
M A N N I N G

Laurenţiu Spilcă
Foreword by Ben Evans

SECOND EDITION

Java
TROUBLESHOOTINGTROUBLESHOOTING



A comparison between the memory usage for a healthy app versus an app suffering from a 

memory leak. The GC frees unneeded data from memory for a healthy app, and the allocated 

space never fills up. An app with a memory leak prevents the GC from removing enough data.  

At some point, the memory fills up completely, generating an OutOfMemoryError.

In an app that behaves normally, you 
will see this pattern. The memory fills, 
and at a certain point, the GC cleans the
unneeded data, freeing up the memory.

These are moments when the GC
cleaned the unneeded data, making
space for new data to be added in
memory.

When an app has a memory leak,
the used memory continuously 
grows. The GC attempts to free 
the memory but can’t deallocate 
enough objects since the app holds 
the references for most of them.

Normal behavior

Abnormal behavior



Praise for the first edition

Definitely a must read for every Java developer, who needs to tune performance of the Java production 
system.

—Amrah Umudlu, Software Engineer, Azericard LLC

A compendium of immense value for java programmers—finally a book that illustrates how to 
effectively troubleshoot and reason about your Java apps in production! This distilled wisdom could 
save the day!

—Atul Shriniwas Khot, Software Architect, SquareOne Insights

Regardless of whether you are a seasoned engineer or a Junior Developer, you should read this book if you 
want to have an in-depth understanding of the debugging processes, principles and techniques, within 
Java applications. Highly recommended.

—Giorgi Tsiklauri, Independent Software Consultant, Engineer, Lecturer

This is a must-read for all Software Engineers regardless of experience level, who want to be well- 
equipped to troubleshoot and resolve Java applications issues with severity ranging from simple to 
extremely complex, like multithreading or memory leaks.

—Latif Benzzine, Lead Software Engineer, Cognizant

The most comprehensive guide to understanding and debugging Java applications to date.

—Peter Szabó, Senior Software Engineer, Tesco Technology

The book that demystifies debugging. A daring work of scholarship and exploration into the depths of 
Java codebases, distilling concrete knowledge in the most accessible way possible.

—Michael Kolesidis, Software Engineer, Okto

Laurențiu’s book is packed with extremely valuable tips and tricks for every level.

—Alex Gout, Senior Data Engineer, Shopify





MANN I NG

SHELTER ISLAND

LaurenȚiu SpilcĂ

Troubleshooting Java  
Second Edition

Foreword by Ben Evans



For online information and ordering of this and other Manning books, please visit www.manning.com. 
The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

© 2026 Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form 
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the 
publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed 
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a 
trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books 
we publish printed on acid- free paper, and we exert our best efforts to that end. Recognizing also our 
responsibility to conserve the resources of our planet, Manning books are printed on paper that is at 
least 15 percent recycled and processed without the use of elemental chlorine.

∞

 Manning Publications Co. 
20 Baldwin Road
PO Box 761 
Shelter Island, NY 11964

ISBN 9781633435575
Printed in the United States of America

The author and publisher have made every effort to ensure that the information in this book was correct 
at press time. The author and publisher do not assume and hereby disclaim any liability to any party for 
any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result 
from negligence, accident, or any other cause, or from any usage of the information herein.

 Development editor:  Marina Michaels
 Technical editor:  Nicholas A Watts
 Review editor:  Dunja NikitoviÊ
 Production editor:  Andy Marinkovich
 Copy editor:  Lana Todorovic-Arndt
 Proofreader:  Keri Hales
 Typesetter:  Tamara ŠveliÊ SabljiÊ
 Cover designer:  Marija Tudor



v

brief contents
Part 1  Revisiting the foundation for code investigation 1

 1 ■  Starting to know your apps 3
 2 ■  Understanding your app’s logic through debugging 

techniques 25
 3 ■  Finding problem root causes using advanced debugging 

techniques 53
 4 ■  Making the most of logs: Auditing an app’s behavior 76

Part 2  Deep diagnosing an app’s execution ...................... 103

 5 ■  Identifying resource consumption problems using profiling 
techniques 105

 6 ■  Finding hidden problems using profiling techniques 129
 7 ■  Investigating locks in multithreaded architectures 157
 8 ■  Investigating deadlocks with thread dumps 180

Part 3  Diagnosing memory-related problems ................. 199

 9 ■  Profiling memory-related problems 201
 10 ■  Investigating memory problems with heap dumps 211
 11 ■  Analyzing potential JVM problems with GC logs 228



vi BRIEF CONTENTSvi

Part 4  Finding problems in large systems ........................ 251

 12 ■  Uncovering system-level failures and service communication 
problems 253

 13 ■  Measuring data consistency and transactions 276

appendix A ■  Tools you’ll need 298
 appendix B ■  Opening a project 299
 appendix C  ■  Recommended further reading 301
 appendix D ■  Understanding Java threads 303
 appendix E ■  Memory management in Java apps 319



vii

contents
foreword  xii

preface  xiv

acknowledgments  xvi

about this book  xvii

about the author  xxi

about the cover illustration  xxii

Part 1 Revisiting the foundation for code  ............ 
  investigation ................................................1

 1 Starting to know your apps 3

 1.1 How to more easily understand your app 5

 1.2 Typical scenarios for using investigation techniques 10
Demystifying the unexpected output 11  ■  Getting familiar with 
your external libraries 15  ■  Clarifying slowness 16 
Understanding app crashes 18

 1.3 AI as a game changer in troubleshooting apps 19

 1.4 What you will learn in this book 23

 2 Understanding your app’s logic through debugging    
  techniques 25

 2.1 When analyzing code is not enough 27



viii CONTENTSviii

 2.2 Investigating code with a debugger 31
What is the execution stack trace, and how do I use it? 37 
Navigating code with the debugger 43

 2.3 When using the debugger might not be enough 50

 3 Finding problem root causes using advanced debugging   
  techniques 53

 3.1 Minimizing investigation time with conditional 
breakpoints 54

 3.2 Using breakpoints that don’t pause the execution 62

 3.3 Dynamically altering the investigation scenario 65

 3.4 Rewinding the investigation case 69

 4 Making the most of logs: Auditing an app’s behavior 76

 4.1 Investigating issues with logs 80
Using logs to identify exceptions 84  ■  Using exception stack 
traces to identify what calls a method 86  ■  Measuring time spent 
to execute a given instruction 87  ■  Investigating problems in 
multithreaded architectures 88

 4.2 Implementing logging 89
Persisting logs 89  ■  Defining logging levels and using logging 
frameworks 90  ■  Problems caused by logging and how to avoid 
them 97

Part 2 Deep diagnosing an app’s execution ....... 103

 5 Identifying resource consumption problems using profiling   
  techniques 105

 5.1 Where would a profiler be useful? 106
Identifying abnormal usage of resources 106  ■  Finding out 
what code executes 107  ■  Identifying slowness in an app’s 
execution 108

 5.2 Using a profiler 108
Installing and configuring VisualVM 109  ■  Observing the CPU 
and memory usage 111  ■  Identifying memory leaks 121

 5.3 Using AI assistance 126



 ixCONTENTS  ix

 6 Finding hidden problems using profiling techniques 129

 6.1 Sampling to observe executing code 130

 6.2 Profiling to learn how many times a method is executed 138

 6.3 Using a profiler to identify SQL queries an app executes 142
Using a profiler to retrieve SQL queries not generated by a 
framework 143  ■  Using the profiler to get the SQL queries 
generated by a framework 148  ■  Using the profiler to get 
programmatically generated SQL queries 151

 7 Investigating locks in multithreaded architectures 157

 7.1 Monitoring threads for locks 158

 7.2 Analyzing thread locks 163

 7.3 Analyzing waiting threads 171

 8 Investigating deadlocks with thread dumps 180

 8.1 Getting a thread dump 181
Getting a thread dump using a profiler 182  ■  Generating  
a thread dump from the command line 183

 8.2 Reading thread dumps 187
Reading plain-text thread dumps 188  ■  Using tools to  
better grasp thread dumps 194

Part 3 Diagnosing memory-related problems .. 199

 9 Profiling memory-related problems 201

 9.1 Sampling to identify memory allocation problems 202

 9.2 Profiling to find the culprit 207

 10 Investigating memory problems with heap dumps 211

 10.1 Obtaining a heap dump 212
Configuring an app to generate a heap dump when it  
encounters a memory problem 212  ■  Obtaining a heap  
dump using a profiler 214  ■  Obtaining a heap dump  
with the command line 214

 10.2 Reading a heap dump 216

 10.3 Using the OQL console to query a heap dump 221



x CONTENTSx

 11 Analyzing potential JVM problems with GC logs 228

 11.1 Enabling GC logs 229

 11.2 Storing GC logs in files 235

 11.3 Particular configurations for storing GC logs 239

 11.4 Analyzing GC logs 241
Troubleshooting performance lags with GC pause times 241 

Identifying memory leaks with heap usage logs 243 

Identifying insufficient memory with full GC events 244 

Tuning parallelism in GC 247

Part 4 Finding problems in large systems ......... 251

 12 Uncovering system-level failures and service communication   
  problems 253

 12.1 Troubleshooting communication patterns: RPC and 
messaging 254

Working with trace IDs and spans 255  ■  OpenTelemetry, 

 Jaeger, Zipkin, and other utilities 259

 12.2 Serialization mismatches and versioning problems 262

 12.3 Understanding systemic failure modes 265
Cascading failures 265  ■  Retry storms 269 

Timeout mismatches 271

 13 Measuring data consistency and transactions 276

 13.1 Troubleshooting inconsistencies across services 277
Inspecting time-based anomalies in event flows 277 

Applying domain invariants to identify invalid states 282

 13.2 Tracking and correlating multistep transactions 284
Reviewing audit logs to reconstruct transaction steps 285 

Replaying events or examining event logs for missing messages 289

 13.3 Measuring and monitoring consistency guarantees 292
Verifying data integrity using checksums or hashes 293

 13.4 Running reconciliation jobs to compare expected vs. actual 
state 296



 xiCONTENTS  xi

 appendix A  Tools you’ll need 298

 appendix B  Opening a project 299

 appendix C  Recommended further reading 301

 appendix D  Understanding Java threads 303

 appendix E  Memory management in Java apps 319

  references 331

  index 332



xii

foreword
You may already be familiar with Laurențiu Spilcă from his books Spring Security in 

Action and Spring Start Here, but if not, Troubleshooting Java provides a great introduction 
to his unique style of writing and pervasive humor. If you’re a newcomer to Java devel-
opment, you may well find his careful coverage of concepts extremely useful, especially 
when combined with thorough coverage of the available (free) tools and how to use 
them. In addition, the book includes many examples and demonstrations of what can 
go wrong, to help you build experience and confidence in using the tools.

Part 1 focuses on debuggers and covers common tools like the IntelliJ CE debugger— 
both their capabilities and their limitations. Unlike many other resources, Laurențiu 
covers several debugger techniques that go well beyond the basics, such as conditional 
breakpoints and nonpausing breakpoints. There’s also solid coverage of the basics of 
troubleshooting Java applications using logs.

In part 2, the key topic of resource consumption and its central role in troubleshoot-
ing is front and center. The free VisualVM tool serves as a primary means of under-
standing this area and its related concepts. There is in-depth coverage of important 
topics such as CPU sampling and instrumentation and how to use the tools effectively. 
One essential, but often overlooked, area—the handling of external dependencies—is 
neatly showcased via the example of an SQL database using Hibernate. The subject of 
multithreaded programming, and especially troubleshooting locks, follows naturally 
from CPU profiling.

Part 3 is devoted to memory-related issues, including tracking down memory leaks 
with sampling and profiling techniques, as well as creating and navigating heap dumps. 
Practical techniques, such as filtering out JDK types and using the capabilities of 
VisualVM to consider live objects, are also covered, as well as the use of OQL to query 



 xiiiFOREWORD  xiii

heap dumps. Just as in part 1, the use of logs (in this case, GC logs) forms the subject of 
the last chapter in part 3.

To conclude, Laurențiu takes us on a quick tour through larger-scale systems, start-
ing with an introduction to distributed tracing as a key technique, before tying it all 
together by discussing distributed transactions across heterogeneous systems. Through-
out the book, Laurențiu makes careful and tactical use of AI tools, stressing the lack of 
magic bullets and focusing on practical use cases. While these tools cannot replace a 
human user, they can make a proficient engineer more productive and able to concen-
trate on the higher-level concerns. The end result is a book that is suitable for newcom-
ers but is also forward-looking and recognizes how modern tooling can complement 
and enhance the intuition, experience, and problem-solving insight of working soft-
ware engineers.

—Ben Evans 
Java Champion and author of  
The Well-Grounded Java Developer



xiv

preface
What does a software developer do for a living? “Implement software” is most likely the 
answer many would give. But what does implementing software really mean? Is it only 
writing code? Not quite. While the code is the visible result of a developer’s work, the 
activity of writing it takes only a small fraction of the time. Most of a developer’s day 
is spent designing solutions, reading existing code to understand how it behaves, and 
learning new concepts. Writing code is simply the outcome of successfully doing all of 
these.

That’s why programmers often spend far more time reading code than writing it. 
Clean coding as a discipline grew out of this realization: it is more efficient to write 
solutions from the start in a way that makes them easier to read later. Still, not all code 
is clean, and not all systems are simple. You will always face situations where you need to 
dig into an unfamiliar solution and uncover how code really works.

The truth is, a software developer spends much of their career investigating how 
applications behave. We trace through our own code and third-party dependencies to 
understand why something doesn’t work as expected. Sometimes, we do it to fix prob-
lems and other times just to learn. Often, reading code isn’t enough. We need to go 
deeper—using debugging, profiling, or log analysis—to understand what is happen-
ing inside the JVM or how the environment affects the application. Knowing the right 
techniques, and when to apply them, can save enormous amounts of time. Optimizing 
this investigative activity is one of skills with the greatest strategic effect a developer can 
build.

The goal of this book is to help you optimize the way you investigate software sys-
tems. You will find relevant techniques illustrated with practical examples—debugging, 
profiling, log analysis, and how to combine them effectively. Along the way, I share tips 



 xvPREFACE  xv

and practices that will help you become faster and more confident in tackling difficult 
problems.

In this second edition, we also explore a new and increasingly important partner in 
troubleshooting: artificial intelligence. AI tools have become part of the developer’s 
daily toolkit, capable of analyzing logs, suggesting hypotheses, or even pointing out 
suspicious code paths. They can accelerate investigation dramatically. But AI does not 
replace your judgment. Just like a detective uses assistants and tools but still solves the 
case, you remain the expert who interprets the evidence and makes the decisions. Used 
wisely, AI can help you focus on the most meaningful parts of the investigation and 
reach insights faster.

My goal remains the same: to make you more efficient as a developer. But in today’s 
landscape, efficiency also means knowing how to use AI without becoming dependent 
on it. With the techniques and mindset in this book, you will be better equipped to 
find root causes quickly, learn continuously, and solve even the toughest problems with 
confidence.

I hope this edition brings you both practical value and inspiration for your daily 
work.



xvi

acknowledgments
This book wouldn’t be possible without the large number of smart, professional, and 
friendly people who helped me out throughout its development process. 

A heartful thank you goes to my wife Daniela, who was there for me, helped with valu-
able opinions, and continuously supported and encouraged me. 

I’d like to thank the entire Manning team for their huge help in making this a valu-
able resource. I specifically want to mention Marina Michels and Nick Watts for being 
incredibly supportive and professional. Their advice brought great value to this book.

I also thank my friend Ioana Göz for the drawings she created for the book. She did 
a great job turning my thoughts into the cartoons you’ll discover here and there in the 
book.

Next, I thank everyone who reviewed the manuscript and provided useful feedback. 
To Alok Ranjan, Andrew Oswald, Becky Huett, Burkhard Nestmann, Chris Allan, Cur-
tis Krauskopf, Faiz Gouri, Frank Beutelschiess, German Gonzalez-Morris, Jason Clark, 
Jitender Jain, Lars Opitz, Max Loukianov, Mebin Jacob, Naga Rishyendar Panguluri, 
Nancy Al Kalach, Nicolas Bievre, Prashant Gupta, Purushotham Krishnegowda, Ravi 
Laudya, Sachin Handiekar, Sanjay Belaturu Krishnegowda, Sathiesh Veera, Sumit Bhat-
nagar, Vamsi Kavuri, William Brawner, Heinz Kabuz, and Vlad Mihalcea, your feedback 
helped me improve the content of this book.

Finally, thanks to Ben Evans for taking the time to review the book and write its 
foreword.



xvii

about this book
Because you opened this book, I assume you are a developer working with a JVM lan-
guage. You might use Java, but you could just as well be coding in Kotlin or Scala. 
Regardless of the JVM language, you will find the content valuable. This book teaches 
practical investigation techniques that help you identify the root causes of problems 
and also learn new technologies more effectively.

As a software developer, you’ve probably noticed how much of your time is spent 
understanding what your application actually does. Whether you are reading code, 
debugging, analyzing logs, or checking performance, chances are you spend far more 
time on these activities than on writing new code. That’s why becoming more efficient 
at investigating and analyzing application behavior pays off so quickly—it helps you 
solve problems faster and with greater confidence.

This second edition also includes a new dimension: how to take advantage of AI as a 
partner in troubleshooting. AI can process large volumes of logs, highlight unusual pat-
terns, or suggest possible causes. It won’t replace your skills, but it can accelerate your 
work and allow you to focus on the insights that matter.

This book discusses and illustrates through examples topics such as

¡	Simple and advanced debugging techniques

¡	Efficient use of logs to understand application behavior

¡	Profiling CPU and memory resource consumption

¡	Profiling to locate executing code

¡	Profiling to understand how an app interacts with persisted data

¡	Analyzing communication between services



xviii ABOUT THIS BOOKxviii

¡	Monitoring system events

¡	Using AI to assist in log analysis, root-cause identification, and knowledge 
discovery

Who should read this book?

This book is for any developer working with Java or another JVM language such as 
Kotlin or Scala. Regardless of your level of experience, you will find value—whether 
you are learning investigation techniques for the first time or refreshing skills you 
already use. Beginners and intermediate developers are likely to benefit the most, but 
even seasoned engineers may discover new tips, tools, or perspectives to sharpen their 
troubleshooting practice.

While the book is written with JVM developers in mind, many of the techniques—
such as debugging strategies, log analysis, and profiling—apply broadly to software 
development in other languages as well. This edition also introduces ways to incorpo-
rate AI into troubleshooting, which is useful for any developer looking to work more 
efficiently in modern environments.

The only prerequisite for this book is a basic understanding of the Java language. 
All examples are presented in Java (for consistency), but the ideas can be applied in 
any JVM language. If you are comfortable with fundamental concepts such as classes, 
methods, variables, and basic control flow (loops and conditionals), you will have no 
difficulty following the discussions.

How this book is organized: A road map

This book is divided into four parts, each with its own focus. Think of them as stages in 
your journey from local detective work to system-wide investigations. You don’t have to 
read them in order (though that’s how I recommend it), but the sequence is designed 
to build your skills step by step.

¡	Part 1—We start at the beginning: the everyday techniques you’ll use most often. 
Debugging and logging are your bread and butter as a developer. Here you’ll 
learn not just how to set a breakpoint, but how to use advanced debugging tricks 
(such as conditional and nonblocking breakpoints) and how to make logs work 
for you instead of against you. This part is about building your investigative 
reflexes—the same way a detective first learns how to look for fingerprints.

¡	Part 2—In this part, we move to profiling. Profiling sounds fancy, but it’s really 
just asking, What’s eating my CPU? What’s this app actually doing when I’m not 
looking? You’ll learn how to track resource consumption, find hidden perfor-
mance bottlenecks, and even spot suspicious SQL queries. We’ll also use these 
chapters to introduce AI assistance—because sometimes you really do want a 
sidekick who can sift through mountains of data while you focus on the bigger 
picture.

¡	Part 3—Memory is where things get subtle (and sometimes sneaky). Here we dive 
into heap dumps, GC logs, and techniques for finding leaks or tuning memory 



 xixABOUT THIS BOOK  xix

usage. It’s not always glamorous but knowing how to read the JVM’s diary of what 
happened inside memory can save you from days of head-scratching.

¡	Part 4—Finally, we zoom out. Real-world systems are rarely just one app; they’re 
networks of services talking to each other. In this part we explore systemic prob-
lems: failed communication between services, data inconsistencies, cascading 
failures, retry storms, and all the other fun surprises of distributed computing. 
If part 1 was about using a magnifying glass, part 4 is about climbing a hill and 
seeing the whole landscape.

Each chapter stands on its own, so if you’re currently battling memory leaks, go straight 
to part 3. If distributed tracing is your headache today, jump to part 4. But if you follow 
the road map in order, you’ll gradually develop a complete troubleshooting toolkit—
from quick debugging to understanding system-level chaos.

About the code 

This book provides about 20 projects. We use them to study various investigation tech-
niques throughout the book. You are not expected to write these projects yourself but 
can run and use them to test specific techniques discussed. Even if the Java technol-
ogies we employ here are less relevant for the techniques I teach, I chose to use the 
latest long-term supported Java version (Java 17) and Spring, one of the most used Java 
application frameworks today.

Each project is built with Maven, making it easy to be imported in any IDE. I have 
used IntelliJ IDEA to write the projects, but you can choose to run them in Eclipse, 
Netbeans, or any other tool of your choice. Appendix A includes an overview of the 
recommended tools.

This book contains many examples of source code, both in numbered listings and 
in line with normal text. In both cases, source code is formatted in a fixed-width font 
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new fea-
ture adds to an existing line of code. In many cases, the original source code has been 
reformatted; we’ve added line breaks and reworked indentation to accommodate the 
available page space in the book.  In rare cases,  even this was not enough, and listings 
include line-continuation markers (➥). Additionally, comments in the source code 
have often been removed from the listings when the code is described in the text. Code 
annotations accompany many of the listings, highlighting important concepts.

You can get executable snippets of code from the liveBook (online) version of this  
book at https://livebook.manning.com/book/troubleshooting-java-second-edition. The  
complete code for the examples in the book is available for download from the Man-
ning website at www.manning.com/books/troubleshooting-java-second-edition. 

liveBook discussion forum

Purchase of Troubleshooting Java, Second Edition includes free access to liveBook, Man-
ning’s online reading platform. Using liveBook’s exclusive discussion features, you 

https://livebook.manning.com/book/troubleshooting-java-second-edition
www.manning.com/books/troubleshooting-java-second-edition


xx ABOUT THIS BOOKxx

can attach comments to the book globally or to specific sections or paragraphs. It’s a 
snap to make notes for yourself, ask and answer technical questions, and receive help 
from the author and other users. To access the forum, go to https://livebook.manning 
.com/book/troubleshooting-java-second-edition.

Manning’s commitment to our readers is to provide a venue where a meaningful dia-
logue between individual readers and between readers and the author can take place. It 
is not a commitment to any specific amount of participation on the part of the author, 
whose contribution to the forum remains voluntary (and unpaid). We suggest you try 
asking the author some challenging questions lest their interest stray! The forum and 
the archives of previous discussions will be accessible from the publisher’s website for as 
long as the book is in print.

https://livebook.manning.com/book/troubleshooting-java-second-edition
https://livebook.manning.com/book/troubleshooting-java-second-edition


xxi

about the author
Laurențiu Spilcă is a dedicated development lead and 
trainer at Endava, and a Java Champion. He has experi-
ence with dozens of projects that employed various tech-
nologies of the Java ecosystem. Laurențiu believes it’s 
important to not only deliver high-quality software but 
also share knowledge and help others to up-skill, which 
has driven him to design and teach courses related to 
Java technologies, and deliver various presentations and 
workshops.

¡	Twitter handle @laurspilca

¡	YouTube handle @laurspilca



xxii

about the cover illustration
The figure on the cover of Troubleshooting Java, Second Edition is “Homme de l’Istrie,” 
or “Man from Istria,” taken from a collection by Jacques Grasset de Saint-Sauveur, pub-
lished in 1797. Each illustration is finely drawn and colored by hand.

In those days, it was easy to identify where people lived and what their trade or station 
in life was just by their dress. Manning celebrates the inventiveness and initiative of the 
computer business with book covers based on the rich diversity of regional culture cen-
turies ago, brought back to life by pictures from collections such as this one.



Part 1

Revisiting the foundation  
for code investigation

The ability to investigate code is one of the most important skills a developer 
can have. Whether you’re fixing a bug, adding a new feature, or just trying to 
understand how things work, knowing how to read and explore your app’s behav-
ior is key.

In this part of the book, we go back to the basics—debugging and logging—
but with a fresh twist. These classic tools have helped developers for decades. 
Debugging lets you pause and step through code, while logs give you a record 
of what happened. But today, there is something changing the game—artificial 
intelligence.

What if you could ask an AI to pick the best place to set a breakpoint? Or to 
read your logs and explain what went wrong? Or to summarize a messy piece of 
code so you can understand it faster?

This is no longer science fiction. In the pages ahead, you’ll learn how tradi-
tional tools and AI work together to make troubleshooting easier, faster, and even 
a bit more fun.

Chapter 1 explains why code investigation matters. Chapters 2–4 dive into 
techniques—both familiar and new—that will help you solve problems with more 
confidence.





3

1Starting to know  
your apps

This chapter covers

¡	Troubleshooting and why you should learn it

¡	The definition of a code investigation technique

¡	Code investigation techniques used to 

understand Java apps

Software developers have various responsibilities. Most of these responsibilities 
depend on how they understand the code they are working with. They also spend a 
significant amount of time analyzing code to identify and resolve problems, imple-
ment new capabilities, and learn new technologies. Because time is precious, devel-
opers need efficient investigation techniques to be productive. Learning how to be 
efficient in understanding your (or others’) code and how your apps execute it is 
the main topic of this book. 

I recall a quote from Robert C. Martin’s book, Clean Code: A Handbook of Agile Soft-

ware Craftsmanship (Pearson, 2008). He said, “Indeed, the ratio of time spent reading 
versus writing is well over 10 to 1. We are constantly reading old code as part of the 
effort to write new code. . . . [Therefore,] making it easy to read makes it easier to 



4 CHAPTER 1 Starting to know your apps

write.” Well, I believe there is much more to add here besides reading the code. The 
real deal is to investigate the code, and we combine several techniques to do that.

NOTE Software developers generally spend more time
understanding how the software works than writing 
code to implement new features or correct errors.

Troubleshooting is one of the most valuable skills a developer can master. Regardless 
of whether you’re writing brand-new code or maintaining a complex system in pro-
duction, things will go wrong. Maybe a service starts timing out. Maybe the app works 
on your machine but crashes in QA. Maybe everything looks fine, but users still report 
incorrect results. Troubleshooting is the skill that helps you make sense of these situa-
tions. It’s about investigation, not guesswork.

At its core, troubleshooting means understanding how a system behaves, comparing 
that to how it should behave, and then identifying what’s different. It’s a combination 
of logic, observation, and sometimes a bit of intuition. Unlike fixing a syntax error or 
a failed unit test, real troubleshooting usually begins when you don’t know yet what’s 
wrong. And that’s where many developers get stuck.

DEFINITION Troubleshooting means understanding how a system behaves, com-
paring that to how it should behave, and then identifying what’s different.

Learning to troubleshoot effectively makes you faster, more confident, and more inde-
pendent. It gives you the tools to work on unfamiliar codebases, solve production prob-
lems, and even spot design flaws before they become outages. It’s a skill that sets senior 
engineers apart, not because they know all the answers, but because they know how to 
investigate.

But let’s turn our heads toward something of the same importance—the era we live 
in today. AI has become a powerful assistant for developers, and troubleshooting is one 
of the areas where it can truly shine. Whether you’re inspecting a stack trace, asking 
for a regex fix, or trying to understand a cryptic configuration error, an AI assistant can 
help you move faster. 

But make no mistake: AI won’t do the job for you. It can point you in the right direc-
tion, summarize logs, or suggest solutions. However, it won’t understand your system’s 
business rules, history, or architectural decisions. It won’t recognize that a seemingly 
minor inconsistency is the key to the whole mystery.

Think of it as of investigating a crime scene—the AI is a capable partner, helping 
process evidence and suggesting leads, but you are the detective. You ask the right ques-
tions. You connect the dots. And when you know what you’re doing, AI can make you 



 5How to more easily understand your app

faster and more effective than ever. But if you don’t have a solid foundation in trouble-
shooting, no AI will save you from chasing red herrings. 

TIP Use AI to learn, upskill, and solve things yourself with its help. Be the 
puppeteer, not the puppet. This approach will maximize your efficiency.

There is another aspect I want to clarify before we dig in. Often, software developers 
use the word debugging  for any investigation techniques; however, this is only one of 
the various tools available for examining logic implemented as code. While debugging 
should mean “finding problems and solving them,” developers use it to describe differ-
ent purposes for analyzing how code works:

¡	Learning a new framework

¡	Finding the root cause of a problem

¡	Understanding existing logic to extend it with new capabilities

1.1 How to more easily understand your app

First, it is essential to understand what investigating code and app execution are and 
how developers do it. This section looks at several commonly encountered scenarios in 
which you can apply the techniques you’ll learn from this book. 

I define investigating code  as being the process of analyzing a software capability’s spe-
cific behavior. You might wonder, “Why such a generic definition? What is the investi-
gation’s purpose?” Early in the history of software development, looking through code 
had one precise purpose: finding and correcting software errors (i.e., bugs). For this 
reason, many developers still use the term debugging  for these techniques. Look at the 
way the word debug is formed: 

de-bug = take out bugs, eliminate errors

In many cases today, we still debug apps to find and correct errors. But unlike the early 
days of software development, apps are more complex now. In many cases, develop-
ers find themselves investigating how a particular software capability works to learn 
a specific technology or library. Debugging is no longer only about finding a particu-
lar problem; it is also about correctly understanding its behavior (figure 1.1; see also 
http://mng.bz/M012). 

Finding issues Understanding

software

Learning Reviewing

code

Figure 1.1 Code investigation 

is not only about finding 

problems in software. Today, 

apps are complex. We often 

use investigation techniques to 

understand an app’s behavior or 

simply learn new technologies.

http://mng.bz/M012


6 CHAPTER 1 Starting to know your apps

We analyze code in apps for the following reasons:

¡	To find a particular problem

¡	To understand how a particular software capability works so we can enhance it

¡	To review code for correctness

¡	To learn a specific technology or library

¡	To optimize performance

¡	To eliminate vulnerabilities and improve security

¡	To enhance maintainability

Many developers also investigate code for enjoyment, because exploring how code 
works is fun. It can sometimes become frustrating as well, but nothing compares to 
the feeling of finding the root cause of a problem or finally understanding how things 
work (figure 1.2).

How I feel when I investigate code What I really look like

Figure 1.2 Investigating code doesn’t require much physical effort, but debugging sometimes makes 

you feel like Lara Croft or Indiana Jones. Many developers enjoy the unique sensation of solving the puzzle 

of software problems.

There are various investigation techniques we can apply to investigate how software 
behaves. As discussed later in the chapter, developers (especially beginners) often 



 7How to more easily understand your app

wrongly consider debugging equivalent to using a debugger tool. The debugger (or a 
debugging tool) is a software program you can use to read and more easily understand 
the source code of an application, usually by pausing the execution on specific instruc-
tions and running the code step by step. It is a common way to investigate software 
behavior (and usually the first one a developer learns). But it is not the only technique 
you can use, and it doesn’t help you in every scenario. We’ll discuss both standard and 
more advanced ways of using a debugger in chapters 2 and 3.

Modern investigation techniques can be significantly enhanced through collabora-
tion with AI. In this book, we explore various AI tools to elevate the way we analyze code 
and track application executions. By integrating AI, we augment traditional trouble-
shooting methods, making our work more efficient and less stressful. This approach 
allows us to identify problems faster and more accurately. Figure 1.3 illustrates the 
diverse investigation techniques you’ll learn throughout the book.

Reading code

Debugging

Log
analysis

Profiling

Thread 
state
analysis

Mocking
and
stubbing

profile.ifPresentOrElse(
 p ->
 {
  healthMetric.setProfile(p);
  healthMetricRepository.save(healthMetric);
 },
 () -> {
  throw new NonExistentHealthProfileException();
 });

Memory 
state
analysis

Figure 1.3 Code investigation techniques. Depending on the case, a developer can choose from one or more of 

these techniques to understand how a certain capability works.

When a developer fixes a bug, they spend most of their time understanding a partic-
ular feature rather than making the correction. The changes they make sometimes 



8 CHAPTER 1 Starting to know your apps

reduce the problem to a single line of code. This correction can be a missing condi-
tion, an instruction, or a misused operator. It’s not writing the code but rather under-
standing how the app works, which occupies most of a developer’s time. 

NOTE In many situations, I’ve seen developers advised to improve their cod-
ing speed to become more efficient. While that’s excellent advice, I strongly 
believe that improving your troubleshooting skills should come first. Most of a 
developer’s time isn’t spent writing new code but reading existing code, under-
standing how the application behaves, and figuring out why things don’t work 
as expected. That means sharpening your ability to investigate and reason 
through problems will make you faster and more effective much sooner than 
focusing solely on typing speed or code generation. Troubleshooting well is a 
force multiplier that saves time not just when something breaks, but also when 
you’re trying to extend or refactor existing logic.

In some cases, simply reading the code is enough to understand it, but reading code 
is not like reading a book. When we read code, we don’t read nice short paragraphs 
written in a logical order from top to bottom. Instead, we step from one method to 
another, from one file to another; we sometimes feel like we advance in a vast labyrinth 
and get lost. (On this subject, I recommend an excellent book, The Programmer’s Brain, 
by Felienne Hermans [Manning, 2021]).

In many cases, the source code is written in a way that doesn’t make it easy to read. 
Yes, I know what you are thinking: it should be. And I agree with you. Today, we learn 
many patterns and principles for code design and how to avoid code smells, but let’s be 
honest: developers still don’t use these principles properly in too many cases. Moreover, 
legacy apps usually don’t follow these principles, simply because the principles didn’t 
exist many years ago when those capabilities were written. But you still need to be able 
to investigate such code.

Take a look at listing 1.1. Suppose you find this piece of code while trying to identify 
the root cause of a problem in an app you’re working on. This code definitely needs 
refactoring. But before you can refactor it, you need to understand what it is doing. I 
know some developers out there can read through this code and immediately under-
stand what it does, but I’m not one of them. 

Listing 1.1 Hard-to-read logic that requires use of a debugger 

public int m(int f, int g) {
  try {
    int[] far = new int[f];
    far[g] = 1;
    return f;
  } catch(NegativeArraySizeException e) {
    f = -f;
    g = -g;
    return (-m(f, g) == -f) ? -g : -f;
  } catch(IndexOutOfBoundsException e) {



 9How to more easily understand your app

    return (m(g, 0) == 0) ? f : g;
  }
}

To easily understand the logic in listing 1.1, I use a debugger, a tool that allows me to 
pause the execution on specific lines and manually run each instruction while observ-
ing how the data changes, to go through each line to observe how it works with the 
given input, as discussed in detail in chapter 2. With a bit of experience and some 
tricks mentioned in chapters 2 and 3, by parsing this code a few times, you will find that 
it calculates the maximum between the given inputs. This code is part of the project 
da-ch1-ex1 provided with the book.

As discussed, you can use AI assistants to help you understand the easier parts of your 
code. But remember that your purpose is to learn how it works and not that it’s given 
to you what it does. So never use a prompt where you ask directly for the final result,  
such as

 What does this code do?

.°.°. provided code .°.°.

Instead, prefer prompts that help you understand what’s going on:

 Explain this piece of code step by step so that I understand what it does:

.°.°. provided code .°.°.

If you go with the option of getting straight away with what the code does, several things 
might happen that will not help you either short or long term:

¡	The answer might be wrong. Remember, AI can make mistakes and sometimes 
hallucinate. Don’t just take what it says for granted.

¡	If the answer is not right but looks right, you might in fact spend more time figur-
ing out how that particular piece of code affects the execution.

¡	Even if the answer is the right one, you might not understand how code does 
what it does, which might not help you get its purpose into the whole context.

But some scenarios don’t even allow you to navigate through the code, or they make 
navigating more challenging. Today, most apps rely on dependencies such as libraries 
or frameworks. In most cases, it’s still difficult to follow the source code that defines 
a framework’s logic, even when you have access to the source code (when you use 
an open source dependency). Usually, frameworks and libraries tend to have certain 
layers of abstraction that make them extensible and easy to configure. However, this 
aspect can add complexity when investigating code functionality. 

In many cases, you don’t even know where to start, and you must use different tech-
niques to understand the app. For example, you could use a profiling tool (as you’ll 
learn in chapters 5 through 8) to identify what code executes before deciding where to 
start the investigation.



10 CHAPTER 1 Starting to know your apps

NOTE Troubleshooting is particularly more complicated when you need to 
work with source code that doesn’t belong to your application. In many cases, 
you have to deal with libraries’ or frameworks’ implementations.

In situations where an application crashes and is no longer running, traditional debug-
ging methods are no longer viable. This situation leads us to the concept of postmor-
tem investigation. For example, if a production service crashes due to an unexpected 
memory error, developers must perform a postmortem investigation to determine the 
cause and implement a fix. 

Postmortem investigation refers to the process of troubleshooting an application 
after it has crashed. This type of investigation is necessary when the app is no longer 
running, such as after a crash in a production environment. The goal is to quickly 
identify the root cause of the crash using data collected during or after the event, such 
as logs, heap dumps, or thread dumps. These tools, explored in chapters 8 to 11, are 
essential for diagnosing problems and preventing future crashes.

Tools commonly used in postmortem investigations include

¡	Output—The result or outcome produced by the app after execution (if 
applicable)

¡	Logs—Capture application activity up to the point of failure

¡	Heap dumps—Provide a snapshot of the application’s memory

¡	Thread dumps—Show the state of all threads at a particular moment

DEFINITION Postmortem investigation means troubleshooting a situation or 
behavior that caused an app crash after the event took place. Since the app is 
no longer running, a postmortem investigation limits you to only part of the 
techniques you can use and is usually more difficult to troubleshoot than other 
situations. 

1.2 Typical scenarios for using investigation techniques

Let’s discuss some common scenarios for using code investigation approaches. We 
must look at some typical cases from real-world apps and analyze them to emphasize 
the importance of this book’s subject matter:

¡	To understand why a particular piece of code or software capability provides a 
different result than expected

¡	To learn how the technologies the app uses as dependencies work

¡	To identify causes for performance problems such as app slowness

¡	To find root causes for cases in which an app suddenly stops

For each presented case, you’ll find one or more techniques helpful in investigating 
the app’s logic. Later, we’ll dive into these techniques and demonstrate with examples 
how to use them.



 11Typical scenarios for using investigation techniques

1.2.1 Demystifying the unexpected output

The most frequent scenario in which you’ll need to analyze code is when some logic 
ends up with an output that is different than expected. This might sound simple, but it 
isn’t necessarily easy to solve. 

First, let’s define output. This term might have many definitions for an app. Output 
could be some text in the app’s console, or it could be some records changed in a data-
base. We can consider output that an HTTP request the app sends to a different system 
or some data sent in the HTTP response to a client’s request. 

DEFINITION Output is any result of executing a piece of logic that might result 
in data change, the exchange of information, or action against a different com-
ponent or system.

How do we investigate a case in which a specific part of the app doesn’t have the 
expected execution result? We do so by choosing the proper technique based on the 
expected output. Let’s look at some examples. 

SCENARIO 1: THE SIMPLE CASE 

Suppose an app should insert some records into a database. Yet, the app adds only part 
of the records. That is, you expected to find more data in the database than the app 
actually produces.

The simplest way to begin analyzing this problem is using a debugging tool to follow 
the code execution and understand how it works (figure 1.4). You’ll learn about the 
main features of a debugger in chapters 2 and 3. With the debugger, you add a marker 
(named breakpoint) at a specific line of code of your choosing to pause the app exe-
cution at that line. Then, the debugger allows you to continue the execution manually. 
You run code instructions one by one to observe how the variables’ values change and 
then evaluate expressions on the fly. 

You can mark an instruction with a breakpoint to tell 
the debugger to pause the execution before executing.

The debugger shows the value in each
variable, which you can use to understand
how the app execution changes the data.

Figure 1.4 Using a 

debugger, you can pause 

the execution before a 

particular instruction and 

then observe how the app’s 

logic changes the data 

by manually running the 

instructions step by step.



12 CHAPTER 1 Starting to know your apps

This scenario is the simplest, and by learning how to use all the relevant debugger 
features properly, you can find solutions to such problems in no time. Unfortunately, 
other cases are more complex, and a debugger tool isn’t always enough to solve the 
puzzle and find the cause of the problem.

TIP In many cases, one investigative technique 
isn’t enough to understand the app’s behavior. 
You’ll need to combine various approaches to 
understand more complex behavior faster.

T

i
Y
u

SCENARIO 2: THE WHERE-SHOULD-I-START-DEBUGGING CASE?

Sometimes, you won’t be able to use a debugger simply because you don’t know what 
to debug (i.e., what part of the code). Suppose your app is a complex service with many 
lines of code. You investigate a problem where the app doesn’t store the expected 
records in a database. It’s definitely an output problem, but out of the thousands of 
lines of code defining your app, you don’t know what part implements the capability 
you need to fix.

I remember a colleague who was investigating such a problem. Stressed from being 
unable to find where to start the debugging from, he exclaimed: “I wish debuggers had 
a way for you to add a breakpoint on all the lines of an app so you could see what it actu-
ally hits.” 

My colleague’s statement was funny, and he was obviously joking, because having 
such a feature in a debugger wouldn’t be a solution. We have other ways to approach 
this problem. You would most likely narrow the possibilities of lines where you could 
add a breakpoint by using a profiling tool (or profiler for short). 

A profiler is a tool you can use to identify which code executes while the app is run-
ning (figure 1.5). This is an excellent option for our scenario because it would give you 
an idea of where to start the investigation with a debugger. We’ll discuss using a profiler 
in chapters 5 through 8, where you’ll learn that you have more options than simply 
observing the code in execution.

SCENARIO 3: A MULTITHREADED APP

Oh no! My skin gets goosebumps every time I think about such problems, and if you’ve 
ever encountered such cases, you probably know what I mean. Situations become even 
more complicated when dealing with logic implemented through multiple threads, 
or a multithreaded architecture. In many such cases, using a debugger is not an option in 
most cases because multithreaded architectures tend to be sensitive to interference. 



 13Typical scenarios for using investigation techniques

The sampling capability of a profiling tool
shows the code in execution.

Figure 1.5 Identifying code in execution with a profiler. If you don’t know where to start debugging, the 

profiler can help you to identify the code that is running and give you an idea of where you can use the 

debugger.

In other words, the way the app behaves is different when you use the debugger. Devel-
opers call this characteristic a Heisenberg execution or Heisenbug (figure 1.6). The name 
comes from the twentieth-century physicist Werner Heisenberg, who formulated the 
uncertainty principle, which states that once you interfere with a particle, it behaves 
differently, so you cannot accurately predict both its velocity and position simultane-
ously. If you are a modern physics fan, you might know what I mean and enjoy the 
following article; if not, don’t worry about it (https://plato.stanford.edu/entries/
qt-uncertainty/). A multithreaded architecture might change its behavior if you inter-
fere with it, just the way quantum mechanics particles behave differently if you inter-
fere with them.

Multithreaded functionality presents a wide range of complex scenarios, which, in 
my opinion, makes it one of the most challenging aspects to test. While profilers can 
sometimes help, they may interfere with the app’s execution, potentially skewing the 
results. An alternative approach is to implement logging within the app (covered in 
chapter 4). For certain problems, you can simplify the debugging process by reducing 
the number of active threads to one, allowing for more straightforward investigation 
using a debugger.

SCENARIO 4: SENDING THE WRONG CALLS TO A GIVEN SERVICE

You may need to investigate a scenario where the app doesn’t correctly interact with 
another system component or an external system. Suppose your app sends HTTP 

https://plato.stanford.edu/entries/qt-uncertainty/
https://plato.stanford.edu/entries/qt-uncertainty/


14 CHAPTER 1 Starting to know your apps

T1

T2

A

B

When nothing interferes with the app

When a debugger interferes with the app

T1

T2

A

B

Debugger 
breakpoint

Instruction A  on thread T1 most likely 
happens before instruction B on thread T2.

With a breakpoint, you pause the execution
before instruction A on thread T1. Because
of this interference, instruction B on thread
T2 executes before A on thread T1. The app’s 
behavior changes, and you can no longer
investigate the initial scenario.

Figure 1.6 A Heisenberg execution. In a multithreaded app, when a debugger interferes with the app’s 

execution, it might change how the app behaves. This change doesn’t allow you to correctly investigate 

the initial app behavior that you wanted to research.

requests to another app. You get notified by the maintainers of the second app that the 
HTTP requests don’t have the right format (maybe a header is missing, or the request 
body contains wrong data). Figure 1.7 illustrates this case.

App
Sends a wrong 
HTTP request

Other app

You have to investigate why
the app sends an HTTP request
with incorrect data to another
system component.

Figure 1.7 A wrong output can be your app sending erroneous requests to another system component. 

You may be asked to investigate such behavior and find its root cause.



 15Typical scenarios for using investigation techniques

This is a wrong output scenario. How could you approach it? First, identify what part of 
the code sends the requests. If you already know, you can use a debugger to investigate 
how the app creates the request and determine what is going wrong. If you need to 
find what part of the app sends a request, you may need to use a profiler, as you’ll learn 
in chapters 5 through 8. You can use a profiler to determine what code acts at a given 
time in the execution process. 

Here’s a trick I always use when dealing with a complex case such as this one, in which 
I can’t straightforwardly identify where the app sends the request to/from: I replace the 
other app (the one my app wrongly sends requests to) with a stub. 

DEFINITION A stub is a fake application that can be controlled to help identify 
the problem. 

For example, to determine what part of the code sends the requests, I can make my stub 
block the request, so my app indefinitely waits for a response. Then, I use a profiler to 
determine what code is being stuck by the stub. Figure 1.8 shows the usage of a stub. 
Compare this figure to figure 1.7 to understand how the stub replaced the real app.

App
Sends a wrong 
HTTP request Stub

You can create a fake app to replace
the component your app calls.
This is called a stub. You control the 
stub to make your investigation easier.

For example, you can make the stub
indefinitely block the HTTP request.
In such a case, your app will remain 
blocked right on the instruction that
sends the request. You can easily use 
a profiler to identify that instruction.

Figure 1.8 You can replace the system component your app calls with a stub. You control the stub to 

determine where your app sends the request from quickly. You can also use the stub to test your solution 

after you correct the problem.

1.2.2 Getting familiar with your external libraries

Another use of investigative techniques for analyzing code (one which I absolutely love 
and wish more developers would try) is learning how certain technologies work. Some 
developers joke that 6 hours of debugging can save 5 minutes of reading the docu-
mentation. While it’s true that reading documentation is also essential when learning 



16 CHAPTER 1 Starting to know your apps

something new, some technologies are too complex to learn just from reading books 
or the specifications. I always advise my students and colleagues to dive deeper into a 
specific framework or library to understand it properly. 

TIP For any technology (framework or library) you learn,
spend some time reviewing the code you write. Always try
to go deeper and debug the framework’s code.

I’ll start with my favorite, Spring Security. At first glance, Spring Security may seem triv-
ial. It’s just implementing authentication and authorization, isn’t it? In fact, it is—until 
you discover various ways to configure these two capabilities into your app. You mix 
them wrong, and you may get in trouble. When things don’t work, you must deal with 
what isn’t working, and the best choice to deal with what isn’t working is by investigat-
ing Spring Security’s code.

More than anything else, debugging helped me to understand Spring Security. To 
help others, I put my experience and knowledge into a book, Spring Security in Action, 
second edition (Manning, 2023). In it, I provide more than 70 projects for you to not 
only re-create and run, but also to debug. I invite you to debug all examples provided in 
the books you read to learn various technologies.

The second example of technology I learned mostly through debugging is Hiber-
nate. Hibernate is a high-level framework used to implement an app’s capability to work 
with an SQL database. Hibernate is one of the best-known and most-used frameworks in 
the Java world, so it’s a must-learn for any Java developer. 

Learning Hibernate’s basics is easy, and you can do this by simply reading books. But 
in the real world, using Hibernate (the how and the where) includes so much more 
than the basics. And for me, without digging deep into Hibernate’s code, I definitely 
wouldn’t have learned as much about this framework as I know today.

My advice for you is simple: for any technology (framework or library) you learn, 
spend some time reviewing the code you write. Always try to go deeper and debug the 
framework’s code. This will make you a better developer.

1.2.3 Clarifying slowness

Performance problems occur occasionally in apps, and like any other problem, you 
need to investigate it before you know how to solve it. Learning to properly use differ-
ent debugging techniques to identify the causes of performance problems is vital. 

In my experience, the most frequent performance problems that occur in apps are 
related to how quickly an app responds. However, even if most developers consider 



 17Typical scenarios for using investigation techniques

slowness and performance equal, that’s not the case. Slowness problems (situations 
in which an app responds slowly to a given trigger) are just one kind of performance 
problems. 

For example, I once had to debug a mobile app that was consuming the device’s 
battery too quickly. I had an Android app using a library that connected to an external 
device via Bluetooth. For some reason, the library was creating lots of threads without 
closing them. These threads, which remain open and run without purpose, are called 
zombie threads and typically cause performance and memory problems. They are also 
usually challenging to investigate. 

However, this type of problem, in which the battery is being consumed too fast, is 
also an app performance problem. An app using too much network bandwidth while 
transferring data over the network is another good example.

Let’s stick to slowness problems, which are encountered the most. Many developers 
fear this type of problem. Usually, that’s not because they are complex to identify, but 
because they can be challenging to solve. Finding the cause of a performance problem 
is usually an easy job with a profiler, as you’ll learn in chapters 5 through 8. In addition 
to identifying which code executes, as discussed in section 1.2.1, a profiler also displays 
the time the app spends on each instruction (figure 1.9).

A profiler shows the execution time for each
instruction, enabling quick identification
of the source of a slowness problem.

Figure 1.9 Investigating slowness problems with a profiler. The profiler shows you the time spent on each 

instruction during code execution. This profiler feature is excellent for identifying the root causes of performance 

problems.

In many cases, slowness problems are caused by I/O calls, such as reading or writing 
from a file or a database or sending data over the network. For this reason, developers 



18 CHAPTER 1 Starting to know your apps

often act empirically to find the cause of the problem. If you know what capability is 
affected, you can focus on the I/O calls that capability executes. This approach also 
helps in minimizing the scope of the problem, but you usually still need a tool to iden-
tify its exact location.

1.2.4 Understanding app crashes

Sometimes apps completely stop responding for various reasons. These kinds of 
problems are usually considered more challenging to investigate. In many cases, app 
crashes occur only under specific conditions, so you can’t reproduce (make the prob-
lem happen on purpose) them in the local environment. 

Every time you investigate a problem, you should first try to reproduce it in an envi-
ronment where you can study the problem. This approach gives your investigation 
more flexibility and helps you to confirm your solution. However, we’re not always lucky 
enough to be able to reproduce a problem. And app crashes are usually not easy to 
reproduce.

We find app crash scenarios in two main flavors:

¡	The app completely stops.

¡	The app still runs but doesn’t respond to requests.

When the app stops completely, it’s usually because it encountered an error that pre-
vented it from recovering. Most often, a memory error causes such behavior. For a Java 
app, the situation in which the heap memory fills and the app no longer works is repre-
sented by an OutOfMemoryError message. 

To investigate heap memory problems, we use heap dumps, which provide a snapshot 
of what the heap memory contains at a specific time. You can configure a Java process to 
automatically generate such a snapshot when an OutOfMemoryError message occurs and 
the app crashes. 

Heap dumps are powerful tools that give you plenty of details about how an app pro-
cesses the data internally. We’ll talk more about how to use them in chapter 10. But let’s 
take a quick look at a short example.

Listing 1.2 shows a short code snippet that fills the memory with instances of a class 
named Product. You can find this app in project da-ch1-ex2 provided with the book. The 
app continuously adds Product instances to a list, causing an intended OutOfMemory-
Error message.

Listing 1.2 An app example causing an OutOfMemoryError message

public class Main {

  private static List<Product> products =    
     new ArrayList<>();

  public static void main(String[] args) {
    while (true) {
      products.add(               

Declares a list that stores 
references of Product objects

Adds Product instances 
continuously to the list until the 
heap memory completely fills



 19AI as a game changer in troubleshooting apps

        new Product(UUID.randomUUID().toString()));    
    }
  }
}

Figure 1.10 shows a heap dump created for one execution of this app. You can easily see 
that Product and String instances fill most of the heap memory. A heap dump is like 
a map of the memory. It gives you many details, including the relationships between 
instances, as well as values. For example, even if you don’t see the code, you can still 
notice a connection between the Product and the String instances based on how close 
the numbers of these instances are. Don’t worry if these aspects look complex. We’ll 
discuss in detail everything you need to know about using heap dumps in chapter 10. 

Most of the memory is filled with 
String and Product objects.

The number of String instances is close
to the number of Product instances, so
a relationship between them is possible.

Figure 1.10 A heap dump is like a map of the heap memory. If you learn how to read it, it gives you invaluable 

clues about how the app internally processes data. A heap dump helps you investigate memory or performance 

problems. In this example, you can easily find which object fills most of the app’s memory and that the Product and 

String instances are related.

If the app still runs but stops responding to requests, then a thread dump is the best tool 
to analyze a thread dump is the best tool for analyzing what is happening. Figure 1.11 
shows an example of a thread dump and some of the details this tool provides. Chapter 
8 discusses generating and analyzing thread dumps to investigate code.

1.3 AI as a game changer in troubleshooting apps

We’ve recently entered a new era in software development—the artificial intelligence 
(AI) era. AI has revolutionized many aspects of software development, and trouble-
shooting is no exception. By employing AI tools, developers can diagnose problems 
faster, automate repetitive tasks, and gain deeper insights into complex problems. This 

Each Product instance has a String 
attribute. We use a unique 

random identifier as its value.



20 CHAPTER 1 Starting to know your apps

A thread dump clearly 
shows the state of each 
thread.

You can also
easily see
what the thread 
was doing when
the dump was 
taken.

Figure 1.11 A thread dump provides details about the threads that were running when the dump was 

taken. It includes thread states and stack traces, which tell you what the threads were executing 

or what blocked them. These details are valuable for investigating why an app is stuck or is having 

performance problems.

section explores how AI, including tools such as ChatGPT, can enhance the debugging 
and troubleshooting process in Java applications.

Some may argue, “Why AI? Isn’t this just hype?” Well, do you still find developers often 
using Notepad, vi, or a similar text editor to write code? No. Today, we all use IDEs that 
integrate in one place and provide us with several capabilities to make our lives easier with 
reading and writing code. We always transition to better tools and techniques to make our 
job easier, and that’s why, in the future, AI tools will be part of what we’ll commonly use. 

NOTE Start using and adapt quickly to the new AI tools. Failing to adapt and 
rejecting their evolution will only drag you behind.



 21AI as a game changer in troubleshooting apps

Let me provide an initial use case of AI in troubleshooting. Section 1.2 described sev-
eral types of troubleshooting situations. In this book, we’ll focus on identifying which 
situation you’re in and how to start troubleshooting. This experience will help you 
better understand the problems and how to deal with them over time. Remember that 
AI tools may prove extremely helpful in such situations. 

The first tip is to use an AI prompt to get some ideas about where to start. For exam-
ple, you can use ChatGPT or a similar tool to describe your problem and identify some 
starting points. I have tried this since these tools became popular and have made a habit 
of using them. Overall, I feel they have helped me improve the speed of understanding 
the capabilities I learn or the behavior I investigate. Let me tell you a story.

The mystery of a legacy bug

It was a typical Monday morning at the software development firm. The office was 

buzzing with the usual chatter of developers, product managers, and designers, all 

discussing their weekend escapades and gearing up for another busy week. In the 

corner of the office, Sarah, a seasoned Java developer, was already hard at work, her 

brow furrowed in concentration as she stared at lines of code on her screen.

Sarah had been assigned to work on a legacy Java application that the company had 

maintained for years. The application was critical to their business, serving thou-

sands of customers daily. However, over the past week, the app had started behaving 

erratically—occasionally crashing without any clear reason. The logs were sparse, 

and traditional debugging methods had yielded no clues. Sarah knew she was deal-

ing with an elusive bug, the kind that seemed to lurk in the shadows, striking without 

warning. She tried various troubleshooting techniques, but nothing worked, and her 

frustration was growing.

Just then, Michael, a junior developer, walked by her desk. Noticing her frustration, he 

paused and asked, “Hey, Sarah, everything okay?”

Sarah gave a weary smile. “Just wrestling with this legacy bug. I’ve tried everything—

breakpoints, code reviews, even a profiler. Nothing. It’s like the bug doesn’t want to be 

found.”

Michael nodded sympathetically. “Have you tried using ChatGPT? I heard it can help 

suggest possible causes for bugs based on the problem description.”

Sarah was skeptical. She had heard about AI tools like ChatGPT but never considered 

them seriously for debugging. However, at this point, she was willing to try anything. 

“Why not,” she thought. “It can’t hurt to give it a shot.”

She opened ChatGPT and began typing a detailed description of the problem.

“I’m working on a legacy Java application that’s been crashing intermittently with no 

clear pattern. The logs are sparse, and traditional debugging methods haven’t been 

helpful. The app uses older versions of Hibernate and Spring, and it interfaces with 

an Oracle database. Error messages are inconsistent, and the crash seems to occur 

after a series of complex transactions.”



22 CHAPTER 1 Starting to know your apps

(continued)

Within seconds, ChatGPT responded:

“It sounds like you might be dealing with a memory leak or a race condition. Given 

that the application is using older versions of Hibernate and Spring, it’s possible 

there could be a configuration issue or a hidden bug in those libraries. Have you 

checked for any misconfigured session factories or potential infinite loops in transac-

tion handling?”

Sarah’s eyes widened. The suggestion about the session factory misconfiguration 

struck a chord. She hadn’t considered that angle. Excited, she dove back into the 

code, focusing on the Hibernate configuration files. As she combed through the files, 

she noticed something peculiar—a session factory was set to open a new session 

for every transaction, without properly closing the previous ones. This configuration 

could easily lead to memory problems and random crashes.

“Could it really be that simple?” she muttered to herself.

She quickly adjusted the configuration, making sure each session was properly 

closed after use. Then, she redeployed the application and waited, her heart racing. 

Minutes passed. Then an hour. The app continued running smoothly, with no crashes 

in sight.

Michael, noticing her excitement, walked over. “Did it work?”

Sarah nodded, grinning from ear to ear. “I think it did! It looks like the issue was a mis-

configured session factory, just like ChatGPT suggested. I can’t believe I didn’t think 

of it earlier!”

Michael smiled. “Sometimes, it takes a fresh perspective. Even if it comes from  

an AI.”

Even if Sarah’s story is fictitious, I made it similar to several situations I’ve been through 
or witnessed since AI tools became a thing. And I advise you to try it yourself. In fact, 
we’ll analyze different ideas further in this book. I will start with just a few helpful 
points (which we’ll also detail more later in the following chapters) when using an 
AI prompt to help you identify the kind of problem you are solving and how to begin 
investigating it:

¡	Always be as descriptive as possible when creating the prompt. Give as many details as 
you can. I shortened Sarah’s prompt in our story, but assume she gave even more 
details about her specific case.

¡	Be careful with the details you provide. Remember never to share sensitive informa-
tion in the prompt, even if you want to be as descriptive as possible. Sensitive 
details might be related to the company you work for (like package names, which 
may contain the company name in some cases) or private details such as keys and 
passwords. Imagine Sarah might have also copied and pasted some code. She 
should be careful with what exactly she puts in the prompt to avoid any sensitive 



 23What you will learn in this book

details. You should also review the policies of the company you’re working for, 
as some may have stricter guidelines regarding the use of certain AI tools. It’s 
important to exercise caution and ensure that you always comply with the compa-
ny’s internal regulations.

¡	Use AI-generated responses as a guide but never rely on them blindly. AI tools can some-
times produce incorrect or misleading information, a phenomenon known as AI 

hallucination. This means the AI might fabricate details that seem plausible but 
are not grounded in reality. Additionally, the accuracy of the output depends 
heavily on the input quality (i.e., your prompt). Always verify the information 
and cross-check it with reliable sources to ensure accuracy.

¡	Use multiple prompts to fill in gaps according to the response you get. Even if I made the 
story short in this case, don’t be discouraged if the solution doesn’t enlighten 
from the start. Sometimes, you need to continue the discussion and get more 
involved.

1.4 What you will learn in this book

This book is designed for Java developers with varying experience levels, ranging from 
beginners to experts. You’ll learn various code investigation techniques, the best sce-
narios in which to apply them, and how to apply them to save you troubleshooting and 
investigation time. 

If you are a junior developer, you’ll most likely learn many things from this book. 
Some developers master all these techniques only after years of experience; others 
never master them. Even if you are an expert, you may find familiar concepts, but 
there’s still a good chance you’ll discover new and exciting approaches.

When you finish the book, you will have learned the following skills:

¡	Applying different approaches to using a debugger to understand an app’s logic 
or find a problem

¡	Correctly choosing which app investigation techniques to use to make your inves-
tigation faster and utilize AI tools to help you get on the fastest track from the 
beginning

¡	Investigating hidden functionality with a profiler to better understand how your 
app or a specific dependency of your app works

¡	Analyzing code techniques to determine whether your app or one of its depen-
dencies causes a particular problem

¡	Investigating data in an app’s memory snapshot to identify potential problems 
with how the app processes data

¡	Using logging to identify problems in an app’s behavior or security breaches

¡	Analyzing logs and large data for troubleshooting purposes using AI tools



24 CHAPTER 1 Starting to know your apps

Summary

¡	You can use various investigation techniques to analyze software behavior.

¡	Depending on your situation, one investigation technique may work better than 
another. You need to know how to choose the correct approach to make your 
investigation more efficient. AI tools can be extremely helpful in determining 
where to start and which troubleshooting techniques to apply.

¡	For some scenarios, using a combination of techniques can help identify a prob-
lem faster. Learning how each analyzing technique works gives you an excellent 
advantage in dealing with complex problems.

¡	In many cases, developers use investigation techniques to learn new things rather 
than solve problems. When learning complex frameworks such as Spring Secu-
rity or Hibernate, simply reading books or the documentation isn’t enough. An 
excellent way to accelerate your learning is to debug examples that use the tech-
nology you want to understand better.

¡	A situation is easier to investigate if you can reproduce it in an environment 
where you can study it. Reproducing a problem not only helps you find its root 
cause more easily, but it also helps you verify that a solution works when applied. 



25

2Understanding your 
app’s logic through 

debugging techniques

This chapter covers

¡	When to use a debugger and when to avoid it

¡	Using a debugger to investigate code

¡	Enhancing your debugging techniques with AI 

assistants

Not long ago, during one of my piano lessons, I shared the sheet music of a song I 
wanted to learn with my piano teacher. I was so impressed when he just played the 
song while reading the music sheet for the first time. “How cool is that?” I thought. 
“How does someone gain this skill?”

Then, I remembered that some years ago, I was in a peer-programming session 
with one of the newly hired juniors in the company I was working for. It was my turn 
at the keyboard, and we were investigating a relatively large and complex piece of 
code using a debugger. I started navigating through the code, pressing relatively 
quickly the keyboard keys that allowed me to step over, into, and out of specific lines 
of code. I was focused on the code but was quite calm and relaxed, almost forgetting 



26 CHAPTER 2 Understanding your app’s logic through debugging techniques

I had someone near me (which was rude). I heard this person say, “Wow, stop a bit. 
You’re too fast. Can you even read that code?” 

I realized that situation resembled my experience with my piano teacher. How can 
you acquire this skill? The answer is easier than you think: work hard and gain experi-
ence. While practicing is invaluable and takes a lot of time, I have some tips to share that 
will help you improve your technique much faster. This chapter discusses one of the 
most important tools used in understanding code—the debugger. 

DEFINITION A debugger is a tool that allows you to pause
the execution on specific lines and manually execute each
instruction, while observing how the data changes.

Using a debugger is like navigating with Google Maps: it helps you find your way 
through complex logic implemented in your code. It’s also the most used tool for 
understanding code.

A debugger is usually the first tool developers learn to use to help them understand 
what code does. Fortunately, all IDEs come with a debugger, so you don’t have to do 
anything special to have one. In this book, I use IntelliJ IDEA Community in my exam-
ples, but any other IDE is quite similar and offers (sometimes with a different look) the 
same options we’ll discuss. Although a debugger seems to be a tool most developers 
know how to use, you may find (in this chapter and in chapter 3) some new techniques.

Section 2.1 discusses how developers read code and why. In many cases, simply read-
ing the code isn’t enough to understand it. Enter the debugger or a profiler (which 
we’ll talk about later, in chapters 5–8). In section 2.2, we continue the discussion by 
applying the simplest techniques for using a debugger with an example. 

If you are an experienced developer, you might already know
these techniques. But you may still find it useful to read through
the chapter as a refresher, or you could go straight to the more 
advanced techniques for using a debugger discussed in chapter 3.

OK! Let’s see!



 27When analyzing code is not enough

2.1 When analyzing code is not enough

Let’s start by discussing how to read code and why sometimes reading just the logic 
isn’t enough to understand it. In this section, I’ll explain how reading code works and 
how it is different from reading something else, like a story or a poem. To observe this 
difference and understand what causes the complexity in deciphering code, we’ll use a 
code snippet that implements a short piece of logic. Understanding what’s behind the 
way our brain interprets code will clarify the need for tools such as a debugger. 

Any code investigation scene starts with reading the code. But reading code is differ-
ent from reading poetry. When reading a verse, you move through the text line by line 
in a given linear order, letting your brain assemble and picture the meaning. If you read 
the same verse twice, you might understand different things. 

With code, however, it’s the opposite. First, code is not linear. When reading code, 
you don’t simply go line by line. Instead, you jump in and out of instructions to under-
stand how they affect the data being processed. Reading code is more like a maze than 
a straight road. And, if you’re not attentive, you might get lost and forget where you 
started. Second, unlike a poem, the code always means the same thing for everyone. 
That meaning is the objective of your investigation. 

Just like you’d use a compass to find your path, a debugger helps you identify more 
easily what your code does. As an example, we’ll use the decode(List<Integer> input) 
method. You can find this code in project da-ch2-ex1 provided with the book. 

Listing 2.1 An example of a method to debug

public class Decoder {

  public Integer decode(List<String> input) {
    int total = 0;
    for (String s : input) {
      var digits = new StringDigitExtractor(s).extractDigits();
      total += digits.stream().collect(Collectors.summingInt(i -> i));
    }

    return total;
  }
}

If you read from the top to the bottom line, you must assume how some things work 
to understand the code. Are those instructions really doing what you think they’re 
doing? When you are not sure, you must dive deeper and observe what the code actu-
ally does—you have to analyze the logic behind it. Figure 2.1 points out two uncertain-
ties in the given code snippet:

¡	What does the StringDigitExtractor() constructor do? It might just create an 
object, or it might also do something else. It could be that it somehow changes 
the value of the given parameter.



28 CHAPTER 2 Understanding your app’s logic through debugging techniques

¡	What is the result of calling the extractDigits() method? Does it return a list of 
digits? Does it also change the parameter inside the object we used when creating 
the StringDigitsExtractor constructor? 

public class Decoder {

 public Integer decode(List<String> input) {
 int total = 0;
 for (String s : input) {
 var digits = new StringDigitExtractor(s).extractDigits();
 total += digits.stream().collect(Collectors.summingInt(i -> i));
 }

 return total;
 }
}

Does this constructor only
create an object, or does it 
also do something else?

What does this method
really do? Does it use the
String parameter value?

Figure 2.1 When reading a piece of code, you often need to figure out what happens behind the scenes 

in some of the instructions composing that logic. The method names are not always suggestive enough, 

and you can’t totally rely on them. Instead, you need to go deeper into what these methods do.

Even with a small piece of code, you may have to dive deeper into the instructions. 
Each new code instruction you examine creates a new investigation plan and adds to 
its cognitive complexity (figures 2.2 and 2.3). The deeper you go into the logic and the 
more plans you open, the more complex the process becomes.

You take a piece of stone,
chisel it with blood,
grind it with Homer’s eye,
burnish it with beams
until the cube comes out perfect.

Next you endlessly kiss the cube
with your mouth, with others’ mouths,
and, most important,
with infanta’s mouth.

Then you take a hammer
and suddenly knock a corner off.

All, indeed absolutely all will say

what a perfect cube

this would have been

if not for the broken corner.

(“A Lecture on the Cube,” N. Stanescu)

Reading poetry is linear.
You read each verse one 
by one, from top to bottom.

Figure 2.2 Compare 

how you read poetry 

with how you read 

code. You read poetry 

line by line, but when 

you read code, you 

jump around.



 29When analyzing code is not enough

public class Decoder {

public Integer decode(List<String> input) {

int total = 0;

for (String s : input) {

var digits = new StringDigitExtractor(s).extractDigits();

total += digits.stream().collect(Collectors.summingInt(i -> i));

}

return total;

}

} public List<Integer> extractDigits() {
List<Integer> list = new ArrayList<>();
for (int i = 0; i < input.length(); i++) {

if (input.charAt(i) >= '0' && input.charAt(i) <= '9') {
list.add(Integer.parseInt(String.valueOf(input.charAt(i))));

}
}

return list;
}

First plan

Second plan

public

Reading code is not linear. Any instruction
might create a separate cognitive plan.
Sometimes you need to dive into those plans
to understand the full picture.

Figure 2.3 Reading code is different from reading poetry and is much more complex. You can imagine reading 

code as reading in two dimensions. One dimension is reading a piece of code top to bottom. The second dimension 

is going into a specific instruction to understand it in detail. Trying to remember how things work for each plan and 

how it assembles makes understanding code just by reading it very difficult.

Reading poetry always has one path. Code analysis, however, creates many paths 
instead through the same piece of logic. Did I say two plans earlier (figure 2.3)? Well, 
every time you go deeper, you leave one plan behind. So when you look at a particular 
piece of code, you see the current plan, and you know the method you see hides its 
own plan. But each time you jump into a method, you also leave behind one plan. The 
more you jump into methods, the more plans you open. 

The more plans you open, the more complex the debugging process is. And the 
opposite is also true: the fewer new plans you open, the less complex the process is. You 
must choose between skipping over a certain instruction, making the overall investi-
gation process simpler, or going into detail to understand each individual instruction 
better and raise the process complexity.



30 CHAPTER 2 Understanding your app’s logic through debugging techniques

TIP Always try to shorten the reading path by minimizing the 
number of plans you open for investigation. Use a debugger to 
help you more easily navigate the code, keep track of where you 
are, and observe how the app changes the data while executing.

Reading code today can be significantly enhanced using AI tools such as ChatGPT or 
other large language model (LLM) tools. Remember, you can always use a prompt to 
get ideas about a code snippet. For example, you may start by providing a prompt as 
given in the following snippet.

 Can you help me understand what this method does? Please provide me step-by-step 

explanation of the code?

  public Integer decode(List<String> input) {

    // whole method from Listing 2.1 provided 

    // but content erased from here to save space

  }

Your LLM tool should give you an answer containing a detailed description of the 
method and the assumptions made. The summary and assumptions made may look 
like as follows:

 The decode method

¡	Takes a list of strings as input.

¡	Iterates through each string in the list.

¡	For each string, extracts all numeric digits using StringDigitExtractor 

.extract  Digits().

¡	Sums up the extracted digits for each string.

¡	Accumulates these sums into a total.

¡	Returns the total sum of all digits extracted from all the strings.

Assumptions

To fully understand how this method works, we need to make a few assumptions 

about the StringDigitExtractor class and its extractDigits() method, as they 

are not defined in the code you provided:

¡	StringDigitExtractor is a class that takes a string as an argument in its 

constructor.

¡	extractDigits() is a method in StringDigitExtractor that returns a collection 

of numeric digits (likely as integers or numeric strings) found within the input 

string.



 31Investigating code with a debugger

With these assumptions, the method effectively calculates the sum of all digits found in 
the entire list of strings.

Observe that the LLM tool correctly intuited the purpose of the decode() method. 
However, because you have only provided the first cognitive plan, the LLM tool made 
some assumptions and also provided you with the list of assumptions. 

In my experience, the tool will always deliver a list of assumptions if it makes any 
assumptions. In case it doesn’t, but you believe it might have, you can continue the con-
versation with a prompt asking for possible assumptions that have been made.

If the result doesn’t satisfy your expectations, the casual flow is to continue the con-
versation by providing more information from the next cognitive plans until you reach 
a conclusion.

TIP Remember that the majority of LLM tools can easily extract text from 
an image. If you cannot easily copy and paste the code but can extract it in an 
image (presumably with a screen capture), you can provide that image instead 
to obtain the same result.

2.2 Investigating code with a debugger

This section discusses a tool that can help you to minimize the cognitive effort of read-
ing code to understand how it works—a debugger. All IDEs provide a debugger, and 
even if the interface might look slightly different from one IDE to another, the options 
are generally the same. I’ll use IntelliJ IDEA Community in this book, but I encourage 
you to use your favorite IDE and compare it with the examples. You’ll find they are 
pretty similar.

A debugger simplifies the investigation process by

¡	Providing you with a means to pause the execution at a particular step and exe-
cute each instruction manually at your own pace.

¡	Showing you where you are and where you came from in the code’s reading path; 
this way, the debugger works as a map you can use, rather than trying to remem-
ber all the details.

¡	Showing you the values that variables hold, which makes the investigation easier 
to visualize and process.

¡	Allowing you to try things on the fly by using watchers and evaluating expressions.

Let’s take the example in project da-ch2-ex1 again and use the most straightforward 
debugger capabilities to understand the code. 

Listing 2.2 A piece of code we want to understand

public class Decoder {

  public Integer decode(List<String> input) {
    int total = 0;
    for (String s : input) {



32 CHAPTER 2 Understanding your app’s logic through debugging techniques

      var digits = new StringDigitExtractor(s).extractDigits();
      total += digits.stream().collect(Collectors.summingInt(i -> i));
    }

    return total;
  }
}

I’m sure you’re wondering, “How do I know when to use a debugger?” This is a fair 
question I want to answer before we continue. The main prerequisite is knowing what 

piece of logic you want to investigate. As you’ll learn in this section, the first step in using a 
debugger is selecting an instruction where you want the execution to pause. 

NOTE Unless you already know which instruction
you need to start your investigation from, you can’t 
use a debugger.

In the real world, you’ll find cases in which you don’t know up front the specific piece of 
logic you want to investigate. In this case, before you can use a debugger, you must apply 
other techniques to find the part of the code you want to explore using the debugger 
(addressed in later chapters). In chapters 2 and 3, we focus only on using the debugger, 
so we’ll assume you somehow found the piece of code you want to understand.

Going back to our example, where do we start? First, we need to read the code and 
figure out what we do and don’t understand. Once we identify where the logic becomes 
unclear, we can execute the app and tell the debugger to pause the execution. We can 
pause the execution on those lines of code that are not clear to observe how they change 
the data. To tell the debugger where to pause the app’s execution, we use breakpoints. 

DEFINITION A breakpoint is a marker used on lines where we
want the debugger to pause the execution so we can investigate
the implemented logic. The debugger will pause the execution
before executing the line marked with the breakpoint.

In figure 2.4, I shaded the code that is pretty easy to understand (considering you 
know the language fundamentals). As you can see, this code takes a list as an input, 
parses it, processes each item in it, and somehow calculates an integer that the method 



 33Investigating code with a debugger

returns in the end. Moreover, the process the method implements is easy to ascertain 
without a debugger.

public class Decoder {

 public Integer decode(List<String> input) {
 int total = 0;

for (String s : input) {
var digits = new StringDigitExtractor(s).extractDigits();
 total += digits.stream().collect(Collectors.summingInt(i -> i));

 }

 return total;
 }

}

1. The method takes a list
    of strings as a parameter.

2. The method iterates 
    over the List parameter.

3. The method returns an
    integer value, which is a sum
    of something calculated for each 
    string in the List parameter.

Figure 2.4 Assuming you know the language fundamentals, you can easily see that this code takes a 

collection as an input and parses the collection to calculate an integer.

In figure 2.5, I shaded the lines that usually cause difficulties in understanding what 
the method does. These lines of code are more challenging to decipher because they 
hide their own implemented logic. You may recognize digits.stream().collect 
(Collectors.summingInt(i -> i)) as it’s been part of the Stream API provided with the 
JDK since Java 8. But we can’t say the same thing about new StringDigitExtractor(s) 
.extractDigits(). Because this is part of the app’s codebase we are investigating, this 
instruction might do anything. 

The way a developer writes the code may also add additional complexity. For exam-
ple, starting with Java 10, developers can infer the type of a local variable using var. 
Inferring the variable type is not always a wise choice because it can make the code even 
more difficult to read (figure 2.5), adding another scenario in which using the debug-
ger would be beneficial.

TIP When investigating code with a debugger, start 
from the first line of code that you can’t figure out.



34 CHAPTER 2 Understanding your app’s logic through debugging techniques

While training junior developers and students over the many years, I have observed 
that they often start debugging on the first line of a specific code block. Although this 
method is acceptable, it’s more efficient if you first read the code without the debugger 
and try to figure out whether you can understand it. Remember, you can use AI help for 
this purpose, as discussed in section 2.1. Then, start debugging directly from the point 
that causes difficulties. This approach will save you time as you may notice you don’t 
need the debugger to understand what happens in a specific piece of logic. After all, 
even if you use the debugger, you only need to go over the code you don’t understand.

In some scenarios, you add a breakpoint on a line because its intent is not obvious. 
Sometimes, your app throws an exception; you see that in the logs, but you don’t know 
which previous line is causing the problem. In this case, you can add a breakpoint to 
pause the app’s execution just before it throws the exception. But the idea stays the 
same: avoid pausing the execution of the instructions you understand. Instead, use 
breakpoints for the lines of code you want to focus on.

public class Decoder {

 public Integer decode(List<String> input) {
 int total = 0;
 for (String s : input) {
 var digits = new StringDigitExtractor(s).extractDigits();
 total += digits.stream().collect(Collectors.summingInt(i -> i));
 }

 return total;
 }

}

What happens for every
string in the list? How is
the String turned into 
a number?

Figure 2.5 In this piece of code, I shaded the lines that are more difficult to understand. When you use a 

debugger, add the first breakpoint on the first line that makes the code more challenging to understand.

A useful strategy is to reduce the number of variables displayed in the IDE’s scope to 
focus only on the ones that are relevant. An LLM can analyze your code and help iden-
tify variables relevant to the debugging process, suggesting the removal of those that 
aren’t necessary. Focusing on essential variables only simplifies debugging by removing 
irrelevant data, which lets you concentrate on what’s important.

For this example, we start by adding a breakpoint on line 11, presented in figure 2.6: 

var digits = new StringDigitExtractor(s).extractDigits();

Generally, to add a breakpoint on a line in any IDE, you click on or near the line 
number (or even better, use a keyboard shortcut; for IntelliJ, you can use Ctrl-F8 for 



 35Investigating code with a debugger

Windows/Linux, or Command-F8 for macOS). The breakpoint will be displayed with 
a circle, as presented in figure 2.6. Make sure you run your application with the debug-
ger. In IntelliJ, look for a small bug icon near the one you use to start the app. You 
can also right-click the main class file and use the Debug button in the context menu. 
When the execution reaches the line you marked with a breakpoint, it pauses, allowing 
you to navigate further manually.

1. Add a breakpoint on the line where you 
    want the debugger to stop the execution. 
    This line should be the first instruction 
    that creates concerns.

2. Run the app with the debugger.

Figure 2.6 Click near the line number to add a breakpoint on a specific line. The area where the IDE displays the 

breakpoint is also called the “gutter.” Then, run the app with the debugger. The execution pauses on the line you 

marked with a breakpoint and allows you to control it manually.

Since the shortcuts can change and differ depending on the operating system you 
use (some developers even prefer to customize them), I’m not going to discuss them 
here. However, I advise you to check your IDE’s manual and learn to use the keyboard 
shortcuts.

NOTE Remember, you must execute the app using the Debug option to have 
an active debugger. If you use the Run option, the breakpoints won’t be consid-
ered since the IDE doesn’t attach the debugger to the running process. Some 
IDEs may run your app by default and attach the debugger, but if that’s not the 
case (like for IntelliJ or Eclipse), then the app execution won’t pause at the 
breakpoints you define.



36 CHAPTER 2 Understanding your app’s logic through debugging techniques

Attaching a debugger in Java (locally) means that your IDE connects to your running 
Java program to control and inspect it. Behind the scenes, when you run your app in 
debug mode, the JVM starts with special settings that allow it to accept debugger con-
nections (through a local port). When the IDE attaches, it connects to this port and 
uses the Java Debug Wire Protocol (JDWP) to communicate. This approach lets you 
pause the program, step through code, inspect variables, and set breakpoints.

DEFINITION Attaching a debugger means the IDE connects to the JVM in a 
special way to let you watch and control how your code runs.

When the debugger pauses the code execution on a specific instruction from the line 
you mark with a breakpoint, you can use the valuable information the IDE displays. 
Figure 2.7 shows that my IDE displays two essential pieces of information:

¡	The value of all the variables in scope—Knowing the variables in scope and their 
values helps you understand what data is being processed and how the logic 
affects it. Remember that the execution is paused before the execution of the 
line marked with a breakpoint, so the data state remains the same.

¡	The execution stack trace—It shows how the app executes the line of code where the 
debugger paused the execution. Each line in the stack trace is a method involved

When the debugger pauses the app execution
on a specific line, you can see the values
of all the variables in the scope.

The debugger also shows the stack trace, 
which displays the execution path so that 
you can easily see who called the method
you are investigating.

The execution paused
on the line you marked 
with a breakpoint.

Figure 2.7 When the execution is paused on a given line of code, you can see all the variables in scope 

and their values. You can also use the execution stack trace to remember where you are as you navigate 

through the lines of code.



 37Investigating code with a debugger

in the calling chain. The execution stack trace helps visualize the execution path, 
without needing to remember how you got to a specific instruction when using 
the debugger to navigate through code.

TIP You can add as many breakpoints as you want,
but it is best to use a limited number at a time and 
focus only on those lines of code. I usually use no
more than three breakpoints at the same time. I
often see developers add too many breakpoints,
forget them, and get lost in the investigated code.

Generally, observing the values of the variables in scope is easily understandable. But, 
depending on your experience, you may or may not be aware of what the execution 
stack trace is. Section 2.2.1 addresses the execution stack trace and why this tool is 
essential. We’ll then discuss navigating the code using essential operations such as step 
over, step into, and step out. You can skip section 2.2.1 and go directly to 2.2.2 if you 
are already familiar with the execution stack trace.

2.2.1 What is the execution stack trace, and how do I use it?

The execution stack trace is a valuable tool you use to understand the code while debug-
ging it. Just like a map, the execution stack trace shows the execution’s path to the spe-
cific line of code where the debugger paused it, helping you decide where to navigate 
further.

Figure 2.8 shows a comparison of the execution stack trace and the execution in a 
tree format. The stack trace shows how methods called one another up to the point 
where the debugger paused the execution. In the stack trace, you can find the method 
names, the class names, and the lines that caused the calls.

NOTE In our examples, you’ll notice that the main() method consistently 
appears as the first line in the execution stack. However, in real-world appli-
cations, multiple threads often run concurrently, each maintaining its own 
execution stack (see appendixes D and E for more details). For instance, 
in a typical thread-per-request web application, a new thread is spawned for 
each incoming HTTP request. Therefore, the starting point of an execution 
stack varies depending on which thread is executing the specific piece of code 
you’re analyzing. In our examples, you always see the main() method as the 
first line of the execution stack. Remember that a real-world app has multiple 
threads executing, and each thread has their own stack (also see appendixes 
D and E). For example, a standard thread-per-request web app will create a 
new thread for each HTTP request. So, the starting point of an execution stack 
depends on which thread executes the piece of code you investigate.



38 CHAPTER 2 Understanding your app’s logic through debugging techniques

We read the execution stack from bottom to top.
The bottom layer in the stack is the first layer.
The first layer is the one where the execution began.
The top layer (the last layer) is the method where 
the execution is currently paused.

This is a tree representation of the
execution stack trace. Method main()
in class Main calls method decode() in
class Decoder. Further, method decode()
calls method extractDigits() in class
StringDigitsExtractor. The execution
is paused in method extractDigits().

main()

decode()

extractDigits()

calls

calls

Execution paused in method extractDigits()

The execution stack trace shows the class names
and the line in the file where the method was called.

Figure 2.8 The top layer of the execution stack trace is where the debugger paused the execution. All other  

layers in the execution stack trace are where the methods represented by the above layers were called. The  

bottom layer of the stack trace (the first layer) is where the execution of the current thread began.

One of my favorite uses of the execution stack trace is finding hidden logic in the exe-
cution path. In most cases, developers simply use the execution stack trace to under-
stand who calls a particular method. But you also need to consider that apps that use 
frameworks (such as Spring, Hibernate, etc.) sometimes alter the execution chain of 
the method. 

DEFINITION The execution stack trace is a breadcrumb trail of method calls that 
tells you how your program got to where it is.

For example, Spring apps often use code that is decoupled in what we call aspects (in 
Java/Jakarta EE terminology, we call them interceptors). These aspects implement logic 
that the framework uses to augment the execution of specific methods in certain con-
ditions. Unfortunately, such logic is often difficult to observe since you can’t see the 
aspect code directly in the call chain when reading the code (figure 2.9). This charac-
teristic makes it challenging to investigate a given capability.

Let’s take a code example to examine this behavior and how the execution stack 
trace is helpful in such cases. You can find this example in project da-ch2-ex2 provided 
with the book (appendix B provides a refresher for opening the project and starting 
the app). The project is a small Spring app that prints the parameter’s value in the 
console. 



 39Investigating code with a debugger

It looks like method 1 
directly calls method 2.

The apparent flow of method execution

How the code really executes

method1() method2()
calls

method1() method2()
calls

aspect()
calls

Instead, method 1 calls the logic  
implemented by an aspect. The aspect 
might further call the second method.

Figure 2.9 An aspect logic is completely decoupled from the code. For this reason, when reading the 

code, it is difficult to see that there’s more logic that will execute. Such cases of hidden logic executing 

can be confusing when investigating a certain capability.

Listings 2.3, 2.4, and 2.5 show the implementation of these three classes. As presented 
in listing 2.3, the main() method calls ProductController’s saveProduct() method, 
sending the parameter value "Beer".

Listing 2.3 The main class calls the ProductController’s saveProduct() method

public class Main {

  public static void main(String[] args) {
    try (var c = 
      new AnnotationConfigApplicationContext(ProjectConfig.class)) {
      c.getBean(ProductController.class).saveProduct("Beer");       
    }
  }
}

In listing 2.4, you can see that ProductController’s saveProduct() method simply calls 
the ProductService’s saveProduct() method with the received parameter value. 

Listing 2.4 ProductController calling ProductService

@Component
public class ProductController {

  private final ProductService productService;

  public ProductController(ProductService productService) {
    this.productService = productService;

Calling the saveProduct() method 
with the parameter value “Beer”



40 CHAPTER 2 Understanding your app’s logic through debugging techniques

  }

  public void saveProduct(String name) {
    productService.saveProduct(name);           
  }
}

Listing 2.5 shows the ProductService’s saveProduct() method that prints the parame-
ter value in the console.

Listing 2.5 ProductService printing the value of the parameter

@Component
public class ProductService {

  public void saveProduct(String name) {
    System.out.println("Saving product " + name);      
  }
}

As presented in figure 2.10, the flow is quite simple:

1 The main() method calls the saveProduct() method of a bean named Product-
Controller, sending the value "Beer" as a parameter. 

2 Then, the ProductController’s saveProduct() method calls the saveProduct() 
method of another bean, ProductService. 

3 The ProductService bean prints the value of the parameter in the console.

1. The main() method calls the
  saveProduct() method in
  ProductController,
    sending the value “Beer” as
    the parameter value.

main() saveProduct()
calls

Main

saveProduct()
calls

ProductController ProductService

2. The saveProduct() method in
    ProductController calls the
  saveProduct() method in
  ProductService, with the value
    of the parameter it received.

3. The ProductService’s saveProduct()
    method prints  the value of the parameter
    in the app’s console.

Figure 2.10 The main() method calls saveProduct() of bean ProductController, sending the 

value "Beer" as the parameter value. The ProductController’s saveProduct() method calls the 

ProductService bean, sending the same parameter value as the one it receives. The Product-Service 

bean prints the parameter value in the console. The expectation is that "Beer" will be printed in the console.

ProductController calls 
the service and sends 
the parameter value.

Prints the parameter 
value in the console



 41Investigating code with a debugger

Naturally, you would assume the following message is printed when you run the app:

Saving product Beer

However, when you run the project, the message is different:

Saving product Chocolate

How is that possible? To answer this question, the first thing to do is use the execu-
tion stack trace to find out who changed the parameter value. Add a breakpoint on 
the line that prints a different value than you expect, run the app with the debugger, 
and observe the execution stack trace (figure 2.11). Instead of having the Product-
Service’s saveProduct() method from the ProductController bean, you find that an 
aspect alters the execution. If you review the aspect class, you will, indeed, see that the 
aspect is responsible for replacing "Beer" with "Chocolate" (see listing 2.6).

The execution stack trace is much larger than you would expect when reading the code.
It clearly shows that ProductService’s saveProduct() method is not called directly
from ProductController. Somehow, an aspect executes in between the two methods.

Figure 2.11 The execution stack trace shows that an aspect has altered the execution. This aspect is 

the reason that the parameter value changes. Without using the stack trace, finding why the app has a 

different behavior than expected would be more difficult.

Listing 2.6 shows the aspect that alters the execution by replacing the value Product-
Controller sends to ProductService.



42 CHAPTER 2 Understanding your app’s logic through debugging techniques

Listing 2.6 The aspect logic that alters the execution

@Aspect
@Component
public class DemoAspect {

  @Around("execution(* services.ProductService.saveProduct(..))")
  public void changeProduct(ProceedingJoinPoint p) throws Throwable {
    p.proceed(new Object[] {"Chocolate"});
  }
}

Aspects are quite a fascinating and useful feature in Java application frameworks today. 
But if you don’t use them properly, they can make apps difficult to understand and 
maintain. Of course, in this book, we are discussing relevant techniques that can help 
you to identify and understand code even in such cases. But, trust me, if you need to 
use this technique for an application, it means the application is not easily maintain-
able. A clean-coded app (without technical debt) is always a better choice than an app 
in which you must invest effort to debug later. If you’re interested in better under-
standing how aspects work in Spring, I recommend reading chapter 6 of another book 
I wrote, Spring Start Here (Manning, 2021).

Besides the code, remember that an LLM can understand execution stack traces and 
variables in scope as well. So, assume you paused the app’s execution on a given line, 
but you can’t understand the execution stack trace, or you want to check the variable-
in-scopes’ values. These are details you can also provide in your prompt. Most likely, the 
easiest way to provide these details is a screen capture. Provide the screen captures with 
the details in the prompt, asking questions that can give you more ideas or help you 
advance faster through your investigation.

The following is an example of a prompt you can use to help identify inconsistencies 
in your code. While you can use it with a general AI chat tool such as ChatGPT, it will 
usually work more effectively with an AI agent integrated into your IDE, such as GitHub 
Copilot or the IntelliJ IDEA AI Assistant. These tools often have access to your source 
code context automatically or make it easier to provide that context.

 I paused the method’s execution on line 26. I attached the source code for the 

current class and a print screen of the variables’ values. Do you expect these are 

correct values for the variable in scope I provided in the attached screen capture? If 

there’s any inconsistency, please help me understand where and why.

An answer to such a prompt, if there were any problems, could look like the following:

 Thanks for the information. Based on the source code you provided for UserService 

and the variable values in the screenshot, here’s what I observe:

You’re paused at line 26 inside the createAccount method. At this point, the user 

object has the following values:

You’re clearly creating a new user, so user.getId() being null is expected—good.



 43Investigating code with a debugger

However, the value of user.getEmail() looks suspicious. Earlier in the method, I 

see you’re calling user.setEmail(input.getEmail().trim().toLowerCase());, but 

input.getEmail() is "Admin@Company.Com" (as seen in your screenshot).

That means after .trim() and .toLowerCase(), the expected value should be  

"admin @company.com", which does match the value in your current variable. So from 

that point of view, it seems consistent.

That said, there’s a subtle risk: you’re directly using input.getEmail() without 

checking if it’s null. If the input were missing or malformed, this could lead to a 

NullPointerException.

Now your job is to follow the logic and verify whether the AI assistant’s explanation is 
correct. Keep in mind that the AI can be wrong, often due to missing context. It’s your 
responsibility to recognize when that happens and supply the missing information.

The key idea to remember is that you’re not using the AI to solve the case for you—
you’re using it to help you understand parts that seem confusing or complex. In the 
end, you’re the one solving the problem.

Here’s another example of prompt you could use with the details a debugger 
provides.

 I expected the console to display X, but it displayed Y. Can you help me figure out 

why? I attached a screenshot of the execution stack trace.

Remember to provide as much context as needed for the AI to be helpful. Of course, 
you won’t always be able to share the entire source code, and that’s okay. Just include 
whatever parts you believe are relevant.

The good news is that you don’t have to rely solely on copy-pasting. You can upload 
files that contain the necessary information or even share screenshots. For example, 
most IDEs make it easy to save the execution stack trace to a file, which is especially 
useful when the trace is too large to copy and paste. In such cases, simply save the stack 
trace and upload the file instead.

2.2.2 Navigating code with the debugger

This section, discusses the basic ways you navigate code with a debugger. You’ll learn 
how to use three fundamental navigation operations:

¡	Step over—Continue executing the next line of code in the same method.

¡	Step into—Continue the execution inside one of the methods called on the cur-
rent line. 

¡	Step out—Return the execution to the method that called the one you are 
investigating.

To start the investigation process, you must identify the first line of code where you 
want the debugger to pause the execution. To understand the logic, you need to nav-
igate through the lines of code and observe how the data changes when different 
instructions execute. 



44 CHAPTER 2 Understanding your app’s logic through debugging techniques

Navigation operations can be used in any IDE through buttons on the GUI or key-
board shortcuts. Figure 2.12 shows how these buttons appear in the IntelliJ IDEA Com-
munity GUI, the IDE I use.

Use the navigation instructions to tell the debugger to  
continue the execution. The most essential navigation  
instructions are step over, step in, and step out.

 

Figure 2.12 The navigation operations help you walk through the app logic in a controlled way to 

identify how the code works. To navigate through code, you can use the buttons on the IDE’s GUI  

or use the keyboard shortcuts associated with these operations.

TIP Even if at the beginning you find it easier to use the 
buttons on the IDE’s GUI, I recommend you use the keyboard
shortcuts instead. Once you get comfortable using the keyboard
shortcuts, you’ll see they are much faster than a mouse.

Figure 2.13 depicts the navigation operations. You can use the step over operation to 
go to the next line in the same method. Generally, this is the most commonly used nav-
igation operation.

Sometimes you need to better understand what happens with a particular instruc-
tion. In our example, you may need to enter the extractDigits() method to clearly 



 45Investigating code with a debugger

Step 

over

Step into

Step out

Step over allows you to continue the execution in the same method with  
the next line of code without entering any details from the current line.

Step into allows you to enter the instruction on which the execution is currently stopped. For example, 
you may step into the extractDigits()method to understand what happens behind that method call.

Step out allows you to return to a prior method that called 
the one you are currently investigating.

For example, if you stepped into the extractDigits()
method, you can use step out to return to the decode()
method that you were previously investigating.

public class Decoder {

 public Integer decode(List<String> input) {

 int total = 0;

 for (String s : input) {

 var digits = new StringDigitExtractor(s).extractDigits();

 total += digits.stream().collect(Collectors.summingInt(i -> i));

 }

 return total;

 }

} public List<Integer> extractDigits() {
 List<Integer> list = new ArrayList<>();
 for (int i = 0; i < input.length(); i++) {
 if (input.charAt(i) >= '0' && input.charAt(i) <= '9') {
 list.add(Integer.parseInt(String.valueOf(input.charAt(i))));
 }
 }

 return list;
 }

Figure 2.13 Navigation operations. Stepping over allows you to go to the next instruction in the same method. 

When you want to start a new investigation plan and go into detail in a specific instruction, you can use the step 

into operation. You can go back to the previous investigation plan with the step out operation.

understand what it does. In such a case, you use the step into operation. When you 
want to return to the decode() method, you can use step out. 

You can also visualize the operations on the execution stack trace, as presented in 
figure 2.14.

Ideally, you start with using the step over operation as much as possible when trying 
to understand how a piece of code works. The more you step into, the more investiga-
tion plans you open, and thus the more complex the investigation process becomes 
(figure 2.15). In many cases, you can deduce what a specific line of code does only by 
stepping over it and observing the output.



46 CHAPTER 2 Understanding your app’s logic through debugging techniques

Stepping out closes an investigation plan.
A stack layer dissapears as you return to
the previous one. You go down in the 
execution stack trace.

Step out Step into

Step over

Stepping into opens a new investigation plan.
The execution stack trace becomes bigger.
You go up in the stack trace.

By stepping over,
you remain in
the same plan
or close the plan
if that layer’s
method returns
or throws an
exception.

Figure 2.14 The navigation operation as seen from the execution stack trace point of view. When you 

step out, you go down in the stack trace and close an investigation plan. When you step into, you open a 

new investigation plan, so you go up in the stack trace, and it becomes bigger. When stepping over, you 

remain in the same investigation plan. If the method ends (returns or throws an exception), stepping over 

closes the investigation plan, and you go down in the stack trace just like you did when you stepped out.

I TOLD YOU TO STOP 

DEEPLY DEBUGGING MANY

LAYERS AT ONCE!

Figure 2.15  

The movie Inception 

(2010) portrays the 

idea of dreaming in 

a dream. The more 

layers your dream 

has, the longer you 

stay there. You can 

compare this idea with 

stepping into a method 

and opening a new 

investigation layer. 

The deeper you step 

in, the more time you’ll 

spend investigating 

the code.



 47Investigating code with a debugger

Figure 2.16 shows the result of using the step over navigation operation. The execu-
tion pauses on line 12, one line below where we initially paused the debugger with the 
breakpoint. The digits variable is now initialized as well, so you can see its value.

If you step over line 11, the variable
digits is now in scope, so the debugger
shows its value, too.

Figure 2.16 When you step over a line, the execution continues in the same method. In our case, the 

execution paused on line 12, and you can see the value of the digits variable that was initialized by line 

11. You can use this value to deduce what line 11 does without having to go into more detail.

Try continuing the execution multiple times. You’ll observe that, on line 11, for each 
string input, the result is a list that contains all the digits in the given string. Often, the 
logic is easy enough to understand simply by analyzing the outputs for a few execu-
tions. But what if you can’t figure out what a line does just by executing it?

If you don’t understand what happens, you need to go into more detail on that line. 
This should be your last option since it requires that you open a new investigation plan, 
which complicates your process. But, when you have no other choice, you can step into 
an instruction to get more details on what the code does. Figure 2.17 shows the result of 
stepping into line 11 of the Decoder class:

var digits = new StringDigitExtractor(s).extractDigits();

If you stepped into an instruction, take the time to first read what’s behind that code 
line. In many cases, looking at the code is enough to spot what happens, and then you 
can go back to where you were before stepping into. I often observe students rushing 
into debugging the method they stepped into without first taking a breath and reading 
that piece of code. Why is it important to read the code first? Because stepping into a 



48 CHAPTER 2 Understanding your app’s logic through debugging techniques

Observe that a new level
appears in the execution 
stack. You can always use 
the execution stack as 
a map of the opened
investigation plans.

When stepping into a line,
the execution continues
in the method called on
that specific line.

Figure 2.17 Stepping into allows you to observe the entire execution of the current instruction. This opens a new 

investigation plan, allowing you to parse the logic behind that particular instruction. You can use the execution 

stack trace to retrace the execution flow.

method opens another investigation plan, so if you want to be efficient, you have to 
redo the investigation steps:

1 Read the method and find the first line of code you don’t understand.

2 Add a breakpoint on that line of code, and start the investigation from there.

Often, if you stop and read the code, you’ll find that you don’t need to continue that inves-
tigation plan. If you already understand what happens, you simply need to return to where 
you were previously. And you can do this using the step out operation. Figure 2.18 shows 
what happens when using step out from the extractDigits() method: the execution 
returns to the previous investigation plan in the decode(List <String> input) method.

TIP The step out operation can save you time. When 
entering a new investigation plan (by stepping into 
a code line), first read the new piece of code. Step 
out of the new investigation plan once you 
understand what the code does.



 49Investigating code with a debugger

When you step out of the extractDigits() method,
the execution returns to the previous investigation plan.

The execution stack trace shows that the execution  
plan of the extractDigits() method was closed
and the execution returned to the decode() method.  

Figure 2.18 The step out operation allows you to close an investigation plan and return to the previous one in the 

execution stack trace. Using step out is helpful to save time since you don’t have to step over each instruction 

until the current execution plan closes by itself. Stepping out offers a shortcut to return to the previous execution 

plan you were investigating. 

Why is the next execution line not always the next line in the method?

When discussing code navigation with a debugger, I often talk about the “next execu-

tion line.” I want to make sure I’m clear about the difference between the “next line” 

and the “next execution line.”

The next execution line is the line of code the app executes next. When we say the 

debugger paused the execution on line 12, the next line is always line 13, but the next 

execution line can be different. For example, if line 12 doesn’t throw an exception, as 

shown in the following figure, the next execution line will be 13, but if line 12 throws 

an exception, the next execution line is line 18. This example is available in project 

da-ch2-ex3.

When using the step over operation, the execution will continue to the next execution 

line.



50 CHAPTER 2 Understanding your app’s logic through debugging techniques

(continued)

If line 12 throws an 
exception, the next 
execution line is
line 18.

In this figure, we step over from line 12, and line 12 throws an exception; the execution continues 

on line 18, which is the next execution line. In other words, the next execution line is not always 

the next line.

2.3 When using the debugger might not be enough

The debugger is an excellent tool that can help you analyze code by navigating through 
the code to understand how it works with data. But not all code can be investigated 
with a debugger. This section discusses some scenarios in which using a debugger is 
not possible or not enough. You need to be aware of these cases so that you don’t waste 
time using a debugger.

Here are some of the most often encountered investigation scenarios when using a 
debugger (or only a debugger) is not the right approach:

¡	Investigating output problems when you don’t know which part of the code 
creates the output

¡	Investigating performance problems

¡	Investigating crashes where the entire app fails

¡	Investigating multithreaded implementations

¡	Investigating time-sensitive operations



 51When using the debugger might not be enough

TIP Remember that a critical prerequisite for using 
a debugger is knowing where to pause the execution.

Before you start debugging, you need to find the part of the code that is generating the 
wrong output. Depending on the app, it may be easier to find where something hap-
pens in the implemented logic. If the app has a clean class design, it is relatively easy 
to find the part of the app responsible for the output. If the app lacks a class design, 
it may be more challenging to discover where things happen and thus where to use 
the debugger. In the upcoming chapters, you’ll learn several other techniques. Some 
of these techniques, such as profiling the app or using stubs, will help you to identify 
where to start the investigation with a debugger.

Performance problems are a particular set of difficulties you usually can’t investigate with 
a debugger. Slow applications or those that freeze completely are frequent performance 
problems. In most cases, profiling and logging techniques (discussed in chapters 4–8) 
will help you troubleshoot such scenarios. For the particular instances in which the app 
blocks entirely, getting and analyzing a thread dump is usually the most straightforward 
investigation path. We’ll talk about analyzing thread dumps in chapter 8.

If the app encountered a problem and the execution stopped (the app crashed), you 
cannot use a debugger on the code. A debugger allows you to observe the app in execu-
tion. If the application no longer executes, a debugger clearly won’t help. Depending 
on what happened, you might need to audit logs, as we’ll discuss in chapter 4, or investi-
gate thread or heap dumps, which you’ll learn about in chapters 8 and 10.

Most developers find multithreaded implementations the most challenging to investi-
gate. Such implementations can be easily influenced by your interference with tools 
such as a debugger. This interference creates a Heisenberg effect (discussed in chap-
ter 1): the app behaves differently when you use the debugger than when you don’t 
interfere with it. As you’ll learn, you can sometimes isolate the investigation to one 
thread and use the debugger. But in most cases, you’ll have to apply a set of techniques 
that include debugging, mocking and stubbing, and profiling to understand the app’s 
behavior in the most complex scenarios.

Time-sensitive operations can sometimes be tricky to investigate using a debugger. By 
time-sensitive operations, I mean code executions where behavior may change depend-
ing on how long the code takes to run—particularly when you’re stepping through it 
with a debugger. Here are a few examples:

¡	An access token that expires after a certain period. If you spend too much time 
in the debugger, the token might expire before you complete your investigation.

¡	A timer set to trigger a specific use case after a predefined interval.



52 CHAPTER 2 Understanding your app’s logic through debugging techniques

¡	A short-lived session with another application or system that may expire if you 
pause execution for too long.

Debugging is typically an activity where you want to give yourself ample time to analyze 
and think through what you’re observing. As I mentioned earlier, allow yourself the 
mental space to pause, reflect, and treat each new hypothesis as a fresh start.

For this reason, time-sensitive operations often don’t play well with traditional step-
by-step debugging. They require either a different strategy (e.g., logging or simulation) 
or extra care when pausing execution.

Summary

¡	Every time you open a new piece of logic (e.g., entering a new method that 
defines its own logic), you open a new investigation plan.

¡	Unlike a text paragraph, reading code is not linear. Each instruction might cre-
ate a new plan you need to investigate. The more complex the logic you explore, 
the more plans you need to open. The more plans you open, the more complex 
the process becomes. One trick to speeding up a code investigation process is to 
open as few plans as possible.

¡	A debugger is a tool that allows you to pause the app’s execution on a specific line 
so that you can observe the app’s execution, step by step, and the way it manages 
data. Using a debugger can help you to reduce some of the cognitive load of 
reading code.

¡	You can use breakpoints to mark the specific lines of code where you want the 
debugger to pause an app’s execution so you can evaluate the values of all the 
variables in the scope.

¡	You can step over a line, which means continuing to the next execution line in 
the same plan, or step into a line, which means going into detail on the instruc-
tion on which the debugger paused the execution. You should minimize the 
number of times you step into a line and rely more on stepping over. Every time 
you step into a line, the investigation path gets longer and the process more 
time-consuming.

¡	Even though using the mouse and the IDE’s GUI to navigate through the code is 
initially more comfortable, learning to use the keyboard shortcuts for these oper-
ations will help you debug faster. I recommend learning the keyboard shortcuts 
of your favorite IDE and use them instead of triggering the navigation with the 
mouse.

¡	After stepping into a line, first read the code and try to understand it. If you 
can figure out what happens, use the step out operation to return to the previ-
ous investigation plan. If you don’t understand what happens, identify the first 
unclear instruction, add a breakpoint, and start debugging from there.



53

3Finding problem root 
causes using advanced 

debugging techniques

This chapter covers

¡	Using conditional breakpoints to investigate 

specific scenarios

¡	Using breakpoints to log debug messages in the 

console

¡	Modifying data during debugging to simulate 

specific app behavior

¡	Rerunning part of the code during debugging

Chapter 2 discussed the most common ways to use a debugger. When debugging a 
piece of implemented logic, developers often use code navigation operations such 
as stepping over, into, and out of an instruction. Knowing how to properly use these 
operations helps investigate a piece of code to better understand or find a problem.

However, many developers underestimate just how powerful a debugger can be. 
Developers sometimes struggle when debugging code, using only the basic naviga-
tion, whereas they could save a lot of time if they used some of the other, less known 
approaches a debugger offers.



54 CHAPTER 3 Finding problem root causes using advanced debugging techniques

In this chapter, you’ll learn how to get the most out of the features such as

¡	Conditional breakpoints

¡	Breakpoints as log events

¡	Modifying in-memory data

¡	Dropping execution frames

We’ll discuss some beyond-basic ways to navigate the code you are investigating, and 
you’ll learn how and when to use these approaches. We’ll also use code examples to 
discuss these investigation approaches so that you learn how to use them to save time 
and when to avoid them.

3.1 Minimizing investigation time with conditional breakpoints

This section discusses the use of conditional breakpoints to pause the app’s execution on 
a line of code under specific conditions. 

DEFINITION A conditional breakpoint is a breakpoint you associate
with a condition so that the debugger pauses the execution only if the 
condition is fulfilled. Conditional breakpoints are helpful in investigation 
scenarios when you are only interested in how a part of the code works
with given values; using conditional breakpoints where appropriate saves
you time and facilitates your understanding of how your app works.

Let’s look at an example to understand how conditional breakpoints work and typi-
cal cases in which you’ll want to use them. Listing 3.1 presents a method that returns 
the sum of the digits in a list of String values. You might already be familiar with this 
method from chapter 2. We’ll use the same piece of code here as well to discuss condi-
tional breakpoints. Next, we’ll compare this simplified example with similar situations 
you may encounter in real world. The example is available in project da-ch3-ex1 pro-
vided with the book. 

Listing 3.1 Using conditional breakpoints for investigation

public class Decoder {

  public Integer decode(List<String> input) {
    try {
      int total = 0;
      for (String s : input) {
        var digits = new StringDigitExtractor(s).extractDigits();
        var sum = digits.stream().collect(Collectors.summingInt(i -> i));
        total += sum;
      }

      return total;
    } catch (Exception e) {



 55Minimizing investigation time with conditional breakpoints

      return -1;
    }
  }
}

When debugging a piece of code, we are often only interested in how logic works for 
specific values. For example, say you suspect the implemented logic doesn’t work well 
in a given case (e.g., some variable has a certain value), and you want to prove it. Or 
you simply want to understand what happens in a given situation to have a better over-
view of the entire functionality. 

Suppose that, in this case, you only want to investigate why the variable sum is some-
times zero. How can you work only on this specific case? You could use the step over 
operation to navigate the code until you observe that the method returns zero. This 
approach is likely acceptable in a demo example such as this one (small enough). But 
in a real-world case, you may have to step over a lot of times until you reach the case you 
expect. In fact, in a real-world scenario, you may not even know when the specific case 
you want to investigate appears.

Using conditional breakpoints is more efficient than navigating through code until 
you get to the conditions you want to research. Figure 3.1 illustrates how to apply a con-
dition to a breakpoint in IntelliJ IDEA. Right-click the breakpoint you want to add the 
condition for and write the condition to which the breakpoint applies. The condition 

You can add a condition on certain 
breakpoints. The debugger considers
these breakpoints only if their condition
evaluates to true.

In IntelliJ, right-click on the breakpoint
to define its condition.  In this example,
the debugger stops only on this
breakpoint when the  variable sum is zero.

 

Figure 3.1 Using a conditional breakpoint to pause the execution just for specific cases. In this case, 

we want to pause the execution on line 14 only if sum is zero. We can apply a condition on the breakpoint 

that instructs the debugger to consider that breakpoint only if the given state is true. This helps you 

more quickly get to a scenario you want to investigate.



56 CHAPTER 3 Finding problem root causes using advanced debugging techniques

needs to be a Boolean expression (it should be something that can be evaluated as 
true or false). Using the sum == 0 condition on the breakpoint, you tell the debugger 
to consider that breakpoint and pause the execution only when it reaches a case where 
the variable sum is zero.

When you run the app with the debugger, the execution pauses only when the loop 
first iterates on a string that contains no digits, as shown in figure 3.2. This situation causes 
the variable sum to be zero, and the condition on the breakpoint is thus evaluated as true.

When you run the app with the debugger, it pauses the execution 
for the first element in the parameter list that doesn’t contain 
digits (for which the variable sum will be zero).

Figure 3.2 A conditional breakpoint. Line 14 in the figure was executed multiple times, but the 

debugger only paused the execution when the variable sum was zero. This way, we skipped all the cases 

we were not interested in so that we can start with the conditions relevant to our investigation.

A conditional breakpoint saves time since you don’t have to search for the specific case 
you want to investigate. Rather than halting it, allow the app to run. The debugger 
pauses the execution when a certain condition is met, and you can begin your investi-
gation at this point. Although using conditional breakpoints is easy, many developers 
seem to forget about this approach and waste a lot of time investigating scenarios that 
could be simplified with conditional breakpoints.

DEFINITION A conditional breakpoint is a special type of breakpoint that only pauses 
the program when a certain condition is true. It lets you pause the execution 
only when a specific variable has a certain value or when a set custom rule is met.



 57Minimizing investigation time with conditional breakpoints

To further optimize your debugging process, AI-powered tools can significantly assist 
in the effective use of conditional breakpoints. These tools integrate with your devel-
opment environment to provide intelligent suggestions and automate parts of the 
debugging workflow, making it more efficient and less error prone.

One way AI tools can help is by analyzing your code and suggesting optimal break-
point conditions. For instance, giving them the piece of code you investigate, they can 
identify variables that frequently lead to exceptions or anomalous behavior and recom-
mend conditions based on those insights. 

Take a look at figure 3.3. In this example, I intentionally introduced a minor error 
in the if clause condition. To investigate the problem, I used GitHub Copilot as my AI 
assistant. I highlighted the code snippet I wanted to troubleshoot and asked Copilot for 
guidance on where to place the breakpoints.

You can ask your AI
assistant where to
add breakpoints to
investigate certain
problems on given
code snippets.

Figure 3.3 AI assistants such as GitHub Copilot can help you better understand a code snippet or assist in 

selecting the appropriate troubleshooting technique. In this example, I asked Copilot for guidance on where to 

place breakpoints to easily identify the source of the problem in my code.



58 CHAPTER 3 Finding problem root causes using advanced debugging techniques

In some cases, the AI assistant may suggest using conditional breakpoints. If you believe 
that conditional breakpoints could enhance your debugging efficiency, you can explicitly 
request this guidance, even if the AI assistant didn’t initially recommend it. Additionally, 
you can save time by asking the AI assistant for the appropriate condition to use. Figure 
3.4 demonstrates how my AI assistant helped me identify the line for adding a condi-
tional breakpoint and provided the necessary condition to continue my investigation.

However, I want to caution you against relying exclusively on AI to generate condi-
tions for your breakpoints or to decide where to place them every time. As someone 
wisely put it, you need to keep training that muscle yourself. AI should serve as a helpful 
assistant, not a crutch. The goal is to build your own diagnostic instincts and sharpen 
your debugging skills—with AI as a supportive tool, not the primary driver.

Sometimes using conditional
breakpoints makes sense.
In such a case, your AI
assistant might also point
to the right condition to use
for your investigation.

Figure 3.4 You can speed up your investigation by asking your AI assistant to suggest the lines of code for adding 

conditional breakpoints and the right condition to use for them.

Assistants such as GitHub Copilot, integrated with your IDE, are convenient to use in 
situations like the one shown here because they have direct access to the context they 
need. However, you can also use a chat-based AI tool, such as ChatGPT, successfully. 



 59Minimizing investigation time with conditional breakpoints

Figure 3.5 shows how I used ChatGPT for the same task. When provided with the nec-
essary context, ChatGPT was able to offer advice and even a solution to the problem.

You can easily upload a screenshot
of the code you want to investigate
and ask your AI assitant for help.

If the AI assistant has enough
context, it might even offer you
the solution to your problem.

Figure 3.5 Tools such as ChatGPT, Gemini, or similar AI-powered chatbots can also assist with your 

code investigation. In some cases, if they have enough context, they may even provide a complete 

solution.

Of course, since this is a simple example, ChatGPT could easily solve the problem 
rather than just guide the investigation. In a real-world scenario, you may not be able 



60 CHAPTER 3 Finding problem root causes using advanced debugging techniques

to give ChatGPT all the needed context, but it could still offer helpful advice on how 
to proceed. You can use AI assistants to gradually move forward in your investigation 
(while learning) by asking for advice and sharing observations within the same chat.

Usually, an IDE-integrated tool has an advantage over AI-powered chatbots such as 
ChatGPT or Gemini because it has direct access to your code context. You can see this 
in the current example: GitHub Copilot has access to my codebase, so I don’t need to 
provide a screenshot for it to suggest where to place the breakpoint. With ChatGPT, 
however, I had to carefully include the line numbers in the screenshot to give it the nec-
essary context. Without those line numbers, ChatGPT wouldn’t have known that the 
line in question was number 17. This is attention to the context you provide. Remem-
ber that you need to provide enough information; otherwise, your AI assistant would 
either not be able to help you, or worse—hallucinate a solution.

Another method is to combine this approach with what we’ll discuss in chapter 4 on 
using logs. You can provide your AI assistant with execution logs together with the code 
that generated them. An AI tool can quickly analyze many logs and identify unexpected 
behavior. For example, if the variable sum unexpectedly becomes negative or exceeds a 
certain threshold, an AI assistant might suggest setting a conditional breakpoint when 
sum < 0 or sum > 1000. This proactive approach saves you time by highlighting potential 
problem areas you might not have immediately considered.

NOTE While AI tools offer these enhancements, it’s important to use them as 
a complement to your own understanding of the code. They can handle rou-
tine tasks and surface insights, but the nuanced decision-making still relies on 
your expertise.

Setting conditional breakpoints is an excellent way to investigate code. However, they 
have their downside. Conditional breakpoints can dramatically affect the performance 
of the execution since the debugger must continuously intercept the values of the vari-
ables in the scope you use and evaluate the breakpoint conditions. 

TIP Use a small number of conditional breakpoints.
Preferably, use only one conditional breakpoint at a 
time to avoid slowing down the execution too much.

Conditional breakpoints can also be used to log specific execution details such as vari-
ous expression values and stack traces for particular conditions (figure 3.6). We’ll con-
tinue with this topic in section 3.2.



 61Minimizing investigation time with conditional breakpoints

Click on More to define more 
advanced configurations
for the conditional breakpoint.

Figure 3.6  

To apply advanced 

configuration on 

the breakpoint in 

IntelliJ, you can 

click the More 

button.

Unfortunately, this feature only works in certain IDEs. For example, even though you 
can use conditional breakpoints in Eclipse in the same way as described here, Eclipse 
does not allow you to use breakpoints just for logging execution details (figure 3.7).

In Eclipse, you can define
a conditional breakpoint.
However, you can’t log
specific execution details
instead of suspending the
thread.

Figure 3.7 Not all IDEs offer the same debugging tools. All IDEs give you the basic operations, but some 

features, such as logging the execution details instead of pausing the execution, may be missing. In 

Eclipse, you can define conditional breakpoints, but you can’t use the logging feature.



62 CHAPTER 3 Finding problem root causes using advanced debugging techniques

You might ask yourself whether you should only use IntelliJ IDEA for these examples. 
Even if most examples in this book use IntelliJ IDEA, that doesn’t mean this IDE is 
better than others. I’ve used many IDEs with Java, such as Eclipse, Netbeans, and 
JDeveloper. My recommendation is that you shouldn’t become too comfortable with 
using one IDE. Instead, try to use various options so that you can decide which is a 
better fit for you and your team.

3.2 Using breakpoints that don’t pause the execution

In this section, we discuss using breakpoints to log messages you can later employ to 
investigate the code. One of my favorite ways to use breakpoints is to log details that 
can help me to understand what happened during the app’s execution without paus-
ing it. As you’ll learn in chapter 4, logging is an excellent investigation practice in some 
cases. Many developers struggle with adding log instructions when they could have 
simply used a conditional breakpoint.

Figure 3.8 shows how to configure a conditional breakpoint that doesn’t pause the 
execution. Instead, the debugger logs a message every time the line marked with the 
breakpoint is reached. In this case, the debugger logs the value of the digits variable 
and the execution stack trace.

You can use a breakpoint to log certain 
details without suspending the execution.

Here, when the variable sum is zero, the value of the digits
variable and the stack trace is printed in the console.

Figure 3.8 Conditional breakpoint advanced configuration. In addition to specifying a condition for 

the breakpoint, you can instruct the debugger to not suspend the execution for the given breakpoint. 

Instead, you can simply log the data you need to understand your case.



 63Using breakpoints that don’t pause the execution

Figure 3.9 shows the result of running the app with the conditional breakpoint config-
ured. Notice that the debugger logged the execution stack trace in the console, and 
the value of the digits variable is an empty list: []. This kind of information can help 
solve the puzzles of the code you investigate in real-world scenarios.

With this conditional breakpoint, the debugger doesn’t pause the execution. Instead,
it logs the value of the digits variable and the execution stack trace in the console.

Figure 3.9 Using breakpoints without pausing the execution. Instead, the debugger logs a message 

when the line has been reached. The debugger also logs the value of the digits variable and the 

execution stack trace.

DEFINITION A non-blocking breakpoint is a type of breakpoint that logs informa-
tion (like a message or variable value) when it’s hit, but it does not pause the 
program’s execution. It lets you see what’s happening at a certain point in the 
code without pausing the program.

Furthermore, this technique can be combined with the approach discussed in section 
3.1. By using non-blocking breakpoints, you can capture log messages without inter-
rupting the execution flow or modifying the code. For lengthy processes that generate 
extensive logs, you can employ an AI assistant to efficiently analyze the output and 
extract meaningful insights (as discussed in chapter 4).

I remember working on an app years ago with a large, messy codebase. There were 
several long-running scheduled processes responsible for generating settlements and 



64 CHAPTER 3 Finding problem root causes using advanced debugging techniques

invoices, but every so often, the data in some of the invoices didn’t meet expectations— 
  a frustrating output problem. Initially, I thought the problem was specific to those 
invoices. However, every time I tried to isolate the problem by running the process to 
generate only the faulty invoices, they would be generated correctly. Yet, rerunning the 
full process would sometimes result in errors with other documents, making it tricky to 
pinpoint the cause.

Since I could execute the process locally, I decided to use non-blocking breakpoints 
to log messages without altering the code itself. This approach was particularly valuable 
because it allowed me to compare the exact same lines of code from different environ-
ments. Had I added manual logging statements, the line numbers would have changed, 
complicating any side-by-side comparisons. Through this method, I eventually uncov-
ered some irregularities caused by a few conditions in the Date and Time APIs, which 
introduced randomness into the output.

Although I was able to solve the problem, I couldn’t help but wish I had access to an 
AI assistant back then. This was years before we had large language models (LLMs) and 
other modern AI tools at our disposal, but I’m certain that using an AI to analyze and 
compare the log messages would have significantly shortened the investigation process.

I would now solve it a lot easier by using a prompt similar to the following:

 The two files I attached contain logs provided by the execution of the same sched-

uled process in two different environments. The fist file named prod.txt contains the 

logs from the environment where the output is not the one expected, while the other 

file names local.txt contain logs generated in the environment where the output is 

the one expected. 

<<Included here would be a detailed description of what is excepted to happen and 

doesn’t in the first environment>>

Can you please analyze and compare the logs and identify context differences that 

could indicate where the issue comes from?

Execution stack trace: Visual vs. text representation

Notice the way the stack trace is printed in the console. You’ll often find the execution 

stack trace in a text format rather than a visual one. The advantage of the text repre-

sentation is that it can be stored in any text format output, such as the console or a 

log file. 

The following figure shows a comparison between the visual representation of the 

execution stack trace provided by the debugger and its textual representation. In both 

cases, the debugger provides the same essential details that can help you under-

stand how a specific line of code was executed.

In this particular case, the stack trace tells us that the execution started from the 

main() method of the Main class. Remember that the first layer of the stack trace 

is the bottom one. On line 9, the main() method called the decode() method in the 

Decoder class (layer 2), which then called the line we marked with the breakpoint.



 65Dynamically altering the investigation scenario

Breakpoint reached
3 at main.StringDigitExtractor.extractDigits(StringDigitExtractor.java:16)
2 at main.Decoder.decode(Decoder.java:12)
1 at main.Main.main(Main.java:9)

33

1

2

A comparison between the visual representation of the execution stack trace in the debugger 

and its text representation. The stack trace shows how a method was called and provides enough 

details to understand the execution path.

3.3 Dynamically altering the investigation scenario

In this section, you’ll learn another valuable technique that will make your code inves-
tigations easier: changing the values of the variables in scope while debugging. In some 
cases, this approach can save a significant amount of time. We’ll begin by discussing the 
scenarios in which changing variables’ values on the fly is the most effective approach. 
Then, I will demonstrate how to use this approach with an example.

Earlier in this chapter, we talked about conditional breakpoints. Conditional break-
points allow you to tell the debugger to pause the execution under specific conditions 
(e.g., when a given variable has a certain value). Often, we investigate logic that exe-
cutes in a short time, and using conditional breakpoints is enough. For cases such as 
debugging a piece of logic called through a REST endpoint (especially if you have the 
right data to reproduce a problem in your environment), you would simply use a con-
ditional breakpoint to pause the execution when appropriate. That’s because you know 



66 CHAPTER 3 Finding problem root causes using advanced debugging techniques

it won’t take long to execute something called through an endpoint. But consider the 
following scenarios:

¡	You investigate a problem with a process that takes a long time to execute. Say 
it’s a scheduled process that sometimes takes over an hour to complete its execu-
tion. You suspect that some given parameter values are causing the wrong output, 
and you want to confirm your suspicion before you decide how to correct the 
problem.

¡	You have a piece of code that executes quickly, but you can’t reproduce the prob-
lem in your environment. The problem appears only in the production envi-
ronment to which you don’t have access due to security constraints. You believe 
the problem appears when certain parameters have specific values. You want to 
prove your theory is right.

In scenario 1, breakpoints (conditional or not) aren’t so helpful. Unless you investi-
gate some logic that happens at the very beginning of the process, running the process 
and waiting for the execution to pause on a line marked with a breakpoint would take 
too much time (figure 3.10).

A long-time running process

The breakpoint you added to
pause the process execution

You, when the process starts
You, when the execution
finally reaches the breakpoint

Figure 3.10 Usually, when investigating problems in a long-running process, using breakpoints is not 

really an option. It can take a long time for the execution to reach the part of code you are investigating, 

and if you must rerun the process several times, you will definitely spend too much time on it.

Figure 3.11 shows how to change the data in one of the variables in the scope when the 
debugger pauses the execution. In IntelliJ IDEA, right-click the variable which value 
you want to change. You complete this action in the frame where the debugger shows 
the current values of the variables in scope. Let’s go back to our previous example, 
da-ch3-ex1.

Once you select the variable you want to change, set the value as presented in figure 
3.12. Remember that you must use a value according to the variable’s type. That means 
that if you change a String variable, you still need to use a String value; you cannot use 
a long or a Boolean value.



 67Dynamically altering the investigation scenario

When the debugger pauses the execution on a line,
you can set values in the variables in scope. This  
way, you can create you own investigation scenario
with the conditions you need in this case.

Figure 3.11 Setting a new value in a variable in scope. The debugger shows the values for the variables 

in scope when it pauses the execution on a given line. You can also change the values to create a new 

investigation case. In some cases, this approach can help you validate your suspicions about what the 

code does.

You can set any value in a variable 
in the scope, but you must retain
its type. In this example, we change
the value of s from "ab1c" to "abcd".

Figure 3.12 Change the variable’s value to observe how the app’s execution behaves in different 

conditions.



68 CHAPTER 3 Finding problem root causes using advanced debugging techniques

When you continue the execution, as presented in figure 3.13, the app now uses the 
new value. Instead of calling extractDigits() for value "ab1c", the app used the value 
"abcd". The list the method returns is empty because the string "abcd" doesn’t contain 
digits.

The app will now use the new value you
set in the variable. When stepping over,
the extractDigits() method returns
an empty list because the string "abcd"
contains no digits.

Figure 3.13 When using the step over operation, the app uses the new value you set to the s variable. 

extractDigits() returns an empty list because string "abcd" doesn’t contain digits. Setting values in 

variables on the fly enables testing different scenarios even if you don’t have the input data you need.

Let’s compare the use of conditional breakpoints, as discussed in section 3.1, with the 
approach of modifying data on the fly during debugging. In both scenarios, the first 
step is the same: you need to have a reasonable hypothesis about which part of the 
code might be causing the problem.

Conditional breakpoints are particularly useful when

¡	You already have access to the data that triggers the scenario you want to investi-
gate. For example, in our earlier case, you needed to know the specific value that 
would match an entry in the list and trigger the behavior you’re interested in.

¡	The code under investigation doesn’t take too long to execute. If, for instance, 
you’re dealing with a large list and processing each element takes several sec-
onds, hitting the right condition might become time-consuming. In such cases, 



 69Rewinding the investigation case

relying solely on conditional breakpoints could significantly slow down your 
investigation.

You can use the approach of changing a variable’s value if 

¡	You don’t have the data necessary to cause the scenario you want to investigate. 

¡	Executing the code takes too long.

I know what you are thinking now: Why are we using conditional breakpoints at all? 
It might look like you should avoid using conditional breakpoints entirely since you 
can create any environment you need to investigate simply by changing the variables’ 
values on the fly. 

Both techniques come with their own advantages and disadvantages. Modifying vari-
able values directly can be an effective approach when you only need to adjust a few 
values (two at most in my opinion). However, as the changes grow in scope, the com-
plexity of managing the scenario can escalate quickly. Additionally, when altering data 
in-memory, it’s usually because you have a hypothesis about the problem and want to 
confirm it. In contrast, there are situations where you have no clear understanding of 
what’s going wrong. In such cases, using breakpoints can be invaluable to observe how 
the logic manipulates the data, helping you gain insights into the underlying problem 
and guiding your investigation.

Moreover, remember that we sometimes deal with cases involving immutability. In 
such situations, the IDE won’t be able to modify the value of a final variable during 
debugging. Java records, introduced as a preview feature in Java 14 and officially added 
in Java 16, are a great way to strengthen immutability in your model layer. However, one 
drawback is that their attributes are implicitly final, which means you won’t be able to 
modify their values on the fly while debugging.

3.4 Rewinding the investigation case

We can’t go back in time. However, with debugging, rewinding the investigation is 
sometimes possible. This section discusses when and how we can “go back in time” 
while investigating code with a debugger. We call this approach dropping frames, drop-

ping execution frames, or quitting execution frames. 
We’ll look an example using IntelliJ IDEA. We’ll compare this approach with the 

ones we discussed previously in this chapter, and then we’ll also determine when this 
technique can’t be used.

Dropping an execution frame is, in fact, going back one layer in the execution stack 
trace. For example, suppose you stepped into a method and want to go back; you can 
drop the execution frame to return to where the method was called. 

Many developers confuse dropping a frame with stepping out, most likely because 
the current investigation plan closes in both cases, and the execution goes back to 
where the method is called. However, there’s a big difference. When you step out of 
a method, the execution continues in the current plan until the method returns or 



70 CHAPTER 3 Finding problem root causes using advanced debugging techniques

throws an exception. Then, the debugger pauses the execution right after the current 
method exits.

DEFINITION Dropping execution frames means going back to an earlier point 
in the call stack and re-running a method from that point. It lets you rewind 
the program a bit and try running part of the code again, without restarting 
the whole case.

Figure 3.14 shows how stepping out works using the example in project da-ch3-ex1. 
You are in the extractDigits() method, which, as you can see from the execution 
stack trace, has been called from the decode() method in the Decoder class. If you use 
the step out operation, the execution continues in the method that called extract-
Digits()until the method returns. Then, the debugger pauses the execution in the 
decode() method. In other words, stepping out is like fast-forwarding this execution 
plan to close it and return to the previous one.

When stepping out, you close 
an investigation plan and return 
to the previous method in the 
execution stack trace.

When you step out,
you let the current
method execute.
You return to the
previous method
one line after the
one that created
the current 
investigation plan.

Figure 3.14 Stepping out closes the current investigation plan by executing the method and then pausing the 

execution right after the method call. This operation allows you to continue the execution and return one layer in 

the execution stack.

When you drop an execution frame, the execution returns in the previous plan before 
the method is called, unlike stepping out. This way, you can replay the call. If the step 



 71Rewinding the investigation case

out operation is like fast-forwarding, dropping an execution frame (figure 3.15) is 
like rewinding.

Dropping a frame looks very similar to stepping out.
It closes an execution plan, and you go down in the 
execution stack trace. However, instead of continuing 
the execution, you return to the point before the 
execution of the method that created the current plan.

When you drop a
frame, you return
to the previous layer 
in the execution
stack trace.

Figure 3.15 When you drop a frame, you return to the previous layer in the execution stack trace 

before the method call. This way, you can replay the method execution either by stepping into it again or 

stepping over it.

Figure 3.16 shows (relative to our example) a comparison between stepping out from 
the extractDigits() method and dropping the frame created by the extractDigits() 
method. If you step out, you’ll go back to line 12 in the decode() method, from where 
extractDigits() is called, and the next line the debugger will execute is line 13. If you 
drop the frame, the debugger goes back to the decode() method, but the next line that 
will execute is line 12. Basically, the debugger returns to the line before the execution 
of the extractDigits() method.

Figure 3.17 shows how to use the drop frame functionality in IntelliJ IDEA. To drop 
the current execution frame, right-click the method’s layer in the execution stack trace 
and select Drop Frame.

Why is the drop frame useful, and how does it help save time? Whether you use an 
endpoint to find a specific case you want to investigate or create one by changing the 
values of the variables, as discussed in section 3.3, you’ll still sometimes find it useful to 
repeat the same execution several times. Understanding a certain piece of code is not 
always trivial, even if you use the debugger to pause the execution and take it step by 
step. But going back now and then to review the steps and how specific code instruc-
tions change the data may help you understand what’s going on.



72 CHAPTER 3 Finding problem root causes using advanced debugging techniques

When stepping out from the extractDigits() method, you return
to the previous layer, at line 12. The execution continues with line 13.

When dropping a frame from the extractDigits()
method, you return to the previous layer, before
line 12. The execution continues with line 12.

Figure 3.16 Dropping a frame versus stepping out. When you drop a frame, you return to the line 

before the method’s execution. When you step out, you continue the execution but close the current 

investigation plan (represented by the current layer in the execution stack).

To drop the execution frame and return to the line before the 
current method execution, right-click the method’s layer in the
execution stack. Then, select Drop Frame.

Figure 3.17 When using IntelliJ IDEA, you can drop a frame by right-clicking the method’s layer in the 

execution stack trace and then selecting Drop Frame.



 73Rewinding the investigation case

You also need to pay attention when you decide to repeat particular instructions by 
dropping the frame. This approach can sometimes be more confusing than helpful. 
Remember that if you run any instruction that changes values outside of the app’s 
internal memory, you can’t undo that change by dropping the frame. Examples of 
such cases are (figure 3.18)

¡	Modifying data in a database (insert, update, or delete)

¡	Changing the filesystem (creating, removing, or changing files)

¡	Calling another app, which changes the data for that app

¡	Adding a message into a queue that is read by a different app, which changes data 
for that app

¡	Sending an email message

You can drop a frame that results in committing a transaction that changes data in a 
database, but going back to a previous instruction won’t undo the changes made by 
the transaction. If the app calls an endpoint that posts something into a different ser-
vice, the changes resulting from the endpoint call cannot be undone by dropping the 
frame. If the app sends an email message, dropping the frame cannot take back the 
message, and so on.

Creating a file

Sending an email

Calling an endpoint

Changing data in 
a database

You can go back to a
previous instruction using
Drop Frame, but some events
cannot be undone.

Figure 3.18 Using the 

drop frame operation can 

result in some events 

that can’t be undone. 

Examples include 

changing data in the 

database, changing data 

in the filesystem, calling 

another app, or sending 

an email message.

You need to be careful when data is changed outside the app, as sometimes repeating 
the same code won’t have the same result. Take as an example a simple piece of code 
(listing 3.2, which you can find in project da-ch3-ex2). What happens if you drop the 
frame after the execution of the line that creates a file?



74 CHAPTER 3 Finding problem root causes using advanced debugging techniques

Files.createFile(Paths.get("File " + i));

The created file remains in the filesystem, and after the second time you execute the 
code after dropping the frame, you get an exception (because the file already exists). 
This is a simple example of when going back in time while debugging is not helpful. 
The worst part is that, in real-world cases, it’s not this obvious. My recommendation is 
to avoid repeating the execution of large pieces of code and, before deciding to use 
this approach, make sure that part of the logic doesn’t make external changes. 

If you notice differences that seem unusual after running a dropped frame again, it 
may be because the code changed something externally. Often in large apps, observing 
such behavior is not straightforward. For example, your app may use a cache or log 
data accessing a certain library to observe or execute code that is completely decoupled 
through interceptors (aspects).

NOTE Dropping a frame is not equivalent to an undo operation.

Calling the Files.createFile() method creates a new file in the filesystem. If you drop 
the frame after running this line, you’ll return to the line before the createFile() 
method is called. However, this doesn’t undo the file creation.

Listing 3.2 A method that makes changes outside the app when executing

public class FileManager {

  public boolean createFile(int i) {
    try {
      Files.createFile(Paths.get("File " + i));       
      return true;
    } catch (IOException e) {
      e.printStackTrace();
    }
    return false;
  }
}

Summary

¡	A conditional breakpoint is associated with a Boolean condition. The debugger 
pauses the execution only if the provided condition is true—that is, only when 
particular conditions apply. This approach eliminates the need to step through 
the code line by line just to reach your starting point.

¡	You can use breakpoints to log the values of certain variables in the console that 
don’t suspend the app’s execution. This approach is quite helpful because you 
can add log messages without changing the code. 

¡	Moreover, you can use AI assistants to analyze large amounts of log messages to 
discover anomalies and guide your next steps in the troubleshooting process.

Creating a new file 
in the filesystem



 75Summary

¡	When the debugger pauses the execution on specific lines of code, you can alter 
the data on the fly to create custom scenarios based on what you want to inves-
tigate. This way, you don’t have to wait until the execution gets to a conditional 
breakpoint. In some cases, when you don’t have an appropriate environment, 
modifying data during debugging eliminates the need to preconfigure it in the 
environment, saving valuable time.

¡	Changing variables’ values to create a custom investigation scenario can be 
an efficient technique when trying to understand just a piece of the logic of a 
long-running process or when you don’t have the desired data in the environ-
ment where you run the app. However, changing more than one or two variable 
values at a time may add considerable complexity and make your investigation 
more challenging.

¡	You can step out of an investigation plan and return to the point before the 
method was called. This is termed dropping a frame, but it can sometimes intro-
duce an unwanted side effect. If the app changed anything externally (e.g., com-
mitted a transaction and changed some database records, changed a file in the 
filesystem, or made a RESTful call to another app), returning to a previous exe-
cution step won’t undo these changes.



76

4Making the most of 
logs: Auditing an 

app’s behavior

This chapter covers

¡	Using log messages to understand an app’s 

behavior

¡	Correctly implementing log capabilities in your 

app

¡	Using AI assistants to investigate large log files

¡	Avoiding problems caused by logs

This chapter discusses using log messages recorded by an app. The concept of log-
ging didn’t appear with software. For centuries, people used logs to understand 
past events and processes better. In fact, people have used logging since writing was 
invented, and we still use it today. All ships have logbooks. Sailors record decisions 
(direction, speed increase or decrease, etc.) and given or received orders, along 
with any encountered event (figure 4.1). If something happens to the onboard 
equipment, they can use the logbook notes to understand where they are and navi-
gate to the nearest shore. If an accident happens, the logbook notes can be used in 
the investigation to determine how the unfortunate event could have been avoided.



 77 

SAILS UP
AND AT 

FULL
SPEED!

I’LL 
WRITE THAT

IN THE
LOGBOOK.

Figure 4.1 Sailors store events in logs that they can use to determine their route or analyze the crew’s 

response to a given event. In the same way, apps store log messages so that developers can later analyze 

a potential problem or discover breaches in the app.

If you’ve ever watched a chess game, you’ve probably seen players jot down each move. 
Why? These logs help them re-create the entire game afterward. They analyze their 
own and their opponent’s decisions to uncover mistakes or vulnerabilities. Similarly, 
applications log messages so that developers can trace what happened during execu-
tion. Reading these messages is like reconstructing a game of chess or like studying a 
ship’s logbook to understand a voyage.

Some logs track routine steps (e.g., debug logs), others record unexpected events 
(e.g., error or warning logs), and some might highlight potential threats (e.g., security 
logs). Each type serves a different purpose. But as with any log, they don’t capture every-
thing, and they’re only as useful as the information they contain. Still, logs remain one 
of our most important tools when investigating strange behavior or uncovering subtle 
problems in an application.

I’m sure you already know what logs look like. You’ve seen log messages, at least 
when running your app with an IDE (figure 4.2). All IDEs have a log console. It’s one of 
the first things all software developers learn. But an app doesn’t just display log mes-
sages in the IDE’s console. Real-world apps store logs to allow developers to investigate 
a specific app behavior at a given time.

Figure 4.3 shows the anatomy of a standard-formatted log message. A log message 
is just a string, so theoretically, it can be any sentence. However, clean and easy-to-use 

CHAPTER 4 Making the most of logs: Auditing an app’s behavior



78 CHAPTER 4 Making the most of logs: Auditing an app’s behavior

When running an app on your local system using the
IDE, you find the log messages in the console.

Figure 4.2 IDE log console. All IDEs have a log console. While logging messages in the console is useful when 

running the app locally, real-world apps also store logs needed to understand how the app behaved at a given time.

2021-07-25 16:11:01.434 INFO  o.s.b.w.embedded.tomcat.TomcatWebServer : 

Tomcat started on port(s): 8080 (http) with context path ''

Timestamp: When did the app write the message? 
The timestamp shows when a message was logged
and is a vital detail that allows us to chronologically 
order the messages. For this reason, the timestamp 
should always be at the beginning of the message. Severity: How critical is the message?

Severity indicates whether it’s a highly 
important message that requires immediate 
attention or a message with details about
an execution event.

Location: Where did the app encounter
the event? Usually, a log message displays 
at least the module and the class that wrote 
the log message.

Message: What happened? A human-readable,
easy-to-understand description of the event.

Figure 4.3 The anatomy of a well-formatted log message. In addition to describing a situation or an 

event, a log message should also contain several other relevant details: the timestamp of when the app 

logged the message, the event’s severity, and where the message was written. Reviewing the log details 

makes problem investigation much easier.



 79 

logs need to follow some best practices (that you’ll learn throughout this chapter). For 
example, in addition to a description, a log message contains a timestamp of when the 
app wrote the message, a description of the severity, and a notation for the part of the 
app that wrote the message (figure 4.3). 

Moreover, in many modern systems, logs are aggregated in a centralized location, 
such as a log management platform or observability stack. In these setups, it’s crucial 
that each log entry includes the name (or identifier) of the application that generated 
it—otherwise, you won’t be able to trace each message back to its source component.

In many cases, logs are an efficient way to investigate an app’s behavior. Some exam-
ples include

¡	Investigating an event or a timeline of events that already happened

¡	Investigating problems where interfering with the app changes the app’s behav-
ior (Heisenbugs)

¡	Understanding the app’s behavior over the long term 

¡	Raising alarms for critical events that require immediate attention

These details are essential for providing you (and your AI assistant, as we’ll discuss in 
this chapter) with the necessary context to investigate problems, proactively identify 
vulnerabilities, or detect other potential problems in your app’s execution. Although 
we haven’t discussed investigation techniques yet, I want to emphasize that there are 
steps you can take in advance with your app’s logs to make future investigations easier 
when necessary. I strongly believe that when it comes to using logs, the way you initially 
design them is crucial for making your life easier later.

We generally don’t use just one technique when investigating how a particular app 
capability behaves. Depending on the scenario, a developer may combine several tech-
niques to understand a particular behavior. In some cases, you’ll use the debugger with 
logs, as well as other techniques (discussed in the following chapters) to figure out why 
something works the way it does. 

I always recommend that developers check the logs before doing anything else 
when investigating a problem (figure 4.4). Logs often allow you to immediately identify 

Reading logs

Debugging

Profiling

...

Before deciding which investigation technique
to use, you should read the log messages.

Figure 4.4 Whenever 

you investigate a problem, 

the first thing you should 

always do is read the app’s 

logs. In many cases, the log 

messages give you a starting 

point or offer valuable hints 

on what you should do next 

to solve the problem.

CHAPTER 4 Making the most of logs: Auditing an app’s behavior



80 CHAPTER 4 Making the most of logs: Auditing an app’s behavior

strange behavior that helps pinpoint where to begin your investigation. The logs 
won’t necessarily answer all your questions, but having a starting point is extremely 
important. If the log messages show you where to begin, you’ve already saved a lot of 
time!

In my opinion, logs are not just extremely valuable; they are, in fact, indispensable 
for any application. The next section discusses how to use logs and learn the typical 
investigation scenarios in which logs are essential. Among these are

¡	Using logs to identify exceptions

¡	Identifying who’s calling a method with exception stack traces

¡	Measuring the execution time of a piece of logic

In section 4.2, you’ll learn how to properly implement logging capabilities in your app. 
We’ll discuss using logging levels to help you filter events and problems caused by logs 
more easily. 

I also recommend reading part 4 of Logging in Action by Phil Wilkins (Manning, 
2022). This chapter focuses more on investigation techniques with logs, while Logging 

in Action dives more deeply into logs’ technicalities. You’ll also find logging demon-
strated using a different language than Java (Python). 

4.1 Investigating issues with logs

Like any other investigation technique, using logs makes sense in some situations and 
doesn’t in others. In this section, we examine various scenarios in which using logs 
facilitates our understanding of software’s behavior. We’ll begin by discussing several 
key points of log messages and then analyze how these characteristics assist developers 
in their investigation of app problems. 

One of the biggest advantages of log messages is that they allow you to visualize the 
execution of a certain piece of code at a given time. When you use a debugger, as dis-
cussed in chapters 2 and 3, your attention is mainly on the present. You look at how the 
data looks while the debugger pauses the execution on a specific line of code. A debug-
ger doesn’t give you many details on the execution history. You can use the execution 
stack trace to identify the execution path, but everything else is focused on the present. 

In contrast, logs focus on the app’s execution over a past period (figure 4.5). Log 
messages have a strong relationship with time. 

Always pay attention to the time zone of the system where your application is run-
ning. Log timestamps can be off by several hours if there’s a mismatch between the 
system’s time zone and the one used by the developer or the monitoring tools. This 
discrepancy can quickly become a source of confusion during troubleshooting.

To avoid this situation, ensure that all logs—especially when collected from multiple 
services or regions into a centralized system—use a consistent timestamp format and 
time zone. In cloud environments where components may be distributed globally, stan-
dardizing on a single time zone (such as UTC) makes it much easier to correlate events 
across systems and track down problems accurately.



 81Investigating issues with logs

Past Future

Past Future

Investigating with logs

Debugging
With debugging, you focus 
on the present state of the
app’s execution.

When investigating with logs, 
you focus on a past time period.

Figure 4.5 When investigating a problem with the debugger, you focus on the present. When you use log 

messages, you focus on a given period in the past. This difference can help you select an approach. 

Today, AI assistants are immensely beneficial, especially when investigating large 
volumes of log messages. My primary advice for using logs in troubleshooting is to 
remember that AI can assist in understanding complex logged messages, making your 
work more efficient. With sufficient context, an AI assistant can even suggest solutions 
or point you toward the potential root cause of a problem.

NOTE Always include the timestamp in a log message.
You’ll use the timestamp to easily identify the order in which
messages were logged, which will give you an idea of when 
the app wrote a certain message. I recommend the timestamp 
be in the first part (at the beginning) of the message.

For instance, assistants integrated into IDEs, such as GitHub Copilot or IntelliJ IDEA 
AI Assistant, can be particularly straightforward to use. These tools typically have access 
to the entire or most of the codebase, as well as the IDE console, thus allowing them to 
provide more comprehensive assistance. Figure 4.6, shows an example where I inten-
tionally caused an exception in the logs and then asked my AI assistant for a potential 
solution. In this case, I used the IntelliJ IDEA AI Assistant.

Depending on its configuration, your IDE-integrated AI companion might have 
direct access to specific files and locations. For example, you could simply ask, “Please 
check the logs and determine where the issue comes from.” This capability makes 



82 CHAPTER 4 Making the most of logs: Auditing an app’s behavior

You can ask your AI assistant
to give you a solution for a given
problem in the log or for the current
log messages in the console.

Figure 4.6 When you encounter an exception or a console message that isn’t immediately clear, you can quickly 

ask your AI companion for a concise analysis.

IDE-integrated assistants particularly convenient to use, as they already have much of 
the context needed to analyze specific cases and provide accurate solutions.

If an IDE-integrated companion isn’t available, you can still use a chat-driven AI. 
While a chat-driven AI might be less convenient since you may not be able to provide it 
with all the necessary context, it can still guide you in the right direction in most cases. 
In figure 4.7, I’m using Google Gemini to get insights into a potential problem hidden 
in the exception stack trace in my console.

If you think your AI could provide a clearer answer, continue to incrementally add 
context within the same chat. In a real-world scenario, providing all the context may be 
impossible, but you can still form a good understanding of the problem before invest-
ing too much time. 



 83Investigating issues with logs

The AI assistant provides solutions
to the problem based on the limited
context available.

Figure 4.7 When an IDE-integrated AI companion isn’t an option, you can use a chat-based AI. Even without 

complete context, a chat-based AI can still provide useful suggestions on how to continue your investigation.

If you feel you’re spending too much time without getting an answer, you may want to 
consider other investigative techniques. Depending on the problem you’re trouble-
shooting, you could try debugging—as discussed in chapters 2 and 3—or profiling, 
which we’ll cover later.

Another way to use chat-based AI assistants for log analysis is by providing them 
with a complete log file and asking for help in extracting details related to a spe-
cific problem, if there is any. Unlike humans, AI assistants don’t get bored looking 
through a massive amount of log messages. They can easily pinpoint log entries that 
might reference a problem or at least significantly reduce the amount of data you 
need to review.



84 CHAPTER 4 Making the most of logs: Auditing an app’s behavior

For example, when conducting a post-mortem investigation—analyzing a problem 
that caused a process to fail after the app stopped working—I often need to identify rel-
evant log messages to determine the root cause. This typically involves sifting through a 
large volume of logs produced by the application over many hours, even days. 

An example of a prompt could look like

 Please find in the attached log file all the exceptions that are related to locks in the 

database. Please group them by queries that thrown them or by the methods in the 

code that apparently caused the exception.

Doing this kind of work manually on a file with hundreds of thousands of log lines can 
be exhausting and time-consuming. Fortunately, perfect accuracy isn’t critical in this 
case, which makes it a great task for an AI assistant.

For example, if the AI misses a few log entries or misclassifies some, it’s usually not a 
problem. The goal, such as identifying which component is causing database locks, can 
still be achieved. The real benefit is speed: what could take you hours or even days to 
analyze manually can now be done in seconds or minutes.

Recently, AI assistants have dramatically improved my investigation process. By pro-
viding them with the extracted log messages, I’ve been able to collaborate effectively 
with the AI to analyze and identify key problems more efficiently.

4.1.1 Using logs to identify exceptions

Logs help identify a problem after it occurred and investigate its root cause. Often, 
we use logs to decide where to start an investigation. We then continue exploring the 
problem using other tools and techniques, such as the debugger (as discussed in chap-
ters 2 and 3) or a profiler (as discussed in chapters 5–8). You can often find exception 
stack traces in the logs. The next snippet shows an example of a Java exception stack 
trace:

java.lang.NullPointerException

at java.base/java.util.concurrent.ThreadPoolExecutor

➥runWorker(ThreadPoolExecutor.java:1128) ~[na:na]

at java.base/java.util.concurrent.ThreadPoolExecutor$Worker

➥run(ThreadPoolExecutor.java:628) ~[na:na]

at org.apache.tomcat.util.threads.TaskThread$WrappingRunnable

➥run(TaskThread.java:61) ~[tomcat-embed-core-9.0.26.jar:9.0.26]

at java.base/java.lang.Thread.run(Thread.java:830) ~[na:na]

Seeing this exception stack trace, or something similar, in the application’s log tells 
you that something potentially went wrong with a given feature. Each exception has its 
own meaning that helps identify where the app encountered a problem. For example, 
a NullPointerException tells you that, somehow, an instruction referred to an attribute 
or a method through a variable that didn’t contain a reference to an object instance 
(figure 4.8). 



 85Investigating issues with logs

var invoice = getLastIssuedInvoice();

if (client.isOverdue()) {

  invoice.pay();

}

If the app throws a NullPointerException
on this line, it means that the invoice 
variable doesn’t hold an object reference. 
In other words, the invoice variable is null.

Figure 4.8 A NullPointerException indicates the app execution encountered a behavior that was 

called without the behaving instance. But that doesn’t mean that the line that produced the exception 

is also the cause of the problem. The exception could be a consequence of the root cause. You should 

always look for the root cause instead of locally treating a problem.

NOTE Remember that the location where an exception occurs is not necessar-
ily the root cause of the problem. An exception tells you where something went 
wrong, but the exception itself can be a consequence of a problem elsewhere. 
It is not necessarily the problem itself. Don’t make a decision about solving 
the exception locally by adding a try-catch-finally block or an if-else state-
ment too quickly. First, make sure you understand the root cause of the prob-
lem before looking for a solution to solve it.

I often find that this concept confuses beginners. Let’s take a simple NullPointer-
Exception, which is probably the first exception any Java developer encounters and one 
of the simplest to understand. However, when you find a NullPointerException in the 
logs, you need first to ask yourself, “Why is that reference missing?” It could be because a 
particular instruction that the app executed earlier didn’t work as expected (figure 4.9).

var invoice = getLastIssuedInvoice();

if (client.isOverdue()) {

 if (invoice != null) {

 invoice.pay();

}

}
A beginner would be tempted to
simply check for a null here, but this is
sweeping the problem under the rug.

A developer should first understand
why the getLastIssuedInvoice()
returns null in this case.

Figure 4.9 Locally solving the problem is in many cases equivalent to sweeping it under the rug. If the 

root cause remains, more problems can appear later. Remember that an exception in the logs doesn’t 

necessarily indicate the root cause.



86 CHAPTER 4 Making the most of logs: Auditing an app’s behavior

4.1.2 Using exception stack traces to identify what calls a method

One of the techniques developers consider unusual, but that I find advantageous in prac-
tice, is logging an exception stack trace to identify what calls a specific method. Since 
starting my career as a software developer, I’ve worked with messy codebases of (usually) 
large applications. One of the difficulties I frequently encounter is figuring out who calls 
a given method when an app is running in a remote environment. If you just read the 
app’s code, you will discover hundreds of ways that method could’ve been called. 

Exceptions in Java have a capability that is often disregarded: they keep track of the 
execution stack trace. When discussing exceptions, we often call the execution stack 
trace an exception stack trace. But they are, in the end, the same thing. The exception 
stack trace displays the chain of method calls that cause a specific exception, and you 
have access to this information even without throwing that exception. In code, it’s 
enough to use the exception:

new Exception().printStackTrace();

Consider the method in listing 4.1. If you don’t have a debugger, you can simply print 
the exception stack trace, like I did in this example, as the first line in the method to 
find the execution stack trace. Keep in mind that this code only prints the stack trace 
and doesn’t throw the exception, so it doesn’t interfere with the executed logic. This 
example is in project da-ch4-ex1.

Listing 4.1 Printing the execution stack trace in logs using an exception

public List<Integer> extractDigits() {
  new Exception().printStackTrace();  
  List<Integer> list = new ArrayList<>();
  for (int i = 0; i < input.length(); i++) {
    if (input.charAt(i) >= '0' && input.charAt(i) <= '9') {
      list.add(Integer.parseInt(String.valueOf(input.charAt(i))));
    }
  }

  return list;
}

The next snippet shows how the app prints the exception stack trace in the console. In 
a real-world scenario, the stack trace helps you to immediately identify the execution 
flow, which leads to the call you want to investigate, as we discussed in chapters 2 and 3. 
In this example, you can see from the logs that the extractDigits() method was called 
on line 11 of the Decoder class from within the decode() method:

java.lang.Exception at main.StringDigitExtractor
➥extractDigits(StringDigitExtractor.java:15)
    at main.Decoder.decode(Decoder.java:11)
    at main.Main.main(Main.java:9)

Prints the exception 
stack trace



 87Investigating issues with logs

4.1.3 Measuring time spent to execute a given instruction

Log messages are an easy way to measure the time a given set of instructions takes to 
execute. You can always log the difference between the timestamp before and after a 
given line of code. Suppose you are investigating a performance problem in which 
some given capability takes too long to execute. You suspect that the cause is a query 
the app executes to retrieve data from the database. For some parameter values, the 
query is slow, which is decreasing the app’s overall performance. 

To find which parameter is causing the problem, you can write the query and the 
query execution time in logs. Once you identify the troublesome parameter values, you 
can start looking for a solution. Maybe you need to add one more index to a table in the 
database, or perhaps you can rewrite the query to make it faster.

Listing 4.2 shows how to log the time spent by the execution of a specific piece of 
code. For example, let’s figure out how much time it takes the app to run the operation 
of finding all the products from the database. Yes, I know, we have no parameters here; I 
simplified the example to allow you to focus on the discussed syntax. But in a real-world 
app, you would most likely investigate a more complex operation.

Listing 4.2 Logging the execution time for a certain line of code

public TotalCostResponse getTotalCosts() {
  TotalCostResponse response = new TotalCostResponse();

  long timeBefore = System.currentTimeMillis();  
  var products = productRepository.findAll();  
  long spentTimeInMillis =  
    System.currentTimeMillis() – timeBefore;

  log.info("Execution time: " + spentTimeInMillis);  

  var costs = products.stream().collect(
       Collectors.toMap(
              Product::getName,
              p -> p.getPrice()
                .multiply(new BigDecimal(p.getQuantity()))));

  response.setTotalCosts(costs);

  return response;
}

Precisely measuring how much time an app spends executing a given instruction is a 
simple but effective technique. However, I would only use this technique temporarily 
when investigating a problem. I don’t recommend keeping such logs in the code for 
long since they most likely will not be needed later, and they make the code more 

Logs the timestamp 
before the method’s 
execution

Executes the 
method for which 
we want to calculate 
the execution time

Calculates the time spent 
between the timestamp 
after execution and the 
timestamp before the 
execution

Prints the 
execution time



88 CHAPTER 4 Making the most of logs: Auditing an app’s behavior

difficult to read. Once you’ve solved the problem and no longer need to know the exe-
cution time for that line of code, you can remove the logs.

4.1.4 Investigating problems in multithreaded architectures

A multithreaded architecture is a type of capability that uses multiple threads to exe-
cute its functionality and is often sensitive to external interference (figure 4.10). 

T1

T2

T3

A

B

C

T1, T2, and T3 are three different threads
running concurrently. A, B, and C are
instructions running independently, each
on a separate thread.

The behavior you want to investigate appears when
instructions A, B, and C run in this order.

Figure 4.10 A multithreaded architecture. An app with the capability to use multiple threads running 

concurrently to process data is a multithreaded app. Unless explicitly synchronized, instructions running 

on independent threads (A, B, and C) can run in any order.

For example, if you use a debugger or a profiler (tools that interfere with the app’s 
execution), the app’s behavior may change (figure 4.11).

However, if you use logs, there’s a smaller chance the app will be affected while run-
ning. Logs can also sometimes interfere in multithreaded apps, but they don’t have an 
effect big enough on the execution to change the app’s flow. Thus, they can be a solu-
tion for retrieving data needed for your investigation.

Since log messages contain a timestamp (as discussed earlier in the chapter), you 
can order the log messages to find the sequence in which the operations execute. In 
a Java app, it is sometimes helpful to log the thread’s name that executes a certain 
instruction. You can get the name of the current thread in execution using the follow-
ing instruction:

String threadName = Thread.currentThread().getName(); 



 89Implementing logging

T1

T2

T3

A

B

C

When using an investigation tool, you interfere 
with the app’s execution. This approach can lead  
to scenarios different than the one you want 
to investigate.

Debugger 
pausing 
execution

Figure 4.11 Using a tool such as a debugger or a profiler interferes with the execution, making some (or 

all) threads slower. Because of this, the execution often changes, and some instructions may execute in 

a different order than the scenario you wanted to investigate. In such a case, the tool is no longer useful 

since you can’t research the behavior you’re interested in.

In Java apps, all threads have a name. The developer can name them, or the JVM will 
identify the threads using a name with the pattern Thread-x, where x is an incremented 
number. For example, the first thread created will be named Thread-0; the next one, 
Thread-1; and so on. As we’ll discuss in chapter 10 when we address thread dumps, 
naming your app’s threads is good practice so that you can identify them easier when 
investigating a case.

4.2 Implementing logging

This section discusses best practices for implementing logging capabilities in apps. To 
make your app’s log messages ready for investigations and avoid causing trouble with 
the app’s execution, you need to take care of some implementation details. 

We’ll start by discussing how apps persist logs in section 4.2.1—specifically the advan-
tages and disadvantages of these practices. In section 4.2.2, you’ll learn how to use the 
log messages more efficiently by classifying them based on severity and thus make the 
app perform better. In section 4.2.3, we’ll discuss the problems log messages can cause 
and how to avoid them. 

4.2.1 Persisting logs

Persistence is one of the essential characteristics of log messages. As discussed earlier 
in this chapter, logging is different from other investigation techniques because it 



90 CHAPTER 4 Making the most of logs: Auditing an app’s behavior

focuses more on the past than the present. We read logs to understand something that 
happened. Therefore, the app needs to store them so that we can read them later. How 
log messages are stored can affect the logs’ usability and the app’s performance. I’ve 
worked with many apps and have had the chance to see various ways developers imple-
ment log message persistence:

¡	Storing logs in nonrelational databases

¡	Storing logs in files

¡	Storing logs in relational databases

These can all be good choices, depending on what your app does. Let’s look at some of 
the main things you need to consider to make the right decision.

STORING LOGS IN NONRELATIONAL DATABASES

Nonrelational (NoSQL) databases help you compromise between performance and con-
sistency. You can use a NoSQL database to store logs in a more performant way, which 
gives the database a chance to miss log messages or not store them in the exact chrono-
logical order in which the app wrote them. But, as discussed earlier, a log message should 
always contain the timestamp when the message was stored, preferably at the beginning.

Storing log messages in NoSQL databases is common. In most cases, apps use a com-
plete engine that stores the logs and has the capability to retrieve, search, and analyze 
the log messages. Today’s two most-used engines are the ELK stack (https://www.elastic 
.co/what-is/elk-stack) and Splunk (https://www.splunk.com/).

STORING LOGS IN FILES

In the past, apps stored logs in files. You may still find older applications that write log 
messages directly in files, but this approach is less common today because it is generally 
slower, and searching for logged data is more difficult. I bring this to your attention 
because you’ll find many tutorials and examples in which apps store their logs in files, 
but with more current apps, you should avoid this.

STORING LOGS IN RELATIONAL DATABASES

We rarely use relational databases to store log messages. A relational database mainly 
guarantees data consistency, which ensures log messages are not lost. Once they are 
stored, you can retrieve them. But consistency comes with a compromise in performance.

In most apps, losing a log message is not a big deal, and performance is generally 
preferred over consistency. But, as always, in real-world apps, there are exceptions. For 
example, governments worldwide impose log message regulations for financial apps, 
especially for payment capabilities. Such capabilities should generally have specific log 
messages that the app isn’t allowed to lose. Failure to comply with these regulations can 
result in sanctions and fines. 

4.2.2 Defining logging levels and using logging frameworks

In this section, we discuss logging levels and properly implementing logging in an app 
using logging frameworks. We’ll start by examining why logging levels are essential and 
then implement an example. 

https://www.elastic.co/what-is/elk-stack
https://www.elastic.co/what-is/elk-stack
https://www.splunk.com/


 91Implementing logging

Logging levels, also called severities, are a way to classify log messages based on their 
importance to your investigation. An app usually produces a large number of log mes-
sages while running. However, you often don’t need all the details in all the log mes-
sages. Some of the messages are more important to your investigation than others; 
some represent critical events that always require attention. 

The most common log levels (severities) are

¡	Error—A critical issue. The app should always log such events. Usually, unhan-
dled exceptions in Java apps are logged as errors.

¡	Warn—An event that is potentially an error, but the application handles it. For 
example, if a connection to a third-party system initially fails but the app manages 
to send the call on a second try, the problem should be logged as a warning.

¡	Info—“Common” log messages. These messages represent the main app execu-
tion events that help you to understand the app’s behavior in most situations.

¡	Debug—Fine-grained details that you should enable only when info messages are 
not enough.

NOTE Different libraries may use more than, or different  
names for, these four severity levels. For example, in some 
cases, apps or frameworks may use the severity levels fatal

(more critical than error) and trace (less critical than debug).
In this chapter, I focus only on the most encountered severities 
and terminologies in real-world apps.

Classifying the log messages based on severity allows you to minimize the number of 
log messages your app stores. You should only allow your app to log the most relevant 
details and enable more logging only when you need more details. 

Look at figure 4.12, which presents the log severity pyramid:

¡	An app logs a small number of critical problems, but these have high impor-
tance, so they always need to be logged.

¡	The closer you get to the bottom of the pyramid, the more log messages the app 
writes, but they become less critical and less frequently needed in investigations.

For most investigation cases, you won’t need the messages classified as debug. Plus, 
because of their large number, they make your research more challenging. For this 
reason, debug messages are generally disabled, and you should enable them only when 
you face a problem for which you need more details. 

When you started learning Java, you were taught how to print something in the con-
sole using System.out or System.err. Eventually, you learned to use printStackTrace() 
to log an exception message, as I used in section 4.1.2. But these ways of working with 



92 CHAPTER 4 Making the most of logs: Auditing an app’s behavior

More log messages,
more details,
less critical

Error

Info

Debug

Warn

Figure 4.12 The log severity 

pyramid. On the top are the 

critical log messages that 

usually require immediate 

attention. The bottom 

represents the log messages 

that provide details you’ll 

rarely need. From the top to 

the bottom, the log messages 

become less essential but 

greater in number. Usually, 

the debug-level messages are 

disabled by default, and the 

developer can choose to enable 

them if their investigation 

requires fine-grained details 

about the app’s execution.

logs in Java apps don’t give enough flexibility for configuration. So, instead of using 
them in real-world apps, I recommend you use a logging framework.

Implementing the logging levels is simple. Today, the Java ecosystem offers various 
logging framework options such as Logback, Log4j, and the Java Logging API. These 
frameworks are similar, and using them is straightforward. 

Let’s take an example and implement logging with Log4j. This example is in project 
da-ch4-ex2. To implement the logging capabilities with Log4j, you first need to add the 
Log4j dependency. In our Maven project, you must change the pom.xml and add the 
Log4j dependency.

Listing 4.3 Dependencies you need to add in the pom.xml file to use Log4j

<dependencies>
   <dependency>
      <groupId>org.apache.logging.log4j</groupId>
      <artifactId>log4j-api</artifactId>
      <version>2.14.1</version>
    </dependency>
    <dependency>
      <groupId>org.apache.logging.log4j</groupId>
      <artifactId>log4j-core</artifactId>
      <version>2.14.1</version>
    </dependency>
  </dependencies>

Once you have the dependency in the project, you can declare a Logger instance in 
any class where you want to write log messages. With Log4j, the simplest way to create a 
Logger instance is by using the LogManager.getLogger() method, as presented in listing 
4.4. This method allows writting log messages that are named the same as the severity 



 93Implementing logging

of the event they represent. For example, if you want to log a message with the info 
severity level, you’ll use the info() method. If you want to log a message with the debug 
severity level, you’ll use the debug() method, and so on.

Listing 4.4 Writing the log messages with different severities

public class StringDigitExtractor {

  private static Logger log = LogManager.getLogger();  

  private final String input;

  public StringDigitExtractor(String input) {
    this.input = input;
  }

  public List<Integer> extractDigits() {
    log.info("Extracting digits for input {}", input);  
    List<Integer> list = new ArrayList<>();
    for (int i = 0; i < input.length(); i++) {
      log.debug("Parsing character {} of input {}",  
          input.charAt(i), input);
      if (input.charAt(i) >= '0' && input.charAt(i) <= '9') {
        list.add(Integer.parseInt(String.valueOf(input.charAt(i))));
      }
    }

    log.info("Extract digits result for input {} is {}", input, list);
    return list;
  }
}

Once you’ve decided which messages to log and used the Logger instance to write 
them, you need to configure Log4j to tell the app how and where to write these mes-
sages. We’ll use an XML file that we name log4j2.xml to configure Log4j. This XML 
file must be in the app’s class path, so we’ll add it to the resources folder of our Maven 
project. We need to define three things (figure 4.13):

¡	A logger—Tells Log4j which messages are to be written to which appender

¡	An appender—Tells Log4j where to write the log messages

¡	A formatter—Tells Log4j how to print the messages

The logger defines which messages the app logs. In this example, we use Root to write 
the messages from any part of the app. Its attribute level, which has the value info, 
means only the messages with a severity of info and higher are logged. The logger can 
also decide to log only messages from specific app parts. For example, when using a 
framework, you are rarely interested in the log messages the framework prints, but 
you are often interested in your app’s log messages, so you can define a logger that 
excludes the framework’s log messages and only prints those coming from your app. 

Declares a logger 
instance for the 
current class to 
write log messages

Writes a message 
with the info severity

Writes a message 
with the debug severity



94 CHAPTER 4 Making the most of logs: Auditing an app’s behavior

Logger
Appender FormatterUses Uses

The logger decides which log messages 
are printed. For example, it can decide  
to log only messages with the severity 
level info and above or that come from 
a specific package in the app.

An appender decides where to log the messages.
For example, one appender can write messages 
in the system console, and another can write 
them in a database.

A logger can use 
multiple appenders. The formatter decides how 

the messages are printed.

Figure 4.13 The relationship between the appender, logger, and formatter. A logger uses one or more 

appenders. The logger decides what to write (e.g., only log messages printed by objects in the package). 

The logger gives the messages to be written to one or more appenders. Each appender then implements 

a certain way to store the messages. The appender uses formatters to shape the messages before 

storing them.

Remember that you want to write only essential log messages. Otherwise, an investi-
gation can become unnecessarily more challenging since you must then filter out the 
nonessential log messages.

In a real-world app, you can define multiple appenders, which will most likely be 
configured to store the messages in different sources, like a database or files in the 
filesystem. In section 4.2.1, we discussed multiple ways apps can retain log messages. 
Appenders are simply implementations that take care of storing the log messages in a 
given way. 

The appender also uses a formatter that defines the format of the message. For this 
example, the formatter specifies that the messages should include the timestamp and 
the severity level, so the app only needs to send the description. 

Listing 4.5 shows the configuration that defines both an appender and a logger. In 
this example, we define just one appender, which tells Log4j to log the messages in the 
standard output stream of the system (the console). 

Listing 4.5 Configuring the appender and the logger in the log4j2.xml file

<?xml version="1.0" encoding="UTF-8"?>
<Configuration status="WARN">
    <Appenders>  
      <Console name="Console" target="SYSTEM_OUT">
            <PatternLayout pattern="%d{yy-MM-dd HH:mm:ss.SSS} [%t] 
              %-5level %logger{36} - %msg%n"/>
      </Console>

Defines an appender



 95Implementing logging

    </Appenders>

    <Loggers>  

      <Root level="info">

        <AppenderRef ref="Console"/>

      </Root>

    </Loggers>

</Configuration>

Figure 4.14 shows the link between the XML configuration in listing 4.5 and the three 
components it defines: the logger, appender, and formatter.

Logger

Appender FormatterUses Uses

<?xml version="1.0" encoding="UTF-8"?>
<Configuration status="WARN">
<Appenders> 

<Console name="Console" target="SYSTEM_OUT">

<PatternLayout pattern="%d{yy-MM-dd HH:mm:ss.SSS} [%t] 
%-5level %logger{36} - %msg%n"/>

</Console>
</Appenders>
<Loggers> 
<Root level="info">
<AppenderRef ref="Console"/>
</Root>

</Loggers>
</Configuration>

<Console name="Console" target="SYSTEM_OUT">

</Console>

<PatternLayout pattern="%d{yy-MM-dd HH:mm:ss.SSS} [%t] 
%-5level %logger{36} - %msg%n"/>

gg
<Root level="info">
<AppenderRef ref="Console"/>
</Root>

We define one appender 
named Console. It sends
the log messages to the
system’s standard output 
stream SYSTEM_OUT.

The appender uses a formatter 
that defines how the messages 
will look. Using a pattern,
we configure the formatter
to attach the timestamp and 
severity to each message.

We configure a logger
that takes all the
messages with the
severity level info and
sends them to the
appender named
Console.

Figure 4.14 The configuration components. The logger Root takes all the log messages with severity level info 

that the app writes. The logger sends the messages to the appender named Console. The appender Console is 

configured to send the messages to the system terminal. It uses a formatter to attach the timestamp and the 

severity level to the message before writing it.

Defines a logger configuration



96 CHAPTER 4 Making the most of logs: Auditing an app’s behavior

The next snippet shows a section of the logs printed when the example runs. Note 
that debug messages aren’t logged since they are lower in severity than info (line 10 in 
listing 4.5).

21-07-28 13:17:39.915 [main] INFO  
➥main.StringDigitExtractor 
➥Extracting digits for input ab1c
21-07-28 13:17:39.932 [main] INFO  
➥main.StringDigitExtractor 
➥Extract digits result for input ab1c is [1]
21-07-28 13:17:39.943 [main] INFO  
➥main.StringDigitExtractor 
➥Extracting digits for input a112c
21-07-28 13:17:39.944 [main] INFO  
➥main.StringDigitExtractor
➥Extract digits result for input a112c is [1, 1, 2]
…

If we wanted the app to also log the messages with the debug severity, we would have to 
change the logger definition.

In listing 4.6, you can see a status and a logging level. This usually creates confusion. 
Most of the time, you care about the level attribute, which shows which messages will 
be logged according to severity. The status attribute in the <Configuration> tag is the 
severity of the Log4J events, the problems the library encounters. That is, the status 
attribute is the logging configuration of the logging library.

Listing 4.6 Using a different severity configuration

<?xml version="1.0" encoding="UTF-8"?>
<Configuration status="WARN">  
  <Appenders>    
        <Console name="Console" target="SYSTEM_OUT">
            <PatternLayout pattern="%d{yy-MM-dd HH:mm:ss.SSS} [%t] 
              %-5level %logger{36} - %msg%n"/>
        </Console>
    </Appenders>

    <Loggers>
       <Root level="debug">  
         <AppenderRef ref="Console"/>
       </Root>
  </Loggers>
</Configuration>

We can change the logger in listing 4.6 to also write the messages with the priority:

21-07-28 13:18:36.164 [main ] INFO  
➥main.StringDigitExtractor 
➥Extracting digits for input ab1c

Sets the logging level for 
internal Log4j events

Changes the logging level to debug



 97Implementing logging

21-07-28 13:18:36.175 [main] DEBUG 
➥main.StringDigitExtractor 
➥Parsing character a of input ab1c
21-07-28 13:18:36.176 [main] DEBUG 
➥main.StringDigitExtractor 
➥Parsing character b of input ab1c
21-07-28 13:18:36.176 [main] DEBUG 
➥main.StringDigitExtractor 
➥Parsing character 1 of input ab1c
21-07-28 13:18:36.176 [main] DEBUG 
➥main.StringDigitExtractor 
➥Parsing character c of input ab1c
21-07-28 13:18:36.177 [main] INFO  
➥main.StringDigitExtractor 
➥Extract digits result for input ab1c is [1]
21-07-28 13:18:36.181 [main] INFO  
➥main.StringDigitExtractor 
➥Extracting digits for input a112c
…

A logger library gives you the flexibility to log only what you need. Writing the mini-
mum number of log messages necessary to investigate a certain problem is good prac-
tice as it can help you understand the logs more easily and keep the app performing 
well and maintainable. A logging library also gives you the capability of configuring the 
logs without needing to recompile the app.

4.2.3 Problems caused by logging and how to avoid them

We store log messages so that we can use them to understand how an app behaved at a 
certain point in time or over time. Logs are necessary and extremely helpful in many 
cases, but they can also become malicious if mishandled. In this section, we discuss 
three main problems logs can cause and how to avoid them (figure 4.15):

¡	Security and privacy problems—Caused by log messages exposing private data

¡	Performance problems—Caused by the app storing too many or too-large log 
messages

¡	Maintainability problems—Caused by log instructions that make the source code 
more difficult to read

Security

and

privacy

Performance Maintainability

Figure 4.15 Small details can cause big problems. Developers sometimes consider an app’s logging 

capability harmless by default and disregard the problems logging can introduce. Logging, however, like 

all the other software capabilities, deals with the data, and wrongly implemented, it can affect the app’s 

functionality and maintainability.



98 CHAPTER 4 Making the most of logs: Auditing an app’s behavior

SECURITY AND PRIVACY ISSUES

Security is one of my favorite topics and one of the most important subjects a devel-
oper needs to consider when they implement an app. One of the books I wrote con-
cerns security, and if you implement apps using the Spring Framework and want to 
learn more about securing them, I recommend you read it: Spring Security in Action, 

second edition (Manning, 2023).
Surprisingly, logs can sometimes cause vulnerabilities in applications, and in most 

cases, these problems happen because developers are not attentive to the details they 
expose. Remember that logs make specific details visible to anyone who can access 
them. You always need to think about whether the data you log should be visible to 
those who can access the logs (figure 4.16). 

Developer Hacker

Developer
Hacker

I’ll log these authentication keys
to make sure the requests
we receive are correctly signed.

Excellent! I’ll get my hands on
those private keys, and then
I can sign any fake request.

I’ll log the phone numbers to
make sure the app sends the
SMS notifications to the correct
receivers.

Awesome! I’ll collect the phone
numbers and make them public
so that the company will be 
severely sanctioned.

Figure 4.16 Log messages should not contain secret or private details. No one working on the app or 

the infrastructure where the app is deployed should access such data. Exposing sensitive details in logs 

can help a malicious person (hacker) to find easier ways to break the system or create security-related 

problems.

The following snippet shows some examples of log messages that expose sensitive 
details and cause vulnerabilities:

Successful login. 
User bob logged in with password RwjBaWIs66

Failed authentication. 
The token is unsigned. 



 99Implementing logging

The token should have a signature with IVL4KiKMfz.

A new notification was sent to 
➥the following phone number +1233…

What’s wrong with the logs presented here? The first two log messages expose private 
details. You should never log passwords or private keys that are used to sign tokens, 
or any other exchanged information. A password is something only its owner should 
know. For this reason, no app should store any passwords in clear text (whether in a log 
or a database). Private keys and similar secret details should be stored in a secrets vault 
to protect them from being stolen. If someone gets the value of such a key, they can 
impersonate an application or a user.

The third log message example exposes a phone number. A phone number is con-
sidered a personal detail, and around the world, specific regulations restrict the use of 
such details. For example, the European Union implemented the General Data Pro-
tection Regulation (GDPR) in May 2018. An application with users in any European 
Union state must comply with these regulations to avoid severe sanctions. The regula-
tions allow any user to request all their personal data an app uses and to request imme-
diate deletion of the data. Storing information such as phone numbers in logs exposes 
these private details and makes retrieving and deleting them more difficult.

NOTE Even if this information is not directly related to troubleshooting, you 
may encounter these cases when investigating certain problems. Make sure to 
treat them as important and resolve these problems as soon as possible when 
they arise. Keep in mind that today’s logs can persist in large databases for 
extended periods. If you encounter a situation where sensitive data is exposed, 
it is important to report the problem promptly. Additionally, determine 
whether any previously stored data needs to be erased or obscured to protect 
privacy.

PERFORMANCE PROBLEMS

Writing logs entails sending details (usually as strings) through an I/O stream some-
where outside the app. We can simply send this information to the app’s console 
(terminal), or we can store it in files or even a database, as discussed in section 4.2.1. 
Either way, you need to remember that logging a message is also an instruction 
that takes time; adding too many log messages can dramatically decrease an app’s 
performance.

I remember an issue my team investigated some years ago. A customer in Asia 
reported a problem with the application we were implementing in factories for inven-
tory purposes. The problem wasn’t causing much trouble, but we found it challenging 
to get to the root cause, so we decided to add more log messages. After delivering a 
patch with the small change, the system became very slow, almost unresponsive some-
times, which ultimately caused a production standstill, and we had to quickly revert our 
change. We somehow managed to change a mosquito into an elephant.



100 CHAPTER 4 Making the most of logs: Auditing an app’s behavior

Ugly problem! Did it end well?

The point is, learn from me and
don’t make the same mistake.
Learning from your mistakes is good;
learning from others’ mistakes is best.

Our client was definitely not happy,
but we managed to revert fast
enough to avoid really bad
consequences.

But how could some simple log messages cause such big trouble? The logs were con-
figured to send the messages to a separate server in the network, where they persisted. 
Not only was the network extremely slow in that factory, but also the log message 
added to a loop that was iterating over a significant number of items, making the app 
extremely slow.

In the end, we learned some things that helped us be more careful and avoid repeat-
ing the same mistake:

¡	Make sure you understand how the app logs the messages. Remember that even 
for the same app different deployments can have different configurations (see 
section 4.2.2).

¡	Avoid logging too many messages. Don’t log messages in loops iterating over a 
large number of elements. Logging too many messages will also make reading 
the logs complicated. If you need to log messages in a large loop, use a condition 
to narrow the number of iterations for which the message is logged.

¡	Make sure that the app stores a given log message only when that’s really needed. 
You limit the number of log messages you store by using logging levels, as dis-
cussed in section 4.2.2.

¡	Implement the logging mechanism in such a way that you enable and disable it 
without needing to restart the service. This will allow you to change to a finer- 
grained logging level, get your needed details, and then make your logging less 
sensitive again.

MAINTAINABILITY

Log messages can also negatively affect an app’s maintainability. If you add log mes-
sages too frequently, they can make the app’s logic more difficult to understand. 
Let’s look at an example: try reading listings 4.7 and 4.8. Which code is easier to 
understand?



 101Implementing logging

Listing 4.7 A method implementing a simple piece of logic

public List<Integer> extractDigits() {

  List<Integer> list = new ArrayList<>();

  for (int i = 0; i < input.length(); i++) {

    if (input.charAt(i) >= '0' && input.charAt(i) <= '9') {

      list.add(Integer.parseInt(String.valueOf(input.charAt(i))));

    }

  }

  return list;

}

Listing 4.8 A method implementing a simple piece of logic crowded with log messages

public List<Integer> extractDigits() {

  log.info("Creating a new list to store the result.");  

  List<Integer> list = new ArrayList<>();

  log.info("Iterating through the input string " + input);

  for (int i = 0; i < input.length(); i++) {

    log.info("Processing character " + i + " of the string");

    if (input.charAt(i) >= '0' && input.charAt(i) <= '9') {

      log.info("Character " + i + 

               " is digit. Character: " + 

               input.charAt(i))

      log.info("Adding character" + input.charAt(i) + " to the list");

      list.add(Integer.parseInt(String.valueOf(input.charAt(i))));

    }

  }

  Log.info("Returning the result " + list);

  return list;

}

Both show the same piece of implemented logic. But in listing 4.8, I added numerous 
log messages, which make the method’s logic more challenging to read. 

How do we avoid affecting an app’s maintainability?

¡	You don’t necessarily need to add a log message for each instruction in the code. 
Identify those instructions that provide the most relevant details. Remember, you 
can add extra logging later if the existing log messages are not enough.

¡	Keep the methods small enough so that you only need to log the parameters’ 
values and the value the method returned after the execution.

¡	Some frameworks allow you to decouple part of the code from the method. For 
example, in Spring, you can use custom aspects to log the result of a method’s 
execution (including the parameters’ values and the value the method returned 
after the execution).



102 CHAPTER 4 Making the most of logs: Auditing an app’s behavior

Summary

¡	Always check the app’s logs when you start investigating a problem. The logs may 
indicate what’s wrong or at least give you a starting point for your investigation.

¡	All log messages should include a timestamp. Remember that in most cases a sys-
tem doesn’t guarantee the order in which the logs are stored. The timestamp will 
help you to order the log messages chronologically.

¡	AI assistants can be highly effective in analyzing large volumes of log messages, 
making the investigation process more efficient and reducing the amount of 
data required to manually sift through.

¡	IDE-integrated AI companions, such as GitHub Copilot or IntelliJ IDEA AI Assis-
tant, can provide comprehensive assistance by having access to the codebase and 
IDE console, helping to solve problems faster.

¡	If an IDE-integrated AI isn’t available, a chat-based AI (such as ChatGPT or Gem-
ini) can still be helpful in identifying potential root causes by providing incre-
mental context and insights into complex logs.

¡	An exception in the logs is not necessarily the root of the problem. It could be a 
consequence of a problem. Research what caused the exception before treating 
it locally.

¡	You can use exception stack traces to figure out what called a given method. In 
large, messy, and difficult-to-understand codebases, this approach can be very 
helpful and save you time.

¡	Never write sensitive details (e.g., passwords, private keys, or personal details) in 
a log message. Logging passwords or private keys introduces security vulnerabil-
ities since anyone with access to the logs can see and use them. Writing personal 
details such as names, addresses, or phone numbers also may not comply with 
various government regulations.



Part 2

Deep diagnosing  
an app’s execution

In the first part of this book, we focused on problems that can be caught by 
reading the code, stepping through it with a debugger, or checking well-written 
tests. But some problems only reveal themselves when the application is running 
under real conditions.

This part is about tracking down problems in execution—specifically, those 
tied to CPU usage and multithreading behavior. These are the kinds of problems 
that cause slow responses, uneven performance, or sudden bottlenecks even 
when the code looks fine. You won’t find them just by reading source files—you 
need profiling tools that show exactly what the CPU is busy doing and where time 
is being spent.

We’ll explore techniques for identifying excessive CPU consumption, spotting 
inefficient code paths, and uncovering hidden synchronization problems. You’ll 
also learn how to investigate blocked threads, lock contention, and deadlocks—
problems that can quietly grind an application to a halt.

By the end of this part, you’ll be able to diagnose and fix CPU-related execu-
tion problems with confidence, using the right tools to see what’s really happen-
ing behind the scenes.





105

5Identifying resource 
consumption problems 

using profiling techniques

This chapter covers

¡	Evaluating resource consumption

¡	Identifying problems with resource consumption

¡	Installing and configuring a profiling tool

¡	Simplifying profiling techniques with AI 

assistance

“And for you, Frodo Baggins, I give you the light of Eärendil, our most beloved 
star. May it be a light to you in dark places when all other lights go out.” 

—Galadriel (The Fellowship of the Ring, by J.R.R. Tolkien)

This chapter introduces a profiling tool, and we’ll continue the discussion in chap-
ter 6. A profiling tool (or profiler) may not be as powerful as the light of Eärendil, 
but it is definitely a source of light in dark cases when all the other lights go out. A 
profiler is a powerful tool that has helped me understand the root cause of an app’s 
strange behavior in many difficult situations. I consider learning to use a profiler 
a must for all developers, as it can guide you to the cause of a seemingly hopeless 



106 CHAPTER 5 Identifying resource consumption problems using profiling techniques

problem. As you’ll learn in this chapter, the profiler intercepts the executing JVM pro-
cesses and offers extremely useful details, such as:

¡	How the app consumes resources such as the CPU and memory

¡	The threads in execution and their current status

¡	The code in execution and the resources spent by a given piece of code (e.g., the 
duration of each method’s execution)

In section 5.1, some scenarios will be analyzed to show how the details provided by a 
profiler can be useful and why they are so important. In section 5.2, we discuss using 
a profiler to solve the scenarios in section 5.1. We’ll start by installing and configuring 
a profiler in section 5.2.1. Then, in section 5.2.2., we’ll analyze how an app consumes 
system resources, and in section 5.2.3, we’ll learn how to identify when an app is having 
problems with managing the used memory. Later, in chapter 6, you’ll learn how to 
identify the code in execution and the performance problems related to it.

I use the VisualVM profiler for the examples in this chapter. VisualVM is a free pro-
filer and an excellent tool I’ve successfully used for many years. You can download 
VisualVM here: https://visualvm.github.io/download.html. VisualVM is not the only 
profiling tool for Java apps. Some other well-known profiling tools are Java Mission 
Control (http://mng.bz/AVQE) and JProfiler (http://mng.bz/Zplj). 

5.1 Where would a profiler be useful?

In this section, we look at three ways a profiling tool can save the day:

¡	Catching resource hogs—Is your app slowing down for no reason? A profiling tool 
can find those parts of your program that are using way too much memory or 
CPU, like a guest who eats all the snacks at a party.

¡	Finding lazy code—Not sure which parts of your code are doing the work and 
which parts are just hanging out? Profiling tools show you exactly which pieces 
are running and which need a push.

¡	Fixing slow apps—If your app is crawling instead of running, profiling tools help 
you find out where it’s getting stuck so you can speed things up before users start 
complaining (or sometimes after, depending on how lucky you are).

5.1.1 Identifying abnormal usage of resources

A profiler is commonly used to determine how an app consumes CPU and memory, 
which helps you to understand the app’s specific problems. Thus, it is the first step in 
investigating such problems. Observing how the app consumes resources will usually 
lead you to two categories of problems:

¡	Thread-related problems—Usually concurrency problems caused by a lack of or 
improper synchronization

¡	Memory leaks—Situations in which the app fails to remove unnecessary data from 
memory, causing slowness in execution and potentially a complete failure

https://visualvm.github.io/download.html
http://mng.bz/AVQE
http://mng.bz/Zplj


 107Where would a profiler be useful?

I’ve encountered both types of problems in real-world apps more than I would have 
liked. The effects of resource usage problems are very diverse. In some cases, they just 
cause sluggishness in the app; in other cases, they may cause the app to fail entirely. 

My “favorite” thread-related problem I have had to solve using a profiler was caus-
ing battery problems on a mobile device. Slowness wasn’t the biggest problem. Users 
complained that their device’s battery was consumed unnaturally fast when they used 
this Android-based app. This behavior definitely required investigation. After spending 
some time observing the app’s behavior, I discovered that one of the libraries the app 
used sometimes created threads that remained in execution and did nothing but con-
sume the system’s resources. In a mobile app, CPU resource use is often reflected in the 
battery’s consumption. 

Once you discover the potential problem, you can investigate it further with a thread 
dump, as you’ll learn in chapter 8. Generally, the root cause of such problems is a faulty 
synchronization of the threads.

I also occasionally find memory leaks in apps. In most cases, the final result of a mem-
ory leak is an OutOfMemoryError that leads to an app crash. So, when I hear about an app 
crashing, I usually suspect a memory problem. 

TIP Whenever you encounter an app that is randomly 
crashing, you should consider a memory leak.

The root cause of abnormal resource use is often an error in coding that allows object 
references to exist even after the objects are no longer needed. Remember that 
although the JVM has an automatic mechanism that releases unneeded data from 
memory (we call this mechanism the garbage collector [GC]), it’s still the developer’s 
responsibility to remove all references to unnecessary data. 

If we implement code that retains references to objects, the GC doesn’t know they 
are no longer used and won’t remove them. We call this situation a memory leak. In sec-
tion 5.2.3, you’ll learn to use the profiler to identify when such a problem exists; then, 
in chapter 10, you’ll learn to research its root cause using a heap dump. 

5.1.2 Finding out what code executes

As a developer and consultant, I’ve had my fair share of wrestling with large, complex, 
and downright messy codebases. More than once, I’ve been thrown into situations 
where I needed to investigate a specific app feature. Sure, I could reproduce the prob-
lem, but figuring out which part of the code was to blame? Not a clue.



108 CHAPTER 5 Identifying resource consumption problems using profiling techniques

One memorable case involved a legacy app running some critical processes. The 
company’s management had made the brilliant decision to let a single developer han-
dle the entire codebase. No backups, no team collaboration—just one person. Natu-
rally, when that developer left (without leaving behind a single line of documentation 
or even a friendly sticky note), I was called in to figure out what was going wrong.

My first glance at the code was unsettling. There was no class design to speak of, and 
it was a chaotic mix of Java and Scala, sprinkled with some Java reflection for that extra 
layer of confusion. It felt like opening a closet and having random languages and frame-
works tumble out. At that moment, I seriously considered starting a support group for 
developers abandoned by documentation.

So, how do you even begin to figure out which part of the code to investigate in a 
situation like this? Luckily, that’s where a profiler steps in like a detective with a mag-
nifying glass. Profilers can sample the running code—basically, they sneak a peek at 
what’s actually being executed. The tool intercepts methods and visually shows what’s 
happening behind the scenes, giving you just enough breadcrumbs to start following 
the trail.

Once you spot the code in action, you can dive in, read through it, and eventually 
bring in the big guns—a debugger (covered in chapters 2 and 3).

The beauty of a profiler is that it reveals what’s running without forcing you to dig 
through mountains of confusing code. This feature, called sampling, is a lifesaver when 
the code is so tangled and messy that you can’t even tell which functions are being trig-
gered. It’s like having X-ray vision for spaghetti code.

5.1.3 Identifying slowness in an app’s execution

In many situations, you’ll need to tackle performance problems. The key question in 
these cases is, “What is causing the delay in execution?” Developers often start by sus-
pecting parts of the code related to I/O operations. 

Actions such as calling a web service, connecting to a database, or writing data to 
a file are common sources of latency in applications. However, I/O operations aren’t 
always causing slow performance. Even when they are, identifying the exact problem 
can be challenging—especially if you’re not deeply familiar with the codebase (which 
is rarely the case).

Fortunately, a profiler can make this task much easier. It can intercept running code 
and measure the resources each part of the program is using, helping you pinpoint 
performance bottlenecks. We’ll explore these powerful profiling capabilities in detail 
in chapter 6.

5.2 Using a profiler

This section explores how to effectively use a profiler to tackle the types of problems 
discussed in section 5.1. We start by walking through the installation and configuration 
of VisualVM in section 5.2.1, laying the foundation for effective profiling. From there, 



 109Using a profiler

we dive into the profiler’s powerful investigative features, giving you the tools designed 
to uncover hidden performance problems.

To make these concepts practical, I’ll demonstrate each technique using a sample 
app—simple enough to keep the focus on the topic but complex enough to reflect real-
world challenges.

Section 5.2.2 analyzes system resource consumption, and you are going to learn how 
to detect if your app is overusing resources. Then, in section 5.2.3, we’ll dive into com-
mon memory problems that can affect performance and how to identify them before 
they escalate.

By the end of this section, you’ll have a solid understanding of how to employ a pro-
filer to diagnose and resolve performance bottlenecks with confidence.

5.2.1 Installing and configuring VisualVM

Let’s start by getting VisualVM up and running. Before you can unleash the power of 
a profiler, you need to make sure it’s properly installed and configured. Once that’s 
done, you can dive into the examples provided with this book to test each of the profil-
er’s features covered in this chapter.

If you’re working on a real-world project, I highly recommend applying these tech-
niques to your own app. After all, there’s no better way to learn than by hunting down 
performance bugs in code you actually care about. Plus, it’s far more satisfying than just 
watching a demo app behave perfectly (because when does that ever happen in real 
life?).

Installing VisualVM is straightforward. Once you download the version based on 
your operating system from the official site (https://visualvm.github.io/download 
.html), the only thing you need to do is make sure the location of the JDK you want 
VisualVM to use is configured correctly. In the configuration file, which you can find 
at the etc/visualvm.config location in the VisualVM folder, define the location of the 
JDK in your system. You need to assign the JDK path to the visualvm_jdkhome variable 
and uncomment the line (remove the # in front of it), as presented in the next snippet. 
VisualVM works with Java 8 or above: 

visualvm_jdkhome="C:\Program Files\Java\openjdk-17\jdk-17"

Once you configure the JDK location, you can run VisualVM using the executable 
code in the bin folder where you installed the app. If you correctly configured the JDK 
location, the app will start, and you’ll see an interface similar to the one presented in 
figure 5.1.

Let’s start a Java app. You can use the project da-ch5-ex1 provided with this book. You 
can either start the app using the IDE or from the console directly. The way the app is 
started does not affect profiling a Java process. 

Once you start the app, VisualVM displays the process on the left side. Usually, if you 
didn’t explicitly give a particular name to the process, VisualVM displays the main class 
name, as presented in figure 5.2.

https://visualvm.github.io/download.html
https://visualvm.github.io/download.html


110 CHAPTER 5 Identifying resource consumption problems using profiling techniques

All the Java processes running locally

Figure 5.1 VisualVM welcome screen. Once you configure and start VisualVM, you find that the tool has a simple 

and easy-to-learn GUI. On the left of the welcome screen are the processes running locally that you can investigate 

with the tool.

Once you start your app, you will also see
its process on the left side of the VisualVM frame.
Since we gave no particular name to our process,
VisualVM displays the main class name.

Double-click the process name, and
VisualVM displays the Details tab for
the process.

Figure 5.2 Double-click a process name to start using VisualVM to investigate that process, and a new tab will 

appear. In this tab are all the needed capabilities VisualVM provides for exploring that particular process.



 111Using a profiler

Generally, starting the app should be enough. However, in some cases, VisualVM 
doesn’t know how to connect to a local process because of various problems, as pre-
sented in figure 5.3. In such a case, the first thing to try is explicitly specifying the 
domain name using a VM argument when starting the application you want to profile: 

-Djava.rmi.server.hostname=localhost

A similar problem can also be caused by using a JVM version that VisualVM doesn’t 
support. If adding the -Djava.rmi.server.hostname=localhost argument doesn’t 
solve your problem, check that the JVM distribution you configured is among those 
VisualVM supports (according to the download section on its website:  https://visualvm 
.github.io/download.html).

You know something is incorrectly configured
if any of the tabs is missing (like in this case 
with the Threads tab) or if VisualVM shows an 
error message such as this one, which tells 
you that the configured JVM isn’t supported.

Figure 5.3 If the tool doesn’t seem to be working properly, you need to check how it is configured. Such problems 

can occur when the configured JVM distribution is not among those VisualVM supports. Sometimes, the tool can’t 

connect to the local process you want to investigate. In such cases, use a different JVM distribution that complies 

with the tool’s requirements or review how the process you want to investigate was started.

5.2.2 Observing the CPU and memory usage

One of the most straightforward yet powerful ways to use a profiler is to monitor how 
your app consumes system resources. This insight allows you to quickly detect prob-
lems such as memory leaks quietly draining your system or zombie threads lurking in 

https://visualvm.github.io/download.html
https://visualvm.github.io/download.html


112 CHAPTER 5 Identifying resource consumption problems using profiling techniques

the background that are wasting valuable CPU power. By keeping an eye on resource 
usage, you can catch these problems early—before they turn into full-blown perfor-
mance nightmares.

DEFINITION A memory leak is when your app 
doesn’t deallocate unneeded data. Over time, there 
will be no more free memory. This is a problem.

In this section, you’ll discover how a profiler can visually confirm when your app isn’t 
playing nice. Take zombie threads, for example—these are threads that refuse to die, 
endlessly running in the background and quietly draining your app’s resources. With 
VisualVM, spotting these resource-hungry culprits becomes much easier, allowing you 
to identify and address performance problems before they spiral out of control. I 
prepared some projects to demonstrate how to use a profiler to identify app prob-
lems that cause abnormal resource consumption. We’ll run the apps provided with 
the book one by one, and we’ll use VisualVM to observe the behavior and identify 
abnormalities.

Let’s start with app da-ch5-ex1. The idea of the app is simple: two threads continu-
ously add values, while two other threads continuously remove (consume) the values 
from this list. We often call this implementation a producer-consumer approach, a multi-
threaded design pattern commonly encountered in apps. 

Listing 5.1 The producer thread adding values to a list

public class Producer extends Thread {

  private Logger log = Logger.getLogger(Producer.class.getName());

  @Override
  public void run() {
    Random r = new Random();
    while (true) {
      if (Main.list.size() < 100) {  
        int x = r.nextInt();
        Main.list.add(x);  
        log.info("Producer " + Thread.currentThread().getName() + 
                 " added value " + x);
      }
    }
  }

}

Sets a maximum number 
of values for the list

Adds a random value in the list



 113Using a profiler

The following code shows the implementation of the consumer thread.

Listing 5.2 The consumer thread removing values from the list

public class Consumer extends Thread {

  private Logger log = Logger.getLogger(Consumer.class.getName());

  @Override
  public void run() {
    while (true) {
      if (Main.list.size() > 0) {  
        int x = Main.list.get(0);
        Main.list.remove(0);  
        log.info("Consumer " + Thread.currentThread().getName() + 
                 " removed value " + x);
      }
    }
  }
}

The Main class creates and starts two instances of the producer thread and two instances 
of the consumer thread.

Listing 5.3 The Main class creating and starting the producer and consumer threads

public class Main {

  public static List<Integer> list = new ArrayList<>();  

  public static void main(String[] args) {
    new Producer().start();  
    new Producer().start();  
    new Consumer().start();  
    new Consumer().start();  
  }
}

This application wrongly implements a multithreaded architecture. More precisely, 
multiple threads concurrently access and change a list of type ArrayList. Because 
ArrayList is not a concurrent collection implementation in Java, it doesn’t manage the 
threads’ access itself. Multiple threads accessing this collection potentially enter a race 

condition. A race condition happens when multiple threads compete to access the same 
resource. That is, they are in a race to access the same resource.

In project da-ch5-ex1, the implementation lacks thread synchronization. When you 
run the app, some threads stop after a short time because of exceptions caused by the 
race condition, while others remain alive forever, doing nothing (zombie threads). 
We’ll use VisualVM to identify all these problems. Then, we’ll run project da-ch5-ex2, 
which applies a correction to the app synchronizing the threads that access the list. 

Checks whether the 
list contains any value

If the list contains values, removes 
the first value from the list

Creates a list to store 
the random values the 
producer generates

Starts the consumer 
and produces threads



114 CHAPTER 5 Identifying resource consumption problems using profiling techniques

We’ll compare the results displayed by VisualVM for the first example to the second 
example to identify the difference between a normal and a problematic app.

The app will run quickly and then stop (potentially showing an exception stack trace 
in the console). The next code snippet shows what the log messages the app prints in 
the console look like:

Aug 26, 2021 5:22:42 PM main.Producer run
INFO: Producer Thread-0 added value -361561777
Aug 26, 2021 5:22:42 PM main.Producer run
INFO: Producer Thread-1 added value -500676534
Aug 26, 2021 5:22:42 PM main.Producer run
INFO: Producer Thread-0 added value 112520480

You may think that, because this app only has three classes, you don’t need a profiler to 
spot the problem—reading the code is enough here. Indeed, with only three classes, 
you may be able to spot the problem without using a separate tool. That’s because the 
apps we use are simplified examples so you can focus on using the profiler. But in the 
real world, apps are more complex, and problems are much more challenging to spot 
without an appropriate tool.

Even if the app appears to be paused, VisualVM can reveal some surprising activity 
happening behind the scenes. To uncover the cause of this unexpected behavior, follow 
these steps:

1 Check the process CPU usage. This step helps you determine whether the app is 
silently consuming CPU power, thus indicating a hidden loop or an inefficient 
process running in the background.

2 Check the process memory usage. Monitoring memory usage can reveal memory leaks 
or excessive allocation that may be causing the app to slow down or freeze.

3 Visually investigate the executing threads. This step allows you to spot stuck, 
blocked, or zombie threads that could be preventing the app from responding 
properly.

The process is consuming a lot of CPU resources, so somehow, it seems to still be alive. 
To observe its resource consumption, use the Monitor tab in VisualVM after dou-
ble-clicking the process name in the left panel. One of the widgets on this tab shows 
you the CPU usage (figure 5.4). 

The consumer and producer threads seem to have entered a continuous running 
state where they consume the system’s resources even if they don’t correctly fulfill 
their tasks. In this case, the state is a consequence of race conditions because the 
threads try to access and change a nonconcurrent collection. But we already know 
there’s something wrong with the app. We want to observe the symptoms such prob-
lems cause so that we will know our app encountered the same problem in other sim-
ilar situations. 

This widget also shows the amount of CPU resources the Garbage Collector (GC) 
uses. The GC is the JVM mechanism for removing data the app no longer needs from 



 115Using a profiler

You can use the CPU usage widget to check
CPU consumption. Note that in this case,
the process spends about 50% of the system’s
processing power.

Another interesting fact is how much 
the GC is responsible for CPU consumption. 
In this case, the GC spends no resources.

Figure 5.4 Using VisualVM to observe the use of CPU resources. The widget in the Monitor tab shows how much 

CPU the process uses and how much of the usage is caused by the GC. This information helps you to understand 

whether the app has execution problems and is excellent guidance for the next steps in your investigation. In this 

particular example, the process spends about 50% CPU. The GC doesn’t affect this value. These signs are often 

indicators of zombie threads that are usually generated by concurrency problems.

memory. The information on GC CPU usage is valuable because it can indicate that the 
app has a problem with memory allocation. If the GC spends a lot of CPU resources, it 
can signify that the app has a memory leak problem. 

In this case, the GC doesn’t spend any CPU resources. This is not a good sign either. 
In other words, the app is spending a lot of processing power but not processing any-
thing. These signs usually indicate zombie threads, which are generally a consequence 
of concurrency problems.

The next step is to look at the widget showing memory consumption. This widget is 
strategically placed near the one showing the CPU consumption, as presented in figure 
5.5. We’ll discuss this widget in more detail in section 5.2.3, but for now, notice that the 
app spends almost no memory. This behavior is, again, not a good sign as it is equivalent 
to saying, “The app does nothing.” We can conclude that we are most likely facing a con-
currency problem by using just these two widgets.



116 CHAPTER 5 Identifying resource consumption problems using profiling techniques

On the right side of the CPU usage widget,
you find another widget that displays
the memory consumption.

Note that even though the app spends 50% 
of the CPU, it consumes almost no memory.

 

Figure 5.5 The memory usage widget is placed on the right side of the CPU usage widget. In this example, the 

app uses almost no memory. This is also why the GC activity is zero. An app not consuming any memory means the 

app isn’t doing anything.

We’ll discuss using thread dumps in chapter 8. For now, we focus only on the high-level 
widgets the profile offers and compare the results these widgets provide for a healthy 
and an unhealthy app.

Before going into a detailed investigation of the threads in
execution, I prefer to use VisualVM to visually observe how
the threads execute. In most cases, doing so gives me some
clues about which threads I need to pay attention to. Once I
get this info, I use a thread dump to find the concurrency
problem and learn how to fix it.

t

Figure 5.6 shows the Threads tab, located near the Monitor tab. The Threads tab offers 
a visual representation of the threads in execution and their states. In this example, all 
four threads the app started are executing and are in a running state.



 117Using a profiler

Even if the app doesn’t seem to do anything, the four 
threads it created are continuously running. These 
running threads that do nothing but stay alive are 
called zombie threads. The only thing they do is 
consume CPU resources.

Figure 5.6 The Threads tab offers a visual representation of the threads that are alive and their status. The widget 

shows all the process threads, including those started by the JVM, which helps you easily identify the threads you 

should pay attention to and eventually investigate deeper using a thread dump.

Concurrency problems can have different results. Not necessarily all the threads will 
remain alive, for example. Sometimes, concurrent access can cause exceptions that 
interrupt some or all the threads entirely. The next snippet shows an example of such 
an exception that can occur during an app’s execution:

Exception in thread "Thread-1" 
➥java.lang.ArrayIndexOutOfBoundsException: 
➥Index -1 out of bounds for length 109
    at java.base/java.util.ArrayList.add(ArrayList.java:487)
    at java.base/java.util.ArrayList.add(ArrayList.java:499)
    at main.Producer.run(Producer.java:16)

If such an exception happens, then some threads may be stopped, and the Threads tab 
won’t display them. Figure 5.7 shows a case in which the app threw an exception and 
only one of the threads stayed alive.



118 CHAPTER 5 Identifying resource consumption problems using profiling techniques

In this example, only one of the threads is alive and 
became a zombie thread. The other threads encountered 
exceptions caused by the race conditions and stopped.

Figure 5.7 If exceptions occur during an app’s execution, some threads may be stopped. This figure 

shows a case in which the concurrent access caused exceptions in three threads and stopped them. 

Only one thread remained alive. Remember, concurrency problems in multithreaded apps can cause 

different unexpected results.

In this example, we focus only on discovering a resource consumption problem. The 
next step is to use a thread dump to determine the exact cause of the concurrency 
problem. We’ll cover everything about thread dumps in chapter 8, but for now, let’s 
remain focused on identifying resource consumption problems. We will run the same 
verifications on a healthy app and compare it to the unhealthy one. This way, you’ll 
know how to immediately recognize correct and incorrect app behavior.

The example in project da-ch5-ex2 is the corrected version of the same app we just 
looked at. I added some synchronized blocks to avoid concurrent thread access and 
eliminate race condition problems. I used the list instance as the thread monitor for 
the synchronized code blocks for both consumers and producers. 

Listing 5.4 Synchronizing access for the consumer

public class Consumer extends Thread {

  private Logger log = Logger.getLogger(Consumer.class.getName());

  public Consumer(String name) {



 119Using a profiler

    super(name);
  }

  @Override
  public void run() {
    while (true) {
      synchronized (Main.list) {  
        if (Main.list.size() > 0) {
          int x = Main.list.get(0);
          Main.list.remove(0);
          log.info("Consumer " + 
              Thread.currentThread().getName() + 
              " removed value " + x);
        }
      }
    }
  }
}

The following code shows the synchronization applied to the Producer class.

Listing 5.5 Synchronizing access for the producer

public class Producer extends Thread {

  private Logger log = Logger.getLogger(Producer.class.getName());

  public Producer(String name) {
    super(name);
  }

  @Override
  public void run() {
    Random r = new Random();
    while (true) {
      synchronized (Main.list) {  
        if (Main.list.size() < 100) {
          int x = r.nextInt();
          Main.list.add(x);
          log.info("Producer " + 
              Thread.currentThread().getName() + 
              " added value " + x);
        }
      }
    }
  }

}

I also gave custom names to each thread. I always recommend this approach. Did you 
spot the default names the JVM gave our threads in the previous example? Generally, 
Thread-0, Thread-1, Thread-2, and so on are not names you can easily use to identify 
a given thread. I prefer giving threads custom names whenever I can to identify them 

Synchronizes the access on the list, using 
the list instance as a thread monitor

Synchronizes the access on the list, using 
the list instance as a thread monitor



120 CHAPTER 5 Identifying resource consumption problems using profiling techniques

quickly. Moreover, I give them names starting with an underline so it is easier to sort 
them. First, I defined the constructor in the Consumer and Producer classes (listings 5.4 
and 5.5, respectively) and used the super() constructor to name the threads. I then 
gave them names, as presented in listing 5.6.

Listing 5.6 Setting custom names for the threads

public class Main {

  public static List<Integer> list = new ArrayList<>();

  public static void main(String[] args) {
    new Producer("_Producer 1").start();
    new Producer("_Producer 2").start();
    new Consumer("_Consumer 1").start();
    new Consumer("_Consumer 2").start();
  }
}

Notice that after starting this app, the console continuously shows logs. The app doesn’t 
stop like it did with example da-ch5-ex1. Let’s use VisualVM to observe resource con-
sumption. The CPU utilization widget shows that the app spends less CPU, while the 
memory usage widget shows that the app uses some of the allocated memory while run-
ning. Also, we can observe the activity of the GC. As you will learn later in this chapter, 
on the right side of the memory graph are valleys resulting from the GC’s activity.

The Threads tab shows that the monitor sometimes blocks the threads, allowing only 
one thread at a time through a synchronized block. The threads don’t run continu-
ously, which makes the app consume less CPU, as shown in figure 5.8. Figure 5.9 shows 
the threads’ visualization in the Threads tab. 

An app that behaves correctly
consumes less CPU resources.

The app consumes memory, which proves  
that the app actually does something.

Figure 5.8 After correctly synchronizing the code, the resource consumption widgets look different.  

The CPU consumption is lower, and the app uses some memory.



 121Using a profiler

The threads are no longer continuously 
running. The profiler shows when   
the threads are blocked by a monitor,  
waiting, or sleeping.

Instructions left out of the synchronized blocks can
still cause threads to run concurrently. Observe where
the two producer threads appear shaded at the same
time on the diagram.

Figure 5.9 The Threads tab helps you visualize the execution of the threads in your app. Since the threads’ names 

start with an underline, you can simply sort them by name to see them grouped. Notice that their execution is 

interrupted occasionally by the monitor, which allows just one thread at a time through the synchronized blocks of code.

NOTE Even if we added synchronized blocks, some executing code (the while 
condition) still remains outside of these blocks. For this reason, the threads 
may still appear to run concurrently.

5.2.3 Identifying memory leaks

This section discusses memory leaks and how to spot them before they bring your app 
to its knees. A memory leak happens when an app holds onto objects it no longer 
needs—like keeping junk in your closet because you might need it someday (see figure 
5.10). Because of these leftover references, the GC—the tool that normally cleans up 
unused data—can’t do its job.

As the app keeps piling on more data, the memory slowly fills up. Eventually, the app 
runs out of space and throws an OutOfMemoryError, basically saying, “I’m full!” before 
crashing.



122 CHAPTER 5 Identifying resource consumption problems using profiling techniques

1. Suppose you have an app
    that creates object instances
    and keeps references to
    these instances in a list.

3. Because the app keeps  
    the references, the GC fails  
    to remove the unneeded   
    objects from the memory. The  
    memory gets full, and at some  
    point, the app can’t allocate  
    more objects. The process  
    stops, and the app fails with  
    an OutOfMemoryError.

2. The app continues to create
    new instances. Some of the
    previously created instances
    are no longer needed, but 
    the app doesn’t remove their 
    references from the list.

List

Heap

List

Heap

List

Heap

Figure 5.10 An OutOfMemoryError is like a ticking bomb. An app fails to remove references to objects it no 

longer uses. The GC can’t remove these instances from the memory because the app keeps their references. While 

more objects are created, the memory gets full. At some point, there’s no more space in the heap to allocate other 

objects, and the app fails with an OutOfMemoryError.

To show how this works, we’ll use a simple app that intentionally triggers an Out   -
OfMemoryError. This will help us learn how to spot memory leaks in action using  
VisualVM before they catch you by surprise.

In the example provided with project da-ch5-ex3, you can find a simple app that 
stores random instances in a list but never removes their references. The following code 
provides an example of a simple implementation that produces an OutOfMemoryError.

Listing 5.7 Producing an OutOfMemoryError

public class Main {

  public static List<Cat> list = new ArrayList<>();

  public static void main(String[] args) {
    while(true) {



 123Using a profiler

      list.add(new Cat(new Random().nextInt(10)));  
    }
  }
}

The class Cat is a simple java object, as presented by the following code snippet:

public class Cat {

  private int age;

  public Cat(int age) {
    this.age = age;
  }

  // Omitted getters and setters
}

Let’s run this app and observe resource usage with VisualVM. We’re especially interested 
in the widget that shows memory usage. When a memory leak affects your app, this wid-
get can confirm that the used memory grows continuously. The GC tries to deallocate 
unused data from memory, but it removes too few. In the end, the memory gets filled, 
and the app cannot store the new data, throwing an OutOfMemoryError (figure 5.11).

Note how the used memory grows continuously.
The GC attempts to free the memory, but it can’t  
remove most of the instances because the app still 
keeps their references in memory.

In many cases, you will also 
see intensified GC activity.

When all the allocated memory
is occupied, and the app can’t
store the new data, the app
throws an OutOfMemoryError.

Figure 5.11 When a memory leak affects your app, the used memory grows continuously. GC attempts to free the 

memory but cannot remove enough data. The used memory increases until the app can’t allocate any more new 

data. At this point, the app throws an OutOfMemoryError and stops. In many cases, a memory leak also causes 

intensified GC activity, as seen in the CPU resource usage widget.

Continuously adds 
new instances to a list 
until the JVM runs out 
of memory



124 CHAPTER 5 Identifying resource consumption problems using profiling techniques

If you let the app run long enough, you’ll eventually see the error stack trace in the 
app’s console:

Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
    at java.base/java.util.Arrays.copyOf(Arrays.java:3689)
    at java.base/java.util.ArrayList.grow(ArrayList.java:238)
    at java.base/java.util.ArrayList.grow(ArrayList.java:243)
    at java.base/java.util.ArrayList.add(ArrayList.java:486)
    at java.base/java.util.ArrayList.add(ArrayList.java:499)
    at main.Main.main(Main.java:13)

It’s important to remember that an OutOfMemoryError stack trace doesn’t necessarily indi-
cate the place that causes the problem. Since an app has just one heap memory location, 
a certain thread can cause the problem, whereas another thread may be unlucky enough 
to be the last one trying to use the memory location and thus gets the error. The only 
sure way to identify the root cause is using a heap dump, covered in chapter 10.

Figure 5.12 compares normal behavior and the behavior of an app affected by a 
memory leak, as seen in VisualVM. For the app with a normal execution (not affected 

In an app that behaves normally, you 
will see this pattern. The memory fills, 
and at a certain point, the GC cleans the
unneeded data, freeing up the memory.

These are moments when the GC
cleaned the unneeded data, making
space for new data to be added in
memory.

When an app has a memory leak,
the used memory continuously 
grows. The GC attempts to free 
the memory but can’t deallocate 
enough objects since the app holds 
the references for most of them.

Normal behavior

Abnormal behavior

Figure 5.12 A comparison between the memory usage for a healthy app versus an app suffering from a memory 

leak. The GC frees unneeded data from memory for a healthy app, and the allocated space never fills up. An app 

with a memory leak prevents the GC from removing enough data. At some point, the memory fills up completely, 

generating an OutOfMemoryError.



 125Using a profiler

by a memory leak), note that the graph has peaks and valleys. The app allocates mem-
ory that fills it up (the peaks), and from time to time, the GC removes the data that’s 
no longer needed (the valleys). This ebb and flow is usually a good sign that the capa-
bility you are investigating is not affected by a memory leak.

However, if you see that the memory progressively fills and the GC doesn’t clean it, 
your app may have a memory leak. Once you suspect a memory leak, you must investi-
gate further using a heap dump. 

You can control the allocated heap size in a Java app. This way, you can enlarge the 
maximum limit the JVM allocates to your app. However, giving the app more memory 
is not a solution for a memory leak. However, this approach can be a temporary solu-
tion, giving you more time to solve the root cause of the problem. To set a maximum 
heap size for an app, use the JVM property -Xmx, followed by the amount you want to 
allocate (e.g., -Xmx1G will allocate a maximum heap size of 1 GB). You can similarly set 
a minimum initial heap size using the -Xms property (e.g., -Xms500m would allocate a 
minimum heap size of 500 MB).

Aside from the normal heap space, each app also uses a metaspace : the memory location 
where the JVM stores the class metadata needed for the app’s execution. In VisualVM, 
you can observe the allocation of metaspace in the memory allocation widget. To evaluate 
the metadata allocation, use the Metaspace tab of the widget, as presented in figure 5.13.

The Metaspace tab of the memory usage widget
shows the size of the metaspace and
how much of it is used.

Figure 5.13 The metaspace is a part of the memory used to store class metadata. In some cases, the metaspace 

can be overflowed. A VisualVM memory allocation widget also shows the usage of the metaspace.



126 CHAPTER 5 Identifying resource consumption problems using profiling techniques

An OutOfMemoryError on the metaspace happens less often, but it’s not impossible. I 
recently dealt with such a case in an app that misused a data persistence framework. 
Generally, frameworks and libraries using Java reflection are the most likely to gener-
ate such problems if misused since they often rely on dynamic proxies and indirect 
calls. 

In my situation, the app was misusing a framework named Hibernate. I would not be 
surprised if you have already heard about Hibernate since it’s one of the most common 
solutions to manage persistent data in Java apps today. Hibernate is an excellent tool 
that helps implement the most-used persistence capabilities of an app, while eliminat-
ing the need to write unneeded code. Hibernate manages a context of instances and 
maps the changes to this context to the database. But it’s not recommended for a very 
large context. In other words, don’t work with too many records from the database at 
once! 

The app I had trouble with defined a scheduled process, loading many records from 
a database and processing them in a defined way. It seems that, at some point, the num-
ber of records this process was fetching was so large that the load operation itself caused 
the metaspace to fill; the problem was a misuse of the framework, not a bug. The devel-
opers should not have used Hibernate but an alternative, more low-level solution like 
JDBC. 

The problem was critical, and I had to find a short-term solution since a complete 
refactoring would have taken a long time. Just as for the heap, you can customize 
the metaspace size. Using the -XX:MaxMetaspaceSize property, you can enlarge the 
metaspace (e.g., -XX:MaxMetaspaceSize=100M), but remember that this is not a real solu-
tion. The long-term solution for such a case is to refactor the functionality to avoid 
loading so many records at once in the memory and eventually use an alternetive per-
sistence technology if needed. 

5.3 Using AI assistance

Fortunately, we live in a time where AI isn’t just sci-fi anymore. AI became our sidekick 
for tackling all sorts of tasks, including troubleshooting and investigation. Need a sec-
ond opinion? Your AI assistant is just a query away! For instance, you can ask your AI 
buddy for advice after gathering data on memory consumption (as you’ve skillfully 
learned in this chapter). In the following example, I took a screenshot of the heap con-
sumption widget in VisualVM and asked ChatGPT for its expert analysis. Spoiler alert: 
AI doesn’t even flinch at memory leaks—it dives right in! Check out figure 5.14 to see 
how the magic unfolds.

Of course, remember that your AI assistant may lack full context and may not always 
provide precise answers. I use it primarily as a tool to generate ideas or reinforce my 
own conclusions. However, I never rely entirely on its solutions and always validate them 
independently, as emphasized in the previous chapters.

Remember, it’s perfectly fine to continue the discussion if needed. You don’t have to 
limit yourself to a simple question-and-answer approach. If the initial response seems 



 127Summary

Figure 5.14 Consulting ChatGPT for insights on app execution profiling results. The AI assistant offers 

valuable suggestions for the next steps in your investigation and potential clues about the root cause of 

the problem (the answer in the image is truncated for brevity).

helpful but not comprehensive enough, feel free to engage further with the AI assis-
tant. Provide additional context or details that could improve the outcome and guide 
the conversation toward a more complete and precise solution.

Summary

¡	A profiler is a tool that allows you to observe an app’s execution to identify the 
causes of certain problems that are more difficult to spot otherwise. A profiler 
shows

– How an app spends system resources such as the CPU and memory

– What code executes and the duration of each method execution

– The execution stack of methods on different threads

– The executing threads and their status



128 CHAPTER 5 Identifying resource consumption problems using profiling techniques

¡	The profiler provides excellent visual widgets that let you understand certain 
aspects faster.

¡	You can observe GC’s execution using the profiler, which helps identify problems 
such as the app not correctly deallocating unused data from memory (i.e., mem-
ory leaks).



129

6Finding hidden 
problems using 

profiling techniques

This chapter covers

¡	Sampling an app’s execution to find the currently 

executing methods

¡	Observing execution times

¡	Identifying SQL queries the app executes

In chapter 5, I said a profiler is a powerful tool that can show you a path when all the 
lights have gone out. But we discussed only a small part of the profiler’s capabilities. 
A profiler offers powerful tools for investigating an app’s execution, and learning to 
use them properly can help you in many scenarios.

In many cases, I have had to evaluate or investigate app executions for codebases 
I could barely read—old apps with poorly modeled code design, which some compa-
nies kept hidden in a wardrobe. In such cases, the profiler was the only efficient way 
to find what was executing when a specific capability was triggered. Now you can see 
why I compared a profiler with the light of Eärendil: as Galadriel says, it really was a 
light in many dark places where all the other lights were out.



130 CHAPTER 6 Finding hidden problems using profiling techniques

In this chapter, we will analyze three investigation techniques through profiling, 
which I consider extremely valuable:

¡	Sampling for detecting the part an app’s code executes

¡	Profiling the execution (also called instrumentation) to identify wrong behavior 
and badly performing code that can be optimized

¡	Profiling the app to identify SQL queries it uses to communicate with a database 
management system (DBMS)

When used appropriately, these techniques can save you a lot of time finding the 
causes of various problems. Unfortunately, even though these techniques are pow-
erful, many developers are unfamiliar with them. Some developers know these tech-
niques exist but tend to believe they are challenging to use (in this chapter, I’ll show 
you that the opposite is true). Consequently, they try using other methods to solve 
problems that could be solved much more efficiently with a profiler (as presented in 
this chapter). 

I created four small projects to show how to use these techniques and the problems 
that can be investigated. We’ll use these projects to apply the profiling techniques we 
discuss. Section 6.1 discusses sampling—a technique used to identify what code exe-
cutes at a given time. In section 6.2, you’ll learn how a profiler can provide more details 
about the execution than sampling can offer. Section 6.3 discusses using a profiler to 
get details about SQL queries an app sends to a DBMS.

6.1 Sampling to observe executing code

What is sampling, and how can it benefit you? Sampling is an approach in which a pro-
filing tool is employed to identify the code the app executes. Sampling doesn’t provide 
many details about the execution, but it draws the big picture of what happens, giving 
you valuable information on what needs to be analyzed further. For this reason, sam-
pling should always be the first step when profiling an app, and as you’ll see, sampling 
may even be enough in many cases. For this section, I prepared project da-ch6-ex1. 
We’ll use a profiling tool to sample this app (VisualVM) to identify problems related to 
the execution time of a given capability.

The project we’ll use to demonstrate sampling is a tiny app that exposes an endpoint, 
/demo. When someone calls this endpoint using cURL, Postman, or a similar tool, the 
app further calls an endpoint exposed by httpbin.org.

I like using httpbin.org for many examples and demonstrations. Httpbin.org is an 
open source web app and tool written in Python that exposes mock endpoints you can 
use to test different things you’re implementing. 

Here, we call an endpoint, and httpbin.org responds with a given delay. For this 
example, we’ll use a 5-second delay to simulate a latency scenario in our app, and 
httpbin.org simulates the root cause of the problem. 

The scenario is also illustrated in figure 6.1.

http://httpbin.org/
http://httpbin.org/
http://httpbin.org/
http://httpbin.org/
http://httpbin.org/


 131Sampling to observe executing code

With latency, we understand how 
an app reacts slower than expected.

1. We use cURL or Postman to
    call the /demo endpoint our 
    app exposes.

2. When calling the /demo endpoint our app exposes,
    it further calls an endpoint from httpbin.org. 
    Calling this endpoint takes 5 seconds, which is
    too long.

3. Suppose you don’t know why calling 
    the /demo endpoint takes so long to
    execute and want to investigate the 
    cause.

cURL/Postman Our app httpbin.org
callscalls

Figure 6.1 The app we are investigating exposes an endpoint: /demo. When you call this endpoint, you 

must wait 5 seconds for the app to respond. We need to understand why it takes so long for the endpoint 

to respond. We know our app calls a mock endpoint from httpbin.org, which causes the delay, but we 

want to learn how to investigate this scenario with a profiler. This way, you’ll know how to use similar 

techniques for real-world situations.

The profiling approach has two steps:

1 Sampling, to determine what code executes and where you should go into more 
detail (the approach we discuss in this section)

2 Profiling (also called instrumentation), to get more details about the execution of 
specific pieces of code 

Sometimes step 1 (sampling) is enough to understand a problem, and you may not 
need to profile the app (step 2). As you’ll learn in this chapter and chapters 7–9, pro-
filing can provide more details about the execution if needed. But first, you need to 
know what part of the code to profile, and for that, you use sampling.

How does the problem occur in our example? When calling the /demo endpoint, the 
execution takes 5 seconds (figure 6.2), which we consider too long. Ideally, we want the 

http://httpbin.org/


132 CHAPTER 6 Finding hidden problems using profiling techniques

The time spent to execute the call to the 
/demo endpoint is about 5 seconds.

Figure 6.2 When the 

endpoint is called (in this 

figure, using cURL), the app 

takes about 5 seconds to 

respond. In our scenario, we 

use a profiler to investigate 

this latency problem.

execution to take less than 1 second, so we need to understand why calling the /demo 
endpoint takes so long. What causes the latency? Is it our app or something else? 

When investigating a slowness problem in an unknown codebase, using a profiler 
should be your first choice. The problem doesn’t necessarily need to involve an end-
point. For this example, an endpoint was the easiest demonstration. But in any situation 
involving slowness—calling an endpoint, executing a process, or using a simple method 
call on a particular event—a profiler should be your first option.

First, start the app we troubleshoot (example da-ch6-ex1) and then VisualVM (the 
profiling tool we will use for our investigations). Remember to add the VM option -Djava 
.rmi.server.hostname=localhost, as discussed in chapter 5. This approach allows 
VisualVM to connect to the process. Select the process from the list on the left, 
and then select the Sampler tab, as presented in figure 6.3, to start sampling the 
execution.

Once you select the process you are investigating
from the left side of the window, open the Sampler
tab to sample the app’s execution.

Figure 6.3 To start sampling the execution, select the process from the list on the left side, and then 

select the Sampler tab.



 133Sampling to observe executing code

Sampling the execution has the following three purposes:

¡	To find out what code executes—Sampling shows you what executes behind the 
scenes and is an excellent way to find the part of the app you need to investigate.

¡	To identify CPU consumption—We’ll use this to investigate latency problems and 
understand which methods share execution time.

¡	To identify memory consumption—In this case, the purpose is to analyze memory- 
related problems. We’ll discuss sampling and profiling memory more in chapter 9.

Select CPU (as shown in figure 6.4) to start sampling performance data. VisualVM dis-
plays a list of all the active threads and their stack traces. The profiler then intercepts 
the process execution and displays all the methods called and the approximate execu-
tion time. When you call the /demo endpoint, the profiler shows what happens behind 
the scenes when the app executes that capability.

Select CPU, and VisualVM 
will start intercepting the threads 
that are executing.

The threads in execution appear 
in this list. Using the small + button,
you can drill down the execution
stack for each thread.

Figure 6.4 The profiler shows all the active threads in a list. You can expand each item to see the 

execution stack and an approximate execution time. When the app executes, the newly created threads 

appear in the list, and you can analyze their execution.



134 CHAPTER 6 Finding hidden problems using profiling techniques

We can now call the /demo endpoint and observe what happens. As shown in figure 
6.5, some new threads appear in the list. The app started these threads when we called 
the /demo endpoint. When you open them, you should see precisely what the app does 
during its execution. 

Before we discuss details such as the execution time, I want to highlight how vital 
this first step is. Many times when I’ve analyzed code, I used just sampling to figure out 
where to look for the problem. I may not have even been investigating a performance 
or latency problem but was simply looking for the point to start debugging. Remember 
our discussions in chapters 2 and 3: to debug something, you need to know where to 
add that breakpoint to pause the app’s execution. If you have no clue where to add a 
breakpoint, you can’t debug. Sampling can be a way to shed some light on a situation 
when you can’t figure out where to start debugging (especially in cases such as those I 
mentioned at the beginning of the chapter in which an app lacks clean code design).

VisualVM reveals the full stack trace the app executed
when you called the /demo endpoint. You can use the
stack trace to identify which code the app executed
and which instructions spent more time executing.

Figure 6.5 The stack trace shows what the app executes. You can see every method and each 

subsequent method that is called. This view helps you quickly find the code you want to focus on when 

investigating a certain capability.



 135Sampling to observe executing code

Let’s look at the execution stack to understand what the profiler shows us. When you 
want to figure out what code executes, you simply expand the stack trace up to the 
point where it displays the methods of the app you are interested in. When investigat-
ing a latency problem (as in this example), you can expand the stack trace to observe 
the maximum execution time, as shown in figure 6.6.

The tool shows the total time spent
by each method call. You can use this 
information to identify the root causes 
for app slowness. In this case, the method
getResponseCode() from the class
HttpURLConnection spent all the
execution time.

Another essential detail to note
is that the CPU spent time is zero.
This means that the app wasted the
5 seconds of total execution time to
wait for something rather than work
on something.

The profiler doesn’t only intercept your app’s codebase,
but also code from frameworks and libraries the app uses.

Figure 6.6 When you expand the execution stack, you find which methods execute and how much time they spend 

executing. You can also deduce how long they wait and how much they work. The profiler shows both the app’s 

codebase methods and the methods called from specific dependencies (libraries or frameworks) the app uses.

I expanded the execution stack by selecting the small (+) button in the last method. 
The profiler shows that it took about 5 seconds to understand the execution and find 



136 CHAPTER 6 Finding hidden problems using profiling techniques

the method that caused the latency. In this particular case, we see that just one method 
causes the slowness: getResponseCode() of the HttpURLConnection class. 

TIP Remember that it’s not always one method that spends all
the execution time in real-world scenarios. You’ll often find that
the time spent is shared among multiple methods that execute.
The rule is to first focus on the method that takes the longest
time to execute.

An important aspect of this example is that the CPU time (how long the method 
works) is zero. Although the method spends 5 seconds in execution, it doesn’t use 
CPU resources because it is waiting for the HTTP call to end and to get a response. We 
can conclude that the problem is not in the app; rather, the app is slow only because it 
waits for a response to its HTTP request.

It’s extremely valuable to differentiate between the total CPU time and the total exe-
cution time. If a method spends CPU time, it means the method works. To improve the 
performance in such a case, you usually have to adjust (if possible) the algorithm to 
minimize its complexity. If the execution spends a small amount of CPU time but has 
a long execution time, the method is likely waiting for something: an action may take 
a long time, but the app doesn’t do anything. In this case, you need to figure out what 
your app is waiting for.

Another essential aspect to observe is that the profiler doesn’t just intercept your 
app’s codebase. You can see that the dependencies’ methods are also called during the 
app’s execution. In this example, the app uses a dependency named OpenFeign to call 
the httpbin.org endpoint. This is visible in the stack trace packages that don’t belong to 
your app’s codebase. These packages are part of your app’s dependencies to implement 
its capabilities. OpenFeign can be one of them, like in this example. 

OpenFeign is a project from the Spring ecosystem of technologies that a Spring app 
can use to call REST endpoints. Since this example is a Spring app, you will find pack-
ages of Spring-related technologies in the stack trace. You don’t have to understand 
what each part of the stack trace does. You won’t know this in a real-world scenario 
either. In fact, this book is about understanding code that you don’t yet know. If you 
want to learn Spring, I recommend starting with Spring Start Here (Manning, 2021), 
another book I wrote. You’ll also find details about OpenFeign in the same book.

Why is observing dependencies’ methods so important? Because, sometimes, it’s 
almost impossible to figure out what executes from a given dependency using other 
means. Look at the code written in our app to call the httpbin.org endpoint (see listing 
6.1). You can’t see the actual implementation for sending the HTTP request. That’s 
because, as it happens in many Java frameworks today, the dependency uses dynamic 
proxies to decouple the implementation.



 137Sampling to observe executing code

Listing 6.1 The HTTP client implementation using OpenFeign

@FeignClient(name = "httpBin", url = "${httpBinUrl}")
public interface DemoProxy {

  @PostMapping("/delay/{n}")
  void delay(@PathVariable int n);
}

Dynamic proxies give an app a way to choose a method implementation at run time. 
When an app capability uses dynamic proxies, it might actually call a method declared 
by an interface without knowing what implementation it will be given to execute at run 
time (figure 6.7). Using the framework’s capabilities is easier, but the disadvantage is 
that you don’t know where to investigate a problem. 

In your code, the service object uses
the proxy through an interface, which
is an abstraction. The app provides
the implementation at run time.

The frameworks the app uses may provide multiple implementations
for the same abstraction. The app decides which implementation to
use at run time. Because of this separation, it’s more difficult to find
which code will execute just by reading the code. You may not even
know in which dependency to look to find the dynamic implementations.

DemoService DemoProxy
<<interface>>

Proxy 
implementation

Proxy 
implementation

Proxy 
implementation

implements

implements

implements

uses

Figure 6.7 The framework keeps the implementations for an abstraction separate and provides them 

dynamically during execution. Because the implementation is decoupled and the app provides it during 

run time, it’s more difficult to find it by reading the code.

We’re living in the age of artificial intelligence, where even the dullest tasks can get 
a clever sidekick. When it comes to sampling and profiling, modern profiling tools 



138 CHAPTER 6 Finding hidden problems using profiling techniques

often let you export the data into text files—usually in XML or CSV format (because, 
apparently, those are the universal languages of data). Simply hand that file over to 
an AI assistant and watch it crunch numbers and spot patterns faster than you can 
say, “Where did I save that file?” It’s like having a superpowered intern, minus the 
coffee runs.

One of my personal uses for sampling is when learning
a new framework or library. Sampling helps me to understand
what executes behind the scenes in a new functionality. 
I applied this approach when learning Hibernate and
Spring Security, which have complex functionality, and 
it helped me quickly understand how to work with
the given capabilities.

Figure 6.8 illustrates the save functionality in two popular profiling tools, VisualVM 
and JProfiler. While their graphical user interfaces (GUIs) differ in appearance, 
both provide a straightforward option—typically a button—to export profiling data 
in various formats. Although the exported data may differ in structure between the 
tools, this variation can easily be handled by your AI assistant for further analysis or 
processing.

Once you have exported the profiling data, you can share it with your preferred AI 
assistant to gain valuable insights. Figure 6.9 shows how ChatGPT analyzes the provided 
data and identifies potential causes for the application’s performance problems. Note 
that the response shown in the figure has been truncated for brevity.

With a few clicks and a sprinkle of exported data, you might turn hours of 
head-scratching into moments of “Aha!” brilliance. Sure, your AI assistant won’t bring 
you coffee (yet), but when it comes to slicing through call trees and spotting bottle-
necks, it’s like having a performance guru on speed dial. So go ahead, let the AI do the 
heavy lifting, and you take the credit. 

6.2 Profiling to learn how many times a method is executed

Finding what code executes is essential, but sometimes it is not enough. Often, we need 
more details to precisely understand a given behavior. For example, sampling does not 
provide the number of method invocations. An app may take only 50 milliseconds to 
execute, but if it calls the method a thousand times, then it takes 50 seconds to execute 
when sampling. To demonstrate how to get details about the execution using a profiler 
and to identify situations where this is useful, we’ll again use some projects provided 
with the book. We’ll start with project da-ch6-ex1, which we also used in section 6.1, but 
this time, we’ll discuss profiling (also known as instrumentation) for details about the 
execution. 



 139Profiling to learn how many times a method is executed

In VisualVM you must use the Snapshot button to export certain sampled data.
First create a snapshot and then export the snapshot in a format of your choice
(preferably XML or CSV). With other profiling tools, such as JProfiler, you
have a dedicated Export button to export the sampled data.

Figure 6.8 Saving sampled data in VisualVM (top) and JProfiler (bottom). VisualVM allows CPU sampling 

snapshots, while JProfiler provides options to export profiling data, ensuring easy analysis and sharing of 

performance metrics.



140 CHAPTER 6 Finding hidden problems using profiling techniques

Upload the exported sampled data to your favorite
AI assistent and ask for advice. In this case, you
observe how ChatGPT offers various advice for the
sampled data I collected from our example app
execution.

Figure 6.9 Example of using an AI assistant to analyze exported profiling data. The AI identifies latency 

bottlenecks in the /demo endpoint, highlighting problems in the DemoController.demo method and the 

Feign client for troubleshooting.

Start the app provided with project da-ch6-ex1. When you profile an app, you shouldn’t 
investigate the entire codebase. Instead, you must filter only what’s essential to your 
investigation. Profiling is a very resource-consuming operation, so unless you have a 
really powerful system, profiling everything would take a ton of time. That’s one more 
reason we always start with sampling—to identify what to profile further if needed.

TIP Never profile the app’s entire codebase. You should 
always first decide, based on sampling, which part of 
the app you want to profile to get more details.



 141Profiling to learn how many times a method is executed

For this example, we’ll ignore the app’s codebase (without dependencies) and only 
take OpenFeign classes from the dependencies. Remember that you can’t refer to an 
app’s entire code in a real-world app since that would likely be time- and resource- 
consumptive. For this small example, it won’t be a problem, but for large apps, always 
restrict the intercepted code as much as possible when profiling.

Figure 6.10 shows how to apply these restrictions. On the right side of the Profiler 
tab, you can specify which part of the app to intercept. In this example, we use the 
following:

¡	com.example.**—The code in all the packages and subpackages of com.example

¡	feign.**—Code in all the packages and subpackages of feign

Select CPU to start profiling the app.

Profiling helps us to get more information about 
the execution, but it’s also more resource intensive.
One of the first supplementary details you see here 
is the number of executions of a particular method.

Always profile a small number of packages. Before 
starting to profile the execution, define the filters to 
tell the tool which classes need to be intercepted.

Figure 6.10 Profiling a part of the app during execution to get details about the times a given method was 

invoked. We can see that the method causing the 5 seconds of latency is invoked only once, meaning the number  

of invocations doesn’t cause a problem here.

The syntax you can use to filter the packages and classes you want to profile has just a 
few simple rules:



142 CHAPTER 6 Finding hidden problems using profiling techniques

¡	Write each rule on a separate line.

¡	Use one asterisk (*) to refer to a package; for example, we could use com 
.example.* if we wanted to profile all classes in the package com.example.

¡	Use two asterisks (**) to refer to a package and all its subpackages. In this case, by 
using com.example.**, we mean all classes in the package com.example, as well as 
any of its subpackages.

¡	Write the full name of a class if you want to profile only that class; for exam-
ple, we could use com.example.controllers.DemoController to profile only this 
class.

I chose these packages after sampling the execution, as discussed in section 6.1. 
Because I observed that the method call with the latency problem comes from classes 
of the feign package, I decided to add this package and its subpackages to the list to 
get more information. 

In this particular case, the number of invocations doesn’t seem to cause problems: 
the method executes only once and takes about 5 seconds to finish its execution. A 
small number of method invocations imply that we don’t have repeated unnecessary 
executions (which, as you’ll learn later in this chapter, is a common problem in many 
apps). 

In another scenario, you may have observed that the call to the given endpoint takes 
just 1 second, but the method is (because of some poor design) called five times. Then, 
the problem would have been in the app, and we would know how and where to solve it. 
In section 6.3, we’ll analyze such a problem.

6.3 Using a profiler to identify SQL queries an app executes

This section illustrates how to use a profiler to identify the SQL queries an applica-
tion sends to a DBMS. This topic is one of my personal favorites—and for a good 
reason. Almost every modern application relies on a relational database to store and 
retrieve data. And in real-world scenarios, performance problems caused by slow SQL 
queries are incredibly common (see, Bonteanu and Tudose, 2024; https://www.mdpi 
.com/2076-3417/14/7/2743).

Database performance greatly affects how fast and responsive an application feels to 
the user. Even if your code is well-written, a single poorly written or slow query can cause 
your entire app to lag, time out, or even crash under load. This is especially true when 
your application grows and more users start interacting with it simultaneously.

To make things more complex, many modern apps don’t build SQL queries man-
ually. Instead, they use libraries or frameworks—such as JPA, Hibernate, or Spring 
Data—that automatically generate your queries. This is convenient, but it also means 
you might not know exactly what SQL is being sent to the database. When performance 
problems appear, it becomes hard to guess where things are going wrong. That’s where 
a profiler comes in. A good profiler can show you exactly which queries are being exe-
cuted, how long each one takes, and how often it runs.

https://www.mdpi.com/2076-3417/14/7/2743
https://www.mdpi.com/2076-3417/14/7/2743


 143Using a profiler to identify SQL queries an app executes

We’ll use a scenario implemented with project da-ch6-ex2 to learn how often a 
method executes and intercepts a SQL query the app runs on a relational database. 
We’ll then demonstrate that the executed SQL queries can be retrieved even when the 
app works with a framework and doesn’t handle the queries directly. Finally, we’ll dis-
cuss this subject further using a couple of examples. 

6.3.1 Using a profiler to retrieve SQL queries not generated by a framework

This section uses an example to demonstrate using a profiler to obtain the SQL que-
ries an app executes. We’ll use a simple app that sends the queries directly to a DBMS 
directly without using a framework. 

Let’s start project da-ch6-ex2 and use the Profiler tab, as you learned in section 6.2. 
Project da-ch6-ex2 is also a small app. It configures an in-memory database with two 
tables (product and purchase) and populates the tables with a few records. 

The app exposes all purchased products when calling the endpoint /products. By 
“purchased products,” I mean products that have at least one purchase record in the 
purchase table. The purpose is to analyze the app’s behavior when calling this endpoint 
without first analyzing the code. This way, you can see how much we can get just by using 
the profiler.

In figure 6.11, we use the Profiler tab since you already learned sampling in section 
6.1, but remember that in any real-world scenario, you start with sampling. We start the 
app, and, using cURL or Postman, we call the /products endpoint. The profiler shows 
us precisely what happens:

1 A method findPurchasedProductNames() that belongs to the PurchaseController 
class was called. 

2 This method delegated the call to the method getProductNamesForPurchases() 
in class PurchaseService. 

3 The method getProductNamesForPurchases() in ProductService calls findAll() 
in PurchaseRepository. 

4 The method getProductNamesForPurchases() in ProductService calls find-
Product() in ProductRepository 10 times.

Isn’t this amazing? Without even looking at the code, we’ve already learned so much 
about what’s going on. It’s like solving a puzzle without even opening the box! These 
details are super helpful because now you know exactly where to look in the code and 
what you’re likely to find. The profiler has given you class names, method names, and 
even how they all work together. Now, let’s jump into the code in listing 6.2 and see 
where all this is happening.

By using the profiler, we can understand that most things happen in the getProduct-
NamesForPurchases() method in the PurchaseService class, so that’s most likely the 
place we need to analyze. 



144 CHAPTER 6 Finding hidden problems using profiling techniques

4. After calling findAll() in PurchaseRepository, the
method calls findProduct() in ProductRepository 10 times.

1. The execution starts with the findPurchasedProductNames()
    method in the PurchaseController class.

2. The getProductNamesForPurchases()
    method in PurchaseService is called.

3. The method in the PurchaseService class 
    calls findAll() in PurchaseRepository.

Figure 6.11 When profiling the app, we observe that one of the methods is called 10 times. We now need to ask 

ourselves whether this is a design problem. Since we now have a big picture of the entire algorithm and we know 

what code is executed, we can also debug the app if we can’t figure out what happens.

Listing 6.2 The algorithm’s implementation in the PurchaseService class

@Service
public class PurchaseService {

  private final ProductRepository productRepository;
  private final PurchaseRepository purchaseRepository;

  public PurchaseService(ProductRepository productRepository,
                         PurchaseRepository purchaseRepository) {
    this.productRepository = productRepository;
    this.purchaseRepository = purchaseRepository;
  }

  public Set<String> getProductNamesForPurchases() {



 145Using a profiler to identify SQL queries an app executes

    Set<String> productNames = new HashSet<>();
    List<Purchase> purchases = purchaseRepository.findAll();  
    for (Purchase p : purchases) {  
      Product product = 
        productRepository.findProduct(p.getProduct());  
      productNames.add(product.getName());  
    }

    return productNames;  
  }
}

Observe the implemented behavior: the app fetches some data in a list and then iter-
ates over it to get more data from the database. Such an implementation typically 
indicates a design problem because you can usually reduce the execution of so many 
queries to one. Obviously, the fewer queries executed, the more efficient the app is. 

In this example, it’s effortless to retrieve the queries directly from the code. Since 
the profiler shows us exactly where they are, and the app is tiny, finding the queries 
isn’t a problem. But real-world apps are not small, and in many cases, it’s not easy to 
retrieve the queries directly from the code. But fear no more! You can use the profiler 
to retrieve all the SQL queries the app sends to a DBMS. You find this demonstrated 
in figure 6.12. Instead of selecting the CPU button, you select the JDBC button to start 
profiling for SQL queries. 

Click the JDBC button to start profiling for
SQL queries the app sends to a DBMS.

When the app sends a SQL query to a DBMS,
the profiler intercepts it and shows it in this list.
The SQL query appears complete, including the 
parameters’ values.

We can see that this query executed 10 
times. Usually, we want to avoid running
the same query multiple times to improve 
the app’s performance.

Figure 6.12 The profiler intercepts the SQL queries the app sends to the DBMS through the JDBC driver. This 

provides you with an easy way to get the queries, run them, observe what part of the codebase runs them, and 

know how many times a query is executed.

Gets all the 
purchases from 
the database 
table

Iterates through 
each product

Gets the details about 
the purchased product

Adds the 
product 
into a setReturns the 

set of products



146 CHAPTER 6 Finding hidden problems using profiling techniques

What the tool does behind the scenes is pretty simple: a Java app sends the SQL queries 
to a DBMS through a JDBC driver. The profiler intercepts the driver and copies the 
queries before the driver sends them to the DBMS. Figure 6.13 shows this approach. 
The result is fantastic, as you can simply copy and paste the queries into your database 
client, where you can run them or investigate their plan.

The app’s persistence layer uses
the JDBC driver to send the SQL
queries to the DBMS.

The JDBC driver sends the queries 
to the DBMS. The JDBC driver manages
the communication with the DBMS.

Because all the queries sent to the DBMS
go through the JDBC driver, it’s very
easy for a profiler to intercept them.

The app’s persistence layer is responsible 
for defining the SQL queries that need
to be sent to the DBMS.

Persistence
layer

JDBC
driver

DBMS
App

SELECT * FROM...

Figure 6.13 In a Java app, the communication with a relational DBMS is done through the JDBC driver. 

A profiler can intercept all method calls, including those of the JDBC driver, and retrieve the SQL queries 

the app sends to a DBMS. You can get the queries and use them in your investigations.

The profiler also shows how many times the app sent a query to the DBMS. In this 
case, the app sent the first query 10 times. This design is faulty since it repeats the same 
query multiple times and thus spends unnecessary time and resources. The developer 
who implemented the code tried to obtain the purchases and then get the product 
details for each purchase. But a straightforward query with a JOIN between the two 
tables (product and purchase) would solve the problem in one step. Fortunately, using 
VisualVM, you identified the cause, and you know exactly what to change to improve 
this app.

Figure 6.14 illustrates how to find the part of the codebase that sent the query. 
You can expand the execution stack and usually find the first method in the app’s 
codebase.



 147Using a profiler to identify SQL queries an app executes

Clicking the small + button shows
the full stack trace that caused the execution
of a certain SQL query.

In the stack trace, you find the methods
in the app’s codebase that caused the
execution of a certain query. This way,
you identify where the problem is in 
your app.

Figure 6.14 For each query, the profiler also provides the execution stack trace. You can use the stack trace to 

identify the part of your app’s codebase that sent the query.

The following listing shows the code whose call we identified using the profiler. Once 
you identify where the problem comes from, it’s time to read the code and find a way 
to optimize the implementation. In this example, everything could have been merged 
into one query. It may look like a silly mistake, but trust me, you’ll find these cases, 
even in larger apps implemented by powerful organizations.

Listing 6.3 The algorithm’s implementation in the ProductService class

@Service
public class PurchaseService {

  // Omitted code

  public Set<String> getProductNamesForPurchases() {



148 CHAPTER 6 Finding hidden problems using profiling techniques

    Set<String> productNames = new HashSet<>();
    List<Purchase> purchases = purchaseRepository.findAll();  
    for (Purchase p : purchases) {  
      Product product = productRepository.findProduct(p.getProduct());  
      productNames.add(product.getName());
    }
    return productNames;
  }
}

Example da-ch6-ex2 uses JDBC to send the SQL queries to a DBMS. The app has the 
SQL queries directly in the Java code (listing 6.4) and in their native shape, so you 
may think that copying the queries directly from the code is not that difficult. But in 
today’s apps, you’ll encounter native queries in the code less often. Nowadays, many 
apps use frameworks such as Hibernate (the most-used Java Persistence API [JPA] 
implementation) or Java Object Oriented Querying (JOOQ), and the native queries 
are not directly in the code. (You can find more details about JOOQ on their GitHub 
repository here:  https://github.com/jOOQ/jOOQ). If you’d like to explore the Java 
persistence layer in more depth using mainstream technologies, I also recommend 
Java Persistence with Spring and Hibernate by Cătălin Tudose (Manning, 2023).

Listing 6.4 A repository using native SQL queries 

@Repository
public class ProductRepository {

  private final JdbcTemplate jdbcTemplate;

  public ProductRepository(JdbcTemplate jdbcTemplate) {
    this.jdbcTemplate = jdbcTemplate;
  }

  public Product findProduct(int id) {
    String sql = "SELECT * FROM product WHERE id = ?";  
    return jdbcTemplate.queryForObject(sql, new ProductRowMapper(), id);
  }
}

6.3.2 Using the profiler to get the SQL queries generated by a framework

Let’s look at something even more extraordinary. To further prove the usefulness of 
a profiler in investigating SQL queries, let’s review project da-ch6-ex3. From an algo-
rithm point of view, this project does the same thing as the previous one: it returns the 
name of the purchased products. I intentionally kept the same logic to simplify the 
example and make it comparable.

The next code fragment shows the definition of a Spring Data JPA repository. The 
repository is a simple interface, and you don’t see the SQL queries anywhere. With 
Spring Data JPA, the app generates the queries behind the scenes based on either the 

The app gets a list of all products.

Iterates through each product

Gets the product details

A native SQL query the 
app sends to the DBMS

https://github.com/jOOQ/jOOQ


 149Using a profiler to identify SQL queries an app executes

method’s names or on a particular way of defining the queries, called Java Persistence 
Query Language (JPQL), which is based on the app’s objects. Either way, there’s no sim-
ple way to copy and paste the query from the code.

Some frameworks generate the SQL queries behind the scenes based on the code 
and configurations you write. In these cases, it’s more challenging to get the executed 
queries. But a profiler can help you by extracting them from the JDBC driver before 
they are sent to the DBMS:

public interface ProductRepository 
    extends JpaRepository<Product, Integer> { 
}

The profiler comes to the rescue. Since the tool intercepts the queries before the app 
sends them to the DBMS, we can still use it to find exactly what queries the app uses. 
Start app da-ch6-ex3 and use VisualVM to profile the SQL queries the way we did for 
the previous two projects. 

Figure 6.15 shows what the tool displays when profiling the /products endpoint call. 
The app sent two SQL queries. Notice that the aliases in the query have strange names 
because the queries are framework generated. Also notice that even if the logic in the 
service is the same and the app calls the repository method 10 times, the second query is 
executed only once because Hibernate optimizes the execution where it can. Now you 
can copy and investigate this query with a SQL development client if needed. In many 
cases, investigating a slow query requires running it in a SQL client to detect which part 
of the query causes difficulty for the DBMS.

The profiler intercepted the queries as they were 
sent to the DBMS by the JPA implementation.
You can paste them in a DB client if you need to 
investigate them further.

Note that even if the method is called 10 times 
in this example, the query is sent just once to 
the DBMS. Frameworks such as Hibernate 
optimize the app’s behavior.

Figure 6.15 Even when working with a framework, the profiler can still intercept the SQL queries. This makes your 

investigation a lot easier because you can’t copy the query directly from the code like when using JDBC and native 

queries.



150 CHAPTER 6 Finding hidden problems using profiling techniques

The query is executed only once even though the method is called 10 times. Do per-
sistence frameworks usually do these kinds of tricks? Although they are smart, some-
times, what they do behind the scenes can add complexity. Also, someone who does 
not properly understand the framework could write code that causes problems. This 
is another reason to use a profiler to check the queries the framework generates and 
ensure the app does what you expect.

The problems I mostly encounter with frameworks that require investigation are

¡	Slow queries causing latencies—Easy to spot using a profiler to examine the execu-
tion time

¡	Multiple unneeded queries generated by the framework (usually caused by what developers 

call the N + 1 query problem)—Easy to spot using a profiler to determine the num-
ber of executions of a query

¡	Long transaction commits generated by poor app design—Easy to spot using CPU 
profiling

When a framework needs data from multiple tables, it usually knows to compose one 
query and get all the data in one call. However, if you don’t use the framework correctly, 
it may take just part of the data with an initial query and then, for each record initially 
retrieved, run a separate query. So, instead of running just one query, the framework 
will send an initial query plus N others (one for each of the N records retrieved by the 
first); we call this an N + 1 query problem, which usually creates significant latency by exe-
cuting many queries instead of just one.

Most developers are tempted to investigate such problems using logs or a debugger. 
But in my experience, neither one is the best option for identifying the problem’s root 
cause. 

The first problem with using logs for this type of case is that it’s challenging to iden-
tify which query causes a problem. In real-world scenarios, the app may send dozens of 
queries—some of these multiple times, and in most cases, they are long and use a large 
number of parameters. With a profiler, which displays all the queries in a list with their 
execution time and the number of executions, you can almost instantaneously spot the 
problem. The second problem is that, even if you identify the potential query causing 
the undesired behavior (say, while monitoring logs, you observe that the app takes a 
long time to execute a given query), it’s not straightforward to take the query and run it. 
In the log, you find parameters separated from the query. 

You can configure your app to print the queries generated by Hibernate in the logs 
by adding some parameters to the application properties of the da-ch6-ex3 file: 

spring.jpa.show-sql=true
spring.jpa.properties.hibernate.format_sql=true
logging.level.org.hibernate.type.descriptor.sql=trace

Beware that you’ll have to configure the logging differently, depending on the technol-
ogies used to implement the app. In the example provided with the book, we use Spring 
Boot and Hibernate. The next listing shows how the app prints the query in the logs.



 151Using a profiler to identify SQL queries an app executes

Listing 6.5 Logs showing the native queries Hibernate sends

Hibernate: 
    Select  
        product0_.id as id1_0_0_,    
        product0_.name as name2_0_0_    
    from
        product product0_ 
    where
        product0_.id=?

2021-10-16 13:57:26.566 TRACE 9512 --- [nio-8080-exec-2]  
➥o.h.type.descriptor.sql.BasicBinder      : binding parameter [1] as  
➥[INTEGER] - [1]  
2021-10-16 13:57:26.568 TRACE 9512 --- [nio-8080-exec-2]  
➥o.h.type.descriptor.sql.BasicExtractor   : extracted value ([name2_0_0_] :  
➥[VARCHAR]) - [Chocolate]  

The logs show us the query and give us both the query’s input and output. But you 
need to bind the parameter values to the query to run it separately. And when multi-
ple queries are logged, looking for what you need can be really frustrating. Logs also 
don’t show which part of the app runs the query, making your investigation even more 
challenging.

I recommend always starting with a profiler when investigating
latency issues. Your first step should be sampling. When you
suspect SQL query-related problems, continue profiling for JDBC.
Then, problems will be easy understand, and you can use 
a debugger or the logs to confirm your speculations as needed.

If you ever find yourself staring at logs with queries you don’t fully understand, turn-
ing to AI can be a game changer. An AI assistant can help you refactor the query into 
a more readable format and bind the necessary parameters seamlessly (figure 6.16). 
Additionally, you can use AI to generate alternative queries with different parameter 
values, which can be particularly useful for testing or exploring various scenarios. 

6.3.3 Using the profiler to get programmatically generated SQL queries

To better understand how a profiler works, let’s look at another example—this time 
involving queries created by the application itself, using code. In this example, we 
investigate a performance problem caused by a query that Hibernate generates behind 
the scenes. 

The query generated by the app

The first parameter’s value

The second parameter’s value



152 CHAPTER 6 Finding hidden problems using profiling techniques

You can request your AI assistant to help you
bind the parameters' values and even refactor
the query for better readability.

Figure 6.16 An AI assistant can be a powerful tool for extracting and refactoring data from logs. In this 

example, I used ChatGPT to transform a partial or complex query into a complete, well-structured, and 

more readable version, making troubleshooting and analysis much easier.

The app doesn’t use plain SQL or JPQL (Java Persistence Query Language) to write 
its queries directly. Instead, it uses something called criteria queries, which is a more 
programmatic way to define what data the app wants from the database, using Java 
code instead of writing the query as a string. The benefit is type safety and flexibility, 
but it also makes it harder to see what the actual SQL looks like. That’s why a profiler is 
so helpful—it can reveal the real SQL being executed and help you understand where 
the performance problem is coming from.

As shown in listing 6.6, which presents the ProductRepository class reimplemented 
with a criteria query, this approach is more verbose. It’s usually considered more dif-
ficult and leaves more room for mistakes. The implementation in project da-ch6-ex4 
contains a mistake, which can cause significant performance problems in real-world 
apps. Let’s see if we can find this problem and determine how the profiler can help us 
understand what’s wrong.



 153Using a profiler to identify SQL queries an app executes

Listing 6.6 The repository defined with a criteria query

public class ProductRepository {

  private final EntityManager entityManager;

  public ProductRepository(EntityManager entityManager) {
    this.entityManager = entityManager;
  }

  public Product findById(int id) {
    CriteriaBuilder cb = entityManager.getCriteriaBuilder();
    CriteriaQuery<Product> cq = cb.createQuery(Product.class);  

    Root<Product> product = cq.from(Product.class);  
    cq.select(product);  

    Predicate idPredicate = 
      cb.equal(cq.from(Product.class).get("id"), id);  
    cq.where(idPredicate);  

    TypedQuery<Product> query = entityManager.createQuery(cq);
    return query.getSingleResult();  
  }
}

We use JDBC profiling to intercept the queries the app sends to the DBMS. You can see 
that it contains a cross join between the product table and itself (figure 6.17). This is a 
huge problem! With the 10 records in our table, we don’t observe anything suspicious 
here. But in a real-world app, where the table would have more records, this cross join 
would create huge latencies and eventually even wrong output (duplicated rows). Sim-
ply intercepting the query with VisualVM and reading it points to the problem.  

The query contains a useless cross
join. In a real-world app, this can
cause performance problems and
even incorrect output behavior.

Figure 6.17 The profiler can intercept any SQL query sent to the DBMS through the JDBC driver. Here, 

we spot a problem in the generated query—an unneeded cross join that causes performance problems.

Creates a new query

Specifies that the 
query selects products

Selects the products Defines the condition that 
becomes part of the where 
clause on the next line

Defines the 
where clause

Runs the query and 
extracts the result



154 CHAPTER 6 Finding hidden problems using profiling techniques

The next question is, “Why did the app generate the query this way?” I like the state-
ment about JPA implementations, such as Hibernate: “The excellent thing is that they 
make the query generation transparent and minimize work. The bad thing is that they 
make the query generation transparent, making the app more prone to errors.” When 
working with such frameworks. I generally recommend that developers profile the 
queries as part of the development process to discover such problems up front. Using 
a profiler is more for auditing purposes than finding problems, but doing so is a good 
safety measure.

In the following example, I intentionally introduced this tiny error with a significant 
effect. I called the from() method twice, instructing Hibernate to make a cross join. 

Listing 6.7 The cause of the cross-join problem

public class ProductRepository {

  // Omitted code

  public Product findById(int id) {
    CriteriaBuilder cb = entityManager.getCriteriaBuilder();
    CriteriaQuery<Product> cq = cb.createQuery(Product.class);   

    Root<Product> product = cq.from(Product.class);  
    cq.select(product);     

    Predicate idPredicate = cb.equal(
      cq.from(Product.class).get("id"), id);   
    cq.where(idPredicate);     

    TypedQuery<Product> query = entityManager.createQuery(cq);
    return query.getSingleResult();     
  }
}

Solving this problem is easy: use the product instance instead of calling the Criteria 
-Query from() method the second time, as in the following listing.

Listing 6.8 Correcting the cross-join problem

public class ProductRepository {

  // Omitted code

  public Product findById(int id) {
    CriteriaBuilder cb = entityManager.getCriteriaBuilder();
    CriteriaQuery<Product> cq = cb.createQuery(Product.class);   

    Root<Product> product = cq.from(Product.class);      
    cq.select(product);     

    Predicate idPredicate = cb.equal(product.get("id"), id);  

Calls the CriteriaQuery 
from() method once

Calls the CriteriaQuery 
from() method again

Uses the 
already existing 
Root object



 155Summary

    cq.where(idPredicate);     

    TypedQuery<Product> query = entityManager.createQuery(cq);
    return query.getSingleResult();     
  }
}

Once you make this small change, the generated SQL query will no longer contain 
the unneeded cross join (figure 6.18). Still, the app runs the same query multiple 
times, which is not optimal. The algorithm the app runs should be refactored to get 
the data, preferably using only one query, same as we did earlier for the example in 
listing 6.3.

The cross join disappeared, and 
the query now runs faster.

Of course, overall the app is still 
not OK, since it repeats the execution 
of the same query 10 times.

Figure 6.18 By eliminating the supplementary select() method call, the cross join disappeared. However, 

the overall algorithm for this app should be revised, since it still runs the same query multiple times, which is not 

optimal.

Summary

¡	A profiler intercepts the app’s execution and provides essential details about the 
code in execution, such as the execution stack trace for each thread, how long 
it takes for each method to execute, and how many times a certain method was 
called.

¡	When investigating latency problems, the first step to using a profiler is sampling, 
which is a way for the profiler to intercept the executing code without getting 
many details. Sampling is less resource consuming and allows seeing the big pic-
ture of execution. 



156 CHAPTER 6 Finding hidden problems using profiling techniques

¡	Sampling provides you with three essential details:

– What code executes—When investigating a problem, you sometimes don’t know 
what part of the code executes, and you can find this aspect by sampling.

– Total execution time of every method—This detail helps identify what part of the 
code causes potential latency problems.

– Total CPU execution time—This detail helps you identify whether your code 
spends the execution time working or waiting for something.

¡	Sometimes, sampling is enough to understand where a problem comes from. But 
in many cases, you need more details. You can get these details by profiling the 
execution. 

¡	Profiling is a resource-consuming process. With a real-world app, it’s almost always 
impossible to profile the whole codebase. For this reason, when profiling for 
details, you should filter specific packages and classes on which you want to focus 
your investigation. You can usually determine what part of the app to focus on by 
sampling the execution first.

¡	An essential detail you get by profiling is the number of method invocations. 
When sampling, you know the total time a method spends executing, but not 
how often it was called. This aspect is important for identifying a method that is 
slow or wrongly used.

¡	You can also use a profiler to get SQL queries the app sends to a DBMS. The pro-
filer intercepts every query, regardless of the technology used to implement the 
app’s persistence layer. This feature is invaluable when investigating slow queries 
for apps that use frameworks (such as Hibernate) to work with a database.



157

7Investigating locks 
in multithreaded 

architectures

This chapter covers

¡	Monitoring an application’s threads

¡	Identifying thread locks and what causes them

¡	Analyzing threads that are waiting

In this chapter, we dive into the wild world of multithreaded architectures. If you’ve 
ever felt like threading is one of the trickiest parts of development, you’re not alone. 
Even the best developers sometimes stare at their code, wondering why their threads 
behave like unsupervised toddlers. And just when you think you’ve got it working, 
making code performant is an entirely new level of pain.

But don’t worry! The techniques discussed in this chapter will give you much-
needed visibility into the execution of multithreaded apps, helping you pinpoint 
problems before they become production nightmares.

To get the most out of this chapter, you need a solid grasp of Java’s threading 
basics—things such as thread states and synchronization. If you need a refresher, 
head over to appendix D. It won’t make you a concurrency guru overnight (that 
would require an entire bookshelf, plus some meditation), but it’ll arm you with 
enough knowledge to tackle the troubleshooting ahead.



158 CHAPTER 7 Investigating locks in multithreaded architectures

7.1 Monitoring threads for locks

This section discusses thread locks and how to analyze them to find eventual problems 
or opportunities to optimize an app’s execution. Thread locks are caused by different 
thread synchronization approaches, usually implemented to control the flow of events 
in a multithreaded architecture. Examples include

¡	A thread wants to prevent other threads from accessing a resource while it’s 
changing it.

¡	A thread needs to wait for another thread to finish or reach a certain point in its 
execution before being able to continue its work.

DEFINITION A thread lock is a mechanism that prevents multiple threads from 
accessing the same resource simultaneously. It helps avoid conflicts but can 
also cause problems if threads get stuck waiting for each other.

Thread locks are necessary; they help an app control threads. But implementing 
thread synchronization leaves a lot of room for mistakes. Wrongly implemented locks 
may cause app freezes or performance problems. We need to use profiling tools to 
ensure our implementations are optimal and to make an app more efficient by mini-
mizing the lock time.

In this section, we use a small application (project da-ch7-ex1) that implements a 
simple multithreaded architecture. We also use a profiler to analyze the locks during 
the app’s execution. We want to find out if the threads are locked and how they behave:

¡	Which thread locks another

¡	How many times a thread is locked

¡	The time at which a thread pauses instead of executing

These details help us understand whether the app execution is optimal and whether 
there are ways we can improve our app’s execution. The app we use for our example 
implements two threads that run 
concurrently: the producer and the 
consumer. The producer generates 
random values and adds them to 
a list instance, and the consumer 
removes values from the same col-
lection used by the producer (fig-
ure 7.1).

Let’s follow the app implemen-
tation in listings 7.1, 7.2, and 7.3 to 
see what to expect when investigat-
ing the execution. In listing 7.1, you 
find the Main class, which starts the 
two thread instances. I made the 

ArrayList

Consumer

(thread)
Producer

(thread)

Add 
values

Remove
values

Figure 7.1 The app starts two threads that we refer to 

as “the producer” and “the consumer.” Both threads use 

a common resource: they change a list instance of type 

ArrayList. The producer generates random values and 

adds them to the list, while the consumer concurrently 

removes the values added by the producer.



 159Monitoring threads for locks

app wait 10 seconds before starting the threads to allow us some time to start the pro-
filer and observe the entire threads’ timelines. The app names the threads _Producer 
and _Consumer so we can easily identify them when working with the profiler. 

Listing 7.1 App’s Main method that starts two threads

public class Main {

  private static Logger log = Logger.getLogger(Main.class.getName());

  public static List<Integer> list = new ArrayList<>();

  public static void main(String[] args) {
    try {
      Thread.sleep(10000);     
    
      new Producer("_Producer").start();    
      new Consumer("_Consumer").start();      
    } catch (InterruptedException e) {
      log.severe(e.getMessage());
    }
  }
}

Listing 7.2 shows the consumer thread’s implementation. The thread iterates over a 
block of code one million times (this number should be enough for the app to run 
a few seconds and allow us to use the profiler to take some statistics). During every 
iteration, the thread uses a static list instance declared in the Main class. The consumer 
thread checks whether the list has values and removes the first value on the list. The 
whole block of code implementing the logic is synchronized, using the list instance 
itself as a monitor. The monitor won’t allow multiple threads to enter simultaneously 
in the synchronized blocks it protects.

Listing 7.2 The consumer thread’s definition

public class Consumer extends Thread {

  private Logger log = Logger.getLogger(Consumer.class.getName());

  public Consumer(String name) {
    super(name);
  }

  @Override
  public void run() {
    for (int i = 0; i < 1_000_000; i++) {  

      synchronized (Main.list) {   
        if (Main.list.size() > 0) {    
          int x = Main.list.get(0);      
          Main.list.remove(0);           

Waits 10 seconds, in the beginning, to 
let the programmer start the profiling

Starts a producer thread

Starts a consumer thread

Iterates one million times over the 
consumer’s synchronized block of code

Synchronizes the block of code 
using the static list defined in 
the Main class as a monitor

Tries to consume a value 
only if the list is not empty

Consumes the first value in 
the list and removes that value



160 CHAPTER 7 Investigating locks in multithreaded architectures

          log.info("Consumer " +  
                Thread.currentThread().getName() + 
                " removed value " + x);
        }
      }

    }
  }
}

Listing 7.3 presents the producer’s thread implementation, which is pretty similar to 
the consumer’s. The producer also iterates one million times over a block of code. For 
each iteration, the producer generates a random value and adds it to a list statically 
declared in the Main class. This list is the same one from which the consumer removes 
the values. The producer adds new values only if the list is shorter than 100. 

Listing 7.3 The producer thread’s definition

public class Producer extends Thread {

  private Logger log = Logger.getLogger(Producer.class.getName());

  public Producer(String name) {
    super(name);
  }

  @Override
  public void run() {
    Random r = new Random();
    for (int i = 0; i < 1_000_000; i++) { 
      synchronized (Main.list) {     
        if (Main.list.size() < 100) {     
          int x = r.nextInt();       
          Main.list.add(x);          
          log.info("Producer " +      
                Thread.currentThread().getName() + 
                " added value " + x);
        }
      }
    }
  }
}

The producer’s logic is also synchronized using the list as a monitor. This way, only 
one of the threads—the producer or the consumer—can change this list at a time. 
The monitor (the list instance) allows one of the threads to enter its logic, keeping the 
other thread waiting at the beginning of its block of code until the other thread fin-
ishes the execution of the synchronized block (figure 7.2).

Can we find this app’s behavior and other execution details using a profiler? 
Absolutely! Unless you prefer the ancient art of staring at code until the bugs reveal 

Logs the removed value

Iterates one million times over the 
producer’s synchronized block of code

Synchronizes the block of code 
using the static list defined in 
the Main class as a monitor

Adds a value only if the list 
has under 100 elements

Generates a new random 
value and adds it to the list

Logs the value 
added to the list



 161Monitoring threads for locks

Consumer

(thread)

Producer

(thread)

@Override
public void run() {
Random r = new Random();
for (int i = 0; i < 1_000_000; i++) {

synchronized (Main.list) { 
if (Main.list.size() < 100) { 
int x = r.nextInt(); 
Main.list.add(x); 
log.info("Producer " + 

Thread.currentThread().getName() + 
" added value " + x);

}
}

}
}

@Override
public void run() {
for (int i = 0; i < 1_000_000; i++) { 

synchronized (Main.list) { 
if (Main.list.size() > 0) { 

int x = Main.list.get(0); 
Main.list.remove(0); 
log.info("Consumer " + 

Thread.currentThread().getName() +
" removed value " + x);

}
}

}
}

synchronized (Main.list) { 
if (Main.list.size() < 100) { 
int x = r.nextInt(); 
Main.list.add(x); 
log.info("Producer " + 

Thread.currentThread().getName() + 
" added value " + x);

}
}

While the producer executes the synchronized block (shaded rectangle),
the consumer cannot access its synchronized block. The consumer waits
for the monitor (list) to allow it to enter its synchronized block.

Figure 7.2 Only one thread at a time can be in the synchronized block. Either the producer executes the logic 

defined in its run() method or the consumer executes its logic.

themselves out of sheer pity. In a real-world app, things are rarely simple. Threads 
weave and tangle like holiday lights stuffed in a box, and reading the code alone won’t 
always tell you what’s really going on. That’s where a profiler comes in.

Remember that the projects we use in this book 
are simplified and tailored to the purpose of our 
discussion. Don’t take them as best practices 
and apply them as-is in real-world apps.

Let’s use VisualVM to see what this process looks like in the Threads monitoring tab 
(figure 7.3). Notice that the colors (shading) alternate since most of the code for each 
thread is synchronized. In most cases, either the producer is running and the con-
sumer waits, or the consumer is running and the producer waits.

These two threads may rarely execute code simultaneously. Since there are instruc-
tions outside the synchronized block, the two threads can run simultaneously to exe-
cute the code. An example of such code is the for loop, which is defined outside the 
synchronized block in both cases. 



162 CHAPTER 7 Investigating locks in multithreaded architectures

You can see the two threads (consumer   
and producer) executing on the timeline. 

The timelines show alternate colors to indicate  
when the thread is running and when it’s waiting.

Note that sometimes the threads run concurrently. They can run at the same
time when they execute instructions that are outside the synchronized blocks.

Figure 7.3 In most cases, the threads will sequentially lock each other and execute their  

synchronized blocks of code. The two threads can still concurrently execute the instructions,  

which are outside the synchronized block.

A thread can be blocked by a synchronized block of code, it can be waiting for another 
thread to finish its execution (joining), or it can be controlled by a blocking object. In 
cases where the thread is blocked and it can’t continue its execution, we say the thread 
is locked. Figure 7.4 shows the same information presented in JProfiler, which works 
with the approaches we used. 

The executing threads are displayed on a timeline with alternate   
colors to mark when they are running and when they are blocked.

Figure 7.4 You can use other profilers instead of VisualVM. Here, you can see the way thread  

timelines are displayed in JProfiler.



 163Analyzing thread locks

7.2 Analyzing thread locks

When working with an app architecture that uses thread locks, we want to ensure that 
the app is optimally implemented. For that, we need a way to identify the locks to find 
how many times threads are blocked and the length of the lock time. We also need 
to understand what causes a thread to wait in given scenarios. Can we collect all this 
information somehow? Yes, a profiler can tell us everything we need to know about the 
thread’s behavior.

We’ll continue using the same steps you learned in chapter 6 for profiling 
investigations:

1 Use sampling to understand what happens during execution at a high level and 
identify where to go into further detail.

2 Use profiling (instrumentation) to get the details on a specific subject we want to 
investigate.

Figure 7.5 shows the results of sampling the app’s execution. When looking at the exe-
cution times, we observe that the total execution time is longer than the total CPU 
time. In chapter 6, you saw a similar situation, and we figured out that when this hap-
pens, it means the app waits for something.

For both threads, the total CPU time is 
much smaller than the total execution time. 
This indicates that the method was waiting 
for something.

Figure 7.5 When the total CPU time is shorter than the total execution time, it means the app is 

waiting for something. We want to figure out what the app waits for and if this time can be optimized.



164 CHAPTER 7 Investigating locks in multithreaded architectures

Figure 7.6 shows something interesting: the method waits, but as shown in the sam-
pling data, it doesn’t wait for something else. It simply seems to wait on itself. The row 
marked as “Self time” tells us how much time it took the method to execute. Notice 
that the method spent only about 700 ms CPU time as self time but a much larger value 
of 4903 ms as total execution self time. 

Note that the method doesn’t wait for something 
external. Its self-execution time is very long, even 
though the CPU time is short.

Figure 7.6 The method doesn’t wait for something, but instead it waits for itself. We observe that its 

self-execution time is longer than the total CPU time, which usually means that the thread is locked. The 

thread could have been blocked by another thread.

In chapter 6, we worked on an example in which the app was waiting for an external 
service to respond. The app sent a call and then waited for the other service to reply. 
In that case, the reason the app was waiting made sense, but here, the situation looks 
peculiar. What could cause such behavior?

You may wonder, “How can a method be waiting for itself? Is it too lazy to run?” When 
we observe such behavior in which a method waits but not for something external, its 
thread is likely locked. To get more details about what locks the thread, we need to ana-
lyze the method further by profiling the execution.

Sampling didn’t answer all our questions. We can see the methods are waiting, 
but we don’t know what they are waiting for. We need to continue with profiling 



 165Analyzing thread locks

(instrumentation) to get more information. In VisualVM, we use the Profiler tab to 
start lock monitoring. To start profiling for locks, use the Locks button, as presented in 
figure 7.7, which shows the profiling result. The button appears disabled in the figure 
because the process was already stopped at the end of the profiling session.

We can see that the threads have been
blocked a large number of times. Each thread
indicates over 3,600 locks during the execution.

To start profiling for data about locks,
use the Locks button. Once the session 
ends, the button becomes disabled.

Figure 7.7 To start profiling for locks, use the Locks button in the Profiler tab. At the end of the profiling 

session, we observe more than 3,600 locks on each of our producer and consumer threads.

For each thread, we can go into detail by selecting the small plus sign (+) to the left of 
the thread name. Now, you can get details about each monitor object that affected the 
thread’s execution. The profiler shows details about the threads blocked by another 
thread as well as what blocked the thread.

These details are shown in figure 7.8. We see that the producer thread was blocked 
by a monitor instance of type ArrayList. The object reference (4476199c in the figure) 
helps us uniquely identify the object instance to figure out whether the same monitor 
affected multiple threads. It also allows us to precisely identify the relationship between 
the threads and the monitor.

What we find in figure 7.8 can be read this way:

¡	A monitor instance blocked the thread named _Producer with reference 
4476199c—   an instance of type ArrayList.

¡	The _Consumer thread blocked the _Producer thread 3,698 times by acquiring the 
monitor 4476199c.



166 CHAPTER 7 Investigating locks in multithreaded architectures

¡	The producer thread also held (owned) the monitor with reference 4476199c for 
3,699 times, or the thread _Producer blocked the thread _Consumer 3,699 times.

Here, we find the objects (monitors) that 
caused the thread to be blocked as well as 
the monitors that the thread acquired.

In this case, we see that the same object 
(an instance of type ArrayList) that
blocked this thread was also held by it.

Note that the number of locks the producer
caused for the consumer is equal to the
total number of times the consumer was
locked, meaning only the producer locks
the consumer.

Figure 7.8 The profiling results give us a good understanding of what creates locks and what is affected 

by them. We see that there’s only one monitor the producer thread works with. Also, the consumer 

thread blocked the producer thread 3,698 times using the monitor. Using the same monitor instance, the 

producer blocked the consumer for the same number of times: 3,698.

Figure 7.9 extends the perspective to the consumer thread. You find that all data cor-
relates. Throughout the whole execution, only one monitor instance, an instance of 
type ArrayList, locks one of the threads or another. The consumer thread ends up 
being locked 3,699 times, while the producer thread executed a block synchronized by 
the ArrayList object. The producer thread is blocked 3,698 times, while the consumer 
thread executed a block synchronized with the ArrayList monitor.



 167Analyzing thread locks

Remember that you won’t necessarily get the same numbers
when you execute the app on your computer. In fact, it’s very 
likely you won’t, even when you repeat the execution on the 
same computer. Although you may get different values, overall, 
you can make similar observations.

 

Both threads (producer and consumer) held and
were blocked by the same monitor. This shows
that the threads alternately block each other.

Figure 7.9 Both threads use the same monitor to block each other. While one thread executes the synchronized 

block with an ArrayList instance monitor, the other waits. This way, one thread is locked for 3,698 times and the 

other for 3,698.



168 CHAPTER 7 Investigating locks in multithreaded architectures

For this demonstration, I used VisualVM because it’s free and I’m comfortable with it. 
However, you can also apply this approach to other tools, such as JProfiler.

After attaching JProfiler to a process (as discussed in chapter 6), make sure you set 
the JVM exit action to Keep the VM Alive for Profiling, as presented in figure 7.10.

When you attach JProfiler to a process,
configure the JVM exit action to keep the VM 
alive so that you can still see the statistics
after the profiled app ends its execution.

Figure 7.10 When starting the profiling session with JProfiler, remember to set the JVM action to “Keep 

the VM alive for profiling” so that you can see the profiling results after the app finishes its execution.

JProfiler offers multiple perspectives for visualizing the same details we obtained with 
VisualVM, but the results are identical. Figure 7.11 shows the Monitor History view 
report for locks.

In most cases, you don’t need such a detailed report. I prefer to group the events 
(locks) either by threads or, less often, by the monitor. In JProfiler, you can group the 
events as presented in figure 7.12. From Monitor Usage Statistics in the left menu, you 
can choose to group the events either by threads involved or the monitors that caused 
the locks. JProfiler even has a more exotic option in which you can group the locks by 
the monitor objects’ classes. 



 169Analyzing thread locks

JProfiler shows a complete history of the lock 
events: the lock duration, the monitor used, the 
thread that acquired the lock (owning thread), 
the thread that was blocked (waiting thread), 
and the exact time of the event.

To access the lock history in JProfiler,
select Monitor History under Monitors
& Locks in the left menu.

Figure 7.11 JProfiler shows a detailed history of all the locks the app’s threads encountered. The  

tool displays the exact time of the event, the event duration, the monitor that caused the lock, and  

the threads involved.

In JProfiler, you can use the 
Monitor Usage Statistics section 
to get information about locks 
grouped by affected threads or by 
the monitor that caused the lock.

To get statistics of all the 
intercepted lock events
grouped by affected threads, 
select Group by Threads
and then click OK.

Figure 7.12 You can group the lock events by threads involved or by monitors using the Monitor Usage 

Statistics section. You can use the aggregated view to understand which threads are more affected and 

what affects them or which monitor causes the threads to stop more often.



170 CHAPTER 7 Investigating locks in multithreaded architectures

If you group the lock events by involved threads, you get a statistic similar to the one 
provided by VisualVM. Each thread is locked over 3,600 times during the app’s execu-
tion (figure 7.13).

If we group the lock events by affected threads,
we can see the block count for each thread.
Just like in VisualVM, we see a large number 
of locks for each thread (over 3,600).

Figure 7.13 Grouping the lock events by threads provides you an aggregated view showing how many times each 

of the threads locked during its execution.

Is the execution optimal? To answer this question, we need to know the app’s purpose. In 
our case, the app serves as a simple, demonstrative example, and since it lacks a real pur-
pose, it’s challenging to fully assess whether the results suggest the app can be improved. 

But because the app uses two threads that rely on a common resource (the list), if we 
consider the fact that they can’t work simultaneously with the shared resource, then we 
expect the following:

¡	The total execution time should be the sum of the CPU execution times (because 
the threads can’t work simultaneously, they will mutually exclude each other), 
approximately.

¡	The threads should have a similar time allocated for execution and should be 
locked approximately the same number of times. If one of the threads is pre-
ferred, the other can end up in starvation—the situation in which a thread is 
blocked in an unfair way and doesn’t get to execute.



 171Analyzing waiting threads

If you look again at the thread analysis, you can see that the two threads are fairly 
treated. They indeed get locked a similar number of times, and they mutually exclude 
each other but have a similar active (CPU time) execution. This is optimal, and there’s 
not much we can do to enhance it. But remember that it depends on what the app 
does and our expectations about how should it execute.

Here’s an example of a different scenario in which the app would not necessarily be 
considered optimal. Suppose that you had an app that was processing values. Say that 
the producer needed more time to add each value to the list than the consumer needed 
to process the value afterward. In a real-world app, something like this can happen: the 
threads don’t need to have equivalent difficult “work” to do. 

In such a case, you can enhance the app: 

¡	Minimize the number of locks for the consumer and make it wait to allow the 
producer work more. 

¡	Define more producer threads or make the consumer thread read and process 
the values in batches (multiple at a time). 

Everything depends on what the app does, but understanding what you can do to make 
it better starts with analyzing the execution. Because you never have one approach you 
can apply to all apps, I always recommend developers use a profiler and analyze the 
changes in app execution when they implement a multithreaded app.

Remember that in chapter 6, we also discussed about exporting the results of your 
profiling to ask help from your favorite AI assistant. You can do the same here to get 
some ideas of what’s going on, especially if you find yourself investigating large num-
bers of details. This app we use in the current chapter is just a small example and may 
not seem complex to understand. I designed it this way to ensure we have a smooth dis-
cussion over the topics you learn about in this chapter. But real-world apps are more like 
a jungle. Thus, having some AI-powered tool helping with deciphering what’s going on 
might save you time.

Remember back in chapter 6 when we talked about exporting your profiling results 
to get a second opinion from your favorite AI assistant? Well, guess what? You can do the 
same here! If you ever find yourself drowning in a sea of cryptic logs and spaghetti-like 
stack traces, handing some of that mess over to an AI might just save your sanity.

That’s where AI-powered tools can come in handy. They act like a digital machete, 
helping you cut through chaos and make sense of what’s happening. So, don’t hesitate 
to get some machine-assisted wisdom. It might just save you from hours of debugging 
despair!

7.3 Analyzing waiting threads

In this section, we analyze threads that are waiting to be notified. Waiting threads are 
different than locked threads. A monitor locks a thread for the execution of a synchro-
nized block of code. In this case, we don’t expect the monitor to execute a specific 
action to tell the blocked thread to continue its execution. However, a monitor can 



172 CHAPTER 7 Investigating locks in multithreaded architectures

cause the thread to wait for an indefinite amount of time and later decide when to 
allow the thread to continue its execution. Once a monitor makes a thread wait, the 
thread will return to execution only after being notified by the same monitor. The abil-
ity to make a thread wait until being notified provides great flexibility in controlling 
threads, but it can also cause problems when not used correctly. 

To visualize the difference between locked and waiting threads, take a look at fig-
ure 7.14. Imagine the synchronized block is a restricted area managed by a police offi-
cer. The threads are cars. The police officer allows just one car to run at a time in the 
restricted area (the synchronized block). So, we say the cars that are unable to move are 
locked. The police officer can also manage the cars running in the restricted area. The 
police officer can order a car running inside this area to wait until they are explicitly 
ordered to continue; we say they are waiting.

Police officer to the cars outside the synchronized
block: “You there! You have to wait. Someone else
is currently executing the synchronized block.”

Police officer to the car inside the synchronized
block: “You there! You’ll have to wait until I say
you can continue your execution.”

synchronized( ) {

}

synchronized( ) {

}

Locked threads

Waiting threads

These threads are in a blocked state.
They cannot continue execution while 
another thread is running inside the
synchronized block. We say they are locked.

This thread runs inside the
synchronized block. The monitor
(police officer) won’t allow other
threads to go into the synchronized
block until this one steps out of it.

This thread runs inside the
synchronized block. The monitor
(police officer) pauses and moves
it to the blocked state. Following
the monitor’s actions, we say the
thread is waiting.

Figure 7.14 Locked versus waiting threads. A locked thread is blocked at the entrance of a 

synchronized block. The monitor won’t allow a thread to enter a synchronized block while another thread 

actively runs inside the block. A waiting thread is a thread that the monitor has explicitly set to the 

blocked state. The monitor can make any thread inside the synchronized block it manages wait. The 

waiting thread can continue its execution only after the monitor explicitly tells it that it can proceed.



 173Analyzing waiting threads

We’ll use the same application we analyzed earlier in this chapter and consider the fol-
lowing scenario: one of the developers working on the app thought about improving 
our producer–consumer architecture. Now, the consumer thread can’t do anything 
when the list is empty, so it just iterates multiple times over a false condition until the 
JVM makes it wait to allow a producer thread to run and add values to the list. The 
same thing happens when the producer adds 100 values to the list. The producer 
thread runs over a false condition until the JVM allows a consumer to remove some of 
the values.

Can we do something to make the consumer wait when it has no value to consume 
and make it run only when we know the list contains at least one value (figure 7.15)? 
Similarly, can we make the producer wait when there are already too many values in 
the list and allow it to run only when it makes sense to add other values? Would this 
approach make our app more efficient? 

Police officer to the car inside the synchronized block:
“You there! You are a consumer and the list is empty.
You have nothing to do. Take a break until I say that
you can continue!”

Police officer to the cars outside the synchronized block:
“One of you can go in the synchronized block now.”

Police officer to the parked car:
“The list is no longer empty,
so you can run again!”

synchronized( ) {

}

synchronized( ) {

}
Parked car

After a producer adds a value to the list . . .

Figure 7.15 Some of 

the cars are consumer 

threads, and others 

are producer threads. 

The police officer 

orders a consumer to 

wait if the list doesn’t 

have values that can 

be consumed, allowing 

producers to work and 

add values. Once the 

list contains at least 

a value that can be 

consumed, the officer 

orders the waiting 

consumer to continue 

its execution.



174 CHAPTER 7 Investigating locks in multithreaded architectures

We’ll modify the application to implement this new behavior, but—spoiler alert—it 
won’t make things any more efficient. In fact, quite the opposite! The execution will be 
less optimal.

At first glance, making threads wait when they can’t access the shared resource (the 
list) might seem like a smart move. After all, if they can’t do their job, shouldn’t they just 
sit tight and wait their turn? But as you’ll see, this well-intentioned change ends up doing 
more harm than good, dragging performance down instead of speeding things up.

This is a perfect example of why, in multithreaded programming, what seems like 
a good idea in theory can turn into a performance nightmare in practice. The take-
away? Always experiment, measure, and analyze before declaring your optimization a 
success—because sometimes, the only thing you’re optimizing is your frustration!

I always recommend using a profiler during development
to prove that the app executes optimally.

Listing 7.4 shows the new implementation of the consumer thread. The consumer 
thread waits when the list is empty since it has nothing to consume. The monitor makes 
the consumer thread wait and will notify it to continue executing only after a producer 
adds something to the list. We use the wait() method to tell the consumer to wait if the 
list is empty. At the same time, when the consumer removes values from the list, it noti-
fies the waiting threads so that if a producer is waiting, it now knows it can continue its 
execution because the list is no longer full. We use the notifyAll() method to notify 
the waiting threads. You can find this implementation in project da-ch7-ex2.

Listing 7.4 Making the consumer thread wait when the list is empty

public class Consumer extends Thread {

  // Omitted code

  @Override
  public void run() {
    try {
      for (int i = 0; i < 1_000_000; i++) {
        synchronized (Main.list) {
          if (Main.list.size() > 0) {
            int x = Main.list.get(0);
            Main.list.remove(0);
            log.info("Consumer " + 
                 Thread.currentThread().getName() + 



 175Analyzing waiting threads

                 " removed value " + x);
            Main.list.notifyAll();  
          } else {
            Main.list.wait();   
          }
        }
      }
    } catch (InterruptedException e) {
      log.severe(e.getMessage());
    }
  }
}

The following listing shows the implementation of the producer thread. Similar to the 
consumer thread, the producer thread waits if there are too many values in the list. 
A consumer will eventually notify the producer and allow it to run again when it con-
sumes a value from the list.

Listing 7.5 Making the producer thread wait if the list is already full

public class Producer extends Thread {

  // Omitted code

  @Override
  public void run() {
    try {
      Random r = new Random();
      for (int i = 0; i < 1_000_000; i++) {
        synchronized (Main.list) {
          if (Main.list.size() < 100) {
            int x = r.nextInt();
            Main.list.add(x);
            log.info("Producer " + 
                  Thread.currentThread().getName() + 
                  " added value " + x);
            Main.list.notifyAll();     
          } else {
            Main.list.wait();     
          }
        }
      }
    } catch (InterruptedException e) {
      log.severe(e.getMessage());
    }
  }
}

As you know, we start our investigations by sampling the execution. We already see some-
thing suspicious: the execution seems to take much longer (figure 7.16). If you go back 
to the observations we made in section 7.1, you’ll see that the whole execution was only 
about 9 seconds long. Now, the execution takes about 50 seconds—a huge difference.

After consuming an element from 
the list, the consumer notifies the 
waiting threads a change has 
been made in the list contents.

When the list is empty, the consumer 
waits until it gets notified something 
has been added to the list.

After adding an element 
to the list, the producer 
notifies the waiting 
threads a change has been 
made in the list contents.

When the list has 100 elements, 
the producer waits until it gets 
notified something has been 
removed from the list.



176 CHAPTER 7 Investigating locks in multithreaded architectures

The execution takes longer, and there is a big difference between the total   
time and the total CPU time, indicating that the app still does a lot of waiting.

Figure 7.16 By sampling the execution, we see that the execution time is slower than before  

we made threads wait.

Sample details (figure 7.17) show us that the wait() method we added caused most of 
the thread waiting time. The thread is not locked for long since the self-execution time 
is very close to the CPU execution time. Still, our purpose is to make our app more 
efficient overall, but it seems we only shifted the waiting from one side to the other and 
made the app slower in the process.

The execution details indicate that most of the waiting
time is caused by the wait() method the monitor invokes.

Figure 7.17 By analyzing the details, we can see that the self-execution time is not that long,  

but the thread is blocked and thus waits for a longer time.



 177Analyzing waiting threads

We continue by profiling for more detail (figure 7.18). Indeed, the profiling results 
show fewer locks, but that doesn’t help much since the execution is much slower. 

Note that the number of locks decreased.
Even so, the total execution time increased.

Figure 7.18 The lock pattern is similar to our previous results, but the threads are locked less 

frequently.

Figure 7.19 shows the same investigation details obtained using JProfiler. In JProfiler, 
once we group the lock events by threads, we get both the number of locks and the 
waiting time. In the previous exercise, the waiting time was zero, but we had many 
more locks. Now we have fewer locks but a longer waiting time. This tells us that the 
JVM changes more slowly between threads when using a wait/notify approach than 
when allowing the threads to get naturally locked and unlocked by the monitor of a 
synchronized block.



178 CHAPTER 7 Investigating locks in multithreaded architectures

With JProfiler, you find both the number of
lock events and the number of wait events.

Figure 7.19 We get the same details using JProfiler. Fewer threads are locked, but now they are blocked for a 

much longer time.

This is exactly why you should never trust an optimization just because it sounds good—
always measure its actual effect! Profiling tools are your best friend here, giving you hard 
data instead of gut feelings. They help you see what’s really happening under the hood—
whether your changes are genuine improvements or just well-dressed performance 
killers. And if analyzing all that data feels overwhelming, AI-powered tools can step in, 
helping you interpret the results, spot bottlenecks, and even suggest smarter approaches. 

Summary

¡	A thread can be locked and forced to wait by a synchronized block of code. Locks 
appear when threads are synchronized to avoid changing shared resources 
simultaneously. 

¡	Locks are needed to avoid race conditions, but sometimes apps use faulty thread 
synchronization approaches, which can lead to undesired results such as perfor-
mance problems or even app freezes (in the case of deadlocks). 

¡	Locks caused by synchronized code blocks slow down the app’s execution 
because they force threads to wait instead of letting them work. Locks may be 
needed in certain implementations, but it’s better to find ways to minimize the 
time an app’s threads are locked.



 179Summary

¡	We can use a profiler to identify when locks slow down an app, how many locks the 
app encounters during execution, and how much they slow down performance.

¡	When using a profiler, always sample the execution first to figure out if the app’s 
execution is affected by locks. You’ll usually identify locks when sampling by 
observing that a method is waiting on itself.

¡	If you find by sampling that locks may be affecting the app’s execution, you can 
continue investigating using lock profiling (instrumentation), which will show 
the threads affected, the number of locks, the monitors involved, and the rela-
tionship between locked threads and threads that cause the locks. These details 
help you decide if the app’s execution is optimal or if there are any ways to 
enhance it.

¡	Each app has a different purpose, so there’s no unique formula for understand-
ing thread locks. In general, we want to minimize the time threads are locked or 
waiting and make sure threads are not unfairly excluded from execution (starv-
ing threads).



180

8Investigating deadlocks 
with thread dumps

This chapter covers

¡	Getting thread dumps using a profiler

¡	Getting thread dumps using the command line

¡	Reading thread dumps to investigate problems

¡	Enhancing thread-dumps investigations with AI

Picture this: You’re at your favorite coffee shop, about to enjoy a well-earned break. 
You order a cappuccino, and just as you’re about to pay, the cashier’s system freezes. 
The barista taps the screen, then tries again. Nothing happens. Meanwhile, the 
queue behind you is growing.

Behind the counter, two cash registers are blinking with error messages. It turns 
out, register A is waiting for register B to confirm a payment, while register B is wait-
ing for register A to process it first. Neither register can proceed, and the entire 
coffee shop grinds to a halt. Baristas glance at each other helplessly. Customers sigh. 
Someone dramatically proclaims, “I just wanted coffee!”

Congratulations, you’ve just witnessed a deadlock—only instead of two software 
threads, it’s two cash registers locked in an eternal standoff. And a reboot or some 
clever debugging to break the cycle is the only way to fix it.



 181Getting a thread dump

Now, imagine a similar situation happening inside a Java application. Multiple 
threads get stuck waiting for each other, and your app stops responding. How do you 
figure out what went wrong? That’s where thread dumps come in.

A thread dump captures the state of all threads in a JVM at a particular moment. It 
helps us diagnose deadlocks, high CPU usage, slow performance, and other threading 
problems by showing which threads are running, waiting, or being stuck. Unlike profil-
ing techniques discussed in chapters 5 through 7, which rely on sampling over time, a 
thread dump provides a snapshot of execution at a single point—crucial when an appli-
cation is completely frozen.

This chapter explores how to generate and analyze thread dumps to identify prob-
lems such as deadlocks and performance bottlenecks. By the end of it, you’ll learn you 
how to use the tools to diagnose and resolve thread-related problems before they bring 
down your metaphorical coffee shop. And since thread dumps can be sometimes large 
and cryptical, I’ll show you how to make things easier using some AI assistance.

8.1 Getting a thread dump

This section analyzes ways to obtain a thread dump. We’ll use a small application that 
intentionally creates deadlocks. You can find this app in project da-ch8-ex1. We’ll 
run this app and wait for it to freeze (this should happen in a few seconds), and then 
we’ll discuss multiple ways to get thread dumps. Once you learn how to obtain thread 
dumps, we discuss how to read them (section 8.2).

Let’s examine how the app we’ll use is implemented and why its execution causes 
deadlocks. The app uses two threads to change two shared resources (two list instances). 
A thread named the "_Producer" adds values to one list or another during execution. 
Another thread called the "_Consumer" removes values from these lists. If you read chap-
ter 6, you may recall we worked on a similar app. But since the app’s logic is irrelevant 
to our example, I’ve omitted it from the listings and kept only the part important to our 
demonstration—the synchronized blocks. 

The example is simplified to allow you to focus on the investigation techniques. In a 
real-world app, things usually get more complicated. Also, wrongly used synchronized 
blocks are not the only way to get into deadlocks. Faulty use of blocking objects such 
as semaphores, latches, or barriers can also cause such problems. But the steps used to 
investigate the problems are the same.

In listings 8.1 and 8.2, notice that the two threads use nested synchronized blocks with 
two different monitors: listA and listB. The problem is that one of the threads uses 
monitor listA for the outer synchronized block, while listB is used for the inner. The 
other thread uses them in reverse order. Such code design leaves room for deadlocks.

Listing 8.1 Using nested synchronized blocks for the "_Consumer" thread

public class Consumer extends Thread {

  // Omitted code



182 CHAPTER 8 Investigating deadlocks with thread dumps

  @Override
  public void run() {
    while (true) {
      synchronized (Main.listA) {    

        synchronized (Main.listB) {   
          work();
        }
      }
    }  
  }

  // Omitted code
}

In listing 8.1, the "_Consumer" thread uses listA as the monitor for the outer synchro-
nized block. In listing 8.2, the "_Producer" thread uses the same monitor for the inner 
block, while the listB monitor is also swapped between the two threads.

Listing 8.2 Using nested synchronized blocks for the "_Producer" thread

public class Producer extends Thread {

  // Omitted code

  @Override
  public void run() {
    Random r = new Random();
    while (true) {
      synchronized (Main.listB) {     

        synchronized (Main.listA) {     
          work(r);
        }
      }
   }

  // Omitted code
}

Figure 8.1 shows how the two threads can run into a deadlock.

8.1.1 Getting a thread dump using a profiler

What do we do when we have a frozen app and want to identify the problem’s root 
cause? Using a profiler to analyze the locks is unlikely to be effective in a scenario 
where the app, or part of it, is frozen. Instead of analyzing the locks during execution 
as we did in chapter 6, we’ll take a snapshot just of the app’s thread states. We’ll review 
this snapshot (i.e., thread dump) and identify which threads are interacting with each 
other, causing the app to freeze.

The outer synchronized block 
uses the listA monitor.

The inner synchronized block 
uses the listB monitor.

The listB monitor is used by 
the outer synchronized block.

The listA monitor is used by 
the inner synchronized block.



 183Getting a thread dump

1. Suppose that, while running, two threads enter the outer synchronized  
    block but don’t go into the inner synchronized block. The arrows 
    indicate where each thread is during the execution.  

2. In such a case, neither thread can continue its
    execution. The consumer cannot continue into
    the inner synchronized block since monitor
  "listB" is acquired by the producer thread.
    Monitor "listB" should be released first,
    meaning that the producer thread should
    reach the end of the block.

3. The producer thread can’t reach the end
    of the outer synchronized block since it
    needs to first enter the inner synchronized
    block, but it cannot because monitor
  "listA" is acquired by the consumer.

synchronized (Main.listA) {

 synchronized (Main.listB) {
 work();

 }
}

synchronized (Main.listB) {

 synchronized (Main.listA) {
 work();

 }
}

Consumer thread Producer thread

Figure 8.1 If both threads enter the outer synchronized block, but not the inner one, they remain stuck 

and wait for each other. We say that they went into a deadlock.

You can obtain a thread dump either by using a profiling tool (e.g., VisualVM, JPro-
filer) or by directly calling a tool provided by the JDK using the command line. In this 
section, we’ll discuss how to obtain a thread dump using a profiler, and in section 8.1.2, 
you’ll learn how to get the same information using the command line.

We’ll start our application (project da-ch8-ex1) and wait a few seconds for it to enter 
a deadlock. You’ll know the app gets into a deadlock when it no longer writes messages 
in the console (it gets stuck).

Getting a thread dump using a profiler is a simple approach. It’s no more than the 
click of a button. Let’s use VisualVM to get a thread dump. Figure 8.2 shows the Visual 
VM interface. You can see that VisualVM is smart and that it figured out that some of the 
threads of our process ran into a deadlock. This is indicated in the Threads tab.

After the thread dump is collected, the interface looks like figure 8.3. The thread 
dump is represented as plain text, describing the app threads and providing details 
about them (their state in the life cycle, who blocks them, etc.).

8.1.2 Generating a thread dump from the command line

A thread dump can also be obtained using the command line. This approach is partic-
ularly useful when you need to get a thread dump from a remote environment. Most of 
the time, you won’t be able to remote profile an app installed in an environment (and 
remember, remote profiling and remote debugging aren’t recommended in a produc-
tion environment, as discussed in chapter 6). Since in most cases you can only access a 



184 CHAPTER 8 Investigating deadlocks with thread dumps

In the threads table, you can see that both
the consumer and producer threads are waiting.

VisualVM indicates a deadlock. To get a thread dump, click
the Thread Dump button.

Figure 8.2 When 

some of the app’s 

threads get into a 

deadlock, VisualVM 

indicates the 

situation with a 

message in the 

Threads tab. 

Notice that both 

the _"_Consumer" 

and _"_Producer" 

threads are locked on 

the graphic timeline. 

To get a thread dump, 

you simply select the 

Thread Dump button 

in the window’s 

upper-right corner.

The thread dump shows information about 
each active thread. You find the producer and 
consumer threads in the generated thread dump.

Figure 8.3 A thread dump in plain text that describes an app’s threads. In the thread dump we 

collected, we can find the two deadlocked threads "_Consumer" and "_Producer".



 185Getting a thread dump

At first, you might not understand the thread
dump text in figure 8.3. Later in this chapter,
you’ll learn how to read it.

At f
dum
you

remote environment using the command line, you need to know how to get a thread 
dump this way, too.

Fortunately, getting a thread dump using the command line is quite easy (figure 
8.4):

1 Find the process ID for which you want a thread dump.

2 Get the thread dump as text data (raw data) and save it in a file.

3 Load the saved thread dump to make it easier to read in a profiler tool.

Step 1

Find the process ID,

Step 2

Get the thread dump,

Step 3

Open the thread dump.
jps -l.

jstack 14208.

Figure 8.4 Follow these simple steps to get a thread dump using the command line. First, find the 

process ID for which you want the thread dump. Second, use a JDK tool to get the thread dump. Finally, 

open the thread dump in a profiling tool to read it.

STEP 1: FIND THE PROCESS ID FOR THE PROCESS UNDER INVESTIGATION

Thus far, we have identified the process we want to profile using its name (represented 
as the main class’s name). But when getting a thread dump using the command line, 
you need to identify the process using its ID. How do you get a process ID (PID) for 
a running Java app? The simplest way is using the jps tool provided with the JDK. 



186 CHAPTER 8 Investigating deadlocks with thread dumps

The next snippet shows the command you need to run. We use the -l (lowercase “L”) 
option to get the main class names associated with the PIDs. This way, we can identify 
the processes the same way we did in chapters 5–7 where we learned to profile an app’s 
execution:

jps -l

Figure 8.5 shows the result of running the command. The numeric values in the out-
put’s first column are the PIDs. The second column associates the main class name with 
each PID. This way, we get the PID that we’ll use in step 2 to obtain the thread dump.

Use the jps tool provided with the
JDK to find a Java process ID (PID).

Identify the process
by the fully qualified
main class name.

Figure 8.5 By using the jps tool provided with the JDK, we get the PIDs of the running Java processes. 

These PIDs are necessary to get thread dumps for a given process.

STEP 2: COLLECT THE THREAD DUMP

Once you can identify (by its PID) the process for which you want to collect a thread 
dump, you can use jstack, another tool the JDK provides, to generate a thread dump. 
When using jstack, you only need to provide the process ID as a parameter (instead of 
<<PID>>, you need to use the PID value you collected in step 1):

jstack <<PID>>

An example of such a command execution is

jstack 14208

Figure 8.6 shows you the result of running the jstack command followed by a PID. 
The thread dump is provided as plain text you can save in a file to move or load into a 
tool for investigation.



 187Reading thread dumps

Use the jstack tool provided with the JDK to get a thread dump.
The only mandatory parameter is the process ID (PID) for the
process you want to generate the thread dump.

Figure 8.6 The jstack command followed by a PID will generate a thread dump for the given process. The thread 

dump is shown as plain text (also called a raw thread dump). You can collect the text in a file to import it and 

investigate it later.

STEP 3: IMPORT THE COLLECTED THREAD DUMP INTO A PROFILER TO MAKE IT EASIER TO READ

Usually, you save the output of the jstack command, the thread dump, into a file. Stor-
ing the thread dump in a file allows you to move, store, or import it into tools that help 
you investigate its details.

Figure 8.7 shows how you can place the output of the jstack command in a file in 
the command line. Once you have the file, you can load it in VisualVM using the File > 
Load menu.

8.2 Reading thread dumps

Imagine you’ve just received a thick stack of printed medical records—pages upon 
pages of test results, doctor’s notes, and mysterious abbreviations. You could call a spe-
cialist to decode them for you, but what if they’re unavailable? You’d better brush up 
on your medical jargon.

Thread dumps are similar. When your application freezes, crashes, or behaves oddly, 
you collect a thread dump—but then what? It’s a dense wall of text, filled with stack 
traces, thread states, and synchronization details. Fortunately, you don’t have to decode 
everything manually. Tools such as fastThread (https://fastthread.io/) can visualize 
the data for you, much like a medical professional summarizing your test results.

https://fastthread.io/


188 CHAPTER 8 Investigating deadlocks with thread dumps

A good approach is to put the contents jstack outputs into 
a file so that you can save it, send it, and investigate it.

You can open a saved thread dump in any profiler 
to easily read it. For example, in VisualVM, you
can open it using File > Load.

Figure 8.7 Once you save the thread dump into a file, you can open it in various tools to investigate it. 

For example, to open it in VisualVM, you select File > Load.

And, of course, there’s AI. AI-powered assistants can now parse thread dumps, highlight 
problematic threads, and even suggest possible causes of deadlocks or performance 
problems. But while AI is a great helper, it’s not perfect—sometimes, it misinterprets 
the data, or the best tools aren’t available in your environment. That’s why knowing 
how to read a plain-text thread dump manually is still an essential skill.

This section covers both approaches:

¡	Section 8.2.1—Reading raw thread dumps as generated by jstack (see section 
8.1.2)

¡	Section 8.2.2—Using fastThread to visualize and analyze thread dumps more 
easily.

While we all love good visualizations, there are times when you won’t have access to 
advanced tools. In those cases, your ability to manually dissect a thread dump can 
mean the difference between resolving a problem faster or staring at a frozen app in 
despair. Let’s dive in!

8.2.1 Reading plain-text thread dumps

When you collect a thread dump, you get a description of the threads in plain-text for-
mat (i.e., raw data). Although we have tools you can use to easily visualize the data (see 



 189Reading thread dumps

section 8.2.2), I’ve always considered it important for a developer to understand the 
raw representation as well. You may encounter a situation where you can’t remove the 
raw thread dump from the environment you generated it in. Say you connect to a con-
tainer remotely and can only use the command line to dig into the logs and investigate 
what happens with the running app. You suspect a thread-related problem, so you want 
to generate a thread dump. If you can read the thread dump as text, you need nothing 
more than the console itself. 

Let’s look at listing 8.3, which shows one of the threads in the thread dump. It is 
nothing more than similarly displayed details for each thread active in the app when 
the dump was taken. Here are the details you get for a thread:

¡	Thread name—The name assigned to the thread, which helps you identify it in 
logs and debugging tools

¡	Thread ID—A unique identifier assigned to the thread by the Java Virtual Machine 
(JVM)

¡	Native thread ID—The identifier assigned to the thread by the operating system, 
useful for low-level debugging

¡	Priority of the thread at the operating system level—The priority level set for the thread, 
which influences how the OS schedules its execution

¡	Total and CPU time the thread consumed—The total execution time of the thread 
and the amount of CPU time it has used

¡	State description—A detailed explanation of the thread’s current execution status

¡	State name—The standardized state of the thread, such as runnable, waiting, or 
blocked

¡	Stack trace—A snapshot of the method calls that the thread is currently executing

¡	Who’s blocking the thread—Information about any other thread preventing this 
particular thread from proceeding

¡	What locks the thread acquires—A list of synchronization locks the thread currently 
holds, which can help diagnose deadlocks or contention problems

Listing 8.3 The anatomy of a thread’s details in a thread dump

"_Producer" #16 prio=5 os_prio=0 cpu=46.88ms elapsed=763.96s 
➥tid=0x000002f964987690 nid=0xcac waiting for monitor entry    
➥[0x000000fe5ceff000]
   java.lang.Thread.State: BLOCKED (on object monitor)     
    at main.Producer.run(Unknown Source)     

Thread name and details about resource 
consumption and execution time

Thread ID and state description

Thread state

Thread stack trace



190 CHAPTER 8 Investigating deadlocks with thread dumps

    - waiting to lock <0x000000052e0313f8> (a java.util.ArrayList)   
    - locked <0x000000052e049d38> (a java.util.ArrayList)    

The first thing displayed is the thread name—in our case, "_Producer". The thread 
name is essential as it’s one of the ways you identify the thread in the thread dump 
later if you need it. The JVM also associates the thread with a thread ID (in listing 8.3, 
tid=0x000002f964987690). Since the developer gives the name, there’s a small chance 
some threads will be named the same. If this unlucky situation happens, you can still 
identify a thread in the dump by its ID (which is always unique).

In a JVM app, a thread is a wrapper over a system thread, meaning you can always 
identify the operating system (OS) thread running behind the scenes. If you ever need 
to do that, look for the native thread ID (nid=0xcac in listing 8.3).

Once you have identified a thread, you identify the details you are interested in. The 
first three pieces of information you get in a thread dump are the thread’s priority, the 
CPU execution time, and the total execution time. Every OS associates a priority to each of 
its running threads. I don’t often use this value in a thread dump. But if you see that a 
thread isn’t as active as you think it should be, and you see that the OS designates it as 
a lower priority, then this may be the cause. In this situation, the total execution time 
would also be much higher than the CPU execution time. Remember from chapter 6 
that the total execution time is how long the thread was alive, while the CPU execution 
time is how long it worked. 

State description is a valuable detail. It tells you in plain English what happens to the 
thread. In our case, the thread is “waiting for monitor entry,” meaning it is blocked at 
the entrance to a synchronized block. The thread could have been “timed waiting on a 
monitor,” which would mean it’s sleeping for a defined time or is running. A state name 
(running, waiting, blocked, etc.) is associated with the state description. Appendix D 
offers a good refresher on thread life cycle and thread states in case you need it.

The thread dump provides a stack trace for every thread, which shows exactly what 
part of the code the thread was executing when the dump was taken. The stack trace 
is valuable since it shows you exactly what the thread was working on. You can use the 
stack trace to find a specific piece of code you want to further debug, or in the case of a 
slow thread, determine exactly what delays or blocks that thread.

Finally, for threads that acquire locks or are locked, we can find which locks they acquire 
and which locks they are waiting for. You’ll use these details every time you investigate a 
deadlock. They can also give you optimization hints. For example, if you see that a 
thread acquires many locks, you may wonder why and how you can change its behavior 
so that it doesn’t block so many other executions.

It is important to remember that thread dumps give you almost as many details as 
normal lock profiling (discussed in chapter 7). Lock profiling offers one key advantage 

Lock ID that blocks the current thread 
and type of the monitor object

Lock ID of the lock produced 
by the current thread



 191Reading thread dumps

over a thread dump: it shows execution dynamics. It’s like the difference between a 
security camera feed and a single frame from that feed—profiling gives you the full 
movie, showing how events unfold, while a thread dump is just a single snapshot in time.

Of course, sometimes, all you need is that one snapshot. If you’re trying to catch a 
raccoon sneaking into your kitchen at night, a full recording would be nice—but if your 
security cam grabs a picture of the little bandit mid-cookie theft, you already have your 
culprit. Likewise, while profiling can give you a dynamic view of execution, a well-timed 
thread dump can still be enough to catch a problem in the act. And as a bonus, it’s 
much easier to obtain than full profiling data.

Sometimes it is enough to use
a thread dump instead of a profiler.
Somet
a threa

If you only need to know what is executed by code at a given time, a thread dump is 
sufficient. You have learned to use sampling for this purpose, but it’s good to know a 
thread dump can do this, too. Say you don’t have access to remotely profile an app, but 
you must find out what code executes behind the scenes. You can get a thread dump.

Let’s now focus on how you can find the relationship between threads with a thread 
dump. What methods can we use to analyze how threads interact with one another? We 
are particularly interested in threads locking each other. In listing 8.4, I added the details 
from the thread dump for the two threads we know are deadlocked. But the question is, 
“How would we find they are in a deadlock if we didn’t know this detail up front?”

If you suspect a deadlock, you should focus your investigation on the locks the 
threads cause (figure 8.8):

1 Filter out all threads that are not blocked so you can focus on the threads that 
can cause the deadlock.

2 Start with the first candidate thread (a thread you didn’t filter in step 1), and 
search for the lock ID that causes it to be blocked. 

3 Find the thread causing that lock, and check what blocks that thread. If, at some 
point, you return to the thread you started with, all the threads you parsed are in 
a deadlock.

STEP 1: FILTER OUT THREADS THAT ARE NOT LOCKED

First, filter out all the threads that are not locked so that you can focus only on the 
threads that are potential candidates for the situation you are investigating—the 



192 CHAPTER 8 Investigating deadlocks with thread dumps

Step 1

Eliminate the threads
you don’t need to
investigate.

Step 2

Find out who locks the
first thread.

Step 3

Repeat the process until
you find the deadlock or 
do not have more threads
to investigate.

Thread B blocked
Thread A blocked

Thread A blocked
- Waiting to lock <0x000000052e0313f8>

Thread D blocked
- Locked <0x000000052e0313f8>

Thread C running
Thread D blocked
Thread E running

Thread D blocked
- Waiting to lock <0x000000052e049d38>

Thread A blocked
- Locked <0x000000052e049d38>

Figure 8.8 To find a deadlock with a thread dump, follow these three easy steps. First, remove all 

threads that are not blocked. Then, start with one of the blocked threads and find what is blocking 

it using the lock ID. Continue this process for each thread. If you return to a thread you already 

investigated, it means you found a deadlock.

deadlock. A thread dump can describe dozens of threads. You want to eliminate the 
noise and focus only on the blocked threads.

STEP 2: TAKE THE FIRST CANDIDATE THREAD AND FIND WHAT BLOCKS IT

After eliminating the unnecessary thread details, start with the first candidate thread 
and search by the lock ID that causes a thread to wait. The lock ID is the one between 
angle brackets (in listing 8.4, "_Producer" waits for a lock with ID 0x000000052e0313f8).

STEP 3: FIND WHAT BLOCKS THE NEXT THREAD

Repeat the process. If at some point you get to a thread that was already investigated, 
you’ve found a deadlock (see the following listing). 

Listing 8.4 Finding threads that lock each other

"_Producer" #16 prio=5 os_prio=0 cpu=46.88ms 
➥elapsed=763.96s tid=0x000002f964987690 
➥nid=0xcac waiting for monitor entry  [0x000000fe5ceff000]
   java.lang.Thread.State: BLOCKED (on object monitor)



 193Reading thread dumps

    at main.Producer.run(Unknown Source)
    - waiting to lock <0x000000052e0313f8> 
➥(a java.util.ArrayList)     
    - locked <0x000000052e049d38> 
➥(a java.util.ArrayList)     

"_Consumer" #18 prio=5 os_prio=0 cpu=0.00ms 
➥elapsed=763.96s tid=0x000002f96498b030 
➥nid=0x4254 waiting for monitor entry  [0x000000fe5cfff000]
   java.lang.Thread.State: BLOCKED (on object monitor)
    at main.Consumer.run(Unknown Source)
    - waiting to lock <0x000000052e049d38> (a java.util.ArrayList)   
    - locked <0x000000052e0313f8> (a java.util.ArrayList)    

Our example demonstrates a simple deadlock that assumes two threads lock each 
other. Following the three-step process discussed earlier, you’ll see that the "_Producer" 
thread blocks the "_Consumer" thread, and vice versa. A complex deadlock happens 
when more than two threads are involved. For example, thread A blocks thread B, 
thread B blocks thread C, and thread C blocks thread A. You can discover a long chain 
of threads that lock each other. The longer the chain of threads in the deadlock, the 
more difficult the deadlock is to find, understand, and solve. Figure 8.9 shows the 
difference between a complex deadlock and a simple one.

Simple deadlock

Thread A blocked
- Waiting to lock <0x000000052e049d38>

- Locked <0x000000052e0313f8>

Thread B blocked
- Waiting to lock <0x000000052e0313f8>

- Locked <0x000000011d0466a8>

Thread C blocked
- Waiting to lock <0x000000011d0466a8>

- Locked <0x000000052e049d38>

Complex deadlock (more than two threads) 

Thread A blocked
- Waiting to lock <0x000000052e049d38>

- Locked <0x000000052e0313f8>

Thread B blocked
- Waiting to lock <0x000000052e0313f8>

- Locked <0x000000052e049d38>

locks

locks

locks

lockslocks

Figure 8.9 When only two threads block each other, it’s called a simple deadlock, but a deadlock can 

be caused by multiple threads that block each other. More threads means more complexity. Thus, when 

more than two threads are involved, it’s called a complex deadlock.

The “_Consumer” thread 
waits for a lock initiated by 

the “_Producer” thread.

The “_Producer” thread 
waits for a lock initiated by 

the “_Consumer” thread.



194 CHAPTER 8 Investigating deadlocks with thread dumps

Sometimes a complex deadlock can be confused with cascading blocked threads (figure 
8.10). Cascading blocked threads (also known as cascading locks) are a different problem you 
can spot using a thread dump. To find cascading threads, follow the same steps as when 
investigating a deadlock. But instead of finding that one of the threads is blocked by 
another in the chain (as in the case of a deadlock), in a cascade of locks, you’ll see that 
one of the threads is waiting for an external event, causing all others to also wait.

Thread A blocked
- Waiting to lock <0x000000052e049d38>

Thread B blocked
- Waiting to lock <0x000000052e0313f8>

- Locked <0x000000052e049d38>

Thread C blocked
- Waiting to lock <0x000000011aa45bdb2>

- Locked <0x000000052e0313f8>

blocked by

blocked by

blocked by

Figure 8.10 Cascading locks appear when multiple threads enter a chain where they wait for one 

another. The last thread in the chain is blocked by an external event, such as reading from a data source 

or calling an endpoint.

Cascading blocked threads usually signal a bad design in the multithreaded architecture. 
When we design an app with multiple threads, we implement threading to allow the 
app to process things concurrently. Having threads waiting for one another defeats the 
purpose of a multithreaded architecture. Although sometimes you need to make threads 
wait for one another, you shouldn’t expect long chains of threads with cascading locks. 

8.2.2 Using tools to better grasp thread dumps

Reading the plain-text raw representation of a thread dump is useful, but let’s be hon-
est, it can feel like trying to assemble IKEA furniture without the instructions. Sure, the 
information is all there, but making sense of it? That’s another story. Most developers 
prefer a simpler way to visualize the data, and thankfully, modern tools can help.

Today, AI-powered assistants can analyze thread dumps, highlight problematic 
threads, and even suggest possible causes for deadlocks or performance bottlenecks. 
You can even upload a thread dump text file to AI assistants such as ChatGPT, Bard, or 
Gemini (or whichever similar AI assistant is your favorite) and get insights into which 
threads are stuck, which locks might be causing problems, and possible next steps. We 



 195Reading thread dumps

did that with sampling and profiling data in chapter 6. While AI doesn’t always get it 
right, it can provide valuable clues and save time when diagnosing complex problems.

Another good piece of advice is to use a dedicated GPT for analyzing thread dumps. 
For example, if you’re using ChatGPT, you can search for a GPT specialized in investi-
gating thread dumps through the Explore GPTs section. AI assistants tailored to spe-
cific tasks like this one often yield better results and enhance your investigation.

Whenever possible, I extract the thread dump from the environment where I collect 
it and analyze it externally. My go-to tool for this is fastThread (fastthread.io), which pro-
vides a clear visualization of the dump, saving me from manually sifting through raw data 
like someone trying to figure out a correct placement of the 47 identical screws in an 
Ikea construction. Of course, AI and visualization tools are great, but it’s always good to 
understand the raw format in case you need to dig deeper or when tools aren’t available.

fastThread is a web tool designed to assists users read thread dumps. It offers both 
free and paid plans, but the free plan has always been enough for my needs. Simply 
upload a file containing the thread dump raw data and wait for the tool to extract the 
details you need and put them in a shape that is easier to grasp. Figure 8.11 shows the 
starting page, where you choose the file containing the thread dump raw data from 
your system and upload it for analysis.

To analyze a thread dump, upload the file with
the raw data and then click Analyze.

Figure 8.11 To analyze a 

thread dump, upload a file 

containing the thread dump 

raw data to fastThread.io and 

wait for the tool to present 

the details in a easy-to-

understand shape.

The fastThread analysis shows various details from the thread dump, including dead-
lock detection, dependency graphs, stack traces, resource consumption, and even a 
flame graph (figure 8.12).

fastThread.io


196 CHAPTER 8 Investigating deadlocks with thread dumps

After analyzing the thread dump, the tool presents multiple
visualization widgets, such as identifying deadlocks, CPU consumption 
per thread, and even a flame graph representation of the process.

Figure 8.12  

fastThread provides 

various details in 

an easy-to-read 

format. These 

details include 

deadlock detection, 

dependency 

graphs, resource 

consumption, and a 

flame graph.

Figure 8.13 shows how fastThread identified the deadlock in our thread dump. 

The tool identifies the deadlock
and the threads causing it.

Figure 8.13 After 

analyzing the 

thread dump raw 

data, fastThread 

identifies and 

provides details 

about the deadlock 

caused by the 

“_Consumer" 

and “_Producer" 

threads.



 197Summary

After all, when it comes to investigating thread dumps, having an AI sidekick is like 
having Dr. Watson for your Java mysteries, with you playing the role of Sherlock. And 
remember, while the AI might not demand tea and biscuits, it’ll still serve you threads 
of truth—without the deduction pipe!

Summary

¡	When two or more threads get blocked while waiting for each other, they are in a 
deadlock. When an app gets into a deadlock, it usually freezes and can’t continue 
its execution.

¡	You can identify the root cause of a deadlock using thread dumps, which show 
the status of all threads of an app at the time the thread dump was generated. 
This information helps you identify the thread waiting for another.

¡	A thread dump also shows details such as resource consumption and stack traces 
for each thread. If these details are sufficient, you can use a thread dump instead 
of instrumentation for your investigation. Imagine the difference between a 
thread dump and profiling as the difference between a picture and a movie. With 
a thread dump, you only have a still image, so you miss the execution dynamics, 
but you can still get a lot of relevant and helpful details.

¡	The thread dump provides information about the threads that were executing 
in the app when the dump was taken. The thread dump shows essential details 
about the threads in a plain-text format, including resource consumption, thread 
state in its life cycle, if the thread is waiting for something, and which locks it’s 
causing or being affected by.

¡	You can generate a thread dump using either a profiler or the command line. 
Using a profiling tool to get the thread dump is the easiest approach, but when 
you can’t connect a profiler to the running process (e.g., due to network con-
straints), you can use the command line to get the dump. The thread dump will 
allow you to investigate the running threads and the relationships between them.

¡	The plain-text thread dump (also known as a raw thread dump) can be challeng-
ing to read. Tools such as fastThread.io help you to visualize the details.

fastThread.io




Part 3

Diagnosing  
memory-related problems

In the previous part, we looked at problems tied to CPU and execution 
flow. But another major source of trouble lies in how an application uses mem-
ory. Memory problems can creep in slowly. They cause the app to slow down, 
pause unpredictably, or even crash. And they can appear suddenly in high-load 
scenarios.

This part is all about spotting these memory-related problems. We’ll start by 
profiling the heap to see which parts of the code are allocating objects and in what 
quantities. Then we’ll move on to heap dumps, which are snapshots of everything 
in memory. We’ll use them to find leaks, unexpected object retention, or bloated 
data structures. Finally, we’ll look at garbage collection logs to understand how 
the JVM is reclaiming memory and how tuning or fixing code can help reduce GC 
pauses and improve stability.

By the end of this part, you’ll know how to measure memory usage, uncover 
leaks, and interpret JVM behavior so you can keep your application running 
smoothly.





201

9Profiling memory-
related problems

This chapter covers

¡	Sampling an execution to find memory allocation 

problems

¡	Profiling code to identify the root causes of 

memory allocation problems

Every app needs memory to function—it’s like a workspace where it lays out all the 
tools, papers, and half-empty coffee cups while processing data. But here’s the prob-
lem: that workspace isn’t infinite. Every app running on a system competes for a 
share of the same limited memory. And if an app overuses it, it can consume too 
much, slow itself down, or even crash entirely when it runs out of resources.

Imagine trying to work at a tiny desk cluttered with files, snacks, and a cat that 
refuses to move. That’s what happens when an app mismanages memory—it chokes 
on its own inefficiency. If memory allocation isn’t optimized, the app slows down, 
struggles to perform, and eventually collapses under the weight of its own excess. 
Worst case? It crashes entirely, throwing a dramatic error message as its final words.

Efficient memory management isn’t just about survival but about performance. 
An app that uses memory wisely runs smoothly, avoiding unnecessary slowdowns and 



202 CHAPTER 9 Profiling memory-related problems

embarrassing system meltdowns. So, unless you want your app to be that colleague who 
takes up all the meeting time and then forgets their point, it’s time to manage memory 
like a pro.

If the app doesn’t allocate the data it processes
in an optimized way, it may force the GC to run more 
often, so the app will become more CPU-consumptive.

If th
in a
ofte

An app should be a responsible citizen when it comes to managing its resources. After 
all, nobody likes a program that consumes all the CPU and memory, leaving the rest 
of the system struggling to keep up. When we talk about an app’s resources, we mainly 
refer to two key players: CPU (processing power) and memory. In chapters 5–8, we 
rolled up our sleeves and tackled CPU consumption problems. Now it’s time to dive 
into the other half of the equation—how an app handles memory allocation.

We kick things off in section 9.1 by exploring memory execution sampling. We then 
continue with discussing memory profiling in section 9.2. These will help you spot 
whether your app has memory problems and, more importantly, track down the culprit. 
Is it an innocent-looking object overstaying its welcome? A memory leak lurking in the 
shadows? You’ll soon find out.

Before we dive in, though, it’s important to have a solid grasp of how a Java app allo-
cates and uses memory. If your memory (pun intended) needs a refresher, Appendix E 
has your back with all the essential details. 

9.1 Sampling to identify memory allocation problems

In this section, we use a small application that simulates a faulty implemented capabil-
ity that uses too much of the allocated memory. We use this app to discuss investigation 
techniques you can use to identify problems with memory allocation or places in code 
that can be optimized to use the system’s memory more efficiently.

Suppose you implement a real-world application and notice that a particular feature 
runs slowly. You use the techniques discussed in chapter 5 to analyze resource consump-
tion and find that although the app doesn’t work very often (consume CPU resources), 
it uses a large amount of memory. When an app uses too much memory, the JVM can 
trigger the garbage collector (GC), which will further consume CPU resources (chapter 
6). Remember that the GC is the mechanism that automatically deallocates unneeded 
data from memory (see appendix E for a refresher).



 203Sampling to identify memory allocation problems

Look at figure 9.1. When discussing how to analyze resource consumption in chapter 
5, we used the Monitor tab in VisualVM to observe what resources the app consumes. 
You can use the memory widget in this tab to find when the app uses an extensive 
amount of memory.

Under the Monitor tab, there is a widget that
allows you to monitor the app’s memory usage.

Note a large increase in the used memory 
when calling the app's endpoint. The JVM  
also adjusted the heap max size as a result 
of the increased memory usage.

Figure 9.1 The memory widget in the Monitor tab in VisualVM helps to identify whether the app spends more 

memory than usual at any given time. Often, widgets in the Monitor tab, such as CPU and memory consumption, 

give us clues on how to continue our investigation. When we see that the app consumes an abnormal amount of 

memory, we may decide to continue with memory profiling the execution.

The application we use in this chapter is in project da-ch9-ex1. This small web applica-
tion exposes an endpoint. When calling this endpoint, we provide a number, and the 
endpoint creates that many object instances. We request the creation of one million 
objects (a sufficiently large number for our experiment) and then examine what a 
profiler reports about the execution of this request. This endpoint execution simulates 



204 CHAPTER 9 Profiling memory-related problems

what happens in a real-world situation when a given app capability consumes a signifi-
cant portion of the app’s memory resources (figure 9.2).

1. We send a request to the endpoint
    and ask the app to create one million
    instances of type Product.

2. The app creates one million instances
    of type Product, which consumes a lot
    of memory resources.

3. We’ll analyze what happens in VisualVM.

/products/1000000

 

Figure 9.2 When we call the endpoint exposed by the provided project da-ch9-ex1, the app creates 

many instances that consume a considerable part of the app’s memory. We’ll analyze this scenario using 

a profiler.

We’re basically using this endpoint
to fill the app’s allocated memory 
and see how VisualVM shows that.

Yes!

To start the project, follow these steps:

1 Start project da-ch9-ex1.

2 Start VisualVM.

3 Select a process for project da-ch9-ex1 in VisualVM.

4 Go to the Monitor tab in VisualVM.

5 Call the /products/1000000 endpoint.

6 Observe the memory widget in the Memory tab in VisualVM.



 205Sampling to identify memory allocation problems

In the Monitor tab in the memory widget, you can see that the app uses a lot of memory 
resources. The widget looks similar to figure 9.1. What should we do when we suspect 
some app capability doesn’t optimally use the memory resources? The investigation 
process follows two major steps:

1 Use memory sampling to get details about the object instances the app stores.

2 Use memory profiling (instrumentation) to get additional details about a specific 
part of the code in execution.

Let’s follow the same approach you learned in chapters 5–8 for CPU resource con-
sumption: get a high-level view of what happens using sampling. To sample an app exe-
cution for memory usage, select the Sampler tab in VisualVM. Then select the Memory 
button to start a memory usage sampling session. Call the endpoint and wait for the 
execution to end. The VisualVM screen will display the objects the app allocates. 

We are looking for what occupies most of the memory. In most cases, that will be one 
of these two situations:

¡	Many object instances of certain types are created and fill up the memory (this is 
what happens in our scenario).

¡	There are not many instances of a certain type, but each instance is very large.

Many instances filling up the allocated memory makes sense, but how could a small 
number of instances do this? Imagine this scenario: your app processes large video 
files. The app loads maybe two or three files at a time, but since they are large, they 
fill the allocated memory. A developer can analyze whether the capability can be opti-
mized. Maybe the app doesn’t need the full files loaded in memory but just fragments 
of them at a time. In such a case, you’ll also notice the specific patterns of insufficient 
memory in the GC logs, which we’ll discuss in chapter 11.

When we start our investigation, we don’t know which scenario we’ll fall into. I usu-
ally sort, in descending order, by the amount of memory occupied and then by the 
number of instances. Notice in figure 9.3 that VisualVM shows you the memory spent 
and the number of instances for each sampled type. You need to sort, in descending 
order, by the second and the third columns in the table.

Figure 9.3 clearly shows that I sorted the table in descending order by Live Bytes 
(space occupied). We can then look for the first type in our app’s codebase that appears 
in the table. Don’t look for primitives, strings, arrays of primitives, or arrays of strings. 
These are usually at the top since they are created as a side effect. However, in most 
cases, they don’t provide any clues about the problem.

Figure 9.3 clearly shows that type Product is causing trouble. It occupies a large part 
of the allocated memory, and in the Live Objects column, we see that the app created 
one million instances of this type.

If you need the total number of instances of the type created throughout execu-
tion, you must use profiling (instrumentation) techniques. We’ll do this later in this 
chapter.



206 CHAPTER 9 Profiling memory-related problems

1. Sort in descending order 
    by allocated memory.

3. Ignore primitives, arrays 
    of primitives, or JDK objects.

2. Find the first object type that belongs
    to your codebase or a library that your
    app uses. Don’t look for types coming
    from the JDK.

Figure 9.3 We sort the sampled results in descending order by memory occupied. This way, we can see which 

objects consume most of the memory. We don’t usually look for primitives, strings, and arrays of strings or JDK 

objects in general. We are mostly interested in finding the object directly related to our codebase, that is causing 

the problem. In this case, the Product type (which is part of our codebase) occupies a large part of the memory.

The profiling tool names them live objects 
because sampling only shows you the 
instances that still exist in the memory.

The p
becau
instan



 207Profiling to find the culprit

This app is just an example, but in a real-world app, simply sorting by the occupied 
space may not be enough. We need to figure out whether the problem is a large num-
ber of instances or whether each instance takes a lot of space. I know what you’re think-
ing: Isn’t it clear in this case? Yes, but it may not be in a real-world app, so I always 
recommend that developers also sort in descending order by the number of instances 
to make sure. Figure 9.4 shows the sampled data sorted in descending order by the 
number of instances the app created for each type. Again, type Product is at the top.

1. Sort in descending order by the number 
    of object instances (live objects).

2. Find the first object type that belongs
    to your codebase or a library that your
    app uses. Don’t look for types coming
    from the JDK.

Figure 9.4 We can sort the sampled results by the number of instances (live objects). This gives us clues on 

whether some capability creates many objects that are negatively affecting the memory allocation.

9.2 Profiling to find the culprit

Sometimes, sampling is all you need to spot what’s going wrong. It’s fast, lightweight, 
and often provides a clear indication of the problem. But what if it doesn’t? What if 
you still don’t know which part of your app is creating all those objects? You look at the 
results and think, “Okay... but who’s actually doing this?”



208 CHAPTER 9 Profiling memory-related problems

That’s when it’s time to switch gears and try profiling (also called instrumentation). 
While sampling, watches the program from a distance and takes notes occasionally, pro-
filing gets up close and watches everything. It tells you exactly which part of your code is 
creating those objects, and how often.

However, profiling isn’t free; it can slow things down and provide too much data. 
That’s why we always follow one simple rule: don’t profile until you know what to pro-
file. If you start profiling everything, you’ll waste time and possibly make things worse. 
We always begin by sampling to narrow things down. Once you have an idea where the 
problem might be, then you can zoom in with profiling.

Since we know the problem is with the Product type, we will profile for it. Like you 
did in chapters 5–8, you must specify which part of the app you want to profile using an 
expression. In figure 9.5, I profile only for the Product type. I do this by using the fully 
qualified name (package and class name) of the class in the Memory settings textbox 
on the right side of the window.

1. Specify the expression that defines which 
    objects you want to profile for memory usage.

2. Start profiling, and then call the 
    app’s endpoint.

3. The profiler will indicate details about each object involved in execution during the profiling
    session. You’ll find the allocated memory per object, the number of instances in memory for
    each object, how many objects have been garbage collected, how many still exist in the
    memory, and how many times the GC tried to remove them from the memory.

Figure 9.5 To profile for memory allocation, first specify which packages or classes you want to profile, and 

then start the profiling by pressing the Memory button. The profiler will give you relevant details about the profile 

types, including used memory, number of instances, the total number of allocated objects, and the number of GC 

generations.

Just as in the case of CPU profiling (chapter 6), you can profile multiple types at once 
or even specify entire packages. Some of the most commonly used expressions are



 209Profiling to find the culprit

¡	Strict-type, fully qualified name (e.g., com.example.model.Product)—Only searches 
for that specific type

¡	Types in a given package (e.g., com.example.model.*)—Only searches for types 
declared in the package com.example.model but not in its subpackages

¡	Types in a given package and its subpackages (e.g., com.example.**)—Searches in the 
given package and all its subpackages

Always remember to restrict the types 
you profile as much as possible. If you 
know product causes the problem, then 
it makes sense to profile only this type.
know
it m

In addition to the live objects (instances that still exist in memory for that type), you 
will also receive the total number of instances of that type that the app has created. 
Moreover, you will see how often those instances survived the GC (what we call gener-

ations). As you’ll find out in chapter 11, you can mix this with investigating GC logs to 
get extra details about the GC activity.

All these details are valuable, but finding what part of the code creates the objects is 
often even more useful. As shown in figure 9.6, for each profiled type, the tool displays 
where the instances were created. Click the plus sign (+) on the left side of the line in 
the table, which will quickly lead you the root cause of the problem.

At this point, you should have a solid understanding of how to sample and profile 
memory usage, identifying the trouble spots in your app’s allocation patterns. But pro-
filing only works when the app is actually running—and cooperative.

What if your app decides to throw a tantrum and crash before you can even fire up 
the profiler? Or worse, what if the problem only happens in production, where you 
can’t just attach a profiler like it’s your personal playground?

That’s where heap dumps come in. Instead of watching memory in real time, you take 
a snapshot of the entire memory state, capturing everything your app was holding onto 
at the moment of its demise. Think of it as a freeze-frame of the crime scene—except 
that instead of footprints and fingerprints, you’re analyzing objects and references.

So, if profiling leaves you empty-handed, don’t worry. In chapter 10, we’ll dive into 
heap dumps and how they can help you catch memory leaks red-handed. Let’s go play 
detective!



210 CHAPTER 9 Profiling memory-related problems

For each profiled object type, the profiler
indicates the part of code that created it
during execution. This way, you can find 
the potential problem.

Figure 9.6 The profiler shows the stack trace of the code that created the instances of each of the profiled types. 

This way, you can easily identify what part of the app created the problematic instances.

Summary

¡	An application that doesn’t manage memory efficiently can suffer from serious 
performance problems. Optimizing how data is allocated and released ensures 
stability and responsiveness.

¡	A profiling tool allows you to monitor memory usage in real time. This helps 
identify inefficient allocations and areas that need optimization.

¡	If object instances continue to accumulate without being dereferenced, the GC 
will be unable to free memory. Eventually, the heap fills up, leading to an OutOf-
MemoryError and application failure.

¡	Understanding and managing heap memory efficiently prevents performance 
degradation. With the right tools and techniques, you can keep your application 
running smoothly and avoid critical memory problems.



211

10Investigating memory 
problems with heap dumps

This chapter covers

¡	Obtaining heap dumps for an app execution

¡	Using heap dumps to investigate memory 

allocation problems

¡	Using OQL to query object instances in heap 

dumps

¡	Using AI to simplify heap dump investigation

When you’re testing the app, you can profile it to spot any memory-hungry capabili-
ties that need optimization. But what if the app doesn’t give you that luxury? What if 
it crashes spectacularly before you can even lift a profiler?

In many cases, crashes are the tragic result of memory allocation problems, with 
the usual suspect being memory leaks. These leaks happen when an app clings to 
objects in memory like a hoarder refusing to throw anything away—even when it has 
no use for them anymore. Over time, the memory fills up, and eventually, the JVM 
throws in the towel, leaving you with the dreaded OutOfMemoryError.

Think of it like a messy office. If you keep piling up papers, coffee cups, and half-
eaten snacks without ever cleaning up, at some point, you’ll run out of space to work. 



212 CHAPTER 10 Investigating memory problems with heap dumps

In the digital world, instead of an exasperated coworker staging an intervention, your 
app simply crashes and burns.

So when profiling isn’t an option and the app has already thrown its memory tan-
trum, what can you do? You freeze the moment—by grabbing a heap dump. If the app 
is not running, you can’t attach a profiler to investigate the execution. But, even so, you 
have other alternatives to investigate the problem. You can use a heap dump, which is 
a snapshot of the heap memory’s state at the time the app crashed. Although you can 
collect a heap dump anytime, it is most useful when you can’t profile the app for some 
reason—maybe because the app crashed or you simply don’t have access to profile the 
process, and you want to determine whether it suffers from any memory allocation 
problems.

DEFINITION A heap dump is a snapshot of an application’s memory at a specific 
moment, showing all the objects stored in the heap and their relationships.

In section 10.1, we’ll discuss three possible ways to obtain a heap dump, and in section 
10.2, I’ll show you how to use the heap dump to identify memory allocation problems 
and their root causes. In section 10.3, we’ll discuss a more advanced way of reading a 
heap dump using a query language called Object Query Language (OQL). OQL is 
similar to SQL, but instead of querying a database, you use OQL to query the data in a 
heap dump.

10.1 Obtaining a heap dump

Before being able to use a heap dump, you obviously need to know how to get one. 
This section discusses three ways to generate a heap dump:

¡	Configuring the application to generate one automatically in a specified location 
when the app crashes due to a memory problem

¡	Using a profiling tool (such as VisualVM)

¡	Using a command-line tool (such as jcmd or jmap)

You can even get a heap dump programmatically. Some frameworks have capabilities 
that can generate a heap dump, allowing developers to integrate app-monitoring tools. 

10.1.1 Configuring an app to generate a heap dump when it encounters  

a memory problem

Developers often use a heap dump to investigate an app crash when they suspect faulty 
memory allocation is causing a problem. For this reason, apps are most often config-
ured to generate a heap dump of what the memory looked like when the app crashed. 
You should always configure an app to generate a heap dump when it stops due to a 
memory allocation problem. Fortunately, the configuration is easy. You just need to 
add a couple of JVM arguments when the app starts:

-XX:+HeapDumpOnOutOfMemoryError    
-XX:HeapDumpPath=heapdump.bin    



 213Obtaining a heap dump

The first argument, -XX:+HeapDumpOnOutOfMemoryError, tells the app to generate a 
heap dump when it encounters an OutOfMemoryError (the heap gets full). The second 
argument, -XX:HeapDumpPath=heapdump.bin, specifies the path in the filesystem where 
the dump will be stored. In this case, the file containing the heap dump will be named 
heapdump.bin and located near the executable app, from the root of the classpath 
(because we used a relative path). Make sure the process has write privileges on this 
path to be able to store the file in the given location.

NOTE Remember to configure the app to generate the heap dump in a non-
volatile location. If you’re running your app in a Docker container, avoid 
placing the heap dump on the classpath, as it will be automatically destroyed 
when the container restarts. Instead, ensure that the app saves the heap dump 
in a persistent volume to retain it for analysis. Also, ensure that there’s enough 
space in the location on the disk to store the heap dump, as it might be large.

The following snippet shows the full command for running an app:

java -jar -XX:+HeapDumpOnOutOfMemoryError 
➥ -XX:HeapDumpPath=heapdump.bin app.jar

We’ll use a demo app named da-ch10-ex1 to demonstrate this approach. You can find 
this app in the projects provided with the book. The app in the following listing contin-
uously adds instances of type Product to a list until the memory fills.

Listing 10.1 Generating a large number of instances that can’t be deallocated

public class Main {

  private static List<Product> products = new ArrayList<>();

  public static void main(String[] args) {
    Random r = new Random();
    while (true) {     
      Product p = new Product();
      p.setName("Product " + r.nextInt());
      products.add(p);   
    }
  }
} 

The next code snippet shows what the simple Product type looks like:

public class Product {

  private String name;

  // Omitted getters and setters

}

The loop iterates forever.

Adds instances to the list 
until the memory gets full



214 CHAPTER 10 Investigating memory problems with heap dumps

Perhaps you’re wondering why there’s a random name for the product instances. We’ll 
need that later when we discuss reading a heap dump in section 10.2. For the moment, 
we’re only interested in generating a heap dump to determine why this app is filling its 
heap memory in seconds.

You can use the IDE to run the app and set the arguments. Figure 10.1 illustrates how 
to set JVM arguments in IntelliJ. I also added the -Xmx argument to limit the app’s heap 
memory to 100 MB. That will make the heap dump file smaller and our example easier. 

Set the JVM arguments in the
Run/Debug Configuration window.

Figure 10.1 You can configure the JVM arguments from your IDE. Add the values in the Run/Debug Configurations 

before starting the application.

When you run the application, wait a moment, and the app will crash. With only 100 
MB of heap space, the memory shouldn’t take more than a few seconds to get full. 
The project folder contains a file named heapdump.bin, which includes all the details 
about the data in the heap the moment the app stopped. You can open this file with 
VisualVM to analyze it, as presented in figure 10.2.

10.1.2 Obtaining a heap dump using a profiler

Sometimes, you need to get a heap dump for a running process on your local machine. 
In this case, the easiest solution is to use VisualVM (or a similar profiling tool) to gen-
erate the dump. Getting a heap dump with VisualVM is as easy as clicking a button. Just 
use the Heap Dump button in the Monitor tab, as shown in figure 10.3.

10.1.3 Obtaining a heap dump with the command line

If you need to get a heap dump for a running process, but your app is deployed in an 
environment where you don’t have access to connect a profiler to it, don’t panic; you 



 215Obtaining a heap dump

Use the Load button to find the file where
it was generated. Then open the file.

Once you open the file, 
VisualVM displays it as a tab.

Figure 10.2 You can use VisualVM to open the heap dump file for analysis. Use the Load button  

in the menu to find the file. Open the file, and VisualVM will display the heap dump as a tab.

still have options. You can use jmap, a command-line tool provided with the JDK, to 
generate the heap dump.

Click the Heap Dump button in the Monitor tab to get a heap dump. VisualVM opens 
the dump as a tab, and you’ll be able to investigate it or save it anywhere you want.

Figure 10.3 Click the Heap Dump button in VisualVM’s Monitor tab to get a heap dump for the  

selected process. VisualVM opens the dump as a tab, and you can further investigate it or save it 

anywhere you want.



216 CHAPTER 10 Investigating memory problems with heap dumps

There are two steps for collecting a heap dump with jmap:

1 Find the process ID (PID) of the running app for which you want to get the heap 
dump.

2 Use jmap to save the dump to a file.

To find the running-process PID, you can use jps, like we did in chapter 8:

jps -l
25320 main.Main    
132 jdk.jcmd/sun.tools.jps.Jps
25700 org.jetbrains.jps.cmdline.Launcher

The second step is using jmap. To call jmap, specify the PID and the location where the 
heap dump file will be saved. You must also specify that the output is a binary file using the 
-dump:format=b parameter. Figure 10.4 shows the use of this tool in the command line.

1. Specify the dump format: in this case "format=b"
    means exporting the dump into a binary file format.   

2. Specify the path where the file containing 
    the heap dump should be saved. 

3. Provide the process ID for which 
    the heap dump must be obtained.

Figure 10.4 Using jmap in the command line to get a heap dump. You need to specify the path where 

the file containing the dump will be saved and the process ID for which you generate the dump. The tool 

saves the heap dump as a binary file in the requested location.

Copy the following code to easily use the command:

jmap -dump:format=b,file=C:/DA/heapdump.bin 25320

Now you can open the file you saved with jmap in VisualVM for investigation.

10.2 Reading a heap dump

In this section, we dive into heap dumps—one of the most powerful tools for uncov-
ering memory allocation problems. Think of a heap dump as a freeze-frame snapshot 
of your app’s memory at a specific moment in time. It captures everything stored in 
the heap, allowing you to examine not just the data, but also how it’s structured and 
interconnected.

By analyzing a heap dump, you can pinpoint which objects were consuming large por-
tions of memory and, more importantly, why they weren’t deallocated. Is it a classic mem-
ory leak? A rogue collection growing out of control? A forgotten cache hoarding data like 
a dragon? The answers are all in the heap dump—you just need to know how to look. 



 217Reading a heap dump

Remember that in the “picture” (heap dump), you can 
see everything. If unencrypted passwords or any kind 
of private data is in memory, someone with the heap 
dump will be able to get these details.

Rem
see 
of pr
dum

Unlike a thread dump, you cannot analyze a heap dump as plain text. Instead, you 
must use VisualVM (or any profiling tool in general). In this section, we’ll use VisualVM 
to analyze the heap dump we generated for project da-ch10-ex1 in section 10.1. You’ll 
learn how to use this approach to find the root cause of an OutOfMemoryError.

When you open a heap dump in VisualVM, the profiling tool displays a summary 
view of the heap dump (figure 10.5), which provides quick details on the heap dump 

The summary shows quick details 
about the dump and the environment 
where the app was running.

For a real-world app, the heap 
dump is usually much larger 
than the one in our example.

The summary presents a quick view of the
types that occupy the most memory or that
created a large number of instances.

Figure 10.5 In the 

initial screen after 

opening a heap dump, 

VisualVM provides a 

summary of the heap 

dump, which includes 

information about the 

dump itself and the 

system where the app 

was running. The view 

also shows the types 

that occupy the largest 

amount of memory.



218 CHAPTER 10 Investigating memory problems with heap dumps

file (e.g., the file size, total number of classes, total number of instances in the dump). 
You can use this information to ensure you have the correct dump, in case you weren’t 
the one who extracted it. 

There have been times I’ve had to investigate heap dumps from a support team that 
had access to the environments where the app was running. However, I couldn’t access 
those environments myself, so I had to rely on someone else to get the data for me. More 
than once, I was surprised that I had been given the wrong heap dump. I was able to iden-
tify the error by examining the size of the dump and comparing it to the maximum value 
configured for the process, or by reviewing the operating system or Java version.

My advice is to first quickly review the summary page and ensure you have the cor-
rect file. On the summary page, you’ll also find types that occupy a large amount of 
space. I usually don’t rely on this summary and instead go directly to the Objects view, 
where I start my investigation. In most cases, the summary isn’t enough for me to draw 
a conclusion.

To switch to the objects view, select Objects from the drop-down menu in the upper-
left corner of the heap dump tab (figure 10.6). This step will allow you to investigate the 
object instances in the heap dump.

To get a view of all the types of objects in
the heap dump, change the view to Objects.

Figure 10.6 You can switch to 

the Objects view, which makes 

it easier to investigate the 

instances in the heap dump.

Just as with memory sampling and profiling, we’re searching for the types that use the 
most memory. The best approach is to sort, in descending order, by both instances and 
occupied memory, and look for the first types that are part of the app’s codebase. Don’t 
look for types such as primitives, strings, or arrays of primitives and strings. There are 
usually a lot, and they won’t give you many clues as to what is wrong.

In figure 10.7, after sorting, you can see that the Product type seems to be involved in 
the problem. The Product type is the first type that is part of the app’s codebase, and it 
uses a large part of the memory. We need to figure out why so many instances have been 
created and why the GC can’t remove them from the memory.



 219Reading a heap dump

Look for the object type in your app’s 
codebase that occupies the most memory.

Figure 10.7 Use sorting on columns to identify which type created a large number of instances or takes 

up a lot of space. Always look for the first object in your app codebase. In this case, both in number of 

instances and size, the Product type is the first in the list.

You can select the small plus sign (+) on the left side of the row to get details about all 
the instances for that type. We already know there are more than one million Product 
instances, but we still need to find

¡	What part of the code creates those instances

¡	Why the GC can’t remove them in time to avoid the app’s failure

You can find what each instance refers to (through fields) and what refers to that 
instance. Since we know the GC cannot remove an instance from the memory unless it 
has no referrers, we look for what refers the instance to see whether it is still needed in 
the processing context or if the app forgot to remove its reference.

This behavior can hint at a memory problem—letting you know that something is 
off—but they won’t pinpoint exactly where the problem lies. That’s where memory pro-
filing and heap dumps come into play.

Profiling works well when the app is running. But if the app crashes or profiling isn’t 
feasible, a heap dump becomes your best friend.

Figure 10.8 shows the expanded view for the details of one of the Product instances. 
We can see that the instance refers to a String (the product name), and its reference is 
kept in an Object array, which is part of an ArrayList instance. Moreover, the ArrayList 
instance seems to keep a large number of references (over one million). This is usually 
not a good sign, as either the app implements an unoptimized capability or we found a 
memory leak. 



220 CHAPTER 10 Investigating memory problems with heap dumps

The object referencing this Product instance is an
ArrayList that holds 1,215,487 other references.

Figure 10.8 References to an instance. By using the heap dump, you can find, for each instance, what 

other instances were being referenced at the time the dump was generated. The profiling tool also tells 

you where a given reference is stored in the code. In this case, ArrayList, which holds over one million 

references, is a static variable in the Main class.

To find which is the case, we need to investigate the code using the debugging and log-
ging techniques discussed in chapters 2–4. Fortunately, the profiler indicates exactly 
where to locate the list in the code. In our case, the list is declared as a static variable in 
the Main class.

Using VisualVM, we can easily understand the relationships between objects. By 
combining this technique with other investigation techniques you’ve learned through-
out the book, you have all the tools you need to address these kinds of problems. Com-
plex problems (and apps) may still require significant effort, but using this approach 
will save you a lot of time.

You might now be wondering about AI assistants—can we use them to investigate 
heap dumps? The answer is yes, but analyzing heap dumps with AI is significantly more 
challenging than working with thread dumps or profiling data. This is primarily due to 
the sheer size of heap dumps in real-world scenarios

Take, for example, the heap dump we analyzed in this scenario—it is just over 100 
MB. As an experiment, you could try feeding it to an AI assistant such as Gemini or 
ChatGPT. However, you’ll notice that processing it takes a considerable amount of time 
and may not yield immediate insights. Now, imagine handling a real-world heap dump 
of 4 GB or larger—such a task would be impractical for most AI assistants.

For this reason, I take a different approach when using AI for heap dump analysis. 
First, I investigate the data using a dedicated profiling tool such as VisualVM. Next, I 



 221Using the OQL console to query a heap dump

extract relevant portions of the data and, if needed, consult an AI assistant to generate 
ideas or help me overcome roadblocks. However, I never rely on AI to analyze an entire 
heap dump file directly.

First, I follow the steps we have already discussed in this section. I begin by sorting 
instances based on their size and count. This is, in fact, the most crucial part of prepar-
ing investigation data—there’s generally no need to examine types with only a small 
number of instances.

Second, if the heap dump file is particularly large and complex, I use OQL queries to 
explore the data as if it were a relational database. OQL enables precise filtering, allow-
ing us to focus on only the most relevant objects. Section 10.3 discusses OQL queries in 
detail—this powerful yet often overlooked tool can significantly enhance your ability to 
isolate essential data when investigating memory problems in heap dumps.

10.3 Using the OQL console to query a heap dump

Alright, you’ve wrestled with heap dumps the old-fashioned way—sorting instances, 
eyeballing sizes, and maybe even muttering a few choice words when things didn’t add 
up. But now, it’s time to work smarter, not harder.

In this section, we’re stepping up our game by using a query language similar to SQL 
to extract details from a heap dump with precision. The basic techniques from section 
10.2 work fine for identifying memory problems, but they fall short when you need to 
compare multiple heap dumps—say, from different versions of your app.

Sure, you could open each heap dump manually, flip between them, and try to spot 
differences with sheer determination. But let’s be real—that’s like comparing two nov-
els by reading them side by side. Instead, I’ll show you how to write queries that do the 
heavy lifting for you.

This is where OQL shines. It lets you sift through heap dumps like a pro, extracting 
exactly what you need without endless scrolling. Figure 10.9 shows how to switch to the 
OQL console and unleash its power.

Choose OQL Console to switch
to the OQL analysis screen.

Figure 10.9 To switch to the OQL view in VisualVM, choose OQL Console from the drop-down menu in 

the upper-left corner of the heap dump tab.



222 CHAPTER 10 Investigating memory problems with heap dumps

We’ll discuss a few useful examples, but remember that OQL syntax is more complex 
than the examples we’ll be able to cover in this section. (You can find more informa-
tion on its functions at http://mng.bz/Pod2.)

Let’s start with a simple example: selecting all the instances of a given type. Suppose 
we want to retrieve all instances of type Product from the heap dump. To use a SQL 
query to get all the product records from a table in a relational database, we would write 
something like

select * from product

To query all the Product instances in a heap dump using OQL, you need to write this:

select p from model.Product p

NOTE For OQL, keywords such as “select,” “from,” or “where”
are always written in lowercase. The types are always given
with their fully qualified name (package + class name).

Figure 10.10 shows the result of executing the simple query that retrieves all the 
Product instances from the heap dump.

1. Write the OQL query in the text box.

3. After running an OQL query,
    the results are displayed
    above the query box.

2. Click the Run button.
 

Figure 10.10  

Running an 

OQL query with 

VisualVM. In the 

OQL console, 

write the OQL 

query in the 

textbox on the 

bottom of the 

window and click 

the Run button 

(the green arrow 

on the left of 

the text box) to 

run the query. 

The results will 

appear above the 

text box.

http://mng.bz/Pod2


 223Using the OQL console to query a heap dump

NOTE When learning OQL, use small heap dumps.
Real-world heap dumps are usually large (4 GB or larger).
The OQL queries will be slow. If you are studying only, 
generate and use small-sized heap dumps like we do 
in this chapter.

You can select any of the queried instances to get its details. You can find what keeps 
a reference to that instance, what that instance refers to, and its values (figure 10.11).

Selecting any of the rows in the result 
(which represents an object instance) 
gives you details about that instance.

Figure 10.11 You can access the details about a queried instance (referees and referrers) by clicking it.

You can also select values or references referred from certain instances. For example, if 
we want to get all the product names instead of the product instances, we can write the 
following query (figure 10.12):

select p.name from model.Product p

With OQL, you can extract multiple values at the same time. To do so, you need to for-
mat them as JSON, as shown in the next listing.

Listing 10.2 Using a JSON projection

 select 

{      

   name: p.name,     

Curly braces surround 
the JSON object 
representation. The attribute name takes the 

value of the product name.



224 CHAPTER 10 Investigating memory problems with heap dumps

   name_length: p.name.value.length   
} 

from model.Product p

You can select any attribute
of a given object type.

Figure 10.12 Selecting an attribute 

of a given object type. Just as in Java, 

you can use the standard dot operator 

to refer to an attribute of an instance.

Figure 10.13 shows the result we obtain after running this query.

To select multiple values, use JSON formatting.

To see the results clearly, use the formatter display.

Figure 10.13 Selecting 

multiple values. You can 

use JSON formatting to 

obtain multiple values 

with one query.

The attribute name_length takes 
the value of the number of 
characters in the product name.



 225Using the OQL console to query a heap dump

You can change this query to, for example, add conditions on one or more of the 
selected values. Say you want to select only the instances that have a name longer than 
15 characters. You could write a query as presented in the next snippet:

select { name: p.name, name_length: p.name.value.length} 
from model.Product p 
where p.name.value.length > 15

Let’s move on to something slightly more advanced. A query I often use when investi-
gating memory problems utilizes the referrers() method to retrieve the objects that 
refer to instances of a specific type. By using built-in OQL functions such as this one, 
you can do plenty of helpful things:

¡	Find or query instance referees—Can tell you if the app has memory leaks

¡	Find or query instance referrals—Can tell you if specific instances are the cause of 
memory leaks

¡	Find duplicates in instances—Can tell you if specific capabilities can be optimized 
to use less memory

¡	Find subclasses and superclasses of certain instances—Gives you insight into an app’s 
class design without needing to see the source code

¡	Identify long life paths—Can help you to identify memory leaks

To get all the unique referrers for instances of type Product, you can use the following 
query:

select unique(referrers(p)) from model.Product p

Figure 10.14 shows the result for running this query. In this case, we can see that all the 
product instances are referred to by one object—a list. Usually, when a large number 
of instances have a small number of referrals, it’s a sign of a memory leak. In our case, 
a list keeps references to all the Product instances, preventing the GC from removing 
them from memory.

If the result is not unique, you can count the referrals by instance using the next 
query to find the instances that are potentially involved in a memory leak:

select { product: p.name, count: count(referrers(p))} from model.Product p

The OQL queries provide a lot of opportunities, and once you write a query, you can 
run it as many times as you need and on different heap dumps. 

Now, don’t get too lazy—but do remember that AI assistants can help you craft and 
refine queries such as these. Some OQL queries can get pretty complex, and let’s be 
honest, there’s no need to become an expert in every little detail of the language. After 
all, it’s not something you use every day.

So, work smarter! When investigating heap dumps, don’t hesitate to offload some of 
the grunt work to an AI assistant. Whether it’s generating queries, tweaking filters, or 



226 CHAPTER 10 Investigating memory problems with heap dumps

By running the query, you can see that
all the products have a unique referrer.

Figure 10.14 Selecting all the unique referrers for instances of a type shows you if there’s one object 

that prevents the GC from removing the instances from memory. This can be a quick way to identify a 

memory leak.

explaining results, a little help can go a long way in simplifying your analysis. Just don’t 
let the AI take all the credit!

And with that, you’re now equipped to navigate heap dumps like a pro—one query 
at a time.

Summary

¡	A heap dump captures the entire memory state at a given moment. Analyzing 
it helps diagnose memory leaks, excessive object retention, and inefficient data 
structures.

¡	The JVM can be configured to generate a heap dump automatically when an 
OutOfMemoryError occurs. This makes post-crash investigations much easier.

¡	Heap dumps can be manually created using profiling tools such as VisualVM or 
command-line utilities such as jmap. These tools help capture and inspect mem-
ory usage at any time.

¡	Loading a heap dump into VisualVM facilitates exploring object instances, ref-
erences, and relationships. This helps pinpoint performance bottlenecks and 
memory leaks.



 227Summary

¡	OQL (Object Query Language) lets you filter and analyze heap dump data effi-
ciently. Instead of manually browsing through thousands of objects, you can 
retrieve specific information using queries.

¡	AI assistants such as ChatGPT or Gemini can help analyze heap dumps by gen-
erating OQL queries, summarizing data, and suggesting optimizations. While AI 
won’t replace manual analysis, it can significantly speed up the process.



228

11Analyzing potential JVM 
problems with GC logs

This chapter covers

¡	Enabling and accessing GC logs

¡	Understanding the structure and content of GC 

logs

¡	Using GC logs to identify root causes

¡	Analyzing large volume GC logs with AI 

assistance

Let’s embark on a journey into the often misunderstood yet indispensable world of 
garbage collection (GC) logs. If you’ve ever stared at a stream of cryptic JVM output 
and thought, “This looks like The Matrix, but with less Keanu and more confusion,” 
you’re not alone. Fear not, for by the end of this chapter, GC logs will transform 
from chaotic hieroglyphics into an invaluable troubleshooting ally. But before we 
dive in, let me set the stage with a little story—a cautionary tale of what happens 
when GC logs are ignored.

Alex is a senior developer at an e-commerce startup, known for their love of cof-
fee, code, and, unfortunately, cutting corners. One fateful Friday afternoon, Alex 
deployed a major update to the production environment—an update heralded as 



 229Enabling GC logs

the solution to all scalability woes. But as the weekend wore on, the reality was anything 
but celebratory.

By Sunday morning, the site was slower than a dial-up modem from the 1990s. The 
server logs painted a picture of doom: memory spikes, sluggish response times, and 
CPU usage hovering at 99%. The worst part? The system was spawning threads faster 
than it could clean them up, leading to what Alex dubbed “zombie threads.”

Desperate and sleep-deprived, Alex dove into the JVM’s GC logs, a treasure trove of 
information they had always ignored in favor of more user-friendly tools. With the clock 
ticking and their caffeine stash running low, Alex turned to an AI assistant for help deci-
phering the logs.

Within minutes, the culprit was uncovered—an overly aggressive full GC cycle trig-
gered by an improperly tuned heap size. The logs revealed excessive stop-the-world 
events, freezing the application at the worst possible times. A few adjustments to the 
JVM options, and voilà—the zombie threads were finally put to rest.

Why do GC logs matter? GC logs are like your JVM’s memory diary. They document 
every GC event, from minor collections to full-scale memory cleanups. In this chapter, 
we’ll start with the basics: enabling GC logs and understanding their structure. From 
there, we’ll identify and solve common JVM performance problems, such as excessive 
GC pauses or memory leaks. And yes, I’ll show you how to use AI assistants to make 
sense of the data faster than you can say “OutOfMemoryError.”

Let’s dive into the world of GC logs. Who knows? By the end of this chapter, you 
might just find yourself enjoying the process—or at least appreciating it a little more. 
After all, as Alex learned the hard way, sometimes the answers you seek are hidden in 
plain sight, waiting to be decoded.

We begin by learning how to enable GC logging in section 11.1, followed by configur-
ing these logs to be stored in files in section 11.2. Next, in section 11.3, we explore tech-
niques for optimizing log storage, including log rotation and selective logging levels, to 
enhance the troubleshooting experience. Finally, in section 11.4, we examine the most 
common real-world GC log patterns and analyze how to troubleshoot them effectively.

11.1 Enabling GC logs

This section covers key options and configurations for enabling GC logging for Java 
apps. Whether you’re troubleshooting excessive GC pauses, high CPU usage, or mem-
ory leaks, enabling GC logs is the first step toward a deeper understanding of how the 
JVM manages memory.

Garbage collection plays a crucial role in Java application performance, but under-
standing its behavior can be challenging without proper visibility. GC logs provide valu-
able insights into memory allocation, collection pauses, and overall heap management, 
helping developers diagnose performance bottlenecks and fine-tune the JVM for opti-
mal efficiency.

DEFINITION Garbage collection is the process by which Java automatically finds 
and removes objects from memory that are no longer used by the application, 
freeing up space so the app can keep running efficiently.



230 CHAPTER 11 Analyzing potential JVM problems with GC logs

Before we dive into GC analysis, let’s first see how to enable GC logging. By default, GC 
logging is turned off when an application runs. This is because GC logs can be quite 
large, which may slow down the application and fill up the log files with extra data.

Since these logs can make it harder to find important information, it’s best to enable 
them only when needed—such as when troubleshooting problems such as slow perfor-
mance, high CPU usage, or memory problems. When used correctly, GC logs can help 
you understand how the JVM handles memory and find the root cause of performance 
problems.

First, I’ll display the GC logs in the terminal so you can familiarize yourself with their 
appearance. Then, I’ll show you how to save them to files, which is useful for long-term 
analysis or using AI tools to help with troubleshooting. AI can quickly scan through 
large GC logs and point out patterns or problems you might miss. It will save you time 
and make your investigation easier.

The following code snippet shows the VM attribute you must use to activate the GC 
logging:

-Xlog:gc*

If you’re running the application in an IDE, you need to add the -Xlog:gc* VM option 
to your run configuration. This enables GC logging during execution. Figure 11.1 
illustrates how I configured this option in IntelliJ IDEA in example da-ch11-ex1.

The example da-ch11-ex1 follows a producer-consumer multithreaded architec-
ture, similar to the one we analyzed in chapter 5. To keep the focus on GC logs, I have 
removed all other application logs. This way, once we start the app, we can clearly 
observe the GC-related output without distractions.

Add the necessary property
to enable GC logging.

Figure 11.1  

Enabling the GC 

logs in IntelliJ 

IDEA running 

configuration 

to display the 

GC logs in the 

execution console



 231Enabling GC logs

If you run the application in a console—typically in a real-world environment where 
your app is started in a Docker container—you need to add the VM parameter to the 
execution command:

java -Xlog:gc* -jar app.jar

Listing 11.1 shows an example of GC logs that appear in the console when you run the 
application with the appropriate VM parameter. These first logs are also called initial-
ization logs since they uncover the essential parameters related to the GC initialization. 

We’ll break down the most important lines together. As you get more familiar with 
them, what once seemed like an unreadable mess will start making sense. Over time, 
these logs will go from being an ominous wall of text to a helpful guide in your trouble-
shooting journey. 

Next, we’ll walk through the upcoming listings to give you a sneak peek at what GC 
logs look like—so they won’t feel like an alien language anymore. We’ll also discuss how 
to use these logs for troubleshooting and, most importantly, which ones deserve your 
attention first (Spoiler: Not all logs are created equal!). For a deeper dive into practical 
troubleshooting, stay tuned for section 11.2, where we’ll turn GC logs from cryptic rid-
dles into useful clues.

Listing 11.1 Initialization GC logs appearing in the app terminal

[0.059s][info][gc,init] CardTable entry size: 512     
[0.059s][info][gc     ] Using G1       
[0.065s][info][gc,init] Version: 22.0.1+8 (release)     
[0.065s][info][gc,init] CPUs: 8 total, 8 available    
[0.065s][info][gc,init] Memory: 48899M     
[0.065s][info][gc,init] Large Page Support: Disabled
[0.065s][info][gc,init] NUMA Support: Disabled
[0.065s][info][gc,init] Compressed Oops: Enabled (Zero based)
[0.065s][info][gc,init] Heap Region Size: 8M     
[0.065s][info][gc,init] Heap Min Capacity: 8M    
[0.065s][info][gc,init] Heap Initial Capacity: 768M    
[0.065s][info][gc,init] Heap Max Capacity: 12232M    
[0.065s][info][gc,init] Pre-touch: Disabled
[0.065s][info][gc,init] Parallel Workers: 8      
[0.065s][info][gc,init] Concurrent Workers: 2      
[0.065s][info][gc,init] Concurrent Refinement Workers: 8      
[0.065s][info][gc,init] Periodic GC: Disabled

The details in listing 11.1 provide a crucial first glance before I investigate a problem 
further. This initial overview helps me understand the basic configuration of the cur-
rent application’s execution.

Key aspects, such as the JVM version and the type of GC, are fundamental. They 
set expectations for how memory is managed. Different JVM versions may introduce 
improvements in memory allocation and storage, while different GC types handle 

Which garbage collector is used  

Which JVM version is used 

Information about the 
system where the JVM runs

Information about 
heap allocation for 
the current execution

Information about GC 
parallelism configuration



232 CHAPTER 11 Analyzing potential JVM problems with GC logs

object evacuation in distinct ways. Understanding these nuances allows you to antici-
pate potential events that might lead to higher latencies or unexpected behavior during 
execution.

System details matter because they tell you how many resources are available for the 
application. If the system lacks CPU or memory, the app might slow down, experience 
longer pauses, or even behave unpredictably. For example, running the same process 
on a single-core machine versus a multicore setup can yield different results.

Sometimes, weird bugs only show up when the system has fewer resources. I once 
spent way too many hours chasing down a mysterious problem in a multithreaded 
application. The problem? It happened randomly—sometimes everything worked 
fine, sometimes it didn’t. After a lot of head-scratching, we finally realized that the bug 
showed up more often when the app ran in a virtual environment with limited CPU 
power. It turns out, our multithreading logic was not as smart as we thought, and the 
lower processing power made the flaw much more obvious.

Heap information is also crucial when investigating performance or memory-related 
problems. Suppose I notice that the heap has been allocated only a small amount of 
memory. In that case, it’s one of the first things I suspect when troubleshooting GC per-
formance or general memory problems.

No matter how efficient our algorithms are, they still need enough memory to run 
smoothly. Sometimes, tweaking memory configurations can reveal unexpected behav-
iors, uncover hidden flaws, or even expose inefficient memory management patterns. 
Adjusting heap settings isn’t just about improving performance—it’s also a great way 
to test how resilient an application is under different conditions. After all, if your app 
starts acting strangely just because it got a little less memory, maybe it was never that 
stable to begin with!

How is the heap organized

Before diving deeper into the structure of GC event log messages and how to ana-

lyze them, let’s first refresh our understanding of how memory works. It can also be 

beneficial to review appendix E. In addition to what appendix E covers, let’s explore 

the structure of the heap in greater depth and use some analogies to help you under-

stand the complexities more easily.

Imagine the JVM process heap as a closet where you store clothes. But instead of 

just throwing everything in randomly (I know not everyone does that, but I’m usually 

guilty of that), you have a system to keep things organized. The heap has different 

sections based on how long the clothes (or data) are expected to stay:

1 Eden (new clothes section)—Think of Eden as the place where you put brand-

new clothes you just bought. These are fresh items, and you’re not sure yet if 

you’ll keep them forever or get rid of them after a short time. New objects in a 

Java program start here.

2 Survivor (still in use section)—Some clothes from Eden are worn often, so you 

move them to a special section called Survivor. If something is still useful after 



 233Enabling GC logs

a few wears (or in Java’s case, after surviving a few GC cycles), it gets moved 

here. There are two small areas in Survivor, and clothes (or data) get shuffled 

between them before moving to a more permanent place.

3 Old generation (the classics)—Some clothes become favorites: you wear them 

all the time, and they stay in your closet for years. This is the Old Generation in 

Java memory. Objects that survive long enough in Survivor move here because 

they’re needed for the long run.

New objects are
stored in Eden.

After some GC cycles, the objects
that aren’t removed are promoted
to the survivor space.

The objects with the longest life
end up in the old generation space.

Young generation Old generation

Eden

Survivor space

S0 S1

A visual representation of heap memory management illustrates how the heap is structured and 

how objects are organized based on their life cycle. The heap is divided into multiple regions, 

where objects are stored according to their age, which is determined by the number of GC cycles 

they have survived. As objects persist through successive GC cycles, they may be promoted from 

one region to another, optimizing memory usage and performance.

When the closet gets too full, you need to clean it out. This is what GC does—it 

removes clothes (data) you don’t use anymore. Eden gets cleaned frequently because 

a lot of new stuff comes in and out. Survivor gets tidied up less often. The Old Gener-

ation is cleaned rarely because it holds important items.

Understanding the heap structure is crucial when analyzing GC logs because it helps 

identify patterns in GC events that may indicate potential problems in your applica-

tion. By recognizing these patterns, you can diagnose performance problems, mem-

ory inefficiencies, and possible malfunctions more effectively.



234 CHAPTER 11 Analyzing potential JVM problems with GC logs

Listing 11.2 shows an example of a GC event. These events are critical when trouble-
shooting performance problems, especially if you suspect that GC is contributing to—
or even causing—the problem.

One key detail to note is that each major phase of the collection process is measured 
separately. The two most important things to focus on are

¡	The type of GC event—This helps you understand whether it’s a minor, full, mixed, 
or emergency collection. As you’ll learn further in this chapter, these types repre-
sent events that serve distinct purposes in cleaning the memory.

¡	The time spent in each phase—A long total GC time or unusually long duration for a 
specific phase can strongly indicate performance bottlenecks.

If something seems off—say, an evacuation step takes significantly longer than usual—
this could be the clue that leads you to the root cause. When debugging GC-related 
problems, these numbers are often your best friends (or worst enemies).

Listing 11.2 Logs related to events of a GC event of memory collecting

[1.336s][info][gc,start] GC(0) 
   ➥ Pause Young (Normal)(G1 Evacuation Pause)    

[1.337s][info][gc,task] GC(0) 
   ➥ Using 8 workers of 8 for evacuation    

[1.342s][info][gc,phases] GC(0)   
   ➥ Pre Evacuate Collection Set: 0.13ms    

[1.342s][info][gc,phases] GC(0)   
   ➥ Merge Heap Roots: 0.20ms      

[1.342s][info][gc,phases] GC(0)   
   ➥ Evacuate Collection Set: 4.04ms      

[1.342s][info][gc,phases] GC(0)   
   ➥ Post Evacuate Collection Set: 0.73ms     
[1.342s][info][gc,phases] GC(0) Other: 0.71ms

For instance, in listing 11.2, there are no signs of concern. The event type is labeled as 
Normal, indicating that this is a routine collection event—not one triggered by mem-
ory pressure or any other urgent condition.

Moreover, all the execution times for each phase are measured in milliseconds, 
which are brief enough to rule out any significant problems with memory deallocation. 
The quick execution suggests that the garbage collector works efficiently, without caus-
ing noticeable delays or disruptions in application performance.

Listing 11.3 shows a summary of the changes made during the collection event. 
These logs provide insights into how many objects were promoted from one region 

Identifies the initiation 
of a memory collection

The number of threads the GC 
uses for the collection operation

The time it took GC to identify the 
objects that need to be deallocated

Orders the references 
that are to be collected

The collecting operation 
that implies moving some 
references to the next 
hierarchic memory zone 
and removing others

The final cleanup 
phase after evacuation



 235Storing GC logs in files

to another and how many humongous objects (extra-large objects that occupy more 
than half of a memory region) were removed. This breakdown helps assess how mem-
ory is being managed and whether object movement patterns align with expected GC 
behavior.

Listing 11.3 Logs that show the changes after a collection

[1.342s][info][gc,heap] GC(0) Eden regions: 4->0(5)    
[1.342s][info][gc,heap] GC(0) Survivor regions: 0->1(1)     
[1.342s][info][gc,heap] GC(0) Old regions: 0->0     
[1.342s][info][gc,heap] GC(0) Humongous regions: 0->0     

From the logs in listings 11.1, 11.2, and 11.3, we can draw the following conclusions as 
a summary:

¡	G1 GC is used, with an 8 MB heap region size and a max heap of approximately 
12 GB.

¡	GC was triggered at 1.336s, doing a Young Generation collection.

¡	All Eden space was cleared, and one Survivor region was used.

¡	GC pause lasted only a few milliseconds, showing a well-tuned GC.

11.2 Storing GC logs in files

Logging GC activity directly in the terminal is useful for learning and quick debug-
ging, but it’s far from ideal in real-world scenarios. These logs often get mixed with 
other applications in a live console, making them hard to follow. Additionally, GC 
logs can be quite large, further cluttering the console and making real-time analysis 
difficult.

GC logs should be stored in separate files for practical troubleshooting. This allows 
easier collection, filtering, and analysis, especially when dealing with large volumes 
of data. For this reason, let’s now explore how to store GC logs in files, ensuring they 
remain organized and accessible for deeper investigation.

The following code snippet shows the VM parameter you need to use to redirect the 
GC logs in a specific file. Make sure that the JVM process has write permissions to the 
directory where the GC log file should be created:

-Xlog:gc*:file=<file_path>:time,uptime,level,tags

Before the collection event, the app was using four 
Eden regions that were all cleared during the collection 

event. The app has five available Eden regions.

No survivor regions were used before the collection event. 
After the collection event, one survivor region is used. In 

total there is only one survivor region available.

No objects were 
promoted to the 
old generation.There were no large 

objects collected.



236 CHAPTER 11 Analyzing potential JVM problems with GC logs

In the snippet you’ve just read, the options time, uptime, level, and tags are data you 
want to be added to the log messages format. Usually, these four are the most useful 
and frequently used, representing

¡	time—Adds a timestamp to each log entry.

¡	uptime—Logs the JVM uptime in seconds/milliseconds when the GC event 
occurred.

¡	level—Includes the log level (e.g., info, debug, trace). See chapter 4 where we 
talked more about logging levels.

¡	tags—Shows tags (categories) associated with each log message.

You can add this VM option to the Java command when running the application from a 
terminal or configure it in your IDE’s runtime settings. The following snippet shows an 
example of using the VM attribute in the command line, while figure 11.2 shows how 
to configure it in the running configuration of IntelliJ IDEA:

java -Xlog:gc*:file=gc.log:time,uptime,level,tags -jar yourApp.jar

Add the VM property to store
the GC logs in a given file.

Figure 11.2 Adding a VM property to store GC logs for the application’s execution in a specified file



 237Storing GC logs in files

After running the application for some time, a file will appear in the specified location. 
This file contains GC logs formatted according to the specified option (figure 11.3).

The GC logs were stored at
the requested location.

The message is formatted according
to the options you provided: time,
uptime, level, and tags.

Figure 11.3 Properly formatted GC logs are stored in the specified file, as defined by the VM parameter.

Storing GC logs in a file not only makes it easier to retain and share them but also 
allows you to employ specialized tools for in-depth analysis. In figure 11.4, you can see 
how I uploaded the file to GCeasy.io, a well-known tool for investigating GC logs. Addi-
tionally, the figure demonstrates how AI assistants, such as ChatGPT or Gemini, can 
help analyze the contents of the GC log file, providing valuable insights and suggesting 
effective troubleshooting strategies.

To end this section, let me tell you a short story. Once upon a time, in a chaotic tech 
company (aren’t they all the same?), a junior developer named Jake was given a simple 
task: enable and store GC logs in a file. It was supposed to be easy—just a couple of JVM 
flags and voilà, problem solved. Jake confidently added the configuration and deployed 
the app, going home early and dreaming of a promotion.

The following day, the senior dev, Maria, stormed over.

Maria: “Where are the GC logs?”
Jake: “They should be in /var/logs/gc.log.”
Maria: “They are not.”



238 CHAPTER 11 Analyzing potential JVM problems with GC logs

Figure 11.4 Using tools such as GCeasy or AI chat assistants to help you troubleshoot the GC logs.

Jake opened the directory and, sure enough, the file was missing. In a frenzy, he tried 

rerunning the app. The log file appeared! Victory! But moments later, it vanished into 

the digital abyss. Determined to solve the mystery, Jake turned to Stack Overflow (as 

all great engineers do, or was it ChatGPT today?) and discovered that the log file was 

getting overwritten on every restart.



 239Particular configurations for storing GC logs

Embarrassed but undeterred, Jake updated the JVM options to add a timestamp at 
the end of the filename. This time, the logs stayed put, each with a timestamp. Crisis 
averted.

Maria: “Good. Now, where are the old logs?”

Jake turned pale. He hadn’t enabled log rotation (we’ll discuss log rotation next, in 
section 11.3). Somewhere, deep in the server, an ancient GC log from five years ago 
still lurked, consuming disk space like an ever-hungry garbage collector that refused to 
be collected. 

Moral of the story? Always configure log rotation. Or else, your past mistakes will 
haunt you—literally. For this reason, we continue talking about particular configura-
tions that you’ll find useful in real-world situations.

11.3 Particular configurations for storing GC logs

Simply writing all logs into a single file is not always practical. GC can generate a sig-
nificant amount of logs, and ending up with a multi-gigabyte file can make storage, 
transfer, and analysis cumbersome. In this section, we discuss several configurations 
to improve the troubleshooting experience with GC logs, including file rotation and 
selecting the appropriate logging level for the messages you want to retain.

Let’s begin with file rotation. You can configure the GC to split logs into multiple 
files, preventing a single log file from growing indefinitely. This approach improves 
manageability by making logs easier to transfer and process, ultimately streamlining the 
troubleshooting process. Additionally, file rotation enhances performance by reducing 
the risk of excessive disk usage. It also facilitates log retention, allowing older logs to be 
archived efficiently.

Use the filecount attribute to define the maximum number of log files, and the 
filesize attribute to set the size limit for each file.

The following snippet provides an example command to enable GC logging, while 
configuring file rotation. It sets a maximum of five log files, each with a maximum size 
of 10 MB:

java -Xlog:gc*:file=logs.txt:time,uptime,level,tags:
➥filecount=5,filesize=10M -jar app.jar

Using these parameters, the GC will automatically create a new log file whenever the 
current file reaches the specified size limit (10 MB in our case). Each new file will be 
assigned an index, starting from 0, and subsequent logs will be stored in newly created 
files. Once the maximum number of log files is reached, the oldest file will be overwrit-
ten, ensuring efficient log management without excessive disk usage.

If you need to search for logs within a specific time, you can filter log files based on 
their creation or modification timestamps. For example, you can use the find com-
mand in a Linux environment or Get-ChildItem in PowerShell on Windows. By iden-
tifying and collecting only the relevant log files, you can focus your investigation more 



240 CHAPTER 11 Analyzing potential JVM problems with GC logs

efficiently. This approach streamlines troubleshooting and simplifies log analysis using 
tools such as GCEasy or an AI assistant, as discussed in section 11.2.

Another strategy to reduce the volume of logged messages is to store only logs at 
specific levels of severity. You don’t always need to retain every log entry. GC logs use 
standard logging levels, which we discussed in chapter 4. The following list ranks these 
levels in descending order of criticality:

1 Error—Logs only critical failures that may impact application stability

2 Warning—Captures potential problems that could lead to errors

3 Info—Provides general operational details about the GC process

4 Debug—Includes additional diagnostic information useful for troubleshooting

5 Trace—Produces the most detailed logs, capturing in-depth GC activity

Selecting a specific logging level is straightforward—simply include the desired level(s) 
in the parameter used to enable GC logging (the same one we’ve been using exten-
sively throughout this chapter). The following snippet provides an example of how to 
enable logging for error messages only:

java -Xlog:gc=error:file=gc.log:filecount=5,filesize=10M -jar app.jar

Remember that each log level automatically includes messages from the more critical 
levels preceding it. This means that if you enable warning-level logging, as shown in 
the next snippet, it will also capture error messages since they are of higher priority:

java -Xlog:gc=warning:file=gc.log:filecount=5,filesize=10M -jar app.jar

At this point, you’re probably thinking, “Alright, but what’s the best choice? Do I stick 
with just errors, or do I go all in and log everything from trace up, drowning in a sea of 
GC details?”

Great question! The answer depends on what you’re troubleshooting. In the follow-
ing sections, you’ll find some practical recommendations to help you decide which log-
ging level to enable when debugging a problem. Because—let’s be honest—too little 
logging, and you’re flying blind; too much, and you might as well be trying to read the 
Matrix.

First and foremost, if you’re working in a production environment, it’s always best to 
log only errors and warnings. Production systems are performance-sensitive, and exces-
sive GC logging can introduce unnecessary overhead, potentially affecting application 
efficiency.

If you encounter a problem that requires more detailed logs, the best approach is to 
first reproduce the problem in a staging environment rather than flooding production 
with verbose logging. In most cases, the info level provides sufficient details for moni-
toring and basic troubleshooting. This is precisely why info is the default logging level, 
so if you were wondering why you didn’t see any trace messages in previous examples, 
now you know!



 241Analyzing GC logs

If you determine through info-level logging that there’s a problem but still don’t 
have enough details to piece together the puzzle, it’s time to dig deeper with debug and 
trace levels:

¡	The debug level provides insights into GC behavior, pause times, and potential 
optimizations, helping you better understand what’s happening under the hood.

¡	The trace level? Well, that’s the “give me everything” mode—it logs every possible 
detail the GC collects, making it ideal for exhaustive analysis.

I usually turn to these levels in development mode when fine-tuning GC performance— 
 or when I’m feeling completely desperate and willing to wade through an ocean of logs 
just to find that elusive culprit. 

In summary, choosing the right GC log level is all about balancing detail and 
performance—   log too little, and you might miss key insights; log too much, and you’ll 
be drowning in data. By applying these recommendations, you can efficiently capture 
the information you need without unnecessary overhead.

Now that we’ve covered how to configure GC logging, let’s move on to the next sec-
tion, where we’ll dive into real-world strategies for investigating GC logs. Here, we’ll 
explore practical troubleshooting techniques, helping you make sense of the data and 
pinpoint performance problems effectively.

11.4 Analyzing GC logs

Now that we know how to obtain proper log messages and understand the possibil-
ities of using them, let’s explore real-world scenarios and how logs help us trouble-
shoot problems. We’ll discuss common situations that can arise in applications and 
where to look in the logs when suspecting these problems. However, having logs is 
not enough—you must also know how to search through them effectively and identify 
potential problems they reveal.

11.4.1 Troubleshooting performance lags with GC pause times

Garbage collection is essential for memory management in Java applications, but 
excessive or prolonged GC pauses can significantly affect performance, leading to 
noticeable lags. Identifying and analyzing GC-related performance problems using 
logs is crucial for maintaining application responsiveness.

When an application experiences unexpected slowdowns, one common cause is 
excessive GC activity. Symptoms may include

¡	Increased response times in request processing

¡	High CPU usage with little actual work being done (Remember we discussed in 
chapter 5 how to observe the usage using a profiler.)

¡	Periodic application freezes or spikes in latency

To diagnose GC-related performance lags, start by reviewing the GC logs. These logs 
provide insights into the frequency and duration of GC pauses. If GC runs too fre-
quently or for extended periods, it may be causing performance degradation.



242 CHAPTER 11 Analyzing potential JVM problems with GC logs

Here are the main points in the GC logs you should consider when investigating a 
potential lag problem:

¡	GC pause duration—Look for messages indicating the time taken by each GC 
cycle.

¡	GC frequency—Excessive minor or full GCs in short time intervals may indicate a 
memory leak or poor tuning.

¡	Heap utilization before and after GC—If a full GC reclaims little memory, objects 
may be lingering longer than expected.

¡	Stop-the-world (STW) events—Prolonged STW pauses indicate GC is interfering 
with application performance.

The first step I recommend is looking for logs that indicate a longer time taken to 
release memory space. The next snippet shows an example of such a message:

[GC pause (G1 Evacuation Pause) (young), 0.0456780 secs]
   [Parallel Time: 43.5 ms, GC Workers: 8]
   [Code Root Fixup: 0.0 ms]
   [Code Root Purge: 0.0 ms]
   [Clear CSet: 0.5 ms]

Typically, GC pause times between 0 and 50 milliseconds are considered normal and 
within expected behavior. However, if pauses exceed 50 milliseconds, it could indicate 
a potential performance problem that requires further investigation. It’s essential to 
verify whether this is a recurring pattern by checking multiple log entries. If only one 
or two exceptions appear among 1,000 log messages, it may not necessarily indicate a 
problem.

To conclude that the problem is genuine, you should observe frequent GC events 
with consistently high pause times. When this occurs, it usually means the application is 
experiencing memory pressure, which can lead to degraded performance and latency 
spikes.

Let’s consider a practical example. Suppose you’re analyzing the GC logs of your 
application due to unexplained latency problems. As you review the logs, you come 
across a fragment as the one shown in the next snippet.

Would this indicate a potential problem? Let’s examine it together:

[2024-02-01T12:00:01.123+0000] GC(45) 
  ➥ Pause Young (G1 Evacuation Pause) 0.025s
[2024-02-01T12:00:02.456+0000] GC(46) 
  ➥ Pause Young (G1 Evacuation Pause) 0.027s
[2024-02-01T12:00:05.789+0000] GC(47) 
  ➥ Pause Young (G1 Evacuation Pause) 0.026s
[2024-02-01T12:00:10.012+0000] 
  ➥ GC(48) Pause Young (G1 Evacuation Pause) 0.110s
[2024-02-01T12:00:20.345+0000] 
  ➥ GC(49) Pause Young (G1 Evacuation Pause) 0.250s
[2024-02-01T12:00:35.678+0000] 



 243Analyzing GC logs

  ➥ GC(50) Pause Full (System.gc()) 2.567s
[2024-02-01T12:00:50.901+0000] 
  ➥ GC(51) Pause Young (G1 Evacuation Pause) 0.180s
[2024-02-01T12:01:10.234+0000] 
  ➥ GC(52) Pause Full (Allocation Failure) 5.321s

The first few GC events are minor and relatively fast (around 25–27 ms), which is 
within normal behavior. However, at 12:00:10, an unusual pattern emerges—the pause 
time jumps to 110 milliseconds, which could be an early warning sign of performance 
degradation.

By 12:00:20, the situation worsens with a pause of 250 milliseconds, indicating 
increasing memory pressure. Then, at 12:00:35, a major red flag appears—a full GC 
lasting 2.5 seconds, severely affecting application responsiveness. This is followed by 
yet another full GC at 12:01:10, signaling a serious memory management problem that 
requires immediate attention.

If GC pauses are impacting performance, consider the following adjustments:

¡	Experiment with different GC algorithms (e.g., G1GC, ZGC, Shenandoah) to 
find the best fit for your workload.

¡	Adjust heap size settings (-Xms and -Xmx) to prevent excessive GC activity.

¡	Optimize Eden, Survivor, and Old Generation sizes based on application 
behavior.

¡	If possible, change your application design to minimize object creation and 
encourage object reuse. 

¡	If the application requires low-latency performance, consider using ZGC or 
Shenandoah GC, which minimize pause times.

11.4.2 Identifying memory leaks with heap usage logs

Memory leaks in Java applications can be subtle yet devastating, leading to degraded 
performance, excessive garbage collection, and eventually OutOfMemoryError crashes. 
While profiling tools such as VisualVM and Eclipse MAT offer powerful ways to analyze 
memory usage, sometimes a more lightweight and continuous approach is needed—
this is where heap usage logs come in.

Heap usage logs provide a historical view of memory consumption over time, allow-
ing developers to detect gradual memory growth patterns that may indicate a leak. 
These logs can be captured using JVM options, GC logs, or JMX monitoring tools, offer-
ing valuable insights into how objects are allocated and retained.

Let me tell you a story. It seemed to be a quiet night. Matilda woke up to the sound of 
her phone buzzing. Half-asleep, she grabbed it and saw a flood of messages.

“App crashed. Users are stuck. Fix ASAP!”

Sighing, she got out of bed, made a quick coffee, and opened her laptop. Logging in, 
she noticed that several Kubernetes pods responsible for managing the app’s contain-
ers were repeatedly restarting.



244 CHAPTER 11 Analyzing potential JVM problems with GC logs

With her eyes still half-closed, she knew the GC logs might hold some clues. Fortu-
nately, the app always stored error logs on a persistent volume, making it easy to retrieve 
crash details.

She opened the latest log file from one of the failing containers and found the fol-
lowing entries:

[GC (Allocation Failure) [PSYoungGen: 512M->128M(1024M)] 1024M->900M(2048M), 
0.250s]
[GC (Allocation Failure) 
➥[PSYoungGen: 640M->200M(1024M)] 1100M->980M(2048M), 0.270s]
[GC (Allocation Failure) 
➥[PSYoungGen: 700M->250M(1024M)] 1200M->1050M(2048M), 0.280s]
[Full GC (Ergonomics) 
➥[PSYoungGen: 900M->0M(1024M)] [ParOldGen: 1148M->1148M(2048M)] 

2048M->1148M(2048M), 1.200s]

“The memory usage keeps growing,” she thought. “The first GC event freed 900 MB, 
the second only 980 MB, and the third 1050 MB. Instead of reclaiming more space, 
each cycle is leaving behind more memory. Then, the GC panicked and triggered a 
full collection—but even that barely made a difference. This isn’t just normal memory 
usage—it’s a leak.”

Fortunately, Matilda knew how to analyze heap dumps to pinpoint the exact source 
of the leak (see chapter 10). As she dug into the data, she noticed that session ref-
erences were lingering in a collection—one that wasn’t being cleared. The culprit? A 
recent code deployment just hours before the crash had introduced the problem.

Realizing this wasn’t a quick fix, she made the practical decision to roll back the 
release, ensuring the app would remain stable until the team could properly address 
the problem with fresh minds in the morning.

She checked the clock—3:48 AM.

“Damn,” she muttered. “I need to get back to sleep.”

GC logs can be a powerful tool for identifying potential memory leaks. While they 
won’t always pinpoint the exact cause, they provide valuable clues on how to proceed 
with your investigation. 

A key warning sign is GC struggling to free up memory, especially after an applica-
tion crash. If you open the logs and see multiple GC events making little progress in 
reclaiming space, a memory leak is likely at play. Even more telling are full GC events 
that have minimal or no effect—strongly reinforcing the suspicion of a leak. If you have 
access to a profiler, you can also confirm the presence of a memory leak by analyzing 
memory allocation graphs, as discussed in chapter 5. Figure 11.5 is a reminder on how 
to distinguish between an application that is consuming memory as expected and one 
that is experiencing a memory leak.

11.4.3 Identifying insufficient memory with full GC events

Insufficient memory is not the same as memory leak. Section 11.4.2 discussed how GC 
logs can indicate a potential memory leak. A memory leak is typically caused by a flaw 



 245Analyzing GC logs

In an app that behaves normally,
you will observe a pattern as presented
in this visual. The memory fills and
at a certain point the GC cleans the
unneeded data freeing up the memory.

These are moments where the GC
cleaned the unneeded data, making
space for new data to be added in
memory.

When an app has a memory leak,
you will observe the used memory
grows continuously. The GC makes
efforts to free the memory but can't
deallocate enough objects since the
app holds the references for most
of them.

Normal behavior

Abnormal behavior

Figure 11.5 A comparison between the memory consumption graph of an application with normal memory usage 

and one affected by a memory leak.

in the application’s logic, where objects are continuously allocated but never properly 
released. 

In such cases, even though the application has sufficient allocated memory, certain 
references persist indefinitely due to improper resource management, eventually lead-
ing to heap exhaustion. This gradual accumulation prevents the GC from reclaiming 
memory, ultimately causing OutOfMemoryError or performance degradation.

In this section, we discuss insufficient memory allocation. In this scenario, the appli-
cation simply does not have enough memory to process the given workload. Unlike 
a memory leak, where memory is improperly retained, the application is genuinely 
under-provisioned for the data it needs to handle.

Addressing insufficient memory can involve several approaches, depending on the 
situation. Solutions may range from redesigning the application to improve memory 
efficiency, enabling horizontal scaling to distribute the load across multiple instances, 
or—in the simplest case—increasing the allocated heap size to better accommodate the 
workload.



246 CHAPTER 11 Analyzing potential JVM problems with GC logs

Differentiating between a memory leak and insufficient memory can sometimes be 
challenging because, in both cases, the GC logs will show intensive garbage collection 
activity as the JVM struggles to free up memory. However, the underlying causes are 
different—one is due to persistent object retention, while the other is simply a lack of 
allocated memory to meet demand.

To illustrate this, take a look at the following snippet:

[GC pause (G1 Evacuation Pause) (mixed), 0.01506789 secs]
[GC pause (G1 Evacuation Pause) (mixed), 0.01783456 secs]
[GC pause (G1 Evacuation Pause) (mixed), 0.02021234 secs]

[Full GC (Allocation Failure) 8192M->6100M(8192M), 2.345678 secs]
[GC pause (G1 Evacuation Pause) (mixed), 0.01901234 secs]
[GC pause (G1 Evacuation Pause) (mixed), 0.02115678 secs]

[Full GC (Allocation Failure) 8192M->5800M(8192M), 2.678901 secs]
[GC pause (G1 Evacuation Pause) (mixed), 0.0987654 secs]
[GC pause (G1 Evacuation Pause) (mixed), 0.02254321 secs]

[Full GC (Allocation Failure) 8192M->5600M(8192M), 2.789012 secs]

In the previous snippet, we observe frequent garbage collection events, but none of 
them have excessively long pause times, and all appear to be at least somewhat effective 
in reclaiming memory. Unlike the memory leak problem discussed in section 11.4.2, 
the GC events here successfully free up memory, and heap usage does not exhibit a 
steady increase over time.

Additionally, the short GC pause times do not indicate an untuned GC configura-
tion or similar inefficiencies discussed in section 11.4.1. More importantly, the fact that 
memory is continuously being reclaimed suggests that this is not a memory leak, since 
objects are eventually being collected rather than retained indefinitely.

However, the high frequency of GC events, combined with the presence of full GC 
occurrences, is still a concerning pattern. It indicates that the allocated heap memory 
is insufficient to handle the application’s workload. In such cases, the JVM is forced to 
perform garbage collection too often, leading to performance degradation. While GC 
is able to keep the application running, the excessive overhead suggests that increasing 
the available memory would likely improve efficiency and stability.

You can also use the memory consumption graph here as confirmation (figure 11.5). 
If the application is affected by a memory leak, the graph will show a steady increase 
in memory usage until the heap is completely full. However, if the problem is simply 
insufficient memory allocation, the graph will display peaks and valleys, indicating that 
the GC is actively reclaiming memory and keeping the application running. However, if 
the allocation is too close to the maximum, performance may degrade, and the risk of 
out-of-memory errors increases.

In such cases, a short-term solution may be to increase the allocated heap memory 
using the -Xmx and -Xms parameters. This approach can provide immediate relief by 
allowing the application to handle more objects before triggering garbage collection.



 247Analyzing GC logs

However, relying solely on vertical scalability (i.e., increasing heap size) is often a 
temporary fix. While it may delay memory pressure problems, it does not address the 
root cause. A more sustainable approach involves optimizing memory usage by improv-
ing application logic to reduce unnecessary allocations and ensuring objects are prop-
erly deallocated.

In the long run, redesigning the application for horizontal scalability—distributing 
the workload across multiple instances instead of depending on a single, large heap—
can lead to better performance, resilience, and scalability.

11.4.4 Tuning parallelism in GC

Garbage collection in Java is like cleaning up after a party. If done right, everything 
stays neat, and your application runs smoothly. But if not, your CPU gets stuck dealing 
with the mess while your application slows down.

Modern Java garbage collectors can use multiple threads to speed up the cleanup 
process, but if they aren’t tuned properly, they might either work too hard—wasting 
CPU power—or too little, leaving memory cluttered. In this section, we focus on the G1 
GC, which has been the default collector in recent Java versions. You’ll also learn about 
key JVM settings such as -XX:ParallelGCThreads and -XX:ConcGCThreads, which control 
how many threads GC can use. By the end, you’ll know how to fine-tune GC parallelism, 
so your application spends less time cleaning and more time doing what it was built for.

We’ll take a few examples of different log messages patterns and discuss them. Say 
you frequently observe log messages such as

[GC pause (G1 Evacuation Pause) (young), 0.124567 secs]
   Parallel Time: 115.2 ms, Workers: 2 (out of 8 available)
   Eden: 256M->0M(1024M), Survivors: 32M->64M, Heap: 2048M->1024M(4096M)

As we learned earlier in this chapter, a GC event lasting longer than 50 milliseconds, 
especially if it occurs frequently, is a red flag for performance problems. In this case, 
the logs provide additional information indicating that only two out of eight available 
worker threads are being used for the cleanup process. This suggests that the GC is 
underutilizing the CPU, potentially leading to inefficient memory management and 
longer pause times.

To address this matter, you can experiment with increasing the number of parallel 
GC threads to distribute the workload across available CPU cores better. This adjust-
ment may help reduce pause times and improve overall application performance. 

You can add the following flags to your VM parameters to change:

-XX:ParallelGCThreads=6
-XX:ConcGCThreads=4

The -XX:ParallelGCThreads=6 option controls the number of threads used for paral-
lel garbage collection during stop-the-world (STW) phases. In this case, the JVM will 



248 CHAPTER 11 Analyzing potential JVM problems with GC logs

use six threads to perform STW garbage collection tasks, such as young generation 
evacuation:

¡	If the value is too low, GC may underutilize the CPU, leading to longer pause 
times.

¡	If the value is too high, it may cause excessive CPU usage, potentially slowing 
down the application by consuming resources needed for other tasks.

Similarly, the -XX:ConcGCThreads=4 setting controls the number of threads used for 
concurrent (background) garbage collection phases. The JVM will use four threads 
for non-STW GC tasks, such as marking and reclaiming memory in the background, 
without interrupting application execution:

¡	If set too low, the concurrent phases might not keep up, causing frequent stop-
the-world pauses as GC struggles to clean memory in time.

¡	If set too high, it might consume too many CPU resources, negatively affecting 
overall application performance.

For example, if G1 GC logs show long concurrent phases, increasing the ConcGCThreads 
flag can help speed up background GC work.

However, GC tuning isn’t an exact science—it requires careful observation of your 
application’s behavior over time. Making changes without monitoring their effect can 
lead to unexpected problems. Personally, I prefer experimenting with these settings 
over an extended period to ensure that the adjustments truly optimize performance in 
real-world execution.

Another problem could be caused by allocating too many threads. Take a look at the 
following snippet:

[GC (Allocation Failure) [ParallelGC (workers: 16)] 
 ➥1536M->768M(3072M), 0.310456 secs]

We observe a long GC pause time (about 310 ms) and notice that 16 worker threads 
were used. This number suggests CPU contention, where too many threads are com-
peting for CPU resources, causing inefficiencies rather than improving performance.

It’s similar to a race condition, but instead of threads fighting over shared memory, 
GC threads are fighting over CPU time, ultimately slowing down execution instead of 
speeding it up.

A good approach in such cases is to reduce the number of worker threads using the 
-XX:ParallelGCThreads parameter. Lowering this value can help reduce CPU conten-
tion and lead to smoother, more efficient garbage collection.

Tuning -XX:ParallelGCThreads is a bit like making the perfect cup of coffee—too 
little, and your GC runs sluggishly, dragging your application down; too much, and sud-
denly your CPU is jittery, over-caffeinated, and struggling to keep up.

The key takeaway? Start small, observe, adjust, and repeat. Don’t just throw more 
threads at the problem and hope for the best—unless, of course, you enjoy watching 
your CPU have a meltdown.



 249Summary

So, go forth and experiment! Just remember: Garbage collection should clean up 
your application, not your patience.

Summary

¡	Garbage collector logs are crucial for troubleshooting JVM memory manage-
ment problems. They provide insights into memory allocation, garbage collec-
tion pauses, and heap utilization.

¡	Enabling GC logs is the first step in analyzing JVM memory behavior. The 
-Xlog:gc* VM option enables GC logging, helping developers track GC activity 
in real-time or store logs for later analysis.

¡	Understanding the GC log structure is essential. Logs include details on GC 
events, pause times, heap size changes, and memory allocation patterns.

¡	GC logs help diagnose excessive GC pauses. Long GC pause times (typically 
above 50 ms) can indicate performance problems, while frequent full GC events 
suggest memory pressure.

¡	Heap memory organization affects GC performance. Objects move through 
Eden, Survivor, and Old Generation memory regions. Inefficient memory usage 
can cause frequent GC interruptions.

¡	Frequent full GC events may indicate insufficient memory or a memory leak. 
Logs showing frequent full GC events with minimal memory reclamation suggest 
a leak, while effective but frequent full GCs indicate an under-provisioned heap.

¡	Storing GC logs in files is recommended for deeper analysis. Use -Xlog:gc*:file 
=gc.log:time,uptime,level,tags to redirect logs to a file for structured storage 
and easier troubleshooting.

¡	Log rotation prevents excessive storage use. Configuring file count and file size 
limits ensures logs do not consume excessive disk space.

¡	Choosing the right logging level improves troubleshooting efficiency. Error logs 
capture critical failures, while info and debug levels provide additional insights 
into memory management.

¡	Tuning GC parallelism can reduce pause times. Adjusting -XX:ParallelGC-
Threads and -XX:ConcGCThreads optimizes CPU usage for better performance.

¡	AI tools and third-party services can simplify GC log analysis. Uploading logs to 
tools such as GCEasy or using AI assistants can speed up troubleshooting.





Part 4

Finding problems  
in large systems

So far, we’ve focused on diagnosing problems inside a single application. 
But in the real world, most systems are made up of many services, databases, and 
queues—all talking to each other across networks. In this environment, problems 
don’t just live in one place. They can hide in the gaps between services, in unex-
pected data mismatches, or in the way the system reacts as a whole under stress.

This part is about troubleshooting at system scale. We’ll learn how to uncover 
failures that happen only when services interact, how to measure and verify data 
consistency across boundaries, and how to trace multistep operations that cross 
multiple components. We’ll also look at strategies for catching drift between sys-
tems before it becomes a serious outage.

By the end of this part, you’ll be equipped to investigate problems that span 
entire architectures—not just single apps—using the right combination of logs, 
traces, metrics, and detective work to keep complex systems healthy.





253

12Uncovering system-level 
failures and service 

communication problems

This chapter covers

¡	Troubleshooting failures in multiservice Java 

systems

¡	Investigating common pitfalls in REST, gRPC, and 

messaging

¡	Unfolding serialization and versioning problems 

between services

¡	Investigating cascading failures, retries, and 

timeout problems

“Why is the payment service down?”

“Because the email service is slow.”

“What?”

In a system of services, failure is a team sport, and you may not even be invited to the 
game. One service times out, another starts retrying furiously, and suddenly, your logs 
are full of errors from a completely unrelated module. The challenge is that prob-
lems rarely stay local; they echo through the system, bouncing off APIs, queues, and 



254 CHAPTER 12 Uncovering system-level failures and service communication problems

unsuspecting services that were just minding their own business. By the time you join the 
debugging party, half the system is on fire, and no one remembers who lit the match.

Let me tell you about the time the user profile service refused to start. After extensive 
digging, we discovered that the service was waiting on a downstream dependency that 
had nothing to do with user profiles. That dependency was, in turn, waiting on a mes-
sage from a service that had problems deploying. This was the software equivalent of a 
group of friends refusing to order pizza until someone who wasn’t even invited to the 
party showed up.

This chapter talks about about those moments. It’s about the mysterious slowdown 
that starts in a service you didn’t even know existed—the gRPC call that fails because 
someone cleaned up an an enum field that seemed unused, or the cascade of retries 
that turns a minor hiccup into a full-on distributed meltdown.

In section 12.1, we start examining how to troubleshoot common communication 
patterns, such as REST, gRPC, and messaging, and the types of problems they can 
introduce— from unclear contracts to delivery failures. In section 12.2, we dive into seri-
alization mismatches and versioning problems, looking at how subtle schema changes 
can break integrations silently. 

Finally, in section 12.3, we explore systemic failure modes, such as cascading failures, 
retry storms, and timeout mismatches, and how to detect and investigate them using 
logs, metrics, thread dumps, and distributed tracing. The goal is to give you practical 
techniques and real-world strategies for understanding and resolving complex prob-
lems that emerge not from a single bug, but from the way services interact.

12.1 Troubleshooting communication patterns: RPC and messaging

In distributed systems, the reliability of applications no longer depends solely on their 
own correctness, but also on how they communicate with others. In a distributed sys-
tem, services interact through various communication mechanisms such as Remote 
Procedure Calls (RPCs)—including REST and gRPC—or asynchronous messag-
ing such as Kafka. While these patterns enable modularity and scalability, they also 
introduce new failure modes that can be subtle, inconsistent, and hard to diagnose. 
Communication between services—whether through REST APIs, gRPC calls, or asyn-
chronous message queues—can introduce subtle and difficult-to-trace failures.

Each communication pattern comes with tradeoffs. REST offers simplicity and wide-
spread adoption but can suffer from unclear contracts and weak typing. gRPC pro-
vides performance and structure, yet brings its own challenges around compatibility 
and tooling. Messaging enables loose coupling and asynchronous workflows, but it can 
introduce problems with ordering, duplication, and delivery guarantees.

This section examines how these communication mechanisms commonly fail, how 
to detect when they do, and what practices can help prevent outages caused by miscom-
munication between services. For each pattern, we’ll focus on the kinds of failures that 
occur and the tools you can use to trace, diagnose, and resolve them. From structured 
logs and distributed tracing (e.g., OpenTelemetry, Jaeger, Zipkin) to protocol-specific 



 255Troubleshooting communication patterns: RPC and messaging

debuggers (e.g., grpcurl, Postman, and message brokers’ dashboards), we’ll explore 
how to move from symptoms to root cause in a complex, connected system.

12.1.1 Working with trace IDs and spans

This section talks about two of the most common troubleshooting tools for distributed 
systems: trace IDs and spans. Let’s consider the following scenario to better under-
stand how a problem could look like and what tool is useful for untangling the case. 

Suppose your company runs a Java-based e-commerce platform built as a set of 
microservices. One day, the customer support team reported that some users were com-
pleting checkouts, but the orders never showed up in the admin dashboard. Payments 
are processed, confirmation emails are sent, but what about the actual orders? Gone.

Your services look like  as shown in figure 12.1:

¡	Checkout service (REST) → calls Order service

¡	Order service → publishes an event to Kafka

¡	Fulfillment service → consumes from Kafka and stores orders

Checkout service Order service Fulfillment service DB

calls stores

publishes reads

Figure 12.1 An overview of the system for our scenario. The checkout service calls the order service via 

REST, while the order service asynchronously talks to the fulfillment service through a Kafka topic. The 

fulfillment service stores details in a database.

Naturally, we first go digging through the logs. You first tail the logs of the checkout 
service. It shows a successful REST call to the order service. You’re looking for the trace 
ID: it’s present, the response code is 200, and the payload seems correct.

What is a trace ID? When dealing with a single Java application, a stack trace or log 
file is often enough to understand what went wrong. However, those traditional tools 
fall short quickly once you move to a distributed system, where one request may bounce 
between a dozen services. That’s where the trace ID comes in.



256 CHAPTER 12 Uncovering system-level failures and service communication problems

DEFINITION A trace ID is a unique identifier assigned to a request as it enters 
the system. 

Think of a trace ID as a passport that travels with the request, stamped at every border 
it crosses. As the request flows through different services—via HTTP, gRPC, or message 
queues—each participating service logs its part of the journey, tagging the logs and 
telemetry data with the same trace ID. This characteristic allows you to stitch together 
the entire story of a request across system boundaries (figure 12.2).

Checkout service

traceparent=45a57ba...

traceparent=45a57ba...

The message has an unique trace ID that
identifies the message. This way, you can follow
the message on its road throughout the flow.

traceparent=45a57ba...

Order service Fulfillment service DB

calls stores

t

publishes reads

Figure 12.2 A trace ID identifies each message so you can follow it throughout its road between 

multiple services. 

Trace IDs are central to distributed tracing systems such as Jaeger and Zipkin (dis-
cussed later in the chapter), or commercial platforms such as Datadog and Honey-
comb. These tools collect spans (individual units of work done by each service), and 
group them under the same trace ID to form a complete picture of how long each step 
took, what errors occurred, and where delays originated.

In practice, trace IDs are often propagated through HTTP headers (e.g., traceparent 
or x-b3-traceid) or metadata in message payloads. Ensuring consistent propagation 
across all your services is crucial—if just one service drops the trace ID, the chain breaks, 
and you’re left with fragments instead of a full picture.

Going back to our scenario. You decide to continue with the next service. You check 
the order service logs. It receives the request, creates the order object, and publishes an 



 257Troubleshooting communication patterns: RPC and messaging

event to Kafka. No errors, no exceptions. Still, the fulfillment service doesn’t show any 
trace of the order. 

When logs don’t give you the full picture, and you suspect the problem spans multi-
ple services, it’s time to change your approach. This is where distributed tracing comes 
in, and tools such as Jaeger become invaluable.

Jaeger (https://www.jaegertracing.io/ ) is an open source distributed tracing system 
that helps visualize these traces. It collects spans from your instrumented services and 
presents them as a timeline. The following listing gives you an idea of how such a time-
line (trace tree) looks like. Using the trace ID, Jaeger aggregates the information and 
shows how each service called another and how long each operation took.

Listing 12.1 An example of a trace timeline also called a trace tree

Trace ID: 6f98c1e2b3a24f59

└── [api-gateway] POST /checkout                         [950ms]
    ├── [checkout-service] Validate cart                 [40ms]
    ├── [checkout-service] Call OrderService             [780ms]
    │   └── [order-service] Create order record          [100ms]
    │       ├── [order-service] Check inventory          [60ms]
    │       └── [order-service] Save to database         [30ms]
    ├── [checkout-service] Call PaymentService           [100ms]
    │   └── [payment-service] Process payment            [90ms]
    └── [checkout-service] Send confirmation email       [30ms]

A span is the fundamental building block of a distributed trace. It represents a single 
unit of work done within a service, such as handling an HTTP request, querying a data-
base, calling another service, or processing a message.

An alternative to Jaeger is Zipkin (https://zipkin.io/). Zipkin is a distributed tracing 
system originally developed by Twitter, designed to help users collect and visualize tim-
ing data for requests across service boundaries. Like Jaeger, it allows tracing a request as 
it moves through multiple services, displaying each step as a span in a timeline. 

Think of a trace as the full story of a request moving through your system. Each span 
is a chapter in that story. It includes

¡	A name (e.g., "POST /checkout", "Call to OrderService")

¡	A start timestamp and duration

¡	The service name that produced it

¡	Tags (metadata such as status codes, error messages, or custom fields)

¡	Logs/events that occurred during the span’s lifetime

¡	A reference to its parent span, if it’s part of a larger operation

The next snippet shows a tree representation of a span, which is how you’d see it in a 
tool such as Jaeger or Zipkin.

└── [api-gateway] GET /products  [42ms]

https://www.jaegertracing.io/
https://zipkin.io/


258 CHAPTER 12 Uncovering system-level failures and service communication problems

For the span, the tool usually provides you a detailed view separately, such as the one 
presented in the next listing.

Listing 12.2 Details of a span

Trace ID                bf12ec184a2b48d0a28a1f07c748f6e3     
Span ID                d6f0fdee62ef3c6a
Parent Span ID         null (this is the root span)     
Span Name                GET /products     
Service Name                api-gateway     
Start Time                2025-04-17T13:42:10.512Z
End Time                2025-04-17T13:42:10.554Z
Duration                42ms      
Status                OK
Instrumentation         OpenTelemetry Java SDK 1.30.0      

As shown earlier in listing 12.1, spans can be nested, forming a tree that shows the 
structure of the request. For example, a trace might start with a span in your API Gate-
way, which has child spans for calls to the checkout service, which in turn spawns spans 
for calling the order service or querying a database. This nesting lets you see exactly 
which part of the system slowed down or failed. The following listing shows the span 
for our fictive scenario.

Listing 12.3 The span tree for our fictive case

└── [checkout-service] POST /checkout  [180ms]    
    ├── [checkout-service] Validate cart contents  [15ms]    
    ├── [checkout-service] REST call: OrderService.CreateOrder  [90ms]
    │   ├── [order-service] Validate payment method  [10ms]
    │   ├── [order-service] Save order to database  [40ms]
    │   └── [order-service] Publish to Kafka topic 'orders.created'  [20ms]
    ├── [checkout-service] Redis SET session:checkout_status  [10ms]
    └── [checkout-service] Send confirmation email (async)  [30ms]

Each span shows metadata such as duration, operation name, service name, and logs 
or tags. This makes it easy to spot bottlenecks, failures, or missing links in the flow. 
Sometimes, the time of a span may be bigger than the sum of duration of its children 
due to its own logic. Order is there, as is the order service’s internal processing. But 
there is nothing from fulfillment. It never consumed the message. You suspect a prob-
lem in the Kafka pipeline.

Uses the trace ID to 
debug the tree of calls

Useful to identify the 
operation in code

Useful to identify the 
operation in code

Identifies the service 
executing the span

Useful when 
troubleshooting 
performance 
problems

Library used for instrumentation

Sometimes, the time of a span 
may be bigger than the sum of 

duration of its children. Each span 
has a traced 
execution time.



 259Troubleshooting communication patterns: RPC and messaging

You fire up Kafka’s UI dashboard and inspect the topic orders.created. The event is 
there, sitting in the topic. Not consumed. Now you check fulfillment service logs. Hid-
den between harmless info messages, you find

[WARN] Failed to deserialize message from topic orders.created - Unknown enum 
value: SHIPPING_METHOD_DRONE

Aha! Yesterday, a new enum value, SHIPPING_METHOD_DRONE, was added to the order 
service. The team deployed it, but the fulfillment service wasn’t updated and still 
uses the old schema version. You solved another case, but things might get more 
complex. Of course, we cannot always understand the problem until we also learn 
about the business the app implements. In some simple scenarios, you can deduce 
what the app wants to do and why the user needs that. In more complex cases, you 
need to dig a bit deeper to understand the why solved by the implemented use case 
you troubleshoot.

Let’s talk a bit more in section 12.1.2 about the tools we just mentioned we used to 
solve this case. Then, we’ll analyze in more detail the serialization mismatch in section 
12.2, and what other troubleshooting tactics we can apply in other scenarios.

12.1.2 OpenTelemetry, Jaeger, Zipkin, and other utilities

In section 12.1.1. we used a few tools to troubleshoot a fictive scenario and talk about 
techniques using trace IDs and spans. Let’s now discuss a bit more about these tools 
and how they work.

To make distributed tracing work in a real system, you need to install and integrate 
several components into the runtime environment where your services are deployed. 
These tools aren’t just developer-side utilities but part of the infrastructure that sup-
ports observability at system scale.

At the core of tracing is OpenTelemetry (https://opentelemetry.io/), responsible 
for generating telemetry data from your Java services. It can be added to your appli-
cation either through manual instrumentation (writing code that creates spans) or 
through automatic instrumentation using the OpenTelemetry Java agent. In the latter 
case, you don’t need to modify your code—just attach the agent to your application at 
startup, and it will capture spans for popular frameworks such as Spring, gRPC, JDBC, 
and HTTP clients out of the box.

Once spans are generated, they need to be collected and visualized. This is where 
Jaeger or Zipkin come into play. These are observability backends that you deploy 
alongside your application stack, typically in the same Kubernetes cluster or as Docker 
containers. Your services send trace data to them using OpenTelemetry’s export pro-
tocols (e.g., OTLP or gRPC), and the backend provides a web UI for searching and 
exploring traces across your system. Figure 12.3 illustrates the relationship between a 
service, OpenTelemetry, and Jaeger or Zipkin.

Although developers may interact with traces by instrumenting code or viewing 
trace data during development or incident response, the actual tracing infrastructure 

https://opentelemetry.io/


260 CHAPTER 12 Uncovering system-level failures and service communication problems

OpenTelemetry intercepts the service and collects relevant

troubleshooting data. Jaeger and Zipkin aggregate the data

collected by OpenTelemetry and nicely displays it to help

you investigate problems in distributed systems.

Checkout service

Troubleshooting data / metrics

Figure 12.3 OpenTelemetry collects relevant data from the running service. Jaeger and Zipkin are tools 

that aggregate and display nicely this data to help you easily troubleshoot the system.

is managed and operated at the system level. Platform or DevOps teams must install 
and configure it as part of the environment. With this setup in place, tracing becomes 
a powerful tool for debugging, monitoring system health, analyzing performance, and 
understanding how requests flow through complex architectures.

In our case, we’ve used distributed tracing to investigate a missing order. But tools 
such as OpenTelemetry, Jaeger, and Zipkin do much more than help you chase down 
elusive bugs. They’re the foundation of system-scale observability. Let me mention 
some other use cases you can quicky find these tools useful:

¡	Performance optimization—Use tracing to analyze where your system is spending 
time. With it you can answer question such as, Which calls are slow? Is a partic-
ular DB query holding things up? Which services contribute most to request 
latency?

¡	Dependency mapping—Traces reveal how your services talk to each other. You can 
generate real-time service maps, showing which components are upstream/
downstream, and which ones may be overburdened.

¡	Error isolation—When a user reports a failure, tracing can show exactly which ser-
vice or operation failed—especially valuable in asynchronous or retry-heavy flows 
where logs don’t tell the whole story.

¡	Monitoring cold starts and resource spikes—A cold start is a delay that occurs when 
a system component, such as a serverless function, thread, or service instance, 
is invoked after being idle or uninitialized, requiring setup time that slows 



 261Troubleshooting communication patterns: RPC and messaging

response. By visualizing slow or blocked spans in distributed traces, you can 
detect cold starts, long garbage collection (GC) pauses, or thread pool starva-
tion. These patterns often escape traditional metrics, but tracing can reveal them 
clearly through latency spikes and span timing anomalies.

¡	Sampling and trend analysis—You don’t need to trace every request. You can sam-
ple a small percentage (1%–5%) and still get valuable insights into the health 
and behavior of the system over time.

¡	Combining traces with logs and metrics—Modern observability platforms (such as 
Grafana, Datadog, or OpenTelemetry Collector) allow you to correlate traces 
with logs and metrics. For example, trace latency spikes back to a CPU/memory 
event or a new deployment.

While distributed tracing tools such as Jaeger and Zipkin provide you with a timeline 
of events and latency insights across services, they don’t always capture the full details 
of what went wrong when a request fails. That’s where tools such as Sentry (https://
sentry.io/) come in.

Sentry is a real-time error monitoring platform that collects and organizes unhan-
dled exceptions, stack traces, and runtime errors from your services. It integrates with 
many Java frameworks and can automatically capture contextual information such as 
the failed line of code, user identifiers, HTTP request details, and even tags indicating 
which version of the code was running. This feature makes it especially useful when 
debugging problems such as failed gRPC calls, bad deserialization, or unexpected 
response types, situations where the trace alone may show you where the problem hap-
pened, but not what the underlying error was.

Sentry is not a replacement for tracing, but a powerful complement. When used 
alongside OpenTelemetry-based systems, it gives you a complete view: tracing shows 
the flow, and Sentry shows the failure in full detail. In many setups, Sentry errors 
can even include the corresponding trace ID, helping you correlate between tools 
and move seamlessly from high-level trace data to the specific exception that trig-
gered it.

In our scenario, the fulfillment service failed to deserialize a message from Kafka 
(section 2.1) due to an unrecognized enum value (SHIPPING_METHOD_DRONE). The ser-
vice didn’t crash, but it silently failed to process the message.

Had Sentry been integrated into that service, it would have captured the excep-
tion thrown during deserialization. The Sentry dashboard would show stack traces, 
message payload metadata, and error frequency, highlighting that this problem was 
recurring for specific message types. It might have even pointed to the exact line of 
code or class failing during deserialization. This would have accelerated discovery of 
the schema/version mismatch without relying solely on log grepping or deep trace 
analysis.

Figure 12.4 shows a sample of a Sentry dashboard giving details on a particular 
exception that happened in an app.

https://sentry.io/
https://sentry.io/


262 CHAPTER 12 Uncovering system-level failures and service communication problems

Exception type and message Details about the system
and the application

Details about the event
that caused the exception

Figure 12.4 Sentry aggregates and shows events such as exceptions providing a large field of details for each of 

these.

12.2 Serialization mismatches and versioning problems

When two services exchange data, they need to speak the same language—not just at 
the protocol level (such as HTTP or gRPC), but in terms of how they structure and 
interpret the data itself. That’s where serialization comes in: transforming complex 
in-memory objects into a stream of bytes that can be sent over the network, and back 
again on the receiving end.

Unfortunately, serialization is also one of the easiest places for things to go subtly, 
silently wrong. What happens when one service adds a new field to a JSON payload, 
and another service—still using the old model—silently ignores it? What if someone 
renames a Protobuf enum or forgets to make a field optional? What if a Java object is 
serialized with a specific version UID, but deserialized with a different class entirely?

Remember our examples in section 12.1? These mismatches don’t always trigger 
obvious failures. Sometimes they result in dropped data, default values, or deserializa-
tion errors that only appear under specific circumstances.



 263Serialization mismatches and versioning problems

In this section, we explore how serialization and versioning problems show up in real 
systems, what to watch for when evolving data contracts, and how to build in forward 
and backward compatibility so your services can evolve independently without acciden-
tally breaking each other.

Protobufs and gRPC

Protocol Buffers, or Protobuf for short, is a language-neutral, platform-neutral serial-

ization format developed by Google. It’s used to define structured data and efficiently 

serialize it for communication between services or for storage. Think of it as a faster, 

smaller, and more strictly typed alternative to JSON or XML.

With a Protobuf, you define your data structures in .proto files using a simple declara-

tive syntax:

message Order {
  int64 id = 1;
  string customer_id = 2;
  repeated string items = 3;
  optional string notes = 4;
}

From this schema, Protobuf automatically generates Java (or other language) classes 

that handle both serialization (converting the object into a compact binary format) 

and deserialization (reading it back into structured data).

Protobuf is commonly used in systems that require high performance and strong con-

tracts between services—especially in combination with gRPC, which uses Protobuf 

to define request/response messages and service APIs. While Protobuf’s efficiency 

and schema-based design are strengths, they also introduce challenges when ser-

vices evolve independently. If one service adds a new field or changes an enum, and 

another service hasn’t been updated to understand that change, mismatches are 

possible. This makes versioning discipline and compatibility guarantees critical—

especially in Java systems, where strict typing and deserialization behavior can turn 

small changes into big problems.

When debugging a serialization problem, especially in a distributed system, there’s 
often no substitute for seeing the actual data exchanged between services. Logging 
the raw payload can help you confirm whether a field was missing, defaulted, or mis-
formatted. It can also expose subtle problems such as trailing null bytes, encoding mis-
matches, or unexpected enum values.

However, logging raw payloads comes with real risks. Payloads can be large, and 
dumping entire serialized blobs (especially in binary formats such as Protobuf or 
Avro) can flood your logs, overwhelm log ingestion systems, or consume excessive disk 
space. Worse, many payloads contain sensitive information, user data, authentication 
tokens, and payment details, that should never appear in plain text logs, especially in 
production.



264 CHAPTER 12 Uncovering system-level failures and service communication problems

The key is to balance visibility and safety. Selectively logging decoded payloads 
(rather than raw binary) is often sufficient in development or staging environments. In 
production, consider

¡	Sampling only a subset of requests

¡	Filtering or redacting sensitive fields before logging

¡	Capping the size of logged content (e.g., log the first N characters or fields)

¡	Using structured logging to log fields with metadata, rather than dumping the 
whole object

Tools such as structured log appenders (e.g., Logback with JSON output—for a 
refresher, check chapter 4) can help you emit only what you need. Also, always tag logs 
with the trace ID so that even minimal payload data can be correlated with a full trace 
when needed.

One of the most effective ways to prevent serialization and versioning problems 
is to validate your schemas before they ever reach production. In a distributed sys-
tem, where services evolve independently, schema mismatches can easily occur when 
teams make changes without coordination. Automated schema validation, either 
during service startup or as part of the continuous integration (CI) pipeline, acts as a 
safety net.

In a CI pipeline, schema validation is a simple but powerful way to catch breaking 
changes before they affect anyone. The idea is to compare your current schema, such 
as a .proto, Avro, or JSON Schema file, with a previous version, usually from your main 
branch or a shared schema registry. This approach helps make sure that the changes 
you’ve made won’t break consumers that rely on older versions.

When your pipeline runs, it pulls in both the current and previous schemas and uses 
tools such as Buf (for Protobuf) or avro-tools (for Avro) to check for compatibility. If 
you’ve added a new optional field, you’re probably fine as older clients will just ignore 
it. But if you’ve removed a field, renamed something, or changed a type (like going 
from a string to an int), those are usually flagged as breaking changes. In those cases, 
the CI job fails, informing you early that something needs fixing. The goal is to enforce 
backward and/or forward compatibility. For example,

¡	Adding an optional field is usually safe.

¡	Renaming or removing a field may break existing consumers.

¡	Changing a field’s type (e.g., from string to int) is almost always a breaking 
change.

Tools such as Buf (for Protobuf) or avro-tools (for Avro) can perform compatibility 
checks automatically. 

At runtime, some systems take this further by registering schemas in a central regis-
try (e.g., Confluent Schema Registry for Kafka) and validating each message on publish 
or consume. This can catch serialization problems caused by misaligned versions, but at 
the cost of some latency and added complexity.



 265Understanding systemic failure modes

Whether in CI or at runtime, schema validation helps enforce a contract between 
services. It’s not just about preventing crashes but about ensuring predictable behavior 
when services communicate, even as they evolve. Schema validation is one of the most 
reliable ways to avoid serialization-related outages when combined with clear version-
ing practices and good documentation.

When something goes wrong between services, especially with structured or binary 
payloads, it’s essential to understand what was actually sent and received. Tools such as 
protoc, grpcurl, and jq allow you to inspect messages independently of your application 
code, making them ideal for debugging serialization problems.

12.3 Understanding systemic failure modes

In a distributed system, failures rarely stay in one place. What starts as a slow database 
query or a delayed service response can ripple outward, triggering timeouts, retries, 
and blocked threads across other services. These aren’t just bugs, they’re systemic fail-
ure modes, and they require a different kind of thinking to detect and troubleshoot.

Unlike exceptions in your local Java stack trace, systemic failures often don’t show 
up clearly. You might see elevated latency, CPU spikes, increased error rates, or worse, 
everything appears to be working, just poorly. The system feels off, and debugging it 
feels like chasing shadows.

This section focuses on how small problems become big ones in distributed Java sys-
tems. We’ll explore failure modes such as

¡	Cascading failures—When one overloaded service causes upstream services to 
back up, creating a domino effect

¡	Retry storms -—When multiple services simultaneously retry failed requests, ampli-
fying the load and worsening the situation.

¡	Timeout mismatches—Subtle configuration problems that break communication 
logic under pressure.

¡	Circuit breaker misbehavior—Incorrect settings that either trip too early or too late, 
or never recover.

We’ll also look at how to spot the symptoms, use tools such as thread dumps, distrib-
uted traces, and metrics to understand the deeper cause, and implement resiliency 
patterns to prevent these problems from escalating.

12.3.1 Cascading failures

When one service becomes slow or unresponsive, it can cause upstream services to 
accumulate blocked threads, fill connection pools, and eventually crash, not because 
they’re broken, but because they’re waiting. This is a cascading failure: a localized 
problem that escalates into a system-wide outage (see figure 12.5).

One of the clearest signs of a cascading failure is thread pool exhaustion. A thread 
pool is a collection of pre-created worker threads that handle tasks such as processing 
requests, running jobs, or handling I/O in a controlled and efficient way. Instead of 



266 CHAPTER 12 Uncovering system-level failures and service communication problems

Checkout service Order service Fulfillment service DB

calls storescalls

Other services involved
might also face instability.

The checkout service might
get stuck or bottlenecked
because one of the downstream
services faces a problem.

During the flow, the fulfillment service
encounters a problem (such as not having
enough connections in the connection pool
when connecting to the DB).

Figure 12.5 A failure or slowdown in one service (e.g., due to high latency, blocked resources, or an 

overloaded dependency) can propagate through the system. Upstream services that rely on it may begin 

to stall, exhaust thread pools, or trigger retries—eventually causing multiple services to degrade or fail, 

even if they were functioning correctly on their own.

creating a new thread for every task, which can be expensive and risky, applications 
use thread pools to reuse threads and limit the number of concurrent operations. This 
helps protect the system from being overwhelmed. But when all threads in the pool are 
busy, and new tasks keep coming in, the pool gets exhausted. At that point, incoming 
tasks are either blocked, queued, or dropped entirely, leading to increased latency, 
timeouts, and in worst cases, cascading failures as dependent services also start to pile 
up while waiting for responses.

Each incoming request occupies a thread in Java applications, especially those using 
servlet containers or blocking I/O. If a downstream call blocks or becomes slow, those 
threads pile up and wait. You can detect this through thread dumps, which will often 
show dozens or hundreds of threads in a WAITING or TIMED_WAITING state, all blocked on 
the same HTTP client, socket read, or remote service call.

In thread dumps (see chapter 9 for a refresher), look for repeating stack traces that 
involve remote calls such as HttpClient.send(), RestTemplate.exchange(), WebClient 
.retrieve(), or gRPC stub invocations. If many threads are stuck in similar call paths, 
especially in connection pools (HttpClientConnectionManager, OkHttp, etc.) or IO 
reads—it’s a sign that something downstream is taking too long.

Take a look at listing 12.4. This kind of thread dump is classic evidence of a cas-
cading failure in progress. One downstream service (e.g., payment gateway) is slow. 
Multiple upstream threads block while waiting for a response. Eventually, your thread 
pool becomes saturated, and your service starts failing, even though the root problem 
is downstream.



 267Understanding systemic failure modes

Listing 12.4 A thread dump example showing a possible cascading problem

"http-nio-8080-exec-134" #217 daemon prio=5 os_prio=0 tid=0x00007f3c6809a000 
nid=0x2f23 waiting on condition [0x00007f3c2ddfc000]
java.lang.Thread.State: WAITING (parking)
  at sun.misc.Unsafe.park(Native Method)
 - parking to wait for  <0x00000000f0123456> (a    
         java.util.concurrent.CompletableFuture)
  at java.util.concurrent.locks.LockSupport.park(LockSupport.java:175)
  at java.util.concurrent.CompletableFuture
    .get(CompletableFuture.java:2027)      
  at    
     org.springframework.web.client.RestTemplate
      .doExecute(RestTemplate.java:780)
        at org.springframework.web.client.RestTemplate
      .exchange(RestTemplate.java:700)
        at com.example.service.PaymentService
      .callPaymentGateway(PaymentService.java:87)    
        ...

"http-nio-8080-exec-135" #218 daemon prio=5 os_prio=0
 tid=0x00007f3c6809b000 nid=0x2f24 
waiting on condition [0x00007f3c2defc000]

java.lang.Thread.State: WAITING (parking)
  at sun.misc.Unsafe.park(Native Method)
   - parking to wait for  <0x00000000f0123456> 
   (a java.util.concurrent.CompletableFuture)
  at java.util.concurrent.locks.LockSupport
       .park(LockSupport.java:175)
  at java.util.concurrent.CompletableFuture
       .get(CompletableFuture.java:2027)    
  at org.springframework.web.client.RestTemplate
       .doExecute(RestTemplate.java:780)
  at org.springframework.web.client.RestTemplate.exchange 
(RestTemplate.java:700)
  at com.example.service.PaymentService
       .callPaymentGateway(PaymentService.java:87)    
        ...

First, you observe that multiple (only two for brevity here) threads are doing the same 
thing (calling the callPaymentGateway() method). All threads seem to be executing a 
HTTP call (observe the RestTemplate), but they are waiting for a response.

Service metrics—created inside the application, either manually by developers 
(e.g., counters, timers) or automatically by a framework—offer another early warning. 
Watch for

¡	Thread pool utilization (approaching 100%)

¡	Request queue size (if using queuing thread pools)

¡	Increased latency or timeouts in outbound HTTP/gRPC calls

¡	Error rates spiking in otherwise healthy services

Waiting for an 
HTTP response

Calling the 
payment 
gateway

Waiting for 
an 
HTTP 
response

Calling the 
payment 
gateway



268 CHAPTER 12 Uncovering system-level failures and service communication problems

Distributed tracing (section 12.1) helps complete the picture. A trace that starts in 
a fast service and then spends most of its time waiting on a slower service shows up 
clearly in tools such as Jaeger, shown in the following listing.

Listing 12.5 Visualizing the origin of a slow operation in a span

Trace ID: 84ac99d3f2bc1d55

└── [checkout-service] POST /checkout  [850ms]
    ├── [checkout-service] Validate cart          [20ms]
    ├── [checkout-service] Call Payment Service   [790ms]
    │   └── [payment-service] POST /pay           [780ms]     
    └── [checkout-service] Store session          [10ms]

Once you’ve identified the slow or blocked service, the next step is to inspect its depen-
dencies, resource usage, or code paths to determine why it’s under pressure. Is it CPU-
bound? Starving for database connections? Hitting a third-party API rate limit?

The key to troubleshooting cascading failures is to recognize that the service throw-
ing the error is often just the messenger (this is very similar to the threads throwing 
an OutOfMemoryError; remember our discussion in chapter 10). The real problem lies 
further downstream, and your job is to follow the chain until you find the first domino 
that fell.

In the case of cascading failure, a tool such as Sentry can often surface the first 
warning signs. For example, if the fulfillment service starts failing because its database 
connection pool is exhausted, Sentry would capture exceptions such as SQLTransient-
ConnectionException or TimeoutException. These errors might not be visible in logs, 
or they might be buried among less critical warnings. With Sentry’s real-time error 
reporting and alerting, teams can be notified immediately when a known failure pat-
tern emerges.

As the failure spreads upstream, Sentry also helps identify the ripple effect. Services 
such as order and checkout might begin timing out or retrying operations, generating 
exceptions of their own, such as HttpTimeoutException, CallNotPermittedException, or 
retry-related failures. Sentry groups these by error type, service, and context (e.g., user 
ID, request ID), making it easier to correlate which services are being affected and how 
frequently the errors are occurring.

Though Sentry doesn’t visualize the full request path like tracing systems, it comple-
ments them by capturing the full exception stack trace, including local variables, envi-
ronment details, and release metadata. When used together with a trace or correlation 
ID, developers can move between Sentry and tracing tools to get both the “what failed” 
and the “where and when it failed” perspectives, greatly speeding up root cause analysis.

No single tool tells the whole story in a distributed system. Tracing tools such as Jae-
ger and Zipkin help you follow the request across services and spot performance bottle-
necks. Metrics expose trends and anomalies in system behavior. Logs offer raw details. 
Tools such as Sentry also bring critical visibility to exceptions and runtime errors that 

Almost the entire 
time is spent on 
the /pay call.



 269Understanding systemic failure modes

might otherwise go unnoticed. Used together, these tools provide a full picture, con-
necting the flow of data, the health of infrastructure, and the effect of failures. In com-
plex systems, troubleshooting isn’t about having one perfect tool. Troubleshooting is 
about having the right set of lenses to see the problem from every angle.

12.3.2 Retry storms

Retries are meant to add resilience, but they can do the opposite under pressure. Mul-
tiple services retrying the same failed operation, often with no backoff or coordina-
tion, can overload the target service, causing a feedback loop of failure.

Retries can help applications recover from transient failures, such as network glitches 
or temporary service unavailability, but if implemented without care, they can make 
things worse. When multiple clients retry failed requests simultaneously, especially 
without coordination or delay, they can overwhelm an already struggling service. This 
creates a retry storm, where the very mechanism meant to increase resilience causes a 
full-scale outage (figure 12.6).

Checkout service Order service Fulfillment service DB

calls stores

A service repeatedly and uncontrollably retries a failing
operation, leading to excessive resource consumption
and potentially affecting other parts of the system.

calls

X n

Figure 12.6 A retry storm. Due to a failing operation, an app uncontrollably retries the execution of an 

action, putting a larger part of the system in danger.

A misconfigured system can trigger a combination of cascading failures (see section 
12.3.1) and retry storms, creating a feedback loop that amplifies the original prob-
lem. As illustrated in figure 12.7, these patterns can interact in ways that increase load, 
exhaust resources, and degrade the performance of otherwise healthy services.

Retry storms often hide in plain sight. From the outside, it may look like a service is 
under high load or is failing unexpectedly, but under the hood, it’s being pummeled by 
hundreds or thousands of retry attempts. Your job as a troubleshooter is to recognize 
the signs and trace them back to their source:

¡	Look for elevated load without an increase in traffic.

¡	Inspect logs for repeated attempts.

¡	Trace it with spans across services.

¡	Check for chain reactions.



270 CHAPTER 12 Uncovering system-level failures and service communication problems

In a worst-case scenario, upstream services become affected
by cascading failures, which in turn trigger a full-scale retry
storm. As retries pile up across multiple layers, system
resources are rapidly consumed, amplifying the effects of the
original failure and increasing the risk of widespread outage.

Checkout service Order service Fulfillment service DB

stores

calls

X n

calls

X n

Figure 12.7 When a downstream service becomes unresponsive, upstream services may begin retrying 

requests excessively. This amplifies load across the system, consuming resources and potentially turning 

a localized failure into a widespread outage.

The most telling symptom is when a service suddenly shows high CPU usage, increased 
request volume, or latency spikes, but there’s no corresponding increase in user traffic. 
That’s a red flag: internal services are likely retrying failed operations.

Use metrics dashboards (e.g., Prometheus/Grafana or Datadog, depending on what 
tools you have available in the given environment where you troubleshoot) to correlate 
CPU, request rate, and error rate across services. If a service is failing and another one 
another suddenly sees a 5x traffic spike—it’s probably handling retries.

In service logs, retry storms often show up as repeated log entries with identical or 
similar payloads, happening at short intervals. Look for logs such as:

[WARN] Timeout calling PaymentService. Retrying attempt 1...

[WARN] Timeout calling PaymentService. Retrying attempt 2...

...

Retrying POST /payment for orderId=abc123

Retrying POST /payment for orderId=abc123

Distributed tracing (e.g., Jaeger, Zipkin) is incredibly effective for visualizing retry 
storms. You’ll see multiple spans with the same parent, calling the same operation 
repeatedly. These retry spans will usually have short durations, spaced closely together. 
The root service’s span may show a long duration made up of several fast but failed 
child spans. You may see something like

└── [checkout-service] POST /checkout [600ms]
    ├── [checkout-service] Call PaymentService attempt 1 [200ms]
    ├── [checkout-service] Call PaymentService attempt 2 [180ms]
    └── [checkout-service] Call PaymentService attempt 3 [220ms]



 271Understanding systemic failure modes

12.3.3 Timeout mismatches

Mismatched timeout settings between clients and servers are a common and invisible 
source of failure. A client might give up after 2 seconds, while the server doesn’t even 
start processing until the 3-second mark, leading to false failures and wasteful retries.

Timeout mismatches are tricky because they don’t always show up clearly in logs or 
error messages, but they can seriously disrupt how your system behaves. They often 
cause strange problems: some requests fail while others work, things break randomly, 
or it feels like “nothing worked” even though every service seems fine on its own. This 
situation usually happens when a client gives up waiting too soon, while the server is still 
working. Consequently, retries might happen too early, or services keep doing their job, 
but no one is there to use the results (figure 12.8).

Checkout service Order service

calls

The checkout service fails after 2 seconds,
which is its configured timeout. If it would
have waited  bit longer, the order serivice
would have been successfully responded.

(2 seconds timeout)

(3 seconds execution)

Figure 12.8 The checkout 

service aborts the request 

after 2 seconds due to its 

configured timeout, while 

the order service completes 

its task in 3 seconds. This 

mismatch results in a failed 

request, even though the 

downstream service performs 

correctly—highlighting the 

need for consistent timeout 

configuration across services.

In distributed tracing tools such as Jaeger or Zipkin, mismatched timeouts can be spot-
ted by examining the span durations. Let’s say your client’s timeout is set to 2 seconds, 
but the downstream service responds in approximately 3 seconds. You’ll see that the 
client span ends at 2 seconds, tagged as an error or timeout, but the server span contin-
ues to run, completes successfully, but has no one listening:

Trace ID: 7d9f3e4c9b124e91

└── [frontend-service] Call OrderService [2,000ms] [X]   
    └── [order-service] ProcessOrder [3,000ms]   

Sometimes the problem isn’t in the code, but in the config. Make sure to check

¡	Client-side timeout settings—For example, HTTP/gRPC clients, web clients, data-
base connection timeouts

¡	Server-side processing timeouts—For example, servlet container timeouts, controller- 
level timeouts, business logic delays

Reaches the timeout

Ends with success



272 CHAPTER 12 Uncovering system-level failures and service communication problems

In Java services, common sources include

¡	RestTemplate or WebClient timeouts

¡	gRPC deadline settings (Deadline.after(...))

¡	Tomcat/Jetty/Spring Boot server timeouts

¡	Third-party API limits or network proxy settings

Timeout mismatches often cause misleading log entries making you confuse them with 
retries. If these retries happen often but the downstream service shows no errors, that’s 
your clue: the service is functioning, just too slowly relative to the client’s patience. 
Moreover, check logs from the target service. If it shows “processed X successfully” but 
the caller logs a timeout, you have a mismatch. Additional metrics you can check to 
confirm this diagnostic are thread pool usage, queue buildup for message brokers (if 
any), request durations, timeout counts and duplicate request IDs.

In systems using asynchronous messaging (e.g., Kafka, RabbitMQ), timeout mis-
matches might cause upstream services to retry operations by pushing messages back 
into a queue. If the downstream consumers process slowly or keep working on messages 
that callers no longer care about, the queue grows. This queue buildup doesn’t neces-
sarily indicate high traffic. It often means retry loops are being triggered or the system is 
wasting resources processing stale requests. If your metrics show a sudden spike in mes-
sage lag or queue size, it’s worth checking whether services are retrying too aggressively 
or timing out too quickly.

Comparing the average and percentile durations of requests (especially P95 and 
P99 latencies) is one of the most direct ways to spot a mismatch. If your service has a 
2-second timeout, but the 95th percentile of responses from a downstream service is 
2.5 seconds, timeouts are guaranteed. Monitor the duration of both client-side requests 
and server-side processing time. When the client consistently gives up before the server 
finishes, you’ll see traces or logs with premature terminations and metrics showing 
successful processing on the server but timeout errors on the client.

Using P95, P99, and the average for understanding metrics

When we talk about service latency, it’s not enough to look at just the average (or 

mean) response time. Averages can be misleading. If most requests are fast but a 

few are extremely slow, the average hides the pain. That’s where percentile-based 

latency metrics come in.

¡	P95 latency means—95% of requests completed in this time or faster, and the 

remaining 5% took longer.

¡	P99 latency means—99% of requests were faster than this value, and only 1% 

were slower.

Some problems such as timeout mismatches usually don’t show up in the average.

Now imagine your client timeout is 2 seconds (2000 ms). The average looks fine, but 

5% of users are already bumping into timeouts, and 1% are guaranteed to fail.



 273Understanding systemic failure modes

This is why monitoring P95 and P99 latency is essential for spotting intermittent slow-

downs that might cause retries, errors, or degraded performance.

You can track these metrics using standard tools in your system environment such 

as distributed tracing tools or commercial platforms such as Datadog or New Relic (if 

available).

These percentiles give you a much sharper view of how your system behaves under 

pressure or at scale, and they’re critical when diagnosing problems such as timeout 

mismatches, retry storms, and cascading failures. But you can also use them when 

investigating other problems, such as load-related slowdowns, resource starvation, or 

GC delays.

For example, if your P95 latency suddenly spikes during peak traffic hours, it may 

indicate your service isn’t scaling properly under load, perhaps thread pools are 

exhausted, or database queries are getting slower. If P99 latency increases after a 

new deployment, it might point to a regression in a specific code path that only affects 

complex requests. And if you see high tail latencies (P99) correlated with GC pauses 

or memory pressure, it could signal JVM tuning problems.

In all these cases, percentile metrics help highlight what’s happening for your slowest, 

most at-risk users, the ones who feel the pain first when the system begins to strain.

Figure 12.9 shows the latency distribution of a service. While the average and P90 laten-
cies are within acceptable limits, the P95 is approaching the 2000 ms timeout threshold,

Evaluating timeout mismatches using percentille latencies

Figure 12.9 Identifying timeout mismatches using percentiles. P95 and P99 latencies approach or exceed  

the 2000 ms timeout threshold, revealing that some requests are likely to fail—despite the service working  

as expected.



274 CHAPTER 12 Uncovering system-level failures and service communication problems

and the P99 exceeds it. This indicates that a subset of requests is likely to fail due to 
timeouts, even though the service is functioning. Monitoring percentile latencies helps 
detect these edge-case failures before they escalate.

The red dashed line represents a 2000 ms timeout threshold. As shown,

¡	P95 latency (1900 ms) is close to the timeout.

¡	P99 latency (2400 ms) exceeds the timeout, indicating that a portion of requests 
will likely fail due to timeouts, even though the service itself may still be healthy.

As you can deduce, the average latency doesn’t tell the full story. Percentile metrics are 
essential for tuning timeouts in distributed systems.

One subtle symptom of mismatched timeouts is the appearance of duplicate request 
IDs. When a client times out but the server continues working, the client may retry the 
same request. If your logs or traces show multiple attempts to process the same opera-
tion (same orderId, same paymentId, etc.), it’s often because the client assumed the first 
try failed, even though it eventually succeeded. These duplicates often appear slightly 
offset in time and may show up in both logs and distributed tracing systems.

Many systems report timeout-specific error metrics. These can come from HTTP cli-
ent libraries (such as Apache HTTP Client, OkHttp, or Spring’s RestTemplate), gRPC, 
or even database drivers. If you start seeing an increase in timeouts without a matching 
spike in 500-level errors from the service you’re calling, it’s a clear sign of a timeout 
mismatch. For example, the service might be working fine, but your timeouts are too 
aggressive to let it respond.

Troubleshooting problems in distributed systems is rarely straightforward. Failures 
often begin in one place and manifest elsewhere, with symptoms disconnected from 
root causes. In this chapter, we’ve seen how slow responses, blocked threads, version 
mismatches, and misaligned timeouts can silently ripple across services and degrade 
the system.

The key takeaway is that system-level problems require system-level thinking. Logs 
alone are no longer enough. Understanding how services communicate, how data 
flows through queues, and how long each operation takes in context is essential. Dis-
tributed tracing, structured logs, service metrics, and schema validation aren’t just 
tools—they’re part of the basic diagnostic toolkit for working at this scale.

While traditional methods remain vital, modern support systems are evolving. 
AI assistants can now help you spot patterns in logs (see also chapter 4, where we 
discussed logs in more detail), highlight anomalies in traces, and even explain con-
figuration options you might have missed. They won’t replace your experience, but 
they can complement it—especially when you’re navigating complex problems under 
pressure.

As systems become increasingly interconnected, the importance of visibility, observ-
ability, and structured investigation continues to grow. With the techniques in this 
chapter, you’re better equipped to follow the evidence, ask the right questions, and find 
clarity in what might initially seem like chaos.



 275Summary

Summary

¡	Distributed failures often don’t stay local—troubleshooting them requires 
system- level visibility and tools.

¡	Examine trace IDs and spans to reconstruct request paths, detect missing steps, 
and isolate problematic services in multi-hop flows. Use distributed tracing tools 
(such as Jaeger or Zipkin) to follow a request across services and identify where 
time is lost or failures originate.

¡	In cases of serialization problems, log decoded payloads carefully, validate sche-
mas in CI, and use tools such as protoc, grpcurl, and jq to inspect data outside of 
the application.

¡	Detect cascading failures by analyzing thread dumps for repeating stack traces 
stuck on remote calls—often a sign of thread pool exhaustion.

¡	Identify retry storms by looking for repeating requests in logs, short retry spans 
in tracing tools, and sudden spikes in internal traffic without increased user load.

¡	Investigate timeout mismatches by comparing client and server span durations—
if clients time out while servers keep processing, your configuration is misaligned.

¡	Watch for duplicate request IDs as they signal that clients are retrying unneces-
sarily due to mismatched expectations or timeouts.

¡	AI assistants can help analyze logs, interpret stack traces, spot anomalies in 
traces, or offer context on unfamiliar errors, thus accelerating troubleshooting 
and boosting confidence.



276

13Measuring data 
consistency and 

transactions

This chapter covers

¡	Identifying and troubleshooting data 

inconsistencies across services

¡	Tracking multistep transactions using trace IDs 

and audit logs

¡	An explanation why coordination breaks down  

in distributed workflows

¡	Measuring consistency guarantees using 

sampling, invariants, and reconciliation

In a perfect system, data is always in sync. Every service sees the same state, updates 
happen atomically, and no user gets confused. In real life? Not so much.

In a distributed environment, consistency is a moving target. Services communi-
cate over networks, store state independently, and occasionally forget to invite each 
other to the transaction. You’ll see orders that were paid but not shipped, emails 
confirming things that never got saved, or records that exist in one database but not 
in another. The bugs are subtle, hard to reproduce, and often show up only at 2 a.m.



 277Troubleshooting inconsistencies across services

In this chapter, we look at how to detect and diagnose these problems before your 
support team finds them first. We start by identifying symptoms of inconsistency across 
services, then learn how to trace multistep transactions that span service boundaries, 
and finally cover strategies for measuring and monitoring consistency guarantees in 
production systems, because “it worked in staging” is not a consistency model.

This chapter focuses on the challenges of maintaining and verifying data consis-
tency in distributed Java systems and, more importantly, on the techniques you can use 
to detect, trace, and monitor it effectively. In section 13.1, we begin by exploring how 
inconsistencies typically surface across services. You’ll learn how to recognize problems 
such as missing records or invalid states and how to diagnose them using tools such as 
time-based event flow analysis and domain-level invariants. In section 13.2, we move 
deeper into the life cycle of distributed transactions, showing how to reconstruct trans-
actional flows using audit logs and how to identify message loss or coordination break-
downs by replaying or inspecting event histories. 

Finally, in section 13.3, we turn to measurement and long-term visibility. You’ll learn 
how to verify data consistency using checksums, and how to detect drift in production 
systems through reconciliation jobs and consistency metrics. Together, these practices 
provide a structured approach to navigating the messy realities of distributed state, 
helping you not only find what went wrong, but prevent it from silently happening 
again.

13.1 Troubleshooting inconsistencies across services

In this section, we explore how inconsistencies can emerge across microservices, even 
when each service seems to function correctly on its own. These problems often man-
ifest as missing records, duplicated data, or out-of-sync states, and it can be difficult to 
trace them back to a root cause. To address them, we’ll walk through practical observ-
ability strategies that go beyond basic logging (discussed in chapter 4). You’ll learn 
how to use trace correlation, business-level alerting, and other diagnostic techniques 
to detect and understand data mismatches across service boundaries, even when every-
thing looks green at the surface.

13.1.1 Inspecting time-based anomalies in event flows

Time-based anomalies refer to irregularities in the timing of events that deviate from the 
system’s expected behavior or sequence. These include delays, out-of-order opera-
tions, duplicate retries, or mismatched timestamps across services. While they might 
not raise immediate exceptions, such anomalies often signal deeper coordination or 
consistency problems.

In distributed systems, time is both a coordinating tool and a source of confusion. 
Services rely on timestamps to order operations, detect delays, and make assumptions 
about state. When those assumptions break—for example, when a request appears suc-
cessful, but its effects don’t materialize within the expected time window—we’re most 
likely facing a time-based anomaly.



278 CHAPTER 13 Measuring data consistency and transactions

I’ll tell you a story about an investigation case that implied time-based anomalies, but 
first here are a few things you need to consider when troubleshooting such problems. 
Can you find them applied by the team in the following story?

¡	Never dismiss a low-value anomaly. If the inconsistency exists at all, the same fail-
ure mode can affect higher-value or mission-critical operations.

¡	Use distributed tracing tools (e.g. OpenTelemetry, Zipkin) to follow the request 
across services. Look for missing or incomplete spans that might indicate silent 
failures.

¡	One tool alone rarely gives the full picture. Combine tracing data with Kafka 
topic inspection and application logs to confirm whether the message propa-
gated through the system.

¡	Trace trees that end before database writes or message publishing are red flags. 
Investigate the last service in the trace to understand why it didn’t complete 
downstream action.

¡	Query the database directly to look for missing records or gaps in sequences. 
These can be early indicators of deadlocks, transaction rollbacks, or unhandled 
write failures.

¡	Work with DBAs to inspect PostgreSQL deadlock logs and identify concurrency 
problems. Deadlock resolution might silently abort transactions if the applica-
tion doesn’t handle retries correctly.

In distributed systems, trouble doesn’t always announce itself with alarms blaring. 
Sometimes, it quietly taps you on the shoulder (like a suspicious one-euro payment at 
a public toilet in Paris).

It all started when a friend of mine, an engineer in the payments industry, got 
assigned what looked like the most trivial ticket of the year:

“Investigate missing transaction. Missing one euro.”

The ticket referenced a one-euro charge. For a toilet. In Paris. Naturally, jokes were 
made.

At first glance, it was tempting to dismiss it. After all, who’s going to chase down a 
missing euro? But experience had taught them, and it should teach all of us, that if a 
system can silently lose one euro, it can just as easily lose 10,000 euros.

NOTE Any small error can signal a more serious problem behind the scenes. 
If a system loses one euro, it can also lose much more later. Never overlook any 
small problem. You must troubleshoot it.

First, they checked the POS terminal logs. The device showed the customer a “Pay-
ment Approved” message, and it had indeed sent an authorization request to the pay-
ment processor. At this point, the investigation confirmed that the POS wasn’t lying. 
The payment request was made. Next, they tried to trace the transaction through the 
backend payment services.



 279Troubleshooting inconsistencies across services

Normally, every transaction request generates a record in a processing queue and a 
payment audit table. But here, there was no trace of it. It was as if the request had been 
swallowed right after leaving the POS. Figure 13.1 briefly describes the flow. Mind that 
the architecture is simplified to allow you to focus on the troubleshooting rather than 
the system design. The system designs presented in this book might be fictional or dras-
tically simplified. Their purpose is not to teach you practices in software architecture 
but to give you a picture that simplifies the teaching of troubleshooting (which is the 
primary focus of this book).

Payment service

Auditing service DB

calls

stores

publishes

1. The POS interacts directly with
    the client to initiate the payment.

2. The payment service orchestrates
    the payment workflow.

3. The auditing service manages
    auditing of actions and results.

4. The payment service sends a message
    to a Kafka topic to initiate the transfer,
    which will be done by a separate system.

Figure 13.1 The payment system. The POS initiates a transaction that is audited and sent to execution 

to another system.

The first step was to check the distributed traces. Using the same tracing setup we dis-
cussed in chapter 12, based on OpenTelemetry and Jaeger, they searched for the trace 
ID associated with the POS device’s request. In a healthy transaction, they would expect 
to see a full trace: POS -> API gateway -> payment processing service -> database write.

However, in this case, the trace ended abruptly at the payment-processing service, 
with no downstream spans recorded. The next snippet shows the idea:

TraceID: abc123

└── [POS Device] - initiatePayment()      (client send)



280 CHAPTER 13 Measuring data consistency and transactions

    └── [API Gateway] - forwardPayment()   (server receive / client send)
        └── [Payment Processing Service] - processTransaction()
             ✖ No further spans recorded

To cross-verify, they inspected the Kafka topics where the payment processing service 
normally published transaction events. 

Apache Kafka is a distributed event streaming platform used to build real-time data 
pipelines and messaging systems. In our case, services publish payment events to Kafka 
topics, essentially named channels, so that other systems (such as billing, reconcilia-
tion, or analytics) can consume them reliably.

Kafka ensures that messages are durable, ordered (within a partition), and scalable, 
making it a backbone for transactional systems where data consistency matters. We 
won’t dive into the full Kafka architecture here, but if you’re new to it, think of it as a 
highly durable message bus that services use to communicate asynchronously. An excel-
lent resource covering this topic is Kafka Streams in Action, Second Edition, by William P. 
Bejeck, Jr. (Manning, 2024).

No corresponding message was found for the missing trace ID. This confirmed that 
the event had not simply been delayed—it had been lost somewhere before reaching 
the message queue.

Individually, none of these tools gave a full answer (figure 13.2). Together, they 
painted a clear story: the request entered the system, began processing, but never made 
it far enough to persist or queue any outcome.

3. Could the problem
    be actually here?

2. The payment should have arrived
    as an event in the Kafka topic,
    but there is nothing here.

Payment service

Auditing service DB

calls

stores

publishes

y

g

1. The POS logs show that the
    payment was successful from
    the terminal side.

Figure 13.2 The engineer checked the POS logs followed by the Kafka topic. The clues they found 

revealed the possibility that the problem is in the auditing service side. 



 281Troubleshooting inconsistencies across services

With the span tree ending inside the payment-processing service, the team knew the 
next place to look was the database layer—specifically, the service that should have 
recorded the transaction in the payment ledger.

They started by querying the transaction audit table directly, using a window around 
the timestamp of the POS event. As expected, there was no entry for the missing trans-
action. But something was off: a suspicious gap in the auto-incrementing transaction ID 
sequence. 

To dig deeper, the team enabled and parsed database deadlock logs. Once the 
team suspected a database-level problem, they turned to PostgreSQL’s deadlock 
diagnostics.

The team coordinated with the DBA to enable and collect the relevant PostgreSQL 
logs. They searched for error messages like the one in the following snippet:

ERROR:  deadlock detected
DETAIL:  Process 12345 waits for ShareLock on transaction 6789; blocked by 
process 9876.
         Process 9876 waits for ShareLock on transaction 1234; blocked by 
process 12345.
HINT:  See server log for query details.

What they found matched the missing transaction’s timestamp: a deadlock between 
two concurrent insert operations on the same table, both competing for locks on 
shared indexes. The database correctly resolved the deadlock by aborting one transac-
tion. But the application didn’t retry it.

TIP Any developer should learn more than just the technology they are 
experts in. SQL is an indispensable skill regardless of the programming tech-
nology you are experienced with. No matter what kind of a developer you are, 
you will find good use for learning SQL.

They had hit a classic coordination blind spot. The payment service logged the 
database failure with a generic warning (something easily lost in production noise), 
and due to missing retry logic, it neither persisted the data nor surfaced the error 
downstream. The POS saw a “Success” response; the backend lost the transaction 
entirely.

But what if the database deadlock logs hadn’t been available or had already been 
rotated out of existence? Teams may not have direct access to historical deadlock traces 
in many real-world environments, especially those with aggressive log retention policies 
or limited observability. 

In such cases, indirect evidence becomes essential. The suspicious gap in the auto- 
incrementing transaction ID sequence was the first clue pointing toward a concurrency 
problem. Reproducing the transaction under controlled load, especially with concur-
rent inserts, can often reveal the same locking pattern. Additionally, examining metrics 
such lock wait times, transaction rollback counts, or even trace sampling anomalies can 



282 CHAPTER 13 Measuring data consistency and transactions

provide hints. When logs are missing, hypotheses must be validated through a mix of 
reasoning, simulation, and whatever breadcrumbs remain.

This investigation may have started with a trivial-looking discrepancy, but the team 
treated it with the rigor it deserved. By combining tracing, logs, queue inspection, and 
direct SQL queries, they followed the event flow across service boundaries and into the 
database layer. They didn’t stop at the first missing record. They correlated traces with 
system logs, identified an invisible deadlock, and validated the root cause through con-
trolled reproduction.

REMEMBER Tools for distributed tracing (OpenTelemetry, Jaeger), message 
queue inspection (Kafka consumers), and database diagnostics (PostgreSQL 
logs, manual queries) are indispensable when troubleshooting complex, 
time-sensitive problems. But no single tool solves everything. 

In practice, you often must work with whatever the environment gives you: partial logs, 
missing traces, or delayed access to production data. The key is to adapt, correlate, 
and persist. Effective troubleshooting is as much about resourcefulness as it is about 
tooling.

13.1.2 Applying domain invariants to identify invalid states

A QA engineer walks into a bar.

He orders one beer.

He orders zero beers.

He orders −1 beer.

He orders 99999999 beers.

He orders a lizard.

He tries to leave without paying.

Then a real customer walks in and asks,

“Hey, is this place open?”

And the bar crashes.

In any business system, some things should simply never happen, like ordering −1 beer 
at a bar. (Unless you’re a QA engineer, in which case it’s perfectly valid test input.) 
These are violations of domain invariants: fundamental rules that should always hold 
true, regardless of how chaotic or distributed the system gets.

NOTE Violations of domain invariants are fundamental rules that should 
always be true.

When your data breaks these rules, say, by allowing a payment to complete without an 
order or a user to have a birthdate in the future, you’re no longer just dealing with 
bugs. You’re dealing with a broken business reality.

A domain invariant is like gravity in your business logic—it keeps things grounded. It’s 
a business truth that must remain consistent even if services crash, retries happen, or 
messages arrive out of order. When invariants are violated, you get what we call invalid 



 283Troubleshooting inconsistencies across services

states: conditions that might technically exist in the database but make no sense in the 
real world.

Think of a distributed system like an airplane. Before every flight, engineers run 
through a checklist to ensure every component is in the right state, including fuel lev-
els, engine sensors, and cabin pressure. Miss one item, and the consequences could 
be serious. Invariants play the same role: they ensure the system is in a safe, expected 
state before proceeding. And unlike aviation, in distributed systems, you might not 
even know something is missing until it’s already midair. In this section, we look at how 
defining and validating domain invariants can help you detect inconsistencies that logs 
and traces often miss, and why these rules are your best defense against subtle, systemic 
bugs.

Violations of domain invariants typically stem from race conditions, eventual consis-
tency delays, or a lack of defensive checks in service logic. In distributed systems, data 
doesn’t always arrive in the expected order, messages might be delayed, retried, or pro-
cessed out of sequence. For instance, a refund event might be handled before the order 
it references has been written to the database, simply because one message queue was 
temporarily faster than another.

Another common cause is insufficient transactional guarantees across service 
boundaries. When operations span multiple services or databases, it’s easy to end up 
in a partially completed state. If one service fails after publishing a message but before 
committing its own state, consumers of that message might proceed with incomplete 
context. Add in weak error handling or missing idempotency controls, and you get a 
recipe for inconsistencies: orphaned entities, invalid references, or contradictory states 
that violate the core rules of your domain.

Imagine an e-commerce platform where refunds are occasionally issued for orders 
that, according to the database, never existed. No payment record. No order record. 
Just a refund floating in the system like a ghost. This is a classic case of a violated domain 
invariant— “a refund must always be linked to a valid, completed order.”

These kinds of invalid states often creep in when workflows span multiple services. 
For instance, a refund microservice might consume events from a queue and process 
them independently. If the refund event is received before the order creation has been 
fully persisted, due to delays, retries, or out-of-order messaging, the refund gets pro-
cessed anyway, breaking the invariant.

Now, here’s some good advice that worked for me throughout the time when I had to 
deal with these kinds of problems:

¡	Define invariants explicitly in your domain model or monitoring layer. For exam-
ple: refund.orderId must exist AND refund.timestamp > order.timestamp. This 
will help you make sure you know what you are actually looking for.

¡	Query the database for violations. Use SQL to find suspicious cases. Treating the 
database as the one source of truth for the data helps you identify when things go 
wrong:



284 CHAPTER 13 Measuring data consistency and transactions

SELECT * FROM refunds r

WHERE NOT EXISTS (

  SELECT 1 FROM orders o WHERE o.id = r.order_id

);

¡	Use trace correlation, as discussed in chapter 12, to see whether the refund flow 
was triggered before the corresponding order flow completed. Missing or mis-
aligned spans can be a big clue.

¡	Implement reconciliation jobs or consistency checkers that regularly scan for 
broken relationships, such as refunds without corresponding orders. These can 
run as batch processes or lightweight validation services, depending on system 
scale and complexity.

Domain invariants are more than just validation rules. They’re the sanity checks that 
keep your system aligned with business reality. While logs and traces tell you what hap-
pened, invariants tell you what should never happen. By encoding these rules into your 
system and proactively scanning for violations, you gain a powerful tool for detecting 
hidden inconsistencies that would otherwise go unnoticed. In a distributed architec-
ture, you can’t always control the order of events or guarantee atomicity across ser-
vices, but you can hold the line on the rules that define your business.

13.2 Tracking and correlating multistep transactions

In this section, we’ll look at two key strategies for this kind of forensic debugging: 
reviewing audit logs to understand what was recorded at each stage, and analyzing 
event logs to detect whether steps were skipped, delayed, or corrupted in transit.

Tracking and correlating multistep transactions refers to the process of observing, 
identifying, and linking together all the individual operations that make up a single 
logical business activity, even when those operations span multiple services, databases, 
or message queues.

In a monolith, a transaction is often a single database commit. But in distributed sys-
tems, a transaction might involve dozens of steps across loosely connected components 
(figure 13.3). Correlating those steps requires stitching together traces, logs, events, 
and audit records to recreate the full picture of what happened and where things may 
have gone wrong.

In section 13.2.1, we start by examining how audit logs can help reconstruct the 
sequence of actions that took place during a multistep transaction. These logs provide 
a factual timeline of what each service claims to have done, which is especially useful 
when transactions fail silently or partially. Then, in section 13.2.2, we shift focus to 
event-driven systems and explore how examining event logs, or even replaying events, 
can help identify missing or delayed messages that may have caused a transaction to 
break down. Together, these techniques give you two critical lenses: what was recorded 
and what was communicated.



 285Tracking and correlating multistep transactions

Payment service

Auditing service

Resolution service

Receipt service

g

p

T = TransactionMonolithic

Service-oriented

T

T

T

T

T

T

T

T

T

T

In a monolithic app, the transaction is
managed at the realm of a single process.

In a service-oriented system, the transaction is
managed by multiple processes. To achieve this,
the system uses strategies such as distributed
transactions or patterns such as Saga.

Figure 13.3 Single process transaction vs. a distributed transaction. A distributed transaction may lead 

to inconsistencies and domain invariants violations.

13.2.1 Reviewing audit logs to reconstruct transaction steps

Audit logs are structured records of significant actions taken by a system, such as “pay-
ment authorized,” “order confirmed,” or “user account created.” Unlike debug or 
trace logs, audit logs are business focused: they’re meant to answer what happened, 
when, and with what data. They’re especially valuable in regulated or high-integrity 
systems, where a durable history of operations is necessary.

To reconstruct a transaction, you examine these audit entries to piece together the 
exact sequence of steps taken across services. It’s like retracing your steps after losing 
your keys. You check every room you’ve been in, looking for clues such as an open 
drawer or a coat you took off. Each small detail helps rebuild the full picture of what 
happened and where things went wrong.

Back in chapter 4, we used the analogy of a chess game to describe good logging 
practices: every serious chess player writes down each move, not just to prove what 



286 CHAPTER 13 Measuring data consistency and transactions

happened, but to learn from it, analyze it, and explain it later. That’s essentially what 
audit logging is. It’s your system writing down its “moves,” not for debugging line-by-
line but for understanding the big picture. Just like a chess log helps you reconstruct 
the strategy behind a win or loss, audit logs let you retrace the steps of a multiservice 
transaction to find out where things went off course. Without that written record, 
you’re left guessing who made the first mistake, and in distributed systems, there’s no 
referee to ask.

In chapter 4, we focused on debug logs. We discussed how to structure them, what to 
include, and how to use them to understand what’s happening inside a service. Debug 
logs are like talking to yourself: they help you think through local logic, errors, and exe-
cution paths. But audit logs serve a different purpose. They’re outward-facing records 
that say, “Here’s what I did, and here’s when I did it.” 

WHAT DO AUDIT LOGS NEED TO DO TO BE GOOD ENOUGH?

We must remember what we need to consider keeping our logs good enough. To be 
good enough, audit logs should capture key business actions, not low-level implemen-
tation noise. Similar to debug log records, a good audit log entry includes a timestamp. 
In addition, a good audit log includes a unique transaction or business ID, a clear 
action label (e.g., OrderConfirmed), and the outcome (success, failed, rejected). Audit 
logs should be

¡	Immutable—Once an audit log entry is written, it should never be changed or 
deleted. This ensures the log is a trustworthy historical record, just like you 
wouldn’t edit the minutes of a meeting after it happened. If a correction is 
needed, it should be recorded as a new entry referencing the original.

¡	Structured—Audit logs should follow a consistent, machine-readable format (typ-
ically JSON or a log schema), so that tools can parse and analyze them easily. 
Structured logs make it possible to filter by fields such as userId, transactionId, 
or status, rather than relying on brittle text matching.

¡	Queryable—Audit logs should be stored to allow efficient searching, filtering, and 
aggregation. Whether you use a log platform such as Elasticsearch, a database, or 
a cloud-logging service, the goal is to be able to answer questions such as “How 
many refunds were issued today?” or “Which transactions failed between 12:00 
and 12:15?” without manual scanning. 

¡	Stored centrally—Audit logs should not live only on individual service instances or 
local machines. They need to be collected in a centralized logging platform or 
storage system where all services contribute their entries. This makes it possible 
to reconstruct multiservice workflows, correlate events by timestamp or transac-
tion ID, and ensure nothing is lost if a node goes down or is redeployed.

¡	Retained long-term—Audit logs aren’t just for immediate troubleshooting. They’re 
also crucial for investigating delayed failures, resolving customer disputes, or 
satisfying compliance requirements. That’s why they should be kept for a much 
longer period than typical debug logs (sometimes weeks, months, or even years, 



 287Tracking and correlating multistep transactions

depending on regulatory or business needs). Deleting audit data too early is like 
burning your security camera footage while the investigation is still ongoing.

Also, audit logs should be written assuming that someone else will rely on them later 
to understand what happened. The following listing shows an example of audit logs 
following the best practices mentioned earlier.

Listing 13.1 An example of an audit log record following best practices

{
  "timestamp": "2025-04-28T13:12:04Z",   
  "event": "OrderPlaced",   
  "transactionId": "TXN-324791",   
  "orderId": "ORD-98231",
  "userId": "USR-49384",
  "status": "success",
  "totalAmount": 129.90,
  "currency": "EUR",
  "source": "checkout-service"
}

Sometimes audit logs need to provide useful context, while also masking or omitting 
sensitive data to comply with security and privacy standards (such as GDPR, PCI-DSS, 
etc.). The following listing shows how a part of the data was obfuscated to hide sensitive 
information.

Listing 13.2 Masking sensitive data in audit logs

{
  "timestamp": "2025-04-28T13:15:44Z",
  "event": "PaymentAttempted",
  "transactionId": "TXN-912378",
  "userId": "USR-20493",
  "paymentMethod": "credit_card",
  "cardNumber": "XXXX XXXX XXXX 4821",    
  "amount": 49.99,
  "currency": "USD",
  "status": "success",
  "source": "checkout-service"
}

I always consider it important to see also an example of “don’t do it this way.” The next 
listing shows an audit log record that doesn’t follow the best practices.

Listing 13.3 An example of “this way no”

{
  "timestamp": "2025-04-28T13:23:08Z",
  "event": "UserLogin",
  "userId": "john.doe@example.com",
  "password": "hunter2",    

Part of the data was eliminated 
for security reasons.

Sensitive secret 
logged in plain text



288 CHAPTER 13 Measuring data consistency and transactions

  "sessionToken": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9...",   
  "ipAddress": "192.168.1.23",    
  "status": "success",
  "source": "auth-service",
  "debug": "stacktrace: NullPointerException at AuthService.java:223",   
  "notes": "User logged in using Chrome on Windows 10"    
}

RECONSTRUCTING THE STORY

When something breaks in a distribution system like a failed transaction, a missing 
confirmation, or a customer complaint, audit logs should be one of the first places you 
check. Your initial goal is to reconstruct the story: what happened, when, and where. Start 
by searching for the audit logs for the transaction or user ID involved. You’re looking 
for the first known action related to the incident, like a payment attempt, an order cre-
ation, or a login request.

From there, follow the timeline. Audit logs are typically written at major decision points: 
request received, payment authorized, record persisted, email sent. These give you a 
high-level view of which steps were attempted and whether they succeeded. Think of it 
like watching security footage: even if you don’t see the exact problem yet, you can nar-
row down when and where things went off-script. Just be aware that in distributed sys-
tems, clocks may not be perfectly synchronized, so timestamps might appear slightly 
out of order.

As you dig deeper, look for gaps or inconsistencies. Was a refund issued without a match-
ing purchase? Did the logs skip over a step that should always happen, like inventory 
reservation before shipment? These are signs of broken workflows, race conditions, or 
missing events, and audit logs can reveal them long before a customer notices.

Finally, cross-check with other signals: event logs, distributed traces, and system metrics. 
Audit logs won’t show internal 
stack traces or memory errors, 
but they will tell you what the 
system thought it was doing, 
and that’s often the most critical 
clue when hunting down silent 
failures. Figure 13.4 shows these 
four steps.

Whether you’re tracing a 
lost transaction, debugging an 
incomplete workflow, or just ver-
ifying that your system behaves 
as expected, audit logs are one 
of the most trustworthy sources 

A JWT token logged could 
potentially be reused.

An IP address might reveal clues 
about the networking internals.

A stack trace 
may pollute 

auditing.
Any data should be 

structured (e.g. as JSON).

Reconstruct
the story

Look
for gaps

Cross-check
with other signals

Follow
the timeline

Figure 13.4 Steps for troubleshooting through story 

reconstruction.



 289Tracking and correlating multistep transactions

of truth you have. Treat them like a flight recorder: they’re not just for crashes, but 
they’re for making sense of complexity when the path isn’t clear.

13.2.2 Replaying events or examining event logs for missing messages

In many cases, we have to deal with event-driven architectures. In an event-driven 
architecture, services don’t call each other directly, but they communicate by emitting 
and reacting to events. An event is a message that represents something that already 
happened, like "UserRegistered", "PaymentProcessed", or “InventoryReserved". These 
events are usually sent through a message broker such as Kafka, RabbitMQ, or AWS 
SQS, and picked up by other services that react to them (figure 13.5).

Payment service Withdrawal service

publishes consumes

One or more services may
add messages to a topic.

Other services consume these messages
from the topic they connect to in advance.

Figure 13.5 An event-driven design. A message broker manages the messages that are exchanged by 

several services.

A message, in this context, is the actual data packet that carries the event, typically in a 
structured format such as JSON, and includes metadata such as timestamps, IDs, and 
topic names. While logs tell you what an individual service did, event logs tell you what 
the system communicated and how services reacted to those communications.

Replaying events (figure 13.6) means taking previously recorded messages from an 
event log and feeding them back into the system, typically into a staging or test environ-
ment, to re-trigger workflows. This is extremely helpful for debugging missing or out-
of-order behavior. For example, if a service failed to send a confirmation email, you can 
replay the "UserRegistered" event to see if the problem reproduces and whether the 
email service consumes it correctly.

Replaying lets you validate assumptions and isolate failure scenarios without affect-
ing real users or data. By examining event logs, you can identify

¡	Whether an event was published at all



290 CHAPTER 13 Measuring data consistency and transactions

Payment service Withdrawal service

publishes consumes

The developer can explicitly choose to
replicate and replay messages in the
Kafka opic to simulate the behavior of
a service (the payment service in this
case) to troubleshoot a specific behavior.

Figure 13.6 A developer can choose to replay events to troubleshoot a certain scenario.

¡	When it was published and by which service

¡	Whether it was consumed, and if so, by whom and when

¡	If it was dropped, delayed, or dead-lettered due to processing failures

Let me tell you a story. Ahmed, a developer on the user onboarding team, was investi-
gating a puzzling bug: several users had successfully signed up for accounts, but never 
received their welcome emails. The "UserRegistered" events were showing up in the 
audit logs, and the users existed in the database, but the email service never triggered.

Rather than jumping straight into the code, Ahmed decided to start by examining 
the event logs from Kafka. He filtered the "user-events" topic by the user IDs involved 
and confirmed that the UserRegistered events were published, with the correct data. 
So far, everything looked normal: the event was sent, but something down the line had 
gone wrong.

Next, he checked the consumer group offsets for the email service. A consumer 
group offset is a pointer that tells Kafka how far a consumer has progressed through a 
topic. When a service reads messages from a Kafka topic, it does so as part of a consumer 
group, which is a set of consumers working together to process the same stream.

Kafka assigns each consumer in the group a portion of the topic (a partition), and 
as each message is read, the consumer updates its offset—essentially a bookmark saying 
“I’ve processed up to message #12345.”

If the offset isn’t updated, the consumer might reprocess messages (which can be 
good or bad, depending on your logic). If the offset is too far ahead, the consumer 



 291Tracking and correlating multistep transactions

might miss earlier messages. If the offset is completely wrong (e.g., pointing to a differ-
ent topic or partition), the consumer might see nothing at all.

Ahmed realized that the service had been misconfigured during a recent deploy-
ment to listen to the wrong Kafka topic. It had never seen the events at all. The messages 
weren’t lost—they were just sitting there, unconsumed.

Ahmed set up a local test environment with the correct topic configuration to test 
and fix the problem safely. Then he replayed the missed events from the Kafka log. 
Ahmed knew he could do this by using specific Kafka tools: the kafka-console-consumer 
and kafka-console-producer tools. The Email Service picked them up as expected and 
sent the emails correctly. Problem confirmed. Fix validated.

TIP Specific technologies often come with built-in tools that simplify trouble-
shooting. A best practice is to learn the technology and become familiar with 
the tools it provides for inspection, testing, and debugging. For example, when 
working with Kafka, tools such as kafka-console-producer and kafka- console-
consumer are invaluable for replaying events, inspecting messages, and verify-
ing that consumers are behaving correctly. Knowing how to use these tools can 
save hours of guesswork.

Ahmed wrote a postmortem describing the problem and the replay process, and 
added a dashboard metric to monitor lagging or idle consumer groups in the future. 
By understanding how event logs and replay work, Ahmed solved a real production 
mystery and avoided introducing a second one in the process.

DEFINITION A postmortem is a written summary of an incident that explains 
what went wrong, how it was fixed, and what will be done to prevent it in the 
future. It’s a learning tool, not a blame report.

Let’s review some of the things Ahmed did well and learn from his experience with 
replaying messages:

¡	Jumping into code too early can lead to wild guesses. Always begin with observ-
able evidence, such as audit logs or event logs.
Ahmed began by examining the Kafka event log to see whether the UserRegistered messages 

had actually been published.

¡	Event logs can confirm whether messages were sent, when, and with what data. 
They are often more reliable than application logs.
Ahmed verified that the messages were correctly published to the user-events topic.

¡	Use a staging or local setup to reproduce the problem and confirm the fix with-
out touching live data.
Ahmed reconfigured the service locally and validated that it could consume the events 

correctly.

¡	Technologies such as Kafka provide CLI tools that make it easy to inspect topics 
or replay events without writing extra code.



292 CHAPTER 13 Measuring data consistency and transactions

Ahmed used kafka-console-consumer and kafka-console-producer to replay the missing 

events.

¡	Don’t stop at theory—replay the scenario and ensure the outcome is as expected.
After replaying the messages, Ahmed confirmed the emails were sent as intended.

13.3 Measuring and monitoring consistency guarantees

Consistency means that all parts of a system agree on the same data simultaneously. In 
simple terms, if you update something in one place, that update should show up every-
where else right away (no missing, old, or conflicting information).

For example, if you transfer money from one bank account to another, both bal-
ances should reflect the change instantly. If one shows the new amount and the other 
doesn’t, that’s a consistency problem (figure 13.7).

I’m sending you $100.

$1000

$100

$1000

I sent you $100.
I still don’t see the
money in my account.

$900 $1000

A consistency problem. It looks like money has
been lost. It now doesn’t appear in either account.

Figure 13.7 A consistency problem. Account balances do not reflect the correct amounts of money.

Consistency is never guaranteed by default in a distributed system. Consistency must 
be measured, monitored, and actively enforced. Systems that appear healthy on the 



 293Measuring and monitoring consistency guarantees

surface can still suffer from silent data drift, where records that should be in sync slowly 
fall out of alignment across services or databases.

The challenge is that most production environments aren’t designed to surface 
these inconsistencies automatically. You often need to build your own safety net, one 
that detects data mismatches, missing relationships, or eventual consistency delays 
before they turn into real business problems.

In this section, we explore two practical approaches to this problem. First, in section 
13.3.1, I show how checksums and hashes can be used to verify data integrity between 
systems without transferring full datasets. Then, in section 13.3.2, we’ll look at how 
reconciliation jobs can detect mismatches by comparing expected versus actual state 
across services, queues, or storage layers.

13.3.1 Verifying data integrity using checksums or hashes

Data integrity refers to the accuracy, consistency, and reliability of data over its entire 
life cycle. Here the “entire life cycle” refers to all the stages that data goes through, 
from the moment it’s created until it’s deleted or archived. Maintaining data integ-
rity means ensuring the data stays accurate, consistent, and trustworthy through all 
these stages.

In a distributed system, it means that data stored or transmitted across services, data-
bases, or environments remains uncorrupted, complete, and in sync with the source of 
truth. One way to verify data integrity efficiently (especially across system boundaries) is 
to use checksums or hashes. 

A checksum is a small, fixed-size value calculated from a larger block of data using a 
specific algorithm. Its primary purpose is to detect accidental errors or corruption that 
might occur during storage, transmission, or processing. Unlike cryptographic hashes, 
checksums are not meant to be secure against intentional tampering; instead, they are 
fast and efficient tools for catching unintentional problems such as bit flips, incomplete 
writes, or faulty network transmissions.

Common checksum algorithms include CRC32 (Cyclic Redundancy Check) and 
Adler-32, which produce compact numerical representations (usually 32 bits) of the 
original data. These algorithms are simple and optimized for performance, making 
them ideal for real-time systems, file formats, and network protocols.

The basic idea is as follows: when data is first generated or transmitted, a checksum 
is calculated, stored, or sent along with the data. Later, the checksum is recomputed 
and compared with the original when the data is read or received. If the values match, 
the data is assumed to be intact. If they don’t, it indicates that the data has likely been 
altered or corrupted.

You’ve likely seen this on many sites where you can download files such as execut-
ables you want to run. The site provides the file along with its CRC32 checksum:

File: file.exe  
CRC32 Checksum: A12F3B4C



294 CHAPTER 13 Measuring data consistency and transactions

After downloading the file, your system or tool can recalculate the CRC32 checksum 
of the file you received. If the result matches A12F3B4C, then the file was likely down-
loaded correctly. If it doesn’t match, it means something went wrong. Maybe a network 
glitch or disk error happened, and the file should be discarded or re-downloaded. 
Although they are not foolproof (since different data can produce the same checksum 
in rare cases), they provide a fast first line of defense against accidental data integrity 
problems.

A hash is a cryptographically stronger variant. It is a one-way function that converts 
any input (such as a record or a payload) into a fixed-size string, like a SHA-256 or MD5 
digest. If two systems generate the same hash for the same input, it’s a strong indication 
that the data is identical. If the hashes differ, you know something has changed, even 
if you don’t yet know what. An excellent resource for understanding hash functions 
better is the book Software Security for Developers by Adib Saikali and Laurențiu Spilcă 
(Manning, 2025).

When you’re trying to troubleshoot consistency problems across services or systems, 
checksums and hashes can help you quickly identify where things went wrong without 
having to compare full data payloads or inspect every row manually.

When data moves between services, such as from a payment processor to an 
accounting system, you can use checksums or hashes to verify that what was sent 
matches what was received. By computing a hash on both sides and comparing the 
results, you can quickly detect whether the data has changed in transit, even if you 
can’t inspect every field manually. This is especially useful when dealing with large or 
sensitive datasets.

Hashes are also helpful when validating the consistency of replication or caching lay-
ers. If you rely on read replicas, Elasticsearch indices, or Redis caches, it’s easy for those 
layers to fall out of sync with the primary data source. Computing hashes at both ends 
can give you a fast and cheap way to check whether what’s being read matches what was 
written.

You can also include hashes in your audit logs or metadata fields. For example, 
when a record is first written, the application can log a hash of the key business fields. 
Later, during debugging or forensic analysis, you can recompute the hash and confirm 
whether the data was accidentally modified along the way, without having to log sensi-
tive or bulky data (see the following snippet):

{
  "timestamp": "2025-04-28T15:03:41Z",
  "event": "InvoiceCreated",
  "invoiceId": "INV-842001",
  "userId": "USR-33991",
  "amount": 249.99,
  "currency": "USD",
  "hash": "f9a8d6c35d2a4e0caa8f410bcf4e7a91a18ec50b2…",   
  "source": "billing-service"
}

A hash on given 
important fields 
as part of the 
audit log message



 295Measuring and monitoring consistency guarantees

If someone later finds a conflicting invoice record elsewhere (e.g., in a downstream 
system or support database), they can hash that version and compare it to the original 
audit log without needing to expose or compare full field-by-field data. If tampering 
or unexpected changes occur, a mismatch in hash values provides a clear signal that 
something is wrong, without storing the full, potentially sensitive content.

Finally, during incident response, hashes help you scope the blast radius of a data 
problem (figure 13.8). The blast radius is a way of asking, “How bad is this problem, and 
how far has it spread?” Imagine a small bug corrupts one record in a database—that’s a 
small blast radius. But if the same bug affects thousands of records or multiple systems, 
the blast radius is much bigger.

Small blast radius

Large blast radius

A small number of services
are affected by a given problem.

A large number of services are
affected by a given problem.

Figure 13.8 The blast radius is a way to see the effect of a problem throughout the system.



296 CHAPTER 13 Measuring data consistency and transactions

During an incident, figuring out the blast radius helps you decide how serious the prob-
lem is. Do you need a quick fix for one item or a large recovery for an entire system? 
Hashes help you solve that dilemma faster. By checking whether other records have the 
same problem, you can quickly see if the problem is just one-off, or if it’s everywhere.

If you’re unsure whether the inconsistency you’re seeing is a single bad record or a 
systemic failure, spot-checking hashes across systems can quickly show whether the prob-
lem is isolated or widespread, guiding where to look next and how to respond urgently.

13.4 Running reconciliation jobs to compare expected vs. actual state

A reconciliation job is a background process that compares what should exist in systems 
to what is actually there. It checks whether two related systems agree, for example, 
whether every shipped order has a matching entry in the billing system, or whether all 
processed payments have corresponding invoices. When discrepancies are found, the 
job can flag them for manual review, alert a team, or even trigger automatic corrections.

This approach treats consistency as something you measure and verify continuously, 
not something you assume will always hold. Reconciliation jobs are your last line of 
defense against silent data loss, drift, or duplication.

For example, in an e-commerce platform, a reconciliation job might run every night 
to ensure that for every order marked as “shipped” in the logistics service, there’s a cor-
responding “paid” transaction in the billing service, and a record in the customer ser-
vice platform. If any of these are missing, that could indicate anything from a transient 
failure to a lost message or a bug in a workflow.

When discrepancies are detected, reconciliation jobs can flag them for manual 
investigation, send alerts to relevant teams, or in some cases, automatically attempt cor-
rective action. It can, for example, attempt re-sending an event, regenerating a missing 
record, or retrying a failed step in a distributed transaction.

Reconciliation jobs are often the last line of defense in large-scale systems, catching 
problems that observability tools may not surface immediately and that traditional valida-
tions might miss. They are especially valuable in systems that rely on eventual consistency, 
where assumptions about “correct state” cannot be made at any single point in time.

To make reconciliation jobs more efficient and scalable, many systems rely on hash-
ing to compare large sets of data without transmitting or scanning every individual 
record. Instead of comparing entire rows or documents field by field, a system can com-
pute a hash (e.g., SHA-256) for each record, or even for entire partitions of data, and 
then compare just the hash values. If the hashes match, the data is assumed to be identi-
cal; if not, a deeper comparison is triggered to identify the exact difference.

For example, a reconciliation job might compute a hash of all invoice entries for a 
given day in both the billing and accounting systems. If the hashes differ, the job drills 
down to a finer granularity, perhaps at the per-invoice level, to isolate the mismatch. 
This divide-and-conquer strategy using hierarchical or chunked hashes allows reconcil-
iation jobs to remain performant even across millions of records or across geographi-
cally distributed data centers.



 297Summary

Hashing also enables stateless reconciliation, where systems don’t need to track 
previous states explicitly, because the hash itself acts as a fingerprint of current data. 
However, it’s crucial to use stable and collision-resistant hash functions to ensure that 
different inputs don’t mistakenly appear the same.

Summary

¡	Time-based inconsistencies, such as delays, out-of-order operations, or missing 
downstream actions, are early signs of broken coordination. By analyzing traces 
and timestamps, you can identify where a request silently failed or didn’t propa-
gate as expected.

¡	Since no single tool provides a complete picture, using multiple sources (trace 
spans, logs, and Kafka topics) helps confirm whether messages were successfully 
emitted, consumed, or lost, allowing for full event reconstruction.

¡	Domain invariants are business rules that must always hold true, such as “every 
refund must be linked to an existing order.” Encoding these into your monitor-
ing or validation layers lets you catch inconsistencies even when individual ser-
vices behave correctly.

¡	By automating invariant checks (e.g., as batch jobs), you create an early warning 
system that flags data inconsistencies in production, helping to prevent minor 
bugs from turning into customer-facing problems.

¡	Audit logs act as the black box of your system, recording key business events and 
outcomes. They help reconstruct what happened across services, especially valu-
able when trying to explain partial failures or verify state transitions.

¡	Good audit logs include transaction IDs, clear action labels, timestamps, and out-
comes. When centralized and consistently formatted (e.g., JSON), they become a 
powerful tool for incident analysis and compliance.

¡	While audit logs show what was recorded, traces show what was executed, and 
event logs show what was communicated. Correlating these sources helps build a 
full timeline and detect mismatches between intention and effect.

¡	Kafka topics act as durable ledgers of what happened in event-driven architec-
tures. Examining these logs helps you confirm whether an event was sent, when, 
and by which producer, even if consumers missed it.

¡	Replaying events (e.g., with kafka-console-producer) lets you test services under 
controlled conditions. It’s especially useful for verifying that services consume 
and react to events properly, or to reproduce bugs in staging.

¡	Hashing critical fields lets you verify that the same data exists across systems with-
out transmitting full records. This is ideal for checking data integrity between 
replicas, caches, or integration points.

¡	Instead of comparing every record, you can hash batches or partitions to detect 
mismatches efficiently. This divide-and-conquer approach keeps reconciliation 
jobs performant, even at large scale.



298

appendix A
Tools you’ll need

This appendix includes links to installation instructions for all the tools recom-
mended to follow the book’s examples.

To open and execute the projects provided with the book, you need to install 
an IDE. I used IntelliJ IDEA: https://www.jetbrains.com/idea/download/. Alterna-
tively, you can use Eclipse IDE: https://www.eclipse.org/downloads/. Otherwise, you 
can use Apache Netbeans: https://netbeans.apache.org/download/index.html.

To run the Java projects provided with the book, you need to install JDK version 
17 or higher. (We've tested all the book projects with Java 17, but please use the most 
current version as you work through them.) I recommend using the OpenJDK distri-
bution: https://jdk.java.net/17/.

For profiling techniques and reading heap and thread dumps, we use 
VisualVM: https://visualvm.github.io/download.html. For some techniques we’ll 
discuss, Visual VM will not be enough. For these, we’ll use JProfiler: https://www 
.ej-technologies.com/jprofiler.

fastThread is a tool that will help you investigate thread dumps, which we talk 
about in chapter 9: https://fastthread.io/.

Throughout the book, we’ll use Postman to call endpoints to demonstrate investi-
gation techniques: https://www.postman.com/downloads/.

In chapter 12, we talk about monitoring log events with Sentry: https://sentry.io.

https://www.jetbrains.com/idea/download/
https://www.eclipse.org/downloads/
https://netbeans.apache.org/download/index
https://jdk.java.net/17/
https://visualvm.github.io/download.html
https://www.ej-technologies.com/jprofiler
https://www.ej-technologies.com/jprofiler
https://fastthread.io/
https://www.postman.com/downloads/
https://sentry.io


299

appendix B
Opening a project

This appendix lists the steps for opening and running an existing project. The proj-
ects provided with the book are Java apps that use Java 17. We use these projects to 
demonstrate the use of several techniques and tools. 

First, you need to have an IDE such as IntelliJ IDEA, Eclipse, or Apache Netbeans 
installed. For the examples, I used IntelliJ IDEA: https://www.jetbrains.com/idea/
download/.

To run the projects provided with the book, you need to install JDK version 17 or 
higher. You can use any Java distribution. I use the OpenJDK distribution: https://
jdk.java.net/17/.

Figure B.1 shows how to open an existing project in IntelliJ IDEA. To select the 
project you want to open, choose File > Open.

From the File menu, use
the Open menu item to
open an existing project.

Figure B.1 To open 

an existing project in 

IntelliJ IDEA, select 

Open in the File menu.

https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://jdk.java.net/17/
https://jdk.java.net/17/


300 APPENDIX B Opening a project

Click File > Open, and a pop-up window appears. Select the project you want to open. 
Figure B.2 shows this pop-up window.

After clicking on the Open menu
item in the File menu, you need
to select the project you want to
open. Select the project folder
and click the OK button at the
bottom of the dialog window.

Figure B.2 After selecting Open in the File menu, a pop-up window appears. In this window, select the 

project you want to open from the file system and click the OK button.

To run the application, right-click the class containing the main() method. For the 
projects provided with the book, the main() method is defined in a class named Main. 
Right-click this class, as presented in figure B.3, and select Run. 

If you want to run the app with a debugger, right-click the Main class > Debug.

To run an app once you
opened the project, right
click on the Main class,
and then click Run in the
conext menu.

To run an app with the
debugger, click on the
Debug menu item in
the context menu.

Figure B.3 Once you open an app, you can run it. To run the app, right-click the Main class and select 

the Run menu item. If you want to run the app with a debugger, click Debug.



301

appendix C
Recommended  

further reading

This appendix lists additional readings relevant to the book’s subject matter that 
you may find useful and interesting:

¡	The Programmer’s Brain by Felienne Hermans (Manning, 2021) explores how a 
developer’s brain works when they investigate code. Reading the code is part 
of understanding software, and it’s something we do before applying investi-
gation techniques. A better understanding of these aspects will also enhance 
your ability to analyze code effectively.

¡	Monolith to Microservices by Sam Newman (O’Reilly Media, 2019) is a recom-
mendation I made in chapter 12 for studying microservices as an architectural 
style. This book focuses on the difference between a monolithic approach and 
microservices and where and how to use each of the two architectural styles.

¡	Building Microservices: Designing Fine-Grained Systems, Second Edition (O’Reilly 
Media, 2021) is another book by Sam Newman that focuses on designing sys-
tems involving fine-grained services. The author analyzes the pros and cons of 
the presented techniques with clear and detailed examples.

¡	Microservices Patterns by Chris Richardson (Manning, 2018) is one of the books 
I consider a must-read for anyone working with microservices architectures. 
Through clear examples, the author details the most essential techniques 
used in large-scale microservices and service-oriented systems.



302 APPENDIX C Recommended further reading

¡	Five Lines of Code by Christian Clausen (Manning, 2021) teaches you clean coding 
practices. Many apps today are unstructured and challenging to understand. I 
designed many of the code listings available throughout the examples to be real-
istic, so they don’t always follow clean coding principles. But once you’ve grasped 
how messy code works, you should refactor it to make it easier to understand. 
Developers call this principle the “Boy Scout rule.” In many cases, debugging is 
followed by refactoring to make code easier to understand in the future.

¡	Good Code, Bad Code by Tom Long (Manning, 2021) is an excellent book that 
teaches high-quality code-writing principles. I also recommend reading this 
resource to upskill in refactoring and writing easier-to-understand apps.

¡	Software Mistakes and Tradeoffs by Tomasz Lelek and Jon Skeet (Manning, 2022) 
discusses using excellent examples, how to make difficult decisions, compro-
mise, and optimize decisions in software development.

¡	Refactoring: Improving the Design of Existing Code by Martin Fowler with Kent Beck 
(Addison-Wesley Professional, 2018) is another must-read for any software devel-
oper wanting to improve their skills in designing and building clean and main-
tainable applications.



303

appendix D
Understanding  

Java threads

This appendix discusses the basics of threads in a Java app. A thread is an indepen-
dent sequential set of instructions your app runs. Operations on a given thread run 
concurrently with those on other threads. Modern Java applications often depend 
on multiple threads, which makes it inevitable to encounter situations where you 
need to investigate why certain threads are not behaving as expected or why they 
struggle to cooperate with other threads. That’s why you’ll find threads in several 
discussions throughout this book (especially chapters 7–9, but also here and there 
in the first half of the book when we discuss debugging). To properly understand 
this subject matter, you need to know some basics about threads. This appendix 
introduces foundational concepts essential for understanding other discussions 
throughout the book. 

We’ll start with section D.1, where I’ll remind you of the threads’ big picture and 
why we use them in apps. We continue in section D.2 with more details on how a 
thread executes by discussing its life cycle. Knowing the states of a thread’s life cycle 
and the possible transitions is necessary for investigating any thread-related prob-
lems. In section D.3, we discuss thread synchronization, which is a way to control the 
executing threads. Faulty synchronization implementations introduce most of the 
problems you need to investigate and solve. In section D.4, we discuss the most com-
mon thread-related problems.

Threads are a complex subject, so I’ll only focus on the topics you need to know 
to understand the techniques presented in this book. I can’t promise to make you an 



304 APPENDIX D Understanding Java threads

expert in the subject in only a few pages, so you’ll find a few resources I recommend at 
the end of this appendix.

D.1 What is a thread?

This section discusses what threads are and how using multiple threads helps an app. A 
thread is an independent sequence of operations in a running process. Any process can 
have multiple threads that run concurrently, enabling your app to solve multiple tasks, 
potentially, in parallel. Threads are an essential component of how a language handles 
concurrency.

I like to visualize a multithreaded app as a group of sequence timelines, as presented 
in figure D.1. Notice that the app starts with one thread (the main thread). This thread 
launches other threads, which can start others, and so on. Remember that each thread 
is independent. For example, the main thread can end its execution long before the 
app itself. The process stops when all its threads stop.

The app starts here 
with the main thread.

Another thread starts here.

The main thread ends here.
A thread doesn’t necessarily
need to run until the process
finishes—not even the main 
thread.

At this moment, five 
threads run concurrently.

Main

Figure D.1 A multithreaded app visualized as a group of sequence timelines. Each arrow in the figure 

represents the timeline of a thread. An app starts with the main thread, which can launch other threads. 

Some threads run until the process ends, while others stop earlier. At a given time, an app can have one 

or more threads running in parallel.

Instructions on a given thread are always in a defined order. You always know that A will 
happen before B if instruction A is before instruction B on the same thread. But since 
two threads are independent of one another, you can’t say the same about two instruc-
tions A and B, each on a separate thread. In such a case, either A can execute before 
B, or vice versa (figure D.2). Sometimes, we say that one case is more probable than 
another, but we can’t know how consistently one flow will execute.



 305What is a thread?

System.out.print(“A”);

System.out.print(“A”);

System.out.print(“B”);

System.out.print(“B”);

Two instructions on the same 
thread will always execute in
the order they are written.
Here, we know the app will 
always print A and then B.

Since every thread is independent, we 
can’t say in which order two instructions 
on two different threads will execute. 
In this case, the app could print AB or BA.

Figure D.2 With 

two instructions 

on one thread, we 

can always know 

the exact order 

of execution. 

But because 

two threads are 

independent, if 

instructions are on 

different threads, 

we can’t know the 

order in which they 

will execute. At 

most, we can say 

that one scenario 

is more likely than 

another.

In many cases, you’ll see thread execution visually represented by tools as sequence 
timelines. Figure D.3 shows the way VisualVM (a profiler tool we use throughout the 
book) presents the thread execution as sequence timelines.

Thread execution seen as 
sequence timelines in VisualVM

Figure D.3 VisualVM shows thread execution as sequence timelines. This visual representation makes 

the app’s execution easier to understand and helps you to investigate possible problems.



306 APPENDIX D Understanding Java threads

D.2 A thread’s life cycle

Once you visualize the thread execution, another essential aspect in understanding 
their execution is knowing the thread life cycle. Throughout its execution, a thread 
goes through multiple states (figure D.4). When using a profiler (as discussed in chap-
ters 5–7) or a thread dump (as discussed in chapter 8), we’ll often refer to the thread’s 
state, which is important when trying to figure out the execution. Knowing how a 
thread can transition from one state to another and how the thread behaves in each 
state is essential to following and investigating the app’s behavior.

Figure D.4 visually presents the thread states and how a thread can transition from 
one state to another. We can identify the following main states for a Java thread:

¡	New—The thread is in this state right after its instantiation (before being started). 
While in this state, the thread is a simple Java object. The app can’t yet execute 
the instructions it defines.

¡	Runnable—The thread is in this state after its start() method has been called. In 
this state, the JVM can execute the instructions the thread defines. While in this 
state, the JVM will progressively move the thread between two substates:

¡	Ready—The thread doesn’t execute, but the JVM can put it in execution at any 
time.

¡	Running—The thread is in execution. A CPU currently executes instructions it 
defines.

¡	Blocked—The thread was started, but it was temporarily taken out of the runna-
ble state, so the JVM can’t execute its instructions. This state helps us control the 
thread execution by allowing to temporarily hide the thread from the JVM so that 
it can’t execute it. While blocked, a thread can be in one of the following substates:

– Monitored—The thread is paused by a monitor of a synchronized block (object 
controlling the access to a synchronized block) and waits to be released to 
execute that block.

– Waiting—During the execution, a monitor’s wait() method was called, which 
caused the current thread to be paused. The thread remains blocked until the 
notify() or notifyAll() methods are called to allow the JVM to release the 
thread in execution.

– Sleeping—The sleep() method in the Thread class was called, which paused 
the current thread for a defined time. The time is given as a parameter to the 
sleep() method. The thread becomes runnable after this time passes.

– Parked—Almost the same as waiting. A thread will show as parked after 
someone calls the park() method, which blocks the current thread until the 
unpark() method is called.

– Dead—A thread is dead or terminated after it finishes its set of instructions, 
an Error or Exception halted it, or it was interrupted by another thread. Once 
dead, a thread cannot be started again.



 307A thread’s life cycle

New

Ready

Runnable

Dead

Running

Monitored

Waiting

Sleeping

Parked

Blocked

1

3

4

2

InterruptedException

Figure D.4 A thread life cycle. During its life, a thread goes through multiple states. First, the thread is 

new, and the JVM cannot run the instructions it defines. After starting the thread, it becomes runnable 

and starts to be managed by the JVM. The thread can be temporarily blocked during its life, and at the 

end of its life, it goes to a dead state, from which it can’t be restarted.

Figure D.4 also shows the possible transitions between thread states:

¡	The thread goes from new to runnable once someone calls its start() method.

¡	Once in the runnable state, the thread oscillates between ready and running. 
The JVM decides which thread is executed and when.

¡	Sometimes, the thread gets blocked. It can go into the blocked state in several 
ways:

– The sleep() method in the Thread class is called, putting the current thread 
into a temporary blocked state.

– Someone called the join() method, causing the current thread to wait for 
another one.

– Someone called the wait() method of a monitor, pausing the execution of  
the current thread until the notify() or notifyAll() methods are called.

– A monitor of a synchronized block paused the execution of a thread until 
another active thread finished the execution of the synchronized block.

¡	The thread can go into a dead (terminated) state either when it finishes its exe-
cution or when another thread interrupts it. The JVM considers transitioning 
from the blocked state to the dead state unacceptable. If a blocked thread is 
interrupted by another, the transition is signaled with an InterruptedException.



308 APPENDIX D Understanding Java threads

D.3 Synchronizing threads

This section discusses approaches to synchronizing threads, which developers use to 
control the threads in a multithreaded architecture. Incorrect synchronization is also 
the root cause of many problems you’ll have to investigate and solve. We’ll go through 
an overview of the most common ways used to synchronize threads.

D.3.1 Synchronized blocks

The simplest way to synchronize threads, and usually the first concept any Java devel-
oper learns about synchronizing threads, is using a synchronized block of code. The 
purpose is to allow only one thread at a time through the synchronized code—to pro-
hibit concurrent execution for a given piece of code. There are two options:

¡	Block synchronization—Applying the synchronized modifier on a given block of code

¡	Method synchronization—Applying the synchronized modifier on a method

The next code snippet shows an example of a synchronized block:

synchronized (a) { 
  // do something   
}

The next code snippet shows a method synchronization:

synchronized void m() {   
  // do something   
}

Both ways of using the synchronized keyword work the same, even if they look a bit dif-
ferent. You’ll find two important components of each synchronized block:

¡	The monitor—An object managing the execution of the synchronized instructions

¡	The block of instructions—The actual instructions, which are synchronized

The method synchronization seems to be missing the monitor, but for this syntax the 
monitor is actually implied. For a nonstatic method, the instance “this” will be used as a 
monitor, while for a static method, the synchronized block will use the class’s type instance.

The monitor (which cannot be null) is the object that makes a synchronized block 
work. It controls whether a thread can enter and run the synchronized code. The rule 
is simple: when a thread enters the synchronized block, it locks the monitor. No other 
thread can enter the block until the current thread releases the lock. For simplicity, let’s 
say the thread releases the lock when it leaves the synchronized block. Figure D.5 shows 
an example. Imagine the two synchronized blocks are in different parts of the app. If both 
use the same monitor, M1 (the same object), only one thread can run in either block at a 
time. Instructions A, B, or C won’t be run simultaneously from those synchronized blocks.

The object between the parentheses is 
the monitor of the synchronized block.

The synchronized block of instructions 
is defined between the curly braces.

Synchronized modifier 
applied to the method

The whole block of code of the method defined 
between the curly braces is synchronized.



 309Synchronizing threads

 A;
 B;

}

 C;

}

Both synchronized blocks use the same
monitor. For this reason, when one thread
acquires a lock on M1, no other thread
can enter the two synchronized blocks
until the lock is released.

A, B, and C are common code instructions.
None can be executed at the same time 
because only one thread can be active
throughout the two synchronized blocks.

synchronized (M1) { synchronized (M1) {

Figure D.5 An example of using 

synchronized blocks. Multiple 

synchronized blocks of the app 

can use the same object instance 

as a monitor. When this happens, 

all threads are correlated so that 

only one active thread executes 

in all. In this image, if one thread 

enters the synchronized block, 

defining instructions A and B, 

no other thread can enter in the 

same block or in the one defining 

instruction C.

An app can have multiple synchronized blocks. The monitor connects these blocks. 
However, if two synchronized blocks use different monitors (figure D.6), they are not 
linked. In figure D.6, the first and second synchronized blocks are linked because they 
use the same monitor. But they are not linked to the third block. This means instruction 
D, in the third block, can run at the same time as any instructions in the first two blocks.

synchronized (M1) {

 A;
 B;

}

synchronized (M1) {

 C;

}

synchronized (M2) {

 D;

}

Two threads cannot enter the block 
synchronized by M2 at the same time. 
But a thread that acquired a lock on M1 
can run concurrently with one that 
acquired the lock on M2.

These two instructions can
run concurrently because
they are in blocks synchronized
with different monitors.

Figure D.6 When two synchronized blocks don’t use the same object instance as the monitor, they are 

not linked. In this case, the second and third synchronized blocks use different monitors. That means 

instructions from these two synchronized blocks can execute simultaneously.



310 APPENDIX D Understanding Java threads

When investigating problems using tools such as a profiler or a thread dump, you need 
to understand the way in which a thread has been blocked. This information can shed 
light on what happens, why, or what causes a given thread not to execute. Figure D.7 
shows how VisualVM (the profiler we use in chapters 5–10) shows that the monitor of a 
synchronized block blocked a thread.

In this example, VisualVM shows certain threads 
that are blocked by a monitor of a synchronized 
block of code. When investigating an app’s behavior, 
knowing what this state means helps you understand 
what executes and may reveal certain problems.

Figure D.7 VisualVM indicates the state of a thread. The Threads tab in the profiler provides a complete picture of 

what each thread does and, if a thread is blocked, what blocked that thread.

D.3.2 Using wait(), notify(), and notifyAll()

Another way a thread can be blocked is if it is asked to wait for an undefined time. Using 
the wait() method of a monitor of a synchronized block, you can instruct a thread 
to wait indefinitely. Some other thread can then “tell” the one that’s waiting to con-
tinue its work. You can do this with the notify() or notifyAll() methods of the mon-
itor. These methods are often used to improve an app’s performance by preventing a 



 311Synchronizing threads

thread from executing if it doesn’t make sense to execute. Simultaneously, the wrong 
use of these methods can lead to deadlocks or situations where threads wait indefi-
nitely without ever being released to execution.

Remember that wait(), notify(), and notifyAll() make sense only when they are 
used in a synchronized block. These methods are behaviors of the synchronized block’s 
monitor, so you can’t use them without having a monitor. With the wait()method, 
the monitor blocks a thread for an undefined time. When blocking the thread, it also 
releases the lock it acquired so that other threads can enter blocks synchronized by that 
monitor. When the notify() method is called, the thread can again be executed. Figure 
D.8 summarizes the wait() and notify() methods.

synchronized (M1) {

 // do something

 if (condition) {
 M1 .wait();

 }

}

synchronized (M1) {

 // do something

if (condition) {
M1 .notify()

}

}

If for a given condition a thread pauses its 
execution, you use the monitor’s wait() method 
to instruct the thread to wait. While waiting,
the thread releases the lock on the monitor to allow
other threads to enter the synchronized blocks.

To allow the waiting thread to continue its execution, you
call the monitor’s notify() or notifyAll() methods.

Figure D.8 In some cases, a thread should pause from executing and wait for something to happen. To 

make a thread wait, the monitor of a synchronized block can call its wait() behavior. When the thread 

becomes executable again, the monitor can call the notify() or notifyAll() methods.

Figure D.9 shows a more particular scenario. In chapter 7, we used an example of 
an app implementing a producer–consumer approach, in which multiple threads 
share a resource. The producer threads add values to the shared resource, and the 
consumer threads consume those values. But what happens if the shared resource 
no longer has value? The consumers would not benefit from executing at this time. 
Technically, they can still execute, but they have no value to consume, so allowing 
the JVM to execute them would cause unnecessary resource consumption on the 
system. A better approach would be to tell the consumers to wait when the shared 
resource has no value and to continue their execution only after a producer added 
a new value. 



312 APPENDIX D Understanding Java threads

Consumer Producer

Producer

Producer

Consumer

Consumer

Waiting

Waiting

Waiting

The three consumers are waiting 
because the list is empty, so they 
don’t have a value to consume.
It doesn’t make sense to execute 
when the list is empty, so they should
wait to save the system’s resources.

Hey, consumers,
you can continue
now!

When a producer adds an element
to the list, it notifies the consumers using
the notify() or notifyAll() methods.
The consumers enter the runnable state 
again, and the JVM can execute them.

Figure D.9 A use case for wait() and notify(). When a thread brings no value by executing in the 

current conditions, we can make it wait until further notice. In this case, a consumer should not execute 

when it has no value to consume. We can make the consumers wait, and a producer can tell them to 

continue only after it adds a new value to the shared resource.

D.3.3 Joining threads

A quite common thread synchronization approach is joining threads by making a 
thread wait until another has finished its execution. What’s different from the wait/
notify pattern is that the thread doesn’t wait to be notified. The thread simply waits for 
the other to finish its execution. Figure D.10 shows a scenario that could benefit from 
this synchronization technique.

Suppose you have to implement some data processing based on data retrieved from 
two different independent sources. Usually, retrieving the data from the first data 
source takes about 5 seconds, and getting the data from the second data source takes 
about 8 seconds. If you execute the operations sequentially, the time needed to get all 
the data for processing is 5 + 8 = 13 seconds. But you know a better approach. Since 
the data sources are two independent databases, you can get the data from both at 
the same time if you use two threads. But then you need to make sure the thread that 
processes the data waits for both threads that retrieve data to finish before it can start. 
To achieve this, you make the processing thread join the threads that retrieve the data 
(figure D.10).



 313Synchronizing threads

5 seconds

5 seconds

8 seconds

8 seconds

join()

DB1

DB1

DB2

DB2

Getting data from the two sources
on the same thread would mean
executing the operations sequentially.
The result would be 5 + 8 = 13 seconds
spent to get the data before processing
can start.

Because the two data sources are
independent, we can implement the
operations that get the data on two
separate threads, which is more
efficient since we only spend the
maximum time (8 seconds). But we
need to make sure processing starts
only after all the data is retrieved.
We use the join() method to ensure
processing starts after the threads that
retrieve the data finish their execution.

Figure D.10 In some cases, you can improve the app’s performance by using multiple threads. But you 

need to make some threads wait for others since they depend on the execution result of those threads. 

You can make a thread wait for another using a join operation.

Joining threads is, in many cases, a necessary synchronization technique. But when not 
used well, it can also cause problems. For example, if one thread is waiting for another, 
is stuck, or never ends, the joining it once will never execute.

D.3.4 Blocking threads for a defined time

Sometimes a thread needs to wait for a given amount of time. In this case, the thread 
is in a “timed waiting” state or “sleeping.” The following operations are the most com-
mon to cause a thread to be timed waiting:

¡	sleep()—You can always use the static sleep() method in the class Thread to 
make the thread currently executing the code wait for a fixed amount of time.

¡	wait(long timeout)—The wait method with a timeout parameter can be used 
the same as the wait() method without any parameters, as discussed in section 
D.3.2. However, if you provide a parameter, the thread will wait the given time if 
not notified earlier. 

¡	join(long timeout)—This operation works the same as the join() method we 
discussed in section D.3.3, but it waits for the maximum timeout, which is given 
as a parameter. 

A common antipattern I often find in apps is the use of sleep() to make a thread wait 
instead of the wait() method discussed in chapter 7. Take the producer–consumer 



314 APPENDIX D Understanding Java threads

architecture we discussed as an example. You could use sleep() instead of wait(), but 
how long should a consumer sleep to ensure the producer has time to run and add 
values to the shared resource? We don’t have an answer to this question. For example, 
making the thread sleep for 100 milliseconds (as shown in figure D.11) can be too long 
or too short. In most cases, if you follow this approach, you end up not having the best 
performance.

synchronized (M1) {

 // do something

 if (condition) {

 Thread.sleep(100);

}

}

Sometimes timed waiting is
wrongly used instead of waiting.
While functionally this approach
might sometimes work, it  usually
is a less performant implementation.

Figure D.11 A timed waiting approach instead of wait() and notify() is usually not the best strategy. 

Whenever your code can determine when the thread can continue its execution, use wait() and 

notify() instead of sleep().

D.3.5 Synchronizing threads with blocking objects

The JDK offers an impressive suite of tools for synchronizing threads. Out of these, a 
few of the best-known classes used in multithreaded architectures are

¡	Semaphore—An object you can use to limit the number of threads that can exe-
cute a given block of code

¡	CyclicBarrier—An object you can use to make sure at least a given number of 
threads are active to execute a given block of code

¡	Lock—An object that provides more extensive synchronization options

¡	Latch—An object you can use to make some threads wait until certain logic in 
other threads is performed

These objects are higher-level implementations, each deploying a defined mechanism 
to simplify the implementation in certain scenarios. In most cases, these objects cause 
trouble because of the improper way they are used, and in many cases, developers 
overengineer the code with them. My advice is to use the simplest solution you can 
find to solve a problem and, before using any of these objects, make sure you properly 
understand how they work.

D.4 Common problems in multithreaded architectures

When investigating multithreaded architectures, you’ll identify common problems, 
which are root causes of various unexpected behavior (be it an unexpected output or a 



 315Common problems in multithreaded architectures

performance problem). Understanding these problems up front will help you to more 
quickly identify where a problem comes from and fix it. These problems are

¡	Race conditions—Two or more threads compete for modifying a shared resource.

¡	Deadlocks—Two or more threads stick while waiting for each other.

¡	Livelocks—Two or more threads fail to meet the conditions to stop and continu-
ously run without executing any useful work.

¡	Starvation—A thread is continuously blocked while the JVM executes other 
threads. The thread never gets to execute the instructions it defines.

D.4.1 Race conditions

Race conditions happen when multiple threads try to change the same resource con-
currently. When this happens, we can encounter either unexpected results or excep-
tions. Generally, we use synchronization techniques to avoid these situations. Figure 
D.12 illustrates such a case. Threads T1 and T2 simultaneously attempt to change the 
value of variable x. Thread T1 tries to increment the value, while thread T2 tries to dec-
rement it. This scenario may result in different outputs for repeated executions of the 
app. The following scenarios are possible:

¡	After the operations execute, x may be 5—If T1 changed the value first, and T2 read 
the already changed value of the variable, or the other way around, the variable 
will still have a value of 5.

¡	After the operations execute, x may be 4—If both threads read the value of x at the 
same time, but T2 wrote the value last, x will be 4 (the value T2 read, 5, minus 1).

¡	After the operations execute, x may be 6—If both threads read the value of x at the 
same time, but T1 wrote the value last, x will be 6 (the value T1 read, 5, plus 1).

Such situations usually lead to unexpected output. With a multithreaded architec-
ture where multiple execution flows are possible, such scenarios can be challenging 
to reproduce. Sometimes, they happen only in specific environments, which makes 
investigations difficult.

x

5Memory

x++

x--

T1

T2

Figure D.12 A race condition. 

Multiple threads concurrently 

try to change a shared resource. 

In this example, threads T1 and 

T2 try to change the value of 

variable x simultaneously, which 

can result in different outputs.



316 APPENDIX D Understanding Java threads

D.4.2 Deadlocks

Deadlocks are situations in which two or more threads pause and then wait for some-
thing from each other to continue their execution (figure D.13). Deadlocks cause an 
app, or at least part of it, to freeze, preventing certain capabilities from running.

T1 T2

waits for

waits for

Figure D.13 Example of a deadlock. In a case in which T1 waits for T2 to continue the execution and T2 

waits for T1, the threads are in a deadlock. Neither can continue because they are waiting for the other.

Figure D.14 illustrates the way a deadlock can occur with code. In this example, one 
thread acquired a lock on resource A, and another, on resource B. But each thread 
also needs the resource acquired by the other thread to continue its execution. Thread 
T1 waits for thread T2 to release resource A, but simultaneously, thread T2 waits for T1 
to release resource B. Neither of the threads can continue since both wait for the other 
to release the resources they need, resulting in a deadlock.

synchronized (B) {

 // do something

 synchronized(A) {

 // do something

 }

}

synchronized (A) {

 // do something

 synchronized(B) {

 // do something

 }

}

When reaching the nested synchronized block, neither of the threads can
continue. T1 waits for T2 to release resource A. But to release resource A,
T2 needs to first acquire resource B to enter the nested synchronized block,
so T2 waits for T1 to release resource B. T1 waits for T2, and T2 waits for T1
to continue its execution. The threads are in a deadlock.

Suppose thread T1 entered
the synchronized block by
acquiring resource B and now 
executes some instructions here.

At the same time, thread T2 
entered the synchronized block 
by acquiring resource A and now 
executes some instructions here.

Figure D.14 A deadlock. Thread T1 can’t enter the nested synchronized block because T2 has a lock on 

resource A. Thread T1 waits for T2 to release resource A so that it can continue its execution. But thread 

T2 is in a similar situation: it cannot continue its execution because T1 acquired a lock on resource B. 

Thread T2 waits for thread T1 to release resource B so that it can continue its execution. Since both 

threads wait for each other and neither can continue its execution, the threads are in a deadlock.



 317Common problems in multithreaded architectures

The example presented in figure D.14 is simple, but it’s just a didactic one. A real-
world scenario is usually much more difficult to investigate and understand and can 
involve more than two threads. Note that synchronized blocks are not the only way 
threads can get stuck in a deadlock. The best way to understand such scenarios is using 
the investigation techniques you learned in chapters 7–9.

D.4.3 Livelocks

Livelocks are more or less the opposite of deadlocks. When threads are in a livelock, 
the condition always changes in such a way that the threads continue their execution 
even though they should stop on a given condition. The threads can’t stop, and they 
continuously run, usually consuming the system’s resources without reason. Livelocks 
can cause performance problems in an app’s execution.

Figure D.15 demonstrates a livelock with a sequence diagram. Two threads, T1 and 
T2, run in a loop. To stop its execution, T1 makes a condition true before its last itera-
tion. The next time T1 comes back to the condition, it expects it to be true and to stop. 
However, this doesn’t happen since another thread, T2, changed it back to false. T2 
finds itself in the same situation. Each thread changes the condition so that it can stop, 
but at the same time, each change in the condition causes the other thread to continue 
running.

T1 T2
Condition

True / false

False

True

if (!condition) {
 condition = true;
 continueExecution();

}

False

if (!condition) {
 

 
condition = true;
 continueExecution();

}

if (condition) {
 condition = false;
 continueExecution();

}

1. T1 iterates continuously
    and stops only when the 
    condition is true.

3. Before its last iteration, 
    T1 changes the condition
    to true, so it stops the 
    next time.

5. But because T2 changed
    back the condition,
    T1 continues running.
    The scenario repeats
    indefinitely.

4. Before its last iteration,
    T2 changes the condition
    to false so it stops the 
    next time.

2. T2 iterates continuously
    and stops only when the 
    condition is false.

Figure D.15 An example of a livelock. Two threads rely on a condition to stop their execution. But when changing 

the value of the condition so that they can stop, each thread causes the other to continue running. The threads 

cannot stop and thus unnecessarily spend the system’s resources.



318 APPENDIX D Understanding Java threads

Just as with the deadlock example in chapter 7, remember this is a simplified scenario. 
Livelocks can be caused by more complex scenarios in the real world, and more than 
two threads can be involved. Chapters 7–9 address several ways you can approach the 
investigation of such scenarios.

D.4.4 Starvation

Another common problem, although less likely to occur in today’s apps, is starvation. 
Starvation is caused by a certain thread being constantly excluded from the execution 
even if it is runnable. The thread wants to execute its instructions, but the JVM contin-
uously allows other threads to access the system’s resources. Because the thread cannot 
access the system’s resources and execute its defined set of instructions, we say that it 
is starving.

In the early JVM versions, such situations occurred when the developer set a much 
lower priority to a given thread. Today, the JVM implementations are much smarter in 
treating these cases, so (at least in my experience) starvation scenarios are less likely.

D.5 Further reading

Threads are complex, and in this appendix, we discussed the essential topics that will 
help you understand the techniques addressed throughout this book. But, for any Java 
developer, understanding how threads work in detail is a valuable skill. Here is a list of 
resources I recommend you read to learn about threads in depth:

¡	Oracle Certified Professional Java SE 11 Developer Complete Study Guide by Jeanne 
Boyarsky and Scott Selikoff (Sybex, 2020). Chapter 18 describes threads and con-
currency, starting from zero and covering all the thread fundamentals OCP certi-
fication requires. I recommend you start with this book to learn threads.

¡	The second edition of The Well-Grounded Java Developer by Benjamin Evans, Jason 
Clark, and Martijn Verburg (Manning, 2022) teaches concurrency, from the fun-
damentals to performance tuning.

¡	Java Concurrency in Practice by Brian Goetz et al. (Addison-Wesley, 2006) is an 
older book, but it hasn’t lost its value. This book is a must-read for any Java devel-
oper wanting to improve their threads and concurrency knowledge.



319

appendix E
Memory management 

in Java apps

This appendix discusses how the Java Virtual Machine (JVM) manages the memory 
of a Java app. Some of the most challenging problems you’ll have to investigate in 
Java apps are related to the way the apps manage memory. Fortunately, we can use 
several techniques to analyze such problems and find their root causes, with mini-
mal time invested. But to benefit from those techniques, you first need to know at 
least some basics about how a Java app manages its memory.

An app’s memory is a limited resource. Even if today’s systems can offer a large 
amount of memory for an app to use during its execution, we still need to be careful 
with how an app spends this resource. No system can offer unlimited memory as a 
magical solution (figure E.1). Memory problems lead to performance problems (the 
app becomes slow, it’s more costly to deploy, it starts more slowly, etc.) and some-
times can even bring the entire process to a complete stop (e.g., in the case of an 
OutOfMemoryError).

We’ll cover the essential aspects of memory management. In section E.1, we dis-
cuss how the JVM organizes the memory for an executing process. You’ll learn about 
three ways of allocating the app’s memory: the stack, the heap, and the metaspace. In 
section E.2, we talk about the stack, the memory space a thread uses to store locally 
declared variables and their data. Section E.3 discusses the heap and the way an app 
stores object instances in memory. We’ll end our discussion in section E.4 with the 
metaspace, a memory location where an app stores the object types’ metadata. 



320 APPENDIX E Memory management in Java apps

Figure E.1 An app’s memory is a limited resource. There’s no magical solution that allows us to allocate 

infinite memory to an app. When building apps, we need to treat memory consumption with consideration 

and avoid spending it for no reason. Apps may sometimes have memory problems. If a certain capability 

uses too much memory, it can cause performance problems or even a complete failure. You need to be 

ready to find the causes of such problems and solve them properly.

Be aware that a Java app’s memory management is complex. In this appendix, I’ll pres-
ent only the details you need to understand the discussions you’ll find throughout the 
book.

E.1 How the JVM organizes an app’s memory

This section discusses how the JVM organizes data in different memory locations, 
which are also managed differently. Understanding how the JVM manages memory is 
essential for investigating problems related to memory. We’ll use some visuals to dis-
cuss the main aspects related to memory management, and you’ll learn which data 
goes where in a Java app’s memory. Then, we’ll detail the memory management in 
each memory location.

For the moment (to simplify the discussion), let’s assume that a Java app has two ways 
to manage the data it stores during its execution: the stack and the heap. Depending 
on how the data is defined, the app will manage it in either the stack or the heap. But 
before discussing which data goes where, remember one essential detail: an app has 
more than one thread, which allows it to concurrently process data. The heap is a singu-
lar memory location, and all the app’s threads use it. However, each thread has its own 
memory location, called a stack. This can create confusion when developers first learn 
about memory management. Figure E.2 presents these details visually.



 321How the JVM organizes an app’s memory

The stack is not singular.
Each thread uses a different stack.

The heap is singular. All threads
use the same heap space.

Heap

T1

T2

T3

Figure E.2 T1, T2, and T3 are all threads of a Java app. All these threads use the same heap. The heap 

is a memory location where the app stores object instances’ data. However, each thread uses its own 

memory location, called a stack, to store data locally declared.

The stack is a memory location owned by a thread. Each thread owns a particular stack 
that is not shared with other threads. The thread stores any data locally declared in 
a block of code and executed by that thread in this memory location. Say you have a 
method like the one presented in the next code snippet. The parameters x and y and 
the variable sum, declared inside the method’s code block, are local variables. These 
values will be stored in the thread’s stack when the method executes:

public int sum(int x, int y) {    
   int sum = x + y;               
   return sum;
}

The heap is a memory location where the app stores object instances’ data. Suppose your 
app declares a class, Cat, such as the one shown in the next code snippet. Any time you 
create an instance using the class’s constructor, new Cat(), the instance goes to the heap:

public class Cat {
}

If the class declares instance attributes, the JVM stores these values in the heap, too. 
For example, if the Cat class looks like the one in the next code snippet, the JVM will 
store the name and age of each instance in the heap:

public class Cat {
  private String name;     
  private int age;         

}

Variables x, y, and sum will 
be stored in the stack.

The object’s attributes 
are stored in the heap.



322 APPENDIX E Memory management in Java apps

Figure E.3 visually presents an example of data allocation. Notice that the locally 
declared variables and their values (x and c) are stored in the thread’s stack, while the 
Cat instance and its data go in the app’s heap. A reference to the Cat instance will be 
stored in the thread’s stack in variable c. Even the method’s parameter that stores a 
reference to a String array will be part of the stack.

In this example, we consider the main thread,
which starts its execution with the main()
method. The variables declared  locally in the
main() method are stored in the main
thread’s stack. The values in the stack are
variable x, holding value 10, and variable c,
holding the reference of a Cat object.

The object instance and
the values its attributes hold
(if any) are stored in the heap.

public static void main(String [] args) {

 int x = 10;

var c = new Cat();
}

Main
thread

new Cat();

int x = 10;

var c 

String [] args) {

HEAP

Figure E.3 The app reserves the locally declared variables in the thread’s stack and the data defining 

an object instance in the heap. A variable in one thread’s stack may refer to an object in the heap. In this 

example, variable x, holding value 10, and variable c, holding the reference to the Cat instance, are part 

of the thread’s stack.

E.2 The stack used by threads to store local data

This section analyzes the mechanics behind the stack in more depth. In section E.1, 
you learned that local values are stored in a stack, and that each thread has its own 
stack location. Let’s find out now how these values are stored and when the app 
removes them from memory. We’ll use visuals to describe this process step by step with 
a short code example. Once we clarify the mechanics behind the stack’s memory man-
agement, we’ll discuss what could go wrong and cause problems related to it.

First, why is this memory location called “a stack”? A thread’s stack uses the principles 
of a stack data structure. A stack is an ordered collection in which you can always remove 
the most recently added element. We usually visualize such a collection as a stack of 
layers, where each layer is stored above another. You can only add a new layer on top of 
all the existing ones, and you can only remove the top layer. This method of adding and 



 323The stack used by threads to store local data

removing elements is also called last in, first out (LIFO). Figure E.4 demonstrates how a 
stack works with a series of add-and-remove steps. To make the example simpler, num-
bers are the values in the stack.

10 10

20 30

10 10

1. An empty stack 2. Adding value 10 
    to the stack

3. Adding value 20 to the 
    stack. Any newly added 
    value becomes the top 
    layer in the stack. Only 
    the top value can be 
    removed.

4. Removing a value from
    the stack. Only the top 
    value can be removed.

5. Adding value 30 to the
    stack makes 30 the new 
    top layer.

Figure E.4 Adding and removing values from a stack. The stack is an ordered collection working on 

the LIFO principle. When you add a value to the stack, it becomes the top layer—the only one you can 

remove.

You will recognize the same behavior in the way JVM running your app manages the 
data in a thread’s stack. Whenever the execution reaches the start of a code block, it 
creates a new layer in the thread stack. Following a common stack principle, any new 
layer becomes the top layer and is the first to be removed. In figures E.5, E.6, E.7, and 
E.8, we follow the execution of a simple code snippet step by step to observe how the 
thread’s stack changes:

public static void main(String [] args) {
  int x = 10;
  a();
  b();
}

public static void a() {
  int y = 20;
}

public static void b() {
  int y = 30;
}



324 APPENDIX E Memory management in Java apps

The execution starts with the main() method (figure E.5). When the execution reaches 
the start of the main() method, the first layer is added to the thread’s stack. This layer is 
a memory location where every local value declared in the code block is stored. In this 
case, the code block declares a variable, x, and initializes the variable with the value 10. 
This variable will be stored in this newly created layer of the thread’s stack. This layer 
will be removed from the stack when the method ends its execution.

When the execution reaches the
start of a block of code, a new
layer is added to the stack above
the existing ones.

All the local variables are stored on this layer of the 
stack. In this example, when the execution reaches the 
instantiation of variable x (int x = 10), variable x
storing value 10 will be part of the stack’s layer.

public static void main(String [] args) {
int x = 10;
a();
b();

}

public static void a() {
int y = 20;

}

public static void b() {
int y = 30;

}

x = 10

Stack

Figure E.5 When the execution reaches the start of a block of code, a new layer is created in the thread’s stack. 

All the variables the block of code defines are stored in this new layer. The layer is removed when the block of code 

ends. This way, we know that the values in this part of the memory are released when they’re no longer needed. 

Besides variable x, the args parameter is also part of the stack in this case. I have simply taken it out to allow you 

focus on the local declared variables.

A code block can call other code blocks. For example, in this case, method main() calls 
methods a() and b(), which work similarly. When the execution reaches the start of 
their blocks of code, a new layer is added to the stack. That new layer is the memory 
location where all the data that is declared local is stored. Figure E.6 shows what hap-
pens when the execution reaches method a().

When method a() ends its execution and returns to main(), the layer reserved in the 
thread’s stack is also removed (figure E.7), meaning the data it stored is no longer in the 
memory. This way, the memory that is not needed is deallocated to allow space for new 
data to be stored. A code block ends when the execution reaches its last instruction, gives 
a return instruction, or throws an exception. Notice that when a code block ends, its layer 
is always the top one in the stack, fulfilling the LIFO principle. 



 325The stack used by threads to store local data

When the execution reaches the
call to method a(), that block of 
code will start to be executed.

When method a()’s block of code starts
to be executed, a new layer is added to
the stack. This layer will store the local
values declared by method a().

public static void main(String [] args) {
int x = 10;
a();
b();
}

public static void a() {
int y = 20;
}

public static void b() {
int y = 30;
}

x = 10

y = 20

Stack

main()

a()

Figure E.6 Another block of code can be called from one in execution. In this case, method main() calls method 

a(). Since main() didn’t finish, its layer is still part of the stack. Method a() creates its own layer where the local 

values it defines are stored. Method names you see in the stack on the right side of the layers are used simply to 

map each method to the layer it produces.

When the execution reaches the end of a block of code (or if the method returns 
or throws an exception), the layer in the stack and all of its content are removed.

x = 10

y = 20

Stack

main()

a()

public static void main(String [] args) {
int x = 10;
a();
b();
}

public static void a() {
int y = 20;
}

public static void b() {
int y = 30;
}

Figure E.7 When the execution reaches the end of a block of code, the stack layer opened for that 

block is removed with all the data it contains. In this case, when method a() returns, its stack layer is 

removed. This way, we make sure the unnecessary data is removed from the memory.



326 APPENDIX E Memory management in Java apps

Method main() continues its execution by calling method b(). Just like method a() did, 
method b()reserves a new layer in the stack to store the local data it declares (figure E.8).

When the execution reaches method b(), method a()’s stack
layer no longer exists. Method b() will create its own layer in the
stack and store the local values it declares in it. When method b()
ends its execution, its layer in the stack will also be removed. The
same will happen for main(). In the end, when the thread ends its
execution, the stack will be empty.

public static void main(String [] args) {
int x = 10;
a();
b();

}

public static void a() {
int y = 20;

}

public static void b() {
int y = 30;

}

x = 10

y = 30

Stack

main()

b()

Figure E.8 Just like with method a(), when method b() is called and the execution reaches the start 

of its block of code, a new layer is added to the stack. The method can use this layer to store local data 

until the method returns and the layer is removed.

When method main() finally reaches its end, the thread ends its execution, and the 
stack remains empty and is completely removed. Simultaneously, the thread goes into 
the dead state of its life cycle, as described in appendix D.

The stack has a default memory space allocated for different CPU architectures. You 
can find the precise values depending on the JVM you use here: http://mng.bz/JVYp. 
This limit can also be adjusted, but you wouldn’t be able to make it infinite. A common 
problem with the stack is the StackOverflowError, which means a stack is filled com-
pletely, and no more layers can be added. When this happens, the code throws a Stack-
OverflowError, and the thread whose stack became full stops completely. A recursion 
(or recursive implementation), a method that calls itself until a given condition is filled, 
with a wrong stop condition usually causes such a problem. If this condition is missing 
or allows the method to call itself too many times, the stack may get filled with the layers 
the method creates every time it begins its execution. Figure E.9 visually presents the 
stack created by an infinite recursion caused by two methods that call one another.

Since each thread has its own stack, a StackOverflowError affects only the thread 
whose stack becomes full. The process can continue its execution, and other threads 
will not be affected. Also, a StackOverflowError produces a stack trace, which you can 

http://mng.bz/JVYp


 327The stack used by threads to store local data

Because the beginning of any new block of code execution creates a new layer 
in the stack, any uncontrolled recursion can cause a stack overflow: the stack   
fills and the app cannot allocate more layers to store the local values. In this  
example, method a() calls method b() and method b() calls method a(),
without   any condition for this cycle to stop at some point.

A stack overflow is a memory problem in which 
the app cannot allocate more layers in the stack.

public static void main(String[] args) {
 a();
}

public static void a() {
 System.out.println("A executes");
 b();
}

public static void b() {
 System.out.println("B executes");
 a();
}

Stack

main()

a()

b()

a()

a()

b()

Figure E.9 Every new execution of a method creates a new layer in the stack. In case of a recursion, a method 

may fill the stack if it’s called too many times. When the stack gets full, the app throws a StackOverflowError, 

and the current thread stops.

use to identify the code that caused the problem. Figure E.10 shows an example of 
what this type of stack trace looks like. You can use project da-app-e-ex1 provided with 
the book to replicate this stack trace. 

Exception in thread “main” java.lang.StackOverflowError
...
at main.Main.a(Main.java:11)
at main.Main.b(Main.java:16)
at main.Main.a(Main.java:11)
at main.Main.b(Main.java:16)
at main.Main.a(Main.java:11)
at main.Main.b(Main.java:16)
at main.Main.a(Main.java:11)
at main.Main.b(Main.java:16)
at main.Main.a(Main.java:11)
...

Whenever you get an exception stack like this one 
that looks like a dog chasing its tail, you are most 
likely facing a recursion with a wrong condition.

Figure E.10 The stack trace caused by a StackOverflowError. Usually, a StackOverflowError is 

easy to identify. The stack trace shows a method calling itself repeatedly or a group of methods that 

call each other, as in this example. You can go directly to these methods to figure out how they started 

infinitely calling each other.



328 APPENDIX E Memory management in Java apps

E.3 The heap the app uses to store object instances

In this section, we’ll discuss the heap: a memory location shared by all threads of a 
Java app. The heap stores object instance data. As you’ll see in this section, the heap 
causes problems more often than the stack does. Also, the root causes of heap-related 
problems are more challenging to find. We’ll analyze how objects are stored in the 
heap and who can keep references to them, which is relevant to understanding when 
they can be removed from the memory. Furthermore, we’ll discuss the main causes of 
problems related to the heap. You need to know this information to understand the 
investigation techniques discussed in chapters 9–11.

NOTE The heap has a complex structure. We won’t discuss all the heap details 
since you won’t immediately need them. We also won’t discuss details such as 
the string pool or heap generations.

The first thing you need to remember about the heap is that it’s a memory location 
shared by all the threads (figure E.11). Not only does this allow for thread-related 
problems such as race conditions to happen (discussed in appendix D), but it also 
makes memory problems more challenging to investigate. Since all the threads add 
the object instances they create in the same memory location, one thread may affect 
the execution of others. If one thread suffers from a memory leak, which means it adds 
instances in the memory but never removes them, it affects the whole process because 
other threads will also suffer from the lack of memory. 

In most cases, when an OutOfMemoryError occurs, as shown in figure E.11, the situ-
ation is signaled by a different thread than the one affected by the root cause of the 

One thread might suffer from a 
memory leak and fill the heap space.

An OutOfMemoryError can occur on a thread that doesn’t 
have problems, just because it was the unlucky one to try to  
reserve a part of the heap when no memory was left.

The heap is not unique. All threads
use the same heap space.

Heap

T1

T2

T3

Figure E.11 All threads use the same heap location. If one of the threads has a problem that causes the 

heap to become full (memory leak), another thread may signal the problem. This scenario happens quite 

often because the problem will be reported by the first thread unable to store data in the heap. Because 

any thread can signal the problem, and it’s not necessarily the one causing the problem, heap-related 

problems are more challenging to solve.



 329The heap the app uses to store object instances

problem (the memory leak). The OutOfMemoryError is signaled by the first thread that 
tries to add something in the memory but cannot because there is no more free space.

The garbage collector (GC) is the mechanism that frees the heap by removing 
unnecessary data. The GC knows that an object instance is no longer needed when 
nothing references it. Thus, if an object isn’t needed but the app fails to remove all the 
references, the GC won’t remove that object. When an app continually fails to remove 
references to newly created objects until at some point they fill the memory (causing an 
OutOfMemoryError), we say that the app has a memory leak.

An object instance may be referred to from another object in a heap (figure E.12). A 
common example of a memory leak is a collection in which we continuously add object 
references. If these references aren’t removed, then, as long as the collection is in the 
memory, the GC won’t remove them—they become a memory leak. 

NOTE You should pay special attention to static objects (object instances 
referred to from static variables). These variables don’t disappear once they 
are created, so unless you explicitly remove the reference, you can assume that 
an object referred to from a static variable will stay for the whole life of the 
process. 

If that object is a collection that refers to other objects that are never removed, it can 
potentially become a memory leak.

The objects in a heap may refer to one another.
In this case, the cat instance can’t be removed 
by the garbage collector until the reference 
made by the person instance is removed or 
the person is removed.

Heap Figure E.12  

Any object in the 

heap can keep 

references to 

other objects in 

the heap. The GC 

can remove an 

object only when 

no reference to it 

exists.

An object instance can also be referred to from the stack (figure E.13). Usually, refer-
ences from the stack don’t cause memory leaks since (as discussed in section E.2) a stack 
layer automatically disappears when the execution reaches the end of the code block for 
which the app created the layer. But in specific cases, when combined with other prob-
lems, references from the stack can also cause trouble. Imagine a deadlock that keeps 
the execution from running through a whole block of code. The layer in the stack won’t 
be removed, and if it keeps references to objects, this may also become a memory leak.



330 APPENDIX E Memory management in Java apps

An object may be referred to from  
a variable in the stack of a thread.

In such a case, the garbage collector
cannot remove the object until 
the reference from the stack is gone.

Heap

T1

Figure E.13 A variable in the stack can also refer to an instance in the heap, which cannot be removed 

until all its references are gone (including the ones in the stack).

E.4 The metaspace memory location for storing data types

The metaspace is a memory location the JVM uses to store the data types used to create 
instances stored in the heap (figure E.14). The app needs this information to handle 
the object instances in the heap. Sometimes, in specific conditions, an OutOfMemory-
Error can also affect the metaspace. If the metaspace becomes full and there’s no 
more space for the app to store new data types, the app throws an OutOfMemoryError, 
announcing that the metaspace is full. In my experience, these errors are rare, but I 
would like you to be aware of them.

The metaspace contains information that 
tells the JVM how to understand and create 
instances that are found in the heap.

The heap may contain several instances 
of several types of objects.

Heap Metaspace

Cat class metadata

Owner class metadata

Figure E.14 The metaspace is a memory location where the app stores the data types’ descriptors.  

It holds the blueprints used to define the instances stored in the heap.



331

references
CHAPTER 1

Hermans, F. (2021). The programmer’s brain: What every programmer needs to know about cognition. 
Manning Publications.

Hilgevoord, J., & Uffink, J. (2024). The uncertainty principle. In E. N. Zalta & U. Nodelman 
(Eds.), The Stanford encyclopedia of philosophy (Spring 2024 Edition). Stanford University. 
https://plato.stanford.edu/archives/spr2024/entries/qt-uncertainty/

Making Data Mistakes. (n.d.). How to write good software faster: We spend 90% of our time debugging.  
https://www.makingdatamistakes.com/how-to-write-good-software-faster-we-spend-90-of 
-our-time-debugging/

Martin, R. C. (2008). Clean code: A handbook of agile software craftsmanship. Pearson.

CHAPTER 2

Spilcă, L. (2021). Spring start here. Manning Publications.
Spilcă, L. (2023). Spring Security in action (2nd ed.). Manning Publications.

CHAPTER 4

Wilkins, P. (2022). Logging in action. Manning Publications.

CHAPTER 6

Bonteanu, A. M., & Tudose, C. (2024). Performance analysis and improvement for CRUD oper-
ations in relational databases from Java programs using JPA, Hibernate, Spring Data JPA. 
Applied Sciences, 14(7), 2743. https://www.mdpi.com/2076-3417/14/7/2743 

Tudose, C. (2023). Java Persistence with Spring and Hibernate. Manning Publications.

CHAPTER 12

Bejeck, W. P., Jr. (2024). Kafka Streams in action (2nd ed.). Manning Publications.

APPENDIX D

Boyarsky, J., & Selikoff, S. (2020). Oracle certified professional Java SE 11 developer complete study guide. 
Sybex.

Evans, B., Clark, J., & Verburg, M. (2022). The well-grounded Java developer. Manning Publications.
Goetz, B., Peierls, T., Bloch, J., Bowbeer, D., Holmes, D., & Lea, D. (2006). Java concurrency in 

practice. Addison-Wesley.

https://plato.stanford.edu/archives/spr2024/entries/qt-uncertainty/
https://www.makingdatamistakes.com/how-to-write-good-software-faster-we-spend-90-of-our-time-debugging/
https://www.makingdatamistakes.com/how-to-write-good-software-faster-we-spend-90-of-our-time-debugging/
https://www.mdpi.com/2076-3417/14/7/2743


332

index
A

advanced debugging techniques, 
root cause analysis, 
rewinding investigation 
case 69–74

AI (artificial intelligence) 20–23

AI assistance 126

AI hallucination 23

appender, defined 93

applications, AI as game changer in 
troubleshooting 20–23

apps

investigation techniques 10–19

understanding 5–10

ArrayList 165, 166, 167

aspects, defined 38

attaching debugger 36

audit logs, reviewing to reconstruct 
transaction steps 285–289

B

Bard 195
blocked state 306
blocking objects 314
block synchronization 308
breakpoints 32

conditional 62

non-blocking 62–64
using to log messages 62, 63

C

CallNotPermittedException 
exception 268

cascading 
blocked threads 194
failures 265–269
locks 194

ChatGPT 42, 195
checksums 293

verifying data integrity 
using 293–296

CI (continuous integration) 264
client-side timeout settings 271
code investigation 3, 24, 31, 48

execution stack traces 37, 42
navigating code with 

debugger 43, 48
overview 5
typical scenarios 10

app crashes 18
learning how technologies 

work 15, 16
slow performance 16, 18
unexpected output 11, 15

code reading 27, 29
code smells 8

cold starts 261

com.example package 141, 209

command line

generating thread dumps 
from 183, 187

obtaining heap dumps 214, 216

communication patterns 254–261

conditional breakpoints 54–62

consistency, measuring and 
monitoring 
guarantees 292–297

Consumer class 120

CPU execution time 190

CPU usage 120

crashes, defined 18

CRC32 (Cyclic Redundancy 
Check) 293

createAccount method 42

Criteria-Query from() method 154

CyclicBarrier object 314

Cyclic Redundancy Check 
(CRC32) 293

D

data consistency 276

tracking and correlating multistep 
transactions 284–292



 333INDEX

data integrity, verifying using 
checksums or hashes  
293–296

data types, metaspace memory 
location for storing 330

DBMS (database management 
system) 130

deadlocks 180, 197, 315, 316
getting thread dumps 187

generating from command 
line 183, 187

using profiler tool 182, 183
reading thread dumps 187–197

filtering out threads that are not 
locked 192

finding what blocks next 
thread 192

plain-text thread dumps  
188–197

using tools 194, 196
dead state 306
debuggers 7

investigating code with 31–50
execution stack trace 37–43
navigating code with 

debugger 43–50
debugger tool 25, 52, 53, 75

changing values of variables in 
scope while debugging 65

code reading 27, 29
conditional breakpoints 62
dropping execution frames 69, 

74
execution stack traces 37, 42
navigating code 43, 48
unexpected output issues 11, 12
using breakpoints to log 

messages 62, 63
when not enough 50, 51

debugging 5, 25
analyzing code 27–31
breakpoints, non-blocking 62–64
conditional breakpoints 54–62
dynamically altering investigation 

scenario 65–69
root cause analysis, rewinding 

investigation case 69–74
debugging techniques, when 

debugger is not 
enough 50

Decoder class 47, 64, 70

domain invariants, applying to 
identify invalid states  
282–284

dynamic proxies 137

E

Evans, Benjamin 318
event flows, time-based anomalies 

in 277–282
event logs, replaying events or 

examining for missing 
messages 289–292

exceptions, identifying with logs 84
exception stack traces 86
execution frames, dropping 69, 74
execution stack trace 37–43
external libraries 16
extractDigits() method 28, 30, 44, 

48, 70, 71, 86

F

failures, systemic failure 
modes 265–274

cascading failures 265–269
retry storms 269
timeout mismatches 271–274

fastThread 187, 195, 196, 298
feign package 141, 142
files, storing logs in 90
findAll() method 143
find command 240
formatter 93

G

GC (garbage collection) 261
 analyzing potential JVM problems 

with 228
enabling 229
frequency 242
heap organization 232
logs

analyzing 241–249
configurations for 

storing 239–241
identifying insufficient memory 

with full GC events  
245–247

identifying memory leaks with 
heap usage logs 243

troubleshooting performance 
lags with GC pause 
times 241–243

pause duration 242
storing logs in files 235–239
tuning parallelism in 247–249

Gemini 195
GitHub Copilot 42
GUIs (graphical user 

interfaces) 138

H

heap 328–329
dump 18, 211–212, 225

obtaining 212–216
configuring apps to 

generate 212, 214
using profiler 214
with command line 214, 216
using OQL console to 

query 221–226
reading 216–221

memory 19
organization of  232
utilization 242

Heisenberg execution 13
httpbin.org endpoint 136
HttpTimeoutException 

exception 268
HttpURLConnection class 136

I

IDEs 298
if clause condition 57
immutable audit logs 286
inconsistencies, across services  

277–284
applying domain invariants to 

identify invalid states  
282–284

time-based anomalies in event 
flows 277–282

instrumentation 130, 131
IntelliJ IDEA AI Assistant 42
interceptors 38
investigating code 5

J

Jaeger 257, 259–261
Java

memory management, stack used 
by threads to store local 
data 322–327



334 INDEX

transactions, measuring and 
monitoring consistency 
guarantees 292–297

Java applications 3
java object 123
JDK 298
JDWP (Java Debug Wire 

Protocol) 36
jmap tool 215
join() method 307, 313
JOIN query 146
JOOQ (Java Object Oriented 

Querying) 148
JPA (Java Persistence API) 148
JPQL (Java Persistence Query 

Language) 149, 152
jps tool 185
jstack command 186, 187
JVM (Java Virtual Machine) 189, 

322
analyzing potential problems with 

GC logs 228, 239–241
organizing app memory 320

L

Latch class 314
legacy bugs 21
LIFO (last in, first out) 323
livelocks 315, 317, 318
LLMs (large language models) 30, 

64
Lock object 314
locks 157, 179

analyzing thread locks 163, 171
analyzing waiting threads 171, 

177
monitoring threads for 158–162
waiting threads 172–178

logger, defined 93
logging, implementing 89–101

defining logging levels and using 
logging frameworks 90–97

persisting logs 90
problems caused by logging and 

how to avoid them 97–101
logs 76

investigating problems with  
80–89

M

maintainability problems 100
measuring transactions

consistency guarantees 292–297
running reconciliation jobs to 

compare expected vs. actual 
state 296

verifying data integrity using 
checksums or hashes  
293–296

memory
insufficient 245–247
leaks 107, 243

memory management 319, 330
heaps 328, 329
how JVM organizes app 

memory 320
JVM 322
metaspace memory location 330
stack used by threads to store local 

data 322–327
memory-related problems 201, 211, 

253, 276
heap dumps 211, 216, 220, 225
identifying memory leaks 126
memory usage 120
sampling and profiling 202–209

messaging 254–261
OpenTelemetry, Jaeger, Zipkin, 

and other utilities 259–261
trace IDs and spans 255–259

metaspace memory location 125, 
330

method synchronization 308
monitored state 306
Monitor tab, VisualVM 203
multistep transactions, tracking and 

correlating 284–292
replaying events or examining 

event logs for missing 
messages 289–292

reviewing audit logs to reconstruct 
transaction steps 285–289

multithreaded architectures 12, 88, 
157, 314, 318

deadlocks 316
livelocks 317, 318
locks 157, 179
race conditions 315
starvation 318
thread locks 163–171
waiting threads 172–178

multithreaded implementations 51

N

N+1 query problem 150
native thread ID 190
new state, defined 306
next execution line 49
non-blocking breakpoints 63
nonrelational databases, storing logs 

in 90
notify() method 306–307, 310, 311
NullPointerException 43

O

Object array 219
OkHttp 274
OpenTelemetry 259–261, 278
OQL (Object Query 

Language) 212
console 221–226

Oracle Certified Professional Java SE 11 
Developer Complete Study Guide 
(Boyarsky and 
Selikoff) 318

OS (operating system) 190
OutOfMemoryError 121, 211, 213, 

217, 319, 329
message 18

output issues
debugger tool 11, 12
multi-threaded architecture 12
profiler tool 12
wrong output scenario 13, 15

P

parallelism 247–249
park() method 306
performance lags 241–243
performance problems 51, 99

code investigation 16, 18
persisting logs 90
PID (process ID) 185, 186, 216
plain-text thread dumps 189–197
postmortem, defined 291

investigation, defined 10
privacy problems 98
Producer class 119, 120
producer-consumer approach 112
Product class 18
ProductController bean 41
ProductRepository class 152
ProductService 



 335INDEX

bean 40
class 143

Product type 206, 207, 208, 213, 
218, 219

profilers 106, 109–126
finding out what code 

executes 107
identifying abnormal usage of 

resources 106
identifying memory leaks  

121–126
identifying slowness in app's 

execution 108
identifying SQL queries 

with 142–155
installing and configuring 

VisualVM 109
observing CPU and memory 

usage 112–120
obtaining thread dumps 

using 182
profiler tool 105, 129, 156, 228, 298

memory-related problems  
201–202, 207–209

number of method 
invocations 138, 142

obtaining heap dumps 214
resource consumption 

problems 106–107, 111, 
120, 126

sampling to observe executing 
code 130–138

SQL queries 143, 148, 151, 155
thread dumps 182–183, 187
unexpected output issues 12

projects, opening 299
Protobufs 263
PurchaseController class 143
PurchaseRepository class 143

Q

queryable audit logs 286
quitting execution frames 69, 74

R

race conditions 113, 315
ready state 306
reconciliation jobs 296
refactoring 8
referrers() method 225
resource consumption 

problems 105, 128

profilers 109–126
usefulness of profiler tool, 

identifying abnormal usage 
of resources 106, 107

using profiler tool 111, 120, 126
RestTemplate 266, 274
retained long-term audit logs 287
retry storms 269
return instruction 324
root cause analysis 53

rewinding investigation case  
69–74

RPC (Remote Procedure Call)  
254–261

OpenTelemetry, Jaeger, Zipkin, 
and other utilities 259–261

trace IDs and spans 255–259
run() method 160–161
runnable state 306

S

Sampler tab, VisualVM 205
sampling 108

to observe executing code  
130–138

saveProduct() method 39, 40, 41
security problems 98
select() method 155
Semaphore object 314
serialization mismatches and 

versioning problems  
262–265

server-side processing timeouts 271
sleep() method 306, 307, 313
slowness, clarified 16
spans 255–259
SQL queries 155

identifying with profilers  
142–155

retrieving programmatically 
generated queries 155

retrieving queries generated by 
framework 148, 151

retrieving queries not generated 
by a framework 143, 148

SQLTransientConnectionException 
exception 268

StackOverflowError 326, 327
stacks 327
stack traces 190

exception 86
start() method 306, 307

starvation 170, 315, 318
state description/name 190
stored centrally audit logs 286
storing GC logs in files 235–239
Strict-type 209
String values 54
structured audit logs 286
stub, defined 15
STW (stop-the-world) events 242, 

248
sum variable 60, 321
super() constructor 120
synchronized blocks 308, 310
synchronizing threads 308–314

blocking threads for defined 
time 313

joining threads 312
notify() method 311
synchronized blocks 308
wait() method 311
with blocking objects 314

system-level failures 253
communication patterns  

254–261
serialization mismatches and 

versioning problems  
262–265

systemic failure modes 265–274
cascading failures 265–269
retry storms 269
timeout mismatches 271–274

T

Thread class 306, 307, 313
thread dumps 19, 180, 187, 196

generating from command 
line 183, 185–187

obtaining 181–187
reading 187–197
retrieving using profiler tool 182, 

183
thread ID 190
thread locks 158, 163–171
thread name 190
threads 303, 318

common problems in 
multithreaded 
architectures 315–318

defined 304, 305
life cycle of 306, 307
monitoring for locks 158–162



336 INDEX

multithreaded 
architectures 314–318

synchronizing 308–314
TimeoutException exception 268
timeout mismatches 271–274
total execution time 190
trace ID 255–259
transactions 276

inconsistencies across 
services 277–284

measuring and monitoring 
consistency 
guarantees 292–297

tracking and correlating multistep 
transactions 284–292

troubleshooting
defined 4

recommended further 
reading 301

system-level failures, 
communication 
patterns 254–261

tools 298

U

unpark() method 306
UserService 42

V

variables, changing values of while 
debugging 65

VisualVM 305
installing and configuring 109, 

111

W

waiting state 306
waiting threads 172–178 
wait() method 174, 176, 306–307, 

310, 311
WebClient.retrieve() method 266
Well-Grounded Java Developer, The 

(Evans, Clark, 
Verburg) 318

wrong output scenario 13, 15

Z

Zipkin 257, 259–261, 278
zombie threads 17



Whenever you investigate a problem, the first thing you should always do is read 

the app’s logs. In many cases, the log messages give you a starting point or offer 

valuable hints on what you should do next to solve the problem.

Reading logs

Debugging

Profiling

...

Before deciding which investigation technique
to use, you should read the log messages.



ISBN-13: 978-1-63343-557-5

W
hether you’re working with legacy systems or using AI 
to generate fresh programs, you’ll spend more time 
reading and fi xing code than writing it from scratch. 

Troubleshooting is a messy art, and effi  cient profi ling, logging, 
debugging, and optimization will save you hours of time and 
countless headaches.

Troubleshooting Java, Second Edition teaches practical tech-
niques to diagnose, debug, and optimize Java applications. 
You’ll learn to uncover hidden dependencies, diagnose crashes, 
and resolve performance issues using tools like IntelliJ IDEA 
Debugger, VisualVM, and Heap Dump Analyzer. Th is revised 
and updated second edition introduces AI-powered trouble-
shooting tools, along with techniques for modern Java and 
cloud-native apps. 

What’s Inside
●  Use debuggers to quickly understand complex code
●  Automate code analysis with AI tools
●  Implement and interpret application logs
●  Identify performance bottlenecks

For intermediate Java developers.

Laurenţiu Spilcă is a skilled Java and Spring developer and 
an experienced technology instructor. He is the author of 
Spring Start Here and Spring Security in Action.

For print book owners, all digital formats are free:
https://www.manning.com/freebook

Troubleshooting Java  Second Edition

JAVA/JVM

M A N N I N G

“A must-read for every 
developer developing non-
  trivial Java applications.”—Vlad Mihalcea

Java Champion and author of 
High-Performance Java Persistence

 

“Essential techniques 
leveraging both classic 

  and AI-driven tools.”—Potito Coluccelli, Econocom
 

“A masterclass in debugging
  smarter, not harder.”—Nathan Crocker, Checker Corp

 

“Everything you need to 
dig deep into your Java 
programs, plus some 

 promised help from AI.”—Catalin Tudose, Author of 
JUnit in Action, Th ird Edition

 

“An excellent overview of 
techniques for fi nding 

  issues in Java systems.”—Heinz M. Kabutz
Th e Java Specialists’ Newsletter

 

“Approachable, engaging, 
and highly practical for 
  real-world scenarios.”—Bruno Souza, Aura Co.

Laurenţiu Spilcă    ●   Foreword by Ben Evans


	Troubleshooting Java, Second Edition
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book?
	How this book is organized: A road map
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	Part 1 Revisiting the foundation 
	1 Starting to know your apps
	1.1	How to more easily understand your app
	1.2	Typical scenarios for using investigation techniques
	1.2.1	Demystifying the unexpected output
	1.2.2	Getting familiar with your external libraries
	1.2.3	Clarifying slowness
	1.2.4	Understanding app crashes

	1.3	AI as a game changer in troubleshooting apps
	1.4	What you will learn in this book

	2 Understanding your app’s logic through debugging techniques
	2.1	When analyzing code is not enough
	2.2	Investigating code with a debugger
	2.2.1	What is the execution stack trace, and how do I use it?
	2.2.2	Navigating code with the debugger

	2.3	When using the debugger might not be enough

	3 Finding problem root causes using advanced debugging techniques
	3.1	Minimizing investigation time with conditional breakpoints
	3.2	Using breakpoints that don’t pause the execution
	3.3	Dynamically altering the investigation scenario
	3.4	Rewinding the investigation case

	4 Making the most of logs: Auditing an app’s behavior
	4.1	Investigating issues with logs
	4.1.1	Using logs to identify exceptions
	4.1.2	Using exception stack traces to identify what calls a method
	4.1.3	Measuring time spent to execute a given instruction
	4.1.4	Investigating problems in multithreaded architectures

	4.2	Implementing logging
	4.2.1	Persisting logs
	4.2.2	Defining logging levels and using logging frameworks
	4.2.3	Problems caused by logging and how to avoid them



	Part 2 Deep diagnosing an app’s execution
	5 Identifying resource consumption problems using profiling techniques
	5.1	Where would a profiler be useful?
	5.1.1	Identifying abnormal usage of resources
	5.1.2	Finding out what code executes
	5.1.3	Identifying slowness in an app’s execution

	5.2	Using a profiler
	5.2.1	Installing and configuring VisualVM
	5.2.2	Observing the CPU and memory usage
	5.2.3	Identifying memory leaks

	5.3	Using AI assistance

	6 Finding hidden problems using profiling techniques
	6.1	Sampling to observe executing code
	6.2	Profiling to learn how many times a method is executed
	6.3	Using a profiler to identify SQL queries an app executes
	6.3.1	Using a profiler to retrieve SQL queries not generated by a framework
	6.3.2	Using the profiler to get the SQL queries generated by a framework
	6.3.3	Using the profiler to get programmatically generated SQL queries


	7 Investigating locks in multithreaded architectures
	7.1	Monitoring threads for locks
	7.2	Analyzing thread locks
	7.3	Analyzing waiting threads

	8 Investigating deadlocks with thread dumps
	8.1	Getting a thread dump
	8.1.1	Getting a thread dump using a profiler
	8.1.2	Generating a thread dump from the command line

	8.2	Reading thread dumps
	8.2.1	Reading plain-text thread dumps
	8.2.2	Using tools to better grasp thread dumps



	Part 3 Diagnosing memory-related problems
	9 Profiling memory-related problems
	9.1	Sampling to identify memory allocation problems
	9.2	Profiling to find the culprit

	10 Investigating memory problems with heap dumps
	10.1	Obtaining a heap dump
	10.1.1	Configuring an app to generate a heap dump when it encounters 
a memory problem
	10.1.2	Obtaining a heap dump using a profiler
	10.1.3	Obtaining a heap dump with the command line

	10.2	Reading a heap dump
	10.3	Using the OQL console to query a heap dump

	11 Analyzing potential JVM problems with GC logs
	11.1	Enabling GC logs
	11.2	Storing GC logs in files
	11.3	Particular configurations for storing GC logs
	11.4	Analyzing GC logs
	11.4.1	Troubleshooting performance lags with GC pause times
	11.4.2	Identifying memory leaks with heap usage logs
	11.4.3	Identifying insufficient memory with full GC events
	11.4.4	Tuning parallelism in GC



	Part 4 Finding problems in large systems
	12 Uncovering system-level failures and service communication problems
	12.1	Troubleshooting communication patterns: RPC and messaging
	12.1.1	Working with trace IDs and spans
	12.1.2	OpenTelemetry, Jaeger, Zipkin, and other utilities

	12.2	Serialization mismatches and versioning problems
	12.3	Understanding systemic failure modes
	12.3.1	Cascading failures
	12.3.2	Retry storms
	12.3.3	Timeout mismatches


	13 Measuring data consistency and transactions
	13.1	Troubleshooting inconsistencies across services
	13.1.1	Inspecting time-based anomalies in event flows
	13.1.2	Applying domain invariants to identify invalid states

	13.2	Tracking and correlating multistep transactions
	13.2.1	Reviewing audit logs to reconstruct transaction steps
	13.2.2	Replaying events or examining event logs for missing messages

	13.3	Measuring and monitoring consistency guarantees
	13.3.1	Verifying data integrity using checksums or hashes

	13.4	Running reconciliation jobs to compare expected vs. actual state


	Appendix A Tools you’ll need
	Appendix B Opening a project
	Appendix C Recommended further reading
	Appendix D Understanding Java threads
	Appendix E Memory management in Java apps
	index

