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Preface

This book serves as a comprehensive guide to two fundamental pillars of
the Java programming language: Generics and the Collections Framework.
Mastering these concepts is essential for developers seeking to produce
robust, type-safe, and highly reusable code. The text is structured to provide
a logical and progressive learning experience, moving from foundational
principles to advanced applications and best practices.
This book is crafted with a practical approach, aiming not only to educate
on the theoretical aspects of generics and collections but also to empower
readers to apply these principles effectively in their own projects. The clear
structure and detailed content are intended to guide the learner from a basic
understanding to confident, expert-level application.
The book is divided into twelve chapters, each dedicated to a specific aspect
of generics or collections. The book emphasizes the synergy between these
two concepts, illustrating how they work together to create more efficient
and powerful applications. By understanding their combined functionality,
readers will not only grasp the syntax but also the underlying design
philosophy that underpins Java's most robust data structures.
Chapter 1: Introduction to Generics- This chapter introduces the core
concepts of generics, explaining their role in enhancing type safety and
code reusability. You will learn the basic syntax for type parameters and
how to create your own generic classes and methods. This is the perfect
starting point to understand why generics are such a powerful tool in
modern Java.
Chapter 2: Bounded Types- This section explores how to restrict the types
used with your generics. We will cover upper bounds, lower bounds, and
wildcards, showing you how to build more flexible and secure code that
prevents unexpected errors at compile time.



Chapter 3: Generics in Collections- This chapter bridges the gap between
generics and the Collections Framework, detailing how to apply generics to
everyday data structures like List<String>, Set<Integer>, and Map<String,
User>. We will explore how this makes your collection management much
safer and easier to read.
Chapter 4: Introduction to Collections Framework- This chapter
provides a foundational overview of the Collections Framework's
architecture. We will look at the main interfaces (Collection, List, Set, Map)
and discuss how they all fit together in a logical hierarchy.
Chapter 5: List Interface and Implementations- This chapter explores
the List interface and its primary implementations, including ArrayList,
LinkedList, Vector, and Stack. You will learn the key differences between
them.
Chapter 6: Map Interface and Implementations- This chapter explores
the Map interface and its main implementations, including HashMap,
LinkedHashMap, TreeMap, and Hashtable.
Chapter 7: Set Interface and Implementations- This section covers the
Set interface, which is all about unique elements. You will explore the
various implementations, including the fast-but-unordered HashSet, the
ordered LinkedHashSet, and the sorted TreeSet, so you know exactly which
one to choose for your specific needs.
Chapter 8: Queue and Deque Interfaces- This section discusses the
specialized Queue and Deque interfaces and their implementations, like
PriorityQueue and ArrayDeque.
Chapter 9: Utility Classes- This chapter covers essential utility classes,
such as Collections and Arrays, which provide methods for sorting,
searching, and manipulating data. You will discover powerful static
methods for sorting, searching, and manipulating your data with ease.
Chapter 10: Best Practices with Generics and Collections- This section
synthesizes the knowledge by outlining best practices for writing efficient,
maintainable, and synchronized code. We will help you avoid common
mistakes and write professional-level Java.
Chapter 11: Real-world Applications- This chapter demonstrates how
generics and collections are used in practical, real-world scenarios through



case studies and tangible examples, showing you how to solve common
problems.
Chapter 12: Future Trends and Next Steps- The book concludes with a
summary of key concepts and an exploration of what is next for Java. We
will look at recent advancements and future trends, helping you stay ahead.
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CHAPTER 1
Introduction to Generics

Introduction
This chapter introduces the concept of generics in Java, a feature that enhances
type safety by enforcing strict checks at compile time, reduces runtime errors,
and enhances code readability and reusability. We begin by understanding the
need for generics in building type-safe collections and application
programming interfaces (APIs). We will also explore the syntax of generics,
demonstrating how to define generic classes, methods, and constructors.
Through practical examples, we will illustrate the advantages of using generics
and provide a foundation for applying them effectively in Java development.

Structure
The chapter covers the following topics:

Generics
Benefits of generics
Basic syntax of generics
Defining generic classes
Using generic methods
Generics with constructors



Objectives
By the end of this chapter, you will have a clear understanding of the purpose
and benefits of using generics in Java. You will learn the foundational syntax
and key concepts of generics, enabling you to define and implement generic
classes, methods, and constructors. This knowledge will prepare you to
confidently apply generics in practical scenarios as explored in subsequent
chapters. Additionally, the chapter concludes with a set of exercises designed to
test your understanding and reinforce the concepts covered.

Generics
Generics in Java were introduced as part of Java Development Kit 5 (JDK 5)
in 2004, to make code safer and easier to reuse. They provide a mechanism to
create classes, methods, and interfaces that work with different data types
without having to rewrite the code each time.
For example, before generics, if you wanted a list of strings and a list of
integers, you would often use the same list class but have to manually check the
type of each item you added or retrieved. With generics, you can create a
List<String> and a List<Integer>, and the compiler will automatically
enforce the correct types, preventing errors.
Generics aim to address limitations in older Java code that need a lot of manual
type checking (casting), particularly with collections.

Background
Before generics, Java developers had to use raw types, which allowed
collections to store any object type. This approach often led to runtime errors
when a developer unintentionally added incompatible types to a collection. For
example, adding a string to a collection of integers would only cause an error
when accessing the value at runtime, leading to a ClassCastException and
potential program failures.
The following is an example without generics:
List listWithoutGenerics = new ArrayList();
listWithoutGenerics .add("A String");
Integer number = (Integer) listWithoutGenerics.get(0); // 



Runtime error

The following is an example with generics:
List<String> stringList  = new ArrayList<>();
stringList .add("A String");
// Integer number = (Integer) stringList 
.get(0); // Compile-time error
String text = stringList.get(0); // Compile-
time safety ensures no casting erro

Benefits of generics
The following are the main benefits of using generics in Java:

Type safety: Generics guarantee that only compatible data types are used
by enforcing compile-time checks. This eliminates runtime errors such as
ClassCastException and makes the code more predictable and
reliable.
Code reusability: Before generics, developers often had to create separate
versions of the same class or interface for different data types, leading to
what is known as interface or class explosion. For instance, to handle
different types in a type-safe manner, one might create:
class ListOfStrings implements List { ... }
class ListOfIntegers implements List { ... }
class MapOfStringToInteger implements Map { ... }

This repetition made the code harder to maintain and scale.
Generics eliminate this problem by allowing a single implementation to
work with different data types. Developers can write a generic class or
method once and reuse it across various types, reducing duplication and
promoting cleaner, more maintainable code.
The following is an example:
public class CommonBox<T> {
    private T commonItem;
    public void setCommonItem(T item) {
        this.commonItem = item;



    }
    public T getCommonItem() {
        return commonItem;
    }
}

The CommonBox class can be used to create a class with different data
types.
For example, to create a CommonBox of type Integer:
CommonBox<Integer> intBox = new CommonBox<>();
intBox.setItem(123);
To create a CommonBox of type String:
CommonBox<String> strBox = new CommonBox<>();
strBox.setItem("Hello");

Elimination of explicit casting: Generics eliminate the need for manual
type casting, which can cause errors during program execution. By
specifying the type upfront, generics enforce type safety at compile time,
preventing these runtime errors.
The following is an example without generics:
List commonList = new ArrayList();
commonList.add("Hello");
String text = (String) commonList.get(0); // Explicit 
casting is required

The following is an example with generics:
List<String> stringList = new ArrayList<>();
stringList.add("Hello");
String text = stringList.get(0); // No casting require
d

Improved readability: By specifying the type of data a collection can
hold, generics make code easier to read and understand, improving
maintainability and reducing the likelihood of errors.
The following is an example without generics:
List commonList = new ArrayList();
commonList.add("Hello");



commonList.add(123); // Adds an integer, which might n
ot be intentional
for (Object obj : commonList) {
    String str = (String) obj; // Requires casting, pr
one to 
runtime errors
    System.out.println(str);
}
The following is an example with generics:
List<String> stringList = new ArrayList<>();
stringList.add("Hello");
// stringList.add(123); // Compile-
time error, prevents adding
 incompatible data
for (String str : stringList) {
    System.out.println(str); // No casting needed, eas
ier to read
}

It is clear that the list can only contain string objects, improving readability
and reducing confusion.
Performance optimization: Generics can lead to performance
improvements by avoiding unnecessary casts and type checks at runtime.
This results in faster execution, especially in scenarios with frequent type
operations.
Note: This is not officially confirmed or explicitly declared in the official Java documentation, 
there could still be debates around the extent of these performance benefits.

The following is an example without generics:
List commonList = new ArrayList();
commonList.add("Hello");
String str = (String) commonList.get(0); // Casting ha
ppens at runtime

The following is an example with generics:
List<String> stringList = new ArrayList<>();



stringList.add("Hello");
String str = stringList.get(0); // No casting required
, type is known at compile time
In the generic version, type safety is enforced at compile time, avoiding
runtime type-checking overhead, which is especially beneficial in large-
scale or performance-critical applications.
Backward compatibility: Generics were designed with backward
compatibility in mind, ensuring that existing non-generic code and libraries
remain functional while allowing developers to adopt generics
incrementally.
The following is an example of pre-generics (Java 1.4 or earlier):
List commonList = new ArrayList(); // Non-
generic collection
commonList.add("Hello");
commonList.add(123);
for (Object obj : commonList) {
    System.out.println(obj); // Outputs: Hello, 123
}
The following is the post-generics (Java 5+):
List<String> stringList = new ArrayList<>
(); // Generic collection
stringList.add("Hello");
// stringList.add(123); // Compile-time error
for (String str : stringList) {
    System.out.println(str); // Outputs: Hello
}
The following is non-generic, and generic collections can coexist:
List oldList = new ArrayList(); // Non-generic
oldList.add("Hello");
List<String> newList = oldList; // Allowed but with wa
rnings
 (raw type usage)
System.out.println(newList.get(0)); // Still works



Basic syntax of generics
Generics let you define classes, methods, and interfaces that work with
different data types. This happens when the code is compiled, providing
flexibility and type safety. The syntax of generics revolves around the concept
of parameterized types, allowing developers to create more abstract and
adaptable code structures. This section explains how to use the correct syntax
for generics.

Defining parameterized types
Generics are implemented using angle brackets (<>) to specify type parameters.
The most common types of parameters include:

Type (T): Represents a generic type.
Element (E): Typically used in collections, like List<E>.
Key (K) and value (V): Used in map structures, such as Map<K, V>.

These type parameters act as placeholders that get replaced with actual types
during code execution or compilation.

Syntax overview
Generics have a rich syntax designed to cover a wide range of use cases, from
defining generic classes to creating generic interfaces and methods. The
following section is a detailed breakdown of the syntax, along with additional
examples and explanations.

Generic classes
Generic classes define type parameters that can be specified when creating an
instance of the class. We will learn more about generic classes in the next
section.
The following is an example:
public class TemplateClass<T> {
    private T templateValue;
    public void setTemplateValue(T value) {
        this.templateValue = value;
    }



    public T getTemplateValue() {
        return templateValue;
    }
}

Let us break down the syntax in this example:
TemplateClass<T>: This declares a generic class named
TemplateClass with a type parameter T. T is a common convention, but
you can use any valid identifier (for example, E, K, V, Item). T represents
the type of the value field. 
private T templateValue: This declares a private instance variable
templateValue of type T. The type of templateValue will be
determined when an instance of TemplateClass is created.
public void setTemplateValue(T value) and public T
getTemplateValue(): These are the setter and getter methods for the
templateValue field.

Note: Both the parameter type of setTemplateValue and the return
type of getTemplateValue are T. This ensures type consistency.

Let us discuss the uses. To use a generic class, you must specify the actual type
within the angle brackets when creating an instance of the class:
TemplateClass<String> stringInstance = new TemplateClass<>
();
stringInstance.setValue("Hello, Generics!");
System.out.println(stringInstance.getTemplateValue());

The following is the explanation:
TemplateClass<String> stringInstance = new TemplateClass<>();: This
creates an instance of TemplateClass where the type parameter T is
replaced with String. Now, stringInstance can only hold String
values. The diamond operator <> on the right-hand side is shorthand for
GenericClass<String>, inferring the type from the left side.
stringInstance.setTemplateValue("Hello, Generics!");: This sets the
value of stringInstance to a String. This is because
stringInstance is of type TemplateClass<String>, the compiler
ensures that only String values can be passed to setTemplateValue.



System.out.println(stringInstance.getTemplateValue());: This retrieves
the value of stringInstance, which is guaranteed to be a String. No
explicit casting is needed.

Similarly, we can also do:
TemplateClass<Integer> intInstance = new TemplateClass<>
();
Here, T is replaced with Integer, so intInstance can only hold Integer
values.

Generic methods
Generic methods allow you to use type parameters within a method's scope,
making the method work with different data types without requiring individual
implementations for each type. This is particularly useful for utility methods
that operate on collections or perform generic operations.
A generic method is declared with type parameters within angle brackets (<>)
before the method's return type.
The following is an example:
public static <T> void printArrayObjects(T[] array) {
    for (T arrayObj : array) {
        System.out.println(arrayObj);
    }
}
The following is an explanation of how the code above works:

public static <T>: This declares a public static method with a type
parameter T. The <T> comes before the return type (void). This signifies
that the method is generic.
void printArrayObjects(T[] array): This defines the method signature.
The method takes an array of type T as a parameter.
for (T arrayObj : array): This enhanced for loop iterates through the
array. Because the array is of type T[], each element is also of type T.

Let us discuss the usage. When calling a generic method, the compiler often
infers the type argument based on the arguments passed to the method. You can
also explicitly specify the type argument, but it is usually not necessary.
The following are a few different examples:



Integer[] numbers = {1, 2, 3};
printArrayObjects(numbers);// Type inference: T is inferre
d as Integer
String[] words = {"Hello", "World"}; 
printArrayObjects(words); // Type inference: T is inferred
 as String 
Character[] chars = {'a', 'b', 'c'}; 
printArrayObjects(chars); // Type inference: T is inferred
 as Character
//Explicitly specifying the type argument (less common): 
printArrayObjects<Double>(new Double[]{1.0, 2.0, 3.0});

Bounded type parameters
As the name implies, bounded type parameters limit the types that can be
specified as type arguments. This is done using the extends keyword (and the
& symbol for multiple bounds). This provides greater type safety and allows
you to use methods specific to the bounded type.
The general syntax for a bounded type parameter is:
<T extends BoundType>
For multiple bounds:
<T extends BoundType1 & BoundType2 & ...>

Note: <T> is the type parameter, as usual.

The keywords used above are explained in the following:
extends: This keyword indicates that T must be a subtype of BoundType.
This means T can be BoundType itself or any class that inherits from
BoundType or any interface that is implemented by T.
BoundType: This is the upper bound. It can be a class or an interface.
&: Used to specify multiple bounds. If you use multiple bounds, at most
one of them can be a class. The rest must be interfaces.

The following is an example:
public <T extends Number> void processNumber(T number) {
    System.out.println(number.doubleValue());



}
The keywords used above are explained in the following:

<T extends Number>: This is the bounded type parameter declaration. It
specifies that T must be a subtype of the number class. This means T can
be a number, integer, double, float, long, short, byte, or any other class that
extends number.
void processNumber(T number): This is the method signature. The
method takes an argument of type T.
System.out.println(number.doubleValue());: This is the method body.
This is because T is bounded by a number; we know that number has the
doubleValue() method (which is defined in the number class). This is
the key benefit of bounded type parameters: you can safely call methods of
the bound type.

The following is the usage:
processNumber(5);      // Integer is a Number
processNumber(3.14);   // Double is a Number
//processNumber("hello"); // Compile-
time error: String is not a Number
The following is an explanation of how the above code works:

processNumber(5): This is valid because Integer extends Number.
processNumber(3.14): This is valid because Double extends Number.
processNumber("hello"): This would cause a compile-time error because
String does not extend Number. This demonstrates the type safety
provided by bounded type parameters.

Wildcard types
Wildcards (?) in Java generics provide a way to handle situations where you do
not know the exact type parameter or where you want to accept a range of
types. They offer flexibility but also come with certain restrictions.
The following is an example:
public void printList(List<?> anyList) {
    for (Object listObj : anyList) {
        System.out.println(listObj);



    }
}
Let us break it down:

public void printList(List<?> anyList): This declares a method named
printList that takes a List as a parameter. The crucial part is List<?
>. The ? (question mark) is the unbounded wildcard. This means that this
method can accept a list of any type. It does not matter if it is a
List<String>, List<Integer>, List<MyCustomObject>, or any
other type of list.
for (Object listObj : anyList): Inside the method, the code iterates
through the list using an enhanced for loop. This is because the type of the
list is unknown (represented by ?), and the elements are treated as
Object. This is safe because every object in Java is ultimately an instance
of the Object class. So, you can safely access each element as an object.
System.out.println(listObj);: This line simply prints the current element
(listObj) to the console. This is because listObj is treated as an object;
the toString() method of the object will be called implicitly to get its
string representation for printing.

In essence, this method is designed to print the contents of any list, regardless
of the type of elements it contains.
The following is a usage:
List<String> listOfStrings = Arrays.asList("String", "List
");
printList(listOfStrings); // Output: String \n List
List<Integer> listOfIntegers = Arrays.asList(101, 201, 301
);
printList(listOfIntegers); // Output: 101 \n 201 \n 301
List<Double> listOfDoubles = Arrays.asList(3.14, 2.71);
printList(listOfDoubles); // Output: 3.14 \n 2.71
As you can see, the printList method works correctly with lists of different
types because of the unbounded wildcard ?. It provides a generic way to print
the contents of any list without needing separate methods for each type.

Defining generic classes



A generic class is a class that can operate on different data types without the
need for separate implementations for each type. You achieve this using type
parameters.
Let us discuss the syntax. You define a generic class by adding type parameters,
typically represented by single uppercase letters such as T, E, K, or V, within
angle brackets < > following the class name:
public class Container<T> { // T is the type parameter
    private T product;
    public Container(T product) {
        this.product = product;
    }
    public T getProduct() {
        return product;
    }
    public void setProduct(T product){
        this.product = product;
    }
}
The following are the explanations:

Container<T>: This declares a class named Container that is generic. T
is a placeholder for the actual type that will be used when you create an
instance of the Container.
private T product;: This declares an instance variable product of type T.
The type of product will be determined when an object of Container is
created.
Type consistency: The constructor public Container(T product),
getter public T getProduct() , and setter public void
setProduct(T product) methods also use T, ensuring type
consistency.

Let us discuss the usage. When you create an object of a generic class, you
provide the actual type within the angle brackets:
Container<Integer> integerContainer = new Container<>
(123); 



// T is replaced with Integer
int intValue = integerContainer.getProduct(); // No castin
g needed
Container<String> stringContainer = new Container<>
("Hello"); 
// T is replaced with String
String textValue = stringContainer.getProduct(); // No cas
ting needed
Container<Double> doubleContainer = new Container<>(3.14);
double piValue = doubleContainer.getProduct();

Using generic methods
Generic methods are methods that have their own type parameters, independent
of any generic class they might be in.
Let us discuss the syntax. You declare a generic method by placing the type
parameters within angle brackets <> before the method's return type.
The following is an example:
public class Utility {
    public static <E> void displayArray(E[] dataArray) { /
/ E is the type 
parameter
        for (E displayItem : dataArray) {
            System.out.print(displayItem + " ");
        }
        System.out.println();
    }
    public static <K, V> void displayMap(Map<K, V> dataMap
){
        for (Map.Entry<K, V> displayEntry : dataMap.entryS
et()){
            System.out.println("Key: " + displayEntry.getK
ey() + ", Value: " + 



displayEntry.getValue());
        }
    }
}
The following are the explanations:

<E>: This declares a type parameter E for the displayArray method.
This E is only in scope for this method.
E[] dataArray: The method takes an array of type E as a parameter.
<K, V>: This declares two type parameters K and V for the displayMap
method.
Map<K, V> dataMap: The method takes a Map with key type K and value
type V.

Let us discuss the usage. The compiler usually infers the type argument based
on the method's arguments. You can also specify it explicitly, but it is less
common:
Integer[] numbers = {1, 2, 3};
Utility.displayArray(numbers); // E is inferred as Integer
String[] words = {"a", "b", "c"};
Utility.displayArray(words); // E is inferred as String
Map<String, Integer> ages = new HashMap<>();
ages.put("Alice", 30);
ages.put("Bob", 25);
Utility.displayMap(ages);

Generics with constructors
While classes themselves can be generic, constructors are not directly generic
in the same way methods are. However, if you are in a generic class, the
constructor implicitly works with the class's type parameter.
The following is an example:
public class Container<T> { // T is the type parameter
    private T product;
    public Container(T product) {// Constructor uses the c



lass's type 
parameter T
        this.product = product;
    }
    public T getProduct() {
        return product;
    }
    public void setProduct(T product){
        this.product = product;
    }
}
The explanation of the above code is that the constructor Container(T
product) uses the type parameter T that was declared for the class. This
means that when you create a Container<Integer>, the constructor will
expect an Integer argument.

No explicit type parameter on the constructor
You cannot declare a separate type parameter for the constructor itself. The
constructor automatically uses the class's type parameters; this is an important
distinction. The following is incorrect syntax:
// Incorrect: You cannot do this
//public <X> Container(X product) { ... }

The above code is incorrect because the constructor cannot have its own type
parameter <X>. It must use the class's type parameter <T>.

Conclusion
This chapter introduced Java generics, a versatile feature that improves type
safety, promotes code reusability, and enhances readability. Generics allow for
the creation of classes, methods, and interfaces that work with various data
types without requiring repetitive code or manual casting, thus preventing
runtime errors.
In the next chapter, we will learn about bounded types, which allow us to
restrict the types that can be used with generics.



Exercise
1. What is the primary purpose of generics in Java?

a. To improve runtime performance
b. To provide type safety and code reusability
c. To simplify syntax for collections
d. To allow the use of primitive types in collections

2. Which of the following correctly declares a generic class?
a. public class MySampleClass<T> { }
b. public class MySampleClass<Generic> { }
c. public <T> class MySampleClass { }
d. Both A and B

3. What will happen if you use a raw type instead of a parameterized
type?
a. Compile-time error
b. Runtime error
c. Warning at compile time
d. No effect

4. What does <T> represent in the following method signature?
public <T> void print(T item);
a. It declares a generic method with a type parameter T.
b. It specifies the return type of the method.
c. It indicates that T is a class in the Java API.
d. It restricts the method to primitive types only.

5. Which of these statements about bounded type parameters is correct?
a. Bounded type parameters must always use the extends keyword.
b. T extends Number means T can only be a subclass of Number.
c. T super Number allows T to be a superclass of Number.
d. Both A and B.

6. Which of the following correctly defines a generic method?
a. public void display(T item) { System.out.println(item); }
b. public static <T> void display(T item) { System.out.println(item); }



c. public static void display(<T> item) { System.out.println(item); }
d. public <T> static void display(item) { System.out.println(item); }

7. What does the wildcard? Extends T represent in generics?
a. A type that is a superclass of T.
b. A type that is a subclass of T.
c. Any type that is unrelated to T.
d. Any type that matches T exactly.

8. What is the key difference between a raw type and a wildcard in
generics?
a. Raw types allow primitive types, while wildcards do not.
b. Wildcards provide type safety, while raw types do not.
c. Wildcards enforce compile-time type checking, while raw types allow

unchecked operations.
d. Both B and C.

9. Which generic type declaration is commonly used for elements in a
collection?
a. T
b. E
c. K and V
d. R

10. What does the following method signature imply?
public static <T extends Comparable<T>> T findMax(T[] array);
a. The method can only be used with numeric arrays.
b. The method can accept arrays of any type that implements Comparable.
c. The method requires explicit casting of the return type.
d. The method can accept arrays of any type without restrictions.

Answers
1. b

Explanation: Generics enhance Java by enforcing type safety at compile
time and enabling code reusability. They prevent runtime errors caused by
type mismatches and make the code more reliable.

2. d



Explanation: Both options A and B correctly declare a generic class. A
generic class requires a type parameter inside angle brackets (<>)
immediately after the class name. The name of the parameter can be any
valid identifier (commonly T, but not restricted to it).

3. c
Explanation: Using a raw type generates a compile-time warning because
it bypasses type safety checks. Although the code might still run, it risks
runtime ClassCastException errors.

4. a
Explanation: The <T> in the method signature declares T as a type
parameter, making the method generic. This allows the method to accept
arguments of any type, determined when the method is invoked.

5. d
Explanation: Bounded type parameters use the extends keyword to restrict
the type to a class or its subclasses. For example, T extends Number
ensures that T must be a subclass of Number. The super keyword is not
used in this context.

6. b
Explanation: A generic method must declare the type parameter (<T>)
before the return type (void). Option B is correct as it adheres to this
syntax. Option A lacks a type parameter declaration, and options C and D
have incorrect syntax

7. b
Explanation: The wildcard? extends T represents a type that is either T or
a subclass of T. It is used when the method or class can work with types
derived from T.

8. d
Explanation: Wildcards (?) ensure type safety and allow flexibility in type
parameters. Raw types, on the other hand, disable type checking, leading to
potential runtime errors. Wildcards enforce compile-time type constraints,
which raw types lack.

9. b
Explanation: E stands for "Element" and is commonly used in collections
like List<E> or Set<E>. T is a general type placeholder, while K and V are
typically used for key-value pairs in maps.



10. b
Explanation: The type parameter T extends Comparable<T> means that T
must implement the Comparable interface, enabling comparison
operations. This ensures type safety and that the method can determine the
maximum value in the array.
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CHAPTER 2
Bounded Types

Introduction
This chapter explains the concept of bounded types within the context of
generic programming. We will explore how to use bounds to restrict the
types that can be used with generic classes and methods. We will learn
about different types of bounds, including upper bounds, lower bounds, and
wildcard bounds. Through practical examples, we will demonstrate how to
effectively apply these bounds to create more robust and maintainable
generic code.

Structure
The chapter covers the following topics:

Upper bounds
Lower bounds
Wildcards
Bounded type parameters
Examples of bounded types in practice



Objectives
By the end of this chapter, you will have a solid understanding of bounded
types in generics and how they help enforce type safety while maintaining
flexibility in your code. You will learn how to apply upper and lower
bounds to restrict the types that can be used with generics, explore the use
of wildcard characters to handle unknown types, and implement bounded
type parameters effectively. Additionally, you will see practical examples
that demonstrate how bounded types improve code reusability and
maintainability. At the end of the chapter, exercises will help reinforce your
understanding and test your ability to apply bounded types in real-world
scenarios.

Upper bounds
Upper bounds in generics restrict a type parameter to a specific class or its
subclasses. This is achieved using the extends keyword. By using upper
bounds, you can ensure that your generic code works only with types that
meet specific constraints, ensuring type safety and enabling you to leverage
specific methods or properties of the bounding class. This is particularly
useful when you need to work with a variety of related types but require a
common ancestor.
Let us illustrate this with an example, working with comparable objects.
Suppose you need to write a generic method to find the maximum element
in a collection. You can use an upper bound with a comparable interface.
Consider the following method fetchMaxElement:
public static <T extends Comparable<T>> T 
fetchMaxElement(List<T> list) {
  T max = list.get(0);
  for (T element : list) {
   if (element.compareTo(max) > 0) {
    max = element;
   }



  }
  return max;
 }
In the above example, <T extends Comparable<T>> ensures that the
type T must implement the comparable interface, and specifically, it must
be comparable to itself. This allows us to use the compareTo method
safely.
We can use the method given in the following:
List<String> listOfNames = Arrays.asList("Apple", 
"Carrot", "Grapes");
String maxName = fetchMaxElement(listOfNames); 
List<Integer> listOfAges = Arrays.asList(25, 30, 20);
Integer maxAge = fetchMaxElement(listOfAges); 
Both String and Integer implement the Comparable interface,
hence both maxName and maxAge are valid.
The following are the key benefits of upper bounds:

Type safety: Prevents passing incompatible types to generic methods
or classes.
Code reusability: Allows writing generic code that can work with a
range of related types.
Access to methods: Guarantees the availability of methods defined in
the upper bound class or interface.

Lower bounds
Lower bounds on type parameters define a constraint based on a superclass
and are defined using the super keyword. They specify that a type
parameter must be a specific class or any of its ancestors in the inheritance
hierarchy. These bounds are particularly useful when working with
collections, allowing you to handle types at or above a certain level in the
class hierarchy.
Think of it this way: T super SomeClass means that the type T can be



SomeClass itself, or any of its superclasses (parent classes further up the
inheritance tree). It sets a lower limit on the type.
Example 2.1: Consuming elements:
Imagine a method that adds elements to a collection. You might want to add
objects of type T or any subtype of T. However, the collection itself might
be able to hold objects of a supertype of T. Lower bounds allow you to
express this.
Consider the following method, addElements:
public static <T> void addElements(List<? super T> 
list, T element) {
     list.add(element);
 }
Here, the ? super T wildcard ensures that the list can accept T or any of
its superclasses.
We can call this method as follows:
List<Object> objectList = new ArrayList<>();
addElements(objectList, new String("hello")); 
addElements(objectList, new Integer(10));
The addElements method requires a list that can hold T or any of its
supertypes.
Here, objectList is a List<Object>, and both String and Integer
are subtypes of Object.
However, you cannot do the following:
List<String> stringList = new ArrayList<>();
// addElements(stringList, new Object());
This would result in a compile-time error because stringList is a
List<String>, and Object is not a subtype of String. The
addElements method expects to be able to add a T to the list. If T were a
String, it should be able to add a String. It cannot add an Object to a
List<String>.
Similarly, we cannot add a Number to a List<Integer> as shown in the
following:



List<Integer> intList = new ArrayList<>();
// addElements(ints, new Number());
This would also result in a compile-time error because intList is a
List<Integer>, and Number is not a subtype of Integer.
Example 2.2: Working with hierarchies:
Lower bounds are helpful when dealing with class hierarchies where you
need to process elements at a certain level or above. For instance, you might
have a hierarchy of shapes (for example, shape, circle, rectangle) and a
method that operates on any shape or its ancestors.
For instance, consider you have an abstract class AnyShape, which serves
as the base class for different shapes.
abstract class AnyShape {
abstract void drawShape();
}
Two concrete subclasses extend the AnyShape class.
class CircleShape extends AnyShape {
@Override
void drawShape() {
System.out.println("Drawing a Circle");
}
}
class RectangleShape extends AnyShape {
@Override
void drawShape() {
System.out.println("Drawing a Rectangle");
}
}
Now consider a method drawShapes as follows:
public static void drawShapes(List<? super CircleShape> 
shapes) {
  shapes.add(new CircleShape());



  for (Object shape : shapes) {
   System.out.println("Processing shape: " + 
shape.getClass().getSimpleName());
  }
 }
The method accepts a list where the elements are of type CircleShape or
any of its superclasses (AnyShape, Object). This means you cannot pass
List<RectangleShape> because RectangleShape is not related to
CircleShape.
For example, you cannot do this:
shapes.add(new Shape());
or 
shapes.add(new Rectangle());
Example 2.3: Method return types (less common):
While less frequent, lower bounds can also be used in return types. This can
be useful in situations where you want to return a value that is at least a
certain type but could be a supertype as well.
Let us consider the method getNumberList() as follows:
public static List<? super Integer> getNumberList() {
        List<Number> numbers = new ArrayList<>();
        numbers.add(10);       
        numbers.add(20.5);      
        return numbers;        
    } 
The method returns a List<? super Integer>, that means, the returned
list contains elements that are at least Integer but could also be of a
supertype (Number, Object).
To the returned list, we can add integer values like the following:
List<? super Integer> list = getNumberList();
list.add(30);
Since the exact type is unknown, we can only retrieve elements as objects,
not integers directly.



The following line would lead to a compilation error:
Integer num = list.get(0); // Compilation error

However, we can retrieve elements as objects:
Object obj = list.get(0);

Key differences between upper and lower bounds
The following table highlights the key differences between upper bounds
and lower bounds in generics, explaining their usage, constraints, and
practical implications. Understanding these distinctions helps in writing
more flexible and type-safe generic code:

Feature Upper bounds Lower bounds

Keyword used extends super

Constraint Type or subtype Type or supertype

Use case Restricting to specific types or
subtypes

Allowing flexibility for
consuming/producing, working with
hierarchies

Usage in collections Typically used for reading
from a collection.

Typically used for writing into a
collection.

Table 2.1: Differences between upper and lower bounds

Wildcards
When working with generics, you often encounter situations where you
need to handle unknown types while preserving type safety. Wildcards
provide the solution, enabling you to work with a range of related types
without sacrificing the benefits of generics. Using upper and lower bounds
with wildcards further enhances this control. A helpful mnemonic for
remembering how to use these bounds is the producer extends, consumer
super (PECS) rule. This rule summarizes the best practices for using
wildcards with upper and lower bounds.
Before exploring the different types of wildcards, it is essential to
understand a fundamental property of Java generics: invariance.



Invariance means that even if TypeA is a subtype of TypeB, List<TypeA>
is not considered a subtype of List<TypeB>. For instance,
List<Integer> is not a subtype of List<Number>, even though Integer
is a subtype of Number.
Hence, the following is not allowed:
List<Number> numbers = new ArrayList<Integer>(); //
Compilation error
This invariance is by design to preserve type safety. For example, if the
assignment above were allowed, one could add a double to numbers, which
internally is an ArrayList<Integer>, leading to a runtime
ClassCastException.
To safely enable polymorphic behavior with generics, Java provides
wildcards.
This limitation highlights the necessity of wildcards, which offer a
controlled mechanism for achieving flexibility in generic programming.
Wildcards allow developers to express relationships among various generic
types while maintaining type safety. By doing so, they enable code to
operate over a broader range of types, effectively overcoming the
constraints introduced by invariance.
The following is a breakdown of the three forms of wildcards:

Unbounded wildcard: ?: The simplest wildcard, ?, represents any
type. It is useful when you want to write code that can work with any
generic type, but you do not need to know the specific type. For
example, if you have a method that simply prints the elements of a
collection, regardless of the element type, you could use an unbounded
wildcard.
The following is the sample code:
public static void printElements(Collection<?> 
anyCollection) {
     for (Object theObject : anyCollection) { 
         System.out.println(theObject);
     }
 }



The method printElements simply accepts any collection and prints
its elements. It is not restricted to any one type of collection.
Upper bounded wildcard: ? extends Type: As we have already
seen in this chapter, upper bounded wildcard, ? extends Type,
restricts the unknown type to be either Type itself or any subtype of
Type. This is useful when you want to work with a range of related
types, typically when you want to read elements from a collection
(such as when you are a producer of elements). Following the PECS
rule (producer extends), if you are producing values from a
parameterized type, use extends.
For example, if you have a hierarchy of shapes and you want to process
any collection of shapes or their subtypes:
public static void drawShapes(List<? extends Shape> 
shapesList) {
  for (Shape eachShape : shapesList) {
   eachShape.drawShape(); 
  }
 }
Here, shapes can be a List<Shape>, a List<Circle>, a
List<Rectangle>, or any other list whose element type is a subtype
of Shape. This is often referred to as covariance. It is safe to read a
Shape because you know everything in the list is at least a Shape.
Lower bounded wildcard: ? super Type: A lower bounded
wildcard, ? super Type, restricts the unknown type to be either
Type itself or any supertype of Type. This is typically used when you
want to add elements to a collection (such as when you are a consumer
of elements). Following the PECS rule (consumer super), if you are
consuming values from a parameterized type, use super.
For example, if you want to add Circle objects to a list that can hold
Circles or any of their supertypes:
public static void addCircles(List<? super Circle> 
circles) {
  circles.add(new Circle());



 }
Here, circles can be a List<Circle>, a List<Shape>, a
List<Object>, etc. It is safe to add a Circle because you know the
list can hold at least Circle objects.

The reason you cannot add a Shape to a List<? super Circle> is not
because Shape is a superclass of Circle. It is because of the wildcard ?
super Circle represents a specific, but unknown, supertype of Circle.
It is crucial to understand that ? super Circle does not mean any
supertype of Circle. It means a specific supertype of Circle, which is
unknown to the compiler.
Imagine you have a basket labeled Things that are at least Apples. You can
safely put an apple in it. However, if you have a basket labeled Things that
are at least Apples, you cannot necessarily put a fruit in it. The basket
might actually be a basket specifically for apples. The label only guarantees
that the basket can hold apples, but it might not be able to hold all fruits.
Similarly, List<? super Circle> means a list of some specific type
that is at least a Circle. The compiler does not know what that specific
type is, so it cannot be sure that adding a Shape (which is a fruit in our
analogy) is always safe.

Best practice
Prefer bounded wildcards for method parameters.
When designing methods that accept generic types, it is recommended to
use bounded wildcards (? extends T or ? super T) in method
parameters rather than exact type parameters (T).
This enhances the flexibility and reusability of your APIs without
compromising type safety. For instance, a method accepting List<?
extends Number> can work with List<Integer>, List<Double>,
and so on, whereas List<Number> would reject those.
This approach follows the PECS principle:

Use extends when the generic type produces data (you only read
from it).
Use super when the type b data (you write to it).



This principle helps in writing more general and robust code when working
with collections and other parameterized types.
Therefore, wildcards provide flexibility while maintaining type safety. The
PECS rule is a crucial guideline for using wildcards effectively.
Understanding when to use each type of wildcard, especially in conjunction
with upper and lower bounds, is essential for effective generic
programming in Java.

Bounded type parameters
A bounded type parameter restricts the type argument to match a specific
range of types. This helps in creating methods or classes that are both
flexible and constrained. Bounded type parameters are essential for
expressing relationships between types and ensuring type safety when
working with generics.
Having explored upper and lower bounds in detail, we now summarize their
function as bounded type parameters. The following reiterates the key
points:

Upper bounds (extends): Restrict a type parameter to a specific type
or its subtypes. They are commonly used when you need to produce
values of a certain type or when you want to ensure that a type
parameter supports specific operations (for example, methods defined
in an interface or superclass). Think of it as saying, This type must be at
least this specific type.
Lower bounds (super): Restrict a type parameter to a specific type or
its supertypes. They are typically used when you need to consume or
add value to a collection. They ensure that the collection can hold
objects of the specified type or any of its subtypes. Think of it as
saying, This type can hold at least this specific type.
Importance of bounded type parameters: Bounded type parameters
allow you to write generic code that is both type-safe and flexible.
They prevent you from accidentally using incompatible types and
enable you to work with a range of related types. The PECS mnemonic
is a valuable tool for remembering how to use upper and lower bounds



effectively.
By using bounded type parameters strategically, you can design robust and
reusable generic classes and methods that work seamlessly with various
types within a defined hierarchy.

Examples of bounded types in practice
We have seen that bounded type parameters are essential in ensuring type
safety and flexibility in generic programming. The following examples
illustrate their practical applications across various domains:

Processing financial transactions: Imagine you are building a
financial system that needs to process various types of transactions,
such as deposits and withdrawals. Each transaction type might have its
own specific logic, but they all share some common properties, like the
amount. We can use a bounded type parameter to create a generic
method that can process any type of transaction while ensuring type
safety.
The following is how:
import java.util.Arrays;
import java.util.List;
abstract class Transaction {
    private double amount;
    public Transaction(double amount) {
        this.amount = amount;
    }
    public double getAmount() {
        return amount;
    }
    public abstract String getType(); // Different 
transaction types
    @Override
    public String toString() {



        return "Transaction{" +
               "amount=" + amount +
               ", type='" + getType() + '\'' +
               '}';
    }
}
class Deposit extends Transaction {
    public Deposit(double amount) {
        super(amount);
    }
    @Override
    public String getType() {
        return "Deposit";
    }
}
class Withdrawal extends Transaction {
    public Withdrawal(double amount) {
        super(amount);
    }
    @Override
    public String getType() {
        return "Withdrawal";
    }
}
public class TransactionProcessor {
    public static <T extends Transaction> void 
processTransactions(List<T> transactions) {
        for (T transaction : transactions) {
            System.out.println("Processing " + 
transaction);
            // Perform specific actions based on 



transaction type (e.g., update balances)
            if (transaction instanceof Deposit) {
                // ... handle deposit-specific logic
            } else if (transaction instanceof 
Withdrawal) {
                // ... handle withdrawal-specific 
logic
            }
        }
    }
    public static void main(String[] args) {
        List<Deposit> deposits = Arrays.asList(new 
Deposit(100), new Deposit(50));
        processTransactions(deposits); // Works: 
Deposit extends Transaction
        List<Withdrawal> withdrawals = 
Arrays.asList(new Withdrawal(20), new 
Withdrawal(75));
        processTransactions(withdrawals); // Works: 
Withdrawal extends Transaction
        List<Transaction> allTransactions = 
Arrays.asList(new Deposit(100), new Withdrawal(20));
        processTransactions(allTransactions); // 
Works: Transaction is a Transaction
        // List<String> strings = Arrays.asList("a", 
"b");
        // processTransactions(strings); // Compile-
time error: String is not a Transaction
    }

}
We define an abstract Transaction class that represents the common
properties of all transactions. Deposit and Withdrawal are concrete



subclasses that represent specific transaction types. They inherit the
amount property and the getAmount() method from Transaction,
but provide their own implementation of the getType() method.
The processTransactions method is generic, using the type
parameter <T extends Transaction>. This bond is crucial. It
means that T can be any type that is a transaction or a subtype of
transaction. This allows the method to work with lists of deposits,
withdrawals, transactions, or any other future transaction type we
might add.
Inside the method, we iterate through the list of transactions. This is
because of the <T extends Transaction> bound; we are
guaranteed that every transaction object in the list is at least a
transaction. This means we can safely call methods like
transaction.getAmount() and transaction.getType().
The main method demonstrates how we can call
processTransactions with lists of different transaction types. The
compiler ensures that we cannot pass a list of, say, String objects to the
method because the string is not a transaction or a subtype of
transaction. This is the type of safety that bounded type parameters
provide. They ensure that our processTransactions method only
works with valid transaction types.
Generic repository interface: Data access is a common task in
software development. A repository pattern is often used to abstract the
details of data storage. We can use generics to create a type-safe and
reusable repository interface. Furthermore, we might need specialized
repositories for entities that have specific functionalities, like
searching. Bounded-type parameters can help us express these
relationships.
Consider the following example, which demonstrates a generic
Repository interface, a Searchable interface for entities that can
be searched, and a SearchableRepository interface that extends
both:
import java.util.List;
public class RepositoryProcessor {



 public static void main(String args[]) {
  SearchableRepository<Product> productRepository = 
new SearchableProductRepository();
  List<Product> products = 
productRepository.search("Laptop");
  System.out.println(products);
 }
}
interface Repository<T> {
 T findById(Long id);
 List<T> findAll();
 void save(T entity);
 void delete(Long id);
}
class ProductRepository implements 
Repository<Product> {
 
 // ... implementation for Product entities
}
// Bounded type parameter for more specialized 
repository operations
interface SearchableRepository<T extends Searchable> 
extends Repository<T> {
 List<T> search(String keyword);
}
interface Searchable {
 boolean matches(String keyword);
}
class SearchableProductRepository extends 
ProductRepository implements 
SearchableRepository<Product> {
 



 // ... implementation for Product entities, 
including search
}
The Repository<T> interface defines basic data access operations for
entities of type T, such as finding by ID, finding all, saving, and
deleting. Specific repository implementations, like
ProductRepository, would provide concrete implementations for
these methods, working with Product entities.
The Searchable interface defines a matches method, which allows an
entity to be checked against a search keyword. The product class now
implements this interface, providing a concrete implementation of the
matches method for products.
The SearchableRepository<T extends Searchable> interface
extends both Repository<T> and adds the search method. The
crucial part here is that the bound T extends Searchable. This
ensures that any repository that implements SearchableRepository
must work with entities that also implement the Searchable
interface. This is how we enforce the relationship; only searchable
entities can have a searchable repository.
The SearchableProductRepository class extends
ProductRepository (and implicitly implements
Repository<Product>) and implements
SearchableRepository<Product>. This is important because the
SearchableRepository itself extends the repository.
By extending ProductRepository, we do not have to rewrite the
basic repository methods. The SearchableProductRepository
provides the specific search implementation, leveraging the matches
method of the product class.
In the main method, we create a
SearchableRepository<Product> and use it to search for
products.
It is because the product implements searchable, and
SearchableProductRepository works with product entities, the



type constraints are satisfied, and the code compiles and runs correctly.
This example clearly demonstrates how bounded type parameters,
combined with interface inheritance, ensure type safety and code
reusability when working with different types of entities and
specialized repository operations.
Implementing a comparable interface: Sometimes, you need to
create generic classes that can be compared to each other. For example,
you might want to create a generic SampleBox class that can hold any
comparable type and then compare SampleBox instances based on the
values they contain. Bounded type parameters, combined with the
comparable interface, make this possible.
The following is how:
class SampleBox<T extends Comparable<T>> implements 
Comparable<SampleBox<T>> {
 private T value;
 public SampleBox(T value) {
  this.value = value;
 }
 public T getValue() {
  return value;
 }
 @Override
 public int compareTo(SampleBox<T> other) {
  return this.value.compareTo(other.value);
 }
 public static void main(String[] args) {
  SampleBox<Integer> box1 = new SampleBox<>(10);
  SampleBox<Integer> box2 = new SampleBox<>(20);
  int comparison = box1.compareTo(box2); // 
Comparing Integer values
  SampleBox<String> box3 = new SampleBox<>("apple");
  SampleBox<String> box4 = new SampleBox<>
("banana");



  int stringComparison = box3.compareTo(box4); // 
Comparing String values
  System.out.println("Integer comparison: " + 
comparison);
  System.out.println("String comparison: " + 
stringComparison);
 }
}

In this example, we define a generic SampleBox class that holds a value of
type T. The crucial part is the declaration SampleBox<T extends
Comparable<T>>. This bound has two important effects:

T extends Comparable<T>: This means that the type parameter T
must implement the Comparable<T> interface. This is essential
because we want to be able to compare SampleBox instances.
The Comparable<T> interface defines the compareTo method, which
is used for comparisons. This bound ensures that we can call the
compareTo method on the value field.
Implements comparable<SampleBox<T>>: This means that the
SampleBox class itself implements the comparable interface.
Specifically, a SampleBox<T> can be compared to another
SampleBox<T>. This allows us to compare SampleBox objects based
on the values they contain.
Inside the compareTo method of the SampleBox class, we simply
delegate the comparison to the compareTo method of the underlying
value (which we know exists because the T extends
Comparable<T> bound).
The main method demonstrates how we can create SampleBox objects
of different comparable types, such as Integer and String. This is
because both integer and string implement comparable, we can create
SampleBox<Integer> and SampleBox<String> objects and
compare them using the compareTo method. The compiler ensures
that we cannot create a SampleBox of a non-comparable type. This is
the power of bounded type parameters; they enforce type constraints



that are necessary for our logic to work correctly.
These examples demonstrate the power and versatility of bounded type
parameters in Java generics. By constraining type parameters to
specific ranges, you can create type-safe and reusable code that works
seamlessly with related types. Bounded types are essential for building
robust and flexible generic classes and methods.

Conclusion
This chapter has provided a comprehensive overview of the key features of
generics, including type parameters, wildcards, and bounded types. By
using generics effectively, you can catch type errors at compile time, write
code that is more adaptable to different data types, and avoid the overhead
of runtime casts.
The next chapter explores how generics are used in the Java Collections
Framework, where they play a crucial role in making your code cleaner and
more reliable. We will see how generics help you work with collections
more effectively.

Exercise
1. What is the purpose of a bounded type parameter in Java

generics?
a. To allow the use of primitive types in generic classes.
b. To restrict the type argument to a specific range of types.
c. To improve the runtime performance of generic code.
d. To simplify the syntax for declaring generic methods.

2. Which keyword is used to specify an upper bound for a type
parameter?
a. super
b. extends
c. implements
d. within



3. Which keyword is used to specify a lower bound for a type
parameter?
a. super
b. extends
c. implements
d. within

4. What does the upper bound <T extends Number> mean?
a. T can be any type.
b. T can be a number or any supertype of a number.
c. T can be a number or any subtype of number.
d. T must be exactly the number.

5. What does the lower bound <T super Comparable<T>> mean?
a. T can be any type that implements comparable.
b. T can be comparable or any supertype of comparable.
c. T can be comparable or any subtype of comparable.
d. T must be exactly comparable.

6. When is it appropriate to use an upper bounded wildcard (?
extends Type)?
a. When you want to add elements to a collection.
b. When you want to read elements from a collection.
c. When you want to define a generic class.
d. When you want to specify a lower bound for a type parameter.

7. When is it appropriate to use a lower bounded wildcard (? super
Type)?
a. When you want to read elements from a collection.
b. When you want to add elements to a collection.
c. When you want to define a generic interface.
d. When you want to specify an upper bound for a type parameter.

8. Which of the following is a correct way to declare a method that
accepts a list of numbers or their subtypes?
a. public void processNumbers(List<Number> numbers)



b. public void processNumbers(List<? extends Number> numbers)
c. public void processNumbers(List<? super Number> numbers)
d. public void processNumbers(List<T extends Number> numbers)

9. Which of the following is a correct way to declare a method that
can add Integers to a list that can hold Integers or their
supertypes?
a. public void addIntegers(List<Integer> list)
b. public void addIntegers(List<? extends Integer> list)
c. public void addIntegers(List<? super Integer> list)
d. public void addIntegers(List<T super Integer> list)

10. What is the PECS principle?
a. A rule for defining generic classes.
b. A mnemonic for remembering when to use extends and super with

wildcards.
c. A set of rules for converting primitive types to wrapper types.
d. A guideline for improving the performance of generic code.

Answers
1. a

Explanation: Bounded type parameters restrict the types that can be
used as type arguments, enabling type safety and allowing you to work
with a range of related types.

2. b
Explanation: The extends keyword is used to define an upper bound,
limiting the type parameter to a specific type or its subtypes.

3. a
Explanation: The super keyword is used to define a lower bound,
restricting the type parameter to a specific type or its supertypes.

4. c
Explanation: <T extends Number> means T can be Number itself, or
any class that inherits from Number (for example, integer, double).

5. b



Explanation: <T super Comparable<T>> means T can be Comparable
itself, or any interface/class that Comparable is a supertype of.

6. b
Explanation: Upper bounded wildcards are typically used when you
are producing values from a collection (reading), as they ensure that
you will get at least the specified type.

7. b
Explanation: Lower bounded wildcards are commonly used when you
are consuming values (adding) to a collection, ensuring the collection
can accept elements of at least the specified type.

8. b
Explanation: List<? extends Number> allows the method to accept
lists of Number, Integer, Double, etc.

9. c
Explanation: List<? super Integer> allows the method to accept lists of
Integer, Number, Object, etc., and you can safely add Integers to any of
these lists.

10. b
Explanation: Producer extends, consumer super (PECS) is a helpful
mnemonic to remember when to use extends (for producing or reading)
and super (for consuming or writing) with wildcards.
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CHAPTER 3
Generics in Collections

Introduction
The Java Collections Framework provides a set of well-structured interfaces
and classes for managing groups of objects efficiently. Before the
introduction of generics, collections operated on raw types, which allowed
insertion of any object type and required explicit casting when retrieving
elements. This often led to runtime ClassCastExceptions and made the code
verbose and error-prone. Generics addressed these issues by enforcing type
safety at compile time, eliminating the need for explicit casting and
enabling early detection of type-related errors. This significantly improved
code reliability. In this chapter, we will explore how generics are applied to
different collection types and understand their advantages in improving
code readability, maintainability, and performance.

Structure
The chapter covers the following topics:

Overview of Java Collections Framework
Applying generics to List<T>
Applying generics to Set<T>



Applying generics to Map<K, V>
Common pitfalls and best practices
Type erasure in generics

Objectives
By the end of this chapter, you will understand how Java’s Collections
Framework integrates with generics to provide type-safe and reusable data
structures. You will learn how generics are applied to common collections
like List<T>, Set<T>, and Map<K, V>, along with best practices to avoid
pitfalls when working with them. Additionally, you will explore type
erasure and its impact on generics in collections. Exercises at the end of this
chapter will reinforce your understanding through practical implementation.

Overview of Java Collections Framework
The Java Collections Framework (JCF) is a unified architecture for
handling and manipulating collections in Java. It includes interfaces and
classes for various data structures, such as Lists, Sets, Maps, etc. The
framework provides efficient and flexible ways to store, retrieve, and
process objects.
Before exploring the application of generics in the Java Collections
Framework, it is helpful to understand the core collection interfaces.
The following table provides an overview of the main collection types and
their primary characteristics:

Interface Description

List<T> An ordered collection that allows duplicates (for example, ArrayList,
LinkedList).

Set<T> A collection that does not allow duplicates and is not ordered (for example,
HashSet, TreeSet).

Queue<T> A collection designed typically for first-in-first-out (FIFO) operations (for
example, PriorityQueue).

Map<K, V> A collection that stores key-value pairs (for example, HashMap, TreeMap).



Table 3.1: Core interfaces in Java Collections Framework
Understanding these collection types and their characteristics lays the
foundation for effectively using generics with them. Generics enhance the
type safety and flexibility of collections, allowing you to work with
strongly typed data structures while avoiding unnecessary type casting and
runtime errors.
In the following sections, we will explore how generics are applied to List,
Set, and Map, along with best practices to ensure type safety and
maintainability in your code. We will explore the Collections Framework in
depth in Chapter 4, Introduction to Collections Framework.
While generics are primarily known for enhancing type safety and
readability, they also contribute to performance improvements. In pre-
generic code, collections stored elements as raw Object types, requiring
frequent casting and introducing the risk of ClassCastException at
runtime. Generics eliminate the need for such casts, enabling more efficient
and safer bytecode.
Moreover, generics reduce the overhead associated with boxing and
unboxing when working with wrapper types, especially in collections like
List<Integer>. Although Java does not yet include primitive-specialized
collections (e.g., IntList) in the core library, generics with wrapper types
provide a cleaner and more performant alternative to unchecked operations.
This compile-time type enforcement ensures cleaner code execution paths
and allows tools like the Java Virtual Machine (JVM) and just-in-time
compiler (JIT compiler) to optimize bytecode more effectively.
Consider the following example:
// Without generics (pre-Java 5)
List numbers = new ArrayList();
numbers.add(10);                     // Autoboxed to 
Integer
int n = (Integer) numbers.get(0);    // Requires 
explicit cast
// With generics
List<Integer> numbersGen = new ArrayList<>();



numbersGen.add(10);                  // Still autoboxed
int m = numbersGen.get(0);           // No cast needed
The second example avoids the need for explicit casting and allows the 
compiler to perform type checks during compilation. This not only 
improves safety but also enables better runtime optimization.

Applying generics to List<T>
The List<T> interface in Java represents an ordered collection of
elements, allowing duplicates and providing positional access. Generics
enhance lists by enforcing type safety, preventing runtime
ClassCastException by ensuring that only elements of a specified type
are stored in the list.
Before generics were introduced, Java collections stored elements of type
object, meaning different types of objects could be added to the same list.
However, this led to unsafe type conversions, requiring explicit casting
when retrieving elements.
Consider the following example of a non-generic list implementation:
import java.util.ArrayList;
import java.util.List;
public class NonGenericListExample {
 public static void main(String[] args) {
  List nonGenericList = new ArrayList(); // Raw type li
st
  nonGenericList.add("Java"); // String added
  nonGenericList.add(100); // Integer added (no compile
-time error)
  fetchItems(nonGenericList);
 }
 public static void fetchItems(List nonGenericListItems
) {
  String item1 = (String) nonGenericListItems.get(0); /



/ Explicit casting (safe)
  String item2 = (String) nonGenericListItems.get(1); /
/ Runtime error! ClassCastException
  System.out.println(item1);
  System.out.println(item2); // This will cause an erro
r
 }
}
In this example, the list nonGenericList is created without specifying a
type. We add a string and an integer to the same list. When retrieving
elements, Java treats them as Object. In the method, fetchItems(List
nonGenericListItems), when fetching the second item (which is an
integer), we can avoid compile-time error with explicit casting ((String)
list.get(1);). However, at runtime, this would lead to a
ClassCastException as an Integer cannot be casted to a String.
This is the reason to introduce generics, as they enforce type safety at
compile time.
By specifying a type parameter (<T>), we restrict the list to store only one
type of element.
Let us write the same example with generics:
import java.util.ArrayList;
import java.util.List;
public class GenericListExample {
 public static void main(String[] args) {
  List<String> genericList = new ArrayList<>
(); // Type-safe list
  genericList.add("Java");
  // genericlist.add(100); // Compilation error - only 
Strings allowed
  String item1 = genericList.get(0); // No explicit cas
ting needed



  System.out.println(item1); // Output: Java
 }
}
Here, List<String> ensures only string elements can be stored. Trying to
add 100 (an integer) would cause a compilation error. When retrieving the
elements, no explicit casting is needed. The code is safer and cleaner with
generics.

Wildcards in generic lists
While generics enforce strict type safety, there are scenarios where we want
flexibility in working with unknown or related types. For example, we
might want a method to process a list containing elements of different but
related types.
Consider the following code:
public void printNames(List<? extends Person> people) {
for (Person p : people) {
System.out.println(p.getName());
}
}
In the above code, the printNames method accepts a list of any type that
is a subtype of Person (e.g., Employee, Student, etc.), allowing flexibility
while still preserving type safety. Without wildcards, you would need a
separate method for each specific subtype.
This is where wildcards (?) come in. Wildcards allow us to create more
generalized methods that work with a range of generic types while still
maintaining type safety. Let us explore the different types of wildcards and
how they can be used effectively:

Unbounded wildcards (?): Sometimes, we need to write methods that
can accept lists of any type without being restricted to a specific
generic type parameter. This is especially useful when we are only
reading data from the list and do not need to modify it.
By using an unbounded wildcard (?), we indicate that the method can
accept a list of any type, but we treat the elements as objects since we



do not know their exact type. Let us look at an example:
import java.util.List;
import java.util.Arrays;
public class UnboundedWildcardListExample {
    public static void printList(List<?
> unboundedList) {
        for (Object eachItem : unboundedList) {
            System.out.println(eachItem);
        }
    }
    public static void main(String[] args) {
        List<String> stringList = Arrays.asList("A",
 "B", "C");
        List<Integer> intList = Arrays.asList(1, 2, 
3);
        printList(stringList); // Works for any type
        printList(intList);
    }
}
In this example, any list type (List<String>, List<Integer>,
etc.) can be passed to printList method. We cannot add new
elements to List<?> because the exact type is unknown. The
following line would lead to a compile-time error:
unboundedList.add(“Hello”);
Upper bounded wildcards (? extends Type) in lists: When dealing
with lists in generics, upper bounded wildcards (? extends T) allow
us to work with collections that contain elements of a specific type or
any of its subclasses. This is useful when we want to read data from a
list without worrying about its exact type, if it is within the specified
bounds.
Since the list can hold elements of various subtypes, we can safely



retrieve elements, but we cannot add new elements to the list (except
null) because we do not know the exact type at runtime. Let us explore
this with the following example:
import java.util.List;
public class UpperBoundedWildcardListExample {
 public static double sumOfNumbers(List<? extends Nu
mber>
 upperBoundedNumberList) {
  double sum = 0;
  for (Number num : upperBoundedNumberList) {
   sum += num.doubleValue(); // Safe because Number 
has doubleValue()
  }
  return sum;
 }
 public static void main(String[] args) {
  List<Integer> intList = List.of(1, 2, 3);
  List<Double> doubleList = List.of(1.5, 2.5, 3.5);
  System.out.println(sumOfNumbers(intList)); // Outp
ut: 6.0
  System.out.println(sumOfNumbers(doubleList)); // O
utput: 7.5
 }
}



The method sumOfNumbers(List<? extends Number>
upperBoundedNumberList) takes a list of any subclass of Number
(Integer, Double, etc.). It iterates through the list and sums up the
values using doubleValue(), which is available for all number types.
This ensures that we can pass lists of integers, doubles, floats, etc.
We can retrieve elements as Number because we are sure they extend
Number, but we cannot add new elements to numbers (except null).
Lower bounded wildcards (? super Type) in lists: Lower bounded
wildcards allow us to work with collections that can accept elements of
a specific type or any of its supertypes. This is particularly useful when
we want to add elements to a collection while maintaining type safety.
Unlike upper bounded wildcards, where we could only read elements,
lower bounded wildcards allow safe addition but restrict retrieval to
Object (since we do not know the specific type). Let us explore this
with the following example:
import java.util.List;
import java.util.ArrayList;
public class LowerBoundedWildcardListExample {
 public static void addIntegers(List<? super Integer
> lowerBoundedList) 
{
  lowerBoundedList.add(10);
  lowerBoundedList.add(20);
  lowerBoundedList.add(30);
  // numbers.add(3.14); // Compilation error! Cannot
 add Double
  System.out.println("List after adding integers: " 
+ lowerBoundedList);
 }
 public static void main(String[] args) {
  List<Number> numberList = new ArrayList<>();
  List<Object> objectList = new ArrayList<>();



  addIntegers(numberList);
  addIntegers(objectList);
  System.out.println(numberList); // Output: [10, 20
, 30]
  System.out.println(objectList); // Output: [10, 20
, 30]
 }
}
Method addIntegers(List<? super Integer> numbers)
takes a list of integers or any of their supertypes (Number, Object). It
safely adds integers (10, 20, 30) because Integer is the lower bound. It
cannot add a Double or a String because those are not subtypes of an
integer.
We can add elements of type integer or its subclasses. We cannot
retrieve elements as integers, only as objects, because the list might be
a List<Number> or List<Object>:
Integer num = numbers.get(0); // Compilation error!
Type mismatch
Object obj = numbers.get(0); // Allowed

Lower bounds in lists are best suited for writing operations, such as adding
values to a collection.

Applying generics to Set<T>
Generics enhance type safety and flexibility in Java's Set interface. By
applying generics to sets, you can ensure that all elements belong to a
specific type while benefiting from compile-time checks. This section
explores how generics work with sets, including wildcard usage, upper, and
lower bounds.
Set<T> is a collection that does not allow duplicate elements. By
specifying a generic type T, you can create strongly typed sets that prevent
accidental type mismatches.
Let us start by looking at a simple example of a generic set:



import java.util.Set;
import java.util.HashSet;
public class GenericSetExample {
 public static void main(String[] args) {
  Set<String> stringSet = new HashSet<>();
  stringSet.add("item1");
  stringSet.add("item2");
  stringSet.add("item3");
  for (String item : stringSet) {
   System.out.println(item);
  }
 }
}
The Set<String> ensures that only String elements can be stored in the
set. Trying to add an Integer would result in a compile-time error. The for
loop iterates safely without requiring explicit type casting.

Wildcards in generic sets
Wildcards allow for greater flexibility when working with sets containing
unknown or related types. Let us understand this with examples:

Unbounded wildcards (Set<?>): Unbounded wildcards (?) are useful
when the exact type of elements in the set is unknown, but we still need
to read from it. This is often used in generic methods that operate on
sets of various types without modifying them.
Consider the following example.
import java.util.Set;
public class UnboundedWildcardSetExample {
 public static void printSet(Set<?> unboundedSet) {
  for (Object element : unboundedSet) {
   System.out.println(element);
  }



 }
}
The method accepts any set, regardless of its element type. Since the
type is unknown, you cannot add new elements to the set within the
method. Iteration works using an object, ensuring type safety while
reading values.
Upper bounded wildcards (Set<? extends T>): Upper bounded
wildcards allow a set to hold elements that are of a specific type or its
subclasses. This is useful when working with collections that store a
hierarchy of objects. Let us see how this works in practice:
import java.util.Set;
public class UpperBoundedWildcardSetExample {
 public static void printAnimalSounds(Set<? extends 
Animal> 
upperBoundedSet)
 {
  for (Animal animal : upperBoundedSet) {
   animal.animalSound();
  }
 }
}
class Animal {
 void animalSound() {
  System.out.println("Some general animal sound");
 }
}
class Dog extends Animal {
 @Override
 void animalSound() {
  System.out.println("Bark");
 }
}



The wildcard ? extends Animal ensures that the set contains
elements that are animals or any subclass (Dog, Cat, etc.). The method
iterates over the set and calls animalSound(), ensuring correct
behaviour for each subclass. You cannot add new elements inside the
method because the exact subtype is unknown at runtime.
Lower bounded wildcards (Set<? super T>): Lower bounded
wildcards allow sets to contain elements of a specified type or any of
its super classes. This is particularly useful when you need to add
elements while ensuring a minimum type constraint. Let us explore this
with an example:
import java.util.Set;
public class LowerBoundedWildCardsetExample {
 public static void addEmployees(Set<? super 
Manager> employeeSet) {
  employeeSet.add(new Manager("Manager1"));
  employeeSet.add(new Manager("Manager2"));
 }
}

The wildcard ? super Manager ensures the set can hold a Manager or
any superclass (Employee, Person). You can add Manager elements since it
is a valid subtype. Retrieving elements is limited since the exact type is
unknown beyond the object.

Applying generics to Map<K,V>
Generics significantly improve type safety and flexibility when working
with Java’s Map interface. By applying generics to maps, we ensure that
both keys and values conform to specific types, reducing runtime errors and
unnecessary casting. This section explores how generics work with maps,
including wildcard usage, upper and lower bounds
Map<K, V> associates keys of type K with values of type V. By specifying
generic types, we create strongly typed maps that prevent accidental type
mismatches.



Let us start by looking at a simple example of a generic Map:
import java.util.Map;
import java.util.HashMap;
public class GenericMapExample {
 public static void main(String[] args) {
  Map<Integer, String> genericEmployeeMap = new HashMap
<>();
  genericEmployeeMap.put(101, "Employee1");
  genericEmployeeMap.put(102, "Employee2");
  genericEmployeeMap.put(103, "Employee3");
  for (Map.Entry<Integer, String> entry : genericEmploy
eeMap.entrySet()) {
   System.out.println("ID: " + entry.getKey() + ", Name
: " + entry.getValue());
  }
 }
}
The Map<Integer, String> ensures that only Integer keys and
String values can be stored. Using generics prevents accidental type
mismatches when inserting or retrieving elements. The for loop iterates
through the entries safely without requiring explicit type casting.

Wildcards in generic maps
Wildcards make maps more flexible when handling various types. Let us
understand this with examples:

Unbounded wildcards (Map<?, ?>): Unbounded wildcards (?) allow
a map to store any key-value pair without specifying exact types. This
is useful for read-only operations where we do not modify the map:
import java.util.Map;
public class UnboundedWildcardMapExample {
 
 public static void printMap(Map<?, ?



> unboundedGenericMap) {
     for (Map.Entry<?, ?
> entry : unboundedGenericMap.entrySet()) {
         System.out.println("Key: " + entry.getKey()
 + ", Value: " + 
entry.getValue());
     }
 }
}
The method printMap accepts any map, regardless of key or value
types. Since the exact types are unknown, adding new elements is not
allowed. Iteration works using an object, ensuring type safety while
reading values.
Upper bounded wildcards (Map<? extends K, ? extends V>): Upper
bounded wildcards allow maps to hold elements that belong to a
specific type or its subclasses. This is useful when working with class
hierarchies.
Let us understand this with an example:
import java.util.HashMap;
import java.util.Map;
public class UpperBoundedWildcardMapExample {
 public static void printEmployees(Map<? extends Num
ber, ? extends 
Employee> 
employeeMap) {
  for (Map.Entry<? extends Number, ? extends Employe
e> entry : 
employeeMap.entrySet()) {
   System.out.println("ID: " + entry.getKey() + ", N
ame: " + 
entry.getValue().empName);
  }



// Note: We cannot add entries to employeeMap here 
because the exact t
ypes //of the key and value are unknown
// For example, the below is not allowed.
//employeeMap.put(3, new Employee("NewEmp", 3));
 }
 public static void main(String[] args) {
  Map<Integer, Employee> employees = new HashMap<>
();
  employees.put(1, new Employee("Employee1", 1));
  employees.put(2, new ProgramManager("Employee2", 2
)); 
// ProgramManager is a subclass of Employee
  printEmployees(employees);
 }
}
class Employee {
 String empName;
 int empId;
 Employee(String name, int id) {
  this.empName = name;
  this.empId = id;
 }
}
class ProgramManager extends Employee {
 ProgramManager(String name, int id) {
  super(name, id);
 }
}
The wildcard ? extends Number ensures that keys are of type
Number or its subclasses. The wildcard ? extends Employee



ensures that values are Employee or any subclass (Manager). You
cannot insert new elements inside the method, as the exact subtype is
unknown at runtime.
The main method demonstrates how to create a Map<Integer,
Employee> and pass it to printEmployees.
Lower bounded wildcards (Map<? super K, ? super V>): Lower
bounded wildcards allow maps to store elements of a specified type or
any of its super classes. This is useful when adding new elements while
ensuring a minimum type constraint:
import java.util.Map;
import java.util.HashMap;
public class LowerBoundedWildcardMapExample {
 public static void addEmployees(Map<? super Integer
, ? super Employee> 
employeeMap) {
  employeeMap.put(201, new Employee("Employee1", 201
));
  employeeMap.put(202, new ProgramManager("Employee2
", 202));
 }
 public static void main(String[] args) {
  Map<Number, Object> employees = new HashMap<>();
  addEmployees(employees);
  for (Map.Entry<Number, Object> entry : employees.e
ntrySet()) {
   System.out.println("ID: " + entry.getKey() + ", V
alue: " + 
entry.getValue());
  }
 }
}
The wildcard ? super Integer ensures the map can accept



Integer or any superclass (like Number, Object). The wildcard ?
super Employee ensures that values are Employee or any
superclass. You can add elements, but retrieving values requires casting
since the exact type is unknown beyond object.

The main method demonstrates how a Map<Number, Object> is used to
call addEmployees.

Common pitfalls and best practices
When using generics with Java collections (List, Set, and Map), it is
crucial to follow best practices to ensure type safety and prevent runtime
errors. Misusing generics can lead to issues like compilation errors, class
cast exceptions, and unexpected behaviour.
In the following, we will discuss some common pitfalls and how to avoid
them with best practices:

Using raw types instead of parameterized types:

Pitfall: Using raw types (i.e., collections without generic
parameters) removes compile-time type checking, increasing the
risk of ClassCastException at runtime:

List namesList = new ArrayList(); // Raw type, no
 type safety
namesList.add(10); // Allowed, but incorrect if e
xpecting only Strings
String name = (String) namesList.get(0); // Throw
s ClassCastException

Best practice: To enforce type safety, always specify the generic
type when declaring collections. This ensures that only compatible
objects are added, preventing runtime errors:

List<String> namesList = new ArrayList<>
(); // Type-safe collection
namesList.add("Name1"); // Allowed
namesList.add("Name2"); // Allowed



String name = namesList.get(0); // No casting nee
ded

Adding elements to collections with wildcards:

Pitfall: When using upper bounded wildcards (? extends T), the
compiler prevents modifications because it cannot determine the
exact subtype, leading to compilation errors:
List<? extends Number> numbers = new 
ArrayList<Integer>();
numbers.add(10); // Compilation error: Can't add 
elements

Best practice: Use lower bounded wildcards (? super T) when
you need to add elements, ensuring that the collection can accept
the expected type safely:
List<? super Integer> numbers = new ArrayList<>
();
numbers.add(10); // Allowed
numbers.add(20); // Allowed
From this, a clear guideline emerges for reading from and writing to
collections with wildcards:

Use ? extends T when reading elements (ensures you can
retrieve values safely).
Use ? super T when writing elements (ensures you can insert
values safely).

Misusing upper and lower bounded wildcards:

Pitfall: Using ? extends T incorrectly can lead to situations
where adding elements is disallowed.
List<? extends Animal> animals = new 
ArrayList<Dog>();
animals.add(new Dog()); // Compilation error

Best practice: If you need to modify a collection, use a lower



bounded wildcard (? super T) to allow inserting elements safely.

List<? super Dog> animals = new ArrayList<Animal>
();
animals.add(new Dog()); // Allowed
animals.add(new Bulldog()); // Allowed if Bulldog 
extends Dog
This leads to a helpful rule of thumb when working with generics
and wildcards:

Use ? extends T for reading values, but avoid modifying the
collection.
Use ? super T for adding elements while restricting the types
that can be retrieved.

Using unbounded wildcards (?) for modification operations:

Pitfall: An unbounded wildcard (?) makes a collection completely
type-agnostic, which means we cannot add any elements to it.
Set<?> set = new HashSet<Integer>();
set.add(5); // Compilation error: Cannot add to a 
wildcard collection

Best practice: Unbounded wildcards (?) should be used for read-
only operations, such as printing or iterating through collections,
where modification is not required.

Use ? when you only need to read from a collection and do not need
to modify it. If modification is required, use a specific type or ?
super T instead:
public static void printCollection(Set<?> set) {
    for (Object element : set) {
        System.out.println(element); // Reading 
is allowed
    }
}



This gives rise to a simple guideline when using unbounded
wildcards:

Use ? when you only need to read from a collection and do not
need to modify it.
If modification is required, use a specific type or ? super T
instead.

Using generics in maps incorrectly:

Pitfall: Incorrectly specifying key-value types in generic maps can
lead to type mismatch errors:
Map<Object, String> map = new HashMap<Integer, 
String>(); // Compilation error

Best practice: Always declare Map<K, V> correctly to maintain
type safety and avoid mismatches:
Map<Integer, String> employeeMap = new HashMap<>
();
employeeMap.put(101, "Employee1");
employeeMap.put(102, "Employee2");
This leads to a general principle for reading from and writing to
generic maps safely:

When reading values from a generic map, use Map<?, ?> to
allow different key-value types without modification.
When writing values, use Map<? super K, ? super V> to
allow type-safe insertions.

Misunderstanding invariance:

Pitfall: A common misconception in Java generics is assuming that
subtyping relationships between classes carry over to generic types.
However, Java generics are invariant, meaning that
List<Integer> is not a subtype of List<Number>, even though
Integer is a subtype of Number:



List<Number> numbers = new ArrayList<Integer>();
// Compilation error

Best practice: Always declare Map<K, V> correctly to maintain
type safety and avoid mismatches:
Map<Integer, String> employeeMap = new HashMap<>
();
employeeMap.put(101, "Employee1");
employeeMap.put(102, "Employee2");
This leads to a general principle for reading from and writing to
generic maps safely:

When reading values from a generic map, use Map<?, ?> to
allow different key-value types without modification.
When writing values, use Map<? super K, ? super V> to
allow type-safe insertions.

Type erasure in generics
Type erasure is the process by which the Java compiler removes generic
type parameters and replaces them with their bound type (or object if no
bound is specified). Generics in Java provide compile-time type safety but
do not exist at runtime due to type erasure. This means that all generic type
information is removed during compilation, and only raw types remain.
While this allows backward compatibility with older Java versions, it also
introduces certain limitations and pitfalls.
Let us understand how type erasure works, its impact, and how to handle its
limitations effectively.
Consider the following example of a generic class:
public class TypeEraserExample<T> {
 private T value;
 public void set(T value) {
  this.value = value;
 }



 public T get() {
  return value;
 }
}
After compilation, type erasure removes the generic type and transforms it
into:
public class TypeEraserExample {
 private Object value;
 public void set(Object value) {
  this.value = value;
 }
 public Object get() {
  return value;
 }
}
This means that at runtime, generic type parameters do not exist, everything
is treated as an object, and type safety is enforced only at compile-time.

Impact of type erasure
Since type information is erased at runtime, several limitations arise. Let us
understand these limitations in detail:

Loss of type information: At runtime, all instances of a generic type
look the same. For example:
List<String> stringList = new ArrayList<>();
List<Integer> intList = new ArrayList<>();
System.out.println(stringList.getClass() ==
intList.getClass()); // true

Both lists appear to be instances of ArrayList without any distinction
in type.
Restrictions on instanceof: Since type parameters do not exist at
runtime, using instanceof with generic types is not allowed. For
example:



if (value instanceof List<String>) {  // Compilation 
error
    System.out.println("This is a list of strings");
}
Instead, you must use wildcard types:
if (value instanceof List<?>) {
    System.out.println("This is a list");
}
Generic arrays are not allowed: This is because type information is
erased. Java does not allow the creation of generic arrays:
T[] array = new T[10]; // Compilation error
This restriction exists because arrays in Java enforce runtime type
safety, whereas generics do not retain type information after
compilation. To work around this, you can use reflection:
T[] array = (T[]) Array.newInstance(clazz, 10);
Here, clazz is an instance of Class<T>, which represents the type at
runtime. It allows the creation of an array of the correct type, even
though generics lose their type information due to erasure.
Alternatively, instead of arrays, you can use a List<T>:
List<T> list = new ArrayList<>();
Method overloading issues: Methods differing only by generic type
parameters are considered identical after type erasure, leading to
compilation errors. For example:
public void process(List<String> list) { }
public void process(List<Integer> list) { } //
Compilation error
To resolve this, you can use different method names:
public void processStrings(List<String> list) { }
public void processIntegers(List<Integer> list) { }
You can also use wildcards to handle multiple types in one method, as
shown in the following:
public void process(List<?> list) {



    System.out.println("Processing list: " + list);
}

Conclusion
In this chapter, we explored the intricacies of Java generics and their impact
on type safety, code reusability, and runtime behaviour. We examined how
generics enhance collections like lists, sets, and maps, ensuring compile-
time checks and preventing unsafe operations. Along the way, we discussed
common pitfalls, such as using raw types, misusing wildcards, and the
limitations introduced by type erasure. By adopting best practices, like
handling wildcards carefully and understanding how type erasure works,
developers can write more flexible and maintainable code.
Understanding generics lays a strong foundation for working with Java’s
powerful collection classes. In the next chapter, we will begin our
exploration of the JCF, learning how it simplifies data manipulation and
provides essential structures for organizing and managing data.

Exercise
1. Which of the following is a correct way to declare a type-safe List

in Java?
a. List list = new ArrayList();
b. List<Object> list = new ArrayList();
c. List<String> list = new ArrayList<>();
d. List<?> list = new ArrayList<String>();

2. What will be the output of the following code?
public <T extends Number> void print(T t) {

System.out.println(t.intValue());
}

print(5.5);
a. 5



b. 5.5
c. Compile error
d. Runtime error

3. Which wildcard should you use when you only need to read
elements from a collection?
a. ? super T
b. ? extends T
c. ?
d. T

4. What will be the output of the following code?
List<String> list1 = new ArrayList<>(); 
List<Integer> list2 = new ArrayList<>(); 
System.out.println(list1.getClass() == 
list2.getClass());
a. true
b. false
c. Compile-time error
d. Runtime exception

5. Which of the following declarations allows adding elements to a
collection?
a. List<? extends Number> list = new ArrayList<Integer>();
b. List<?> list = new ArrayList<String>();
c. List<? super Integer> list = new ArrayList<Number>();
d. List list = new ArrayList();

6. What is the result of this code?
List<String>[] arr = new ArrayList<String>[10];
a. Compiles successfully
b. Compile error
c. Runtime error
d. Work with warning

7. Which keyword is used to declare a lower bounded wildcard in



Java?
a. extends
b. super
c. implements
d. wildcard

8. What is a common pitfall of using raw types in Java collections?
a. Increased runtime performance.
b. Reduced memory usage.
c. Loss of compile-time type safety and potential ClassCastException.
d. Simplified syntax for method declarations.

9. How can you safely check if an object is a List of any type?
a. if(obj instanceof List<String>)
b. if(obj instanceof List<?>)
c. if(obj instanceof List<T>)
d. if(obj instanceof ArrayList<String>)

10. Which method signature is valid for processing collections of any
type?
a. public <T> void process(List<T> list)
b. public void process(List<?> list)
c. public void process(List<Object> list)
d. public void process(List list)

Answers
1. c

Explanation: Declaring List<String> ensures type safety, so only
String elements can be added to the list, preventing runtime
ClassCastException.

2. b
Explanation: The method print(T t) accepts any type that extends
Number. 5.5 is a double, which is a subtype of Number, so it's valid.
t.intValue() returns the integer part of the double, which is 5. Hence,
the output is 5.



3. b
Explanation: The ? extends T wildcard is used for reading elements. It
ensures you can retrieve values safely but prevents adding new
elements (except null).

4. a
Explanation: Due to type erasure, generic type information is removed
at runtime in Java. So both List<String> and List<Integer> become just
List. Therefore, their runtime classes are the same, and list1.getClass()
== list2.getClass() returns true.

5. c
Explanation: Using ? super Integer allows adding Integer or its
subtypes to the list, as it accepts elements that are Integer or a
superclass of Integer.

6. b
Explanation: You cannot create generic arrays in Java directly due to
type erasure. This line List<String>[] arr = new ArrayList<String>[10];
produces a compile-time error, because generic array creation is not
allowed.

7. b
Explanation: The 'super' keyword defines a lower bounded wildcard,
meaning the collection can accept elements of a specified type or its
subtypes.

8. c
Explanation: Using raw types removes compile-time type checks,
making it possible to insert incompatible elements and leading to
runtime ClassCastException errors.

9. b
Explanation: Since generic type information is erased at runtime, you
cannot check for specific types with instanceof. Using List<?> allows a
safe type check.

10. b
Explanation: Using List<?> as a method parameter allows the method
to accept a list of any type, without knowing its specific type. It



supports flexibility while still being type-safe for read-only operations.
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CHAPTER 4
Introduction to Collections Framework

Introduction
The Collections Framework in Java is a powerful and essential part of the Java Development Kit (JDK). It
provides a unified architecture for representing and manipulating groups of objects. Before the Collections
Framework, developers had to rely on ad-hoc data structures like arrays, which often led to code that was difficult
to maintain and extend.
Consider organizing a library without a structured system. The books would be scattered, making it extremely
difficult to locate specific titles. The Collections Framework serves as an organized library system, providing a
variety of pre-implemented data structures with well-defined interfaces, facilitating efficient data management and
manipulation.

Structure
The chapter covers the following topics:

Overview of Java Collections Framework
Collections hierarchy
Collection interface
Key methods in collections
Iterable interface and iterators
Nested classes in collections
Wrapper class

Objectives
By the end of this chapter, you will have a comprehensive understanding of the JCF, including its architecture, core
interfaces, and the relationships between them. This foundational knowledge will enable you to effectively work
with different collection types and understand their strengths and trade-offs. In subsequent chapters, we will
discuss the detailed implementations of List, Set, and Map, providing you with practical insights for real-world
Java development.

Overview of Java Collections Framework
The JCF is a set of interfaces and classes that provide a unified architecture for storing and processing collections 
of objects. It eliminates the need for developers to create custom data structures, allowing them to leverage pre-
built, optimized implementations.
Before Java 2, developers used arrays and other manual data structures to store and manage data. However, arrays



have several limitations:
Fixed size (cannot grow dynamically)
No built-in sorting or searching algorithms
Lack of flexibility in adding or removing elements

To overcome these issues, JCF provides resizable and efficient data structures, making operations like searching,
sorting, and iteration easier.

Collections hierarchy
The JCF is built around a set of interfaces and abstract classes. The following figure represents its hierarchy:

Figure 4.1: Collections hierarchy

The key interfaces of the collection hierarchy are:
Collection: The root interface for all collection types.
List: An ordered collection that allows duplicates (ArrayList, LinkedList).
Set: A collection that does not allow duplicate elements (HashSet, TreeSet).
Queue: A collection that follows FIFO (PriorityQueue).
Map: A collection of key-value pairs (Hashtable, HashMap, TreeMap).

Each interface has different implementations optimized for specific use cases.

Collection interface
The collection interface is the root interface of the JCF. It represents a group of objects, known as elements, and is
the parent interface of more specialized collection types like List, Set, and Queue.
However, we often confuse collection with collections, which are two distinct concepts in Java. Understanding this
distinction is essential, as it helps avoid common mistakes when working with the Java Collections Framework.
The following table shows the difference between collection and collections:

Aspect Collection Collections



Type Interface Utility class

Package java.util.Collection java.util.Collection

Purpose Represents a group of objects Provides static methods for collection manipulation

Key methods add(), remove(), size(), iterator() sort(), reverse(), shuffle(),
min()

Inheritance Extended by List, Set, Queue No inheritance. It is purely a helper class.

Example Collection<String> names = new 
ArrayList<>(); names.add("Ryan"); 
names.add("Roger");

Collections.sort((List<String>) names);

Table 4.1:  Collections and collection differences

Key methods in the collection interface
The collection interface provides several essential methods for managing and manipulating elements. Let us
explore the most used ones, with examples:

add(E element): Adds an element to the collection. Returns true if the collection changed because of the
operation.
The add(E element) method attempts to insert the specified element into the collection and returns true if
the collection was modified. The following example demonstrates this behavior:
import java.util.ArrayList;
import java.util.Collection;
public class AddElementExample {
 public static void main(String[] args) {
  Collection<String> names = new ArrayList<>();
  names.add("Ryan");
  names.add("Roger");
  boolean checkAddReturn = names.add("Royce");  
  System.out.println(checkAddReturn);// Output: true
  System.out.println(names); // Output: [Ryan, Roger, Roger]
 }
}

In the above example, the checkAddReturn has a true value as the collection got changed after the add
operation.
addAll(Collection<? extends E> c): Adds all elements from a specified collection to the current collection.
The following example shows how using the add(E element) method updates the collection and returns a
Boolean indicating whether the collection was modified:
import java.util.ArrayList;
import java.util.Collection;
public class AddAllExample {
 public static void main(String[] args) {
  Collection<String> firstCollection = new ArrayList<>();
  firstCollection.add("Ryan");
  Collection<String> secondCollection = new ArrayList<>();
  secondCollection.add("Roger");
  secondCollection.add("Royce");
  firstCollection.addAll(secondCollection);
  System.out.println(firstCollection); // Output: [Ryan, Roger, Royce]



  System.out.println(secondCollection); // Output: [Ryan, Royce]
 }
}
In the above example, we created two collections and added secondCollection to firstCollection
using the addAll method.
remove(Object element): Removes a single instance of the specified element, if present. If the element is not
present, the method returns false.
The following example illustrates how the remove(Object element) method behaves when the specified
element is present in the collection and when it is not:
import java.util.ArrayList;
import java.util.Collection;
public class RemoveExample {
    public static void main(String[] args) {
        Collection<String> names = new ArrayList<>();
        names.add("Ryan");
        names.add("Roger");
        names.add("Royce");
        System.out.println(names); // Output: [Ryan, Roger, Royce]
        names.remove("Ryan");
        System.out.println(names); // Output: [Roger, Royce]
        boolean result = names.remove("Roy");
        System.out.println(result); // Output: false     
        System.out.println(names); // Output: [Roger, Royce]
    }
}
The above example shows that the output of the remove(Object element) method is false when the
specified element is not found in the collection. It is important to note that the matching of the specified
element within the collection is determined by the equals() method. The collection iterates through its
elements and uses the equals() method to check for equality. If no match is found, the method returns false.
Understanding this behavior helps avoid unexpected results, especially when working with custom objects. In
such cases, it may be necessary to override the equals() method to define what constitutes a match.
Additionally, for hash-based collections like HashMap, proper functioning relies on both equals() and
hashCode(). We will explore this in more detail in the upcoming chapter on Maps, Chapter 6, Map
Interface and Implementations.
contains(Object element): Checks if the collection contains a specific element.
The following example demonstrates how the contains(Object element) method checks for the
presence of an element in the collection using the equals() method:
import java.util.ArrayList;
import java.util.Collection;
public class ContainsExample {
    public static void main(String[] args) {
        Collection<String> names = new ArrayList<>();
        names.add("Ryan");
        names.add("Royce");
        System.out.println(names.contains("Ryan")); // Output: true
        System.out.println(names.contains("Roger")); // Output: false
    }



}
In the above example, names.contains(Roger) returns false because the name does not exist in the
collection. Like the remove method, the contains method checks for element equality using the equals()
method. If no element in the collection matches the specified element according to equals(), the method
returns false. Some other fundamental methods of the collection interface are:

int size();: Returns the number of elements
void clear();: Removes all elements
boolean isEmpty();: Checks if collection is empty

These methods form the backbone of working with data structures, letting you add, remove, and traverse elements
effortlessly. In later chapters, we will explore how these methods behave in specific collection types like List, Set,
and Map, each of which offers unique capabilities and optimizations.

Key methods in collections
We have already explored the fundamental methods of the Collection interface, which help manage elements in
collections (like add, remove, contains, and size). Now, let us discuss the key methods in the Collections class,
a utility class that provides static methods to operate on or return collections.
The Collections class contains various static methods for tasks like sorting, searching, finding min/max
elements, and more. These methods simplify complex operations, saving developers from writing custom
algorithms. Let us break down some of the most commonly used methods with examples:

Sorting a list: Sorting is one of the most frequent operations on collections. The Collections.sort()
method sorts elements in their natural order (for example, alphabetically for strings or ascending order for
numbers).
All elements in the list must implement the Comparable interface to define their natural ordering. If elements
do not implement Comparable, attempting to sort the list will result in a ClassCastException. For
primitive types, Java uses their wrapper classes (like Integer or Double), which already implement
Comparable, allowing them to be sorted seamlessly. We will explore wrapper classes in more detail in the
following section.
Consider the following example:
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
public class SortExample {
    public static void main(String[] args) {
        List<String> names = new ArrayList<>();
        names.add("Ryan");
        names.add("Zane");
        names.add("Aiden");
        Collections.sort(names);
        System.out.println(names); // Output: [Aiden, Ryan, Zane]
    }
}
Here, we created a list of names and used Collections.sort() to sort them alphabetically. The sorted list
is printed as [Aiden, Ryan, Zane]. If case-insensitive sorting is needed, use
String.CASE_INSENSITIVE_ORDER as shown in the following:
Collections.sort(names, String.CASE_INSENSITIVE_ORDER);
String.CASE_INSENSITIVE_ORDER is a built-in Comparator<String> that compares strings ignoring



case.
Case-insensitive reverse order can be achieved as shown in the following:
Collections.sort(names, String.CASE_INSENSITIVE_ORDER.reversed());
Sorting helps organize data, making it easier to search or display in a structured format.
Finding the maximum and minimum elements: The Collections.max() and Collections.min()
methods help you find the largest and smallest elements in a collection, based on their natural ordering.
Consider the following example:
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxMinExample {
    public static void main(String[] args) {
        List<Integer> scores = Arrays.asList(85, 90, 78, 88);
        int maxScore = Collections.max(scores);
        int minScore = Collections.min(scores);
        System.out.println("Highest Score: " + maxScore); // Output: 90
        System.out.println("Lowest Score: " + minScore);   // Output: 78
    }
}
We created a list of scores and used Collections.max() and Collections.min() to find the highest and
lowest scores. These methods are useful when you need to quickly determine boundary values in a collection.
Shuffling elements randomly: The Collections.shuffle() method randomly rearranges the elements in
a list. This is helpful for scenarios like games or simulations where random order is necessary:
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
public class ShuffleExample {
    public static void main(String[] args) {
        List<String> names = new ArrayList<>();
        names.add("Ryan");
        names.add("Roger");
        names.add("Royce");
        Collections.shuffle(names);
        System.out.println(names); // Output: Random order of [Roger, Ryan, 
Royce]
    }
}
In this example, we added three names to a list and used Collections.shuffle() to randomly reorder the
elements. Every time you run the program, the order will be different. This is perfect for scenarios like
creating card games or randomly selecting elements from a list.
Reversing a list: The Collections.reverse() method reverses the order of elements in a list. This can be
useful when you want to iterate through elements in reverse sequence.
Consider the following example:
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;



public class ReverseExample {
    public static void main(String[] args) {
        List<String> names = new ArrayList<>();
        names.add("Ryan");
        names.add("Roger");
        names.add("Royce");
        System.out.println(names); // Output: [Ryan, Roger, Royce]
        Collections.reverse(names);
        System.out.println(names); // Output: [Royce, Roger, Ryan]
    }
}
Here, Collections.reverse() flips the order of elements. The original list [Ryan, Roger, Royce]
becomes [Royce, Roger, Ryan] after reversal. This is useful when you need to process elements in
reverse order or create a simple undo feature.
Filling a list with a specific element: The Collections.fill() method replaces all elements in a list with
a specified value.
For example:
package com.meennu.javabook.chap4;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
public class FillExample {
    public static void main(String[] args) {
        List<String> names = new ArrayList<>();
        names.add("Ryan");
        names.add("Roger");
        names.add("Royce");
        System.out.println(names); // Output: [Ryan, Roger, Royce]
        Collections.fill(names, "Unknown"); 
        System.out.println(names); // Output: [Unknown, Unknown, Unknown]
    }
}
In this example, Collections.fill() replaces every element in the list with the value "Unknown". This
can be useful when resetting a collection or initializing elements with a default value.

Understanding the Collections class is essential because it provides ready-to-use algorithms that save time and
reduce code complexity. These methods abstract away the implementation details, allowing you to focus on
solving higher-level problems.
These key methods in the Collections class help you handle complex data manipulation tasks with ease.
However, working with collections often involves accessing elements one by one, which is where iterators come
into play.
The following table provides a quick reference to the most commonly used methods from the Collection
interface and the Collections utility class. It summarizes their purpose, mutability effects, and common usage
scenarios, helping you decide which method to use in different contexts:

Method Belongs to Description Modifies collection? Common use case

add(E e) Collection Adds the specified element to
the collection (if possible).

Yes Adding a new element to a
list, set, or other collection



remove(Object o) Collection Removes a single instance of
the specified element.

Yes Removing a matching
element from a collection

contains(Object o) Collection Checks if the collection
contains the specified
element.

No Validating the presence of an
element

size() Collection Returns the number of
elements in the collection.

No Getting the count of elements

isEmpty() Collection Checks if the collection has
no elements.

No Performing conditional logic
if a collection is empty

clear() Collection Removes all elements from
the collection.

Yes Resetting a collection

sort(List<T> list) Collections Sorts elements in their natural
order.

Yes Organizing data for search or
display

sort(List<T> list, 
Comparator<? super T> c)

Collections Sorts elements using a
custom comparator.

Yes Custom ordering, such as
case-insensitive sorting

max(Collection<? extends T> 
coll)

Collections Returns the largest element
based on natural ordering.

No Finding the highest score or
maximum value

min(Collection<? extends T> 
coll)

Collections Returns the smallest element
based on natural ordering.

No Finding the lowest score or
minimum value

shuffle(List<?> list) Collections Randomly rearranges
elements in a list.

Yes Randomizing order for
games or simulations

reverse(List<?> list) Collections Reverses the order of
elements in a list.

Yes Processing elements in
reverse order

fill(List<? super T> list, T 
obj)

Collections Replaces all elements in the
list with the specified value.

Yes Initializing or resetting all list
values

Table 4.2: Summary of key methods in the collection interface and the collections utility class
In the next section, we will explore the iterable interface and how iterators provide a powerful way to traverse
collections, bridging the gap between collection manipulation and iteration.

Iterable interface and iterators
We use collections to organize data and iterators to process that data. The iterable interface is the root interface for
all collection classes in Java. It represents a collection of elements that can be traversed one by one. Almost all
collection classes in Java implement this interface, allowing you to use for-each loops and iterators to navigate
through elements.
The iterable interface provides the iterator() method, which returns an Iterator object to step through
elements in the collection.
Understanding iterators ensures you can:

Access elements sequentially: Move through elements one at a time.
Modify collections safely: Remove elements without causing ConcurrentModificationException.
Work with various collection types uniformly: Use a single approach to iterate over Lists, Sets, or Queues.

The Iterable interface contains only one method, as shown in the following:
public interface Iterable<T> {
    Iterator<T> iterator();
}

This method returns an Iterator object, which provides several useful methods to traverse the collection. An
Iterator provides methods to iterate through a collection without exposing its internal structure.

Iterator interface
The Iterator interface provides three primary methods for navigating through a collection:



hasNext(): Returns true if the collection has more elements.
next(): Returns the next element in the collection.
remove(): Removes the last element returned by the next() method.

Let us understand iteration with the following example:
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
public class IteratorExample {
    public static void main(String[] args) {
        List<String> names = new ArrayList<>();
        names.add("Ryan");
        names.add("Roger");
        names.add("Royce");
        Iterator<String> iterator = names.iterator();
        System.out.println("Iterating through the list:");
        while (iterator.hasNext()) {
            String name = iterator.next();
            System.out.println(name);
            // Removing an element during iteration
            if (name.equals("Ryan")) {
                iterator.remove();
            }
        }
        System.out.println("\nList after removal: " + names);
    }
}
The following is the output:
Iterating through the list:  
Ryan
Roger
Royce
List after removal: [Roger, Royce]
In this example:

We use an iterator to walk through the list of names.
The remove() method safely deletes Raju during iteration, which would throw a
ConcurrentModificationException if done directly on the list.

Understanding the enhanced for loop in Java
The enhanced for loop, also known as the for-each loop, provides a simpler way to iterate over arrays and
collections in Java.
Since Java 5, collections implementing Iterable can be iterated using a for-each loop, for example:
for (String name : names) {
    System.out.println(name);
}

While the for-each loop is more convenient, iterators offer greater control, especially when modifying collections.



While collection classes provide ways to store and organize data, iterators give you a systematic way to access and
traverse elements without exposing the underlying structure. This becomes especially useful for operations like
element removal during iteration or working with complex, nested collections.

Using Lambdas for iteration
From Java 8 onward, the Iterable interface has forEach as a default method. This method allows you to iterate
through the collection using a Lambda expression, making the code even cleaner and more concise.
The same for-each loop can be written using a Lambda expression as:
names.forEach(name -> System.out.println(name));
Lambda expressions simplify iteration by reducing boilerplate code.
We can use an even more compact way to print elements or other operations using a method reference as follows:
names.forEach(System.out::println);

Nested classes in collections
The JCF includes several nested classes that help you work with collections more effectively. These classes are
usually static inner classes that provide additional functionalities, such as creating unmodifiable views, empty
collections, or singleton collections.
Understanding these nested classes is valuable, as they help manage various collection-related scenarios without
the need for additional custom code. Let us explore each type of nested class and examine how they contribute to
handling collections effectively.

Empty collections
Sometimes, you need to return an empty collection instead of null to avoid a NullPointerException. Java
provides methods to create immutable empty collections:

Collections.emptyList() 
Collections.emptySet() 
Collections.emptyMap()

Let us look at an example to understand how to create an empty list:
import java.util.Collections;
import java.util.List;
public class EmptyCollectionExample {
    public static void main(String[] args) {
        List<String> emptyList = Collections.emptyList();
        System.out.println("Empty List: " + emptyList);//Output: Empty List: []
    }
}
With empty collections, we can avoid null checks. They are immutable, preventing accidental modification. Any
attempt to add elements will throw UnsupportedOperationException. Empty collections are useful when
you want to return an empty list without allocating a new object.

Singleton collections
When you need a collection with only one element, we can use a singleton collection:

singleton(T element): Creates an immutable set with one element.
Collections.singletonList(T element): Creates an immutable list with one element.

Let us see an example to create a singleton set:
import java.util.Collections;
import java.util.Set;



public class SingletonExample {
    public static void main(String[] args) {
        Set<String> singletonSet = Collections.singleton("Ryan");
        System.out.println("Singleton Set: " + singletonSet); 
        //Output: Singleton Set: [Ryan]

// singletonSet.add("Roger");
    }
}
We create a singleton set with an element. If you try to add another element to this collection, it will lead to
UnsupportedOperationException.
Singleton collections can be used when you want to represent a single item as a collection. It is useful for default
values or constant elements.

Synchronized collections
If you are working in a multithreaded environment, collections are not thread-safe by default. The collections class
provides methods to wrap collections in synchronized views:

Collections.synchronizedList(List<T> list) 
Collections.synchronizedSet(Set<T> set) 
Collections.synchronizedMap(Map<K, V> map)

The following is an example of creating a synchronized list:
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
public class SynchronizedExample {
    public static void main(String[] args) {
        List<String> names = Collections.synchronizedList(new ArrayList<>());
        names.add("Ryan");
        names.add("Roger");
        names.add("Royce");
        // Synchronize during iteration
        synchronized (names) {
            for (String name : names) {
                System.out.println(name);
            }
        }
        /*Output: 

 Ryan
        Roger
        Royce*/
    }
}
Synchronized collections are used to prevent race conditions in multi-threaded applications and protect against
concurrent modification errors.
Note: You still need to manually synchronize iteration (like using the synchronized block above).

Checked collections



Checked collections enforce type safety at runtime. This helps catch ClassCastException early, especially
when dealing with raw types.
Let us try creating a checklist:
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
public class CheckedCollectionExample {
    public static void main(String[] args) {
        List<String> names = Collections.checkedList(new ArrayList<>
(), String.class);
        names.add("Ryan");
        // Trying to add a wrong type will cause a runtime error
        // names.add(100); // This will throw ClassCastException
        System.out.println("Checked List: " + names);

//Output: Checked List: [Ryan]
    }
}
Checked collections add a runtime safety check and help catch type-mismatch bugs early in development.

Immutable collections
From Java 9, you can create immutable collections directly:

List.of()
Set.of()
Map.of()

The following is an example of creating an immutable list:
import java.util.List;
public class ImmutableCollectionExample {
    public static void main(String[] args) {
        List<String> names = List.of("Ryan", "Roger", "Royce");
        System.out.println("Immutable List: " + names);
        //Output: Immutable List: [Ryan, Roger, Royce]
        // Trying to add a wrong type will cause a runtime error
        //names.add("Zane"); // This will throw UnsupportedOperationException
    }
}
Immutable collections are thread-safe, as no modifications are allowed. They are ideal for constant data or read-
only views.
Nested classes in the collections utility class save time and reduce complexity. Instead of manually writing logic
for empty, singleton, or synchronized collections, you can leverage these built-in methods to:

Handle edge cases (like empty results or single items).
Improve performance (by preventing unnecessary modifications).
Enhance safety (with checked collections and immutable views).

The following table summarizes the key nested classes and factory methods in the collections utility class,
highlighting their mutability, thread safety, exception behavior, and typical use cases. Use this as a quick reference
when deciding which type of collection wrapper or view to apply in different scenarios.

Category Factory method(s) Modifiable Thread-safe Throws
UnsupportedOperationException

Usage



on modification

Empty
collections

Collections.emptyList(),
Collections.emptySet(),
Collections.emptyMap()

No Yes (immutable) Yes When you want 
return an empty
collection instea
null to avoid a
NullPointerExce

Singleton
collections

Collections.singleton(T element),
Collections.singletonList(T
element),
Collections.singletonMap(K key, V
value)

No Yes (immutable) Yes When you need 
collection with
exactly one elem
(e.g., default val
constants).

Synchronized
collections

Collections.synchronizedList(list),
Collections.synchronizedSet(set),
Collections.synchronizedMap(map)

Yes Yes (for single
operations;
iteration still
needs manual
synchronization)

No When multiple
threads access a
modify a collect

Checked
collections

Collections.checkedList(list,
type), Collections.checkedSet(set,
type), Collections.checkedMap(map,
keyType, valueType)

Yes No (wrap with
synchronized if
needed)

No When you want
runtime type che
to prevent
ClassCastExcep

Immutable
collections
(Java 9+)

List.of(...), Set.of(...),
Map.of(...)

No Yes (immutable) Yes For creating
unmodifiable
collections direc
with fixed conte

Table 4.3: Summary of nested classes and factory methods

Wrapper class
In Java, primitive data types (like int, char, and double) are not objects. The Collections Framework, however,
works with objects rather than primitives. This is where wrapper classes come in. They provide a way to represent
primitive values as objects so they can be used in collections.
Wrapper classes are part of java.lang package and offer a convenient way to work with primitives in a fully
object-oriented manner.
The benefits of wrapper classes include:

Compatibility with collections: Collections only work with objects, not primitives.
Utility methods: Wrapper classes provide useful methods for parsing, comparison, and more.
Immutability: Wrapper objects are immutable, making them safer to use in concurrent programming.
Autoboxing and unboxing: Java automatically converts primitives to wrapper objects (and vice versa).

The following table shows the list of wrapper classes in Java:
Primitive type Wrapper class

byte Byte

short Short

int Integer

long Long

float Float

double Double

char Character

boolean Boolean

Table 4.4: Wrapper classes
Let us look at an example to understand this better:



import java.util.ArrayList;
import java.util.List;
public class WrapperClassExample {
    public static void main(String[] args) {
        // Creating a list of integers (using the Integer wrapper class)
        List<Integer> numberList = new ArrayList<>();
        // Autoboxing: Primitive int to Integer object
        numberList.add(10);
        numberList.add(20);
        numberList.add(30);
        // Accessing elements with unboxing
        int firstNumber = numberList.get(0); // Unboxing: Integer to int
        System.out.println("List of numbers: " + numberList);
        //Output: List of numbers: [10, 20, 30]
        System.out.println("First number: " + firstNumber);
        //Output: First number: 10
    }
}
As we can see, Java automatically converts 10, 20, and 30 (primitive int) into Integer objects. When accessing
elements, Java automatically converts the Integer object back to a primitive int.
Wrapper classes come with useful methods for parsing, comparison, and conversions. Let us see that in an
example:
public class WrapperClassMethods {
    public static void main(String[] args) {
        // Parsing a string to an integer
        int number = Integer.parseInt("100");
        // Converting primitive to string
        String numStr = Integer.toString(200);
        // Comparing two wrapper objects
        Integer a = 10;
        Integer b = 20;
        int comparison = a.compareTo(b);
        System.out.println("Parsed number: " + number);
        System.out.println("Number as string: " + numStr);
        System.out.println("Comparison result: " + comparison);
        /*
         * Output: 
         *  Parsed number: 100
   Number as string: 200
   Comparison result: -1
         * */
    }
}
In the following:

parseInt(): Converts a string to an integer.



toString(): Converts an integer to a string.
compareTo(): Compares two wrapper objects (returns negative, zero, or positive).

While wrapper classes are powerful, they come with some overhead:
Memory usage: Wrapper classes consume more memory than primitives.
Null values: Wrapper classes can be null, which adds flexibility but also the risk of
NullPointerException.

In most cases, the benefits outweigh these costs, especially when working with collections.
Wrapper classes bridge the gap between primitive types and the object-oriented nature of Java. They enable
primitives to be used in collections and provide useful utility methods. Understanding wrapper classes is essential
for mastering Java collections, as they appear frequently in real-world applications.

Conclusion
In this chapter, we explored the JCF, understanding its architecture, core interfaces, and essential methods. We
learned how collections simplify data management, providing flexible ways to store, manipulate, and iterate
through objects.
We discussed the difference between collection and collections, the role of the Iterable interface, and the
importance of iterators for accessing elements. Nested classes and wrapper classes further extended the
framework's capabilities, enhancing functionality and compatibility.
In the next chapters, we will take a closer look at individual collection types, starting with list, set, and map
implementations. We will understand their unique behaviors, practical applications, and how to choose the right
collection for a given scenario.

Exercise
1. Which of the following is the root interface in the Java Collections Framework?

a. List
b. Collection
c. Iterable
d. Map

2. What is the main purpose of the Java Collections Framework?
a. To handle file input and output operations
b. To provide a standardized architecture for handling collections of objects
c. To manage threads and concurrency
d. To create graphical user interfaces

3. Which collection type does not allow duplicate elements?
a. List
b. Queue
c. Set
d. Map

4. What is the difference between collection and collections in Java?
a. Collection is a class, and collections is an interface
b. Collection is an interface, and collections is a utility class
c. They are both interfaces
d. They are both utility classes

5. Which of the following methods is part of the collection interface?
a. sort()



b. add()
c. shuffle()
d. reverse()

6. How can you iterate through a collection using an iterator?
a. By calling the iterator() method and using a for loop
b. Using the get() method directly
c. Using the iterator keyword
d. By converting the collection to an array first

7. What happens if you try to add elements to a List created with List.of()?
a. Elements are added successfully
b. A runtime exception is thrown
c. The list resizes dynamically
d. The list ignores the new elements

8. Which collection is best suited for storing elements in a sorted order?
a. ArrayList
b. LinkedList
c. HashSet
d. TreeSet

9. What is the purpose of the iterator.remove() method?
a. To clear all elements in the collection
b. To remove the last element returned by the iterator
c. To remove a random element from the collection
d. To remove elements based on a condition

10. Which interface must a collection implement to be used with an enhanced for loop?
a. Collection
b. Iterable
c. List
d. Comparator

Answers
1. c

Explanation: The Iterable interface is the root interface in the Java Collections Framework. It provides the
ability to iterate over elements using an iterator or enhanced for-loop.

2. b
Explanation: The Java Collections Framework provides a unified architecture for manipulating and handling
groups of objects, making data storage, retrieval, and manipulation easier.

3. c
Explanation: The Set interface does not allow duplicate elements. It is useful when you want to maintain a
collection of unique elements.

4. b
Explanation: Collection is the root interface for most collection types, while Collections is a utility class that
provides static methods for manipulating collections.

5. b
Explanation: The add() method is part of the collection interface and is used to insert elements into a
collection.

6. a
Explanation: You can use the iterator() method to get an iterator object, then use its hasNext() and next()



methods to iterate through elements.
7. b

Explanation: Lists created with List.of() are immutable, meaning any attempt to add, remove, or modify
elements will throw an UnsupportedOperationException.

8. d
Explanation: TreeSet maintains elements in sorted order and does not allow duplicates. It is useful for
scenarios where ordering matters.

9. b
Explanation: The iterator.remove() method removes the last element returned by the iterator. It must be called
after next(), or it throws an exception.

10. b
Explanation: A collection must implement the Iterable interface to be used with an enhanced for loop, as it
provides the iterator() method for element traversal.



CHAPTER 5
List Interface and Implementations

Introduction
The List interface in Java is a part of the JCF and represents an ordered
collection of elements. Unlike sets, lists allow duplicate elements and provide
positional access to elements. Lists are widely used in applications where
elements need to be stored, retrieved, and manipulated in a specific sequence.
This chapter explores the List interface and its key implementations, like
ArrayList, LinkedList, and Vector. It also covers list synchronization,
immutable lists, and checked collections. Additionally, we will look at internal
implementations, compare different list types, and implement custom list
behaviours.

Structure
The chapter covers the following topics:

List interface
ArrayList implementation
LinkedList implementation
Vector implementation
Synchronization in lists
Unmodifiable collections



Checked collections

Objectives
This chapter aims to provide a comprehensive understanding of the List
interface in Java, its key implementations, and how they function internally. By
the end of this chapter, you will have a clear understanding of how
ArrayList, LinkedList, and Vector differ in terms of performance,
memory usage, and practical applications. You will also learn about
synchronization mechanisms for thread safety, creating immutable lists, and
ensuring type safety using checked collections. Additionally, this chapter will
include hands-on examples and custom implementations to solidify your
understanding of how lists work in real-world applications.

List interface
The List interface extends the collection interface and represents an ordered
collection of elements. It allows duplicate values and provides indexed access
to elements.
The following are the key characteristics of Lists:

Ordered collection: Elements are stored in the order they were added.
Allows duplicates: Unlike sets, a list can contain multiple occurrences of
the same element.
Indexed access: Elements can be accessed, modified, or removed using
their index.
Supports iteration: Lists support various iteration mechanisms, including
iterator, for-each, and stream-based iteration.

The List interface has several implementations in Java, each with different
characteristics. Implementations include ArrayList, LinkedList, and
Vector.
The following figure is the representation of the List interface and its
implementations:



Figure 5.1: List interface and implementations

The List interface extends the collection interface and introduces several
additional methods:

Method Description

add(E e) Appends the specified element to the end of the list.

add(int index, E 
element)

Inserts the specified element at the specified position.

get(int index) Returns the element at the specified index.

set(int index, E 
element)

Replaces the element at the specified position.

remove(int index) Removes the element at the specified index.

indexOf(Object o) Returns the index of the first occurrence of the specified element.

Table 5.1: Additional methods in List interface
To understand how the List interface works in Java, let us consider an example
where we create and manipulate a List of student names:
import java.util.ArrayList;
import java.util.List;
public class ListExample {
    public static void main(String[] args) {



        // Creating a List of student names
        List<String> studentNames = new ArrayList<>();
        // Adding elements to the List
        studentNames.add("Ryan");
        studentNames.add("Roger");
        studentNames.add("Royce");
        // Accessing elements using index
        System.out.println("First Student: " + studentName
s.get(0));
        // Iterating through the List, this will print 
elements in the order they were added
        System.out.println("All Students:");
        for (String name : studentNames) {
            System.out.println(name);
        }
        // Checking if an element exists
        System.out.println("Is Ryan in the list? " + stude
ntNames.contains("Ryan"));
        // Removing an element
        studentNames.remove("Roger");
        System.out.println("After removing Roger: " + stud
entNames);
    }
}
The following is the output:
First Student: Ryan
All Students:
Ryan
Roger
Royce
Is Ryan in the list? true
After removing Roger: [Ryan, Royce]
This example demonstrates key operations such as adding, accessing, iterating,



checking, and removing elements in a List. We use an ArrayList, which is a
common implementation of the List interface, to store and manipulate student
names. The add() method inserts elements, get(index) retrieves them, and
the contains() method checks if a specific element exists in the list. The
remove() method deletes an element, and iterating over the list allows us to
print all stored names. Since ArrayList maintains insertion order, the output
reflects the order in which elements were added.
We will learn more about ArrayList in detail in the next section, including its
internal implementation and performance characteristics.

ArrayList implementation
ArrayList is one of the most widely used implementations of the List
interface in Java. It is part of java.util package provides a dynamic array
that grows as needed, unlike regular arrays, which have a fixed size. Internally,
ArrayList maintains an array (Object[] elementData) that expands
when it reaches its capacity.
The following is the internal structure of ArrayList:

ArrayList begins with an initial capacity.
In Java 8 and earlier, this default capacity is ten.
From Java 9 onward, ArrayList starts with an empty array, and the
internal array is only allocated when the first element is added (lazy
initialization).
The elements are stored in an internal array called Object[]
elementData.
As elements are added, they are placed into this array sequentially.
When the array becomes full, ArrayList creates a new array with a
larger capacity and copies all existing elements into this new array.
The new capacity is typically calculated as follows:

In JDK 1.6, newCapacity = (oldCapacity * 3/2) + 1

For example: 10 | 16 | 25 | 38 | ...

From JDK 1.7 onwards, the formula was simplified and optimized for
performance: newCapacity = oldCapacity + (oldCapacity >> 1)



This is a 50% increase, computed using a bitwise right shift.

For example: 10 | 15 | 22 | 33 | 49 | 73 | ...
When working with collections in Java, understanding how they manage
memory and resize themselves is crucial for writing efficient code.
Let us consider an ArrayList of integers and observe how it grows
dynamically. Follow these steps:
1. Creating an empty ArrayList:

a. List<Integer> numbers = new ArrayList<>(); an array of
default capacity (ten) is created.

b. It is initially empty, meaning all positions are null.

Note: In Java 9+, ArrayList starts with an empty array
(elementData = {}) and defers allocation until the first element is
added.

Index 0 1 2 3 4 5 6 7 8 9

Value

2. Adding elements (within initial capacity):
numbers.add(10);
numbers.add(20);
numbers.add(30);
numbers.add(40);
numbers.add(50);
numbers.add(60);
numbers.add(70);
numbers.add(80);
numbers.add(90);
numbers.add(100);
Internal array (after ten elements are added):
Index 0 1 2 3 4 5 6 7 8 9

Value 10 20 30 40 50 60 70 80 90 100

The array is now full because it has reached its initial capacity of 10.



3. Adding the 11th element (Triggers resizing):
numbers.add(110); // Triggers resizing
As we continue adding elements, the ArrayList eventually reaches its
capacity. Let us observe what happens internally when the 11th element is
added; it triggers resizing.

a. Since the array is full, ArrayList creates a new array with almost
50% more capacity.

b. The new capacity is 10 + (10 >>1) = In binary -> (00001010 +
00000101 ) = (10 + 5) = 15.

c. A new array of size 15 is created, and all existing elements are copied
into it.
After resizing and adding the new element (Capacity = 15):

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Value 10 20 30 40 50 60 70 80 90 100 110

d. Resizing is an expensive operation because all elements must be
copied.

Use cases for ArrayList
ArrayList is best suited for scenarios where fast random access and frequent
traversal are needed, and where insertions or deletions in the middle of the list
are less frequent. Common use cases include:

Storing a dynamic list of items: When the number of elements is not
known in advance and can change over time (e.g., a list of online users in a
chat application).
Random access operations: When you need to quickly access elements
by index, as ArrayList provides O(1) time complexity for get() and
set() operations.
Read-heavy collections: When most operations involve reading data
rather than inserting or removing elements in the middle of the list.
Maintaining insertion order: When it is important to preserve the order
in which elements are added, such as maintaining a list of tasks in
sequence.
Temporary storage for computation: When you need a resizable data
structure to temporarily store data for processing (e.g., collecting results



before writing them to a file or database).
Small to medium datasets: When working with data sizes that do not
cause frequent costly resizes or memory overhead issues.

Performance considerations
While ArrayList provides fast random access (O(1) for get operations), its
resizing behaviour introduces performance trade-offs. Let us examine them in
detail:

Growth and resizing overhead:

ArrayList growth: The internal array grows dynamically when it
reaches its capacity.
Resizing: It involves:

Creating a new array with a larger capacity.
Copying all existing elements from the old array to the new one.

Time complexity: O(n) (where n is the number of elements copied).
Optimization tip: If you know the expected size of the list in advance,
use:
List<Integer> numbers = new ArrayList<>(100);
This avoids multiple resizings, improving performance.
Insertions at the end (best case):

Adding an element at the end of the list (when capacity is not
exceeded) takes O(1) (amortized) time.
If resizing is required, the cost is O(n) due to copying.
The optimization tip is that if frequent additions are expected in the
middle, consider LinkedList instead. We shall discuss LinkedList
in the later sections.

Insertions at the beginning or middle (worst case):

Adding an element at the beginning or middle shifts all subsequent
elements to the right.
To understand the cost of insertions at the beginning or middle,
consider the following example where we insert an element at index 0.
numbers.add(0, 100); // Inserts at index 0, shifting 



all elements
When you insert an element at index 0, all existing elements in the
ArrayList are shifted one position to the right to make space. This
shifting operation takes linear time, O(n), because every affected
element must be moved individually. This is considered the worst case.

If frequent middle insertions are required, LinkedList is a better
choice.

Deletions and their cost:

Removing the last element (remove(size - 1)) | O(1) (no shifting
needed).
Removing from the middle or beginning (remove(index)) | O(n) (all
elements shift left).
The optimization tip is that if the order does not matter, swap the
element with the last element and then remove it:
numbers.set(index, numbers.get(numbers.size() - 1)); 
// Swap with last
numbers.remove(numbers.size() - 1); // Remove last 
element

This reduces shifting cost from O(n) to O(1).

Memory consumption:

ArrayList pre-allocates extra space to reduce the number of
resizings.
If an ArrayList has significantly fewer elements than its capacity, it
wastes memory.
The optimization tip is that if an ArrayList will not grow further, trim
unused capacity:
numbers.trimToSize();

This releases excess memory.

Synchronization and thread safety:

ArrayList is not thread-safe.
If multiple threads modify a list concurrently, use:



List<Integer> syncList = 
Collections.synchronizedList(new ArrayList<>());
However, CopyOnWriteArrayList is a better choice for concurrent
reads and occasional writes. This makes reads fast (O(1)) but adds
overhead to writes (O(n)). It is useful when reads are frequent but
writes are rare, such as in caching or event listener lists. We will see an
example of CopyOnWriteArrayList in a later section.

Custom implementation of ArrayList
To better understand ArrayList, let us implement a simplified version of it.
The following are the points to consider:
• Internal storage: We can use an integer array (data) to store elements.
• Dynamic expansion: If the array is full when adding a new element, we

can give a resizing logic by doubling the capacity and copying existing
elements.

• Retrieval: To retrieve the elements, we can have a get(index) method. We
can add validation to ensure the index is within bounds before returning
the element.
Size tracking: We can track the size of the array with the help of a size
variable. This variable keeps track of the number of elements added.

The following is the sample code for the custom ArrayList:
class CustomArrayList {
    private int[] data;
    private int size;
    private int capacity;
    public CustomArrayList(int initialCapacity) {
        this.capacity = initialCapacity;
        this.data = new int[capacity];
        this.size = 0;
    }
    public void add(int element) {
        if (size == capacity) {
            expandCapacity();



        }
        data[size++] = element;
    }
    private void expandCapacity() {
        capacity *= 2; // Double the capacity
        int[] newData = new int[capacity];
        System.arraycopy(data, 0, newData, 0, size);
        data = newData;
    }
    public int get(int index) {
        if (index < 0 || index >= size) {
            throw new IndexOutOfBoundsException("Index out
 of bounds");
        }
        return data[index];
    }
    public int size() {
        return size;
    }
    public static void main(String[] args) {
        CustomArrayList list = new CustomArrayList(2);
        list.add(10);
        list.add(20);
        list.add(30); // Triggers capacity expansion
        System.out.println("Element at index 1: " + list.g
et(1)); // Output: 20
        System.out.println("List size: " + list.size()); /
/ Output: 3
    }
}
In the above example:

We initialized the list with a capacity of 2.



Adding a third element triggers resizing (from size 2 to 4).
We retrieve an element using get(1), which returns 20.
Note: In this custom implementation, we did not implement the List interface. The focus was
on demonstrating the internal working of a dynamic array, such as resizing logic and
element addition. Implementing the full List interface would require a comprehensive
implementation of all its methods, which is beyond the scope of this example.

LinkedList implementation
Unlike ArrayList, which is backed by a dynamic array, LinkedList is
implemented as a doubly linked list. Each element is called a node. A node
contains:

Data: The actual value stored.
A reference to the next node: Points to the next element.
A reference to the previous node: Points to the previous element.

This structure allows fast insertions and deletions, since modifying references
is quicker than shifting elements (as in ArrayList). However, accessing
elements by index is slower because traversal is required.

Internal structure of LinkedList
A LinkedList consists of nodes where each node points to the next and
previous nodes. It internally uses a static nested class Node<E>. The following
is a simplified version of its internal structure:
private static class Node<E> {
    E item;
    Node<E> next;
    Node<E> prev;
    Node(Node<E> prev, E element, Node<E> next) {
        this.item = element;
        this.next = next;
        this.prev = prev;
    }
}
Each node stores:



Item: The data
Next: Reference to the next node
Prev: Reference to the previous node

Let us understand this with an example. Consider the following code.
LinkedList<Integer> list = new LinkedList<>();
list.add(10);
list.add(20);
list.add(30);
list.add(40);
This creates the following structure in memory:

1. Initially, the list is empty:

Figure 5.2: Initial LinkedList

2. Adding 10:

Figure 5.3: LinkedList after adding 10

Since this is the first element, both next and previous are null.



3. Adding 20:

Figure 5.4: LinkedList after adding 20

Once 20 is added, here is what happens:
10 next: Points to 20
20 prev: Points to 10

4. Adding 30:

Figure 5.5: LinkedList after adding 30

After we add 30, the elements now link as follows:
20 next: Points to 30
30 prev: Points to 20

5. Adding 40:



Figure 5.6: LinkedList after adding 40

Once 40 is added, it is linked as follows:
30 next: Points to 40
40 prev: Points to 30

To summarize the structure, each node stores two references (next and prev).
The head always points to the first node. The tail (last node) points to null.
In case of removal of elements, only references are updated.
Let us say we remove 20 using:
list.remove(Integer.valueOf(20));
Now, the structure is updated to:

Figure 5.7: LinkedList after removing 20

After removing 20, the elements are now connected as follows:
10 next now points to 30 (skipping 20)
30 prev now points to 10

Performance considerations for LinkedList
Understanding the performance characteristics of LinkedList is crucial when
deciding whether to use it over ArrayList. While LinkedList offers
efficient insertions and deletions, it has trade-offs in terms of memory usage
and element access speed. Let us explore the following key performance
aspects:

Insertions and deletions:

Efficient insertions or deletions at the beginning or end: Unlike
ArrayList, LinkedList does not require shifting elements when
inserting or deleting. Updating the previous and next references in



nodes is enough, making adding or removing elements at the head or
tail O(1).
Middle insertions or deletions require traversal: If an element is
inserted or deleted in the middle, we need to traverse the list to find the
correct position, making it O(n) in the worst case.

Element access:

Unlike ArrayList, LinkedList does not support O(1) random
access because it does not use an index-based structure.
Accessing an element by index requires traversal from the head or tail,
making it O(n) in the worst case.
If accessing elements sequentially, iteration is slower than ArrayList
due to a lack of contiguous memory storage.

Memory overhead:

Higher memory usage: Each node in LinkedList stores both data
and two references (previous and next), increasing memory
consumption compared to ArrayList, which stores only elements.
Garbage collection overhead: Frequent insertions and deletions lead
to more object creations and removals, which can impact garbage
collection performance.

Iteration performance:

Forward and backward traversal: LinkedList supports efficient
iteration in both directions using ListIterator, but it is still O(n).
Poor cache locality: Since elements are scattered in memory, accessing
them requires additional pointer dereferencing, making iteration slower
compared to ArrayList.

Use cases where LinkedList performs better:

Frequent insertions or deletions: If you often insert or remove
elements at the beginning or middle of the list, LinkedList performs
better than ArrayList.
Queue and stack implementations: LinkedList is ideal when used
as a queue, FIFO, or stack, last in first out (LIFO), because insertions
and deletions are efficient.



Custom LinkedList implementation
To understand LinkedList deeply, let us implement our own custom
LinkedList.
Let us create a Node class that contains:

The data (actual value).
A reference to the next node.
A reference to the previous node (since it is a doubly linked list).

The following is an example of a Node class:
class Node<T> {
    T data;
    Node<T> next;
    Node<T> prev;
    public Node(T data) {
        this.data = data;
        this.next = null;
        this.prev = null;
    }
}

The linked list maintains references to the head (first node) and tail (last node).
It also tracks the size of the list:
class CustomLinkedList<T> {
    private Node<T> head;
    private Node<T> tail;
    private int size;
    public CustomLinkedList() {
        this.head = null;
        this.tail = null;
        this.size = 0;
    }
}
To add new elements, we can create an add method. It appends the new element
at the end by updating the next and prev references:
   public void add(T data) {



        Node<T> newNode = new Node<>(data);    
        if (head == null) {  // If list is empty
            head = newNode;
            tail = newNode;
        } else {
            tail.next = newNode;
            newNode.prev = tail;
            tail = newNode;
        }
        size++;
    }

In the above code:
If the list is empty, the new node becomes both head and tail.
Otherwise, we update tail.next to point to the new node and
newNode.prev to point back to the old tail.

To remove an element, we just need to update the references to skip the node:
 public boolean remove(T data) {
  if (head == null)
   return false; // Empty list
  Node<T> current = head;
  while (current != null) {
   if (current.data.equals(data)) {
    if (current == head) { // Removing head
     head = head.next;
     if (head != null)
      head.prev = null;
    } else if (current == tail) { // Removing tail
     tail = tail.prev;
     if (tail != null)
      tail.next = null;
    } else { // Removing from middle
     current.prev.next = current.next;



     current.next.prev = current.prev;
    }
    size--;
    return true;
   }
   current = current.next;
  }
  return false; // Element not found
 }
In the above example:

If the head matches, the next node becomes the new head, and its prev is
set to null.
If the tail matches, the previous node becomes the new tail, and its next
is set to null.
If an element is in the middle, the surrounding nodes are linked directly to
each other, bypassing the removed node.

Unlike ArrayList, LinkedList does not have direct indexing. We need to
traverse the list to find an element. We can do this with the get method as
follows:
 public T get(int index) {
  if (index < 0 || index >= size) {
   throw new IndexOutOfBoundsException("Index: " + index);
  }
  Node<T> current;
  if (index < size / 2) { // Traverse from head
   current = head;
   for (int i = 0; i < index; i++) {
    current = current.next;
   }
  } else { // Traverse from tail
   current = tail;
   for (int i = size - 1; i > index; i--) {
    current = current.prev;



   }
  }
  return current.data;
 }
In the above example:

If the index is in the first half, traversal starts from the head.
If it is in the second half, traversal starts from the tail, reducing the
number of steps.

Let us add a display method to visualize how the elements are stored in the list:
 public void display() {
  Node<T> current = head;
  while (current != null) {
   System.out.print(current.data + " => ");
   current = current.next;
  }
  System.out.println("null");
 }

Now, let us create a sample code to test this CustomLinkedList:
public class LinkedListDemo {
 public static void main(String[] args) {
  CustomLinkedList<Integer> list = new CustomLinkedList<>
();
  list.add(10);
  list.add(20);
  list.add(30);
  list.add(40);
  list.display(); // Output: 10 => 20 => 30 => 40 => null
  list.remove(20);
  list.display(); // Output: 10 => 30 => 40 => null
  System.out.println("Element at index 1: " + list.get(1))
; // Output: 30
 }



}

We add the elements and call the display() method. The output shows that
they are added sequentially. We can also access any element using the index as
shown above.

Vector implementation
Vectors in Java are part of the java.util package and provide a dynamic
array-like structure like ArrayList. However, unlike ArrayList, Vector is
synchronized, making it thread-safe but potentially slower due to
synchronization overhead. In this section, we will explore the internal
implementation, storage mechanism, and performance considerations of
Vector.
The following is the internal structure of Vector:

Vector is internally backed by an array, just like ArrayList.
When elements are added beyond the initial capacity, the array grows
automatically.
Unlike ArrayList, which grows by 50% when full, Vector doubles its
size when resizing.
It implements the List interface and allows duplicate elements while
maintaining insertion order.

Let us consider an example of how to create and use a Vector:
import java.util.Vector;
public class VectorExample {
 public static void main(String[] args) {
  // Creating a Vector of integers
  Vector<Integer> numbers = new Vector<>();
  // Adding elements
  numbers.add(10);
  numbers.add(20);
  numbers.add(30);
  numbers.add(40);
  // Accessing elements



  System.out.println("First Element: " + numbers.firstElem
ent());
  System.out.println("Last Element: " + numbers.lastElemen
t());
  // Removing an element
  numbers.remove(2); // Removes 30
  // Displaying the Vector
  System.out.println("Updated Vector: " + numbers);
 }
}
The following is the output:
First element: 10  
Last element: 40  
Updated Vector: [10, 20, 40]  
Like an ArrayList:

When the Vector reaches its capacity, it increases its size by doubling.
For example, if the initial capacity is 4, then when the 5th element is
added, it increases its size to 8.
This doubling behavior ensures fewer resizes but may lead to higher
memory consumption.

The following are the performance considerations:
Vector is synchronized, meaning multiple threads can safely modify it.
However, this comes at the cost of performance.
Since synchronization is applied on every method, operations like add(),
remove(), and get() are slower compared to ArrayList.
If synchronization is not required, ArrayList is preferred.
Vector is suitable when multiple threads access and modify the collection
concurrently.

When deciding between ArrayList, LinkedList, and Vector, it is
important to understand the key differences in terms of performance,
synchronization, and usage. The following table summarizes the main features
and characteristics of each to help you make an informed choice based on your
specific needs:



Feature ArrayList LinkedList Vector

Underlying data
structure

Dynamic array Doubly LinkedList Dynamic array

Access time (Random
access)

Constant time (O(1)) Linear time (O(n)) Constant time (O(1))

Insertion or deletion
time

Linear time (O(n)) for
middle insertions

Constant time (O(1)) for
insertions at ends

Linear time (O(n))
for insertions

Memory usage Less memory overhead More memory overhead
due to pointers

Like ArrayList, but
with more memory
for resizing

Synchronization Not synchronized Not synchronized Synchronized by
default

Thread-safety Not thread-safe Not thread-safe Thread-safe

Resizing Automatically resizes
when full

No resizing; elements are
linked

Automatically resizes
when full

Null elements Supports null elements Supports null elements Supports null
elements

Use case Best for frequent access,
less modification

Best for frequent
insertions and deletions

Suitable for legacy
systems needing
thread-safety

Table 5.2:  Comparison of ArrayList, LinkedList, and Vector

Synchronization in lists
In a multi-threaded environment, multiple threads may attempt to read from or
write to a list at the same time. Without proper synchronization, this can lead to
race conditions, data inconsistencies, or even runtime exceptions like
ConcurrentModificationException. To maintain data integrity and
ensure thread safety, it is essential to use synchronized list implementations or
wrap existing lists with synchronization mechanisms.
Some classes, like Vector, are synchronized by default, meaning all their
methods are thread-safe. However, they come with performance trade-offs in
single-threaded or read-heavy environments. On the other hand, commonly
used collections like ArrayList and LinkedList are not thread-safe and
require explicit synchronization when accessed by multiple threads



concurrently.

Collections.synchronizedList()
The Collections.synchronizedList() method provides a synchronized
wrapper around a list. Let us see its usage with the help of an example:
import java.util.List;
import java.util.Collections;
import java.util.ArrayList;
public class SynchronizedListExample {
 public static void main(String[] args) {
// Create a thread-safe (synchronized) list using 
Collections.synchronizedList()
  List<Integer> list = Collections.synchronizedList(new Ar
rayList<>());
  list.add(10);
  list.add(20);
  list.add(30);
/*
* Even though the list is synchronized for individual 
operations
* (like add, remove, get), we still need to explicitly 
synchronize
* when iterating over it to avoid 
ConcurrentModificationException
* if other threads modify it during iteration.
*/
  synchronized (list) {
   for (Integer num : list) {
    System.out.println(num);
   }
  }
 }
}



Output:
10
20
30
Collections.synchronizedList() ensures that all individual operations
on the list are thread-safe. However, iteration is not automatically
synchronized; we need to manually synchronize on the list object to make the
iteration block thread-safe.

Note: A synchronized block is only required when iterating over the list.
Other methods like add(), remove(), or get() are already
synchronized internally when using
Collections.synchronizedList(). However, iteration must be done
within a synchronized block to avoid
ConcurrentModificationException.

CopyOnWriteArrayList
Java provides CopyOnWriteArrayList, a thread-safe list where all write
operations create a new copy of the list. Let us see its usage with an example:
import java.util.concurrent.CopyOnWriteArrayList;
public class CopyOnWriteArrayListExample {
    public static void main(String[] args) {
        CopyOnWriteArrayList<String> list = new CopyOnWrit
eArrayList<>();
        list.add("Java");
        list.add("Python");
        list.add("C++");
        for (String language : list) {
            System.out.println(language);
        }
    }
}
The following is the output:
Java



Python
C++
Since CopyOnWriteArrayList does not allow modifications to affect ongoing 
iterations, it prevents ConcurrentModificationException, but consumes more 
memory.
Unlike a synchronizedList(), it does not require an explicit
synchronization for iteration. It is suitable for read-heavy operations, but
inefficient for frequent writes due to copying overhead.

Unmodifiable collections
In Java, sometimes we need to create read-only collections to ensure that the
data remains unchanged after initialization. The collections class provides
methods to create unmodifiable versions of Lists, Sets, and Maps.
This is particularly useful when exposing collections from APIs where we want
to prevent accidental modifications by the caller.
For example, in a role-based access control system, an API might return a list
of user roles that should not be altered by the client. Making the collection
unmodifiable ensures data integrity and prevents unintended modifications.
Additionally, unmodifiable collections help improve thread safety by
eliminating synchronization issues related to modifications.
Let us understand this with an example:
List<String> names = new ArrayList<>();
names.add("Ryan");
names.add("Roger");
List<String> unmodifiableNames = 
Collections.unmodifiableList(names);
unmodifiableNames.add("Royce"); // Throws 
UnsupportedOperationException
In the above example:

The unmodifiableList() method wraps the original list and prevents
modifications.
If an attempt is made to modify the list, an
UnsupportedOperationException is thrown.



Note: If the original list (names) is modified, those changes will be
reflected in the unmodifiable list. To create a truly immutable list, Java 9+
provides the List.of() method, which prevents both modifications and
updates to the underlying collection.

The following is an example of List.of() usage:
List<String> immutableNames = List.of("Ryan", "Roger", 
"Royce");
// immutableNames.add("Zane"); // Throws 
UnsupportedOperationException
It creates an immutable list that cannot be modified after creation. Any attempt
to add, remove, or change elements will result in an
UnsupportedOperationException.

Checked collections
In Java, the checked collections class, part of the java.util.Collections
utility class is used to ensure that elements in a collection adhere to a specified
type at runtime. This is particularly useful when working with generic
collections where type safety is important but cannot be enforced at compile
time due to certain constraints, such as when collections are created
dynamically or passed around without explicit type parameters.
The Collections.checkedCollection(), checkedList(),
checkedSet(), and checkedMap() methods allow you to wrap a collection
in a checked version, enforcing that all elements conform to the specified type.
If an element of an incompatible type is added to the collection, a
ClassCastException will be thrown. This helps catch type errors earlier
during runtime rather than at a later stage, enhancing reliability and
maintainability.
Let us understand this with an example:
List rawList = new ArrayList(); // raw type
List<String> checkedList = Collections.checkedList(rawList
, String.class);
checkedList.add("Hello");  // Valid
rawList.add(10);           // Compiles, but will cause a r



untime error
System.out.println(checkedList.get(1)); // Throws ClassCas
tException
Collections.checkedList() wraps the original raw list into a checked list
that enforces type safety at runtime. Adding Hello is allowed, but when an
integer (10) is added directly to the raw list, it bypasses compile-time checks.
However, accessing it through checkedList causes a
ClassCastException, because the wrapper ensures that only String
objects are treated as valid elements at runtime.

Advantages of using checked collections
When working with collections in Java, ensuring type safety at runtime
becomes critical, especially in dynamic environments. Checked collections
offer several benefits:

Type safety: Checked collections enforce that only elements of the
specified type can be added, which helps prevent runtime errors that can be
tricky to debug.
Legacy support: They are invaluable when integrating older, non-generic
collections with newer, generic-based collections, ensuring type safety
without requiring a major refactor.
Enhanced reliability: By applying runtime type checks, they provide a
safeguard against introducing invalid data, especially when collections are
used with external sources or dynamic inputs.

This makes checked collections a useful tool for improving code reliability and
managing data consistency across various parts of an application.

Conclusion
In this chapter, we explored the List interface and its various implementations,
including ArrayList, LinkedList, and Vector. We examined the internal
structure and dynamic behavior of each implementation, along with its
performance considerations. Additionally, we covered synchronization in lists,
the synchronized collections class, and unmodifiable collections to help ensure
data integrity and security in multi-threaded environments. We also explored
checked collections for type safety in runtime operations.



By understanding these different implementations, their internal workings, and
associated methods, you are better equipped to make informed decisions about
which List implementation to use in various real-world scenarios. Each
collection type has its strengths and weaknesses, and by considering factors
like performance, thread-safety, and data immutability, you can optimize the
performance of your Java applications.
In the next chapter, we will discuss Maps, exploring their unique properties, use
cases, and implementations.

Exercise
1. Which of the following correctly instantiates an ArrayList?

a. List<int> list = new ArrayList<>();
b. List<String> list = new ArrayList<>();
c. ArrayList list = new List<>();
d. List list = new ArrayList<String>();

2. What is the default initial capacity of an ArrayList in Java?
a. 5
b. 10
c. 16
d. 20

3. How does ArrayList dynamically increase its size when full?
a. It creates a new array with double the size and copies elements into it.
b. It creates a new array 1.5 times the size and copies elements into it.
c. It extends the existing array in memory without copying elements.
d. It does not increase size dynamically; the user must manually create a

new array.
4. What is the time complexity of adding an element at the end of an

ArrayList?
a. O(1) in most cases
b. O(n)
c. O(log n)
d. O(n^2)



5. Which data structure is internally used by LinkedList in Java?
a. Dynamic array
b. Doubly linked list
c. Singly linked list
d. Hash table

6. Which of the following is true about Vector in Java?
a. It is synchronized
b. It dynamically grows by doubling its size
c. It is preferred over ArrayList in multi-threaded applications
d. All of the above

7. Which method is used to obtain a synchronized version of an
ArrayList?
a. Collections.synchronizedList()
b. Collections.synchronizedArrayList()
c. Arrays.synchronizedList()
d. synchronized(new ArrayList<>())

8. Which class should be used to create an unmodifiable list in Java?
a. Collections.unmodifiableList()
b. List.unmodifiable()
c. Arrays.unmodifiableList()
d. Collections.synchronizedList()

9. What is the purpose of checked collections in Java?
a. To prevent adding null values
b. To ensure type safety at runtime
c. To allow concurrent modifications
d. To improve performance

10. Which list implementation is most suitable when frequent insertions
and deletions are required?
a. ArrayList
b. Vector
c. LinkedList
d. UnmodifiableList



Answers
1. b

Explanation: Java generics do not support primitive types, so List<int> is
invalid. Correct usage requires specifying a valid generic type, such as
String.

2. b
Explanation: The default initial capacity of an ArrayList is 10 when
created with the default constructor.

3. b
Explanation: When an ArrayList reaches its capacity, it dynamically
grows by 1.5 times its previous size (in most Java implementations, such
as OpenJDK). A new array is created, elements are copied into it, and the
reference is updated, allowing dynamic expansion.

4. a
Explanation: Adding an element at the end of an ArrayList is usually
O(1), except when resizing occurs, which makes it O(n) occasionally.

5. b
Explanation: LinkedList in Java is implemented as a doubly linked list,
where each node contains references to both the previous and next nodes.

6. d
Explanation: Vector is synchronized, grows by doubling its size when full,
and is used in multi-threaded environments where thread safety is required.

7. a
Explanation: The Collections.synchronizedList() method returns a
synchronized version of the given list.

8. a
Explanation: The Collections.unmodifiableList() method returns an
unmodifiable version of the given list, preventing modifications.

9. b
Explanation: Checked collections help enforce type safety at runtime by
wrapping collections with type validation.

10. c
Explanation: LinkedList is preferred for frequent insertions and deletions
as it uses a doubly linked list structure, making such operations efficient.
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CHAPTER 6
Map Interface and

Implementations

Introduction
In Java, a Map is a data structure that stores key-value pairs, where each key
is unique and maps to a specific value. Unlike collections such as List or Set
that focus on individual elements, Map emphasizes efficient association and
retrieval based on keys. It is commonly used in applications like caching,
configuration management, frequency counting, and database-like lookups.
Java provides several implementations of the Map interface, each with
different internal structures and performance characteristics. These include
HashMap, LinkedHashMap, TreeMap, and Hashtable, each suited for
different use cases depending on ordering, synchronization, and sorting
requirements.
In this chapter, we will explore the fundamental concepts of the Map
interface, its primary implementations, and their internal mechanics. We will
also look at performance considerations, common use cases, synchronization
strategies, and the use of generic algorithms with Maps.

Structure



The chapter covers the following topics:
Map interface
HashMap implementation
LinkedHashMap implementation
TreeMap implementation
Hashtable implementation
Performance considerations
Common use cases for Maps
Synchronization in Maps
Generic algorithms for Maps

Objectives
By the end of this chapter, you will understand how the Map interface works
in Java, including its core purpose of storing key-value pairs with unique
keys. You will explore the primary Map implementations like HashMap,
LinkedHashMap, TreeMap, and Hashtable, and understand how they differ
in terms of ordering, synchronization, and performance. You will also gain a
deeper understanding of the internal data structures that power these
implementations, such as hash tables, linked lists, and red-black trees.
Additionally, you will learn when to choose each implementation based on
specific use cases, how to handle thread safety with maps, and how to use
generic algorithms to process map data effectively. This knowledge will
enable you to write cleaner, more efficient, and maintainable Java code
involving key-value associations.

Map interface
The Map interface in Java defines the contract for key-value pair mappings.
It is part of java.util package and differs from other collection types like
List or Set in that it is not a direct subtype of the Collection interface. The
main purpose of a Map is to associate a unique key with a specific value.
Each key is mapped to exactly one value, but the values themselves may be



duplicated.
The following are the key characteristics of Maps:

Uniqueness of keys: A Map does not allow duplicate keys, ensuring
that each key is associated with only one value.
Null key/value handling: Some Map implementations allow null keys
and values, while others do not.
Basic operations: The interface includes essential methods like put(),
get(), remove(), and containsKey(), which help manage the data
stored in the Map.
Iterators: Maps offer iterators for keys, values, and entries, which
makes it easy to traverse the data.

To better understand the functionality of the Map interface, here is a list of
the commonly used methods, along with their descriptions. These methods
provide essential operations for managing key-value mappings in a Map.
Refer to the following table:

Method Description

put(K key, V value) Inserts a key-value pair into the map. If the key already
exists, it updates the value associated with it

get(Object key) Retrieves the value associated with the specified key, or
returns null if the key does not exist in the map

remove(Object key) Removes the key-value pair associated with the specified
key. Returns the value if found, or null if the key does not
exist

containsKey(Object key) Returns true if the map contains a mapping for the specified
key; otherwise, it returns false

containsValue(Object value) Returns true if the map contains one or more keys mapped
to the specified value; otherwise, it returns false

keySet() Returns a Set view of the keys contained in the map

values() Returns a Collection view of the values contained in the map

entrySet() Returns a Set view of the key-value pairs (entries) contained
in the map. Each entry is a Map.Entry object

size() Returns the number of key-value pairs in the map

isEmpty() Returns true if the map contains no key-value mappings;



otherwise, it returns false

clear() Removes all key-value mappings from the map

putAll(Map<? extends K,? 
extends V> m)

Copies all the mappings from the specified map to the
current map

equals(Object o) Compares the specified object with the map for equality,
based on the key-value mappings

hashCode() Returns the hash code value for the map, based on its key-
value pairs

forEach(BiConsumer<? super 
K,? super V> action)

Performs the specified action for each key-value pair in the
map

Table 6.1 : Useful methods in the Map interface
Java provides several implementations of the Map interface, each optimized
for specific use cases. The following figure is a visual overview of the
primary classes that implement the Map interface:

Figure 6.1: Map interface and implementations

HashMap implementation
HashMap is one of the most used implementations of the Map interface. It
stores key-value pairs and offers constant-time performance for basic



operations like get() and put() on average, making it an ideal choice for
scenarios where fast access to data is crucial.
The following are the key characteristics:

Order: HashMap does not guarantee any specific order of its elements.
The order of keys and values can change over time, especially if entries
are added or removed.
Null handling: HashMap allows one null key and multiple null values,
which is not allowed in all Map implementations.
Concurrency: HashMap is not synchronized, meaning it is not thread-
safe. If you need to use it in a concurrent environment, you might want
to use ConcurrentHashMap or wrap it with
Collections.synchronizedMap().

Internal structure of HashMap
Internally, HashMap uses a hash table, where the keys are hashed, and the
resulting hash code determines where the corresponding value is stored in
the table. If two keys have the same hash code (a hash collision), HashMap
uses a linked list (or a balanced tree in the case of many collisions) to store
the values associated with those keys.
At its core, a HashMap stores key-value pairs in an array of buckets. Each
bucket is essentially a linked list (or a balanced tree in certain scenarios) that
holds entries with the same hash code.
Let us understand the key features of a HashMap:

Node<K,V> Class: Internally, each key-value pair is represented by a
static inner class called Node<K,V>, which implements the
Map.Entry<K,V> interface. Here is a simplified version of its
structure:
static class Node<K,V> implements Map.Entry<K,V> {
    final int hash;
    final K key;
    V value;
    Node<K,V> next;
    // Constructors and methods...



}
In this structure:

hash: The hash code of the key.
key: The key of the entry.
value: The value associated with the key.
next: A reference to the next node in the bucket (used in case of
collisions).

Bucket array (table): The HashMap maintains an array called table,
where each element is a reference to a Node. The default initial capacity
of this array is 16, and it resizes dynamically as the number of entries
increases.
This is represented in the following:
transient Node<K,V>[] table;
Hash function: To determine the index of the bucket where a key-value
pair should reside, HashMap uses a hash function. It computes the hash
code of the key and then applies a supplemental hash function to
reduce collisions. The following is the hash function that is used:
static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) 
^ (h >>> 16);
}
This function takes the original hash code of the key and mixes its
higher-order bits with the lower-order bits using an XOR operation.
This helps in achieving a more uniform distribution of hash codes across
the buckets, especially when the hash codes have patterns in the higher
bits.
Index calculation: Once the hash code is computed, the index for the
bucket array is determined using the following formula:
index = (n - 1) & hash;
Here, n is the length of the bucket array (i.e., the capacity of the
HashMap). The bitwise AND operation with n - 1 ensures that the



index falls within the bounds of the array. This method is efficient
because it avoids the use of the modulo operator and works effectively
when n is a power of two, which is always the case for HashMap
capacities.

To understand this better, let us walk through the internal operations of some
key methods in HashMap with an example.
Consider the following code:
Map<String, String> map = new HashMap<>();
map.put("Apple", "Fruit");
For the put method, Java internally calls:
int h = "Apple".hashCode();  
Suppose this returns 63062875.
Then the supplemental hash is applied, h = h ^ (h >>> 16):

h: 63062875 ^ (63062875 >>> 16)
h: 63062875 ^ 961 which gives a final hash = 63061914

HashMap's array length is always a power of 2. Initial capacity is 16. So the
index is calculated as follows:
index: (16 - 1) & 63061914 = 15 & 63061914
This gives us an index = 2. So, the entry should be placed in bucket index 2.
Now, HashMap checks if there is already a node at index 2:

If yes, it compares the keys using equals() to see if it is the same key.
If the key is the same, it updates the old value with the new value.
If not, it creates a new node and inserts it at that position.

In our example, it is empty, so it adds a new node as shown in the following:
Node<String, String> newNode = new Node<>(hash=63061914, 
key="Apple", value="Fruit", next=null);
If we want to retrieve a value from the HashMap as shown in the following:
map.get("Apple");
The following is the sequence that is followed for the retrieval of values
from the Map:

Hash for Apple is computed, which gives us 63061914.
The index is calculated, which gives us two, and then we go to bucket



two to find the node.
The keys are compared using the equals() method, and once the
matching key is found, the value is returned. In this case, the value
returned is Fruit.

In case of a collision, let us say Orange also hashes to index 2 (just
hypothetically) in the following code:
map.put("Orange", "NotFruit");
It finds bucket two already has Apple and Orange.equals(Apple) is
compared, which gives a false. This is a collision where two different keys
lead to the same bucket. In this scenario, a new node is created and added to
the bucket.
Now, the bucket with index 2 has two nodes, as shown in the following
figure:

Figure 6.2: Hash collision in HashMap

If the bucket gets more than eight entries and the overall capacity is 64 or
more, the list will be converted to a red-black tree for performance.
A HashMap resizes (doubles its capacity) when the number of entries
exceeds the product of capacity and load factor (default 0.75), rehashing all
existing entries.
Consider the following example:
import java.util.HashMap;
public class HashMapResizeDemo {
    public static void main(String[] args) {
        HashMap<Integer, String> map = new HashMap<>
(4, 0.75f); 



 // small initial capacity to trigger resize
        for (int i = 1; i <= 10; i++) {
            map.put(i, "Value " + i);
            System.out.println("Added: " + i + " => map 
size: " + map.size());
        }
    }
}

The following is the output:
Added: 1 => map size: 1
Added: 2 => map size: 2
Added: 3 => map size: 3
Added: 4 => map size: 4
Added: 5 => map size: 5
Added: 6 => map size: 6
Added: 7 => map size: 7
Added: 8 => map size: 8
Added: 9 => map size: 9
Added: 10 => map size: 10
In the above example, the initial capacity = 4, load factor = 0.75. Resize
will happen when size > 4 * 0.75 = 3. After inserting the 4th element, the
HashMap will resize to a capacity of 8.
Another resize occurs when entries exceed 8 * 0.75 = 6 (at the 7th element),
resulting in a new capacity of 16.

Note: In a HashMap, the hashCode() and equals() methods play a
critical role in ensuring that keys are stored and retrieved accurately
and efficiently. If either method is not overridden correctly (especially
in custom key classes), the HashMap may behave incorrectly, which
could lead to failing to find keys, overwriting values, or duplicating
entries.



Constructors in HashMap
The HashMap class provides several constructors to create a map with
different configurations:

HashMap(): Creates an empty HashMap with an initial capacity of 16
and a load factor of 0.75. HashMap does not guarantee any specific
iteration order of its elements.
HashMap(int initialCapacity): Creates an empty HashMap with the
specified initial capacity and a load factor of 0.75. This constructor
allows you to optimize memory usage by specifying the expected
number of entries.
HashMap(int initialCapacity, float loadFactor): Creates an empty
HashMap with the specified initial capacity and load factor. This gives
more control over the resizing behavior of the map.
HashMap(Map<? extends K, ? extends V> m): Creates a new
HashMap with the same mappings as the specified map m. This
constructor copies the entries from another map and uses the default
initial capacity and load factor.

LinkedHashMap implementation
A LinkedHashMap is a subclass of HashMap that maintains a doubly-
linked list running through all its entries. This enables predictable iteration
order, either by insertion order or access order, depending on the constructor
used.
The following are the key characteristics of LinkedHashMap:

Maintains a doubly-linked list of entries for predictable iteration order.
Preserves insertion order by default.
Can preserve access order if the accessOrder flag is set to true.
Supports all operations of HashMap with a small performance overhead.
Useful for caching and ordered iteration use cases.
Slightly slower than HashMap due to linked list maintenance.
Non-synchronized, like HashMap, must be synchronized externally for
thread safety.



Internal structure of LinkedHashMap
Each entry in the map is represented by a specialized internal class, as shown
in the following:
static class Entry<K,V> extends HashMap.Node<K,V> {
    Entry<K,V> before, after;
}
The map uses a standard hash table to store entries just like HashMap,
enabling O(1) lookup time. Each bucket still contains a chain of nodes (via
next pointer) for handling collisions.
In addition to this, each node also has two new pointers:

before: Points to the previous entry in iteration order.
after: Points to the next entry in iteration order.

A doubly-linked list connects all entries in insertion order (or access order, if
configured). To understand the access order, consider the following example:
map.put("A", 1);
map.put("B", 2);
map.put("C", 3);

The Map looks like the following:

Figure 6.3: LinkedHashMap initial structure

If accessOrder is true and we do map.get(B), B moves to the end, and
now the Map would look like the following figure:



Figure 6.4: LinkedHashMap with accessOrder

Note: The doubly linked list is independent of the hash table buckets. It is only used for
iteration and not for searching or hashing. This adds slight overhead compared to HashMap,
but gives you order preservation.

Constructors in LinkedHashMap
The LinkedHashMap class provides several constructors to create a map
with different configurations:

LinkedHashMap(): Creates an empty LinkedHashMap with an initial
capacity of 16 and a load factor of 0.75, maintaining the insertion order
of entries.
LinkedHashMap(int initialCapacity): Creates an empty
LinkedHashMap with the specified initial capacity and a load factor of
0.75, preserving insertion order.
LinkedHashMap(int initialCapacity, float loadFactor): Creates an
empty LinkedHashMap with the specified initial capacity and load
factor, maintaining insertion order.
LinkedHashMap(int initialCapacity, float loadFactor, boolean
accessOrder): Creates an empty LinkedHashMap with the specified
initial capacity, load factor, and iteration order.

If accessOrder is true, the map will be iterated in access order (most
recently accessed entries will be moved to the end), which is useful for
implementing least recently used (LRU) caches.
If accessOrder is false, the map will maintain insertion order.

TreeMap implementation



TreeMap is a Map implementation that stores its entries in a sorted order. It
is based on a red-black tree, which is a self-balancing binary search tree. It
ensures that the keys are always sorted according to their natural ordering or
by a comparator provided at the time of creation.
The following are the key characteristics of TreeMap:

Sorted order: TreeMap sorts the entries by key. By default, it uses the
natural ordering of keys (if they implement comparable), or you can
specify a custom comparator for sorting.
Null keys: TreeMap does not allow null keys. However, it allows null
values.
Performance: The time complexity of the get(), put(), and
remove() operations is O(log n) due to the underlying red-black tree
structure.
Thread safety: TreeMap is not synchronized. If thread-safety is
required, external synchronization should be used, or consider using
Collections.synchronizedMap().

Internal structure of TreeMap
As mentioned earlier, TreeMap uses a red-black tree as its underlying data
structure. This ensures that the map stays balanced and that operations like
get(), put(), and remove() all have O(log n) time complexity. Here is a
step-by-step breakdown of how it works:

1. Red-black tree properties:
a. It is a type of self-balancing binary search tree.
b. Each node in the tree has a color (either red or black) to maintain

balance.
c. The tree follows specific properties to ensure that it remains

balanced, with key properties of red-black trees like:
i. The root node is always black.

ii. Red nodes cannot have red children.
iii. Every path from a node to its descendant null nodes must have

the same number of black nodes.
2. Insertion:



a. When a key-value pair is inserted into the TreeMap, it is placed in
the tree according to the natural ordering of the keys (or the
comparator if provided).

b. After insertion, the red-black tree might become unbalanced. If so,
rotations and color flips are performed to restore balance.

3. Searching:
a. When you search for a key in the TreeMap, the tree is traversed

starting from the root. It checks the left or right child based on the
key's comparison to the current node's key. This continues
recursively, following the binary search tree logic.

b. This is because the tree is balanced; the time complexity for
searching is O(log n).

Here is a simple example demonstrating basic operations on a TreeMap in
Java, including insertion, retrieval, update, deletion, and iteration:
import java.util.TreeMap;
import java.util.Map;
public class TreeMapExample {
    public static void main(String[] args) {
        // Create a TreeMap
        TreeMap<Integer, String> studentMap = new TreeMa
p<>();
        // Add entries to the TreeMap
        studentMap.put(102, "Aaron");
        studentMap.put(101, "Bella");
        studentMap.put(103, "Chris");
        // TreeMap maintains ascending order of keys
        System.out.println("Initial TreeMap: " + student
Map);
        // Get a value by key
        System.out.println("Student with ID 101: " + stu
dentMap.get(101));
        // Update a value



        studentMap.put(101, "Brian");
        System.out.println("After updating ID 101: " + s
tudentMap);
        // Remove an entry
        studentMap.remove(102);
        System.out.println("After removing ID 102: " + s
tudentMap);
        // Iterate over the TreeMap
        System.out.println("Iterating TreeMap:");
        for (Map.Entry<Integer, String> entry : studentM
ap.entrySet()) {
            System.out.println("ID: " + entry.getKey() +
 ", Name: " + entry.getValue());
        }
        // Other useful TreeMap operations
        System.out.println("First Entry: " + studentMap.
firstEntry());
        System.out.println("Last Key: " + studentMap.las
tKey());
        System.out.println("Ceiling Entry for 102: " + s
tudentMap.ceilingEntry(102));
        System.out.println("Lower Key than 103: " + stud
entMap.lowerKey(103));
    }
}
The following is the output:
Initial TreeMap: {101=Bella, 102=Aaron, 103=Chris}
Student with ID 101: Bella
After updating ID 101: {101=Brian, 102=Aaron, 103=Chris}
After removing ID 102: {101=Brian, 103=Chris}
Iterating TreeMap:
ID: 101, Name: Brian



ID: 103, Name: Chris
First Entry: 101=Brian
Last Key: 103
Ceiling Entry for 102: 103=Chris
Lower Key than 103: 101
In the above example:

Insertion (put): Adds key-value pairs to the TreeMap. Keys must be
unique and are automatically sorted.
For example, studentMap.put(102, "Aaron"); adds a student
with ID 102 and name Aaron.
Retrieval (get): Fetches the value associated with a specific key.
For example, studentMap.get(101); returns "Bella".
Update (put): If a key already exists, calling put again with the same
key updates the value.
For example, studentMap.put(101, "Brian"); updates the name
for ID 101.
Deletion (remove): Removes the entry associated with a specific key.
For example, studentMap.remove(102); deletes the entry for ID
102.
Iteration (entrySet): Allows looping through all key-value pairs in
sorted order.
For example, a for-each loop prints all entries in increasing order of ID.
First and last Entry (firstEntry, lastKey): Retrieve the lowest and
highest entries or keys. firstEntry() returns the entry with the
smallest key. lastKey() returns the highest key.
Navigational methods:

ceilingEntry(102): Returns the entry with the least key greater than
or equal to 102.
lowerKey(103): Returns the greatest key strictly less than 103.

Constructors in TreeMap
The TreeMap class provides several constructors to create a map with



different configurations:
TreeMap(): Creates an empty TreeMap that sorts elements according to
their natural ordering (i.e., using comparable).
TreeMap(Map<? extends K, ? extends V> m): Creates a new
TreeMap containing the same mappings as the specified map m. The
entries are sorted according to the natural ordering of the keys or a
specified comparator.
TreeMap(Comparator<? super K> comparator): Creates an empty
TreeMap that uses the specified comparator to order the keys. If the
comparator is null, the map will use natural ordering.
TreeMap(SortedMap<K, ? extends V> m): Creates a new TreeMap
containing the same mappings as the specified SortedMap. The entries
are sorted according to the order of the SortedMap.

Common methods in TreeMap
The following table shows some common methods available in TreeMap:

Method Description

firstKey() Returns the first (lowest) key currently in the map

lastKey() Returns the last (highest) key currently in the map

firstEntry() Returns a key-value mapping associated with the lowest key

lastEntry() Returns a key-value mapping associated with the highest key

ceilingKey(K key) Returns the least key greater than or equal to the given key, or null if
none

ceilingEntry(K key) Returns the entry with the least key ≥ the given key

floorKey(K key) Returns the greatest key less than or equal to the given key, or null if
none

floorEntry(K key) Returns the entry with the greatest key ≤ the given key

higherKey(K key) Returns the least key strictly greater than the given key

higherEntry(K key) Returns the entry with the least key > the given key

lowerKey(K key) Returns the greatest key strictly less than the given key



lowerEntry(K key) Returns the entry with the greatest key < the given key

pollFirstEntry() Removes and returns the first entry (lowest key) from the map

pollLastEntry() Removes and returns the last entry (highest key) from the map

Table 6.2:  Additional methods in TreeMap

Hashtable implementation
Hashtable is a legacy class that implements the Map interface and was part
of the original version of Java. It stores key-value pairs and ensures that keys
are unique. Like HashMap, it uses hashing to store and retrieve elements
efficiently.
However, unlike HashMap, Hashtable is synchronized, making it thread-
safe for use in multithreaded environments, though this comes at the cost of
performance.
The following are the key characteristics of a Hashtable:

Thread-safe: All methods are synchronized.
No null keys or values: A Hashtable does not allow null as a key or
value.
Unordered: It does not maintain insertion or sorted order.
Legacy class: Considered outdated for most modern applications;
ConcurrentHashMap or Collections.synchronizedMap() is
preferred instead.

Internal working of Hashtable
Internally, Hashtable uses an array of buckets where each bucket is a
linked list (or Entry[]) that stores key-value pairs. The hash code of the
key determines the bucket index. When collisions occur (i.e., two keys hash
to the same index), it resolves them using chaining.
This is represented as shown in the following:
public class Hashtable<K,V> extends Dictionary<K,V> 
implements Map<K,V>, Cloneable, java.io.Serializable {
    private transient Entry<?,?>[] table;



    private int count;
    private int threshold;
    private float loadFactor;
    ...
}
Each Entry stores a key, a value, a hash code, and a pointer to the next
Entry (for handling collisions).

Constructors in Hashtable
The Hashtable class provides several constructors to create a map with
different initial settings:

Hashtable(): Creates an empty Hashtable with a default initial
capacity of 11 and a load factor of 0.75.
Hashtable(int initialCapacity): Constructs a Hashtable with the
specified initial capacity and the default load factor (0.75).
Hashtable(int initialCapacity, float loadFactor): Creates a
Hashtable with the given initial capacity and load factor.
Hashtable(Map<? extends K, ? extends V> t): Initializes the
Hashtable with the mappings from the specified Map. The table's
capacity will be enough to hold these mappings.

Consider a simple working example demonstrating how to use a
Hashtable in Java:
import java.util.Hashtable;
public class HashtableExample {
    public static void main(String[] args) {
        // Create a Hashtable with default capacity and 
load factor
        Hashtable<String, Integer> studentMarks = new 
Hashtable<>();
        // Adding key-value pairs
        studentMarks.put("Ray", 85);
        studentMarks.put("Sara", 92);



        studentMarks.put("Adam", 76);
        studentMarks.put("Grace", 88);
        // Retrieving a value
        System.out.println("Sara’s marks: " + 
studentMarks.get("Sara"));
        // Iterating through Hashtable
        for (String name : studentMarks.keySet()) {
            System.out.println(name + " scored " + 
studentMarks.get(name));
        }
        // Removing a key
        studentMarks.remove("Adam");
        System.out.println("Updated Hashtable: " + 
studentMarks);
    }
}
The following is the output:
Sara's marks: 92
Grace scored 88
Adam scored 76
Ray scored 85
Sara scored 92
Updated Hashtable: {Grace=88, Ray=85, Sara=92}

Comparing Map implementations
As we explore different implementations of the Map interface, it is important
to understand how they compare in terms of ordering, performance, thread
safety, and internal structure. The following table summarizes the key
differences between HashMap, LinkedHashMap, TreeMap, and
Hashtable:

Feature HashMap LinkedHashMap TreeMap Hashtable

Ordering No guaranteed Maintains insertion Sorted according to No guaranteed



order order natural/comparator
order

order

Null keys or
values

Allows one null
key and
multiple null
values

Allows one null key
and multiple null
values

Does not allow null
keys, allows null
values

Does not allow
null keys or
values

Thread safety Not thread-safe Not thread-safe Not thread-safe Thread-safe
(synchronized
methods)

Performance Fastest (non-
synchronized)

Slightly slower than
HashMap due to order
maintenance

Slower due to sorting Slower due to
synchronization

Internal data
structure

An array of
buckets with
singly-linked
lists or
balanced trees
(after
threshold)

Same as HashMap and
a doubly-linked list for
order

Red-black tree (self-
balancing BST)

An array of
buckets (like an
old HashMap)

Use case General-
purpose, non-
threaded
scenarios

When the order of
insertion matters

When sorted keys are
required

Legacy
synchronized
code

Introduced in Java 1.2 Java 1.4 Java 1.2 Java 1.0

Null safety Unsafe in a
multithreaded
environment

Unsafe in a
multithreaded
environment

Unsafe in a
multithreaded
environment

Safe for
concurrent use

Fail-fast
iterator

Yes Yes Yes No (uses
Enumerator, not
Iterator)

Table 6.3 : Comparison of HashMap, LinkedHashMap, TreeMap, and
Hashtable

Performance considerations
Each implementation of the Map interface in Java offers different
performance characteristics based on its underlying data structure:



HashMap generally provides constant-time performance for basic
operations like get(), put(), and remove(), assuming the hash
function disperses elements properly. However, in the worst case, such
as when many keys hash to the same bucket, these operations can
degrade to linear time.
LinkedHashMap maintains a doubly linked list to preserve insertion or
access order, which adds a slight overhead compared to HashMap.
However, its lookup and insertion times remain effectively constant
under typical conditions.
TreeMap, on the other hand, maintains a balanced binary search tree
(specifically, a red-black tree), which guarantees O(log n) time for
get(), put(), and remove() operations. This makes it slower than
HashMap or LinkedHashMap for general use, but preferable when you
need keys to be sorted.
Hashtable is a legacy class that provides synchronized access, which
introduces a performance hit in single-threaded contexts. Its basic
operations are similar to those of HashMap, but the added
synchronization overhead makes it less efficient in most modern
applications.

The following table presents a concise comparison of the core operations
and features of different Map implementations:

Feature HashMap LinkedHashMap TreeMap Hashtable

Time for
get()/put()

O(1) average,
O(n) worst

O(1) average (with
insertion-order overhead)

O(log n) O(1) average, O(n)
worst

Time for
remove()

O(1) average O(1) average O(log n) O(1) average

Ordering No ordering Maintains insertion/access
order

Sorted by keys No ordering

Thread
safety

Not thread-safe Not thread-safe Not thread-safe Thread-safe (via
synchronization)

Memory
usage

Low Higher (due to linked list) Moderate (tree
nodes)

Higher (legacy
synchronization)

Ideal use
case

General-purpose
map

When the order of entries
matters

When sorted
keys are needed

Legacy code needing
thread safety



Table 6.4: Performance comparison between Map interface
implementations

Generally, for unsorted, single-threaded use cases, HashMap is typically the
best choice. When a predictable iteration order is required, LinkedHashMap
is a better fit. If key ordering is important, TreeMap is the right tool. For
thread-safe operations, prefer ConcurrentHashMap over Hashtable.

Common use cases for Maps
The Map interface is one of the most versatile data structures in Java, widely
used in real-world applications. It provides an efficient way to associate keys
with values, enabling quick lookups, updates, and deletions:

A common use case is implementing caches, where keys are resource
identifiers (like user IDs or URLs), and values are the associated data.
For example, a LinkedHashMap with access-order enabled is ideal for
building an LRU cache.
Maps are also frequently used to maintain configurations and settings,
where each key is a configuration name and the value is its setting. In
data processing or analytics tasks, Map can serve as a frequency counter,
mapping items to their number of occurrences.
In applications involving routing or lookup services (like a dictionary or
an address book), Map makes it easy to store and retrieve data based on
a known key. Similarly, TreeMap is useful when keys need to be kept in
sorted order, such as in scheduling applications or leaderboards.

Maps are foundational in frameworks as well, for example, storing HTTP
headers, session attributes, or even binding form data in web applications.
Whether maintaining object references, performing grouping operations, or
representing relationships, Map remains an essential tool in a Java
developer’s toolkit.

Synchronization in Maps
By default, most commonly used Map implementations in Java, such as
HashMap, LinkedHashMap, and TreeMap, are not thread-safe. This means



that if multiple threads access a map concurrently and at least one thread
modifies it, the map must be externally synchronized to prevent
unpredictable behaviour.
For single-threaded environments or read-only access, no synchronization is
required. However, in multi-threaded scenarios, Java provides several
strategies to make map access safe:

Collections.synchronizedMap(): This utility method wraps any map
with synchronized access. However, this locks the entire map for each
operation, which may degrade performance in highly concurrent
environments. This can be created as shown in the following:
Map<String, String> syncMap = 
Collections.synchronizedMap(new HashMap<>());
ConcurrentHashMap: For better concurrency, the
java.util.concurrent package offers ConcurrentHashMap,
which divides the map into segments to allow multiple threads to read
and write without locking the entire map. This can be created as shown
in the following:
Map<String, Integer> concurrentMap = new 
ConcurrentHashMap<>();
Immutable Maps: If the map is only read after construction, you can
use unmodifiable wrappers or factory methods from Map.of() to
prevent changes. This is available from Java version 9 and above and
can be used as shown in the following:
Map<String, String> readOnlyMap = Map.of("key", 
"value");
Synchronized Map – Hashtable: Historically, Hashtable provided
built-in synchronization. However, it synchronizes every method,
making it less efficient and generally avoided in modern applications in
favor of ConcurrentHashMap.

Choosing the right synchronization strategy depends on your specific use
case, whether you prioritize safety, performance, or simplicity.

Generic algorithms for Maps



While the JCF provides direct support for many algorithms via utility classes
like Collections and Arrays, Maps are not Collection types, so they are not
directly compatible with all generic algorithms used for List, Set, etc.
However, we can still apply a wide range of algorithmic operations to Map
instances using their keySet, values, and entrySet views.
Here are some commonly used techniques and patterns:

Iterating over entries: Use the entrySet() method to iterate over
key-value pairs efficiently.
The following is an example of using entrySet() for iteration:
for (Map.Entry<String, Integer> entry : 
map.entrySet()) {
    System.out.println(entry.getKey() + " -> " + 
entry.getValue());
}
Filtering values or keys: Streams can be used to filter based on
conditions, as shown in the following:
map.entrySet().stream()
    .filter(e -> e.getValue() > 10)
    .forEach(e -> System.out.println(e.getKey()));
Sorting a Map: While HashMap does not maintain order, you can sort
entries by keys or values using streams, as shown in the following:
map.entrySet().stream()
    .sorted(Map.Entry.comparingByValue())
    .forEach(System.out::println);
Transforming keys or values: You can build new maps by applying
transformations, as shown in the following:
Map<String, Integer> updated = 
map.entrySet().stream()
    .collect(Collectors.toMap(
        e -> e.getKey().toUpperCase(),
        e -> e.getValue() * 2
    ));



Grouping and counting: Maps are integral in building groupings using
Collectors.groupingBy, as shown in the following:
Map<String, Long> frequency = list.stream()
    
.collect(Collectors.groupingBy(Function.identity(), 
Collectors.counting()));

These algorithmic patterns let you handle complex data processing with
ease. Though maps do not support direct algorithm calls like
Collections.sort(), the flexibility of their views and Java streams
enables robust, efficient operations on map data.

Conclusion
In this chapter, we explored the core Map interface and its primary
implementations—HashMap, LinkedHashMap, TreeMap, and Hashtable.
We discussed their internal workings, constructors, performance
characteristics, and synchronization strategies. Additionally, we compared
their strengths and limitations, outlined common use cases, and
demonstrated how generic algorithms can be effectively applied to maps.
Understanding the nuances of each map implementation equips you to make
the right choice based on performance requirements, ordering needs, and
thread safety considerations, ultimately helping you write clean, scalable,
and performant Java code.
In the next chapter, we will shift our focus to the Set interface, where we will
examine how Java ensures uniqueness in collections through
implementations like HashSet, LinkedHashSet, and TreeSet.

Exercise
1. Which of these Map implementations is synchronized and does not

allow null keys or values?
a. HashMap
b. TreeMap



c. Hashtable
d. LinkedHashMap

2. Which Map implementation maintains the insertion order of keys?
a. HashMap
b. LinkedHashMap
c. TreeMap
d. Hashtable

3. Which Map implementation keeps keys in a sorted order using their
natural ordering or a comparator?

a. HashMap
b. TreeMap
c. Hashtable
d. LinkedHashMap

4. What is the average time complexity for put() and get() operations
in a HashMap?

a. O(n)
b. O(log n)
c. O(1)
d. O(n log n)

5. What causes a HashMap to resize?
a. Reaching the maximum array size
b. The number of keys exceeds the capacity
c. Load factor threshold is breached
d. EntrySet is empty

6. Which of the following allows one null key and multiple null values?
a. Hashtable
b. TreeMap
c. HashMap
d. None of the above

7. Which Map implementation is best suited for concurrent access by
multiple threads without external synchronization?



a. HashMap
b. Hashtable
c. TreeMap
d. ConcurrentHashMap

8. What happens when two keys in a HashMap return the same hash
code?

a. Only one key is stored
b. An exception is thrown
c. A collision occurs, and both are stored using chaining
d. The second key replaces the first one

9. Which constructor is used to create a TreeMap with custom key
sorting logic?

a. TreeMap(Collection c)
b. TreeMap(SortedMap s)
c. TreeMap()
d. TreeMap(Comparator comparator)

10. Which method should you override in a key class used in HashMap
to ensure proper functioning?

a. compareTo()
b. toString()
c. equals() and hashCode()
d. finalize()

Answers
1. c

Explanation: A Hashtable is synchronized and does not permit null
keys or values. All other implementations allow at least one null key or
multiple null values.

2. b
Explanation: LinkedHashMap maintains a doubly linked list to
preserve the insertion order of entries.

3. b



Explanation: TreeMap stores keys in a red-black tree structure and
sorts them using natural ordering or a specified Comparator.

4. c
Explanation: In the average case, HashMap provides constant time
complexity for put() and get(), assuming a good hash function.

5. c
Explanation: When the number of key-value pairs exceeds capacity *
load factor, the map resizes to maintain performance.

6. c
Explanation: HashMap allows one null key and any number of null
values. TreeMap allows null values but not null keys (in natural
ordering). Hashtable does not allow nulls at all.

7. d
Explanation: ConcurrentHashMap is designed for thread-safe
operations without locking the entire map, unlike Hashtable.

8. c
Explanation: HashMap handles collisions by storing entries in a linked
list or tree at the same bucket index.

9. d
Explanation: This constructor allows you to define a custom
Comparator for sorting the keys.

10. c
Explanation: hashCode() is used to find the correct bucket, and
equals() is used to check key equality within that bucket.
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CHAPTER 7
Set Interface and Implementations

Introduction
In Java, a Set is a collection that contains no duplicate elements. Unlike List,
which maintains the insertion order and allows duplicates, Set focuses on
uniqueness and efficient lookups. Sets are commonly used when we want to
store a group of distinct items, such as user IDs, unique tokens, or
configuration keys. Java provides multiple implementations of the Set
interface, each with different internal behaviors and performance
characteristics.
In this chapter, we will explore the core concepts of the Set interface, its key
implementations: HashSet, LinkedHashSet, and TreeSet, along with practical
use cases, internal implementation details, custom implementation examples,
and comparisons. We will also cover performance considerations,
synchronization strategies, and the usage of generic algorithms specifically for
Sets.

Structure
The chapter covers the following topics:

Set interface
HashSet implementation
LinkedHashSet implementation



TreeSet implementation
Performance considerations
Synchronization in Sets
Generic algorithms for Sets

Objectives
By the end of this chapter, you will understand how the Set interface works in
Java, including its primary implementations and how they differ from one
another. You will gain insights into the internal data structures used by various
Set types and when to use each based on your requirements. Additionally, you
will learn how to create your own Set implementation, understand the nuances
of thread safety, and explore how Java provides utilities to manipulate and
process Sets effectively. This foundational knowledge will help you write more
robust and efficient Java programs.

Set interface
The Set interface in Java is a part of the java.util package and extends the
collection interface. It defines a collection that does not allow duplicate
elements. If you try to add a duplicate, the set simply ignores it and retains only
one instance.
Since Set is an interface, it cannot be instantiated directly. Instead, we use one
of its concrete implementations, like HashSet, LinkedHashSet, or TreeSet.
The following are the key characteristics of Sets:

No duplicates: Each element must be unique.
No guaranteed order: In most implementations, like HashSet, the order
of elements is not preserved.
Null element: Most Set implementations allow a single null element.

The Set interface extends the collection interface and introduces several
additional methods, as listed in the following table:

Method Description

add(E e) Adds an element if not already present

addAll(Collection<? extends E> c) Adds all elements from another collection



remove(Object o) Removes the specified element if it exists

contains(Object o) Returns true if the element is present

size() Returns the number of elements in the set

isEmpty() Returns true if the set is empty

clear() Removes all elements from the set

iterator() Returns an iterator over the elements in the set

Table 7.1: Additional methods in the Set interface
The following figure is a visual overview of the primary classes that implement 
the Set interface:

Figure 7.1: Set interface and implementations

HashSet implementation
HashSet is one of the most commonly used implementations of the Set
interface. It is backed by a HashMap, meaning all operations like add, remove,
and contains are internally delegated to the map structure.
The following are the key characteristics:

Does not allow duplicate elements.
Permits one null element.
No guaranteed order of elements.
Not synchronized.



Allows constant-time performance for basic operations (add, remove,
contains), assuming a good hash function.

Internal structure of HashSet
Internally, a HashSet is just a wrapper around a HashMap. When you add an
element to the HashSet, it is stored as a key in the internal map, and a constant
dummy value (like PRESENT) is used for all values.
Let us understand this with an example:
Set<String> set = new HashSet<>();
set.add(“Apple”);
set.add(“Banana”);
set.add("Apple"); // Duplicate, will be ignored
System.out.println(set); // Output might be [Apple, 
Banana] order can vary.
Internally, this is stored as the following:
Map<String, Object> map = new HashMap<>();
static final Object PRESENT = new Object();
map.put("Apple", PRESENT);
map.put("Banana", PRESENT);
map.put("Apple", PRESENT); // Overwrites the same key, no 
new entry added
When adding an element like "Apple", the HashMap computes a hash value
using "Apple".hashCode() determines the appropriate bucket index and
places the key-value pair accordingly. This mechanism is based on the hashing
principles discussed in Chapter 6, Map Interface and Implementations. In case
of duplicate elements, when you add an element to a HashSet, the hash value is
calculated using the element's hashCode() method. This hash is used to find
the bucket (index in the internal array). If that bucket already has an entry with
the same hash, it checks equality using the equals() method. If both hash and
equals() match, the new element is considered a duplicate and is not added.

Constructors in HashSet
Java provides several constructors in the HashSet class to offer flexibility in
initialization, depending on the use case and performance needs:



HashSet(): Creates a new, empty HashSet with the default initial capacity
(16) and load factor (0.75).
HashSet(int initialCapacity): Creates a HashSet with the specified initial
capacity. Useful when you know the number of elements in advance to
reduce rehashing.
HashSet(int initialCapacity, float loadFactor): Allows setting both the
initial capacity and the load factor to fine-tune performance.
HashSet(Collection<? extends E> c): Constructs a HashSet containing all
elements from the given collection. Duplicate elements are automatically
removed.

LinkedHashSet implementation
LinkedHashSet is a subclass of HashSet that maintains the insertion order of
elements. Internally, it uses a doubly linked list along with a hash table. This
combination ensures that the elements are stored in the order in which they
were added, while still providing fast access.
Let us look at a simple example:
Set<String> names = new LinkedHashSet<>();
  names.add("Alex");
  names.add("Brian");
  names.add("Clara");
  System.out.println(names);   // Output: [Alex, Brian, 
Clara]
Even though it is a set and does not allow duplicates, it retains the order in 
which elements were inserted.

Internal structure of LinkedHashSet
LinkedHashSet maintains a linked list of entries in the order they were inserted.
Internally, it is built on top of a LinkedHashMap, which combines:

A hash table (for constant-time performance on basic operations like add,
remove, and contains).
A doubly linked list (to maintain insertion order).

Each element added to a LinkedHashSet is stored as a key in the internal
LinkedHashMap. The value associated with each key is a constant dummy
object (usually PRESENT).



When an element is added, the hash of the element is computed. If it is not
already present, the hash is added to the hash table. A node is created that also
links to the previous and next nodes in the insertion order.
Let us say you add elements in this order:
Set<String> items = new LinkedHashSet<>();
items.add("A");
items.add("B");
items.add("C");
Internally, the entries are linked in the order they were inserted using a doubly
linked list. The structure maintains references to the first (head) entry, as shown
in the following figure:

Figure 7.2: LinkedHashSet internal structure

Each entry points to the next and previous in insertion order. A LinkedHashSet
has the benefits of fast lookup (like HashSet) and the predictability of ordered
iteration (like a List).

Constructors in LinkedHashSet
The LinkedHashSet class provides several constructors that allow developers to
create instances with different initial settings:

LinkedHashSet(): Creates an empty LinkedHashSet with the default
initial capacity (16) and load factor (0.75).
LinkedHashSet(int initialCapacity): Creates an empty LinkedHashSet
with the specified initial capacity and the default load factor (0.75).
LinkedHashSet(int initialCapacity, float loadFactor): Creates an empty
LinkedHashSet with the specified initial capacity and load factor. This is
useful if you want to optimize memory usage or performance for specific
data sizes.



LinkedHashSet(Collection<? extends E> c): Creates a LinkedHashSet
containing the elements of the specified collection. The insertion order is
preserved based on the collection passed.

Here is a simple example demonstrating different LinkedHashSet constructors:
import java.util.*;
public class LinkedHashSetConstructorExamples {
    public static void main(String[] args) {
        // Using default constructor
        LinkedHashSet<String> set1 = new LinkedHashSet<>
();
        set1.add("Apple");
        set1.add("Banana");
        // Using initial capacity constructor
        LinkedHashSet<String> set2 = new LinkedHashSet<>
(20);
        set2.add("Cherry");
        // Using initial capacity and load factor
        LinkedHashSet<String> set3 = new LinkedHashSet<>
(10, 0.5f);
        set3.add("Date");
        // Using constructor with a collection
        List<String> list = Arrays.asList("Sugarcane", "Fi
g", "Grape");
        LinkedHashSet<String> set4 = new LinkedHashSet<>
(list);
        System.out.println("Set1: " + set1);
        System.out.println("Set2: " + set2);
        System.out.println("Set3: " + set3);
        System.out.println("Set4: " + set4);
    }
}
The output are:
Set1: [Apple, Banana]



Set2: [Cherry]
Set3: [Date]
Set4: [Sugarcane, Fig, Grape]
This example shows how all four constructors can be used, and as we can see,
the insertion order is preserved.

TreeSet implementation
Unlike HashSet and LinkedHashSet, which use hashing for storing elements,
TreeSet is a NavigableSet implementation based on a self-balancing binary
search tree, like a red-black tree. This allows it to maintain elements in sorted
(natural or custom-defined) order.
The following are the key characteristics:

Sorted order: Elements are automatically sorted according to their natural
ordering or by a comparator provided at the time of creation.
No duplicates: Like all sets, TreeSet does not allow duplicate elements. If
any duplicate elements are added, they will be ignored.
Performance: add(), remove(), and contains() operations take
O(log n) time due to tree balancing.
Null handling: TreeSet does not allow null elements if using natural
ordering (Comparable); doing so will result in a
NullPointerException.
Not thread safe: For concurrent access, it should be synchronized
externally using Collections.synchronizedSet().

Internal structure of TreeSet
TreeSet is an implementation of the Set interface that stores elements in sorted
order. Internally, it is backed by a TreeMap, which means all the elements in
the TreeSet are stored as keys in a TreeMap. The values in this map are just
dummy objects.
To better understand how TreeSet works, consider a simple example as follows:
TreeSet<Integer> numbers = new TreeSet<>();
numbers.add(20);
numbers.add(10);



numbers.add(30);
When we create a TreeSet<Integer>, it internally creates a
TreeMap<Integer, Object> as seen in the following:
private transient TreeMap<E,Object> map;
private static final Object PRESENT = new Object();
So, the TreeSet does not store the elements directly. Instead, it uses the keys of
the TreeMap to store the elements, while assigning a dummy value (PRESENT)
for all keys.
When we call numbers.add(20);, it internally calls map.put(20,
PRESENT). Since the map is empty, 20 is added as the root node of the
underlying Red-Black tree. When we call numbers.add(10);, it compares
ten with the root (20). Since 10 < 20, it is placed as the left child of 20. The tree
may rebalance, but in this small example, rebalancing might not be needed.
Finally, when numbers.add(30); is called, it compares 30 with 20. Since 30
> 20, it is placed as the right child of 20.
The underlying red-black tree now contains three nodes, as shown in the
following figure:

Figure 7.3 TreeSet internal representation

These elements are automatically sorted and balanced by the tree structure.



Eligibility requirements for elements in TreeSet
Before an element can be added to a TreeSet, it must satisfy certain criteria to 
ensure that the set maintains its sorted order and avoids inconsistencies, as 
mentioned in the following:

Must be comparable or provide a Comparator: TreeSet sorts elements
using natural ordering (Comparable) or a custom Comparator.
The elements must either implement Comparable<T> or be inserted with
a Comparator<T> passed to the constructor.
If neither is provided, adding an element will result in:
java.lang.ClassCastException: class X cannot be cast
to class java.lang.Comparable
Must be mutually comparable: All elements in the same TreeSet must be
comparable with each other.
TreeSet<Object> set = new TreeSet<>();
set.add("abc");   // OK
set.add(100);     // Throws ClassCastException at 
runtime
Must not be null: A TreeSet using natural ordering cannot contain null, as
null is not comparable to non-null elements. Attempting to add null will
throw a NullPointerException.

Constructors in TreeSet
The TreeSet class provides several constructors to create a sorted set in
different ways:

TreeSet(): Creates an empty TreeSet that sorts elements according to their
natural ordering (i.e., using Comparable).
TreeSet(Collection<? extends E> c): Constructs a TreeSet containing the
elements of the given collection, sorted by natural ordering.
TreeSet(Comparator<? super E> comparator): Creates an empty
TreeSet that uses the specified Comparator for ordering.
TreeSet(SortedSet<E> s): Builds a TreeSet containing the same elements
and order as the specified SortedSet.

Common methods in TreeSet



The following table shows some common methods available in TreeSet:
Method Description

first() Returns the lowest element (according to the set's sorting order).

last() Returns the highest element.

ceiling(E e) Returns the smallest element ≥ e, or null if no such element
exists.

floor(E e) Returns the largest element ≤ e, or null if no such element exists.

higher(E e) Returns the least element > e, or null if no such element exists.

lower(E e) Returns the greatest element < e, or null if no such element
exists.

pollFirst() Retrieves and removes the first (lowest) element.

pollLast() Retrieves and removes the last (highest) element.

descendingSet() Returns a reverse-order view of the elements.

descendingIterator() Returns an iterator in reverse order.

subSet(E from, E to) Returns a view of elements from from (inclusive) to to
(exclusive).

headSet(E to) Returns a view of elements less than to.

tailSet(E from) Returns a view of elements greater than or equal to from.

Table 7.2:  Additional methods in TreeSet

Comparison of HashSet, LinkedHashSet and TreeSet
Now that we have explored the major Set implementations individually,
HashSet, LinkedHashSet, and TreeSet, let us compare them side by side. This
comparison will highlight key differences such as ordering, performance, and
internal structure, offering a clearer picture of when to use each
implementation. Refer to the following table:

Feature HashSet LinkedHashSet TreeSet

Ordering No guaranteed order Maintains insertion order Maintains natural or specified
order

Underlying data
structure Hash table Hash table + linked list Red-Black Tree (self-

balancing BST)



Null elements Allows one null Allows one null Does not allow null (throws
NullPointerException for
comparator-based sets)

Performance
(Basic ops) O(1) average time O(1) average time O(log n) time for add,

remove, and contains

Sorted elements No No Yes

Insertion order
preserved No Yes No (Sorted order instead)

Thread safety Not thread-safe Not thread-safe Not thread-safe

Use case When order does not
matter

When the order of
insertion matters When sorted data is needed

Table 7.3: Comparison of HashSet, LinkedHashSet and TreeSet

Java 8 enhancements for the Set interface
Java 8 brought several important updates to the Set interface and its
implementations, both in terms of API usability and performance
improvements. The following are the enhancements made:

Default methods in the Set interface: With Java 8, interfaces can have
default and static methods.
Set (and Collection, which it extends) now includes the following default
methods:

forEach(Consumer<? super E> action): This method can be used to
iterate over elements using a lambda expression or method reference.

Set<String> names = new HashSet<>();
names.add("Alice");
names.add("Bob");
names.forEach(System.out::println);

removeIf(Predicate<? super E> filter): Removes all elements that
satisfy a given condition. For example: names.removeIf(name ->
name.startsWith("A"));
Stream API methods via Collection.stream() and
Collection.parallelStream(): These enable functional-style operations
as shown below.



names.stream()
.filter(name -> name.length() > 3)
.forEach(System.out::println);

Improved collision handling in HashSet: HashSet in Java is backed by a
HashMap, which stores elements in buckets based on their hash code.
Sometimes, two or more elements may produce the same bucket index;
this is called a hash collision.

Before Java 8: All elements in the same bucket were linked together in
a singly linked list. In the worst case (when all elements land in the
same bucket), lookups, insertions, and deletions degrade from O(1)
average time to O(n).
Java 8 improvement: If a single bucket becomes too crowded (more
than 8 elements), the linked list for that bucket is replaced with a
balanced Red-Black tree. This process is called treeification. With
treeification, worst-case lookup time improves from O(n) to O(log n),
making performance more predictable even with many collisions.

Improved rehashing: Java 8 optimized the rehashing process when
resizing hash-based collections like HashSet.
Instead of recomputing hash codes from scratch, it uses bitwise operations
to redistribute elements more efficiently, improving performance during
resize operations.

Performance considerations
Understanding the performance characteristics of different Set implementations
is essential for choosing the right one based on an application's requirements.
They are as follows:

HashSet: Offers constant-time performance (O(1)) for basic operations
like add(), remove(), and contains(), assuming the hash function
disperses elements properly. Performance can degrade to O(n) in worst-
case scenarios if hash collisions are high.
LinkedHashSet: Has similar time complexity to HashSet but maintains
insertion order, which slightly increases memory usage. Ideal when you
need predictable iteration order with good performance.



TreeSet: Backed by a TreeMap, it provides O(log n) time complexity for
most operations (add(), remove(), contains()) because it uses a red-
black tree. This makes it slower than HashSet, but it is suitable when an
ordered arrangement is required.
Iteration: Iterating over a HashSet or LinkedHashSet is generally faster
than over a TreeSet due to the latter's need to maintain order.
Memory usage: TreeSet consumes more memory than HashSet and
LinkedHashSet because of the tree structure and additional pointers.

Synchronization in Sets
By default, implementations of the Set interface, like HashSet, LinkedHashSet,
and TreeSet, are not thread-safe. This means if multiple threads access a set
concurrently and at least one thread modifies it, you must synchronize it
manually to avoid unpredictable behaviour.
To make a set synchronized, Java provides the utility method
synchronizedSet in the Collections class, as shown in the following:
Set<String> set = Collections.synchronizedSet(new 
HashSet<>());
This wraps the original set with a thread-safe version. While operations like
add() or remove() are synchronized, iteration over the set still requires a
manual synchronized block, as shown in the following:
Set<String> set = Collections.synchronizedSet(new 
HashSet<>());
synchronized (set) {
    for (String item : set) {
        // safe iteration
    }
}
This is because the iterator itself is not synchronized. If not wrapped in a
synchronized block, concurrent modifications can lead to a
ConcurrentModificationException.
In modern concurrent environments (with multi-core processors), it is often
necessary to choose set implementations that provide thread safety and



scalability. Java offers specialized concurrent set implementations such as:
ConcurrentSkipListSet (a concurrent and sorted set): A scalable, thread-
safe alternative to TreeSet, internally based on a skip list.
CopyOnWriteArraySet: Best suited for sets with frequent reads and
infrequent writes. It creates a new copy of the underlying array on every
modification.

Generic algorithms for Sets
Java provides a rich set of generic algorithms through the Collections utility
class that can operate on any type of Set, making code more reusable and
concise. These algorithms do not require any changes to the Set interface but
offer powerful operations that can be applied directly to sets:

Collections.unmodifiableSet(Set<? extends T> s): Creates a read-only
view of the given set. Any attempt to modify the returned set results in an
exception, as shown in the following:
Set<String> original = new HashSet<>();
original.add("apple");
Set<String> unmodifiable = 
Collections.unmodifiableSet(original);
unmodifiable.add("banana"); // Throws 
UnsupportedOperationException
This is useful when you want to share a set with other code without
allowing modifications, such as exposing internal data from a class.
Collections.synchronizedSet(Set<T> s): This wraps the given set with
synchronization, making it safe to use across multiple threads as shown in
the following:
Set<Integer> set = Collections.synchronizedSet(new 
HashSet<>());
set.add(1);
set.add(2);
Use this when you are accessing a set from multiple threads to avoid
concurrency issues.
Note: You should still synchronize manually during iteration.



Set operations using streams: The Collectors class provides a toSet()
method to collect the end result of a stream operation as a Set.
For example, common elements from two sets can be collected in a set, as
shown in the following figure:
Set<Integer> set1 = new HashSet<>(List.of(1, 2, 3));
Set<Integer> set2 = new HashSet<>(List.of(2, 3, 4));
Set<Integer> intersection = set1.stream()
                                 
.filter(set2::contains)
                                 
.collect(Collectors.toSet());

This is useful for functional-style set operations without manual loops or
conditionals.

Conclusion
In this chapter, we explored the core implementations of the Set interface:
HashSet, LinkedHashSet, and TreeSet. Each implementation offers distinct
advantages. HashSet provides fast performance for basic operations such as
add, remove, and contains, but it does not maintain any order of elements.
LinkedHashSet, on the other hand, preserves the insertion order while still
offering relatively efficient operations with minimal overhead. TreeSet
maintains elements in their natural or specified sorted order and supports
efficient range-based operations, making it suitable for scenarios where ordered
traversal or range queries are required.
We examined their internal structures, constructors, and performance
considerations, and touched on aspects like synchronization and generic
algorithms relevant to set operations.
A solid understanding of these implementations will help you choose the right
data structure based on your specific needs in real-world applications.
In the next chapter, we will explore the queue and deque interfaces, where we
will explore ordered processing, priority handling, and double-ended operations
that are vital in concurrent and sequential task management scenarios.



Exercise
1. Which of the following Set implementations maintains the insertion

order?
a. HashSet
b. LinkedHashSet
c. TreeSet
d. None of the above

2. What will be the output of the following code?
Set<String> set = new HashSet<>();
set.add("Book");
set.add("Pen");
set.add("Book");
System.out.println(set.size());

a. 2
b. 3
c. 1
d. Compilation Error

3. Which Set implementation keeps its elements sorted in natural order?
a. HashSet
b. LinkedHashSet
c. TreeSet
d. All of the above

4. What is the time complexity of the add() operation in HashSet?
a. O(1)
b. O(log n)
c. O(n)
d. O(n log n)

5. Which constructor of LinkedHashSet allows you to specify the initial
capacity and load factor?

a. LinkedHashSet()
b. LinkedHashSet(int initialCapacity)



c. LinkedHashSet(int initialCapacity, float loadFactor)
d. LinkedHashSet(Collection<? extends E> c)

6. What happens if you try to insert a null element in a TreeSet?
a. It gets inserted at the beginning
b. It gets inserted at the end
c. It throws NullPointerException
d. It is silently ignored

7. How does LinkedHashSet internally maintain insertion order?
a. Tree structure
b. Sorting on insertion
c. Doubly linked list
d. Binary search

8. Which of the following is not true about HashSet?
a. It uses hashing for storing elements
b. It allows one null element
c. It maintains natural ordering
d. It does not allow duplicates

9. Choose the correct method to create an unmodifiable Set in Java 9+:
a. new HashSet<>()
b. Set.unmodifiableSet(set)
c. Collections.unmodifiableSet(set)
d. Set.of("A", "B", "C")

10. Which of these Set implementations is most suitable when you
frequently need to access elements in sorted order?

a. HashSet
b. LinkedHashSet
c. TreeSet
d. None

Answers
1. b

Explanation: LinkedHashSet maintains insertion order by using a doubly



linked list along with the hash table.
2. a

Explanation: Sets do not allow duplicate elements. Apple is added only
once.

3. c
Explanation: TreeSet maintains elements in their natural sorted order
using a red-black tree.

4. a
Explanation: On average, HashSet provides constant-time performance
for add, remove, and contains operations.

5. c
Explanation: This constructor lets you control how the hash table is
initialized and resized.

6. c
Explanation: TreeSet relies on comparison for ordering, and null cannot
be compared, leading to a NullPointerException.

7. c
Explanation: LinkedHashSet maintains a doubly linked list that records
the order in which elements were inserted.

8. c
Explanation: HashSet does not guarantee any specific order of its
elements.

9. d
Explanation: Set.of() creates an unmodifiable set directly in Java 9 and
above.

10. c
Explanation: TreeSet is backed by a NavigableMap and maintains
elements in a sorted (ascending) order.

Join our Discord space
Join our Discord workspace for latest updates, offers, tech happenings around
the world, new releases, and sessions with the authors:
https://discord.bpbonline.com

https://discord.bpbonline.com/




CHAPTER 8
Queue and Deque Interfaces

Introduction
In real-world applications, tasks are often processed in the order they arrive,
just like people standing in a line to buy movie tickets or print jobs waiting
to be processed by a printer. This natural first-come, first-served order is
modelled in Java using the Queue interface. Additionally, for more flexible
data management, Java provides the double-ended queue (Deque)
interface, which allows insertion and removal from both ends.
This chapter explores these two fundamental interfaces in the JCF, their
behaviour, typical use cases, and their major implementations. We will also
explore internal structures, performance trade-offs, and concurrency-safe
options.

Structure
The chapter covers the following topics:

Queue interface
PriorityQueue implementation
Deque interface
ArrayDeque implementation



LinkedList as a Queue
Synchronization in Queues and Deques

Objectives
By the end of this chapter, you will understand the fundamental differences
and similarities between the Queue and Deque interfaces. They will be able
to choose the right implementation based on insertion or removal order,
performance requirements, and concurrency needs. Additionally, you will
learn how internal structures such as heaps and circular buffers support
these data structures and when to prefer one implementation over another in
real-time applications.

Queue interface
The Queue interface in Java represents a collection designed for holding
elements prior to processing. It follows the FIFO principle, which means
elements are added at the end and removed from the front.
It is part of java.util package and extends the Collection interface as
shown in the following:
public interface Queue<E> extends Collection<E>
Java provides multiple implementations of the Queue interface, each suited
for different use cases:

LinkedList: Implements Deque, and can be used as a queue or a stack.
It allows null elements and is not thread-safe.
PriorityQueue: Maintains elements in a sorted order (according to
natural ordering or a custom comparator). It does not follow strict FIFO
rules.
ArrayDeque: A faster alternative to LinkedList for queue operations.
It does not allow null elements.
ConcurrentLinkedQueue: A thread-safe, lock-free implementation
suitable for concurrent environments.



Characteristics of Queue interface
The following are some characteristics of a Queue that will help us
understand it better:

Elements are processed in the order they were added.
It does not allow random access like a List.
The head of the queue is the element that would be removed by a call
to remove() or poll().
Tail of the queue is where new elements are added.

The Queue interface introduces several additional methods, as listed in the
following table:

Method Description

add(E e) Inserts the specified element into the queue. Throws an exception if full.

offer(E e) Inserts the element into the queue. Returns false if it fails, for example, if the
queue is full.

remove() Retrieves and removes the head. Throws an exception if empty.

poll() Retrieves and removes the head. Returns null if empty.

element() Retrieves (but does not remove) the head. Throws an exception if empty.

peek() Retrieves (but does not remove) the head. Returns null if empty.

Table 8.1: Additional methods in the Queue interface
To understand how a queue behaves in Java, let us take a simple example
using the Queue interface and its common implementation, LinkedList.
This will help demonstrate the FIFO nature of queues. Consider the
following code:
Queue<String> queue = new LinkedList<>();
queue.add(“Apple”);
queue.add(“Banana”);
queue.add("Cherry");

System.out.println(queue.poll()); 
System.out.println(queue.peek()); 



System.out.println(queue.poll());
The following is the output:
Apple
Banana
Banana
In this example:

We are using the Queue interface with a LinkedList implementation.
LinkedList is a commonly used class that implements Queue.
add("Apple"), add("Banana"), and add("Cherry") insert
elements into the queue in the order they arrive; this is the FIFO
behavior.
poll() retrieves and removes the head of the queue. Since "Apple"
was added first, it was removed and printed.
peek() retrieves but does not remove the head of the queue. Now,
"Banana" is at the front, so it is shown.
poll() retrieves and removes the head of the queue. Since "Banana"
is at the front now, it has been removed and printed.

This example highlights the standard queue operations:
add() to insert
poll() to remove and return the front
peek() to view the front without removing it

PriorityQueue implementation
The PriorityQueue is a part of the JCF and provides an efficient way to
process elements based on priority rather than insertion order.
The following are the key characteristics of a PriorityQueue:

Not a FIFO queue: The elements are ordered by their priority, not by
the order in which they are added.
Duplicates allowed: You can insert duplicate elements.
Null elements are not allowed.
Not thread-safe: Must be externally synchronized if used by multiple



threads.
Unbounded queue: Grows as needed and is constrained by system
memory.

Internal structure of PriorityQueue
The PriorityQueue in Java is implemented using a binary heap, which is a
type of complete binary tree. The elements are stored in an array
(Object[] queue) that dynamically grows as needed.
A min-heap is the default behavior, meaning the smallest element is always
at the root (head) of the heap.
Internally, the following mechanisms are used:

Elements are inserted in an array-backed binary heap.
The heap is not sorted, but is organized so that the smallest element can
be retrieved in O(1).
Insertion and removal maintain the heap property using heapify
operations: siftUp() and siftDown().

Here is a basic example of the add method in a PriorityQueue:
Object[] queue;
int size;

public boolean add(E e) {
    if (e == null)
        throw new NullPointerException();
    int i = size;
    if (i >= queue.length)
        grow();              // Expand the array if 
full
    size = i + 1;
    if (i == 0)
        queue[0] = e;        // First element directly 
added
    else



        siftUp(i, e);        // Maintain heap order
    return true;
}
When an element is added at the end, we need to bubble it up if it violates
the heap property. The siftUp method is used to move the new element
into its correct position in the heap, as shown in the following figure:
private void siftUp(int k, E x) {
    while (k > 0) {
        int parent = (k - 1) >>> 1;      // parent 
index
        Object e = queue[parent];
        if (compare(x, e) >= 0)
            break;
        queue[k] = e;                    // move parent 
down
        k = parent;
    }
    queue[k] = x;                        // place new 
element
}
The siftUp method; this maintains the min-heap property. The newly 
inserted element is bubbled up until it is in the correct spot.
Let us say we add the following elements:
PriorityQueue<Integer> pq = new PriorityQueue<>();
pq.add(30);
pq.add(10);
pq.add(20);
This is what happens internally:

Initially, after adding 30, the heap is as shown in the following:



Figure 8.1: Initial heap

After adding 10, as 10 is smaller than 30, they are swapped. The heap
is now as shown in the following:

Figure 8.2: Heap after adding 10

After adding 20, the heap is as shown in the following figure. As 20 is
greater than 10, no swapping happens:

Figure 8.3: Heap after adding 20

When poll() is called, poll() retrieves and removes the head element
(i.e., the smallest element in a min-heap), then reorders the heap.
This is the code snippet for the poll method:
public E poll() {
    if (size == 0)
        return null;
    int s = --size;
    E result = (E) queue[0];     // get root (smallest)
    E x = (E) queue[s];          // get last element



    queue[s] = null;             // clear last slot
    if (s != 0)
        siftDown(0, x);          // restore heap
    return result;
}
In the above poll() method, the result = 10 is returned. The index 0 is 
replaced with the last element, queue[0] = 20.
After poll(), siftDown() is called from index 0 to restore the heap.
The following is the code snippet for the siftDown() method:
private void siftDown(int k, E x) {
    int half = size >>> 1; // Nodes below this are 
leaves
    while (k < half) {
        int left = (k << 1) + 1;     // left child
        int right = left + 1;
        int smallest = left;
        Object c = queue[left];
        if (right < size && compare((E) queue[right], 
(E) c) < 0) {
            smallest = right;
            c = queue[right];
        }
        if (compare(x, (E) c) <= 0)
            break;
        queue[k] = c;               // move smaller 
child up
        k = smallest;
    }
    queue[k] = x;
}
Now the updated heap looks like the following figure:



Figure 8.4: After 10 is removed using poll()

So, the array-backed binary heap is the core of the PriorityQueue, where
insertion and deletion operations ensure that the element with the highest
priority (smallest) is always at the top.

Deque interface
The Deque interface, introduced in Java 6, represents a linear collection that
supports insertion and removal of elements from both ends. This flexibility
allows a Deque to function both as a Queue, FIFO, and a Stack, LIFO.
Unlike a Queue, which restricts insertion and removal to specific ends, a
Deque provides a richer set of methods to manipulate elements from the
front and rear.
The Deque interface is especially useful when you need constant-time
insertions or deletions from both ends of the collection. This is commonly
seen in scenarios involving undo/redo stacks, scheduling systems, and
palindromic checks.
The Deque interface extends the Queue interface and is part of the
java.util package.

Common use cases
Let us look at a few real-world scenarios where a Deque proves helpful:

Implementing stacks (using push() and pop()).
Implementing Deque where elements can be added/removed from both
ends efficiently.
Task scheduling where prioritization may require insertion at either



end.

Key methods in Deque interface
To enable flexible insertion and removal from both ends, the Deque
interface offers a variety of methods. Here are some of the most used:

Method Description

addFirst(e) Inserts the specified element at the front of the Deque

addLast(e) Inserts the specified element at the end of the Deque

offerFirst(e) Offers the specified element at the front (returns false if not
possible)

offerLast(e) Offers the specified element at the end

removeFirst() Removes and returns the first element

removeLast() Removes and returns the last element

pollFirst() Retrieves and removes the first element, or returns null if
empty

pollLast() Retrieves and removes the last element, or returns null if
empty

getFirst() Retrieves, but does not remove, the first element

getLast() Retrieves, but does not remove, the last element

peekFirst() Retrieves, but does not remove, the first element, or returns
null

peekLast() Retrieves, but does not remove, the last element, or returns
null

push(e) Pushes an element onto the stack (same as addFirst)

pop() Pops an element from the stack (same as removeFirst)

descendingIterator() Returns an iterator over the elements in reverse order

Table 8.2: Key methods in Deque interface

Using Deque as both Queue and Stack



Let us look at how a Deque can be used to behave like a Queue and a Stack.
Consider the following example:
Deque<String> deque = new ArrayDeque<>();
// Using deque as a queue (FIFO)
deque.addLast("One");
deque.addLast("Two");
deque.addLast("Three");
System.out.println(deque.removeFirst()); // One
System.out.println(deque.removeFirst()); // Two
// Using deque as a stack (LIFO)
deque.push("A");
deque.push("B");
deque.push("C");

System.out.println(deque.pop()); // C
System.out.println(deque.pop()); // B
The following are the output:
One
Two
C
B
The following is the explanation for the above example:

We are creating a Deque instance using ArrayDeque, which is a
resizable array-based implementation of the Deque interface. It is
efficient and faster than LinkedList for most use cases involving Stacks
or Queues.
We use addLast() to add elements to the end of the Deque. This
mimics a queue where new elements go to the back.
removeFirst() removes elements from the front of the Deque. So,
elements are removed in the order they were added, i.e., FIFO.
After this, One and Two are removed and printed. Three is still in the
Deque.



push() is equivalent to addFirst(), it adds elements to the front.
So, C ends up at the front, followed by B, then A. This simulates a
stack, where the most recently added element is at the top.
pop() removes elements from the front (just like popping from the top
of a stack). So, elements are removed in the reverse order of insertion:
LIFO.
At the end, Three (from the Queue part) and A (from the Stack part) are
still present in the deque.

This example shows the versatility of Deque, how it can behave both like a
queue and a stack depending on the methods you use.

ArrayDeque implementation
Array Deque (ArrayDeque) is a resizable-array implementation of the
Deque interface. It supports insertion and removal at both ends with
amortized constant time performance.
The following are the key characteristics:

Based on a circular array: Elements are stored in a ring buffer, which
is efficient for both ends.
No capacity limit: Grows dynamically when full, usually by doubling
its size.
Faster than Stack and LinkedList: Provides better performance for
queue and stack operations.
Null elements not allowed: Adding null results in a
NullPointerException, as null is used internally to indicate empty
slots.
Not thread-safe: Should be externally synchronized if used
concurrently by multiple threads.

Internal structure
Internally, ArrayDeque maintains the following structure:
transient Object[] elements;
transient int head;



transient int tail;
In the above code:

The elements array stores the contents.
The head index points to the first (front) element.
The tail index is where the next element will be inserted at the end.

When the tail reaches the end of the array, it wraps around to the beginning
(hence the circular behaviour).
Let us illustrate a simplified version; refer to the following table:

Operation Elements Head Tail

addLast(10) [10, null, null, null] 0 1

addFirst(5) [10, null, null, 5] 3 1

addLast(15) [10, 15, null, 5] 3 2

Table 8.3: ArrayDeque illustration
When the array becomes full, the internal array is resized (usually doubled),
and elements are realigned from head to tail.
Let us understand this with an example. Consider the following code:
Deque<String> deque = new ArrayDeque<>();

deque.addFirst("C");
deque.addLast("D");
deque.addFirst("B");
deque.addFirst("A"); // deque = [A, B, C, D]

System.out.println(deque);               // [A, B, C, 
D]
System.out.println(deque.removeLast());  // D
System.out.println(deque.removeFirst()); // A
System.out.println(deque);               // [B, C]
The following is the output:
[A, B, C, D]



D
A
[B, C]
The following is the explanation:

addFirst("C"), the elements would look like the following figure.
The head and tail are pointing to the same element.

Figure 8.5: ArrayDeque after adding C

addLast("D"), D is added to the end of the queue, and tail now
points to D as shown the following figure:

Figure 8.6: ArrayDeque after adding D

addFirst("B"), now when B is added to the first, head points to B,
and the arraydeque looks like the following figure:



Figure 8.7: ArrayDeque after adding B

addFirst("A"), after adding A, the head now points to A, and the
arraydeque looks like the following:

Figure 8.8: ArrayDeque after adding B

removeLast() removes the last element, which is D, and the
arraydeque looks like the following figure:

Figure 8.9: ArrayDeque after removing last

removeFirst() removes the first element, which is A, and only B
and C are left in the arraydeque. The arraydeque looks like the
following figure:



Figure 8.10: ArrayDeque after removing last

The internal resizing logic ensures that even though we are
adding/removing at both ends, performance stays efficient.

Constructors
The following are the constructors that can be used to create an
ArrayDeque:

ArrayDeque(): Default constructor with initial capacity 16. This can
be created as shown in the following:
ArrayDeque<Integer> deque1 = new ArrayDeque<>();
ArrayDeque(int initialCapacity): Creates a deque with the given
capacity, as shown in the following:
ArrayDeque<String> deque2 = new ArrayDeque<>(50);
ArrayDeque(Collection<? extends E> c): Constructs a deque
containing the elements of the specified collection as shown in the
following:
ArrayDeque<Character> deque3 = new ArrayDeque<>
(List.of('A', 'B', 'C'));

Common use cases of ArrayDeque
ArrayDeque is a versatile data structure and can be used to implement
both stacks (LIFO) and queues (FIFO) efficiently. Its underlying resizable
array and absence of capacity restrictions make it a preferred alternative to
legacy classes like Stack and LinkedList in many scenarios. Beyond basic
Stack and Queue operations, ArrayDeque is also well-suited for advanced



use cases such as implementing a sliding window or fixed-size buffer,
where elements are added and removed from both ends dynamically. Its
constant-time performance for insertions and deletions at both the head and
tail makes it ideal for these high-performance, real-time use cases. Let us
explore these scenarios with clear examples.

Implementing a Stack
A Stack is a LIFO structure. ArrayDeque can be used instead of the Stack
class, which is synchronized and slower. Let us consider the following
example:
Deque<String> stack = new ArrayDeque<>();

stack.push("Page1");
stack.push("Page2");
stack.push("Page3");

System.out.println(stack.pop()); 
System.out.println(stack.peek()); 
The following is the output:
Page 3
Page 2
The following is the explanation for the above example:

push() adds elements at the front.
pop() removes the last added element
This mimics undo operations, back navigation in a browser, etc.

Implementing Queue
A queue is a FIFO structure. ArrayDeque provides efficient operations for
this. Let us understand with the following example:
Deque<String> queue = new ArrayDeque<>();

queue.addLast("Alice");



queue.addLast("Bob");
queue.addLast("Charlie");

System.out.println(queue.removeFirst()); // Alice
System.out.println(queue.peekFirst());   // Bob
The following is the output:
Alice
Bob
The following is the explanation for the above example:

addLast() inserts elements at the end.
removeFirst() removes from the front.
This is ideal for print queues, task scheduling, etc.

Sliding window or fixed buffer
You can use ArrayDeque to manage a sliding window of fixed size for
processing continuous data streams. For example:
Deque<Integer> window = new ArrayDeque<>();

for (int i = 1; i <= 6; i++) {
    if (window.size() == 3) {
        window.removeFirst();
    }
    window.addLast(i);
    System.out.println(window);
}
The following are the outputs:
[1]
[1, 2]
[1, 2, 3]
[2, 3, 4]
[3, 4, 5]



[4, 5, 6]
The following is the explanation for the above example:

We maintain a fixed-size window of size 3.
This is useful in problems like moving average, windowed search, etc.

LinkedList as a Queue
While LinkedList is commonly known for representing lists, it also
implements both the Queue and Deque interfaces, making it a powerful and
flexible structure for queue operations.
LinkedList provides an easy way to implement queue-like behavior with
dynamic resizing and efficient insertions or removals from both ends.
The following are the key characteristics:

Implements Deque, so it supports both FIFO and LIFO operations.
Allows null elements (unlike ArrayDeque).
Insertion and deletion are generally O(1) at the head or tail, but random
access is O(n).
Backed by a doubly linked list, so memory overhead is higher than
ArrayDeque.

Using LinkedList as a Queue
Let us see how a LinkedList can be used as a simple FIFO queue using the
Queue interface.
Consider the following code.
Queue<String> queue = new LinkedList<>();
queue.offer("Task1");
queue.offer("Task2");
queue.offer("Task3");
System.out.println(queue.poll());  
System.out.println(queue.peek());  
The following is the explanation for the above example:

offer() adds elements at the end of the queue.



poll() removes the element from the front (FIFO).
peek() returns the front element without removing it.

Using LinkedList as a Deque
The same LinkedList can also be treated as a Deque, allowing insertion and
removal from both ends.
Let us understand this with an example. Consider the following code:
Deque<String> deque = new LinkedList<>();
deque.addFirst("Start");
deque.addLast("End");
System.out.println(deque.removeFirst()); 
System.out.println(deque.removeLast()); 
The following is the output:
Start
End
In the above example:

addFirst() and addLast() allow double-ended insertion.
removeFirst() and removeLast() remove elements from both
ends.
This usage is ideal when both stack and queue operations are required.

Synchronization in Queues and Deques
In multi-threaded environments, thread safety is crucial when multiple
threads access or modify queue-based data structures. Java provides several
ways to achieve synchronization for queues and deques.
Choosing the appropriate synchronization mechanism depends on the
specific concurrency requirements, such as whether blocking behavior is
needed or whether concurrent reads and writes should be supported without
locking the entire structure.
One common approach is using concurrent collections such as
ConcurrentLinkedQueue or ConcurrentLinkedDeque, which are



non-blocking and allow high-throughput access by multiple threads. For
simpler scenarios or legacy codebases, the
Collections.synchronizedQueue() or
Collections.synchronizedDeque() methods can be used to wrap
existing non-thread-safe implementations and make them synchronized,
although these are generally less scalable under high contention.
For use cases that require coordination between producers and consumers,
Java provides the BlockingQueue and BlockingDeque interfaces.
Implementations like ArrayBlockingQueue, LinkedBlockingQueue,
and LinkedBlockingDeque support thread-safe operations that block
when the queue is full (during insertion) or empty (during retrieval). These
are particularly well-suited for building task queues, message-passing
systems, or bounded buffers.
Let us now explore these alternatives and best practices in detail, along with
examples demonstrating their effective use in concurrent applications.

Using concurrent collections
Java provides built-in concurrent implementations as listed in the following:

ConcurrentLinkedQueue: A non-blocking, thread-safe
implementation of a FIFO queue.
LinkedBlockingQueue, ArrayBlockingQueue: Blocking queues used
in producer-consumer scenarios.
ConcurrentLinkedDeque: A non-blocking deque implementation.

These classes handle synchronization internally and are preferred in
concurrent designs.

Wrapping with Synchronized Collections
If you are using a non-thread-safe class like LinkedList as a queue in a
multithreaded environment, you must synchronize access to avoid
concurrency issues. Java provides a utility method
Collections.synchronizedList(), which wraps a List (which can be
used as a queue) and makes it thread-safe. This can be done as shown in the
following:



Queue<String> queue = Collections.synchronizedList(new 
LinkedList<>());
// Synchronize explicitly during iteration
synchronized (queue) {
    for (String item : queue) {
        System.out.println(item);
    }
}
The following is the explanation for the above example:

Collections.synchronizedList(...) returns a thread-safe
wrapper around the original list.
However, manual synchronization is still required during iteration to
avoid the ConcurrentModificationException.
The synchronized (queue) block ensures that the iteration is atomic and
safe from thread interference.

BlockingQueue and BlockingDeque
When you need threads to wait for operations like insertion or removal
(e.g., in producer-consumer scenarios), Java provides BlockingQueue and
BlockingDeque. They can be used as shown in the following:
BlockingQueue<String> bQueue = new 
LinkedBlockingQueue<>();

bQueue.put("Data");              // Puts an element; 
waits if the queue is full
String val = bQueue.take();     // Retrieves and 
removes the head; waits if empty

System.out.println(val); // Outputs: Data
The following is the explanation for the above example:

LinkedBlockingQueue is a thread-safe, optionally bounded queue.
put() blocks the thread if the queue is full; this is useful for



producers.
take() blocks if the queue is empty; this is useful for consumers.
This helps manage backpressure and avoid busy-waiting.

When working with queues and deques in concurrent environments,
ensuring thread safety is essential. While collections like ArrayDeque and
LinkedList are not thread-safe by default, Java provides mechanisms such
as synchronized wrappers and concurrent implementations like
BlockingQueue and BlockingDeque. Choosing the right approach
depends on whether you need basic thread safety or full-fledged
coordination between threads (e.g., blocking behaviour).

ArrayDeque vs. LinkedList vs. PriorityQueue
The following table shows a comparison of ArrayDeque, LinkedList, and
PriorityQueue:

Feature ArrayDeque LinkedList (as
Queue/Deque) PriorityQueue

Underlying structure Resizable array Doubly-linked list Min-heap (binary heap)

Null elements
allowed

Not allowed Allowed Not allowed

Ordering Insertion order Insertion order Natural/comparator order

Performance (Add or
Remove)

Fast (amortized O(1)) Moderate (O(1) at
ends)

O(log n)

Thread safety Not thread-safe Not thread-safe Not thread-safe

Blocking support No No No

Random access No No No

Use case Stack/queue/deque
(non-threaded)

General-purpose
queue/deque

Priority-based processing

Table 8.4 : ArrayDeque vs. LinkedList vs. PriorityQueue

Conclusion



This chapter explored the foundational Queue and Deque interfaces and
their primary implementations in the JCF. We examined how Queue
supports FIFO operations, while Deque supports insertion and removal
from both ends.
Key implementations like ArrayDeque, LinkedList, and PriorityQueue
serve different purposes depending on access patterns, performance, and
ordering needs. Additionally, we saw how synchronization can be
introduced using wrappers or concurrent classes like BlockingQueue for
thread-safe operations.
In the next chapter, we will explore Java’s utility classes, which provide
built-in support for sorting, searching, modifying, and synchronizing
collections and arrays.

Exercise
1. Which method adds an element to the tail of a Queue and throws

an exception if it fails?
a. offer()
b. put()
c. add()
d. enqueue()

2. Which interface allows insertion and removal from both ends?
a. Queue
b. Deque
c. PriorityQueue
d. Stack

3. What is the default ordering used by PriorityQueue?
a. LIFO
b. FIFO
c. Natural ordering
d. Random ordering

4. Which method retrieves but does not remove the head of the



queue, returning null if empty?
a. poll()
b. remove()
c. peek()
d. head()

5. Which implementation is backed by a resizable array and does not
allow null elements?

a. ArrayList
b. ArrayQueue
c. ArrayDeque
d. LinkedList

6. Which of these allows constant-time insertion or removal at both
ends and can be used as a stack or queue?

a. PriorityQueue
b. Stack
c. LinkedList
d. ArrayDeque

7. What happens if you insert a null element into an ArrayDeque?
a. It's allowed
b. It throws a NullPointerException
c. It silently fails
d. It gets converted to an empty string

8. Which of the following is not a method defined in the Queue
interface?

a. offer()
b. add()
c. push()
d. poll()

9. Which implementation is most suitable for implementing a priority
task scheduler?

a. ArrayDeque



b. LinkedList
c. PriorityQueue
d. Stack

10. Which interface allows the use of methods like addFirst() and
removeLast()?

a. List
b. Set
c. Queue
d. Deque

Answers
1. c

Explanation: add() adds to the tail and throws an exception if the
insertion fails.

2. b
Explanation: Deque supports element insertion/removal at both ends.

3. c
Explanation: PriorityQueue uses natural ordering unless a comparator
is provided.

4. c
Explanation: peek() returns the head or null if the queue is empty,
without removing it.

5. c
Explanation: ArrayDeque is a resizable array-based deque that does
not permit null elements.

6. d
Explanation: ArrayDeque supports constant-time insertion/removal at
both ends and works as a stack or a queue.

7. b
Explanation: ArrayDeque does not allow null elements and throws
NullPointerException.

8. c



Explanation: push() is from Deque, not part of the Queue interface.
9. c

Explanation: PriorityQueue is optimized for priority-based task
scheduling.

10. d
Explanation: Deque provides addFirst(), removeLast(), and other
double-ended operations.
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CHAPTER 9
Utility Classes

Introduction
In real-world Java applications, developers frequently need to sort, search,
modify, or synchronize collections. Performing these operations manually
can be error-prone and time-consuming. Java’s utility classes come to the
rescue by providing ready-to-use methods to simplify these common tasks.
This chapter focuses on utility classes like Collections and Arrays that offer
static methods to operate on or return collections and arrays. It also covers
wrapper classes, synchronization utilities, and how to make collections
unmodifiable or type-safe (checked collections). Understanding and
effectively using these classes will help you write more efficient, readable,
and safe Java code.

Structure
The chapter covers the following topics:

Collections utility class
Sorting and searching with Collections
Modifying collections with Collections
Arrays utility class



Working with Arrays and Collections
Wrapper class
Synchronization utilities
Unmodifiable collections
Checked collections

Objectives
This chapter aims to equip you with practical knowledge of Java’s core
utility classes that simplify common tasks involving collections and arrays.
You will learn how to use the Collections class for sorting, searching, and
modifying collections efficiently, and how the Arrays class provides similar
capabilities for Arrays. We will also explore the use of wrapper classes that
allow primitive types to be used in object-based collections, along with
techniques to synchronize collections for thread safety. Finally, you will
understand how to create unmodifiable and type-safe (checked) collections
using built-in utility methods, enabling you to write safer and more
maintainable code in your Java applications.

Collections utility class
The Collections class in Java is a part of the java.util package provides
a set of static methods that operate on or return collections. These methods
are designed to simplify common collection-related tasks such as sorting,
searching, reversing, shuffling, filling, copying, and more.
This class cannot be instantiated and serves purely as a utility holder. It is
often used alongside the JCF to improve productivity and reduce boilerplate
code.
Key methods in the Collections class. The following is a list of commonly
used methods provided by the Collections utility class:

Method Description

sort(List<T> list) Sorts the specified list into ascending order using
natural ordering.



sort(List<T> list, Comparator<? 
super T> c)

Sorts the list based on a custom comparator.

reverse(List<?> list) Reverses the order of elements in the list.

shuffle(List<?> list) Randomly permutes the elements in the list.

swap(List<?> list, int i, int j) Swaps the elements at the specified positions.

fill(List<? super T> list, T obj) Replaces all elements of the list with the specified
element.

copy(List<? super T> dest, List<? 
extends T> src)

Copies all elements from the source list to the
destination list. The destination must be at least
the same size as the source.

binarySearch(List<? extends 
Comparable<? super T>> list, T key)

Searches for the key using binary search. The list
must be sorted.

max(Collection<? extends T> coll) Returns the maximum element according to
natural ordering.

min(Collection<? extends T> coll) Returns the minimum element.

frequency(Collection<?> c, Object 
o)

Returns the number of elements equal to the
specified object.

disjoint(Collection<?> c1, 
Collection<?> c2)

Returns true if two collections have no elements
in common.

Table 9.1: Key methods in the Collections class

Sorting and reversing a List
Let us look at a simple example of how the Collections class can be used to
sort and reverse a list:
import java.util.*;
public class CollectionsExample {
    public static void main(String[] args) {
        List<String> fruits = new ArrayList<>
(Arrays.asList("Banana", "Apple", "Mango", "Cherry"));   
        // Sort in ascending order
        Collections.sort(fruits);



        System.out.println("Sorted List: " + fruits); 
// [Apple, Banana, Cherry, Mango]
        // Reverse the list
        Collections.reverse(fruits);
        System.out.println("Reversed List: " + fruits); 
// [Mango, Cherry, Banana, Apple]
    }
}
The following is the output:
Sorted List: [Apple, Banana, Cherry, Mango]
Reversed List: [Mango, Cherry, Banana, Apple]
In this example:

Collections.sort(fruits) sorts the list alphabetically.
Collections.reverse(fruits) then reverses the sorted list.

These utility methods abstract away the internal complexity of sorting and
reversing, making the code cleaner and easier to maintain.

Sorting and searching with collections
In many real-world applications, you need to present data in a particular
order or locate specific elements quickly. Whether you are building a to-do
list, a leaderboard, or processing search results, sorting and searching are
core operations that help deliver a better user experience.
The Collections class provides ready-to-use static methods for sorting and
searching lists. These methods are optimized and widely used in Java
applications.

Sorting a List
The most common operation is sorting. Java offers two ways to sort a list:

Natural ordering: When elements implement the comparable
interface.
Custom ordering: By using a comparator.



Sorting with natural order
Consider the following example for natural ordering:
List<Integer> numbers = Arrays.asList(4, 1, 3, 2);
Collections.sort(numbers);
System.out.println(numbers); 
The following is the output:
[1, 2, 3, 4]
The above example explains:

We create a list of integers with values in random order.
Collections.sort(numbers) sorts the list in-place using natural
order, for numbers, that's ascending order.
The original list is modified, and the elements are rearranged in
increasing order.

This works because Integer implements the comparable interface, which
defines how two integers should be compared.

Sorting with custom comparator
If you want to sort in descending order, or any other custom order, you need
to use a comparator. Let us see an example with a comparator as shown in
the following.
List<String> fruits = Arrays.asList("Banana", "Apple", 
"Mango");
Collections.sort(fruits, (a, b) -> b.compareTo(a)); // 
Reverse alphabetical
System.out.println(fruits); 
The following is the output:
[Mango, Banana, Apple]
The above example explains:

The lambda (a, b) | b.compareTo(a) flips the comparison, sorting
the list in descending (Z to A) order.
This allows complete control over sorting logic; you can sort based on



length, case-insensitive order, or any custom rule.

Note: You can also use Comparator.reverseOrder() or method 
references for simpler syntax.

Searching a List
After sorting, you may want to quickly find an element. Linear search is
slow for large lists, so Java offers binarySearch(), which is much faster
but requires the list to be sorted.
This can be done as shown in the following:
List<Integer> list = Arrays.asList(10, 20, 30, 40, 50);
int index = Collections.binarySearch(list, 30);
System.out.println("Index of 30: " + index); 
The following is the output:
Index of 30: 2
The above example explains:

The list is already sorted in ascending order.
binarySearch(scores, 30) performs a binary search, cutting the
list in half each time to find the element.
It returns the index of the element if found; here, 30 is at index 2.

Note: The list must be sorted in ascending order before calling 
binarySearch(). If the element is not found, the method returns a 
negative value indicating the insertion point.

Binary search with custom comparator
If your list is sorted using a custom comparator, you must use the same
comparator in the binarySearch() call:
List<String> items = Arrays.asList("X", "M", "A");
Collections.sort(items, Comparator.reverseOrder()); // 
[X, M, A]
int index = Collections.binarySearch(items, "M", 



Comparator.reverseOrder());
System.out.println("Index of M: " + index); // 1
The following is the output:
Index of M: 1
The above example explains:

The list is sorted in reverse order.
Since the order is not natural, we must pass the same comparator to
binarySearch().
If you forget to pass the matching comparator, the search result may be
incorrect, or even a negative number.

These utility methods are essential for clean, concise, and efficient
collection handling in Java. Whether you are sorting user scores, searching
product IDs, or ranking search results, Collections.sort() and
Collections.binarySearch() are the go-to tools.

Modifying collections with Collections
In addition to sorting and searching, the Collections utility class provides
several helpful methods to modify the contents of collections in a consistent
and efficient manner. These methods allow you to reverse, shuffle, fill, and
replace elements, as well as copy data between collections. They are
especially useful when you want to manipulate collections without writing
your own looping or transformation logic.
Let us go through the commonly used modification methods with examples
and explanations.

Reversing a List
Suppose we have a list of student names in the order they registered. We
want to reverse the list to show the latest registered students first.
Consider the following example:
List<String> students = Arrays.asList("Andrew", 
"Becky", "Carlos");
Collections.reverse(students);



System.out.println(students);
The following is the output:
[Carlos, Becky, Andrew]
The above example explains:

reverse() inverts the order of the list elements.
This is useful for undoing sort operations or for displaying data in
reverse sequence.

Shuffling elements
Consider you are creating a quiz app and want to randomize the order of
questions before displaying them to the user. You can do it using the shuffle
method as shown in the following:
List<Integer> questionIds = Arrays.asList(101, 102, 
103, 104, 105);
Collections.shuffle(questionIds);
System.out.println(questionIds);
The following is the output:
[103, 102, 105, 104, 101]
The above example explains:

shuffle() reorders the list in a random fashion.
It is commonly used for gaming, testing, and simulations.

Filling a List with a value
Let us say you are preparing a scoreboard and want to initialize it with
default values. You can do this using the fill() method as shown in the
following:
List<String> scoreboard = new ArrayList<>
(Arrays.asList("A", "B", "C"));
Collections.fill(scoreboard, "Not Started");
System.out.println(scoreboard);
The following is the output:
[Not Started, Not Started, Not Started]



The above example explains:
fill() replaces every element with a specified value.
It is often used to initialize or reset a list.

Replacing all occurrences of a value
Consider you have a list of cities where a name change occurred. You want
to update all old names with the new one. You can do this by using the
replaceAll() method as shown in the following:
List<String> cities = Arrays.asList("Bombay", "Delhi", 
"Bombay", "Chennai");
Collections.replaceAll(cities, "Bombay", "Mumbai");
System.out.println(cities);
The following is the output:
[Mumbai, Delhi, Mumbai, Chennai]
The above example explains:

replaceAll() finds all instances of a particular value and replaces
them.
It’s helpful for bulk updates or renaming data sets.

Copying one List into another
Suppose you have a master list of team members and want to create a
working copy for temporary updates. You can do that by using the copy()
method as shown in the following:
List<String> masterTeam = Arrays.asList("Emily", 
"John", "Sarah");
List<String> workingCopy = new ArrayList<>
(Arrays.asList("X", "Y", "Z"));
Collections.copy(workingCopy, masterTeam);
System.out.println(workingCopy); // [Emily, John, 
Sarah]
The following is the output:
[Emily, John, Sarah]



The above example explains:
copy(dest, source) copies data from one list to another.
The destination list must be at least the same size as the source to avoid
an IndexOutOfBoundsException.

These utility methods make collection transformations easy and clean,
reducing the need for custom logic and improving code readability.

Arrays utility class
While Collections works with dynamic data structures like List, Java also
provides the Arrays utility class to simplify operations on arrays, which are
fixed-size data structures. Found in the java.util package, the Arrays
class offers static methods for sorting, searching, comparing, filling, and
converting arrays.
These utilities are helpful when you want to treat arrays like collections,
enabling you to manipulate data using a consistent set of tools.
Let us explore some of the most useful features of the Arrays utility class.

Sorting an Array
Let us say you have the marks of students and you want to sort them in
ascending order. You can do that by using the sort() method as shown in
the following:
int[] marks = {85, 67, 92, 78, 88};
Arrays.sort(marks);
System.out.println(Arrays.toString(marks));
The following is the output:
[67, 78, 85, 88, 92]
The above example explains:

sort() arranges the array in ascending order using a tuned version of
quicksort for primitives.
Arrays.toString() is used to print the array content in a readable
format.



Searching in an Array
Now, suppose you want to check if a particular mark (say 88) is present in
the sorted Array. You can do that by using the binarySearch() method
as shown in the following:
int[] marks = {70, 75, 80, 83, 88, 90, 95};
int index = Arrays.binarySearch(marks, 88);
System.out.println(index);
The following is the output:
4
The above example explains:

binarySearch() finds the index of the element in a sorted array.
If the element is not found, it returns a negative value.

Filling an Array
Suppose you want to initialize an array of size 5 with the default value 10.
You can use the fill() method as shown in the following:
int[] data = new int[5];
Arrays.fill(data, 10);
System.out.println(Arrays.toString(data));
The following is the output:
[10, 10, 10, 10, 10]
In the above example, fill() assigns the same value to all elements of the
Array.

Comparing Arrays
If you are comparing answers submitted by two students to see if they
selected the same options, as shown in the following:
int[] answers1 = {1, 2, 3};
int[] answers2 = {1, 2, 3};
System.out.println(Arrays.equals(answers1, answers2));
The following is the output:



true
You can use the equals() method. equals() checks whether all
elements in two arrays are the same and in the same order.

Copying Arrays
Let us say you want to create a new array that is a copy of an existing one
with more room for future data. You can use copyOf() method to achieve
that, as shown in the following:
int[] original = {10, 20, 30};
int[] extended = Arrays.copyOf(original, 5);
System.out.println(Arrays.toString(extended));
The following is the output:
[10, 20, 30, 0, 0]
The above example explains:

copyOf() creates a new array of the specified length.
If the new length is greater, extra elements are filled with default values
(0 for int).

The Arrays utility class ensures that working with fixed-size arrays in Java
remains powerful, concise, and consistent with the collections paradigm.

Working with Arrays and Collections
In Java, Arrays and Collections are both used to store groups of elements.
However, they serve different purposes; Arrays are fixed in size and slightly
faster, while Collections are more flexible and provide many utility
methods. Sometimes, you may need to convert between the two for
convenience or performance.
The Arrays and Collections classes provide methods that help bridge the
gap between these two data structures. Let us explore the most common
scenarios where Arrays and Collections interact.

Converting an Array to a List
Let us say you collected input from users in a List and now want to store it



in an Array for sending over a network. You can do this as shown in the
following code:
List<String> users = Arrays.asList("Emma", "Michael", 
"Sophia");
String[] userArray = users.toArray(new String[0]);
System.out.println(Arrays.toString(userArray));
The following is the output:
[Emma, Michael, Sophia]
The above example explains:

toArray(T[] a) converts the list to a typed array.
Passing a zero-length array (new String[0]) allows Java to allocate
the array with the correct size.

Using collection methods on Arrays
Even though Arrays and Collections are different, you can still perform
many collection-like operations on arrays by converting them temporarily.
For example, if you want to reverse an array of names, you can do that as
shown in the following:
String[] names = {"Alex", "Brian", "Chloe"};
List<String> nameList = Arrays.asList(names);
Collections.reverse(nameList);
System.out.println(Arrays.toString(names));
The following is the output:
[Chloe, Brian, Alex]
The above example explains:

Arrays.asList() creates a list view over the array.
Modifying the list also changes the original array.

Bridging Arrays and Collections allows you to enjoy the best of both
worlds: the performance of Arrays and the flexibility of Collections. This is
especially useful when working with APIs that expect one format or the
other.



Wrapper class
In Java, primitive types like int, char, and Boolean are not objects. This
means they cannot be used directly with Collections, generics, or APIs that
require objects. To bridge this gap, Java provides wrapper classes: object
representations of primitive types such as Integer, Character, and Boolean.
These classes wrap primitive types in an object and offer additional
functionalities such as parsing from strings, comparing values, converting
between types, and accessing predefined constants. All wrapper classes are
part of java.lang package, making them readily available without
needing explicit imports.
Wrapper classes allow primitive values to be stored in collections like List,
Set, or Map. They enable the use of primitive values with Java generics,
which work only with objects. Additionally, they provide utility methods
such as parsing (Integer.parseInt()), comparison
(Integer.compare()), and constant values (Integer.MAX_VALUE).
Wrapper classes are essential for writing cleaner, safer, and more reusable
code in real-world applications.
The following table shows a reference table outlining each primitive type
and its associated wrapper class:

Primitive type Wrapper class Example of declaration

byte Byte Byte b = Byte.valueOf((byte) 10);

short Short Short s = Short.valueOf((short) 20);

int Integer Integer i = Integer.valueOf(100);

long Long Long l = Long.valueOf(12345L);

float Float Float f = Float.valueOf(12.34f);

double Double Double d = Double.valueOf(123.456);

char Character Character c = Character.valueOf('A');

boolean Boolean Boolean bool = Boolean.TRUE;

Table 9.2: Wrapper classes



When working with Java Collections, primitives cannot be added directly.
Java handles this automatically using auto-boxing and unboxing.
The following example demonstrates this mechanism:
List<Integer> temperatures = new ArrayList<>();
temperatures.add(30);   // Auto-boxing: int → Integer
temperatures.add(35);
temperatures.add(28);

for (Integer temp : temperatures) {
    System.out.println(temp);
}
Output:
30
35
28
In the example above, the temperatures list is declared as List<Integer>.
It cannot store primitive int values directly. When calling add(30), Java
automatically converts (auto-boxes) the primitive int into an Integer object.
During iteration, auto-unboxing occurs when retrieving the values,
converting the Integer back to int if required.
Introduced in Java 5, auto-boxing and unboxing simplify working with
wrapper classes. Auto-boxing means automatically converting primitives to
wrapper objects. Unboxing means automatically converting wrapper objects
back to primitives.
For example:
Integer num = 100; // Auto-boxing
int value = num; // Unboxing
Beyond basic storage in collections, wrapper classes provide additional
utilities. These include constants such as Integer.MAX_VALUE and
Double.MIN_VALUE, which are useful for boundary checks. They also
offer utility methods like parseInt(), parseDouble(), and valueOf()
that help convert strings or other data types into primitive values. Methods



such as Integer.compare(10, 20) allow easy comparison of primitive
values while still using the wrapper class methods.
In real-world scenarios, wrapper classes prove essential in multiple areas. In
database interaction, frameworks like Hibernate often rely on wrapper
classes to handle nullable database columns. While parsing user input,
converting string inputs into numeric values through methods like
Integer.parseInt("123") is common practice. In application
configuration and settings, wrapper classes are often used to store
application settings in collections such as Map<String, Integer>.

Synchronization utilities
In multi-threaded environments, ensuring thread safety is crucial, especially
when multiple threads access or modify collections concurrently. Java
provides synchronization utilities to help manage this safely without
introducing complex locking mechanisms manually.
The Collections class includes several methods to make collections thread-
safe by returning synchronized (thread-safe) versions of common
collections like List, Set, and Map.

Making a List synchronized
Let us say Ryan and Sophia are working on different threads, updating a
shared list of tasks. To prevent data corruption, the list must be
synchronized. A synchronized list can be created as shown in the following:
List<String> taskList = new ArrayList<>();
List<String> syncTaskList = 
Collections.synchronizedList(taskList);
The above example explains:

Collections.synchronizedList() wraps the taskList with a
thread-safe layer.
All method calls on syncTaskList are now synchronized internally.
However, iteration still needs to be synchronized manually to avoid the
ConcurrentModificationException. Iteration can be



synchronized as shown in the following:
synchronized (syncTaskList) {
    for (String task : syncTaskList) {
        System.out.println(task);
    }
}

Synchronized Set and Map
Similar to a List, you can make a Set or Map synchronized as shown in the
following:
Set<String> names = new HashSet<>();
Set<String> syncNames = 
Collections.synchronizedSet(names);
Map<Integer, String> employeeMap = new HashMap<>();
Map<Integer, String> syncEmployeeMap = 
Collections.synchronizedMap(employeeMap);
The above example explains:

The wrappers ensure that basic operations (like add, remove, get, put)
are thread-safe.
Like with List, iterations must be done within a synchronized block.

When you wrap a collection (like List, Set, or Map) using methods like
Collections.synchronizedList(), Java internally adds
synchronization to each method call on that collection. So when two or
more threads try to call methods like:

add(): To insert an element
remove(): To delete an element
get(): To access an element by index (for a list)
put(): To add a key-value pair (for a map)

The method calls are automatically synchronized using an internal lock.
This means only one thread can execute them at a time, avoiding conflicts
or data corruption.
However, iteration (like using for-each) is not automatically synchronized,



so you still need to do that part manually using a synchronized block.

Unmodifiable collections
In many applications, especially in multi-team projects, it is crucial to
prevent accidental changes to certain data structures. For example, a list of
default user roles or configuration keys should not be modified once
created.
To protect such collections from being altered, Java provides unmodifiable
wrappers using the Collections utility class.
When a collection is wrapped as unmodifiable, any attempt to modify it,
such as adding, removing, or updating element, will result in an
UnsupportedOperationException.
Java provides methods like:

Collections.unmodifiableList(List<? extends T> list)
Collections.unmodifiableSet(Set<? extends T> set)
Collections.unmodifiableMap(Map<? extends K, ? 
extends V> map)

These methods return a read-only view of the original collection. Changes
to the underlying collection (if modified directly, outside the wrapper) will
still reflect in the unmodifiable view, so it is recommended to avoid
modifying the original collection after wrapping it. Creating unmodifiable
collections.
Let us say you have a list of departments that should not be changed during
runtime. You can create an unmodifiable list as shown in the following:
List<String> departments = new ArrayList<>();
departments.add("HR");
departments.add("Finance");
departments.add("IT");
List<String> unmodifiableDepartments = 
Collections.unmodifiableList(departments);
The above example explains:



The original department list is wrapped in an unmodifiable layer.
Now unmodifiableDepartments can be read, but any attempt to
modify them, like add(), remove(), or clear(), will throw an
exception. For example, the following will throw an
UnsupportedOperationException exception:
unmodifiableDepartments.add("Marketing"); 
You can create unmodifiable versions of all major collections like Set
or Map, as shown in the following:
Set<String> states = Collections.unmodifiableSet(new 
HashSet<>());
Map<Integer, String> codes = 
Collections.unmodifiableMap(new HashMap<>());

Note: The unmodifiable wrapper does not make a deep copy. If the underlying collection is
modified, the changes will reflect in the unmodifiable version too.

This is shown in the following code:
departments.add("Legal");
System.out.println(unmodifiableDepartments); // Will 
include "Legal"
Therefore, it is advised to avoid modifying the original Collection after
wrapping it in an unmodifiable one.
Java also introduced the List.of(), Set.of(), and Map.of() methods
in Java 9, which directly create immutable collections. However, if you are
using earlier versions or want to wrap an existing modifiable collection,
Collections.unmodifiableX() is the standard approach.

Predefined empty collections
In addition to unmodifiable wrappers, the Collections class also provides
predefined immutable empty collections, which are especially useful when
you need to return an empty result but want to avoid returning null:

Collections.emptyList()
Collections.emptySet()



Collections.emptyMap()
Let us look at examples of how they are used in practical code:

Collections.emptyList(): Consider the following example:
public class OrderService {
    public List<String> getPendingOrders(String 
userId) {
        if (userId == null || userId.isEmpty()) {
            return Collections.emptyList();
        }
        // Logic to fetch orders from database
        return Arrays.asList("ORD123", "ORD456");
    }
}
Case 1:
public static void main(String[] args) {
    OrderService service = new OrderService();
    
System.out.println(service.getPendingOrders("user1")
);
}
Output: [ORD123, ORD456]
Case 2:
public static void main(String[] args) {
    OrderService service = new OrderService();
    
System.out.println(service.getPendingOrders(""));
}
Output: []
The explanation of the above is as follows:

If the userId is invalid, we return an empty list.
Collections.emptyList() ensures that no null is returned,



eliminating the need for null checks.
Since the list is immutable, accidental modification is also
prevented.

Collections.emptySet(): Consider the following example:
public class Student {
    private final Set<String> enrolledSubjects;
    public Student(boolean isEnrolled) {
        if (isEnrolled) {
            this.enrolledSubjects = new HashSet<>
(Arrays.asList("Math", "Science"));
        } else {
            this.enrolledSubjects = 
Collections.emptySet();
        }
    }
    public Set<String> getEnrolledSubjects() {
        return enrolledSubjects;
    }
}
Case 1:
Student s1 = new Student(true);
System.out.println(s1.getEnrolledSubjects());
Output: [Math, Science]
Case 2:
Student s2 = new Student(false);
System.out.println(s2.getEnrolledSubjects());
Output: [] (An immutable empty set.)
The explanation of the above is as follows:

When a student is not enrolled, we assign an empty set using
Collections.emptySet().
This avoids returning null and also prevents future modification



since the returned set is immutable.

Collections.emptyMap(): Consider the following example:
public class ConfigurationService {
    public Map<String, String> loadConfig(String 
env) {
        if (env == null || env.isEmpty()) {
            return Collections.emptyMap();
        }
        // Suppose config is loaded from a file or 
DB
        Map<String, String> config = new HashMap<>
();
        config.put("timeout", "30");
        config.put("retry", "5");
        return config;
    }
}
The explanation of the above is as follows:

If no environment is provided, an empty map is returned.
Collections.emptyMap() helps maintain consistency in return
type and avoids returning a null object.

These empty collections are:
Unmodifiable: Any attempt to modify them results in an
UnsupportedOperationException.
Singleton: The same instance is reused, reducing memory overhead.
Safer than null: Eliminates the need for null checks in calling code.

Each of these methods returns a shared, immutable, and memory-efficient
empty instance of the corresponding collection type.

Checked collections



Java is a statically typed language, but due to type erasure, generic type
information is removed at runtime. This can sometimes lead to unexpected
ClassCastExceptions when using raw types or when mixing generic
and non-generic code.
To catch such issues early, during runtime but before actual damage, Java
provides checked collections through the Collections utility class.
Checked collections wrap a collection and perform runtime type checks
whenever elements are added. If someone tries to insert an object of the
wrong type, it immediately throws a ClassCastException.
Let us consider this situation: Paul creates a list of student names, assuming
it will only hold String values. Later, Royston (working in a different
module) accidentally adds an Integer to it.
Without a checked collection, the code would look as shown in the
following:
List studentNames = new ArrayList(); // raw type
studentNames.add("Alex");
studentNames.add(101); // No compile-time error
String name = (String) studentNames.get(1); // 
ClassCastException at runtime
Now, with a checked collection, it would look as follows:
List<String> names = new ArrayList<>();
List<String> checkedNames = 
Collections.checkedList(names, String.class);
checkedNames.add("Alex");
//checkedNames.add(101); // Compilation fails
The above example explains:

The wrapper Collections.checkedList() monitors each addition
to the list.
When a value of the wrong type is added, the error is thrown at the
point of insertion, making the error easier to detect and debug.

Similar wrappers exist for other types, as shown in the following:
Set<Integer> checkedSet = Collections.checkedSet(new 



HashSet<>(), Integer.class);
Map<String, Double> checkedMap = 
Collections.checkedMap(new HashMap<>(), String.class, 
Double.class);
Use checked collections in the following scenarios:

When working with legacy code that does not use generics.
During testing or debugging to catch incorrect usage early.
In shared libraries or APIs to enforce type safety for consumers.

Checked collections act as runtime safety nets, not a replacement for
generics, but a useful companion when generics cannot guarantee safety
alone due to raw type usage.

Conclusion
Utility classes like Collections, Arrays, and the wrapper classes are
essential tools in every Java developer’s toolkit. They streamline common
tasks such as sorting, searching, converting arrays to collections,
synchronizing collections, and enforcing immutability or type safety at
runtime.
We saw how Collections and Arrays utility methods reduce boilerplate and
potential bugs, and how wrapper classes make primitive types work
seamlessly with collections. These utilities not only improve productivity
but also encourage safer and more readable code.
However, writing effective, high-performance, and bug-free code with
collections is not just about using the right data structures; it is also about
following best practices in their usage.
In the next chapter, we will shift focus to best practices with generics and
collections, where you will learn guidelines, patterns, and common pitfalls
to avoid when designing and working with collection-heavy codebases.

Exercise
1. Which method would you use to make a list unmodifiable?



a. Collections.immutableList()
b. Collections.readOnlyList()
c. Collections.unmodifiableList()
d. List.makeReadOnly()

2. Which utility method would you use to find an element in a sorted
list?

a. Collections.find()
b. Collections.binarySearch()
c. Arrays.lookup()
d. List.search()

3. What is the result of converting a primitive array using
Arrays.asList()?

a. A list of primitive values
b. Compilation error
c. A single-element list containing the entire array
d. A list of boxed values

4. Which method in the Arrays class would you use to fill an array
with a specific value?

a. Arrays.assign()
b. Arrays.fill()
c. Arrays.copy()
d. Arrays.setAll()

5. What does Collections.checkedList(list, String.class) provide?
a. Read-only list
b. Synchronized list
c. Type-safe list
d. Sorted list

6. Which method converts a list to an array of objects?
a. list.convertToArray()
b. Collections.toArray()
c. list.toArray()



d. Arrays.fromList()
7. Which of these wrappers ensures thread-safe access to a map?

a. Collections.lockedMap()
b. Collections.synchronizedMap()
c. Collections.concurrentMap()
d. Map.makeThreadSafe()

8. What does Collections.reverse(list) do?
a. Removes elements from the list
b. Creates a new reversed list
c. Sorts the list in descending order
d. Reverses the order of elements in-place

9. Which class allows sorting a subrange of an array?
a. Collections
b. SubArray
c. Arrays
d. PartialSorter

10. Which of these Set implementations is most suitable when you
frequently need to access elements in sorted order?

a. HashSet
b. LinkedHashSet
c. TreeSet
d. None

Answers
1. c

Explanation: Collections.unmodifiableList() returns a view of the
specified list that disallows modification operations and throws
UnsupportedOperationException if any are attempted.

2. b
Explanation: Collections.binarySearch() is used on a sorted list to
efficiently locate an element using binary search.



3. c
Explanation: Arrays.asList() treats primitive arrays as a single object.
So passing a primitive array results in a list with one element: the entire
array itself.

4. b
Explanation: Arrays.fill() assigns the given value to each element of
the specified array.

5. c
Explanation: Checked collections provide a dynamically type-safe
view of collections to catch type errors at runtime.

6. c
Explanation: list.toArray() converts the list into an array of Object. A
typed array can be obtained using list.toArray(new Type[0]).

7. b
Explanation: Collections.synchronizedMap() wraps a map to make all
its basic operations thread-safe by synchronizing internally.

8. d
Explanation: Collections.reverse() reverses the order of elements in
the given list in-place.

9. c
Explanation: The Arrays.sort(array, fromIndex, toIndex) method sorts
a specific subrange of the array.

10. c
Explanation: TreeSet maintains elements in a sorted order (according
to their natural ordering or a provided comparator), making it ideal for
sorted access.



CHAPTER 10
Best Practices with Generics and

Collections

Introduction
As applications grow in complexity, writing clean, safe, and high-
performance code becomes critical. Java generics and collections offer
powerful tools, but they must be used thoughtfully. From ensuring type
safety and preventing runtime errors to designing application
programming interfaces (APIs) that are intuitive and robust, this chapter
focuses on the best practices that make Java code maintainable and
efficient.
Whether you are building libraries, frameworks, or business logic, knowing
how to use generics correctly and leveraging the right collection types can
significantly improve your code quality and performance.

Structure
This chapter covers the following topics:

Writing type-safe code with generics
Avoiding common pitfalls with generics



Efficient use of collections
Designing collections-based APIs
Performance considerations
Synchronization best practices
Using generic algorithms

Objectives
By the end of this chapter, you will be able to apply generic types more
safely and effectively, design collection-based APIs that are reusable and
clean, select the appropriate data structures based on performance needs,
and write thread-safe code using synchronization strategies. You will also
learn to avoid subtle pitfalls that may lead to runtime issues or type-safety
violations and to harness the power of generic algorithms in real-world Java
programs.

Writing type-safe code with generics
Java generics enable developers to enforce compile-time type checks,
minimize runtime ClassCastException, and write cleaner, more
reusable code. In real-world development, however, using generics
correctly goes beyond just parameterizing a collection. It is about knowing
where to apply them, how to restrict them using bounds, and how to design
generic classes or methods that behave consistently across types.
This section explores best practices that help you write robust, type-safe
code using generics.
The following are the best practices for type-safe code:

Always declare type parameters explicitly: Avoid using raw types
like List or Map. Instead, specify the type to benefit from compile-time
checks.
For example, avoid declaring a list as follows.
List list = new ArrayList();
This creates a list that can hold any object, and mistakes like adding



integers into a list of strings will not be caught. Instead, declare it as
shown in the following:
List<String> names = new ArrayList<>();
Now the list can only store String values, and you will get errors if you
try to add anything else.
Use generic methods for reusability: Generic methods can work
across different types and reduce duplication, as shown in the
following:
public <T> void printElements(List<T> elements) {
    for (T element : elements) {
        System.out.println(element);
    }
}
This method can print a list of strings, integers, or any other type. T
stands for Type.
Leverage bounded type parameters: You can restrict what types your
generic code accepts using bounds:

Upper bound (extends): When you want to accept any subtype, as
shown in the following:
public double sum(List<? extends Number> numbers) 
{
    double total = 0;
    for (Number num : numbers) {
        total += num.doubleValue();
    }
    return total;
}

This method accepts lists of integers, doubles, etc., anything that
extends the number.

Lower bound (super): When you want to add to the list safely, as
shown in the following:



public void addIntegers(List<? super Integer> 
list) {
    list.add(1);
    list.add(2);
}

This method can add integers to a list that holds integer or number
types.
Prefer type parameters over wildcards in your own methods: If you
are writing a method that both reads and writes, define a type
parameter.
The following example is not ideal:
public void process(List<?> items) {
    // can't safely add items
}
Instead, prefer type parameters as shown in the following:
public <T> void process(List<T> items) {
    // can read and add items of type T
}
Wildcards (?) are restrictive, which means you cannot add to them. Use
<T> if you want more flexibility.
Avoid mixing raw and generic types: Do not mix old non-generic
code with generic collections:
List rawList = new ArrayList<String>();
rawList.add(10); // No error, but wrong usage
The above example defeats the purpose of generics. Use
List<String> instead.
Use @SuppressWarnings("unchecked") carefully: Only use this
when you are sure it is safe, like with legacy code:
@SuppressWarnings("unchecked")
List<String> names = (List<String>) getLegacyData();
Add a comment explaining why this is safe, and use it only in isolated
places.



Avoid creating generic Arrays: Java does not allow new T[] due to
type erasure. Use List<T> instead.
This is invalid, as it would throw a compilation error:
T[] array = new T[10]; // Compilation error
Instead, use collections like List<T> instead of arrays when working
with generics, as shown in the following:
List<T> list = new ArrayList<>();

Avoiding common pitfalls with generics
While generics provide type safety and cleaner code, developers can still
fall into subtle traps that reduce their effectiveness or lead to confusing
behaviour. In this section, we will explore some practical issues that arise
when working with generics and how to avoid them. These examples build
on the concepts discussed earlier and highlight less obvious misuses and
limitations that developers may face in real-world codebases:

Avoid overloading generic methods: Overloading generic methods
with similar signatures can lead to ambiguity or unintended method
selection. This is particularly risky when type erasure causes multiple
overloads to have indistinguishable bytecode signatures.
Let us understand this with the following code:
public class Printer {
    public void print(String data) {
        System.out.println("String: " + data);
    }
    public <T> void print(T data) {
        System.out.println("Generic: " + data);
    }
    public static void main(String[] args) {
        Printer printer = new Printer();
        printer.print("Hello");
    }



}
Explanation: In the above example, although it looks like the generic
method print(T data) could be chosen, the non-generic
print(String data) is a better match and will be invoked. This
can lead to inconsistent behavior, especially if the method is later
overloaded for other types. Developers should avoid creating generic
method overloads that can clash with specific ones unless necessary.
Avoid using generics with static context: Generic type parameters are
not tied to the class's static context. This means you cannot use the
class's type parameter in a static method or static field.
Consider the following example:
public class Box<T> {
    private T value;
    // This will cause a compilation error
    // private static T staticValue;
    public static void show(T data) {
        // Compilation error
    }
}
Explanation: In the above example, since type parameters are tied to
the instance level, static fields and methods do not have access to them.
The solution is to make the static method itself generic, as shown in the
following:
public static <T> void show(T data) {
    System.out.println(data);
}
Avoid improper use of bounded type parameters: Incorrect
placement or unnecessary complexity in bounded type parameters can
make the generic code harder to understand and maintain. Consider the
following example:
public <T extends Number & Comparable<T>> void 
process(T value) {}



Explanation: While this is valid, complex bounds can often be
replaced with simpler alternatives if the use case does not truly require
multiple bounds. Overusing bounds without a clear reason adds
cognitive load to your code.
Avoid redundant use of wildcards in method parameters: Using
wildcards (? extends T or ? super T) where simple type
parameters would suffice will make the API harder to understand.
Consider the following example:
public <T> void processList(List<? extends T> list) 
{
    // read-only access
}
Explanation: If T is not used elsewhere or if full access to the list is
not needed, a simpler signature like void processList(List<?>
list) might be preferable. Wildcards should be used only when
needed for flexibility or to follow the producer extends, consumer
super (PECS) rule.
Unchecked casts and compiler warnings: Unchecked warnings are
an indication that type safety may be compromised. Ignoring these or
suppressing them without care can lead to ClassCastException at
runtime.
For example:
List<String> list = (List<String>) getObject();
Explanation: In the above code, if getObject() returns a raw type
or another generic type like List<Object>, the compiler issues a
warning. Suppressing it using @SuppressWarnings("unchecked")
should be done only after confirming type safety.
Generics with varargs: Using generic types with varargs parameters
can cause heap pollution and result in warnings.
Heap pollution happens when a variable of a parameterized type (like
List<String>) refers to an object that is not actually of that type at
runtime.
This usually occurs when you:



Mix raw types with generics
Use unchecked casts
Misuse varargs with generics

Consider the following example:
List<String> strings = new ArrayList<>();
List rawList = strings; // raw type
rawList.add(42); // adding Integer into List<String>
String s = strings.get(0); // ClassCastException
here
Here, the compiler thought strings only held String objects, but due to
heap pollution, an Integer slipped in, leading to runtime errors.
With generics and varargs, heap pollution is more likely because
varargs arrays are created at runtime, and generics use type erasure; the
array might store elements of the wrong type without compile-time
safety.
To avoid this, the @SafeVarargs annotation can be used as shown
below.
@SafeVarargs
public static <T> void addAll(List<T> list, T... 
elements) {
    for (T element : elements) {
        list.add(element);
    }
}
The @SafeVarargs annotation suppresses warnings and should only
be used when the method does not modify or expose the varargs array
in a way that could break type safety.
Additionally, @SafeVarargs can only be applied to final or static
methods or constructors to ensure that the method cannot be overridden
and introduce unsafe behavior.
Misusing generic exceptions: Generic classes cannot be directly used
to define custom exception types in a way that includes the generic



type in the catch clause.
Consider the following example:
public class CustomException<T> extends Exception {
    // This is valid as a declaration
}
// But this is invalid:
// catch (CustomException<String> e) { }

Java does not support generic exception catching because the runtime does
not retain generic type information. Custom exceptions can still be generic
in design, but their type information will not be usable in catch blocks.

Efficient use of collections
Java’s Collection Framework provides powerful and flexible tools for
managing groups of objects, but using them efficiently requires
understanding their performance characteristics and choosing the right data
structure for the problem at hand. This section provides actionable
guidelines and examples to help you make better choices when working
with collections.
Different collection types are optimized for different operations. Using the
wrong type can degrade performance or make your code harder to read and
maintain.
Let us consider a practical example:
List<String> cities = new ArrayList<>();
cities.add("Mumbai");
cities.add("Delhi");
cities.add("Bengaluru");
System.out.println(cities.get(1)); // Fast access to 
index 1
Just like in the above example, if your use case needs frequent access by
index and minimal insertions or removals from the middle, ArrayList is
the optimal choice.



Consider the following example:
Avoid unnecessary resizing: When using resizable collections like
ArrayList or HashMap, frequent resizing can be expensive. If you
know the expected size, initialize the Collection with an appropriate
capacity.
In the following example, the ArrayList and HashMap are initialized
with a size:
List<String> names = new ArrayList<>(100); // Avoids 
internal resizing
Map<String, Integer> marks = new HashMap<>(50);
Specifying initial capacity minimizes the number of internal array
resizings, which can significantly improve performance in large loops
or data-heavy operations.
Use Streams and enhanced for-loops for readability: Avoid using
traditional for-loops when the index is not needed. This leads to cleaner
and safer code. Use enhanced for-loops or Streams as shown in the
following:
List<String> fruits = Arrays.asList("Mango", 
"Apple", "Banana");
//Traditional for-loop
for (int i=0; i<fruits.size(); i++) {
    System.out.println(fruits.get(i));
}
// Enhanced for-loop
for (String fruit : fruits) {
    System.out.println(fruit);
}
// Using Stream API
fruits.forEach(System.out::println);

In the above examples, the enhanced for-loop and stream API methods
reduce boilerplate code and reduce the chances of errors like
IndexOutOfBoundsException.



Designing collections-based APIs
When designing applications that expose or consume collections,
developers must consider flexibility, usability, maintainability, and safety. A
well-designed Collections-based API can make code more intuitive and
reduce bugs:

Always use collection interfaces (List, Set, Map) in method signatures
instead of implementation classes (ArrayList, HashSet, etc.). This
makes the method flexible and allows callers to pass in any list
implementation, such as ArrayList or LinkedList, without breaking
compatibility.
Avoid returning null from a method that returns a collection. Instead,
return an empty collection using utility methods as shown in the
following:
public List<String> getStudents() {
    return Collections.emptyList(); // Safe
}
This prevents the calling code from having to perform null checks and
reduces the chances of NullPointerException.
To avoid accidental or unauthorized modification of internal data,
return unmodifiable views or immutable collections. This can be done
as shown in the following:
private List<String> courses = new ArrayList<>();
public List<String> getCourses() {
    return Collections.unmodifiableList(courses);
}
This encapsulates your data and ensures that external code cannot alter
internal state unexpectedly.
If your method expects a small number of fixed elements, use varargs
for better readability and convenience, as shown in the following:
public void addSubjects(String... subjects) {
    for (String s : subjects) {



        System.out.println("Subject: " + s);
    }
}
This allows the caller to pass multiple values in a clean and simple way
without explicitly creating a list.
When returning collections, use more specific interfaces like Set or
Queue if the order or uniqueness matters. This can be done as shown in
the following:
public Set<String> getUniqueCities() {
    return new HashSet<>(Arrays.asList("Delhi", 
"Mumbai", "Pune"));
}
This helps communicate the behavior and expectations clearly to the
caller and improves API clarity.
Accept broader types like collection, iterable, or even stream when you
do not need specific operations. Use broader types as shown in the
following:
public void printAll(Collection<String> items) {
    items.forEach(System.out::println);
}
This gives the calling method the flexibility to use any collection
without being forced into conversions.
If you need to enhance or customize a collection, wrap it using
composition rather than extending from collection classes, as shown in
the following:
public class LoggedList<E> {
    private final List<E> list;
    public LoggedList(List<E> list) {
        this.list = list;
    }
    public void add(E element) {
        System.out.println("Adding: " + element);



        list.add(element);
    }
}
This avoids the fragility of inheritance and gives more control over
behaviour.

Performance considerations
Choosing the right collection implementation is critical for writing efficient
code. Each collection has different time and space complexities for basic
operations like insertion, deletion, and access. Poor choices can lead to
performance bottlenecks, especially in large-scale applications.
Choose the right collection for the task as mentioned in Table 10.1. The
table is a list of recommended collections based on the use case:

Use case Recommended
collection Reason

Fast access by index ArrayList Backed by array; O(1) access

Frequent insertions or deletions LinkedList Efficient add/remove from ends

Unique elements without order HashSet Uses a HashMap internally

Unique elements with insertion
order

LinkedHashSet Maintains insertion order

Sorted elements TreeSet Elements stored in natural or
specified order

Fast key-based lookup HashMap O(1) average time for get() and
put()

Ordered key-value pairs LinkedHashMap Maintains insertion order

Sorted key-value pairs TreeMap Maintains natural ordering or
custom comparator

Table 10.1: Collection recommendation based on use case
Here are some practical tips to keep in mind:

Avoid using LinkedList if you need frequent random access. Its
get(index) operation is O(n) compared to O(1) in ArrayList.



Pre-size ArrayList or HashMap if the expected number of elements is
known. This reduces costly resizing or rehashing operations.
Minimize boxing and unboxing of primitive values. Collections like
List<Integer> store wrapper objects, which use more memory and
affect performance. Consider primitive-specific libraries like Trove or
fastutil for large datasets.
Use the enhanced for-each loop for read-only traversal. It is more
concise and easier to read.
Be careful with streams in performance-sensitive code. While they
improve readability, they may introduce slight overhead compared to
loops:
// Use with care in tight loops
students.stream().filter(name -> 
name.startsWith("A")).toList();
Use maps to cache expensive or repeated computations as shown in the
following:
Map<String, Integer> factorialCache = new HashMap<>
();
int getFactorial(int n) {
    return 
factorialCache.computeIfAbsent(String.valueOf(n), k 
-> computeFactorial(n));
}
Prefer ArrayDeque over Stack and LinkedList for stack or queue
operations. It is more efficient and faster for such use cases.
Remove unused or large temporary collections after use by calling
.clear() or allowing them to go out of scope for garbage collection.
Avoid using synchronized collection wrappers
(Collections.synchronizedList) unless necessary. They add
overhead; consider ConcurrentHashMap or
CopyOnWriteArrayList when working with multi-threading.



Synchronization best practices
In multi-threaded applications, using Collections without proper
synchronization can lead to data corruption or unpredictable behaviour. The
JCF offers multiple ways to safely handle concurrency. However, blindly
synchronizing Collections can degrade performance or lead to deadlocks if
not done properly. Here are the key best practices to follow when working
with synchronized or concurrent collections:

Prefer concurrent collections over synchronized wrappers. Use classes
like ConcurrentHashMap, CopyOnWriteArrayList, and
ConcurrentLinkedQueue instead of synchronizing standard
collections using Collections.synchronizedXXX().
Avoid external synchronization on concurrent Collections. Do not use
synchronized blocks around operations on concurrent Collections like
ConcurrentHashMap. These are already designed for thread-safe
access, and adding extra synchronization can reduce performance.
Use synchronized wrappers only for legacy code or single-threaded
scenarios needing minimal concurrency. For example,
Collections.synchronizedList() wraps a list with a thread-safe
proxy. However, you must still synchronize during iteration as shown
as follows:
List<String> syncList = 
Collections.synchronizedList(new ArrayList<>());
synchronized (syncList) {
    for (String name : syncList) {
        System.out.println(name);
    }
}
Use atomic compound actions carefully. Even with synchronized or
concurrent Collections, compound actions like check-then-act need
additional synchronization. For example, the following code could
cause a race condition:
// Unsafe even with ConcurrentHashMap



if (!map.containsKey(key)) {
    map.put(key, value); // Race condition possible
}
Instead, use atomic methods as shown in the following:
map.putIfAbsent(key, value);
Understand the CopyOnWrite Collections trade-offs.
CopyOnWriteArrayList and CopyOnWriteArraySet are safe for
iteration without locks, but they copy the entire array on every
modification, which can be expensive. Use them only when read
operations vastly outnumber writes.
Avoid unnecessary synchronization on unshared data. If a Collection is
used by a single thread (or each thread has its own copy), there is no
need for synchronization.
Leverage ConcurrentSkipListMap and
ConcurrentSkipListSet for sorted concurrent access. These
provide thread-safe, sorted maps and sets without the overhead of
synchronization blocks.
Do not expose internal Collections directly. Always return an
unmodifiable or defensive copy to avoid external threads from
modifying internal structures.
Use thread-safe blocking Collections for producer-consumer scenarios.
Classes like LinkedBlockingQueue, ArrayBlockingQueue, and
PriorityBlockingQueue are ideal when threads need to wait for
data.
Avoid holding locks for a long time. If synchronizing on a block, keep
the critical section as small as possible to reduce contention and the
risk of deadlocks.

Using generic algorithms
Java encourages reusability and type safety with Generic algorithms,
methods written using Generics that can operate on various data types.
In Chapter 9, Utility Classes, we already explored built-in generic



algorithms provided by the Collections class, such as sort(),
binarySearch(), and shuffle(). These methods demonstrate how
generics allow us to write flexible, reusable code without compromising on
type safety.
Custom generic algorithms allow you to create reusable logic that works
with different types.
Let us walk through an example that is both practical and generic. Imagine
you want to count how many times a particular element appears in a
collection, be it a list of names, numbers, or even custom objects.
We will define a method called countOccurrences that works for any
type of data, as shown in the following:
public class GenericAlgorithms {
    public static <T> int 
countOccurrences(Collection<T> collection, T target) {
        int count = 0;
        for (T item : collection) {
            if (item.equals(target)) {
                count++;
            }
        }
        return count;
    }
}
In the above example, the countOccurrences() method takes a
Collection of any type T (like String, Integer, Employee, etc.). It compares
each element with the target and returns how many times the target appears.
The method can be used as shown in the following:
List<String> names = Arrays.asList("Liam", "Olivia", 
"Liam", "Ethan");int result = 
GenericAlgorithms.countOccurrences(names, "Liam");  // 
returns 2
This single method works for:



Counting scores, countOccurrences(Arrays.asList(85, 90,
85), 85)
Counting custom objects (if equals() is properly overridden)
Any other collection type like Set, Queue, etc.

This shows the following:
You can write the logic once and reuse it across types.
We do not need type casting or overloading for each type.
Clear APIs help in building generic utility libraries for teams and
projects.

Conclusion
Writing clean, reusable, and efficient code is one of the core goals of Java's
generics and Collections Framework. Throughout this chapter, we explored
how to write type-safe code using generics, avoid common pitfalls, and
make the best use of collection classes by understanding their behaviors,
performance characteristics, and synchronization concerns.
We also discussed how to design API methods using generics to improve
reusability and readability, and how to approach thread safety using
wrappers and concurrent collections. Additionally, we saw how utility
methods and custom generic algorithms enable us to write cleaner and more
adaptable code across a wide range of applications.
By combining generics with collections wisely, you can build robust and
maintainable Java applications. As you move forward, continue to
experiment with creating your own generic utility methods and understand
the performance trade-offs between different collection types.
In the next chapter, we will bring all this knowledge together in real-world
applications.

Exercise
1. Which of these declarations is type-safe and valid?

a. List<Object> list = new ArrayList<Object>();



b. List<String> list = new ArrayList<String>();
c. List list = new ArrayList();
d. List<int> list = new ArrayList<int>();

2. What will happen if you try to add an Integer to a List<String>?
a. Compile-time error
b. Runtime error
c. Auto conversion
d. None

3. Which Generic wildcard allows read-only access to elements?
a. <? super T>
b. <?>
c. <? extends T>
d. <T>

4. Why should raw types be avoided in Generic code?
a. They are faster
b. They improve performance
c. They bypass compile-time checks
d. They support more types

5. What is the advantage of using Collections.unmodifiableList()?
a. Improves performance
b. Prevents modification
c. Increases capacity
d. Supports parallelism

6. Which method returns a synchronized version of a given Set?
a. Collections.unmodifiableSet()
b. Collections.checkedSet()
c. Collections.synchronizedSet()
d. None of the above

7. How can you enforce type safety at runtime in a Collection?
a. Use of raw types
b. Using checked collections



c. Casting at runtime
d. Using reflection

8. What is the time complexity of accessing an element in an
ArrayList?

a. O(log n)
b. O(1)
c. O(n)
d. O(n log n)

9. Which of these Collections allows duplicate elements?
a. HashSet
b. LinkedHashSet
c. TreeSet
d. ArrayList

10. What does <? super T> allow in a Generic method?
a. Accepts only T
b. Accepts any type
c. Accepts T and its superclasses
d. Restricts to subclasses only

Answers
1. b

Explanation: Java generics require the type parameter to be an object
type, and b is type-safe.

2. a
Explanation: You cannot add an Integer to List<String>; it will result
in a compile-time error.

3. c
Explanation: <? extends T> allows read-only access and is used for
covariance.

4. c
Explanation: Raw types skip compile-time checks, making code



unsafe and error-prone.
5. b

Explanation: Unmodifiable lists prevent changes to the Collection
after creation.

6. c
Explanation: Collections.synchronizedSet() provides a thread-safe
version of the Set.

7. b
Explanation: Checked collections throw ClassCastException at
runtime if incorrect types are used.

8. b
Explanation: ArrayList provides constant-time access to elements via
index.

9. d
Explanation: ArrayList allows duplicates, unlike Set implementations.

10. c
Explanation: <? super T> accepts T and its superclasses, used for
contravariant arguments.
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CHAPTER 11
Real-world Applications

Introduction
Until now, we have explored Java collections and generics from a
conceptual and technical standpoint, like how they work, how they are
structured, and how they are best used. However, in the real world, you will
rarely use these features in isolation. They are often part of larger designs
that solve practical, everyday problems in software systems.
This chapter focuses on how generics and collections are applied in real-
world Java applications, from handling user sessions to building scalable
APIs, from solving concurrency issues to implementing caching and custom
data workflows. You will learn how experienced developers use these
features to create solutions that are both clean and production-ready.

Structure
This chapter covers the following areas:

Case studies
Practical examples
Common usage patterns
Solving typical problems



Best practices in real-world scenarios

Objectives
By the end of this chapter, you will be able to understand how Java
collections and generics fit into actual software solutions. You will learn to
recognize typical usage patterns, apply collections to common design
problems, and follow best practices that improve maintainability,
performance, and clarity of your code. Whether it is designing
Representational State Transfer (REST) APIs, working with large
datasets, or managing thread-safe operations, this chapter will equip you
with examples and insights that bridge the gap between theory and practice.

Case studies
Case study 1: Managing user sessions in a web application:

Problem statement: Imagine a Java-based web application that allows
users to log in and perform tasks based on their roles (admin, editor,
viewer). Each user session must be uniquely tracked to ensure:

Fast lookup by session ID
Prevention of duplicate logins
Cleanup of expired sessions based on login time
Secure handling of session data with read-only exposure

The system must scale well as the number of active users grows.
Design decision: Before designing the session manager, it is important
to consider why certain data structures and type systems were selected.
In large-scale applications, managing state like user sessions requires
precision, performance, and clarity. Collections offer fast access and
efficient storage, while generics ensure type safety and reusability.
This combination makes collections and generics ideal for managing
session data, where quick lookups, controlled exposure, and
maintainable code are crucial.
Here are the core design factors:



Fast key-based lookup was essential for retrieving session
information quickly using session IDs. A Map implementation was
the natural fit.
Insertion order preservation was needed to track the oldest
sessions first for cleanup. Hence, LinkedHashMap was chosen over
HashMap.
Type safety was important to ensure that only valid session data
objects were stored and retrieved, which is generics enforced
through compile-time checks.
Immutable access to session lists was required when exposing
session data externally. This was achieved using
Collections.unmodifiableList().
Maintainability and readability improved significantly by
encapsulating the session logic and using generic collection
interfaces.

These choices ensured that the system was both performant and easy to
reason about, while also guarding against common runtime errors.
Implementation: Let us understand the implementation. We first
define a class to hold the session-related information, as shown in the
following:
public class SessionInfo {
    private final String userId;
    private final String ipAddress;
    private final long loginTime; // epoch time in 
ms
    private final String role;

    public SessionInfo(String userId, String 
ipAddress, long loginTime, String role) {
        this.userId = userId;
        this.ipAddress = ipAddress;
        this.loginTime = loginTime;
        this.role = role;
    }



    // Getters
    public String getUserId() { return userId; }
    public String getIpAddress() { return ipAddress; 
}
    public long getLoginTime() { return loginTime; }
    public String getRole() { return role; }
}
In the above SessionInfo class:

userId: Identifies the user (e.g., user123)
ipAddress: Tracks the user's device or location (e.g., 192.168.1.2)
loginTime: Stores when the session started, in epoch milliseconds
role: Defines what permissions the user has (e.g., admin)

We use final to ensure immutability, so that once a session is created,
its details cannot be modified.
Now, let us define the SessionManager class. This class uses a
collection to manage all active sessions, as shown in the following:
import java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;

public class SessionManager {

    private final Map<String, SessionInfo> 
sessionMap = new LinkedHashMap<>();
    private static final long SESSION_TIMEOUT = 30 * 
60 * 1000; // 30 minutes

    // Creates or replaces a session for a user
    public void createSession(String sessionId, 



SessionInfo info) {
        sessionMap.put(sessionId, info);
    }

    // Retrieve session by session ID
    public SessionInfo getSession(String sessionId) 
{
        return sessionMap.get(sessionId);
    }

    // Manually remove a session
    public void removeSession(String sessionId) {
        sessionMap.remove(sessionId);
    }
    // Get read-only view of all sessions
    public List<SessionInfo> getAllActiveSessions() 
{
        return Collections.unmodifiableList(new 
ArrayList<>(sessionMap.values()));
    }
    // Cleanup expired sessions
    public void cleanupExpiredSessions() {
        long now = System.currentTimeMillis();
        Iterator<Map.Entry<String, SessionInfo>> 
iterator = sessionMap.entrySet().iterator();
        while (iterator.hasNext()) {
            Map.Entry<String, SessionInfo> entry = 
iterator.next();
            if (now - 
entry.getValue().getLoginTime() > SESSION_TIMEOUT) {
                iterator.remove(); // safe way to 
remove while iterating
            }



        }
    }
}
In the above example:

A Map lets us store session IDs (as String) mapped to
SessionInfo objects.
We use LinkedHashMap instead of HashMap because it preserves
the order in which sessions were added. This helps later when we
clean up old sessions.
createSession adds a new session to the map using a unique
session ID. If a session already exists with the same ID, it is
replaced (which also allows for re-login logic).
getSession method looks up the SessionInfo object using the
session ID key. If no such session exists, it returns null.
removeSession allows manual removal of a session, such as
during logout or security invalidation.
The getAllActiveSessions method exposes the list of all active
sessions, but:

We convert the Map values (which are SessionInfo objects)
into a list.
We then wrap it in Collections.unmodifiableList() to
prevent external code from modifying the internal session data.

cleanUpExpiredSession is one of the most important features:

SESSION_TIMEOUT defines the allowed session duration (30
minutes).
We iterate through all sessions using an Iterator, so we can
safely remove entries without throwing a
ConcurrentModificationException.
We calculate the time since each session started, and if it is more
than 30 minutes, we remove it from the map.



The following is an example of using the SessionManager:
public class TestSessionManager {
    public static void main(String[] args) throws In
terruptedException {
        SessionManager manager = new SessionManager(
);
        manager.createSession("sess1", new SessionIn
fo("user123", "192.168.1.1", System.currentTimeMilli
s(), "admin"));
        manager.createSession("sess2", new SessionIn
fo("user456", "192.168.1.2", System.currentTimeMilli
s(), "editor"));
        // Simulate session list
        for (SessionInfo session : manager.getAllAct
iveSessions()) {
            System.out.println(session.getUserId() +
 " - " + 
session.getRole());
        }
        // After 30 minutes, run cleanup (simulate w
ith sleep for 
testing)
        Thread.sleep(1000); // Just for demonstratio
n
        manager.cleanupExpiredSessions();
    }
}
Here is what the system does as a whole:

Creates a new session when a user logs in
Allows lookup, removal, and listing of sessions
Cleans up old sessions efficiently based on time
Uses generics (Map<String, SessionInfo>) to ensure type



safety
Uses Collections like LinkedHashMap, ArrayList, and
Collections.unmodifiableList() to manage state cleanly
and securely

This case study demonstrated how Java collections and generics can be
used effectively to manage user sessions in a web application. The
combination of LinkedHashMap for ordered access, generics for type
safety, and unmodifiable wrappers for secure exposure resulted in a solution
that is clean, maintainable, and performance-aware.
By encapsulating the logic into a dedicated SessionManager class and
using appropriate data structures, we ensured that the design remains
extensible for real-world use cases like session expiration, concurrent
access, or role-based filtering. This pattern can be adapted to any Java-
based backend system that requires session tracking or similar stateful
behavior.
Case study 2: Role-based access control using Sets and Maps:

Problem statement: In an enterprise-grade application, access control
must be enforced at multiple levels. Each user is assigned one or more
roles, and each role grants access to a set of actions (or permissions).
The system must efficiently:

Assign and retrieve roles for users
Define which actions are allowed for each role
Verify whether a user is allowed to perform a specific action
Avoid duplication and ensure fast lookups

Design decision: Access control naturally maps to collections:

A Set is used to maintain unique roles per user and unique
permissions per role
A Map allows quick retrieval of permissions for a given role or
roles for a user
Generics ensure that mappings like Map<String,
Set<String>> are strictly type-safe, reducing runtime errors and
improving readability



These structures enable scalable, performant, and secure access
management logic.
Implementation: Let us build a simple role-based access control
(RBAC) system where:

Users can have multiple roles
Each role maps to a set of allowed actions
We can check whether a user is allowed to perform a given action

We start with the RolePermissionRegistry class, as shown in the
following:
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;
public class RolePermissionRegistry {
    private final Map<String, Set<String>> rolePermiss
ions = 
new HashMap<>();
    public void addPermissions(String role, Set<Stri
ng> permissions) {
        rolePermissions.put(role, new HashSet<>
(permissions));
    }
    public Set<String> getPermissions(String role) {
        return Collections.unmodifiableSet(
         rolePermissions.getOrDefault(role, 
Collections.emptySet())
     );
    }
}
The above class holds mappings of roles to their allowed actions.



rolePermissions maps each role (e.g., admin) to a set of actions
(e.g., {"CREATE", "DELETE"}).
We return an unmodifiable empty set if the role does not exist, to
avoid null checks and modification issues.

To maintain the user-role mapping, we have the UserAccessManager
class as shown in the following:
import java.util.HashMap;
import java.util.Map;
import java.util.Set;
public class UserAccessManager {
    private final Map<String, Set<String>> userRoles
 = new HashMap<>();
    private final RolePermissionRegistry registry;
    public UserAccessManager(RolePermissionRegistry 
registry) {
        this.registry = registry;
    }
    public void assignRole(String userId, String rol
e) {
        userRoles.computeIfAbsent(userId, k -
> new HashSet<>()).add(role);
    }
    public Set<String> getUserRoles(String userId) {
         return Collections.unmodifiableSet(
      userRoles.getOrDefault(userId, 
Collections.emptySet())
      );
    }
    public boolean isActionAllowed(String userId, St
ring action) {
        Set<String> roles = getUserRoles(userId);



        for (String role : roles) {
            if (registry.getPermissions(role).contai
ns(action)) {
                return true;
            }
        }
        return false;
    }
}
In the above example:

userRoles maps each user ID to a set of roles (e.g., "user123" |
["editor", "viewer"]).
assignRole() ensures we initialize the role set if it does not exist.
isActionAllowed() loops through the user’s roles and checks if
any of them permit the given action.
computeIfAbsent checks if userId is present; if not, it creates a
new HashSet and associates it with the user before adding the role.

Now, let us test this as shown with the following
AccessManagerTest class:
import java.util.Set;
public class AccessControlTest {
    public static void main(String[] args) {
        RolePermissionRegistry registry = new RolePe
rmissionRegistry();
        registry.addPermissions("admin", Set.of("CRE
ATE", "READ", "UPDATE", "DELETE"));
        registry.addPermissions("editor", Set.of("RE
AD", "UPDATE"));
        registry.addPermissions("viewer", Set.of("RE
AD"));
        UserAccessManager accessManager = new UserAc



cessManager (registry);
        accessManager.assignRole("Chloe", "viewer");
        accessManager.assignRole("Ray", "editor");
        accessManager.assignRole("Ann", "admin");
        System.out.println("Can Chloe DELETE? " + ac
cessManager.isActionAllowed("Chloe", "DELETE")); // 
false
        System.out.println("Can Ray UPDATE? " + acce
ssManager.isActionAllowed("Ray", "UPDATE"));     // 
true
        System.out.println("Can Ann CREATE? " + acce
ssManager.isActionAllowed("Ann", "CREATE")); // true
    }
}
In the above example,

We first populate a RolePermissionRegistry with allowed
actions for each role.
Users are then assigned roles using assignRole().
When isActionAllowed() is called, it checks each of the user’s
roles to see if the requested action is permitted.

This setup is clean, reusable, and scalable. Even in large applications
with thousands of users and dozens of roles.

This case study highlighted how Java collections and generics can be
effectively used to implement RBAC, a foundational security requirement
in many applications. By modeling user-role and role-permission
relationships using Map and Set, we were able to enforce access rules
cleanly and efficiently.
The use of generics (Map<String, Set<String>>) ensured type safety
and readability, while avoiding redundant data and enabling fast lookups.
This design is both scalable and adaptable for real-world systems where
access rights frequently evolve.
Case study 3: Processing product orders in an e-commerce system:



Problem statement: In an e-commerce platform, orders are received
from multiple customers throughout the day. Each order consists of:

A unique order ID
Customer information
A list of items, each with product details and quantity

The system must process incoming orders efficiently by:

Storing and grouping them by customer ID
Keeping track of all items ordered per customer
Calculating total value per customer
Providing a read-only summary of orders when needed

The data volume can grow quickly, so the solution must be memory-
efficient and safe from accidental modification.
Design decision: To meet the above problem statement, we chose:

A Map to group orders by customer ID
A List to maintain ordered items per customer
A custom class to represent each item in the order
Generics to ensure type-safe handling of orders and avoid casting
Unmodifiable views for reporting order summaries without
exposing internal structures

These design choices allow structured storage, easy aggregation, and
safe read access for reporting tools.
Implementation: We will model a simplified order-processing module
with the following components:

OrderItem is a single item in an order
CustomerOrderManager stores and groups orders per customer
Utility methods to calculate totals and generate read-only
summaries

The following is the OrderItem class, which represents a product
within a customer’s order:
public class OrderItem {



    private final String productId;
    private final String productName;
    private final int quantity;
    private final double pricePerUnit;
    public OrderItem(String productId, String produc
tName, int quantity, 
double pricePerUnit) {
        this.productId = productId;
        this.productName = productName;
        this.quantity = quantity;
        this.pricePerUnit = pricePerUnit;
    }
    public double getTotalPrice() {
        return quantity * pricePerUnit;
    }
    // Getters
    public String getProductId() { return productId;
 }
    public String getProductName() { return productN
ame; }
    public int getQuantity() { return quantity; }
    public double getPricePerUnit() { return pricePe
rUnit; }
}
In the above example:

getTotalPrice() calculates the cost for this item
The class is immutable, ensuring thread safety and data integrity

Next, we have the CustomerOrderManager class that handles the
order storage and aggregation:
import java.util.ArrayList;
import java.util.Collections;



import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Set;
public class CustomerOrderManager {
    private final Map<String, List<OrderItem>> custo
merOrders = new 
HashMap<>();
    // Add an item to a customer's order
    public void addOrderItem(String customerId, Orde
rItem item) {
        customerOrders.computeIfAbsent(customerId, k
 -> new 
ArrayList<>()).add(item);
    }
    // Get all order items for a customer
    public List<OrderItem> getOrderItems(String cust
omerId) {
        return Collections.unmodifiableList(
            customerOrders.getOrDefault(customerId, 
Collections.emptyList())
        );
    }
    // Calculate total order value for a customer
    public double getTotalValue(String customerId) {
        return customerOrders.getOrDefault(customerI
d, 
Collections.emptyList())
                             .stream()
                             .mapToDouble(OrderItem:
:getTotalPrice)
                             .sum();



    }
    // Get all customers
    public Set<String> getAllCustomerIds() {
        return Collections.unmodifiableSet(customerO
rders.keySet());
    }
}
In the above example:

computeIfAbsent ensures initialization of a new list when the
customer ID is encountered for the first time.
unmodifiableList and unmodifiableSet provide safe access
to internal data structures.
The use of streams makes aggregation operations concise and
efficient.

The order processing can be tested, as shown in the following:
public class OrderProcessingTest {
    public static void main(String[] args) {
        CustomerOrderManager manager = new CustomerO
rderManager();
        manager.addOrderItem("CUST001", new OrderIte
m("P1001", "Notebook", 2, 120.0));
        manager.addOrderItem("CUST001", new OrderIte
m("P1002", "Pen", 5, 10.0));
        manager.addOrderItem("CUST002", new OrderIte
m("P1003", "Backpack", 1, 750.0));
        for (String customerId : manager.getAllCusto
merIds()) {
            System.out.println("Customer ID: " + cus
tomerId);
            System.out.println("Total Value: " + man
ager.getTotalValue(customerId));
            for (OrderItem item : manager.getOrderIt



ems(customerId)) {
                System.out.println("- " + item.getPr
oductName() + " x" + item.getQuantity());
            }
            System.out.println();
        }
    }
}
In the above example:

We add multiple items for each customer using addOrderItem().
All items are grouped by customer ID internally using a Map.
For reporting, we list customer IDs and show their total order value
along with each item.
Collections.unmodifiableList() ensures consumers cannot
alter the order list from outside.
The code can scale to thousands of customers and handle dynamic
data reliably.

This case study demonstrated how Java collections and generics can be
applied to build a structured, extensible order management system within an
e-commerce application. By using a Map to group orders by customer and a
List to maintain item sequences, the design naturally aligned with the
business logic of processing and reporting customer purchases.
Type-safe constructs such as Map<String, List<OrderItem>> ensured
that invalid data could not be inserted or retrieved, reducing the potential
for bugs. The use of unmodifiable views helped protect internal data while
still providing necessary insights for reporting modules or user interfaces.
Overall, the solution illustrates how thoughtfully applying collection types,
backed by generic principles, results in code that is clean, scalable, and
well-suited for real-world scenarios involving dynamic, structured data.

Practical examples



While case studies help illustrate large-scale applications of collections and
generics, most development tasks involve smaller, focused operations. This
section presents a set of real-world examples that demonstrate how to use
Java collections and generics to solve common problems effectively. These
examples are designed to be concise, self-contained, and directly applicable
in day-to-day coding, from filtering and sorting to grouping and
transforming data structures.
Each example includes a problem statement, Java code, and a short
explanation to reinforce both understanding and best practices:

Example 11.1: Filtering items from a list using streams:

Problem: You have a list of strings representing product names.
You want to filter out any product that is out of stock (marked with
(Out of Stock)) and return a clean list.

The following is a sample solution for the above problem:
List<String> products = List.of(
       "Notebook",
       "Pen",
       "Pencil (Out of Stock)",
       "Marker",
       "Eraser (Out of Stock)"
   );
List<String> availableProducts = products.stream(
)
       .filter(p -> !p.contains("
(Out of Stock)"))
       .collect(Collectors.toList());
System.out.println(availableProducts); // [Notebo
ok, Pen, Marker]
In the above example:

We use a Stream to process the list and apply a filter condition.
Only products that do not contain (Out of Stock) are
collected into a new list.



The original list remains unchanged due to immutability
(List.of(...)).

Example 11.2: Grouping elements using
Collectors.groupingBy():

Problem: You want to group employees by their department.

This can be solved as shown in the following:
  record Employee(String name, String department)
 {}
  List<Employee> employees = List.of(
      new Employee("Alex", "HR"),
      new Employee("Rocky", "Engineering"),
      new Employee("Mike", "HR"),
      new Employee("Aron", "Engineering")
  );
  Map<String, List<Employee>> groupedByDept = emp
loyees.stream()
      .collect(Collectors.groupingBy(Employee::de
partment));
  System.out.println(groupedByDept);
In the above example:

Collectors.groupingBy() is used to create a Map where
the key is the department name and the value is a list of
employees in that department.
The use of a record (Employee) makes the code more concise
and readable.
This is commonly used in reporting, dashboards, and analytics
features.

Example 11.3: Sorting a list of custom objects

Problem: You have a list of students with names and marks. You
want to sort them in descending order of marks.



This can be solved as shown in the following:
class Student {
    String name;
    int marks;
    public Student(String name, int marks) {
        this.name = name;
        this.marks = marks;
    }
    public String toString() {
        return name + " (" + marks + ")";
    }
We define a simple student class as shown, and then we create a list
of students and sort them based on their marks:
List<Student> students = new ArrayList<>();
  students.add(new Student("Michael", 88));
  students.add(new Student("Ariel", 95));
  students.add(new Student("Rox", 76));
  students.sort((s1, s2) -
> Integer.compare(s2.marks, s1.marks));
  System.out.println(students); 
In the example:

The list is sorted using a custom comparator that compares
marks in descending order.
Sorting custom objects using Collections.sort() or
List.sort() is a frequent real-world task.

Example 11.4: Creating a frequency map:

Problem: Given a list of product IDs, count how many times each
product was sold.

The following is the code to solve this problem:
List<String> productIds = List.of("P1", "P2", "P1



", "P3", "P2", "P1");
Map<String, Long> frequencyMap = productIds.stream
()
    .collect(Collectors.groupingBy(
    id -> id,
    Collectors.counting()
      ));
System.out.println(frequencyMap); // {P1=3, P2=2,
 P3=1}
In the above example:

groupingBy with counting counts occurrences of each element.
The result is a Map where keys are product IDs and values are
their frequencies.
Useful in generating summaries, logs, or dashboards.

Example 11.5: Flattening nested collections with flatMap():

Problem: Given a list of students where each student has enrolled
in multiple courses, retrieve a flat list of all unique courses taken by
all students.

The following is the code to solve this problem:
List<Student> students = List.of(new Student("Aar
on", List.of("Math", "Physics")),new Student("Rit
a", List.of("Biology", "Chemistry")), new Student
("Kaleb", List.of("Math", "Biology")));
List<String> allCourses = students.stream().flatM
ap(student -
> student.getCourses().stream()).distinct().colle
ct(Collectors.toList());
System.out.println(allCourses); // [Math, Physics
, Biology, Chemistry]
In the above example:

flatMap is used to convert multiple course lists into a single



stream.
distinct ensures duplicate course names are removed.
The result is a flat list of unique courses across all students.
Useful in scenarios like generating curriculum summaries,
reports, or analytics dashboards.

Common usage patterns
In enterprise and real-world Java applications, certain patterns of using
collections and generics repeatedly emerge. These patterns are not design
patterns in the classical sense, but rather recurring idioms or strategies that
help solve common problems efficiently and elegantly.
Understanding these usage patterns improves not only your code clarity and
performance but also your ability to read and work with other developers’
code in a consistent way.
Here are some commonly seen patterns:

Factory method for returning unmodifiable lists:

Used when you want to expose a list without allowing modification.
For example, return
Collections.unmodifiableList(list);
Prevents callers from altering internal state while safely sharing
data.

Using Map<K, List<V>> or Map<K, Set<V>> for grouping:

A frequent pattern in organizing entities, like orders by customer or
students by class.
Promotes organized access and easy aggregation using Java 8 plus
streams.

Custom comparator via Lambda expressions:

For example, list.sort((a, b) |
Integer.compare(b.getScore(), a.getScore()));
Used for sorting custom objects, such as by age, salary, or date.



Keeps sort logic close to usage for one-off or dynamic sorts.

Safe defaults using Collections.emptyList() and friends:

Avoids null checks and ensures consistent return types from
methods.
For example, return map.getOrDefault(key,
Collections.emptyList());

Using computeIfAbsent() to initialize collections in Maps:

Removes boilerplate for checking null before initializing lists or
sets.

For example:
map.computeIfAbsent(key, k -> new ArrayList<>
()).add(value);

Used in data aggregation, grouping, or building indexes
dynamically.

Chaining stream operations with collectors:

Combines filtering, mapping, and collecting into one pipeline.
For example:
List<String> results = list.stream()
    .filter(p -> p.startsWith("A"))
    .map(String::toUpperCase)
    .collect(Collectors.toList());

Highly expressive and concise for transforming data.

Generics with bounded types:

Used when writing reusable utility methods.
For example, <T extends Comparable<T>> T max(List<T>
list)
Ensures that only compatible types are used without sacrificing
flexibility.



Solving typical problems
In everyday software development, developers frequently encounter
common issues such as data consistency, thread safety, and performance
tuning. Java generics and the Collections Framework provide robust
solutions to many of these challenges:

Ensuring type safety: Generics allow developers to define the
expected type for collections, catching errors during compilation rather
than at runtime.
Simplifying data transformation: With the help of Streams and
functional interfaces, developers can transform and filter data easily
using concise expressions.
Providing safe concurrency: Thread-safe collections like
ConcurrentHashMap and utilities like
Collections.synchronizedList() help manage concurrent
access to shared data structures.
Reducing boilerplate code: Generics allow the creation of reusable
data processing algorithms that work across types, cutting down
repetitive logic.
Preventing NullPointerExceptions: Use of empty or unmodifiable
collections (like Collections.emptyList()) helps avoid returning
null and ensures safer API contracts.
Handling large datasets: Using data structures like ArrayDeque for
queues or TreeSet for ordered access allows handling large volumes
with optimized memory and access speed.

Best practices in real-world scenarios
When working with collections and generics in large-scale or production-
level applications, the difference between average and excellent code often
lies in the application of best practices. These practices help you write safer,
cleaner, more maintainable, and more performant Java code.
The following are key best practices that are widely recommended and



proven effective in real-world software systems:
Prefer interfaces over implementations: Always declare variables
and return types using interfaces (List, Set, Map) rather than
implementations (ArrayList, HashSet, HashMap). This improves
flexibility and allows switching implementations with minimal impact.
For example:
List<String> names = new ArrayList<>();
Initialize collections with appropriate capacity: If you know the size
in advance, provide initial capacity (e.g., in ArrayList or HashMap) to
avoid costly resizing.
For example:
Map<String, String> cache = new HashMap<>(1000); //
Reduces rehashing
Avoid raw types: Always use generics instead of raw types to maintain
type safety and prevent ClassCastException.
For example:
List<String> list = new ArrayList<>();
List rawList = new ArrayList();      
Return empty collections instead of null: Returning null forces
clients to perform null checks. Returning
Collections.emptyList() or emptyMap() avoids errors and
simplifies code.
Use unmodifiable wrappers when exposing collections: Prevent
callers from accidentally (or intentionally) modifying internal state.
For example:
return Collections.unmodifiableList(orderHistory);
Use Comparator.comparing() for readable sorting: Modern Java
allows writing expressive sort logic.
For example:
products.sort(Comparator.comparing(Product::getPrice
).reversed());
Minimize mutability: Use immutable data structures or defensive



copies when dealing with shared or sensitive data.
Avoid unnecessary boxing in generics: Use primitive-specialized
alternatives (IntStream, Map<Integer, String>, etc.) when
possible to avoid performance overhead.
Use computeIfAbsent() or merge() for aggregations: These methods
eliminate verbose if-else checks when populating or updating maps.

Conclusion
In this chapter, we explored how Java collections and generics go beyond
theoretical constructs and become vital tools in building practical, real-
world software. Through case studies, common usage patterns, and real-
world problem-solving strategies, we saw how to organize, process, and
protect data in scalable ways.
Collections provide a structured way to manage groups of data, while
generics ensure type safety, reusability, and reduced runtime errors.
Whether you are designing an order processing system, implementing
RBAC, or analyzing product data, mastering these APIs leads to more
robust and maintainable code.
In the next and final chapter, we will explore emerging trends,
enhancements in recent Java versions, and the future direction of collections
and generics.

Exercise
1. What collection type should you use to store items in insertion

order and avoid duplicates?
a. HashSet
b. TreeSet
c. LinkedHashSet
d. ArrayList

2. Which method returns an unmodifiable version of a list?
a. List.unmodifiable()



b. Collections.freeze()
c. Collections.unmodifiableList()
d. List.readOnly()

3. Which of these is a valid way to count how many times an item
appears in a list using streams?

a. filter().grouping()
b. collect(Collectors.counting())
c. collect(Collectors.groupingBy(..., counting()))
d. stream().sum()

4. What does computeIfAbsent() do in a Map?
a. Checks if the map contains a value
b. Inserts a default value if the key is missing
c. Removes the entry if absent
d. Merges two maps

5. Which of the following can be used to create an empty,
unmodifiable list?

a. new ArrayList<>()
b. Collections.emptyList()
c. List.of(null)
d. Optional.empty()

6. What is the purpose of generics in Java collections?
a. Faster compilation
b. Memory saving
c. Type safety and code reusability
d. Multithreading

7. Which collection is best suited for fast key-based retrieval?
a. List
b. Set
c. TreeMap
d. HashMap

8. When is Collections.unmodifiableList() most useful?



a. When you want thread-safety
b. When you want synchronization
c. When you want to prevent modification
d. When you want immutability during sorting

9. Which stream method returns the first matching element?
a. findAll()
b. findFirst()
c. firstMatch()
d. getFirst()

10. Which of the following is not a valid benefit of using bounded
generics (<T extends SomeType>) in methods?

a. Reduces casting
b. Restricts inputs
c. Enables more flexible code
d. Makes code slower

Answers
1. c

Explanation: LinkedHashSet maintains insertion order and ensures no
duplicate entries.

2. c
Explanation: Collections.unmodifiableList() wraps a list in a read-only
view, preventing modifications.

3. c
Explanation: Collectors.groupingBy(..., counting()) is a standard way
to group and count in streams.

4. b
Explanation: computeIfAbsent() checks if a key is present; if not,
inserts a default value returned by the function.

5. b
Explanation: Collections.emptyList() returns an immutable empty list,
ideal as a safe default.



6. c
Explanation: Generics in collections allow type safety and eliminate
the need for explicit casting.

7. d
Explanation: HashMap is the most efficient for retrieving values using
keys in constant time.

8. c
Explanation: Collections.unmodifiableList() is used to share data
safely by preventing modifications.

9. b
Explanation: findFirst() returns an Optional containing the first
matching element from a stream.

10. d
Explanation: Bounded generics help improve type safety and
flexibility, not performance degradation.



CHAPTER 12
Future Trends and Next Steps

Introduction
As Java continues to evolve, developers must stay ahead of the curve to
design resilient, efficient, and scalable applications. Java generics and the
Collections Framework have long served as the building blocks for type-safe
and structured data handling. However, their story does not end with current
capabilities.
In this chapter, we explore the future, recent advancements, expected
enhancements, shifting development paradigms, and how the language is
adapting to the demands of modern software engineering. Whether you are
building APIs, backend systems, or libraries, understanding these trends will
empower you to make design decisions that are forward-compatible and
aligned with industry best practices.

Structure
This chapter covers the following topics:

Recent advancements in Java generics
Future updates in collections
Trends in Java development
Staying updated with Java innovations



Future of generics and collections

Objectives
In this chapter, you will gain a thorough understanding of the evolving
landscape of Java generics and the Collections Framework. You will explore
recent enhancements such as improved type inference, factory methods for
creating immutable collections, and the use of sealed classes. The chapter will
also guide you through anticipated developments like value types and possible
solutions to limitations such as type erasure. In addition, you will examine key
trends in modern Java development, including the growing influence of
functional and reactive programming. By the end of this chapter, you will be
well-equipped to stay current with Java innovations and to design applications
that are efficient, maintainable, and aligned with future advancements in the
language.

Recent advancements in Java generics
Java generics were introduced in JDK 5 to provide stronger type checks at
compile time and to support generic programming. Since then, improvements
have focused on syntax simplification, type inference, and integration with
newer language features.
The following are the most notable recent advancements:

Improved type inference with var (JDK 10+): The var keyword allows
you to declare local variables without explicitly specifying the type,
making generic-heavy code cleaner and more concise.
This can be done as shown in the following:
var employeeMap = new HashMap<String, List<String>>
();
employeeMap.put("HR", List.of("Asher", "Satin"));
System.out.println(employeeMap);
Here, var infers the type HashMap<String, List<String>> from the
right-hand side. This is especially useful when working with deeply
nested generic structures.



Diamond operator improvements (JDK 7+): The diamond operator
(<>) enables the compiler to infer type parameters, reducing the need to
repeat type information. Let us understand this with an example:
List<String> cities = new ArrayList<>(); 
// Compiler infers type as ArrayList<String>
cities.add("Delhi");
You no longer need to write new ArrayList<String>(); the compiler
infers that from the variable declaration.
Intersection types for generic bounds: Intersection types allow a type
parameter to extend multiple interfaces, enabling more flexible and
reusable APIs. Consider the following example:
public <T extends Runnable & AutoCloseable> void 
executeAndClose(T resource) throws Exception {
    resource.run();
    resource.close();
}
This method requires any type T to implement both Runnable and
AutoCloseable. It ensures compile-time safety while allowing
operations that depend on both interfaces.
Enhanced support in Lambdas and Streams (JDK 8 Onward):
Generics are now better utilized in functional programming constructs,
improving expressiveness and compile-time safety.
Let us look at an example of it:
List<String> names = List.of("Asher", "Victor", 
"Ryan");
List<String> upperNames = names.stream()
    .map(String::toUpperCase)
    .collect(Collectors.toList());
System.out.println(upperNames); // [ASHER, VICTOR, 
RYAN]
In the above example, the map() method applies a transformation
function to each element in a generic list. Type inference and generics
ensure type safety throughout the pipeline.



Java specification request (JSR)-335 and improved type inference in
complex structures: In complex chained operations or method
references, Java has become better at inferring types without explicit
declarations.
Consider the following example:
Map<String, List<String>> groupByFirstLetter = 
List.of("apple", "banana", "apricot", "blueberry")
    .stream()
    .collect(Collectors.groupingBy(s -> 
s.substring(0, 1)));
In the above example, the compiler correctly infers the type as
Map<String, List<String>>, even though it is not explicitly
declared.
Immutable collection factory methods (Introduced in JDK 9): Java
introduced convenient factory methods like List.of(), Set.of(), and
Map.of() for creating immutable collections.
They can be defined as shown in the following:
List<String> cities = List.of("New York", "Chicago", 
"San Francisco");
//cities.add("Los Angeles"); 
// This line would throw 
UnsupportedOperationException
System.out.println("Immutable Cities: " + cities);
The List.of() method creates an immutable list. Any attempt to
modify it (like adding "Los Angeles") will throw an
UnsupportedOperationException. This is useful when you need
fixed configurations or want to prevent accidental changes.
Sealed classes with Generics (Introduced in JDK 17): Sealed classes
restrict which classes can implement or extend them, improving code
readability and safety in domain-driven design. Consider the following
example:
sealed interface Vehicle permits Car, Bike {}
final class Car implements Vehicle {}
final class Bike implements Vehicle {}



List<Vehicle> vehicles = List.of(new Car(), new 
Bike());
vehicles.forEach(v -> 
System.out.println(v.getClass().getSimpleName()));
This example uses sealed classes to define a closed type hierarchy. Even
when used with generics like List<Vehicle>, only the permitted types
(Car, Bike) are allowed. This provides better control and safety during
code evolution.

These improvements not only improve code readability but also help
developers focus on logic rather than boilerplate declarations.
To better appreciate how Java generics and collections have evolved over the
years, it is helpful to compare traditional approaches with the more modern
features introduced in recent Java versions.
The following table highlights key differences in syntax, capabilities, and
programming style, demonstrating how the language has become more
expressive, concise, and aligned with current development practices:

Feature Before (Pre-Java 7) Now (Java 8 and beyond)

Generic
type
declaration

Map<String, List<Integer>> map = 
new HashMap<String, 
List<Integer>>();

var map = new HashMap<String, 
List<Integer>>();

Immutable
collections

Collections.unmodifiableList(new 
ArrayList<>())

List.of("A", "B")

Functional
operations

Manual loops or external libraries stream().filter().map().collect()

Intersection
types

Limited support public <T extends A & B> void 
method(T t)

Exhaustive
pattern
matching

Manual instance of checks Sealed classes and switch pattern 
matching (preview)

Table 12.1:  Comparison table for old vs. new usage of generics
Understanding the progression of Java generics and related features over
various JDK releases helps put recent changes into context.
The following figure shows a timeline that outlines major milestones in the
evolution of generics and collections, highlighting how Java has continuously



adapted to meet modern programming needs:

Figure 12.1: Timeline of generics evolution

Future updates in collections
While the foundational structure of Java's Collections Framework has
remained robust and reliable for decades, the needs of modern software
systems are rapidly changing. Cloud-native development, high-throughput
systems, and memory-sensitive environments are all demanding more from
language-level abstractions. As a result, the Collections Framework is
gradually being extended with new capabilities that align with current and
anticipated use cases. These enhancements aim to make collections more
performant, safe, and expressive, while still maintaining backward
compatibility and the framework’s familiar APIs.
Here are some of the most promising directions for future improvements:

Value types (Project Valhalla): One of the most anticipated changes in
the Java ecosystem is the introduction of value types through Project
Valhalla. These are lightweight, immutable data carriers that do not incur
object header overhead and are stored more compactly in memory.
Let us understand how value types will change the internal behaviour and
performance characteristics of Java collections:

In traditional collections, storing thousands of small objects (like
points or coordinates) can lead to poor memory locality and



performance bottlenecks due to frequent heap allocations.
Value types, once fully integrated, will allow collections like
List<Point> or Map<Key, Value> to store data more efficiently,
potentially even in-line, reducing GC pressure and improving CPU
cache utilization.

This is especially significant for performance-critical applications like
real-time analytics, game engines, and financial systems.
Pattern matching and structural decomposition: Java is steadily
advancing toward more expressive syntax for common control flow and
data access operations.
Let us understand how advancements in pattern matching and structural
decomposition are set to impact how we interact with collections:

With pattern matching for instanceof, and upcoming enhancements
to switch, Java is making it easier to de-structure and inspect complex
objects.
As these features mature, collections may be enhanced to allow
structured decomposition of elements during iteration, enabling more
concise and readable code patterns.

Consider the following example:
for (Object obj : list) {
    if (obj instanceof Map.Entry(String key, 
Integer value)) {
        System.out.println("Key: " + key + ", 
Value: " + value);
    }
}

Future iterations of Java may support patterns like this more broadly
in collection traversal, eliminating the need for verbose casting and
nested method calls.

Immutable collections by default: Immutability is increasingly seen as a
best practice in modern software architecture, especially in concurrent
and functional programming models.
Let us examine how Java is evolving toward immutability as a first-class



principle in its collections API:

The introduction of factory methods, such as List.of(), Set.of(),
and Map.of() in Java 9 encourage developers to create immutable
collections with ease.
Going forward, Java libraries and APIs are expected to embrace
immutability by default, reducing the risk of unintended side effects
and improving predictability.

In the future, collection creation patterns may prioritize immutability
unless the developer explicitly opts into a mutable variant.
Concurrent collections enhancements: Concurrency is a critical
concern for today’s scalable systems, and Java's concurrent collections
like ConcurrentHashMap and CopyOnWriteArrayList have long
supported multi-threaded access.
Let us explore how concurrent collections in Java are expected to advance
to meet the demands of modern, scalable systems:

Future improvements aim to reduce contention and improve
scalability using lock-free algorithms, fine-grained control over
synchronization, and low-overhead atomic operations.
Libraries may also integrate structured concurrency to better
coordinate collection-related tasks in a thread-safe and organized
manner.

These changes are essential in cloud-native environments, where
containers and microservices often face concurrency bottlenecks under
heavy load.
Memory-efficient implementations: As Java becomes a preferred
language for microservices, edge computing, and serverless platforms,
there is a growing need for lightweight and highly optimized data
structures.
Let us analyze how memory-efficient collection implementations are
emerging to support Java’s role in resource-constrained environments
such as microservices, edge computing, and serverless platforms:

Libraries are experimenting with compact map implementations,
array-backed sets, and compressed storage layouts that offer



significant memory savings.
These collections may become part of the standard JDK in the future,
providing developers with tools that minimize resource usage without
compromising functionality.

Expect to see collections tailored for constrained environments that are
ideal for Internet of Things (IoT) devices, mobile apps, or backend
services running on limited containers.

Together, these enhancements represent the next generation of the Collections
Framework that is faster, smarter, and more aligned with the challenges of
contemporary software engineering.

Trends in Java development
Modern Java development is evolving rapidly, driven by changes in how
software is built, deployed, and maintained. No longer limited to monolithic
applications or enterprise backends, Java is now a key player in cloud-native
ecosystems, reactive systems, and functional programming paradigms. As the
language adapts to meet these demands, the way developers use collections
and generics is also undergoing a significant transformation.
The following are the most prominent trends shaping how Java developers
think about and apply generics and collections today:

Functional programming influence: Functional programming concepts
have found a firm place in modern Java, especially since the introduction
of lambdas and the Stream API in JDK 8. Collections are no longer
manipulated through traditional loops and if-else logic but are instead
transformed using expressive, chainable operations.
Let us examine how functional programming paradigms have influenced
the evolution of collections in modern Java:

The use of map, filter, reduce, and collect enables developers to write
more concise and intention-revealing code.
Collections now support fluent pipelines, where data can be
transformed step by step with minimal side effects.
This approach encourages immutability and promotes safer concurrent
code.



For example:
List<String> names = List.of("Alice", "Bob", 
"Charlie", "David");
List<String> shortNames = names.stream()
    .filter(name -> name.length() <= 4)
    .map(String::toUpperCase)
    .collect(Collectors.toList());
This kind of usage represents a significant shift in how developers
think about processing data collections.

Adoption of reactive programming: Reactive programming is gaining
prominence in modern Java development, especially for systems that
demand high responsiveness, scalability, and real-time data handling,
such as monitoring dashboards, live data feeds, and asynchronous
processing pipelines.
Let us understand how reactive programming is influencing the usage and
design of collections in modern Java applications:

At its core, reactive programming emphasizes non-blocking
operations, event-driven architecture, and the ability to handle streams
of data asynchronously.
Although the traditional java.util collections API is not inherently
reactive; its integration with reactive patterns is becoming more
common in architectural design.
In such scenarios, collections are often used as intermediary structures
for gathering, transforming, and delivering batches of data received
through reactive streams.
Generics play a vital role in ensuring type safety and reusability across
these processing flows.

As reactive programming continues to influence Java’s direction, it is
likely that future iterations of the language and its APIs will introduce
more native abstractions to support non-blocking collections and
structured asynchronous data handling.
Emphasis on readability and simplicity: Java’s reputation for verbosity
is gradually fading. Newer language enhancements aim to streamline
code without sacrificing readability or type safety:



The introduction of the var keyword in JDK 10, records in JDK 14,
and pattern matching in later versions all point toward a more
expressive and modern syntax.
Collections benefit directly from these changes. Initializing or
transforming them requires fewer lines of code and reduced ceremony.

For example, the following declaration allows developers to express
their logic clearly while still benefiting from compile-time type
checking:
var employeeMap = new HashMap<String, List<String>>
();

Increased use of records and sealed classes: Java records and sealed
classes are reshaping how developers design their data models. These
features improve the integration of collections and generics with business
logic:

Records provide a compact syntax for immutable data holders, making
them ideal for representing DTOs, configuration models, and
collection elements.
Sealed classes allow the definition of restricted type hierarchies,
helping enforce domain constraints and improving generic type safety.

Collections like List<RecordType> or Map<KeyType, Record> are
becoming standard in APIs that require clear, maintainable, and
immutable data structures.
In short, these features support a more declarative, safe, and predictable
design philosophy.
Modular and cloud-native design: Java applications are now often
deployed as lightweight, containerized microservices that must start
quickly, consume minimal memory, and scale effectively. This shift has
led to new considerations in how collections and generics are used:

The Java Platform Module System (JPMS) encourages modular
codebases that load only what is necessary.
Libraries and frameworks prefer using immutable collections or
primitive-specialized data structures to reduce memory usage.
Concurrent collections and thread-safe patterns are now the default in
many backend services, ensuring better behavior in distributed



systems.

Collections must now be lean, responsive, and safe to use in stateless and
multi-threaded environments, where even small inefficiencies can have a
large impact at scale.
Integration with cloud tooling and DevOps: Collections and generics
are also heavily used in areas outside application logic, such as
configuration handling, telemetry, logging, and metrics aggregation:

Configuration properties (from YAML/JSON files) are often parsed
into collections of key-value pairs or object lists.
Logs and structured events use maps and generics to ensure flexibility
and schema evolution.
Generic interfaces make it easier to build reusable services like
caching, audit logging, and tracing.

Together, these trends reflect a shift in how Java developers structure their
code: from imperative to declarative, from mutable to immutable, and from
isolated systems to scalable, cloud-ready services. As Java continues to
evolve, so too will its idioms, and the Collections Framework and generics
will remain at the core of that evolution.

Staying updated with Java innovations
Java is one of the few programming languages with a consistent, predictable
release cadence. Since the introduction of the six-month release cycle in 2017,
developers can expect new features, improvements, and bug fixes twice a
year. Additionally, long-term support (LTS) versions are released every three
years, such as JDK 11, JDK 17, and the recent JDK 21, making it easier for
organizations to plan stable upgrades.
However, staying current with Java’s evolution is not just about reading
release notes or waiting for an LTS version. The language is actively shaped
by its community, and informed developers are better positioned to write
modern, efficient, and forward-compatible code. Here is how you can stay
ahead in your Java development journey:

Follow JEPs (JDK Enhancement Proposals): JEPs (JDK Enhancement
Proposals) are formal documents that define the goals, motivation, and



technical details of proposed Java features. They are one of the most
transparent and detailed ways to track Java’s future direction:

JEPs cover everything from language features to JVM improvements
and library changes.
Monitoring active and draft JEPs helps you anticipate upcoming
additions and adapt your codebase or learning plan accordingly.
For example:

JEP 401, primitive classes (Preview): Part of Project Valhalla,
aimed at improving performance by introducing value types.
JEP 430, string templates (Preview): Designed to simplify
dynamic string construction, making code more readable and
secure.

You can track all JEPs at the official OpenJDK site:
https://openjdk.org/jeps/0
Read community blogs and watch conferences: The Java community is
one of the most active in the programming world, and community-driven
content plays a vital role in knowledge dissemination.
Let us recognize the importance of community-driven learning resources
in staying current with the evolving Java ecosystem:

Conferences like JavaOne, Devoxx, Oracle CodeOne, and JNation
feature hands-on sessions, keynote announcements, and discussions
from the engineers behind Java itself.
Prominent blogs (like those by Baeldung, InfoQ, JetBrains, and
Oracle's official blog) break down complex topics, provide real-world
use cases, and cover subtle updates that might not be apparent in
documentation alone.
Recorded talks and demos often explain why a feature exists and how
it is meant to be used, bridging the gap between theoretical specs and
practical usage.

This content is invaluable for staying current and deepening your
understanding of how new features integrate with existing tools like
collections and generics.
Experiment with preview features: Many features in modern Java are

https://openjdk.org/jeps/0


introduced as preview features, allowing developers to experiment and
provide feedback before they are finalized.
Let us explore how experimenting with preview features enables
developers to stay ahead of upcoming changes in the Java language:

To enable preview features, compile and run code using the --enable-
preview flag in the command line or through IDE configuration.

Examples of preview features include:

Pattern matching for instanceof and switch
Sealed classes
Record patterns

Preview features give you early access to future capabilities, enabling
you to test integration strategies and determine where legacy code
may need revision.

Experimenting with these features ensures you are not caught off guard
when they become stable in future versions.
Use early-access builds: The OpenJDK project offers early-access (EA)
builds of upcoming Java versions. These builds include the latest
proposed features and fixes, giving developers a chance to explore and
validate them in controlled environments:

These builds are free to download and regularly updated.
You can test how your libraries, collections, and APIs perform with
new language features, JVM tweaks, or compiler behaviours.
Ideal for developers working on frameworks, tooling, or libraries that
need to be version-compatible early.

Visit https://jdk.java.net to access EA builds of the next Java version.
Contribute to OpenJDK: Java’s development is open and community-
driven. If you are passionate about influencing the direction of Java,
whether in collections, generics, or JVM optimizations, contributing to
OpenJDK is the most direct route:

Contributions can include bug reports, test cases, feature suggestions,
documentation, or even patches.

https://jdk.java.net/


Active participation in mailing lists such as compiler-dev, core-
libs-dev, or valhalla-dev exposes you to ongoing technical
discussions and design decisions.
Developers can also contribute by participating in community voting,
joining working groups, or reviewing JEP proposals.

Being part of the OpenJDK community helps you understand Java not
just as a language, but as an evolving platform shaped by collective
engineering effort.

In the rapidly evolving ecosystem of software development, continuous
learning is not optional; it is essential. Java offers all the tools to help you stay
current. All you need to do is make the most of them.

Future of generics and collections
As Java continues to modernize while maintaining its core principles of
backward compatibility, safety, and platform independence, we can expect
substantial improvements in how generics and collections are designed,
implemented, and consumed. The increasing demands for performance,
concurrency, and developer productivity are likely to shape these
enhancements. Based on current trends, ongoing JEPs, and broader ecosystem
influences, here are some well-founded predictions for the future evolution of
Java generics and the Collections Framework.
Here are a few educated predictions:

Support for reified generics: One of the most commonly discussed
limitations in Java generics is type erasure, where generic type
information is removed at runtime. This prevents operations such as
checking an object’s type parameter using instanceof or creating generic
arrays.
Let us consider how reified generics could address long-standing
limitations imposed by type erasure in Java:

Future versions of Java may introduce reified generics, enabling full
type retention at runtime. This would:

Allow safer and more expressive reflective operations.
Eliminate the need for unchecked casts in many common



scenarios.
Facilitate more robust serialization and deserialization
mechanisms.

This improvement aligns with long-term goals of Project Valhalla,
which aims to introduce value types and improved runtime type
handling.

Although introducing reified generics poses challenges in terms of
backward compatibility, gradual integration (possibly through new syntax
or opt-in annotations) could offer a path forward.
Specialized collections for primitives: Current generic collections (like
List<Integer>) rely on boxing and unboxing of primitive types, which
incurs performance and memory overhead. Although third-party libraries
like Trove and FastUtil address this need, core Java lacks built-in support.
Let us evaluate how introducing primitive-specialized collections could
significantly enhance performance and efficiency in Java applications:

The introduction of primitive-specialized collections (such as IntList,
DoubleMap) would allow:

Improved performance through avoidance of boxing.
Reduced memory footprint, especially in large-scale numeric or
data-processing applications.
Seamless usage in data science, machine learning, or high-
frequency trading systems.

These collections could be built into java.util, extending the
usability and efficiency of the standard library.

Project Valhalla's value classes would make this enhancement more
feasible by treating primitive wrappers as inline types with identity-less
semantics.
More fluent collection APIs: Languages like Kotlin, Scala, and
JavaScript offer concise and expressive methods for constructing,
transforming, and chaining collections. Java is gradually moving in this
direction with features like Streams and Collectors.
Future Java releases may enhance collection APIs to support:



Fluent builders (e.g.,
ListBuilder.add("A").add("B").build())
Inline filtering, mapping, and merging of collections outside of stream
contexts.
Direct transformation methods (e.g., map.replaceAllKeys(...),
list.groupBy(...)) in the core java.util package.

Such APIs would make collection handling more declarative, readable,
and maintainable, especially in business logic-heavy codebases.
Integration with structured concurrency: Structured concurrency is an
emerging paradigm that simplifies multithreaded programming by
treating concurrent tasks like structured code blocks. As Java integrates
structured concurrency (e.g., via Project Loom), collections will likely
evolve to support parallel, concurrent workflows more natively.
Potential enhancements include:

Stream-like APIs that work seamlessly with lightweight threads
(virtual threads).
Thread-safe collectors and partitioners optimized for concurrent
streams.
Collection utilities that integrate with ExecutorService,
ScopedValue, or structured tasks.

These improvements would allow developers to process large datasets or
real-time streams efficiently while ensuring safe resource management
and simpler thread lifecycle handling.
Enhanced IDE and compiler support for generics: As generics become
more expressive and widely used in modern Java applications, developer
tooling must keep pace.
Future improvements in compilers and IDEs (such as IntelliJ IDEA,
Eclipse, and NetBeans) will likely include:

Smarter type inference: Reducing the need to explicitly declare
verbose generic types.
Real-time refactoring assistance: Safely generalize or specialize
methods using generics.
Context-aware code generation: Suggesting generic wrappers,



streams, and type constraints during development.
Stronger static analysis: Detecting potential runtime issues due to
unsafe type conversions or misuse of bounded wildcards.

Such tooling support not only improves productivity but also encourages
correct and elegant use of generics, especially among newer developers.
Greater emphasis on immutability and functional design: The shift
toward immutability, already visible with List.of() and Set.of(), is
expected to continue.
Future enhancements might:

Offer first-class immutable collection types with no reliance on
wrappers.
Encourage functional-style usage with lazy evaluation and persistent
data structures.
Provide collection utilities designed specifically for functional
pipelines.

These features align with trends seen in other languages and respond to
modern needs like concurrency, testability, and ease of reasoning about
state.

Java collections and generics are poised to become more powerful,
expressive, and performance-oriented without sacrificing the language’s core
principles. Whether it is through the adoption of reified types, performance
gains with primitive collections, or seamless concurrency integrations, the
evolution is geared toward making Java more robust and future-ready.
For developers, this means embracing a mindset of continuous learning,
experimentation, and readiness to adapt to upcoming changes, ensuring that
your code remains modern, efficient, and scalable in the years to come.

Conclusion
The future of Java collections and generics is promising. While the core
principles of safety, reusability, and performance remain unchanged, the
ecosystem is continuously refined to meet the challenges of modern
development. Developers who stay informed, experiment with new features,
and adopt evolving patterns will remain productive and relevant in the years



ahead.
With this chapter, we conclude our journey through the powerful world of
Collections and Generics in Java. Whether you are a student, a backend
developer, or a system architect, the knowledge gained here forms a critical
foundation for building maintainable, scalable, and forward-compatible Java
applications.

Exercise
1. What feature introduced in JDK 10 reduces verbosity when working

with generics?
a. Diamond operator
b. Sealed classes
c. var keyword
d. Pattern matching

2. Which method is used to create an immutable list in modern Java?
a. new ArrayList<>()
b. List.copyOf()
c. Collections.emptyList()
d. Arrays.asList()

3. What is the primary limitation of Java generics that may be
addressed in future versions?

a. Lack of interfaces
b. No support for inheritance
c. Type erasure
d. No lambda support

4. What does Project Valhalla focus on?
a. Reducing syntax verbosity
b. Improving Javadoc
c. Supporting value types
d. Upgrading HashMap

5. What will List.of("A", "B") return?



a. A mutable list
b. A list with null elements
c. An immutable list
d. A synchronized list

6. Which feature enables declaring a generic class with specific allowed
implementations?

a. Streams
b. Lambdas
c. Sealed classes
d. Functional interfaces

7. What type of collection helps with concurrent writes and reads?
a. HashMap
b. LinkedList
c. ConcurrentHashMap
d. TreeMap

8. What language feature simplifies creating read-only collection views?
a. Optional
b. switch-case
c. Collections.unmodifiableList()
d. List.addAll()

9. What does flatMap() help with?
a. Sorting collections
b. Creating nested structures
c. Flattening nested streams
d. Skipping elements

10. What is a major reason to use records in Java?
a. To write mutable data holders
b. To define behavior-rich classes
c. To simplify data containers with immutability
d. To improve runtime performance only

Answers



1. c
Explanation: The var keyword, introduced in JDK 10, enables local
variable type inference. It allows developers to declare variables without
repeating generic types, thus reducing verbosity while maintaining type
safety.

2. b
Explanation: List.copyOf() creates an unmodifiable copy of the provided
list. This is preferred over Collections.emptyList() or Arrays.asList()
when you need an immutable list with actual elements. It throws
exceptions if the input list contains null.

3. c
Explanation: Java Generics use type erasure, which removes generic
type information at runtime. This prevents certain operations like
checking the actual type parameter using instanceof. Future
enhancements may address this limitation with reified generics.

4. c
Explanation: Project Valhalla aims to introduce value types (also called
inline classes) that optimize memory and CPU usage. These types are
especially useful in collections by reducing overhead associated with
object references and boxing.

5. c
Explanation: The factory methods like List.of() return immutable
collections. Any attempt to add or remove elements will result in an
UnsupportedOperationException.

6. c
Explanation: Sealed classes, introduced in JDK 17, allow you to control
which classes or interfaces can extend or implement a type. When
combined with generics, this helps enforce strict type hierarchies and
controlled polymorphism.

7. c
Explanation: ConcurrentHashMap is designed for concurrent access and
modification. It uses fine-grained locking (or lock-free mechanisms) to
ensure thread safety without sacrificing performance, making it ideal for
multi-threaded applications.



8. c
Explanation: Collections.unmodifiableList() creates a view of a given
list that is read-only. Attempts to modify it will result in runtime
exceptions, making it suitable for defensive programming and API safety.

9. c
Explanation: The flatMap() function is used to flatten nested structures
—especially when working with streams of lists. It transforms each
element into a stream and then flattens them into a single stream, making
it easier to process complex data.

10. c
Explanation: Records in Java provide a concise syntax for immutable
data holders. They automatically generate constructors, getters, and
toString() methods, reducing boilerplate and promoting value-based
design.

Join our Discord space
Join our Discord workspace for latest updates, offers, tech happenings around
the world, new releases, and sessions with the authors:
https://discord.bpbonline.com
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