In other words, the next execution line is not always
the next line.

When using the debugger might not be enough

The debugger is an excellent tool that can help you analyze code by navigating through
the code to understand how it works with data. But not all code can be investigated
with a debugger. This section discusses some scenarios in which using a debugger is
not possible or not enough. You need to be aware of these cases so that you don’t waste

time using a debugger.

Here are some of the most often encountered investigation scenarios when using a

debugger (or only a debugger) is not the right approach:

Investigating output problems when you don’t know which part of the code

creates the output

Investigating performance problems
Investigating crashes where the entire app fails
Investigating multithreaded implementations

Investigating time-sensitive operations

When using the debugger might not be enough 51

TIP Remember that a critical prerequisite for using
a debugger is knowing where to pause the execution.

Before you start debugging, you need to find the part of the code that is generating the
wrong output. Depending on the app, it may be easier to find where something hap-
pens in the implemented logic. If the app has a clean class design, it is relatively easy
to find the part of the app responsible for the output. If the app lacks a class design,
it may be more challenging to discover where things happen and thus where to use
the debugger. In the upcoming chapters, you’ll learn several other techniques. Some
of these techniques, such as profiling the app or using stubs, will help you to identify
where to start the investigation with a debugger.

Performance problems are a particular set of difficulties you usually can’t investigate with
a debugger. Slow applications or those that freeze completely are frequent performance
problems. In most cases, profiling and logging techniques (discussed in chapters 4-8)
will help you troubleshoot such scenarios. For the particular instances in which the app
blocks entirely, getting and analyzing a thread dump is usually the most straightforward
investigation path. We’ll talk about analyzing thread dumps in chapter 8.

If the app encountered a problem and the execution stopped (the app crashed), you
cannot use a debugger on the code. A debugger allows you to observe the app in execu-
tion. If the application no longer executes, a debugger clearly won’t help. Depending
on what happened, you might need to audit logs, as we’ll discuss in chapter 4, or investi-
gate thread or heap dumps, which you’ll learn about in chapters 8 and 10.

Most developers find multithreaded implementations the most challenging to investi-
gate. Such implementations can be easily influenced by your interference with tools
such as a debugger. This interference creates a Heisenberg effect (discussed in chap-
ter 1): the app behaves differently when you use the debugger than when you don’t
interfere with it. As you’ll learn, you can sometimes isolate the investigation to one
thread and use the debugger. But in most cases, you’ll have to apply a set of techniques
that include debugging, mocking and stubbing, and profiling to understand the app’s
behavior in the most complex scenarios.

Time-sensitive operations can sometimes be tricky to investigate using a debugger. By
time-sensitive operations, I mean code executions where behavior may change depend-
ing on how long the code takes to run—particularly when you’re stepping through it
with a debugger. Here are a few examples:

An access token that expires after a certain period. If you spend too much time
in the debugger, the token might expire before you complete your investigation.

A timer set to trigger a specific use case after a predefined interval.

52

CHAPTER 2 Understanding your app’s logic through debugging techniques

A shortlived session with another application or system that may expire if you
pause execution for too long.

Debugging is typically an activity where you want to give yourself ample time to analyze
and think through what you're observing. As I mentioned earlier, allow yourself the
mental space to pause, reflect, and treat each new hypothesis as a fresh start.

For this reason, time-sensitive operations often don’t play well with traditional step-
by-step debugging. They require either a different strategy (e.g., logging or simulation)
or extra care when pausing execution.

Summary

Every time you open a new piece of logic (e.g., entering a new method that
defines its own logic), you open a new investigation plan.

Unlike a text paragraph, reading code is not linear. Each instruction might cre-
ate a new plan you need to investigate. The more complex the logic you explore,
the more plans you need to open. The more plans you open, the more complex
the process becomes. One trick to speeding up a code investigation process is to
open as few plans as possible.

A debugger is a tool that allows you to pause the app’s execution on a specific line
so that you can observe the app’s execution, step by step, and the way it manages
data. Using a debugger can help you to reduce some of the cognitive load of
reading code.

You can use breakpoints to mark the specific lines of code where you want the
debugger to pause an app’s execution so you can evaluate the values of all the
variables in the scope.

You can step over a line, which means continuing to the next execution line in
the same plan, or step into a line, which means going into detail on the instruc-
tion on which the debugger paused the execution. You should minimize the
number of times you step into a line and rely more on stepping over. Every time
you step into a line, the investigation path gets longer and the process more
time-consuming.

Even though using the mouse and the IDE’s GUI to navigate through the code is
initially more comfortable, learning to use the keyboard shortcuts for these oper-
ations will help you debug faster. I recommend learning the keyboard shortcuts
of your favorite IDE and use them instead of triggering the navigation with the
mouse.

After stepping into a line, first read the code and try to understand it. If you
can figure out what happens, use the step out operation to return to the previ-
ous investigation plan. If you don’t understand what happens, identify the first
unclear instruction, add a breakpoint, and start debugging from there.

Finding problem root
causes using advanced
debugging techniques

This chapter covers

Using conditional breakpoints to investigate
specific scenarios

Using breakpoints to log debug messages in the
console

Modifying data during debugging to simulate
specific app behavior

Rerunning part of the code during debugging

Chapter 2 discussed the most common ways to use a debugger. When debugging a
piece of implemented logic, developers often use code navigation operations such
as stepping over, into, and out of an instruction. Knowing how to properly use these
operations helps investigate a piece of code to better understand or find a problem.

However, many developers underestimate just how powerful a debugger can be.
Developers sometimes struggle when debugging code, using only the basic naviga-
tion, whereas they could save a lot of time if they used some of the other, less known
approaches a debugger offers.

53

54

3.1

CHAPTER 3 Finding problem root causes using advanced debugging techniques

In this chapter, you’ll learn how to get the most out of the features such as
Conditional breakpoints
Breakpoints as log events
Modifying in-memory data
Dropping execution frames

We’ll discuss some beyond-basic ways to navigate the code you are investigating, and
you’ll learn how and when to use these approaches. We’ll also use code examples to
discuss these investigation approaches so that you learn how to use them to save time
and when to avoid them.

Minimizing investigation time with conditional breakpoints

This section discusses the use of conditional breakpoints to pause the app’s execution on
aline of code under specific conditions.

DEFINITION A conditional breakpoint is a breakpoint you associate

with a condition so that the debugger pauses the execution only if the
condition is fulfilled. Conditional breakpoints are helpful in investigation

. scenarios when you are only interested in how a part of the code works
with given values; using conditional breakpoints where appropriate saves
you time and facilitates your understanding of how your app works.

Let’s look at an example to understand how conditional breakpoints work and typi-
cal cases in which you’ll want to use them. Listing 3.1 presents a method that returns
the sum of the digits in a list of String values. You might already be familiar with this
method from chapter 2. We’ll use the same piece of code here as well to discuss condi-
tional breakpoints. Next, we’ll compare this simplified example with similar situations
you may encounter in real world. The example is available in project da-ch3-ex1 pro-
vided with the book.

Listing 3.1 Using conditional breakpoints for investigation

public class Decoder {

public Integer decode(List<String> input) {
try {
int total = 0;
for (String s : input) {
var digits = new StringDigitExtractor(s).extractDigits();
var sum = digits.stream().collect(Collectors.summingInt(i -> i));
total += sum;

¥

return total;
} catch (Exception e) {

Minimizing investigation time with conditional breakpoints 55

return -1;
}
¥
¥

When debugging a piece of code, we are often only interested in how logic works for
specific values. For example, say you suspect the implemented logic doesn’t work well
in a given case (e.g., some variable has a certain value), and you want to prove it. Or
you simply want to understand what happens in a given situation to have a better over-
view of the entire functionality.

Suppose that, in this case, you only want to investigate why the variable sum is some-
times zero. How can you work only on this specific case? You could use the step over
operation to navigate the code until you observe that the method returns zero. This
approach is likely acceptable in a demo example such as this one (small enough). But
in a real-world case, you may have to step over a lot of times until you reach the case you
expect. In fact, in a real-world scenario, you may not even know when the specific case
you want to investigate appears.

Using conditional breakpoints is more efficient than navigating through code until
you get to the conditions you want to research. Figure 3.1 illustrates how to apply a con-
dition to a breakpoint in Intelli] IDEA. Right-click the breakpoint you want to add the
condition for and write the condition to which the breakpoint applies. The condition

In Intelli), right-click on the breakpoint You can add a condition on certain

to define its condition. In this example, breakpoints. The debugger considers
the debugger stops only on this these breakpoints only if their condition
breakpoint when the variable sum is zero. evaluates to true.

= public class Decoder {
by
ot public Integer decode(List<Strings input) {
try {
B S ggEI
..,...ql, s int total = 8;
e = .
e for (String s :© input) {
i e ch-eanmé var digits - Lists = new StringDigitExtractor(s).extractDigits();
e
1 e Libesnes var sum Integer = digits.stream().collect(Collectors.summingInt(i -= 1i));
© Scmiches and Consols
L] total += sum;

r——
i Erataled

Bl Sapet @A Theest

total;
— Exception &) {

Candition
]
-1;

Figure 3.1 Using a conditional breakpoint to pause the execution just for specific cases. In this case,
we want to pause the execution on line 14 only if sum is zero. We can apply a condition on the breakpoint
that instructs the debugger to consider that breakpoint only if the given state is true. This helps you
more quickly get to a scenario you want to investigate.

56

CHAPTER 3 Finding problem root causes using advanced debugging techniques

needs to be a Boolean expression (it should be something that can be evaluated as
true or false). Using the sum == 0 condition on the breakpoint, you tell the debugger
to consider that breakpoint and pause the execution only when it reaches a case where
the variable sum is zero.

When you run the app with the debugger, the execution pauses only when the loop
firstiterates on a string that contains no digits, as shown in figure 3.2. This situation causes
the variable sum to be zero, and the condition on the breakpoint is thus evaluated as true.

When you run the app with the debugger, it pauses the execution
for the first element in the parameter list that doesn’t contain
digits (for which the variable sum will be zero).

public class Decader {

public Integer decode{List<String> input) {
try {

int total = 8; to : 5

for (String input) { &: "mbed" input: size =4
var digits = = pew StringDigitExtractor(s) . extractDigits(); oioir
war sum ;| digits.streamn().collect(Collectors. sumningInt(dl -= 1]1);
total += - ol

}

1: §

return total;
¥ catch (Exception e) {
return =1;

Figure 3.2 A conditional breakpoint. Line 14 in the figure was executed multiple times, but the
debugger only paused the execution when the variable sum was zero. This way, we skipped all the cases
we were not interested in so that we can start with the conditions relevant to our investigation.

A conditional breakpoint saves time since you don’t have to search for the specific case
you want to investigate. Rather than halting it, allow the app to run. The debugger
pauses the execution when a certain condition is met, and you can begin your investi-
gation at this point. Although using conditional breakpoints is easy, many developers
seem to forget about this approach and waste a lot of time investigating scenarios that
could be simplified with conditional breakpoints.

DEFINITION A conditional breakpointis a special type of breakpoint that only pauses
the program when a certain condition is true. It lets you pause the execution
only when a specific variable has a certain value or when a set custom rule is met.

Minimizing investigation time with conditional breakpoints 57

To further optimize your debugging process, Al-powered tools can significantly assist
in the effective use of conditional breakpoints. These tools integrate with your devel-
opment environment to provide intelligent suggestions and automate parts of the
debugging workflow, making it more efficient and less error prone.

One way Al tools can help is by analyzing your code and suggesting optimal break-
point conditions. For instance, giving them the piece of code you investigate, they can
identify variables that frequently lead to exceptions or anomalous behavior and recom-
mend conditions based on those insights.

Take a look at figure 3.3. In this example, I intentionally introduced a minor error
in the if clause condition. To investigate the problem, I used GitHub Copilot as my Al
assistant. I highlighted the code snippet I wanted to troubleshoot and asked Copilot for
guidance on where to place the breakpoints.

© Mainjava © StringDigitExtractor java
public class StringDigitExtracter { 1 usage Laurentiu Spilca
public List<Integer> extractDigits() { 1 usage Laurentiu Spilca
You can ask your Al
3| ’ assistant where to

add breakpoints to

& GitHub Copilot 8 0 g investigate cer'tain
problems on given

code snippets.
> 4 steps completed successfully PP

You should add a breakpoint on line 17 to check the condition that filters K\J
out the digit '9".

if (dinput.charAt(i) >= '0' &% input.charAt(i) < '9') {

> Using 1 Reference

15 &g | List<Integer> list = new Arraylist<>();
for (int i = 0; i < input.length(); i++) {
if (input.charAt(i) >= '0' &% input.charAt(i) < '9') {
list.add(Integer.parseInt(String.valuedf(input.charAt(i))));

return list;

Figure 3.3 Al assistants such as GitHub Copilot can help you better understand a code snippet or assist in
selecting the appropriate troubleshooting technique. In this example, | asked Copilot for guidance on where to
place breakpoints to easily identify the source of the problem in my code.

58

CHAPTER 3 Finding problem root causes using advanced debugging techniques

In some cases, the Al assistant may suggest using conditional breakpoints. If you believe
that conditional breakpoints could enhance your debugging efficiency, you can explicitly
request this guidance, even if the Al assistant didn’t initially recommend it. Additionally,
you can save time by asking the Al assistant for the appropriate condition to use. Figure
3.4 demonstrates how my Al assistant helped me identify the line for adding a condi-
tional breakpoint and provided the necessary condition to continue my investigation.

However, I want to caution you against relying exclusively on Al to generate condi-
tions for your breakpoints or to decide where to place them every time. As someone
wisely putit, you need to keep training that muscle yourself. Al should serve as a helpful
assistant, not a crutch. The goal is to build your own diagnostic instincts and sharpen
your debugging skills—with Al as a supportive tool, not the primary driver.

© Mainjava © StringDigitExtractor java
public class StringDigitExtractor { 1 usage Laurentiu Spilca
public List<Integer> extractDigits() { 1 usage Laurentiu Spilca
Sometimes using conditional
8| breakpoints makes sense.
In such a case, your Al
& GitHub Copilot @0 g assistant might also point
to the right condition to use
> 3 steps completed successfully for your investigation.

15 &g

Yes, it makes sense to use a conditional breakpoint to check why the digit
'9' is not being included. The condition for the breakpoint on line 17
should be:

input.charAt(i) == '@’

This will pause the execution when the character being checked is '9",
allowing you to inspect the state and understand why it is not being added
to the list.

> Using 1 Reference

I List<Integer> list = new ArraylList<>();
for (int i = 8; i < input.length(); i++) {
if (input.charAt(i) >= '0' &% input.charAt(i) < '9') {
1list.add(Integer.parseInt(String.value0f(input.charAt(i))));

Figure 3.4 You can speed up your investigation by asking your Al assistant to suggest the lines of code for adding
conditional breakpoints and the right condition to use for them.

Assistants such as GitHub Copilot, integrated with your IDE, are convenient to use in
situations like the one shown here because they have direct access to the context they
need. However, you can also use a chat-based Al tool, such as ChatGPT, successfully.

Minimizing investigation time with conditional breakpoints 59

Figure 3.5 shows how I used ChatGPT for the same task. When provided with the nec-
essary context, ChatGPT was able to offer advice and even a solution to the problem.

You can easily upload a screenshot
of the code you want to investigate
and ask your Al assitant for help.

grExtractor jave

public class StringdigitExtractor { Tisem 2 Lmprwrtu &
privato final String input; 5uiges
public StringDigitExtractor(String input) { this.imput = input; }
puntlic List<Intager> sxtractDigits() { 1 usg
ListeInteger> List = naw Arrayliste>();
for (int i = 0; i < input.length(); is+) {
| 1f [input.charAt(l) »= *0' && input.charat(l) < *9') {
list.add{Integer.parselnt(String.veluedf(input.charft(1))1));
r
b
return list;
1?
| expected to see the 9 digits in the output as well, but | could not see
them. Where can | add a breakpoint to investigate the issue?

® 1o investigate the issue where the digit '9" is not appearing in the output, you can set a breakpoint

inside the for loop, specifically on this line:
java) Copy code

if (input.charAt(i) »= ‘@° && input.charAt(i) < "9')

By setting a breakpoint there, you can step through the loop iteration-by-iteration and observe the

values of input.charAt(i) to understand why the digit ‘9" is being excluded.

Tip: The condition input.charat(i) < ‘9" should be changed to input.charAt(i) <= ‘9" to
include the digit '9".

@B POy J

If the Al assistant has enough
context, it might even offer you
the solution to your problem.

Figure 3.5 Tools such as ChatGPT, Gemini, or similar Al-powered chatbots can also assist with your
code investigation. In some cases, if they have enough context, they may even provide a complete
solution.

Of course, since this is a simple example, ChatGPT could easily solve the problem
rather than just guide the investigation. In a real-world scenario, you may not be able

60

CHAPTER 3 Finding problem root causes using advanced debugging techniques

to give ChatGPT all the needed context, but it could still offer helpful advice on how
to proceed. You can use Al assistants to gradually move forward in your investigation
(while learning) by asking for advice and sharing observations within the same chat.

Usually, an IDE-integrated tool has an advantage over Al-powered chatbots such as
ChatGPT or Gemini because it has direct access to your code context. You can see this
in the current example: GitHub Copilot has access to my codebase, so I don’t need to
provide a screenshot for it to suggest where to place the breakpoint. With ChatGPT,
however, I had to carefully include the line numbers in the screenshot to give it the nec-
essary context. Without those line numbers, ChatGPT wouldn’t have known that the
line in question was number 17. This is attention to the context you provide. Remem-
ber that you need to provide enough information; otherwise, your Al assistant would
either not be able to help you, or worse—hallucinate a solution.

Another method is to combine this approach with what we’ll discuss in chapter 4 on
using logs. You can provide your Al assistant with execution logs together with the code
that generated them. An Al tool can quickly analyze many logs and identify unexpected
behavior. For example, if the variable sum unexpectedly becomes negative or exceeds a
certain threshold, an Al assistant might suggest setting a conditional breakpoint when
sum < 0 or sum > 1000. This proactive approach saves you time by highlighting potential
problem areas you might not have immediately considered.

NOTE While Al tools offer these enhancements, it’s important to use them as
a complement to your own understanding of the code. They can handle rou-
tine tasks and surface insights, but the nuanced decision-making still relies on
your expertise.

Setting conditional breakpoints is an excellent way to investigate code. However, they
have their downside. Conditional breakpoints can dramatically affect the performance
of the execution since the debugger must continuously intercept the values of the vari-
ables in the scope you use and evaluate the breakpoint conditions.

= :

o/ TIP Use a small number of conditional breakpoints.

AT Preferably, use only one conditional breakpoint at a
{ v time to avoid slowing down the execution too much.

Conditional breakpoints can also be used to log specific execution details such as vari-
ous expression values and stack traces for particular conditions (figure 3.6). We’ll con-
tinue with this topic in section 3.2.

Minimizing investigation time with conditional breakpoints 61

Decoder.java:14 Restore previous breakpoint

Enabled

7 suspend: @ Al () Thread

Condition:

i R s | o

More (Ctrl+Shift+F8) Done Figure 3.6

To apply advanced
configuration on
the breakpoint in
Click on More to define more IntelliJ, you can
advanced configurations click the More

for the conditional breakpoint. button.

Unfortunately, this feature only works in certain IDEs. For example, even though you
can use conditional breakpoints in Eclipse in the same way as described here, Eclipse
does not allow you to use breakpoints just for logging execution details (figure 3.7).

[FileManageriova &
1 packags wain;
= import Java.io.I0Cxception;||

s r £ r - Fited
! public class Fild = Properties for FileMarager [line:11] - FileManagar [n] s

In Eclipse, you can define
-= -1 aconditional breakpoint.
— However, you can’t log
specific execution details
instead of suspending the
thread.

public boolean

try { -Breakpoint Properties Trpe: FloKasae

Line Mumber: 11

Files.creat Fittering
return true

catch (T0Ex Member: FileManages
e.printStac

] Enabizd

T Trigger Foint
T iz ceunt: 1) Suspend thread () Sispend VM
Tlcongitional (7 Suspend when Trus’

return false;

Lspend when valie change:
«Choose a previously entered conditicn = ~

£ Prablems b lavadoe B
<tarminatad = Mam [Java Agg)

12 Agply and Close Cancel

Figure 3.7 Not all IDEs offer the same debugging tools. All IDEs give you the basic operations, but some
features, such as logging the execution details instead of pausing the execution, may be missing. In
Eclipse, you can define conditional breakpoints, but you can’t use the logging feature.

62

3.2

CHAPTER 3 Finding problem root causes using advanced debugging techniques

You might ask yourself whether you should only use Intelli] IDEA for these examples.
Even if most examples in this book use Intelli] IDEA, that doesn’t mean this IDE is
better than others. I've used many IDEs with Java, such as Eclipse, Netbeans, and
JDeveloper. My recommendation is that you shouldn’t become too comfortable with
using one IDE. Instead, try to use various options so that you can decide which is a
better fit for you and your team.

Using breakpoints that don’t pause the execution

In this section, we discuss using breakpoints to log messages you can later employ to
investigate the code. One of my favorite ways to use breakpoints is to log details that
can help me to understand what happened during the app’s execution without paus-
ing it. Asyou’ll learn in chapter 4, logging is an excellent investigation practice in some
cases. Many developers struggle with adding log instructions when they could have
simply used a conditional breakpoint.

Figure 3.8 shows how to configure a conditional breakpoint that doesn’t pause the
execution. Instead, the debugger logs a message every time the line marked with the
breakpoint is reached. In this case, the debugger logs the value of the digits variable
and the execution stack trace.

You can use a breakpoint to log certain Here, when the variable sum is zero, the value of the digits
details without suspending the execution\\ variable and the stack trace is printed in the console.

Breakpoints X
+ — M [&] [€] Decoder java:14
v ® Java Line Breakpoints Enabled

¥ @ Decoderjava:id

 [] # Java Exception Breakpeints Suspend: Al Threa
& Any exception Condion:
k4 % JavaScript Exception Breakpoints

£ sum == 0

% Any exception
Log: “Breakpoint hit" message Stack trace
Evaluate and log:

Instance filters:

digits -
Class filters:
Remove once hit

Disable until hitting the following breakpaint:

Pass count:
<None> v

Caller filters:

var sum :Integer = digits.stream().collect(
) total += sum;

?

Figure 3.8 Conditional breakpoint advanced configuration. In addition to specifying a condition for
the breakpoint, you can instruct the debugger to not suspend the execution for the given breakpoint.
Instead, you can simply log the data you need to understand your case.

Using breakpoints that don’t pause the execution 63

Figure 3.9 shows the result of running the app with the conditional breakpoint config-
ured. Notice that the debugger logged the execution stack trace in the console, and
the value of the digits variable is an empty list: [1. This kind of information can help
solve the puzzles of the code you investigate in real-world scenarios.

With this conditional breakpoint, the debugger doesn’t pause the execution. Instead,
it logs the value of the digits variable and the execution stack trace in the console.

b]

public class Decoder {

public Integer decode(List<String> input) -
try {
int total = @;
for {String
wvar digitzs
var sum - Inie
L total += sum;

i

input) 1
- = new StringDigitExtractor(s).extractDigits();
= digits.stream{).collect(Collectors. summingInt(i -» i));

return total;
} catch (Exception e) {

-]
#'4+ Connected to the target VM, address: '127.8.0.1:532%&', transport: 'socket’
i Broakpoint reached at main.Decoder.decode(Decoder.java:ia)
; Broeakpoint reached
o™ at main.Decoder.decode(Decoder.
a ¥ at main.Main.main(Main.java:9)
L1
5 15

Disconnected from the target VM, address: "127.0.0.1:53296°, transport: ‘socket’

Process finished with exit code @

Figure 3.9 Using breakpoints without pausing the execution. Instead, the debugger logs a message
when the line has been reached. The debugger also logs the value of the digits variable and the
execution stack trace.

DEFINITION A non-blocking breakpoint is a type of breakpoint that logs informa-
tion (like a message or variable value) when it’s hit, but it does not pause the
program’s execution. It lets you see what’s happening at a certain point in the
code without pausing the program.

Furthermore, this technique can be combined with the approach discussed in section
3.1. By using non-blocking breakpoints, you can capture log messages without inter-
rupting the execution flow or modifying the code. For lengthy processes that generate
extensive logs, you can employ an Al assistant to efficiently analyze the output and
extract meaningful insights (as discussed in chapter 4).

I remember working on an app years ago with a large, messy codebase. There were
several long-running scheduled processes responsible for generating settlements and

64

CHAPTER 3 Finding problem root causes using advanced debugging techniques

invoices, but every so often, the data in some of the invoices didn’t meet expectations—
a frustrating output problem. Initially, I thought the problem was specific to those
invoices. However, every time I tried to isolate the problem by running the process to
generate only the faulty invoices, they would be generated correctly. Yet, rerunning the
full process would sometimes result in errors with other documents, making it tricky to
pinpoint the cause.

Since I could execute the process locally, I decided to use non-blocking breakpoints
to log messages without altering the code itself. This approach was particularly valuable
because it allowed me to compare the exact same lines of code from different environ-
ments. Had I added manual logging statements, the line numbers would have changed,
complicating any side-by-side comparisons. Through this method, I eventually uncov-
ered some irregularities caused by a few conditions in the Date and Time APIs, which
introduced randomness into the output.

Although I was able to solve the problem, I couldn’t help but wish I had access to an
Al assistant back then. This was years before we had large language models (LLMs) and
other modern Al tools at our disposal, but I'm certain that using an Al to analyze and
compare the log messages would have significantly shortened the investigation process.

I'would now solve it a lot easier by using a prompt similar to the following:

@ The two files | attached contain logs provided by the execution of the same sched-
uled process in two different environments. The fist file named prod.txt contains the
logs from the environment where the output is not the one expected, while the other
file names local.txt contain logs generated in the environment where the output is
the one expected.

<<Included here would be a detailed description of what is excepted to happen and
doesn’t in the first environment>>

Can you please analyze and compare the logs and identify context differences that
could indicate where the issue comes from?

Execution stack trace: Visual vs. text representation

Notice the way the stack trace is printed in the console. You'll often find the execution
stack trace in a text format rather than a visual one. The advantage of the text repre-
sentation is that it can be stored in any text format output, such as the console or a
log file.

The following figure shows a comparison between the visual representation of the
execution stack trace provided by the debugger and its textual representation. In both
cases, the debugger provides the same essential details that can help you under-
stand how a specific line of code was executed.

In this particular case, the stack trace tells us that the execution started from the
main() method of the Main class. Remember that the first layer of the stack trace
is the bottom one. On line 9, the main() method called the decode() method in the
Decoder class (layer 2), which then called the line we marked with the breakpoint.

3.3

Dynamically altering the investigation scenario 65

Debug: » Main
(3 Debugger BHconole = 2> 3+ + 2 7 % H
}‘ Frames Threads

13 "main"@1 in group "main”: RUNNING v N ¢

extractDigits:16, StringDigitExtractor (main)
2 decode:12, Decoder (main)

1 main:g, Main (main)

& B e

%

Breakpoint reached

Jatmain.StringDigitExtractor.extractDigits (StringDigitExtractor.java:16)
2 at main.Decoder.decode (Decoder.java:12)

1atmain.Main.main (Main.java:9)

A comparison between the visual representation of the execution stack trace in the debugger
and its text representation. The stack trace shows how a method was called and provides enough
details to understand the execution path.

Dynamically altering the investigation scenario

In this section, you’ll learn another valuable technique that will make your code inves-
tigations easier: changing the values of the variables in scope while debugging. In some
cases, this approach can save a significant amount of time. We’ll begin by discussing the
scenarios in which changing variables’ values on the fly is the most effective approach.
Then, I will demonstrate how to use this approach with an example.

Earlier in this chapter, we talked about conditional breakpoints. Conditional break-
points allow you to tell the debugger to pause the execution under specific conditions
(e.g., when a given variable has a certain value). Often, we investigate logic that exe-
cutes in a short time, and using conditional breakpoints is enough. For cases such as
debugging a piece of logic called through a REST endpoint (especially if you have the
right data to reproduce a problem in your environment), you would simply use a con-
ditional breakpoint to pause the execution when appropriate. That’s because you know

CHAPTER 3 Finding problem root causes using advanced debugging techniques

it won’t take long to execute something called through an endpoint. But consider the
following scenarios:

You investigate a problem with a process that takes a long time to execute. Say
it’s a scheduled process that sometimes takes over an hour to complete its execu-
tion. You suspect that some given parameter values are causing the wrong output,
and you want to confirm your suspicion before you decide how to correct the
problem.

You have a piece of code that executes quickly, but you can’t reproduce the prob-
lem in your environment. The problem appears only in the production envi-
ronment to which you don’t have access due to security constraints. You believe
the problem appears when certain parameters have specific values. You want to
prove your theory is right.

In scenario 1, breakpoints (conditional or not) aren’t so helpful. Unless you investi-
gate some logic that happens at the very beginning of the process, running the process
and waiting for the execution to pause on a line marked with a breakpoint would take
too much time (figure 3.10).

You, when tl-ie execution
finally reaches the breakpoint

You, when the process starts

A long-time running process

The breakpoint you added to
pause the process execution

Figure 3.10 Usually, when investigating problems in a long-running process, using breakpoints is not
really an option. It can take a long time for the execution to reach the part of code you are investigating,
and if you must rerun the process several times, you will definitely spend too much time on it.

Figure 3.11 shows how to change the data in one of the variables in the scope when the
debugger pauses the execution. In Intelli] IDEA, right-click the variable which value
you want to change. You complete this action in the frame where the debugger shows
the current values of the variables in scope. Let’s go back to our previous example,
da-ch3-exl.

Once you select the variable you want to change, set the value as presented in figure
3.12. Remember that you must use a value according to the variable’s type. That means
that if you change a String variable, you still need to use a String value; you cannot use
along or a Boolean value.

Dynamically altering the investigation scenario 67

impart ...

public class Decoder §

public Integer decodz(List<String= input) { input: size = 4
try {

var sum ¢
total += sum;

i3

return Lotal;

ok B 4 £ 4w B

Y -

When the debugger pauses the execution on a line,
you can set values in the variables in scope. This
way, you can create you own investigation scenario
with the conditions you need in this case.

Figure 3.11 Setting a new value in a variable in scope. The debugger shows the values for the variables
in scope when it pauses the execution on a given line. You can also change the values to create a new
investigation case. In some cases, this approach can help you validate your suspicions about what the
code does.

o MmO Cee

package main;

T import ..

public class Decoder {

public Tnteger decode(list<String» input) { inpur: size = £
try 1

int total = B; total: @

for (String s ¢ dinput) {

digits SIS

Total += sum;
}.

return total;
} catch (Exception e) {
return -1;

You can set any value in a variable

in the scope, but you must retain

its type. In this example, we change

the value of s from "ablc™" to "abcd".

Figure 3.12 Change the variable’s value to observe how the app’s execution behaves in different
conditions.

68

CHAPTER 3 Finding problem root causes using advanced debugging techniques

When you continue the execution, as presented in figure 3.13, the app now uses the
new value. Instead of calling extractDigits() for value "ablc", the app used the value
"abcd". The list the method returns is empty because the string "abcd" doesn’t contain
digits.

Prefect GIf @ @ Minjnr - ® Decoserjen

 tha-chdoaxt AL agr ke package main;

import ...
& Dacodar

public class Decoder {
Srngligtsticta

= public Integer decode(List<String> dinput) { input; size = 4

try 4
B i int total = B; total
Fmm = for (String s : Input) { dnput: size = 4 s “abod
L var digits “Lst<integer> = new StringDigitExtractor(s).extractDigits();
| | wvar sun@lIEEER = digits.stream().collect(Collectors,summingInt(i -> 1));
total += sum;
I3

return total;
} catch (Exception e) {
return =1;

The app will now use the new value you
set in the variable. When stepping over,
the extractDigits () method returns
an empty list because the string "abcd"
contains no digits.

Figure 3.13 When using the step over operation, the app uses the new value you set to the s variable.
extractDigits() returns an empty list because string "abcd" doesn’t contain digits. Setting values in
variables on the fly enables testing different scenarios even if you don’t have the input data you need.

Let’s compare the use of conditional breakpoints, as discussed in section 3.1, with the
approach of modifying data on the fly during debugging. In both scenarios, the first
step is the same: you need to have a reasonable hypothesis about which part of the
code might be causing the problem.

Conditional breakpoints are particularly useful when

You already have access to the data that triggers the scenario you want to investi-
gate. For example, in our earlier case, you needed to know the specific value that
would match an entry in the list and trigger the behavior you’re interested in.

The code under investigation doesn’t take too long to execute. If, for instance,
you're dealing with a large list and processing each element takes several sec-
onds, hitting the right condition might become time-consuming. In such cases,

3.4

Rewinding the investigation case 69

relying solely on conditional breakpoints could significantly slow down your
investigation.

You can use the approach of changing a variable’s value if

You don’t have the data necessary to cause the scenario you want to investigate.

Executing the code takes too long.

I know what you are thinking now: Why are we using conditional breakpoints at all?
It might look like you should avoid using conditional breakpoints entirely since you
can create any environment you need to investigate simply by changing the variables’
values on the fly.

Both techniques come with their own advantages and disadvantages. Modifying vari-
able values directly can be an effective approach when you only need to adjust a few
values (two at most in my opinion). However, as the changes grow in scope, the com-
plexity of managing the scenario can escalate quickly. Additionally, when altering data
in-memory, it’s usually because you have a hypothesis about the problem and want to
confirm it. In contrast, there are situations where you have no clear understanding of
what’s going wrong. In such cases, using breakpoints can be invaluable to observe how
the logic manipulates the data, helping you gain insights into the underlying problem
and guiding your investigation.

Moreover, remember that we sometimes deal with cases involving immutability. In
such situations, the IDE won’t be able to modify the value of a final variable during
debugging. Java records, introduced as a preview feature in Java 14 and officially added
in Java 16, are a great way to strengthen immutability in your model layer. However, one
drawback is that their attributes are implicitly final, which means you won’t be able to
modify their values on the fly while debugging.

Rewinding the investigation case

We can’t go back in time. However, with debugging, rewinding the investigation is
sometimes possible. This section discusses when and how we can “go back in time”
while investigating code with a debugger. We call this approach dropping frames, drop-
ping execution frames, or quitting execution frames.

We’ll look an example using Intelli] IDEA. We’ll compare this approach with the
ones we discussed previously in this chapter, and then we’ll also determine when this
technique can’t be used.

Dropping an execution frame is, in fact, going back one layer in the execution stack
trace. For example, suppose you stepped into a method and want to go back; you can
drop the execution frame to return to where the method was called.

Many developers confuse dropping a frame with stepping out, most likely because
the current investigation plan closes in both cases, and the execution goes back to
where the method is called. However, there’s a big difference. When you step out of
a method, the execution continues in the current plan until the method returns or

70 CHAPTER 3 Finding problem root causes using advanced debugging techniques

throws an exception. Then, the debugger pauses the execution right after the current
method exits.

DEFINITION Dropping execution frames means going back to an earlier point
in the call stack and re-running a method from that point. It lets you rewind
the program a bit and try running part of the code again, without restarting
the whole case.

Figure 3.14 shows how stepping out works using the example in project da-ch3-exl1.
You are in the extractDigits() method, which, as you can see from the execution
stack trace, has been called from the decode() method in the Decoder class. If you use
the step out operation, the execution continues in the method that called extract-
Digits()until the method returns. Then, the debugger pauses the execution in the
decode() method. In other words, stepping out is like fast-forwarding this execution
plan to close it and return to the previous one.

P G T2 6 = ®mansmori ® osiios When you step out,
iR ‘ you let the current
public class StringDigitExtractor { method execute.

. : s e e 2 You return to the
private final String input; npu abie N
previous method
public StringDigitExtractor{String input) { this.input = input; } one line after the
one that created
public List<Integer> extractDigits() { the current
Bl | List<Integer> List = new ArrayList<>(); investigation plan.

for (int i = 8; 1 < input.length(); i++) {

if (input.charAt(i) >= 'B' & input.charAt(i) <= '9') { J
list.add(Integer.parseInt(String. valuvedf(input.charAt(i))));
3
}

return list;

When stepping out, you close
an investigation plan and return
to the previous method in the
execution stack trace.

Figure 3.14 Stepping out closes the current investigation plan by executing the method and then pausing the
execution right after the method call. This operation allows you to continue the execution and return one layer in
the execution stack.

When you drop an execution frame, the execution returns in the previous plan before
the method is called, unlike stepping out. This way, you can replay the call. If the step

Rewinding the investigation case 71

out operation is like fast-forwarding, dropping an execution frame (figure 3.15) is
like rewinding.

x public class StringDigitExtractor { When you drop a

frame, you return

to the previous layer

public StringbigitExtractor(String input) { this.input = imput; 3 in the execution
stack trace.

private final String input; input: “nble”

public List<Integers sxtractDigits() {

List<Integer> list = new Arraylist<s(];
For (int i ;i < input.length(); s
if (input.charAt(i) == 'B° && input.charAt(i) == '9'] {
st add (Integer, parselnt{String. valvedf{input, chardt(i11));
}.

et md il

3

return 1ist;

Dropping a frame looks very similar to stepping out.
‘l It closes an execution plan, and you go down in the
execution stack trace. However, instead of continuing
the execution, you return to the point before the
execution of the method that created the current plan.

Figure 3.15 When you drop a frame, you return to the previous layer in the execution stack trace
before the method call. This way, you can replay the method execution either by stepping into it again or
stepping over it.

Figure 3.16 shows (relative to our example) a comparison between stepping out from
the extractDigits() method and dropping the frame created by the extractDigits()
method. If you step out, you’ll go back to line 12 in the decode () method, from where
extractDigits() is called, and the next line the debugger will execute is line 13. If you
drop the frame, the debugger goes back to the decode () method, but the next line that
will execute is line 12. Basically, the debugger returns to the line before the execution
of the extractDigits() method.

Figure 3.17 shows how to use the drop frame functionality in Intelli] IDEA. To drop
the current execution frame, right-click the method’s layer in the execution stack trace
and select Drop Frame.

Why is the drop frame useful, and how does it help save time? Whether you use an
endpoint to find a specific case you want to investigate or create one by changing the
values of the variables, as discussed in section 3.3, you’ll still sometimes find it useful to
repeat the same execution several times. Understanding a certain piece of code is not
always trivial, even if you use the debugger to pause the execution and take it step by
step. But going back now and then to review the steps and how specific code instruc-
tions change the data may help you understand what’s going on.

72 CHAPTER 3 Finding problem root causes using advanced debugging techniques

P = B3 E 8 — 8 Snnglgieetoren 8

pazkaga When dropping a frame from the extractDigits ()

method, you return to the previous layer, before

import ...
line 12. The execution continues with line 12.

public class Decoder {
& SmmDiExacr
resvarces

i public Integer decode(List<String> input) { dinput:
try {
int totsl = B; total

for (String s @ input) {
var digi g r
var sum :integer = digits.stream().collect(Collectors.svamingInt(i -> 1));

total += sum;

¥
return total;

} catch (Exception e) {
return -1;

& oFams Tad varatdes

When stepping out from the extractDigits () method, you return
to the previous layer, at line 12. The execution continues with line 13.

Figure 3.16 Dropping a frame versus stepping out. When you drop a frame, you return to the line
before the method’s execution. When you step out, you continue the execution but close the current
investigation plan (represented by the current layer in the execution stack).

public List<Integer> extractDigits() {
B i tntogers List - new ArvayistoO;
for (int i = 8; i < input.length(); i++) {
if (input.charAt(i) >= '0' && input.charAt(i) <= '9') {
list.add(Integer.parseInt(String.valueOf(input.charAt(i

}
}
Debug: 1 Main
Cb | Debugger HlConsole = & 2 4 * H % H
& | eane it Variables
» *main"@1 in group "main": RUNNING - i T ok 2 Bihe={StingDigitExdmctor@ 74

> input = "ab1c”

ex igits: tractor (main)
extractDigits;15, StringDigitExtsactor {main)
decode:12, Decader (main)

Throw Exception
main:9, Main (moin)
~ Force Retum
¢

T8 Copy Stack
o 17 Export Threads...
o Customize Threads View:
Add Stepping Fiter...

L3 ' Asyne Stack Traces

To drop the execution frame and return to the line before the
current method execution, right-click the method’s layer in the
execution stack. Then, select Drop Frame.

Figure 3.17 When using IntelliJ IDEA, you can drop a frame by right-clicking the method’s layer in the
execution stack trace and then selecting Drop Frame.

Rewinding the investigation case 73

You also need to pay attention when you decide to repeat particular instructions by
dropping the frame. This approach can sometimes be more confusing than helpful.
Remember that if you run any instruction that changes values outside of the app’s
internal memory, you can’t undo that change by dropping the frame. Examples of
such cases are (figure 3.18)

Modifying data in a database (insert, update, or delete)
Changing the filesystem (creating, removing, or changing files)
Calling another app, which changes the data for that app

Adding a message into a queue thatis read by a different app, which changes data
for thatapp

Sending an email message

You can drop a frame that results in committing a transaction that changes data in a
database, but going back to a previous instruction won’t undo the changes made by
the transaction. If the app calls an endpoint that posts something into a different ser-
vice, the changes resulting from the endpoint call cannot be undone by dropping the
frame. If the app sends an email message, dropping the frame cannot take back the
message, and so on.

You can go back to a
previous instruction using
Drop Frame, but some events
cannot be undone.

Changing data in
a database

=

Creating a file

Figure 3.18 Using the

drop frame operation can
- result in some events

that can’t be undone.

Calling an endpoint ~ Examples include
changing data in the
database, changing data

in the filesystem, calling
@ another app, or sending
Sending an email an email message.

You need to be careful when data is changed outside the app, as sometimes repeating
the same code won’t have the same result. Take as an example a simple piece of code
(listing 3.2, which you can find in project da-ch3-ex2). What happens if you drop the
frame after the execution of the line that creates a file?

74

CHAPTER 3 Finding problem root causes using advanced debugging techniques
Files.createFile(Paths.get("File " + i));

The created file remains in the filesystem, and after the second time you execute the
code after dropping the frame, you get an exception (because the file already exists).
This is a simple example of when going back in time while debugging is not helpful.
The worst part is that, in real-world cases, it’s not this obvious. My recommendation is
to avoid repeating the execution of large pieces of code and, before deciding to use
this approach, make sure that part of the logic doesn’t make external changes.

If you notice differences that seem unusual after running a dropped frame again, it
may be because the code changed something externally. Often in large apps, observing
such behavior is not straightforward. For example, your app may use a cache or log
data accessing a certain library to observe or execute code that is completely decoupled
through interceptors (aspects).

NOTE Dropping a frame is not equivalent to an undo operation.

Calling the Files.createFile() method creates a new file in the filesystem. If you drop
the frame after running this line, you’ll return to the line before the createFile()
method is called. However, this doesn’t undo the file creation.

Listing 3.2 A method that makes changes outside the app when executing

public class FileManager {

public boolean createFile(int i) {
try {
Files.createFile(Paths.get("File " + 1));
return true;
} catch (IOException e) {
e.printStackTrace();
}

return false;

Creating a new file
in the filesystem

}
I

Summary

A conditional breakpoint is associated with a Boolean condition. The debugger
pauses the execution only if the provided condition is true—that is, only when
particular conditions apply. This approach eliminates the need to step through
the code line by line just to reach your starting point.

You can use breakpoints to log the values of certain variables in the console that
don’t suspend the app’s execution. This approach is quite helpful because you
can add log messages without changing the code.

Moreover, you can use Al assistants to analyze large amounts of log messages to
discover anomalies and guide your next steps in the troubleshooting process.

Summary 75

When the debugger pauses the execution on specific lines of code, you can alter
the data on the fly to create custom scenarios based on what you want to inves-
tigate. This way, you don’t have to wait until the execution gets to a conditional
breakpoint. In some cases, when you don’t have an appropriate environment,
modifying data during debugging eliminates the need to preconfigure it in the
environment, saving valuable time.

Changing variables’ values to create a custom investigation scenario can be
an efficient technique when trying to understand just a piece of the logic of a
long-running process or when you don’t have the desired data in the environ-
ment where you run the app. However, changing more than one or two variable
values at a time may add considerable complexity and make your investigation
more challenging.

You can step out of an investigation plan and return to the point before the
method was called. This is termed dropping a frame, but it can sometimes intro-
duce an unwanted side effect. If the app changed anything externally (e.g., com-
mitted a transaction and changed some database records, changed a file in the
filesystem, or made a RESTful call to another app), returning to a previous exe-
cution step won’t undo these changes.

Making the.most of
logs: Auditing an
app’s behavior

This chapter covers

Using log messages to understand an app’s
behavior

Correctly implementing log capabilities in your
app

Using Al assistants to investigate large log files
Avoiding problems caused by logs

This chapter discusses using log messages recorded by an app. The concept of log-
ging didn’t appear with software. For centuries, people used logs to understand
past events and processes better. In fact, people have used logging since writing was
invented, and we still use it today. All ships have logbooks. Sailors record decisions
(direction, speed increase or decrease, etc.) and given or received orders, along
with any encountered event (figure 4.1). If something happens to the onboard
equipment, they can use the logbook notes to understand where they are and navi-
gate to the nearest shore. If an accident happens, the logbook notes can be used in
the investigation to determine how the unfortunate event could have been avoided.

76

CHAPTER 4 Making the most of logs: Auditing an app’s behavior 77

SAILS UP
AND AT
FULL
SPEED!

Figure 4.1 Sailors store events in logs that they can use to determine their route or analyze the crew’s
response to a given event. In the same way, apps store log messages so that developers can later analyze
a potential problem or discover breaches in the app.

If you’ve ever watched a chess game, you’ve probably seen players jot down each move.
Why? These logs help them re-create the entire game afterward. They analyze their
own and their opponent’s decisions to uncover mistakes or vulnerabilities. Similarly,
applications log messages so that developers can trace what happened during execu-
tion. Reading these messages is like reconstructing a game of chess or like studying a
ship’s logbook to understand a voyage.

Some logs track routine steps (e.g., debug logs), others record unexpected events
(e.g., error or warning logs), and some might highlight potential threats (e.g., security
logs). Each type serves a different purpose. But as with any log, they don’t capture every-
thing, and they’re only as useful as the information they contain. Still, logs remain one
of our most important tools when investigating strange behavior or uncovering subtle
problems in an application.

I’'m sure you already know what logs look like. You’ve seen log messages, at least
when running your app with an IDE (figure 4.2). All IDEs have a log console. It’s one of
the first things all software developers learn. But an app doesn’t just display log mes-
sages in the IDE’s console. Real-world apps store logs to allow developers to investigate
aspecific app behavior at a given time.

Figure 4.3 shows the anatomy of a standard-formatted log message. A log message
is just a string, so theoretically, it can be any sentence. However, clean and easy-to-use

78 CHAPTER 4 Making the most of logs: Auditing an app’s behavior

When running an app on your local system using the
IDE, you find the log messages in the console.

B Bie Eat ios Rnigate Code Aealae Befactor Build Fun Tool/ UCS Wedos Hop o e [COMANHINGE Dby ging lus Auplestons SO0k | - in *®

dema B sic | mgtemeippliction ~ | G B G G- B W 0Q

Prejnct =

& deme.ml
& HELPmd

Rur: | Dwrrodpplicatinn o —
[+ Bccrsclc. Endpnints
& ¢ | 2021-07-25 16:16:59.943 [main] « lemo. Dem catior ¢ Starting DemeoApplicatio
m +| 2021-87-25 16:16:59.948 [main] com.exa emo. 0 - icatior 1 Mo active profile set,
@ 5 2021-87-25 16:11:01.006 L main] s.b,w.embedded ., tomca mcatWebSer : Tomcat initialized with
& 2 2p21-07-25 16:11:01.0815 [main] ache.catalin I tar 1SEry ¢ Starting service [Tomca
a f 20621-87-25 16:11:01.0815 [main] oro.aspache.cataling.core.StandardEngine ; Starting Serviet engine
= " 2621-87-25 16:11:01.6891 | main] [cat Localhost].[/] : Initializing Spring emb
» 2021-87-25 16:11:01.092 [main] £.5ery verdppli [ntext 1 Root WebApplicationCont
2621-87-25 16:11:01.434 TINFO 76928 -— [main] E 1edded. tomcat. ToncatWebSery ¢ Tomcat started on port(
2021-087-25 16:11:681.447 INFO 76528 --- [main] m.examp emo. Demohpplication : Started DemoApplication
O3 Fuild remnpleted surcimafulyin 14 ser, S ms (ecay &0 PR a

Figure 4.2 IDE log console. All IDEs have a log console. While logging messages in the console is useful when
running the app locally, real-world apps also store logs needed to understand how the app behaved at a given time.

Timestamp: When did the app write the message?
The timestamp shows when a message was logged
and is a vital detail that allows us to chronologically
order the messages. For this reason, the timestamp

should always be at the beginning of the message. Severity: How critical is the message?
Severity indicates whether it’s a highly

important message that requires immediate
attention or a message with details about
an execution event.

[2021-07-25 16:11:01.434]INFO|(0.s.b.w.embedded.tomcat.TomcatWebServer):
(Tomcat started on port(s): 8080 (http) with context path ")

P—

Message: What happened? A human-readable, Location: Where did the app encounter

easy-to-understand description of the event. the event? Usually, a log message displays
at least the module and the class that wrote

the log message.

Figure 4.3 The anatomy of a well-formatted log message. In addition to describing a situation or an
event, a log message should also contain several other relevant details: the timestamp of when the app
logged the message, the event’s severity, and where the message was written. Reviewing the log details
makes problem investigation much easier.

CHAPTER 4 Making the most of logs: Auditing an app’s behavior 79

logs need to follow some best practices (that you’ll learn throughout this chapter). For
example, in addition to a description, a log message contains a timestamp of when the
app wrote the message, a description of the severity, and a notation for the part of the
app that wrote the message (figure 4.3).

Moreover, in many modern systems, logs are aggregated in a centralized location,
such as a log management platform or observability stack. In these setups, it’s crucial
that each log entry includes the name (or identifier) of the application that generated
it—otherwise, you won’t be able to trace each message back to its source component.

In many cases, logs are an efficient way to investigate an app’s behavior. Some exam-
ples include

Investigating an event or a timeline of events that already happened
Investigating problems where interfering with the app changes the app’s behav-
ior (Heisenbugs)

Understanding the app’s behavior over the long term

Raising alarms for critical events that require immediate attention

These details are essential for providing you (and your Al assistant, as we’ll discuss in
this chapter) with the necessary context to investigate problems, proactively identify
vulnerabilities, or detect other potential problems in your app’s execution. Although
we haven’t discussed investigation techniques yet, I want to emphasize that there are
steps you can take in advance with your app’s logs to make future investigations easier
when necessary. I strongly believe that when it comes to using logs, the way you initially
design them is crucial for making your life easier later.

We generally don’t use just one technique when investigating how a particular app
capability behaves. Depending on the scenario, a developer may combine several tech-
niques to understand a particular behavior. In some cases, you’ll use the debugger with
logs, as well as other techniques (discussed in the following chapters) to figure out why
something works the way it does.

I always recommend that developers check the logs before doing anything else
when investigating a problem (figure 4.4). Logs often allow you to immediately identify

Before deciding which investigation technique
to use, you should read the log messages.

-] Debugging
Figure 4.4 Whenever

[[0 o N . you investigate a problem,
. Reading logs F-------- >) the first thing you should
~ | [T H Profiling always do is read the app’s

logs. In many cases, the log

r ges give you a starting
point or offer valuable hints
on what you should do next
to solve the problem.

80

4.1

CHAPTER 4 Making the most of logs: Auditing an app’s behavior

strange behavior that helps pinpoint where to begin your investigation. The logs
won’t necessarily answer all your questions, but having a starting point is extremely
important. If the log messages show you where to begin, you've already saved a lot of
time!

In my opinion, logs are not just extremely valuable; they are, in fact, indispensable
for any application. The next section discusses how to use logs and learn the typical
investigation scenarios in which logs are essential. Among these are

Using logs to identify exceptions
Identifying who’s calling a method with exception stack traces

Measuring the execution time of a piece of logic

In section 4.2, you’ll learn how to properly implement logging capabilities in your app.
We’ll discuss using logging levels to help you filter events and problems caused by logs
more easily.

I also recommend reading part 4 of Logging in Action by Phil Wilkins (Manning,
2022). This chapter focuses more on investigation techniques with logs, while Logging
in Action dives more deeply into logs’ technicalities. You'll also find logging demon-
strated using a different language than Java (Python).

Investigating issues with logs

Like any other investigation technique, using logs makes sense in some situations and
doesn’t in others. In this section, we examine various scenarios in which using logs
facilitates our understanding of software’s behavior. We’ll begin by discussing several
key points of log messages and then analyze how these characteristics assist developers
in their investigation of app problems.

One of the biggest advantages of log messages is that they allow you to visualize the
execution of a certain piece of code at a given time. When you use a debugger, as dis-
cussed in chapters 2 and 3, your attention is mainly on the present. You look at how the
data looks while the debugger pauses the execution on a specific line of code. A debug-
ger doesn’t give you many details on the execution history. You can use the execution
stack trace to identify the execution path, but everything else is focused on the present.

In contrast, logs focus on the app’s execution over a past period (figure 4.5). Log
messages have a strong relationship with time.

Always pay attention to the time zone of the system where your application is run-
ning. Log timestamps can be off by several hours if there’s a mismatch between the
system’s time zone and the one used by the developer or the monitoring tools. This
discrepancy can quickly become a source of confusion during troubleshooting.

To avoid this situation, ensure that all logs—especially when collected from multiple
services or regions into a centralized system—use a consistent timestamp format and
time zone. In cloud environments where components may be distributed globally, stan-
dardizing on a single time zone (such as UTC) makes it much easier to correlate events
across systems and track down problems accurately.

Investigating issues with logs 81

Debugging . .
With debugging, you focus
on the present state of the
app’s execution.
Past Future
Investigating with logs
When investigating with logs,
you focus on a past time period.
Past r] Future

Figure 4.5 When investigating a problem with the debugger, you focus on the present. When you use log
messages, you focus on a given period in the past. This difference can help you select an approach.

Today, Al assistants are immensely beneficial, especially when investigating large
volumes of log messages. My primary advice for using logs in troubleshooting is to
remember that Al can assist in understanding complex logged messages, making your
work more efficient. With sufficient context, an Al assistant can even suggest solutions
or point you toward the potential root cause of a problem.

NOTE Always include the timestamp in a log message.

You'll use the timestamp to easily identify the order in which
., Mmessages were logged, which will give you an idea of when

. the app wrote a certain message. | recommend the timestamp
be in the first part (at the beginning) of the message.

For instance, assistants integrated into IDEs, such as GitHub Copilot or Intelli] IDEA
Al Assistant, can be particularly straightforward to use. These tools typically have access
to the entire or most of the codebase, as well as the IDE console, thus allowing them to
provide more comprehensive assistance. Figure 4.6, shows an example where I inten-
tionally caused an exception in the logs and then asked my Al assistant for a potential
solution. In this case, I used the Intelli] IDEA Al Assistant.

Depending on its configuration, your IDE-integrated Al companion might have
direct access to specific files and locations. For example, you could simply ask, “Please
check the logs and determine where the issue comes from.” This capability makes

82 CHAPTER 4 Making the most of logs: Auditing an app’s behavior

You can ask your Al assistant

to give you a solution for a given
problem in the log or for the current
log messages in the console.

Al Assistant All Chats New Chat

Me

Can you provide me a solution to the exception in the logs?

Exception in thread "main” java.lang.NullPointerException: Cannot invoke “java.util.List.add(Object)" because
“list" is null

at main.StringDigitExtractor.extractDigits(StringDigitExtractor.java:27)

at main.Decoder.decode(Decoder.java:11)

at main.Main.main(Main.java:9)

Al Assistant o P C
Certainly! The NUllPointerException occurs when attempting to invoke a method on an object that hasn't been
initialized. Based on the exception message, it seems the 1ist object in your StringDigitExtractor class is null

when you call the add method.

Here's an example of what might be happening and how you can fix it:

Ask Al Assistant. Use # for mentions and / for commands

A

ba]

H &

Figure 4.6 When you encounter an exception or a console message that isn’t immediately clear, you can quickly
ask your Al companion for a concise analysis.

IDE-integrated assistants particularly convenient to use, as they already have much of
the context needed to analyze specific cases and provide accurate solutions.

If an IDE-integrated companion isn’t available, you can still use a chat-driven Al
While a chat-driven AI might be less convenient since you may not be able to provide it
with all the necessary context, it can still guide you in the right direction in most cases.
In figure 4.7, I'm using Google Gemini to get insights into a potential problem hidden
in the exception stack trace in my console.

If you think your AI could provide a clearer answer, continue to incrementally add
context within the same chat. In a real-world scenario, providing all the context may be
impossible, but you can still form a good understanding of the problem before invest-
ing too much time.

Investigating issues with logs 83

The Al assistant provides solutions
to the problem based on the limited
context available.

o Can you provide me a sclution to the exception in the logs? v

Exception in thread "main” java.lang.NullPointerException: Cannot invoke 7
“java.util.List.add(Object)" because "list" is null at ...

Show drafts Vv o)

* The error message indicates a NullPointerException which means you're trying to
use a method on a variable (List) that hasn't been initialized yet (it's null). Here's
how to fix it:

1. Identify where "list" is declared:

Lock at StringDigitExtractor.java line 27 This line is likely where you're calling the
add method on the 1ist variable. Check how 1list is declared in this file.

2. Ensure "list" is initialized before use:
There are two main scenarios:

* 1list is a member variable:

o |f 1list isdeclared as a member variable in StringDigitextractor , make sure
it's initialized in the constructor or before calling extractDigits . You can either
assign itanew Arroylist orinject it through a dependency injection framework
(if applicable).

* 1list isalocal variable:
« If 1ist isdeclared as a local variable within extractDigits (e.g.,

List<String> list;), you need to initialize it before calling add . You can do

Figure 4.7 When an IDE-integrated Al companion isn’t an option, you can use a chat-based Al. Even without
complete context, a chat-based Al can still provide useful suggestions on how to continue your investigation.

If you feel you’re spending too much time without getting an answer, you may want to
consider other investigative techniques. Depending on the problem you’re trouble-
shooting, you could try debugging—as discussed in chapters 2 and 3—or profiling,
which we’ll cover later.

Another way to use chat-based Al assistants for log analysis is by providing them
with a complete log file and asking for help in extracting details related to a spe-
cific problem, if there is any. Unlike humans, Al assistants don’t get bored looking
through a massive amount of log messages. They can easily pinpoint log entries that
might reference a problem or at least significantly reduce the amount of data you
need to review.

84

4.1.1

CHAPTER 4 Making the most of logs: Auditing an app’s behavior

For example, when conducting a post-mortem investigation—analyzing a problem
that caused a process to fail after the app stopped working—I often need to identify rel-
evant log messages to determine the root cause. This typically involves sifting through a
large volume of logs produced by the application over many hours, even days.

An example of a prompt could look like

Please find in the attached log file all the exceptions that are related to locks in the
database. Please group them by queries that thrown them or by the methods in the
code that apparently caused the exception.

Doing this kind of work manually on a file with hundreds of thousands of log lines can
be exhausting and time-consuming. Fortunately, perfect accuracy isn’t critical in this
case, which makes it a great task for an Al assistant.

For example, if the Al misses a few log entries or misclassifies some, it’s usually not a
problem. The goal, such as identifying which component is causing database locks, can
still be achieved. The real benefit is speed: what could take you hours or even days to
analyze manually can now be done in seconds or minutes.

Recently, Al assistants have dramatically improved my investigation process. By pro-
viding them with the extracted log messages, I’ve been able to collaborate effectively
with the Al to analyze and identify key problems more efficiently.

Using logs to identify exceptions

Logs help identify a problem after it occurred and investigate its root cause. Often,
we use logs to decide where to start an investigation. We then continue exploring the
problem using other tools and techniques, such as the debugger (as discussed in chap-
ters 2 and 3) or a profiler (as discussed in chapters 5-8). You can often find exception
stack traces in the logs. The next snippet shows an example of a Java exception stack
trace:

java.lang.NullPointerException

at java.base/java.util.concurrent.ThreadPoolExecutor
runWorker (ThreadPoolExecutor.java:1128) ~[na:na]

at java.base/java.util.concurrent.ThreadPoolExecutor$Worker
run(ThreadPoolExecutor.java:628) ~[na:nal

at org.apache.tomcat.util.threads.TaskThread$WrappingRunnable
run(TaskThread.java:61) ~[tomcat-embed-core-9.0.26.jar:9.0.26]

at java.base/java.lang.Thread.run(Thread.java:830) ~[na:nal

Seeing this exception stack trace, or something similar, in the application’s log tells
you that something potentially went wrong with a given feature. Each exception has its
own meaning that helps identify where the app encountered a problem. For example,
aNullPointerException tells you that, somehow, an instruction referred to an attribute

or a method through a variable that didn’t contain a reference to an object instance
(figure 4.8).

Investigating issues with logs

If the app throws a NullPointerException
on this line, it means that the invoice

variable doesn’t hold an object reference.

In other words, the invoice variable is null.

var invoice = getlastIssuedInvoice() ;

if (client.isOverdue()) {
invoice.pay() ;

}

Figure 4.8 A NullPointerException indicates the app execution encountered a behavior that was
called without the behaving instance. But that doesn’t mean that the line that produced the exception
is also the cause of the problem. The exception could be a consequence of the root cause. You should

always look for the root cause instead of locally treating a problem.

NOTE Remember that the location where an exception occurs is not necessar-
ily the root cause of the problem. An exception tells you where something went
wrong, but the exception itself can be a consequence of a problem elsewhere.
It is not necessarily the problem itself. Don’t make a decision about solving
the exception locally by adding a try-catch-finally block or an if-else state-
ment too quickly. First, make sure you understand the root cause of the prob-
lem before looking for a solution to solve it.

I often find that this concept confuses beginners. Let’s take a simple NullPointe

85

r-

Exception, which is probably the first exception any Java developer encounters and one
of the simplest to understand. However, when you find a NullPointerException in the
logs, you need first to ask yourself, “Why is that reference missing?” It could be because a
particular instruction that the app executed earlier didn’t work as expected (figure 4.9).

A developer should first understand
why the getLastIssuedInvoice ()
returns null in this case.

var invoice = getlLastIssuedInvoice() ;

if (client.isOverdue()) {
if (invoice != null) {
invoice.pay () ;
}
}

A beginner would be tempted to
simply check for a null here, but this is
sweeping the problem under the rug.

Figure 4.9 Locally solving the problem is in many cases equivalent to sweeping it under the rug. If the
root cause remains, more problems can appear later. Remember that an exception in the logs doesn’t
necessarily indicate the root cause.

86

4.1.2

CHAPTER 4 Making the most of logs: Auditing an app’s behavior

Using exception stack traces to identify what calls a method

One of the techniques developers consider unusual, but that I find advantageous in prac-
tice, is logging an exception stack trace to identify what calls a specific method. Since
starting my career as a software developer, I've worked with messy codebases of (usually)
large applications. One of the difficulties I frequently encounter is figuring out who calls
a given method when an app is running in a remote environment. If you just read the
app’s code, you will discover hundreds of ways that method could’ve been called.

Exceptions in Java have a capability that is often disregarded: they keep track of the
execution stack trace. When discussing exceptions, we often call the execution stack
trace an exception stack trace. But they are, in the end, the same thing. The exception
stack trace displays the chain of method calls that cause a specific exception, and you
have access to this information even without throwing that exception. In code, it’s
enough to use the exception:

new Exception().printStackTrace();

Consider the method in listing 4.1. If you don’t have a debugger, you can simply print
the exception stack trace, like I did in this example, as the first line in the method to
find the execution stack trace. Keep in mind that this code only prints the stack trace
and doesn’t throw the exception, so it doesn’t interfere with the executed logic. This
example is in project da-ch4-ex1.

Listing 4.1 Printing the execution stack trace in logs using an exception

public List<Integer> extractDigits() {
new Exception().printStackTrace(); Prints the exception
List<Integer> list = new ArraylList<>(); stack trace
for (int i = 0; i < input.length(); i++) {
if (input.charAt(i) >= '0' && input.charAt(i) <= '9') {
list.add(Integer.parseInt(String.valueOf(input.charAt(i))));
¥
¥

return list;

}.

The next snippet shows how the app prints the exception stack trace in the console. In
a real-world scenario, the stack trace helps you to immediately identify the execution
flow, which leads to the call you want to investigate, as we discussed in chapters 2 and 3.
In this example, you can see from the logs that the extractDigits() method was called
on line 11 of the Decoder class from within the decode() method:

java.lang.Exception at main.StringDigitExtractor
extractDigits(StringDigitExtractor.java:15)
at main.Decoder.decode(Decoder.java:11)
at main.Main.main(Main.java:9)

4.1.3

Investigating issues with logs 87

Measuring time spent to execute a given instruction

Log messages are an easy way to measure the time a given set of instructions takes to
execute. You can always log the difference between the timestamp before and after a
given line of code. Suppose you are investigating a performance problem in which
some given capability takes too long to execute. You suspect that the cause is a query
the app executes to retrieve data from the database. For some parameter values, the
query is slow, which is decreasing the app’s overall performance.

To find which parameter is causing the problem, you can write the query and the
query execution time in logs. Once you identify the troublesome parameter values, you
can start looking for a solution. Maybe you need to add one more index to a table in the
database, or perhaps you can rewrite the query to make it faster.

Listing 4.2 shows how to log the time spent by the execution of a specific piece of
code. For example, let’s figure out how much time it takes the app to run the operation
of finding all the products from the database. Yes, I know, we have no parameters here; I
simplified the example to allow you to focus on the discussed syntax. But in a real-world
app, you would most likely investigate a more complex operation.

Listing 4.2 Logging the execution time for a certain line of code

Logs the timestamp
before the method’s
execution

public TotalCostResponse getTotalCosts() {

TotalCostResponse response = new TotalCostResponse(); Executes the

method for which
we want to calculate

long timeBefore = System.currentTimeMillis(); the execution time

var products = productRepository.findAl11();
long spentTimeInMillis =

Calculates the ti t
System.currentTimeMillis() - timeBefore; a cuates the time spen

between the timestamp
after execution and the

log.info("Execution time: " + spentTimeInMillis); timestamp before the
execution
var costs = products.stream().collect(
Collectors.toMap(Prints the
Product: :getName, execution time

p -> p.getPrice()
.multiply(new BigDecimal(p.getQuantity()))));

response.setTotalCosts(costs);

return response;

Precisely measuring how much time an app spends executing a given instruction is a
simple but effective technique. However, I would only use this technique temporarily
when investigating a problem. I don’t recommend keeping such logs in the code for
long since they most likely will not be needed later, and they make the code more

88

4.1.4

CHAPTER 4 Making the most of logs: Auditing an app’s behavior

difficult to read. Once you’ve solved the problem and no longer need to know the exe-
cution time for that line of code, you can remove the logs.

Investigating problems in multithreaded architectures

A multithreaded architecture is a type of capability that uses multiple threads to exe-
cute its functionality and is often sensitive to external interference (figure 4.10).

T1, T2, and T3 are three different threads
running concurrently. A, B, and C are
instructions running independently, each
on a separate thread.

T

T2

T3

The behavior you want to investigate appears when
instructions A, B, and C run in this order.

Figure 4.10 A multithreaded architecture. An app with the capability to use multiple threads running
concurrently to process data is a multithreaded app. Unless explicitly synchronized, instructions running
on independent threads (A, B, and C) can run in any order.

For example, if you use a debugger or a profiler (tools that interfere with the app’s
execution), the app’s behavior may change (figure 4.11).

However, if you use logs, there’s a smaller chance the app will be affected while run-
ning. Logs can also sometimes interfere in multithreaded apps, but they don’t have an
effect big enough on the execution to change the app’s flow. Thus, they can be a solu-
tion for retrieving data needed for your investigation.

Since log messages contain a timestamp (as discussed earlier in the chapter), you
can order the log messages to find the sequence in which the operations execute. In
a Java app, it is sometimes helpful to log the thread’s name that executes a certain
instruction. You can get the name of the current thread in execution using the follow-
ing instruction:

String threadName = Thread.currentThread().getName();

4.2

421

Implementing logging 89

When using an investigation tool, you interfere
with the app’s execution. This approach can lead
to scenarios different than the one you want

to investigate.

Debugger
pausing
execution

T

@®--------oe

T2

C

T3 |
[

Figure 4.11 Using a tool such as a debugger or a profiler interferes with the execution, making some (or
all) threads slower. Because of this, the execution often changes, and some instructions may execute in
a different order than the scenario you wanted to investigate. In such a case, the tool is no longer useful
since you can’t research the behavior you're interested in.

In Java apps, all threads have a name. The developer can name them, or the JVM will
identify the threads using a name with the pattern Thread-x, where x is an incremented
number. For example, the first thread created will be named Thread-0; the next one,
Thread-1; and so on. As we’ll discuss in chapter 10 when we address thread dumps,
naming your app’s threads is good practice so that you can identify them easier when
investigating a case.

Implementing logging

This section discusses best practices for implementing logging capabilities in apps. To
make your app’s log messages ready for investigations and avoid causing trouble with
the app’s execution, you need to take care of some implementation details.

We’ll start by discussing how apps persist logs in section 4.2.1—specifically the advan-
tages and disadvantages of these practices. In section 4.2.2, you’ll learn how to use the
log messages more efficiently by classifying them based on severity and thus make the
app perform better. In section 4.2.3, we’ll discuss the problems log messages can cause
and how to avoid them.

Persisting logs

Persistence is one of the essential characteristics of log messages. As discussed earlier
in this chapter, logging is different from other investigation techniques because it

90

4.2.2

CHAPTER 4 Making the most of logs: Auditing an app’s behavior

focuses more on the past than the present. We read logs to understand something that
happened. Therefore, the app needs to store them so that we can read them later. How
log messages are stored can affect the logs’ usability and the app’s performance. I've
worked with many apps and have had the chance to see various ways developers imple-
ment log message persistence:

Storing logs in nonrelational databases
Storing logs in files

Storing logs in relational databases

These can all be good choices, depending on what your app does. Let’s look at some of
the main things you need to consider to make the right decision.
STORING LOGS IN NONRELATIONAL DATABASES
Nonrelational (NoSQL) databases help you compromise between performance and con-
sistency. You can use a NoSQL database to store logs in a more performant way, which
gives the database a chance to miss log messages or not store them in the exact chrono-
logical order in which the app wrote them. But, as discussed earlier, a log message should
always contain the timestamp when the message was stored, preferably at the beginning.
Storing log messages in NoSQL databases is common. In most cases, apps use a com-
plete engine that stores the logs and has the capability to retrieve, search, and analyze
the log messages. Today’s two most-used engines are the ELK stack (https://www.elastic
.co/what-is/elk-stack) and Splunk (https://www.splunk.com/).
STORING LOGS IN FILES
In the past, apps stored logs in files. You may still find older applications that write log
messages directly in files, but this approach is less common today because it is generally
slower, and searching for logged data is more difficult. I bring this to your attention
because you’ll find many tutorials and examples in which apps store their logs in files,
but with more current apps, you should avoid this.
STORING LOGS IN RELATIONAL DATABASES
We rarely use relational databases to store log messages. A relational database mainly
guarantees data consistency, which ensures log messages are not lost. Once they are
stored, you can retrieve them. But consistency comes with a compromise in performance.
In most apps, losing a log message is not a big deal, and performance is generally
preferred over consistency. But, as always, in real-world apps, there are exceptions. For
example, governments worldwide impose log message regulations for financial apps,
especially for payment capabilities. Such capabilities should generally have specific log
messages that the app isn’t allowed to lose. Failure to comply with these regulations can
result in sanctions and fines.

Defining logging levels and using logging frameworks

In this section, we discuss logging levels and properly implementing logging in an app
using logging frameworks. We’ll start by examining why logging levels are essential and
then implement an example.

https://www.elastic.co/what-is/elk-stack
https://www.elastic.co/what-is/elk-stack
https://www.splunk.com/

Implementing logging 91

Logging levels, also called severities, are a way to classify log messages based on their
importance to your investigation. An app usually produces a large number of log mes-
sages while running. However, you often don’t need all the details in all the log mes-
sages. Some of the messages are more important to your investigation than others;
some represent critical events that always require attention.

The most common log levels (severities) are

Error—A critical issue. The app should always log such events. Usually, unhan-
dled exceptions in Java apps are logged as errors.

Warn—An event that is potentially an error, but the application handles it. For
example, if a connection to a third-party system initially fails but the app manages
to send the call on a second try, the problem should be logged as a warning.

Info—“Common” log messages. These messages represent the main app execu-
tion events that help you to understand the app’s behavior in most situations.

Debug—Fine-grained details that you should enable only when info messages are
not enough.

NOTE Different libraries may use more than, or different
names for, these four severity levels. For example, in some
cases, apps or frameworks may use the severity levels fatal
(more critical than error) and trace (less critical than debug).

In this chapter, | focus only on the most encountered severities
and terminologies in real-world apps.

Classifying the log messages based on severity allows you to minimize the number of
log messages your app stores. You should only allow your app to log the most relevant
details and enable more logging only when you need more details.

Look at figure 4.12, which presents the log severity pyramid:

An app logs a small number of critical problems, but these have high impor-
tance, so they always need to be logged.

The closer you get to the bottom of the pyramid, the more log messages the app
writes, but they become less critical and less frequently needed in investigations.

For most investigation cases, you won’t need the messages classified as debug. Plus,
because of their large number, they make your research more challenging. For this
reason, debug messages are generally disabled, and you should enable them only when
you face a problem for which you need more details.

When you started learning Java, you were taught how to print something in the con-
sole using System.out or System.err. Eventually, you learned to use printStackTrace()
to log an exception message, as I used in section 4.1.2. But these ways of working with

CHAPTER 4 Making the most of logs: Auditing an app’s behavior

More log messages,
more details,

less critical Figure 4.12 The log severity
pyramid. On the top are the
critical log messages that
usually require immediate
attention. The bottom
represents the log messages
that provide details you’ll

rarely need. From the top to
Info the bottom, the log messages
become less essential but
greater in number. Usually,

the debug-level messages are
disabled by default, and the
developer can choose to enable
them if their investigation
requires fine-grained details
about the app’s execution.

Warn

logs in Java apps don’t give enough flexibility for configuration. So, instead of using
them in real-world apps, I recommend you use a logging framework.

Implementing the logging levels is simple. Today, the Java ecosystem offers various
logging framework options such as Logback, Log4j, and the Java Logging API. These
frameworks are similar, and using them is straightforward.

Let’s take an example and implement logging with Log4j. This example is in project
da-ch4-ex2. To implement the logging capabilities with Log4j, you first need to add the
Log4j dependency. In our Maven project, you must change the pom.xml and add the
Log4j dependency.

Listing 4.3 Dependencies you need to add in the pom.xml file to use Log4j

<dependencies>
<dependency>

<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-api</artifactId>
<version>2.14.1</version>

</dependency>

<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-core</artifactId>
<version>2.14.1</version>

</dependency>

</dependencies>

Once you have the dependency in the project, you can declare a Logger instance in
any class where you want to write log messages. With Log4;j, the simplest way to create a
Logger instance is by using the LogManager.getLogger () method, as presented in listing
4.4. This method allows writting log messages that are named the same as the severity

Implementing logging 93

of the event they represent. For example, if you want to log a message with the info
severity level, you’ll use the info() method. If you want to log a message with the debug
severity level, you’ll use the debug() method, and so on.

Listing 4.4 Writing the log messages with different severities

public class StringDigitExtractor {

private static Logger log = LogManager.getLogger(); Declares a logger

. . . . instance for the
private final String input; current class to
write log messages
public StringDigitExtractor(String input) {
this.input = input;

}
public List<Integer> extractDigits() { Writes a message
log.info("Extracting digits for input {}", input); with the info severity
List<Integer> 1list = new ArraylList<>();
for (int i = 0; i < input.length(); i++) { Werites a message
log.debug("Parsing character {} of input {}", with the debug severity
input.charAt(i), input);
if (input.charAt(i) >= '0' && input.charAt(i) <= '9') {
list.add(Integer.parseInt(String.valueOf(input.charAt(i))));
}
}

log.info("Extract digits result for input {} is {}", input, 1list);
return list;

Once you’ve decided which messages to log and used the Logger instance to write
them, you need to configure Log4;j to tell the app how and where to write these mes-
sages. We’ll use an XML file that we name log4j2.xml to configure Log4j. This XML
file must be in the app’s class path, so we’ll add it to the resources folder of our Maven
project. We need to define three things (figure 4.13):

A logger—Tells Log4j which messages are to be written to which appender
An appender—Tells Log4j where to write the log messages
A formatter—Tells Log4j how to print the messages

The logger defines which messages the app logs. In this example, we use Root to write
the messages from any part of the app. Its attribute level, which has the value info,
means only the messages with a severity of info and higher are logged. The logger can
also decide to log only messages from specific app parts. For example, when using a
framework, you are rarely interested in the log messages the framework prints, but
you are often interested in your app’s log messages, so you can define a logger that
excludes the framework’s log messages and only prints those coming from your app.

94

CHAPTER 4 Making the most of logs: Auditing an app’s behavior

The logger decides which log messages An appender decides where to log the messages.
are printed. For example, it can decide For example, one appender can write messages
to log only messages with the severity in the system console, and another can write
level info and above or that come from them in a database.

a specific package in the app. 'K—J
A logger can use

multiple appenders. The formatter decides how
the messages are printed.

Figure 4.13 The relationship between the appender, logger, and formatter. A logger uses one or more
appenders. The logger decides what to write (e.g., only log messages printed by objects in the package).
The logger gives the messages to be written to one or more appenders. Each appender then implements
a certain way to store the messages. The appender uses formatters to shape the messages before
storing them.

Remember that you want to write only essential log messages. Otherwise, an investi-
gation can become unnecessarily more challenging since you must then filter out the
nonessential log messages.

In a real-world app, you can define multiple appenders, which will most likely be
configured to store the messages in different sources, like a database or files in the
filesystem. In section 4.2.1, we discussed multiple ways apps can retain log messages.
Appenders are simply implementations that take care of storing the log messages in a
given way.

The appender also uses a formatter that defines the format of the message. For this
example, the formatter specifies that the messages should include the timestamp and
the severity level, so the app only needs to send the description.

Listing 4.5 shows the configuration that defines both an appender and a logger. In
this example, we define just one appender, which tells Log4j to log the messages in the
standard output stream of the system (the console).

Listing 4.5 Configuring the appender and the logger in the log4j2.xml file

<?xml version="1.0" encoding="UTF-8"?>
<Configuration status="WARN"> Defines an appender
<Appenders>
<Console name="Console" target="SYSTEM_OUT">
<PatternlLayout pattern="%d{yy-MM-dd HH:mm:ss.SSS} [%t]
%-5level %logger{36} - %msg%n"/>
</Console>

Implementing logging 95

</Appenders>
<Loggers> < Defines alogger configuration
<Root level="info">
<AppenderRef ref="Console"/>
</Root>
</Loggers>
</Configuration>

Figure 4.14 shows the link between the XML configuration in listing 4.5 and the three
components it defines: the logger, appender, and formatter.

We define one appender
named Console. It sends
the log messages to the
system’s standard output
stream SYSTEM OUT.

<?xml version="1.0" encoding="UTF-8"?>
<Configuration status="WARN">
<Appenders>

<Console name="Console" target="SYSTEM OUT">
(<PatternLayout pattern="%d{yy-MM-dd HH:mm:ss.SSS} [%t]]
$-5level %$logger{36} - %msg3%n"/>
</Console> \
</Appenders>
<Loggers>
<Root level="info">
<AppenderRef ref="Console"/>
</Root >
</Loggers>
</Configurations>

Appender Formatter
Logger

The appender uses a formatter

We configure a logger that defines how the messages
that takes a!l the will look. Using a pattern,
messages with the we configure the formatter
severity level info and to attach the timestamp and
sends them to the severity to each message.
appender named

Console.

Figure 4.14 The configuration components. The logger Root takes all the log messages with severity level info
that the app writes. The logger sends the messages to the appender named Console. The appender Conso'le is
configured to send the messages to the system terminal. It uses a formatter to attach the timestamp and the
severity level to the message before writing it.

96

CHAPTER 4 Making the most of logs: Auditing an app’s behavior

The next snippet shows a section of the logs printed when the example runs. Note
that debug messages aren’t logged since they are lower in severity than info (line 10 in
listing 4.5).

21-07-28 13:17:39.915 [main] INFO
main.StringDigitExtractor
Extracting digits for input ablc
21-07-28 13:17:39.932 [main] INFO
main.StringDigitExtractor
Extract digits result for input ablc is [1]
21-07-28 13:17:39.943 [main] INFO
main.StringDigitExtractor
Extracting digits for input all2c
21-07-28 13:17:39.944 [main] INFO
main.StringDigitExtractor
Extract digits result for input all2c is [1, 1, 2]

If we wanted the app to also log the messages with the debug severity, we would have to
change the logger definition.

In listing 4.6, you can see a status and a logging level. This usually creates confusion.
Most of the time, you care about the level attribute, which shows which messages will
be logged according to severity. The status attribute in the <Configuration> tag is the
severity of the Log4] events, the problems the library encounters. That is, the status
attribute is the logging configuration of the logging library.

Listing 4.6 Using a different severity configuration

<?xml version="1.0" encoding="UTF-8"?> Sets the logging level for
<Configuration status="WARN"> internal Log4j events
<Appenders>

<Console name="Console" target="SYSTEM_OUT">
<PatternLayout pattern="%d{yy-MM-dd HH:mm:ss.SSS} [%t]
%-5level %logger{36} - %msg%n"/>
</Console>
</Appenders>

<Loggers> Changes the logging level to debug
<Root level="debug">
<AppenderRef ref="Console"/>
</Root>
</Loggers>
</Configuration>

We can change the logger in listing 4.6 to also write the messages with the priority:

21-07-28 13:18:36.164 [main] INFO
main.StringDigitExtractor
Extracting digits for input ablc

4.2.3

Implementing logging 97

21-07-28 13:18:36.175 [main] DEBUG

main.StringDigitExtractor

Parsing character a of input ablc
21-07-28 13:18:36.176 [main] DEBUG

main.StringDigitExtractor

Parsing character b of input ablc
21-07-28 13:18:36.176 [main] DEBUG

main.StringDigitExtractor

Parsing character 1 of input ablc
21-07-28 13:18:36.176 [main] DEBUG

main.StringDigitExtractor

Parsing character c¢ of input ablc
21-07-28 13:18:36.177 [main] INFO

main.StringDigitExtractor

Extract digits result for input ablc is [1]
21-07-28 13:18:36.181 [main] INFO

main.StringDigitExtractor

Extracting digits for input all2c

A logger library gives you the flexibility to log only what you need. Writing the mini-
mum number of log messages necessary to investigate a certain problem is good prac-
tice as it can help you understand the logs more easily and keep the app performing
well and maintainable. A logging library also gives you the capability of configuring the
logs without needing to recompile the app.

Problems caused by logging and how to avoid them

We store log messages so that we can use them to understand how an app behaved at a
certain point in time or over time. Logs are necessary and extremely helpful in many
cases, but they can also become malicious if mishandled. In this section, we discuss
three main problems logs can cause and how to avoid them (figure 4.15):

Security and privacy problems—Caused by log messages exposing private data
Performance problems—Caused by the app storing too many or too-large log
messages

Maintainability problems—Caused by log instructions that make the source code
more difficult to read

Performance Maintainability

Security
and
privacy

Figure 4.15 Small details can cause big problems. Developers sometimes consider an app’s logging
capability harmless by default and disregard the problems logging can introduce. Logging, however, like
all the other software capabilities, deals with the data, and wrongly implemented, it can affect the app’s
functionality and maintainability.

98

CHAPTER 4 Making the most of logs: Auditing an app’s behavior

SECURITY AND PRIVACY ISSUES

Security is one of my favorite topics and one of the most important subjects a devel-
oper needs to consider when they implement an app. One of the books I wrote con-
cerns security, and if you implement apps using the Spring Framework and want to
learn more about securing them, I recommend you read it: Spring Security in Action,
second edition (Manning, 2023).

Surprisingly, logs can sometimes cause vulnerabilities in applications, and in most
cases, these problems happen because developers are not attentive to the details they
expose. Remember that logs make specific details visible to anyone who can access
them. You always need to think about whether the data you log should be visible to
those who can access the logs (figure 4.16).

I'll log these authentication keys Excellent! I'll get my hands on
e to make sure the requests those private keys, and then
we receive are correctly signed. | can sign any fake request.

Developer Hacker
I'll log the phone numbers to Awesome! I'll collect the phone
Q make sure the app sends the numbers and make them public
SMS notifications to the correct so that the company will be
receivers. severely sanctioned.
. Hi
fod
Hacker

Developer

Figure 4.16 Log messages should not contain secret or private details. No one working on the app or
the infrastructure where the app is deployed should access such data. Exposing sensitive details in logs
can help a malicious person (hacker) to find easier ways to break the system or create security-related
problems.

The following snippet shows some examples of log messages that expose sensitive
details and cause vulnerabilities:

Successful login.
User bob logged in with password RwjBaWIs66

Failed authentication.
The token is unsigned.

Implementing logging 99

The token should have a signature with IVL4KiKMfz.

A new notification was sent to
the following phone number +1233..

What’s wrong with the logs presented here? The first two log messages expose private
details. You should never log passwords or private keys that are used to sign tokens,
or any other exchanged information. A password is something only its owner should
know. For this reason, no app should store any passwords in clear text (whether in a log
or a database). Private keys and similar secret details should be stored in a secrets vault
to protect them from being stolen. If someone gets the value of such a key, they can
impersonate an application or a user.

The third log message example exposes a phone number. A phone number is con-
sidered a personal detail, and around the world, specific regulations restrict the use of
such details. For example, the European Union implemented the General Data Pro-
tection Regulation (GDPR) in May 2018. An application with users in any European
Union state must comply with these regulations to avoid severe sanctions. The regula-
tions allow any user to request all their personal data an app uses and to request imme-
diate deletion of the data. Storing information such as phone numbers in logs exposes
these private details and makes retrieving and deleting them more difficult.

NOTE Even if this information is not directly related to troubleshooting, you
may encounter these cases when investigating certain problems. Make sure to
treat them as important and resolve these problems as soon as possible when
they arise. Keep in mind that today’s logs can persist in large databases for
extended periods. If you encounter a situation where sensitive data is exposed,
it is important to report the problem promptly. Additionally, determine
whether any previously stored data needs to be erased or obscured to protect
privacy.

PERFORMANCE PROBLEMS

Writing logs entails sending details (usually as strings) through an 1/O stream some-
where outside the app. We can simply send this information to the app’s console
(terminal), or we can store it in files or even a database, as discussed in section 4.2.1.
Either way, you need to remember that logging a message is also an instruction
that takes time; adding too many log messages can dramatically decrease an app’s
performance.

I remember an issue my team investigated some years ago. A customer in Asia
reported a problem with the application we were implementing in factories for inven-
tory purposes. The problem wasn’t causing much trouble, but we found it challenging
to get to the root cause, so we decided to add more log messages. After delivering a
patch with the small change, the system became very slow, almost unresponsive some-
times, which ultimately caused a production standstill, and we had to quickly revert our
change. We somehow managed to change a mosquito into an elephant.

100 CHAPTER 4 Making the most of logs: Auditing an app’s behavior

Our client was definitely not happy,
but we managed to revert fast
enough to avoid really bad

Ugly problem! Did it end well? ~ “2o0 0 omeeS N\

The point is, learn from me and

don’t make the same mistake.
Learning from your mistakes is good;
learning from others’ mistakes is best.

But how could some simple log messages cause such big trouble? The logs were con-
figured to send the messages to a separate server in the network, where they persisted.
Not only was the network extremely slow in that factory, but also the log message
added to a loop that was iterating over a significant number of items, making the app
extremely slow.

In the end, we learned some things that helped us be more careful and avoid repeat-
ing the same mistake:

Make sure you understand how the app logs the messages. Remember that even
for the same app different deployments can have different configurations (see
section 4.2.2).

Avoid logging too many messages. Don’t log messages in loops iterating over a
large number of elements. Logging too many messages will also make reading
the logs complicated. If you need to log messages in a large loop, use a condition
to narrow the number of iterations for which the message is logged.

Make sure that the app stores a given log message only when that’s really needed.
You limit the number of log messages you store by using logging levels, as dis-
cussed in section 4.2.2.

Implement the logging mechanism in such a way that you enable and disable it
without needing to restart the service. This will allow you to change to a finer-
grained logging level, get your needed details, and then make your logging less
sensitive again.

MAINTAINABILITY

Log messages can also negatively affect an app’s maintainability. If you add log mes-
sages too frequently, they can make the app’s logic more difficult to understand.
Let’s look at an example: try reading listings 4.7 and 4.8. Which code is easier to
understand?

Implementing logging 101

Listing 4.7 A method implementing a simple piece of logic

public List<Integer> extractDigits() {
List<Integer> 1list = new ArraylList<>();
for (int i = 0; i < input.length(); i++) {
if (input.charAt(i) >= '0' && input.charAt(i) <= '9') {
list.add(Integer.parseInt(String.valueOf(input.charAt(i))));
}
}

return list;

I

Listing 4.8 A method implementing a simple piece of logic crowded with log messages

public List<Integer> extractDigits() {
log.info("Creating a new list to store the result.");
List<Integer> 1list = new ArraylList<>();
log.info("Iterating through the input string " + input);
for (int i = 0; i < input.length(); i++) {
log.info("Processing character " + i + " of the string");
if (input.charAt(i) >= '0' && input.charAt(i) <= '9') {
log.info("Character " + i +
" is digit. Character: " +
input.charAt(i))
log.info("Adding character" + input.charAt(i) + " to the list");
list.add(Integer.parseInt(String.valueOf(input.charAt(i))));
}
}

Log.info("Returning the result " + list);
return list;

b

Both show the same piece of implemented logic. But in listing 4.8, I added numerous
log messages, which make the method’s logic more challenging to read.
How do we avoid affecting an app’s maintainability?

You don’t necessarily need to add a log message for each instruction in the code.
Identify those instructions that provide the most relevant details. Remember, you
can add extra logging later if the existing log messages are not enough.

Keep the methods small enough so that you only need to log the parameters’
values and the value the method returned after the execution.

Some frameworks allow you to decouple part of the code from the method. For
example, in Spring, you can use custom aspects to log the result of a method’s
execution (including the parameters’ values and the value the method returned
after the execution).

102

CHAPTER 4 Making the most of logs: Auditing an app’s behavior

Summary

Always check the app’s logs when you start investigating a problem. The logs may
indicate what’s wrong or at least give you a starting point for your investigation.

All log messages should include a timestamp. Remember that in most cases a sys-
tem doesn’t guarantee the order in which the logs are stored. The timestamp will
help you to order the log messages chronologically.

AT assistants can be highly effective in analyzing large volumes of log messages,
making the investigation process more efficient and reducing the amount of
data required to manually sift through.

IDE-integrated Al companions, such as GitHub Copilot or Intelli] IDEA AI Assis-
tant, can provide comprehensive assistance by having access to the codebase and
IDE console, helping to solve problems faster.

If an IDE-integrated Al isn’t available, a chat-based Al (such as ChatGPT or Gem-
ini) can still be helpful in identifying potential root causes by providing incre-
mental context and insights into complex logs.

An exception in the logs is not necessarily the root of the problem. It could be a
consequence of a problem. Research what caused the exception before treating
itlocally.

You can use exception stack traces to figure out what called a given method. In
large, messy, and difficult-to-understand codebases, this approach can be very
helpful and save you time.

Never write sensitive details (e.g., passwords, private keys, or personal details) in
alog message. Logging passwords or private keys introduces security vulnerabil-
ities since anyone with access to the logs can see and use them. Writing personal
details such as names, addresses, or phone numbers also may not comply with
various government regulations.

Part 2

Deep dragnosing
an app’s execution

In the first part of this book, we focused on problems that can be caught by
reading the code, stepping through it with a debugger, or checking well-written
tests. But some problems only reveal themselves when the application is running
under real conditions.

This part is about tracking down problems in execution—specifically, those
tied to CPU usage and multithreading behavior. These are the kinds of problems
that cause slow responses, uneven performance, or sudden bottlenecks even
when the code looks fine. You won’t find them just by reading source files—you
need profiling tools that show exactly what the CPU is busy doing and where time
is being spent.

We’ll explore techniques for identifying excessive CPU consumption, spotting
inefficient code paths, and uncovering hidden synchronization problems. You'll
also learn how to investigate blocked threads, lock contention, and deadlocks—
problems that can quietly grind an application to a halt.

By the end of this part, you’ll be able to diagnose and fix CPU-related execu-
tion problems with confidence, using the right tools to see what’s really happen-
ing behind the scenes.

Identifying resource
consumption problems
using profiling techniques

This chapter covers

Evaluating resource consumption

Identifying problems with resource consumption
Installing and configuring a profiling tool
Simplifying profiling techniques with Al
assistance

“And for you, Frodo Baggins, I give you the light of Edrendil, our most beloved
star. May it be a light to you in dark places when all other lights go out.”

—Galadriel (The Fellowship of the Ring, by J.R.R. Tolkien)

This chapter introduces a profiling tool, and we’ll continue the discussion in chap-
ter 6. A profiling tool (or profiler) may not be as powerful as the light of Earendil,
but it is definitely a source of light in dark cases when all the other lights go out. A
profileris a powerful tool that has helped me understand the root cause of an app’s
strange behavior in many difficult situations. I consider learning to use a profiler
a must for all developers, as it can guide you to the cause of a seemingly hopeless

105

106

5.1

511

CHAPTER 5 Identifying resource consumption problems using profiling techniques

problem. As you’ll learn in this chapter, the profiler intercepts the executing JVM pro-
cesses and offers extremely useful details, such as:

How the app consumes resources such as the CPU and memory
The threads in execution and their current status

The code in execution and the resources spent by a given piece of code (e.g., the
duration of each method’s execution)

In section 5.1, some scenarios will be analyzed to show how the details provided by a
profiler can be useful and why they are so important. In section 5.2, we discuss using
a profiler to solve the scenarios in section 5.1. We’ll start by installing and configuring
a profiler in section 5.2.1. Then, in section 5.2.2., we’ll analyze how an app consumes
system resources, and in section 5.2.3, we’ll learn how to identify when an app is having
problems with managing the used memory. Later, in chapter 6, you’ll learn how to
identify the code in execution and the performance problems related to it.

I use the VisualVM profiler for the examples in this chapter. VisualVM is a free pro-
filer and an excellent tool I’ve successfully used for many years. You can download
VisualVM here: https://visualvm.github.io/download.html. VisualVM is not the only
profiling tool for Java apps. Some other well-known profiling tools are Java Mission
Control (http://mng.bz/AVQE) and JProfiler (http://mng.bz/Zplj).

Where would a profiler be useful?
In this section, we look at three ways a profiling tool can save the day:

Catching resource hogs—Is your app slowing down for no reason? A profiling tool
can find those parts of your program that are using way too much memory or
CPU, like a guest who eats all the snacks at a party.

Finding lazy code—Not sure which parts of your code are doing the work and
which parts are just hanging out? Profiling tools show you exactly which pieces
are running and which need a push.

Fixing slow apps—If your app is crawling instead of running, profiling tools help
you find out where it’s getting stuck so you can speed things up before users start
complaining (or sometimes after, depending on how lucky you are).

Identifying abnormal usage of resources

A profiler is commonly used to determine how an app consumes CPU and memory,
which helps you to understand the app’s specific problems. Thus, it is the first step in
investigating such problems. Observing how the app consumes resources will usually
lead you to two categories of problems:

Thread-related problems—Usually concurrency problems caused by a lack of or
improper synchronization

Memory leaks—Situations in which the app fails to remove unnecessary data from
memory, causing slowness in execution and potentially a complete failure

https://visualvm.github.io/download.html
http://mng.bz/AVQE
http://mng.bz/Zplj

5.1.2

Where would a profiler be useful? 107

I’ve encountered both types of problems in real-world apps more than I would have
liked. The effects of resource usage problems are very diverse. In some cases, they just
cause sluggishness in the app; in other cases, they may cause the app to fail entirely.

My “favorite” thread-related problem I have had to solve using a profiler was caus-
ing battery problems on a mobile device. Slowness wasn’t the biggest problem. Users
complained that their device’s battery was consumed unnaturally fast when they used
this Android-based app. This behavior definitely required investigation. After spending
some time observing the app’s behavior, I discovered that one of the libraries the app
used sometimes created threads that remained in execution and did nothing but con-
sume the system’s resources. In a mobile app, CPU resource use is often reflected in the
battery’s consumption.

Once you discover the potential problem, you can investigate it further with a thread
dump, as you’ll learn in chapter 8. Generally, the root cause of such problems is a faulty
synchronization of the threads.

I also occasionally find memory leaks in apps. In most cases, the final result of a mem-
oryleakis an Out0OfMemoryError thatleads to an app crash. So, when I hear about an app
crashing, I usually suspect a memory problem.

TIP Whenever you encounter an app that is randomly
crashing, you should consider a memory leak.

The root cause of abnormal resource use is often an error in coding that allows object
references to exist even after the objects are no longer needed. Remember that
although the JVM has an automatic mechanism that releases unneeded data from
memory (we call this mechanism the garbage collector [GC]), it’s still the developer’s
responsibility to remove all references to unnecessary data.

If we implement code that retains references to objects, the GC doesn’t know they
are no longer used and won’t remove them. We call this situation a memory leak. In sec-
tion 5.2.3, you’ll learn to use the profiler to identify when such a problem exists; then,
in chapter 10, you’ll learn to research its root cause using a heap dump.

Finding out what code executes

As a developer and consultant, I've had my fair share of wrestling with large, complex,
and downright messy codebases. More than once, I've been thrown into situations
where I needed to investigate a specific app feature. Sure, I could reproduce the prob-
lem, but figuring out which part of the code was to blame? Not a clue.

108

5.1.3

5.2

CHAPTER 5 Identifying resource consumption problems using profiling techniques

One memorable case involved a legacy app running some critical processes. The
company’s management had made the brilliant decision to let a single developer han-
dle the entire codebase. No backups, no team collaboration—just one person. Natu-
rally, when that developer left (without leaving behind a single line of documentation
or even a friendly sticky note), I was called in to figure out what was going wrong.

My first glance at the code was unsettling. There was no class design to speak of, and
it was a chaotic mix of Java and Scala, sprinkled with some Java reflection for that extra
layer of confusion. It felt like opening a closet and having random languages and frame-
works tumble out. At that moment, I seriously considered starting a support group for
developers abandoned by documentation.

So, how do you even begin to figure out which part of the code to investigate in a
situation like this? Luckily, that’s where a profiler steps in like a detective with a mag-
nifying glass. Profilers can sample the running code—basically, they sneak a peek at
what’s actually being executed. The tool intercepts methods and visually shows what’s
happening behind the scenes, giving you just enough breadcrumbs to start following
the trail.

Once you spot the code in action, you can dive in, read through it, and eventually
bring in the big guns—a debugger (covered in chapters 2 and 3).

The beauty of a profiler is that it reveals what’s running without forcing you to dig
through mountains of confusing code. This feature, called sampling, is a lifesaver when
the code is so tangled and messy that you can’t even tell which functions are being trig-
gered. It’s like having X-ray vision for spaghetti code.

Identifying slowness in an app’s execution

In many situations, you’ll need to tackle performance problems. The key question in
these cases is, “What is causing the delay in execution?” Developers often start by sus-
pecting parts of the code related to I/O operations.

Actions such as calling a web service, connecting to a database, or writing data to
a file are common sources of latency in applications. However, I/O operations aren’t
always causing slow performance. Even when they are, identifying the exact problem
can be challenging—especially if you’re not deeply familiar with the codebase (which
is rarely the case).

Fortunately, a profiler can make this task much easier. It can intercept running code
and measure the resources each part of the program is using, helping you pinpoint
performance bottlenecks. We’ll explore these powerful profiling capabilities in detail
in chapter 6.

Using a profiler

This section explores how to effectively use a profiler to tackle the types of problems
discussed in section 5.1. We start by walking through the installation and configuration
of VisualVM in section 5.2.1, laying the foundation for effective profiling. From there,

521

Using a profiler 109

we dive into the profiler’s powerful investigative features, giving you the tools designed
to uncover hidden performance problems.

To make these concepts practical, I'll demonstrate each technique using a sample
app—simple enough to keep the focus on the topic but complex enough to reflect real-
world challenges.

Section 5.2.2 analyzes system resource consumption, and you are going to learn how
to detect if your app is overusing resources. Then, in section 5.2.3, we’ll dive into com-
mon memory problems that can affect performance and how to identify them before
they escalate.

By the end of this section, you’ll have a solid understanding of how to employ a pro-
filer to diagnose and resolve performance bottlenecks with confidence.

Installing and configuring VisualVM

Let’s start by getting VisualVM up and running. Before you can unleash the power of
a profiler, you need to make sure it’s properly installed and configured. Once that’s
done, you can dive into the examples provided with this book to test each of the profil-
er’s features covered in this chapter.

If you’re working on a real-world project, I highly recommend applying these tech-
niques to your own app. After all, there’s no better way to learn than by hunting down
performance bugs in code you actually care about. Plus, it’s far more satisfying than just
watching a demo app behave perfectly (because when does that ever happen in real
life?).

Installing VisualVM is straightforward. Once you download the version based on
your operating system from the official site (https://visualvm.github.io/download
.html), the only thing you need to do is make sure the location of the JDK you want
VisualVM to use is configured correctly. In the configuration file, which you can find
at the etc/visualvm.config location in the VisualVM folder, define the location of the
JDK in your system. You need to assign the JDK path to the visualvm_jdkhome variable
and uncomment the line (remove the # in front of it), as presented in the next snippet.
VisualVM works with Java 8 or above:

visualvm_jdkhome="C:\Program Files\Java\openjdk-17\jdk-17"

Once you configure the JDK location, you can run VisualVM using the executable
code in the bin folder where you installed the app. If you correctly configured the JDK
location, the app will start, and you’ll see an interface similar to the one presented in
figure 5.1.

Let’s start a Java app. You can use the project da-chb-ex1 provided with this book. You
can either start the app using the IDE or from the console directly. The way the app is
started does not affect profiling a Java process.

Once you start the app, VisualVM displays the process on the left side. Usually, if you
didn’t explicitly give a particular name to the process, VisualVM displays the main class
name, as presented in figure 5.2.

https://visualvm.github.io/download.html
https://visualvm.github.io/download.html

110 CHAPTER 5 Identifying resource consumption problems using profiling techniques

All the Java processes running locally

& VisualVM 2.1 - O be
File A_pplicatinns View Tools Window Hel_p

EBEEBHE

Applications X | — || startPage x 0O

[H) Local /
| Visualvm

% Remote

-5 VM Coredumps

-85, JFR Sniapshots
i E1Er_‘;|| Snapshots

..\9 VisualVM 2.1

VisualVM Home GraalVMHome

Figure 5.1 VisualVM welcome screen. Once you configure and start VisualVM, you find that the tool has a simple

and easy-to-learn GUI. On the left of the welcome screen are the processes running locally that you can investigate
with the tool.

Once you start your app, you will also see

its process on the left side of the VisualVM frame. Double-click the process name, and
Since we gave no particular name to our process, VisualVM displays the Details tab for
VisualVM displays the main class name. the process.
& VisualVM 2.1 — [m] x
File Applications View Tools Window Help
HREES
Applications X | A |[& mainmain pid 22148) x| o
8 Local [overview [l Moritor [Threads (0} Sampler (5} Profiler
| visualvm . -
i JB Intelli IDEA (pid 22320) ‘=’ main.Main (pid 22148)
s Ovenview Saveddata [] Details
& org jetbrains jps.cmdline Launcher (pid 8348
| 888 Remote PID: 22148
ot Host: localhost
By ¥M Corechumps Main dass: mainMain
% IFR Snapshots Arguments: <none:
- [Snapshots
JVM: OpenlDK 64-Bit Server VM (11.0.1049-LTS, mixed mode}
Java: version 11.0.10, vendor Amazon.com Inc.
Java Home: C:\Jsers\LSpilcal jdks\corretto-11.0.10
JVM Flags: <none>
Heap dump on OOME: disabled
Saved data X | | JVMarguments | System properties x
Thread Dumps: 0 -Djava.rmi.server.hostname=localhost
Heap Dumps: 0 -javaagent:C:\Program Files\JetBrains \Intelli] IDEA 2020.2.2\lib\idea_rt.jar=53283:C:\Program Files\JetBrair
Profiler Snapshots: 0 -Dfile.encoding=UTF-8
JFR Snapshots: 0

Figure 5.2 Double-click a process name to start using VisualVM to investigate that process, and a new tab will
appear. In this tab are all the needed capabilities VisualVM provides for exploring that particular process.

Using a profiler 111

Generally, starting the app should be enough. However, in some cases, VisualVM
doesn’t know how to connect to a local process because of various problems, as pre-
sented in figure 5.3. In such a case, the first thing to try is explicitly specifying the
domain name using a VM argument when starting the application you want to profile:

-Djava.rmi.server.hostname=1localhost

A similar problem can also be caused by using a JVM version that VisualVM doesn’t
support. If adding the -Djava.rmi.server.hostname=localhost argument doesn’t
solve your problem, check that the JVM distribution you configured is among those
VisualVM supports (according to the download section on its website: https://visualvm
.github.io/download.html).

You know something is incorrectly configured
if any of the tabs is missing (like in this case
with the Threads tab) or if VisualVM shows an
error message such as this one, which tells
you that the configured JVM isn’t supported.

¥ VisualvM 2.1 — =] b
File Applications View Tools Window Help
S5 SEPEE
Applications X | — | [& mainmain pid 215%) x| -
[overview [l Monitor) sampler (%) Profiler
B Intelli] IDEA (pid 22320) «~ main.Main (pid 21948)
- & orgjetbrains jps.cmdline Launcher (pid 2065 | | Monitor cPU Memory Classes [7] Threads
R rmi=in.Main (pid 21943)
48 Remote Uptime: 0 min 13 sec Perfofm 6T Ty Danp
i By vm coredumps
@ JFR Snapshots cPU X | Heap | Metaspace x
i I:@ Snapshots
Size: 803,209,248 8 Used: 14,580,064B
Max: 12,319,390,200
750 MB-
Mot supported for this JVM, 0
0 MB-
o
5:22:55 PM 5:23:00 PM
M Heapsize M Used heap

Figure 5.3 If the tool doesn’t seem to be working properly, you need to check how it is configured. Such problems

can occur

when the configured JVM distribution is not among those VisualVM supports. Sometimes, the tool can’t

connect to the local process you want to investigate. In such cases, use a different JVM distribution that complies
with the tool’s requirements or review how the process you want to investigate was started.

5.2.2

Observing the CPU and memory usage

One of the most straightforward yet powerful ways to use a profiler is to monitor how
your app consumes system resources. This insight allows you to quickly detect prob-
lems such as memory leaks quietly draining your system or zombie threads lurking in

https://visualvm.github.io/download.html
https://visualvm.github.io/download.html

112

CHAPTER 5 Identifying resource consumption problems using profiling techniques

the background that are wasting valuable CPU power. By keeping an eye on resource
usage, you can catch these problems early—before they turn into full-blown perfor-
mance nightmares.

DEFINITION A memory leak is when your app
doesn’t deallocate unneeded data. Over time, there
J:‘"' will be no more free memory. This is a problem.

In this section, you’ll discover how a profiler can visually confirm when your app isn’t
playing nice. Take zombie threads, for example—these are threads that refuse to die,
endlessly running in the background and quietly draining your app’s resources. With
VisualVM, spotting these resource-hungry culprits becomes much easier, allowing you
to identify and address performance problems before they spiral out of control. I
prepared some projects to demonstrate how to use a profiler to identify app prob-
lems that cause abnormal resource consumption. We’ll run the apps provided with
the book one by one, and we’ll use VisualVM to observe the behavior and identify
abnormalities.

Let’s start with app da-chb-ex1. The idea of the app is simple: two threads continu-
ously add values, while two other threads continuously remove (consume) the values
from this list. We often call this implementation a producer-consumer approach, a multi-
threaded design pattern commonly encountered in apps.

Listing 5.1 The producer thread adding values to a list

public class Producer extends Thread {

private Logger log = Logger.getLogger(Producer.class.getName());

@0verride
public void run() {
Random r = new Random(); Sets a maximum number
while (true) { of values for the list
if (Main.list.size() < 100) {

int x = r.nextInt(); Adds a random value in the list
Main.list.add(x);
log.info("Producer " + Thread.currentThread().getName() +

" added value " + X);

Using a profiler 113

The following code shows the implementation of the consumer thread.

Listing 5.2 The consumer thread removing values from the list

public class Consumer extends Thread {

private Logger log = Logger.getLogger(Consumer.class.getName());

@0verride Checks whether the
public void run() { list contains any value
while (true) {
if (Main.list.size() > 0) { If the list contains values, removes
int x = Main.list.get(0); the first value from the list
Main.list.remove(0);

log.info("Consumer " + Thread.currentThread().getName() +
" removed value " + X);

The Main class creates and starts two instances of the producer thread and two instances
of the consumer thread.

Listing 5.3 The Main class creating and starting the producer and consumer threads

public class Main {

Creates a list to store

public static List<Integer> 1list = new ArrayList<>();
the random values the

public static void main(String[] args) { producer generates
new Producer().start();
new Producer().start(); Starts the consumer
new Consumer().start(); and produces threads
new Consumer().start();

F
F

This application wrongly implements a multithreaded architecture. More precisely,
multiple threads concurrently access and change a list of type ArraylList. Because
ArrayList is not a concurrent collection implementation in Java, it doesn’t manage the
threads’ access itself. Multiple threads accessing this collection potentially enter a race
condition. A race condition happens when multiple threads compete to access the same
resource. That is, they are in a race to access the same resource.

In project da-ch5-ex1, the implementation lacks thread synchronization. When you
run the app, some threads stop after a short time because of exceptions caused by the
race condition, while others remain alive forever, doing nothing (zombie threads).
We’ll use VisualVM to identify all these problems. Then, we’ll run project da-chb-ex2,
which applies a correction to the app synchronizing the threads that access the list.

114

CHAPTER 5 Identifying resource consumption problems using profiling techniques

We’ll compare the results displayed by VisualVM for the first example to the second
example to identify the difference between a normal and a problematic app.

The app will run quickly and then stop (potentially showing an exception stack trace
in the console). The next code snippet shows what the log messages the app prints in
the console look like:

Aug 26, 2021 5:22:42 PM main.Producer run
INFO: Producer Thread-0 added value -361561777
Aug 26, 2021 5:22:42 PM main.Producer run
INFO: Producer Thread-1 added value -500676534
Aug 26, 2021 5:22:42 PM main.Producer run
INFO: Producer Thread-0 added value 112520480

You may think that, because this app only has three classes, you don’t need a profiler to
spot the problem—reading the code is enough here. Indeed, with only three classes,
you may be able to spot the problem without using a separate tool. That’s because the
apps we use are simplified examples so you can focus on using the profiler. But in the
real world, apps are more complex, and problems are much more challenging to spot
without an appropriate tool.

Even if the app appears to be paused, VisualVM can reveal some surprising activity
happening behind the scenes. To uncover the cause of this unexpected behavior, follow
these steps:

Check the process CPU usage. This step helps you determine whether the app is
silently consuming CPU power, thus indicating a hidden loop or an inefficient
process running in the background.

Check the process memory usage. Monitoring memory usage can reveal memory leaks
or excessive allocation that may be causing the app to slow down or freeze.

Visually investigate the executing threads. This step allows you to spot stuck,
blocked, or zombie threads that could be preventing the app from responding
properly.
The process is consuming a lot of CPU resources, so somehow, it seems to still be alive.
To observe its resource consumption, use the Monitor tab in VisualVM after dou-
ble-clicking the process name in the left panel. One of the widgets on this tab shows
you the CPU usage (figure 5.4).

The consumer and producer threads seem to have entered a continuous running
state where they consume the system’s resources even if they don’t correctly fulfill
their tasks. In this case, the state is a consequence of race conditions because the
threads try to access and change a nonconcurrent collection. But we already know
there’s something wrong with the app. We want to observe the symptoms such prob-
lems cause so that we will know our app encountered the same problem in other sim-
ilar situations.

This widget also shows the amount of CPU resources the Garbage Collector (GC)
uses. The GC is the JVM mechanism for removing data the app no longer needs from

Using a profiler

You can use the CPU usage widget to check
CPU consumption. Note that in this case,

the process spends about 50% of the system’s
processing power.

VisualVM 2.1
File Applications View Tools | Window He!p

=8 B EH s HE

Applications X | | = |[& main.main (pid 17184) x|

115

Another interesting fact is how much
the GC is responsible for CPU consumption.
In this case, the GC spends no resources.

=] [E]) Local

= B Overview @ Monitor [Threads ({3 Sampler @ Profiler
JB 1ntelli) IDEA (pid 68868)

-~
1% visualvm « Mmain.Main (pid 17184)
Q main.Main (pid 17184) Monitor
- @ org.jetbrains.jps.cmdline.Launcher
i .@ Remote Uptime: 2 min 20 sec

i ETJVM Coredumps
;%3 IFR Snapshots

? @ Snapshots

CPU

CPU usage: 50.4% GC activity: 0.0%

5:24:30 PM 5:24:90 PM 5:24:50 PM

5:25:00PM
[CPU usage [GC activity

Figure 5.4 Using VisualVM to observe the use of CPU resources. The widget in the Monitor tab shows how much
CPU the process uses and how much of the usage is caused by the GC. This information helps you to understand
whether the app has execution problems and is excellent guidance for the next steps in your investigation. In this
particular example, the process spends about 50% CPU. The GC doesn’t affect this value. These signs are often

indicators of zombie threads that are usually generated by concurrency problems.

memory. The information on GC CPU usage is valuable because it can indicate that the
app has a problem with memory allocation. If the GC spends a lot of CPU resources, it
can signify that the app has a memory leak problem.

In this case, the GC doesn’t spend any CPU resources. This is not a good sign either.
In other words, the app is spending a lot of processing power but not processing any-
thing. These signs usually indicate zombie threads, which are generally a consequence
of concurrency problems.

The next step is to look at the widget showing memory consumption. This widget is
strategically placed near the one showing the CPU consumption, as presented in figure
5.5. We’ll discuss this widget in more detail in section 5.2.3, but for now, notice that the
app spends almost no memory. This behavior is, again, not a good sign as itis equivalent
to saying, “The app does nothing.” We can conclude that we are most likely facing a con-
currency problem by using just these two widgets.

116 CHAPTER 5 Identifying resource consumption problems using profiling techniques

On the right side of the CPU usage widget,
you find another widget that displays
the memory consumption.

& main.Main (pid 33652) X A=
[overview] Monitor |= Threads 3} Sampler €5} Profiler
main.Main (pid 33652)
Monitor [Flcpu [“] Memory [Classes [/] Threads
Uptime: 3 min 15 sec Perform GC Heap Dump
CPU x ‘ Heap | Metaspace x
CPU usage: 52.3% &C activity: 0.0% Size: 803,209,248 B Used: 8,388,608 B
Max:12,819,890,200 B
100%
750ME
500 MB
50% et - .
250M8
0% amB
430PM 4:31PM 43204 430 PM 431PM 432PM
I cpu usage M GC activity [0 Heap size W Used heap

Note that even though the app spends 50%
of the CPU, it consumes almost no memory.

Figure 5.5 The memory usage widget is placed on the right side of the CPU usage widget. In this example, the
app uses almost no memory. This is also why the GC activity is zero. An app not consuming any memory means the
app isn’t doing anything.

We’ll discuss using thread dumps in chapter 8. For now, we focus only on the high-level
widgets the profile offers and compare the results these widgets provide for a healthy
and an unhealthy app.

Before going into a detailed investigation of the threads in
execution, | prefer to use VisualVM to visually observe how
the threads execute. In most cases, doing so gives me some
e clues about which threads | need to pay attention to. Once |
/=" get this info, | use a thread dump to find the concurrency
problem and learn how to fix it.

Figure 5.6 shows the Threads tab, located near the Monitor tab. The Threads tab offers
avisual representation of the threads in execution and their states. In this example, all
four threads the app started are executing and are in a running state.

Threads

Timeline

Live threads: 16 Thread Dump

Daemon threads: 11

Show: Live Threads = Timeline: &, @ @

Using a profiler 117

& main.Main (pid 33652) X =]
Overview [Monitor Threads () sampler (%) Profiler

Z main.Main (pid 33652)

Threads visualization

x

[E Thread-3

Name 4:31:15 PM 4:31:20 PM - 4:31:25 PM 4:31:30 PM Running Total -
@ Attach Listener I 109,910 ms (100%) 109,910 ms
O Common-Cleaner Oms (0%) 109,910 ms
DestroyJavavh I 109,910 ms (100%) 109,910 me
O Finalizer oms (0%) 109,910 ms
O IMX server connection timeout 23 0ms (0%) 109,910 ms
@ Monitor Ctrl-8reak I 109,910 ms (100%) 108,910 me
Reference Handler . 109,910 ms (100%) 109,910 ms
3 RMI Scheduler(0) S] Oms (0%) 109,910 ms
RMI TCP Accept-0 e 109,910 ms (100%) 108,910 ms
[RMI TCP Connection(1)-127.0.0.1 I 90,752 ms (32.6%) 109,910 ms
signal Dispatcher - 109,910 ms (100%) 109,910 ms
@ Thread-0 T) 109,910 ms (100%) 109,910 ms
® Thread-1 109,810 ms (100%) 109,910 ms
@ Thread-2 109,910 ms (100%) 109,910 me

[RMI TCP Connection(2)-197.0.0.1

109,910 ms (100%) 108,910 ms
66,563 ms (65.3%) 101,857 me

< 3

B Running [Sleeping [Wait [Fark [Monitor

l

Even if the app doesn’t seem to do anything, the four
threads it created are continuously running. These
running threads that do nothing but stay alive are
called zombie threads. The only thing they do is
consume CPU resources.

Figure 5.6 The Threads tab offers a visual representation of the threads that are alive and their status. The widget
shows all the process threads, including those started by the JVM, which helps you easily identify the threads you
should pay attention to and eventually investigate deeper using a thread dump.

Concurrency problems can have different results. Not necessarily all the threads will
remain alive, for example. Sometimes, concurrent access can cause exceptions that
interrupt some or all the threads entirely. The next snippet shows an example of such
an exception that can occur during an app’s execution:

Exception in thread "Thread-1"
java.lang.ArrayIndexOutOfBoundsException:
Index -1 out of bounds for length 109
at java.base/java.util.ArraylList.add(ArraylList.java:487)
at java.base/java.util.ArrayList.add(ArraylList.java:499)
at main.Producer.run(Producer.java:16)

If such an exception happens, then some threads may be stopped, and the Threads tab
won’t display them. Figure 5.7 shows a case in which the app threw an exception and
only one of the threads stayed alive.

118

CHAPTER 5 Identifying resource consumption problems using profiling techniques

é main.Main (pid 8184) x

overview [Monitor Th
Z main.Main (pid 8184)

Threads

reads (3 sampler () Profiler

Threads visualization

Attach Listener

O commaon-Cleaner

DestroylavaVM

O Finalizer

O 1Mx server cannection timeout 23
@ Monitor Ctrl-Break

Reference Handler

@ RMI Scheduler(0)

RMI TCP Accept-0

[@ RMI TCP Connection(1)-127.0.0.1
Signal Dispatcher

Live threads: 12 { Thread Dump
Daemon threads: 10 e
Timeline x
Show: Live Threads » Timeline: Q E‘k @

=
Mame 15:45 PM 5:15:50 PM Running Total b4

12,099 ms (100%)
0ms (0%)

12,099 ms
12,009 ms
12,099 ms
12,099 ms
12,099 ms
12,099 ms
12,099 ms
12,099 ms
12,099 ms
12,099 ms
12,099 ms

I 12,099 ms (100%)
0ms {0%)
0ms (0%)

I 12,099 ms (100%)

I, 12,099 ms (100%)

I oms (0%)

I 12,099 ms (100%)

I 12,099 ms (100%)

I 12,099 ms (100%)

@ Thread-3 I 12,099 ms (100%) 12,099 ms
< >
[Running [Sleeping [JWwait [Park [Monitor

In this example, only one of the threads is alive and
became a zombie thread. The other threads encountered
exceptions caused by the race conditions and stopped.

Figure 5.7 If exceptions occur during an app’s execution, some threads may be stopped. This figure
shows a case in which the concurrent access caused exceptions in three threads and stopped them.
Only one thread remained alive. Remember, concurrency problems in multithreaded apps can cause
different unexpected results.

In this example, we focus only on discovering a resource consumption problem. The
next step is to use a thread dump to determine the exact cause of the concurrency
problem. We’ll cover everything about thread dumps in chapter 8, but for now, let’s
remain focused on identifying resource consumption problems. We will run the same
verifications on a healthy app and compare it to the unhealthy one. This way, you’ll
know how to immediately recognize correct and incorrect app behavior.

The example in project da-ch5-ex2 is the corrected version of the same app we just
looked at. I added some synchronized blocks to avoid concurrent thread access and
eliminate race condition problems. I used the 1ist instance as the thread monitor for
the synchronized code blocks for both consumers and producers.

Listing 5.4 Synchronizing access for the consumer

public class Consumer extends Thread {
private Logger log = Logger.getLogger(Consumer.class.getName());

public Consumer(String name) {

Using a profiler 119
super(name);

@0verride

public void run() {
while (true) { Synchronizes the access on the list, using

synchronized (Main.list) { the list instance as a thread monitor

if (Main.list.size() > 0) {
int x = Main.list.get(0);
Main.list.remove(0);
log.info("Consumer " +
Thread.currentThread() .getName() +
" removed value " + X);

The following code shows the synchronization applied to the Producer class.

Listing 5.5 Synchronizing access for the producer

public class Producer extends Thread {
private Logger log = Logger.getLogger(Producer.class.getName());

public Producer(String name) {
super(name);

©@0verride
public void run() {

Random r = new Random();
while (true) { Synchronizes the access on the list, using

synchronized (Main.list) { the list instance as a thread monitor

if (Main.list.size() < 100) {
int x = r.nextInt();
Main.list.add(x);
log.info("Producer " +
Thread.currentThread() .getName() +
" added value " + Xx);

I also gave custom names to each thread. I always recommend this approach. Did you
spot the default names the JVM gave our threads in the previous example? Generally,
Thread-0, Thread-1, Thread-2, and so on are not names you can easily use to identify
a given thread. I prefer giving threads custom names whenever I can to identify them

120

CHAPTER 5 Identifying resource consumption problems using profiling techniques

quickly. Moreover, I give them names starting with an underline so it is easier to sort
them. First, I defined the constructor in the Consumer and Producer classes (listings 5.4
and 5.5, respectively) and used the super() constructor to name the threads. I then
gave them names, as presented in listing 5.6.

Listing 5.6 Setting custom names for the threads

public class Main {
public static List<Integer> 1list = new ArraylList<>();

public static void main(String[] args) {
new Producer("_Producer 1").start();
new Producer("_Producer 2").start();
new Consumer("_Consumer 1").start();
new Consumer("_Consumer 2").start();

Notice that after starting this app, the console continuously shows logs. The app doesn’t
stop like it did with example da-chb-ex1. Let’s use VisualVM to observe resource con-
sumption. The CPU utilization widget shows that the app spends less CPU, while the
memory usage widget shows that the app uses some of the allocated memory while run-
ning. Also, we can observe the activity of the GC. As you will learn later in this chapter,
on the right side of the memory graph are valleys resulting from the GC’s activity.

The Threads tab shows that the monitor sometimes blocks the threads, allowing only
one thread at a time through a synchronized block. The threads don’t run continu-
ously, which makes the app consume less CPU, as shown in figure 5.8. Figure 5.9 shows
the threads’ visualization in the Threads tab.

An app that behaves correctly The app consumes memory, which proves
consumes less CPU resources. that the app actually does something.
|[& memmain (p 38872) =0

[Overview [Monitor (=5 Thraads | [0 Sampler (59 Profier

Z main.Main (pid 38872)

Monitor [#] eru Memary Classes [Threads
Uptime: 0 min 27 sec Peeform GC Heap Dump
(=1] ¥ | Heap | Muotaspace *

0%

3000 P 04SP 5:20:20 PM 20757
[crU ussge B GC actvty [Heap soe B Used hosp

S120:90 PM S0 15 5:20/20 M 2075 P

Figure 5.8 After correctly synchronizing the code, the resource consumption widgets look different.
The CPU consumption is lower, and the app uses some memory.

Using a profiler 121

The threads are no longer continuously Instructions left out of the synchronized blocks can
running. The profiler shows when still cause threads to run concurrently. Observe where
the threads are blocked by a monitor, the two producer threads appear shaded at the same
waiting, or sleeping. \ time on the diagram.
|| & main.mann (pid 38872) x \ v o
Overview E Monitor Threads | (7 Sampler @ Profiler
Z main.Main (pid 38872)
Threads Threads visualization
r
Live threads: 15 | Thread Dump
Daemon threads: 10 :
Timeline X
Show: Live Threads = Timeline: Q @
=
Name 5:20:45 FM 5:20:50 PM 5:20:55 FM Running Total Lg
E _consumer 1 | | | | | | | || || 14,170 ms (29.3%) 48,441 ms
O _Consumer 2 || | | | | 14,084 ms (29.1%) 48,441 ms
O _producer 1 | | [] |] | | B 13,207 ms (27.3%) 48,441 ms
O _Producer 2 [| | |] 11,024 ms (22.8%) 48,441 ms
1 Attach Listener I I, 48,441 ms (100%) 48,441 ms
O comman-Cleaner 0 ms (0%) 48,441 ms
DestroyJavavm I 48,441 ms (100%) 48,441 ms
O Finalizer o0ms (0%) 48441 ms
[1MX server connection timeout 23 0ms (0%) 48,441 ms
[Monitor Ctri-Break I 48,441 ms (100%) 48,341 ms
Reference Handler) 48,441 ms (100%) 48,441 ms
I RMI Scheduler(0) e e oms (0%) 48441 ms
RMITCP Accept-0 I 48,441 ms (100%) 48,441 ms
[E RMITCP Connection(1)-127.0.0.1 I 48,441 ms (100%) 48,441 ms
Signal Dispatcher I 48,441 ms (100%) 48,441 ms
< >
= Running [Sleeping [Wait [Park [Monitor

Figure 5.9 The Threads tab helps you visualize the execution of the threads in your app. Since the threads’ names
start with an underline, you can simply sort them by name to see them grouped. Notice that their execution is
interrupted occasionally by the monitor, which allows just one thread at a time through the synchronized blocks of code.

NOTE Even if we added synchronized blocks, some executing code (the while
condition) still remains outside of these blocks. For this reason, the threads
may still appear to run concurrently.

5.2.3 Identifying memory leaks

This section discusses memory leaks and how to spot them before they bring your app
to its knees. A memory leak happens when an app holds onto objects it no longer
needs—Ilike keeping junk in your closet because you might need it someday (see figure
5.10). Because of these leftover references, the GC—the tool that normally cleans up
unused data—can’t do its job.

As the app keeps piling on more data, the memory slowly fills up. Eventually, the app
runs out of space and throws an Out0fMemoryError, basically saying, “I'm full!” before
crashing.

122 CHAPTER 5 Identifying resource consumption problems using profiling techniques

Heap
1. Suppose you have an app
that creates object instances [List
and keeps references to V. / /
these instances in a list.
Heap
2. The app continues to create
new instances. Some of the [List
previously created instances \ \ /| \ \
are no longer needed, but
the app doesn’t remove their
references from the list. ‘
Heap B
3. Because the app keeps '
the references, the GC fails List
to remove the unneeded [/ / / (l \ |

objects from the memory. The /
memory gets full, and at some .
point, the app can’t allocate

more objects. The process
stops, and the app fails with
an outOfMemoryError.

Figure 5.10 An OutOfMemoryError is like a ticking bomb. An app fails to remove references to objects it no
longer uses. The GC can’t remove these instances from the memory because the app keeps their references. While
more objects are created, the memory gets full. At some point, there’s no more space in the heap to allocate other
objects, and the app fails with an Out0fMemoryError.

To show how this works, we’ll use a simple app that intentionally triggers an Out-
0fMemoryError. This will help us learn how to spot memory leaks in action using
VisualVM before they catch you by surprise.

In the example provided with project da-ch5-ex3, you can find a simple app that
stores random instances in a list but never removes their references. The following code
provides an example of a simple implementation that produces an Out0fMemoryError.

Listing 5.7 Producing an Out0fMemoryError

public class Main {
public static List<Cat> 1list = new ArraylList<>();

public static void main(String[] args) {
while(true) {

Using a profiler

list.add(new Cat(new Random().nextInt(10))); Continuously adds

h new instances to a list
¥ until the JVM runs out
} of memory

The class Cat is a simple java object, as presented by the following code snippet:

public class Cat {

private int age;
public Cat(int age) {

this.age = age;

F

// Omitted getters and setters
}

Let’s run this app and observe resource usage with VisualVM. We’re especially interested
in the widget that shows memory usage. When a memory leak affects your app, this wid-
get can confirm that the used memory grows continuously. The GC tries to deallocate

unused data from memory, but it removes too few. In the end, the memory gets filled,

and the app cannot store the new data, throwing an Out0fMemoryError (figure 5.11).

Note how the used memory grows continuously. When all the allocated memory
The GC attempts to free the memory, but it can’t is occupied, and the app can’t
remove most of the instances because the app still store the new data, the app

keeps their references in memory. \ throws an outOofMemoryError.

’3 Overview w Manitor =] Threads G Sampler @ Profiler

~ main.Main (pid 29832)

Monitor CPU Memaory Classes Threads

Uptime: 1 min 20 sec

CPU X Heap | Metaspace

10 GB

Perform GC Heap Dump

N
2:46:00 PM 2i46:30 PM 2:46:00 PM 2:46:30 PM 24700 F

[CPU usage [GC activity [H Heapsize W Used heap
In many cases, you will also

see intensified GC activity.

Figure 5.11 When a memory leak affects your app, the used memory grows continuously. GC attempts to free the

memory but cannot remove enough data. The used memory increases until the app can’t allocate any more new
data. At this point, the app throws an Out0fMemoryError and stops. In many cases, a memory leak also causes
intensified GC activity, as seen in the CPU resource usage widget.

124 CHAPTER 5 Identifying resource consumption problems using profiling techniques

If you let the app run long enough, you’ll eventually see the error stack trace in the
app’s console:

Exception in thread "main" java.lang.QutOfMemoryError: Java heap space
at java.base/java.util.Arrays.copyOf(Arrays.java:3689)
at java.base/java.util.ArrayList.grow(ArraylList.java:238)
at java.base/java.util.ArrayList.grow(ArraylList.java:243)
at java.base/java.util.ArraylList.add(ArraylList.java:486)
at java.base/java.util.ArraylList.add(ArraylList.java:499)
at main.Main.main(Main.java:13)

It’s important to remember that an 0ut0fMemoryError stack trace doesn’t necessarily indi-
cate the place that causes the problem. Since an app has just one heap memory location,
a certain thread can cause the problem, whereas another thread may be unlucky enough
to be the last one trying to use the memory location and thus gets the error. The only
sure way to identify the root cause is using a heap dump, covered in chapter 10.

Figure 5.12 compares normal behavior and the behavior of an app affected by a
memory leak, as seen in VisualVM. For the app with a normal execution (not affected

Normal behavior /—\ In an app that behaves normally, you
will see this pattern. The memory fills,

| Heap | Metaspace x and at a certain point, the GC cleans the
unneeded data, freeing up the memory.

These are moments when the GC
cleaned the unneeded data, making
space for new data to be added in

[Heap size W Used heap

memory.
Abnormal behavior
| Heap | Metaspace X
10 GB . i When an app has a memory leak,

the used memory continuously
grows. The GC attempts to free

se '_/ the memory but can’t deallocate
enough objects since the app holds
the references for most of them.

2146:00 PM 2:46:30 PM 2147:00 B

[Heap size M Used heap

Figure 5.12 A comparison between the memory usage for a healthy app versus an app suffering from a memory
leak. The GC frees unneeded data from memory for a healthy app, and the allocated space never fills up. An app
with a memory leak prevents the GC from removing enough data. At some point, the memory fills up completely,
generating an Out0fMemoryError.

Using a profiler 125

by a memory leak), note that the graph has peaks and valleys. The app allocates mem-
ory that fills it up (the peaks), and from time to time, the GC removes the data that’s
no longer needed (the valleys). This ebb and flow is usually a good sign that the capa-
bility you are investigating is not affected by a memory leak.

However, if you see that the memory progressively fills and the GC doesn’t clean it,
your app may have a memory leak. Once you suspect a memory leak, you must investi-
gate further using a heap dump.

You can control the allocated heap size in a Java app. This way, you can enlarge the
maximum limit the JVM allocates to your app. However, giving the app more memory
is not a solution for a memory leak. However, this approach can be a temporary solu-
tion, giving you more time to solve the root cause of the problem. To set a maximum
heap size for an app, use the JVM property -Xmx, followed by the amount you want to
allocate (e.g., -Xmx16 will allocate a maximum heap size of 1 GB). You can similarly set
a minimum initial heap size using the -Xms property (e.g., -Xms568m would allocate a
minimum heap size of 500 MB).

Aside from the normal heap space, each app also uses a metaspace: the memory location
where the JVM stores the class metadata needed for the app’s execution. In VisualVM,
you can observe the allocation of metaspace in the memory allocation widget. To evaluate
the metadata allocation, use the Metaspace tab of the widget, as presented in figure 5.13.

The Metaspace tab of the memory usage widget
shows the size of the metaspace and
how much of it is used.

Heap | Metaspace x

Size: 14,811,136B Used: 14,061,168 B
Maxc 1,082,130,432B

14 MBA

12 MBA

2 ME+

o

3:15:50 PM 3:15:55 PM 3:16:00 PM 3:16:05 PM 3:16:10 PM

[0 Metaspace size [l Used Metaspace

Figure 5.13 The metaspace is a part of the memory used to store class metadata. In some cases, the metaspace
can be overflowed. A VisualVM memory allocation widget also shows the usage of the metaspace.

126

5.3

CHAPTER 5 Identifying resource consumption problems using profiling techniques

An OutOfMemoryError on the metaspace happens less often, but it’s not impossible. I
recently dealt with such a case in an app that misused a data persistence framework.
Generally, frameworks and libraries using Java reflection are the most likely to gener-
ate such problems if misused since they often rely on dynamic proxies and indirect
calls.

In my situation, the app was misusing a framework named Hibernate. I would not be
surprised if you have already heard about Hibernate since it’s one of the most common
solutions to manage persistent data in Java apps today. Hibernate is an excellent tool
that helps implement the most-used persistence capabilities of an app, while eliminat-
ing the need to write unneeded code. Hibernate manages a context of instances and
maps the changes to this context to the database. But it’s not recommended for a very
large context. In other words, don’t work with too many records from the database at
once!

The app I had trouble with defined a scheduled process, loading many records from
a database and processing them in a defined way. It seems that, at some point, the num-
ber of records this process was fetching was so large that the load operation itself caused
the metaspace to fill; the problem was a misuse of the framework, not a bug. The devel-
opers should not have used Hibernate but an alternative, more low-level solution like
JDBC.

The problem was critical, and I had to find a short-term solution since a complete
refactoring would have taken a long time. Just as for the heap, you can customize
the metaspace size. Using the -XX:MaxMetaspaceSize property, you can enlarge the
metaspace (e.g., -XX:MaxMetaspaceSize=100M), but remember that this is not a real solu-
tion. The long-term solution for such a case is to refactor the functionality to avoid
loading so many records at once in the memory and eventually use an alternetive per-
sistence technology if needed.

Using Al assistance

Fortunately, we live in a time where Al isn’t just sci-fi anymore. Al became our sidekick
for tackling all sorts of tasks, including troubleshooting and investigation. Need a sec-
ond opinion? Your Al assistant is just a query away! For instance, you can ask your Al
buddy for advice after gathering data on memory consumption (as you've skillfully
learned in this chapter). In the following example, I took a screenshot of the heap con-
sumption widget in VisualVM and asked ChatGPT for its expert analysis. Spoiler alert:
Al doesn’t even flinch at memory leaks—it dives right in! Check out figure 5.14 to see
how the magic unfolds.

Of course, remember that your Al assistant may lack full context and may not always
provide precise answers. I use it primarily as a tool to generate ideas or reinforce my
own conclusions. However, I never rely entirely on its solutions and always validate them
independently, as emphasized in the previous chapters.

Remember, it’s perfectly fine to continue the discussion if needed. You don’t have to
limit yourself to a simple question-and-answer approach. If the initial response seems

Summary 127

2:46 l{‘G m 2:46 iO M 247:00 F

B Heapsize [Usedheap

| used a profiler on my app and this is how the memory consumption
looks like. Does it look ok for you? Do you think anything is wrong?

@ This memory chart shows the application’s heap memory usage. Here's an analysis based cn the

image:
1. Steady Increase in Used Heap:
e The uUsed heap (blue area) grows steadily over time and almost matches the maximum

Heap size (orange area). This indicates that memory usage is increasing, possibly due to

objects nul being yaibage collected.
2. Garbage Collection Events:

® There seems to be a sharp drop in memory usage in one spot (around 2:46:40 PM),

indicating a garbage collection (GC) event.

e However, the memory usage quickly climbs back, which may indicate inefficient memory

management or that many objects are being recreated.

Figure 5.14 Consulting ChatGPT for insights on app execution profiling results. The Al assistant offers
valuable suggestions for the next steps in your investigation and potential clues about the root cause of
the problem (the answer in the image is truncated for brevity).

helpful but not comprehensive enough, feel free to engage further with the Al assis-
tant. Provide additional context or details that could improve the outcome and guide
the conversation toward a more complete and precise solution.

Summary

A profiler is a tool that allows you to observe an app’s execution to identify the
causes of certain problems that are more difficult to spot otherwise. A profiler
shows

— How an app spends system resources such as the CPU and memory
— What code executes and the duration of each method execution

The execution stack of methods on different threads

— The executing threads and their status

128 CHAPTER 5 Identifying resource consumption problems using profiling techniques

The profiler provides excellent visual widgets that let you understand certain
aspects faster.

You can observe GC’s execution using the profiler, which helps identify problems

such as the app not correctly deallocating unused data from memory (i.e., mem-
ory leaks).

Findingidden
problems using
profiling techniques

This chapter covers

Sampling an app’s execution to find the currently
executing methods

Observing execution times

Identifying SQL queries the app executes

In chapter 5, I'said a profiler is a powerful tool that can show you a path when all the
lights have gone out. But we discussed only a small part of the profiler’s capabilities.
A profiler offers powerful tools for investigating an app’s execution, and learning to
use them properly can help you in many scenarios.

In many cases, I have had to evaluate or investigate app executions for codebases
I could barely read—old apps with poorly modeled code design, which some compa-
nies kept hidden in a wardrobe. In such cases, the profiler was the only efficient way
to find what was executing when a specific capability was triggered. Now you can see
why I compared a profiler with the light of Earendil: as Galadriel says, it really was a
light in many dark places where all the other lights were out.

129

130

6.1

CHAPTER 6 Finding hidden problems using profiling techniques

In this chapter, we will analyze three investigation techniques through profiling,
which I consider extremely valuable:

Sampling for detecting the partan app’s code executes

Profiling the execution (also called instrumentation) to identify wrong behavior
and badly performing code that can be optimized

Profiling the app to identify SQL queries it uses to communicate with a database
management system (DBMS)

When used appropriately, these techniques can save you a lot of time finding the
causes of various problems. Unfortunately, even though these techniques are pow-
erful, many developers are unfamiliar with them. Some developers know these tech-
niques exist but tend to believe they are challenging to use (in this chapter, I'll show
you that the opposite is true). Consequently, they try using other methods to solve
problems that could be solved much more efficiently with a profiler (as presented in
this chapter).

I created four small projects to show how to use these techniques and the problems
that can be investigated. We’ll use these projects to apply the profiling techniques we
discuss. Section 6.1 discusses sampling—a technique used to identify what code exe-
cutes ata given time. In section 6.2, you’ll learn how a profiler can provide more details
about the execution than sampling can offer. Section 6.3 discusses using a profiler to
get details about SQL queries an app sends to a DBMS.

Sampling to observe executing code

What is sampling, and how can it benefit you? Sampling is an approach in which a pro-
filing tool is employed to identify the code the app executes. Sampling doesn’t provide
many details about the execution, but it draws the big picture of what happens, giving
you valuable information on what needs to be analyzed further. For this reason, sam-
pling should always be the first step when profiling an app, and as you’ll see, sampling
may even be enough in many cases. For this section, I prepared project da-ch6-ex1.
We’ll use a profiling tool to sample this app (VisualVM) to identify problems related to
the execution time of a given capability.

The project we’ll use to demonstrate sampling is a tiny app that exposes an endpoint,
/demo. When someone calls this endpoint using cURL, Postman, or a similar tool, the
app further calls an endpoint exposed by httpbin.org.

I like using httpbin.org for many examples and demonstrations. Httpbin.org is an
open source web app and tool written in Python that exposes mock endpoints you can
use to test different things you’re implementing.

Here, we call an endpoint, and httpbin.org responds with a given delay. For this
example, we’ll use a 5-second delay to simulate a latency scenario in our app, and
httpbin.org simulates the root cause of the problem.

The scenario is also illustrated in figure 6.1.

http://httpbin.org/
http://httpbin.org/
http://httpbin.org/
http://httpbin.org/
http://httpbin.org/

Sampling to observe executing code 131

; With latency, we understand how
an app reacts slower than expected.

2. When calling the /demo endpoint our app exposes,

1. We use cURL or Postman to it further calls an endpoint from httpbin.org.
call the /demo endpoint our Calling this endpoint takes 5 seconds, which is
app exposes. too long.

CcURL/Postman httpbin.org

3. Suppose you don’t know why calling
the /demo endpoint takes so long to
execute and want to investigate the
cause.

Figure 6.1 The app we are investigating exposes an endpoint: /demo. When you call this endpoint, you
must wait 5 seconds for the app to respond. We need to understand why it takes so long for the endpoint
to respond. We know our app calls a mock endpoint from httpbin.org, which causes the delay, but we
want to learn how to investigate this scenario with a profiler. This way, you’ll know how to use similar
techniques for real-world situations.

The profiling approach has two steps:

Sampling, to determine what code executes and where you should go into more
detail (the approach we discuss in this section)

Profiling (also called instrumentation), to get more details about the execution of
specific pieces of code

Sometimes step 1 (sampling) is enough to understand a problem, and you may not
need to profile the app (step 2). As you’ll learn in this chapter and chapters 7-9, pro-
filing can provide more details about the execution if needed. But first, you need to
know what part of the code to profile, and for that, you use sampling.

How does the problem occur in our example? When calling the /demo endpoint, the
execution takes 5 seconds (figure 6.2), which we consider too long. Ideally, we want the

http://httpbin.org/

132 CHAPTER 6 Finding hidden problems using profiling techniques

i curl http://Tocalhost: 8080/ demo :
% Total % Received % xF;rd Average speed Time Time Time cCurrent Flgure 6.2 When the
Dload upload Total spent Left Speed endpoint is called (in this
) [u] i} 4] 4] 0 0 -=1-=:1-- 0:00:05 --:1--:1-- 4] . .
figure, using cURL), the app
(\T takes about 5 seconds to
respond. In our scenario, we
The time spent to execute the call to the use a profiler to investigate
/demo endpoint is about 5 seconds. this latency problem.

execution to take less than 1 second, so we need to understand why calling the /demo
endpoint takes so long. What causes the latency? Is it our app or something else?

When investigating a slowness problem in an unknown codebase, using a profiler
should be your first choice. The problem doesn’t necessarily need to involve an end-
point. For this example, an endpoint was the easiest demonstration. But in any situation
involving slowness—calling an endpoint, executing a process, or using a simple method
call on a particular event—a profiler should be your first option.

First, start the app we troubleshoot (example da-ch6-ex1) and then VisualVM (the
profiling toolwewilluseforourinvestigations). Remembertoadd the VM option -Djava
.rmi.server.hostname=localhost, as discussed in chapter 5. This approach allows
VisualVM to connect to the process. Select the process from the list on the left,
and then select the Sampler tab, as presented in figure 6.3, to start sampling the

execution.
Once you select the process you are investigating
from the left side of the window, open the Sampler
tab to sample the app’s execution.

|#] VisualVM 2.1

File AEpIications View Tools Window He_lp
=8 8H5EHE
Applications | - ‘é com.example.Main (pid 22860) X‘

‘_-J'E'] I:ocal E Owverview @ Maonitor I;[Threads ng;%': Sampler G’:} Profiler
4°| Visualvm =
Intellil IDEA (pid 10604) « com.example.Main (pid 22860)

@ com.example.Main (pid 22860) Sampler

(@ org.jetbrains.jps.cmdline.Launche

i--#aH Remote Sample: (=) cru (5 Mem... I stop
i %VM Coredumps
% IFR Snapshots Status: sampling inactive

"-Eg) snapshots
Summary

CPU sampling:
Available. Press the 'CPU' button to start collecting performance data.

Memory sampling:
Available. Press the 'Memory' button to start collecting memory data.

Figure 6.3 To start sampling the execution, select the process from the list on the left side, and then
select the Sampler tab.

Sampling to observe executing code

Sampling the execution has the following three purposes:

133

To find out what code executes—Sampling shows you what executes behind the

scenes and is an excellent way to find the part of the app you need to investigate.

1o identify CPU consumption—We’ll use this to investigate latency problems and

understand which methods share execution time.

To identify memory consumption—In this case, the purpose is to analyze memory-

related problems. We’ll discuss sampling and profiling memory more in chapter 9.

Select CPU (as shown in figure 6.4) to start sampling performance data. VisualVM dis-
plays a list of all the active threads and their stack traces. The profiler then intercepts
the process execution and displays all the methods called and the approximate execu-
tion time. When you call the /demo endpoint, the profiler shows what happens behind

the scenes when the app executes that capability.

Select CPU, and VisualVM
will start intercepting the threads
that are executing.

& VisualVM 2.1
File Applications View Tools Window Help

SE SEBEH

Applications X ‘ - ‘é com.example.Main {pid 22860) X‘

= E Local
& visualvm
J Intelli] IDEA (pid 19604)

@ com.example.Main (pid 22860) Sampler
: @ org.jetbrains.jps.cmdline.Launche
Sample: O CPU

@ Remote
B, IFR Snapshots Status: CPU sampling in progress

EEI VM Coredumps
I@ Snapshots
CPU samples | Thread CPU time

: com.exampleMain (pid 22860)

IE Overview @ Mahitor E[Threads u(;i: Sampler G) Profiler

£ Mem... Stop

Name
[#- E Monitor Ctrl-Break
- £ catalina-utility-1

> [O catalina-utility-2

£ container-0

[http-nio-8080-Poller

-

[

D http-nio-8080-Acceptor

The threads in execution appear

in this list. Using the small + button,
you can drill down the execution
stack for each thread.

Figure 6.4 The profiler shows all the active threads in a list. You can expand each item to see the

Results: {0) €3 El ‘.’iev\‘:mg.E K _

Collected data: ﬁ Snapshot

execution stack and an approximate execution time. When the app executes, the newly created threads

appear in the list, and you can analyze their execution.

134

CHAPTER 6 Finding hidden problems using profiling techniques

We can now call the /demo endpoint and observe what happens. As shown in figure
6.5, some new threads appear in the list. The app started these threads when we called
the /demo endpoint. When you open them, you should see precisely what the app does
during its execution.

Before we discuss details such as the execution time, I want to highlight how vital
this first step is. Many times when I've analyzed code, I used just sampling to figure out
where to look for the problem. I may not have even been investigating a performance
or latency problem but was simply looking for the point to start debugging. Remember
our discussions in chapters 2 and 3: to debug something, you need to know where to
add that breakpoint to pause the app’s execution. If you have no clue where to add a
breakpoint, you can’t debug. Sampling can be a way to shed some light on a situation
when you can’t figure out where to start debugging (especially in cases such as those I
mentioned at the beginning of the chapter in which an app lacks clean code design).

17 VisualVM 2.1
File Applications View Tools Window Help

Applications * ‘ - |@ com.example.Main (pid 996) X‘
B @I ITDCEI E Overview @ Monitor 5] Threads :S.;f: Sampler @ Profiler
VisualvM

| Intelli] IDEA (pid 19604) C com.example.Main (pid 996)

Q com.example.Main (pid 996) Sampler

@ org.jetbrains.jps.cmdline.Launcher

- &7 Remote Sample: [Mem... Stop

% VM Coredumps
%, IFR Snapshots Status: CPU sampling in progress

= I@ Snapshots
CPU samples | Thread CPU time

results: (D) B3 [B] view:| s B B El~ | Collected data: [=] Snapshot
Name
£ Monitor Ctrl-Break
[catalina-utility-1
[catalina-utility-2
= container-0
T http-nio-8080-Poller
D http-nio-8080-Acceptor
[http-nio-8080-exec-1
= "= htip-nio-8080-exec-2
(= % java.lang.Thread.run ()
EA % org.apache.tomcat.util.threads.TaskThread$WrappingRunnablerun ()
(=i~ & org.apache.tomcat.util.threads. ThreadPoolExecutorsWorkerrun ()
: b org.apache.tomcat.util.threads.ThreadPoolExecutorrunWorker ()
[% org.apache.tomcat.util.threads.ThreadPoolExecutorgetTask ()
- % org.apache.tomcat.util.net.SocketProcessorBaserun ()

-

]

B -

VisualVM reveals the full stack trace the app executed
when you called the /demo endpoint. You can use the
stack trace to identify which code the app executed
and which instructions spent more time executing.

Figure 6.5 The stack trace shows what the app executes. You can see every method and each
subsequent method that is called. This view helps you quickly find the code you want to focus on when
investigating a certain capability.

Sampling to observe executing code

Let’s look at the execution stack to understand what the profiler shows us. When you
want to figure out what code executes, you simply expand the stack trace up to the
point where it displays the methods of the app you are interested in. When investigat-
ing a latency problem (as in this example), you can expand the stack trace to observe

the maximum execution time, as shown in figure 6.6.

The profiler doesn’t only intercept your app’s codebase,
but also code from frameworks and libraries the app uses.

Total Time
= %4 java.lang.reflect.Method.invoke () 5,292 ms (5.5%
| B % jdk.internal.reflect.D elegatingMethodAccessorImpl. invoke () 5,202 ms
= % jdk.internal.reflect.NativeMethodAccessormpl. invoke (5,292 ms
™| %ﬂ jdk.internal.reflect.NativeMethod Accessorimpl.invokeO[native] [| 5,292 ms
= ¥ com.example.controllers.DemoControllerdemo () 5,292 ms
=+ %4 jdk.proxy2.sProxyc4elay () | 5,292 ms
= &4 feign.ReflectiveFeign$FeignInvocationHandler. invoke () | 5,282 ms
|_i_| E feign.SynchronousMethodHandlerinvoke () 5,292 ms
£ % feign.SynchronousMethodHandlerexecuteAndDecode () | 5,292 ms
E feign.Client$D efault. execute () | 5,292 ms
|- "% feign.ClientsDefault. convertResponse () 5,292 ms
4 javanet.HttpURLConnectiongetResponseCode ()
o (D) self time 0.0 ms
i 2 G) Self time 0.0 ms
5 (5 self time 0.0 ms
{ (:‘]Se\ftlme 0.0 ms
s (9 self time 0.0 ms
@Seﬁtlme 0.0 ms
- (33 Self time 0.0 ms
G—) Self time 0.0 ms
- (B self time 0.0 ms
@ Self time 0.0 ms
(B self time 0.0 ms
@Selftime 0.0 ms
(Y self time 0.0 ms

Thread Dump

Total Time (CPU)

0.0 ms
0.0 ms
0.0 ms
0.0 ms
0.0 ms
0.0 ms
0.0 ms
0.0 ms
0.0 ms
0.0 ms
0.0 ms

The tool shows the total time spent

by each method call. You can use this
information to identify the root causes
for app slowness. In this case, the method
getResponseCode () from the class
HttpURLConnection spent all the on something.
execution time.

I expanded the execution stack by selecting the small (+) button in the last method.
The profiler shows that it took about 5 seconds to understand the execution and find

Another essential detail to note
is that the CPU spent time is zero.
This means that the app wasted the
5 seconds of total execution time to
wait for something rather than work

Figure 6.6 When you expand the execution stack, you find which methods execute and how much time they spend
executing. You can also deduce how long they wait and how much they work. The profiler shows both the app’s
codebase methods and the methods called from specific dependencies (libraries or frameworks) the app uses.

136

CHAPTER 6 Finding hidden problems using profiling techniques

the method that caused the latency. In this particular case, we see that just one method
causes the slowness: getResponseCode () of the HttpURLConnection class.

TIP Remember that it's not always one method that spends all
the execution time in real-world scenarios. You'll often find that
the time spent is shared among multiple methods that execute.
The rule is to first focus on the method that takes the longest
time to execute.

An important aspect of this example is that the CPU time (how long the method
works) is zero. Although the method spends 5 seconds in execution, it doesn’t use
CPU resources because it is waiting for the HTTP call to end and to get a response. We
can conclude that the problem is not in the app; rather, the app is slow only because it
waits for a response to its HI'TP request.

It’s extremely valuable to differentiate between the total CPU time and the total exe-
cution time. If a method spends CPU time, it means the method works. To improve the
performance in such a case, you usually have to adjust (if possible) the algorithm to
minimize its complexity. If the execution spends a small amount of CPU time but has
a long execution time, the method is likely waiting for something: an action may take
along time, but the app doesn’t do anything. In this case, you need to figure out what
your app is waiting for.

Another essential aspect to observe is that the profiler doesn’t just intercept your
app’s codebase. You can see that the dependencies’ methods are also called during the
app’s execution. In this example, the app uses a dependency named OpenFeign to call
the httpbin.org endpoint. Thisis visible in the stack trace packages that don’t belong to
your app’s codebase. These packages are part of your app’s dependencies to implement
its capabilities. OpenFeign can be one of them, like in this example.

OpenFeign is a project from the Spring ecosystem of technologies that a Spring app
can use to call REST endpoints. Since this example is a Spring app, you will find pack-
ages of Spring-related technologies in the stack trace. You don’t have to understand
what each part of the stack trace does. You won’t know this in a real-world scenario
either. In fact, this book is about understanding code that you don’t yet know. If you
want to learn Spring, I recommend starting with Spring Start Here (Manning, 2021),
another book I wrote. You'll also find details about OpenFeign in the same book.

Why is observing dependencies’ methods so important? Because, sometimes, it’s
almost impossible to figure out what executes from a given dependency using other
means. Look at the code written in our app to call the httpbin.org endpoint (see listing
6.1). You can’t see the actual implementation for sending the HTTP request. That’s
because, as it happens in many Java frameworks today, the dependency uses dynamic
proxies to decouple the implementation.

Sampling to observe executing code 137

Listing 6.1 The HTTP client implementation using OpenFeign

@FeignClient(name = "httpBin", url = "${httpBinUrl}")
public interface DemoProxy {

@PostMapping("/delay/{n}")
void delay(@PathVariable int n);
}

Dynamic proxies give an app a way to choose a method implementation at run time.
When an app capability uses dynamic proxies, it might actually call a method declared
by an interface without knowing what implementation it will be given to execute at run
time (figure 6.7). Using the framework’s capabilities is easier, but the disadvantage is
that you don’t know where to investigate a problem.

In your code, the service object uses
the proxy through an interface, which
is an abstraction. The app provides
the implementation at run time.

DemoService DemoProxy
<<interface>>

. /
|mplements/
/
4 .
’ implements

Proxy Proxy Proxy
implementation implementation implementation

The frameworks the app uses may provide multiple implementations

for the same abstraction. The app decides which implementation to

use at run time. Because of this separation, it’s more difficult to find
which code will execute just by reading the code. You may not even
know in which dependency to look to find the dynamic implementations.

Figure 6.7 The framework keeps the implementations for an abstraction separate and provides them
dynamically during execution. Because the implementation is decoupled and the app provides it during
run time, it’s more difficult to find it by reading the code.

We’re living in the age of artificial intelligence, where even the dullest tasks can get
a clever sidekick. When it comes to sampling and profiling, modern profiling tools

138

6.2

CHAPTER 6 Finding hidden problems using profiling techniques

often let you export the data into text files—usually in XML or CSV format (because,
apparently, those are the universal languages of data). Simply hand that file over to
an Al assistant and watch it crunch numbers and spot patterns faster than you can
say, “Where did I save that file?” It’s like having a superpowered intern, minus the

coffee runs.

One of my personal uses for sampling is when learning

a new framework or library. Sampling helps me to understand
_, what executes behind the scenes in a new functionality.

- | applied this approach when learning Hibernate and

Spring Security, which have complex functionality, and

it helped me quickly understand how to work with

the given capabilities.

Figure 6.8 illustrates the save functionality in two popular profiling tools, VisualVM
and JProfiler. While their graphical user interfaces (GUIs) differ in appearance,
both provide a straightforward option—typically a button—to export profiling data
in various formats. Although the exported data may differ in structure between the
tools, this variation can easily be handled by your Al assistant for further analysis or
processing.

Once you have exported the profiling data, you can share it with your preferred Al
assistant to gain valuable insights. Figure 6.9 shows how ChatGPT analyzes the provided
data and identifies potential causes for the application’s performance problems. Note
that the response shown in the figure has been truncated for brevity.

With a few clicks and a sprinkle of exported data, you might turn hours of
head-scratching into moments of “Aha!” brilliance. Sure, your Al assistant won’t bring
you coffee (yet), but when it comes to slicing through call trees and spotting bottle-
necks, it’s like having a performance guru on speed dial. So go ahead, let the Al do the
heavy lifting, and you take the credit.

Profiling to learn how many times a method is executed

Finding what code executes is essential, but sometimes it is not enough. Often, we need
more details to precisely understand a given behavior. For example, sampling does not
provide the number of method invocations. An app may take only 50 milliseconds to
execute, but if it calls the method a thousand times, then it takes 50 seconds to execute
when sampling. To demonstrate how to get details about the execution using a profiler
and to identify situations where this is useful, we’ll again use some projects provided
with the book. We’ll start with project da-ch6-ex1, which we also used in section 6.1, but
this time, we’ll discuss profiling (also known as instrumentation) for details about the
execution.

Profiling to learn how many times a method is executed 139

& VisualvM 2.1
File Applications View Tools Window Help

R B RARC R

Applications Xl - |Q com.example.Main (pid 996) X|
ol 58 overview [l Monitor [] Threads dok Sampler (2] profiler
| 47| VisualvM =
JB Intella IDEA (pid 19604) ~ com.example.Main (pid 996)

Q com.example.Main (pid 996) Sampler

@ org.jetbrains.jps.cmdline.Launche
45 Remote Sample: & eru [Mem... Stop
- By vm coredumps
|-, IFR Snapshots

E @ Snapshots
CPU samples | Thread CPU time

results: (@) B3 [B] vew: W B R

Name

+/ EZ Monitor Ctrl-Break

[# E4 catalina-utility-1

[#} E3 catalina-utility-2

= container-0

[# 3 http-nio-8080-Poller

[#- B2 http-nio-8080-Acceptor

-8080-exec-1

080-exec-2

[+ ¥ java.lang.Thread.run ()
R | org.apache.tomcat.util.threads.TaskThread$WrappingRunnablerun ()

%) org.apache.tomcat.util.threads. ThreadPoolExecutorsWorkerrun ()

= ‘84 org.apache.tomcat.util.threads.ThreadPoolExecutorrunWorker ()

: [+~ % org.apache.tomeat.util.threads.ThreadPoolExecutorgetTask ()

- %4 org.apache.tomcat.util.net.SocketProcessorBaserun ()

Status: CPU sampling in progress

| Collected data: Ei] Snapshot

In VisualVM you must use the Snapshot button to export certain sampled data.
First create a snapshot and then export the snapshot in a format of your choice
(preferably XML or CSV). With other profiling tools, such as JProfiler, you

have a dedicated Export button to export the sampled data.

@ Local attach - JProfiler 1204
Session Miew Profiling Window Help
= y : — — 1
P e H 2 8 AR % B O =
Start :

Sse Session Start Stop Stant dd View
Detach Run GC By Hel)
Center Snapshot Settings | Recordings Recordings Tracking | o Bookmark PO Comings P

Profifing

Thread status: D Thread selection:
! Telemetries
== Runnable 88 At thread groups
; ~ () W—100.0% - 184 ms HTTP: /demo
& Lrve Memingy ~) mmm—100.0% - 184 ms java.lang. Thread.runWith

v @ B 45.9% - 84,666 ps com.example.controllers.DemoCentroller.demo
() . 45.9% - 84 666 s feign.ReflectiveFeignSFeigninvocationHandler.invoke
% Heap Walker ~ () == _45,9% - 84 666 ps feign.SynchronousMethodHandlerinvoke
> 0- 43.2% - 79,661 ps feign.SynchronousMethodHandler.executeAndDecode
» (@1 2.7% - 5,005 ps feign.Request TemplateFactoryResolver$BuildTemplateByResohingArgs.create

I CPU Views (& 46,372 ms direct calls to methods of unprofiled classes
Call Tree
Figure 6.8 Saving sampled data in VisualVM (top) and JProfiler (bottom). VisualVM allows CPU sampling

snapshots, while JProfiler provides options to export profiling data, ensuring easy analysis and sharing of
performance metrics.

140

CHAPTER 6 Finding hidden problems using profiling techniques

Upload the exported sampled data to your favorite
Al assistent and ask for advice. In this case, you
observe how ChatGPT offers various advice for the
sampled data | collected from our example app
execution.

Call_Tree.xml
File

| have a latency problem in my app. It happens when | call the /demo
endpoint. Can you give me some advice about what you think the
problem is and how | should troubleshoot further?

© From the call tree analysis in your XML file, the majority of the latency occurs in the /demo endpoint.

Here's what stands out:
1. HTTP: /demo total time: 184,494 ms

* Nearly half of this time (45.9%, or 84,666 ms) is spent in the DemoController.demo method,

which calls a Feign client.

® The Feign client (SynchronousMethodHandler. executeAndDecode) is responsible for the bulk

of this latency (43.2%, or 79,661 ms).
2. Self-time in the runwith method: 99,828 ms (54%)

* This could indicate time spent outside of business logic, possibly thread context switching,

blocking 1/0, or waiting on external dependencies.

Figure 6.9 Example of using an Al assistant to analyze exported profiling data. The Al identifies latency
bottlenecks in the /demo endpoint, highlighting problems in the DemoController.demo method and the
Feign client for troubleshooting.

Start the app provided with project da-ch6-ex1. When you profile an app, you shouldn’t
investigate the entire codebase. Instead, you must filter only what’s essential to your
investigation. Profiling is a very resource-consuming operation, so unless you have a
really powerful system, profiling everything would take a ton of time. That’s one more
reason we always start with sampling—to identify what to profile further if needed.

TIP Never profile the app’s entire codebase. You should
always first decide, based on sampling, which part of
the app you want to profile to get more details.

Profiling to learn how many times a method is executed 141

For this example, we’ll ignore the app’s codebase (without dependencies) and only
take OpenFeign classes from the dependencies. Remember that you can’t refer to an
app’s entire code in a real-world app since that would likely be time- and resource-
consumptive. For this small example, it won’t be a problem, but for large apps, always
restrict the intercepted code as much as possible when profiling.

Figure 6.10 shows how to apply these restrictions. On the right side of the Profiler
tab, you can specify which part of the app to intercept. In this example, we use the
following:

com.example.**—The code in all the packages and subpackages of com.example

feign.x*x—Code in all the packages and subpackages of feign

Profiling helps us to get more information about

the execution, but it’s also more resource intensive.
One of the first supplementary details you see here
is the number of executions of a particular method.

Select CPU to start profiling the app.

| com.exampleman (pid 995) |
[overview [l Monitor [Z] Threads (5 Sampler () Profiler

®] com.example.Main (pid 936)

Profiler

Profile: w Mem... E’ 1DBC EI Locks Stop

Status: profiling running (645 methods instrumented)

Profiling results CPU settings | Memory settings | JDBC settings

Resutts: () €3 [B] view:| W B R B~ | collected data: (5] snapshot [P s
Name Total Time Total Time (CP... | Invocations

[=- £ http-nio-8080-exec-5 B 5,316 ms) 0.0ms (-%) 1

= & com.example.controllers.0 emoControllerdemo () i 5,316 ms 0.0 ms 1

[=- ¥ feign.ReflectiveFeign$FeignInvocationHandler. invoke (Ob 5,316 ms 0.0 ms 1

= %4 feign.SynchronousMethodHandlerinvoke (0bject[] 5,316 ms 0.0 ms 1

[~ & feign.SynchronousMethodHandlerexecuteAndDecod [0 5313 ms (0.0 ms 1

feign.Client$D efault. execute (feign.Request, feEg

H % feign.SynchronousMethodHandlertargetRequest 0.831 ms 0.0 ms 1

i@ % feign.Asy ponseHandler. G 0.272 ms 0.0 ms 1

- (B self time 0.095 ms 0.0 ms 1

| # W feign ResponsesBuider build (0.034 ms 0.0 ms 1

%4 feign.Response.toBuilder (0.018 ms 0.0 ms 1

% feign.ResponsesBuilder.request (feign Request) 0.004 ms 0.0 ms 1

(B feign.ResponsesBuilder.requestTemplate (feign 0.003ms (0%) 0.0 ms 1

/

Always profile a small number of packages. Before
starting to profile the execution, define the filters to
tell the tool which classes need to be intercepted.

Figure 6.10 Profiling a part of the app during execution to get details about the times a given method was
invoked. We can see that the method causing the 5 seconds of latency is invoked only once, meaning the number
of invocations doesn’t cause a problem here.

The syntax you can use to filter the packages and classes you want to profile has just a
few simple rules:

142

CHAPTER 6 Finding hidden problems using profiling techniques

Write each rule on a separate line.

Use one asterisk (*) to refer to a package; for example, we could use com
.example.* if we wanted to profile all classes in the package com.example.

Use two asterisks (**) to refer to a package and all its subpackages. In this case, by
using com.example.**, we mean all classes in the package com.example, as well as
any of its subpackages.

Write the full name of a class if you want to profile only that class; for exam-
ple, we could use com.example.controllers.DemoController to profile only this
class.

I chose these packages after sampling the execution, as discussed in section 6.1.
Because I observed that the method call with the latency problem comes from classes
of the feign package, I decided to add this package and its subpackages to the list to
get more information.

In this particular case, the number of invocations doesn’t seem to cause problems:
the method executes only once and takes about 5 seconds to finish its execution. A
small number of method invocations imply that we don’t have repeated unnecessary
executions (which, as you’ll learn later in this chapter, is a common problem in many
apps).

In another scenario, you may have observed that the call to the given endpoint takes
just 1 second, but the method is (because of some poor design) called five times. Then,
the problem would have been in the app, and we would know how and where to solve it.
In section 6.3, we’ll analyze such a problem.

Using a profiler to identify SQL queries an app executes

This section illustrates how to use a profiler to identify the SQL queries an applica-
tion sends to a DBMS. This topic is one of my personal favorites—and for a good
reason. Almost every modern application relies on a relational database to store and
retrieve data. And in real-world scenarios, performance problems caused by slow SQL
queries are incredibly common (see, Bonteanu and Tudose, 2024; https://www.mdpi
.com/2076-3417/14/7/2743).

Database performance greatly affects how fast and responsive an application feels to
the user. Even if your code is well-written, a single poorly written or slow query can cause
your entire app to lag, time out, or even crash under load. This is especially true when
your application grows and more users start interacting with it simultaneously.

To make things more complex, many modern apps don’t build SQL queries man-
ually. Instead, they use libraries or frameworks—such as JPA, Hibernate, or Spring
Data—that automatically generate your queries. This is convenient, but it also means
you might not know exactly what SQL is being sent to the database. When performance
problems appear, it becomes hard to guess where things are going wrong. That’s where
a profiler comes in. A good profiler can show you exactly which queries are being exe-
cuted, how long each one takes, and how often it runs.

https://www.mdpi.com/2076-3417/14/7/2743
https://www.mdpi.com/2076-3417/14/7/2743

6.3.1

Using a profiler to identify SOL queries an app executes 143

We’ll use a scenario implemented with project da-ch6-ex2 to learn how often a
method executes and intercepts a SQL query the app runs on a relational database.
We’ll then demonstrate that the executed SQL queries can be retrieved even when the
app works with a framework and doesn’t handle the queries directly. Finally, we’ll dis-
cuss this subject further using a couple of examples.

Using a profiler to retrieve SQL queries not generated by a framework

This section uses an example to demonstrate using a profiler to obtain the SQL que-
ries an app executes. We’ll use a simple app that sends the queries directly to a DBMS
directly without using a framework.

Let’s start project da-ch6-ex2 and use the Profiler tab, as you learned in section 6.2.
Project da-ch6-ex2 is also a small app. It configures an in-memory database with two
tables (product and purchase) and populates the tables with a few records.

The app exposes all purchased products when calling the endpoint /products. By
“purchased products,” I mean products that have at least one purchase record in the
purchase table. The purpose is to analyze the app’s behavior when calling this endpoint
without first analyzing the code. This way, you can see how much we can get just by using
the profiler.

In figure 6.11, we use the Profiler tab since you already learned sampling in section
6.1, but remember that in any real-world scenario, you start with sampling. We start the
app, and, using cURL or Postman, we call the /products endpoint. The profiler shows
us precisely what happens:

A method findPurchasedProductNames () that belongs to the PurchaseController
class was called.

This method delegated the call to the method getProductNamesForPurchases()

in class PurchaseService.

The method getProductNamesForPurchases() in ProductService calls findAl1()
in PurchaseRepository.

The method getProductNamesForPurchases() in ProductService calls find-
Product() in ProductRepository 10 times.

Isn’t this amazing? Without even looking at the code, we’ve already learned so much
about what’s going on. It’s like solving a puzzle without even opening the box! These
details are super helpful because now you know exactly where to look in the code and
what you’re likely to find. The profiler has given you class names, method names, and
even how they all work together. Now, let’s jump into the code in listing 6.2 and see
where all this is happening.

By using the profiler, we can understand that most things happen in the getProduct-
NamesForPurchases() method in the PurchaseService class, so that’s most likely the
place we need to analyze.

144 CHAPTER 6 Finding hidden problems using profiling techniques

1. The execution starts with the findPurchasedProductNames ()
method in the PurchaseController class.

2. The getProductNamesForPurchases ()
method in PurchaseService is called.

3. The method in the PurchaseService class
calls £indall () in PurchaseRepository.

com.example.Main (pid 26560)
rofiler

3 0sc 5] Locks | [stop

Status: prpfiling running (2,072 methods instrumented)

Profile:

Profiling results

resuts: @) YR [B] view: W B R B~ ‘ Collected data: [Snapshot (B

ame Total Time Total Time (CPU) -
= http-nio-8080-exec-1 148 ms (100% 129 ms (100%) 1
S| mn%example.cuntro\lers.PurchaseConther.ﬁndPur(:hasedl‘-'mducﬂlam 0 148 ms (100%) [l 129 ms (100%) 1
=l E com.example.services.PurchaseService.getProductl amesForPurchases () 148 ms (100% 129 ms (100%) i
= % com.example.repositories.PurchaseRepository$$EnhancerBySpringCGLIBS$b82c63ffind All () 82.4 ms (55.6/ 97.2 ms (74 1
[8§ org.springframework.aop.framework.CglibAcpProxy$DynamicAdvisedInterceptointercept (Object 82.3 ms (55.6%) 97.2 ms 1
R org.springframework.aop.framewaork.CglibAopProxy$CglibMethodInvocatiorproceed () 77.5 ms (52.3% 97.3 ms 1
@ % org.springframework.aop.framework.AdvisedSupportgetinterceptorsAndDynamicIntercep 3.36 ms (2.39 0.0 ms %
- (D selftime 1.14 ms (0.8%) 0.0 ms 1
% org.springframework.aop.framewark.CglibAopProxy$CglibMethodInvocationginit> (Object, OF 0.322 ms (0 0.0 ms 1
%4 org.springframework.aop.framework.CglibAopProxyaccess$000 (Chject, Ohiect, javalano.ref 0.052 ms (0.0 ms 1
(5 org.springframework.aop.target.SingletonTargetSourceisStatic () 0.004 ms 0.0 ms 1
(D selftime 0.038ms (0% 0.0 ms 1
i com.example.repositories ProductRepository$$EnhancerBySpring CGLIB$$7f6ef1 dind Product (int) 65.5 ms (44.3%)([ll 32.5 ms 10
@ Self time 0.121 ms (0.1% 0.0 ms 1

0.030 ms

{:L) Self time

4. After calling £indAl1 () in PurchaseRepository, the
method calls f£indProduct () in ProductRepository 10 times.

Figure 6.11 When profiling the app, we observe that one of the methods is called 10 times. We now need to ask
ourselves whether this is a design problem. Since we now have a big picture of the entire algorithm and we know
what code is executed, we can also debug the app if we can’t figure out what happens.

Listing 6.2 The algorithm’s implementa

@Service
public class PurchaseService {

private final ProductRepository productRepository;
private final PurchaseRepository purchaseRepository;

public PurchaseService(ProductRepository productRepository,
PurchaseRepository purchaseRepository) {
this.productRepository = productRepository;
this.purchaseRepository = purchaseRepository;

2

public Set<String> getProductNamesForPurchases() {

Using a profiler to identify SOL queries an app executes

Set<String> productNames =

145

new HashSet<>();
purchaseRepository.findA11();

List<Purchase> purchases = Gets all the
for (Purchase p : purchases) { purchases from
Product product = the database
productRepository.findProduct(p.getProduct()); table
productNames.add(product.getName());
Iterates through
’ Adds the each product 8
product
return productNames; Returns the into a set Gets the details about
t set of products the purchased product

Observe the implemented behavior: the app fetches some data in a list and then iter-
ates over it to get more data from the database. Such an implementation typically
indicates a design problem because you can usually reduce the execution of so many

queries to one. Obviously, the fewer queries executed, the more efficient the app is.
In this example, it’s effortless to retrieve the queries directly from the code. Since

the profiler shows us exactly where they are, and the app is tiny, finding the queries

isn’t a problem. But real-world apps are not small, and in many cases, it’s not easy to

retrieve the queries directly from the code. But fear no more! You can use the profiler
to retrieve all the SQL queries the app sends to a DBMS. You find this demonstrated
in figure 6.12. Instead of selecting the CPU button, you select the JDBC button to start

profiling for SQL queries.

Click the JDBC button to start profiling for
SQL queries the app sends to a DBMS.

.: com.example.Main (pid 26560)

Profiler

Profile:

D Stop

@ Locks

Status: profiling running (573 methods instrumented)

Profiling results
Results: O -.f‘;‘bl @ | Collected data: \j_].‘Snapshnt B

Total Time Invocations

SQL Query
[} SELECT *FROM product WHERE id = '1'

SELECT * FROM purchase

0.960 ms [
0.577 ms |

When the app sends a SQL query to a DBMS,
the profiler intercepts it and shows it in this list.
The SQL query appears complete, including the
parameters’ values.

CPU settings ‘ Memaory settings | JDBC settings

We can see that this query executed 10
times. Usually, we want to avoid running
the same query multiple times to improve
the app’s performance.

Figure 6.12 The profiler intercepts the SQL queries the app sends to the DBMS through the JDBC driver. This
provides you with an easy way to get the queries, run them, observe what part of the codebase runs them, and

know how many times a query is executed.

146

CHAPTER 6 Finding hidden problems using profiling techniques

What the tool does behind the scenes is pretty simple: a Java app sends the SQL queries
to a DBMS through a JDBC driver. The profiler intercepts the driver and copies the
queries before the driver sends them to the DBMS. Figure 6.13 shows this approach.
The result is fantastic, as you can simply copy and paste the queries into your database
client, where you can run them or investigate their plan.

The app’s persistence layer is responsible The app’s persistence layer uses
for defining the SQL queries that need the JDBC driver to send the SQL
to be sent to the DBMS. T ﬁ queries to the DBMS.
e v v R
App Persistence JDBC DBMS
layer driver

SELECT * FROM...

A — The JDBC driver sends the queries
to the DBMS. The JDBC driver manages
the communication with the DBMS.

Because all the queries sent to the DBMS
go through the JDBC driver, it’s very
easy for a profiler to intercept them.

VisualV k’

Figure 6.13 In a Java app, the communication with a relational DBMS is done through the JDBC driver.
A profiler can intercept all method calls, including those of the JDBC driver, and retrieve the SQL queries
the app sends to a DBMS. You can get the queries and use them in your investigations.

The profiler also shows how many times the app sent a query to the DBMS. In this
case, the app sent the first query 10 times. This design is faulty since it repeats the same
query multiple times and thus spends unnecessary time and resources. The developer
who implemented the code tried to obtain the purchases and then get the product
details for each purchase. But a straightforward query with a JOIN between the two
tables (product and purchase) would solve the problem in one step. Fortunately, using
VisualVM, you identified the cause, and you know exactly what to change to improve
this app.

Figure 6.14 illustrates how to find the part of the codebase that sent the query.
You can expand the execution stack and usually find the first method in the app’s
codebase.

Using a profiler to identify SQL queries an app executes 147

Clicking the small + button shows
the full stack trace that caused the execution
of a certain SQL query.

é]L Query 2 Total Time Invocations -
= & SELECT “FROM product WHERE id = "1’
B R com.zaxxer.hikari.pool.HikariProxyPreparedStatementexecuteQuery () [| 0.960 ms 10
E| %, org.springframework.jdbc.core.JdbcTemplates1doInPreparedStatement (jzva.sql.FreparedStatement) | | 0.960 ms (10
= R org.springframework.jdbc.core.JdbcTemplateexecute (Drg.sprmgframewnrk.Jdb(.cDrE.F‘reparEdStatementcrea'- 0.960 ms (62 10
- B org.springframework.jdbc.core.JdbcTemplatequery (org.springframework.jdbc.core.PreparedStatementCre: [0.960 ms (62 10
= R org.springframework.jdbc.core.JdbcTemplatequery (String, nrg.springframewurk.]dh(.(an.PrEparEdSti- 0.960 ms { 10
= & org.springframework.jdbc.core.JdbcTemplatequery (String, Ohject[], org.springframework jdbe.cor [0.960 ms [10
= R org.springframework.jdbc.core.JdbcTemplatequeryForO bject (String, nrg.sprlngﬂ'amewnrk.]dl- 0.960 ms 10
= ¥, com.example.repositories.ProductRepositoryfindProduct (int) | | 0.960 ms (62 10
= I com.example.repositories.ProductRepository$$FastClassBy Spring CGLIB$$69752884nwo [0.960 ms 10
= B, org.springframework.cqlib.proxy.MethodProxjnvoke (Object, Object[]) || 0.960 ms (62 10
= & org.springframework.aop.framework.CglibAopProxy$CglibMethodInvocatiorinvo [0.960 ms (10
[=]- B% org.springframewark.aop.framework.ReflectiveMethodInvocationproceed () [0.960 ms 10
= % org.springframework.aop.framework.CglibAopProxy$CglibMethodInvocat [0.960 ms (62.5%) M 10
= &, org.springframework.dao.support.PersistenceExceptionTranslationIni [0.960 ms (62.5%) [l 10
= & org.springframewark.aop.framework.ReflectiveMethodInvocation [N 0.960 ms (62.5%) 10
= B org.springframework.aop.framework.CglibAopProxy$CglibMe [0.960 ms ([| 10
= [org.springframework.aop.framework.CglibAopProxysDyn [N 0.960 ms 10
com.example.repusimnes.PmductRepuswmryMiEnban- 0.960 ms (10
=- ® com.exampIe.serwces.PurchaseSem'ce.getProdu- 0.960 ms 10
= B com.example.controllers.PurchaseController.fi I 0.960 ms (62 10
I=H R]'dk.intemal.reﬂect.NativeMethodAccessorI- 0.960 ms 10
B W, jdk.internal.reflect.NativeMethodAcces [0.950 ms 10 v

In the stack trace, you find the methods
in the app’s codebase that caused the
execution of a certain query. This way,
you identify where the problem is in

your app.

Figure 6.14 For each query, the profiler also provides the execution stack trace. You can use the stack trace to
identify the part of your app’s codebase that sent the query.

The following listing shows the code whose call we identified using the profiler. Once
you identify where the problem comes from, it’s time to read the code and find a way
to optimize the implementation. In this example, everything could have been merged
into one query. It may look like a silly mistake, but trust me, you’ll find these cases,
even in larger apps implemented by powerful organizations.

Listing 6.3 The algorithm’s implementation in the ProductService class

©@Service
public class PurchaseService {

// Omitted code

public Set<String> getProductNamesForPurchases() {

148

6.3.2

CHAPTER 6 Finding hidden problems using profiling techniques

Set<String> productNames = new HashSet<>();
List<Purchase> purchases = purchaseRepository.findA11(); -
for (Purchase p : purchases) {
Product product = productRepository.findProduct(p.getProduct());
productNames.add(product.getName()); <F1

} Gets the product details
} return productNames; Iterates through each product
} The app gets a list of all products.

Example da-ch6-ex2 uses JDBC to send the SQL queries to a DBMS. The app has the
SQL queries directly in the Java code (listing 6.4) and in their native shape, so you
may think that copying the queries directly from the code is not that difficult. But in
today’s apps, you’ll encounter native queries in the code less often. Nowadays, many
apps use frameworks such as Hibernate (the most-used Java Persistence API [JPA]
implementation) or Java Object Oriented Querying (JOOQ), and the native queries
are not directly in the code. (You can find more details about JOOQ on their GitHub
repository here: https://github.com/jOOQ/jOOQ). If you’d like to explore the Java
persistence layer in more depth using mainstream technologies, I also recommend
Java Persistence with Spring and Hibernate by Catalin Tudose (Manning, 2023).

Listing 6.4 A repository using native SQL queries

@Repository
public class ProductRepository {

private final JdbcTemplate jdbcTemplate;

public ProductRepository(JdbcTemplate jdbcTemplate) {
this.jdbcTemplate = jdbcTemplate;

+ A native SQL query the

. . . . app sends to the DBMS
public Product findProduct(int id) {

String sql = "SELECT % FROM product WHERE id = ?";
return jdbcTemplate.queryForObject(sql, new ProductRowMapper(), id);
}
}

Using the profiler to get the SQL queries generated by a framework

Let’s look at something even more extraordinary. To further prove the usefulness of
a profiler in investigating SQL queries, let’s review project da-ch6-ex3. From an algo-
rithm point of view, this project does the same thing as the previous one: it returns the
name of the purchased products. I intentionally kept the same logic to simplify the
example and make it comparable.

The next code fragment shows the definition of a Spring Data JPA repository. The
repository is a simple interface, and you don’t see the SQL queries anywhere. With
Spring Data JPA, the app generates the queries behind the scenes based on either the

https://github.com/jOOQ/jOOQ

Using a profiler to identify SOL queries an app executes 149

method’s names or on a particular way of defining the queries, called Java Persistence
Query Language (JPQL), which is based on the app’s objects. Either way, there’s no sim-
ple way to copy and paste the query from the code.

Some frameworks generate the SQL queries behind the scenes based on the code
and configurations you write. In these cases, it’s more challenging to get the executed
queries. But a profiler can help you by extracting them from the JDBC driver before
they are sent to the DBMS:

public interface ProductRepository
extends JpaRepository<Product, Integer> {

F

The profiler comes to the rescue. Since the tool intercepts the queries before the app
sends them to the DBMS, we can still use it to find exactly what queries the app uses.
Start app da-ch6-ex3 and use VisualVM to profile the SQL queries the way we did for
the previous two projects.

Figure 6.15 shows what the tool displays when profiling the /products endpoint call.
The app sent two SQL queries. Notice that the aliases in the query have strange names
because the queries are framework generated. Also notice that even if the logic in the
service is the same and the app calls the repository method 10 times, the second query is
executed only once because Hibernate optimizes the execution where it can. Now you
can copy and investigate this query with a SQL development client if needed. In many
cases, investigating a slow query requires running it in a SQL client to detect which part
of the query causes difficulty for the DBMS.

& com.example.Main (pid 22372)

Profiler

Profile: @ CPU @ Mem... @ Locks D Stop

Status: profiling running (574 methods instrumented)

Profiling results
resulis: @) TR [B] | colected data: (5] snzpshot [

SQL Query Total Time Invocations <

[E select purchase0_.idas id1_1_, purchaseD_.priceas price2_1_, purchase0_.productas product3_1_from purchase purchased_
i [select product0_.idas id1_0_0_, product0_.names name?_0_0_from produet product0_where producto_.id=1

0.478 ms (62.7%) 1

0.284 ms (37.3%)

The profiler intercepted the queries as they were Note that even if the method is called 10 times
sent to the DBMS by the JPA implementation. in this example, the query is sent just once to
You can paste them in a DB client if you need to the DBMS. Frameworks such as Hibernate
investigate them further. optimize the app’s behavior.

Figure 6.15 Even when working with a framework, the profiler can still intercept the SQL queries. This makes your
investigation a lot easier because you can’t copy the query directly from the code like when using JDBC and native

queries.

150

CHAPTER 6 Finding hidden problems using profiling techniques

The query is executed only once even though the method is called 10 times. Do per-
sistence frameworks usually do these kinds of tricks? Although they are smart, some-
times, what they do behind the scenes can add complexity. Also, someone who does
not properly understand the framework could write code that causes problems. This
is another reason to use a profiler to check the queries the framework generates and
ensure the app does what you expect.

The problems I mostly encounter with frameworks that require investigation are

Slow queries causing latencies—Easy to spot using a profiler to examine the execu-
tion time

Multiple unneeded queries generated by the framework (usually caused by what developers
call the N + 1 query problem)—Easy to spot using a profiler to determine the num-
ber of executions of a query

Long transaction commits generated by poor app design—Easy to spot using CPU
profiling

When a framework needs data from multiple tables, it usually knows to compose one
query and get all the data in one call. However, if you don’t use the framework correctly,
it may take just part of the data with an initial query and then, for each record initially
retrieved, run a separate query. So, instead of running just one query, the framework
will send an initial query plus N others (one for each of the Nrecords retrieved by the
first); we call this an N + I query problem, which usually creates significant latency by exe-
cuting many queries instead of just one.

Most developers are tempted to investigate such problems using logs or a debugger.
But in my experience, neither one is the best option for identifying the problem’s root
cause.

The first problem with using logs for this type of case is that it’s challenging to iden-
tify which query causes a problem. In real-world scenarios, the app may send dozens of
queries—some of these multiple times, and in most cases, they are long and use a large
number of parameters. With a profiler, which displays all the queries in a list with their
execution time and the number of executions, you can almost instantaneously spot the
problem. The second problem is that, even if you identify the potential query causing
the undesired behavior (say, while monitoring logs, you observe that the app takes a
long time to execute a given query), it’s not straightforward to take the query and run it.
In the log, you find parameters separated from the query.

You can configure your app to print the queries generated by Hibernate in the logs
by adding some parameters to the application properties of the da-ch6-ex3 file:

spring.jpa.show-sqgl=true
spring.jpa.properties.hibernate.format_sql=true
logging.level.org.hibernate.type.descriptor.sql=trace

Beware that you’ll have to configure the logging differently, depending on the technol-
ogies used to implement the app. In the example provided with the book, we use Spring
Boot and Hibernate. The next listing shows how the app prints the query in the logs.

6.3.3

Using a profiler to identify SOL queries an app executes 151

Listing 6.5 Logs showing the native queries Hibernate sends

Hibernate:
Select
product0_.id as id1_0_0

productO_.name as name2_0_0_

¢ The query generated by the app

from
product product0O_
where
productO_.id=? The first parameter’s value
2021-10-16 13:57:26.566 TRACE 9512 --- [nio-8080-exec-2]
o.h.type.descriptor.sqgl.BasicBinder : binding parameter [1] as
[INTEGER] - [1]
2021-10-16 13:57:26.568 TRACE 9512 --- [nio-8080-exec-2]
o.h.type.descriptor.sql.BasicExtractor : extracted value ([name2_0_0_]

[VARCHAR]) - [Chocolate]

The second parameter’s value

The logs show us the query and give us both the query’s input and output. But you
need to bind the parameter values to the query to run it separately. And when multi-
ple queries are logged, looking for what you need can be really frustrating. Logs also
don’t show which part of the app runs the query, making your investigation even more

challenging.

| recommend always starting with a profiler when investigating
latency issues. Your first step should be sampling. When you
suspect SQL query-related problems, continue profiling for JDBC.
t* Then, problems will be easy understand, and you can use

a debugger or the logs to confirm your speculations as needed.

If you ever find yourself staring at logs with queries you don’t fully understand, turn-
ing to Al can be a game changer. An Al assistant can help you refactor the query into
a more readable format and bind the necessary parameters seamlessly (figure 6.16).
Additionally, you can use Al to generate alternative queries with different parameter
values, which can be particularly useful for testing or exploring various scenarios.

Using the profiler to get programmatically generated SQL queries

To better understand how a profiler works, let’s look at another example—this time
involving queries created by the application itself, using code. In this example, we
investigate a performance problem caused by a query that Hibernate generates behind
the scenes.

152 CHAPTER 6 Finding hidden problems using profiling techniques

You can request your Al assistant to help you
bind the parameters' values and even refactor
the query for better readability.

2021-10-16 13:57:26.566 TRACE 9512 --- [nio-8080-exec-2]
[CAJo.h.type.descriptor.sgl.BasicBinder : binding parameter [1] as
[CAJIINTEGER] - [1]

2021-10-16 13:57:26.568 TRACE 9512 --- [nio-8080-exec-2]
[CAJo.h.type.descriptor.sql.BasicExtractor : extracted value
([name2_0_0_]:

[CAJIVARCHAR]) - [Chocolate]

@ Here's the query with the parameter already bound and rewritten with better aliases for readability:

Original Query with Parameter Bound:
sql @ Copy ¥ Hdit

SELECT
product.id AS product_id,
product.name AS product_name
FROM
product
WHERE
product.id = 1;

Figure 6.16 An Al assistant can be a powerful tool for extracting and refactoring data from logs. In this
example, | used ChatGPT to transform a partial or complex query into a complete, well-structured, and
more readable version, making troubleshooting and analysis much easier.

The app doesn’t use plain SQL or JPQL (Java Persistence Query Language) to write
its queries directly. Instead, it uses something called criteria queries, which is a more
programmatic way to define what data the app wants from the database, using Java
code instead of writing the query as a string. The benefit is type safety and flexibility,
butit also makes it harder to see what the actual SQL looks like. That’s why a profiler is
so helpful—it can reveal the real SQL being executed and help you understand where
the performance problem is coming from.

As shown in listing 6.6, which presents the ProductRepository class reimplemented
with a criteria query, this approach is more verbose. It’s usually considered more dif-
ficult and leaves more room for mistakes. The implementation in project da-ch6-ex4
contains a mistake, which can cause significant performance problems in real-world
apps. Let’s see if we can find this problem and determine how the profiler can help us
understand what’s wrong.

Using a profiler to identify SOL queries an app executes 153

Listing 6.6 The repository defined with a criteria query

public class ProductRepository {
private final EntityManager entityManager;

public ProductRepository(EntityManager entityManager) {

this.entityManager = entityManager; Specifies that the

query selects products

I

public Product findById(int id) {
CriteriaBuilder cb = entityManager.getCriteriaBuilder();
CriteriaQuery<Product> cq = cb.createQuery(Product.class);

Creates a new query

Root<Product> product = cq.from(Product.class); D
cq.select(product); 4—‘
Selects the products Defines the condition that
Predicate idPredicate = J becomes part of the where
ch.equal(cq.from(Product.class).get("id"), id); clause on the next line

cq.where(idPredicate);
Defines the
TypedQuery<Product> query = entityManager.createQuery(cq); where clause

return query.getSingleResult();
} Runs the query and
extracts the result

We use JDBC profiling to intercept the queries the app sends to the DBMS. You can see
that it contains a cross join between the product table and itself (figure 6.17). This is a
huge problem! With the 10 records in our table, we don’t observe anything suspicious
here. But in a real-world app, where the table would have more records, this cross join
would create huge latencies and eventually even wrong output (duplicated rows). Sim-
ply intercepting the query with VisualVM and reading it points to the problem.

The query contains a useless cross
join. In a real-world app, this can
cause performance problems and
even incorrect output behavior.

®] com.example.Main (pid 18700)

Proffer

Profile: &) ceu (i mam.,. [mmec &8 Locks (e

Status: profiling running {574 methods instrumentec)

Profing reshs
resuts: (£ & | Cotected data: [Sj Snapshot [
SOL Query

& select pradus0 das Wl 0 productt nameos named 0 from product produd cross join product productt_ where preducil id=1 [sssmsgmaw] 1]
El [E] selact nurchasall_.id as id1_1_, purchased_.pricaas nrice?_1_, purchased_.productas produc3_1_from purchasa purchased_ | 0,436 ms (71.9%) 1

Total Time Invocations

Figure 6.17 The profiler can intercept any SQL query sent to the DBMS through the JDBC driver. Here,
we spot a problem in the generated query—an unneeded cross join that causes performance problems.

154

CHAPTER 6 Finding hidden problems using profiling techniques

The next question is, “Why did the app generate the query this way?” I like the state-
ment about JPA implementations, such as Hibernate: “The excellent thing is that they
make the query generation transparent and minimize work. The bad thing is that they
make the query generation transparent, making the app more prone to errors.” When
working with such frameworks. I generally recommend that developers profile the
queries as part of the development process to discover such problems up front. Using
a profiler is more for auditing purposes than finding problems, but doing so is a good
safety measure.

In the following example, I intentionally introduced this tiny error with a significant
effect. I called the from() method twice, instructing Hibernate to make a cross join.

Listing 6.7 The cause of the cross-join problem

public class ProductRepository {
// Omitted code

public Product findById(int id) {
CriteriaBuilder cb = entityManager.getCriteriaBuilder();
CriteriaQuery<Product> cq = ch.createQuery(Product.class);

Root<Product> product = cq.from(Product.class);

Calls the CriteriaQue
cq.select(product); Query

from() method once

Predicate idPredicate = cb.equal(
cq.from(Product.class).get("id"), id);

Calls the Criteri
cq.where(idPredicate); alls the CriteriaQuery

from() method again

TypedQuery<Product> query = entityManager.createQuery(cq);
return query.getSingleResult();

Solving this problem is easy: use the product instance instead of calling the Criteria
-Query from() method the second time, as in the following listing.

Listing 6.8 Correcting the cross-join problem

public class ProductRepository {
// Omitted code

public Product findById(int id) {
CriteriaBuilder cb = entityManager.getCriteriaBuilder();
CriteriaQuery<Product> cq = cb.createQuery(Product.class);

Root<Product> product = cq.from(Product.class);
cq.select(product); Uses the

already existing
Predicate idPredicate = cb.equal(product.get("id"), id); Root object

Summary 155

cq.where(idPredicate);

TypedQuery<Product> query = entityManager.createQuery(cq);
return query.getSingleResult();
}
}

Once you make this small change, the generated SQL query will no longer contain
the unneeded cross join (figure 6.18). Still, the app runs the same query multiple
times, which is not optimal. The algorithm the app runs should be refactored to get
the data, preferably using only one query, same as we did earlier for the example in
listing 6.3.

Of course, overall the app is still
The cross join disappeared, and not OK, since it repeats the execution
the query now runs faster. of the same query 10 times.

: com.example.Main (pid 25764)

Profiler

Locks D Stop

Status: profiling running (574 methods instrumented)

Profile: @ CPU @ Mem...

Profiling results

Results: @) B [B] collected data: [F] snapshot [E»

SQL Query Total Time Invacations -

() E select product0_.idas idi_0_, product0_.nameas name2_0_from product product0_where product0_.id=1 1 0.766 ms (79.3%) 10
[c:] E select purchase0_.id as id1_1_, purchase0_.priceas price2_1_, purchase0_.productas product3_1_from purchase purchased_ | 0.200 ms (20.7%) 1)

Figure 6.18 By eliminating the supplementary select() method call, the cross join disappeared. However,
the overall algorithm for this app should be revised, since it still runs the same query multiple times, which is not
optimal.

Summary

A profiler intercepts the app’s execution and provides essential details about the
code in execution, such as the execution stack trace for each thread, how long
it takes for each method to execute, and how many times a certain method was
called.

When investigating latency problems, the first step to using a profiler is sampling,
which is a way for the profiler to intercept the executing code without getting
many details. Sampling is less resource consuming and allows seeing the big pic-
ture of execution.

156

CHAPTER 6 Finding hidden problems using profiling techniques

Sampling provides you with three essential details:

— What code executes—When investigating a problem, you sometimes don’t know
what part of the code executes, and you can find this aspect by sampling.

— Total execution time of every method—This detail helps identify what part of the
code causes potential latency problems.

— Total CPU execution time—This detail helps you identify whether your code
spends the execution time working or waiting for something.

Sometimes, sampling is enough to understand where a problem comes from. But
in many cases, you need more details. You can get these details by profiling the
execution.

Profilingis a resource-consuming process. With a real-world app, it’s almost always
impossible to profile the whole codebase. For this reason, when profiling for
details, you should filter specific packages and classes on which you want to focus
your investigation. You can usually determine what part of the app to focus on by
sampling the execution first.

An essential detail you get by profiling is the number of method invocations.
When sampling, you know the total time a method spends executing, but not
how often it was called. This aspect is important for identifying a method that is
slow or wrongly used.

You can also use a profiler to get SQL queries the app sends to a DBMS. The pro-
filer intercepts every query, regardless of the technology used to implement the
app’s persistence layer. This feature is invaluable when investigating slow queries
for apps that use frameworks (such as Hibernate) to work with a database.

Investigating locks
im multithreaded
architectures

This chapter covers

Monitoring an application’s threads
Identifying thread locks and what causes them
Analyzing threads that are waiting

In this chapter, we dive into the wild world of multithreaded architectures. If you’ve
ever felt like threading is one of the trickiest parts of development, you’re not alone.
Even the best developers sometimes stare at their code, wondering why their threads
behave like unsupervised toddlers. And just when you think you’ve got it working,
making code performant is an entirely new level of pain.

But don’t worry! The techniques discussed in this chapter will give you much-
needed visibility into the execution of multithreaded apps, helping you pinpoint
problems before they become production nightmares.

To get the most out of this chapter, you need a solid grasp of Java’s threading
basics—things such as thread states and synchronization. If you need a refresher,
head over to appendix D. It won’t make you a concurrency guru overnight (that
would require an entire bookshelf, plus some meditation), but it’ll arm you with
enough knowledge to tackle the troubleshooting ahead.

157

158

7.1

CHAPTER 7 Investigating locks in multithreaded architectures

Monitoring threads for locks

This section discusses thread locks and how to analyze them to find eventual problems
or opportunities to optimize an app’s execution. Thread locks are caused by different
thread synchronization approaches, usually implemented to control the flow of events
in a multithreaded architecture. Examples include

A thread wants to prevent other threads from accessing a resource while it’s
changing it.

A thread needs to wait for another thread to finish or reach a certain pointin its
execution before being able to continue its work.

DEFINITION A thread lock is a mechanism that prevents multiple threads from
accessing the same resource simultaneously. It helps avoid conflicts but can
also cause problems if threads get stuck waiting for each other.

Thread locks are necessary; they help an app control threads. But implementing
thread synchronization leaves a lot of room for mistakes. Wrongly implemented locks
may cause app freezes or performance problems. We need to use profiling tools to
ensure our implementations are optimal and to make an app more efficient by mini-
mizing the lock time.

In this section, we use a small application (project da-ch7-ex1) that implements a
simple multithreaded architecture. We also use a profiler to analyze the locks during
the app’s execution. We want to find out if the threads are locked and how they behave:

Which thread locks another
How many times a thread is locked

The time at which a thread pauses instead of executing

These details help us understand whether the app execution is optimal and whether
there are ways we can improve our app’s execution. The app we use for our example
implements two threads that run

concurrently: the producer and the e .

consumer. The producer generates | ArrayList [
random values and adds them to T N ’

Remove
values

Add

a list instance, and the consumer
values

removes values from the same col-

lection used by the producer (fig-

Consumer Producer
ure 7.1) . (thread) (thread)

Let’s follow the app implemen-

tation in listings 7.1, 7.2, and 7.3 to Figure 7.1 The app starts two threads that we refer to
see what to expect when investigat— as “the producer” and “the consumer.” Both threads use
a common resource: they change a list instance of type

X ArrayList. The producer generates random values and
find the Main class, which starts the adds them to the list, while the consumer concurrently
two thread instances. I made the removes the values added by the producer.

ing the execution. In listing 7.1, you

Monitoring threads for locks 159

app wait 10 seconds before starting the threads to allow us some time to start the pro-
filer and observe the entire threads’ timelines. The app names the threads _Producer
and _Consumer so we can easily identify them when working with the profiler.

Listing 7.1 App’s Main method that starts two threads

public class Main {
private static Logger log = Logger.getLogger(Main.class.getName());
public static List<Integer> 1list = new ArraylList<>();

public static void main(String[] args) {

try { Waits 10 seconds, in the beginning, to
Thread.sleep(10000); let the programmer start the profiling
new Producer("_Producer").start(); <1 Starts a producer thread
new Consumer("_Consumer").start();

} catch (InterruptedException e) { Starts a consumer thread

log.severe(e.getMessage());

Listing 7.2 shows the consumer thread’s implementation. The thread iterates over a
block of code one million times (this number should be enough for the app to run
a few seconds and allow us to use the profiler to take some statistics). During every
iteration, the thread uses a static list instance declared in the Main class. The consumer
thread checks whether the list has values and removes the first value on the list. The
whole block of code implementing the logic is synchronized, using the list instance
itself as a monitor. The monitor won’t allow multiple threads to enter simultaneously
in the synchronized blocks it protects.

Listing 7.2 The consumer thread’s definition

public class Consumer extends Thread {
private Logger log = Logger.getLogger(Consumer.class.getName());

public Consumer(String name) { Iterates one million times over the

super(name); consumer’s synchronized block of code
. Synchronizes the block of code
@0verride using the static list defined in
public void run() { the Main class as a monitor
for (int i = 0; i < 1_000_000; i++) {
Tries to consume a value
synchronized (Main.list) { only if the list is not empty
if (Main.list.size() > 0) {
int x = Main.list.get(0); Consumes the first value in

Main.list.remove(0); the list and removes that value

160

CHAPTER 7 Investigating locks in multithreaded architectures

log.info("Consumer " + -
Thread.currentThread() .getName() + Logs the removed value
" removed value " + Xx);
}
}
}
1
}

Listing 7.3 presents the producer’s thread implementation, which is pretty similar to
the consumer’s. The producer also iterates one million times over a block of code. For
each iteration, the producer generates a random value and adds it to a list statically
declared in the Main class. This list is the same one from which the consumer removes
the values. The producer adds new values only if the list is shorter than 100.

Listing 7.3 The producer thread’s definition

public class Producer extends Thread {

private Logger log = Logger.getLogger(Producer.class.getName());

public Producer(String name) { Iterates one million times over the
super(name) ; producer’s synchronized block of code

Synchronizes the block of code
@Override using the static list defined in
public void run() { the Main class as a monitor
Random r = new Random();
for (int 1 = 0; i < 1_000_000; i++) { - Adds a value only if the list
synchronized (Main.list) { has under 100 elements
if (Main.list.size() < 100) {

int x = r.nextInt(Q); Generates a new random
Main.list.add(x); value and adds it to the list

log.info("Producer " +
Thread.currentThread().getName() + Logs the value

" added value " + x); added to the list

The producer’s logic is also synchronized using the list as a monitor. This way, only
one of the threads—the producer or the consumer—can change this list at a time.
The monitor (the list instance) allows one of the threads to enter its logic, keeping the
other thread waiting at the beginning of its block of code until the other thread fin-
ishes the execution of the synchronized block (figure 7.2).

Can we find this app’s behavior and other execution details using a profiler?
Absolutely! Unless you prefer the ancient art of staring at code until the bugs reveal

Monitoring threads for locks 161

Producer Consumer
(thread) (thread)
@Override @Override
public void run() { public void run() {
Random r = new Random() ; for (int i = 0; 1 < 1_000_000; i++) {

for (int i = 0; 1 < 1_000_000; i++) {
—p» synchronized (Main.list) {

synchronized (Main.list) { if (Main.list.size() > 0) {
if (Main.list.size() < 100) { int x = Main.list.get(0);
int x = r.nextInt(); Main.list.remove (0) ;
Main.list.add(x) ; log.info ("Consumer " +
log.info ("Producer " + Thread.currentThread () .getName () +
Thread.currentThread () .getName () + " removed value " + Xx);
" added value " + x); }

While the producer executes the synchronized block (shaded rectangle),
the consumer cannot access its synchronized block. The consumer waits
for the monitor (list) to allow it to enter its synchronized block.

Figure 7.2 Only one thread at a time can be in the synchronized block. Either the producer executes the logic
defined in its run() method or the consumer executes its logic.

themselves out of sheer pity. In a real-world app, things are rarely simple. Threads
weave and tangle like holiday lights stuffed in a box, and reading the code alone won’t
always tell you what’s really going on. That’s where a profiler comes in.

Remember that the projects we use in this book
are simplified and tailored to the purpose of our
(¢ discussion. Don't take them as best practices
and apply them as-is in real-world apps.

Let’s use VisualVM to see what this process looks like in the Threads monitoring tab
(figure 7.3). Notice that the colors (shading) alternate since most of the code for each
thread is synchronized. In most cases, either the producer is running and the con-
sumer waits, or the consumer is running and the producer waits.

These two threads may rarely execute code simultaneously. Since there are instruc-
tions outside the synchronized block, the two threads can run simultaneously to exe-
cute the code. An example of such code is the for loop, which is defined outside the
synchronized block in both cases.

162

You can see the two threads (consumer
and producer) executing on the timeline.

¥ VisualVM 2,11

CHAPTER 7 Investigating locks in multithreaded architectures

The timelines show alternate colors to indicate
when the thread is running and when it’s waiting.

File Applications View Tools Window Help

SEsE®EH

Applications X |
T
- & C:.Program (pid 12468)
- 4B Inteli] IDEA (pid 26456)
4] Visualvia
- &3 org.jetbrains.idea. maven. ser
- 5 org jetbrains.idea. maven s
- &5 org.jetbrains. jps.cmdine.Lau
[N 5. i (i 2]
& org.jetbrains.jps.cmdiine. Lau
88 Remote
[vM Coredumps
8 JFR Snapshots
[Z) Snapshots

&5 main.Main (pid 20852) x|
Overview i Moritol, =] Threads () sampler | () Prof...

main.Main (pid 20852)
Threads

Live threads: 16
Daemon threads: 13
Timeline

Shaow: Live Threads

Timeline: Q @ @

Name

1:21:30PM L:21:35PM 1:21:40 PM

@ _Consumer A T
O _Producer I . -

B Attach Listener

O Comman-Cleaner
B DestroyJavaVM
O Finalizer

O JFR Periodic Tasks

Note that sometimes the threads run concurrently. They can run at the same
time when they execute instructions that are outside the synchronized blocks.

Figure 7.3

In most cases, the threads will sequentially lock each other and execute their

synchronized blocks of code. The two threads can still concurrently execute the instructions,
which are outside the synchronized block.

A thread can be blocked by a synchronized block of code, it can be waiting for another
thread to finish its execution (joining), or it can be controlled by a blocking object. In
cases where the thread is blocked and it can’t continue its execution, we say the thread
is locked. Figure 7.4 shows the same information presented in JProfiler, which works

with the approaches we used.

B Local atlach [3] - Profiler 1704

The executing threads are displayed on a timeline with alternate
colors to mark when they are running and when they are blocked.

Sewion View Brofiling Window Help
- -+ ~ %+ 2}
. L s
re H 3 B B E G4]
Start | Seve Session Stert Sart . fad L Wiew
Center] T | Snapabit Sekings:| Recardngs: e T | S Sy | PR et
Brefil: Ve
<o usages: | B v | e pates
! Telerctis Sherw usages: | Hoth alive and dead !
= | 1
Threads il
m’&, Live Wemary Mo Col-Busak (] |
miain |

‘h Haap Walker
. LR Views

Threads

Thread History

Froducer |1
ZComumer [main! |

Figure 7.4 You can use other profilers instead of VisualVM. Here, you can see the way thread
timelines are displayed in JProfiler.

7.2

Analyzing thread locks 163

Analyzing thread locks

When working with an app architecture that uses thread locks, we want to ensure that
the app is optimally implemented. For that, we need a way to identify the locks to find
how many times threads are blocked and the length of the lock time. We also need
to understand what causes a thread to wait in given scenarios. Can we collect all this
information somehow? Yes, a profiler can tell us everything we need to know about the
thread’s behavior.

We’ll continue using the same steps you learned in chapter 6 for profiling
investigations:

Use sampling to understand what happens during execution at a high level and
identify where to go into further detail.

Use profiling (instrumentation) to get the details on a specific subject we want to
investigate.

Figure 7.5 shows the results of sampling the app’s execution. When looking at the exe-
cution times, we observe that the total execution time is longer than the total CPU
time. In chapter 6, you saw a similar situation, and we figured out that when this hap-
pens, it means the app waits for something.

For both threads, the total CPU time is
much smaller than the total execution time.
This indicates that the method was waiting
for something.

& main.Mai (pd 22296) x| /\ ¥ O
Overview @ Montor Threads :Q: Sampler @ Profiler
main.Main (pid 22296)

Sampler [] settings

Sample: 6 CRU . Mem... n Stop

Status: application terminated

CPU samples | Thread CPU time

Results: o eﬁ ! View: | 5 =% - | Collected data: Snapshot / Thread Dump

Name Total Time Total Time (CEU) -

{1 == Monitor Ctrl-Break

Fj 2 _Producer
[% main.Producerrun ()

8,999 ms ¥1o0%) N 4,796 ms (100%)
8,999 ms (100%) NN 4,796 ms (100%)
8,999 ms (100%) NN 4,903 ms (100%)
8,990 ms (100%) NN 4,903 ms (100%)

3,499 ms [(100%) 0.0 ms (-2&)

E L _Consumer
[#- % main.Consumerrun ()
[~ 2 main

Figure 7.5 When the total CPU time is shorter than the total execution time, it means the app is
waiting for something. We want to figure out what the app waits for and if this time can be optimized.

164

CHAPTER 7 Investigating locks in multithreaded architectures

Figure 7.6 shows something interesting: the method waits, but as shown in the sam-
pling data, it doesn’t wait for something else. It simply seems to wait on itself. The row
marked as “Self time” tells us how much time it took the method to execute. Notice
that the method spent only about 700 ms CPU time as self time but a much larger value
of 4903 ms as total execution self time.

Note that the method doesn’t wait for something
external. Its self-execution time is very long, even
though the CPU time is short.

& main.Man (pid 22296) x| ¥ O
Overview @ Monitor [=| Threads ng Sampler @ Profiler
main.Main (pid 22296)

Sampler [] settings

Sample: @ CPU . Mem... n Stop

Status: application terminated

CPU samples | Thread CPU time

Resuls: ﬂ Eﬁ ! vew: % B R — | Collected data: Snapshot / Thread Dump
Name Total Time Total Time (CPU) -
[#- 3 Monitor Ctrl-Break I 12,498 phs (100%) NN 12,498 ms (100%)
5 3 _Producer] 8,004 ms (1o0%) 4,706 ms (100%)
= % main.Producerrun ()] G99 ms (100%) NN 4,796 ms (100%)
i (5 java.utilogging.Logger.info () [] 3,998 ms (44.4%) NN 3,998 ms (832.4%)
{9 java.lang.invoke.InvokerssHolder. inkToT 97.8 ms (1.1%) | 97.8 ms (2%)
£ EZ _Consumer] 8,999 ms (100%) [N 4,903 ms (100%)
#- ¥ main.Consumerrun ()] 8,999 ms (100%) N 4,903 ms (100%)
@] main] 3,499 ms (100%) 0.0ms {-%)

Figure 7.6 The method doesn’t wait for something, but instead it waits for itself. We observe that its
self-execution time is longer than the total CPU time, which usually means that the thread is locked. The
thread could have been blocked by another thread.

In chapter 6, we worked on an example in which the app was waiting for an external
service to respond. The app sent a call and then waited for the other service to reply.
In that case, the reason the app was waiting made sense, but here, the situation looks
peculiar. What could cause such behavior?

You may wonder, “How can a method be waiting for itself? Is it too lazy to run?” When
we observe such behavior in which a method waits but not for something external, its
thread is likely locked. To get more details about what locks the thread, we need to ana-
lyze the method further by profiling the execution.

Sampling didn’t answer all our questions. We can see the methods are waiting,
but we don’t know what they are waiting for. We need to continue with profiling

Analyzing thread locks 165

(instrumentation) to get more information. In VisualVM, we use the Profiler tab to
start lock monitoring. To start profiling for locks, use the Locks button, as presented in
figure 7.7, which shows the profiling result. The button appears disabled in the figure
because the process was already stopped at the end of the profiling session.

To start profiling for data about locks, We can see that the threads have been
use the Locks button. Once the session blocked a large number of times. Each thread
ends, the button becomes disabled. indicates over 3,600 locks during the execution.

£ main.Main (pid 13652) x|

main.Main (pid 13652)
Profiler
Profile: @ cru i@ vom... I8 nsc B Locks
Status: application terminated

Profiing resufts

= me
Results: @9 '@rié’ View by: Threadsw

Locks and Threads Time -
Ii__-:- [_Producer 6,918,796 ms (5 3,698
Itl 2 _Consumer 6,888,195 ms (4 3,699
I?. D Common-Cleaner 85.7 ms 1
E L Reference Handler 0.0ms (0%) 0

Figure 7.7 To start profiling for locks, use the Locks button in the Profiler tab. At the end of the profiling
session, we observe more than 3,600 locks on each of our producer and consumer threads.

For each thread, we can go into detail by selecting the small plus sign (+) to the left of
the thread name. Now, you can get details about each monitor object that affected the
thread’s execution. The profiler shows details about the threads blocked by another
thread as well as what blocked the thread.

These details are shown in figure 7.8. We see that the producer thread was blocked
by a monitor instance of type ArrayList. The object reference (4476199c in the figure)
helps us uniquely identify the object instance to figure out whether the same monitor
affected multiple threads. It also allows us to precisely identify the relationship between
the threads and the monitor.

What we find in figure 7.8 can be read this way:

A monitor instance blocked the thread named _Producer with reference
4476199c—an instance of type ArrayList.

The _Consumer thread blocked the _Producer thread 3,698 times by acquiring the
monitor 4476199c.

166

CHAPTER 7 Investigating locks in multithreaded architectures

The producer thread also held (owned) the monitor with reference 4476199c¢ for
3,699 times, or the thread _Producer blocked the thread _Consumer 3,699 times.

Here, we find the objects (monitors) that
caused the thread to be blocked as well as
the monitors that the thread acquired.

&

man.Main (pd 13652) | \

[58 overview [l Montor [Thieads) sampler (&) Profier

P

main.Main (pid 13652)
rofiler

Profile: @ cru & vem... B osc B Locks & stop

Status: application terminated

P

R

rofiing results

esults: Q’L‘& Eﬁg View by: Threadsw

Locks and Threads Time " Watts b

=

== producer 6,918,796 ms (50.1%)) 3,608

=} was blocked by 6,018,796 ms (50

= [&5] java.util. ArrayList (4476199¢) 6,918,796 ms
E---IIIhE:Iv:I by Consumer 6,918,796 ms (50,
eld 6,888,195 ms
ri @ java.util. ArrayList (447619%¢) 6,888,195 ms
‘- [blocked _Consumel 6,888,195 ms (42
|- 0 _Consumer 6,888,195 ms (40
- [0 Common-Cleaner 85.7 ms
-+ 4 Reference Handler 0.0 ms

In this case, we see that the same object Note that the number of locks the producer

(an instance of type ArrayList) that caused for the consumer is equal to the

blocked this thread was also held by it. total number of times the consumer was
locked, meaning only the producer locks
the consumer.

Figure 7.8 The profiling results give us a good understanding of what creates locks and what is affected
by them. We see that there’s only one monitor the producer thread works with. Also, the consumer

thr

ead blocked the producer thread 3,698 times using the monitor. Using the same monitor instance, the

producer blocked the consumer for the same number of times: 3,698.

Figure 7.9 extends the perspective to the consumer thread. You find that all data cor-
relates. Throughout the whole execution, only one monitor instance, an instance of
type Arraylist, locks one of the threads or another. The consumer thread ends up
being locked 3,699 times, while the producer thread executed a block synchronized by
the ArrayList object. The producer thread is blocked 3,698 times, while the consumer
thread executed a block synchronized with the ArrayList monitor.

Analyzing thread locks 167

Remember that you won’t necessarily get the same numbers
when you execute the app on your computer. In fact, it's very
likely you won’t, even when you repeat the execution on the
same computer. Although you may get different values, overall,
you can make similar observations.

Both threads (producer and consumer) held and
were blocked by the same monitor. This shows
that the threads alternately block each other.

& man.Main (pid 13652) | /
Overview i Monitor [Threads (5} Sampler (&) Profier

main.Main (pid 13652)
Profiler

Profile: @ cru i venm... B pac Bl stop

Status: application terminated

Profiing results

Results: @ Ea View by: Threadsw

Locks and Threads

B == _Producer
; E} was blocked by

El @ java.util. ArrayList (4476180¢)
- [held by _Consumet 6,918,796 ms (50.1%)
6,888,195 ms (49.9%)

= held

3,699

El @ java.util. Arraylist (4476199¢c) 3,699

b blocked _Consumel 3,699

-4 _Consumer 3,699
= held 3,698

: ava.uti. ArrayList (4476190¢c) 3,698

‘- [blocked _Producer 3,698

E: was blocked by 6,888,195 ms (4 3,699
EI-- @ java.util. Arraylist (4476199¢c) 6,888,195 ms (42, 3,699

: ‘.. B held by _Producer 6,888,195 ms (49, 3,699
EI] Common-Cleaner 85.7 ms 1
[#- £ Reference Handler 0.0 ms a

Figure 7.9 Both threads use the same monitor to block each other. While one thread executes the synchronized
block with an ArrayList instance monitor, the other waits. This way, one thread is locked for 3,698 times and the
other for 3,698.

168 CHAPTER 7 Investigating locks in multithreaded architectures

For this demonstration, I used VisualVM because it’s free and I'm comfortable with it.
However, you can also apply this approach to other tools, such as JProfiler.

After attaching JProfiler to a process (as discussed in chapter 6), make sure you set
the JVM exit action to Keep the VM Alive for Profiling, as presented in figure 7.10.

When you attach JProfiler to a process,
configure the JVM exit action to keep the VM
alive so that you can still see the statistics
after the profiled app ends its execution.

@ Session Startup x

Settings
Call tree recording: | Instrumentation Edit

‘B For low-overhead CPU profiling, switch to sampling. Sampling is also safer when attaching to
running JVMs,

Call tree filters: 1 filter rule for method call recording Edit

1. The configured exclusive filters may be too broad. In that case, the overhead of
instrumentation may be very high, and CPU times will be distorted. Please select profiled
packages or switch to sampling.

Trigger settings: No active triggers Edit
Database settings: 5 enabled databases Edit
Probe settings: 11 enabled probes Edit

Startup And Exit

Initial recording profile: | [no recordings] v Configure

JVM exit action: Keep the VM alive for profiling More =

Performance

Overhead:

The overhead is composed of the selected profiling settings and the selected recording profile.

oK Cancel

Figure 7.10 When starting the profiling session with JProfiler, remember to set the JVM action to “Keep
the VM alive for profiling” so that you can see the profiling results after the app finishes its execution.

JProfiler offers multiple perspectives for visualizing the same details we obtained with
VisualVM, but the results are identical. Figure 7.11 shows the Monitor History view
report for locks.

In most cases, you don’t need such a detailed report. I prefer to group the events
(locks) either by threads or, less often, by the monitor. In JProfiler, you can group the
events as presented in figure 7.12. From Monitor Usage Statistics in the left menu, you
can choose to group the events either by threads involved or the monitors that caused

the locks. JProfiler even has a more exotic option in which you can group the locks by
the monitor objects’ classes.

Analyzing thread locks 169

JProfiler shows a complete history of the lock
. . events: the lock duration, the monitor used, the
To access the lock history in JProfiler, thread that acquired the lock (owning thread),
select Monitor History under Monitors the thread that was blocked (waiting thread),
& Locks in the left menu. and the exact time of the event.

_/

¥ Local attach (3] - IProfiler 1304

= M) b4
Session Miew Brofiling Window Help
- - ."- s P — 9 "
Ee H 3 8 8 & > [" @ & L -
Seve Sessie et stop Start el Sop freeze Showm Showin
Srapshal Serfivg| | Arenedimy Rrcardings Tmeking P | s View. | Hewp Welker | Granh
essicn Frotling edilic
P — w dmid iR & -
! Talametrias Show moniters | Al ypes Thrsshold in ms: ol % 1 Filles
Time . Duration Type Menitor 15 Monstor Class Wéaiung fhread Owming Thread
T437 s Blocked _Consumer Producer 1

1,747 psM Glocked Producer [1 Censumer

i{' Live Mermary

Blockes Lonsumer Pradueer |
- Blocked Producer Censurmer |
Heap Walker = &
h B Blockes Consumer Praics 11
Blocked n Censarms
- . Blackes Producer [m:
CPU Views = L= -
. Blocked iy _Consumer [ma
Blocked il ArrayList Pravuer (1
I\ Thicss Blocked LarrayList _Censurner |

— Blockes 1 java.utilArraylist
2,224 p:mm Blacked javautilArraylist _Producer [r _Consumer [main]
1,065 s i LI Bra T
‘:\ Maniars 8 Locks 1,545 s Blcked _Consime Praucen
1ps ™8 Elocked Producer Ciensurmer |
= —— 2,095 yz | Elocked Producer _Consumer |
Culrrent Lociang Graph 2,301 s Blockes Conmmer Prarhucer (1
N— 1 s B lackesd Pradicen Consamen |
drrent Monitors e
! 2062 ys = Blocked raducer _ensumer |
\exking History Graph 1,786 1= B Rlnckesd _Conmumer _Praduce T
200 p B Rloiked Pravduesr [Censamer [m:
Mnriles History 2797 cEE Rlncked Comeimer | P (il

14,330 s
Moniter Usage Stalistics Rarording threskolds: 1,000 ps blocking £ 100,000 pswaiting [Change]

Figure 7.11 JProfiler shows a detailed history of all the locks the app’s threads encountered. The
tool displays the exact time of the event, the event duration, the monitor that caused the lock, and

the threads involved.

o
Session Wiew Profifng Window Heip

re H 2 A A E CA LE O F Q

Seart Ee Semaion Seart Stz Start Add Wi Caleudate Sy
& Dietach E RN GE Help i
Canter Smapshot Semngs | Recordings Recordings Tracking Baakmark Sentings Sttistics | Monstors

In JProfiler, you can use the
Teiemeties No st s e cacianet P | P . Monitor Usage Statistics section
ND statistics hias been casculated, Press Wﬁ 1o prepare a new statistcs . .
to get information about locks

Lie Memary grouped by affected threads or by
o the monitor that caused the lock.
e Vi & Manitar Usage Statistics Optians %

—_ S e i To get statistics of all the

DEmwmpg A

P /—\ intercepted lock events
Sonnors 8 Locs B grouped by affected threads,
Graup by Classes of manitars select Gl’oup by Threads
[ox IS and then click OK.

Curment Lodking Graph
Currertt Manitars
Lacking Histary Gragh
Maonitar Histary

Maitar Lsaqe Staisbies

Figure 7.12 You can group the lock events by threads involved or by monitors using the Monitor Usage
Statistics section. You can use the aggregated view to understand which threads are more affected and
what affects them or which monitor causes the threads to stop more often.

170 CHAPTER 7 Investigating locks in multithreaded architectures

If you group the lock events by involved threads, you get a statistic similar to the one
provided by VisualVM. Each thread is locked over 3,600 times during the app’s execu-
tion (figure 7.13).

@ Local attach [3] - JProfiler 12.04 e O x

Session View Profiling Window Help

s e H 2 8 81 04 tE O F B

Start Save Session Start Stop Start Add View Calculate Stop
Detach Run 6C Export Help
Center Snapshot Settings | Recordings Recordings Tracking Bookmark Settings Statistics ~ Monitors
Session Profiling View Specific
Monitor Usage Statistics Grouped by Threads
' Telemetries - N -
A Threads A~ Block Count Block Duration Wait Count Wait Duration
_Consumer [main] 3617 7,317 ms 0 0ps
y | z _Producer [main] 3618 7,206 ms 1} 0ps
o }j Live Memory

A
ﬁ Heap Walker

I CPU Views

If we group the lock events by affected threads,

: Threads we can see the block count for each thread.
Just like in VisualVM, we see a large number
'? Monitors & Locks of locks for each thread (over 3,600).

Current Locking Graph
Current Monitors
Locking History Graph
Monitor History

Monitor Usage Statistics

Figure 7.13 Grouping the lock events by threads provides you an aggregated view showing how many times each
of the threads locked during its execution.

Is the execution optimal? To answer this question, we need to know the app’s purpose. In
our case, the app serves as a simple, demonstrative example, and since it lacks a real pur-
pose, it’s challenging to fully assess whether the results suggest the app can be improved.

But because the app uses two threads that rely on a common resource (the list), if we
consider the fact that they can’t work simultaneously with the shared resource, then we
expect the following:

The total execution time should be the sum of the CPU execution times (because
the threads can’t work simultaneously, they will mutually exclude each other),
approximately.

The threads should have a similar time allocated for execution and should be
locked approximately the same number of times. If one of the threads is pre-
ferred, the other can end up in starvation—the situation in which a thread is
blocked in an unfair way and doesn’t get to execute.

7.3

Analyzing waiting threads 171

If you look again at the thread analysis, you can see that the two threads are fairly
treated. They indeed get locked a similar number of times, and they mutually exclude
each other but have a similar active (CPU time) execution. This is optimal, and there’s
not much we can do to enhance it. But remember that it depends on what the app
does and our expectations about how should it execute.

Here’s an example of a different scenario in which the app would not necessarily be
considered optimal. Suppose that you had an app that was processing values. Say that
the producer needed more time to add each value to the list than the consumer needed
to process the value afterward. In a real-world app, something like this can happen: the
threads don’t need to have equivalent difficult “work” to do.

In such a case, you can enhance the app:

Minimize the number of locks for the consumer and make it wait to allow the
producer work more.

Define more producer threads or make the consumer thread read and process
the values in batches (multiple at a time).

Everything depends on what the app does, but understanding what you can do to make
it better starts with analyzing the execution. Because you never have one approach you
can apply to all apps, I always recommend developers use a profiler and analyze the
changes in app execution when they implement a multithreaded app.

Remember that in chapter 6, we also discussed about exporting the results of your
profiling to ask help from your favorite Al assistant. You can do the same here to get
some ideas of what’s going on, especially if you find yourself investigating large num-
bers of details. This app we use in the current chapter is just a small example and may
not seem complex to understand. I designed it this way to ensure we have a smooth dis-
cussion over the topics you learn about in this chapter. But real-world apps are more like
ajungle. Thus, having some Al-powered tool helping with deciphering what’s going on
might save you time.

Remember back in chapter 6 when we talked about exporting your profiling results
to get a second opinion from your favorite Al assistant? Well, guess what? You can do the
same here! If you ever find yourself drowning in a sea of cryptic logs and spaghetti-like
stack traces, handing some of that mess over to an Al might just save your sanity.

That’s where Al-powered tools can come in handy. They act like a digital machete,
helping you cut through chaos and make sense of what’s happening. So, don’t hesitate
to get some machine-assisted wisdom. It might just save you from hours of debugging
despair!

Analyzing waiting threads

In this section, we analyze threads that are waiting to be notified. Waiting threads are
different than locked threads. A monitor locks a thread for the execution of a synchro-
nized block of code. In this case, we don’t expect the monitor to execute a specific
action to tell the blocked thread to continue its execution. However, a monitor can

172

CHAPTER 7 Investigating locks in multithreaded architectures

cause the thread to wait for an indefinite amount of time and later decide when to
allow the thread to continue its execution. Once a monitor makes a thread wait, the
thread will return to execution only after being notified by the same monitor. The abil-
ity to make a thread wait until being notified provides great flexibility in controlling
threads, but it can also cause problems when not used correctly.

To visualize the difference between locked and waiting threads, take a look at fig-
ure 7.14. Imagine the synchronized block is a restricted area managed by a police offi-
cer. The threads are cars. The police officer allows just one car to run at a time in the
restricted area (the synchronized block). So, we say the cars that are unable to move are
locked. The police officer can also manage the cars running in the restricted area. The
police officer can order a car running inside this area to wait until they are explicitly
ordered to continue; we say they are waiting.

These threads are in a blocked state.

They cannot continue execution while
another thread is running inside the
synchronized block. We say they are locked.

Locked threads

Police officer to the cars outside the synchronized
block: “You there! You have to wait. Someone else

wd
“ &\g is currently executing the synchronized block.”
'é:“ \ This thread runs inside the
A synchronized block. The monitor
(police officer) won’t allow other
synchronized (g%) { threads to go into the synchronized
block until this one steps out of it.

.

Waiting threads ,) .)
Police officer to the car inside the synchronized
block: “You there! You'll have to wait until | say
you can continue your execution.”
: &
; This thread runs inside the
SyﬂChronl zed (=) { synchronized block. The monitor
(police officer) pauses and moves
‘ it to the blocked state. Following
. the monitor’s actions, we say the
} thread is waiting.

Figure 7.14 Locked versus waiting threads. A locked thread is blocked at the entrance of a
synchronized block. The monitor won’t allow a thread to enter a synchronized block while another thread
actively runs inside the block. A waiting thread is a thread that the monitor has explicitly set to the
blocked state. The monitor can make any thread inside the synchronized block it manages wait. The
waiting thread can continue its execution only after the monitor explicitly tells it that it can proceed.

Analyzing waiting threads 173

We’ll use the same application we analyzed earlier in this chapter and consider the fol-
lowing scenario: one of the developers working on the app thought about improving
our producer—consumer architecture. Now, the consumer thread can’t do anything
when the list is empty, so it just iterates multiple times over a false condition until the
JVM makes it wait to allow a producer thread to run and add values to the list. The
same thing happens when the producer adds 100 values to the list. The producer
thread runs over a false condition until the JVM allows a consumer to remove some of
the values.

Can we do something to make the consumer wait when it has no value to consume
and make it run only when we know the list contains at least one value (figure 7.15)?
Similarly, can we make the producer wait when there are already too many values in
the list and allow it to run only when it makes sense to add other values? Would this
approach make our app more efficient?

Police officer to the car inside the synchronized block:
“You there! You are a consumer and the list is empty.
You have nothing to do. Take a break until | say that
you can continue!”

Qg\‘ Police officer to the cars outside the synchronized block:
‘ Q- “One of you can go in the synchronized block now.”

<
™N@
N

synchronized (

Figure 7.15 Some of
the cars are consumer
threads, and others
/e are producer threads.
@\‘ Police officer to the parked car: The police officer
‘ T “The list is no longer empty, orders a consumer to
SO you can run again!” wait if the list doesn’t
P have values that can
be consumed, allowing
{ producers to work and
add values. Once the
list contains at least

After a producer adds a value to the list . . .

synchronized (

.._(é a value that can be
ﬁh\‘ “ consumed, the officer
Qe orders the waiting
} Parked car consumer to continue
its execution.

174

CHAPTER 7 Investigating locks in multithreaded architectures

We’ll modify the application to implement this new behavior, but—spoiler alert—it
won’t make things any more efficient. In fact, quite the opposite! The execution will be
less optimal.

At first glance, making threads wait when they can’t access the shared resource (the
list) might seem like a smart move. After all, if they can’t do their job, shouldn’t they just
sit tight and wait their turn? But as you’ll see, this well-intentioned change ends up doing
more harm than good, dragging performance down instead of speeding things up.

This is a perfect example of why, in multithreaded programming, what seems like
a good idea in theory can turn into a performance nightmare in practice. The take-
away? Always experiment, measure, and analyze before declaring your optimization a
success—because sometimes, the only thing you’re optimizing is your frustration!

| always recommend using a profiler during development
/ to prove that the app executes optimally.

Listing 7.4 shows the new implementation of the consumer thread. The consumer
thread waits when the list is empty since it has nothing to consume. The monitor makes
the consumer thread wait and will notify it to continue executing only after a producer
adds something to the list. We use the wait() method to tell the consumer to wait if the
list is empty. At the same time, when the consumer removes values from the list, it noti-
fies the waiting threads so that if a producer is waiting, it now knows it can continue its
execution because the list is no longer full. We use the notifyAll() method to notify
the waiting threads. You can find this implementation in project da-ch7-ex2.

Listing 7.4 Making the consumer thread wait when the list is empty

public class Consumer extends Thread {
// Omitted code

@0verride
public void run() {
try {
for (int 1 = 0; 1 < 1_000_000; i++) {
synchronized (Main.list) {
if (Main.list.size() > 0) {
int x = Main.list.get(0);
Main.list.remove(0);
log.info("Consumer " +
Thread.currentThread() .getName() +

Analyzing waiting threads 175

" removed value " + X);

Main.list.notifyAll0); After consuming an element from

¥ e'L§e 1 . . the list, the consumer notifies the
Main.list.wait(); waiting threads a change has
! F been made in the list contents.
¥ . When the list is empty, the consumer
} catch (InterruptedException e) { waits until it gets notified something
\ log.severe(e.getMessage()); has been added to the list.
}

F

The following listing shows the implementation of the producer thread. Similar to the
consumer thread, the producer thread waits if there are too many values in the list.
A consumer will eventually notify the producer and allow it to run again when it con-
sumes a value from the list.

Listing 7.5 Making the producer thread wait if the list is already full

public class Producer extends Thread {
// Omitted code

©@0verride
public void run() {
try {
Random r = new Random();
for (int i = 0; i < 1_000_000; i++) {
synchronized (Main.list) {
if (Main.list.size() < 100) {
int x = r.nextInt();

Main.list.add(x); After adding an element
log.info("Producer " + to the list, the producer
Thread.currentThread().getName() + notifies the waiting
" added value " + Xx); threads a change has been
Main.list.notifyAll1(); made in the list contents.
} else {
Main.list.wait(); When the list has 100 elements,
} the producer waits until it gets
¥ notified something has been
¥ removed from the list.

} catch (InterruptedException e) {
log.severe(e.getMessage());
}

F
F

As you know, we start our investigations by sampling the execution. We already see some-
thing suspicious: the execution seems to take much longer (figure 7.16). If you go back
to the observations we made in section 7.1, you’ll see that the whole execution was only
about 9 seconds long. Now, the execution takes about 50 seconds—a huge difference

176 CHAPTER 7 Investigating locks in multithreaded architectures

The execution takes longer, and there is a big difference between the total
time and the total CPU time, indicating that the app still does a lot of waiting.

& main.Man (pid 11508) X hi=!

Overview @ Monitor Threads n@] Sampler ® Profier

main.Main (pid 11508)

Sampler [] settings
Sample: 0 CPU . Mem... . Stop
Status: application terminated

i| Thread CPU time

Resuts: @ IR M ve W EH R B~ | Collcted data: [5] snapshot

\ Thread Dump

v

=

Total Time (CPU)

Name Total Tme

[# £ Monitor Ctri-Break] 51,096 ms (100%) [N 51,896 ms (100%)
- &= _Producer == 48,598 ms (100%) [N 22,847 ms (100%)
- B2 _consumer N 57100 ms (100%) D 24,053 ms (100%)
=2 main |] 3,397 ms (100%) 0.0ms (%)

Figure 7.16 By sampling the execution, we see that the execution time is slower than before

we made threads wait.

Sample details (figure 7.17) show us that the wait() method we added caused most of
the thread waiting time. The thread is not locked for long since the self-execution time
is very close to the CPU execution time. Still, our purpose is to make our app more
efficient overall, but it seems we only shifted the waiting from one side to the other and

made the app slower in the process.

The execution details indicate that most of the waiting
time is caused by the wait () method the monitor invokes.

& main.Main (pid 11508) X

E Overview Monitor
main.Main (pid 11508)

Sampler

hreads g Sampler Profier

[] settings

@ cru @ vem... Stap

Sample:

Status: application terminated

CPU samples | Thread CPU time

resuts: @) €2 M vew:| % R B~ Vcallected data: [5] snapshot

Thread Dump

-

F 3 main

Figure 7.17 By analyzing the details, we can see that the self-execution time is not that long,

Total Time (CPU)

Hame Total Tme
|4/ I Monitor Ctrl-B reak [] 51,996 ms (100%) (NN 51,996 ms (100%)
= &2 _Producer === 48,598 ms (100%) N 22,847 ms (100%
= ¥ main.Producerrun () [] 48,598 ms (100%) [N 22,847 ms (10
@ java.ang.Object. wait () _ 0.0 ms
(5 java.utibgging.Logger.info) || 21,543 ms (44.3 21,543 ms (9
i (B Self time | 1,494 ms (2.1 1,102 ms (4.8%
- {9 java.ang.Cbject. notifyAlllnative] () 100 ms | 100 ms {04
@ java.ang.invoke.Invokers$Holder.inkToTarg 100 ms (0.2 100 ms
- 5 _consumer B 47100 ms (100%) [N 24,053 ms (100%
] 3,397 ms (100%) 0.0ms (%)

but the thread is blocked and thus waits for a longer time.

Analyzing waiting threads 177

We continue by profiling for more detail (figure 7.18). Indeed, the profiling results
show fewer locks, but that doesn’t help much since the execution is much slower.

Note that the number of locks decreased.
Even so, the total execution time increased.

& main.Main (pid 18004) X |
E Overview @ Monitor El Threads :Q': Sampler @ Profiler

main.Main (pid 18004)
Profier

Profile: @ cru @ vem... B insc Bl Locks Bl stop

Status: application terminated

Profiing results
Results: @ E@ View by: Threadsw

Locks and Threads Time) Waits \ -

= was blocked by 851,447 ms (59.1%) 576

. @[5 java.uti ArrayList (236c4857) 851,447 ms (50.1%) 576

= held 589,818 ms (40.9%) 456

El @ java.util. ArrayList (236c4857) 589,818 ms 456

= CZ_Producer 500,149 ms 464
" B held 851,425 ms | 572
. - [&)] java.uti. ArrayList (236c4857) 851,425 ms (59.1%) 572

E‘ was blocked by 590,149 ms (40.9%) 464

- (&3] java.util ArrayList (236c4557) 590,149 ms (40.9%) 464

[1-] [0 Reference Handler 94.8 ms 2
|’£| LD Common-Cleaner 33.2 ms (0%} |

Figure 7.18 The lock pattern is similar to our previous results, but the threads are locked less
frequently.

Figure 7.19 shows the same investigation details obtained using JProfiler. In JProfiler,
once we group the lock events by threads, we get both the number of locks and the
waiting time. In the previous exercise, the waiting time was zero, but we had many
more locks. Now we have fewer locks but a longer waiting time. This tells us that the
JVM changes more slowly between threads when using a wait/notify approach than
when allowing the threads to get naturally locked and unlocked by the monitor of a

synchronized block.

178

CHAPTER 7 Investigating locks in multithreaded architectures

€ Local attach [3] - JProfiler 12.0.4

Session View Profiling Window Help

P & H

Detach Session

Save

Center Snapshot Settings

Session

! Telemetries
;ﬁ] Live Memory
% Heap Walker
I CPU Views
—
Threads
s
{D Monitors & Locks
Current Locking Graph
Current Monitors
Locking History Graph
Monitor History

Monitor Usage Statistics

H 8B T S &%
Start Start Add

St
: e "t RunGeC
Recordings Recordings Tracking

Bookmark

Profiling

Monitor Usage Statistics Grouped by Threads

Threads
_Consumer [main]
_Producer [main]

—_ 5 | N
: Q -]
View Calculate

Export Hel
PO Settings P | statistics

Stop
Monitors

View Specific

Block Duration
782 ms
825 ms

- Block Count
555
574

With JProfiler, you find both the number of
lock events and the number of wait events.

Wait Count
8,951
8,900

‘Wait Duration
641 ms
690 ms

Figure 7.19 We get the same details using JProfiler. Fewer threads are locked, but now they are blocked for a

much longer time.

This is exactly why you should never trust an optimization just because it sounds good—
always measure its actual effect! Profiling tools are your best friend here, giving you hard
data instead of gut feelings. They help you see what’s really happening under the hood—

whether your changes are genuine improvements or just well-dressed performance
killers. And if analyzing all that data feels overwhelming, Al-powered tools can step in,

helping you interpret the results, spot bottlenecks, and even suggest smarter approaches.

Summary

A thread can be locked and forced to wait by a synchronized block of code. Locks

appear when threads are synchronized to avoid changing shared resources

simultaneously.

Locks are needed to avoid race conditions, but sometimes apps use faulty thread
synchronization approaches, which can lead to undesired results such as perfor-

mance problems or even app freezes (in the case of deadlocks).

Locks caused by synchronized code blocks slow down the app’s execution
because they force threads to wait instead of letting them work. Locks may be

needed in certain implementations, but it’s better to find ways to minimize the

time an app’s threads are locked.

Summary 179

We can use a profiler to identify when locks slow down an app, how many locks the
app encounters during execution, and how much they slow down performance.
When using a profiler, always sample the execution first to figure out if the app’s
execution is affected by locks. You’ll usually identify locks when sampling by
observing that a method is waiting on itself.

If you find by sampling that locks may be affecting the app’s execution, you can
continue investigating using lock profiling (instrumentation), which will show
the threads affected, the number of locks, the monitors involved, and the rela-
tionship between locked threads and threads that cause the locks. These details
help you decide if the app’s execution is optimal or if there are any ways to
enhance it.

Each app has a different purpose, so there’s no unique formula for understand-
ing thread locks. In general, we want to minimize the time threads are locked or
waiting and make sure threads are not unfairly excluded from execution (starv-
ing threads).

Investigating deadlocks
with thread dumps

This chapter covers

Getting thread dumps using a profiler

Getting thread dumps using the command line
Reading thread dumps to investigate problems
Enhancing thread-dumps investigations with Al

Picture this: You’re at your favorite coffee shop, about to enjoy a well-earned break.
You order a cappuccino, and just as you’re about to pay, the cashier’s system freezes.
The barista taps the screen, then tries again. Nothing happens. Meanwhile, the
queue behind you is growing.

Behind the counter, two cash registers are blinking with error messages. It turns
out, register A is waiting for register B to confirm a payment, while register B is wait-
ing for register A to process it first. Neither register can proceed, and the entire
coftee shop grinds to a halt. Baristas glance at each other helplessly. Customers sigh.
Someone dramatically proclaims, “I just wanted coffee!”

Congratulations, you’ve just witnessed a deadlock—only instead of two software
threads, it’s two cash registers locked in an eternal standoff. And a reboot or some
clever debugging to break the cycle is the only way to fix it.

180

8.1

Getting a thread dump 181

Now, imagine a similar situation happening inside a Java application. Multiple
threads get stuck waiting for each other, and your app stops responding. How do you
figure out what went wrong? That’s where thread dumps come in.

A thread dump captures the state of all threads in a JVM at a particular moment. It
helps us diagnose deadlocks, high CPU usage, slow performance, and other threading
problems by showing which threads are running, waiting, or being stuck. Unlike profil-
ing techniques discussed in chapters 5 through 7, which rely on sampling over time, a
thread dump provides a snapshot of execution at a single point—crucial when an appli-
cation is completely frozen.

This chapter explores how to generate and analyze thread dumps to identify prob-
lems such as deadlocks and performance bottlenecks. By the end of it, you’ll learn you
how to use the tools to diagnose and resolve thread-related problems before they bring
down your metaphorical coffee shop. And since thread dumps can be sometimes large
and cryptical, I'll show you how to make things easier using some Al assistance.

Getting a thread dump

This section analyzes ways to obtain a thread dump. We’ll use a small application that
intentionally creates deadlocks. You can find this app in project da-ch8-exl. We’ll
run this app and wait for it to freeze (this should happen in a few seconds), and then
we’ll discuss multiple ways to get thread dumps. Once you learn how to obtain thread
dumps, we discuss how to read them (section 8.2).

Let’s examine how the app we’ll use is implemented and why its execution causes
deadlocks. The app uses two threads to change two shared resources (two listinstances).
A thread named the "_Producer" adds values to one list or another during execution.
Another thread called the "_Consumer" removes values from these lists. If you read chap-
ter 6, you may recall we worked on a similar app. But since the app’s logic is irrelevant
to our example, I've omitted it from the listings and kept only the partimportant to our
demonstration—the synchronized blocks.

The example is simplified to allow you to focus on the investigation techniques. In a
real-world app, things usually get more complicated. Also, wrongly used synchronized
blocks are not the only way to get into deadlocks. Faulty use of blocking objects such
as semaphores, latches, or barriers can also cause such problems. But the steps used to
investigate the problems are the same.

Inlistings 8.1 and 8.2, notice that the two threads use nested synchronized blocks with
two different monitors: 1istA and 1istB. The problem is that one of the threads uses
monitor listA for the outer synchronized block, while 1istB is used for the inner. The
other thread uses them in reverse order. Such code design leaves room for deadlocks.

Listing 8.1 Using nested synchronized blocks for the "_Consumer" thread

public class Consumer extends Thread {

// Omitted code

182 CHAPTER 8 Investigating deadlocks with thread dumps

@0verride

public void run() {
while (true) { The outer synchronized block

synchronized (Main.listA) { uses the listA monitor.

synchr‘on:.i.zed (Main.listB) { The inner synchronized block
work() ; uses the listB monitor.

}
F
}
}

// Omitted code
}

In listing 8.1, the "_Consumer" thread uses listA as the monitor for the outer synchro-
nized block. In listing 8.2, the "_Producer" thread uses the same monitor for the inner
block, while the 1istB monitor is also swapped between the two threads.

Listing 8.2 Using nested synchronized blocks for the "_Producer" thread

public class Producer extends Thread {
// Omitted code

@0verride
public void run() {

Random r = new Random();
while (true) { The listB monitor is used by

synchronized (Main.listB) { the outer synchronized block.

synchronized (Main.listA) { The listA monitor is used by
work(r); the inner synchronized block.

I
I
F

// Omitted code
}

Figure 8.1 shows how the two threads can run into a deadlock.

8.1.1 Getting a thread dump using a profiler

What do we do when we have a frozen app and want to identify the problem’s root
cause? Using a profiler to analyze the locks is unlikely to be effective in a scenario
where the app, or part of it, is frozen. Instead of analyzing the locks during execution
as we did in chapter 6, we’ll take a snapshot just of the app’s thread states. We’ll review
this snapshot (i.e., thread dump) and identify which threads are interacting with each
other, causing the app to freeze.

812

Getting a thread dump 183

1. Suppose that, while running, two threads enter the outer synchronized
block but don’t go into the inner synchronized block. The arrows
indicate where each thread is during the execution.

Consumer thread Producer thread
synchronized (Main.listA) { synchronized (Main.listB) {
~af— af—
synchronized (Main.listB) { synchronized (Main.listA) {
work () ; work () ;
} }

} }

2. In such a case, neither thread can continue its 3. The producer thread can’t reach the end
execution. The consumer cannot continue into of the outer synchronized block since it
the inner synchronized block since monitor needs to first enter the inner synchronized
"listB" is acquired by the producer thread. block, but it cannot because monitor
Monitor "1istB" should be released first, "listA" is acquired by the consumer.

meaning that the producer thread should
reach the end of the block.

Figure 8.1 If both threads enter the outer synchronized block, but not the inner one, they remain stuck
and wait for each other. We say that they went into a deadlock.

You can obtain a thread dump either by using a profiling tool (e.g., VisualVM, JPro-
filer) or by directly calling a tool provided by the JDK using the command line. In this
section, we’ll discuss how to obtain a thread dump using a profiler, and in section 8.1.2,
you’ll learn how to get the same information using the command line.

We’ll start our application (project da-ch8-ex1) and wait a few seconds for it to enter
a deadlock. You’ll know the app gets into a deadlock when it no longer writes messages
in the console (it gets stuck).

Getting a thread dump using a profiler is a simple approach. It’s no more than the
click of a button. Let’s use VisualVM to get a thread dump. Figure 8.2 shows the Visual
VM interface. You can see that VisualVM is smart and that it figured out that some of the
threads of our process ran into a deadlock. This is indicated in the Threads tab.

After the thread dump is collected, the interface looks like figure 8.3. The thread
dump is represented as plain text, describing the app threads and providing details
about them (their state in the life cycle, who blocks them, etc.).

Generating a thread dump from the command line

A thread dump can also be obtained using the command line. This approach is partic-
ularly useful when you need to get a thread dump from a remote environment. Most of
the time, you won’t be able to remote profile an app installed in an environment (and
remember, remote profiling and remote debugging aren’t recommended in a produc-
tion environment, as discussed in chapter 6). Since in most cases you can only access a

184

&5 man Man (pid 14208)

CHAPTER 8 Investigating deadlocks with thread dumps

VisualVM indicates a deadlock.
the Thread Dump button.

(&} Profier

[overview [montar

Z main.Main (pid 14208)

hresds £ cample

To get a thread dump, click

o

Figure 8.2 When
some of the app’s
threads get into a
deadlock, VisualVM
indicates the

Threads [Thraeds veuskzation) A 3
situation with a
Live threads: 16 Doadkck detected! .
Baunin thiaersid T A A Tcad Doy message in the
Threads tab.
Temakna x .
a Notice that both
Show: Threads = mene: & e
sl AR . the _"_Consumer"
ll:\lldrms 5:00:15 PM Running Total - and _"_Producer”
—Consumer oms 52023 ms
O _Producer i ms 52023 ms threads are locked on
Attach Lstenar I 52.023 ms 52,023 ms the graphic timeline.
O common-Cleanear ams {0%) 52023 ms TO get a thread dump
Destroylavaii I 52073 ms (100%) 52,023 ms . ’
Iptpotangs S SR e you simply select the
Thread Dump button
In the threads table, you can see that both in the window’s
the consumer and producer threads are waiting. .
upper-right corner.
The thread dump shows information about
each active thread. You find the producer and
consumer threads in the generated thread dump.
5 main.Main [pid 14208) % b
B overview [Montor [Z3 Thieads 2% Sampler| 53 Profier B [throsddump] 5:00:54 P %
Z main.Main (pid 14208)
Thread Dump
nYNoC € cpu=0.00ma olapacd=6E€.255 cid=0xDOO002LAE462ddol nid=Oxé5ac ru ale
=55.195 Tid=0x000002LEe450TE50 nid=0Uxcac walting £or RmODALOI =ntIry [0x000000fa5c=2£000]

a TIA=0AATA0ATEEAGERNED nid=0Ks

=0 cpu=l24.00ms elepred=94.1%s tid=UxU0C0U2tstebidtd) nid=0xicll walbing on condition (Ox00000000

Figure 8.3 A thread dump in plain text that describes an app’s threads. In the thread dump we
collected, we can find the two deadlocked threads "_Consumer" and " _Producer".

Getting a thread dump 185

At first, you might not understand the thread
dump text in figure 8.3. Later in this chapter,
you'll learn how to read it.

remote environment using the command line, you need to know how to get a thread
dump this way, too.
Fortunately, getting a thread dump using the command line is quite easy (figure
8.4):
Find the process ID for which you want a thread dump.
Get the thread dump as text data (raw data) and save it in a file.

Load the saved thread dump to make it easier to read in a profiler tool.

Step 2

Get the thread dump,
jstack 14208.

Step 1

Step 3
Open the thread dump.

1

Find the process ID,
jps -l

Figure 8.4 Follow these simple steps to get a thread dump using the command line. First, find the
process ID for which you want the thread dump. Second, use a JDK tool to get the thread dump. Finally,
open the thread dump in a profiling tool to read it.

STEP 1: FIND THE PROCESS ID FOR THE PROCESS UNDER INVESTIGATION

Thus far, we have identified the process we want to profile using its name (represented
as the main class’s name). But when getting a thread dump using the command line,
you need to identify the process using its ID. How do you get a process ID (PID) for
a running Java app? The simplest way is using the jps tool provided with the JDK.

186

CHAPTER 8 Investigating deadlocks with thread dumps

The next snippet shows the command you need to run. We use the -1 (lowercase “L”)
option to get the main class names associated with the PIDs. This way, we can identify
the processes the same way we did in chapters 5-7 where we learned to profile an app’s
execution:

jps -1

Figure 8.5 shows the result of running the command. The numeric values in the out-
put’s first column are the PIDs. The second column associates the main class name with
each PID. This way, we get the PID that we’ll use in step 2 to obtain the thread dump.

Use the jps tool provided with the
JDK to find a Java process ID (PID).

Identify the process
¥ Command Prompt by the fully qualified
main class name.

C:\Program Files‘Java\jdk-17.8.1\bin>jps -1
14288 main.Main
25872

132 jdk.jcmd/sun.tools.jps.Jps

25788 org.jetbrains.jps.cmdline.Launcher

26804 org.jetbrains.idea.maven.server.RemoteMavenServer36
25164 org/netbeans/Main

C:\Program Files‘Java\jdk-17.8.1\bin>

Figure 8.5 By using the jps tool provided with the JDK, we get the PIDs of the running Java processes.
These PIDs are necessary to get thread dumps for a given process.

STEP 2: COLLECT THE THREAD DUMP

Once you can identify (by its PID) the process for which you want to collect a thread
dump, you can use jstack, another tool the JDK provides, to generate a thread dump.
When using jstack, you only need to provide the process ID as a parameter (instead of
<<PID>>, you need to use the PID value you collected in step 1):

jstack <<PID>>
An example of such a command execution is

jstack 14208

Figure 8.6 shows you the result of running the jstack command followed by a PID.
The thread dump is provided as plain text you can save in a file to move or load into a
tool for investigation.

Reading thread dumps 187

Use the jstack tool provided with the DK to get a thread dump.
The only mandatory parameter is the process ID (PID) for the
process you want to generate the thread dump.

B Command Prompt l\) - m] X
~

C:\Program Files\Java\jdk-17.8.1\bin>jstack 14288
2821-12-81 17:1@:51
Full thread dump Open]DK 64-Bit Server VM (17.0.1+12-39 mixed mode, sharing):

Threads class SMR info:

_java_thread list-0xB860882f96843b118, length=25, elements={

0x000002f0646Taate, 6x000082T0646Tclle, Ox800602T096476eC2B, Ox0B0002T0647167e0,
BxB686862f064713a40, Bx008662T0647186908, Ox8B808602f0964719cbB, BxB88862f064712758,
0x0008027090472:0b0, Bx008082T0647c88bE, Ox800802T504921588, Ox0800021964092dded,
9x000002064987690, ©x000002196493b030, 6x000002f%2ebSdfde, @xe@eee2fo65cbscen,
Bx608082f906f07450, Bx00BBO2T967087840, Ox0800802f060b66batad, OxBEOEB2T096747£068,
0x000002T06747T870, 6x000082T067471d40, Ox800602T064a76016, Ox080002T064a746C8,
©x686862f967488218

}

"Reference Handler" #2 daemon prio=1@ os prio=2 cpu=8.88ms elapsed=692.87s tid-@xeeeee2f9e4b6faafe nid=6x6888 waiting on
condition [exeeeeeefesclffeas]
java.lang.Thread.State: RUNNABLE
at java.lang.ref.Reference.waitForReferencePendinglist(java.base@l?.@.1/Native Method)
at java.lang.ref.Reference.processPendingReferences(java.base@l7.@.1/Reference.java:253)
at java.lang.ref.Reference$ReferenceHandler.run(java.base@l7.8.1/Reference.java:215)

"Finalizer" #3 daemon prio=8 os_prio=1 cpu=8.88ms elapsed=692.87s5 tid-8x808882f9646fc118 nid=6x5fa8 in Object.wait() [@
x@eeeeefesc2ffees]
java.lang.Thread.State: WAITING (on object monitor)
at java.lang.Object.wait(java.base@l7.@.1/Native Method)
- waiting on <@x@00008053131864@> (a java.lang.ref.ReferenceQueue$lock)
at java.lang.ref.ReferenceQueue.remove(java.base@l7.8.1/ReferenceQueus. java:155)
- locked <@ 531818646> (a java.lang.ref.ReferenceQueueflock) v

Figure 8.6 The jstack command followed by a PID will generate a thread dump for the given process. The thread
dump is shown as plain text (also called a raw thread dump). You can collect the text in a file to import it and
investigate it later.

STEP 3: IMPORT THE COLLECTED THREAD DUMP INTO A PROFILER TO MAKE IT EASIER TO READ
Usually, you save the output of the jstack command, the thread dump, into a file. Stor-
ing the thread dump in a file allows you to move, store, or import it into tools that help
you investigate its details.

Figure 8.7 shows how you can place the output of the jstack command in a file in
the command line. Once you have the file, you can load it in VisualVM using the File >
Load menu.

8.2 Reading thread dumps

Imagine you’ve just received a thick stack of printed medical records—pages upon
pages of test results, doctor’s notes, and mysterious abbreviations. You could call a spe-
cialist to decode them for you, but what if they’re unavailable? You’d better brush up
on your medical jargon.

Thread dumps are similar. When your application freezes, crashes, or behaves oddly,
you collect a thread dump—but then what? It’s a dense wall of text, filled with stack
traces, thread states, and synchronization details. Fortunately, you don’t have to decode
everything manually. Tools such as fastThread (https://fastthread.io/) can visualize
the data for you, much like a medical professional summarizing your test results.

https://fastthread.io/

188

821

CHAPTER 8 Investigating deadlocks with thread dumps

A good approach is to put the contents jstack outputs into
a file so that you can save it, send it, and investigate it.

C:\Program Files\Jawva\jdk-17.@.1\bin>jstack 14288 > C:\MANNINGS\stack trace.tdump

C:\Program Files\Jawva\jdk-17.@.1\bin>»

You can open a saved thread dump in any profiler
to easily read it. For example, in VisualVM, you
can open it using File > Load.

1#7 VisualVM 2.1.1
File | Applications View Tools Window ._Help_

(&5 Load..

& SaveAs. n.Main (pid 14208) X |
Load Recent 3| 1
lerview @Mun'rtor |

Delete Delete

ain.Main (nid 1420

Figure 8.7 Once you save the thread dump into a file, you can open it in various tools to investigate it.
For example, to open it in VisualVM, you select File > Load.

And, of course, there’s Al. Al-powered assistants can now parse thread dumps, highlight
problematic threads, and even suggest possible causes of deadlocks or performance
problems. But while Al is a great helper, it’s not perfect—sometimes, it misinterprets
the data, or the best tools aren’t available in your environment. That’s why knowing
how to read a plain-text thread dump manually is still an essential skill.
This section covers both approaches:
Section 8.2.1—Reading raw thread dumps as generated by jstack (see section
8.1.2)
Section 8.2.2—Using fastThread to visualize and analyze thread dumps more
easily.
While we all love good visualizations, there are times when you won’t have access to
advanced tools. In those cases, your ability to manually dissect a thread dump can
mean the difference between resolving a problem faster or staring at a frozen app in
despair. Let’s dive in!

Reading plain-text thread dumps

When you collect a thread dump, you get a description of the threads in plain-text for-
mat (i.e., raw data). Although we have tools you can use to easily visualize the data (see

Reading thread dumps 189

section 8.2.2), I've always considered it important for a developer to understand the
raw representation as well. You may encounter a situation where you can’t remove the
raw thread dump from the environment you generated it in. Say you connect to a con-
tainer remotely and can only use the command line to dig into the logs and investigate
what happens with the running app. You suspect a thread-related problem, so you want
to generate a thread dump. If you can read the thread dump as text, you need nothing
more than the console itself.

Let’s look at listing 8.3, which shows one of the threads in the thread dump. It is
nothing more than similarly displayed details for each thread active in the app when
the dump was taken. Here are the details you get for a thread:

Thread name—The name assigned to the thread, which helps you identify it in
logs and debugging tools

Thread ID—A unique identifier assigned to the thread by the Java Virtual Machine
(JVM)

Native thread ID—The identifier assigned to the thread by the operating system,
useful for low-level debugging

Priority of the thread at the operating system level—The priority level set for the thread,
which influences how the OS schedules its execution

Total and CPU time the thread consumed—The total execution time of the thread
and the amount of CPU time it has used

State description—A detailed explanation of the thread’s current execution status

State name—The standardized state of the thread, such as runnable, waiting, or
blocked

Stack trace—A snapshot of the method calls that the thread is currently executing

Who's blocking the thread—Information about any other thread preventing this
particular thread from proceeding

What locks the thread acquires—A list of synchronization locks the thread currently
holds, which can help diagnose deadlocks or contention problems

Listing 8.3 The anatomy of a thread’s details in a thread dump

Thread stack trace
Thread state

Thread ID and state description

Thread name and details about resource
consumption and execution time

"_Producer" #16 prio=5 os_prio=0 cpu=46.88ms elapsed=763.96s
t1d=0x000002f964987690 nid=0xcac waiting for monitor entry
[0x000000fe5ceff000]

java.lang.Thread.State: BLOCKED (on object monitor) -
at main.Producer.run(Unknown Source) D

190

CHAPTER 8 Investigating deadlocks with thread dumps

- waiting to lock <0x000000052e0313f8> (a java.util.ArraylList)
- locked <0x000000052e049d38> (a java.util.Arraylist)

Lock ID of the lock produced
by the current thread

Lock ID that blocks the current thread
and type of the monitor object

The first thing displayed is the thread name—in our case, "_Producer". The thread
name is essential as it’s one of the ways you identify the thread in the thread dump
later if you need it. The JVM also associates the thread with a thread ID (in listing 8.3,
tid=0x000002f964987690). Since the developer gives the name, there’s a small chance
some threads will be named the same. If this unlucky situation happens, you can still
identify a thread in the dump by its ID (which is always unique).

In a JVM app, a thread is a wrapper over a system thread, meaning you can always
identify the operating system (OS) thread running behind the scenes. If you ever need
to do that, look for the native thread ID (nid=8xcac in listing 8.3).

Once you have identified a thread, you identify the details you are interested in. The
first three pieces of information you get in a thread dump are the thread’s priority, the
CPU execution time, and the total execution time. Every OS associates a priority to each of
its running threads. I don’t often use this value in a thread dump. But if you see that a
thread isn’t as active as you think it should be, and you see that the OS designates it as
a lower priority, then this may be the cause. In this situation, the total execution time
would also be much higher than the CPU execution time. Remember from chapter 6
that the total execution time is how long the thread was alive, while the CPU execution
time is how long it worked.

State description is a valuable detail. It tells you in plain English what happens to the
thread. In our case, the thread is “waiting for monitor entry,” meaning it is blocked at
the entrance to a synchronized block. The thread could have been “timed waiting on a
monitor,” which would mean it’s sleeping for a defined time or is running. A state name
(running, waiting, blocked, etc.) is associated with the state description. Appendix D
offers a good refresher on thread life cycle and thread states in case you need it.

The thread dump provides a stack trace for every thread, which shows exactly what
part of the code the thread was executing when the dump was taken. The stack trace
is valuable since it shows you exactly what the thread was working on. You can use the
stack trace to find a specific piece of code you want to further debug, or in the case of a
slow thread, determine exactly what delays or blocks that thread.

Finally, for threads that acquire locks or are locked, we can find which locks they acquire
and which locks they are waiting for. You’ll use these details every time you investigate a
deadlock. They can also give you optimization hints. For example, if you see that a
thread acquires many locks, you may wonder why and how you can change its behavior
so thatit doesn’t block so many other executions.

It is important to remember that thread dumps give you almost as many details as
normal lock profiling (discussed in chapter 7). Lock profiling offers one key advantage

Reading thread dumps 191

over a thread dump: it shows execution dynamics. It’s like the difference between a
security camera feed and a single frame from that feed—profiling gives you the full
movie, showing how events unfold, while a thread dump is just a single snapshotin time.

Of course, sometimes, all you need is that one snapshot. If you're trying to catch a
raccoon sneaking into your kitchen at night, a full recording would be nice—but if your
security cam grabs a picture of the little bandit mid-cookie theft, you already have your
culprit. Likewise, while profiling can give you a dynamic view of execution, a well-timed
thread dump can still be enough to catch a problem in the act. And as a bonus, it’s
much easier to obtain than full profiling data.

Sometimes it is enough to use
a thread dump instead of a profiler.

If you only need to know what is executed by code at a given time, a thread dump is
sufficient. You have learned to use sampling for this purpose, but it’s good to know a
thread dump can do this, too. Say you don’t have access to remotely profile an app, but
you must find out what code executes behind the scenes. You can get a thread dump.

Let’s now focus on how you can find the relationship between threads with a thread
dump. What methods can we use to analyze how threads interact with one another? We
are particularly interested in threads locking each other. In listing 8.4, I added the details
from the thread dump for the two threads we know are deadlocked. But the question is,
“How would we find they are in a deadlock if we didn’t know this detail up front?”

If you suspect a deadlock, you should focus your investigation on the locks the
threads cause (figure 8.8):

Filter out all threads that are not blocked so you can focus on the threads that
can cause the deadlock.

Start with the first candidate thread (a thread you didn’t filter in step 1), and
search for the lock ID that causes it to be blocked.

Find the thread causing that lock, and check what blocks that thread. If, at some
point, you return to the thread you started with, all the threads you parsed are in
a deadlock.

STEP 1: FILTER OUT THREADS THAT ARE NOT LOCKED
First, filter out all the threads that are not locked so that you can focus only on the
threads that are potential candidates for the situation you are investigating—the

192 CHAPTER 8 Investigating deadlocks with thread dumps

Thread B blocked | -—— - ——————

Step 2
. Find out who locks the
. T first thread.
. I
I
l Thread A blocked
X - Waiting to lock <0x000000052e0313f8>
I
' Thread D blocked
Step 1 - Locked <0x000000052¢0313f8>
Eliminate the threads A .
you don’t need to \ !
investigate. 1 :
1 I
Thread A blocked : i
4 I
\

Thread D blocked I
—TFhread-E-running— Step 3

Repeat the process until
you find the deadlock or
do not have more threads
to investigate.

Thread D blocked
- Waiting to lock <0x000000052e049d38>

Thread A blocked
- Locked <0x000000052e049d38>

Figure 8.8 To find a deadlock with a thread dump, follow these three easy steps. First, remove all
threads that are not blocked. Then, start with one of the blocked threads and find what is blocking
it using the lock ID. Continue this process for each thread. If you return to a thread you already
investigated, it means you found a deadlock.

deadlock. A thread dump can describe dozens of threads. You want to eliminate the
noise and focus only on the blocked threads.

STEP 2: TAKE THE FIRST CANDIDATE THREAD AND FIND WHAT BLOCKS IT

After eliminating the unnecessary thread details, start with the first candidate thread
and search by the lock ID that causes a thread to wait. The lock ID is the one between
angle brackets (in listing 8.4, "_Producer" waits for a lock with ID 0x000000052e03138).

STEP 3: FIND WHAT BLOCKS THE NEXT THREAD

Repeat the process. If at some point you get to a thread that was already investigated,
you’ve found a deadlock (see the following listing).

Listing 8.4 Finding threads that lock each other

"_Producer" #16 prio=5 os_prio=0 cpu=46.88ms
elapsed=763.96s tid=0x000002f964987690
nid=0xcac waiting for monitor entry [0x000000fe5ceff000]
java.lang.Thread.State: BLOCKED (on object monitor)

Reading thread dumps 193

at main.Producer.run(Unknown Source) The “_Producer” thread
- waiting to lock <O0x000000052e0313f8> waits for a lock initiated by
(a java.util.Arraylist) the “_Consumer” thread.
- locked <0x000000052e049d38>
(a java.util.Arraylist) The “_Consumer” thread
waits for a lock initiated by
"_Consumer" #18 prio=5 os_prio=0 cpu=0.00ms the “ Producer” thread.

elapsed=763.96s tid=0x000002f96498h030
nid=0x4254 waiting for monitor entry [0x000000fe5cfff000]
java.lang.Thread.State: BLOCKED (on object monitor)
at main.Consumer.run(Unknown Source)
- waiting to lock <0x000000052e049d38> (a java.util.ArraylList)
- locked <0x000000052e0313f8> (a java.util.Arraylist) -«

Our example demonstrates a simple deadlock that assumes two threads lock each
other. Following the three-step process discussed earlier, you’ll see that the "_Producer"
thread blocks the "_Consumer" thread, and vice versa. A complex deadlock happens
when more than two threads are involved. For example, thread A blocks thread B,
thread B blocks thread C, and thread C blocks thread A. You can discover a long chain
of threads that lock each other. The longer the chain of threads in the deadlock, the
more difficult the deadlock is to find, understand, and solve. Figure 8.9 shows the
difference between a complex deadlock and a simple one.

Simple deadlock

locks
Thread A blocked Thread B blocked
- Waiting to lock <0x000000052e049d38> - Waiting to lock <0x000000052e0313f8>
- Locked <0x000000052¢0313f8> - Locked <0x000000052¢049d38>

locks

Complex deadlock (more than two threads)

Thread A blocked Thread B blocked
- Waiting to lock <0x000000052e049d38> - Waiting to lock <0x000000052e0313f8>
- Locked <0x000000052e0313f8> - Locked <0x000000011d0466a8>
—_—
locks
locks locks

Thread C blocked
- Waiting to lock <0x000000011d0466a8>

- Locked <0x000000052e049d38>

Figure 8.9 When only two threads block each other, it’s called a simple deadlock, but a deadlock can
be caused by multiple threads that block each other. More threads means more complexity. Thus, when
more than two threads are involved, it’s called a complex deadlock.

194

822

CHAPTER 8 Investigating deadlocks with thread dumps

Sometimes a complex deadlock can be confused with cascading blocked threads (figure
8.10). Cascading blocked threads (also known as cascading locks) are a different problem you
can spot using a thread dump. To find cascading threads, follow the same steps as when
investigating a deadlock. But instead of finding that one of the threads is blocked by
another in the chain (as in the case of a deadlock), in a cascade of locks, you’ll see that
one of the threads is waiting for an external event, causing all others to also wait.

Thread A blocked
- Waiting to lock <0x000000052e049d38>

blocked by

Thread B blocked
- Waiting to lock <0x000000052e0313f8>

- Locked <0x000000052e049d38>
blocked by

Thread C blocked
- Waiting to lock <0x000000011aa45bdb2>

- Locked <0x000000052e0313f8> blocked by

Figure 8.10 Cascading locks appear when multiple threads enter a chain where they wait for one
another. The last thread in the chain is blocked by an external event, such as reading from a data source
or calling an endpoint.

Cascading blocked threads usually signal a bad design in the multithreaded architecture.
When we design an app with multiple threads, we implement threading to allow the
app to process things concurrently. Having threads waiting for one another defeats the
purpose of a multithreaded architecture. Although sometimes you need to make threads
wait for one another, you shouldn’t expect long chains of threads with cascading locks.

Using tools to better grasp thread dumps

Reading the plain-text raw representation of a thread dump is useful, but let’s be hon-
est, it can feel like trying to assemble IKEA furniture without the instructions. Sure, the
information is all there, but making sense of it? That’s another story. Most developers
prefer a simpler way to visualize the data, and thankfully, modern tools can help.
Today, Al-powered assistants can analyze thread dumps, highlight problematic
threads, and even suggest possible causes for deadlocks or performance bottlenecks.
You can even upload a thread dump text file to Al assistants such as ChatGPT, Bard, or
Gemini (or whichever similar Al assistant is your favorite) and get insights into which
threads are stuck, which locks might be causing problems, and possible next steps. We

Reading thread dumps 195

did that with sampling and profiling data in chapter 6. While Al doesn’t always get it
right, it can provide valuable clues and save time when diagnosing complex problems.

Another good piece of advice is to use a dedicated GPT for analyzing thread dumps.
For example, if you're using ChatGPT, you can search for a GPT specialized in investi-
gating thread dumps through the Explore GPTs section. Al assistants tailored to spe-
cific tasks like this one often yield better results and enhance your investigation.

Whenever possible, I extract the thread dump from the environment where I collect
it and analyze it externally. My go-to tool for this is fastThread (fastthread.io), which pro-
vides a clear visualization of the dump, saving me from manually sifting through raw data
like someone trying to figure out a correct placement of the 47 identical screws in an
Ikea construction. Of course, Al and visualization tools are great, but it’s always good to
understand the raw format in case you need to dig deeper or when tools aren’t available.

fastThread is a web tool designed to assists users read thread dumps. It offers both
free and paid plans, but the free plan has always been enough for my needs. Simply
upload a file containing the thread dump raw data and wait for the tool to extract the
details you need and put them in a shape that is easier to grasp. Figure 8.11 shows the
starting page, where you choose the file containing the thread dump raw data from
your system and upload it for analysis.

fastThread +ome mos Fewwrs Pricing

Java Thread Dump Analyzer

Troublesboot VM crashes, siowdowns, memory leaks, freszes. CPU Spikes

Upload Thread Dumps Haw

Ohooss Flle |

Faceopt the o

Figure 8.11 To analyze a
thread dump, upload a file
containing the thread dump
raw data to fastThread.io and
wait for the tool to present
To analyze a thread dump, upload the file with the details in a easy-to-

the raw data and then click Analyze. understand shape.

The fastThread analysis shows various details from the thread dump, including dead-
lock detection, dependency graphs, stack traces, resource consumption, and even a
flame graph (figure 8.12).

fastThread.io

196

CHAPTER 8 Investigating deadlocks with thread dumps

After analyzing the thread dump, the tool presents multiple
visualization widgets, such as identifying deadlocks, CPU consumption
per thread, and even a flame graph representation of the process.

e S Thread Dump - Intelligence seseeh
& D Lok . Report
& Ieervicsl Btack Traca | I

[Flla: stack trace. tehump

& maE! Lzan Mathods
@ Tirneatsmps 2021-12-01 171 241

Figure 8.12
fastThread provides
various details in
an easy-to-read
format. These

details include

& CPU Thrzaas
4 Tronehne Greph
T GG Thwacs
@ stackLength

% Curpies Deedioc

B Fintoar T deadlock detection,
@ Bxeption dependency

. graphs, resource
M Thread Count Summary consumption, and a
& Cell Toems

3 T s about diffesset e siatas throuah ree-S mesmabe, sk o thi dden il

flame graph.

Figure 8.13 shows how fastThread identified the deadlock in our thread dump.

The tool identifies the deadlock
and the threads causing it.

Dead Lock

Leam mom about O

Trread _Producer is n ceadiock wih thread _Consumer

_Producer
PRIOAITY : & NATIVE ID [DECIMOL] : 3244
THREAD 1D ; OX000002FIGA98 76 STATE : BLOCKED

NATIVE ID : UXCAC

stacklrace: Figure 8.13 After

java tang. Thieed State. BLOCKED for object monitor

& rrvain. Producer.onf Uninown Sourcs) analyzing the
- wnting Lo loch <0xDO0DD00S2e0313M8: thread dump raw
ok <0xD000D0OB2E048H3E [fm
data, fastThread
identifies and
_Consumer . .
provides details
PRIOAMY : 5 NATIVE 1D {DECIMAL) 1 1685 about the deadlock

THREAD 1D : OXO00D0ZFIE498B030 STATE : BLOCKED

caused by the

MATIVE ID : DX4254

stackTracs:

a0 tamm Tt Cambe B OICKED i mbizet rambee

“_Consumer"
and “_Producer"
threads.

Summary 197

After all, when it comes to investigating thread dumps, having an Al sidekick is like
having Dr. Watson for your Java mysteries, with you playing the role of Sherlock. And
remember, while the Al might not demand tea and biscuits, it’ll still serve you threads
of truth—without the deduction pipe!

Summary

When two or more threads get blocked while waiting for each other, they are in a
deadlock. When an app gets into a deadlock, it usually freezes and can’t continue
its execution.

You can identify the root cause of a deadlock using thread dumps, which show
the status of all threads of an app at the time the thread dump was generated.
This information helps you identify the thread waiting for another.

A thread dump also shows details such as resource consumption and stack traces
for each thread. If these details are sufficient, you can use a thread dump instead
of instrumentation for your investigation. Imagine the difference between a
thread dump and profiling as the difference between a picture and a movie. With
a thread dump, you only have a still image, so you miss the execution dynamics,
butyou can still get a lot of relevant and helpful details.

The thread dump provides information about the threads that were executing
in the app when the dump was taken. The thread dump shows essential details
about the threads in a plain-text format, including resource consumption, thread
state in its life cycle, if the thread is waiting for something, and which locks it’s
causing or being affected by.

You can generate a thread dump using either a profiler or the command line.
Using a profiling tool to get the thread dump is the easiest approach, but when
you can’t connect a profiler to the running process (e.g., due to network con-
straints), you can use the command line to get the dump. The thread dump will
allow you to investigate the running threads and the relationships between them.

The plain-text thread dump (also known as a raw thread dump) can be challeng-
ing to read. Tools such as fastThread.io help you to visualize the details.

fastThread.io

Part 3

Diagnosing
memory-related problems

In the previous part, we looked at problems tied to CPU and execution
flow. But another major source of trouble lies in how an application uses mem-
ory. Memory problems can creep in slowly. They cause the app to slow down,
pause unpredictably, or even crash. And they can appear suddenly in high-load
scenarios.

This part is all about spotting these memory-related problems. We’ll start by
profiling the heap to see which parts of the code are allocating objects and in what
quantities. Then we’ll move on to heap dumps, which are snapshots of everything
in memory. We’ll use them to find leaks, unexpected object retention, or bloated
data structures. Finally, we’ll look at garbage collection logs to understand how
the JVM is reclaiming memory and how tuning or fixing code can help reduce GC
pauses and improve stability.

By the end of this part, you’ll know how to measure memory usage, uncover
leaks, and interpret JVM behavior so you can keep your application running
smoothly.

Profiling memory-
related problems

This chapter covers

Sampling an execution to find memory allocation
problems

Profiling code to identify the root causes of
memory allocation problems

Every app needs memory to function—it’s like a workspace where it lays out all the
tools, papers, and half-empty coffee cups while processing data. But here’s the prob-
lem: that workspace isn’t infinite. Every app running on a system competes for a
share of the same limited memory. And if an app overuses it, it can consume too
much, slow itself down, or even crash entirely when it runs out of resources.
Imagine trying to work at a tiny desk cluttered with files, snacks, and a cat that
refuses to move. That’s what happens when an app mismanages memory—it chokes
on its own inefficiency. If memory allocation isn’t optimized, the app slows down,
struggles to perform, and eventually collapses under the weight of its own excess.
Worst case? It crashes entirely, throwing a dramatic error message as its final words.
Efficient memory management isn’t just about survival but about performance.
An app that uses memory wisely runs smoothly, avoiding unnecessary slowdowns and

201

202

9.1

CHAPTER 9 Profiling memory-related problems

embarrassing system meltdowns. So, unless you want your app to be that colleague who
takes up all the meeting time and then forgets their point, it’s time to manage memory

like a pro.
If the app doesn't allocate the data it processes
| in an optimized way, it may force the GC to run more
ex / often, so the app will become more CPU-consumptive.

An app should be a responsible citizen when it comes to managing its resources. After
all, nobody likes a program that consumes all the CPU and memory, leaving the rest
of the system struggling to keep up. When we talk about an app’s resources, we mainly
refer to two key players: CPU (processing power) and memory. In chapters 5-8, we
rolled up our sleeves and tackled CPU consumption problems. Now it’s time to dive
into the other half of the equation—how an app handles memory allocation.

We kick things off in section 9.1 by exploring memory execution sampling. We then
continue with discussing memory profiling in section 9.2. These will help you spot
whether your app has memory problems and, more importantly, track down the culprit.
Is it an innocent-looking object overstaying its welcome? A memory leak lurking in the
shadows? You’ll soon find out.

Before we dive in, though, it’s important to have a solid grasp of how a Java app allo-
cates and uses memory. If your memory (pun intended) needs a refresher, Appendix E
has your back with all the essential details.

Sampling to identify memory allocation problems

In this section, we use a small application that simulates a faulty implemented capabil-
ity that uses too much of the allocated memory. We use this app to discuss investigation
techniques you can use to identify problems with memory allocation or places in code
that can be optimized to use the system’s memory more efficiently.

Suppose you implement a real-world application and notice that a particular feature
runs slowly. You use the techniques discussed in chapter 5 to analyze resource consump-
tion and find that although the app doesn’t work very often (consume CPU resources),
it uses a large amount of memory. When an app uses too much memory, the JVM can
trigger the garbage collector (GC), which will further consume CPU resources (chapter
6). Remember that the GC is the mechanism that automatically deallocates unneeded
data from memory (see appendix E for a refresher).

Sampling to identify memory allocation problems 203

Look atfigure 9.1. When discussing how to analyze resource consumption in chapter
5, we used the Monitor tab in VisualVM to observe what resources the app consumes.

You can use the memory widget in this tab to find when the app uses an extensive
amount of memory.

Under the Monitor tab, there is a widget that Note a large increase in the used memory

allows you to monitor the app’s memory usage. when calling the app's endpoint. The JVM
also adjusted the heap max size as a result
of the increased memory usage.

H@ com.example.Main (p»dlszml) ><| =

8 overview [monitor = Threads) Sampler €73 Profier

O com.example.Main (pid 5244)

Monitar [cru Memory [] Classes []
Uptime: 0 min 26 sec Perform GC Heap Dump
Heap | Metaspace x

Size: 444,596,256 B Used: 64,030,896 B
Max: 12,826,181,656 B

400MB -
350MB -
300MB
250 MB
200 ME
150MB
100MB -

S50MB

oME

T T T T T T T
4:39:38 PM 4:39:40 PM 4:39:42PM 4:39:44PM 4.39:46 PM 4:39:48 PM 4:39:50 PM

@ Heap size [Used heap

Figure 9.1 The memory widget in the Monitor tab in VisualVM helps to identify whether the app spends more
memory than usual at any given time. Often, widgets in the Monitor tab, such as CPU and memory consumption,
give us clues on how to continue our investigation. When we see that the app consumes an abnormal amount of
memory, we may decide to continue with memory profiling the execution.

The application we use in this chapter is in project da-ch9-ex1. This small web applica-
tion exposes an endpoint. When calling this endpoint, we provide a number, and the
endpoint creates that many object instances. We request the creation of one million
objects (a sufficiently large number for our experiment) and then examine what a
profiler reports about the execution of this request. This endpoint execution simulates

204

CHAPTER 9 Profiling memory-related problems

what happens in a real-world situation when a given app capability consumes a signifi-
cant portion of the app’s memory resources (figure 9.2).

1. We send a request to the endpoint
and ask the app to create one million

instances of type Product. 2. The app creates one million instances

of type Product, which consumes a lot
of memory resources.

/products/1000000 (o B

3. We'll analyze what happens in VisualVM.

Figure 9.2 When we call the endpoint exposed by the provided project da-ch9-ex1, the app creates
many instances that consume a considerable part of the app’s memory. We’ll analyze this scenario using
a profiler.

We’re basically using this endpoint
to fill the app’s allocated memory
and see how VisualVM shows that.

To start the project, follow these steps:
Start project da-ch9-ex1.
Start VisualVM.
Select a process for project da-ch9-ex1 in VisualVM.
Go to the Monitor tab in VisualVM.
Call the /products/1000000 endpoint.
Observe the memory widget in the Memory tab in VisualVM.

Sampling to identify memory allocation problems 205

In the Monitor tab in the memory widget, you can see that the app uses a lot of memory
resources. The widget looks similar to figure 9.1. What should we do when we suspect
some app capability doesn’t optimally use the memory resources? The investigation
process follows two major steps:

Use memory sampling to get details about the object instances the app stores.

Use memory profiling (instrumentation) to get additional details about a specific
part of the code in execution.

Let’s follow the same approach you learned in chapters 5-8 for CPU resource con-
sumption: get a high-level view of what happens using sampling. To sample an app exe-
cution for memory usage, select the Sampler tab in VisualVM. Then select the Memory
button to start a memory usage sampling session. Call the endpoint and wait for the
execution to end. The VisualVM screen will display the objects the app allocates.

We are looking for what occupies most of the memory. In most cases, that will be one
of these two situations:

Many object instances of certain types are created and fill up the memory (this is
what happens in our scenario).

There are not many instances of a certain type, but each instance is very large.

Many instances filling up the allocated memory makes sense, but how could a small
number of instances do this? Imagine this scenario: your app processes large video
files. The app loads maybe two or three files at a time, but since they are large, they
fill the allocated memory. A developer can analyze whether the capability can be opti-
mized. Maybe the app doesn’t need the full files loaded in memory but just fragments
of them at a time. In such a case, you'll also notice the specific patterns of insufficient
memory in the GC logs, which we’ll discuss in chapter 11.

When we start our investigation, we don’t know which scenario we’ll fall into. I usu-
ally sort, in descending order, by the amount of memory occupied and then by the
number of instances. Notice in figure 9.3 that VisualVM shows you the memory spent
and the number of instances for each sampled type. You need to sort, in descending
order, by the second and the third columns in the table.

Figure 9.3 clearly shows that I sorted the table in descending order by Live Bytes
(space occupied). We can then look for the first type in our app’s codebase that appears
in the table. Don’t look for primitives, strings, arrays of primitives, or arrays of strings.
These are usually at the top since they are created as a side effect. However, in most
cases, they don’t provide any clues about the problem.

Figure 9.3 clearly shows that type Product is causing trouble. It occupies a large part
of the allocated memory, and in the Live Objects column, we see that the app created
one million instances of this type.

If you need the total number of instances of the type created throughout execu-
tion, you must use profiling (instrumentation) techniques. We’ll do this later in this
chapter.

206 CHAPTER 9 Profiling memory-related problems

2. Find the first object type that belongs
to your codebase or a library that your
app uses. Don’t look for types coming

1. Sort in descending order
by allocated memory.

from the JDK.
[& com.example.Main (pid 16584) | > o
G Overview @ Montor [=| Threads :&;{'ﬁ Sampler @ Profier
-~
'« com.example.Main (pid 16584)
Sampler [] settings
Status: memory sampling in progress
Heap histogram | Perthread allocations
Results: @ ?E& @ ‘ Colected data: ﬁl Snapshpt l Perform GC Heap Dump
Name Live Bytes Live Objects -
v) java.lang. O bject[] [] 51,069,312 8 1,200,133 (22.1%)
< Q’b]ava.utﬂ.TreeMapsEntry W! 34,362,960 8 (168 859,074 (14.7%)
Ly 2 int[] 1 20,376,384 8 | 14,877
.‘ﬁ com.example.modelProduct I] 16,000,000 B (7
(&) java.io. ObjectStreamClass$WeakClassk ey] 14,747,296 B 460,853
() java.ong. Integer | 10,324,048 B 645,253 (11
& byte[] 9,064,200 B 106,141 (1.8%)
£ java.util TreeMap$KeyIterator] 6,340,512 B 198,141
(& java.util TreeMap 4,647,600 B 96,825
£ java.ang. StackT race lement 3,887,040 B 80,980
(¢ java.util TreeMapSEntryTterator 3,226,688 B 100,834
(5 java.o. SeralCallbackContext 2,454,744 B 102,281
(& java.uti. Collections$ ifiableC jon$1 2,434,656 B 101,444
&Javax.management.npenmheanCompositeDataSupport 2,322,480 B (1.1%) 96,770
& java.ong. String 1,810,176 B 75,424
1,790,736 B (0.99 6,328

ﬁ‘_, char[]
A

3. Ignore primitives, arrays
of primitives, or DK objects.

Figure 9.3 We sort the sampled results in descending order by memory occupied. This way, we can see which
objects consume most of the memory. We don’t usually look for primitives, strings, and arrays of strings or JDK
objects in general. We are mostly interested in finding the object directly related to our codebase, that is causing
the problem. In this case, the Product type (which is part of our codebase) occupies a large part of the memory.

The profiling tool names them live objects
because sampling only shows you the
e instances that still exist in the memory.
L o) /

vl
A

f

5

Profiling to find the culprit 207

This app is just an example, but in a real-world app, simply sorting by the occupied
space may not be enough. We need to figure out whether the problem is a large num-
ber of instances or whether each instance takes a lot of space. I know what you’re think-
ing: Isn’t it clear in this case? Yes, but it may not be in a real-world app, so I always
recommend that developers also sort in descending order by the number of instances
to make sure. Figure 9.4 shows the sampled data sorted in descending order by the
number of instances the app created for each type. Again, type Product is at the top.

2. Find the first object type that belongs 1. Sort in descending order by the number
to your codebase or a library that your of object instances (live objects).
app uses. Don’t look for types coming
from the JDK.
|Q com.example.Main (pid 16584) X‘ ¥ O

B Overview @ Monttor = Threads n&}: Sampler (E’) Profiler
& com.example.Main (pid 16584)

Sampler [] settings

Sample: @ CPU @ Stop

Status: memory sampling in progress

Heap histogram | Per thread allocations

201,616

ﬁ; java.util. TreeMap$KeyIterator 6,451,712 8B

Resuks: (@) TY [B] | colected data: [F] sngpshot ¥ Perform GC Heap Dump
Name Live Bytes Live Objects) hd
[java.lang. 0 bject(]] 52,156,304 B (2 1,318,147 (~
% com.example.modelProduct i 16,000,000 8 (7.6%) 1,000,000 (16.
(&) Java.uti. TreeMap$Entry 1 35,080,160 B (16.8%) 877,004 |
(&3 java.lang.Integer | 10,329,504 B | 645,594 (10
[java.io. O bjectStream ClassSWeakClassK ey [15,130,592 B 472,831

|

|

|‘_\/E) byte[] 9,771,936 B 113,182
ﬁ\y java.io. SerialCallbackContext 2,503,9928 [104,333
& java.uti. Collections$Unm odifiableCollection$ 1 2,480,784 B (1.2 103,366
& java.uti. TreeMap$E ntryl terator 3,285,216 B 102,663
ﬁj java.uti. TreeMap 4,723,632 8 3% 98,409
& java.util. TreeMap$EntrySet 1,573,936 B (0.8%) 28,371
ﬁ; java.util. TreeMap$KeySet 1,573,920 8 (I 98,370
& javax.management.openmbeanCompositeDataSupport 2,360,424 8 (1 98,351
ﬁ‘} java.lang.StackTraceElement 3,913,824 8 81,538
& java.lang.String 1,891,656 8B (78,819
s e s e e e e Sy e T e PP

Figure 9.4 We can sort the sampled results by the number of instances (live objects). This gives us clues on
whether some capability creates many objects that are negatively affecting the memory allocation.

9.2 Profiling to find the culprit

Sometimes, sampling is all you need to spot what’s going wrong. It’s fast, lightweight,
and often provides a clear indication of the problem. But what if it doesn’t? What if
you still don’t know which part of your app is creating all those objects? You look at the
results and think, “Okay... but who’s actually doing this?”

208 CHAPTER 9 Profiling memory-related problems

That’s when it’s time to switch gears and try profiling (also called instrumentation).
While sampling, watches the program from a distance and takes notes occasionally, pro-
filing gets up close and watches everything. It tells you exactly which part of your code is
creating those objects, and how often.

However, profiling isn’t free; it can slow things down and provide too much data.
That’s why we always follow one simple rule: don’t profile until you know what to pro-
file. If you start profiling everything, you’ll waste time and possibly make things worse.
We always begin by sampling to narrow things down. Once you have an idea where the
problem might be, then you can zoom in with profiling.

Since we know the problem is with the Product type, we will profile for it. Like you
did in chapters 5-8, you must specify which part of the app you want to profile using an
expression. In figure 9.5, I profile only for the Product type. I do this by using the fully
qualified name (package and class name) of the class in the Memory settings textbox
on the right side of the window.

2. Start profiling, and then call the 1. Specify the expression that defines which
app’s endpoint. objects you want to profile for memory usage.

& com.example.Main (pid 3852) X

[overview [Monitor [Threads £,

Sampler (3! Profiler
O ‘com.example.Main (pid 3852)

Profiler

Profile: yeru {3 1;oBC |2 Lodks Stop

Status: profiling running (4, 588 dasses instrumented)

Profiling results CPU settings | Menjary settings | JDBC settings
results: @ B3 | Collected dats: (=] Snapshot [Profile dasses:
Name Live Bytes v Live Objects Allocated Cbiects Generations b4 com.
B ﬁ; com.example.model. Product | | 16,000,000 {100%) 1,000,000 (100% 1,000,000 [100% 3

el Product

3. The profiler will indicate details about each object involved in execution during the profiling
session. You'll find the allocated memory per object, the number of instances in memory for
each object, how many objects have been garbage collected, how many still exist in the
memory, and how many times the GC tried to remove them from the memory.

Figure 9.5 To profile for memory allocation, first specify which packages or classes you want to profile, and
then start the profiling by pressing the Memory button. The profiler will give you relevant details about the profile
types, including used memory, number of instances, the total number of allocated objects, and the number of GC
generations.

Just as in the case of CPU profiling (chapter 6), you can profile multiple types at once
or even specify entire packages. Some of the most commonly used expressions are

Profiling to find the culprit 209

Strict-type, fully qualified name (e.g., com.example.model.Product)—Only searches
for that specific type

Types in a given package (e.g., com.example.model.*)—Only searches for types
declared in the package com.example.model but notin its subpackages

Types in a given package and its subpackages (e.g., com.example.**)—Searches in the
given package and all its subpackages

Always remember to restrict the types

you profile as much as possible. If you

know product causes the problem, then
| / it makes sense to profile only this type.

In addition to the live objects (instances that still exist in memory for that type), you
will also receive the total number of instances of that type that the app has created.
Moreover, you will see how often those instances survived the GC (what we call gener-
ations). As you’ll find out in chapter 11, you can mix this with investigating GC logs to
get extra details about the GC activity.

All these details are valuable, but finding what part of the code creates the objects is
often even more useful. As shown in figure 9.6, for each profiled type, the tool displays
where the instances were created. Click the plus sign (+) on the left side of the line in
the table, which will quickly lead you the root cause of the problem.

At this point, you should have a solid understanding of how to sample and profile
memory usage, identifying the trouble spots in your app’s allocation patterns. But pro-
filing only works when the app is actually running—and cooperative.

What if your app decides to throw a tantrum and crash before you can even fire up
the profiler? Or worse, what if the problem only happens in production, where you
can’tjust attach a profiler like it’s your personal playground?

That’s where heap dumps come in. Instead of watching memory in real time, you take
asnapshot of the entire memory state, capturing everything your app was holding onto
at the moment of its demise. Think of it as a freeze-frame of the crime scene—except
thatinstead of footprints and fingerprints, you’re analyzing objects and references.

So, if profiling leaves you empty-handed, don’t worry. In chapter 10, we’ll dive into
heap dumps and how they can help you catch memory leaks red-handed. Let’s go play
detective!

210 CHAPTER 9 Profiling memory-related problems

For each profiled object type, the profiler
indicates the part of code that created it
during execution. This way, you can find
the potential problem.

é com.example.Main (pid 3852) X |
[overview [l Moritor =] Threads (03, Sampler (5 Profiler

O com.example.Main (pid 3852)
Profiler

Profile: | () CPU [xoec [Sltoks | | [stop
Status: profiling running (4,591 dasses instrumented)

Profiling results
Results: @ E‘& @ | Collected data: EJSnapshot E

MName Live Bytes ” Live Objects
E- ﬁ, com.example,model, Product 15,000,000 B 1 1,000,000
'1} %, java.lang. Object. <init> [16,000,000B | 1 1,000,000

= B com.example model Product. <init>) 15,000,000 B) 1,000,000

m.example.services, RandomProductsService, getRandomProductsList (int) | 16,000,0008 |)| 1,000,000

|1m H m

- B com.example.controllers.RandomProductsController. getRandomProducts | 15,000,000 B) 1,000,000
!'_E,l- R, jdk.internal.reflect. NativeMethodAccessorImpl. invoked[native] (izva.lz 16,000,000 B 1 1,000,000

& % jdk.internal.reflect. NativeMethodAccessorImpl. invoke (Obj=ct, Objec 15,000,000 B %) 1,000,000

= B jdk.internal.reflect. DelegatingMethodAccessorImpl. invoke (Objec 16,000,000 B } 1,000,000

- B8 java.lang.reflect.Method.invoke (Chject, Object[]) 16,000,000 B 1,000,000

I:} B%, org.springframework. web.method. support. InvocableHand 16,000,000 B
i ® org.springframework.web, method.support.Invocabled 15,000,000 B

1,000,000
1,000,000

Figure 9.6 The profiler shows the stack trace of the code that created the instances of each of the profiled types.
This way, you can easily identify what part of the app created the problematic instances.

Summary

An application that doesn’t manage memory efficiently can suffer from serious
performance problems. Optimizing how data is allocated and released ensures
stability and responsiveness.

A profiling tool allows you to monitor memory usage in real time. This helps
identify inefficient allocations and areas that need optimization.

If object instances continue to accumulate without being dereferenced, the GC
will be unable to free memory. Eventually, the heap fills up, leading to an 0ut0f-
MemoryError and application failure.

Understanding and managing heap memory efficiently prevents performance
degradation. With the right tools and techniques, you can keep your application
running smoothly and avoid critical memory problems.

Investigating memory
problems with heap dumps

This chapter covers

Obtaining heap dumps for an app execution
Using heap dumps to investigate memory
allocation problems

Using OQL to query object instances in heap
dumps

Using Al to simplify heap dump investigation

When you’re testing the app, you can profile it to spot any memory-hungry capabili-
ties that need optimization. But what if the app doesn’t give you that luxury? What if
it crashes spectacularly before you can even lift a profiler?

In many cases, crashes are the tragic result of memory allocation problems, with
the usual suspect being memory leaks. These leaks happen when an app clings to
objects in memory like a hoarder refusing to throw anything away—even when it has
no use for them anymore. Over time, the memory fills up, and eventually, the JVM
throws in the towel, leaving you with the dreaded 0ut0fMemoryError.

Think of it like a messy office. If you keep piling up papers, coffee cups, and half-
eaten snacks without ever cleaning up, at some point, you’ll run out of space to work.

211

212

10.1

10.1.1

CHAPTER 10 Investigating memory problems with heap dumps

In the digital world, instead of an exasperated coworker staging an intervention, your
app simply crashes and burns.

So when profiling isn’t an option and the app has already thrown its memory tan-
trum, what can you do? You freeze the moment—by grabbing a heap dump. If the app
is not running, you can’t attach a profiler to investigate the execution. But, even so, you
have other alternatives to investigate the problem. You can use a heap dump, which is
a snapshot of the heap memory’s state at the time the app crashed. Although you can
collect a heap dump anytime, it is most useful when you can’t profile the app for some
reason—maybe because the app crashed or you simply don’t have access to profile the
process, and you want to determine whether it suffers from any memory allocation
problems.

DEFINITION A heap dump is a snapshot of an application’s memory at a specific
moment, showing all the objects stored in the heap and their relationships.

In section 10.1, we’ll discuss three possible ways to obtain a heap dump, and in section
10.2, I'll show you how to use the heap dump to identify memory allocation problems
and their root causes. In section 10.3, we’ll discuss a more advanced way of reading a
heap dump using a query language called Object Query Language (OQL). OQL is
similar to SQL, but instead of querying a database, you use OQL to query the datain a
heap dump.

Obtaining a heap dump

Before being able to use a heap dump, you obviously need to know how to get one.
This section discusses three ways to generate a heap dump:

Configuring the application to generate one automatically in a specified location
when the app crashes due to a memory problem

Using a profiling tool (such as VisualVM)

Using a command-line tool (such as jcmd or jmap)

You can even get a heap dump programmatically. Some frameworks have capabilities
that can generate a heap dump, allowing developers to integrate app-monitoring tools.

Configuring an app to generate a heap dump when it encounters
a memory problem

Developers often use a heap dump to investigate an app crash when they suspect faulty
memory allocation is causing a problem. For this reason, apps are most often config-
ured to generate a heap dump of what the memory looked like when the app crashed.
You should always configure an app to generate a heap dump when it stops due to a
memory allocation problem. Fortunately, the configuration is easy. You just need to
add a couple of JVM arguments when the app starts:

-XX:+HeapDumpOnOutOfMemoryError
-XX:HeapDumpPath=heapdump.bin

Obtaining a heap dump 213

The first argument, -XX:+HeapDumpOnOutOfMemoryError, tells the app to generate a
heap dump when it encounters an 0ut0fMemoryError (the heap gets full). The second
argument, -XX:HeapDumpPath=heapdump.bin, specifies the path in the filesystem where
the dump will be stored. In this case, the file containing the heap dump will be named
heapdump.bin and located near the executable app, from the root of the classpath
(because we used a relative path). Make sure the process has write privileges on this
path to be able to store the file in the given location.

NOTE Remember to configure the app to generate the heap dump in a non-
volatile location. If you’re running your app in a Docker container, avoid
placing the heap dump on the classpath, as it will be automatically destroyed
when the container restarts. Instead, ensure that the app saves the heap dump
in a persistent volume to retain it for analysis. Also, ensure that there’s enough
space in the location on the disk to store the heap dump, as it might be large.

The following snippet shows the full command for running an app:

java -jar -XX:+HeapDumpOnOutOfMemoryError
-XX:HeapDumpPath=heapdump.bin app.jar

We’ll use a demo app named da-ch10-ex1 to demonstrate this approach. You can find
this app in the projects provided with the book. The app in the following listing contin-
uously adds instances of type Product to a list until the memory fills.

Listing 10.1 Generating a large number of instances that can’t be deallocated

public class Main {
private static List<Product> products = new ArrayList<>();

public static void main(String[] args) {
Random r = new Random();

while (true) { < Theloop iterates forever.
Product p = new Product();
p.setName("Product " + r.nextInt()); Adds instances to the list
products.add(p); until the memory gets full
}

F
F

The next code snippet shows what the simple Product type looks like:
public class Product {
private String name;

// Omitted getters and setters

214

CHAPTER 10 Investigating memory problems with heap dumps

Perhaps you’re wondering why there’s a random name for the product instances. We’ll
need that later when we discuss reading a heap dump in section 10.2. For the moment,
we’re only interested in generating a heap dump to determine why this app is filling its
heap memory in seconds.

You can use the IDE to run the app and set the arguments. Figure 10.1 illustrates how
to set JVM arguments in Intelli]. I also added the -Xmx argument to limit the app’s heap
memory to 100 MB. That will make the heap dump file smaller and our example easier.

Run/Debug Configurations X
+ - BHE®R

ik Application

Main

Name: | Main Store as project file

Run ... # Local machine ¥ | Manage targets..,

Build and run Modify options v Alt+M
java 17 st f! -
-XX:+HeapDumpOnOut0fMemoryError -XX:HeapDumpPath=heapdump.bin -Xmx106m

main.Hain

ss Alt for field hints

Set the JVM arguments in the
Run/Debug Configuration window.

Figure 10.1 You can configure the JVM arguments from your IDE. Add the values in the Run/Debug Configurations
before starting the application.

10.1.2

10.1.3

When you run the application, wait a moment, and the app will crash. With only 100
MB of heap space, the memory shouldn’t take more than a few seconds to get full.
The project folder contains a file named heapdump.bin, which includes all the details
about the data in the heap the moment the app stopped. You can open this file with
VisualVM to analyze it, as presented in figure 10.2.

Obtaining a heap dump using a profiler

Sometimes, you need to get a heap dump for a running process on your local machine.
In this case, the easiest solution is to use VisualVM (or a similar profiling tool) to gen-
erate the dump. Getting a heap dump with VisualVM is as easy as clicking a button. Just
use the Heap Dump button in the Monitor tab, as shown in figure 10.3.

Obtaining a heap dump with the command line

If you need to get a heap dump for a running process, but your app is deployed in an
environment where you don’t have access to connect a profiler to it, don’t panic; you

Obtaining a heap dump

Use the Load button to find the file where Once you open the file,

it was generated. Then open the file. VisualVM displays it as a tab.
& VisualVM 2.1.1
[File | Applications / View Tools Window Help
[55 Load..
& savess. L rﬁg [heapdump] hespdump.bin X% !
R o
Load Recent O [ianpdunys] buaptismp:tin
Delete Delete Heap Dumg
@8 Add Remote Host... pte| | Summary
£ Add IMX Connection...
iy Heap
T Add VM Coredump..
©5 Add JFR Snapsh o=
= napshot... Casses:
E: Add Application Snapshot... Instances:
5 Classloaders:
Exit
0bjects Pending for Finalization:

Enabled Modules [show |

| System Properties [show]

Figure 10.2 You can use VisualVM to open the heap dump file for analysis. Use the Load button
in the menu to find the file. Open the file, and VisualVM will display the heap dump as a tab.

215

still have options. You can use jmap, a command-line tool provided with the JDK, to

generate the heap dump.

Click the Heap Dump button in the Monitor tab to get a heap dump. VisualVM opens

the dump as a tab, and you’ll be able to investigate it or save it anywhere you want.

Uptime: 2 min 33 sec Perfarm GC Heap Dump

CPU x Heap | Metaspace X

é com.example.Main (pid 25320) X| !
m Overview @ Monttor [Threads £ Sampler (_:) Profiler
-~
- Ccom.example.Main (pid 25320)
Monitor CPU Memary Classes Threads

100% 75MB
SOME -
0%
25MB -
0% 0oMB
11:36:20 AM 11:36:25 AM 11:36:20 AM 11:36:25 AM
[0 cPU usage M GC activity [0 Heap sze [Used heap

Figure 10.3 Click the Heap Dump button in VisualVM’s Monitor tab to get a heap dump for the
selected process. VisualVM opens the dump as a tab, and you can further investigate it or save it

anywhere you want.

216

10.2

CHAPTER 10 Investigating memory problems with heap dumps

There are two steps for collecting a heap dump with jmap:

Find the process ID (PID) of the running app for which you want to get the heap
dump.
Use jmap to save the dump to a file.

To find the running-process PID, you can use jps, like we did in chapter 8:

jps -1

25320 main.Main

132 jdk.jcmd/sun.tools.jps.Jps

25700 org.jetbrains.jps.cmdline.Launcher

The second step is using jmap. To call jmap, specify the PID and the location where the
heap dump file will be saved. You must also specify that the outputis a binary file using the
-dump:format=b parameter. Figure 10.4 shows the use of this tool in the command line.

1. Specify the dump format: in this case "format=b" 2. Specify the path where the file containing
means exporting the dump into a binary file format. the heap dump should be saved.

C:\Program Files\Java\jdk-17.8.1\bin>jmap -dump:format=b,file=C:/DA/heapdump.bin 25328
Dumping heap to C:\DA\heapdump.bin ...
Heap dump file created [58879183 bytes in 8.259 secs] /\/A

3. Provide the process ID for which
the heap dump must be obtained.

Figure 10.4 Using jmap in the command line to get a heap dump. You need to specify the path where
the file containing the dump will be saved and the process ID for which you generate the dump. The tool
saves the heap dump as a binary file in the requested location.

Copy the following code to easily use the command:

jmap -dump:format=b,file=C:/DA/heapdump.bin 25320

Now you can open the file you saved with jmap in VisualVM for investigation.

Reading a heap dump

In this section, we dive into heap dumps—one of the most powerful tools for uncov-
ering memory allocation problems. Think of a heap dump as a freeze-frame snapshot
of your app’s memory at a specific moment in time. It captures everything stored in
the heap, allowing you to examine not just the data, but also how it’s structured and
interconnected.

By analyzing a heap dump, you can pinpoint which objects were consuming large por-
tions of memory and, more importantly, why they weren’t deallocated. Is it a classic mem-
ory leak? A rogue collection growing out of control? A forgotten cache hoarding data like
adragon? The answers are all in the heap dump—you just need to know how to look.

Reading a heap dump

Remember that in the “picture” (heap dump), you can
see everything. If unencrypted passwords or any kind
of private data is in memory, someone with the heap

dump will be able to get these details.

217

Unlike a thread dump, you cannot analyze a heap dump as plain text. Instead, you

must use VisualVM (or any profiling tool in general). In this section, we’ll use VisualVM

to analyze the heap dump we generated for project da-ch10-ex1 in section 10.1. You’ll
learn how to use this approach to find the root cause of an Out0fMemoryError.

When you open a heap dump in VisualVM, the profiling tool displays a summary
view of the heap dump (figure 10.5), which provides quick details on the heap dump

For a real-world app, the heap = The summary shows quick details
dump is usually much larger
than the one in our example.

&2 [heapdamp] vapeump.bin % \

about the dump and the environment
where the app was running.

* 0O
: Lheapdump] heapdump.bin
Heap Dump
[E] summary = (7]
Heap Environment
Slze: 137,115,085 0 System windaws 10 {10.0)
Classes: 275 Architedure: amded E4h1
Instances: 3,661,362 Java Home: Co\Program FlesilavEydi-17.0.1
Classioad ors: 3 Jawa Version: 17,0
&€ Ruots: 944 JavaMame: |(17.0.1512-30, micad made, sarng
Objects Pending for Finalization: 0 Iava Vendor: Lrack Corporaten
VM Uptime: nia
Enabiled Madukes [siow |
System Properties [show]
‘DutofMemoryError Thread [view all]
This heap dump has hean created aulomaticely on an OutDMemoryError theava o the thread:
2 *main” prio=5 tid=1 RUN N ABLE
Classes by Wumber of Instances [view all] Classes by Size of Instances [viw 21] Figure 10.5 Inthe
Fius byte(] 1,218,526 [y bytef] 51,203,427 B (42.2% initial screen after
(4 jerv i dan. String 1,216,429 (3 (4 javaang. String 36,552,870 6 (2975)
fiy madel Product 1,215,488 (43 mocelProduct 20,171,712 B (22.9% opening a heap dump,
[y fmve.ubl HashMapsH ode 1,194 (&) javaliang. Objectl] 9,860,720 B 7./ VisualVM provides a
£ v euticoncurrens. Concurrent 1,149 [javautl HashMapSH o 56,674 B (1% summary of the heap
Instances by Size [view al] Dominators by Retained Skze [view al] dump, which includes
Il jevekng Object[J#1141 (6 9,723,0208 | Retained sies must be computed fist: information about the
Bl jev e utiLconcurrent . Concurre LS 408 Curmpube Rataiad S dump itself and the
il char[J#1 [GC root - lava fr 16,408 B
10 char[]#10 : 16,408 8 system where the app
11 charfl#11 TR was running. The view
The summary presents a quick view of the also shows the types
types that occupy the most memory or that that occupy the largest

created a large number of instances. amount of memory.

218

CHAPTER 10 Investigating memory problems with heap dumps

file (e.g., the file size, total number of classes, total number of instances in the dump).
You can use this information to ensure you have the correct dump, in case you weren’t
the one who extracted it.

There have been times I've had to investigate heap dumps from a support team that
had access to the environments where the app was running. However, I couldn’t access
those environments myself, so I had to rely on someone else to get the data for me. More
than once, I was surprised that I had been given the wrong heap dump. I was able to iden-
tify the error by examining the size of the dump and comparing it to the maximum value
configured for the process, or by reviewing the operating system or Java version.

My advice is to first quickly review the summary page and ensure you have the cor-
rect file. On the summary page, you’ll also find types that occupy a large amount of
space. I usually don’t rely on this summary and instead go directly to the Objects view,
where I start my investigation. In most cases, the summary isn’t enough for me to draw
a conclusion.

To switch to the objects view, select Objects from the drop-down menu in the upper-
left corner of the heap dump tab (figure 10.6). This step will allow you to investigate the
objectinstances in the heap dump.

To get a view of all the types of objects in
the heap dump, change the view to Objects.

ﬁ [heapdump] heapdump.bin X‘

.: [heapdump] heapdump.bin

Heap Dump

Summary
Summary

@ Objeds 115,721,888 B

Threads 962

0Ql Conscle 4,116,359 Figure 10.6 You can switch to
R Console 3 the Objects view, which makes

it easier to investigate the
0 bjects Pending for Finalization: 0 instances in the heap dump.

Just as with memory sampling and profiling, we’re searching for the types that use the
most memory. The best approach is to sort, in descending order, by both instances and
occupied memory, and look for the first types that are part of the app’s codebase. Don’t
look for types such as primitives, strings, or arrays of primitives and strings. There are
usually a lot, and they won’t give you many clues as to what is wrong.

In figure 10.7, after sorting, you can see that the Product type seems to be involved in
the problem. The Product type is the first type that is part of the app’s codebase, and it
uses a large part of the memory. We need to figure out why so many instances have been
created and why the GC can’t remove them from the memory.

Reading a heap dump 219

Look for the object type in your app’s
codebase that occupies the most memory.

| [heapdump] heapdump.bin X| / b=

» [heapdump] heapdump.bin

Heap Dump

Count Size Retained -

Name

Ij @ byte[] 1,218,526 (33.3%) 51,203,427 B (40 51,199,918 B (40.2%)
I'iﬂ &)]ava lang. String 1,218,429 (33.3%) 36,552,870 B (28.7%) 87,705,789 B (568
I-EI E_, java.uti. HashMapS$N ode 1,194 52,536 B | 104,2348B (0
I;!_-J @ java.uti.concurrent. ConcurrentHashMap$§ 1,149 50,556 B 68,717 B (0.1%
@ (&% java.kng. 0 bject[] 1,141 9,860,7208 (7. 126,583,190 B (

|-i|-:|- & java.lang.module. ModuleDescriptorSExpo 370 14,800 B (0% 18,824 B (0%
Fﬂ &J_java.util. HashMap 328 20,992 B 137,786 B (D
'L_| @ java.uti. HashMap$Node[] 325 56,824 B 129,794 B (0.1%
j ﬁ, java.uti. HashSet 264 6,336 B 89,204 B (0.1%
o) [java.ang. Integer 262 5,240 B 5,240 B

Figure 10.7 Use sorting on columns to identify which type created a large number of instances or takes
up a lot of space. Always look for the first object in your app codebase. In this case, both in number of
instances and size, the Product type is the first in the list.

You can select the small plus sign (+) on the left side of the row to get details about all
the instances for that type. We already know there are more than one million Product
instances, but we still need to find

What part of the code creates those instances

Why the GC can’t remove them in time to avoid the app’s failure

You can find what each instance refers to (through fields) and what refers to that
instance. Since we know the GC cannot remove an instance from the memory unless it
has no referrers, we look for what refers the instance to see whether it is still needed in
the processing context or if the app forgot to remove its reference.

This behavior can hint at a memory problem—Iletting you know that something is
off—but they won’t pinpoint exactly where the problem lies. That’s where memory pro-
filing and heap dumps come into play.

Profiling works well when the app is running. Butif the app crashes or profiling isn’t
feasible, a heap dump becomes your best friend.

Figure 10.8 shows the expanded view for the details of one of the Product instances.
We can see that the instance refers to a String (the product name), and its reference is
keptin an Object array, which is part of an ArrayList instance. Moreover, the ArrayList
instance seems to keep a large number of references (over one million). This is usually
not a good sign, as either the app implements an unoptimized capability or we found a
memory leak.

220

CHAPTER 10 Investigating memory problems with heap dumps

The object referencing this Product instance is an
ArrayList that holds 1,215,487 other references.

E [heapdump] heapdump.bin X
C [heapdump] heapdump.bin
Heap Dump
|§J Objectsw | ﬁ Preset: All Objects w Aggregation: B E'U @ Detais: EPrewew W Felds B§ Referpnces @ GC Root ﬁm&rarchy
Name
= (& modelProduct
=1 O modelProduct#1
= <fields>
% name = O java.lang.String#1 : Product 32058863!
¥ static <classLoader> = © jdk.nternalloader. ClassLoaders$AppClassLoader#1 [GC root { INI global]
=l <references>
=] [243727] n [java.lang. Dh]ect[]#114l [GC root - Java frame] : 1,215,487
o~ encniouts 1 puruct e 6 ot el 157 s
= B static products in @ class main.Main : Man
#- R’ 31 nil)ava‘lang‘object[]wsgs 110 tems
B static appClass in @ class sun.launcher.LauncherHelper [6C root - sticky dlass] : Laun
| G modelProduct#2
- @ modelProduct#3
- O modelProduct#4
|- © modelProduct#5

R s

Figure 10.8 References to an instance. By using the heap dump, you can find, for each instance, what
other instances were being referenced at the time the dump was generated. The profiling tool also tells
you where a given reference is stored in the code. In this case, ArrayList, which holds over one million
references, is a static variable in the Main class.

To find which is the case, we need to investigate the code using the debugging and log-
ging techniques discussed in chapters 2—4. Fortunately, the profiler indicates exactly
where to locate the list in the code. In our case, the list is declared as a static variable in
the Main class.

Using VisualVM, we can easily understand the relationships between objects. By
combining this technique with other investigation techniques you’ve learned through-
out the book, you have all the tools you need to address these kinds of problems. Com-
plex problems (and apps) may still require significant effort, but using this approach
will save you a lot of time.

You might now be wondering about Al assistants—can we use them to investigate
heap dumps? The answer is yes, but analyzing heap dumps with Al is significantly more
challenging than working with thread dumps or profiling data. This is primarily due to
the sheer size of heap dumps in real-world scenarios

Take, for example, the heap dump we analyzed in this scenario—it is just over 100
MB. As an experiment, you could try feeding it to an Al assistant such as Gemini or
ChatGPT. However, you’ll notice that processing it takes a considerable amount of time
and may not yield immediate insights. Now, imagine handling a real-world heap dump
of 4 GB or larger—such a task would be impractical for most Al assistants.

For this reason, I take a different approach when using Al for heap dump analysis.
First, I investigate the data using a dedicated profiling tool such as VisualVM. Next, I

10.3

Using the OQL console to query a heap dump 221

extract relevant portions of the data and, if needed, consult an Al assistant to generate
ideas or help me overcome roadblocks. However, I never rely on Al to analyze an entire
heap dump file directly.

First, I follow the steps we have already discussed in this section. I begin by sorting
instances based on their size and count. This is, in fact, the most crucial part of prepar-
ing investigation data—there’s generally no need to examine types with only a small
number of instances.

Second, if the heap dump file is particularly large and complex, I use OQL queries to
explore the data as if it were a relational database. OQL enables precise filtering, allow-
ing us to focus on only the most relevant objects. Section 10.3 discusses OQL queries in
detail—this powerful yet often overlooked tool can significantly enhance your ability to
isolate essential data when investigating memory problems in heap dumps.

Using the OQL console to query a heap dump

Alright, you’ve wrestled with heap dumps the old-fashioned way—sorting instances,
eyeballing sizes, and maybe even muttering a few choice words when things didn’t add
up. But now, it’s time to work smarter, not harder.

In this section, we’re stepping up our game by using a query language similar to SQL
to extract details from a heap dump with precision. The basic techniques from section
10.2 work fine for identifying memory problems, but they fall short when you need to
compare multiple heap dumps—say, from different versions of your app.

Sure, you could open each heap dump manually, flip between them, and try to spot
differences with sheer determination. But let’s be real—that’s like comparing two nov-
els by reading them side by side. Instead, I'll show you how to write queries that do the
heavy lifting for you.

This is where OQL shines. It lets you sift through heap dumps like a pro, extracting
exactly what you need without endless scrolling. Figure 10.9 shows how to switch to the
OQL console and unleash its power.

- Choose OQL Console to switch
[heapdump] heapdump.bin 3)
& I— to the OQL analysis screen.

: [heapdump] heapdump.bin
Heap Dump

ﬁ, Objects = | | Preset: AlObjects+ Agg

Summary

ﬁj Objects

Threads

0QL Conscle |,

R Console]
T e modelProduct#3

Figure 10.9 To switch to the OQL view in VisualVM, choose OQL Console from the drop-down menu in
the upper-left corner of the heap dump tab.

222

CHAPTER 10 Investigating memory problems with heap dumps

We’ll discuss a few useful examples, but remember that OQL syntax is more complex
than the examples we’ll be able to cover in this section. (You can find more informa-
tion on its functions at http://mng.bz/Pod2.)

Let’s start with a simple example: selecting all the instances of a given type. Suppose
we want to retrieve all instances of type Product from the heap dump. To use a SQL
query to getall the product records from a table in a relational database, we would write
something like

select * from product

To query all the Product instances in a heap dump using OQL, you need to write this:

select p from model.Product p

NOTE For OQL, keywords such as “select,” “from,” or “where”
are always written in lowercase. The types are always given
with their fully qualified name (package + class name).

Figure 10.10 shows the result of executing the simple query that retrieves all the
Product instances from the heap dump.

g [heapdump] heapdump.bin X ‘
.: [heapdump] heapdump.bin
Heap Dump . .
0QL Console = ‘ Results: [Results Limit: [100~ 3' After runnlng an .OQL query, Flgur? 10.10
the results are displayed Running an
modelProduct#1 above the query box. 0QL query with
modelProduct#2 VisualVM. In the
modelProduct#3 oqQL console,
modelProduct#4 write the OQL
modelProduct#5 query in the
modelProduct#6 textbox on the
modelProduct#7 —_ bottom of the
modelProduct#8 window and click
modelProduct#9 the Run button
e AT (the green arrow
B 1 select p from model.Product p on the left of
2 the text box) to

run the query.

The results will
1. Write the OQL query in the text box. appear above the

2. Click the Run button. text box.

http://mng.bz/Pod2

Using the OQL console to query a heap dump 223

NOTE When learning OQL, use small heap dumps.
Real-world heap dumps are usually large (4 GB or larger).
The OQL queries will be slow. If you are studying only,

o) generate and use small-sized heap dumps like we do

(i in this chapter.

You can select any of the queried instances to get its details. You can find what keeps
areference to that instance, what that instance refers to, and its values (figure 10.11).

Selecting any of the rows in the result
(which represents an object instance)
gives you details about that instance.

E [heapdump] heapdump.bin |

C [heapdump] heapdump.bin
Heap Dump
@ Product#1 Detais: [=] Preview] Fedds/ IR References T GC Root (G Hierarchy

Hame

B ® modelProduct#1

= <fiekls>
[¥ static =dassloader> = @ jdk.nternalbader. ClassLoaders$ AppClassLoader#1 [6C root - INT globall
% name = O javalang. String#1 : Froduct 32058863

|- <references>
= [[243727] in[l}l java.lang. Object[1#1141 [6C root - Java frame] : 1,215,487 f=ms
4 R elementData n @ java.utd ArrayList#6 [GC root - Java frame] 1,215,407 eements

Figure 10.11 You can access the details about a queried instance (referees and referrers) by clicking it.

You can also select values or references referred from certain instances. For example, if
we want to get all the product names instead of the product instances, we can write the

following query (figure 10.12):

select p.name from model.Product p

With OQL, you can extract multiple values at the same time. To do so, you need to for-
mat them as JSON, as shown in the next listing.

Listing 10.2 Using a JSON projection

select Curly braces surround
the JSON object
representation. The attribute name takes the
name: p.name, <—‘ value of the product name.

224 CHAPTER 10 Investigating memory problems with heap dumps

name_length: p.name.value.length The attribute name_length takes

the value of the number of
characters in the product name.

}

from model.Product p

@ [heapdump] heapdump.bin X ‘

: [heapdump] heapdump.bin
Heap Dump

[@l oqL console = | Resuts: B |[5]| Resuksime:| 100 v

jave.lang.String#1 : Product 329588635
java.lang.String#2 : Product -614167986
java.lang.String#3 : Product 7147842
Java.lang.String#4 : Product -1690590716
Java.lang.String#5 : Product 754826670
java.lang.String#6 : Product -443727306
java.lang.String#7 : Product -259935212
java.lang.String#8 : Product -1804264507
java.lang.String#9 : Product -1248100928

Gimia lno Ctrine#i0 - Beoduct SI0A152960

I:) 1 select p.name from model.Product p
i i Figure 10.12 Selecting an attribute
M of a given object type. Just as in Java,
You can select any attribute you can use the standard dot operator
of a given object type. to refer to an attribute of an instance.

Figure 10.13 shows the result we obtain after running this query.

To see the results clearly, use the formatter display.

E |heapdump] heapdump.bin % |

: [heapdump] heapdump.bin
Heap Dump

@l 0L Console = Resuksi [(5] Resukslimi: 108~

1
name = jova.anyg.Strng#1 : Freducl 329583635,
name_kength = 17

}

1

name = jevabng.Seng#? : Preduct -6149 167084,
name_kngth = 18

i

%

name = Javalann.Strno#d : Froduct 1680580/16,

name_kngth = 19

¥

£

name = javalang Strng# 5 : Froduct F548260670, . .

name_kngth = 17 Figure 10.13 Selecting

1 multiple values. You can
B 1 Ise]e:t { mamwe: p.name, namg lengthi p.fame,value.lengcn) fzom model, froduct p use JSON formattlng to

obtain multiple values
To select multiple values, use JSON formatting. with one query.

=

Using the OQL console to query a heap dump 225

You can change this query to, for example, add conditions on one or more of the
selected values. Say you want to select only the instances that have a name longer than
15 characters. You could write a query as presented in the next snippet:

select { name: p.name, name_length: p.name.value.length}
from model.Product p
where p.name.value.length > 15

Let’s move on to something slightly more advanced. A query I often use when investi-
gating memory problems utilizes the referrers() method to retrieve the objects that
refer to instances of a specific type. By using built-in OQL functions such as this one,
you can do plenty of helpful things:

Find or query instance referees—Can tell you if the app has memory leaks

Find or query instance referrals—Can tell you if specific instances are the cause of
memory leaks

Find duplicates in instances—Can tell you if specific capabilities can be optimized
to use less memory

Find subclasses and superclasses of certain instances—Gives you insight into an app’s
class design without needing to see the source code

Identify long life paths—Can help you to identify memory leaks

To get all the unique referrers for instances of type Product, you can use the following
query:

select unique(referrers(p)) from model.Product p

Figure 10.14 shows the result for running this query. In this case, we can see that all the
product instances are referred to by one object—a list. Usually, when a large number
of instances have a small number of referrals, it’s a sign of a memory leak. In our case,
a list keeps references to all the Product instances, preventing the GC from removing
them from memory.

If the result is not unique, you can count the referrals by instance using the next
query to find the instances that are potentially involved in a memory leak:

select { product: p.name, count: count(referrers(p))} from model.Product p

The OQL queries provide a lot of opportunities, and once you write a query, you can
run it as many times as you need and on different heap dumps.

Now, don’t get too lazy—but do remember that Al assistants can help you craft and
refine queries such as these. Some OQL queries can get pretty complex, and let’s be
honest, there’s no need to become an expert in every little detail of the language. After
all, it’s not something you use every day.

So, work smarter! When investigating heap dumps, don’t hesitate to offload some of
the grunt work to an Al assistant. Whether it’s generating queries, tweaking filters, or

226 CHAPTER 10 Investigating memory problems with heap dumps

By running the query, you can see that
all the products have a unique referrer.

@ [heapdump] heapdump.bin X ‘

O [heapdump] heapdump.bin

Heap Dump
(Bl oqL console = ‘ Resulis: B [E] Aggregatioh: B & @ | Detais: [=] Preview 3 Fields R Referen:

Name

m

[] java.lang.Object[]#1141 [GC root - Java|frame] : 1,215,487 items
- <tems>

(=} <references>

F. elementData in ® java.util ArrayList#6 [GC root - Java frame] : 1,215,487 elements

Results > [Object[]#1141 [GC root - Java frame] " > <references> > R, elementData >

[) 1
= 2
3

select unigque (referrers(p)) from model.Product p

Figure 10.14 Selecting all the unique referrers for instances of a type shows you if there’s one object
that prevents the GC from removing the instances from memory. This can be a quick way to identify a
memory leak.

explaining results, a little help can go a long way in simplifying your analysis. Just don’t
let the Al take all the credit!

And with that, you're now equipped to navigate heap dumps like a pro—one query
atatime.

Summary

A heap dump captures the entire memory state at a given moment. Analyzing
it helps diagnose memory leaks, excessive object retention, and inefficient data
structures.

The JVM can be configured to generate a heap dump automatically when an
OutOfMemoryError occurs. This makes post-crash investigations much easier.
Heap dumps can be manually created using profiling tools such as VisualVM or
command-line utilities such as jmap. These tools help capture and inspect mem-
ory usage at any time.

Loading a heap dump into VisualVM facilitates exploring object instances, ref-

erences, and relationships. This helps pinpoint performance bottlenecks and
memory leaks.

Summary 227

OQL (Object Query Language) lets you filter and analyze heap dump data effi-
ciently. Instead of manually browsing through thousands of objects, you can
retrieve specific information using queries.

AT assistants such as ChatGPT or Gemini can help analyze heap dumps by gen-
erating OQL queries, summarizing data, and suggesting optimizations. While Al
won’t replace manual analysis, it can significantly speed up the process.

Analyzing potential JVM
problems with GG logs

This chapter covers

Enabling and accessing GC logs
Understanding the structure and content of GC
logs

Using GC logs to identify root causes
Analyzing large volume GC logs with Al
assistance

Let’s embark on a journey into the often misunderstood yet indispensable world of
garbage collection (GC) logs. If you’ve ever stared at a stream of cryptic JVM output
and thought, “This looks like The Matrix, but with less Keanu and more confusion,”
you’re not alone. Fear not, for by the end of this chapter, GC logs will transform
from chaotic hieroglyphics into an invaluable troubleshooting ally. But before we
dive in, let me set the stage with a little story—a cautionary tale of what happens
when GC logs are ignored.

Alex is a senior developer at an e-commerce startup, known for their love of cof-
fee, code, and, unfortunately, cutting corners. One fateful Friday afternoon, Alex
deployed a major update to the production environment—an update heralded as

228

111

Enabling GC logs 229

the solution to all scalability woes. But as the weekend wore on, the reality was anything
but celebratory.

By Sunday morning, the site was slower than a dial-up modem from the 1990s. The
server logs painted a picture of doom: memory spikes, sluggish response times, and
CPU usage hovering at 99%. The worst part? The system was spawning threads faster
than it could clean them up, leading to what Alex dubbed “zombie threads.”

Desperate and sleep-deprived, Alex dove into the JVM’s GC logs, a treasure trove of
information they had always ignored in favor of more user-friendly tools. With the clock
ticking and their caffeine stash running low, Alex turned to an Al assistant for help deci-
phering the logs.

Within minutes, the culprit was uncovered—an overly aggressive full GC cycle trig-
gered by an improperly tuned heap size. The logs revealed excessive stop-the-world
events, freezing the application at the worst possible times. A few adjustments to the
JVM options, and voila—the zombie threads were finally put to rest.

Why do GC logs matter? GC logs are like your JVM’s memory diary. They document
every GC event, from minor collections to full-scale memory cleanups. In this chapter,
we’ll start with the basics: enabling GC logs and understanding their structure. From
there, we’ll identify and solve common JVM performance problems, such as excessive
GC pauses or memory leaks. And yes, I'll show you how to use Al assistants to make
sense of the data faster than you can say “OutOfMemoryError.”

Let’s dive into the world of GC logs. Who knows? By the end of this chapter, you
might just find yourself enjoying the process—or at least appreciating it a little more.
After all, as Alex learned the hard way, sometimes the answers you seek are hidden in
plain sight, waiting to be decoded.

We begin by learning how to enable GClogging in section 11.1, followed by configur-
ing these logs to be stored in files in section 11.2. Next, in section 11.3, we explore tech-
niques for optimizing log storage, including log rotation and selective logging levels, to
enhance the troubleshooting experience. Finally, in section 11.4, we examine the most
common real-world GC log patterns and analyze how to troubleshoot them effectively.

Enabling GC logs

This section covers key options and configurations for enabling GC logging for Java
apps. Whether you’re troubleshooting excessive GC pauses, high CPU usage, or mem-
ory leaks, enabling GC logs is the first step toward a deeper understanding of how the
JVM manages memory.

Garbage collection plays a crucial role in Java application performance, but under-
standing its behavior can be challenging without proper visibility. GC logs provide valu-
able insights into memory allocation, collection pauses, and overall heap management,
helping developers diagnose performance bottlenecks and fine-tune the JVM for opti-
mal efficiency.

DEFINITION Garbage collection is the process by which Java automatically finds
and removes objects from memory that are no longer used by the application,
freeing up space so the app can keep running efficiently.

230

CHAPTER 11 Analyzing potential JVM problems with GC logs

Before we dive into GC analysis, let’s first see how to enable GC logging. By default, GC
logging is turned off when an application runs. This is because GC logs can be quite
large, which may slow down the application and fill up the log files with extra data.

Since these logs can make it harder to find important information, it’s best to enable
them only when needed—such as when troubleshooting problems such as slow perfor-
mance, high CPU usage, or memory problems. When used correctly, GC logs can help
you understand how the JVM handles memory and find the root cause of performance
problems.

First, I'll display the GC logs in the terminal so you can familiarize yourself with their
appearance. Then, I’ll show you how to save them to files, which is useful for long-term
analysis or using Al tools to help with troubleshooting. Al can quickly scan through
large GC logs and point out patterns or problems you might miss. It will save you time
and make your investigation easier.

The following code snippet shows the VM attribute you must use to activate the GC

logging:

-Xlog:gc*

If you’re running the application in an IDE, you need to add the -Xlog:gc* VM option
to your run configuration. This enables GC logging during execution. Figure 11.1
illustrates how I configured this option in Intelli] IDEA in example da-ch11-ex1.

The example da-chll-exl follows a producer-consumer multithreaded architec-
ture, similar to the one we analyzed in chapter 5. To keep the focus on GC logs, I have
removed all other application logs. This way, once we start the app, we can clearly
observe the GC-related output without distractions.

L
+ — @ B @2
+ [F) Application MName: Main Store as project file
L Runom [w Local machine Manage targets..
Build and run Madify optians ~
java 22 50K of 'da-ch7-exl' module
-Xlog:gc*
Figure 11.1
main.Main Enabling the GC
logs in Intelli)
== IDEA running
configuration
to display the
Add the necessary property GC logs in the

to enable GC logging. execution console

Enabling GC logs 231
If you run the application in a console—typically in a real-world environment where
your app is started in a Docker container—you need to add the VM parameter to the
execution command:

java -Xlog:gcx -jar app.jar

Listing 11.1 shows an example of GC logs that appear in the console when you run the
application with the appropriate VM parameter. These first logs are also called initial-
ization logs since they uncover the essential parameters related to the GC initialization.

We’ll break down the most important lines together. As you get more familiar with
them, what once seemed like an unreadable mess will start making sense. Over time,
these logs will go from being an ominous wall of text to a helpful guide in your trouble-
shooting journey.

Next, we’ll walk through the upcoming listings to give you a sneak peek at what GC
logs look like—so they won’t feel like an alien language anymore. We’ll also discuss how
to use these logs for troubleshooting and, most importantly, which ones deserve your
attention first (Spoiler: Not all logs are created equal!). For a deeper dive into practical
troubleshooting, stay tuned for section 11.2, where we’ll turn GC logs from cryptic rid-
dles into useful clues.

Listing 11.1

Initialization GC logs appearing in the app terminal

Which garbage collector is used

[0.059s][info]l[gc,init] CardTable entry size: 512

[0.059s][info]l[gc] Using 61 A Which JVM version is used
[0.065s][info]l[gc,init] Version: 22.0.1+8 (release)

[0.065s][info][gc,init] CPUs: 8 total, 8 available Information about the
[0.065s][info]l[gc,init] Memory: 48899M system where the JVM runs
[0.065s][infol[gc,init] Large Page Support: Disabled

[0.065s][infol[gc,init] NUMA Support: Disabled

[0.065s][infol[gc,init] Compressed Oops: Enabled (Zero based)
[0.065s][infol[gc,init] Heap Region Size: 8M .
[0.065s][info]l[gc,init] Heap Min Capacity: 8M :ﬁormﬁmngbﬁyt
[0.065s][info]l[gc,init] Heap Initial Capacity: 768M t;zz::;:;;z:czgon
[0.065s][infol[gc,init] Heap Max Capacity: 12232M

[0.065s][infol[gc,init] Pre-touch: Disabled

[0.865s][info][gc,init] Parallel Workers: 8 .
[0.065s][infol[gc,init] Concurrent Workers: 2 In&wmgﬂonab?thC'
[0.065s][info]l[gc,init] Concurrent Refinement Workers: 8 parallelism configuration
[0.065s][infol[gc,init] Periodic GC: Disabled

The details in listing 11.1 provide a crucial first glance before I investigate a problem
further. This initial overview helps me understand the basic configuration of the cur-
rent application’s execution.

Key aspects, such as the JVM version and the type of GC, are fundamental. They
set expectations for how memory is managed. Different JVM versions may introduce
improvements in memory allocation and storage, while different GC types handle

232

CHAPTER 11 Analyzing potential JVM problems with GC logs

object evacuation in distinct ways. Understanding these nuances allows you to antici-
pate potential events that mightlead to higher latencies or unexpected behavior during
execution.

System details matter because they tell you how many resources are available for the
application. If the system lacks CPU or memory, the app might slow down, experience
longer pauses, or even behave unpredictably. For example, running the same process
on a single-core machine versus a multicore setup can yield different results.

Sometimes, weird bugs only show up when the system has fewer resources. I once
spent way too many hours chasing down a mysterious problem in a multithreaded
application. The problem? It happened randomly—sometimes everything worked
fine, sometimes it didn’t. After a lot of head-scratching, we finally realized that the bug
showed up more often when the app ran in a virtual environment with limited CPU
power. It turns out, our multithreading logic was not as smart as we thought, and the
lower processing power made the flaw much more obvious.

Heap information is also crucial when investigating performance or memory-related
problems. Suppose I notice that the heap has been allocated only a small amount of
memory. In that case, it’s one of the first things I suspect when troubleshooting GC per-
formance or general memory problems.

No matter how efficient our algorithms are, they still need enough memory to run
smoothly. Sometimes, tweaking memory configurations can reveal unexpected behav-
iors, uncover hidden flaws, or even expose inefficient memory management patterns.
Adjusting heap settings isn’t just about improving performance—it’s also a great way
to test how resilient an application is under different conditions. After all, if your app
starts acting strangely just because it got a little less memory, maybe it was never that
stable to begin with!

How is the heap organized

Before diving deeper into the structure of GC event log messages and how to ana-
lyze them, let’s first refresh our understanding of how memory works. It can also be
beneficial to review appendix E. In addition to what appendix E covers, let’s explore
the structure of the heap in greater depth and use some analogies to help you under-
stand the complexities more easily.

Imagine the JVM process heap as a closet where you store clothes. But instead of
just throwing everything in randomly (I know not everyone does that, but I'm usually
guilty of that), you have a system to keep things organized. The heap has different
sections based on how long the clothes (or data) are expected to stay:

Eden (new clothes section)—Think of Eden as the place where you put brand-
new clothes you just bought. These are fresh items, and you're not sure yet if
you’ll keep them forever or get rid of them after a short time. New objects in a
Java program start here.

Survivor (still in use section)—Some clothes from Eden are worn often, so you
move them to a special section called Survivor. If something is still useful after

Enabling GC logs 233

a few wears (or in Java’s case, after surviving a few GC cycles), it gets moved
here. There are two small areas in Survivor, and clothes (or data) get shuffled
between them before moving to a more permanent place.

Old generation (the classics)—Some clothes become favorites: you wear them
all the time, and they stay in your closet for years. This is the Old Generation in
Java memory. Objects that survive long enough in Survivor move here because
they’re needed for the long run.

New objects are After some GC cycles, the objects
stored in Eden. that aren’t removed are promoted
K to the survivor space.

v

Eden J SO S1

Survivor space

Young generation Old generation

/

The objects with the longest life
end up in the old generation space.

A visual representation of heap memory management illustrates how the heap is structured and
how objects are organized based on their life cycle. The heap is divided into multiple regions,
where objects are stored according to their age, which is determined by the number of GC cycles
they have survived. As objects persist through successive GC cycles, they may be promoted from
one region to another, optimizing memory usage and performance.

When the closet gets too full, you need to clean it out. This is what GC does—it
removes clothes (data) you don’t use anymore. Eden gets cleaned frequently because
a lot of new stuff comes in and out. Survivor gets tidied up less often. The Old Gener-
ation is cleaned rarely because it holds important items.

Understanding the heap structure is crucial when analyzing GC logs because it helps
identify patterns in GC events that may indicate potential problems in your applica-
tion. By recognizing these patterns, you can diagnose performance problems, mem-
ory inefficiencies, and possible malfunctions more effectively.

234

CHAPTER 11 Analyzing potential JVM problems with GC logs

Listing 11.2 shows an example of a GC event. These events are critical when trouble-
shooting performance problems, especially if you suspect that GC is contributing to—
or even causing—the problem.

One key detail to note is that each major phase of the collection process is measured
separately. The two most important things to focus on are

The type of GC event—This helps you understand whether it’s a minor, full, mixed,
or emergency collection. As you’ll learn further in this chapter, these types repre-
sent events that serve distinct purposes in cleaning the memory.

The time spent in each phase—A long total GC time or unusually long duration for a
specific phase can strongly indicate performance bottlenecks.

If something seems off—say, an evacuation step takes significantly longer than usual—
this could be the clue that leads you to the root cause. When debugging GC-related
problems, these numbers are often your best friends (or worst enemies).

Listing 11.2 Logs related to events of a GC event of memory collecting

[1.336s][infol[gc,start] GC(B)

Pause Young (Normal) (61 Evacuation Pause) Identifies the initiation

of a memory collection
[1.337s][info][gc,task] GC(O) Y

Using 8 workers of 8 for evacuation The number of threads the GC
. uses for the collection operation
[1.342s][info][gc,phases] GC(O)
Pre Evacuate Collection Set: 0.13ms The time it took GC to identify the
. objects that need to be deallocated
[1.342s][info][gc,phases] GC(O)

Merge Heap Roots: 0.20ms Orders the references

. that are to be collected
[1.342s][info][gc,phases] GC(O)

Evacuate Collection Set: 4.04ms The collecting operation

that implies moving some

[1.342s][info][gc,phases] GC(O) references to the next
Post Evacuate Collection Set: 0.73ms hierarchic memory zone
[1.342s][info]l[gc,phases] GC(B®) Other: 0.71ms and removing others

The final cleanup
phase after evacuation

For instance, in listing 11.2, there are no signs of concern. The event type is labeled as
Normal, indicating that this is a routine collection event—not one triggered by mem-
ory pressure or any other urgent condition.

Moreover, all the execution times for each phase are measured in milliseconds,
which are brief enough to rule out any significant problems with memory deallocation.
The quick execution suggests that the garbage collector works efficiently, without caus-
ing noticeable delays or disruptions in application performance.

Listing 11.3 shows a summary of the changes made during the collection event.
These logs provide insights into how many objects were promoted from one region

11.2

Storing GC logs in files 235

to another and how many humongous objects (extra-large objects that occupy more
than half of a memory region) were removed. This breakdown helps assess how mem-
ory is being managed and whether object movement patterns align with expected GC
behavior.

Listing 11.3 Logs that show the changes after a collection

No survivor regions were used before the collection event.
After the collection event, one survivor region is used. In
total there is only one survivor region available.

Before the collection event, the app was using four
Eden regions that were all cleared during the collection
event. The app has five available Eden regions.

[1.342s][infollgc,heap] GC(B) Eden regions: 4->0(5)
[1.342s][info]l[gc,heap] GC(B) Survivor regions: 0->1(1)
[1.342s][infol[gc,heap] GC(B) 0ld regions: 0->0
[1.342s][infollgc,heap] GC(B) Humongous regions: 0->0 T No objects were

promoted to the

There were no large old generation.

objects collected.

From the logs in listings 11.1, 11.2, and 11.3, we can draw the following conclusions as
a summary:

G1 GC s used, with an 8 MB heap region size and a max heap of approximately
12 GB.

GCwas triggered at 1.336s, doing a Young Generation collection.
All Eden space was cleared, and one Survivor region was used.

GC pause lasted only a few milliseconds, showing a well-tuned GC.

Storing GC logs in files

Logging GC activity directly in the terminal is useful for learning and quick debug-
ging, but it’s far from ideal in real-world scenarios. These logs often get mixed with
other applications in a live console, making them hard to follow. Additionally, GC
logs can be quite large, further cluttering the console and making real-time analysis
difficult.

GC logs should be stored in separate files for practical troubleshooting. This allows
easier collection, filtering, and analysis, especially when dealing with large volumes
of data. For this reason, let’s now explore how to store GC logs in files, ensuring they
remain organized and accessible for deeper investigation.

The following code snippet shows the VM parameter you need to use to redirect the
GC logs in a specific file. Make sure that the JVM process has write permissions to the
directory where the GC log file should be created:

-Xlog:gc*:file=<file_path>:time,uptime,level, tags

236 CHAPTER 11 Analyzing potential JVM problems with GC logs

In the snippet you’ve just read, the options time, uptime, level, and tags are data you
want to be added to the log messages format. Usually, these four are the most useful
and frequently used, representing

time—Adds a timestamp to each log entry.

uptime—Logs the JVM uptime in seconds/milliseconds when the GC event
occurred.

level—Includes the log level (e.g., info, debug, trace). See chapter 4 where we
talked more about logging levels.

tags—Shows tags (categories) associated with each log message.
You can add this VM option to the Java command when running the application from a
terminal or configure itin your IDE’s runtime settings. The following snippet shows an

example of using the VM attribute in the command line, while figure 11.2 shows how
to configure it in the running configuration of Intelli] IDEA:

java -Xlog:gc*:file=gc.log:time,uptime,level,tags -jar yourApp.jar

’ Run/Debug Configurations ¢
+ — @ B 3
+ [Z] Application Mame: Main | Store as project file
2l Runon: (71 Local machine . Manage targets..

Build and run Modily options
java 22 SOK of 'da-ch7-sxl' moduls
-#log:gok:file=1logs.txt:time, uptima, lavel, tags
main.Main

Program arguments

Fress alt for field hints

Werking directong ating with ARNCODE spilcaS\code\da-chi-
Environment variables: Environment variables or .env f
Separgte vanables with semicolon: vaR=value) VAR 1 =vslus

Open run/debuq tocl window when started

:’ R\l-"l i n Cancel

Edit configuration templates...

?

Add the VM property to store
the GC logs in a given file.

Figure 11.2 Adding a VM property to store GC logs for the application’s execution in a specified file

Storing GC logs in files 237

After running the application for some time, a file will appear in the specified location.
This file contains GC logs formatted according to the specified option (figure 11.3).

The message is formatted according
The GC logs were stored at to the options you provided: time,
the requested location. uptime, level, and tags.

= [E da-chext ¥ main Main
(| Project = logs.bxt
B« Gaaameac bleskosing 1 [2025-62-01T12:35:39.959+8200] [8.282s] [info] [ge,init] CardTable entry size: 512
> B idea [2025-02-01T12:35:39.960+0200][0.283s][info] [ac] Using 61
&% Dse [2025-02-01T12:35:39.964+0200][0.287s][info] [ge,init] Version: 22.0.1+8 (release)
v [main [2025-02-01712:35:39.964+0200][0.287s][info][gc,init] CPUs: 8 total, 8 available
&5 i [2025-82-01T12:35:39.964+0200][0.287s][infol[gc, init] Memory: 488B99M
v Djava [2025-02-D1T12:35:39.964+0200][0.287s][info]l [ge,init] Large Page Support: Disabled
a < [E main [2025-82-01T12:35:39.964+0200][0.287s]1[info]l[ge,init] NUMA Suppart: Disabled
=2 © cons [2025-82-01T12:35:39.964+0200][0.287s][info][ge,init] Compressed Dops: Enabled (Zero based)
@ [2025-82-01T12:35:39.964+0200][08.287s][info] [gc,init] Heap Region Size: 8M
® producer [2025-82-01T12:35:39.964+0200][8.287s][infol[ge,init] Heap Min Capacity: 8M
target [2025-02-01T12:35:39.965+0200)[0.287s][info][gc,init] Heap Initial Capacity: 768M
= logsixt [2025-02-01T12:35:39.965+0200][0.287s][info] [ge,init] Heap Max Capacity: 12232M
Y semiril [2025-02-01T12:35:39.965+0200][0.288s5][info][gc,init] Pre-touch: Disabled
o [2025-02-01T12:35:39.965+0200][0.288s][info] [gc,init] Parallel Workers: 8
L'L‘E"Ema“m'a"es [2025-82-01T12:35:39.945+0200] [8.288s] [infa][ge,init] Concurrent Workers: 2
SacCREREAN Gafoles [2025-82-01T12:35:39.965+0200170. 28881 [infollac. init] Concurrent Refinement Workers: 8
Run Main
C:\Users\lspilca\.jdks\azul-22.0.1\bin\java.exe "-Xlog:gcx:file=logs.txt:time,uptime, level,tags" "-javaagent:C:\Program Files (x8&)\.J
Process finished with exit code 130
® =

Figure 11.3 Properly formatted GC logs are stored in the specified file, as defined by the VM parameter.

Storing GC logs in a file not only makes it easier to retain and share them but also
allows you to employ specialized tools for in-depth analysis. In figure 11.4, you can see
how I uploaded the file to GCeasy.io, a well-known tool for investigating GC logs. Addi-
tionally, the figure demonstrates how Al assistants, such as ChatGPT or Gemini, can
help analyze the contents of the GC log file, providing valuable insights and suggesting
effective troubleshooting strategies.

To end this section, let me tell you a short story. Once upon a time, in a chaotic tech
company (aren’t they all the same?), a junior developer named Jake was given a simple
task: enable and store GC logs in a file. It was supposed to be easy—just a couple of JVM
flags and voila, problem solved. Jake confidently added the configuration and deployed
the app, going home early and dreaming of a promotion.

The following day, the senior dev, Maria, stormed over.

Maria: “Where are the GClogs?”

Jake: “They should be in /var/logs/gc.log.”

Maria: “They are not.”

238 CHAPTER 11 Analyzing potential JVM problems with GC logs

% peeasmidamundge-report i T _vakie=THST3 Te-ba 3d-4304-a2h7 - e Tdem] £793
forash

Dashboand Pricing Leam « Customer - My Account ~
GCeasy

£ JVM memory size

m VM memeory size - Allocated vs Peak (mb)
Voung Generitton sl 312 |

o Senaration zsorn va

Metn Spoce B5mb e

voung + 04 + Mata TIAEmb 31218
mn

g e O e Rt amce

A, Key Performance Indicators

G Duration Time Range

33%

Max Pause GG Time A g
N e
@ logs.txt
Document
Can you help me identify if these GC logs indicate any potential
issues?
®

Based on the GC (Garbage Collection) logs you provided, here are some observations regarding
potential issues:

Observations

1. GC Algorithm:

The system is using G1GC (Garbage First Garbage Collector), which is generally well-suited
for applications with large heaps and low-latency requirements.

2. Heap and Memory Usage:

The heap max capacity is 12GB (12232M), but the initial heap allocation is only 768MB.

k * The final heap usage before exit is 7IMB out of 786MB committed, which is quite low.

/

Figure 11.4 Using tools such as GCeasy or Al chat assistants to help you troubleshoot the GC logs.

Jake opened the directory and, sure enough, the file was missing. In a frenzy, he tried
rerunning the app. The log file appeared! Victory! But moments later, it vanished into
the digital abyss. Determined to solve the mystery, Jake turned to Stack Overflow (as

all great engineers do, or was it ChatGPT today?) and discovered that the log file was
getting overwritten on every restart.

11.3

Particular configurations for storing GC logs 239

Embarrassed but undeterred, Jake updated the JVM options to add a timestamp at
the end of the filename. This time, the logs stayed put, each with a timestamp. Crisis
averted.

Maria: “Good. Now, where are the old logs?”

Jake turned pale. He hadn’t enabled log rotation (we’ll discuss log rotation next, in
section 11.3). Somewhere, deep in the server, an ancient GC log from five years ago
still lurked, consuming disk space like an ever-hungry garbage collector that refused to
be collected.

Moral of the story? Always configure log rotation. Or else, your past mistakes will
haunt you—literally. For this reason, we continue talking about particular configura-
tions that you’ll find useful in real-world situations.

Particular configurations for storing GC logs

Simply writing all logs into a single file is not always practical. GC can generate a sig-
nificant amount of logs, and ending up with a multi-gigabyte file can make storage,
transfer, and analysis cumbersome. In this section, we discuss several configurations
to improve the troubleshooting experience with GC logs, including file rotation and
selecting the appropriate logging level for the messages you want to retain.

Let’s begin with file rotation. You can configure the GC to split logs into multiple
files, preventing a single log file from growing indefinitely. This approach improves
manageability by making logs easier to transfer and process, ultimately streamlining the
troubleshooting process. Additionally, file rotation enhances performance by reducing
the risk of excessive disk usage. It also facilitates log retention, allowing older logs to be
archived efficiently.

Use the filecount attribute to define the maximum number of log files, and the
filesize attribute to set the size limit for each file.

The following snippet provides an example command to enable GC logging, while
configuring file rotation. It sets a maximum of five log files, each with a maximum size
of 10 MB:

java -Xlog:gcx:file=logs.txt:time,uptime,level,tags:
filecount=5,filesize=10M -jar app.jar

Using these parameters, the GC will automatically create a new log file whenever the
current file reaches the specified size limit (10 MB in our case). Each new file will be
assigned an index, starting from 0, and subsequent logs will be stored in newly created
files. Once the maximum number of log files is reached, the oldest file will be overwrit-
ten, ensuring efficient log management without excessive disk usage.

If you need to search for logs within a specific time, you can filter log files based on
their creation or modification timestamps. For example, you can use the find com-
mand in a Linux environment or Get-ChildItem in PowerShell on Windows. By iden-
tifying and collecting only the relevant log files, you can focus your investigation more

240

CHAPTER 11 Analyzing potential JVM problems with GC logs

efficiently. This approach streamlines troubleshooting and simplifies log analysis using
tools such as GCEasy or an Al assistant, as discussed in section 11.2.

Another strategy to reduce the volume of logged messages is to store only logs at
specific levels of severity. You don’t always need to retain every log entry. GC logs use
standard logging levels, which we discussed in chapter 4. The following list ranks these
levels in descending order of criticality:

Error—Logs only critical failures that may impact application stability
Warning—Captures potential problems that could lead to errors
Info—Provides general operational details about the GC process
Debug—Includes additional diagnostic information useful for troubleshooting

Trace—Produces the most detailed logs, capturing in-depth GC activity

Selecting a specific logging level is straightforward—simply include the desired level(s)
in the parameter used to enable GC logging (the same one we’ve been using exten-
sively throughout this chapter). The following snippet provides an example of how to
enable logging for error messages only:

java -Xlog:gc=error:file=gc.log:filecount=5,filesize=10M -jar app.jar

Remember that each log level automatically includes messages from the more critical
levels preceding it. This means that if you enable warning-level logging, as shown in
the next snippet, it will also capture error messages since they are of higher priority:

java -Xlog:gc=warning:file=gc.log:filecount=5,filesize=10M -jar app.jar

At this point, you’re probably thinking, “Alright, but what’s the best choice? Do I stick
with just errors, or do I go all in and log everything from trace up, drowning in a sea of
GC details?”

Great question! The answer depends on what you’re troubleshooting. In the follow-
ing sections, you’ll find some practical recommendations to help you decide which log-
ging level to enable when debugging a problem. Because—let’s be honest—too little
logging, and you’re flying blind; too much, and you might as well be trying to read the
Matrix.

First and foremost, if you’re working in a production environment, it’s always best to
log only errors and warnings. Production systems are performance-sensitive, and exces-
sive GC logging can introduce unnecessary overhead, potentially affecting application
efficiency.

If you encounter a problem that requires more detailed logs, the best approach is to
first reproduce the problem in a staging environment rather than flooding production
with verbose logging. In most cases, the info level provides sufficient details for moni-
toring and basic troubleshooting. This is precisely why info is the default logging level,
so if you were wondering why you didn’t see any trace messages in previous examples,
now you know!

114

114.1

Analyzing GC logs 241

If you determine through info-level logging that there’s a problem but still don’t
have enough details to piece together the puzzle, it’s time to dig deeper with debug and
trace levels:

The debug level provides insights into GC behavior, pause times, and potential
optimizations, helping you better understand what’s happening under the hood.
The trace level? Well, that’s the “give me everything” mode—it logs every possible
detail the GC collects, making it ideal for exhaustive analysis.

Tusually turn to these levels in development mode when fine-tuning GC performance—
or when I'm feeling completely desperate and willing to wade through an ocean of logs
just to find that elusive culprit.

In summary, choosing the right GC log level is all about balancing detail and
performance—log too little, and you might miss key insights; log too much, and you’ll
be drowning in data. By applying these recommendations, you can efficiently capture
the information you need without unnecessary overhead.

Now that we’ve covered how to configure GC logging, let’s move on to the next sec-
tion, where we’ll dive into real-world strategies for investigating GC logs. Here, we’ll
explore practical troubleshooting techniques, helping you make sense of the data and
pinpoint performance problems effectively.

Analyzing GC logs

Now that we know how to obtain proper log messages and understand the possibil-
ities of using them, let’s explore real-world scenarios and how logs help us trouble-
shoot problems. We’ll discuss common situations that can arise in applications and
where to look in the logs when suspecting these problems. However, having logs is
not enough—you must also know how to search through them effectively and identify
potential problems they reveal.

Troubleshooting performance lags with GC pause times

Garbage collection is essential for memory management in Java applications, but
excessive or prolonged GC pauses can significantly affect performance, leading to
noticeable lags. Identifying and analyzing GC-related performance problems using
logs is crucial for maintaining application responsiveness.

When an application experiences unexpected slowdowns, one common cause is
excessive GC activity. Symptoms may include

Increased response times in request processing

High CPU usage with little actual work being done (Remember we discussed in
chapter 5 how to observe the usage using a profiler.)

Periodic application freezes or spikes in latency
To diagnose GC-related performance lags, start by reviewing the GC logs. These logs

provide insights into the frequency and duration of GC pauses. If GC runs too fre-
quently or for extended periods, it may be causing performance degradation.

242 CHAPTER 11 Analyzing potential JVM problems with GC logs

Here are the main points in the GC logs you should consider when investigating a
potential lag problem:

GC pause duration—Look for messages indicating the time taken by each GC
cycle.

GC frequency—Excessive minor or full GCs in short time intervals may indicate a
memory leak or poor tuning.

Heap utilization before and after GC—If a full GC reclaims little memory, objects
may be lingering longer than expected.

Stop-the-world (STW) events—Prolonged STW pauses indicate GC is interfering
with application performance.

The first step I recommend is looking for logs that indicate a longer time taken to
release memory space. The next snippet shows an example of such a message:

[GC pause (G1 Evacuation Pause) (young), 0.0456780 secs]
[Parallel Time: 43.5 ms, GC Workers: 8]
[Code Root Fixup: 0.0 ms]
[Code Root Purge: 0.0 ms]
[Clear CSet: 0.5 ms]

Typically, GC pause times between 0 and 50 milliseconds are considered normal and
within expected behavior. However, if pauses exceed 50 milliseconds, it could indicate
a potential performance problem that requires further investigation. It’s essential to
verify whether this is a recurring pattern by checking multiple log entries. If only one
or two exceptions appear among 1,000 log messages, it may not necessarily indicate a
problem.

To conclude that the problem is genuine, you should observe frequent GC events
with consistently high pause times. When this occurs, it usually means the application is
experiencing memory pressure, which can lead to degraded performance and latency
spikes.

Let’s consider a practical example. Suppose you’re analyzing the GC logs of your
application due to unexplained latency problems. As you review the logs, you come
across a fragment as the one shown in the next snippet.

Would this indicate a potential problem? Let’s examine it together:

[2024-02-01T712:00:01.123+0000] GC(45)

Pause Young (G1 Evacuation Pause) 0.025s
[2024-02-01T12:00:02.456+0000] GC(46)

Pause Young (G1 Evacuation Pause) 0.027s
[2024-02-01T12:00:05.789+0000] GC(47)

Pause Young (G1 Evacuation Pause) 0.026s
[2024-02-01T712:00:10.012+0000]

GC(48) Pause Young (G1 Evacuation Pause) 0.110s
[2024-02-01T12:00:20.345+0000]

GC(49) Pause Young (G1 Evacuation Pause) 0.250s
[2024-02-01T12:00:35.678+0000]

11.4.2

Analyzing GC logs 243

GC(50) Pause Full (System.gc()) 2.567s
[2024-02-01T12:00:50.901+0000]

GC(51) Pause Young (G1 Evacuation Pause) 0.180s
[2024-02-01T12:01:10.234+0000]

GC(52) Pause Full (Allocation Failure) 5.321s

The first few GC events are minor and relatively fast (around 25-27 ms), which is
within normal behavior. However, at 12:00:10, an unusual pattern emerges—the pause
time jumps to 110 milliseconds, which could be an early warning sign of performance
degradation.

By 12:00:20, the situation worsens with a pause of 250 milliseconds, indicating
increasing memory pressure. Then, at 12:00:35, a major red flag appears—a full GC
lasting 2.5 seconds, severely affecting application responsiveness. This is followed by
yet another full GC at 12:01:10, signaling a serious memory management problem that
requires immediate attention.

If GC pauses are impacting performance, consider the following adjustments:

Experiment with different GC algorithms (e.g., G1GC, ZGC, Shenandoah) to
find the best fit for your workload.

Adjust heap size settings (-Xms and -Xmx) to prevent excessive GC activity.

Optimize Eden, Survivor, and Old Generation sizes based on application
behavior.

If possible, change your application design to minimize object creation and
encourage object reuse.

If the application requires low-latency performance, consider using ZGC or
Shenandoah GC, which minimize pause times.

Identifying memory leaks with heap usage logs

Memory leaks in Java applications can be subtle yet devastating, leading to degraded
performance, excessive garbage collection, and eventually Out0fMemoryError crashes.
While profiling tools such as VisualVM and Eclipse MAT offer powerful ways to analyze
memory usage, sometimes a more lightweight and continuous approach is needed—
this is where heap usage logs come in.

Heap usage logs provide a historical view of memory consumption over time, allow-
ing developers to detect gradual memory growth patterns that may indicate a leak.
These logs can be captured using JVM options, GC logs, or]MX monitoring tools, offer-
ing valuable insights into how objects are allocated and retained.

Let me tell you a story. It seemed to be a quiet night. Matilda woke up to the sound of
her phone buzzing. Half-asleep, she grabbed it and saw a flood of messages.

“App crashed. Users are stuck. Fix ASAP!”
Sighing, she got out of bed, made a quick coffee, and opened her laptop. Logging in,
she noticed that several Kubernetes pods responsible for managing the app’s contain-
ers were repeatedly restarting.

244

11.4.3

CHAPTER 11 Analyzing potential JVM problems with GC logs

With her eyes still half-closed, she knew the GC logs might hold some clues. Fortu-
nately, the app always stored error logs on a persistent volume, making it easy to retrieve
crash details.

She opened the latest log file from one of the failing containers and found the fol-
lowing entries:

[GC (Allocation Failure) [PSYoungGen: 512M->128M(1024M)] 1024M->900M(2048M),
0.250s]
[6C (Allocation Failure)
[PSYoungGen: 640M->200M(1024M)] 1100M->980M(2048M), 0.270s]
[6C (Allocation Failure)
[PSYoungGen: 700M->256M(1024M)] 12060M->1056M(2048M), 0.280s]
[Full G6C (Ergonomics)
[PSYoungGen: 900M->0M(1024M)] [ParOldGen: 1148M->1148M(2048M)]
2048M->1148M(2048M), 1.200s]

“The memory usage keeps growing,” she thought. “The first GC event freed 900 MB,
the second only 980 MB, and the third 1050 MB. Instead of reclaiming more space,
each cycle is leaving behind more memory. Then, the GC panicked and triggered a
full collection—but even that barely made a difference. This isn’t just normal memory
usage—it’s a leak.”

Fortunately, Matilda knew how to analyze heap dumps to pinpoint the exact source
of the leak (see chapter 10). As she dug into the data, she noticed that session ref-
erences were lingering in a collection—one that wasn’t being cleared. The culprit? A
recent code deployment just hours before the crash had introduced the problem.

Realizing this wasn’t a quick fix, she made the practical decision to roll back the
release, ensuring the app would remain stable until the team could properly address
the problem with fresh minds in the morning.

She checked the clock—3:48 AM.

“Damn,” she muttered. “I need to get back to sleep.”

GC logs can be a powerful tool for identifying potential memory leaks. While they
won’t always pinpoint the exact cause, they provide valuable clues on how to proceed
with your investigation.

A key warning sign is GC struggling to free up memory, especially after an applica-
tion crash. If you open the logs and see multiple GC events making little progress in
reclaiming space, a memory leak is likely at play. Even more telling are full GC events
that have minimal or no effect—strongly reinforcing the suspicion of a leak. If you have
access to a profiler, you can also confirm the presence of a memory leak by analyzing
memory allocation graphs, as discussed in chapter 5. Figure 11.5 is a reminder on how
to distinguish between an application that is consuming memory as expected and one
thatis experiencing a memory leak.

Identifying insufficient memory with full GC events

Insufficient memory is not the same as memory leak. Section 11.4.2 discussed how GC
logs can indicate a potential memory leak. A memory leak is typically caused by a flaw

Analyzing GC logs 245

In an app that behaves normally,

. you will observe a pattern as presented
Normal behavior in this visual. The memory fills and

Heap

750 M8 -

500 MB

250 M8

Metaspace x

at a certain point the GC cleans the
unneeded data freeing up the memory.

These are moments where the GC
cleaned the unneeded data, making
space for new data to be added in
memory.

[H Heap size \ [l Used heap

Abnormal behavior

! Heap . Metaspace x

10 GB

5 GB4

0Ge

/ When an app has a memory leak,

you will observe the used memory
grows continuously. The GC makes
efforts to free the memory but can't
deallocate enough objects since the
app holds the references for most
of them.

3:46:5:' P ::-'«5:%: P ':-‘-":E’Zl =

[Heap size [l Used heap

Figure 11.5 A comparison between the memory consumption graph of an application with normal memory usage
and one affected by a memory leak.

in the application’s logic, where objects are continuously allocated but never properly
released.

In such cases, even though the application has sufficient allocated memory, certain
references persist indefinitely due to improper resource management, eventually lead-
ing to heap exhaustion. This gradual accumulation prevents the GC from reclaiming
memory, ultimately causing Out0fMemoryError or performance degradation.

In this section, we discuss insufficient memory allocation. In this scenario, the appli-
cation simply does not have enough memory to process the given workload. Unlike
a memory leak, where memory is improperly retained, the application is genuinely
under-provisioned for the data it needs to handle.

Addressing insufficient memory can involve several approaches, depending on the
situation. Solutions may range from redesigning the application to improve memory
efficiency, enabling horizontal scaling to distribute the load across multiple instances,
or—in the simplest case—increasing the allocated heap size to better accommodate the
workload.

246

CHAPTER 11 Analyzing potential JVM problems with GC logs

Differentiating between a memory leak and insufficient memory can sometimes be
challenging because, in both cases, the GC logs will show intensive garbage collection
activity as the JVM struggles to free up memory. However, the underlying causes are
different—one is due to persistent object retention, while the other is simply a lack of
allocated memory to meet demand.

To illustrate this, take a look at the following snippet:

[GC pause (61 Evacuation Pause) (mixed), 0.01506789 secs]
[GC pause (G1 Evacuation Pause) (mixed), 0.01783456 secs]
[GC pause (G1 Evacuation Pause) (mixed), 0.02021234 secs]

[Full GC (Allocation Failure) 8192M->6100M(8192M), 2.345678 secs]
[GC pause (G1 Evacuation Pause) (mixed), 0.01901234 secs]
[GC pause (G1 Evacuation Pause) (mixed), 0.02115678 secs]

[Full GC (Allocation Failure) 8192M->5800M(8192M), 2.678901 secs]
[GC pause (G1 Evacuation Pause) (mixed), 0.0987654 secs]
[GC pause (G1 Evacuation Pause) (mixed), 0.02254321 secs]

[Full GC (Allocation Failure) 8192M->5600M(8192M), 2.789012 secs]

In the previous snippet, we observe frequent garbage collection events, but none of
them have excessively long pause times, and all appear to be atleast somewhat effective
in reclaiming memory. Unlike the memory leak problem discussed in section 11.4.2,
the GC events here successfully free up memory, and heap usage does not exhibit a
steady increase over time.

Additionally, the short GC pause times do not indicate an untuned GC configura-
tion or similar inefficiencies discussed in section 11.4.1. More importantly, the fact that
memory is continuously being reclaimed suggests that this is not a memory leak, since
objects are eventually being collected rather than retained indefinitely.

However, the high frequency of GC events, combined with the presence of full GC
occurrences, is still a concerning pattern. It indicates that the allocated heap memory
is insufficient to handle the application’s workload. In such cases, the JVM is forced to
perform garbage collection too often, leading to performance degradation. While GC
is able to keep the application running, the excessive overhead suggests that increasing
the available memory would likely improve efficiency and stability.

You can also use the memory consumption graph here as confirmation (figure 11.5).
If the application is affected by a memory leak, the graph will show a steady increase
in memory usage until the heap is completely full. However, if the problem is simply
insufficient memory allocation, the graph will display peaks and valleys, indicating that
the GCis actively reclaiming memory and keeping the application running. However, if
the allocation is too close to the maximum, performance may degrade, and the risk of
out-of-memory errors increases.

In such cases, a short-term solution may be to increase the allocated heap memory
using the -Xmx and -Xms parameters. This approach can provide immediate relief by
allowing the application to handle more objects before triggering garbage collection.

11.4.4

Analyzing GC logs 247

However, relying solely on vertical scalability (i.e., increasing heap size) is often a
temporary fix. While it may delay memory pressure problems, it does not address the
root cause. A more sustainable approach involves optimizing memory usage by improv-
ing application logic to reduce unnecessary allocations and ensuring objects are prop-
erly deallocated.

In the long run, redesigning the application for horizontal scalability—distributing
the workload across multiple instances instead of depending on a single, large heap—
can lead to better performance, resilience, and scalability.

Tuning parallelism in GC

Garbage collection in Java is like cleaning up after a party. If done right, everything
stays neat, and your application runs smoothly. But if not, your CPU gets stuck dealing
with the mess while your application slows down.

Modern Java garbage collectors can use multiple threads to speed up the cleanup
process, but if they aren’t tuned properly, they might either work too hard—wasting
CPU power—or too little, leaving memory cluttered. In this section, we focus on the G1
GC, which has been the default collector in recent Java versions. You’ll also learn about
key JVM settings such as -XX:ParallelGCThreads and -XX:ConcGCThreads, which control
how many threads GC can use. By the end, you’ll know how to fine-tune GC parallelism,
so your application spends less time cleaning and more time doing what it was built for.

We’ll take a few examples of different log messages patterns and discuss them. Say
you frequently observe log messages such as

[GC pause (G1 Evacuation Pause) (young), 0.124567 secs]
Parallel Time: 115.2 ms, Workers: 2 (out of 8 available)
Eden: 256M->0M(1024M), Survivors: 32M->64M, Heap: 2048M->1024M(4096M)

As we learned earlier in this chapter, a GC event lasting longer than 50 milliseconds,
especially if it occurs frequently, is a red flag for performance problems. In this case,
the logs provide additional information indicating that only two out of eight available
worker threads are being used for the cleanup process. This suggests that the GC is
underutilizing the CPU, potentially leading to inefficient memory management and
longer pause times.

To address this matter, you can experiment with increasing the number of parallel
GC threads to distribute the workload across available CPU cores better. This adjust-
ment may help reduce pause times and improve overall application performance.

You can add the following flags to your VM parameters to change:

-XX:ParallelGCThreads=6
-XX:ConcGCThreads=4

The -XX:Parallel6CThreads=6 option controls the number of threads used for paral-
lel garbage collection during stop-the-world (STW) phases. In this case, the JVM will

248

CHAPTER 11 Analyzing potential JVM problems with GC logs

use six threads to perform STW garbage collection tasks, such as young generation
evacuation:

If the value is too low, GC may underutilize the CPU, leading to longer pause
times.

If the value is too high, it may cause excessive CPU usage, potentially slowing
down the application by consuming resources needed for other tasks.

Similarly, the -XX:ConcGCThreads=4 setting controls the number of threads used for
concurrent (background) garbage collection phases. The JVM will use four threads
for non-STW GC tasks, such as marking and reclaiming memory in the background,
without interrupting application execution:

If set too low, the concurrent phases might not keep up, causing frequent stop-
the-world pauses as GC struggles to clean memory in time.

If set too high, it might consume too many CPU resources, negatively affecting
overall application performance.

For example, if G1 GClogs show long concurrent phases, increasing the Conc6CThreads
flag can help speed up background GC work.

However, GC tuning isn’t an exact science—it requires careful observation of your
application’s behavior over time. Making changes without monitoring their effect can
lead to unexpected problems. Personally, I prefer experimenting with these settings
over an extended period to ensure that the adjustments truly optimize performance in
real-world execution.

Another problem could be caused by allocating too many threads. Take alook at the
following snippet:

[GC (Allocation Failure) [ParallelGC (workers: 16)1]
1536M->768M(3072M), 0.310456 secs]

We observe a long GC pause time (about 310 ms) and notice that 16 worker threads
were used. This number suggests CPU contention, where too many threads are com-
peting for CPU resources, causing inefficiencies rather than improving performance.

It’s similar to a race condition, but instead of threads fighting over shared memory,
GC threads are fighting over CPU time, ultimately slowing down execution instead of
speeding it up.

A good approach in such cases is to reduce the number of worker threads using the
-XX:ParallelGCThreads parameter. Lowering this value can help reduce CPU conten-
tion and lead to smoother, more efficient garbage collection.

Tuning -XX:ParallelGCThreads is a bit like making the perfect cup of coffee—too
little, and your GC runs sluggishly, dragging your application down; too much, and sud-
denly your CPU is jittery, over-caffeinated, and struggling to keep up.

The key takeaway? Start small, observe, adjust, and repeat. Don’t just throw more
threads at the problem and hope for the best—unless, of course, you enjoy watching
your CPU have a meltdown.

Summary 249

So, go forth and experiment! Just remember: Garbage collection should clean up
your application, not your patience.

Summary

Garbage collector logs are crucial for troubleshooting JVM memory manage-
ment problems. They provide insights into memory allocation, garbage collec-
tion pauses, and heap utilization.

Enabling GC logs is the first step in analyzing JVM memory behavior. The
-Xlog:gc* VM option enables GC logging, helping developers track GC activity
in real-time or store logs for later analysis.

Understanding the GC log structure is essential. Logs include details on GC
events, pause times, heap size changes, and memory allocation patterns.

GC logs help diagnose excessive GC pauses. Long GC pause times (typically
above 50 ms) can indicate performance problems, while frequent full GC events
suggest memory pressure.

Heap memory organization affects GC performance. Objects move through
Eden, Survivor, and Old Generation memory regions. Inefficient memory usage
can cause frequent GC interruptions.

Frequent full GC events may indicate insufficient memory or a memory leak.
Logs showing frequent full GC events with minimal memory reclamation suggest
aleak, while effective but frequent full GCs indicate an under-provisioned heap.
Storing GClogs in files is recommended for deeper analysis. Use -X1og:gcx: file
=gc.log:time,uptime,level, tags to redirect logs to a file for structured storage
and easier troubleshooting.

Log rotation prevents excessive storage use. Configuring file count and file size
limits ensures logs do not consume excessive disk space.

Choosing the right logging level improves troubleshooting efficiency. Error logs
capture critical failures, while info and debug levels provide additional insights
into memory management.

Tuning GC parallelism can reduce pause times. Adjusting -XX:Parallel6C-
Threads and -XX:ConcGCThreads optimizes CPU usage for better performance.
AT tools and third-party services can simplify GC log analysis. Uploading logs to
tools such as GCEasy or using Al assistants can speed up troubleshooting.

Part 4

Finding problems
in large systems

o far, we’ve focused on diagnosing problems inside a single application.

But in the real world, most systems are made up of many services, databases, and
queues—all talking to each other across networks. In this environment, problems
don’t just live in one place. They can hide in the gaps between services, in unex-
pected data mismatches, or in the way the system reacts as a whole under stress.

This part is about troubleshooting at system scale. We’ll learn how to uncover
failures that happen only when services interact, how to measure and verify data
consistency across boundaries, and how to trace multistep operations that cross
multiple components. We’ll also look at strategies for catching drift between sys-
tems before it becomes a serious outage.

By the end of this part, you’ll be equipped to investigate problems that span
entire architectures—not just single apps—using the right combination of logs,
traces, metrics, and detective work to keep complex systems healthy.

Uncovering system-level
Jailures and service
communication problems

This chapter covers
Troubleshooting failures in multiservice Java
systems
Investigating common pitfalls in REST, gRPC, and
messaging
Unfolding serialization and versioning problems
between services

Investigating cascading failures, retries, and
timeout problems

“Why is the payment service down ?”

“Because the email service is slow.”

“What?”
In a system of services, failure is a team sport, and you may not even be invited to the
game. One service times out, another starts retrying furiously, and suddenly, your logs

are full of errors from a completely unrelated module. The challenge is that prob-
lems rarely stay local; they echo through the system, bouncing off APIs, queues, and

253

254

12.1

CHAPTER 12 Uncovering system-level failures and service communication problems

unsuspecting services that were just minding their own business. By the time you join the
debugging party, half the system is on fire, and no one remembers who lit the match.

Let me tell you about the time the user profile service refused to start. After extensive
digging, we discovered that the service was waiting on a downstream dependency that
had nothing to do with user profiles. That dependency was, in turn, waiting on a mes-
sage from a service that had problems deploying. This was the software equivalent of a
group of friends refusing to order pizza until someone who wasn’t even invited to the
party showed up.

This chapter talks about about those moments. It’s about the mysterious slowdown
that starts in a service you didn’t even know existed—the gRPC call that fails because
someone cleaned up an an enum field that seemed unused, or the cascade of retries
that turns a minor hiccup into a full-on distributed meltdown.

In section 12.1, we start examining how to troubleshoot common communication
patterns, such as REST, gRPC, and messaging, and the types of problems they can
introduce—from unclear contracts to delivery failures. In section 12.2, we dive into seri-
alization mismatches and versioning problems, looking at how subtle schema changes
can break integrations silently.

Finally, in section 12.3, we explore systemic failure modes, such as cascading failures,
retry storms, and timeout mismatches, and how to detect and investigate them using
logs, metrics, thread dumps, and distributed tracing. The goal is to give you practical
techniques and real-world strategies for understanding and resolving complex prob-
lems that emerge not from a single bug, but from the way services interact.

Troubleshooting communication patterns: RPC and messaging

In distributed systems, the reliability of applications no longer depends solely on their
own correctness, but also on how they communicate with others. In a distributed sys-
tem, services interact through various communication mechanisms such as Remote
Procedure Calls (RPCs)—including REST and gRPC—or asynchronous messag-
ing such as Kafka. While these patterns enable modularity and scalability, they also
introduce new failure modes that can be subtle, inconsistent, and hard to diagnose.
Communication between services—whether through REST APIs, gRPC calls, or asyn-
chronous message queues—can introduce subtle and difficult-to-trace failures.

Each communication pattern comes with tradeoffs. REST offers simplicity and wide-
spread adoption but can suffer from unclear contracts and weak typing. gRPC pro-
vides performance and structure, yet brings its own challenges around compatibility
and tooling. Messaging enables loose coupling and asynchronous workflows, but it can
introduce problems with ordering, duplication, and delivery guarantees.

This section examines how these communication mechanisms commonly fail, how
to detect when they do, and what practices can help prevent outages caused by miscom-
munication between services. For each pattern, we’ll focus on the kinds of failures that
occur and the tools you can use to trace, diagnose, and resolve them. From structured
logs and distributed tracing (e.g., OpenTelemetry, Jaeger, Zipkin) to protocol-specific

12.1.1

Troubleshooting communication patterns: RPC and messaging 255

debuggers (e.g., grpcurl, Postman, and message brokers’ dashboards), we’ll explore
how to move from symptoms to root cause in a complex, connected system.

Working with trace IDs and spans

This section talks about two of the most common troubleshooting tools for distributed

systems: trace IDs and spans. Let’s consider the following scenario to better under-

stand how a problem could look like and what tool is useful for untangling the case.
Suppose your company runs a Java-based e-commerce platform built as a set of

microservices. One day, the customer support team reported that some users were com-

pleting checkouts, but the orders never showed up in the admin dashboard. Payments

are processed, confirmation emails are sent, but what about the actual orders? Gone.
Your services look like as shown in figure 12.1:

Checkout service (REST) — calls Order service
Order service — publishes an event to Kafka

Fulfillment service — consumes from Kafka and stores orders

Checkout service Order service Fulfillment service DB

stores

T——
B - » [(G- B ———
o FE LY A

@

Figure 12.1 An overview of the system for our scenario. The checkout service calls the order service via
REST, while the order service asynchronously talks to the fulfillment service through a Kafka topic. The
fulfillment service stores details in a database.

Naturally, we first go digging through the logs. You first tail the logs of the checkout
service. It shows a successful REST call to the order service. You’re looking for the trace
ID: it’s present, the response code is 200, and the payload seems correct.

What is a trace ID? When dealing with a single Java application, a stack trace or log
file is often enough to understand what went wrong. However, those traditional tools
fall short quickly once you move to a distributed system, where one request may bounce
between a dozen services. That’s where the trace ID comes in.

256

CHAPTER 12 Uncovering system-level failures and service communication problems

DEFINITION A trace ID is a unique identifier assigned to a request as it enters
the system.

Think of a trace ID as a passport that travels with the request, stamped at every border
it crosses. As the request flows through different services—via HTTP, gRPC, or message
queues—each participating service logs its part of the journey, tagging the logs and
telemetry data with the same trace ID. This characteristic allows you to stitch together
the entire story of a request across system boundaries (figure 12.2).

Checkout service Order service Fulfillment service DB

N
»

i

2

4B
¥
—t
a@»
¥

traceparent=45a57ba...

traceparent=45a57ba... @ @ traceparent=45a57ba...
publishes reads

§§ kaFﬂ(a
=

The message has an unique trace ID that
identifies the message. This way, you can follow
the message on its road throughout the flow.

Figure 12.2 A trace ID identifies each message so you can follow it throughout its road between
multiple services.

Trace IDs are central to distributed tracing systems such as Jaeger and Zipkin (dis-
cussed later in the chapter), or commercial platforms such as Datadog and Honey-
comb. These tools collect spans (individual units of work done by each service), and
group them under the same trace ID to form a complete picture of how long each step
took, what errors occurred, and where delays originated.

In practice, trace IDs are often propagated through HTTP headers (e.g., traceparent
or x-b3-traceid) or metadata in message payloads. Ensuring consistent propagation
across all your services is crucial—if just one service drops the trace ID, the chain breaks,
and you’re left with fragments instead of a full picture.

Going back to our scenario. You decide to continue with the next service. You check
the order service logs. It receives the request, creates the order object, and publishes an

Troubleshooting communication patterns: RPC and messaging 257

event to Kafka. No errors, no exceptions. Still, the fulfillment service doesn’t show any
trace of the order.

When logs don’t give you the full picture, and you suspect the problem spans multi-
ple services, it’s time to change your approach. This is where distributed tracing comes
in, and tools such as Jaeger become invaluable.

Jaeger (https://www.jaegertracing.io/) is an open source distributed tracing system
that helps visualize these traces. It collects spans from your instrumented services and
presents them as a timeline. The following listing gives you an idea of how such a time-
line (trace tree) looks like. Using the trace ID, Jaeger aggregates the information and
shows how each service called another and how long each operation took.

Listing 12.1 An example of a trace timeline also called a trace tree

Trace ID: 6f98cle2b3a24f59

L api-gateway] POST /checkout [950ms]
— [checkout-service] Validate cart [4Bms]
— [checkout-service] Call OrderService [780ms]
[order-service] Create order record [100ms]
[order-service] Check inventory [60ms]
[order-service] Save to database [30ms]
— [checkout-service] Call PaymentService [100ms]
[payment-service] Process payment [90ms]
— [checkout-service] Send confirmation email [36ms]

A span is the fundamental building block of a distributed trace. It represents a single
unit of work done within a service, such as handling an HTTP request, querying a data-
base, calling another service, or processing a message.

An alternative to Jaeger is Zipkin (https://zipkin.io/). Zipkin is a distributed tracing
system originally developed by Twitter, designed to help users collect and visualize tim-
ing data for requests across service boundaries. Like Jaeger, it allows tracing a request as
it moves through multiple services, displaying each step as a span in a timeline.

Think of a trace as the full story of a request moving through your system. Each span
is a chapter in that story. It includes

A name (e.g., "POST /checkout"”, "Call to OrderService")

A start timestamp and duration

The service name that produced it

Tags (metadata such as status codes, error messages, or custom fields)
Logs/events that occurred during the span’s lifetime

Areference to its parent span, if it’s part of a larger operation

The next snippet shows a tree representation of a span, which is how you’d see it in a
tool such as Jaeger or Zipkin.

L [api-gateway] GET /products [42ms]

https://www.jaegertracing.io/
https://zipkin.io/

258

CHAPTER 12 Uncovering system-level failures and service communication problems

For the span, the tool usually provides you a detailed view separately, such as the one
presented in the next listing.

Listing 12.2 Details of a span

Uses the trace ID to
debug the tree of calls

Useful to identify the

Trace ID bfl2ec184a2b48d0a28alf07c748f6e3 operation in code

Span ID d6f0fdeeb2ef3cba

Parent Span ID null (this is the root span) Useful to identify the

Span Name GET /products operation in code

Service Name api-gateway Identifies the service

Star*t.Tlme 2025-04-17T13:42:10.512Z executing the span

End Time 2025-04-17T13:42:10.554Z

Duration 42ms Useful when

Status) 0K troubleshooting

Instrumentation OpenTelemetry Java SDK 1.30.0 performance
Library used for instrumentation problems

As shown earlier in listing 12.1, spans can be nested, forming a tree that shows the
structure of the request. For example, a trace might start with a span in your API Gate-
way, which has child spans for calls to the checkout service, which in turn spawns spans
for calling the order service or querying a database. This nesting lets you see exactly
which part of the system slowed down or failed. The following listing shows the span
for our fictive scenario.

Listing 12.3 The span tree for our fictive case

Sometimes, the time of a span
may be bigger than the sum of
duration of its children. Each span
has a traced
execution time.

L— [checkout-service] POST /checkout [180ms]
— [checkout-service] Validate cart contents [15ms]
—— [checkout-service] REST call: OrderService.CreateOrder [90ms]
[order-service] Validate payment method [10ms]
[order-service] Save order to database [40ms]
[order-service] Publish to Kafka topic 'orders.created' [20ms]
— [checkout-service] Redis SET session:checkout_status [10ms]
— [checkout-service] Send confirmation email (async) [30ms]

Each span shows metadata such as duration, operation name, service name, and logs
or tags. This makes it easy to spot bottlenecks, failures, or missing links in the flow.
Sometimes, the time of a span may be bigger than the sum of duration of its children
due to its own logic. Order is there, as is the order service’s internal processing. But
there is nothing from fulfillment. It never consumed the message. You suspect a prob-
lem in the Kafka pipeline.

12.1.2

Troubleshooting communication patterns: RPC and messaging 259

You fire up Kafka’s UI dashboard and inspect the topic orders.created. The eventis
there, sitting in the topic. Not consumed. Now you check fulfillment service logs. Hid-
den between harmless info messages, you find

[WARN] Failed to deserialize message from topic orders.created - Unknown enum
value: SHIPPING_METHOD_DRONE

Ahal! Yesterday, a new enum value, SHIPPING_METHOD_DRONE, was added to the order
service. The team deployed it, but the fulfillment service wasn’t updated and still
uses the old schema version. You solved another case, but things might get more
complex. Of course, we cannot always understand the problem until we also learn
about the business the app implements. In some simple scenarios, you can deduce
what the app wants to do and why the user needs that. In more complex cases, you
need to dig a bit deeper to understand the why solved by the implemented use case
you troubleshoot.

Let’s talk a bit more in section 12.1.2 about the tools we just mentioned we used to
solve this case. Then, we’ll analyze in more detail the serialization mismatch in section
12.2, and what other troubleshooting tactics we can apply in other scenarios.

OpenTelemetry, Jaeger, Zipkin, and other utilities

In section 12.1.1. we used a few tools to troubleshoot a fictive scenario and talk about
techniques using trace IDs and spans. Let’s now discuss a bit more about these tools
and how they work.

To make distributed tracing work in a real system, you need to install and integrate
several components into the runtime environment where your services are deployed.
These tools aren’t just developer-side utilities but part of the infrastructure that sup-
ports observability at system scale.

At the core of tracing is OpenTelemetry (https://opentelemetry.io/), responsible
for generating telemetry data from your Java services. It can be added to your appli-
cation either through manual instrumentation (writing code that creates spans) or
through automatic instrumentation using the OpenTelemetry Java agent. In the latter
case, you don’t need to modify your code—just attach the agent to your application at
startup, and it will capture spans for popular frameworks such as Spring, gRPC, JDBC,
and HTTP clients out of the box.

Once spans are generated, they need to be collected and visualized. This is where
Jaeger or Zipkin come into play. These are observability backends that you deploy
alongside your application stack, typically in the same Kubernetes cluster or as Docker
containers. Your services send trace data to them using OpenTelemetry’s export pro-
tocols (e.g., OTLP or gRPC), and the backend provides a web UI for searching and
exploring traces across your system. Figure 12.3 illustrates the relationship between a
service, OpenTelemetry, and Jaeger or Zipkin.

Although developers may interact with traces by instrumenting code or viewing
trace data during development or incident response, the actual tracing infrastructure

https://opentelemetry.io/

260

CHAPTER 12 Uncovering system-level failures and service communication problems

Checkout service

]

=

FE Y

i JAEGER

Troubleshooting data / metrics

&,
& Telemetry

ZIPKIN

OpenTelemetry intercepts the service and collects relevant
troubleshooting data. Jaeger and Zipkin aggregate the data
collected by OpenTelemetry and nicely displays it to help
you investigate problems in distributed systems.

Figure 12.3 OpenTelemetry collects relevant data from the running service. Jaeger and Zipkin are tools
that aggregate and display nicely this data to help you easily troubleshoot the system.

is managed and operated at the system level. Platftorm or DevOps teams must install
and configure it as part of the environment. With this setup in place, tracing becomes
a powerful tool for debugging, monitoring system health, analyzing performance, and
understanding how requests flow through complex architectures.

In our case, we’ve used distributed tracing to investigate a missing order. But tools
such as OpenTelemetry, Jaeger, and Zipkin do much more than help you chase down
elusive bugs. They're the foundation of system-scale observability. Let me mention
some other use cases you can quicky find these tools useful:

Performance optimization—Use tracing to analyze where your system is spending
time. With it you can answer question such as, Which calls are slow? Is a partic-
ular DB query holding things up? Which services contribute most to request
latency?

Dependency mapping—Traces reveal how your services talk to each other. You can
generate real-time service maps, showing which components are upstream/
downstream, and which ones may be overburdened.

Errorisolation—When a user reports a failure, tracing can show exactly which ser-
vice or operation failed—especially valuable in asynchronous or retry-heavy flows
where logs don’t tell the whole story.

Monitoring cold starts and resource spikes—A cold start is a delay that occurs when
a system component, such as a serverless function, thread, or service instance,
is invoked after being idle or uninitialized, requiring setup time that slows

Troubleshooting communication patterns: RPC and messaging 261

response. By visualizing slow or blocked spans in distributed traces, you can
detect cold starts, long garbage collection (GC) pauses, or thread pool starva-
tion. These patterns often escape traditional metrics, but tracing can reveal them
clearly through latency spikes and span timing anomalies.

Sampling and trend analysis—You don’t need to trace every request. You can sam-
ple a small percentage (1%-5%) and still get valuable insights into the health
and behavior of the system over time.

Combining traces with logs and metricsc—Modern observability platforms (such as
Grafana, Datadog, or OpenTelemetry Collector) allow you to correlate traces
with logs and metrics. For example, trace latency spikes back to a CPU/memory
event or a new deployment.

While distributed tracing tools such as Jaeger and Zipkin provide you with a timeline
of events and latency insights across services, they don’t always capture the full details
of what went wrong when a request fails. That’s where tools such as Sentry (https://
sentry.io/) come in.

Sentry is a real-time error monitoring platform that collects and organizes unhan-
dled exceptions, stack traces, and runtime errors from your services. It integrates with
many Java frameworks and can automatically capture contextual information such as
the failed line of code, user identifiers, HTTP request details, and even tags indicating
which version of the code was running. This feature makes it especially useful when
debugging problems such as failed gRPC calls, bad deserialization, or unexpected
response types, situations where the trace alone may show you where the problem hap-
pened, but not what the underlying error was.

Sentry is not a replacement for tracing, but a powerful complement. When used
alongside OpenTelemetry-based systems, it gives you a complete view: tracing shows
the flow, and Sentry shows the failure in full detail. In many setups, Sentry errors
can even include the corresponding trace ID, helping you correlate between tools
and move seamlessly from high-level trace data to the specific exception that trig-
gered it.

In our scenario, the fulfillment service failed to deserialize a message from Kafka
(section 2.1) due to an unrecognized enum value (SHIPPING_METHOD_DRONE). The ser-
vice didn’t crash, but it silently failed to process the message.

Had Sentry been integrated into that service, it would have captured the excep-
tion thrown during deserialization. The Sentry dashboard would show stack traces,
message payload metadata, and error frequency, highlighting that this problem was
recurring for specific message types. It might have even pointed to the exact line of
code or class failing during deserialization. This would have accelerated discovery of
the schema/version mismatch without relying solely on log grepping or deep trace
analysis.

Figure 12.4 shows a sample of a Sentry dashboard giving details on a particular
exception that happened in an app.

https://sentry.io/
https://sentry.io/

262

CHAPTER 12 Uncovering system-level failures and service communication problems

Exception type and message Details about the system
and the application

RuntimeException

ah Ho!

machanism

comexamplecontroflers DemaControlles throwExcention =t n

BREADCRUMBS Filter By Q

T¥RE

©
o

CATEGOHRY DESCAWFTION LEVEL = TiME

Kt GET infa 7:43:44

HandlerExceptionfesolver handied | Talse rawser Fame 08.04758 100%

Isrowsse I e 100%

client_os Wirdors 10 100%

clint_os.name 100%

ViR e reduction 100%

Pl o 100%

Jiwsl tatal 100%

eaception HuntimeException: Oh Kal Emor AREE GRS

& rurtima Oragis Corporation 7.0 100%
GET / @ localhost m eurl

Headers

Accept

Accept-Encoding

Pt i 3 srporation 100%

TesT/ninl, agplication/ stnl+xnl, aoplication/ nl;o=6. %, Lnage/avir, 1nage /wenp, LNage/aong, */* qe@ BarviT_eme L gacke rmal 100%
1an/sipned-exchange ;v=b3:g=d.9

tranaxction GET 100%

100%

Details about the event
that caused the exception

Figure 12.4 Sentry aggregates and shows events such as exceptions providing a large field of details for each of

these.

12.2

Serialization mismatches and versioning problems

When two services exchange data, they need to speak the same language—not just at
the protocol level (such as HI'TP or gRPC), but in terms of how they structure and
interpret the data itself. That’s where serialization comes in: transforming complex
in-memory objects into a stream of bytes that can be sent over the network, and back
again on the receiving end.

Unfortunately, serialization is also one of the easiest places for things to go subtly,
silently wrong. What happens when one service adds a new field to a JSON payload,
and another service—still using the old model—silently ignores it? What if someone
renames a Protobuf enum or forgets to make a field optional? What if a Java object is
serialized with a specific version UID, but deserialized with a different class entirely?

Remember our examples in section 12.1? These mismatches don’t always trigger
obvious failures. Sometimes they result in dropped data, default values, or deserializa-
tion errors that only appear under specific circumstances.

Serialization mismatches and versioning problems 263

In this section, we explore how serialization and versioning problems show up in real
systems, what to watch for when evolving data contracts, and how to build in forward
and backward compatibility so your services can evolve independently without acciden-
tally breaking each other.

Protobufs and gRPC

Protocol Buffers, or Protobuf for short, is a language-neutral, platform-neutral serial-
ization format developed by Google. It's used to define structured data and efficiently
serialize it for communication between services or for storage. Think of it as a faster,
smaller, and more strictly typed alternative to JSON or XML.

With a Protobuf, you define your data structures in .proto files using a simple declara-
tive syntax:

message Order {
inté4 id = 1;
string customer_id = 2;
repeated string items = 3;
optional string notes = 4;

F

From this schema, Protobuf automatically generates Java (or other language) classes
that handle both serialization (converting the object into a compact binary format)
and deserialization (reading it back into structured data).

Protobuf is commonly used in systems that require high performance and strong con-
tracts between services—especially in combination with gRPC, which uses Protobuf
to define request/response messages and service APls. While Protobuf’s efficiency
and schema-based design are strengths, they also introduce challenges when ser-
vices evolve independently. If one service adds a new field or changes an enum, and
another service hasn’t been updated to understand that change, mismatches are
possible. This makes versioning discipline and compatibility guarantees critical—
especially in Java systems, where strict typing and deserialization behavior can turn
small changes into big problems.

When debugging a serialization problem, especially in a distributed system, there’s
often no substitute for seeing the actual data exchanged between services. Logging
the raw payload can help you confirm whether a field was missing, defaulted, or mis-
formatted. It can also expose subtle problems such as trailing null bytes, encoding mis-
matches, or unexpected enum values.

However, logging raw payloads comes with real risks. Payloads can be large, and
dumping entire serialized blobs (especially in binary formats such as Protobuf or
Avro) can flood your logs, overwhelm log ingestion systems, or consume excessive disk
space. Worse, many payloads contain sensitive information, user data, authentication
tokens, and payment details, that should never appear in plain text logs, especially in
production.

264

CHAPTER 12 Uncovering system-level failures and service communication problems

The key is to balance visibility and safety. Selectively logging decoded payloads
(rather than raw binary) is often sufficient in development or staging environments. In
production, consider

Sampling only a subset of requests
Filtering or redacting sensitive fields before logging
Capping the size of logged content (e.g., log the first N characters or fields)

Using structured logging to log fields with metadata, rather than dumping the
whole object

Tools such as structured log appenders (e.g., Logback with JSON output—for a
refresher, check chapter 4) can help you emit only what you need. Also, always tag logs
with the trace ID so that even minimal payload data can be correlated with a full trace
when needed.

One of the most effective ways to prevent serialization and versioning problems
is to validate your schemas before they ever reach production. In a distributed sys-
tem, where services evolve independently, schema mismatches can easily occur when
teams make changes without coordination. Automated schema validation, either
during service startup or as part of the continuous integration (CI) pipeline, acts as a
safety net.

In a CI pipeline, schema validation is a simple but powerful way to catch breaking
changes before they affect anyone. The idea is to compare your current schema, such
as a .proto, Avro, or JSON Schema file, with a previous version, usually from your main
branch or a shared schema registry. This approach helps make sure that the changes
you’ve made won’t break consumers that rely on older versions.

When your pipeline runs, it pulls in both the current and previous s