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Preface 

The goal of this book is to help readers learn software design by discovering the 
experience of the design process. I share my knowledge and experience of software 
design through a narrative that introduces each element of design know-how in con-
text, and explores alternative solutions in that context. The narrative is supported by 
hundreds of code fragments and design diagrams. 

This book is grounded in two decades of teaching software design at McGill 
University. Initially, my approach was to explain the existing software design know-
how. However, I soon realized that the main challenge of teaching software design 
lay not in communicating how to apply a given design technique, but rather in which 
context and, most importantly, for what reason. 

My hope is that this book can serve as an effective resource for learning soft-
ware design. However, I do not believe that it is possible to develop significant 
design skills solely by reading a book. In my own learning process, I have benefited 
hugely from reading other people’s code, regularly writing code, and relentlessly 
refactoring existing code to experiment with alternative design solutions. For this 
reason, this book emphasizes coding and experimentation as a necessary comple-
ment to reading the text. To support this aspect of the learning process, I provide a 
companion website with practice exercises, and two sample applications that illus-
trate numerous design decisions. An orientation through these sample applications 
is provided in Code Exploration insets throughout the chapters. 

As its title indicates, this book provides an introduction to software design us-
ing the Java programming language. The code used throughout the book, as well 
as the sample applications, are in Java. The Java programming language, however, 
is a means to communicate design ideas, and not the topic of the book. I aimed to 
cover design concepts and techniques that are applicable in a host of technologies. 
Many concepts, such as encapsulation, will be relevant in any technology. Others, 
such as inheritance, will be paradigm-specific, but relevant in multiple program-
ming languages. For both general and paradigm-specific information, it should be 
straightforward to adapt the examples to other programming languages. In a few 
cases, I address a Java-specific mechanism with implications on design. In such 
cases, the mechanism is presented as one realization of a more general idea.
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This book is targeted at readers who have a minimum of programming experience 
and want to move from writing small programs and scripts to tackling the develop-
ment of larger systems. This audience naturally includes students in university-level 
computer science and software engineering programs. However, I kept the prerequi-
sites to specialized computing concepts to a minimum, so that the content is also ac-
cessible to programmers without a primary training in computing. In a similar vein, 
understanding the code fragments requires only a minimum knowledge of Java, such 
as would be taught in an introductory programming course. Information about Java 
that is crucial to understand the text is provided in an appendix, more advanced 
features are introduced and explained as necessary, and I make a minimum of refer-
ences to elements of the language’s class library. My hope is thus that the book can 
be useful to anyone who wants to write clean, well-designed software. 

Organization of the Book 

The first chapter is a general introduction to software design. The subsequent chap-
ters provide a progressive coverage of design concepts and techniques presented as 
a continuous narrative anchored in specific design problems. In addition to the main 
content, the book includes different features to orient readers and help use the book 
as a launchpad for further exploration and learning. 

• Chapter Overview: At the beginning of each chapter, a callout lists the concepts, 
principles, patterns, and antipatterns covered in the chapter. 

• Design Context: Following the overview, a paragraph titled Design Context in-
troduces the design contexts that are used as running examples in the chapter. It is 
thus not necessary to read all previous chapters to understand the code discussed 

• Diagrams: Each chapter includes numerous diagrams that illustrate design ideas. 
Although they are provided to illustrate the ideas in the text, the diagrams are also 
realistic illustrations of diagrams that can be used in practice as part of design 

• Code Fragments: Each chapter includes many code fragments. The code gen-
erally follows the conventions presented in Appendix B, with occasional con-
cessions made to make the code more compact. A complete version of the code 

• Insights: In each chapter, the main numbered sections are followed by an un-
numbered section titled Insights. This section forms an actionable summary of 
the key information and advice provided in the chapter. It is meant as a catalog of 
applicable design knowledge, and assumes the material in the chapter has been 
mostly assimilated. The insights are in bullet points to be easily perused. 

• Code Exploration: At various points in the text, insets titled Code Exploration 
provide a discussion of software design in practice. To facilitate good flow and 
avoid getting lost in details, the design contexts discussed in the main chapter 
text are kept as simple as possible. As a result, some interesting aspects of the
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software design experience can get lost in the simplification. The code explo-
ration activity is the opportunity to consider how some of the topics presented in 
the chapter manifest themselves in practice. The Code Exploration insets point 
to specific parts of the code of sample applications. In concert with reading the 
text of a Code Exploration inset, I recommend reviewing the code referenced 
and trying to understand it as much as possible. The sample applications are de-
scribed in Appendix C. They include JetUML, the application used to create all 
the diagrams in the book. 

• Further Reading: The Further Reading section provides pointers to references 
that complement the material presented in the chapter. 

• Index and Lists of Concepts: The book includes a detailed index. In addition 
to a catalog of key terms in context, the index includes lists of related signifi-
cant terms covered in the book. These include the list of: design patterns, design 
antipatterns, design principles, and UML diagrams. 

Companion Resources 

Additional resources for this book are available on GitHub at https://github. 
com/prmr/DesignBook. The material in that repository includes a complete and 
commented version of the code that appears in the text, as well as practice exercises 
and their solution. 

All the code samples in the book are also available in a special interactive format 
at https://codesample.info. Each webpage on that site is a complete Java code 
example annotated with additional explanations that can be revealed on demand. 
The website also contains supplementary code samples on the essentials of Java 
programming, and on how to use common Java library classes. 

Two complete sample Java applications, an interactive card game and a diagram-
ming tool, are provided as a basis for additional study and exploration. The two 
applications were developed following many of the principles and techniques de-
scribed in the book. A description of the sample applications and instructions for 
accessing their code is provided in Appendix C. 
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Chapter 1 
Introduction 

In 1988, a fascinating little piece of code hits the limelight. That year, one of the 
winners of the annual International Obfuscated C Code Contest features a program 
that writes out to the terminal console the text of an eighteenth-century poem titled 
The Twelve Days of Christmas. Figure 1.1 shows the first three verses of the text, as 
they appear on the output console when executing the code. This poem is particular 
in that its text has a regular structure. Text with such a structure is amenable to being 
constructed by software in a way that goes beyond printing hard-coded data. With 
a poem like The Twelve Days of Christmas, there was thus opportunity for creating 
a clear and compact solution for displaying a poem on the console. However, as 
promised by the name of the contest where it was featured, the program is anything 
but clear. If fact, its inner workings are unfathomable. Figure 1.2 reproduces the 
complete code of the program. 

On the first day of Christmas my true love gave to me 
a partridge in a pear tree. 

On the second day of Christmas my true love gave to me 
two turtle doves 
and a partridge in a pear tree. 

On the third day of Christmas my true love gave to me 
three French hens, two turtle doves 
and a partridge in a pear tree. 
... 

Fig. 1.1 Partial output of The Twelve Days of Christmas program of Figure 1.2 

This quirky piece of computer science trivia illustrates the impact of a lack of 
self-evident structure in software. Here, we have a programming problem with triv-
ial requirements: the functionality of interest requires no input and produces a sin-
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main(t,_,a ) char* a;{return!0<t?t<3?main(-79,-13,a+main(-87, 
1-_,main(-86, 0,a+1 )+a)):1,t<_?main( t+1, _, a ):3,main(-94,
-27+t, a )&&t == 2 ?_<13 ? main ( 2, _+1,"%s %d %d\n" ):9:16: 
t<0?t<-72?main( _, t,"@n’+,#’/*{}w+/w#cdnr/+,{}r/*de}+,/*{*+\ 
,/w{%+,/w#q#n+,/#{l,+,/n{n+,/+#n+,/#;#q#n+,/+k#;*+,/’r :’d*’\ 
3,}{w+K w’K:’+}e#’;dq#’l q#’+d’K#!/+k#;q#’r}eKK#}w’r}eKK{nl]\ 
’/#;#q#n’){)#}w’){){nl]’/+#n’;d}rw’ i;# ){nl]!/n{n#’; r{#w’r\ 
nc{nl]’/#{l,+’K {rw’ iK{;[{nl]’/w#q#n’wk nw’ iwk{KK{nl]!/w{\ 

%’l##w#’ i; :{nl]’/*{q#’ld;r’}{nlwb!/*de}’c ;;{nl’-{}rw]’/+,\ 
}##’*}#nc,’,#nw]’/+kd’+e}+;#’rdq#w! nr’/ ’) }+}{rl#’{n’ ’)# \ 
}’+}##(!!/"):t<-50?_==*a?putchar(31[a]):main(-65,_,a+1):main 
((*a == ’/’)+t, _,a+1):0<t?main ( 2, 2 , "%s"):*a==’/’||main 
(0,main(-61,*a,"!ek;dc i@bK’(q)-[w]*%n+r3#l,{}:\nuwloca-O;m\ 
.vpbks,fxntdCeghiry"),a+1);} 

Fig. 1.2 Source code of the 1988 The Twelve Days of Christmas C program by Ian Phillips. This 
code compiles and executing it will produce the output illustrated in Figure 1.1. © 1988, Landon 
Curt Noll and Larry Bassel. Reproduced with permission. 

gle, unchangeable output. Yet, the code to support this functionality cannot be un-
derstood by a normal human being. But what is the problem, if the code works? 

Software needs to change, and for software to change, at least one person must 
be involved at some point. Software needs to change for a variety of reasons, from 
fixing bugs to adapting the code to an evolving world. For example, many of the 
gifts referred to in the poem are European birds (e.g., partridge, turtle doves, French 
hens). Contemporary software development best practices include the localization 
of software applications, namely, the option to tailor a software application to ac-
count for region-specific characteristics. It would thus be nice to adapt the code of 
the application to replace the name of European birds to some that readers could re-
late to based on their own region (for example, to replace partridge with turkey for 
North American users). To modify a piece of code, however, one must understand 
its structure, and this structure must, to a certain extent, accommodate the change. 
In the case of The Twelve Days of Christmas, any ambition to ever change the code 
is hopeless. 

The example of The Twelve Days of Christmas is facetious for the sake of illus-
tration. Because this code was obfuscated on purpose, it would be comforting if we 
could discount it as irrelevant. Unfortunately, because writing messy code is often 
the path of least resistance in the complex social, technological, and economic real-
ity of software development, badly designed code is not hard to find. For example, 
in a famous high-profile case where automotive software was determined by the 
courts to be responsible for a fatal accident, the experts who reviewed the software 
likened its structure to that of a bowl of spaghetti. Whether code is cryptic purpose-
fully or accidentally, the result is similar: it is hard to understand and change without 
introducing errors.
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To explore the contrast, let us design a version of the program where the structure 
is evident. Consistently with the rest of the code in this book, the program is in Java. 
First, we tackle the issue of producing the first line of a verse: 

static String[] DAYS = {"first", "second", ..., "twelfth"}; 

static String firstLine(int day) { 
return "On the " + DAYS[day] + 

" day of Christmas my true love gave to me:\n"; 
} 

This code is clear because the function is short, it abstracts an obvious concept 
(the creation of the first line), and the only parameterization involved maps directly 
to the problem domain (changing the day). 

The second sub-problem is to create the list of gifts for a given day. In this case 
we can leverage the inherent recursion in the poem’s structure to organize the code 
in a function that creates a list of gifts by adding the last gift to a smaller list of gifts: 

static String[] GIFTS = { "a partridge in a pear tree", 
"two turtle doves", ... }; 

static String allGifts(int day) { 
if (day == 0) { 
return "and " + GIFTS[0]; 

} 
else { 
return GIFTS[day] + "\n" + allGifts(day-1); 

} 
} 

The allGifts function provides a classic implementation of a recursive algo-
rithm. In this case, the code’s structure is explicit because it directly realizes a foun-
dational strategy in computing. 

At this point the only thing left it to put the poem together by assembling the 
twelve verses. Here, the only small issue is that, in the first verse, we do not add the 
word and in front of a partridge. No matter how small a program, it can be difficult 
to completely avoid annoying corner cases. 

static String poem() { 
String poem = firstLine(0) + GIFTS[0] + "\n\n"; 
for (int day = 1; day < 12; day++) { 
poem += firstLine(day) + allGifts(day) + "\n\n"; 

} 
return poem; 

} 

At a glance, we see the overall structure of the code: a special case for the first 
verse, then an iteration through the remaining eleven verses, where each verse is 
created by concatenating the output of two functions: one to create the first line, and 
the other to create the list of gifts.
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1.1 Defining Software Design 

Software design is a mysterious activity. For many software development projects, 
“the design” is not necessarily something one can retrieve and look at. Similarly, 
very few people walk around with the title of “software designer”. In that sense, 
designing software is not like designing furniture or clothing. 

The word design is both a verb and a noun, so it can refer to both a process (to de-
sign) and the outcome of this process (a design). My working definition of software 
design (the process) is the construction of abstractions of data and computation and 
the organization of these abstractions into a working software application. At first 
this may sound overly restrictive, but when we consider everything that the term 
abstraction can mean (variables, classes, objects, etc.), we see that we are afforded 
quite a bit of flexibility for interpreting what software design means. 

In practice, the design process is essentially one of decision making. Should we 
use a list or a stack? What services should this interface offer? Where should this 
error be handled? Considering design as decision making leads to the concept of 
a design space. A design space can be imagined as an n-dimensional geometric 
space where each dimension corresponds to a design quality attribute. Typical de-
sign quality attributes for software include understandability, reusability, and ease 
of implementation. Within such a design space, each specific design decision (or co-
herent set of decisions) corresponds to a coordinate in the space that represents the 
consequence of the decision. Figure 1.3 illustrates the idea with two dimensions. In 
practice, any design decision is likely to be good in some dimension, but less good 
in other dimensions, something we call a design trade-off. 

Two partitions of the design space that are useful to consider are the space of 
possible solutions, and the space of acceptable solutions. We can observe that the 
ideal solution, which is optimal in all dimensions, is unlikely to be possible. In 
other words, given a design problem, there is not necessarily a single solution that is 
the “right answer”, only solutions that are better or worse in some dimensions (but 
including some solutions that are pretty bad in most dimensions). 

The concept of a design space may make it look like selecting a design deci-
sion is a systematic process. This is not the case. Where the analogy breaks down is 
that a geometric space is completely defined, whereas the reality of software design 
is rife with uncertainty. First, not all possible decisions are known and, in com-
plex situations, there may be an infinity of them. Second, estimating to what extent 
a design decision fulfills a given quality attribute (e.g., understandability) is an ap-
proximate process. Consequently, there is no standard formula for arriving at a point 
in the design space. In most realistic software development contexts, it will not be 
the case that to design and implement a software requirement, we can follow a pre-
determined set of steps. Software design is a heuristic process: it consists of iterative 
problem-solving guided by experience and know-how (see Section 1.4). In fact, the 
heuristic nature of the software design process is what makes it an exciting creative 
activity. 

The quality attributes that constitute the dimensions of the design space also 
correspond to the general goals of design. One of the most important goals for soft-
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ware design is to reduce the complexity of software, which means making it easier 
to understand. Cleanly-designed code that is easy to understand is less error-prone 
and easier to modify. In contrast, messy code obscures the important decisions of 
its original developers. When developers ignore existing design constraints, they 
risk modifying code in a way that does not agree with the original structure, and 
thereby introduce errors and generally degrade the quality of the code. The problem 
of modifying code in a way that does not respect the original structure has been 
called ignorant surgery. 

In general, the relative importance of design goals depends on the context in 
which a piece of software is being designed. A design context (or problem) is a 
specific set of requirements and constraints within a domain in which a design solu-
tion must be found and integrated. For example, because of economic or contractual 
reasons, it may be required to design a particular piece of software to maximize its 
reusability. Or, if a piece of software is intended to be integrated into safety-critical 
applications, it may be more important to prioritize robustness (i.e., resilience to 
errors). In this book, I give a lot of importance to the understandability quality at-
tribute. I try to emphasize designs where the code itself reveals the underlying design 
decisions and the intent behind these design decisions. The idea of having design 
decisions be self-evident in code is a property I call sustainability. 

If we consider that the design process is a series of decisions-making activities 
about software abstractions, then it follows that a good definition for a design is a 
cohesive collection of these decisions. This definition for a design artifact is suffi-
ciently general to avoid dictating the medium in which the design is captured. In 
formal software development settings, this could be an official standardized design
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document. In less formal contexts, design decisions could be stored in the code, di-
agrams, or various documentation pages associated with the project. In the extreme, 
design decisions could exist only in the mind of the developers who made them. 
Because people tend to forget or misremember, this latter approach is best kept to 
a minimum. Section 1.3 provides an overview of how design knowledge can be 
captured. 

1.2 Design in the Software Development Process 

Design is only one of the many activities that take place during the development of 
a software system. There is an abundant literature on different process models for 
software development. A process model describes (and sometimes prescribes) how 
the different steps required to create a system are organized. Different process mod-
els offer different ways of doing things for different reasons. In the early days of 
the software engineering discipline it was believed that a planning-heavy process, 
exemplified by the waterfall software process model, was the desirable way to build 
high-quality software. However, in the mid-1990s this belief was challenged by a 
movement towards a more organic approach to software development, also called 
agile development. In practice, ideas about how to best develop software keep evolv-
ing, and in the end the important things are to have a development process in the first 
place, and for that process to be well-adapted to the type of system being developed 
and the organization that develops it. For example, the process used by an organiza-
tion to develop a prototype for a video game would probably be different from the 
process used to develop banking or aeronautical software. 

The issue of devising, adapting, or even following a software development pro-
cess is not the main focus of this book. However, even when learning about software 
design, it is useful to have a general idea of software development processes, if only 
to stay oriented in the wide and buzzword-laden realm of technology. 

One concept of the software development process literature that is related to soft-
ware design is the idea of a software development practice. A practice is a well-
understood way of doing something to achieve a certain benefit. An example of a 
practice many programmers are familiar with is version control (the use of software 
tools to keep track of changes to software development artifacts). Another example 
of software development practice is pair programming (writing code as a team of 
two in front of a single computer). In this book I refer to a number of software de-
velopment practices that directly support good design, including the use of coding 
conventions (see Appendix B) and refactoring (see below). 

Another concept of software development processes that is relevant to software 
design is that of the iteration. As discussed in Section 1.1, when searching for a 
design solution, it is usual to iterate over various alternatives. However, iterations 
also take place at a more macroscopic level in software development, in the sense 
that the design of the system may be periodically extended, reviewed, and/or im-
proved. In some cases, the design can even be improved without any change to the
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observable behavior of the system. Improving the design of code without changing 
its functionality is the software development practice known as refactoring. There 
are various reasons why refactoring can become necessary or desirable. One reason 
is that the original developer did not really get it right, and after working with the 
code for a while it becomes apparent that a different design would be better. Another 
reason is that we might want to add modules and features that do not integrate well 
with the existing design, so we first refactor the design to prepare it so that it better 
supports the later addition of new code. A third reason is to reduce accumulated 
design weaknesses. As part of maintaining the code (e.g., to fix bugs), developers 
occasionally implement quick and dirty solutions that do not align properly with the 
existing design. This phenomenon is known as accumulating technical debt. By not 
investing the effort necessary to code a clean solution, the team effectively borrows 
development effort from the future. If allowed to accumulate, too much technical 
debt can threaten the viability of the project, just like the risk of bankruptcy incurred 
by excessive borrowing in the financial sense. When technical debt is incurred in a 
project, refactoring is a way to pay it back, and good software development teams 
will periodically refactor their code. Thus, software design is in continual evolution. 

1.3 Capturing Design Knowledge 

A design (or design solution) is a collection of decisions, each of which is the result 
of a search process through a design space for a particular design problem, or con-
text. In practice, a design decision is a statement about how to organize abstractions 
to meet a requirement, ideally associated with the reason for this statement. A sim-
ple example could be: We will store the appointments in a list because we need to 
know in what order they were added. For this decision to even exist, it has to be in 
at least one developer’s mind at some point. We thus have a first medium for stor-
ing design decisions: a person’s mind. For small projects, this could be sufficient. 
However, given that human memory is unreliable, it can be worthwhile to record 
important design decisions externally. This raises the question of how to capture de-
sign knowledge. The following is a concise summary of the options for externalizing 
design knowledge: 

• Source code: Many design decisions can be captured directly in the source code. 
The example above, of selecting a list as a data structure, would be one case. The 
advantage of source code is that it is a formal language whose rules are checked 
by the compiler. Unfortunately, source code is not a good substrate for capturing 
the rationale for design decisions. For this purpose, code comments can be of 
some assistance. 

• Design documents and diagrams: Design decisions can be captured in docu-
ments specifically aimed at capturing such design decisions. There exists a wide 
variety of formats for documents about software, from standardized design doc-
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uments to blog posts. Design documents may also include diagrams, which are 
another way to represent design decisions. 

• Communication and collaboration tools: Design information can be captured 
in email and comments stored in tools used for software development, such as 
issue management systems and version control systems. 

• Specialized models: In certain software development projects, developers use 
formal models to specify various aspects of the software. These models can then 
be automatically converted into code in a programming language. Such an ap-
proach is called generative programming or model-driven development (MDD). 
In model-driven development, the models serve as design documents. As a soft-
ware construction approach, model-driven design and development is outside the 
scope of this book. 

Because the level of design abstraction covered by this book remains close to the 
source code, many of the design decisions discussed will be at least partly reflected 
in the code. Subsequent chapters will also contain many diagrams and accompany-
ing text that document design decisions. 

The Unified Modeling Language 

There will often be situations where we need to discuss design problems and solu-
tions that are impractical to describe using either source code or natural language. 
For this purpose we can use a specialized modeling language. This situation is not 
limited to software. For example, describing instrumental music in plain language 
is near-impossible: instead, we use musical notation. 

Historically, many different modeling languages and notations have been devel-
oped for representing, at an abstract level, various aspects of a software system. This 
disparity was, however, an obstacle to adoption because of the overhead involved in 
interpreting models expressed in an unfamiliar notation. Thankfully, in the mid-
1990s the main software modeling notations were merged into a single one, the 
Unified Modeling Language (UML), which was subsequently adopted as a standard 
by the International Organization for Standardization (ISO). 

The UML is a modeling language organized in terms of different types of dia-
grams intended to illustrate different aspects of software. Examples of design in-
formation than can be neatly captured in the UML include relationships between 
classes (e.g., A inherits from B), changes in the state of an object (e.g., the list ob-
ject goes from Empty to Non-Empty when the first element is added), and sequences 
of calls dispatched on objects (e.g., a.m1() results in a call to b.m2()). 

Not all development teams use the UML. However, those who do can use it in 
different ways for different reasons. For example, UML can be used to produce 
formal design documentation in waterfall-type development processes. Others use 
the UML to describe enough of the software to be able to automatically generate 
the code from the models, following the idea of generative programming. In this 
book, I use the UML simply for sketching design ideas. The diagrams included in 
this book are not expected to be automatically transformable into code. I also use
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the smallest subset of the modeling language necessary, and introduce the notation 
progressively. 

An important thing to remember about UML diagrams is that they are models. 
This means that they are not intended to capture every single detail of a solution. 
Ideally, a UML diagram will focus on illustrating a single main idea and only in-
clude the relevant information. In UML diagramming it is a common practice to 
leave out the parts of a system and details that are not directly relevant to the ideas 
or design decisions being represented. 

1.4 Sharing Design Know-How 

Capturing knowledge about the design of a particular system is one thing, but how 
do we capture general knowledge about how to design software? Software design 
is influenced by the skills and experience of the designer, and this type of heuris-
tic knowledge is not easy to synthesize, package, and share. In earlier days, orga-
nized approaches to share design know-how centered around structured analysis 
and design methods, which prescribed a sequence of steps and the use of special-
ized charts and other instruments. Such approaches peaked in the 1980s, and were 
replaced with adaptations suited to object-oriented programming, a paradigm that 
was then quickly gaining adoption. Comprehensive object-oriented design methods 
themselves peaked in the mid-1990s. In the meantime, a number of design principles 
were becoming increasingly recognized and accepted, and it was being observed 
that some elements of design solutions tended to recur between many applications, 
a concept that would become known as design patterns and antipatterns. 

Software Design Principles 

Design principles are general ideas that guide decision making when searching for a 
solution, without being strict rules that can be followed systematically. For example, 
Loose Coupling is a commonly referenced principle of software design that states 
that different parts of a software (such as classes) should have as few dependencies 
between them as possible. Another example is Separation of Concerns, which sug-
gests to organize software entities such that each one targets a single area of focus, 
or “concern”. There is no official list or taxonomy of software design principles, and 
different principles can be described or interpreted differently by different people. 
Because design principles are abstract ideas, they require practice and experience to 
apply properly. In this book, I cover specific design principles in detail where they 
are most relevant in terms of the overall organization of the material.
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Design Patterns 

The idea of reusing elements of object-oriented design was captured in the con-
cept of a design pattern in the book Design Patterns: Elements of Reusable Object-
Oriented Software [7]. This book, often referred to as the Gang of Four book from 
the author list, is one of the most influential software design books in existence. 
Following the concept of an architectural pattern originally proposed by an archi-
tect named Christopher Alexander, the book describes 23 patterns for addressing 
common software design problems. Since then, countless other patterns have been 
documented. The idea to capture abstract design solutions that address specific prob-
lems was a breakthrough for software engineering, because it provided a practical 
way to convey design know-how and experience without the requirement to adopt 
a comprehensive design method. To this day, design patterns and close variants of 
the concept have been a dominant way to capture design know-how. There currently 
exist countless design catalogs for different programming languages, in the form of 
books and websites. 

According to the Gang of Four, a pattern has four essential elements: 

The pattern name [. . . ] Naming a pattern immediately increases our design vocabulary. It 
lets us design at a higher level of abstraction [. . . ] The problem describes when to apply the 
pattern. It explains the problem and its context [. . . ] The solution describes the elements that 
make up the design, their relationships, responsibilities, and collaborations. The solution 
doesn’t describe a particular concrete design or implementation, because a pattern is like a 
template [. . . ] The consequences are the results and trade-offs of applying the pattern. . . [7] 

In this book, I present a subset of the original patterns by integrating them in the 
flow of the material when they become relevant. I do not reproduce the structured 
description that can be found in other pattern catalogs. I instead use a lightweight 
description for a pattern that focuses on the link between the problem and solution, 
and I include a discussion of important design decisions related to the pattern. I also 
prefer to refer to the problem as the context for applying a pattern, because design 
problems can sometimes be difficult to isolate. Finally, I will sometimes express 
the solution embodied by a pattern as a UML diagram that captures the name of 
the abstract elements of the pattern. Because these elements are abstract, I prefer 
to refer to them as a solution template rather than a solution. A typical task when 
attempting to apply a design pattern in a context is to map the abstract elements of 
the solution template to concrete design elements in the code. In the text, the name 
of design patterns are set in SMALL CAPS FONT. This is to indicate that a term refers to 
a well-defined design concept, as opposed to a general use of the term. For example, 
one design pattern is called the Strategy pattern. Instead of continuously referring 
to it as the Strategy design pattern, I will refer to it as the STRATEGY, which will 
distinguish it from the concept of a strategy as a general problem-solving approach. 

Because solution templates for design patterns can be looked up in any number 
of resources, the most important skill to develop with respect to design patterns is 
to know when to apply them. For this reason, my coverage of design patterns em-
phasizes the rationale for using a pattern and a discussion of its strengths and weak-
nesses in different contexts, and de-emphasizes the focus on solution templates. One
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potential pitfall when first learning about design patterns is to get over-enthusiastic 
and try to apply them everywhere. Like all other elements of design solutions, a par-
ticular instance of a design pattern will occupy a specific point in the design space, 
with attendant benefits and drawbacks. If I can make one generalization about the 
use of design patterns, it is that employing one tends to make an overall design more 
extensible. Sometimes, this extensibility is exactly what we need. At other times, it 
leads to unnecessary structures that clutter the code. In other words, using a partic-
ular design pattern in a particular way in a given context is a design decision which, 
like most other design decisions, should be critically assessed. 

Design Antipatterns 

An interesting take on the idea of a design pattern is that of a design antipattern. Just 
as it can be observed that some design solution elements recur between applications, 
it is also the case that recognizable flaws can be abstracted from many similar cases 
and catalogued. This influential idea took hold around the turn of the millennium 
in a popular book on refactoring, which documents 22 antipatterns as motivation 
to refactor the corresponding code [6]. Typical antipatterns include problems such 
as DUPLICATED CODE†, LONG METHOD†, and others that will be covered in this book. 
For reasons similar to design patterns, antipatterns are set in SMALL CAPS†, but are 
followed by a dagger symbol to distinguish them from actual patterns. Design an-
tipatterns are also known as code smells, or bad smells (in code), to convey the idea 
of a symptom that something is not quite right. 

Insights 

This chapter introduced software design and placed it in the general context of soft-
ware development projects. 

• The verb to design refers to the process we follow when we design software, and 
the noun a design refers to the outcome of this process; 

• The process of software design is the construction of abstractions of data and 

• There is rarely a single solution to a design problem, only solutions that are better 
or worse in some dimensions; 

• A design artifact is an external representation of one or more design decisions; 
• Design is only one of many activities that take place during the development of a 

software system. Software development follows a process that can vary from or-
ganization to organization, and vary from planning-heavy to agile. Development 

• A software development practice is a well-understood way of doing something to 
achieve a certain benefit. Examples include version control, coding conventions, 
and refactoring;



• Design knowledge can be captured in source code, code comments, specialized 
documents and diagrams, discussion forums, and models; 

• The Unified Modeling Language, or UML, is a modeling language organized 
in terms of different types of diagrams. Using UML can be an effective way to 
illustrate different aspects of software without getting caught up in details; 

• A design principle is a general idea that guides decision making when searching 
for a solution; 

• A design pattern captures an abstract design solution that is applicable in a com-
mon design context. The description of a design pattern includes a name, a de-
scription of the design problem or context it addresses, a solution template, and 
a discussion of the consequences of applying the pattern; 

• A design antipattern is an abstract description of a common design flaw. 

12 Further Reading

Further Reading 

The paper Software Aging by David L. Parnas [13] introduces the term ignorant 
surgery and provides a compelling motivation for the benefits of maintaining good 
design in software. Parnas is one of the early contributors to the software engineer-
ing discipline. Chapter 1 of the book Clean Code: A Handbook of Agile Software 
Craftmanship by Robert C. Martin [8] discusses the various ills of bad or “messy” 
code. My short paper titled Sustainable Software Design discusses in more detail 
what it means for design decisions to be self-evident [14]. 

Chapter 1 of the book UML Distilled, 3rd Edition by Martin Fowler [6] provides 
a more comprehensive introduction to the UML. Fowler distinguishes between three 
modes for using the UML: as sketches for design, as a blueprint for creating an ap-
plication, and as source code that can be executed. Sketching is the mode employed 
in this book. 

Among the many books that discuss software design principles, Software Archi-
tecture: A Comprehensive Framework and Guide for Practitioners by Oliver Vogel, 
Ingo Arnold, Arif Chughtai, and Timo Kehrer [17] is noteworthy for its organization 
of the different principles and of the relations between them. 

The original book on design patterns is Design Patterns: Elements of Reusable 
Object-Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson, and 
John Vlissides [7]. This book is often referred to as the Gang of Four book. Be-
cause it predates the UML, the notation it uses for capturing software designs may 
feel a bit foreign. Nevertheless, it is a timeless reference work. 

The book Refactoring: Improving the Design of Existing Code, also by Martin 
Fowler [4], is the main reference on the practice of refactoring. It introduces the idea 
of design antipatterns (which are called code smells in the book). Robert C. Martin 
also includes a list of bad smells in Chapter 17 of Clean Code, cited above.



Chapter 2 
Encapsulation 

Concepts and Principles: Abstraction, assertion, class, design by con-
tract, encapsulation, immutability, information hiding, input validation, in-
terface, object diagram, record, scope. 
Patterns and Antipatterns: INAPPROPRIATE INTIMACY†, PRIMITIVE OBSES-
SION†. 

An essential technique in software design is to decompose a system into distinct, 
manageable abstractions. However, there is little value in decomposing a piece of 
software into several parts if each part depends on all the other parts in a tangled 
mess of interactions. For a decomposition to be useful, the resulting abstractions 
have to be well isolated from each other. For good design, an idea that should be 
inseparable from that of software abstraction is encapsulation. 

Design Context 

We start our exploration of software design by considering how to effectively rep-
resent a deck of playing cards in code. This representation would be necessary for 
most computer card games, for example the Solitaire game used as a sample applica-
tion. In the card deck used as a running example, there are 52 distinct cards and any 
given card can be completely defined by its suit (Hearts ♡, Spades ♠, Diamonds ♢, 
Clubs ♣) and its rank (Ace, 2, 3, ..., 10, Jack, Queen, King). A software structure to 
represent a deck of cards should therefore be able to represent any sequence of any 
number of distinct cards between 0 and 52. Two main operations required of a deck 
of cards are to shuffle it and to draw cards from it. Shuffling randomly reorders the 
cards in the deck. In the domain of card games, drawing a card means to remove it 
from the deck (typically from the top). This operation is not to be confused with the 
action of depicting the card on a user interface component.
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2.1 Encapsulation and Information Hiding 

The idea of encapsulation is to enclose something as if it were in a capsule. For 
example, we can think of a nut, which is encapsulated in its shell. The shell, or 
capsule, serves as protection. In software design we encapsulate both data and com-
putation to limit the number of contact points between different parts of the code. 
Encapsulation has several benefits: it makes it easier to understand a piece of code in 
isolation, it makes the use of the isolated part by the rest of the code less error-prone, 
and it makes it easier to change one part of the code without breaking anything. In 
software design, the equivalent of a shell is the general concept of an interface. 

Encapsulation helps to apply the principle of information hiding, which has been 
around since the early 1970s. Following the principle of information hiding, encap-
sulated structures should only reveal the minimum amount of information that is 
necessary to use them, and hide the rest. A typical example of information hiding 
is an implementation of a stack abstract data type (ADT) whose interface only pro-
vides push and pop operations. This minimal interface allows client code to make 
use of the stack structure, but decisions on how to store elements in the stack remain 
hidden from the code that uses the stack. I use the term client code to refer to any 
code that uses a code element that is not part of the definition of this element. The 
term code in client code is especially important, because here client does not refer 
to a customer or user of a software project. Which part of the code qualifies as client 
code will depend on the situation at hand. In many cases, the details of the client 
code will not really matter in the discussion of the design ideas. 

Although information hiding is a principle of software design that is very gen-
eral, there exist specific techniques that we can use to help ensure our code is well-
encapsulated and respects the principle. The rest of this chapter presents some of 
these techniques. 

2.2 Encoding Abstractions as Types 

As our first design task, we define the abstractions that are necessary to represent a 
deck of cards. An abstraction is a conceptual building block for a software system. 
Examples of common abstractions in computing include data structures (for exam-
ple, stack, list) and operations (sorting, iterating). However, abstractions can also 
refer to ideas in the problem domain, such as playing card. With the term defining 
an abstraction, I mean deciding what the abstraction represents, and what it will 
look like in terms of source code. In the case of a deck of cards, the first part of 
the process is straightforward, because the concepts we need to represent in code 
(a playing card, a deck of cards) are well-defined in the real world. This will not 
always be the case. 

Essentially, a deck of cards is an ordered collection of playing cards. We could 
use any standard data structure to represent this collection (an array, a list, etc.). 
However, what would such a collection hold? What is a card? In the code, we can
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represent a playing card in many different ways. For example, we could use an 
integer between 0 and 51 where the value represents a certain card according to a 
convention. For example, Clubs could have numbers 0–12 in increasing rank, Hearts 
13–25, etc.: 

int card = 13; // 13 = The Ace of Hearts 
int suit = card / 13 // 1 = Hearts 
int rank = card % 13; // 0 = Ace 

This approach would also require us to have similar conventions to represent suits 
and ranks, as illustrated on the second and third lines.1 To avoid having to contin-
ually divide and multiply numbers that represent cards to switch between suits, we 
could also represent a card as a pair of values, the first one encoding the suit, and 
the second one encoding the rank (or vice-versa): 

int[] card = {1,0}; // The Ace of Hearts 

While we are at it, we could even decide to represent a card using a combination 
of six Boolean values. Although extremely inconvenient, this design decision is 
technically possible to implement: it is an example of a decision that is possible, but 
not acceptable (see Section 1.1). As it turns out, all three options above have major 
drawbacks. 

First, the representation of a card does not map to the corresponding domain 
concept. To facilitate code understanding and help avoid programming errors, the 
representation of values should ideally be tied to the concept they represent. For 
example, the general type int maps to the concept of an integer (a type of number), 
not that of a playing card. We could define a variable of type int intended to store 
a playing card, and unwittingly put a value that represents a different entity in it 
(e.g., the number of cards in the deck). This will not be noticed as an error by the 
compiler, yet it is likely to lead to intense confusion when executing the code. 

Second, the representation of a card is coupled with its implementation. If our 
design decision is that cards should be represented as integers, any location in the 
code that must store a value that represents a card will refer to an integer. Chang-
ing this encoding to something else (for example, the two-element array discussed 
above) will require discovering and changing every single location where an int 
variable is used to store a card, and all the code that works with cards as integers. 

Third, it is easy to corrupt a variable that stores a value that represents a card. In 
Java a variable of type int can take 232 distinct values. To represent a playing card 
we only need a tiny subset of these (52 values). Consequently, the overwhelming 
majority of values we can store in an int variable intended to represent a playing 
card (232 − 52) does not represent any valid information. This opens the door to 
errors. The problem would have been even worse had we decided to use a two-
element array of type int, which supports 264 + 1 values.2 

We can do better. It is generally a bad idea to try to shoehorn domain concepts 
into basic types such as int, String, and so on. Ideally, these types should only 

1 The modulo operator (%) returns the remainder of the integer division. 
2 The additional value comes from the fact that array-typed variables can also be null.
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be used to hold values that are proper values of the type. For instance, the int 
type should only be used to hold actual integers (and perhaps very similar concepts, 
such as currency). Similarly, Strings should be used only to hold sequences of 
characters meant to represent text or text-like information, as opposed to being some 
encoding of some other concept (for example, "AceOfClubs"). The tendency to 
use primitive types to represent other abstractions is a common antipattern called 
PRIMITIVE OBSESSION†. 

To apply the principle of information hiding, we instead organize our code to 
hide the decision of how exactly we represent a card. We hide this decision behind 
an interface specifically tied with the concept of a card. In programming languages 
with a strong support for types, such as Java, this is typically accomplished through 
the use of types. In our case, to properly represent a card in code, we define our own 
type Card as a Java class: 

class Card {} 

As we will see below, the use of a specific type to represent a card will allow us 
to hide the decision of how we represent a card internally. However, although we 
now have a class Card, we still need to decide how to represent a card within the 
class. All options are back on the table. We could do simply: 

class Card { 
int aCard; // 0-51 encodes the card 

} 

This class defines a single instance variable aCard of type int. The name of the 
instance variable includes the prefix a as part of a coding convention detailed in 
Appendix B. Client code can refer to this variable through dereference (see Sec-
tion A.2), for example:3 

Card card = new Card(); 
card.aCard = 28; 

Although using a class links the value to the domain concept of a card, the other 
problems persist. First, it is still possible to corrupt the representation of a card. 
Second, the decision to represent this value as an int is not exactly hidden, given 
that client code would be accessing the variable directly through a dereference of 
the instance variable. Let us then tackle the issue of representing the card internally. 
The next section handles the issue of hiding this decision. 

Two key observations can help us arrive at a better way to encode a card. First, 
the value of a playing card is completely and exactly defined in terms of two sub-
concepts: its suit (e.g., Clubs) and its rank (e.g., Ace). So, we can take the process of 
defining types one step further, and define abstractions for ranks and suits. Following 
the same reasoning as above, primitive values are not a good match for encoding ab-
stractions of a rank and a suit, so we use a dedicated type for each. However, here, 
the second important observation comes into play: the rank of a playing card can 

3 Technically, this code only compiles if placed in a method declared in a class that is in the same 
package as class Card. This detail is not important here. Section 2.3 explains where class members 
can be accessed in the code.
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only be one of 13 distinct values, which are known in advance and can be enumer-
ated. In the case of suits, the number of values is even smaller (four). The best tool 
at our disposal to encode such abstractions is the enumerated type: 

enum Suit { 
CLUBS, DIAMONDS, SPADES, HEARTS 

} 

In Java, enumerated types are a special kind of class declaration. The identifiers 
listed in the declaration of the enumerated type are globally available constants (see 
Section A.3 in the appendix). These constants store a reference to an object of the 
class that corresponds to the enumerated value. For example, 

Suit suit1 = Suit.CLUBS; 
Suit suit2 = Suit.CLUBS; 
boolean same = suit1 == suit2; // same == true 

Enumerated types are a great fit here. They meet all our design requirements, 
because variables of type Suit and Rank are directly tied to their corresponding 
concept of rank and suit, and variables of these types can only take values that are 
meaningful for the type.4 Enumerated types are a simple yet effective feature for 
realizing robust designs. They help avoid PRIMITIVE OBSESSION† and generally make 
the code clearer and less error-prone. 

The code below completes our definition of class Card as a combination of a 
rank and a suit value. It assumes that each enumerated type is defined in its own file. 

enum Suit { 
CLUBS, DIAMONDS, SPADES, HEARTS 

} 

enum Rank { 
ACE, TWO, ..., QUEEN, KING 

} 

class Card { 
Suit aSuit; 
Rank aRank; 

} 

Now that we have a reasonable type to represent a playing card in the code, 
we return to the issue of representing a deck of cards, and again follow the same 
reasoning. Because a deck is just a collection of cards, we could represent a deck of 
cards as a List of Cards: 

List<Card> deck = new ArrayList<>(); 

However, the disadvantages of this approach are the same as the disadvantages of 
representing a playing card as an int value: 

• A list of cards is not strongly tied to the concept of a deck. It could represent any 
list of cards, e.g., the cards in one of the piles created while playing Solitaire, the 
cards discarded as part of the game, etc.

4 With the unfortunate exception of null. See Section 4.4.



• Using a list of cards ties the representation of a deck in the program with its 
implementation. If we decide later to replace the list by, say, an array, we would 
have to change all the corresponding source code locations.5 

• The structure can easily be corrupted: a simple deck of cards can hold a max-
imum of 52 cards, without duplicates. A list allows one to put any number of 
cards in the structure, including duplicates.
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A better way to approach the representation of a deck of cards in our code is to 
also define a proper type for it: 

class Deck { 
List<Card> aCards = new ArrayList<>(); 

} 

Although it may seem redundant to define a new class to hold just one instance of an 
ArrayList, this decision helps avoid many of the problems discussed above. The 
new type Deck specializes the list and ties it directly to its corresponding domain 
concept. It also becomes possible to hide the decision of how the cards are stored. 
The remainder of this chapter presents the details of how to achieve this hiding in 
practice. 

Code Exploration: Solitaire · Card 
A complete version of the Card class. 
This boxed paragraph, called a Code Exploration, is the first discussion of 
design decisions based on the code of the sample applications. The left part of 
the title is the name of the sample application, and the right part is the name 
of the class discussed. See Appendix C for instructions on how to access the 
relevant code. 

This chapter has used the creation of a deck of cards as a running example, 
so it is worth pointing out class Card in the Solitaire project. Some of the 
code in the class implements more advanced features that I will return to in 
Chapter 4, including the static members and the private constructor. Ignoring 
these, however, the basic structure of the class is identical to the one discussed 
in this section: two fields of enumerated types to represent the card’s rank and 
suit, respectively, as well as two accessor methods to obtain these values from 
a Card object. 

5 Disturbingly, replacing the list by a Stack on the right-hand side of the assignment in the listing 
would actually work because in Java Stack is a subtype of List. In Chapter 7, I explain why this 
is disturbing.
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2.3 Scopes and Accessibility 

Encoding abstractions as types is only the first step in the process of encapsulation. 
Once we have types we feel are good abstractions for our design, we need to ensure 
that these types are effective in hiding information from client code. At this point we 
have determined that four types are necessary to represent a deck of cards in code: 
Deck, Card, Rank, and Suit. Each of these types defines a set of possible values 
and a set of operations on these values. We now turn to the problem of specifying 
the values these types can take and the operations on these types so as to achieve 
good encapsulation of both the values and computation. 

In Java and most other object-oriented languages, an object is a mechanism to 
group variables together and access their values through the process of derefer-
encing (see Section A.2 in the appendix). Without encapsulation, any variable that 
forms part of an object can be accessed indiscriminately. For example, given the 
following code: 

class Deck { 
public List<Card> aCards = new ArrayList<>(); 

} 

class Card { 
public Rank aRank = null; 
public Suit aSuit = null; 

} 

we could use our objects as follows:6 

Deck deck = new Deck(); 
deck.aCards.add(new Card()); 
deck.aCards.add(new Card()); 
deck.aCards.get(1).aRank = deck.aCards.get(0).aRank; 
System.out.println(deck.aCards.get(0).aSuit.toString()); 

Because of the complete lack of encapsulation, we can make unprincipled use 
of the internal implementation of our types. Without major effort, this kind of 
code invariably leads to bugs, because the number of ways to misuse the struc-
tures greatly exceeds the number of ways to use them properly. For example, al-
though it may not be immediately apparent, the code above, when executed, raises 
a NullPointerException. With good encapsulation, it should be near-impossible 
to misuse one of our types. 

The idea of encapsulation is to hide the internal implementation of an abstraction 
behind an interface that tightly controls how an abstraction can be used. Designing 
good abstractions and good interfaces for these abstractions are tandem tasks that 
underlie most of software design. Designing effective interfaces can be tricky and 
requires a combination of different mechanisms and techniques. We start with one 
of the simplest, access modifiers. Access modifiers are Java keywords that control 
what parts of the code can access certain program elements (e.g., classes, fields, 

6 This code is not defined in any method because its exact location does not matter. For example, 
the code could be placed in a main method.
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methods). Controlling access to fields is a concept similar to that of visibility and 
scope for local variables. In most programming languages, a scope is a lexical region 
that acts as a boundary for variables. In Java, scopes are defined using curly braces. 
The following code fragment: 

public static void main(String[] args) { 
{ int a = 0; } 
{ int b = a; } 

} 

has a compilation error because, in the second assignment, the reference to a cannot 
be resolved because, according to Java scoping rules, it is not visible in the sec-
ond scope. In this tiny example, the scoping restriction may look like a limitation. 
However, scopes are a powerful feature. To understand what happens in the second 
statement, we only need to track down references to variables that are in scope (as 
opposed to every code location). We can do the same with classes. 

In Java, it is possible to control the visibility of classes and class members (and 
in particular fields) through the use of access modifiers. In this chapter, I only focus 
on the distinction between the public and private access modifiers.7 Members 
marked public are visible anywhere in the code. In the example above, because 
the field aCards of class Deck is public, the variable aCards of any object of type 
Deck is accessible from any code that has a reference to an object of that class. In 
contrast, members marked private are only visible within the scope of the class, 
namely, between the opening curly brace for the declaration of the class body and 
the closing curly brace of the class declaration. 

A guideline for achieving good encapsulation is to use the narrowest possi-
ble scope for class members. Thus, instance variables should almost always be 
private. Also, public methods should reveal as little as possible about imple-
mentation decisions meant to be encapsulated. A revised design for class Card that 
respects this guideline is as follows: 

public class Card { 
private Rank aRank; 
private Suit aSuit; 

public Card(Rank pRank, Suit pSuit) { 
aRank = pRank; 
aSuit = pSuit; 

} 

public Rank rank() { 
return aRank; } 

public Suit suit() { 
return aSuit; } 

} 

7 The other two are protected and default (absence of a modifier). Members with default visibility 
are accessible by code in classes declared in the same package. I cover the protected modifier in 
Chapter 7.
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This class properly encapsulates the representation of a playing card because 
client code cannot interact in any way with the internal representation of a card. 
In fact, with this design it is possible to change the representation of the card to 
use a single field of type int, or an enumerated type (say, PlayingCard), without 
requiring any change to the client code. 

As a mechanism for software design, access modifiers serve a dual purpose. First, 
they express the intent of the developer about where certain structures are meant to 
be used. Second, they support the automatic enforcement of the stated intent through 
compilation. In an ideal design, the intent of the developer should be clear. Access 
modifiers also help provide us with our first working definition of an type’s interface 
in Java. In general, an interface to a class consists of the methods of that class that 
are accessible to another class. For now, we will keep things simple and consider 
that the interface to a class is the set of its public methods. This is only a starting 
point, and we will be refining this definition of interface as we go along, and in 
particular in Section 3.1. For now, what is important is that the public methods of 
a type (a class) represent what client code can do with objects of the type, and the 
design of all other (non-public) fields and methods remains hidden from that client. 

So far, our Card type is a simple combination of two fields: aRank and aSuit. 
The value of each field is set through the constructor and can be accessed through 
a getter method that bears the name of the field (excluding the prefix of the naming 
convention). Since version 14, Java provides a feature called records to simplify the 
declaration of such basic types. The record declaration equivalent to the class above 
is as follows: 

public record Card (Rank rank, Suit suit) {} 

This declaration defines a type with two fields, rank and suit. From this declara-
tion, a constructor is generated that directly assigns arguments to the fields indicated 
in the type declaration. In addition, one getter method per field is generated, which 
receives the same name as the field.8 With the record declaration above, it is now 
possible to write client code such as: 

Card card = new Card(Rank.ACE, Suit.CLUBS); 
Rank rank = card.rank(); 
Suit suit = card.suit(); 

Records have other interesting features, including that they can declare additional 
constructors and methods. I introduce these features as they become relevant. 

Code Exploration: JetUML · Dimension 
Avoiding PRIMITIVE OBSESSION† with a small abstraction. 
At first glance, the Dimension type, defined as a record, looks exceedingly 
simple: a pair of integer values, one to represent a width, one to represent a 
height. Why bother, since these values can be accessed individually (using the 

8 For this reason, I do not follow the naming convention prefixing field names with a for records, 
as this would propagate the prefix to the name of the getters.



2 Encapsulation22

generated getter methods width() and height())? Would it not be simpler 
to just use pairs of integers? Is this not excessive effort to avoid a case of 
PRIMITIVE OBSESSION†? The answers to these questions are not to be found in 
the definition of the record itself, but rather by looking at all the places in the 
code where Dimension is used. The rationale for encoding the concept of a 
dimension explicitly is threefold: to be able to return both related values as 
one object and to prevent errors caused by flipping the width and the height. 
Of course, these have to be provided in the right order in the constructor call, 
but once a Dimension object is created, the risk of flipping the two values is 
eliminated. This definition of type Dimension also illustrates how records can 
define additional fields and methods. 

2.4 Object Diagrams 

An object diagram is a type of UML diagram (see Section 1.3) that represents ob-
jects and how they refer to each other. Whenever a new expression is evaluated, an 
object of a class is created and a reference to this object is returned and can be passed 
around. It can often be useful to visually represent the resulting graph of objects and 
their inter-dependent references. 

I introduce a slight enhancement to official UML object diagrams, so as to pro-
vide a representation of an object’s fields and values that resembles the kind of 
data-structure diagrams often used in introductory computer science classes. In an 
object diagram, a rectangle represents an object, with its name and type indicated as 
name:type. Both name and type information are optional, but in general it is useful 
to have at least one of the two. In UML diagrams in general, the name of objects (as 
opposed to classes) are underlined. Objects can contain fields, which are just like 
fields in a Java program. Fields can contain a value of a primitive type or a value of 
a reference type (see Section A.1 in the appendix). When the value is a reference 
type, it is represented as a directed arrow to the object being referenced. 

Let us consider the diagram of Figure 2.1. This diagram models an instance of 
the Deck class named deck. It would have been fine to omit this name and sim-
ply indicate :Deck in the rectangle, as in the case of ArrayList<Card>, which is 
anonymous. This deck has a field aCards whose current value is a reference to 
an ArrayList<Card> object. The ArrayList<Card> object’s elementData field 
references two Card instances. Here, because ArrayList is a library type, it is nec-
essary to have knowledge of the source code of the library to accurately model 
objects of this class. However, for a design sketch, using the actual name is not 
critical. To model internal properties of library types without looking up all their 
implementation details, it is often sufficient simply to make up evocative names. 
For example, the diagram would be just as informative if the field had been named 
data or elements.
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TWO:Rank

ACE:Rank

:Card

aRank=

aSuit =

:ArrayList<Card>

elementData =

:Card

aRank=

aSuit =

deck:Deck

aCards=

CLUBS:Suit

Fig. 2.1 Object diagram showing a detailed model of the object graph for a deck of cards 

Through modeling, we can skip over some details. In reality, in an instance of 
ArrayList the elementData field refers to an array of Object-typed cells that 
contain the actual data. This information is not useful here, and we link directly 
to the contained data. It is also worth noting how the list refers to two cards, and 
not three or four or 52. Another important point about object diagrams is that they 
represent a snapshot in the execution of a program. Here it was at the point where the 
list had two cards. For the purpose of communicating design information, including 
only two cards is sufficient to illustrate that a deck is a list of cards, so it would 
not be worth it to depict a snapshot of the program when the deck contains more 
cards. The two Card instances, however, are modeled in full detail. The values of 
enumerated types are distinguished by name, as they should be, and the enumerated 
value Suit.CLUBS is shared between two cards. 

:Deck

aCards=

AceOfClubs:Card

TwoOfClubs:Card

main:

deck =

name = "Solitaire"

Fig. 2.2 Object diagram showing a simplified model of the object graph for a deck of cards 

The second example diagram (Figure 2.2) illustrates some of the additional mod-
eling simplifications we can do, when appropriate. First, I added an untyped object 
named main. This “object” is actually a trick for representing a method body. Ob-
ject diagrams do not have an explicit notation to represent code statements that form 
the body of a method declaration. However, this can be achieved through untyped 
objects by observing that, from the point of view of the diagram, an object and a 
method body are both collections of variables (instance variables in the first case,
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local variables in the second). A second difference is that the Deck object is now 
anonymous, and the name deck is used to represent the variable in which a refer-
ence to an object (any object) is stored, as opposed to a specific object. Third, the 
main method contains a name variable that stores a string. In Java, strings are tech-
nically instances of the reference type String. To be strictly accurate, we should 
represent a string value as a reference to an instance of class String that has a ref-
erence to an array of char values, each with one letter. That level of detail would 
be both superfluous and annoying, so we just show the string literal. A fourth im-
portant difference is that the ArrayList has been abstracted away. In this diagram, 
we see that a deck somehow keeps track of a number of cards in a field aCards, but 
how these are stored internally is not represented. The cards could be in an array, a 
list, whatever. Although in some cases (such as in the next section) the details may 
be important, it is often the case that details of internal data structures are super-
fluous. Finally, the value of the Card instances are represented artificially by using 
an evocative name for the objects, instead of modeling the field values. This does 
not mean that these Card instances do not have the aRank and aSuit fields, it just 
means this detail has been elided from the diagram. 

2.5 Escaping References 

The use of the visibility restrictions for fields using the private keyword provides 
a basic level of encapsulation, but it by no means ensures an iron-clad protection of 
internal structures. We explore this problem by returning to the issue of storing an 
aggregation of Card objects within an instance of a Deck object. Let us assume we 
decided to implement a Deck as a list of cards using Java’s ArrayList type.9 

public class Deck { 

private List<Card> aCards = new ArrayList<>(); 

public Deck() { 
/* Add all 52 cards to the deck */ 
/* Shuffle the cards */ 

} 

public Card draw() { 
return aCards.removeLast(); 

} 
} 

So far, the only way to use an instance of Deck from code outside the class is 
to draw a card from the deck: there are no other members (methods or fields) that 
could be referenced outside the class. The class is thus well encapsulated, but also 

9 It may appear that Stack could be a better choice, but I prefer to avoid this type because its 
implementation is victim of a design flaw discussed in Chapter 7.
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limited it the services it can offer. Let us assume the client code needs to inspect the 
content of the deck. We could simply add a getter method to the class: 

public class Deck { 

private List<Card> aCards = new ArrayList<>(); 

public List<Card> cards() { 
return aCards; 

} 
} 

Unfortunately, this solution solves the problem of providing access to the content 
of the deck at a great cost: it allows a reference to the private internal list of cards to 
escape the scope of the class, thus granting access to internal elements of the class 
from outside the class. For example: 

Deck deck = new Deck(); 
List<Card> cards = deck.cards(); 
cards.add(new Card(Rank.ACE, Suit.HEARTS)); 

Here, the reference to the list of cards held within an instance of Deck escaped 
into the scope of the client code, which can then use it to mess things up, for example 
by adding an additional Ace of Hearts. 

Clearly, declaring fields private is insufficient to ensure good encapsulation. If a 
class is well encapsulated, it should not be possible to change the data stored by an 
object without going through one of its methods. In turn, to achieve this encapsula-
tion quality, it is also necessary to prevent references to internal structures to escape 
the scope of the class. There are three main ways in which a reference to a private 
structure can escape the scope of its class: returning a reference to an internal ob-
ject, storing an external reference internally, or leaking references through shared 
structures.10 

Returning a Reference to an Internal Object 

This problem is demonstrated above through the use of the getter method. It is not 
a good idea to automatically supply getters and setters for each field because, as in 
this case, it may result in a degradation of encapsulation. Figure 2.3 shows the effect 
of this escape. 

Although an object is a collection of variables, in the context of design, these vari-
ables correspond to an abstraction. Having a class that is mostly accessed through 
getters and setters points to a design weakness, because the abstraction the object 
represents is not effective. This problem is also known as the INAPPROPRIATE INTI-
MACY† antipattern, because its symptom is that classes “spend too much time delving 
in each others’ private parts” [4]. To the extent possible, objects should interact with 
each other using methods that involve abstractions above individual instance vari-

10 A fourth, more indirect, way is to use metaprogramming. See Section 5.4.
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:List<Card>

:Deck

aCards=

main:

deck =

cards =

Fig. 2.3 Effect of leaking a reference outside the class scope 

ables. In the case of the Deck class, this means prohibiting access to the internal list 
of cards, which constitutes a “private part”. 

Storing an External Reference Internally 

The problem with returning a reference to an internal object is that this reference 
becomes shared by the client code. A similar problem is to introduce this sharing 
by using a reference to an external object to initialize the internal state of another 
object. For example, if we have a setter method for the content of the deck: 

public class Deck { 

private List<Card> aCards = new ArrayList<>(); 

public void setCards(List<Card> pCards) { 
aCards = pCards; 

} 
} 

the reference will already be escaped as soon as it is assigned to the field: 

List<Card> cards = new ArrayList<>(); 
Deck deck = new Deck(); 
deck.setCards(cards); 
cards.add(new Card(Rank.ACE, Suit.HEARTS)); 

Here, we can corrupt the state of the deck from the scope of the client code, for 
example by adding an Ace of Hearts. From an object graph perspective, the outcome 
of this code is similar to the one caused by leaking a reference through a getter 
method, as illustrated in Figure 2.3. 

A similar version of this problem is to set the content of the deck from a con-
structor, as opposed to a setter method: 

public class Deck { 
private List<Card> aCards; 

public Deck(List<Card> pCards) { 
aCards = pCards; 

} 
}
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Although the leak uses a different type of programming language element (construc-
tor vs. setter method), the result is identical. 

Leaking References Through Shared Structures 

The issue of escaping references is complex because references can escape through 
any number of shared structures, which may not always be obvious. Although con-
trived, the following example shows how this could come about: 
public class Deck { 

private List<Card> aCards = new ArrayList<>(); 

public void collect(List<List<Card>> pAllCards) { 
pAllCards.add(aCards); 

} 
} 

with the corresponding client code: 
List<List<Card>> allCards = new ArrayList<>(); 
Deck deck = new Deck(); 
deck.collect(allCards); 
List<Card> cards = allCards.get(0); 
cards.add(new Card(Rank.ACE, Suit.HEARTS)); 

:Deck

aCards=

main:

deck =

allcards =

cards =

:List<List<Card>>

elementData =

:List<Card>

Fig. 2.4 Effect of leaking a reference through a shared structure 

Figure 2.4 illustrates the result. Unfortunately, automatically detecting escaping 
references is a difficult program analysis problem, and there currently does not exist 
any production tool that can accomplish it for Java. Preventing the escape of ref-
erences from the class scope is currently a manual process that relies on rigourous 
programming and code inspection practices. Section 2.7 introduces techniques for 
exposing some carefully selected information encapsulated by an object, without 
leaking references to internal structures.
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2.6 Immutability 

One of the major design insights of this chapter is that to ensure good encapsulation, 
it should not be possible to modify the internal state of an object without going 
through its methods. Section 2.5 discussed the issue of escaping references, and 
how they threaten encapsulation. There is, however, one situation where leaking 
a reference to an internal object is harmless: when the object is immutable (i.e., 
impossible to change). Let us consider the following code: 

class Person { 
private String aName; 

public Person(String pName) { 
aName = pName; 

} 

public String name() { 
return aName; 

} 
} 

public class Client { 
public static void main(String[] args) { 
Person person = new Person("Anonymous"); 
String name = person.name(); 

} 
} 

The implementation of class Person clearly violates the advice given in Section 2.5 
(of not returning references held in private fields), given that Person.name() re-
turns a reference to the value of an instance variable. We can also represent this 
situation with an object diagram (Figure 2.5): 

main:

person =

name =

:Person

aName =

:String

value = "Anonymous"

Fig. 2.5 Illustration of a shared reference to a String instance 

However, a crucial notice in the reference documentation of the String library type 
changes things considerably: 

Strings are constant; their values cannot be changed after they are created. [...] Because 
String objects are immutable they can be shared.
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Because it is not possible to change the data encapsulated by a String instance 
after its creation, sharing a reference to a String that forms the internal data encap-
sulated by an other object is harmless, as it will not be possible to change the object 
using the reference. This applies to any immutable object. 

Objects are immutable if their class provides no way to change the internal state 
of the object after initialization. By extension, I call a class that yields immutable 
objects an immutable class.11 Unfortunately, in Java and most other programming 
languages, there is no mechanism to guarantee that a class yields immutable ob-
jects. For the designer of a class, the only way to ensure immutability is to carefully 
design the class to prevent any modification (e.g., by providing no setter methods, 
leaking no reference, etc.). When relying on library classes (such as String), unless 
we are willing to personally inspect the source code of the class, we have to trust 
the documentation. Generally speaking, immutable objects have many advantages. 
In the context of this chapter, the immediate benefit is to support sharing informa-
tion encapsulated in an object without breaking encapsulation. Chapter 4 provides 
additional insights that can help with the design of immutable classes. For now, it is 
sufficient to say that immutability is a desirable design property in many cases. 

Let us conclude this introduction to immutability by defining class Card to be 
immutable. First, we rely on our two enumerated types Rank and Suit which we 
assume to be immutable.12 With the following declaration, class Card will be im-
mutable: 

public class Card { 
private Rank aRank; 
private Suit aSuit; 

public Card(Rank pRank, Suit pSuit) { 
aRank = pRank; 
aSuit = pSuit; 

} 

public Rank getRank() { 
return aRank; 

} 

public Suit getSuit() { 
return aSuit; 

} 
} 

In this definition of the class, the only way to set the values of the two instance 
variables is through the constructor call which, by definition, is only executed once 
for each object. The fields are private, so they cannot be accessed from outside the 

11 This is a slight abuse of language because, technically speaking, it makes no sense for a class 
to be immutable. However, immutable class is a more convenient term than class that yields im-
mutable objects. 
12 Simple enumerated types, which only enumerate values, are immutable. Although it is tech-
nically possible to define enumerated types that are not immutable, this is not a good idea. See 
Chapter 4.
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class. There are only two methods. Although they are public, neither changes (or 
mutates) the state of the object. Finally, although the methods return a reference to 
the content of a field, the type of these fields is immutable, so it will not be possible 
to change the state of the referenced objects in any case. The class is thus immutable. 

Code Exploration: JetUML · Rectangle 
Creating objects derived from immutable objects. 
In addition to its generated methods (e.g., x(), y()) and user-defined meth-
ods (e.g., maxX(), maxY()), the interface of this record type also includes 
methods that create new Rectangle instances as derivatives of the implicit 
parameter. For instance, translated(int, int) returns a new instance of 
Rectangle that is a translated version of the implicit parameter. The method 
is called translated instead of translate, because translate would im-
ply the translation of the implicit parameter. This approach is necessary be-
cause, this record is intended to be immutable, so it is not possible to translate 
the implicit parameter. The pattern of “modifying” an immutable object by re-
turning a modified version of the (unmodified) implicit parameter is common. 
The library class String provides many examples, such as substring(int), 
which returns a new String instance that is a substring of the object on which 
the method is called. 

2.7 Exposing Internal Data 

In many cases the objects of the classes we define will need to expose part of the 
information they encapsulate to other objects. How can we do this without breaking 
encapsulation? As often in software design, there are different options, each with its 
strengths and weaknesses. For the sake of discussion, let us consider that we want 
to design our Deck class so that it is possible to find out what cards are in a deck. 
public class Deck { 

private List<Card> aCards = new ArrayList<>(); 
} 

As discussed above, adding a getter method that simply returns aCards is out 
of the question, as this allows code outside the class Deck to modify the internal 
representation of a Deck instance. 

Extended Interface 

One solution is to extend the interface of the class to include access methods that 
only return references to immutable objects. In our case, we could accomplish this 
goal by adding two methods to the Deck class:
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public int size() { 
return aCards.size(); 

} 

public Card cardAt(int pIndex) { 
return aCards.get(pIndex); 

} 

If class Card is immutable, this solution fulfills its mandate. However, it is somewhat 
inelegant if client code typically needs to access all the cards in the deck. In such a 
situation, the code would become cluttered with calls to size() and for loops going 
over all indexes. Code might also need to be written to check that the argument to 
cardAt is not out of bounds. 

Returning Copies 

Another option, which mimics returning a reference to the field aCards without 
breaking encapsulation, is to return a copy of the list stored in aCards. Thus, we 
could add a new method: 

public List<Card> cards() { 
return new ArrayList<>(aCards); 

} 

This code relies on the behavior of the constructor ArrayList(Collection), 
which creates a new ArrayList and initializes this list with all the elements in the 
collection, in the same order. Thus, a client would receive a reference to a different 
list of cards, with the same cards, as illustrated in Figure 2.6. 

card2:Card

:ArrayList

elementData =

:ArrayList

elementData =

card1:Card

:Deck

aCards=

main:

deck =

cards =

Fig. 2.6 Reference to a copy of a list of cards 

Assuming Card is immutable, we have a valid solution to expose the content of 
a Deck to clients. Figure 2.6 shows the result of executing: 

public static void main(String[] pArgs) { 
List<Card> cards = deck.cards(); 

}
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We see that it is not possible to change the internal state of Deck from a reference 
to its cards. There are other strategies for returning a copy of a data structure or a 
wrapper for it. Ultimately, the details of the implementation do not matter as much as 
the central idea, which is to return a different object that has all the same information 
as the internal structure we wish to keep encapsulated. 

Although it looks like a simple idea, copying objects is actually a tricky topic, 
because it requires deciding how deep to copy the object graph. So far, we assumed 
that Card objects were immutable, so it was sufficient to perform a shallow copy. 
A shallow copy of a list is a copy of the list with shared references to the ele-
ments in the original list (that is, the elements are not copied). But what if Card 
instances were mutable? In this case the above solution would not offer good en-
capsulation, because it would become possible to change the state of a deck without 
going through its interface, for example: 

public static void main(String[] pArgs) { 
Deck deck = new Deck(); 
deck.cards().get(0).setSuit(Suit.HEARTS); 

} 

With mutable Card instances, to implement the copying solution correctly, we 
need to go one step further and copy all cards when we copy the list of cards encap-
sulated within a Deck instance. In turn, this introduces a new requirement, namely, 
to find a clean way to copy card objects. 

A common technique for copying objects is to use a copy constructor. A copy 
constructor takes as argument an object of the same class, and (usually) copies 
matching field values: 

public Card(Card pCard) { 
aRank = pCard.aRank; 
aSuit = pCard.aSuit; 

} 

In fact, the code above, where we use new ArrayList<>(aCards), is an example 
of a copy constructor for ArrayList.13 To perform a deep(er) copy of our list of 
cards now becomes slightly more involved: 

public List<Card> cards() { 
ArrayList<Card> copy = new ArrayList<>(); 
for (Card card : aCards) { 
copy.add(new Card(card)); 

} 
return copy; 

} 

However, this extended solution ensures that encapsulation would be preserved 
even with mutable Card objects. Java provides other mechanisms that support copy-
ing objects, including its cloning mechanism (see Section 6.6), metaprogramming 
(see Section 5.4) and its serialization mechanism (not covered in the book). 

13 This constructor for ArrayList has a formal parameter of type Collection, which is a super-
type of ArrayList. Hence, it is more general than a strict copy constructor, which would have 
ArrayList as its formal parameter. However, these variants are closely related.
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Other Strategies 

Copying objects is only one of many strategies for exposing information internal to 
an object while maintaining encapsulation. The Java class library provides another 
option through the use of unmodifiable view collections. An unmodifiable view is 
an unmodifiable wrapper for an underlying collection of objects. For example, the 
library method Collection.unmodifiableList(List) returns an unmodifiable 
wrapper around a list. As an alternative to copying a list, we could do: 
public List<Card> cards() { 

return Collections.unmodifiableList(aCards); 
} 

Other strategies will be covered later in the book. These include iterators (see 
Section 3.5) and streams (see Section 9.6). 

Code Exploration: JetUML · Diagram 
Using unmodifiable collections in practice. 
A Diagram object holds a collection of root nodes and a collection 
of edges. Client code can access these collections through the methods 
rootNodes() and edges(). These two methods return the correspond-
ing collection wrapped in an unmodifiable view using the library method 
Collections.unmodifiableList. 

2.8 Input Validation 

One of the benefits of encapsulation is to make it difficult or impossible for client 
code to corrupt the value of a variable. Following the principles and guidelines pre-
sented in this chapter helps us achieve this goal. Let us consider the following im-
plementation of class Card. 
public class Card { 
private Rank aRank; 
private Suit aSuit; 

public Card(Rank pRank, Suit pSuit) { 
aRank = pRank; 
aSuit = pSuit; 

} 

public Rank rank() { 
return aRank; } 

public Suit suit() { 
return aSuit; } 

}
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The encapsulation provided by this class is very good, but there remains a crack in 
the shell it provides: it is possible to create a new card with a null reference: 

Card card = new Card(null, Suit.CLUBS); 

For most use cases where a representation of a playing card is required, this would be 
incorrect. At least, I am not aware of any card game that involves a “null of Clubs”. 
Section 4.4 provides an extended discussion of the issue of null references, but for 
now we focus on the general problem of avoiding the creation of an invalid instance 
of class Card. For this purpose, one strategy is to modify the code that provides 
our functionality of interest so that it checks that the input is valid, and reports an 
error otherwise. In Java we typically use exception handling for this purpose (see 
Section A.8 in the appendix): 

/** 
* ... 

* @throws IllegalArgumentException if pRank or pSuit is null 

*/ 
public Card(Rank pRank, Suit pSuit) { 

if (pRank == null || pSuit == null) { 
throw new IllegalArgumentException(); 

} 
aRank = pRank; 
aSuit = pSuit; 

} 

With this code, any attempt to create a Card instance with a null reference for 
either of the two fields will result in an exception being thrown. When an exception 
is thrown, the execution of the constructor does not complete normally, and thus 
does not return the newly created object. For this reason, it is now impossible to 
obtain an invalid Card object by calling the class’s constructor. 

An important consequence of this input validation is that now the null check be-
comes an integral part of the implementation of the constructor. Like any other kind 
of functionality, users of the code should be aware of how a method or constructor 
behaves in response to its input. For this reason, it is necessary to document this 
behavior carefully. In the example above, the information about the exception being 
raised is provided using Javadoc’s @throws tag. 

It is important to remember that, in object-oriented programming, the object that 
is the target of a method call is also an input to the method. As such, this input may 
need to be validated as well. Let us consider a slightly more complete version of 
the Deck class where we have added an implementation of a draw() method, along 
with a method to check whether the deck is empty:
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public class Deck { 
private List<Card> aCards = new ArrayList<>(); 

public boolean isEmpty() { 
return aCards.isEmpty(); 

} 

public Card draw() { 
return aCards.removeLast(); 

} 
} 

Calling method draw() on an instance of Deck that contains no card will re-
sult in an exception being thrown by method removeLast, which will propagate 
out of method draw(), causing it to terminate abnormally. This situation, how-
ever, is very different from the case above. In our Card constructor, we explic-
itly designed our code to detect a null reference being passed as argument, and to 
throw an exception in response. The code comment reflects this design decision. In 
the case of draw(), the exception is raised because we misused a library method 
in our implementation by passing it an invalid input. The resulting exception is 
NoSuchElementException. One sloppy way to deal with the situation is to simply 
document the exception as follows: 

/** 
* ... 

* @throws NoSuchElementException if isEmpty() 

*/ 
public Card draw() { 

return aCards.removeLast(); 
} 

This approach, however, has two major drawbacks: it abuses the exception 
handling mechanism, and it can violate the principle of information hiding. A 
good design principle for exception handling is that exceptions should only be 
used for unpredictable situations. However, this is not our situation, because we 
can always determine with complete certainty whether the list will be empty 
by calling isEmpty().14 As for information hiding, the reason why propagating 
NoSuchElementException violates the principle is that propagated exceptions that 
reflect design decisions of internal structures may be puzzling to interpret in the 
context of client code. In our case, it is ambiguous what “element” is referred 
to by NoSuchElement.... Overlooking the documentation, one may erroneously 
think that the deck was not empty but somehow an error occurred when retrieving 
the card at the top. Although the implications are not dramatic, the encapsulation 
of class Deck can be improved by avoiding this information leak. A solution that 
avoids both problems is thus to implement an explicit check, similarly to how we 
have done with the Card constructor. In this case, because the illegal argument is 
the implicit argument (the object that is the target of the call), it is clearer to use 

14 This discussion assumes a single-threaded execution context. Concurrent programming is out-
side the scope of this book.
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IllegalStateException. Chapter 4 discusses the concept of object state in more 
detail. 

/** 
* ... 

* @throws IllegalStateException if the deck is empty 

*/ 
public Card draw() { 

if (isEmpty()) { 
throw new IllegalStateException(); 

} 
return aCards.removeLast(); 

} 

Input validation is one option for ensuring that we only construct valid objects 
and use them in valid ways. As usual, this design decision has both benefits and 
drawbacks. The main benefit, as we have seen, is that the class is robust: client code 
can no longer corrupt the internal values in an object. The consequence, however, 
is that we have shifted the responsibility of the client code from input validation to 
error handling. Presumably, if the client code is written so that it is possible to raise 
an exception, it should also catch this exception: 

try { 
card = deck.draw(); 

} catch (IllegalStateException exception) { 
// Recover 

} 

Another important consequence of input validation is that now we have addi-
tional input validation code to test, document, and maintain within our classes. In 
some cases, this extra burden may not be justified. For example, if we only create 
new cards in one location in the code, where it is clear that no null values are used, 
then the error-handling machinery for protecting against the possibility of null in-
puts would be excessive. In the next section, I describe a systematic way to think 
about input validity. 

Code Exploration: JetUML · Version 
Input validation when it is really needed. 
The Version record represents a specific JetUML release number, for ex-
ample, 2.1. The method parse(String) of this class shows a good exam-
ple of a case where input validation is typically necessary. Because the input 
value is read from a file, we do not know what to expect. For example, a 
buggy program may have written the file with an invalid version number. The 
implementation of parse thus ensures that the input is valid, and throws an 
IllegalArgumentException if it is not the case, this time supplying an error 
message to the constructor of the exception.
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2.9 Design by Contract 

In the previous section, I pointed out the need for input validation to ensure that 
client code does not misuse an object. However, input validation may not be nec-
essary if the client code is written in a way that precludes erroneous values. For 
example, the following code creates all the cards in the Clubs suit:15 

List<Card> clubs = new ArrayList<>(); 
for (Rank rank : Rank.values()) { 
clubs.add(new Card(rank, Suit.CLUBS)); 

} 

With code like this, no null reference can ever be provided as argument to the 
Card constructor, and we could consider omitting input validation. Unfortunately, 
the fact that the responsibility for ensuring that valid values are used in a program 
can rest either on the implementation of a class or on its client code creates a source 
of ambiguity. Let us again consider the interface of the Card constructor: 

public Card(Rank pRank, Suit pSuit) 

Without additional information, the following interpretations are possible about 
the behavior of this constructor: 

• It validates the input and throws an exception if it is null, but this fact is not 
documented; 

• It validates the input, but does something else if it is null (for example, use a 
default value); 

• It does not validate the input, expects the client code to only pass valid values, 
and breaks in some undefined way if it receives invalid arguments; 

• It does not validate the input, and client code can create cards with null values as 
long as it does not use a card for which either the rank or suit is null. 

Ambiguity of this nature can very easily destroy the quality of a design, render 
code incomprehensible, and upset developers using it. Observing that the problem 
comes from the ambiguity about what is or should be a legal value for the arguments 
of the Card constructor, one solution is to define method and constructor signatures 
so that the ambiguity is minimized or eliminated. 

The idea of design by contract is to follow a principled approach to the specifica-
tion of interfaces. Although, in practice, method signatures already specify much of 
what is needed in an interface, they also leave room for ambiguity, as was shown by 
the example above. Diligent programmers can help eliminate ambiguities by stating 
the precise range of allowed values in a method’s documentation. This is certainly 
better than nothing. However, design by contract goes further and provides a formal 
framework for reasoning about complete interface information. There is a lot to say 
about design by contract, so to keep things tractable I only provide an overview of 
a simplified version of the approach. 

15 Method values() is a static method available for all enumerated types. It returns an array that 
contains all the enumerated values for the type in declaration order.
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The main idea of design by contract is for method signatures (and related docu-
mentation) to provide a sort of contract between the client (the caller method) and 
the server (the method being called). This contract takes the form of a set of precon-
ditions and a set of postconditions. A precondition is a predicate that must be true 
when a method starts executing. The predicate typically involves the value of the 
method’s arguments, including the state of the target object upon which the method 
is called. Similarly, postconditions are predicates that must be true when the ex-
ecution of the method is completed.16 Given preconditions and postconditions, the 
contract is basically that the method can only be expected to conform to the postcon-
ditions if the caller conforms to the preconditions. If a client calls a method without 
respecting the preconditions, the behavior of the method is undefined. In practice, 
design by contract is a great way to force us to think about all possible ways to use 
a method. 

In the sample applications (see Appendix C) I follow a lightweight version of 
design by contract where preconditions are specified using Java statements in the 
comments using the Javadoc @pre tag and postconditions are specified using the tag 
@post. 

/** 
* @pre pRank != null && pSuit != null 

*/ 
public Card(Rank pRank, Suit pSuit) { 

// ... 
} 

It is possible to make pre- and postconditions (and any other predicates) checkable 
in Java using the assert statement: 

public Card(Rank pRank, Suit pSuit) { 
assert pRank != null && pSuit != null; 
aRank = pRank; 
aSuit = pSuit; 

} 

The assert statement evaluates its predicate expression and raises an Asser-
tionError if the result is false.17 

Correctly implemented, design by contract helps prevent the tedious idiom of de-
fensive programming where corner cases (such as null references) are checked for 
everywhere in the code. Additionally, the technique supports clear blame assign-
ment while debugging: If a precondition check fails, the client (caller method) is 
to blame. If a postcondition check fails, the method being called is to blame. More 
generally, assert statements are a simple yet powerful tool to increase code quality 
and they can be used anywhere, not just for pre- and postconditions. Whenever an 

16 The complete approach also involves the concept of invariants. In theory, invariants are pred-
icates that are expected to remain true at all times. In the practice of design by contract, it is 
sufficient for invariants to be true at method entry and exit points. 
17 Assertion checking is disabled by default in Java, so to use this properly it is necessary to add
-ea (enable assertions) as a VM parameter when running Java.
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assertion check fails, we know exactly where the problem is, and we can thus save 
on debugging time. 

A final note about design by contract is that the addition of preconditions to a 
method’s interface actually relieves us of the requirement to handle the condition. 
Hence, the code below is not properly designed because it both states that null ref-
erences are not a valid input and handles them in a consistent way (by raising an 
exception). If a method checks for a certain type of input (like null references) and 
produces a well-defined behavior as the result, then this is part of the method’s in-
terface specification. When designing method interfaces, it is important to decide 
whether the method will be in charge of rejecting illegal values, or whether these 
will be specified as invalid. These are two different design choices. In the same vein, 
it must be emphasized that the assert statement is not a compact way to implement 
input validation. AssertionErrors are not meant to represent the presence of in-
valid values in a running program. Rather, they point to a design or implementation 
flaw in the code. 

/** 
* @pre pRank != null && pSuit != null 

*/ 
public Card(Rank pRank, Suit pSuit) { 

if (pRank == null || pSuit == null) { 
throw new IllegalArgumentException(); 

} 
// ... 

} 

Code Exploration: JetUML · Rectangle 
Design by contract in practice. 
The methods of record Rectangle provide examples of different types of 
preconditions. The methods that take a reference type as argument (for ex-
ample, contains(Point) and contains(Rectangle)) require that this ar-
gument be non-null. Other design decisions were possible. For example, it 
would have been possible to accept null as an argument to contains, and 
return false when this argument is provided. A downside of this alternative is 
that it makes the interface ambiguous: if false is returned, is it because the 
point was not contained in the rectangle, or because the point was not actually 
a point, but null? Section 4.4 provides additional reasons why null values are 
best avoided.
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Code Exploration: Solitaire · Deck 
Preconditions on the state of the target object. 
The interface to method draw illustrates how preconditions can be a function 
of the state of the object. The interface of class Deck requires that the deck 
not be empty before draw is called. Here, this precondition can be expressed 
in terms of another method, isEmpty() (by negating the return value). 

Insights 

This chapter focused on how to follow the principles of encapsulation and informa-
tion hiding when defining classes. 

• Use classes to define how domain concepts are represented in code, as opposed to 
encoding instances of these concepts as values of primitive types (an antipattern 
called PRIMITIVE OBSESSION†); 

• Use enumerated types to represent a value in a collection of a small number of 
elements that can be enumerated; 

• Hide the internal implementation of an abstraction behind an interface that tightly 
controls how an abstraction can be used. Declare fields of a class private, unless 
you have a strong reason not to. Similarly, declare any method private if it 
should not be explicitly part of the type’s interface; 

• Ensure that the design of your classes prevents any code from modifying the data 
stored in an object of the class without using a method of the class. In particular, 
be careful to avoid leaking references to private fields of the class that refer to 
mutable objects; 

• To provide information about the internal data in an object without violating 
encapsulation, strategies include extending the interface of the class, returning 
copies of internal objects, or using unmodifiable views; 

• Object diagrams can help explain or clarify the structure of complex object 
graphs, or how references are shared; 

• Make classes immutable if possible. In Java, it is only possible to ensure that a 
class is immutable through careful design and inspection; 

• Input validation can be used to ensure that the objects of a class are created 
and used properly. However, this extra code comes at a cost as it needs to be 
documented, tested, and maintained. 

• Use design by contract to avoid ambiguity in method signatures, and thereby help 
prevent the possibility that client code will misuse an instance of a class.
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Further Reading 

Chapter 6 of the book Software Architecture: A Comprehensive Framework and 
Guide for Practitioners by Vogel et al. [17] provides a well-organized overview of 
the different principles of software design, and how they are related. For a more his-
torical perspective, the seminal paper on the principle of information hiding is Par-
nas’s 1972 On the Criteria to be Used in Decomposing Systems into Modules [12]. 
The article contrasts two designs for a text-processing system, and argues for the su-
periority of the design that realizes information hiding over a sequential processing 
decomposition. 

The section titled Enum Types in the Java Tutorial [11] provides additional in-
sights on how enumerated types work. In Item 50 of the book Effective Java [2], 
Bloch discusses the creation of defensive copies of internal objects encapsulated by 
a class. 

The article Applying Design by Contract, by its inventor Bertrand Meyer, pro-
vides an accessible overview of the technique [9].



Chapter 3 
Types and Interfaces 

Concepts and Principles: Class diagram, coupling, extensibility, function 
object, interface, Interface Segregation Principle, interface type, iterator, 
polymorphism, reusability, separation of concerns, specification, subtyp-
ing; 
Patterns and Antipatterns: ITERATOR, STRATEGY, SWITCH STATEMENT†. 

In the previous chapter we saw how to define well-encapsulated classes, but conve-
niently left out the question of how objects of these classes would interact. We now 
start addressing this question. Interactions between objects are mediated through 
interfaces. The term interface is overloaded in programming: it can have different 
meanings depending on the context. 

Design Context 

The examples in this chapter concern the design of a class library to allow client 
code to instantiate and use a deck and other collections of card objects to support 
the development of card games. 

3.1 Decoupling Behavior from Implementation 

An interface to a class consists of the methods of that class that are accessible (or 
visible) to another class. What methods are accessible depends on programming 
language rules that take into account access modifiers and scopes (see Section 2.3). 
For now, we define the interface to a class as the set of its public methods (I will 
extend this definition in Chapter 7). Let us consider the following code:
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public class Client { 
private Deck aDeck = new Deck(); 

} 

public class Deck { 
public void shuffle() { ... } 
public Card draw() { ... } 
public boolean isEmpty() { ... } 

} 

The interface of class Deck consists of three methods. The code in other classes 
can interact with objects of class Deck by calling these and only these methods. Here 
we would say that the interface of class Deck is fused, or coupled, with the class 
definition. In other words, the interface of class Deck is just a consequence of how 
we defined class Deck: there is no way to get the three services that correspond to 
the three methods of the class, without interacting with an instance of class Deck. In 
our example, to shuffle the deck, client code will need to invoke method shuffle() 
of a field or local variable of type Deck: there is no other option. 

There can be, however, situations in which we may want to decouple the interface 
of a class from its implementation. These are situations in which we want to design 
the system so that one part of the code can depend on the availability of a service, 
without being tied to the exact details of how this service is implemented. Given 
that we are designing a library that can be used to build different card games, we 
note that many card games require the user to draw cards, but not necessarily from 
a standard deck of 52 cards. For example, some games might require drawing cards 
from an aggregation of multiple decks of cards, from a set of cards of only one suit, 
from ordered sequences of cards, etc. Let us consider the following code that draws 
cards from a deck up to a required number. 

public static List<Card> drawCards(Deck pDeck, int pNumber) { 
List<Card> result = new ArrayList<>(); 
for (int i = 0; i < pNumber && !pDeck.isEmpty(); i++) { 
result.add(pDeck.draw()); 

} 
return result; 

} 

This method can only be used with sequences of cards that are an instance of class 
Deck. This is a pity, because exactly the same code could be useful for any object 
that has the two required methods draw() and isEmpty(). Here it would be useful 
to specify an abstraction of an interface without tying it to a specific class. This is 
where Java interface types come in. In Java, interface types provide a specification of 
the methods that it should be possible to invoke on an object. With interface types, 
we can define an abstraction CardSource as any object that supports a draw() 
method and an isEmpty() method:
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public interface CardSource { 
/** 
* Returns a card from the source. 

* 
* @return The next available card. 

* @pre !isEmpty() 

*/ 
Card draw(); 

/** 
* @return true if there is no card in the source. 

*/ 
boolean isEmpty(); 

} 

This interface declaration1 lists two methods, and includes comments that specify 
the behavior of each method. The specification of draw() includes the precondi-
tion that the method can only be invoked if isEmpty() is false. This precondition 
is provided to support the use of design by contract (see Section 2.9), and takes into 
account the existing state of the object. Because interface method declarations are 
a specification and not an implementation, details of what the method is expected 
to perform are very important. With a method implementation, it could always be 
possible to inspect the code (if we have access to it) and infer the specification. 
This is not an ideal situation, but it is better than nothing. With interface methods, 
though, reverse-engineering what the method does is not possible. In Java terminol-
ogy, methods that do not have an implementation are called abstract methods.2 To 
tie a class with an interface, we use the implements keyword. 

public class Deck implements CardSource { 
... 

} 

The implements keyword has two related effects: 

• It provides a guarantee that instances of the class type will have concrete imple-
mentations for all the methods in the interface type. This guarantee is enforced 
by the compiler. 

• It creates a subtype relationship between the implementing class and the interface 
type: here we can now say that a Deck is a type of CardSource. 

The subtype relation between a concrete class and an interface is what en-
ables the use of polymorphism, namely, the ability to have different shapes. Here, 
CardSource is an abstraction that can present itself in different concrete shapes. 
Each concrete shape corresponds to a different implementation of the CardSource 
interface. 

1 There is an important distinction between the general concept of an interface, and the specific 
interface construct in Java. When the difference is clear from the context, I simply use the term 
interface. When necessary, I use the expression interface type to refer to the Java construct. 
2 Prior to Java 8, all interface methods were automatically abstract. With Java 8, this is no longer 
true, because interfaces can include default and static methods, which have an implementation.
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For polymorphism to be useful, it is important to remember that according to the 
rules of the Java type system, it is possible to assign a value to a variable if the value 
is of the same type or a subtype of the type of the variable. Because the interface 
implementation relation defines a subtype relation, references to objects of concrete 
classes declared to implement an interface can be assigned to variables declared to 
be of the interface type. For example, because class Deck declares to implement 
interface CardSource, we can assign a reference to an object of class Deck to a 
variable of type CardSource, as such: 

CardSource source = new Deck(); 

Taking this idea further, this means we can make our implementation of the draw-
Cards method much more reusable: 

public static List<Card> drawCards(CardSource pSource, int pNum){ 
List<Card> result = new ArrayList<>(); 
for (int i = 0; i < pNum && !pSource.isEmpty(); i++) { 

result.add(pSource.draw()); 
} 
return result; 

} 

The method is now applicable to objects of any class that implements the Card-
Source interface. 

Another illustration of the use of polymorphism is the use of concrete vs. abstract 
types in the Java Collections Framework. 

List<String> list = new ArrayList<>(); 

List<T> is an interface that specifies the usual services (add, remove, etc.), and 
ArrayList is an implementation of this service that uses an array.3 But we can 
replace ArrayList with LinkedList and the code will still compile. Even though 
the details of the list implementation differ between ArrayList and LinkedList, 
they both provide the methods required by the List interface, so it is permissible to 
swap them. Polymorphism provides two useful benefits in software design: 

• Loose coupling, because the code using a set of methods is not tied to a specific 
implementation of these methods. 

• Extensibility, because we can easily add new implementations of an interface 
(new “shapes” in the polymorphic relation). 

3.2 Specifying Behavior with Interface Types 

Typical design questions related to interfaces include: do I need a separate inter-
face? and what should this interface specify? There are no universal answers to 

3 As indicated by the type parameter <T>, interface List<T> is a generic type (see Section A.6 
in the appendix). To simplify the presentation, I omit the type parameter when referring to types 
within the text when it is clear from the context that a type is a generic type.
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such questions, because in each case the task is to determine if interfaces can help 
us solve a design problem or realize a particular feature. One good illustration of 
both the purpose and usefulness of interfaces in Java is the Comparable<T> inter-
face. 

One obvious task to be implemented in the Deck class is to shuffle a deck of 
cards. This can be realized trivially with the help of a library method. 

public class Deck { 
private List<Card> aCards = new ArrayList<>(); 

public void shuffle() { 
Collections.shuffle(aCards); 

} 
} 

As its name implies, the shuffle library method randomly reorders the objects in 
the argument collection. This is an example of code reuse because it is possible 
to reuse the library method to reorder any kind of collection. Here reuse is easy 
because to shuffle a collection, we do not need to know anything about the items 
being shuffled. 

But what if we want to reuse code to sort the cards in the deck? Sorting, like 
many classic computing problems, is supported by many existing quality imple-
mentations. In most software development situations, it would not be worthwhile to 
hand-craft one’s own sorting algorithm. The Java Collections class conveniently 
supplies us with a number of sorting functions. However, if we opportunistically try 
the following without further consideration: 

List<Card> cards = ...; 
Collections.sort(cards); 

we are rewarded with a possibly cryptic compilation error.4 This should not be sur-
prising, though, because how exactly is a library method supposed to know how we 
want to sort our cards? Not only is it impossible for the designers of library methods 
to anticipate all the user-defined types that can be written, but even for a given type 
like Card, different orderings are possible (e.g., by rank, then suit, or vice-versa). 

The Comparable<T> interface helps solve this problem by defining a piece of 
behavior related specifically to the comparison of objects, in the form of a single 
compareTo(T) abstract method. The specification for this method is that it should 
return 0 if the implicit argument is equal to the explicit argument, a negative integer 
if it should come before, and a positive integer if it should come after. Given the 
existence of this interface, the internal implementation of Collections.sort can 
now rely on it to compare the objects it should sort. Conceptually, the internal code 
of the sort implementation looks a bit like this: 

if (object1.compareTo(object2) > 0) ... 

So, from the point of view of the implementation of sort, it really does not matter 
what the object is, as long as it is comparable with another object. This is a great 

4 The method sort(List<T>) in the type Collections is not applicable for the arguments 
(List<Card>). Results can vary on different compilers.
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example of how interfaces and polymorphism support loose coupling: the code of 
sort depends on the minimum possible piece of functionality required from its ar-
gument objects. This is a good general insight on how to define interface types. Ide-
ally, they should capture the smallest cohesive slice of behavior that is expected to 
be used by client code. For this reason, many interface types in Java are named with 
an adjective that ends in -able, a suffix that means fit to be.... Besides Comparable, 
examples include Iterable, Serializable and Cloneable. 

To make it possible for us to sort a list of cards, we therefore have to provide this 
comparable behavior and declare it with the implements keyword: 

public class Card implements Comparable<Card> { 
public int compareTo(Card pCard) { 

return aRank.ordinal() - pCard.aRank.ordinal(); 
} 

} 

This minimal implementation sorts cards by ascending rank, but leaves the order of 
suits undefined, which leads to unpredictability. A more useful implementation of 
the Comparable interface would provide a well-defined total ordering. 

Because Java interfaces are types, the type-checking mechanism that is part of 
the compilation process makes it possible to detect that a List<Card> object cannot 
be passed to Collections.sort unless the Card class declares to implement the 
Comparable<Card> interface. How this happens is outside the scope of this book 
because it requires a good understanding of the typing rules for Java generic types 
(see Section A.6 in the appendix). 

Many other library types that have a so-called natural ordering implement 
the Comparable interface. This includes String (with lexicographic order) but 
also many other pervasive types. In particular, Java enumerated types implement 
Comparable by comparing instances of an enumerated type according to their or-
dinal value. With this knowledge in hand, we observe that our implementation of 
Card.compareTo, above, actually re-implements reusable behavior provided by the 
enumerated types. We thus have an opportunity to simplify our code: 

public class Card implements Comparable<Card> { 
public int compareTo(Card pCard) { 

return aRank.compareTo(pCard.aRank); 
} 

} 

Using small interfaces encourages the respect of a software design principle 
called separation of concerns. The idea of separation of concerns is that one ab-
straction should map to a single concern (or area of interest) for developers. In 
designs that do a poor job at separation of concerns, we find concerns to be tan-
gled within an abstraction (a method for example), and/or scattered across multiple 
different abstractions. Here the use of the Comparable interface is a good example 
of effective separation of concerns: the code to compare cards is entirely contained 
within a clearly defined and identified abstraction (the compareTo method), which 
does only one thing.
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3.3 Class Diagrams 

Designs where the important concerns revolve around the definition of types and 
relations between types can become overwhelming to describe in code, and are more 
easily captured through a diagram. Class diagrams represent a static, or compile-
time, view of a software system. They are useful to represent how types are defined 
and related, but are a poor vehicle for capturing any kind of run-time property of the 
code. Class diagrams are the type of UML diagrams that are the closest to the code. 
However, it is important to remember that the point of UML diagrams is not to be 
an exact translation of the code. As models, they are useful to capture the essence 
of one or more design decisions without having to include all the details. 

Class diagram have an extensive associated notation. In a class diagram, there 
is typically more going on than, say, in an object diagram. I only use a subset of 
the notation in this book. The Further Reading section includes references for UML 
class diagrams. Figure 3.1 shows the main concepts used in this book. In the fig-
ure, all quotes are taken from The Unified Modeling Language Reference Manual, 
2nd edition [15]. The interpretation of the concepts of aggregation, association, and 
dependency will become clearer as we progress through the chapters. For now, it 
is sufficient to know that these concepts represent that two classes are somehow re-
lated. The concept of navigability, represented with an arrow head, models how code 
supports going from objects of one type to objects of another type. Navigability can 
be unidirectional (as shown), bidirectional, or unspecified. 

Element

ConcreteClass

-field: FieldType

+staticMethod(): ReturnType
+ method3(): void

AssociatedClass

«interface»
MoreGeneralInterface

method1(): ReturnType

«interface»
MoreSpecificInterface

method2(): void

OtherClass
aElement *

Interface: “A coherent set of public 
features and obligations.”

Operation

Generalization: “A taxonomic 
relationship between a more general 
element and a more specific element.”

Realization: “The relationship between 
a specification and its implementation.”

Aggregation

Association: “The semantic 
relationship between two or more 
classifiers that involves connections 
among their instances.”

Class: “The descriptor 
for a set of objects that 
share the same 
attributes, operations.”

Dependency: “A relationship 
between two elements in which a 
change to one element may affect 
or supply information needed by 
the other element.”

Attribute

Fig. 3.1 Selected notation for class diagrams
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would not be wrong to include them, but it might clutter the diagram.

setters for the two fields, it would be necessary to include this using a note.

Collections depends on Comparable in general.
• To indicate that a class member (field or method) is static, we underline it.
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Figure 3.2 shows an example of a class diagram that models some of the key 
relations between the design elements for a card game that we have seen so far. We 
can observe the following: 

«enum»
Suit

«enum»
Rank

Card

Deck

shuffle():void
draw():Card

«interface»
Comparable<T>

compareTo(T):int

Collections

<T> sort(List<T>):void

aRank

1

aSuit

1

0..52

Fig. 3.2 Sample class diagram showing key decisions in the design of a Deck class 

• The box that represents class Card does not have attributes for aRank and Suit 
because these are represented as aggregations to Rank and Suit enumerated 
types, respectively. It is a modeling error to have both an attribute and an ag-

• The methods of class Card are not represented. Because they are just the con-
structor and accessors, I judged this to not be very insightful information. It 

• In the UML, there is no good way to indicate that a class does not have a certain 
member (field or method). To convey the information that Card does not have 

• Representing generic types is a bit problematic, because in some cases it makes 
more sense to represent the type parameter (Comparable<T>) and in some other 
cases it makes more sense to represent the type argument (Comparable<Card>). 
In this diagram I went with the type parameter because I wanted to show how 

• The model includes cardinalities to indicate, for example, that a deck instance 
will aggregate between zero and 52 instances of Card. Typical values for an 
association’s cardinality include a specific number (for example, 1), the wildcard 
* (which means zero or more), and ranges such as M..N (which means between 
M and N, inclusively).
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3.4 Function Objects 

In practice, an interface type often defines only a subset of the operations of the 
classes that implement it. This scenario is exemplified by Comparable: the com-
plete implementation of Card comprises methods, such as suit() and rank(), that 
add to the slice of behavior required by the Comparable interface. There are other 
situations, however, where it is convenient to define classes that specialize in imple-
menting only the behavior required by a small interface with only one method. 

Let us continue with the problem of comparing cards. Implementing the Compara-
ble interface allows instances of Card to compare themselves with other instances 
of Card using one strategy, for example, by comparing the card’s rank, and using 
suits to break ties. What if we are designing a game where we need to sort cards 
according to different strategies, and occasionally switch between them? One could 
tweak the code of compareTo, for instance by relying on a global variable that stores 
the required strategy and switching the comparison strategy based on this flag. How-
ever, harebrained schemes of this nature have many drawbacks. In our case, using 
such a flag variable would degrade the separation of concerns between representing 
a card and knowledge of how the card should be sorted, and generally make the code 
harder to understand. 

In fact, the use of this kind of switching is considered a design antipattern called 
SWITCH STATEMENT†.5 A more promising solution is to move the comparison code to 
a separate object. This solution is supported by the Comparator<T> interface. The 
abstract method in this interface is compare (as opposed to compareTo).6 

int compare(T pObject1, T pObject2) 

As for Comparable, Comparator is a generic type, so in the above declaration, 
T refers to a type parameter that must be replaced by a concrete type (for ex-
ample, type Card). The most notable difference between method compare of 
interface Comparator and method compareTo of interface Comparable is that 
Comparator#compare takes two arguments instead of one. Indeed, its specification 
is very similar to that of Comparable#compareTo, except that instead of compar-
ing the implicit parameter (the this object) with an explicit parameter, it compares 
two explicit parameters with each other. Not surprisingly, library methods were also 
designed to work with this interface. For example: Collections.sort: 

Collections.sort(List<T> list, Comparator<? super T> c) 

This method can sort a list of objects that do not necessarily implement the 
Comparable interface, by taking as argument an object guaranteed to be able to 
compare two instances of the items in the list. One can now define a rank first com-
parator: 

5 There is evidence of the antipattern whether or not an actual switch statement is used, because 
the latter can be emulated through if–else statements. 
6 As of Java 8, this interface defines an intimidating list of methods. These are not important here. 
In Chapter 9 I revisit this interface to explain how we can leverage some of the additional methods.
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public class RankFirstComparator implements Comparator<Card> { 
public int compare(Card pCard1, Card pCard2) { 
/* Comparison code */ 

} 
} 

and another suit first comparator: 

public class SuitFirstComparator implements Comparator<Card> { 
public int compare(Card pCard1, Card pCard2) { 
/* Comparison code */ 

} 
} 

and sort with the desired comparator:7 

Collections.sort(aCards, new RankFirstComparator()); 

In this scenario, an instance of Comparator is an object that only provides the 
implementation for a single method. Such objects are referred to as function objects. 
Their interface typically maps one-to-one to that of an interface type. 

The use of comparators (and similar function objects) introduces many inter-
esting design questions and trade-offs. First, if comparator classes are defined as 
standalone top-level Java classes, the code of their compare method will not have 
access to the private members of the objects they compare. In some cases the in-
formation available from getter methods is sufficient to implement the comparison, 
but in other cases implementing the compare method will require access to private 
members. 

In such cases, one option to give comparator classes access to private members 
of the classes they compare is to declare the comparator classes as nested classes 
(see Section 4.9) of the class that defines the objects being compared: 

public class Card { 
static class CompareBySuitFirst implements Comparator<Card> { 

public int compare(Card pCard1, Card pCard2) { 
/* Comparison code */ 

} 
} 

} 

To client code, the impact of this change in design is minimal: the only difference is 
the additional qualification of the name of the comparator class: 

Collections.sort(aCards, new Card.CompareBySuitFirst()); 

Another option is to define comparator classes as anonymous classes. In cases 
where the comparator is only referred to once, this makes a lot of sense: 

7 As of Java 8, method sort is also available on the Collection (no ‘s’) interface. However, to 
preserve the symmetry with the use of the Comparable<T> interface, I retain this version.
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public class Deck { 
public void sort() { 

Collections.sort(aCards, new Comparator<Card>() { 
public int compare(Card pCard1, Card pCard2) { 
/* Comparison code */ 

} 
}); 

} 
} 

A third option is to use a lambda expression. Lambda expressions are a form of 
anonymous functions. These and related mechanisms form the topic of Chapter 9. 
However, since it is possible to implement a very close equivalent to the code above 
using a lambda expression, I provide it here. The basic idea is based on the obser-
vation that to supply a comparator, not only do we not need to name a class because 
it is only an implementation of the Comparator interface, we also do not need to 
name the method, because it is only an implementation of compare. How this code 
actually works is explained in Chapter 9. 

public class Deck { 
public void sort() { 

Collections.sort(aCards, (card1, card2) -> 
card1.rank().compareTo(card2.rank())); 

} 
} 

In the two examples above, we have brought back the problem of encapsulation, 
because the code in the anonymous class that implements the comparison is defined 
outside of the Card class. We can solve this with the help of a static factory method. 
The term factory method refers to methods whose primary role is to create and return 
an object. 

public class Card { 
public static Comparator<Card> createByRankComparator() { 

return new Comparator<Card>() { 
public int compare(Card pCard1, Card pCard2) { 
/* Comparison code */ 

} 
}; 

} 
} 

A final question is whether a comparator should store data. For example, instead 
of having different comparators for sorting cards by rank and suit, we could define a 
UniversalComparator that has a field of an enumerated type that stores the desired 
type of comparison. Although this solution is workable, it can lead to code that is 
harder to understand, for reasons explained in Section 3.7 and further discussed in 
Chapter 4.
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3.5 Iterators 

A common requirement when designing a data structure is to gain access to a collec-
tion of encapsulated objects without violating the principle of information hiding. 
For example, if we are designing a type to represent a deck of cards, we may need 
to give client code access to the cards in the deck. This problem was originally in-
troduced in Section 2.7, where the solution proposed was to return copies of the 
internal data. For example, to return a copy of the list of cards encapsulated within 
a Deck instance. One issue with this solution is that it can subtly leak information 
about the way a structure is stored internally (or at least, give the impression that 
it leaks this information). For example, if we choose to return a deck’s cards as a 
List: 

public List<Card> cards() { ... } 

code using the Deck may start relying on the operations defined on a list, or make 
the assumption that cards are internally stored in a list within a Deck. To achieve 
an even higher level of information hiding, it would be better to allow client code 
access to the internal objects of another object, without exposing anything about the 
internal structure of the encapsulating object. This design feature is supported by 
the concept of an iterator. The concept of an iterator is very general, and iterators 
are employed in many programming languages. 

In Java, iterators are easy to use, but understanding how they work requires being 
aware of a careful coordination between at least three types of objects. Iterators also 
provide an example of the use of interfaces types and polymorphism. 

To support iteration we must first have a specification of what it means to iterate. 
As usual, this specification is captured in an interface: in this case the Iterator<T> 
interface. This interface defines two abstract methods: hasNext() and next(). So, 
according to the rules of subtyping, once a piece of code gains access to a reference 
to an object of any subtype of Iterator, the client code can iterate over it, inde-
pendently of what the actual class of the object is. To enable iteration over the cards 
of a Deck, let us simply redefine the cards method to return an iterator instead of a 
list: 

public Iterator<Card> cards() { ... } 

This way, to print all the cards in a deck, we can do: 

Iterator<Card> iterator = deck.cards(); 
while (iterator.hasNext()) { 
System.out.println(iterator.next()); 

} 

Although this design achieves our decoupling goal, we can generalize it to great 
effect. A first important insight is that in most software systems there will be dif-
ferent types of objects that it would be useful to iterate over. Lists are an obvious 
example. In our case we also have a Deck. The issue with the iterator system as 
we have it now, though, is that different classes define a different way to obtain 
an iterator. For class List, it is through the method iterator(). For our Deck
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class, it is through method cards(). Although the behavior in both cases is identi-
cal (return an iterator), the name of the service is different. We can solve this issue 
with another interface. The Iterable<T> interface specifies the smallest slice of 
behavior necessary to make it possible to iterate over an object. To be able to poly-
morphically iterate over an object, the only thing we need from this object is that 
it supplies an iterator. So the only abstract method of the Iterable<T> interface is 
Iterator<T> iterator(). 

We can make our Deck class iterable by implementing the Iterable<Card> 
interface and renaming the cards() method to iterator(): 

public class Deck implements Iterable<Card> { 
public Iterator<Card> iterator() { 

... 
} 

} 

This way, an instance of Deck can be supplied anywhere an Iterable interface 
type is expected. Figure 3.3 shows the main elements of the iterator design so far. 

Fig. 3.3 Class diagram for 
the design of an iterator 

Deck

iterator():Iterator<Card>

«interface»
Iterable<Card>

iterator():Iterator<Card>

«interface»
Iterator<Card>

hasNext():boolean
next():Card

One of the main ways to use Iterable objects in Java is in an enhanced for 
loop, also know as a foreach loop: 

List<String> list = ...; 

for (String string : list) { 
System.out.println(string); 

} 

The above code is just syntactic sugar for: 

List<String> list = ...; 

for (Iterator<String> iter = list.iterator(); iter.hasNext();) { 
String string = iter.next(); 
System.out.println(string); 

} 

To iterate over a deck, we can now do: 

for (Card card : deck) { 
System.out.println(card); 

}
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The way the enhanced for loop works is that, under the covers, it expects the 
rightmost part of the loop head to be an instance of a class that is a subtype of 
Iterable (or an array type, which is a special case). 

The final issue to solve to complete our iterator-based design for Deck is to find 
a way to return an instance of Iterator when the iterator() method is called. 
Although it would be possible to hand-craft our own user-defined class that im-
plements the Iterator<Card> interface, we can observe that the List contained 
within a Deck is also Iterable, and the Iterator it returns does everything that 
we want. 

public class Deck implements Iterable<Card> { 
private List<Card> aCards; 

public Iterator<Card> iterator() { 
return aCards.iterator(); 

} 
} 

Strictly speaking, this idiom can violate the encapsulation of class Deck because 
interface Iterator<T> includes a method remove() that can be optionally imple-
mented (and which is implemented by the iterator returned by ArrayList). Con-
sistent with the book’s goal of focusing on general design concerns with minimum 
coverage of the libraries, I overlook this case. In the context of the book, it can be 
assumed that Iterator#remove() is not used. For production code, how to best 
avoid the encapsulation problem would depend on the context. One option is to 
return the iterator obtained from an unmodifiable view of the list with a call such as: 

return Collections.unmodifiableList(aCards).iterator(). 

Representing the implementation of the Iterator interface in the UML is not 
obvious given our reliance on an instance of an unknown concrete type. Although 
we know that the type returned by List#iterator() is some subtype of the 
Iterator interface, we do not know the name of the class that ultimately imple-
ments this interface. In fact, this may be an anonymous class, in which case, by 
definition, there is no name. So the fact to reckon with at this point is that we do 
not know the type. However, we cannot really write Unknown in a class in a class 
diagram, because this would indicate that the name of the class is known, and it is 
“Unknown”, which is confusing. For now, I will assume that the type is anonymous 
and indicate this fact with the UML stereotype «anonymous», leaving the name 
blank. In the UML, a stereotype is a variation on an element type, with the name of 
the variation placed in French quotes. 

3.6 The ITERATOR Design Pattern 

The previous section introduced the use of iterators as a way to provide access to 
a collection of objects encapsulated within another object without violating the in-
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Deck

iterator():Iterator<Card>

«interface»
Iterable<Card>

iterator():Iterator<Card>

«interface»
Iterator<Card>

hasNext():boolean
next():Card

«anonymous»

Fig. 3.4 The complete iterator design 

formation hiding properties of this object. This solution is a common design pattern 
called, not surprisingly, the ITERATOR. The context for ITERATOR is to 

Provide a way to access the elements of an aggregate object sequentially without exposing 
its underlying representation. [7] 

The solution template for ITERATOR can be best captured by the class diagram in 
Figure 3.5, which is an abstraction of the solution presented in Figure 3.4. 

ConcreteIterator

«interface»
AbstractIterator<T>

hasNext():boolean
next():T

«interface»
AbstractIterable<T>

iterator():AbstractIterator<T>

ConcreteIterable

Fig. 3.5 Solution template for ITERATOR 

An important difference between the solution template in Figure 3.5 and its con-
crete realization in Figure 3.4 is that the solution template does not refer to the 
Java library interfaces Iterable and Iterator. Although they can be supported 
by libraries, design patterns are abstract solution elements that can be realized in 
code independently of specific library implementations. For this reason, the solu-
tion template simply indicates that to apply the ITERATOR pattern in practice, one 
needs a type to fulfill the roles of AbstractIterable and AbstractIterator, 
and similarly with their concrete implementation. This being said, in Java there are 
very few variants of ITERATOR. Because only subtypes of Iterable can be used in 
the enhanced for loop, there is a strong incentive to actually use Iterable as the 
AbstractIterable, which forces the use of Iterator as the AbstractIterator. 
The remainder of the mapping is almost automatic, as the ConcreteIterable is 
whatever one wants to iterate over, e.g., the Deck class.
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How to create the ConcreteIterator is one design decision that yields more 
possibilities, but the most convenient option is often to simply return the iterator 
supplied by the underlying data structure (e.g., ArrayList#iterator()), possibly 
wrapped in an immutable view (see Section 3.5). In some cases, it might be neces-
sary to combine elements from various collections and iterate over them, or iterate 
in an order different from that of the collection holding the elements to iterate over. 
In such cases, the simplest option is often to create a new collection with the desired 
elements in the right order, and to return that collection’s iterator. 

Code Exploration: Solitaire · CardStack 
A basic application of the ITERATOR pattern. 
Class CardStack illustrates the simplest possible application of the ITERATOR 

in Java. The class represents a stack of cards, which I made it possible to it-
erate over from bottom to top. As expected, the class implements interface 
Iterable<Card> and declares a method iterator(). To supply the iterator, 
I return the iterator of an immutable view of the the underlying collection. 
In the class, an Iterable<Card> is also used to define the type of the argu-
ment to one of the constructor: CardStack(Iterable<Card>). This decision 
maximizes the flexibility of the constructor, by allowing it to take as input any 
type of object that can be iterated over for Card objects. 

3.7 The STRATEGY Design Pattern 

One of the major benefits of interfaces and polymorphism is to promote flexible 
designs. One example of a flexible design enabled by interfaces is the use of a 
Comparator instance by the Collections.sort(...) method, as introduced in 
Section 3.4. The use of function objects such as comparators to customize the be-
havior of another part of the code (e.g., the sorting behavior) is recognized as one 
application of a more general idea called the STRATEGY design pattern. The context 
for STRATEGY is to: 

Define a family of algorithms, encapsulate each one, and make them interchangeable. Strat-
egy lets the algorithms vary independently from clients that use it. [7] 

This is a very general definition, especially given that there is no agreed-upon def-
inition for what a family of algorithms is. Fortunately, the solution template for 
STRATEGY provides a clarification for object-oriented code: algorithms in the same 
family implement the same interface. 

The STRATEGY looks exceedingly simple. In fact in many cases it can be indis-
tinguishable from a basic use of polymorphism. I find it useful to think of a part of 
the design as an application of STRATEGY when that part of the design is focused on 
allowing the switch between algorithms. One example, illustrated in Figure 3.7, is
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ConcreteStrategy2ConcreteStrategy1

Client

«interface»
AbstractStrategy

doSomething():void

Fig. 3.6 Solution template for STRATEGY 

the use of different card comparators for sorting a deck of cards. Another example 
is the implementation of different automatic playing strategies, as will be further 
discussed in the Code Exploration section below. 

Deck

ByRankComparator BySuitComparator

«interface»
Comparator<Card>

compare(Card, Card):int

Fig. 3.7 Sample instantiation of a STRATEGY 

Although nominally simple, in practice applying a STRATEGY requires thinking 
about many design questions: 

• Does the AbstractStrategy need one or multiple methods to define the algo-
rithm? Typically the answer is one, but in some cases it may be necessary to have 

• Should the strategy method return anything or have a side-effect on the argu-
ment? 

• Does a strategy need to store data? 
• What should be the type of the return value and/or method parameters, as appli-

cable? Ideally we want to choose these types to minimize coupling between a 
strategy and its clients. 

Figure 3.7 shows an example instantiation of STRATEGY for the context of com-
paring cards. Here the design of the AbstractStrategy is already decided because 
we are reusing the Comparator interface. This strategy is purely functional as it
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does not have any side-effect and returns the result of applying the comparison al-
gorithm. At this point it should become clearer that implementing the Comparator 
interface as a UniversalComparator that holds a value to decide what kind of com-
parison to do, does not respect the spirit of the STRATEGY because the actual strategy 
would be selected by changing the state of an object, as opposed to changing the 
concrete strategy object. 

Code Exploration: Solitaire · PlayingStrategy 
Applying the STRATEGY to implement game-playing strategies. 
In Solitaire, the package auto provides an elaborate example of the STRATEGY 

pattern. Interface PlayingStrategy defines a method getLegalMove that is 
called by a GameModel instance when the player uses the auto-play feature. 
With the auto-play feature, the software makes a decision of how to play the 
next move in the game, as opposed to waiting for the user to play a move. 
Any class that implements PlayingStrategy can provide a decision-making 
behavior for making a move. The package contains two examples of strate-
gies. The NullPlayingStrategy never does anything, and always returns 
a so-called null move. The purpose of this code is explained in Section 4.4. 
The GreedyPlayingStrategy selects the move with the most immediate im-
pact on the game. To implement a different strategy, for example one that 
uses probabilities in the decision-making process, we define a new class that 
implements PlayingStrategy and use an instance of this new class in the 
GameModel. 

3.8 Dependency Injection 

So far, we have seen how to use interface types so that classes that use a service 
can be decoupled from the actual implementation of the service. Continuing with 
our example of the comparator, let us say we are designing a version of our Deck of 
cards that can be sorted in various ways. Applying the STRATEGY pattern described 
in the previous section, our code should look like this: 

public class Deck { 
private List<Card> aCards = new ArrayList<>(); 
private Comparator<Card> aComparator = /* initialize */; 

public void sort() { 
Collections.sort(aCards, aComparator); 

} 
} 

In the code above, various options are possible for initializing the comparator 
(that is, the concrete strategy). One option is to call the constructor of the desired 
comparator when initializing the field:
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private Comparator<Card> aComparator = new ByRankComparator(); 

There are two issues with this approach. First, it does not allow the client code to 
easily switch the comparison strategy. To switch the comparison strategy, it would 
be necessary to modify the source code of the Deck class. Second, this design intro-
duces a dependency between the Deck class and a specific comparator implementa-
tion. Figure 3.8 illustrates the problem. 

ByRankComparator

«interface»
Comparator<Card>

compare(Card, Card): int

Deck
aComparisonStrategy 1

Fig. 3.8 Introducing a dependency between a client class and an implementation class 

One variant of this solution could be to use an anonymous class in the definition 
of the comparator: 

private Comparator<Card> aComparator = new Comparator<Card>() { 
public int compare(Card pCard1, Card pCard2) { 
return pCard1.getRank().compareTo(pCard2.getRank()); 

} 
}; 

However, this solution exhibits the same problem as the previous one: it does 
not allow us to switch the comparison algorithm easily, and the Deck class is still 
coupled to a specific implementation of the comparison. The only difference is that 
now this implementation is anonymous. 

A solution to both the lack of flexibility of the Deck class and its tight coupling 
with the comparison strategy is to decouple the creation of the dependency (here, the 
implementation of the comparator) from the creation of the client of the dependency 
(here, the Deck class). Instead, we pass in, or inject, the dependency into the client 
class. 

public class Deck { 
private Comparator<Card> aComparator; 

public Deck(Comparator<Card> pComparator) { 
aComparator = pComparator; 
shuffle(); 

} 
} 

This technique is called dependency injection. In this way, class Deck only has a 
dependency to the interface type Comparator<Card>, and remains decoupled from
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any specific implementation. The trade-off is that client code of the Deck class must 
now inject this dependency when creating a Deck: 

Deck deck = new Deck(new ByRankComparator()); 

As is the case for design patterns, dependency injection is a general idea and 
there are many different ways to apply it in practice. For example, one could design 
various factory methods to instantiate dependency objects, or inject a dependency 
using an anonymous class, etc. It is also possible to inject the dependency via a set-
ter method instead of the constructor. This alternative, however, is often inferior be-
cause it creates object state management challenges, discussed in Chapter 4. Finally, 
there are also libraries and frameworks available to support advanced dependency 
injection scenarios that require a lot of configuration. In this book, however, I stick 
to simple applications of dependency injection such as the one illustrated above. 

Code Exploration: Solitaire · GameModel 
Injecting a concrete strategy into another object. 
The concrete PlayingStrategy described in the previous Code Exploration 
is injected into the GameModel via its constructor. The application is assem-
bled in method start() of class Solitaire. In this method, we see the cre-
ation of the concrete strategy and its injection into the GameModel: 
GameModel model = new GameModel(new GreedyPlayingStrategy()); 

3.9 The Interface Segregation Principle 

Throughout this chapter we saw the various benefits of defining specialized inter-
faces that specify a small and coherent slice of behavior that clients depend on. 
This way, client code is not coupled with the details of an implementation, and 
only depends on the methods it actually requires. For example, code that pro-
cesses cards can only depend on a CardSource interface with two methods, and 
can therefore be reusable with any class that can provide these methods. Similarly, 
the Collections#sort(...) method works because it can rely on just the fact 
that the items in the collection are Comparable. This idea is actually an instance of 
a general design principle called the Interface Segregation Principle (ISP). Simply 
put, the ISP states that client code should not be forced to depend on interfaces it 
does not need. 

The idea of the ISP is easier to explain by presenting a situation where the princi-
ple is not respected. We can consider again the code in Section 3.1 where drawCards 
takes a Deck as argument:
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public static List<Card> drawCards(Deck pDeck, int pNumber) { 
List<Card> result = new ArrayList<>(); 

for (int i = 0; i < pNumber && !pDeck.isEmpty(); i++) { 
result.add(pDeck.draw()); 

} 
return result; 

} 

In Section 3.1 I argued that this was a suboptimal design because it tied an interface 
with its implementation. Well, let us say we split the two by declaring an IDeck 
interface: 

public interface IDeck { 
void shuffle(); 
Card draw(); 
boolean isEmpty(); 

} 

public class Deck implements IDeck... 

which we rely on in drawCards: 

public static List<Card> drawCards(IDeck pDeck, int pNumber) 

This effectively decouples interface from implementation, and supports the use of 
drawCards with arguments that are not strictly instances of Deck. However, this 
design also forces drawCards to statically depend on a method it does not need, 
namely, shuffle. What if we might want to draw cards from a source that cannot be 
shuffled? For this reason, the CardSource solution initially presented in Section 3.1 
only included methods draw and isEmpty in interface CardSource, and thereby 
respected the ISP. 

To push on this idea of ISP a bit, let us assume that there might be places in the 
code that only shuffle an object. To support this slice of behavior, we would de-
fine an interface Shufflable with a single method shuffle(). Figure 3.9 shows a 
maximally flexible separation of concerns for class Deck, with three different inter-
faces that capture three cohesive slices of behavior that are supported by class Deck, 
and three client code locations (represented by Client1-3) interested in different 
combinations of these services. 

This design has loose coupling, which is great. However, this loose coupling 
has one major disadvantage for cases where a client might be interested in more 
than one slice of behavior. This situation is represented in Figure 3.9 by Client3, 
which needs to both iterate over an Iterable<Card> and draw some cards from 
the source. How can we express this combination, since in Java it is only possi-
ble to specify a single type for a variable? For example, if we pass an instance of 
CardSource to a method of interest and wish to iterate over the cards, we have to 
venture into inelegance:
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«interface»
Iterable<Card>

iterator():Iterator<Card>

«interface»
CardSource

draw():Card
isEmpty():boolean

Deck

shuffle():void
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iterator():Iterator<Card>
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«interface»
Shufflable
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Client3

Fig. 3.9 Interface segregation in practice 

public void displayCards(CardSource pSource) { 
if (!pSource.isEmpty()) { 
pSource.draw(); 
for (Card card : (Iterable<Card>) pSource) { 

... 
} 

} 
} 

In fact this is not only inelegant, but also unsafe, because it could be possible to 
provide an argument to displayCards that is not a subtype of Iterable. A better 
solution to this issue is offered directly by the type system, in the form of subtyping. 
In Java, interfaces can be declared to extend each other, with the semantics that if 
A extends B, types that implement A must provide implementations for all the meth-
ods declared in B as well, transitively. By extending interfaces, we can more easily 
support combinations of services while respecting the ISP. In our scenario, if it is 
observed that a lot of the code that uses CardSource also uses Iterable<Card>, 
but not the other way around, then we can declare CardSource to be a subtype of 
Iterable<Card>, as illustrated in Figure 3.10. 

Deck

shuffle():void
draw():Card
isEmpty():boolean
iterator():Iterator<Card>

«interface»
CardSource

draw():Card
isEmpty():boolean

Client3

«interface»
Shufflable

shuffle():void

Client1

«interface»
Iterable<Card>

iterator():Iterator<Card>

Client2

Fig. 3.10 Example of interface extension
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In principle, the same reasoning could apply in the reverse situation: if we no-
tice that most code that uses Iterable<Card> also uses CardSource but not the 
other way around, it would make sense to declare Iterable<Card> to extend 
CardSource. In practice, however, this is not possible because Iterable is a li-
brary type, which it is not possible to modify. For this reason, there are also large 
amounts of code that depend on it without depending on CardSource, rendering the 
situation a mere theoretical possibility. Finally, software designs can be hard to get 
right immediately. It may be the case that two segregated interfaces end up always 
being used together in the client code. In such a situation, it is possible that applica-
tion of the ISP went too far, and it might be worth considering fusing two interfaces 
back into one, by collecting all method declarations into a single interface. 

Code Exploration: Solitaire · GameModel 
Using the Interface Segregation Principle when applying the STRATEGY. 
In Solitaire, the STRATEGY is used via interface PlayingStrategy, which 
defines a method getLegalMove. To decide how to make a move, a strat-
egy object needs some information about the game. This information is pro-
vided as a parameter to the strategy method. All the information about an 
on-going game is stored in an instance of GameModel. This is a large class 
which declares both accessor methods and methods that can change the state 
of the game. Hence, by passing an instance of GameModel to a strategy ob-
ject, the code of the strategy object would be able to modify the state of the 
game. This is excessive coupling, because in the design the playing strategies 
are only supposed to compute a move, not actually do the move. To make 
this constraint clearer, I used the Interface Segregation Principle as follows. 
Class GameModel implements an interface GameModelView that declares only 
the methods of GameModel that provide information about the game without 
changing anything. The effect of this decision is to have a type that narrows 
the interface of GameModel to only include query methods. I then declared the 
type of the parameter of getLegalMove to be GameModelView. This way, al-
though it is still actually an instance of GameModel that is provided to strategy 
objects, the limited interface makes it clear that the code of strategy objects is 
only meant to query the state of the game, not change it. 

Code Exploration: JetUML · DiagramElement 
Organizing interfaces into a hierarchy to serve different usage contexts. 
A diagram in JetUML contains different diagram elements that are either 
nodes or edges. I used interface types Node and Edge to specify the ex-
pected behavior of these elements. However, certain parts of the code, like 
the Clipboard class, need to deal with diagram elements in general, indepen-
dently of whether they are nodes or edges. To accommodate this flexibility, I 
defined an additional interface, DiagramElement, which is extended by both
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Node and Edge. The behavior for general elements, nodes specifically, and 
edges specifically, is thus segregated into different interface types. This allows 
the various client code locations to work with the most appropriate abstraction 
for the diagram element objects they needs to handle. 

Insights 

This chapter focused on how to use interfaces and polymorphism to achieve exten-
sibility and reuse. 

• Use interface types to decouple a specification from its implementation if you 
plan to have different implementations of that specification as part of your design; 

• Define interface types so that each type groups a cohesive set of methods that are 
likely to be used together; 

• Organize interface types as subtypes of each other to create flexible groupings of 
behavior; 

• Use library interface types, such as Comparable<T>, to implement commonly 
expected behavior; 

• Use class diagrams to explore or capture important design decisions that have to 
do with how classes relate to each other; 

• Consider function objects as a potential way to implement a small piece of re-
quired functionality, such as a comparison algorithm. Function objects can often 
be specified as instances of anonymous classes, or as lambda expressions; 

• Use iterators to expose a collection of objects encapsulated within another with-
out violating the encapsulation and information hiding properties of this object. 
This idea is known as the ITERATOR design pattern; 

• Consider using the STRATEGY pattern if part of your design requires supporting 
an interchangeable family of algorithms; 

• Use dependency injection to decouple a client class that uses some abstraction 
from the creation of this abstraction; 

• Ensure that your code does not depend on interfaces it does not need: break up 
large interface types into smaller ones if you find that many methods of a type 
are not used in certain code locations. 

Further Reading 

The definitions for the notation of the class diagram shown in Figure 3.1 are adapted 
from The Unified Modeling Language Reference Manual [15]. Chapter 3 of UML 
Distilled [6] provides an overview of the notation and semantics for this diagram. 
The Gang of Four book [7] has the original treatment of the ITERATOR and STRATEGY 

patterns.



Chapter 4 
Object State 

Concepts and Principles: Object equality, object identity, object life-
cycle, object state (abstract vs. concrete), object uniqueness, optional types, 
state diagram, state space; 
Patterns and Antipatterns: SPECULATIVE GENERALITY†, TEMPORARY 

FIELD†, LONG METHOD†, NULL OBJECT, FLYWEIGHT, SINGLETON. 

One of the most difficult things to reason about when looking at a program is state 
changes. Which operations can have a side-effect? On which path can data flow? 
What impacts what? This chapter clarifies what object state is and how we can 
manage to keep control over its state in a principled way. 

Design Context 

In this chapter, I continue the discussion of how to design abstractions to effectively 
represent a deck of cards in code (see the Design Context section of Chapter 3 for 
details). 

4.1 The Static and Dynamic Perspectives of a Software System 

There are different ways we can look at a software system. One way is in terms of the 
software elements declared in the source code and the relations between them. For 
example, a Deck class declares a field aCards that is a list of Card instances. This 
is a static (or compile-time) perspective of the system. The static perspective is best 
represented by the source code or a class diagram. A different, but complementary, 
way to look at a system, is in terms of objects in a running software system. For
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example, at one point a Deck instance contains three cards, then one card is drawn, 
which leads to the instance of Deck containing two cards, etc. This is the dynamic (or 
run-time) perspective on the software. The dynamic perspective corresponds to the 
set of all values and references held by the variables in a program at different points 
in time. It is what we see in a debugger while stepping through the execution of the 
code. The dynamic perspective cannot easily be represented by any one diagram. 
Instead, we rely on object diagrams, state diagrams (introduced in this chapter), and 
sequence diagrams (introduced in Chapter 6). The static and dynamic perspectives 
are complementary in software design. Sometimes it is best to think of a problem 
and solution in static terms, sometimes in dynamic terms, and sometimes we really 
need both. This duality between the static and dynamic perspectives on a software 
system is akin to the wave-particle duality for representing the phenomenon of light 
in physics: 

It seems as though we must use sometimes the one theory and sometimes the other, while 
at times we may use either. [...] We have two contradictory pictures of reality; separately 
neither of them fully explains the phenomena of light, but together they do. 
—Albert Einstein and Leopold Infeld, The Evolution of Physics 

To paraphrase for software design: It seems as though we must use sometimes 
the one perspective and sometimes the other, while at times we may use either. We 
have two complementary pictures of a software system; separately neither of them 
fully explains the phenomena of software, but together they do. This chapter focuses 
on understanding important dynamic properties of software. 

4.2 Defining Object State 

An important concept when thinking of a design in terms of run-time objects is 
that of object state. Informally, the state of an object refers to the particular pieces 
of information the object represents at a given moment. It is generally useful to 
distinguish between concrete state and abstract state. The concrete state of an object 
is the collection of values stored in the object’s fields. For example, we can consider 
a Player object which, for now, only holds a score for the player in a scored game 
of Solitaire: 

public class Player { 
private int aScore = 0; 

} 

The cardinality of the set of possible concrete states for Player is the number of 
different values that its single field, aScore, can take. Because, in Java, a variable 
of type int is allocated 32 bits of storage, the number of different concrete states 
that an object of type Player can be in is 232, or about 4 billion states. We usually 
refer to the set of possible states for a variable or object as its state space. As soon as 
objects have more complex types, the size of the state space explodes dramatically. 
For example, the state space of a Deck instance includes all possible permutations
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of any number of cards in the deck, a number in the range of 2.2×1068. This is an 
enormous number.1 With class Player, adding an aName field of type String blows 
up the size of the state space to something that is only limited by the computing 
environment. For this reason, when designing software, it is more practical to think 
in terms of abstract states. 

An abstract state is an arbitrarily-defined subset of the concrete state space. For 
example, considering the simple version of Player without the aName field, Even 
Score could be an abstract state for a Player instance that groups the roughly 231 

states that represent a score that is an even number. Likewise, for an instance of the 
Deck class, the abstract state Three Kings could represent any possible configuration 
of the deck where exactly three cards with rank KING are present. These two exam-
ples illustrate that, because abstract states are arbitrary partitions of the state space, 
they can really be defined as anything, no matter how whimsical. However, neither 
of these two example abstract states would be particularly useful to design a realistic 
software system. In practice, the software design task of state space partitioning is 
to define abstract states that correspond to characteristics that will help construct a 
clean solution. A more useful abstract state for Player would be Non-zero Score, 
and one for Deck would be Empty (no cards in the deck), which in the latter case 
happens to correspond to a single concrete state. When the distinction is necessary, 
I use the term meaningful abstract state to indicate abstract states that capture states 
that impact how an object would be used. For example, the abstract state Empty is 
meaningful because it is not possible to draw a card from an empty deck. In con-
trast, the abstract state Three Kings is not meaningful because, at least in a game 
of Solitaire, whether a deck contains three kings or not has no impact on the game 
play and is not related to any design or implementation decision. Unless otherwise 
noted, future references to the term abstract state assume that we are talking about 
meaningful abstract states. 

A special case when thinking about object state is that some objects do not store 
any values. For example, function objects (see Section 3.4), often do not have any 
fields besides constants. In this case, we talk about stateless objects. When the con-
trast is important, we can refer to objects that have state as stateful objects. Another 
property of objects that is related to their state is mutability (see Section 2.6). This 
chapter is concerned with objects that are both mutable and stateful. In the case of 
immutable objects, the boundary between statefulness and statelessness becomes 
blurry, because in practice they only have a single state. 

4.3 State Diagrams 

As the result of method calls, a stateful and mutable object may transition between 
different abstract states. The sequence of abstract states that an object transitions 
through can be referred to as its life cycle, because it describes the “life” of an 

1 Computed as ∑52 
k=0 

52! 
(52−k)! .



70 4 Object State

object, from its initialization to its abandonment and eventual destruction by the 
garbage collector. As a simple example, we can consider an instance of a class Deck 
that represents a deck of playing cards. Let us assume that instances of the class are 
initially empty and that a method shuffle() initializes the instance with 52 cards 
in random order. In this case, the method call will induce a transition between an 
abstract state Empty and an abstract state Complete that represents a full deck. Fol-
lowing an uninterrupted sequence of 52 calls to a method draw(), which removes a 
card from the deck, the instance will return to the Empty abstract state. 

UML state diagrams2 are useful to represent how objects can, during their life-
time, transition from one abstract state to another as a reaction to external events 
(typically, method calls). They represent a dynamic view of a software system. The 
annotated diagram in Figure 4.1 shows all the state diagram notation used in the 
book. 

Trigger and Guard: 
What triggers the 
transition when 
the guard is true.

Initial
State State

Final 
State

Self 
Transition

Transition

Action: What 
happens with the 
transition

Abstract State BAbstract State A

trigger [guard] |
action

Fig. 4.1 Selected notation for state diagrams 

The example in Figure 4.2 illustrates both the notation and purpose of UML state 
diagrams. It models some of the important abstract states of an instance of a class 
Deck as discussed above. Even this simple diagram captures key information about 
the design of the Deck class. 

The object behavior modeled by the state diagram starts at the initial state. The 
initial state transitions into the Empty abstract state, which allows us to infer that the 
constructor returns a reference to a new Deck object with no cards in it. In UML, 
the initial and final states are special states that indicate the start and end of the state 
machine, respectively.3 Unlike regular states in the diagram, they do not represent a 
partition of the abstract state space. In our case, the transition out of the initial state 
corresponds to a call to the constructor of the class. The transitions are annotated 
with names that correspond to methods of the class Deck. 

In a state diagram, absence of a transition usually means that the absent transition 
is not possible (i.e., invalid) for that state. In particular, a transition can only occur 

2 The official name of the diagram is UML state machine diagram. In this book I use the simpler 
form state diagram. 
3 Technically the initial state is called a pseudostate, but this distinction is not important here.
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CompleteEmpty

Incomplete

shuffle

shuffle

shuffle

draw

draw [size>1]
draw [size=1]

Fig. 4.2 State diagram for an instance of Deck 

if all applicable preconditions are respected (see Section 2.9). Here we can see that 
we cannot draw cards from an empty deck, which happens to correspond to the 
existence of a precondition that the desk must not be empty for client code to call 
method draw(). Thus, the only legal transition out of the Empty state is shuffle 
which brings the object to the Complete state. From this it can be inferred that 
Complete is a shorthand for Complete and shuffled (in this particular design). 

The shuffle transition out of the Complete state illustrates the idea of self tran-
sitions, namely, events that do not result in a change of abstract state. The only 
transition out of the Complete state is draw, which brings the deck object to an 
Incomplete state. 

It is also possible to attach to a transition an action that describes what happens as 
the result of the transition. The action that corresponds to the draw event is remove 
card from the deck. The action information is optional and here I chose to leave it out 
of the diagram because it seemed redundant with the name of the event (considering 
that to draw is a synonym of to remove in the context of card games). 

The two transitions out of the Incomplete state illustrate the importance of 
guards, because here without the concept of a guard we would not be able to model 
the distinction between a draw event that leads to the Empty state, and a draw event 
that keeps the object in the Incomplete state. The language I use for modeling guards 
does not follow a formal specification, but I nevertheless like to specify guards using 
pseudo-code that is very close to what could be reasonably tested on an instance of 
the object. Here the guard would assume the presence of a size() method in the 
Deck class. 

Finally, the diagram in Figure 4.2 does not include any final state. While the 
meaning of the initial state is the context in which an object is initialized, the mean-
ing of the final state is open to interpretation. One possible use of the final state is 
to indicate the state in which an object is expected to be at the end of its lifetime. In 
many designs, objects can end their life (stop being used) in any state. In this latter 
case, the final state model element can be omitted. 

When getting started with modeling object states with state diagrams, one ten-
dency is to use the state diagram notation to model a type of data flow information, 
where states represent processing, and arrows represent the flow of data between
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processing stages. This is an incorrect use of the notation.4 A tip to avoid this pit-
fall is to think about the names of the states. If the names assigned to states include 
verbs or feel like they are describing actions (for example, draw card), it can be a 
sign that the diagram does not represent a good model of the state space. 

State diagrams help us think about the state space for objects of a given class 
systematically. When modeling the state of an object, a good practice is to visit 
each state and consider each possible type of transition. This procedure helps avoid 
overlooking certain paths through the code (e.g., shuffling an incomplete deck). One 
additional benefit of explicitly modeling object state is that it allows us to evaluate 
the impact of design decisions on the complexity of the abstract state space that 
must be considered when writing client code. For instance, in the example above, 
the state space is simple (three states) because of the decision to combine the deck 
initialization code with the shuffling code. Separating this behavior into distinct 
initialize and shuffle methods, or including a sort method, leads to a more 
complicated abstract state space for the object (see Figure 4.3 for an example). 

Incomplete (ordered)

Initialized Shuffled

Incomplete (shuffled)

Empty

init

shuffle

init

draw

shuffle

init

draw

shuffle

init
draw [size > 1]shuffle

draw [size==1]
init

draw [size > 1]draw [size==1]

shuffle

Fig. 4.3 State diagram for an instance of Deck where initialization and shuffling are separate op-
erations 

Objects with a complex life cycle are difficult to use, difficult to test (see Chap-
ter 5), and their design and implementation is error-prone. A good design principle 
to avoid objects with complex life cycles is thus to minimize the state space of 
objects to what is absolutely necessary for the object to provide the required func-
tionality. In practice, this means designing the class so that it is not possible to put 

4 For which a better match is an activity diagram, which is, however, not covered in this book.
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the object in an unnecessary state. An example of an unnecessary state is state Ini-
tialized in Figure 4.3, because there is no use for an unshuffled deck of cards. In 
some cases, eliminating some states from the life cycle of an object may seem like 
reducing the versatility of a class (what if we need this one day?). However, this kind 
of SPECULATIVE GENERALITY† is often not worth the cost. A related advice when de-
signing classes is to avoid including any “accessory” field that does not capture the 
essential state of an object of the class. Examples of accessory fields include TEMPO-
RARY FIELDS† (used only under limited conditions such as during initialization) and 
convenience fields that duplicate a value that can be obtained indirectly via another 
field. Such unnecessary fields make it more difficult to reason about the state space 
of objects of the class. 

Code Exploration: JetUML · RecentFilesQueue 
Abstract states that matter 
Class RecentFilesQueue is a bounded list used to keep track of files recently 
opened by the application, with a maximum capacity (set at five files). Despite 
the fact that the class defines only one state-changing method (add), the life-
cycle of objects of this class is rich with interesting cases. There are three 
meaningful abstract states that govern how the methods of the object behave: 
Empty, Partially Filled, and Full. In the Empty state, the query (i.e., non-state-
changing) method getMostRecentDirectory returns a special value. In the 
Filled state, method add has an additional side-effect, namely to remove the 
last element in the list. Finally, through method deserialize, it is possible 
to transition from the initial state to any of the three abstract states mentioned 
above. 

4.4 Nullability 

One aspect of most programming languages that gets in the way of designing ef-
fective state spaces and life cycles for objects is the possibility to assign the value 
null to a variable of a reference type. In Java (and similar languages, such as C++), 
null is a special value that indicates, in a troublesome way, the absence of value. 
For example, if we assign null to a variable: 

Card card = null; 

we are in effect stating that the variable card is of a reference type Card, but that 
it refers to... nothing! This is problematic because variables of reference types are 
intended to be dereferenced. For example: 

System.out.println(card.rank()); 

Because, with a reference to nothing, there is nothing to dereference, the result 
is the dreaded NullPointerException, the symptom of innumerable bugs in Java
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software. Generally speaking, relying on the null reference can cause a lot of harm. 
In fact, the inventor of the null reference, Tony Hoare, is reported to have stated 
his regret at implementing this feature (see Further Reading). In terms of low-level 
design, null references are a problem because of how difficult it is to think about all 
possible program paths that may lead to a null dereference. Null references are also 
a liability for software design because of their inherent ambiguity. Depending on the 
situation, a null reference in the state of an object could be interpreted to mean: 

1. That a variable is temporarily un-initialized, but is expected to become initialized 
in a different abstract state for the object. For example, in class Deck, we could 

aCards null 

2. That a variable is incorrectly initialized because the programmer overlooked a 

3. That the value is a flag that purposefully represents the absence of a useful value 
in the normal life cycle of an object; 

To avoid unnecessarily enlarging and complicating the state space of an object with 
dangerous null references, a recommended practice is to design classes so that null 
references are simply not used. How to realize this goal in practice depends on 
whether there is a need to model the absence of a value for a variable or not. The 
Solitaire application is an example of a code base that does not use the null refer-
ence. 

No Need to Model Absent Values 

If it is possible to design a class to avoid any abstract state where a certain variable 
does not have a value, it is greatly desirable to design the class to prevent this even-
tuality. For example, normal playing cards must have a rank and a suit, so there is 
no reason to allow null references for either instance variable. 

public class Card { 
private Rank aRank; // Should not be null 
private Suit aSuit; // Should not be null 

public Card(Rank pRank, Suit pSuit) { 
aRank = pRank; 
aSuit = pSuit; 

} 
} 

We can ensure that variables are not assigned a null reference by using either 
one of two approaches: input validation (Section 2.8), or design by contract (Sec-
tion 2.9). With input validation, everywhere a variable can be assigned, we check 
whether the input value is a null reference and throw an exception if that is the case:
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public Card(Rank pRank, Suit pSuit) { 
if (pRank == null || pSuit == null) { 
throw new IllegalArgumentException(); 

} 

aRank = pRank; 
aSuit = pSuit; 

} 

With design by contract, we stipulate, using a precondition, that null is not a 
valid value for a variable and, optionally, check that the precondition is respected 
with an assert statement: 

/** 
* @pre pRank != null && pSuit != null; 

*/ 
public Card(Rank pRank, Suit pSuit) { 

assert pRank != null && pSuit != null; 
aRank = pRank; 
aSuit = pSuit; 

} 

In either case, if the Card constructor is the only place where aRank and aSuit can 
be assigned, we have effectively ensured that the value stored in either variable will 
not be a null reference. 

Modeling Absent Values 

In many situations, the domain concept we are trying to model will require that we 
make a provision for the fact that there may not be a value. As an example, let us 
consider a variant of class Card where an instance can also represent a joker. In 
many card games, a joker is a special card that has no rank and no suit. To identify 
a card as a joker, a simple approach is to add a aIsJoker field to its declaration: 

public class Card { 
private Rank aRank; 
private Suit aSuit; 
private boolean aIsJoker; 

public boolean isJoker() { 
return aIsJoker; 

} 

public Rank rank() { 
return aRank; 

} 

public Suit suit() { 
return aSuit; 

} 
}



on a joker, and get a .

down this bug could be lengthy and annoying.

76 4 Object State

Here the logic to determine whether a card represents a joker is simple enough, but 
what should we do with its rank and suit? As usual, different options are possible. 
We can review three: 

• Null references: We could just ignore the advice offered in this section and assign 
null to aRank and aSuit. This means it would be possible to call (for example) 
card.rank().ordinal() NullPointerException 

• Arbitrary values: We could assign an arbitrary, meaningless value for the rank 
and suit of a joker (e.g., Ace of Clubs). However, this is both confusing and 
dangerous. A part of the code could erroneously request the rank of a joker, and 
receive the value ACE, which makes no sense. It is easy to imagine how tracking 

• Special values of an enumerated type: We could add an INAPPLICABLE enumer-
ated value to both Rank and Suit, and assign these values to the corresponding 
fields for instances of Card that represent jokers. This solution also has some 
clear weaknesses. First, it is a conceptual abuse of the idea of enumerated types, 
where each value is enumerated. Conceptually INAPPLICABLE is not a valid value 
in the enumeration, but rather a flag that indicates that we do not have a value. 
Second, although we have four suits and 13 ranks, this solution will yield five and 
14 enumerated values for each type, respectively. This discrepancy will muck up 
any code that relies on the ordinal values of these types (such as the initialization 
of a deck of cards), and introduce opportunities for off-by-one errors. 

Fortunately, there are better solutions for avoiding the use of null references to 
represent absent values. 

Optional Types 

One solution is to use an optional type. In Java, optional types are supported by 
the Optional<T> library class. The Optional class is a generic type that acts as a 
wrapper for an instance of type T, which can be empty. To make a value of type T 
optional for a variable, we declare this variable to be of type Optional<T>. In our 
case: 

public class Card { 
private Optional<Rank> aRank; 
private Optional<Suit> aSuit; 

} 

To represent the absence of a value of the variable, we use the value returned by 
Optional.empty(). So, to create a constructor that instantiates a Card that repre-
sents a joker, we could have:
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public class Card { 
private Optional<Rank> aRank; 
private Optional<Suit> aSuit; 

public Card() { 
aRank = Optional.empty(); 
aSuit = Optional.empty(); 

} 

public boolean isJoker() { 
return aRank.isEmpty(); 

} 
} 

To create an instance of Optional that represents an actual value, we call 
Optional.of(value) if value is not (ever) expected to be null, and Optional.-
ofNullable(value) if value can be null (in which case Optional.empty() will 
be stored instead). To get the value wrapped by an instance of Optional, we call 
get(). 

Using Optional in this way, we can both shed the dangerous use of null refer-
ences and cleanly represent the absence of a value. The one main consequence, how-
ever, is that the two fields no longer have the types likely to be desired by the client 
code. While the client will probably be interested in working with values of type 
Rank and Suit, the fields of the class now store values of type Optional<Rank> 
and Optional<Suit>. To get around this issue, two main alternative are possible: 

• Change the interface of class Card so that rank() and suit() return Optional-
<Rank> and Optional<Suit>, respectively. This requires client code to call 
get() everywhere the actual instance is needed, which is cumbersome. 

• Unwrap the optional within rank() and suit(), which preserves the interface 
but requires clients to ensure that they do not call the methods on a card that 
represents a joker (something that could be specified using design by contract, 
for example). This last solution is starting to look a lot like the use of null ref-
erences, but it is technically safer, because calling get() on an empty instance 
of Optional will raise an exception immediately when the value is misused, as 
opposed to potentially propagating a null reference through the execution of the 
code. 

Code Exploration: JetUML · TypeNode 
Using optional types. 
Class TypeNode illustrates a classic scenario for using optional types. In Jet-
UML, type nodes represent class and interface diagram elements in a class 
diagram. They can optionally be located in a package node. Correspondingly, 
the class declares a field aContainer to store a reference to the package node 
that contains the element. In this case, using an optional type as the type of the 
container is a great fit because it supports a feature that is actually optional. If
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the type node is not contained in any package node, aContainer.isEmpty(). 
In this case, I implemented the access to the optional value using design by 
contract, by specifying that the getter method getParent() can only be called 
if the node has a parent (that is, a container). 

The NULL OBJECT Design Pattern 

There exists a second solution for avoiding the use of null references to represent 
absent values, which avoids the issue of unpacking wrapper objects. This solution 
uses a special object to represent the null value. For this reason, this idea is called 
the NULL OBJECT design pattern. Using a NULL OBJECT to represent a null value re-
lies on polymorphism, so it is only applicable to situations where a type hierarchy 
is available. Because Card objects are not a subtype of any other user-defined type, 
we cannot use it to model a joker. To explore the NULL OBJECT pattern, let us con-
sider a different scenario, where a CardSource in client code could be unavailable. 
CardSource is an interface that defines methods draw() and isEmpty() and that it 
is implemented by the Deck class (see Section 3.1). 

The main idea of NULL OBJECT is to leverage polymorphism to create objects 
to represent the null (or absent) value. The methods of the subtype representing 
null objects can be called as usual, but their behavior is consistent with the absence 
of a value. Figure 4.4 illustrates NULL OBJECT applied to the context of handling 
potentially absent card sources. If a card source is unavailable, instead of assigning 
null to the corresponding variable, we create a new instance of NullCardSource 
and assign a reference to that object instead. 
CardSource source = new NullCardSource(); 
/* ... */ 
if (!source.isEmpty()) { 

Card card = source.draw(); 
} 

«interface»
CardSource

draw():Card
isEmpty():boolean

NullCardSource Deck

Fig. 4.4 The CardSource interface with support for the NULL OBJECT pattern 

Let us now turn to the implementation of the methods of NullCardSource. The 
implementation of isEmpty() is straightforward: an absent card source does not 
have any cards, so we always return true: 
public boolean isEmpty() { 
return true; 

}
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However, what should method draw() return for a NullCardSource? In this 
case it is helpful to revisit the declaration of the interface. In its interface declaration, 
method draw includes a precondition: !isEmpty(). However, because isEmpty() 
always returns true for instances of NullCardSource, method draw() should never 
be called. For this reason, it does not matter what it actually returns. To avoid re-
turning anything altogether, we can throw an exception: 

public Card draw() { 
assert !isEmpty(); 
throw new IllegalStateException(); 

} 

Because types for null objects are usually simple, we can also declare them as a 
constant in the corresponding interface using an anonymous class. The solution for 
the CardSource design context is the following: 

public interface CardSource { 

CardSource NULL = new CardSource() { 
public boolean isEmpty() { 
return true; 

} 

public Card draw() { 
assert !isEmpty(); 
throw new IllegalStateException(); 

} 
}; 

Card draw(); 
boolean isEmpty(); 

} 

With this solution, there is no longer a need for a separate NullCardSource 
class. Client code that must indicate an absent card source can simply use the ref-
erence available through CardSource.NULL instead. Because a NULL CardSource 
behaves just like any other card source, many special cases are avoided. In our case, 
for example, because all client code that works with a card source must check for 
emptiness first, obtaining a NULL card source is indistinguishable from obtaining an 
empty one. 

The example described above shows an ideal application of NULL OBJECT, in the 
sense that we can define an implementation for the null object such that the client 
code does not need to check whether an object represents a null value or not. In cer-
tain situations, it can be necessary to test whether an object represents a null value or 
not. In such contexts, we can add an isNull() method to the interface. The behavior 
of this method is to return true for instances that represent null objects, and false 
for all other instances. A common scenario where an isNull() method is useful is 
when refactoring code to replace null values with a null object. In such a scenario, 
null checks on a variable, such as if(value == null), can be directly replaced 
with if(value.isNull()). When no longer necessary, the isNull() method can 
then be retired.
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Code Exploration: Solitaire · NullPlayingStrategy 
Applying the NULL OBJECT pattern. 
Class NullPlayingStrategy demonstrates two related applications of the 
NULL OBJECT pattern. First, the class itself is a null object value that represents 
the absence of a playing strategy. Injecting the GameModel class with this 
type of strategy is a clean way to disable the auto-play feature without flags 
or corner cases. Second, the class realizes the pattern by overriding method 
getLegalMove to return a null object for the Move class hierarchy. The null 
Move is declared in the initialization of GameModel.NULL_MOVE. Predictably, 
a null move represents the absence of an action in the game. 

4.5 Final Fields and Variables 

In Section 4.3, I argued that one useful principle to follow when designing a class 
is to keep the abstract state space for objects of the class to the minimum necessary 
for the objects of the class to provide the services expected of them. For example, 
a well-designed Deck class has three meaningful abstract states, not ten. Because 
object state is just an abstraction of the combination of values taken by the fields of 
an object, the way to realize the principle in practice is to limit the number of ways 
in which the field values can be updated. We already saw, in the previous section, 
how avoiding null references whenever possible can help us reach this goal. An even 
stricter constraint for keeping the abstract state space of objects to a minimum is to 
prevent changing the value of a field after initialization, so that the value of the field 
remains constant throughout the life of the object. 

This constraint can be made explicit through the use of the final keyword placed 
in front of a variable declaration (which includes the declaration of instance vari-
ables). If we declare the fields aRank and aSuit to be final in class Card: 

public class Card { 
private final Rank aRank; 
private final Suit aSuit; 

public Card(Rank pRank, Suit pSuit) { 
aRank = pRank; 
aSuit = pSuit; 

} 
} 

then the fields can be assigned a value only once, either in the initializer part of 
their declaration, or directly in the constructor (as in the example).5 Attempting to 
reassign the value of the field anywhere else in the code leads to a compilation error. 

5 In practice, the field initialization code (the right-hand side of the equal sign in a field declaration) 
gets executed as part of the constructor call anyways.
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The final keyword thus helps to limit the state space of an object, because any field 
marked as final can only take a single value. In the case of class Card, making both 
aRank and aSuit final renders objects of the class immutable, because the objects 
themselves are immutable and there are no other fields. 

An important thing to keep in mind with the use of the final keyword is that, 
for reference types, the value stored in a variable is a reference to an object. So, 
although it is not possible to reassign a final field, it is certainly possible to change 
the state of the object referenced (if the object is mutable). Let us illustrate this point 
by making field aCards of class Deck final: 

public class Deck { 
private final List<Card> aCards = new ArrayList<>(); 

} 

A fresh instance of class Deck is shown in Figure 4.5. 

cardList:ArrayList<Card>

elementData = value

:Deck

aCards=

Fig. 4.5 Instance of class Deck 

Because field aCards is final (something not visible on the diagram), we can be 
sure that the reference held in the field will always refer to the one ArrayList 
named cardList on the diagram. In other words, it will not be possible for this 
arrow to point anywhere else. However, we can (and need to) change the state of 
cardList, for example to initialize it with all the cards. Thus, although final fields 
can be very helpful in restricting the state space of an object to make it easier to 
understand the behavior of the object at run time, they do not make the referenced 
objects immutable. 

The discussion above was concerned mainly with instance variables. However, 
local variables (including method parameters) can also be declared to be final. As 
opposed to fields, however, the case for making local variables final is much less 
clear because they are not long-lived.6 There is one fairly technical special case 
where local variables must not be reassigned (see Section 4.9), but even then the 
variable does not need to be explicitly marked with the final keyword.7 I occa-
sionally declare a variable final to make my intent clear that the variable is not and 
should not be reassigned. This is only really useful for long and/or complex meth-
ods that may be a bit difficult to understand. Ideally, this should be a rare scenario, 
because well-designed methods are short and simple (and an overly LONG METHOD† 
is a recognized antipattern). 

6 Local variables only exist for the duration of the execution of code in their scope. 
7 Since Java 8, local variables that are not reassigned are considered effectively final by the com-
piler.
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4.6 Object Identity, Equality, and Uniqueness 

Three important concepts to keep in mind when designing object life cycles are 
those of identity, equality, and uniqueness. 

Identity refers to the fact that we are referring to a particular object, even if this 
object is not in a variable. In terms of programming environments, the identity of 
an object could refer to its “memory location”, or “reference/pointer to”. However, 
in modern programming systems the memory management of objects is heavily 
abstracted, and for this reason it is best to think in terms of object identity. Most 
integrated development environments supply a convenient handle to represent an 
object’s identity. For example, in the Eclipse debugger this is represented by the 
object id. 

Fig. 4.6 Representation of object identity in the Eclipse debugger 

In the small example of Figure 4.6 two Card objects are created, and conse-
quently result in two distinct objects with two distinct identities, represented with 
internal object identifiers 49 and 50 (on the right, in the Value column). In the object 
diagram of Figure 4.7, the main method is represented as an object with two fields 
in place of local variables. The diagram shows how object identity corresponds to 
both object model elements and the references to these objects. If, for instance, a 
reference to the Card object with id 49 is added to a list, there will be two locations 
that refer to a single shared identity. 

The last statement in the main method in Figure 4.6, is a reminder that in Java, 
the == operator returns true if the two operands evaluate to the same value. In 
the case of values of reference types, the same value means referring to the same 
object (identity). So here the statement returns false because, although both cards 
represent an Ace of Clubs, they are references to different objects. 

The situation above, where two different Card objects represent the Ace of Clubs, 
illustrates the concept of object equality. In the general case, equality between two 
objects must be programmer-defined because the meaning of equality cannot always 
be inferred from the design of the object’s class. In very simple cases (like objects 
of class Card), one could say that two objects are equal if all their fields have the 
same value. However, for objects of more complex classes, this could be too strict. 
For example, if some objects cache values or have non-deterministic or unspecified 
internal representations, they could be “equal” in the practical sense, without having 
precisely the same value for each field, transitively. For example, two instances of
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id=50

:List

data =

main:

card1 =

card2 =

:Card

:Card

id=49

Fig. 4.7 Object identity example 

a set abstract data type (such as Java’s Set) must be equal if they have the same 
elements, even if internally the order in which these elements are stored is different. 

For this reason, Java provides a mechanism to allow programmers to specify 
what it means for two objects of a class to be equal. This specification is realized 
by overriding the equals(Object) method of the Object class. The default imple-
mentation of the equals method defines equality as identity. In other words, if the 
equals method is not redefined for a class, a.equals(b) is practically the same as 
a == b.8 In many situations, like our example of playing cards, this is not what we 
need, and we must supply our own implementation of the equals method. Imple-
mentations of equals can usually follow this example as a template: 

public boolean equals(Object pObject) { 
if (pObject == null) { 

return false; // As required by the specification 
} 
else if (pObject == this) { 
return true; // Standard optimization 

} 
else if (pObject.getClass() != getClass()) { 
return false; 

} 
else { 
// Actual comparison code 
return aRank == ((Card)pObject).aRank && 

((Card)pObject).aSuit == aSuit; 
} 

} 

I will revisit some of the details of the overriding mechanism in Chapter 7. For 
now, it suffices to say that if the equals method is redefined in a class, calling 

8 Except in the case where a == null. The == operator will correctly compare null values, but if 
a is null, a.equals(b) will raise a NullPointerException.
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equals on an object of this class will result in the redefined version being executed, 
and thus implement the custom definition of equality. In our case, 

card1.equals(card2) 

will return true. 
A crucial constraint when overriding equals is that any class that overrides 

equals must also override hashCode so that the following requirement is respected: 

If two objects are equal according to the equals(Object) method, then calling the 
hashCode method on each of the two objects must produce the same integer result. 
—Reference documentation for Object#equals 

This constraint is necessary because, among other things, many classes of the 
Java class library’s Collections framework rely on a combination of equality testing 
and an object’s hash code for indexing objects in internal data structures. 

A final consideration related to identity and equality is the concept of unique-
ness. In our example code, we could rightfully wonder what is the point of tolerating 
duplicate objects that represent exactly the same card (e.g., Ace of Clubs). A some-
times useful property for the objects of a class is uniqueness. Objects of a class are 
unique if it is not possible for two distinct objects to be equal. If the objects of a class 
can be guaranteed to be unique, then we no longer need to define equality, because 
in this specific case, equality become equivalent to identity and we can compare ob-
jects using the == operator. Strict guarantees of uniqueness are almost impossible to 
achieve in Java due to mechanisms such as metaprogramming (see Section 5.4) and 
serialization.9 However, in practice, the use of a design pattern, presented below, 
and the conscious avoidance of metaprogramming and serialization, provide a good 
enough guarantee of uniqueness that can help simplify some designs. 

Code Exploration: JetUML · Dimension 
Methods equals and hashCode for records. 
Type Dimension, first explored in Section 2.3, provided an example of a 
record type that yields objects that are not unique. Indeed, it is possible to 
create two distinct objects that represent exactly the same dimension (width 
and height). For this reason, we must rely on an implementation of the equals 
and hashCode methods to identify equal dimensions and manage them in col-
lections. One benefit of record types is that an equals and hashCode method 
is automatically generated for them based on the values of the fields. Although 
there is no explicit declaration of these methods for Dimension, client code 
can still call equals on an object of type Dimension. The method will return 
true if both width and height are equal. 

9 Serialization involves converting an object into a data structure that can be stored outside a 
running program and reconstructed later. The reconstruction of a serialized object normally leads 
to a copy of the serialized object being created.
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4.7 The FLYWEIGHT Design Pattern 

The FLYWEIGHT pattern provides a way to manage collections of shared objects that 
are usually simple and immutable. For example, Card objects in the Solitaire appli-
cation are immutable and referenced in many different classes. Although sometimes 
used to address performance concerns, FLYWEIGHT is also valuable to ensure that ob-
jects of a class are unique. 

The idea that underlies the pattern’s solution template is to manage the creation 
of objects of a certain class, called the flyweight class. Instances of the flyweight 
class are called flyweight objects. The crucial aspect of the FLYWEIGHT is to control 
the creation of flyweight objects through an access method that ensures that no du-
plicate objects (distinct but equal) ever exist. The three main components necessary 
to realize this constraint are: 

1. A private constructor for the flyweight class, so clients cannot control the cre-
ation of objects of the class; 

2. A flyweight store that keeps a collection of flyweight objects; 
3. An access method that returns the unique flyweight object that corresponds to 

some identification key. The access method typically checks whether the re-
quested flyweight object already exists in the store, creates it if it does not already 
exist, and returns the unique object. 

For example, we could decide to make the Card class a flyweight. Let us first 
consider the non-flyweight version: 

public class Card { 
private final Rank aRank; 
private final Suit aSuit; 

public Card(Rank pRank, Suit pSuit ) { 
aRank = pRank; 
aSuit = pSuit; 

} 

/* Includes equals and hashCode implementations */ 
} 

Instances of this class are clearly not unique, given that it is possible to use the 
constructor to create two instances that are distinct but equal: 

Card card1 = new Card(Rank.ACE, Suit.CLUBS); 
Card card2 = new Card(Rank.ACE, Suit.CLUBS); 
System.out.println(String.format("Same?: %b; Equal?: %b", 
card1 == card2, card1.equals(card2))); 

To implement Step 1 of the solution template, we simply change public for 
private in front of the constructor. This prevents client code from creating new 
Card instances arbitrarily. Now we need to figure out a way for code outside of 
class Card to get instances of the class. Before tackling this question (Step 3 in the 
solution template), let us create a store for flyweight Card instances (Step 2 in the
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solution template). The two main decisions to make to realize this step are choosing 
a data structure to hold the instances, and deciding where to locate this structure in 
the code. 

It is important to note that with design patterns, each application of the pattern 
can involve different implementation details. A solution template is just that: an 
overview of the main structures. For the FLYWEIGHT in particular, the implementation 
of the flyweight store and access method can exhibit much variability, depending on 
the details of the flyweight class. 

In our case, because playing cards can be indexed in terms of two keys (rank and 
suit), I will store them in a two-dimensional array. As to where this array should be 
located, one option is to hold it as a static field in class Card so that we can make 
it private and use methods of class Card to access it. The following code shows the 
definition of the flyweight store and an implementation of its initialization. 

public class Card { 
private static final Card[][] CARDS = 
new Card[Suit.values().length][Rank.values().length]; 

static { 
for (Suit suit : Suit.values()) { 

for (Rank rank : Rank.values()) { 
CARDS[suit.ordinal()][rank.ordinal()] = 

new Card(rank, suit); 
} 

} 
} 

} 

Because objects that represent playing cards are relatively small in number (52) 
and completely known in advance, I also chose to pre-initialize the flyweight store 
with a static initializer block.10 This implementation is only one example of a FLY-
WEIGHT implementation. Even for the same context (playing cards), many other al-
ternatives are possible. For example, it would be possible to store flyweights in lists 
or hash tables.11 With the current solution, accessing the collection with a correct 
index is guaranteed to produce the requested card. For example: 

CARDS[Suit.CLUBS.ordinal()][Rank.ACE.ordinal()]; 

will return the (assumed unique) instance of Card that represents the Ace of Clubs. 
The code above is only correct if it is placed within the scope of class Card, 

because CARDS is private. To grant access to cards to code outside the class, we need 
an access method. In our example, the implementation of this method is trivial: 

public static Card get(Rank pRank, Suit pSuit) { 
assert pRank != null && pSuit != null; 
return CARDS[pSuit.ordinal()][pRank.ordinal()]; 

} 

10 A block of code that executes once, when the class is first loaded into the run-time environment. 
11 The best choice is probably to use the EnumMap library type, but to get the point across with a 
minimum of explanation, the array-based solution is more accessible.
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This method is static given that the flyweight store is static. The combination of the 
flyweight store and corresponding access method is sometimes referred to as the 
flyweight factory. In this context, I used static structures in the flyweight class as 
the flyweight factory. However, it is not the only option, as we could also create a 
separate class to fulfill this role (called, for example, CardFactory). 

For flyweight objects that represent playing cards, the use of the pair (rank, suit) 
as the identification key is intuitive. In other scenarios, it can be less obvious what 
the identification key should be. For example, for an object of type Person, the key 
could be a name, an identification number, etc. In any case, the identification cannot 
be an instance of the flyweight object itself. In our example with cards, such an 
approach would look like: 

Card card = Card.get(someCard); // INVALID 

This would mean that to obtain a flyweight object of class Card, it would be 
necessary to already have that object. Because the only way to get a flyweight object 
should be through its access method, this scheme leads to an infinite cycle. 

An important concern when implementing the FLYWEIGHT pattern is whether to 
pre-initialize the flyweight store, or whether to do this lazily, by creating objects as 
they are requested through the access method. The answer is context-dependent. In 
general, in cases where there exists a small and finite set of flyweights, it may make 
sense to pre-initialize them (as in the example). In other cases, additional logic must 
be added to the access method to check whether the object exists in the collection 
and, if not, create it based on the key. In this latter case, the access method needs 
to be able to access all the information it needs to create the flyweight instance that 
corresponds to the requested key. The following code shows the FLYWEIGHT-relevant 
portion of a version of the Card class where instances are lazily created: 

public class Card { 
private static final Card[][] CARDS = 
new Card[Suit.values().length][Rank.values().length]; 

public static Card get(Rank pRank, Suit pSuit) { 
if(CARDS[pSuit.ordinal()][pRank.ordinal()] == null) { 
CARDS[pSuit.ordinal()][pRank.ordinal()] = 
new Card(pRank, pSuit); 

} 
return CARDS[pSuit.ordinal()][pRank.ordinal()]; 

} 
} 

Finally, the FLYWEIGHT pattern is especially convenient when used to manage 
immutable flyweight objects. Although it is technically feasible to apply the pattern 
to manage a collection of mutable objects, this approach can easily become error-
prone. In any case, it is crucial to ensure that the portion of the flyweight objects’ 
state that defines the objects’ identity cannot be mutated.
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Code Exploration: JetUML · Direction 
Application of FLYWEIGHT with multiple access methods. 
Class Direction represents a certain direction, in degrees, in a geometric 
plane. By design, degrees are represented as integers, with a maximum pre-
cision of one degree. This decision means that there can be at most 360 dis-
tinct directions to represent. I used the FLYWEIGHT to prevent a proliferation 
of Dimension objects, with numerous duplicates for the common values that 
represent the cardinal directions (north, south, etc.). One interesting aspect of 
this application of the pattern is that the flyweight factory provides multiple 
access methods. For example, fromAngle returns a dimension given an input 
angle, whereas fromLine finds the direction using a line in the plane as input, 
and mirrored finds the direction that is opposite to the input direction. 

4.8 The SINGLETON Design Pattern 

The SINGLETON design pattern provides a way to ensure that there is only one in-
stance of a given class at any point in the execution of the code. The context for 
this design pattern is the need to manage an instance that holds, in one place, a co-
hesive amount of information that different parts of the code need. An example of 
a potential SINGLETON object in a card game would be the instance that represents 
the aggregated state of the game. This state could include the deck of cards and the 
various piles of cards in the game in progress. The solution template for SINGLETON 

involves three elements: 

1. A private constructor for the singleton class, so clients cannot create multiple 
objects; 

2. A global variable for holding a reference to the single instance of the singleton 
object. 

3. An accessor method, usually called instance(), that returns the singleton in-
stance. The accessor method is optional, because it is also possible to implement 
the pattern by declaring the global instance to be a public constant. 

In a sample card game, a singleton object that encapsulates the aggregated state 
of the game, of class GameModel, could be implemented as follows: 
public class GameModel { 
private static final GameModel INSTANCE = new GameModel(); 

private GameModel() { /* ... */ } 

public static GameModel instance() { 
return INSTANCE; 

} 
}
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The SINGLETON pattern differs from FLYWEIGHT in that it attempts to guarantee 
that there is a single instance of a class, as opposed to unique instances of a class. 
Singleton objects are typically stateful and mutable, whereas flyweight objects are 
preferably immutable. 

A typical mistake when implementing the SINGLETON pattern is to store a refer-
ence to an instance of the class in a static field called INSTANCE or something like it, 
without taking proper care to prevent client code from independently creating new 
objects. In this case, use of the Singleton name is harmfully misleading, because 
users of the code may rely on the fact that the class yields a single instance when in 
fact it does not. 

The classic way to prevent instantiation is to make the class constructor private. 
However, in Effective Java [2], Bloch proposes a controversial trick, namely, to use 
an enumerated type (Item 3: Enforce the singleton property with a private construc-
tor or an enum type). For example, to make a GameModel class a singleton, one 
could do: 

public enum GameModel { 
INSTANCE; 

public void initializeGame() {} 
} 

This technically works because the compiler will prevent the instantiation of enu-
merated types. Although this approach is presented as preferred in Effective Java, 
it is not without detractors. To me, this strategy uses a programming mechanism 
(enumerated types) for an intent other than originally designed and, as such, it can 
be confusing. Here the type GameModel is not a finite set of values representing 
different game models, which is what one would initially expect when seeing an 
enum designation. I thus recommend sticking to a private constructor to ensure the 
single-instance constraint. 

Now that we know about the SINGLETON, I must mention that this pattern is con-
troversial. While all design decisions involve trade-offs (see Section 1.1), in the case 
of the SINGLETON, the balance can often tip in favor of the disadvantages. First, a sin-
gleton is essentially a global instance, accessible from anywhere in the code. It is 
thus easy to make unprincipled use of this object, leading to numerous dependen-
cies and code that is hard to understand. Second, singleton objects are difficult to 
test because they control their own life cycle and live for the entire duration of the 
application. Chapter 5 discusses testing in detail but, for now, it suffices to say that 
use of the SINGLETON makes a stateful object difficult to replace when necessary. 
In many cases, a good alternative for accessing a reference to a unique object is 
to use dependency injection (see Section 3.8). However, dependency injection does 
not provide a mechanism for preventing the creation of multiple instantiations of a 
class. This constraint must be respected with the assistance of methodical program-
ming and documentation. What dependency injection helps achieve, however, is to 
propagate that single instance to the code that requires it. 

Generally, what is important is to be able to recognize situations where only one 
instance of a class must be present in an application, and to be able to evaluate
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different strategies for creating and managing this unique instance. In cases where 
dependency injection or another solution is fit for purpose, it may be preferable to 
employ it instead of using a SINGLETON. In some cases, however, the SINGLETON may 
turn out to be the preferable solution. 

Code Exploration: Solitaire · GameModel 
Managing a single instance without the SINGLETON. 
In version 1.0 of Solitaire, I had implemented class GameModel as a singleton. 
Similar to the running example in this section, GameModel is the class used to 
create a single object that holds the complete state of the game. As the pattern 
dictates, the object was available as a global instance to any other part of the 
code. Later, I refactored GameModel to remove the part of the pattern that 
controls the life cycle of the object. The class is still meant to be instantiated 
only once, but in versions 1.2 and later, the life cycle is handled differently, to 
illustrate an alternative to SINGLETON. Specifically, GameModel is instantiated 
once when the application starts (in method Solitaire#start), and then 
injected into the objects that need a reference to it. 

Code Exploration: JetUML · ApplicationResources 
Using the SINGLETON for pervasive access to a service. 
Class ApplicationResources in JetUML provides a way to obtain the 
various text strings that appear in the application (for example, button 
and menu labels). Following the practice of string externalization, these 
strings are not hard-coded, but stored in a separate configuration file. The 
class provides an example of the SINGLETON, but with a quirk: there is 
no instance() method. Instead, the field storing the singleton instance 
is called RESOURCES and is public. In this case, I compromised on the 
strict implementation of SINGLETON, mostly for cosmetic reasons. The sin-
gleton instance is referred to in over 100 locations in the code. Instead 
of the cumbersome ApplicationResources.instance() reference, I re-
lied on Java’s static import mechanism to import the name of the in-
stance field. Because it would not be very meaningful to refer to just 
INSTANCE, however, I named the field RESOURCES. This way, the sin-
gleton instance of class ApplicationResources can be referred to any-
where in the code with the name RESOURCES (assuming the mention 
import static ...ApplicationResources.RESOURCES; is present). The 
fact that ApplicationResources is required in a very high number of lo-
cations is also a factor that justifies using SINGLETON instead of dependency 
injection.
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4.9 Objects of Inner Classes 

Inner classes are a special category of classes that are declared within the scope of 
an enclosing class and whose objects can discretely maintain a reference to other 
objects. This feature can affect their state space. Anonymous classes, introduced in 
Section 3.4, are a subcategory of inner classes.12 

Inner Classes 

Inner classes are used to provide additional behavior that involves an instance of the 
enclosing class, but which we do not want to integrate into the enclosing class. As 
an example, let us say we want the option to record how many times a certain Deck 
instance was shuffled. As usual, there are different ways of doing this. To illustrate 
how inner classes work, we define a Shuffler class as an inner class of Deck: 
public class Deck { 
public void shuffle() { /* ... */ } 

public class Shuffler { 
private int aShuffles = 0; 

public Shuffler() {} 

public void shuffle() { 
aShuffles++; 
Deck.this.shuffle(); 

} 

public int shuffles() { 
return aShuffles; 

} 
} 

} 

In this example, the first part of the declaration of class Shuffler looks normal: 
we declare a class Shuffler with a field aShuffles and a method shuffle(). 
However, things get interesting within the code of Shuffler#shuffle(), where 
we observe the statement Deck.this.shuffle();. Instances of an inner class au-
tomatically get a reference to the corresponding instance of their enclosing class 
(called the outer instance). The outer instance for an inner class is explicitly as-
signed to the inner instance when the inner instance is created. This can be confusing 
at first, so let us run through an execution: 
Deck deck = new Deck(); 
Shuffler shuffler = deck.new Shuffler(); 
shuffler.shuffle(); 

12 Java also supports static nested classes. Static nested classes are declared like inner classes, 
but with the static keyword placed before the class name. The main difference between static 
nested classes and inner classes is that static nested classes are not linked to an outer instance. 
Their purpose includes supporting encapsulation and code organization.
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The first line creates a new instance of Deck, as usual. The second line calls the 
constructor of Shuffler. However, because Shuffler is an inner class of Deck, its 
instances must be associated with an instance of Deck. We specify this association 
by prefixing the constructor call with the name of a variable of type Deck, followed 
by a period. Within an inner class, the outer instance can be accessed through a 
qualified name that consists of the name of the class of the outer instance, followed 
by this. So, in our case, Deck.this refers to the outer instance of shuffler. On 
the third line, it is the method shuffle() of the Shuffler instance that is called, 
but when this method executes, it then calls the shuffle() method of class Deck 
on the deck instance using Deck.this. Figure 4.8 illustrates the scenario with an 
object diagram. 

main:

deck =

shuffler =

inner:Shuffler

Deck.this =

outer:Deck

Fig. 4.8 Object graph for an inner class 

With this design, the deck can be shuffled through the shuffler instance, which 
will record how many times the method was invoked. It is also possible to shuf-
fle the deck without going through the shuffler instance, in which case the field 
aShuffles will not be incremented. 

An important consequence of the inclusion of a reference to an outer instance 
is that the concrete state space of objects of inner classes adds to that of the outer 
instance. Although this can technically lead to increased complexity, it does not 
have to be so. With good design, the abstract state space of objects of inner classes 
can remain independent of the state of the outer instance. This is the case for the 
Shuffler class, for which the state of the outer Deck instance does not influence 
how we use the Shuffler instance. 

Anonymous Classes and Variable Capture 

Anonymous classes are a subcategory of inner classes. In consequence, they also 
have implicit access to additional state information through a reference to their outer 
instance.13 Let us consider the following code for a factory method that creates a 

13 Java also supports local classes, which are named but declared within a code block such as 
a method declaration. Because local classes are rarely used, this section focuses on anonymous 
classes. However, local classes work in a similar way.
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Comparator<Deck> instance that compares two decks in terms of the number of 
cards of a given rank that they have. 

public class Deck { 
public static Comparator<Deck> createRankComparator(Rank pRank){ 

return new Comparator<Deck>() { 
public int compare(Deck pDeck1, Deck pDeck2) { 

return countCards(pDeck1) - countCards(pDeck2); 
} 

private int countCards(Deck pDeck) { 
/* returns the number of cards in pDeck with pRank */ 

} 
}; 

} 
} 

For example, in the code below, to see whether deck1 contains more kings than 
deck2, we could do: 

Comparator<Deck> comp = Deck.createRankComparator(Rank.KING); 
int result = comp.compare(deck1, deck2); 

This solution is an example of a factory method used to create a function object 
of type Comparator, as explained in Section 3.4. The code is relatively unexciting, 
except perhaps for one intriguing observation. Upon closer inspection, it appears 
that the code of method compare declared inside the anonymous class has access to 
the parameter pRank of createRankComparator, which is a separate method in a 
separate class. What could pRank possibly refer to when the code is running? Once 
the createRankComparator method returns an object, this object has its own life 
cycle that is independent from that of the Deck object. Yet this is legal, compilable 
code, that actually works and does what we want. 

Because referring to variables in the parent method from an anonymous class is 
such a useful programming idiom, it is supported by the language. To make this 
work, when the compiler creates the definition of the anonymous class, it also (in-
visibly) adds fields to the anonymous class, and copies references to each of the 
local variables referenced in the code of the anonymous class’s method into a field. 
Thus, once an object of the anonymous class is created, the references to the local 
variables are now stored in fields of the same name in the anonymous class. The 
object diagram of Figure 4.9 illustrates the outcome. 

In this diagram, the factory method is represented as a separate object with field 
pRank used to represent its parameter. This method returns a new object of an anony-
mous class. So that the compare method can still refer to the pRank parameter, a 
field pRank is created in the instance of the anonymous comparator, and the value 
of pRank is copied to it. A method definition together with references to its local en-
vironment variables is sometimes called a closure.14 As the object diagram shows, it 

14 In Java, anonymous classes and lambda expressions are not closures in the strict sense because 
they cannot modify the variables they reference. However, because they are as close as we can 
get to closures in Java, I employ the term to refer to methods that capture some of the values in 
non-local variables, as in this case.
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KING:Rank

:Comparator<Deck>

pRank =

Deck.createByHandComparator:

pRank =

Fig. 4.9 Example of closure at run time 

should be clear that closures can lead to shared references between object instances. 
To prevent unexpected behavior, Java prevents referencing external variables that 
are reassigned within anonymous classes.15 

Code Exploration: Solitaire · GameModel 
Instances of anonymous classes used as closures. 
In class GameModel, field aDiscardMove represents a specific type of move 
in the game, to discard a card from the deck. How this works with the rest of 
the code is the topic of a later chapter. However, the initialization of the field 
provides an example of how instances of anonymous classes retain a reference 
to their parent class. By instantiating an anonymous subtype of interface Move, 
the initialization of the field has to provide an implementation for the three 
methods of the interface. Part of the explanation is to be found in the code of 
method perform, which actually performs the discard move. In the code, we 
see references to three fields: aDiscard, aDeck, and aMoves. These are not 
fields of the anonymous class, but fields of its enclosing class, GameModel. 

Insights 

This chapter defined object state, argued that keeping track of all the different ab-
stract states an object can go through can be difficult, and proposed a number of 
techniques for designing classes whose objects have simple and well-structured life 
cycles. 

• For stateful classes, consider using state diagrams to reason systematically about 
the abstract states of the object of the classes and their life cycle;

15 Prior to Java 8, local variables referenced within anonymous classes had to be declared final. 
With Java 8 the compiler can infer variables to be effectively final without the keyword.



T F † or convenience fields;

sent values, if necessary;

• Be explicit about whether objects of a class should be unique or not;

enforce uniqueness;

managing the object of classes that should have only one shared instance.

• Minimize the number of meaningful abstract states for objects of a class: ensure 
it is not possible to put the object in an unnecessary state, and avoid introducing 

EMPORARY IELDS 

• Avoid using null references to represent legal information in objects and vari-
ables; consider using optional types or the NULL OBJECT pattern to represent ab-

onsider declaring instance variables final whenever possible;

Further Reading 95

• C 

• If objects are not designed to be unique, override the equals and hashCode 
methods; if objects should be unique, consider using the FLYWEIGHT pattern to 

• Consider an explicit structure, such as SINGLETON or dependency injection, for 

• Remember that additional data can be attached to instances of inner classes, ei-
ther in the form of a reference to an instance of an outer class, or as copies of 
local variables captured in a closure. 

Further Reading 

The Gang of Four book [7] has the original treatment of the FLYWEIGHT and SINGLE-
TON patterns. Chapter 3 of Refactoring: Improving the Design of Existing Code [4] 
mentions the TEMPORARY FIELD† and LONG METHODS† antipatterns. The entry Intro-
duce Null Object in Chapter 8 discusses the idea of NULL OBJECT. 

Chapter 10 of Java 8 in Action [16] is entitled Using Optional as a better alter-
native to null, and provides more details and examples on the use of the Optional 
type. This is also where I found the anecdote about Tony Hoare. Item 55 in Effective 
Java [2] provides useful insights on when and how to use optional types. 

The API documentation for Object#equals(Object) and Object#hashCode() 
provide additional information on the meaning of equality in Java. The section on 
nested classes in the Java Tutorial [11] is a good reference for additional coverage 
of this topic.



Chapter 5 
Unit Testing 

Concepts and Principles: Annotations, JUnit, metaprogramming, test 
coverage, test suites, unit testing; 

Unit testing is a practice wherein we automatically execute our code to check that it 
does what we think it should. With unit testing, we can build a collection of tests to 
check that our expectations about how the code works conform to reality. In addi-
tion, these tests can be quickly executed at any point in the development process to 
confirm that the behavior of the code still meets the expectations we captured in our 
tests. Writing unit tests also provides insights into the quality of a design, because 
classes with many dependencies or objects with a complex state space will be diffi-
cult to test effectively. This chapter introduces mechanisms that facilitate unit testing 
(metaprogramming and unit testing frameworks) and presents basic techniques for 
designing unit tests and evaluating their quality. 

Design Context 

The first examples focus on the library function to compute the absolute value of 
an integer (Math.abs(int)). The remainder of the chapter discusses the testing of 
code derived from design elements of the Solitaire sample application, starting with 
a method of the Suit enumerated type. For simplicity, the later examples are slightly 
adapted from the actual project code. They revolve around FoundationPile, a class 
that represents one of the four piles where finished suits are accumulated in a game 
of Solitaire. The final design context concerns the testing of class GameModel, which 
encapsulates the entire aggregated state of a game in progress.
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5.1 Introduction to Unit Testing 

Software quality problems are often caused by programmers writing code that does 
not always do what they expect, and the programmers remaining ignorant of this 
mismatch between expectations and reality. To illustrate this issue as concretely 
as possible, while reviewing some of the concepts we have seen previously, let us 
consider the following method to retrieve an instance of a class Card that represents 
the playing card specified by a textual description. 

/** 
* Returns the card that corresponds to the input description. 

* 
* @param pCardAsString Describes a card in the form 

"RANK of SUIT", where RANK is a valid rank name 

* and SUIT is a valid suit name (case insensitive). 

* @return The card described by pCardAsString. 

* @throws IllegalArgumentException if the input does not 
describe a valid card in the required form. 

* @pre pCardAsString != null 

*/ 
public static Card toCard(String pCardAsString) { 
String[] parts = pCardAsString.toUpperCase().split(" "); 
return Card.get(Rank.valueOf(parts[0]),Suit.valueOf(parts[2])); 

} 

This implementation first splits the input string in different parts as separated 
by whitespace using the split library method. Then, it relies on the valueOf 
method created for each enumerated type to retrieve the corresponding instance of 
the type (e.g., "King" becomes Rank.KING). Conveniently, method valueOf throws 
an IllegalArgumentException if it cannot convert the string to the name of an 
enum constant, which will propagate out of method toCard to fulfill that part of the 
specification. 

At a glance, and with insufficient caffeine, this code looks reasonable. If we input 
any valid string, such as “King of Hearts”, we receive the corresponding card. And 
if we input strings with an invalid rank or suit, such as “X of Clubs”, we get the 
expected exception. Unfortunately, this simple-looking code is full of bugs. Among 
others, if the separator “of” is missing or mistyped, the method does not behave as 
expected. 

One way to detect bugs, and to gain confidence that a part of the code does what 
we expect, is to test it. Testing is a software quality assurance technique that can take 
many forms. In this book, I focus on one specific testing approach called unit testing. 
The goal of unit testing is to test small parts of the code separately, in isolation. This 
way, if a test fails, we know where to look for problems. Writing unit tests also helps 
us think more rigorously about the behavior our code should have. For example, the 
specification of the method above is ambiguous about whether the qualifier “case 
insensitive” applies to the separator “of” or not, but to test this behavior we need a 
precise specification.
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A unit test consists of one or more executions of a unit under test (UUT) with 
some input data and the comparison of the result of the execution against some 
oracle. A UUT is whatever part of the code we wish to test in isolation. In prac-
tice, UUTs are often individual methods, but in some cases they can also be entire 
classes, initialization statements, or certain paths through the code. The term oracle 
designates the expected result of the execution of a UUT. 

For example, the statement: Math.abs(-5) == 5; technically qualifies as a test. 
In this case, the UUT is the library method Math.abs(int), which computes the 
absolute value of its input. The input data is the integer literal -5, and the oracle is 
the value 5. The comparison of the result of executing the UUT with the oracle is 
called an assertion. The name captures the idea that the role of the comparison is to 
assert that the result is what we expect. 

When testing instance methods, it is important to remember that the input data 
includes the implicit argument (the instance that receives the method call). As a 
second example that involves an implicit argument, let us consider a version of the 
Suit enumerated type that includes an additional method sameColorAs(Suit). In 
a standard deck of cards, the Clubs and Spades suits are printed in black and the 
Diamonds and Hearts are printed in red. 

public enum Suit { 
CLUBS, DIAMONDS, SPADES, HEARTS; 

public boolean sameColorAs(Suit pSuit) { 
assert pSuit != null; 
return (ordinal() - pSuit.ordinal()) % 2 == 0; 

} 
} 

With this design, we are not returning the color of a Suit instance, but rather, 
whether the suit is of the same color as some other Suit instance. In a game where 
the color of a suit does not matter, only whether it is the same color as a given suit, 
this design decision follows the principle of information hiding. Returning to our 
example, something to note is that the method was written by a programmer who 
favors compact code over clarity of intent and robustness. To give ourselves confi-
dence that this works as expected despite the hackery, we can test the method by 
calling it with a specific input and comparing the result with the expected value: 

public static void main(String[] args) { 
boolean expected = false; 
System.out.println(expected == CLUBS.sameColorAs(HEARTS)); 

} 

This example makes it clear that although method sameColorAs takes a single ex-
plicit argument, there are in fact two arguments to the UUT: the explicitly provided 
argument (Suit.HEARTS), and the implicit argument: Suit.CLUBS. According to 
the definition of a unit test provided above, this main method qualifies as a unit test: 
it includes a UUT (Suit#sameColorAs), some input data (CLUBS and HEARTS), an 
oracle (false), and an assertion that compares the result with the oracle. Executing 
the main method will tell us whether the test passes or not.



100 5 Unit Testing

If we wanted to increase the number of inputs we test for sameColorAs, we could 
add additional pairs of suits. Because there are only four suits, we could test all pos-
sible inputs for sameColorAs with a mere 16 tests. This achievement, called exhaus-
tive testing, is rarely possible (see Section 5.9). However, in the present case, writ-
ing an exhaustive test is trivial and executing it will show that method sameColorAs 
works correctly for all possible inputs. This is good news, but only ephemerally so, 
because source code is not set in stone. To continue with our scenario, let us say 
that the code is later changed to reorder the suits as follows without updating the 
sameColorAs method: 

CLUBS, SPADES, DIAMONDS, HEARTS; 

In this case, running the test again will immediately reveal a bug introduced by 
the fact that sameColorAs relies on an undocumented and unchecked assumption 
about the order of enumerated values. This example illustrates the second major 
benefit of unit tests: in addition to helping detect bugs in new code, they can also 
check that tested behavior that used to meet some specific expectation still does 
meet that expectation even after the code changes. Running tests to confirm that 
previous expectations about the behavior of the code are still respected, or to identify 
deviations from expected behavior caused by changes, is called regression testing. 

Finally, an important observation about testing relates to what it cannot do. Test-
ing cannot verify code to be correct. When a test passes, it only shows that the 
specific execution of the code that is being tested behaves as expected. There are 
software engineering techniques designed to provide certain guarantees about all 
possible code executions for a specific code element, but testing is not one of them. 
Section 5.9 provides further explanations of why testing is not a verification tech-
nique. 

5.2 Unit Testing Framework Fundamentals with JUnit 

Although it is possible to test a system manually, unit testing is normally done au-
tomatically. Because in software development the way to automate anything is to 
write code to do it, to automate software testing we also write code to test other 
code. This task is typically supported by a unit testing framework. The example 
with the main method in the previous section, although it qualifies as automation, 
was only for illustration purposes and is not a recommended way to test production 
code. 

Unit testing frameworks automate a lot of the mundane aspects of unit testing, 
including collecting tests, running them, and reporting the results. In addition to 
tools to collect and run tests and display the results, frameworks also include a set 
of constructs to allow developers to write tests in a structured way and, if they so 
choose, efficiently. The major constructs supported by testing frameworks are test 
cases, test suites, test fixtures and assertions. The dominant unit testing framework 
for Java is called JUnit. I will introduce the basics of this framework sufficiently to
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illustrate all of the testing techniques covered in this chapter. However, this chap-
ter is not a tutorial on JUnit, and the Further Reading section provides pointers to 
additional information and coaching on how to use JUnit. 

In JUnit, a unit test maps to a method. The code below illustrates a series of 
simple unit tests with JUnit. 
public class AbsTest { 

@Test 
void testAbs_Positive() { 
assertEquals(5, Math.abs(5)); 

} 

@Test 
void testAbs_Negative() { 
assertEquals(5, Math.abs(-5)); 

} 

public void testAbs_Min() { 
assertEquals(Integer.MAX_VALUE,Math.abs(Integer.MIN_VALUE)); 

} 
} 

The @Test annotation instance indicates that the annotated method should be run 
as a unit test. Section 5.4 explains annotations in more detail. For now, it suffices to 
say it is a marker we put in the code to indicate that the method is a unit test.1 The 
code example above shows a test class that defines three tests, all intended to test 
the library method Math.abs(int). 

To constitute proper tests, test methods should contain at least one execution of 
a unit under test. The way to automatically verify that the execution of a unit under 
test has the expected effect is to call assert methods. Assert methods are differ-
ent from the assert statement. They are declared as static methods of the JUnit 
Assertions class and all they do is test a predicate and, if the predicate is false, 
report a test failure. The JUnit framework includes a component called a test run-
ner, which automatically scans some input code, detects all the tests in the input, 
executes them, and then reports whether the tests passed or failed. Figure 5.1 shows 
a screenshot of the result of executing all the tests in the test class AbsTest (above), 
using a version of the test runner available through the Eclipse integrated devel-
opment environment. Two tests passed but one test, testAbs_Min, failed. Perhaps 
it seems surprising that the absolute value of Integer.MIN_VALUE is not, in fact, 
Integer.MAX_VALUE. This quirk is explained in the documentation for the method: 

Note that if the argument is equal to the value of Integer.MIN_VALUE, the most negative 
representable int value, the result is that same value, which is negative. 

The reason for this design choice is imposed by the convention used to encode 
integers in Java, which allows for an extra negative number compared to the corre-
sponding positive numbers. In addition to their bug detection potential, unit tests are 
a great way to surface corner cases. 

1 The definition of the @Test annotation is defined in the JUnit library, which must be added to a 
project’s class path before it can be used. This chapter is based on JUnit version 5.
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Fig. 5.1 Result of running JUnit using class AbsTest in the Eclipse IDE 

5.3 Organizing Test Code 

A collection of tests for a project is known as a test suite. By default, a project’s test 
suite consists of all the unit tests for the production code in the project. However, 
it may sometimes be desirable to run only a certain subset of the tests (for exam-
ple, to focus on a specific feature, or to save some time). Unit testing frameworks 
provide mechanisms to define arbitrary tests suites or, more generally, to run certain 
subsets of unit tests. As one example, JUnit provides a @Suite annotation that al-
lows a developer to list a number of test classes to be executed together. As another 
example, the JUnit plug-in for the Eclipse IDE allows users to execute the tests for 
only one package, or even a single test class or method. Because executing tests is 
a concern somewhat independent from the issue of designing them, the rest of the 
chapter focuses on writing the tests themselves. 

A common question when building a suite of unit tests is how to organize our 
tests in a sensible manner. There are different approaches, but in Java a common 
idiom is to have one test class per project class, where the test class collects all the 
tests that test methods or other usage scenarios that involve the class. Furthermore, 
it is common practice to locate all the testing code in a different source folder with 
a package structure that mirrors the package structure of the production code. The 
rationale for this organization is that, in Java, classes with the same package name 
are in the same package scope independently of their location in a file system. This 
means that classes and methods in the test package can refer to non-public (but 
non-private) members of classes in the production code, while still being separated 
from the production code. Figure 5.2 illustrates this practice. The figure shows a 
sample of tests in a test folder that match corresponding classes in the src folder. 
To emphasize the connection between the two, a common convention is to name the 
test class with the name of the production class it tests, followed by the suffix Test.
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Fig. 5.2 Test suite organiza-
tion for the Solitaire sample 
application 

5.4 Metaprogramming 

In the previous section, we saw that to indicate that a method is a test, we annotate 
it with the string @Test. The unit testing framework can then rely on this annotation 
to detect which methods are tests, and proceed to execute these methods as part of 
the execution of the test runner. This approach is special in that it requires the code 
to manipulate other code. Specifically, the testing framework first scans the code 
to detect tests, and then executes the code, without having any code that calls the 
test methods explicitly by name. This strategy is an illustration of a general pro-
gramming feature called metaprogramming. Metaprogramming is the production of 
code that operates on a representation of a program’s code. Although it may seem 
confusing at first, metaprogramming is just a special case of general-purpose pro-
gramming. When we write code, this code typically operates on data that represents 
various things in the world (playing cards, geometric shapes, bank records, etc.). 
With metaprogramming, this data happens to be pieces of software code (classes, 
methods, fields, etc.). Although metaprogramming is a programming feature, it 
is instrumental for testing, and can be used to implement many design ideas. In 
Java, metaprogramming is called reflection, and library support for metaprogram-
ming features is available through the class java.lang.Class and the package 
java.lang.reflect. 

Introspection 

The most basic metaprogramming task is to obtain a reference to an object that 
represents a piece of code to learn about it, a procedure called introspection. In Java, 
the class Class<T> is the main access point for metaprogramming. For example, to 
obtain a reference to an object that represents the String class, we can do: 

try { 
String fullyQualifiedName = "java.lang.String"; 
Class<String> stringClass = 
(Class<String>) Class.forName(fullyQualifiedName); 

} catch (ClassNotFoundException e) { 
e.printStackTrace(); 

}
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The call to Class.forName takes as input the fully-qualified name of the String 
class and returns a reference to an instance of class Class that represents class 
String, as illustrated in the object diagram of Figure 5.3. 

Fig. 5.3 Instance of class 
Class that represents class 
String main:

stringClass =

:Class

name = "java.lang.String"

Calls to method forName are brittle because the requested class may not exist. In 
the example, the call is enclosed in a try-catch block. Method forName declares 
the checked exception ClassNotFoundException and throws it whenever the ar-
gument does not correspond to the fully-qualified name of a class on the class path. 
This may seem easy to prevent in the example above, given the use of a string lit-
eral to specify the name of the argument to forName. However, any string can be 
supplied as argument to Class.forName, so the requested class name may not be 
known at compile time, as in the example below: 

public static void main(String[] args) { 
try { 

Class<?> theClass = Class.forName(args[0]); 
} 
catch (ClassNotFoundException e) { 

/* ... */ 
} 

} 

For the same reason, we have to use a type wildcard as the instance of the type 
parameter in the type declaration of the variable that receives the reference supplied 
by forName. In the last example, the variable is declared as Class<?>. The exact 
functioning of the type wildcard is outside the scope of this book, but for now it 
suffices to say that it acts as a placeholder for any type. In the previous example, 
because we know exactly which type parameter is appropriate for class Card, we 
can use a downcast instead. 

Besides the forName library method, Java offers two other ways to obtain a ref-
erence to an instance of class Class that are less brittle: class literals, and through 
an instance of the class of interest. Both strategies are illustrated in the code below: 

Class<String> stringClass1 = String.class; 
String someString = "Hello, World!"; 
Class<?> stringClass2 = someString.getClass(); 
System.out.println(stringClass1 == stringClass2); 

The first line shows the use of class literals. In Java, a class literal is a literal ex-
pression that consists of the name of a class followed by the suffix .class, and that 
refers to a reference to an instance of class Class that represents the class named 
before the suffix. So, String.class refers to the instance of class Class that rep-
resents class String. Because, in the case of class literals, the argument T to the
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type parameter of Class<T> is guaranteed to be known at compile time, we can 
include it in the variable declaration. Class literals are the least brittle way to obtain 
a reference to an instance of class Class, but they require that we know the exact 
class to introspect at compile time. 

The final way to obtain an instance of class Class is through an instance of the 
class, as illustrated in the second and third lines of the code fragment. As will be 
explained in detail in Chapter 7, it is possible to call method getClass() on any 
object in a Java program, and the method will return a reference to an instance of 
class Class that represents the run-time type of the object. Because of polymor-
phism, this type may not be known at compile time, so in this case also we have to 
use the type wildcard in the declaration of the variable.2 However, because any call 
to getClass() is guaranteed to return a valid reference to an instance of Class, the 
method does not declare to throw an exception. 

The last line in the code fragment illustrates a very important property of class 
Class: its instances are unique (see Section 4.6). If executed, the code should always 
print true on the console. Indeed, class Class has no accessible constructor, and its 
instances can be considered to be unique flyweight objects (see Section 4.7). 

With metaprogramming, we can introspect any class, including class Class. This 
may at first seem contrived, but it is actually not a special case: class Class is just 
another class. The following code: 

Class<Class> classClass = Class.class; 

will produce the object graph illustrated in the diagram in Figure 5.4. 

Fig. 5.4 Object graph for an 
instance of Class.class 

:Class

name = "java.lang.Class"

main:

classClass=

Obtaining an instance of class Class is only the first step for introspection. The 
interface to class Class provides numerous methods that can be called to obtain ob-
jects that represent the members of the class, its superclass, etc. As one example of 
endless possibilities, the following code fragment prints the name of all the meth-
ods declared in class String. This example makes use of class Method, a library 
class intended to represent methods in Java code. Similar classes exist to represent 
constructors (Constructor) and fields (Field). 

for (Method method : String.class.getDeclaredMethods()) { 
System.out.println(method.getName()); 

} 

2 In this case it is possible to use a type bound, e.g., Class<? extends String>.
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Program Manipulation 

Obtaining information about a code base, or code introspection, only constitutes the 
most basic form of metaprogramming. We may also want to manipulate the code of a 
program. Unlike more dynamic languages, Java does not allow adding or removing 
members from classes (and objects, by extension). However, it is possible to use 
metaprogramming features to change the accessibility of class members, set field 
values, instantiate objects, and invoke methods. I only provide a small overview 
of the features most relevant to software testing and design in general. The API 
documentation of the relevant library classes will provide the catalog of possibilities. 

For this example, we will return to the version of class Card seen in Section 4.7, 
namely a class that realizes the FLYWEIGHT pattern and has a private constructor to 
prevent the creation of duplicate playing cards. Now we will use metaprogramming 
to get around the pattern and create a duplicate Ace of Clubs. 

try { 
Card card1 = Card.get(Rank.ACE, Suit.CLUBS); 
Constructor<Card> cardConstructor = 
Card.class.getDeclaredConstructor(Rank.class, Suit.class); 

cardConstructor.setAccessible(true); 
Card card2 = cardConstructor.newInstance(Rank.ACE, Suit.CLUBS); 
System.out.println(card1 == card2); 

} catch (ReflectiveOperationException e) { 
e.printStackTrace(); 

} 

In this example, the second statement obtains a reference to an instance of class 
Constructor that represents the (private) constructor of class Card. To make calls 
to this constructor accessible in a scope outside its class, the third statement changes 
the accessibility of the constructor, effectively bypassing the private keyword in 
the code. The fourth statement calls newInstance on the Constructor object. This 
call makes a new instance of the declaring class of the constructor represented by 
the Constructor instance, as opposed to a new instance of class Constructor. As 
this is class Card, and the constructor of this class requires two arguments of type 
Rank and Suit, we pass values of these types to the newInstance call. Because 
a lot of things can go wrong with a reflective constructor invocation, most of the 
methods in this example declare to throw checked exceptions of various types, the 
supertype of which is ReflectiveOperationException. 

Annotations as Program Metadata 

With metaprogramming, it is possible for code to operate not only on data that 
consists of code elements (e.g., classes, methods, fields), but also on metadata about 
these code elements. In Java, it is possible to attach additional information (i.e., 
meta-information) to code elements in the form of annotations. We have already 
seen one type of annotation: the use of @Test to indicate that a method is a unit test 
in JUnit. An annotation type is declared similarly to an interface, for example:
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public @interface Test {} 

Then, annotation instances can be added to the code, in the form @Test. The main 
advantage of annotations is that they are typed and checked by the compiler. The 
@Test annotation used to flag unit tests in JUnit is thus a type annotation provided by 
the JUnit library, and its use is checked by the compiler. Annotations support many 
other features (see Further Reading), but their main usage scenario is to provide 
a way to add structured, type-checked metadata to some code elements, that can 
then be read by the compiler, development environments, unit testing frameworks, 
and similar tools. We will see other example applications of annotations later in the 
book. Because they are officially part of the code, information about annotations can 
also be accessed through metaprogramming.3 

5.5 Structuring Tests 

Writing unit tests for non-trivial classes is often a challenging creative process, not 
unlike writing production code. For this reason, there is no standard formula or tem-
plate for writing the code of a unit test. In fact, browsing the test suites of different 
open-source projects will show that different communities follow different styles 
and use different testing techniques. This being said, certain basic principles are 
generally agreed upon, including that unit tests should be fast, independent, repeat-
able, focused, and readable [8]. 

• Fast. Unit tests are intended to be run often, and in many cases within a 
programming-compilation-execution cycle. For this reason, whatever test suite 
is executed should be able to complete in the order of a few seconds. Otherwise, 
developers will be tempted to omit running them, and the tests will stop being 
useful. This means that unit tests should avoid long-running operations such as 
intensive device I/O and network access, and leave the testing of such function-
ality to tests other than unit tests. These could include, for example, acceptance 
tests or integration tests. 

• Independent. Each unit test should be able to execute in isolation. This means 
that, for example, one test should not depend on the fact that another test exe-
cutes before to leave an input object in a certain state. First, it is often desirable 
to execute only a single test. Second, just like code, test suites evolve, with new 
tests being added and (to a minimum extent) some tests being removed. Test in-
dependence facilitates test suite evolution. Finally, JUnit and similarly-designed 
testing frameworks do not guarantee that tests will be executed in a predictable 
order. In practice, this means that each test should start with a fresh initialization 
of the state used as part of the test.

3 However, only annotation instances of annotation types marked with the @Retention-
(value=RUNTIME) meta-annotation can be accessed in this way. See Further Reading for a ref-
erence to complementary information on annotations that covers meta-annotations.



• Repeatable. The execution of unit tests should produce the same result in differ-
ent environments (for example, when executed on different operating systems). 
This means that test oracles should not depend on environment-specific proper-
ties, such as display size, CPU speed, or system fonts. 

• Focused. Unit tests should exercise a slice of code execution behavior that is as 
narrow as possible. The rationale for this principle is that the purpose of unit 
tests is to help identify faults. If a unit test comprises 500 lines of code and tests 
a whole series of complex interactions between objects, it will not be easy to 
determine what went wrong if it fails. In contrast, a test that checks a single input 
on a single method call will make it easy to home in on a problem. Some have 
even argued that unit tests should comprise a single assertion [8]. My opinion is 
that in many cases this is too strict and can lead to inefficiencies. However, tests 
should ideally focus on testing only one aspect of one unit under test. If that unit 
under test is a method, we can refer to it as the focal method for the test. 

• Readable. The structure and coding style of the test should make it easy to iden-
tify all the components of the test (unit under test, input data, oracle), as well as 
the rationale for the test. Are we testing the initialization of an object? A special 
case? A particular combination of values? Choosing an appropriate name for the 
test can often help in clarifying its rationale.
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For example, let us write some unit tests for a method canMoveTo of a hypothet-
ical class FoundationPile that could be part of the design of the Solitaire example 
application. The method should return true only if it is possible to move the input 
pCard to the top of the pile that an instance of the class represents. According to 
the rules of the game, this is only allowed if the pile is empty and the input card is 
an ace, or if the input card is of the same suit as the top of the pile, and of a rank 
immediately above the rank of the card at the top of the pile (e.g., you can only place 
a Three of Clubs on top of a Two of Clubs). 

public class FoundationPile { 
public boolean isEmpty() { ... } 
public Card peek() { ... } 
public Card pop() { ... } 
public void push(Card pCard) { ... } 

public boolean canMoveTo(Card pCard) { 
assert pCard != null; 
if (isEmpty()) { 
return pCard.rank() == Rank.ACE; 

} 
else { 
return pCard.suit() == peek().suit() && 
pCard.rank().ordinal() == 
peek().rank().ordinal() + 1; 

} 
} 

} 

As our first test, we will keep things small and only test for the case where the 
pile is empty and the result should be false:
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public class FoundationPileTest { 
@Test 
void testCanMoveTo_Empty_ReturnsFalse() { 
FoundationPile emptyPile = new FoundationPile(); 
Card threeOfClubs = Card.get(Rank.THREE, Suit.CLUBS); 
assertFalse(emptyPile.canMoveTo(threeOfClubs)); 

} 
} 

This test respects our five desired properties. It will execute with lightning speed, 
be independent from any other test that could exist, and is not affected by any en-
vironment properties. It is also focused, not only on a single method, but also on a 
specific input and return value combination for the method. Finally, many proper-
ties of this test add to its readability. First, the name of the test encodes the name 
of the focal method, the input of interest (an empty pile) and the expected value 
(false). Second, the names of the variables describe their content. Finally, the asser-
tion statement is self evident. Reading the last line of the test, we see that calling 
canMoveTo with a Three of Clubs on an empty pile is expected to return false. We 
can then use the same clean structure to create a test for the case where canMoveTo 
should return true on an empty pile simply by replacing the input card with an ace, 
changing the assertion method to assertTrue, and updating the name of the test in 
consequence. 

Test Fixtures 

So far, we are only testing cases that involve an empty pile, which has limited cov-
erage. In other words, our tests only exercise the true branch of the if statement, so 
part of the method’s logic remains untested. This issue will be further discussed in 
Section 5.9. For now, let us mitigate this limitation by writing an additional test in 
the same class 

@Test 
void testCanMoveTo_NotEmptyAndSameSuit_ReturnsFalse() { 

FoundationPile pile = new FoundationPile(); 
Card aceOfClubs = Card.get(Rank.ACE, Suit.CLUBS); 
pile.push(aceOfClubs); 
Card threeOfClubs = Card.get(Rank.THREE, Suit.CLUBS); 
assertFalse(pile.canMoveTo(threeOfClubs)); 

} 

This test improves the test suite by adding to the coverage. However, we already 
note a lot of redundant code between this test and the previous ones we have written, 
including the code to instantiate FoundationPile and the code to create cards. If 
we had, say, 20 tests, this would add up to a lot of clutter. In test classes that group 
multiple test methods, it will often be convenient to define a number of default 
objects or values to be used as receiver objects, explicit parameters, and/or oracles. 
This practice helps limit the problem of DUPLICATED CODE† in test classes.
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Baseline objects used for testing are often referred to as a test fixture, and de-
clared as fields of a test class. However, for the reasons discussed above, and in 
particular because JUnit provides no ordering guarantee for test execution, it is cru-
cial to preserve test independence. This implies that no test method should rely on 
the fixture being left in a given state by another test. Conveniently, JUnit 5 will, by 
default, instantiate a fresh version of the test class before running any test method. 
For this reason, the values of the fields of the test class will contain their initial value 
when any test executes.4 Of course, immutable objects do not need to be reinitial-
ized, so they can be stored as static fields of the class. The code below shows an 
improved version of our test class, which now uses a test fixture. 

public class FoundationPile Test { 
private static final Card ACE_CLUBS = 

Card.get(Rank.ACE, Suit.CLUBS); 
private static final Card TWO_CLUBS = 

Card.get(Rank.TWO, Suit.CLUBS); 
private static final Card THREE_CLUBS = 

Card.get(Rank.THREE, Suit.CLUBS); 

private final FoundationPile aPile = new FoundationPile(); 

@Test 
void testCanMoveTo_Empty_ReturnsFalse() { 

assertFalse(aPile.canMoveTo(THREE_CLUBS)); 
} 

@Test 
void testCanMoveTo_Empty_ReturnsTrue() { 

assertTrue(aPile.canMoveTo(ACE_CLUBS)); 
} 

@Test 
void testCanMoveTo_NotEmptyAndSameSuit_ReturnsFalse() { 

aPile.push(ACE_CLUBS); 
assertFalse(aPile.canMoveTo(THREE_CLUBS)); 

} 
} 

This code not only avoids duplication, but also increases the readability of the tests 
by decluttering them. The only regression in test readability is due to the fact that, 
by using a field to refer to the pile, we lose our flexibility to name the pile with a 
variable name that describes its state. In this context, this is a small price to pay for 
the benefit of using the fixture. Although it would always be possible to alias the 
aPile field into an appropriately named variable (e.g., emptyPile), it is not clear 
that this would necessarily improve readability, because aliasing can also hinder 
code comprehension. 

4 As an alternative, it is possible to reuse an instance of the test class for multiple tests, but to 
nominate a method of the test class to execute before any test method, and initialize all the required 
structures afresh. These features are available in JUnit via different annotations.



5.6 Testing Exceptional Conditions 111

Code Exploration: Solitaire · FoundationsTest 
Testing an aggregate class in practice. 
Most of the examples in this chapter are simplified versions adapted 
from the test suite of the Solitaire sample application. In Solitaire, class 
FoundationsTest provides a complete example of test code for a collec-
tion of stack-like structures. Instead of a FoundationPile class with four 
instances, the design involves a single Foundations class that stores the 
four piles in one object and indexes each pile using the enumerated type 
FoundationPile. The rest is very similar to the example in the chapter. Test 
class FoundationsTest includes tests for canMoveTo that achieve complete 
branch coverage. Because the class under test, Foundations, makes heavy 
use of design by contract, there is no need for testing exception handling be-
havior. 

5.6 Testing Exceptional Conditions 

An important point when writing unit tests is that what we are testing is that the 
unit under test does what it is expected to. This means that when using design by 
contract, it does not make sense to test code with input that does not respect the 
method’s preconditions, because the resulting behavior is unspecified. For example, 
let us consider a version of method peek of class FoundationPile (introduced in 
the previous section) which returns the top of the pile. 

class FoundationPile { 
boolean isEmpty() { ... } 
/* 
* @return The card on top of the pile. 

* @pre !isEmpty() 

*/ 
Card peek() { ... } 

} 

The documented precondition implies that the method cannot be expected to fulfill 
its contract (to return the top card) if the precondition is not met. Thus, if we call the 
method on an empty pile, there is no expectation to test. The situation is different, 
however, when raising exceptions is explicitly part of the interface. Let us consider 
the following slight variant of method peek():
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class FoundationPile { 
boolean isEmpty() { ... } 
/* 
* @return The card on top of the pile. 

* @throws EmptyStackException if isEmpty() 

*/ 
Card peek() { 
if (isEmpty()) { 
throw new EmptyStackException(); 

} 
/* ... */ 

} 
} 

In this case, calling peek on an empty pile should result in an EmptyStackExcep-
tion. This is part of the specified, expected behavior. If no exception is raised when 
called on an empty pile, then the peek() method does not do what is expected, and 
this means it is faulty. We should have a test to detect this potential fault. 

With JUnit 5, the standard way to check that a method call raises the expected 
exception is to use the assertThrows assert method. This method takes as argu-
ment an instance of class Class that represents the expected exception type, and 
an instance of a subtype of the library interface Executable that executes the code 
expected to cause the exception. This programming idiom thus requires the use of a 
function object, as described in Section 3.4. 

@Test 
void testPeek_Empty() { 

assertThrows(EmptyStackException.class, new Executable() { 
public void execute() throws Throwable { 

aPile.peek(); 
} 

}); 
} 

In this example, I used an anonymous class to define the behavior of method 
execute which, in this case, calls peek on an empty pile. The reason this seem-
ingly complicated setup is required is that we need our exception-causing code to 
execute within the execution of assertThrows. For this reason, we pass in a func-
tion object of type Executable. When assertThrows executes, it calls execute() 
on its second argument, which normally triggers the exception. 

In practice, lambda expressions are typically used with assertThrows. Lambda 
expressions were briefly introduced in Section 3.4, and will be covered in detail 
in Chapter 9. With a lambda expression, the use of assertThrows is much more 
compact: 

@Test 
void testPeek_Empty_LambdaExpression() { 

assertThrows(EmptyStackException.class, () -> aPile.peek()); 
}
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Code Exploration: JetUML · TestDiagramType 
Testing exception handling behavior. 
Class TestDiagramType contains examples of the use of assertThrows. 
According to the specification of method fromName, if the user at-
tempts to retrieve an invalid diagram type, the test will check that an 
IllegalArgumentException is raised as expected. Looking at the imple-
mentation of method fromName, one would notice that it is robust enough 
to handle a null input in exactly the same way as an invalid non-null input. 
Why write two distinct tests, then? I made this decision to clarify the behavior 
for null inputs and to guard against future modifications that could alter this 
behavior. 

5.7 Encapsulation and Unit Testing 

If we locate unit tests in the same package as the code they are testing, as described 
in Section 5.3, then the tests have access to all fields and methods of the corre-
sponding classes, except for private members. However, there are situations where 
test code may need access to private fields or methods, either to write assertions 
verifying the outcome of a test, or to test private methods. 

For example, let us consider that the interface to class FoundationPile (see 
Section 5.5) does not include a method size() to return the number of cards in the 
pile. Presumably, because FoundationPile does not have a size() method, and 
following the principle of information hiding, we can assume that no part of the 
production code needs this information. However, in unit tests, we might want to 
check that the size of the pile changes as we push cards onto it. As for testing private 
methods, a major obstacle is quite simply that we cannot call private methods of 
other classes directly from test code. How can we deal with such situations? There 
are three main approaches to accessing private members in the context of testing. 

A first approach, which I refer to as the hard line, is to strictly respect the tight 
encapsulation of the design and to work around it to the extent possible. In some 
cases, it might be possible to access some of the private state of an object indirectly 
through the accessible methods. For example, in the case of the FoundationFile 
mentioned above, we can discover the size of the pile by popping all cards from a 
pile into a list and then restoring the cards into the pile. In our testing code, we can 
thus implement our own helper method to obtain the size of a pile:
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private static int size(FoundationPile pPile) { 
List<Card> cards = new ArrayList<>(); 
while (!pPile.isEmpty()) { 
cards.add(pPile.pop()); 

} 
int size = cards.size(); 
while (!cards.isEmpty()) { 
pPile.push(cards.removeLast()); 

} 
return size; 

} 

In fact, if the testing class needs only a single FoundationPile instance as a tar-
get object for testing, then it is possible to make this instance part of the scaffolding 
and convert our helper method into an instance method of the test class (by referring 
to a field aPile instead of a formal parameter). Either way, we can now learn about 
the state of the object without weakening its encapsulation. With the hard line ap-
proach, however, it is simply not possible to test private methods directly. Instead, 
private methods have to be tested indirectly, by virtue of testing the accessible meth-
ods that rely on them. Some experts argue that this is the proper approach, because 
private methods are internal elements of other, accessible methods, and therefore 
are not really units that should be tested. However, this hard line approach results in 
a loss of opportunities for testing small methods in isolation. There can exist situa-
tions where some nontrivial computation is neatly abstracted in a method restricted 
to a class’s scope (i.e., made private), yet it remains worthwhile to ensure it meets 
our expectations. 

A second approach is to weaken the encapsulation of the production code for 
the purpose of testing. This would typically mean removing the private access 
modifier for methods, and thus giving the necessary method default visibility, which 
makes them accessible to all other classes within the same package (see Section 2.3). 
In our example, this could mean adding a new method size() with default visibility 
to the FoundationPile class, along with removing the private modifier for any 
method that should be tested in isolation. Methods made visible for testing should be 
documented as such, ideally by using an annotation (see Section 5.4). Unfortunately, 
weakening the quality of the encapsulation for the purpose of testing has a negative 
impact on the quality of the encapsulation as a whole. Unless the class members 
made visible for testing are carefully identified and only referred to from test code, 
the risk is that other classes may come to depend on them, introducing additional 
dependencies and making the design more fragile and difficult to understand. 

A third approach is to use metaprogramming to get around access restrictions in 
test code. For the sake of discussion, let us assume that class FoundationPile also 
has a private method getSuit() that returns the suit of the cards in the pile, and 
that we would like to test it separately. 

private Suit getSuit() { 
assert !isEmpty(); 
return aPile.getFirst().suit(); 

}
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In our test code, we create a helper method that calls this private method using 
metaprogramming. 

public class TestFoundationPile { 
private FoundationPile aPile = new FoundationPile(); 

private Suit executeGetSuit() { 
try { 
Method method = 

FoundationPile.class.getDeclaredMethod("getSuit"); 
method.setAccessible(true); 
return (Suit) method.invoke(aPile); 

} 
catch (ReflectiveOperationException exception) { 
throw new AssertionError("Reflection error"); 

} 
} 

@Test 
void testGetSuit() { 
aPile.push(ACE_CLUBS); 
assertSame(Suit.CLUBS, executeGetSuit()); 

} 
} 

In the test class, we define a helper method executeGetSuit that launches the ex-
ecution of the unit under test (getSuit()) on an instance aPile, which forms part 
of the test fixture. With this helper method, the code of the corresponding test looks 
mostly normal. However, there is one big difference: the call to executeGetSuit() 
is not a direct call to the unit under test, getSuit(). Instead, the call is to a helper 
method executeGetSuit() that uses metaprogramming to call the unit under test 
while bypassing the access restriction of the private keyword. In contrast to weak-
ening encapsulation by removing the private keyword, metaprogramming enables 
access to the private method only at one specific point in the testing code, which 
eliminates the risk that other production code can be made to depend on the method 
of interest. However, this approach results in brittle tests that can break if the asso-
ciated code is refactored. For this reason, it is best employed only when the benefits 
are significant. 

Code Exploration: Solitaire · TableauTest 
Using metaprogramming to access private structures. 
Class Tableau represents the seven piles of cards that fan downwards in 
a game of Solitaire. It defines a private method getPreviousCard(Card) 
that returns the card stacked under the input card in a given pile. Class 
TableauTest provides a working implementation of an invocation of 
getPreviousCard using metaprogramming, along with examples of tests that 
access the private method in this way.
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5.8 Testing with Stubs 

The key to unit testing is to test small parts of the code in isolation. In some cases, 
however, factors can make it difficult to test a piece of code in isolation, for example, 
when the part we want to test: 

• triggers the execution of a large chunk of other code; 
• includes sections whose behavior depends on the environment (e.g., system 

• involves non-deterministic behavior (e.g., randomness). 

Such a case is illustrated in the following design, which is a simplified version 
of the Solitaire example application. The GameModel class has a tryToAutoPlay() 
method that triggers the computation of the next move by delegating the task to a 
strategy which, due to polymorphism, could be any of a number of options (see Fig-
ure 5.5). Here we would like to write a unit test for the GameModel#tryToAutoPlay 
method. 

RandomStrategy SmartStrategyGreedyStrategy

GameModel

«interface»
PlayingStrategy

getLegalMove(GameModelView):Move

aPlayingStrategy 1

Fig. 5.5 Playing strategies in GameModel 

In this task we face at least four problems: 

• Calling the tryToAutoPlay method on an instance of GameModel will delegate 
the call to getLegalMove on a strategy object, which will involve the execution 
of presumably complex behavior to realize the strategy. This does not align well 
with the concept of unit testing, where we want to test small pieces of code in 

• The implementation of the strategy may involve some randomness. 
• We do not know which strategy would be used by the game engine. Yet, we need 

• It is unclear how this is different from testing the strategies individually. 

The way out of this conundrum is to realize that the responsibility of GameModel-
#tryToAutoPlay is not to compute the next move, but rather to delegate this to a 
strategy. So, to write a unit test that tests that the UUT does what it is expected to 
do, we only need to assert that it properly relays the request to obtain a move to a 
strategy. This can be achieved with the help of a stub.
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A stub is a simplified version of an object that mimics its behavior sufficiently 
to support the testing of a UUT that uses this object. Typically, a stub will also 
contain some logging or other instrumentation code to provide information to the 
test that can assist in completing the assertion. To use stubs, we also need a super-
type for classes we wish to create stub objects for. In our case, this is the interface 
type PlayingStrategy. Continuing with our tryToAutoPlay situation, we start 
by defining a stub for the strategy: 
public class GameModelTest { 
static class StubStrategy implements PlayingStrategy { 
private boolean aExecuted = false; 

public boolean hasExecuted() { 
return aExecuted; 

} 

public Move getLegalMove(GameModelView pModelView) { 
aExecuted = true; 
return new NullMove(); 

} 
} 

} 

This strategy does nothing except remember that its getLegalMove method has 
been called, and returns a Move object of type NullMove (an application of the NULL 

OBJECT pattern). We can then use an instance of this stub instead of a real strategy 
in the test. The challenge at this point is to initialize our game model with a stub 
instead of a full-featured strategy. This task will be greatly facilitated by the use of 
dependency injection in the overall design (see Section 3.8). Let us assume that we 
designed the GameModel class to make it possible to inject the desired strategy when 
initializing the class: 
public class GameModel implements GameModelView { 
private final PlayingStrategy aPlayingStrategy; 

public GameModel(PlayingStrategy pStrategy) { 
aPlayingStrategy = pStrategy; 

} 

public void tryToAutoPlay() { 
aPlayingStrategy.getLegalMove(this); 

} 
... 

} 

Then injecting the stub and using it for the assertion is straightforward. 
@Test 
void testTryToAutoPlay() { 
StubStrategy stub = new StubStrategy(); 
GameModel model = new GameModel(stub); 
model.tryToAutoPlay(); 
assertTrue(stub.hasExecuted()); 

}
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In addition to demonstrating the use of stubs for testing, the above example il-
lustrates the benefits of limiting coupling between classes. The fact that GameModel 
does not depend on any concrete playing strategy makes it easier to understand 
and to test, because we can focus solely on the logic of the GameModel. If the 
GameModel class had not provided a mechanism for injecting a strategy, testing the 
tryToAutoPlay method would have been much more difficult. One option would 
have been to rely on reflection to inject the stub but, as discussed in Section 5.7, 
this method is brittle and not generally recommended. In some cases, it can even be 
worth it to refactor code to improve its testability, for example by replacing hard-
coded dependencies by an injection mechanism. This section provided only an in-
troduction to the use of stubs for testing. In practice, the use of stubs can get very 
sophisticated, and frameworks exist to support this task if necessary. 

5.9 Test Coverage 

Up to now this chapter covered how to define and structure unit tests, but avoided 
the question of what inputs to provide to the unit under test. Notwithstanding the 
example of exhaustive testing in Section 5.1, it should be clear that, for the majority 
of UUTs, it is not even physically possible to exhaustively test the input space. 
For example, as discussed in Section 4.2, the number of different arrangements of 
cards that an instance of class Deck can take is astronomical (2.2×1068). Even with 
cutting-edge hardware, testing any of the methods of class Deck for all possible 
inputs (i.e., possible states of the implicit parameter) would take an amount of time 
many times greater than the age of the universe. This is quite incompatible with the 
requirement that unit tests execute quickly (see Section 5.5). 

Hence, we need to select some input out of all the possibilities. This is a problem 
known as test case selection, where test case can be considered to be a set of input 
values for a UUT. For example, an instance of Deck with a single Ace of Clubs in 
the deck is a test case of the method Deck.draw(). The challenge of the test case 
selection problem is to test efficiently, meaning to find a minimal set of test cases 
that provides us a maximal amount of testing for our code. Unfortunately, while 
it is fairly intuitive what a minimal number of test cases is, there is no natural or 
even agreed-upon definition of what an amount of testing is. However, there is a 
large body of research and practical experience on the topic of test case selection 
(see Further Reading for a recommendation). In this section, I only summarize the 
key theoretical tenets and practical insights necessary to get started with test case 
selection. There are two basic ways to approach the selection of test cases: 

• Functional (or black-box) testing tries to cover as much of the specified behav-
ior of a UUT as possible, based on some external specification of what the UUT 
should do. For the Deck.draw() method, this specification is that the method 
should result in the top card of the deck being removed and returned. There are 
many advantages to black-box testing, including that it is not necessary to access
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the code of the UUT, that tests can reveal problems with the specification, and 
that tests can reveal missing logic. 

• Structural (or white-box) testing tries to cover as much of the implemented 
behavior of the UUT as possible, based on an analysis of the source code of the 
UUT. An example is provided below. The main advantage of white-box testing 
is that it can reveal problems caused by low-level implementation details that are 
invisible at the level of the specification. 

Functional testing involves selecting values at meaningful boundaries in the in-
put range given the documented behavior of the UUT. In many cases, this process is 
relatively intuitive (for example, selecting a negative, zero, and positive value for in-
teger inputs, testing with empty data structures, etc.). Coverage of functional testing 
techniques beyond this basis is outside of the scope of this book, so the remainder of 
this section provides a review of the main concepts of structural testing. Let us con-
sider again the implementation of the canMoveTo method of class FoundationPile 
(see Section 5.5), with the assert statement removed to simplify the discussion). 

boolean canMoveTo(Card pCard) { 
if (isEmpty()) { 
return pCard.rank() == Rank.ACE; 

} 
else { 
return pCard.suit() == peek().suit() && 
pCard.rank().ordinal() == peek().rank().ordinal() + 1; 

} 
} 

We can intuitively see that the code structure can be partitioned into different 
parts that might be good to test. First, there is the case where the pile is empty 
(the true part of the if statement), and the case where it is not empty (the else 
block). But then, each of these parts can also be partitioned into different sub-parts, 
for example to cover the case where the cards are in the correct sequence, but of 
different suits. In the general case, things can get hairy, and it is easy to get lost 
without a systematic way to reason about the code. 

One common method for determining what to test is based on the concept of 
coverage. A test coverage metric is a number (typically a percentage) that deter-
mines how much of the code executes when we run our tests. Test coverage metrics 
can be computed by code coverage tools that keep track of the code that gets ex-
ecuted when we run unit tests. This sounds simple, but the catch is that there are 
different definitions of what we can mean by code, in the context of testing. Each 
definition is a different way to compute how much testing is done. Certain software 
development organizations may have well-defined test adequacy criteria whereby 
test suites must meet certain coverage thresholds, but in other cases, the insights 
provided by coverage metrics are used more generally to help determine where to 
invest future testing efforts. The following are three well-known coverage metrics 
(there are many others, see Further Reading).
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Statement Coverage 

Let us start with the simplest coverage metric: statement coverage. Statement cover-
age is the number of statements executed by a test or test suite, divided by the num-
ber of statements in the code of interest. Given the implementation of canMoveTo 
shown above, the following test: 

@Test 
void testCanMoveTo_Empty_ReturnsFalse() { 
assertFalse(emptyPile.canMoveTo(THREE_CLUBS)); 

} 

achieves 2/3 = 67% coverage, because the conditional statement predicate and the 
single statement in the true branch are executed, and the single statement in the 
false branch is not. The logic behind statement coverage is that if a fault is present 
in a statement that is never executed, the tests are not going to help find it. Although 
this logic may seem appealing, statement coverage is actually a poor coverage met-
ric. A first reason is that it depends on the detailed structure of the code. We could 
rewrite the canMoveTo method as follows, and achieve 100% test coverage with 
exactly the same test. 

boolean canMoveTo(Card pCard) { 
boolean result = pCard.suit() == peek().suit() && 
pCard.rank().ordinal() == peek().rank().ordinal()+1; 

if (isEmpty()) { 
result = pCard.rank() == Rank.ACE; 

} 
return result; 

} 

The second reason is that not all statements are created equally, and there can be 
quite a bit that goes on in a statement if this statement involves a compound Boolean 
expression (as is the case of the first statement in the last example). 

Branch Coverage 

Branch coverage is the number of program branches executed by the test(s) divided 
by the total number of branches in the code of interest. In this context, a branch is 
one of the two possible outcomes of a condition (a decision point). Branch coverage 
is a stronger metric than statement coverage in the sense that for the same coverage 
result, more of the possible program executions will have been tested. Unfortunately, 
the concept of branch coverage is ambiguous, due to the different possible interpre-
tations of the term branch. In the code of canMoveTo, there are only two branches 
if we only consider the single if statement. However, both the true and the false 
branches lead to statements that consist of Boolean expressions, which are them-
selves another type of condition because they have to possible outcomes (true or 
false). To be consistent with popular coverage analysis tools, I adopt the defini-
tion that Boolean expressions within statements also introduce branches. Although
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more complex to determine, this definition is also more useful. With this definition, 
the original code of canMoveTo exhibits four conditions: the if, the first return 
statement, the first comparison in the second return statement, and the second com-
parison in the second return statement. Each of these four condition has a true and 
false branch, for a total of eight branches. The only test written so far thus has only 
2/8 = 25% branch coverage. If we add the other two tests shown in Section 5.5 to 
the test suite: 

@Test 
void testCanMoveTo_Empty_ReturnsTrue() { 
assertTrue(aPile.canMoveTo(ACE_CLUBS)); 

} 

@Test 
void testCanMoveTo_NotEmptyAndSameSuit_ReturnsFalse() { 
aPile.push(ACE_CLUBS); 
assertFalse(aPile.canMoveTo(THREE_CLUBS)); 

} 

we get 6/8 = 75%. This is pretty good, but our systematic coverage analysis points 
out that we are actually missing two branches. One of the missing branches is the 
case where the input card has the same suit as the pile and whose rank is immedi-
ately above the rank of the card at the top of the pile. The second missing branch 
is the case where the input card is not of the same suit as the cards in the pile. 
Branch coverage is one of the most useful test coverage criteria. It is well supported 
by testing tools and relatively straightforward to interpret, and also subsumes state-
ment coverage, meaning that achieving complete branch coverage implies complete 
statement coverage. 

Path Coverage 

There are other coverage metrics stronger than branch coverage. For example, one 
could, in principle, compute a path coverage metric as the number of execution 
paths actually executed over all possible execution paths in the code of interest. 
Path coverage subsumes almost all other coverage metrics, and is a very close ap-
proximation of the entire behavior that is possible to test. Unfortunately, in many 
cases, the number of paths through a piece of code will be unbounded, so it will not 
be possible to compute this metric. For this reason, path coverage is considered a 
theoretical metric, useful for reasoning about test coverage in the abstract, but with-
out any serious hope of general practical applicability. Interestingly, the number of 
paths in the code of canMoveTo is actually only five, so, less than the number of 
branches! The path coverage of the three-test test suite above can thus be computed, 
at 3/5 = 60%. Because the structure of the code is without loops, this is not overly 
surprising. However, as soon as loops enter the picture, reasoning about paths be-
comes troublesome.
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Insights 

This chapter described techniques to structure and implement unit tests for a project, 
and argued that unit tests can provide valuable feedback on the design of production 
code. The following insights assume you have decided to adopt unit testing and are 
using a unit testing framework. 

• Every unit test includes the execution of a unit under test (UUT), input data 
passed to the UUT, an oracle that describes what the result of executing the UUT 
should be, and one or more assertions that compare the result of the execution 
with the oracle; 

• Design your unit tests so that they are focused, that is, that they isolate and test a 
small and well-defined amount of behavior; 

• Design your unit tests to run fast, be independent from each other, and be repeat-
able in any computing environment; 

• Design your unit tests to be readable: consider using the name of the test and local 
variables to add clarity about what you are testing and to describe the oracle; 

• Organize your test suite cleanly, with a clear mapping between tests and the code 
units they test. Consider separate source code directories with a parallel package 
structure for production and test code; 

• Metaprogramming is a powerful language feature that allows you to write code 
to analyze other code. However, it must be used with care in production code, 
because it is prone to run-time errors; 

• Type annotations can provide metadata about certain program elements, which 
can then be accessed through metaprogramming; 

• Use test fixtures to structure your testing code cleanly. Remember that tests 
should not make any assumptions about the order in which they are executed; 

• Do not test for unspecified behavior, and in particular for input that does not 
respect a method’s preconditions; 

• Exceptions that can be raised are often an explicit part of a method’s interface, in 
which case the raising of exceptions constitutes behavior that can be tested; 

• Try to avoid weakening the interface of a class only for the purpose of testing. 
Instead, consider writing helper methods in the test class to obtain this informa-
tion. If you must make class members visible for testing, document this decision 
with annotations. An alternative is to use metaprogramming; 

• To isolate the behavior of stateful objects that refer to many other objects, con-
sider using stubs to model the behavior of the component objects and provide 
instrumentation to provide data about the execution of the stubs; 

• Use test coverage metrics to reason about how much of the program’s behavior 
you are testing. Favor branch coverage over statement coverage; 

• Remember that having tests that pass does not guarantee that the code is correct.
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Further Reading 

The book Effective Software Testing: A Developer’s Guide by Maurício Aniche [1] 
provides a comprehensive treatment of testing, including the definition of many test 
coverage metrics. The Java Tutorial [11] provides a good introduction to annotations 
and reflection (Java’s version of metaprogramming). Documentation on how to use 
JUnit is available on the JUnit website.



Chapter 6 
Composition 

Concepts and Principles: Aggregation, composition, delegation, Law of 
Demeter, polymorphic copying, sequence diagram; 
Patterns and Antipatterns: GOD CLASS†, MESSAGE CHAIN† COMPOSITE, 
DECORATOR, PROTOTYPE, COMMAND 

Large software systems are assembled from smaller parts. In object-oriented design, 
parts are connected through two main mechanisms: composition and inheritance. 
Composition means that one object holds a reference to another object and dele-
gates some functionality to it. Although this sounds straightforward, unprincipled 
composition can lead to disorganized code that is hard to understand and change. 
This chapter provides a review of polymorphism and how it can be used to elegantly 
compose objects together by following some well-known design patterns. The sec-
ond way of assembling systems is through inheritance, which is more complex and 
is covered in Chapter 7. 

Design Context 

This chapter draws its code examples from various problems related to the modeling 
of card games. The design problems address requirements at different levels of ab-
straction, from the management of low-level structures to represent a card source, to 
high-level structures that can represent the entire state of a card game. To support a 
discussion of a variety of potential design alternatives, the examples are not limited 
to the context of a Solitaire application, but also consider other usage scenarios. For 
the examples that do target the Solitaire application specifically, knowledge of the 
game terminology will be useful: see Appendix C for definitions of the main game 
concepts and terms and an overview of a game in progress.
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6.1 Composition and Aggregation 

A general strategy for managing complexity in software design is to define larger 
abstractions in terms of smaller ones. This is an application of the general divide and 
conquer problem-solving strategy. In software design, if we want to organize our 
code, data, and computation by separating them in different parts (classes, methods, 
objects, etc.), we need a way to specify how the separate parts interact to form a 
working software application. 

One way to assemble different software parts is through composition. Generally 
speaking, composition means that the functionality available through an object is 
realized through one or more other objects. For example, an object of class Deck, 
which represents a deck of cards, is composed of objects of class Card. In Java, 
composition is typically realized by having one object store a reference to other ob-
jects in instance variables, either directly or through a data structure. The object that 
is composed of other objects is called the aggregate, whereas the objects being ag-
gregated are the (aggregated) elements. For example, a Card object is an aggregate 
of two elements: a Rank object and a Suit object. The result of separating responsi-
bilities across different classes (or, consequently, objects) is called a decomposition. 
In an effective decomposition, an object delegates some of its responsibilities to its 
elements through method calls on the delegate. As a simple example, the responsi-
bility to determine the color of a suit (red or black) can be delegated to the instance 
of the Suit enumerated type, as opposed to being handled directly in class Card 
(see Section 5.1). 

In some cases, aggregation relations in object-oriented design map directly to the 
problem domain. For example, a real-life deck of playing cards is composed of play-
ing cards, and so it is in our design. In other cases, however, the relation between an 
aggregate and its elements is more abstract and it does not have a direct mapping to 
the real world. As an example, we can consider the injection of a PlayingStrategy 
into a GameModel object that represents the state of a game in progress (discussed 
in Section 5.8 and in different Code Exploration paragraphs). In reality, a game of 
Solitaire does not really aggregate a strategy element: that is a decision we make 
to organize code to respect design principles that include loose coupling and sepa-
ration of concerns. The distinction between composition as a parallel to reality vs. 
composition purely as a consequence of the design process spans a spectrum. At one 
end, we have the direct correspondence (e.g., a Deck aggregates instances of Card), 
and at the other we have conceptual abstractions (e.g., a GameModel aggregates a 
PlayingStrategy). Somewhere in the middle, we have decompositions that bor-
row concepts and terminology from the problem domain, but whose abstractions are 
largely based on design decisions. An example of this intermediate level is the rela-
tion between a GameModel and a foundation pile (a pile of cards where finished suits 
are accumulated). Here, the concept and name of a foundation pile are related to a 
real game, but the decision to define a single Foundations class instead of relying 
on four separate FoundationPile instances is largely an arbitrary decision. 

Independently of the criteria used to define classes to achieve composition, the 
corresponding objects end up composed of other objects which can themselves be
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aggregates of objects. Ultimately, many structures in object-oriented programs are 
object graphs that progressively aggregate their elements into more elaborate ob-
jects. Decomposition is crucial to break down a class that would otherwise be too 
big and complex. In object-oriented development, it can be tempting to keep adding 
more of the fields and methods needed to meet some requirements into a single 
class. Because members of a class share private access to each other, little effort is 
initially required to organize the code. However, this opportunistic approach often 
leads to a GOD CLASS†, that is, an unmanageable class that has access to all data and 
can compute everything about it. God classes are a problem because they violate 
practically every major principle of good design. 

GameModel

Deck

Tableau

Foundations

CardStack

aDeck

aFoundations

aTableau

7
4

1aDiscardPile

1

Fig. 6.1 Class diagram of the GameModel. Composition relations are represented using the white 
diamond decoration. The diamond is on the side of the aggregate. 

Let us make this discussion more concrete by studying the GameModel class of 
the Solitaire sample application. Figure 6.1 shows a class diagram of the GameModel. 
The diagram shows how class GameModel is an aggregate of one Deck, one Card-
Stack (the discard pile), one Foundations, and one Tableau. A first thing to ob-
serve is that in this version of the code, instead of having a Deck class aggregate 
Card objects using the List library type, I defined a dedicated type CardStack that 
provides a narrow interface dedicated to handling stacks of cards. The following is 
a partial implementation: 

public class CardStack implements Iterable<Card> { 
private final List<Card> aCards = new ArrayList<>(); 

public void push(Card pCard) { 
assert pCard != null && !aCards.contains(pCard); 
aCards.add(pCard); 

}
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public Card pop() { 
assert !isEmpty(); 
return aCards.removeLast(); 

} 

public Card peek() { 
assert !isEmpty(); 
return aCards.getLast(); 

} 

public void clear() { 
aCards.clear(); 

} 

public boolean isEmpty() { 
return aCards.isEmpty(); 

} 

public Iterator<Card> iterator() { 
return aCards.iterator(); 

} 
} 

Technically, a game of Solitaire is just 13 piles of cards. It would have been pos-
sible to design the game by referring to 13 instances of CardStack in GameModel 
and implement all the game algorithms in the GameModel class. However, this class 
would have been responsible for managing every aspect of every type of pile of 
cards, which would have added up to a lot of code and a complex state space, mak-
ing it difficult to understand and test the class. Instead, the design makes use of 
classes Foundations and Tableau. As shown in the diagram, these two classes ag-
gregate instances of CardStack. Following the principle of separation of concerns, 
we can now move a lot of computation to these classes, and delegate to them when 
necessary. 

For example, class GameModel needs a method isVisibleInTableau(Card) to 
determine whether a card is face up or down in the game tableau. In the design of 
diagram 6.1, these requests would be delegated to class Tableau: 

public boolean isVisibleInTableau(Card pCard) { 
return aTableau.contains(pCard) && aTableau.isVisible(pCard); 

} 

In a class diagram, object composition is represented with an edge decorated with 
a diamond on the side of the class whose objects aggregate instances of the element 
class. The UML notation technically allows the distinction between two types of 
composition: aggregation (white diamond) and composition (black diamond). How-
ever, the difference between these concepts can be murky, and experts disagree on 
how to choose between aggregation, composition, or plain association in UML dia-
grams. I get around the issue by avoiding using the distinction. Because composition 
is often understood to be a stronger form of aggregation, I exclusively use the white 
diamond annotation for all types of aggregation/composition (see Section 3.3).
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Although it is technically possible to compose objects in arbitrary ways simply 
by defining fields and passing object references around, unprincipled use of com-
position can degenerate into code that is difficult to understand. This chapter covers 
different ways to keep a certain amount of organization in the use of composition 
through the use of design patterns. The overarching goal of this chapter, however, 
is to foster a general skill in using composition according to a well-defined design 
plan with a clear underlying rationale. 

Code Exploration: Solitaire · GameModel 
An aggregate object with delegation. 
The design of the Solitaire project is consistent with the diagram of Fig-
ure 6.1. Some methods of class GameModel simply delegate the call to 
their aggregated objects. Examples include getScore(), getSubpile(...), 
getTableauPile, and isVisibleInTableau(...). 

6.2 The COMPOSITE Design Pattern 

As a first principled use of composition, we will consider the situation where we 
would like to have groups of objects behave like a single object. Let us say that we 
are working on a card game that takes as input a source of cards. In Section 3.1, 
I showed how we can use interfaces to decouple the behavior of a source of cards 
from its implementation using interface types. The code below repeats the definition 
of the CardSource interface for convenience. 

public interface CardSource { 
/** 
* Removes a card from the source and returns it. 

* 
* @return The card that was removed from the source. 

* @pre !isEmpty() 

*/ 
Card draw(); 

/** 
* @return true if there is no card in the source. 

*/ 
boolean isEmpty(); 

} 

By relying on this interface and the polymorphism it supports, we can write 
loosely coupled code that can draw cards from any kind of source. The types of 
card sources we can support with this interface are only limited by our imagina-
tion. For example, we could have a card source that consists of multiple decks of 
cards, a card source that contains only the four aces, or only face cards, etc. Or any 
combinations of these schemes (e.g., one deck and four extra aces).
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One way to support all these options is to write one class for each option, with 
each class declaring to implement the CardSource interface: 

public class Deck implements CardSource { ... } 
public class MultiDeck implements CardSource { ... } 
public class FourAces implements CardSource { ... } 
public class FaceCards implements CardSource { ... } 
public class DeckAndFourAces implements CardSource { ... } 

The main characteristic of this design decision is that the set of possible imple-
mentations of CardSource is specified statically (in the source code), as opposed 
to dynamically (when the code runs). Three major limitations of this static structure 
are: 

• The number of possible structures of interest can be very large. As illustrated 
by the fifth definition, DeckAndFourAces, supporting all possible configurations 
leads to a combinatorial explosion of class definitions. 

• Each option requires a class definition, even if it is rarely used. This clutters the 
code unnecessarily, because most implementations would probably look similar. 

• It is very difficult to accommodate the situation where a type of card source 
configuration is needed that was not anticipated before launching the application. 

The above limitations are a consequence of the static nature of the design. A gen-
eral solution is to support an open-ended number of configurations by relying on 
object composition as opposed to class definition. The fundamental idea to support 
this approach is to define a class that represents multiple CardSources while still 
behaving like a single one. This core idea is captured as the COMPOSITE design pat-
tern. Figure 6.2 shows a class diagram of the COMPOSITE applied to the CardSource 
context. 

CardSequence

CompositeCardSource

add(CardSource):void

Component

Leaf
Deck

Composite

Client

«interface»
CardSource

draw():Card
isEmpty():boolean

Only depends on Component

aElements*

Fig. 6.2 Application of COMPOSITE to CardSource 

The diagram shows the application of the pattern, and the roles of each element in 
the solution template are indicated in notes. In this pattern, the three main roles are 
component, composite, and leaf. The composite element has two important features:
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• It aggregates a number of different objects of the component type (CardSource 
in our case). Using the component interface type is important, as it allows the 
composite to compose any other kind of elements, including other compos-
ites. In our application, a composite CardSource can aggregate any kind of 
CardSource: instances of Deck, CardSequence, or anything else that imple-
ments CardSource. 

• It implements the component interface. This is what allows composite objects to 
be treated by the rest of the code in the same way as leaf elements. 

The diagram also captures the important insight that, for the COMPOSITE to be 
effective, client code should depend primarily on the component type, and not ma-
nipulate concrete types directly. 

An example of object graph created through a COMPOSITE design is illustrated by 
the object diagram of Figure 6.3. 

:CardSequence

s2:CompositeCardSource

aElements =

s1:CompositeCardSource

aElements =

Client:

aCardSource=

deck2:Deck

deck1:Deck

Fig. 6.3 Object diagram representing a sample composite CardSource 

When applying the COMPOSITE as part of a design, the implementation of the 
methods of the component interface will generally involve an iteration through all 
the aggregated elements. As a simple example, in the above design, the implemen-
tation of method CompositeCardSource.isEmpty() would be: 

public boolean isEmpty() { 
for (CardSource source : aElements) { 

if (!source.isEmpty()) { 
return false; 

} 
} 
return true; 

} 

In the case of method draw, the behavior is a bit special. Instead of delegating the 
method call to all elements, we only need to iterate until we find one card to draw.
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public Card draw() { 
assert !isEmpty(); 
for (CardSource source : aElements) { 

if (!source.isEmpty()) { 
return source.draw(); 

} 
} 
assert false; 
return null; 

} 

Because CompositeCardSource#draw() is an implementation of the interface 
CardSource#draw(), it has the same preconditions as the interface method. Thus, 
it does not need to deal with the case where a call is made to draw from an empty 
card source, even if this is a composite. In the first line of the method, we assert that 
!isEmpty(). Here, the call to isEmpty() would be to method isEmpty of class 
CompositeCardSource, so the following code could be assumed to always find 
a card to draw.1 This assumption is further indicated with the assert statement, 
which encodes the developer’s assumption that if the precondition is respected, 
the execution should not reach this point. The following return null; statement 
serves no purpose besides making the code compilable. 

When applying the COMPOSITE, an important implementation issue to consider is 
how to add to the composite the instances of the component that it composes. In our 
case, this means that we need a way to specify which CardSource instances form 
the elements of a CompositeCardSource. This can be done in two main ways, each 
with its strengths and weaknesses. 

One way is to provide a method to add elements as part of the composite’s in-
terface. This is the method illustrated in Figure 6.2. In turn, this strategy leads to 
a second design question, which is whether to include the add method in the com-
ponent or not. The more common solution is to not include it in the component, 
but there may be some situations where it makes more sense to include it on the 
interface of the component so that the component and all its children have the same 
interface (see Further Reading). 

The second way to initialize composite objects is through their constructor. For 
example, we could pass a list of card sources as input: 

public CompositeCardSource implements CardSource { 
private final List<CardSource> aElements; 

public CompositeCardSource(List<CardSource> pCardSources) { 
aElements = new ArrayList<>(pCardSources); 

} 
} 

Here we use the copy constructor to avoid leaking a reference to the private col-
lection structure (see Section 2.5). Another option would be to use Java’s varargs 
mechanism to list each card source individually (see Further Reading): 

1 This assumes a single-threaded system. Concurrent programming is outside the scope of this 
book.
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public CompositeCardSource(CardSource... pCardSources) 

The main reason for adopting the “add method” strategy is if we need to modify 
the state of the composite at run time. However, this comes at a cost in terms of 
design structure and code understandability, because we need to deal with a more 
complex life-cycle for the composite object and have to manage the difference be-
tween the interface of the component (which does not have the add method) and 
the one of the composite (which does). If run-time modification of the composite is 
not necessary, then it is likely a better option to initialize the composite once and 
leave it as it is. In the context of the CardSource example, it would not result in an 
immutable composite (we still draw cards), but in other contexts immutability may 
be an additional advantage. 

Some practical aspects related to using the pattern are independent from the 
structure of the pattern itself. These include: 

• The location of the creation of the composite in client code; 
• The logic required to preserve the integrity of the object graph induced by this 

design. 

Because these concerns are context-dependent, their solution will depend on the 
specific design problem at hand. However, it is important to be aware that simply 
creating a well-designed composite class is not sufficient to have a correct appli-
cation of the COMPOSITE. For example, with the design of Figure 6.2, it could be 
possible to write code that results in the object graph of Figure 6.4. However, this 
outcome is undesirable, because the shared deck instance between s1 (source 1) and 
s2 and the self-reference in s2 would lead to unmanageable behavior. 

s2:CompositeCardSource

aElements =

deck1:Deck

s1:CompositeCardSource

aElements =

Client:

aCardSource=

Fig. 6.4 Object diagram showing an abused design for a composite CardSource
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6.3 Sequence Diagrams 

The use of composition in software design implies design decisions that have to 
do with how objects collaborate with each other. This means that the impact of 
composition-related design decisions is reflected on how objects end up calling each 
other.2 We can contrast this to more static design decisions, which have to do with 
how classes depend on each other. For example, an important consequence of the use 
of the COMPOSITE for CardSource is that to determine if a CompositeCardSource 
is empty, we need to call isEmpty() on some, and possibly all, of its elements. 

It can sometimes be helpful to model certain design decisions related to call 
sequences. With the UML, this is accomplished through sequence diagrams. Just 
like object diagrams and state diagrams, sequence diagrams model the dynamic 
perspective on a software system. Like object diagrams and as opposed to state 
diagrams, sequence diagrams represent a specific execution of the code. They are the 
closest representation to what one would see when stepping through the execution 
of the code in a debugger, for example. 

To introduce sequence diagrams, and bring home the point that the COMPOSITE 

pattern is really a way to organize how objects interact, Figure 6.5 shows a sequence 
diagram that models a call to isEmpty() on an instance of CompositeCardSource. 

:client :CompositeCardSource :Deck :CompositeCardSource :Deck :Deck

isEmpty()

isEmpty()

true

isEmpty()

isEmpty()

isEmpty()

true

false

false

false

Fig. 6.5 Sequence diagram for a call to isEmpty() on a CompositeCardSource 

Each rectangle at the top of the diagram represents an object. An object in a 
sequence diagram is also referred to as an implicit parameter, because it is the ob-

2 Objects calling each other is a linguistic shortcut. The precise, but more cumbersome, phrasing 
would be code of a method with a given implicit argument calling methods with other objects as 
implicit arguments.



1356.3 Sequence Diagrams

ject upon which a method is called. Consistently with other UML diagrams that 
represent the system at run time, the object names are underlined and follow the 
convention name:type as necessary. Here I did not specify a type for the client be-
cause it does not matter, and did not specify a name for any of the other objects 
because it does not matter either. 

In the diagram, we observe the recursive descent through an instance of Composi-
teCardSource. This information cannot be captured in a class diagram, because the 
notation does not support the specification of the behavior of the different methods, 
even at an abstract level. This diagram complements the class diagram of Figure 6.2 
by showing a dynamic aspect of the design that is invisible on the class diagram. 

The dashed vertical line emanating from an object represents the object’s life 
line. The life line represents the time (running from top to bottom) when the object 
exists, that is, between its creation and the time it is ready to be garbage-collected. 
When objects are placed at the top of the diagram, they are assumed to exist at the 
beginning of the scenario being modeled. The diagram thus shows an interaction 
between a client object and an instance of CompositeCardSource and all of its 
component objects. How these objects were created is an example of details left 
unspecified by a particular diagram. 

When representing the type of an object in a sequence diagram, there is some 
flexibility in terms of what type to represent in the object’s type hierarchy. We can 
use the concrete type of the object or one of its supertypes. As usual when modeling, 
we use what is the most informative. Here, the CompositeCardSource and Deck 
objects are represented using their concrete type because the only other option is 
CardSource, which makes the information in the diagram less self-explanatory. 

Messages between objects typically correspond to method calls. Messages are 
represented using a directed arrow from the caller object to the called object. By 
called object I mean the object that is the implicit parameter of the method call. 
Messages are typically labeled with the method that is called, optionally with some 
label representing arguments, when useful. When creating a sequence diagram that 
represents an execution of Java code, it is likely to be a modeling error if a message 
incoming on an object does not correspond to a method of the object’s interface. 
Constructor calls are modeled as special messages with the label «create». 

Messages between objects induce an activation box, which is the thicker white 
box overlaid on the life line. The activation box represents the time when a method 
of the corresponding object is on the execution stack (but not necessarily at the top 
of the execution stack). 

It is also possible to model the return of control out of a method back to the 
caller. This is represented with a dashed directed arrow. Return edges are optional. 
I use them to aid understanding when there are complex sequences of messages, or 
to give a name to the value that is returned to make the rest of the diagram more 
self-explanatory. Here, for example, I included return edges to provide the rationale 
for subsequent calls in the sequence (given that the execution terminates as soon as 
isEmpty() returns false). 

To explore some of the additional modeling features of sequence diagrams and 
their potential, let us model the use of an iterator in the ITERATOR pattern (see Sec-
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tion 3.6). Figure 6.6 shows the class diagram of the specific application of ITERATOR 

I later model with a sequence diagram. 

Deck

draw():Card
shuffle():void
iterator():Iterator<Card>

Card
«interface»

Iterable<Card>

iterator():Iterator<Card>

«interface»
Iterator<Card>

hasNext():boolean
next():Card

Client CardStack

*

Fig. 6.6 Class diagram of the iterable Deck 

This diagram shows a version of the Deck class that relies on a user-defined type 
CardStack to store cards. Both the Deck and the CardStack are iterable. The client 
code, represented as class Client, can refer to instances of class Deck as well as the 
iterators they return. 

Let us look at what happens when the client code makes a call to Deck#itera-
tor(). Figure 6.7 is the sequence diagram that models a specific execution of 
Deck#iterator() within client code. The names of model elements are provided 
as notes on the diagram. 

The iterator() message to a Deck instance leads to the call being delegated 
to the CardStack instance. The CardStack instance is responsible for creating the 
iterator. It is also possible to show the creation of an instance by placing it lower 
in the diagram, as in the case here for the Iterator object. The label iterator is 
used on the return edge from both iterator() calls to show (indirectly) that it is 
the same object being propagated back to the client. In this diagram I also included 
a return edge from the next() method and labeled it nextCard to show that the 
returned object is the one being supplied to the subsequent self-call (a method called 
on an object from within a method already executing with this object as implicit 
parameter). 

In terms of representing types, here the Deck object is represented using its con-
crete type, but the label deck:Iterable<Card> would have been a valid option as 
well. For the Iterator object I used the interface supertype because in practice the 
concrete type of this object is anonymous and, as such, it does not matter. 

The distinction between models and complete source code applies to sequence 
diagrams as well. First, a sequence diagram models a specific execution, not all exe-
cutions. In the above example, a different execution could have received false from 
hasNext() and not called next(), or called next() twice, etc. These options are 
not represented, because they are different scenarios. Second, sequence diagrams 
will naturally omit some details of the execution of the code. We use sequence di-
agrams to show how objects interact to convey a specific idea. Although the UML
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:Iterator<Card>

Deck:

Self-call

Object
(implicit parameter)

Message
(method call)

client:

Constructor call

:CardStack

Lifeline

Method return

iterator()

iterator()

«create»

iterator

iterator

iterator

hasNext()

true

next()

nextCard

showCard(nextCard)

Fig. 6.7 Sequence diagram of an iteration through a Deck object 

supports the specification of looping and conditional statements within a method, 
these are typically not included in UML sketches and I do not use this notation in 
the book. Asynchronous calls (which are shown using a half arrow head), are also 
not covered. Insignificant calls (e.g., to library methods) are typically omitted from 
sequence diagrams in sketches. 

6.4 The DECORATOR Design Pattern 

In some cases we would like to have objects of a given type to exhibit special be-
havior, or have certain extra features. In the example of a CardSource, we could 
imagine that in some cases we might want to print a description of each card drawn 
on the console or in a file (a process called logging). As another example, we might 
want to keep a reference to every card drawn from a certain source (i.e., memorizing 
the drawn cards). One strategy for meeting this requirement is to enhance the static 
structure of the design to accommodate the new features. In other words, we can 
provide additional functionality by writing more classes that have that functionality. 
Let us consider two possible design solutions for doing this. 

Our first solution, which I will call the specialized class solution, will be to de-
sign one class for each type of feature we want to support. For example, to have
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a CardSource that logs cards drawn, we could define our own special version of 
Deck: 

public class LoggingDeck implements CardSource { 
private final CardStack aCards = ... 

public Card draw() { 
Card card = aCards.pop(); 
System.out.println(card); 
return card; 

} 

public boolean isEmpty() { 
return aCards.isEmpty(); 

} 
} 

Similarly, to have a version of Deck that remembers the cards drawn, we could 
create a new class MemorizingDeck that stores a reference to every drawn card in a 
separate structure. Although a strategy that relies on the static structure could work 
in simple cases, it has several drawbacks. 

The main drawback of the specialized class idea is that it offers no flexibility for 
toggling features on and off at run time. In other words, it is not easily possible to 
turn a normal deck into a “memorizing” deck, or to start logging the cards drawn 
at some arbitrary point in the execution of the code. In Java, it is not possible to 
change the type of an object at run time, so the only option would be to initialize 
a new object and copy the state of the old object into a new object which has the 
desired features. Such a scheme is not very elegant. However, turning features on or 
off might be necessary if the user interface allows the player to turn these features 
on or off during game play. 

We can consider a second solution that can accommodate run-time adjustments 
in the features of an object. I will call this solution the multi-mode class solution. 
With this solution, we provide all possible features within one class, and include 
a flag value to represent the mode the object of the class is in. The resulting code 
would look like this: 

public class MultiModeDeck implements CardSource { 
enum Mode { 
SIMPLE, LOGGING, MEMORIZING, LOGGING_MEMORIZING 

} 
private Mode aMode = Mode.SIMPLE; 

public void setMode(Mode pMode) { /* ... */ } 

public Card draw() { 
if (aMode == Mode.SIMPLE) { /* ... */ } 
else if (aMode == Mode.LOGGING) { /* ... */ } 
/* ... */ 

} 
}
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Although the multi-mode class solution does allow one to toggle features on and 
off at run time, it contravenes the important principles presented in Chapter 4 by 
inducing elaborate state spaces for objects that should otherwise be fairly simple. 
It also violates the principle of separation of concerns by tangling the behavior of 
different features within one class, or even a single method. In the extreme, it can 
turn a class intended to represent a simple concept into a GOD CLASS†. As a conse-
quence of its complexity, the multi-mode class solution also suffers from a lack of 
extensibility. To add a new feature, we need to add yet more code and branching 
behavior to account for new modes. With, say, ten features, we can imagine how 
the code would become a nightmarish case of SWITCH STATEMENT†. As is often the 
case in the presence of a potential combinatorial explosion, the key is to move from 
a solution that relies on defining new classes to a solution that relies on combining 
objects. 

The DECORATOR design pattern offers just that solution. The context for using the 
pattern is when we want to decorate some objects with additional features, while 
being able to treat the decorated objects like any other object of the undecorated 
type. Figure 6.8 shows an application of the solution template of DECORATOR to the 
CardSource scenario. The diagram shows the roles played by different elements as 
notes. 

Decorator

«interface»
CardSource

draw():Card
isEmpty():boolean

CardSequence

MemorizingDecorator

MemorizingDecorator(CardSource)

Deck
Leaf

Component

Leaf

LoggingDecorator

LoggingDecorator(CardSource)

Decorator

aElement 1 aElement1

Fig. 6.8 A sample application of DECORATOR 

In terms of solution template, the DECORATOR looks very much like the COMPOS-
ITE, except that instead of a composite class we have some decorator classes. Indeed, 
the design constraints of the decorator class are similar as those of the composite 
class: 

• A decorator aggregates one object of the component interface type (CardSource 
in the example). Using the component interface type is important, as it allows the 
decorator to decorate any other kind of components, including other decorators 

• It implements the component interface. This is what allows decorator objects to 
be treated by the rest of the code in the same way as leaf elements.
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The main question to resolve when applying the DECORATOR is what the methods 
of the decorator class should do. In a classic use of the DECORATOR, the implemen-
tation of the interface’s methods that implement the decoration involves two steps, 
illustrated in the code below: 

public class MemorizingDecorator implements CardSource { 
private final CardSource aElement; 
private final List<Card> aDrawnCards = new ArrayList<>(); 

public MemorizingDecorator(CardSource pCardSource) { 
aElement = pCardSource; 

} 

public boolean isEmpty() { 
return aElement.isEmpty(); 

} 

public Card draw() { 
// 1. Delegate the original request to the decorated object 
Card card = aElement.draw(); 
// 2. Implement the decoration 
aDrawnCards.add(card); 
return card; 

} 
} 

One step is to delegate the execution of the original behavior to the element being 
decorated. In our case, we call draw() on the original card source (the one being 
decorated). The other step is to implement the “decoration”, which in our case is to 
add the card to some internal structure. There is no prescribed order for these two 
steps, although in some case the problem domain may impose an order. In our case, 
it is necessary to draw a card before we can add it to the internal storage. Finally, 
although only some methods may involve a behavioral decoration, it is necessary 
to re-route all methods declared in the component interface to respect the subtyping 
contract. In our case, this means that we have to implement a method isEmpty() 
that simply returns whether the decorated element is empty. 

With the DECORATOR, we can easily combine decorations. Because a decora-
tor aggregates a component, combining features becomes as simple as decorat-
ing a decorated object. The sequence diagram of Figure 6.9 illustrates the del-
egation sequence when using a DECORATOR where we decorated a Deck with a 
MemorizingDecorator, and then again with a LoggingDecorator, so that the fi-
nal behavior of draw() will be to memorize, log, and return the next card in the card 
source. 

An important constraint when using the DECORATOR is that for the design to work, 
decorations must be independent and strictly additive. The main benefit of the DEC-
ORATOR is to support attaching features in a flexible way, sometimes in unanticipated 
configurations. For this reason, use of the pattern should not require client code to 
respect elaborate combination rules. As for being additive, this means that the DEC-
ORATOR pattern should not be used to remove features from objects. The main reason



1416.4 The DECORATOR Design Pattern

:LoggingDecoratorclient: :MemorizingDecorator :Deck

draw()

draw()

draw()

card

card

card

Fig. 6.9 Sequence diagram modeling a call to draw on a decorated Deck 

for this constraint is that it would violate a fundamental principle of object-oriented 
design introduced in Chapter 7. 

When implementing the DECORATOR design pattern in Java, it is a good idea to 
specify as final the field that stores a reference to the decorated object, and to 
initialize it in the constructor. A common expectation when using the DECORATOR is 
that a decorator object will decorate the same object throughout its lifetime. 

Finally, an important consequence of decorating objects using the DECORATOR is 
that decorated objects gain a different identity. In other words, because a decorator 
is itself an object that wraps another object, a decorated object is not the same as 
the undecorated object. Figure 6.10 illustrates this change in identity for a simple 
CardSource decoration. In this diagram, we see that the client code holds a refer-
ence to a Deck instance we call deck in a variable source1, and a reference to a 
decorated version of deck in source2. Although source1 and source2 concep-
tually refer to the same card source, the decorated version does not have the same 
identity as the undecorated version. In other words, source1 != source2. This 
issue of identity change could be a problem in a system where object comparison 
relies on identity instead of equality. In this case, introducing the DECORATOR pattern 
could break the design. See Section 4.6 to review the implications of object identity. 

deck:Deck

client:

source1 =

source2 =

:LoggingDecorator

aElement =

Fig. 6.10 Object diagram of a decorated Deck
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6.5 Combining COMPOSITE and DECORATOR 

Although the DECORATOR and COMPOSITE patterns are distinct, decorator and com-
posite classes can easily co-exist in a type hierarchy. If they implement the same 
component interface, they can work hand-in-hand in supporting composition-based 
solutions to design problems. The class diagram of Figure 6.11 shows a type hierar-
chy with one leaf, one composite, and two decorators. 

«interface»
CardSource

draw():Card
isEmpty():boolean

Deck

CompositeCardSource

MemorizingDecoratorLoggingDecorator

*

11

Fig. 6.11 Combining the COMPOSITE and DECORATOR in the same class hierarchy 

The diagram of Figure 6.12 shows a sample object graph that can be induced by 
this type hierarchy. The diagram shows examples of both a decorated composite and 
a composite of a decorated object. 

client:

source =

:CompositeCardSource

aElements =

:LoggingDecorator

aElement =

:Deck

:Deck
:MemorizingDecorator

aElement =

Fig. 6.12 Object diagram showing a combination of composite and decorator objects 

Although, in this chapter, I developed the running example of various design 
options for a card game, it is good to know about the classic scenario supported by 
the COMPOSITE and DECORATOR patterns. A design context that is a particularly good 
fit for these patterns is the development of some drawing feature (e.g., for a drawing 
tool or slideshow presentation application). In this scenario, the component type is a
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Figure with a draw() method. Leaf classes are concrete figures, such as rectangles, 
ellipses, text boxes, etc. Figure 6.13 shows a class diagram of the domain elements 
and corresponding design structures. 

Drawing

«interface»
Figure

draw():void

EllipseRectangle

CompositeFigure

add(Figure):void
remove(Figure):void

BorderDecorator

BorderDecorator(Figure)

* 1

Fig. 6.13 The COMPOSITE and DECORATOR patterns applied to the context of a drawing editor 

In this design, the CompositeFigure very naturally supports the end-user feature 
of grouping figures into an aggregate figure. A group can then be considered a single 
figure element, which can then be grouped with other figures and groups, etc. As for 
the DECORATOR, it allows decorating figures, literally. The example provided on the 
diagram is that of a decorator that adds a border to the decorated figure, whatever 
it is. This classic application of the COMPOSITE and DECORATOR patterns is good to 
know about, because they also provide the conceptually cleanest illustration of the 
behavior that must be realized by their implementation of the component interface. 
Specifically, the draw() method of the composite is simply an invocation of the 
draw() method of all the figures it contains: 

public void draw() { 
for (Figure figure : aFigures) { 
figure.draw(); 

} 
} 

For the DECORATOR, the implementation of the draw method would be a sequence 
of one delegation followed by a decoration. 

public void draw() { 
aFigure.draw(); 
// Additional code to draw the border 

}
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6.6 Polymorphic Copying 

We are now starting to work with designs that involve various combinations of ob-
jects in elaborate object graphs. The use of such dynamic structures has various 
implications for other aspects of the design. One implication is for object identity 
(see Section 6.4). Another implication is for designs that rely on object copying. 

In Section 2.7, I discussed situations where it is useful to copy some objects, 
and introduced copy constructors, which allow a client to make a copy of an object 
passed as argument: 

Deck deckCopy = new Deck(deck); 

Copy constructors work fine in many situations, but their main limitation is that 
a constructor call requires a static reference to a specific class (here, class Deck). 
In designs that make use of polymorphism, this can turn out to be a problem. Let 
us consider a situation where we are managing a list of CardSource objects. If we 
want to make a deep copy of the list, we would have to make a copy of every card 
source in the list: 

List<CardSource> sources = ...; 
List<CardSource> copy = new ArrayList<>(); 
for (CardSource source : sources) { 
copy.add(/* ??? */); 

} 

Because CardSource is an interface type that must be subtyped and we do not 
necessarily know the concrete types of the objects in the list sources, we do not 
know what copy constructor to call. One clumsy solution would be to use a branch-
ing statement such as this: 

CardSource copy = null; 
if (source.getClass() == Deck.class) { 
copy = new Deck((Deck) source); 

} else if (source.getClass() == CardSequence.class) { 
copy = new CardSequence((CardSequence) source); 

} else if (source.getClass() == CompositeCardSource.class) { 
copy = new CompositeCardSource((CompositeCardSource) source); 

} 
/* ... */ 

Solutions of this nature are not recommended because they essentially void the ben-
efits of polymorphism, namely, to be able to work with instances of CardSource 
no matter what their concrete type is. Moreover, this code is also an example of 
SWITCH STATEMENT† which destroys the extensibility of the design, as it would break 
as soon as a new subtype of CardSource is introduced. Finally, it can be a mess 
to implement because some CardSource classes are wrappers around other card 
sources. Specifically, because CompositeCardSource can aggregate any kind of 
card source, a copy constructor for this class would also need a branching statement 
like the above. In the presence of polymorphism, the use of copy constructors is 
essentially unworkable.
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Instead, what we need is a mechanism that provides us with polymorphic copy-
ing of objects. Specifically, we want to be able to make copies of objects without 
knowing the concrete type of the object. 3 

As usual, to support polymorphic behavior in a design, we need to provide a 
specification of this behavior. This is no different for copying objects, and for this 
purpose we will add a method copy() to our CardSource interface: 
public interface CardSource { 
/* ... */ 

/** 
* @return An object that is an exact deep copy 

* (distinct object graph) of this card source. 

*/ 
CardSource copy(); 

} 

The impact of this addition is that all concrete subtypes of CardSource are now 
required to supply a copy() operation. Figure 6.14 presents some of the different 
cases we have seen so far in previous sections, with their elements that are relevant 
to copying. In this design, we will assume that the Deck class is implemented using 
the class CardStack introduced in Section 6.1. In this scenario, CardStack also has 
a copy constructor. 

CardStack

CardStack(CardStack)

«interface»
CardSource

draw(): Card
isEmpty(): boolean
copy(): CardSource

Deck

copy(): CardSource

MemorizingDecorator

aDrawnCards: List<Card>

MemorizingDecorator(CardSource)
copy(): CardSource

LoggingDecorator

LoggingDecorator(CardSource)
copy(): CardSource

CompositeCardSource

CompositeCardSource(CardSource...)
copy(): CardSource

1 1

*

1

Fig. 6.14 Polymorphic copy requires all implementing classes of a type to supply a copy() oper-
ation 

Implementing copy() for non-recursive structures is straightforward. In our 
case, class Deck is the only non-recursive structure in the design context, so we 
start with this class: 
3 Polymorphic copying is also known as cloning. However, in Java, cloning also refers to a specific 
way to implement polymorphic copying using the library method Object#clone(). Cloning with 
Object#clone() is mainly relevant in the presence of inheritance, and is covered in Chapter 7.
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public class Deck implements CardSource { 
private CardStack aCards = new CardStack(); 
/* ... */ 
public Deck copy() { 

Deck copy = new Deck(); 
copy.aCards = new CardStack(aCards); 
return copy; 

} 
} 

Because the state of Deck is entirely encapsulated by its aggregated CardStack, 
copying the deck amounts to copying its inner CardStack structure. In the example, 
this is done with the help of the CardStack copy constructor. Because a CardStack 
only aggregates immutable Card objects, the copying can stop there. 

One noteworthy aspect of this implementation of copy() is that its return type 
is Deck, not CardSource. This feature, introduced in Java 5, is called a covariant 
return type. This means that the return type of an implementing method can be more 
specific than the return type of the corresponding interface method it implements. 
This is a type-safe way to avoid unnecessary downcasts. In contexts where we are 
directly copying an object of the subtype, we can assign the result to a variable of 
the subtype. 

Deck deck = new Deck(); 

// Without covariant return type 
CardSource copy1 = deck.copy(); 
Deck copy2 = (Deck) deck.copy(); 

// With covariant return type 
Deck copy3 = deck.copy(); 

Without a covariant return type, if we wish to make a copy of an object stored in 
a variable of type Deck, we either have to store the result in a variable of the more 
general type CardSource (as for copy1), or use a downcast (as for copy2). With 
the covariant return type, we can assign a copy of deck to a variable of type Deck 
without the downcast (as for copy3). 

For copying recursive structures, we have the additional problem of ensuring that 
we actually do a recursive copy. Let us start with LoggingDecorator, the simpler 
of the two decorators: 

public class LoggingDecorator implements CardSource { 
private CardSource aSource; 

public LoggingDecorator(CardSource pSource) { 
aSource = pSource; 

} 
/* ... */ 
public LoggingDecorator copy() { 

return new LoggingDecorator(aSource.copy()); 
} 

}
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In the case of a decorator, our copy consists of a new decorator of a copy of the 
original decorated element. However, because decorators can decorate any subtype 
of CardSource, we must copy the decorated element polymorphically. Fortunately, 
the support we need to do this is precisely the one we are implementing throughout 
the CardSource type hierarchy: method copy(). The implementation of copy() 
for MemorizingDecorator is very similar, except that we also have to copy the 
additional state (aDrawnCards): 

public MemorizingDecorator copy() { 
MemorizingDecorator copy = 

new MemorizingDecorator(aElement.copy()); 
copy.aDrawnCards = new ArrayList<>(aDrawnCards); 
return copy; 

} 

Implementing the copy operation for CompositeCardSource is similar. In this 
case, our copy needs a list of copies of all the CardSource instances in the compos-
ite: 

public CardSource copy() { 
CompositeCardSource copy = new CompositeCardSource(); 
for (CardSource source : aElements) { 

copy.aElements.add(source.copy()); 
} 
return copy; 

} 

6.7 The PROTOTYPE Design Pattern 

The ability to copy objects polymorphically, as seen in the previous section, is a 
powerful feature that can be used for a variety of purposes in composition-based 
designs. One specialized use of polymorphic copying is to support polymorphic 
instantiation. Let us consider a simplified model for a card game where, for every 
new game, we need to instantiate a fresh CardSource: 

public class GameModel { 
private CardSource aCardSource; 

public void newGame() { 
aCardSource = /* Instantiate a new CardSource */; 

} 
} 

The implementation of newGame() can be trivial if we hard-code the specific type 
of source to return (for example, new Deck()). However, what if we want to 
make it possible to configure GameModel so that it is possible to use any type of 
CardSource, and to change the default card source at run time? In this case, the 
problems are similar to the ones discussed in the previous section (that the use of a 
SWITCH STATEMENT† structure destroys the benefits of polymorphism, etc.).
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To create a card source without hard-coding its type, one option could be to 
use metaprogramming (see Section 5.4). For example, we could add a parameter to 
newGame() of type Class<T>, which specifies the type of the card source to add. 
Although workable, solutions of this nature tend to be fragile and require a lot of 
error handling. 

Another option is to rely on a polymorphic copying mechanism and create new 
instances of an object of interest by copying a prototype object. This idea is captured 
as the PROTOTYPE design pattern. The context for using the PROTOTYPE is the need to 
create objects whose type may not be known at compile time. The solution template 
involves storing a reference to a prototype object and polymorphically copying this 
object whenever new instances are required. 

For the GameModel scenario, the application of the PROTOTYPE would look like 
this: 

public class GameModel { 
private final CardSource aCardSourcePrototype; 
private CardSource aCardSource; 

public GameModel(CardSource pCardSourcePrototype) { 
aCardSourcePrototype = pCardSourcePrototype; 
newGame(); 

} 

public void newGame() { 
aCardSource = aCardSourcePrototype.copy(); 

} 
} 

Client

Deck
Product

CardSequence

«interface»
CardSource

copy():CardSource

GameModel
PrototypeaCardSourcePrototype 1

Fig. 6.15 Sample application of the PROTOTYPE, with the name of roles indicated in notes 

In this solution, we use dependency injection (see Section 3.8) to inject a card 
source prototype object into the GameModel via its constructor. Then, whenever a 
fresh CardSource object is required, we make a copy of the prototype and assign 
the result to aCardSource. If need be, it would also be possible to add a setter 
method to change the prototype at run time. 

Figure 6.15 shows a class diagram that summarizes the key aspects of the solu-
tion template, and indicates the role various elements play in the application of the 
pattern. The client is any code that needs to perform polymorphic instantiation. The
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prototype is the abstract element (typically an interface) whose concrete prototype 
must be instantiated at run time. The products are the objects that can be created by 
copying the prototype. 

Code Exploration: JetUML · DiagramTabToolBar 
Applying the PROTOTYPE pattern. 
The design of the JetUML tool bar relies on the PROTOTYPE to create new 
nodes in a diagram. The DiagramTabToolBar class aggregates a number of 
SelectableToolButton instances. In turn, these instances aggregate an in-
stance of the Node to create when the button is clicked. When the user presses 
a mouse button on the canvas, the code asks the tool bar to return the prototype 
associated with the button, and copies it to create the new node. Figure 6.16 
shows the main participants in this interaction. 

:DiagramCanvasController optional::DiagramTabToolBar diagramElement:user:

click mouse

mousePressed(...)

handleSingleClick(...)

handleNodeCreation(...)

getCreationPrototype()

optional

get()

diagramElement

clone()

clone

Fig. 6.16 Use of the PROTOTYPE in JetUML
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6.8 The COMMAND Design Pattern 

Conceptually, a command is a piece of code that exercises a cohesive action: saving 
a file, drawing a card from a deck, etc. The way to represent a command in source 
code naturally aligns with the concept of a function or method, since that is an 
abstraction that corresponds to a piece of code that will execute. As an example, we 
can consider the two main state-changing functionalities of a Deck class: to draw a 
card, and to shuffle the cards. To exercise these features, we call methods: 

deck.shuffle(); 
Card card = deck.draw(); 

Now that we are studying designs that make principled use of objects, we con-
sider an alternative idea for representing commands, namely for objects to serve as 
manageable units of functionality. In sophisticated applications, there are many dif-
ferent contexts in which we might want to exercise a functionality such as drawing 
a card from the deck. For example, we might want to store a history of completed 
commands, so that we can undo them or replay them later. Or, we might want to 
accumulate commands and execute them all at once, in batch mode. Or, we might 
want to parameterize other objects, such as graphical user interface menus, with 
commands. Requirements such as these point to the additional need to manage func-
tionality in a principled way. The COMMAND design pattern provides a recognizable 
way to manage abstractions that represent commands. 

The class diagram of Figure 6.17 shows a sample application of the pattern. The 
Command interface defines an execute method and other methods to specify the ser-
vices required by the clients to manage the commands. In the example, this includes 
an additional undo() method, but other designs may leave it out or have other re-
quired services (such as description(), to get a description of the command). 

Fig. 6.17 Application of the 
COMMAND design pattern with 
the name of element roles in 
notes 

ShuffleCommandDrawCommand

Abstract
command

Concrete
command

Client

«interface»
Command

execute():void
undo():void

The COMMAND pattern has a simple solution template. The template involves 
defining commands as objects, with an interface for commands that includes a 
method to execute the command. Another important part of the solution template 
is for the client to refer to commands through the interface. Despite the apparent 
simplicity of the solution template, the COMMAND pattern is not necessarily an easy
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one to apply, because many important design choices induced by the pattern are 
implementation-dependent. Let us look at some examples from our scenario. 

• Access to command target: Executing a command will normally require to 
query, and possibly modify, the state of one of more objects. For example, draw-
ing a card from a deck changes the state of the deck. The design must specify 
how the command gains access to the objects it must act on. Typically this is 
done by storing a reference to the target within the command object, but other 
alternatives are possible, including passing arguments to the execute method or 
using closures; 

• Data flow: In the typical solution template for COMMAND, the interface methods 
have return type void. The design must thus include a provision for returning the 
result of commands that produce an output, such as drawing a card from a deck; 

• Command execution correctness: The code responsible for executing com-
mands must ensure that the sequence of execution is correct. For example, the 
design needs to specify whether commands can be executed more than once. The 
use of design by contract also leads to interesting implications. If commands call 
code with specified preconditions, the responsibility of respecting the precondi-
tions is transferred to the code executing the command. 

• Encapsulation of target objects: In some cases, a command object might re-
quire operations that are not available in the target object’s public interface. For 
example, to undo the effect of calling Deck.draw(), it is necessary to push a 
card back onto the deck. In our running example, class Deck does not have a 
push method. The design must include a solution to this issue. One possibility 
is to have a command factory method located in the class of the object the com-
mands operate on. In our case, this would mean to add a createDrawCommand() 
method in class Deck. 

• Storing data: Some operations supported by commands require storing data, 
something that also needs to be designed as part of applying the pattern. For ex-
ample, in a design context where the undoing of commands is required, the state 
before executing a command may have to be cached so that it can be restored. In 
our case, to undo the drawing of a card from a deck, it is necessary to remember 
which card was drawn. This information could be stored in the command object 
directly, or in an external structure accessible by the command object. 

To illustrate one point in the design space for each of the concerns above, the 
code below shows an example of how to support a command to draw cards from a 
deck. The key idea for this application of the pattern is to use a factory method to 
create commands that are instances of an anonymous class with access to fields of 
its outer instance (see Section 4.9). In this design, commands to operate on a Deck 
instance are obtained directly from the Deck instance of interest. The challenge in 
this scenario is to make it possible to obtain a reference to the card that was drawn 
from the deck as a result of the command. As usual, various solutions are possible. 
For the sake of illustration, I assume that we chose to extend the interface and im-
plementation of class Deck to include a field aLastDrawn of type Optional<Card> 
that stores the last card that was drawn from the deck.
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public class Deck implements CardSource, Iterable<Card> { 
private CardStack aCards = new CardStack(); 
private Optional<Card> aLastDrawn = Optional.empty(); 
/* ... */ 
public Command createDrawCommand() { 
return new Command() { 
Optional<Card> aPreviousLastDrawn = Optional.empty(); 

public void execute() { 
aPreviousLastDrawn = aLastDrawn; 
draw(); 

} 

public void undo() { 
aCards.push(aLastDrawn.get()); 
aLastDrawn = aPreviousLastDrawn; 

} 
}; 

} 
} 

With this code, a new draw command is created, executed, and undone as follows: 

Deck deck = new Deck(); 
Command command = deck.createDrawCommand(); 
command.execute(); 
Card drawn = deck.lastDrawn(); 
command.undo(); 

When command.execute() executes, the code in the anonymous class stores the 
value of the last drawn card before the command is executed. Within the code of the 
anonymous class, the symbol aLastDrawn is a short form for Deck.this.aLast-
Drawn, namely, the corresponding field of the outer instance. Then the code of the 
execute() method simply delegates the call to method draw(), whose target ob-
ject is also the outer instance of type Deck. When a call to undo() is received by 
the command object, it can simply push the deck’s last drawn card back onto the 
top of the underlying CardStack. However, to properly undo the command’s exe-
cution it is also necessary to restore the state of the aLastDrawn field, which is done 
by assigning the value stored in aPreviousLastDrawn to the field. This code also 
assumes that commands are properly managed by the client code, which includes 
undoing commands in the inverse order of that in which they were executed. 

Independently of the specific way the pattern is applied, having command objects 
gives us much flexibility for managing how and when to execute the commands that 
control a software system. 

Code Exploration: Solitaire · Move 
Applying the COMMAND pattern using inner classes. 
The Solitaire example application relies on the COMMAND pattern. The com-
mand role is taken up by the Move interface. The implementations of Move il-
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lustrate a diversity of ways that commands can be realized. Classes CardMove 
and RevealTopMove are private inner classes of GameModel so that they can 
refer to the private fields and methods of their outer instance, as discussed 
in Section 4.9. The command to represent discarding a card from the deck is 
very simple and thus implemented as an anonymous class instantiated as part 
of the initialization of a field aDiscardMove. An alternative option would 
have been to create new instances of a discard move in a factory method. To 
me both options are almost equivalent in terms of design quality. Because it 
does not refer to the state of a GameModel, field NULL_MOVE is a constant and 
declared as static. The null move represents the situation where it is not pos-
sible to make a move in the game. This is an application of NULL OBJECT (see 
Section 4.4). Class CompositeMove realizes the role of the composite in the 
COMPOSITE pattern. In the game it is used to combine atomic moves, such as 
taking a card from a tableau pile and flipping the card underneath it to re-
veal it. Finally, one implementation of Move is a stub, used for testing (see 
Section 5.8). 

Code Exploration: JetUML · DiagramOperation 
Combining the COMMAND and the COMPOSITE patterns. 
In JetUML, DiagramOperation fulfills the role of command. However, in 
this design, there are only two concrete command types: SimpleOperation 
and CompoundOperation. SimpleOperation is a wrapper for a function ob-
ject that can be used to encapsulate any non-compound command using a 
functional-programming flavored design. I revisit this style in Chapter 9. In 
contrast, CompoundOperation is a typical implementation of a composite in 
the COMPOSITE pattern. 

6.9 The Law of Demeter 

When designing a piece of software using aggregation, one can often end up with 
long delegation chains between objects. For example, Figure 6.18 models the ag-
gregation for card piles in the Solitaire application. 

List<Card>FoundationsGameModel CardStack
aFoundations 1 aPiles 4 aCards 1

Fig. 6.18 Aggregation structure for foundation piles in Solitaire
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In this design, a GameModel object holds a reference to an instance of Founda-
tions to manage the four piles of cards of a single suit. In turn, an instance of 
Foundations holds references to four CardStack instances, which are specialized 
wrappers around List objects. 

There are different ways to use such delegation chains. Figure 6.19 illustrates a 
hypothetical way to use the aggregation structure for adding a card to a pile. 

:GameModel cards:List<Card>firstPile:CardStackclient: :Foundations

addCard(card,FIRST)

getPile(FIRST)

firstPile

getCards()

cards

add(card)

Fig. 6.19 Sample data structure access scenario for the Solitaire game design 

In this design, the GameModel is in charge of all the details of adding a card to 
a pile, and must handle every intermediate object in the delegation chain. As an 
example, in this design the implementation of addCard in class GameModel would 
look like this: 

aFoundations.getPile(FIRST).getCards().add(pCard); 

This design violates the principle of information hiding by requiring the code 
of the GameModel class to depend on (i.e., know about) the specific way required 
to navigate the different nested structures necessary to add a card to the system. 
The intuition that designs such as this one tend to be suboptimal is captured by the 
MESSAGE CHAIN† antipattern. The Law of Demeter is a design principle intended to 
help avoid the consequences of MESSAGE CHAIN†. This principle states that the code 
of a method should only access: 

• The instance variables of its implicit parameter; 
• The arguments passed to the method; 
• Any new object created within the method; 
• (If need be) globally available objects. 

To respect this principle, it is necessary to provide additional services in classes 
that occupy an intermediate position in an aggregation/delegation chain so that the
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clients do not need to manipulate the internal objects encapsulated by these objects. 
The solution in our example would be illustrated by Figure 6.20. 

firstPile:CardStackclient: :Foundations cards:List<Card>:GameModel

addCard(card,FIRST)

addCard(card,FIRST)

getPile(FIRST)

push(card)

add(card)

Fig. 6.20 Sample data structure access scenario for the Solitaire game design, which respects the 
Law of Demeter 

In this solution, objects do not return references to their internal structure, but 
instead provide the complete service required by the client at each step in the dele-
gation chain. 

Code Exploration: Solitaire · GameModel 
Widening a class’s interface to respect the Law of Demeter. 
A study of the GameModel class will reveal numerous situations where I 
widened the interface of the class to respect the Law of Demeter. For example, 
method isVisibleInTableau has the single statement: 

return aTableau.contains(pCard) && aTableau.isVisible(pCard); 

As an alternative design, it would have been possible to return the tableau to 
the client (with something like getTableau()), and let the client code imple-
ment the logic directly as: 

if (model.getTableau().contains(pCard) && 
model.getTableau().isVisible(pCard)) 

However, this would require the client to know about the interface of Tableau, 
which violates the Law of Demeter.
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Insights 

This chapter presented various techniques for solving design problems by compos-
ing objects according to specific patterns. 

• Large classes can be simplified by introducing classes whose objects will provide 
services to the initial class; 

• If a design problem requires structures that change at run time or can be com-
bined, consider building the structures by combining objects, as opposed to defin-
ing new classes for each possible structure; 

• Use the COMPOSITE when you need to manipulate collections of objects the same 
way as single (leaf ) objects; 

• Use the DECORATOR when you need to add functionality to certain objects, while 
being able to use them in place of regular objects; 

• The COMPOSITE and DECORATOR can be combined easily if they share the same 
component type; 

• Applying well-known object composition patterns is not sufficient to ensure the 
code is correct: client code remains responsible for ensuring that the use of a 
pattern does not result in a defective object graph; 

• Sequence diagrams can help communicate important arrangements of method 
calls between objects in a design; 

• Use polymorphic copying to make copies of objects whose concrete type is not 
known at compile time. If the type is known at compile time, favor the simpler 
technique of copy constructors; 

• Polymorphic copying can also be used as a way to create fresh instances of ob-
jects whose type is not known at compile time, a technique captured by the PRO-
TOTYPE pattern; 

• For designs where function objects need to be explicitly managed by client code, 
for example to store them or share them between code locations, the COMMAND 

design pattern provides a recognizable solution template; 
• When applying the COMMAND pattern, be careful not to break the encapsulation 

of classes simply to allow command objects to operate on target objects; 
• Unless there is an explicit reason not to, respect the Law of Demeter and avoid 

long message chains. 

Further Reading 

The Gang of Four book [7] has the original treatment of the COMPOSITE, DECORATOR, 
PROTOTYPE, and COMMAND patterns. Their descriptions of the patterns include useful 
complementary discussions of the implications of using the pattern. Information 
on variable arguments (varargs) can be found on the Oracle website in the list of 
enhancements for Java SE 5.0. A web page with information on the Law of Demeter 
can be found at http://www.ccs.neu.edu/home/lieber/LoD.html.



Chapter 7 
Inheritance 

Concepts and Principles: Abstract class, abstract method, cloning, final 
class, final method, inheritance, Liskov Substitution Principle, overload-
ing, overriding; 
Patterns and Antipatterns: TEMPLATE METHOD. 

Inheritance is a programming language mechanism that allows us to create objects 
from definitions provided in multiple, inter-related classes. It is a powerful feature 
that offers a natural solution to many design problems related to code reuse and ex-
tensibility. At the same time, it is a complex mechanism that can easily be misused. 
This chapter provides a review of inheritance and presents the major design rules 
and patterns involving it. 

Design Context 

The examples in this chapter discuss the design of two type hierarchies: card sources 
and game moves. The card source hierarchy follows the examples of the previous 
chapters where instances of objects that are subtypes of a CardSource interface are 
used to provide card instances to be used in card games. The second context is the 
design of a hierarchy of subtypes of an interface Move which, together, realize an 
application of the COMMAND design pattern as seen in Section 6.8. 

7.1 The Case for Inheritance 

So far we have seen many situations where we can leverage polymorphism to re-
alize various design features. Polymorphism helps make a design extensible by de-
coupling client code from the concrete implementation of a required functionality.
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The class diagram of Figure 7.1 exemplifies this benefit by showing a GameModel 
that depends only on a general CardSource service whose concrete realization can 
be one of at least three options: a typical Deck of cards, a MemorizingDeck that 
remembers each card drawn, and a CircularDeck that places drawn cards back at 
the bottom of the deck. 

«interface»
CardSource

draw():Card
isEmpty():boolean

GameModel

MemorizingDeckDeck CircularDeck

Fig. 7.1 Polymorphic reference to a CardSource service 

This design is extensible because the GameModel can work with any card source. 
As discussed in Chapter 3, polymorphism relies intrinsically on the language’s sub-
typing mechanism. The key to supporting various options for a CardSource is the 
fact that the different concrete implementations of the service are subtypes of the 
CardSouce interface type. 

Although the design illustrated is clean from the point of view of polymorphism, 
it has one major weakness from the point of view of the implementation of the var-
ious card source alternatives. This weakness would become apparent as soon as we 
would start to implement the class hierarchy of Figure 7.1. The issue is that the 
services defined by the CardSource interface are similar, and likely to be imple-
mented in similar ways.1 Figure 7.2 shows a slightly different variant of the class 
diagram that emphasizes the implementation of the concrete CardSource subtypes 
instead of the polymorphism. As is now more evident from the diagram, all three 
implementations of CardSource aggregate a CardStack element. Moreover, in all 
cases: 

ntation of method isEmpty() is a delegation to aCards.isEmpty();• the impleme 
• the implementation of method draw() pops a card from aCards: the only dif-

ference between the three options is small variants for the remainder of the im-
plementation of draw (e.g., to insert the card in the deck in the CardStack of 
CircularDeck). 

So here we can say that the design induces DUPLICATED CODE†, also known as 
code clones. There is an extensive literature on the topic of duplicated code, but the 
bottom line is that it is a good idea to avoid it. 

1 This assumes a standard implementation, and not an application of the DECORATOR, which would 
be challenging in the case of CircularDeck because of the requirement to use a service (adding 
cards to the source) that is not defined on the component interface.



1597.1 The Case for Inheritance

CircularDeck

«interface»
CardSource

draw():Card
isEmpty():boolean

MemorizingDeck

Deck

CardStack

aCards

aCards

aCards

Fig. 7.2 Implementations of the CardSource service 

Problems of redundancies such as the one illustrated here can be improved by re-
organizing the design. One mechanism of object-oriented programming languages 
that is especially effective for supporting code reuse (and thus avoiding DUPLICATED 

CODE†) is inheritance. Inheritance directly supports code reuse and extensibility be-
cause it allows us to define some classes in terms of other classes. The key idea 
of inheritance is to define a new class (the subclass) in terms of how it adds to (or 
extends) an existing base class (also called the superclass). Inheritance avoids re-
peating declarations of class members because the declarations of the base class will 
automatically be taken into account when creating instances of the subclass. 

In class diagrams, inheritance is denoted by a solid line with a white triangle 
pointing from the subclass to the superclass. Figure 7.3 illustrates a variant of our 
design where MemorizingDeck and CircularDeck are defined as subclasses of the 
Deck base class. 

Fig. 7.3 Inheritance-based 
design for CardSource

Deck

«interface»
CardSource

draw():Card
isEmpty():boolean

CircularDeckMemorizingDeck



160 7 Inheritance

7.2 Inheritance and Typing 

In Java the subclass-superclass relation is declared using the extends keyword: 

public class MemorizingDeck extends Deck { 
private CardStack aDrawnCards; 

} 

To understand the effects of inheritance in code, it is important to remem-
ber that a class is essentially a template for creating objects. Defining a subclass 
MemorizingDeck as an extension of a superclass Deck means that when objects of 
the subclass are instantiated, the objects will be created by using the declaration of 
the subclass and the declaration of the superclass. The result will be a single ob-
ject. The run-time type of this object will be the type specified in the new operation. 
However, just as for interface implementation, inheritance introduces a suptyping 
relation. For this reason, an object can always be assigned to a variable of its super-
class (in addition to its implementing interfaces). 

Deck deck = new MemorizingDeck(); 
CardSource source = deck; 

In the code above, a new object of run-time type MemorizingDeck is created and 
assigned to a variable named deck of compile-time type Deck. This is legal because 
MemorizingDeck is a subtype of Deck. The second line of the code example shows 
another relation between variables and values of different, yet related, types. The 
code declares a variable of type CardSource and assigns the value of variable deck 
to it. The compile-time type of deck is Deck, which is a subtype of CardSource. 
For this reason, the compiler allows the assignment. At run time, it will turn out that 
the concrete type of deck is MemorizingDeck. However, because MemorizingDeck 
is a subtype of both Deck and CardSource, this is fine. 

In this chapter, the distinction between compile-time type and run-time type will 
become increasingly important. In our case, when an instance of MemorizingDeck 
is assigned to a variable of type Deck, it does not become a simple deck or lose any 
of its subclass-specific fields. In Java, once an object is created, its run-time type 
remains unchanged. All the variable reassignments accomplish in the code above is 
to change the type of the variable that holds a reference to the object. The run-time 
type of an object is the most specific type of an object when it is instantiated. It is the 
type mentioned in the new operation, and the one that is represented by the object 
returned by method getClass() (see Section 5.4). The run-time type of an object 
never changes for the duration of the object’s lifetime. In contrast, the compile-time 
(or static) type of an object is the type of the variable in which a reference to the 
object is stored at a particular point in the code. In a correct program the static 
type of an object can correspond to its run-time type, or to any supertype of its 
run-time type. The static type of an object can be different at different points in the 
code, depending on the variables in which an object is stored. Let us consider the 
following example:
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public static boolean isMemorizing(Deck pDeck) { 
return pDeck instanceof MemorizingDeck; 

} 

public static void main(String[] args) { 
Deck deck = new MemorizingDeck(); 
MemorizingDeck memorizingDeck = (MemorizingDeck) deck; 
boolean isMemorizing1 = isMemorizing(deck); // true 
boolean isMemorizing2 = isMemorizing(memorizingDeck); // true 

} 

At the first line of the main method, an object is created that is of run-time 
type MemorizingDeck and assigned to a variable of type Deck. As stated above, 
the run-time type of this object remains MemorizingDeck throughout the execu-
tion of the code. However, at the following line the static type of the variable 
that stores the original object is MemorizingDeck, and within the body of method 
isMemorizingDeck it is Deck (a formal parameter is a kind of variable, so the type 
of a parameter acts like a type of variable). Because the run-time type of the ob-
ject never changes, the value stored in both isMemorizing1 and isMemorizing2 
is true. 

Downcasting 

To make the code above compile, it is necessary to use a cast operation (Memoriz-
ingDeck). In brief, a cast operation is necessary to enable unsafe type conversion 
operations. An example of an unsafe conversion between primitive types is to con-
vert a value of type long into a value of type int (which may cause an overflow). 
Similarly, because a reference to a Deck is not guaranteed to refer to an instance 
of MemorizingDeck at run time, it is necessary to flag the risky conversion using a 
cast operator, a process known as downcasting.2 When using inheritance, subclasses 
typically provide services in addition to what is available in the base class. For ex-
ample, a class MemorizingDeck would probably include the definition of a service 
to obtain the list of cards drawn from the deck: 

public class MemorizingDeck extends Deck { 
public Iterator<Card> drawnCards() { /* ... */ } 

} 

Because of the programming language’s typing rules, it is only possible to call 
methods that are applicable for a given static type. So if we assign a reference to an 
object of run-time type MemorizingDeck to a variable of type Deck, then we will 
get a compilation error if we try to access a method of the subclass: 

Deck deck = new MemorizingDeck(); 
deck.drawnCards(); 

2 The direction implied in the term is a consequence of the convention that in type hierarchies, the 
top of the hierarchy is usually considered to be the root of the hierarchy.
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The compilation error is justified given that the code above would be type unsafe. 
Because references to an instance of any subtype of Deck can be stored in variable 
Deck, there is no guarantee that, at run time, the object in the variable will actually 
define a drawnCards() method. If, based on our knowledge of the code, we are 
sure that the object will always be of type MemorizingDeck, we can downcast the 
variable from a supertype down to a subtype: 
MemorizingDeck memorizingDeck = (MemorizingDeck) deck; 
Iterator<Card> drawnCards = memorizingDeck.drawnCards(); 

Downcasting involves some risk because a downcast implicitly encodes an as-
sumption that the run-time type of the object referred to in the variable is of the 
same type as (or a subtype of) the type of the variable. In a way, the code above 
would be like writing: 
assert deck instanceof MemorizingDeck; 

If the assumption is wrong, possibly due to an oversight from the author of the 
code, then the execution of the code cannot proceed, and the downcast will raise a 
ClassCastException. For this reason, downcasting code will often be protected 
by control structures to assert the run-time type of an object, such as: 
if (deck instanceof MemorizingDeck) { 

return ((MemorizingDeck)deck).drawnCards(); 
} 

Singly-Rooted Class Hierarchy 

Java supports single inheritance, which means that a given class can only declare 
to inherit from a single class. This is in contrast to languages such as C++, which 
support multiple inheritance. However, because the superclass of a class can also 
be defined to inherit from a superclass, classes can have, in effect, more than one 
superclass. In fact, classes in Java are organized into a singly-rooted class hierarchy. 
If a class does not declare to extend any class, by default it extends the library 
class Object. Class Object constitutes the root of any class hierarchy in Java code. 
The complete class hierarchy for variants of Deck thus includes class Object, as 
illustrated in Figure 7.4. Because the subtyping relation is transitive, objects of class 
MemorizingDeck can be stored in variables of type Object. 

7.3 Inheriting Fields 

With inheritance, the subclass inherits the declarations of the superclass. The con-
sequences of inheriting field declarations are quite different from those of method 
declarations, so I discuss them separately. 

Field declarations define the structure of information stored by the object in-
stantiated from the corresponding class declaration. When instantiating a class, the
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Fig. 7.4 Complete class hier-
archy for Deck 

MemorizingDeck

Deck

CircularDeck

Object

resulting object will have a field for each field declaration in the class named in the 
new operation, and each of its superclasses, transitively. Given the following class 
hierarchy: 

public class Deck implements CardSource { 
private final CardStack aCards = new CardStack(); 
/* ... */ 

} 

public class MemorizingDeck extends Deck { 
private final CardStack aDrawnCards = new CardStack(); 
/* ... */ 

} 

objects created with the operation new MemorizingDeck() will have two fields: 
aCards and aDrawnCards. It does not matter that the fields are private. Accessibility 
is a static concept, meaning that it is only relevant for the source code. The fact 
that the code in class MemorizingDeck cannot access (or see) the field declared in 
its superclass does not change anything about the fact that this field is part of the 
object. For the fields to be accessible to subclasses, it is possible to set their access 
modifier to protected instead of private. Alternatively, it is possible to access 
their value through a getter method. Type members declared to be protected are 
only accessible within methods of the same class, classes in the same package, and 
subclasses in any package. To respect the principles of encapsulation presented in 
Chapter 2, the accessibility of fields should however be minimized. This means that, 
unless widening a field’s visibility to protected provides a clear advantage, a field 
should be declared private, even if its value is required by subclasses. I revisit this 
point in Section 7.4.3 

3 The Java Language Specification (JLS) considers that private fields are not “inherited”. This is 
a matter of terminology, because objects of subclasses do include the private fields declared in 
their parent classes. When learning object-oriented design, mixing the concepts of visibility and 
inheritance can be confusing, so I do not retain the terminology of the JLS. In this book, the 
concepts of field inheritance and visibility are kept consistently distinct.
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The inheritance of fields creates an interesting problem of data initialization. 
When an object can be initialized with default values, the process is simple. In 
our case, if we assign the default values using the field initialization statement as 
in the above statements (i.e., = new CardStack();), and rely on the default (i.e., 
parameterless) constructors, we can expect that creating a new instance of class 
MemorizingDeck will result in an instance with two fields of type CardStack, each 
referring to an empty instance of CardStack.4 

However, it is often the case that initializing an object as part of its creation pro-
cess requires input data. For example, what happens if we want to make it possible 
to initialize a deck with a set of cards supplied by the client code? 

Card[] cards = {Card.get(Rank.ACE, Suit.CLUBS), 
Card.get(Rank.ACE, Suit.SPADES)}; 

MemorizingDeck deck = new MemorizingDeck(cards); 

In such situations, we must pay attention to the order in which the fields of an 
object are initialized. The general principle in Java is that the fields of an object 
are initialized top down, from the field declarations of the most general superclass 
down to the most specific class. In our example, aCards would be initialized, then 
aDrawnCards. This order is achieved by the fact that the first instruction of any 
constructor is to call a constructor, generally of its superclass, and so on.5 For this 
reason, the order of constructor calls is bottom up. In our running example, declar-
ing: 

public class MemorizingDeck extends Deck { 
private final CardStack aDrawnCards = new CardStack(); 

public MemorizingDeck(Card[] pCards) { 
/* Automatically calls super() */ 
/* ... */ 

} 
} 

means that the default constructor of Deck is called and terminates before the code 
of the MemorizingDeck constructor executes. It is also possible to invoke the con-
structor of the superclass explicitly, using the super(...) call. However, if used, 
this call must be the first statement of a constructor. Although it illustrates how 
constructor calls are chained, the example above does not quite do what we want, 
because it ignores the input cards. With the initialization mechanism we have seen 
so far, however, it becomes possible to pass input values up to initialize fields de-
clared in a superclass. In our case we want to store the input cards into the aCards 
field defined by the Deck superclass. We would accomplish this as follows: 

4 If no constructor is declared for a class, a default constructor with no parameter is invisibly made 
available to client code. Declaring any non-default constructor in a class disables the automatic 
generation of a default constructor. 
5 If the superclass declares a constructor with no parameter, this call does not need to be explicit. 
It is also possible for the first instruction of a constructor to be a call to another constructor of the 
same class, using the statement this(...). Eventually, however, construction has to execute the 
constructor of the superclass.
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(a) (b)

Fig. 7.5 Order of constructor call (a) and object construction (b). The calls to the constructors of a 
superclass are self-calls 

public class Deck { 
private final CardStack aCards = new CardStack(); 

public Deck(){} // Relies on the field initialization 

public Deck(Card[] pCards) { 
for (Card card : pCards) { 
aCards.push(card); } 

} 
} 

public class MemorizingDeck extends Deck { 
private final CardStack aDrawnCards = new CardStack(); 

public MemorizingDeck(Card[] pCards) { 
super(pCards); 

} 
} 

Here the only statement of the MemorizingDeck constructor is an explicit call to 
the constructor of the superclass. This call passes in the initialization data. Once the 
super call terminates, the execution of the constructor of the same class continues 
with the initialization of the aDrawnCards field. 

Calling the constructor of the superclass with super(...) is very different from 
calling the constructor of the superclass with a new statement. In the latter case, two 
different objects are created. The code: 

public MemorizingDeck(Card[] pCards) { 
new Deck(pCards); 

}
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calls the constructor of Deck, which creates an additional Deck instance, different 
from the instance under construction, immediately discards the reference to this 
instance, and then completes the initialization of the object. This code would not 
serve many useful purposes. 

7.4 Inheriting Methods 

Inheriting methods is different from inheriting fields because method declarations 
do not store information that represents the state of an object, and so do not require 
any initialization. Instead, the implications of method inheritance center around 
the question of applicability. By default, methods of a superclass are applicable 
to instances of a subclass. For example, if we define a method shuffle() in 
class Deck, it will be possible to call this method on an instance of its subclass 
MemorizingDeck: 
MemorizingDeck memorizingDeck = new MemorizingDeck(); 
memorizingDeck.shuffle(); 

This “feature” is nothing special, as it is only a consequence of what a method 
represents and the rules of the type system. Here it is worth remembering that an 
instance (i.e., non-static) method is just a different way to express a function that 
takes an object of its declaring class as its first argument. For example, the method 
shuffle() in Deck: 
public class Deck implements CardSource { 

private CardStack aCards = new CardStack(); 

public void shuffle() { 
// The ’this’ keyword is optional in this case. It is used 
// here to contrast with the alternative below. 
this.aCards.clear(); 
this.initialize(); 

} 

private void initialize() { 
/* Adds all 52 cards to aCard in random order */ 

} 
} 

is more or less equivalent to the static method: 
public static void shuffle(Deck pThis) { 
pThis.aCards.clear(); 
pThis.initialize(); 

} 

In the first case, the function is invoked by specifying the target object before the 
call: memorizingDeck.shuffle(). A reference to this object is accessible through 
the this keyword within the method, also referred to as the implicit parameter.6 

6 Use of the this keyword is optional, as it can be inferred by the compiler if absent.
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In the second case, the function is invoked by indicating the target object as an ex-
plicit argument after the method name: shuffle(memorizingDeck). In this case, 
it can be necessary to specify the type of the class where the method is located, so 
Deck.shuffle(memorizingDeck). What this example illustrates is that methods 
of a superclass are automatically applicable to instances of a subclass because in-
stances of a subclass can be assigned to a variable of any supertype. In our example, 
because it is legal to assign a reference to a MemorizingDeck to a parameter of type 
Deck, the shuffle() method is applicable to instances of any subclass of Deck. 

In some cases, a method inherited from a superclass does not do quite what we 
want. In our running example, this would be the case for method draw(), which in 
the Deck base class just draws a card from the deck: 

public class Deck implements CardSource { 
private CardStack aCards = new CardStack(); 

public Card draw() { 
return aCards.pop(); 

} 
} 

Using Deck’s version of method draw() on instances of MemorizingDeck 
through inheritance does not do what we need, because that method does not mem-
orize anything. In such cases, we need to redefine, or override, the behavior of the 
inherited method by supplying an implementation in the subclass that only applies 
to instances of the subclasses. For method draw() we would want: 

public class MemorizingDeck extends Deck { 
private CardStack aDrawnCards = new CardStack(); 

public Card draw() { 
Card card = aCards.pop(); 
aDrawCards.push(card); 
return card; 

} 
} 

Unfortunately, this code will not compile because the code of method draw() 
in MemorizingDeck refers to private field aCards of class Deck. Because private 
fields are only accessible within the class where they are declared, this field is not 
visible in other classes, including subclasses. One possible workaround is to define 
aCards as protected instead. A protected access modifier for a field allows sub-
classes to manipulate some structure of the superclass when overriding methods. 
Unfortunately, increasing the visibility of aCards from private to protected has 
a corresponding negative impact on encapsulation, because now it is possible to re-
fer to the field, and thus mutate the object it refers to, from many different classes 
instead of just one. To circumvent this issue, we can resort to other alternatives, 
including the use of super calls, introduced below. 

Overriding inherited methods has a major consequence on the design of an 
object-oriented application, because it introduces the possibility that multiple method
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implementations apply to an object that is the target of a method invocation. For ex-
ample, in the code: 

Card card = new MemorizingDeck().draw(); 

both Deck#draw() and MemorizingDeck#draw() are applicable and can thus 
legally be used. Which one is used? For the program to work, the programming 
environment (the Java Virtual Machine) must follow a consistent method selection 
algorithm. 

For overridden methods, the selection algorithm is relatively intuitive: when mul-
tiple implementations are applicable, the run-time environment selects the most spe-
cific one based on the run-time type of the implicit parameter. As previously defined, 
the run-time type of an object is the actual class that was instantiated: the class name 
that follows the new keyword, or the class type represented by the object returned by 
a call to Object#getClass(). Because the selection of an overridden method relies 
on run-time information, the selection procedure is often referred to as dynamic dis-
patch, or dynamic binding. It is important to note that the dynamic dispatch process 
does not takes into account the type of the variable in which an object is stored. So, 
in this example: 

Deck deck = new MemorizingDeck(); 
Card card = deck.draw(); 

the method MemorizingDeck#draw() would be selected, even though the static 
(compile-time) type of variable holding the target object is Deck. 

In some cases, it can be necessary to bypass the dynamic binding mechanism and 
link to a specific, statically-predictable method implementation. In Java, however, 
for instance methods it is only possible to do so by referring to the implementation 
of the method that is being directly overridden. This exception to the usual dy-
namic binding mechanism is intended to support the common case where a method 
is overridden to provide behavior in addition to what the inherited method does. 
To illustrate this case, let us return to the issue of overriding method draw() in 
class MemorizingDeck. This time, we will do it without declaring aCards to be 
protected. 

The key insight we use to accomplish this is to observe that to draw a card from 
aCards, we can also use Deck’s own draw() method. So, conceptually, what we 
want could look like this: 

public class MemorizingDeck extends Deck { 
private CardStack aDrawnCards = new CardStack(); 

public Card draw() { 
Card card = draw(); // Problematic 
aDrawCards.push(card); 
return card; 

} 
} 

Here, the naive intention is that by calling draw() inside MemorizingDeck#-
draw(), we can execute the code of Deck#draw() and thus draw a card from
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aCards. Unfortunately this does not work precisely because of the dynamic binding 
mechanism described above. Because the call to draw() within MemorizingDeck#-
draw() will be dispatched on the same object, the same method implementation will 
be selected, endlessly. The result will be a stack overflow error, because the method 
will call itself without a termination condition. 

What we really want, instead, is to refer specifically to Deck#draw() within 
MemorizingDeck#draw(). In other words, we want to statically bind the method 
call draw() to the implementation located in Deck. In Java, to refer to the specific 
implementation of a method located in the superclass from within a subclass, we 
use the keyword super followed by the method call. 

public class MemorizingDeck extends Deck { 
public Card draw() { 

Card card = super.draw(); 
aDrawCards.push(card); 
return card; 

} 
} 

This mechanism is referred to as a super call. Its effect is to statically bind the 
method call to the first overridden implementation of the method found by going 
up the class hierarchy. The implementation does not need to be in the immediate 
superclass, but there needs to be at least one inherited method that can be selected 
in this way. 

Annotating Overridden Methods 

For a method to effectively override another one, it needs to have the same signature 
as the one it overrides.7 This requirement for matching method signatures opens the 
door to errors with mystifying consequences. 

For example, let us say we want to override the equals and hashCode methods 
for class Deck, as discussed in Section 4.6, and we proceed as follows: 

public class Deck implements CardSource { 
public boolean equals(Object) { /* ... */ } 
public int hashcode() { /* ... */ } 

} 

With these definitions we would expect that instances of Deck could be stored in 
collections such as a HashSet without problems, given that we are properly overrid-
ing hashCode() to ensure equal instances of Deck have the same hash code. Except 
that we are not, because the name of the method declared in Deck is hashcode() 
and not hashCode(). Although we expect Object#hashCode() to be overridden, 
the hard-to-see, one-character difference in the name means that the method is, in 

7 Technically, it could have a subsignature as defined in Section 8.4.2 of the Java Language Speci-
fication. However, this subtlety is outside the scope of this book, so for simplicity we can consider 
that the match in terms of method names, parameter types, and declared exceptions, must be exact.
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fact, not overridden. Unless we notice the name difference, the bugs this problem 
would cause could be very hard to explain. 

To avoid situations like these, where we expect a method to be overridden when 
it is not, we can use Java’s @Override annotation (see Section 5.4 for a review 
of annotation types). The goal of this annotation is to allow programmers to for-
mally state their intent to override a method. The compiler can then check this intent 
against reality and warn of any mismatches. If a method annotated with @Override 
does not actually override anything, a compilation error is raised. The case for using 
@Override annotations is compelling and I use them systematically when writing 
code. However, for conciseness, I do not include overriding annotations in the code 
examples within the text. 

7.5 Overloading Methods 

As we saw above, overriding methods allows programmers to declare different ver-
sions of the same method, so that the most appropriate method will be selected based 
on the run-time type of the implicit parameter. Java and many other programming 
languages support another mechanism for specifying different implementations of 
the same method, this time by selecting the method based on the types of the explicit 
parameters. This mechanism is known as overloading. A typical example of over-
loading can be found in math libraries such as java.lang.Math, which provide 
basic functions such as abs (absolute value) for arguments of different primitive 
types, such as int or double. Another typical application of overloading is for con-
structors. For example, Section 7.3 discusses a scenario where two constructors for 
MemorizingDeck are provided, one that takes no argument, and one that takes an 
array of Card instances. 

The main thing to know about overloading is that the selection of a specific 
overloaded method or constructor is based on the number and static types of the 
explicit arguments. The selection procedure is to find all applicable methods and 
to select the most specific one. Let us consider the following implementation of 
MemorizingDeck, which overloads the constructor with three different versions: 

public class MemorizingDeck extends Deck { 
private CardStack aDrawnCards = new CardStack(); 

public MemorizingDeck() { 
/* V1: Does nothing besides the initialization */ 

} 

public MemorizingDeck(CardSource pSource) { 
/* V2: Copies all cards of pSource into this object */ 

} 

public MemorizingDeck(MemorizingDeck pSource) { 
/* V3: Copies all cards and drawn cards of pSource */ 
} 

}
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If we call a constructor for MemorizingDeck, three versions of the constructor are 
available to fulfill the task. In some cases, which version is selected can be trivially 
deduced. For instance, if we call the constructor and supply no argument, clearly, 
the parameterless version will be selected. However, things can get tricky when the 
types of overloaded versions are related to each other within a type hierarchy. The 
following code illustrates the situation: 

MemorizingDeck memorizingDeck = new MemorizingDeck(); 
Deck deck = memorizingDeck; 

Deck newDeck1 = new MemorizingDeck(memorizingDeck); 
Deck newDeck2 = new MemorizingDeck(deck); 

Here the constructor of MemorizingDeck is invoked three times. In the first call, 
the parameterless constructor is selected. In the second call, the constructor used is 
version 3 (V3), which might be intuitive in this example because MemorizingDeck 
is both the run-time type of the argument object and the static type of the variable 
holding a reference to it. However, it can appear surprising that for newDeck2, it is 
version 2 of the constructor that is used. That is because in this case the static type 
of the argument passed to the constructor is Deck. Because Deck is a subtype of 
CardSource but not a subtype of MemorizingDeck, the only applicable overload 
is version 2. If we change the type of deck from Deck to MemorizingDeck, then 
version 3 is the one that will be selected. It is worth noting that the types of variables 
newDeck1 and newDeck2 play no role whatsoever in the selection algorithm for 
overloaded methods and constructors. 

Although overloading provides a convenient way to identify related alternatives 
of a given specification, the use of this mechanism can also lead to code that is 
hard to understand. This is especially the case when the types of the parameters of 
overloaded versions of a method or constructor are related within a type hierarchy, 
as illustrated above. For this reason I recommend avoiding overloading methods 
except for widely used idioms (such as constructor overloading or library methods 
that support different primitive types). In many designs, the same properties can be 
achieved without overloading (namely, by giving different names to the methods 
that take different types of arguments).8 

7.6 Polymorphic Copying with Inheritance 

In the presence of inheritance, the guideline to minimize the visibility of fields can 
conflict with our ability to implement polymorphic copying (see Section 6.6). To 
make an exact copy of an object, it is necessary to have detailed information about 
the complete state of the object so as to be able to replicate it faithfully. For the sake 
of illustration, let us assume that we are implementing polymorphic copying for the 
class hierarchy shown in Figure 7.6. 

8 Although it is not possible to change the name of constructors, one alternative is to replace 
overloaded versions of public constructors with static factory methods with different names.
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Deck

aCards: CardStack

Deck()
draw():Card
isEmpty():boolean
shuffle():void
copy():Deck

MemorizingDeck

aDrawnCards:CardStack

...
copy(): MemorizingDeck

«interface»
CardSource

draw():Card
isEmpty():boolean
copy():CardSource

Fig. 7.6 Implementing polymorphic copying with inheritance 

The implementation of method copy() in class Deck poses no problem, as we 
have seen in Section 6.6: 

public Deck copy() { 
Deck deck = new Deck(); 
deck.aCards = new CardStack(aCards); 
return deck; 

} 

In the presence of inheritance, however, it will be important to systematically 
override the copy() method, because inheriting it will lead to faulty code. The fol-
lowing example shows a faulty usage of an inherited version of method copy(): 

Deck deck = new MemorizingDeck(); 
Deck copy = deck.copy(); // Error 

In this case, because there is no available implementation of MemorizingDeck#-
copy, the most specific applicable method for the call to copy() is Deck#copy. 
However, this method returns an object of type Deck as a copy of an object of type 
MemorizingDeck. This behavior will violate one of the main constraints for object 
equality, namely that the objects be of the same type (see Section 4.6). To cor-
rectly support polymorphic copying, it is thus imperative that we override copy() 
in all leaf classes of the CardSource type hierarchy. Unfortunately, this leads to 
another problem. Let us attempt an implementation of method copy() for class 
MemorizingDeck: 

public MemorizingDeck copy() { 
MemorizingDeck deck = new MemorizingDeck(); 
deck.aCards = new CardStack(aCards); // Compilation error 
deck.aDrawnCards = new CardStack(aDrawnCards); 
return deck; 

} 

This code will not compile because aCards is a private field of class Deck, and thus 
not visible within class MemorizingDeck. One option is to change the visibility of 
the field to protected. However, widening the accessibility of a field in a superclass 
is not a general solution, because in many design contexts we may be inheriting from 
a class that we cannot change (for example, a library class). Second, by widening the 
scope of a field in a superclass, we are weakening the encapsulation in the overall 
design, just to support copying.
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Java provides a mechanism, called cloning, to get around this limitation. This 
cloning mechanism revolves around the overriding of the protected clone() method 
of class Object. Unfortunately, the Java cloning mechanism suffers from a variety 
of design flaws which render it “fragile, dangerous”, and complex to use [2]. For 
this reason, it should only be used to support polymorphic copying with inheritance 
when no better alternative is available. Because the Java cloning mechanism is de-
scribed at length in existing references (see Further Reading), I only summarize its 
main underpinnings here. 

To clone an object, it is necessary to override Object#clone() as a public 
method, and make a super call to clone() from within the method. For example, to 
support cloning for class Deck, we would write (within class Deck): 

public Deck clone() { 
// NOT Deck clone = new Deck(); 
Deck clone = (Deck) super.clone(); 
/* ... */ 

} 

The statement super.clone() calls the clone() method in the superclass, which 
here means method Object#clone(). This method is special: it uses metaprogram-
ming features (see Section 5.4) to make a field-by-field shallow copy of the current 
object and returns the copy. This is unusual because, although the method is im-
plemented in the library class Object, it still returns a new instance of class Deck. 

:Card

:CardStack

aCards=

clone:Deck

aCards=

deck:Deck

aCards=

:Card

Fig. 7.7 Object graph resulting from an incomplete implementation of clone() 

Whenever an object aggregates other mutable objects, the shallow copy per-
formed via Object#clone() will likely be insufficient. For example, in the code 
above, the execution of the clone() method results in a shared reference to the 
value of the field aCards, as illustrated in Figure 7.7. Because this outcome would 
break encapsulation and most likely be incorrect, the clone() method must also 
make a new copy of the CardStack, this time using a copy constructor:
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public Deck clone() { 
Deck clone = (Deck) super.clone(); 
clone.aCards = new CardStack(aCards); 
return clone; 

} 

:CardStack

:CardStack

:CardStack

clone:MemorizingDeck

aCards=

aDrawnCards=

deck:MemorizingDeck

aCards=

aDrawnCards=

Fig. 7.8 Object graph resulting from an inherited implementation of clone() 

Because of the requirement to deep-copy certain structures, inheriting clone() 
still carries the risk of error, even if the class of the returned object is the correct one. 
In our current scenario, calling the inherited method Deck#clone() on an object of 
type MemorizingDeck would lead to the structure illustrated in Figure 7.8. As we 
can see, the use of Object#clone() leads to an object of the correct class being 
created, but the absence of a specialized version of clone() for MemorizingDeck 
means that the aDrawnCards field is only shallow-copied. 

In an attempt to mitigate all the risks of misusing Object#clone, the designers 
of the cloning mechanism imposed a number of additional constraints for classes 
that implement cloning. One such constraint is the need to implement interface 
Cloneable and deal with some unintuitive exception-handling requirements. Read-
ers interested in using cloning in their design are encouraged to study the technical 
documentation carefully before proceeding (see Further Reading). 

7.7 Inheritance Versus Composition 

Inheritance provides an alternative to composition as a design approach to deal with 
situations where some objects are extended versions of other objects. To explore 
some of the differences between the two, let us consider the composition vs. inheri-
tance alternatives for meeting the requirements for a MemorizingDeck.
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With composition, we can define a class MemorizingDeck that implements 
CardSource but aggregates a simple deck. The methods of MemorizingDeck will 
then delegate their call to methods on the Deck object. 

public class MemorizingDeck implements CardSource { 

private final Deck aDeck = new Deck(); 
private final CardStack aDrawCards = new CardStack(); 

public boolean isEmpty() { 
return aDeck.isEmpty(); 

} 

public void shuffle() { 
aDeck.shuffle(); 
aDrawnCards.clear(); 

} 

public Card draw() { 
Card card = aDeck.draw(); 
aDrawnCard.push(card); 
return card; 

} 
} 

In contrast, with inheritance, the cards in the deck are not stored in a separate 
deck, but rather referred to from a field inherited from the superclass. In terms of 
methods, shuffle(), isEmpty(), and draw() are also inherited from the super-
class, so they do not all need to be redefined to delegate the call, as in composition. 
In our example we only need to override shuffle() and draw() to account for 
the memorization. Method isEmpty() can be directly inherited and still do what 
we want. In the code of the overridden methods, the delegation to another object is 
replaced by a super call, which executes on the same object. 

public class MemorizingDeck extends Deck { 
private CardStack aDrawCards = new CardStack(); 

public void shuffle() { 
super.shuffle(); 
aDrawnCards = new CardStack(); 

} 

public Card draw() { 
Card card = super.draw(); 
aDrawnCard.push(card); 
return card; 

} 
} 

This last implementation, however, illustrates how designing with inheritance 
can be tricky. In the code above, when shuffling the deck, we also reset the stack of 
drawn cards by assigning a new object to the instance variable aDrawnCards. As a 
tempting alternative, we might want to define aDrawnCards to be a final field, and
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reset the object with a call to aDrawnCards.clear() within shuffle(). However, 
this will result in a NullPointerException being raised whenever a new object is 
created. Why? 

The explanation has to do with the order of field initialization, as described in 
Section 7.3. When the constructor of MemorizingDeck is called, the first instruc-
tion to execute is to call the constructor of Deck.9 At this point, aDrawnCards is 
not yet initialized, and thus refers to null. Then the constructor of Deck executes, 
which calls method shuffle(). However, because this method is now overridden 
in MemorizingDeck, it is that implementation that gets selected. This method exe-
cutes without the fields declared in MemorizingDeck having been initialized. After 
the super call returns, the attempt to call a method on aDrawnCards will trigger the 
NullPointerException. 

:CardStack

:MemorizingDeck

aCards=

aDrawnCards=

:MemorizingDeck

aDeck =

aDrawnCards=

client:

deck =

client:

deck =

:CardStack

:Deck

aCards=

:CardStack

:CardStack

Fig. 7.9 Two implementations for MemorizingDeck: composition-based (top), and inheritance-
based (bottom) 

Overall, the main difference between the composition- and inheritance-based so-
lutions is the number of Deck objects involved (see Figure 7.9). The composition-
based approach provides a solution that requires coordinating the work of two Deck 
objects: a basic Deck object and a wrapper object MemorizingDeck. Thus, as dis-
cussed in Section 6.4, the identity of the object that provides the full MemorizingDeck 
set of features is different from that of the other object that provides the basic card-
handling services of the deck. In contrast, the use of a MemorizingDeck subclass 
creates a single MemorizingDeck object that contains all the required fields. 

In many situations, it will be possible to realize a design solution using either 
inheritance or composition. Which option to choose will ultimately depend on the 
context. Composition-based reuse generally provides more run-time flexibility. This 

9 Because the declaration of the constructor is left out, this is not visible in the code. However, a 
default (parameterless) constructor gets generated which calls the default constructor of Deck.
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option should therefore be favored in design contexts that require many possible 
configurations, or the opportunity to change configurations at run time. At the same 
time, composition-based solutions provide fewer options for detailed access to the 
internal state of a well-encapsulated object. In contrast, inheritance-based reuse so-
lutions tend to be better in design contexts that require a lot of compile-time con-
figuration, because a class hierarchy can easily be designed to provide privileged 
access to the internal structure of a class to subclasses (as opposed to aggregate and 
other client classes). Inheritance also supports finer-grained polymorphism. With 
inheritance, it is possible to store a reference to an instance of MemorizingDeck 
in a variable of type Deck. This is not possible in the composition-based solution 
because MemorizingDeck is not a subtype of Deck. 

7.8 Abstract Classes 

There are often situations where locating common class members into a single su-
perclass leads to a class declaration that it would not make sense to instantiate. As 
a running example for this section and the next, I continue to develop the concept 
of command objects as introduced in Section 6.8. Let us assume that for a card 
game application we decide to apply the COMMAND pattern and use the following 
definition of the command interface. 

public interface Move { 
void perform(); 
void undo(); 

} 

A move represents a possible action in the game. Calling perform() on any sub-
type of Move performs the move, and calling undo() undoes the move. The class 
diagram of Figure 7.10 shows a hypothetical application of the COMMAND pattern. 
Following a common naming convention, classes that implement the interface in-
clude the name of the interface as a suffix (for example, DiscardMove represents 
the move that discards a card from the deck). 

RevealTopMove

RevealTopMove(GameModel)

CardMove

CardMove(GameModel)

«interface»
Move

perform():void
undo():void

GameModel

DiscardMove

DiscardMove(GameModel)

aModel

aModel

aModel

Fig. 7.10 Abstract and concrete commands
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At a glance the diagram reveals a redundancy: each concrete command class 
stores an aggregation to an instance of GameModel, which the implementation of 
perform() and undo() will rely on when executing the respective commands. In 
terms of source code, this would look very similar: a field of type GameModel (called 
aModel in the diagram). As pointed out in Section 7.1, avoiding CODE DUPLICATION† 
is an important motivation for inheritance, so we should pull up the field aModel into 
a common superclass. However, there is a big difference between the Deck class 
example of Section 7.1 and the command example discussed here. With a Deck 
base class and various subclasses that specialize it, it makes sense to instantiate 
the base class. If we want an instance of a Deck with no frills, we instantiate class 
Deck. In the case of commands, what would be the base class? One option is to 
arbitrarily select one concrete command and use it as the base class, as illustrated 
by the diagram of Figure 7.11. 

RevealTopMove

RevealTopMove(GameModel)

GameModel

DiscardMove

DiscardMove(GameModel)
CardMove

CardMove(GameModel)

«interface»
Move

perform():void
undo():void

Fig. 7.11 Abuse of inheritance: the members of the base class end up being completely redefined 
instead of specialized 

Although this could work, it is not good design. An important principle of in-
heritance is that a subclass should be a natural subtype of the base class that ex-
tends the behavior of the base class. In our case, a DiscardMove is not a spe-
cialized version of a CardMove, it is a completely different type of move. First, 
CardMove may define non-interface methods that make no sense for users of its 
subclass (e.g., destination() to get the destination when moving a card). Second, 
this idea is risky, because DiscardMove and RevealTopMove automatically inherit 
the perform() and undo() methods of class CardMove, which need to be overrid-
den to implement the actual move we want. If we forget to implement one (undo() 
for example), then calling perform() will do one thing, and calling undo() will 
undo something else! These types of bugs can be hard to catch. I return to the issue 
of design ideas that abuse inheritance in Section 7.11. To use inheritance properly, 
here we need to create an entirely new base class, and have all concrete commands 
inherit it, as shows in Figure 7.12. 

Now we avoid the hack of having subclasses that morph their superclass into 
something entirely different. However, at the same time we have a problematic situa-
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CardMove

CardMove(GameModel)

«interface»
Move

perform():void
undo():void

DefaultMove

DiscardMove

DiscardMove(GameModel)

RevealTopMove

RevealTopMove(GameModel)

GameModel

Fig. 7.12 Inheritance with additional base class 

tion: what is a DefaultMove, really? What would the implementation of perform() 
and undo() do? Even using some sort of default behavior seems questionable, be-
cause that would bring us back to the idea of using a base class that is not con-
ceptually a base for anything. A key realization to move forward is that our new 
base class represents a purely abstract concept that needs to be refined to gain con-
creteness. This design situation is directly supported by the abstract class feature 
of a programming language. Technically, an abstract class represents a correct but 
incomplete set of class member declarations. 

In Java, a class can be declared abstract by including the keyword abstract in 
its declaration. It is also a common practice to prefix the identifier of an abstract 
class with the word Abstract. Hence, in our design the DefaultMove should be 
called AbstractMove, and its definition would look like this: 

public abstract AbstractMove implements Move { 
private final GameModel aModel; 

protected AbstractMove(GameModel pModel) { 
aModel = pModel; 

} 
/* ... */ 

} 

Declaring a class to be abstract has three main consequences: 

• An abstract class cannot be instantiated, which is checked by the compiler. 
This is a good thing because abstract classes should represent abstract concepts 
that it makes no sense to instantiate. Another typical example, besides abstract 
commands, would be something like an AbstractFigure in a drawing editor. 
Unlike concrete figures (rectangles, ellipses), an abstract figure has no geometric 
representation, so in most designs something like that would be likely to end up 
as an abstract class.
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• An abstract class does not need to supply an implementation for all the 
methods in the interface(s) it declares to implement. This relaxing of the inter-
face contract is type-safe because the class cannot be instantiated. However, any 
concrete (that is, non-abstract) class will need to have implementations for all re-
quired methods. What this means in our case is that, even though AbstractMove 
declares to implement Move, we do not have to supply an implementation for 
perform() and undo() in the abstract class. However, this assumes that non-
abstract subclasses of AbstractMove will supply this missing implementation. 

• An abstract class can declare new abstract methods using the same abstract 
keyword, this time placed in front of a method signature. In practice, this means 
adding methods to the interface of the abstract class, and thereby forcing the 
subclasses to implement these methods. The usage scenario for this is somewhat 
specialized, and I will cover it in detail in Section 7.10. However, for now, we can 
just say that abstract methods are typically called from within the class hierarchy: 
by methods of the base class, by methods of the subclasses, or both. 

Because abstract classes cannot be instantiated, their constructor can only be 
called from within the constructors of subclasses. For this reason it makes sense to 
declare the constructors of abstract classes protected. In our running example, the 
constructor of AbstractMove would be called by the constructor of subclasses to 
pass the required reference to the GameModel up into the base class: 

public class CardMove extends AbstractMove { 
public CardMove(GameModel pModel) { 

super(pModel); 
} 

} 

Code Exploration: JetUML · Edge class hierarchy 
A multi-level type hierarchy with interface and abstract class. 
JetUML defines a class hierarchy rooted at interface Edge (itself a subinterface 
of the more general DiagramElement). There is a lot going on in the Edge 
hierarchy. This discussion will focus on how I used subclasses to progressively 
extend the data stored by edge objects. 

The immediate implementation type for interface Edge is AbstractEdge. 
This class already inherits from another abstract class AbstractDiagram-
Element. Class AbstractDiagramElement groups declarations that apply 
to both nodes and edges, whereas its subclass AbstractEdge adds fields 
that are only relevant to edges. These fields are a reference to the start and 
end node for the edge. The separation between AbstractDiagramElement 
and AbstractEdge illustrates how it can be useful to have multiple abstract 
classes in a type hierarchy. 

Among the different subclasses of AbstractEdge, let us focus on 
SingleLabelEdge. This class is also abstract. It adds one field that corre-
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sponds to a label on the edge. Thus, SingleLabelEdge can be subclassed by 
any class intended to represent a UML edge that has at least one label. For ex-
ample, ReturnEdge (which represents a return edge in a sequence diagram) is 
a concrete subclass because return edges only need one label. However, some 
edges require three labels. ThreeLabelEdge is a fourth abstract class down 
the Edge class hierarchy that adds two more label fields, for a total of three. 
The classes that represent actual edges are the leaves of the class hierarchy, 
and their names map to the names of UML edges (aggregation, generalization, 
etc.). 

7.9 The DECORATOR Pattern with Abstract Classes 

In Section 6.4, we saw how we can use the DECORATOR pattern to add features, or 
decorations, to an object at run time. The key idea of the DECORATOR is to define 
these decorations using wrapper classes and composition as opposed to subclasses. 
Figure 7.13 reproduces Figure 6.8, which shows a class diagram of the sample ap-
plication of DECORATOR to the CardSource design context. 

«interface»
CardSource

draw():Card
isEmpty():boolean

CardSequenceDeck

LoggingDecorator

LoggingDecorator(CardSource)

Component

Leaf Leaf

Decorator

MemorizingDecorator

MemorizingDecorator(CardSource)

Decorator

11

Fig. 7.13 Class diagram of a sample application of DECORATOR 

When a design involves multiple decorator types, as in this example, each dec-
orator class will need to aggregate an object to be decorated. This introduces the 
kind of redundancy that inheritance was designed to avoid. Thus, we can use inher-
itance to pull up the field implementing the aggregation into an abstract decorator 
base class, and define concrete decorator subclasses that then only need to deal with 
the specific decoration. This solution, shown in Figure 7.14, is an illustration of a 
design that combines composition and inheritance. Specifically, a decorator object 
is of a subtype that inherits the aElement field, which is then used to aggregate the 
instance of CardSource that is being decorated.
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Simple
delegation

CardSequence
MemorizingDecorator

MemorizingDecorator(CardSource)
draw():Card

LoggingDecorator

LoggingDecorator(CardSource)
draw():Card

Deck

AbstractDecorator

AbstractDecorator(CardSource)
draw():Card
isEmpty():boolean

«interface»
CardSource

draw():Card
isEmpty():boolean

aElement1

Fig. 7.14 Class diagram of a sample application of DECORATOR that uses inheritance 

With this design, the AbstractDecorator includes default delegation to the dec-
orated element. 

public abstract class AbstractDecorator implements CardSource { 
private final CardSource aElement; 

protected AbstractDecorator(CardSource pElement) { 
aElement = pElement; 

} 

public Card draw() { 
return aElement.draw(); 

} 

public boolean isEmpty() { 
return aElement.isEmpty(); 

} 
} 

It is worth noting that the aElement field is private. This means that concrete 
decorator classes will not have access to it. This level of encapsulation is workable 
because normally in the DECORATOR, decorated elements are only accessed through 
the methods of the component interface. In this case, subclasses can simply use the 
implementation of the interface methods they inherit from AbstractDecorator to 
interact with the decorated object. As an example, the following is a basic imple-
mentation of a LoggingDecorator that outputs a description of the cards drawn to 
the console. 

public class LoggingDecorator extends AbstractDecorator { 

public LoggingDecorator(CardSource pElement) { 
super(pElement); 

}
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public Card draw() { 
Card card = super.draw(); 
System.out.println(card); 
return card; 

} 
} 

Class LoggingDecorator does not supply an implementation of isEmpty() be-
cause the one it inherits, which delegates the call to aElement, does what we want. 
As for draw, the method is redefined to do a basic draw operation using the inherited 
method, print the card, then return it to complete the require behavior. 

7.10 The TEMPLATE METHOD Design Pattern 

One potential situation we may face with inheritance is when some common algo-
rithm applies to objects of a certain base type, but a part of the algorithm varies 
from subclass to subclass. To illustrate this situation, let us go back to the design 
context of creating and managing moves in the Solitaire application, as discussed 
above in Section 7.8 and illustrated in Figure 7.12 (with DefaultMove renamed to 
AbstractMove). In this context we also assume that aModel’s access modifier is 
protected. 

Let us assume that calling method perform() on moves of any type should ac-
complish three actions: 1) Add the move to an undo stack, possibly located in the 
GameModel; 2) Perform the actual move; 3) Log the move by writing out a descrip-
tion of what happened. This algorithm can be described with the following code, 
which could be in any concrete subclass of AbstractMove: 

public void perform() { 
aModel.pushMove(this); 
/* Actually perform the move */ 
log(); 

} 

In this code, the first statement of method perform() pushes the current move ob-
ject onto a command stack located in the game model. The block comment corre-
sponds to the actual implementation of the move, which would vary from move to 
move. The final statement implements some logging of the move, for example by 
printing the name of the command class to the console. Let us assume the same 
approach is used for undo(), with moves being popped instead of pushed. Be-
cause parts of the code are in common, it will benefit from being pulled up to the 
AbstractMove superclass for two main reasons: 

• So that it can be reused by all concrete Move subclasses, thereby avoiding DUPLI-
CATED CODE†; 

• So that the design is robust to errors caused by inconsistently re-implementing 
common behavior. Specifically, we want to prevent the possibility that a devel-
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oper could later declare a new concrete subclass of Move and supply it with an 
implementation of method perform() that does not do Step 1 or 3. 

Because the implementation of perform() needs information from subclasses to 
actually perform the move, it cannot be completely implemented in the superclass.10 

The solution to this problem is to put all the common code in the superclass, and 
to define some hooks to allow subclasses to provide specialized functionality where 
needed. This technique is described as the TEMPLATE METHOD design pattern. The 
name relates to the fact that the common method in the superclass is a template, that 
gets realized differently for each subclass. The steps in the algorithm are defined 
as non-private11 methods in the superclass. The code below illustrates a sample 
application of TEMPLATE METHOD: 

public abstract class AbstractMove implements Move { 
protected final GameModel aModel; 

protected AbstractMove(GameModel pModel) { 
aModel = pModel; 

} 

public final void perform() { 
aModel.pushMove(this); 
execute(); 
log(); 

} 

protected abstract void execute(); 

private void log() { 
System.out.println(getClass().getName()); 

} 
} 

In this code example, the implementation of method perform() introduces two 
new concepts related to inheritance: final methods (and classes) and abstract method 
declarations in classes. 

Final Methods and Classes 

In Java, declaring a method as final means that the method cannot be overridden 
by subclasses. The main purpose for declaring a method as final is to clarify our 
intent that a method is not meant to be overridden. One important reason for pre-
venting overriding is to ensure that a given constraint is respected. Final methods are 

10 Although, technically, it would be possible to have a SWITCH STATEMENT† in perform() that 
checks the concrete type of the object using instanceof or getClass() and executes the appro-
priate code for all commands, this would introduce a dependency cycle between the base class and 
its subclasses, and destroy the benefits of polymorphism. A bad idea of epic proportions. 
11 The step methods can have default, public, or protected visibility depending on the design con-
text. However, they cannot be private because private methods cannot be overridden.
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exactly what is needed for the TEMPLATE METHOD, because we want to ensure that 
the template is respected for all subclasses. By declaring the perform() method to 
be final, subclasses cannot override it with an implementation that would omit the 
call to pushMove or log(). 

The use of the final keyword with methods has an effect that is different from 
the use of the same keyword with fields and local variables (see Section 4.5). The 
use of final with fields limits how we can assign values to variables, and does not 
involve inheritance, dynamic dispatch, or overriding. 

The final keyword can also be used with classes. In this case, the behavior is 
consistent with the meaning it has for methods: classes declared to be final can-
not be inherited. Inheritance in effect broadens the interface of a class by allowing 
extensions by other classes. As demonstrated in Figure 7.11 and as will be further 
discussed in the next section, inheritance is a powerful mechanism that can easily be 
misused. A good principle to follow with inheritance is “design for inheritance or 
else prohibit it” [2, Item 19]. In other words, inheritance should be used to support 
specific extension scenarios (as the one illustrated in this section), or not used at 
all. Because, by default, it is possible to inherit from a class, the mechanism needs 
to be explicitly disabled to prohibit its use. Generally, stating that a class cannot 
be inherited tends to make a design more robust because it prevents unanticipated 
effects caused by inheritance. In our current example, we could decide to make im-
mediate subclasses of AbstractMove final to make it clear that the class hierarchy 
should not be extended through inheritance beyond a single level of concrete move 
subclasses. 

Although run-time performance is not a primary concern discussed in this book, 
it is also worth noting that declaring classes and methods to be final can also have 
some positive implications for the execution speed of a program, because the ab-
sence of dynamic dispatch for final classes means that code can be optimized to run 
faster. 

Abstract Methods 

In the implementation of the perform() template method in AbstractMove, the 
second step is to perform the actual move. Within class AbstractMove, this step 
is undefined given that an abstract move does not represent any concrete move we 
could perform. For this reason, we need to leave out the actual execution of the 
move. However, we cannot leave this step out entirely, because as part of our tem-
plate we do need to specify that executing the move needs to happen, and needs 
to happen specifically after the move is pushed to the move stack and before the 
move execution is logged. In our design we thus specify that this computation needs 
to happen by calling a method. However, because all methods that are called need 
to be declared, we must add a new method declaration. In this example I called it 
execute(), because we cannot give it the same name as the template method (this 
would result in a recursive call). Because we do not have any implementation for 
execute(), we can defer the implementation to the subclasses. This is allowed be-
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cause AbstractMove is declared to be abstract, so there is no issue if the class’s 
interface is not fully implemented. Although it sometimes makes sense to declare 
abstract methods to be public, here I declare execute() to be protected because the 
only classes that need to see this method are the subclasses of AbstractMove that 
must supply an implementation for it. 

Summary of the Pattern 

The declaration of class AbstractMove, above, illustrates the key ideas of the so-
lution for TEMPLATE METHOD. The following points are also important to remember 
about the use of the pattern: 

• The method with the common algorithm in the abstract superclass is the template 

• If, in a given context, it is important that the algorithm embodied by the template 

• The most likely access modifier for the abstract step methods is protected, 
because in general there will not be any reason for client code to call individual 
steps that are intended to be internal parts of a complete algorithm. Client code 

• The steps that need to be customized by subclasses do not necessarily need to be 
abstract. In some cases, it will make sense to have a default behavior that could be 
implemented in the superclass. In this case it might not be necessary to make the 
superclass abstract. In our example, there is a default implementation of log() 
that can be overridden by subclasses. In a different context, it might make more 
sense to declare this method abstract as well. 

When first learning to use inheritance, the calling protocol between code in the 
super- and subclasses can be confusing because, although it is distributed over mul-
tiple classes, the method calls are actually dispatched to the same target object. The 
sequence diagram in Figure 7.15 illustrates a call to perform() on a DiscardMove 
instance. As can be seen, although it is implemented in subclasses, the call to the 
abstract step method is a self-call. 

7.11 Proper Use of Inheritance 

Inheritance is both a code reuse and an extensibility mechanism. This means that a 
subclass inherits the declarations of its superclass, but also becomes a subtype of its 
superclass (and its superclass’s superclass, and so on). To avoid major design flaws, 
inheritance should only be used for extending the behavior of a superclass. As such, 
it is bad design to use inheritance to restrict the behavior of the superclass, or to use 
inheritance when the subclass is not a proper subtype of the superclass.
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Fig. 7.15 Call sequence in 
the TEMPLATE METHOD 

:GameModelclient: move:DiscardMove

perform()

pushMove(move)

execute()

log()

Restricting What Clients of Base Classes Can Do 

As an example of a design idea to limit what a superclass can do using our running 
scenario of a deck of cards, let us say that in some design context we need to have 
decks of cards that cannot be shuffled. Given that we already have a class (Deck) 
that defines everything we need to instantiate a deck, can we simply subclass Deck 
to “deactivate” the shuffling? We could do this, for instance, by defining a subclass 
UnshufflableDeck that overrides method shuffle() to either do nothing or throw 
an exception if it is called. 

This approach is problematic because it conflicts directly with the use of poly-
morphism, which supports calling operations on an object independently of the con-
crete type of the object. Let us consider the following hypothetical calling context: 

private Card shuffleAndDraw(Deck pDeck) { 
pDeck.shuffle(); 
assert !pDeck.isEmpty(); 
return pDeck.draw(); 

} 

This code will compile and, assuming shuffle() normally resets the deck to 
contain 52 cards, should do exactly what we want. However if, when the code exe-
cutes, the run-time type of the instance passed into shuffleAndDraw happens to be 
an UnshufflableDeck, the code will either not work as expected (by silently not 
getting shuffled and risking an assertion violation), or raise an exception (that is, fail 
when executing). There is clearly something amiss here. 

The intuition that inheritance should only be used for extension is captured by 
the Liskov Substitution Principle (LSP). The LSP essentially states that subclasses 
should not restrict what clients of the superclass can do with an instance. In practice 
this means that, among others, overriding methods: 

• Cannot have stricter preconditions; 
• Cannot make the method less accessible (e.g., from public to protected);



188 7 Inheritance

• Cannot take more specific types as parameters; 
• Cannot have less strict postconditions; 
• Cannot have a less specific return type. 

This list seems like a lot of things to remember when designing object-oriented 
software, but the whole point of the principle is that it allows us to reason about 
overriding in general without having to remember an extensive list of cases.12 Nev-
ertheless, at first some of these points can seem counter-intuitive, so let us consider 
concrete scenarios. 

A subclass is not substitutable for the superclass if it has stricter preconditions, 
because it makes the client code responsible for ensuring that additional condi-
tions hold in the presence of objects of the subclass. For example, we may want 
to extend Deck to override method draw() so that it draws the highest of the top 
two cards in the deck, and discards the other. This introduces a special case for 
instances of Deck that have only one card. While drawing that one card without 
additional side effects would respect the LSP, changing the precondition of method 
draw() to require that the deck instance has two cards would violate the princi-
ple. In fact, our example above, of deactivating method shuffle(), is an extreme 
case of stricter preconditions, because for an instance of UnshufflableDeck(), the 
precondition for shuffle() is always false, which clearly violates the LSP. Un-
fortunately, this facet of the LSP is notoriously violated by the Java Collections 
Framework, which includes the concept of optional operations, such as List#add. 
Attempting to call an optional operation on an instance that does not support it raises 
an UnsupportedOperationException. 

Java requires that overriding methods not be less accessible than the method 
they override because, in effect, this would directly prevent substituting a subclass 
for the superclass in any client code that uses a method not visible in the subclass. 

For a subclass to override a method so that it requires more specific param-
eter types would also prevent it from being fully substitutable. For example, let 
us assume that a Deck has a method initialize(Deck) that adds all cards in 
the input deck to the implicit argument. Then, client code expects that it can add 
cards from a Deck or any of its subtype to the current deck. If a subclass of Deck, 
e.g., MemorizingDeck, defines its own method initialize(MemorizingDeck) 
that only accepts a MemorizingDeck as argument, then it limits the flexibility of 
the client code to call the method with Deck or any of its subtypes. Interestingly, 
Java allows the definition of methods with the same name but more specific param-
eter types as a method in the superclass, but it treats the method in the subclass as 
an overloaded version of the method (see Section 7.5). This situation is thus best 
avoided, for it can be very confusing. The systematic use of the @Override annota-
tion (see Section 7.4) would help flag this as a problem. 

A subclass is also not substitutable for the superclass if it has less strict postcon-
ditions, because it makes the client code responsible for handling values it might 

12 There are additional rules that can be derived from the Liskov Substitution Principle. For exam-
ple, Java does not allow overriding methods to declare to throw additional checked exceptions (see 
Section A.8 in the appendix).
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not have anticipated. For example, if a method is guaranteed to return a positive 
integer, an overridden version of the method that can also return negative integers 
would violate the LSP because the client code was not expected to have to deal with 
negative values. 

A similar rule derived from the LSP is that overriding methods cannot have 
a more general return type than the corresponding method in the superclass be-
cause the client may rely on certain services that may not be available in the more 
general type. For example, if a subclass of Deck overrides method draw() to return 
a value of type Object instead of Card, then the client code would not be able to 
safely invoke methods suit() and rank() on the value returned by draw(). For 
this reason, this eventuality is explicitly prevented by the Java compiler. 

The classic example of a violation of the LSP is the so-called Circle–Ellipse prob-
lem, wherein a class to represent a circle is defined by inheriting from an Ellipse 
class and preventing clients from creating any ellipse instance that does not have 
equal proportions. This violates the LSP because clients that use an Ellipse base 
class can set the height to be different from the width, and introducing a Circle 
subclass would eliminate this possibility: 

Ellipse ellipse = getEllipse(); 
// Not possible if ellipse is an instance of Circle 
ellipse.setWidthAndHeight(100, 200); 

How to avoid the Circle–Ellipse problem in practice will, as usual, depend on the 
context. In some cases, it may not be necessary to have a type Circle in the first 
place. For example, in a drawing editor, user interface features could be responsible 
for assisting users in creating ellipses that happen to be circles, while still storing 
these as instances of Ellipse internally. In cases where a type Circle can be useful, 
it might make sense to have different Circle and Ellipse classes that are siblings 
in the type hierarchy, etc. 

Subclasses That Are Not Proper Subtypes 

Inheritance accomplishes two things (see Section 7.2): 

• It reuses the class member declarations of the base class as part of the definition 
of the subclass; 

• It introduces a subtype–supertype relation between the subclass and the super-
class. In other words, a class should extend a base class only if there is an “is–a” 
relationship between the concepts represented by the two classes. 

To use inheritance properly, it has to make sense for the subclass to need both of 
these features. A common abuse of inheritance is to employ it only for reuse, and 
overlook the fact that there is no sensible “is–a” relation between the classes. 

Some well-known acknowledged violations of this principle include the library 
type Stack (which inappropriately inherits from Vector), and Properties (which 
inappropriately inherits from Hashtable). When subtyping is not appropriate, com-
position should be used.
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to the extent possible, as this ensures tighter encapsulation;
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Code Exploration: JetUML · NodeRenderer class hierarchy 
Calling methods within the class hierarchy. 
The Edge class hierarchy discussed earlier provides a rich illustration of field 
inheritance. In contrast, the NodeRenderer hierarchy provides many inter-
esting examples of method inheritance. In JetUML, renderers are objects 
that compute the position and look of diagram elements. The methods of the 
NodeRenderer interface include services that have to do with the geometry 
of the nodes, such as draw, getBounds, getConnectionPoint, etc. 

Let us start our study of the NodeRenderer hierarchy at the top, with a 
look at AbstractNodeRenderer. First, the class does not provide an imple-
mentation for the interface method draw. This is consistent with the use of an 
abstract class, because it would be meaningless to draw something that is not 
concrete. 

The design of classes TypeNodeRenderer and InterfaceNodeRenderer 
illustrates the extent to which inheritance supports code reuse. The renderer 
classes are used to depict class and interface nodes in a class diagram. The 
code is not simple as it must handle different geometries depending on 
whether the nodes have attributes or methods. At the same time, the only 
visual difference between types and interface nodes is that interface nodes in-
clude the «interface» UML stereotype in their name. To support code reuse, 
TypeNodeRenderer defines a protected placeholder method getNameText to 
get the name of the node, with a default implementation to use the node’s 
name as text. The subclass InterfaceNodeRenderer then overrides this 
method to add the interface stereotype to the text, and inherits the complete 
viewing machinery from its superclass. 

Insights 

This chapter introduced inheritance as a mechanism to support code reuse and ex-
tensibility. 

• Use inheritance to factor out implementation that is common among subtypes of 
a given root type and avoid DUPLICATED CODE†; 

• UML class diagrams are useful to capture inheritance-related design decisions; 
• To the extent possible, use the services provided by a subclass through polymor-

• Even in the presence of inheritance, consider keeping field declarations private 

• Subclasses should be designed to complement, or specialize, the functionality 
provided by a base class, as opposed to redefining completely different behavior;
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• Use the @Override annotation to avoid hard-to-find errors when defining over-
riding relations between methods; 

• Because it can easily lead to code that is difficult to understand, keep overloading 
to a minimum. Overloading is best avoided altogether when the parameter types 
of the different versions of a method are in a subtyping relation with each other; 

• Inheritance- and composition-based approaches are often viable alternative when 
looking for a design solution. When exploring inheritance-based solutions, con-
sider whether composition might not be better; 

• You can use Java’s cloning mechanism to implement polymorphic copying when 
the fields of the superclass are not accessible. However, cloning is a complex and 
error-prone mechanism that must be used very carefully; 

• Ensure that subclasses that extend a base class can also be considered meaningful 
subtypes of the base class, namely that instances of the subclass are in a “is-a” 
relation with the base class; 

• Ensure that any inheritance-based design respects the Liskov Substitution Princi-
ple. In particular, do not use inheritance to restrict the features of the base class; 

• If some of the fields and methods that can be isolated through inheritance do not 
add up to a data structure that it makes sense to instantiate, encapsulate them in 

• Consider using the TEMPLATE METHOD pattern in cases where an algorithm applies 
to all subclasses of a certain base class, except for some steps of the algorithm 
that must vary from subclass to subclass; Some of the steps can be specified as 
abstract methods in an abstract base class. 

• If there is no scenario for overriding a method, consider declaring it final. Sim-
ilarly, if there is no specific reason for a class to be extensible using inheritance, 
consider declaring it final. 
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Further Reading 

The Java Tutorial [11] has a section on interfaces and inheritance that provides com-
plementary material on inheritance, with a focus on the programming language as-
pects. In terms of design guidelines, Chapter 4 of Effective Java [2], titled Classes 
and Interfaces, provides many items of guidance relevant to this chapter. Examples 
include Item 15, Minimize the accessibility of classes and members, Item 18, Favor 
composition over inheritance, and Item 19, Design and document for inheritance or 
else prohibit it. Additional items relevant to this chapter include Item 13, Override 
clone judiciously, and Item 52, Use overloading judiciously.



Chapter 8 
Inversion of Control 

Concepts and Principles: Application framework, callback, event han-
dling, graphical user interface (GUI), inversion of control, model–view– 
controller (MVC) decomposition; 
Patterns and Antipatterns: PAIRWISE DEPENDENCIES†, OBSERVER, VISI-
TOR. 

Inversion of control involves reversing the usual flow of control from caller code 
to called code to achieve separation of concerns and loose coupling. It allows us to 
build sophisticated applications while keeping the overall design complexity down 
to a manageable level. One of the main realizations of the principle takes the form 
of the OBSERVER pattern. This pattern is pervasive in software development, and it 
is realized by most graphical user interface toolkits on most software development 
platforms, from desktop to web to mobile applications. 

Design Context 

Inversion of control brings the level of discussion to a higher level of abstraction that 
needs to consider the design of an entire application. To be able to focus on the issue 
of inversion of control, this chapter introduces new design contexts. The context 
used as a running example for part of the chapter is that of a small application 
to allow the user to select and view a number in different formats (for example, 
digits vs. text). A different context, of an observable stack of cards, is introduced 
in Section 8.4 to provide an additional example. I return to the design of recursive 
card source structures seen in previous chapters to introduce the VISITOR pattern in 
Section 8.8.
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8.1 Motivating Inversion of Control 

One situation that motivates inversion of control in software design is when a num-
ber of stateful objects need to be kept consistent. An example from the programming 
domain itself is an integrated development environment which presents different 
views of the source code. In Eclipse, for example, the Package Explorer and Outline 
views shows the structure of a class that can also be viewed in the source code edi-
tor (see Figure 8.1). If a user changes the class declaration, for example by adding a 
field in the source code editor, this change is immediately reflected in all the differ-
ent views. Likewise, if the user reorders the method declarations in the Outline view, 
the new order of method declarations is reflected in the source code editor. Hence, 
we could say that the problem we are trying to solve is one of synchronization,1 

where we are trying to keep different objects consistent with each other. 

Fig. 8.1 Three different views of the source code in Eclipse 

To isolate the issue of view synchronization, I distilled the design problem into 
a toy application called LuckyNumber. The application allows a user to select a 
number (presumed to be lucky) between 1 and 10 inclusively. The interesting part 
of the application, however, is that users can select their lucky number in different 
ways, for example by entering the digit(s) that represent the number, typing out the 
name of the number in English, or selecting it from a slider (see Figure 8.2). 

In the application, each horizontal panel allows the user to view the number in a 
specific way, but also to change the number. If the number is changed in one panel, 
the change is immediately reflected in all other panels. In addition to its current 
features, one requirement for this application is that it can be extended to accommo-
date any additional type of view. For example, old-fashioned users may request the 
option to select their number using Roman numerals, geeky users may want to use 
binary notation, etc. 

1 The term synchronization has a different meaning in the context of concurrent programming, a 
topic that is outside the scope of this book.
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Fig. 8.2 Screenshot of the 
LuckyNumber application 

A consequence of implementing this functionality naively is to be left with com-
plete PAIRWISE DEPENDENCIES†. With PAIRWISE DEPENDENCIES†, whenever the user 
changes the number in a panel, this panel directly contacts all other panels and up-
dates their view of the number. Figure 8.3 illustrates these dependencies in a class 
diagram. 

Fig. 8.3 Example of PAIRWISE 

DEPENDENCIES† 
SliderPanel

TextPanel

IntegerPanel

This design suffers from at least the following two related limitations: 

• High coupling: Each panel explicitly depends on many other panels. Panels 
could be of different types and require different types of interactions. For ex-
ample, to update the number it may be necessary to call setDigit on one panel 

setSliderValue 

• Low extensibility: To add or remove a panel, it is necessary to modify all other 
panels. For example, to remove the slider panel, it would be necessary to modify 
all other panels to remove the statements that update the slider panel. Similarly, 
to add a Roman numeral panel, it would be necessary to change every panel to 
add some statements to manage the new panel, etc. 

What is even worse, is that the impact of these issues increases quadratically with 
the number of panels, given that there are n · (n− 1) directed edges in a complete 
graph with n vertices. In the initial application with three panels, we need six de-
pendencies to keep all panels synchronized. This may not seem like much, but if 
we throw in panel for Roman numerals and one for numbers in binary notation, for 
a total of five, then we need 20 dependencies scattered over five components, just 
to keep a single number consistent. This is poor separation of concerns, because
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a significant amount of code will be required to manage the dependencies that is 
likely to end up tangled with code that more directly supports the required logic 
(e.g., adjusting a slider). The code will also be less understandable, harder to test, 
etc. 

8.2 The Model–View–Controller Decomposition 

One way out of using complete pairwise dependencies to synchronize multiple rep-
resentations of the same data is to separate abstractions responsible for storing 
data from abstractions responsible for viewing data, from abstractions responsible 
for changing data. This key insight is generally known as Model–View–Controller 
(MVC) from the name of the three abstractions. The Model is the abstraction that 
keeps the unique copy of the data of interest. In our simple context, that would be 
the lucky number. The View is, not surprisingly, the abstraction that represents one 
view of the data. Generally in a MVC decomposition there can be more than one 
view of the same model. This is illustrated in the LuckyNumber application by the 
presence of different views for something as simple as a single integer. Finally, the 
Controller is the abstraction of the functionality necessary to change the data stored 
in the model. 

The origin of the MVC is somewhat obscure. The idea can be traced back to the 
late 1970s and Xerox PARC researchers working on Smalltalk software, but there is 
little besides a few memos in terms of written reports on the original development of 
the concept. Currently, the term MVC is used fairly loosely. Some software devel-
opers refer to it as a design pattern. Others refer to it as something slightly different 
called an architectural pattern or architectural style (somewhat like a design pat-
tern, but at a higher level of design abstraction). Some refer to it simply as a general 
concept. Finally, some web technology platforms use the terms model, view, and 
controller to refer to specific software components. Because I see the main benefit 
of the Model–View–Controller as a guideline to separate concerns, I think of it sim-
ply as a decomposition (of concerns). In this sense, it is more general than a design 
pattern, because it does not include a solution template that is specific enough to 
apply directly. 

The lack of a well-defined solution template for the MVC means that there is 
little guidance on how to realize the idea in practice. This also means that there 
are innumerable ways to go about separating the model, view, and controller in a 
design context. For example, the model could be a single object, or a collection of 
objects. The view and controller could be different objects, or fused together. In the 
latter case, the separation of concerns would be organized along the interfaces of 
objects rather than the objects themselves (see Section 3.9 on the idea of interface 
segregation). 

Such a vague concept as the MVC is not easy to grasp in itself at first. Fortunately, 
there exists a related idea that is much more concrete, namely the OBSERVER pattern.
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8.3 The OBSERVER Design Pattern 

The central idea of the OBSERVER pattern is to store data of interest in a dedicated 
object, and to allow other objects to observe this data. The object that stores the 
data of interest is called, alternatively, the subject, model, or observable, and it cor-
responds to the Model abstraction in the Model–View–Controller decomposition. 
For this reason, the context for the OBSERVER pattern corresponds to the motivation 
discussed in Section 8.1: we want a simple way to manage multiple objects that 
must be aware of state changes in the same data. The class diagram of Figure 8.4 
illustrates how this is realized for the LuckyNumber application. 

TextPanelIntegerPanel

«interface»
Observer

SliderPanel

Model

- aNumber:int

+ addObserver(Observer):void
+ removeObserver(Observer):void
+ getNumber():int
+ setNumber(int):void

aObservers *

Fig. 8.4 Application of the OBSERVER to the LuckyNumber application 

In this situation, the object in charge of keeping the data is an instance of Model, 
which keeps track of a single integer and allows clients to query and change this 
integer. 

Linking Model and Observers 

Where things become interesting is that the Model class also includes an aggregation 
to an Observer interface, with methods to add and remove Observer instances 
from its collection. This process is called registering and deregistering observers. 
The mechanism for managing observers can be trivially implemented, for example: 

public class Model { 
private int aNumber = 5; 
private List<Observer> aObservers = new ArrayList<>(); 

public void addObserver(Observer pObserver) { 
aObservers.add(pObserver); 

} 

public void removeObserver(Observer pObserver) { 
aObservers.remove(pObserver); 

} 
}
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Classes that define objects that need to observe the model must then declare to 
implement the Observer interface: 

class IntegerPanel implements Observer { /* ... */ } 

Through polymorphism, we thus achieve loose coupling between the model and 
its observers. Specifically: 

• The model can be used without any observer; 
• The model is aware that it can be observed, but its implementation does not 

depend on any concrete observer class; 
• It is possible to register and deregister observers at run time. 

Control Flow Between Model and Observers 

A first key question about the relation between a model an its observers is, how do 
the observers learn that there is a change in the state of the model that they need 
to know about? The answer is that whenever there is a change in the model’s state 
worth reporting to observers, the model should let the observers know by calling a 
certain method on them. This method has to be defined on the Observer interface 
and is usually called a callback (method) because of the inversion of control that it 
implies. We talk of inversion of control because, to find out information from the 
model, the observers do not call a method on the model, they instead wait for the 
model to call them (back). This procedure is often referred to as the Hollywood 
Principle (“don’t call us, we’ll call you”). That is also why the method that is called 
by the model on the observer is called a callback. Continuing with the movie in-
dustry metaphor, the name of the method to call back is like the phone number 
of the prospective actor. If the casting director determines that the actor should be 
auditioned, they will call the number. Likewise, if the model determines that the 
observers should be notified, it will call their callback method. 

In the case of the LuckyNumber application, an appropriate name for the call-
back method would be newNumber, given that this is the method that will be called 
whenever the model needs to inform its observers that it has changed the number it 
is storing. We thus define this method in the Observer interface: 

public interface Observer { 
void newNumber(int pNumber); 

} 

When first learning about callbacks, their logic can be a bit puzzling, especially 
if the name of the callback is ambiguous. In the case above, it may look like the 
method is intended to set a new number on an observer, because it would be called 
like this: 

someObserver.newNumber(5); 

However, the method name should not be mentally read as “set number to this new 
value”, but rather as “the model has a new number, here it is”. In other words, a 
callback is not to tell observers what to do, but rather to inform observers about
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some change in the model, and let them deal with it as they see fit (through the 
logic provided in the callback). The analogy with the movie studio still works. If an 
actor (the observer) gets an audition, the studio might call them and say “you have 
an audition”, without specifying the details of how to react to this information (for 
example, by preparing, arranging transportation, etc.). The lesson here is that to help 
others understand a design, it is a good practice to name callback methods with a 
name that describes a state-change situation, as opposed to a command. In our case, 
other suitable names for the callback method would include numberSelected and 
numberChanged. 

Once we have a callback defined, within class Model, we can create a helper 
method, called a notification method2 that will notify all observers and provide them 
with the number they should know about: 

public class Model { 
private void notifyObservers() { 

for (Observer observer : aObservers) { 
observer.newNumber(aNumber); 

} 
} 

} 

To ensure that the model dutifully notifies observers whenever a state change 
occurs, two strategies are possible: 

• A call to the notification method must be inserted in every state-changing 
method; in this case the method can be declared private; 

• Clear documentation has to be provided to direct users of the model class to call 
the notification method whenever the model should inform observers. In this case 
the notification methods needs to be non-private. 

As usual, which strategy is preferable depends on the context. In cases where no-
tifications can be issued for every model change, the first method provides a simpler 
life cycle for the state of the model. However, in certain cases, notifying observers 
with every state change may lead to some performance problems. For example, if 
we had a model that could be initialized with a large collection of data items by 
adding each item one at a time, notifying observers after each individual addition 
may dramatically degrade the performance while providing no benefit. In situations 
such as this one, it may be better to change the model silently (without notifying the 
observers), and then trigger a notification once the batch operation is done. In cases 
where such flexibility is needed, the second strategy can provide it. 

The sequence diagram of Figure 8.5 illustrates what happens when we change 
the number on the LuckyNumber application using the first strategy. 

Inside the state-changing method setNumber(int), we added a call to notify-
Observers to loop through each observer and call the method newNumber on each. 
The implementation of the newNumber callback dictates how each observer reacts 
to the change in state. In the case of the LuckyNumber application, each observer 

2 In Java the notification method cannot be called simply notify(), because a legacy method with 
this name is already defined in class Object.
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:Model :SliderPanel:TextPanel :IntegerPanelclient:

setNumber(5)

notifyObservers()

newNumber(5)

newNumber(5)

newNumber(5)

Fig. 8.5 Call sequence for the OBSERVER 

deals with the callback in a different way. For example, the IntegerPanel sets 
the number of the integer in a text field; the TextPanel looks up the name of the 
integer in an array, and sets the value of the text field to that string; the SliderPanel 
positions the slider to correspond to the value, etc. 

Data Flow between Model and Observers 

The second key question about the relation between a model and its observers is, 
how do the observers access the information that they need to know about from the 
model? Two main strategies are available. The first strategy is to make the informa-
tion of interest available through one or more parameters of the callback method. 
This strategy is also known as the push data-flow strategy because the model is 
explicitly pushing data of a pre-determined structure to the observers. 

Applying this strategy to our context, we could define the callback method to 
include a parameter that represents the number most recently stored in the model. 
This is the strategy that I illustrated above with the newNumber(int) callback. 

public interface Observer { 
void newNumber(int pNumber); 

} 

This way, whenever a callback method is called on an observer, the implementa-
tion of the callback can obtain the value of interest from the argument bound to the 
parameter. For example, relevant parts of the implementation of the IntegerPanel 
would look like this:
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public class IntegerPanel implements Observer { 
// User interface element that represents a text field 
private TextField aText = new TextField(); 

/* ... */ 
public void newNumber(int pNumber) { 
aText.setText(Integer.toString(pNumber)); 

} 
} 

This strategy makes one major assumption: that we know in advance what type of 
data from the model the observers will require. In our case, this strategy is a good fit 
because there is nothing but a single integer that observers could require. However, 
this is not the general case. For example, we could enhance the model to remember 
each lucky number ever selected, and the timestamp of its selection. Observers now 
have more data to choose from. Given the context, we could still assume that the 
most common case for an observer will be to show the most recent number, but more 
sophisticated observers might want to show the last three numbers, for example, or 
the amount of time a certain number remained selected. 

As another example, let us say that we want to make the Deck class discussed in 
previous chapters into an observable object. What would observers be interested in? 
Again, one usage scenario stands out: to show the card drawn. So we could fix this 
expectation with the callback: 

public interface DeckObserver { 
void cardDrawn(Card pCard); 

} 

However, in some cases this might be too strict. Some observers might be interested 
in the number of cards left in the deck, or they may want to know about the top card, 
etc. 

A more flexible strategy is instead to let observers pull the data they want from 
the model using query methods defined on the model. Appropriately, this approach 
is known as the pull data-flow strategy. To convert the design of the LuckyNumber 
application to use the pull strategy, we could exchange the pNumber parameter with 
one that would refer to the entire model: 

public interface Observer { 
void newNumber(Model pModel); 

} 

That way, the data to put in the text field must be obtained from the model: 

public class IntegerView implements Observer { 
// User interface element that represents a text field 
private TextField aText = new TextField(); 

/* ... */ 
public void newNumber(Model pModel) { 

aText.setText(Integer.toString(pModel.getNumber())); 
} 

}
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Now, any data available through the methods of class Model also becomes avail-
able to the observers. To implement the pull data flow strategy, observers must have 
a reference to the model, but this reference must not necessarily be provided as an 
argument to the callback method. Another option is to initialize observer objects 
with a reference to the model (stored as a field), and refer to that field as necessary. 
This design is illustrated in the class diagram of Figure 8.6. That design makes it 
clear that the reference to the model is obtained through the constructor. 

Model

- aNumber:int

+ setNumber(int):void
+ getNumber():int
- notifyObservers():void

«interface»
Observer

newNumber():void

IntegerPanel

IntegerPanel(Model)

*

aModel

Fig. 8.6 Class diagram of LuckyNumber as a model using the pull data-flow strategy for observers 

At first glance, it may look like the pull data-flow strategy introduces a circular 
dependency between a model and its observers, given that both depend on each 
other. However, the crucial difference is that, in this design, the model does not 
know the concrete type of its observers. Through interface segregation, the only 
slice of behavior that the model needs from observers is specified through their 
callback method. This being said, one of the main drawbacks of the pull data-flow 
strategy is that it does, indeed, increase the coupling between observers and model. 
In the design of Figure 8.6, observers can not only call getNumber(), they can 
also call setNumber(int). In other words, by holding a reference to the model, 
observers have access to much more of the interface of the model than they need. 
Fortunately, we saw how to deal with this situation with the Interface Segregation 
Principle (ISP, see Section 3.2). To apply ISP to our design, we could create a new 
interface ModelData that only includes the getter methods for the model, and only 
refer to this type in the observers. Figure 8.7 illustrates this solution. 

Although I presented them here separately, the push and pull strategies can be 
combined. For example, it is possible to specify a callback that includes a param-
eter for both data about the change of state in the model and a reference back to 
the model. This design would not be very useful in our scenario, but I include its 
implementation for the sake of illustration: 

public interface Observer { 
void newNumber(int pNumber, ModelData pModel); 

} 

In general, supporting both strategies can help increase the reusability of the 
Observer interface at the cost of a more complex design that may include situations
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Model

- aNumber:int

+ setNumber(int):void
+ getNumber():int
- notifyObservers():void

«interface»
Observer

newNumber():void

«interface»
ModelData

getNumber():int

IntegerPanel

IntegerPanel(ModelData)

*

Fig. 8.7 Class diagram of the pull method with ISP 

where one parameter is not used.3 At the other extreme, for simple design contexts it 
may be the case that the only information that needs to flow between the model and 
the observers is the fact that a given callback method was invoked. In such cases, 
neither the push nor the pull strategy is required: receiving the callback invocation 
is enough information for the observers to do their job. An observer that serves as a 
counter of a type of event would be one example. 

As a final remark regarding the flow of data between the model and its observers, 
it is worth noting that in the examples above, none of the callback methods return 
any value (i.e., they declare to return void). This is not a design decision, but a con-
straint of the pattern. Because the model is supposed to ignore how many observers 
it has, it can be tricky for observers to attempt to manage the model by returning 
some value. Technically, it is possible to declare the return type of callbacks to be 
non-void, and to aggregate the results across many invocations. For example, one 
could design the callback to return true if it somehow succeeded in responding to 
the callback (and false otherwise), and have the model apply a logical operator to 
the results. Such schemes represent uncommon and possibly fragile applications of 
the pattern. When starting out with the OBSERVER, my recommendation is to have 
callbacks return void. 

Event-Based Programming 

One way to think about callback methods is as events, with the model being the event 
source and the observers being the event handlers. Within this paradigm, the model 
generates a series of events that correspond to different state changes of interest, 
and other objects are in charge of reacting to these events. What events correspond 
to in practice are simply method calls. Thinking about observers as event handlers 
helps realize that we actually have a lot of flexibility when designing callbacks. In 

3 The Java library includes a pair of types, Observable and Observer, where Observer defines the 
single callback void update(Observable, Object), which supports both data-flow strategies. 
These types are, however, deprecated since Java 9.
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the LuckyNumber application, the design to date has involved a single callback, 
newNumber. However, for the sake of discussion, we can imagine a situation where 
a Model might be used by observers that are sometimes interested only if the lucky 
number increased (or, conversely, decreased), or whether the number is set to its 
maximum or minimum value. Implementing this feature in the current design would 
be difficult: every observer would have to store a copy of the number, and check it 
against the new number to determine if it has increased or decreased, in addition to 
checking for maximum or minimum value. We can do things differently by adjusting 
the design of the callbacks to explicitly capture the events of potential interest: 

public interface Observer { 
void numberIncreased(int pNumber); 
void numberDecreased(int pNumber); 
void numberSetToMax(int pNumber); 
void numberSetToMin(int pNumber); 

} 

With this design, observers do not need to store a copy of the old number, and 
they can be notified of precisely the event they are interested in.4 In cases where an 
observer does not need to react to an event, the unused callbacks can be implemented 
as empty (do-nothing) methods. In the class below, it is assumed that the events are 
mutually exclusive, namely that the event numberIncreased means increased but 
not to the maximum value, and similarly for numberDecreased. 

public class IncreaseDetector implements Observer { 
public void numberIncreased(int pNumber) { 
System.out.println("Increased to " + pNumber); 

} 
public void numberDecreased(int pNumber) {} 
public void numberSetToMax(int pNumber) {} 
public void numberSetToMin(int pNumber) {} 

} 

If the reliance on empty methods occurs too often, it is possible to implement 
these empty methods in a class and inherit from it instead. Such classes are some-
times called adapters: 

public class ObserverAdapter implements Observer { 
public void numberIncreased(int pNumber) {} 
public void numberDecreased(int pNumber) {} 
public void numberSetToMax(int pNumber) {} 
public void numberSetToMin(int pNumber) {} 

} 

With an adapter, the do-nothing behavior becomes inherited, and observers can 
override only the subset of callbacks that correspond to the events they need to 
respond to: 

4 Whether we need the parameter for the numberSetToMax and numberSetToMin methods depends 
on the context, that is, whether the minimum and maximum values are known globally.
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public class IncreaseDetector extends ObserverAdapter { 
public void numberIncreased(int pNumber) { 
System.out.println("Increased to " + pNumber); 

} 
} 

In the current scenario, I defined class ObserverAdapter to make the concept of 
an adapter class more explicit. However, in Java version 8 and later, the same benefit 
can be accomplished using default methods in interfaces. 
public interface Observer { 
default void numberIncreased(int pNumber) {} 
// etc. 

} 

The use of default methods for this purpose not only makes the code more com-
pact, it also enables the concrete observer to inherit from a different class if neces-
sary. 

In some cases, extensive use of empty methods might point to a mismatch be-
tween the varied needs of observers and the design of the callbacks. Again, it is 
possible to rely on the Interface Segregation Principle to clean things up. In our sit-
uation, we could define two observer interfaces that correspond to more specialized 
event handlers. For example: 
public interface ChangeObserver { 

void numberIncreased(int pNumber); 
void numberDecreased(int pNumber); 

} 

public interface BoundsReachedObserver { 
void numberSetToMax(int pNumber); 
void numberSetToMin(int pNumber); 

} 

With two abstract observers, concrete observers can be more targeted and only 
register for the sets of events they need to respond to. The trade-off for more flexibil-
ity is a slightly heavier interface for the Model class, because it now has to support 
two lists of observers with their corresponding registration methods. 

Summary of the Pattern 

The context for using the OBSERVER is fairly rich: it involves situations where many 
objects should be able to observe some data, and become aware of changes to the 
state of this data, while minimizing the coupling between the data and the observers 
of that data. Given a class that represents the data (the model), the solution template 
for the pattern involves making objects of this class observable by aggregating a 
number of abstract observers (usually defined with an interface). The following are 
important variation points when applying the OBSERVER: 

• What callbacks methods to define on an abstract observer. An abstract observer 
can have any number of callbacks that can correspond to different types of events;



• What data flow strategy to use to move data between the model and observers 
(push, pull, none, or both); 

• Whether to use a single abstract observer or multiple ones. Multiple abstract ob-
servers with different combinations of callbacks give observers more flexibility 
to respond to certain events or not; 

• How to connect observers with the model if observers need to query or control 
the model. Here the use of the Interface Segregation Principle is recommended; 

• Whether to include a notification helper method and, if so, whether to make this 
method private or not. If non-private, clients with references to the model get to 
control when notifications are issued. If private, it is assumed that the method is 
called at appropriate places in the state-changing methods of the model. 
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The listing below shows the complete code of the Model and Observer type 
declarations for the variant that uses the push data-flow strategy. 

public interface Observer { 
void newNumber(int pNumber); 

} 

public class Model { 
private List<Observer> aObservers = new ArrayList<>(); 
private int aNumber = 5; 

public void addObserver(Observer pObserver) { 
aObservers.add(pObserver); 

} 

public void removeObserver(Observer pObserver) { 
aObservers.remove(pObserver); 

} 

private void notifyObservers() { 
for (Observer observer : aObservers) { 
observer.newNumber(aNumber); 

} 
} 

public void setNumber(int pNumber) { 
if (pNumber <= 0) { 

aNumber = 1; 
} 
else if (pNumber > 10) { 

aNumber = 10; 
} 
else { 
aNumber = pNumber; 

} 
notifyObservers(); 

} 
}
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Code Exploration: Solitaire · GameModel 
Application of the OBSERVER with pull data flow and a single parameterless 
callback. 
Class GameModel in the Solitaire application captures the complete state of a 
game in progress. This class is an observable subject, as it maintains a list of 
GameModelListener instances. Interface GameModelListeners, the abstract 
observer, contains a single, parameterless callback: gameStateChanged(). 
Concrete observers are thus responsible for obtaining their own reference to 
the game model and pulling the information they need using query methods. 
These query methods are collected within interface GameModelView. For this 
application of the pattern, I chose the pull data flow strategy because of the 
large variety of information required from the model. I chose to store a ref-
erence to the model within observers instead of passing this reference via the 
callback because some observers need this reference to initialize themselves. 

8.4 Applying the OBSERVER Design Pattern 

The design space for applying the OBSERVER is extensive. Even in a small, well-
defined context, many alternatives are possible for designing the observer and ob-
servable types. To illustrate some of the options available and their corresponding 
trade-offs, let us now explore different designs for an observable version of the 
CardStack class introduced in Section 6.1. 

The CardStack class provides an implementation of the stack abstract data type 
specialized for Card objects. Figure 8.8 summarizes the definition of the class. With 
this design, it is only possible to find out about the state of a CardStack in the 
traditional way, by querying it via methods of its interface: peek(), isEmpty(), and 
via its iterator. Let us now assume that other objects may want to observe instances 
of this class. When applying the OBSERVER, we usually wish to make the design 
general enough to accommodate an open-ended variety of observers. However, to 
make the discussion more concrete I will consider two sample observers: 

• A counter, which reports the number of cards in the stack at any point, and detects 
when the last card has been popped; 

• An ace detector, which detects whether an ace is added to the stack at any point. 

Basic design with Push Data-Flow 

The simplest design I can think of for making the CardStack observable is to in-
troduce one abstract observer with three callbacks, one per state-changing method.
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Card

CardStack

push(Card): void
pop(): Card
peek(): Card
clear(): void
isEmpty(): boolean
iterator(): Iterator<Card>

«interface»
Iterable<Card>

iterator(): Iterator<Card>

aCards *

Fig. 8.8 The CardStack class 

Figure 8.9 shows the relevant design elements, including classes for the two required 
concrete observers. 

AceDetectorCounter

«interface»
CardStackObserver

pushed(Card): void
popped(Card): void
cleared(): void

CardStack

attach(CardStackObserver): void
push(Card): void
pop(): Card
clear(): void

aObservers

Fig. 8.9 The CardStack with basic OBSERVER support 

In addition to the introduction of the new CardStackObserver interface, the 
required code changes include the modification of CardStack to manage the list of 
observers, as well as notify them of state changes: 

public class CardStack implements Iterable<Card> { 
private final List<Card> aCards = new ArrayList<>(); 
private final List<CardStackObserver> aObservers = 

new ArrayList<>(); 

public void attach(CardStackObserver pObserver) { 
aObservers.add(pObserver); 

} 

public void push(Card pCard) { 
assert pCard != null && !aCards.contains(pCard); 
aCards.add(pCard); 
for (CardStackObserver observer : aObservers) { 

observer.pushed(pCard); 
} 

} 
// Likewise for pop() and clear() 

}
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As for the observers, their implementation reveals some of the limitations of this 
design. For the AceDetector, we are only really interested in one event, and must 
therefore provide two empty callback implementations: 
public class AceDetector implements CardStackObserver { 
public void pushed(Card pCard) { 

if (pCard.rank() == Rank.ACE) { 
System.out.println("Ace detected!"); 

} 
} 

public void popped(Card pCard) {} 
public void cleared() {} 

} 

The implementation of Counter surfaces a different problem. Because there is 
no way to obtain the number of cards in the stack from the information passed via 
the callback, it is necessary to either retain a reference to the card stack, or duplicate 
part of its state. For the sake of discussion, I will leave the observer decoupled from 
the observable, and accumulate state within the observer: 
public class Counter implements CardStackObserver { 
private int aCount = 0; 

public void pushed(Card pCard) { 
aCount++; 
System.out.println("PUSH Counter=" + aCount); 

} 

public void popped(Card pCard) { 
aCount--; 
System.out.println("POP Counter=" + aCount); 
if (aCount == 0) { 
System.out.println("Last card popped!"); 

} 
} 

public void cleared() { 
aCount = 0; 
System.out.println("CLEAR Counter=" + aCount); 

} 
} 

In addition to replicating state, this solution suffers from the problem that it will 
only function correctly if the observer is attached to an empty CardStack. While 
this additional constraint may be acceptable in some contexts, it does make the 
design more brittle. 

Design with Inheritance 

The solution sketched above fuses the application of the observer pattern to the im-
plementation of CardStack, thereby coupling client code with the observer machin-
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ery (the attach method and observer notification) even when it is not needed. An 
approach that yields more flexibility is to use inheritance to provide an observable 
extension to CardStack. The left side of Figure 8.10 captures this decomposition. 

AceDetector

CardStackObserverAdapter

Counter

ObservableCardStack

attach(CardStackObserver): void
push(Card): void
pop(): Card
clear(): void

CardStack

push(Card): void
pop(): Card
clear(): void

«interface»
Iterable<Card>

iterator(): Iterator<Card>
«interface»

CardStackObserver

pushed(Card): void
popped(Card): void
cleared(): void

aObservers

Fig. 8.10 The ObservableCardStack with inheritance 

With this design, client code that only requires the plain CardStack can refer 
to the original version, and clients that require an observable one can instantiate 
the subclass instead. The ObservableCardStack subclass reuses all the original 
state-changing methods, but also overrides them to add the observer notification. 
For example, for pop(): 

public class ObservableCardStack extends CardStack { 
/* ... */ 
public Card pop() { 

Card popped = super.pop(); 
for (CardStackObserver observer : aObservers) { 
observer.popped(popped); 

} 
return popped; 

} 
} 

While we are at it, we can also leverage inheritance to solve the problem that we 
may need to provide empty callback implementations in some observers (such as 
AceDetector). As illustrated on the right side of Figure 8.10, we can provide an 
adapter class for the Observer interface. The class CardStackObserverAdapter
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provides empty implementations for all callbacks. By inheriting from the adapter, 
observers only need to provide an implementation for the relevant callbacks.5 

Design with Pull Data-Flow 

Let us now try out an implementation with a pull data-flow strategy. With this al-
ternative, we want to allow observers to pull (fetch) the data they need from the 
observable card stack, while maintaining a minimal amount of coupling between 
the observers and their subject. For this purpose, we will use the Interface Segre-
gation Principle (see Section 3.9) and define a new interface that declares only the 
state-querying methods of CardStack. The new interface CardStackView will al-
low us to have objects that can query the state of a card stack, without being coupled 
to state-changing methods such as push or pop, or the observer registration method 
(attach). Figure 8.11 illustrates the new design variant. 

ObservableCardStack

attach(CardStackObserver): void
push(Card): void
pop(): Card
clear(): void

CardStack

push(Card): void
pop(): Card
clear(): void

«interface»
Iterable<Card>

iterator(): Iterator<Card>

«interface»
CardStackObserver

default pushed(CardStackView): void
default popped(CardStackView): void
default cleared(CardStackView): void

Counter AceDetector

«interface»
CardStackView

peek(): Card
isEmpty(): boolean

aObservers

Fig. 8.11 The ObservableCardStack with pull-style data-flow 

In this design, the callbacks now take a CardStackView as parameter. The 
impact on the observable is minimal: instead of passing a card as argument, the 
ObservableCardStack passes a reference to itself, for example in pop(): 
public Card pop() { 
Card popped = super.pop(); 
for (CardStackObserver observer : aObservers) { 
observer.popped(this); 

} 
return popped; 

} 

5 I used an explicit adapter class to emphasize the inheritance relation. In practice, it would be 
preferable to inherit from default methods declared in the interface as described in Event-Based 
Programming, Section 8.3.
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The implementation of the observers is more impacted, however. The AceDetec-
tor must now rely on peek() to detect an ace, since there is no longer any infor-
mation available about the card that was just pushed onto the stack: 

public void pushed(CardStackView pView) { 
if (pView.peek().rank() == Rank.ACE) { 
System.out.println("Ace detected!"); 

} 
} 

As for the Counter observer, we have an interesting situation. Because the entire 
state of the card stack is now accessible, we no longer need to replicate the size of 
the stack in a field within Counter. However, the CardStackView does not provide 
a method size() that would allow us to retrieve this size conveniently. Instead, we 
would have to iterate every time through all the cards in the stack to get the size. 
Two alternatives are to either modify the CardStack and CardStackView types to 
include a size() method, or to implement a helper method within Counter. The 
trade-off is that in the first case, we widen the interface of the class, possibly for 
a rare usage scenario, whereas the second option may prove overly inefficient. For 
now, I choose to use a helper method in Counter: 

public class Counter implements CardStackObserver { 
private static int size(CardStackView pView) { 
int size = 0; 
for (Card card : pView) { 

size++; 
} 
return size; 

} 

public void popped(CardStackView pView) { 
System.out.println("POP Counter=" + size(pView)); 
if (pView.isEmpty()) { 
System.out.println("Last card popped!"); 

} 
} 
/* ... */ 

} 

It is worth noticing that with this solution, the implementation of the Counter is 
no longer brittle, as the callbacks will return the correct card count independently of 
when the object is attached to its subject ObservableCardStack. 

Design with Single Callback and Push/Pull Data-Flow 

As our final variant, we will look at a design with only a single callback that sup-
ports both push and pull data-flow strategies. Figure 8.12 shows the changed el-
ements in the solution. With only one callback for multiple kinds of events, the 
nature of the event is no longer represented by the name of the method, so I changed 
it to the general actionPerformed. We still need a way to distinguish between the
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kinds of events being reported, however. For this purpose, we can introduce a value 
that represents the event kind. This role is served by the parameter of enumerated 
type Action. To support both push and pull data-flow strategies, I combined the 
structures we defined above: a parameter to represent the card involved in the state 
change, and a parameter to refer back to the observable structure. While it makes 
sense to include a reference to the observable for all kinds of event, the same is not 
true for the value we push. For the CLEAR event, there is no card involved in the 
event. One solution is to use an Optional to avoid passing null (see Section 4.4). 

«interface»
CardStackObserver

actionPerformed(Action, Optional<Card>, CardStackView)

AceDetectorCounter

«enum»
Action

PUSH
POP
CLEAR

Fig. 8.12 The ObservableCardStack with dual push/pull-style data-flow 

In terms of observer implementation, this solution is more general and flexible 
because we can more easily add different kinds of events. The trade-off is that the 
observer implementations must do additional checking to see whether the callback 
applies to the event. For example, for AceDetector: 

public void actionPerformed(Action pAction, Optional<Card> pCard, 
CardStackView pView) { 
if (pAction == Action.PUSH && 
pView.peek().rank() == Rank.ACE) { 
System.out.println("Ace detected!"); 

} 
} 

Unfortunately, for observers that must handle multiple events (such as Counter), 
the routing of all events through a single callback is likely to lead to a SWITCH 

STATEMENT† as one method needs to handle separate computations: 

public void actionPerformed(Action pAction, Optional<Card> pCard, 
CardStackView pView) { 
switch(pAction) { 
case PUSH: 
System.out.println("PUSH Counter=" + size(pView)); 
break; 

case POP: /* ... */ 
case CLEAR: /* ... */ 

} 
}
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One alternative solution is to maintain three lists of observers in the observable, 
one for each type of event. In this case, it would be the observer registration method 
that would help route the callback to the suitable observers. For example, a method 
onClear(CardStackObserver) would add an observer that only gets notified of 
the card stack being cleared, and similarly for the other two types of events. 

With just a simple design context, we have already explored many different ways 
to apply the OBSERVER. Even then, many implementation variants remain possible. 
For example, in some contexts it may make sense to have at most one observer 
per event type. When inversion of control is needed, it is thus more important to 
carefully consider the requirements of the design context and apply the pattern ac-
cordingly, than to try to employ a predetermined solution template. 

Code Exploration: JetUML · UserPreferences 
Application of the OBSERVER with push–pull data flow, combined with the SIN-
GLETON. 
In JetUML, UserPreferences is the class that stores and manages the var-
ious preferences that users can select via the application menus (for ex-
ample, whether to show the grid or not). The class is both a SINGLETON 

and a subject in the OBSERVER pattern. The instance of the class manages 
three types of preferences, depending on whether they are Boolean, inte-
ger, or string values. In this design, preferences are represented as values 
of enumerated types. Let us take BooleanPreference as an example. The 
method setBoolean stores the preference value, then notifies all the reg-
istered BooleanPreferenceChangeHandler objects. This design makes it 
possible to have completely different parts of the application react to changes 
in user preferences without complex chains of method calls. For example, 
class DiagramCanvas is a concrete observer of Boolean preference changes. 
In its callback, it checks whether the preference that changed is showGrid 
and, if so, it repaints the canvas. 

8.5 Introduction to Graphical User Interface Development 

In many technologies, the code that implements the Graphical User Interface (GUI) 
portion of an application makes heavy use of the OBSERVER. This section and the 
next two are an introduction to GUI development that serves the dual purpose of in-
troducing the concept of an application framework and reinforcing knowledge of the 
OBSERVER pattern through its application in a new context. This part of the chapter 
is based on JavaFX, an extensive GUI framework for the Java language. However, 
the general concepts presented here apply to other GUI development frameworks. 
Conceptually, the code that makes up a GUI application is split into two parts:
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• The framework code consists of a component library and an application skele-
ton. The component library is a collection of reusable types and interfaces that 
implement typical GUI functionality: buttons, windows, etc. The application 
skeleton is a GUI application that takes care of all the inevitable low-level as-
pects of GUI applications, and in particular monitoring events triggered by input 
devices and displaying objects on the screen. By itself, the application skeleton 
does not do anything visible: it must be extended and customized with applica-
tion code. 

• The application code consists of the code written by GUI developers to extend 
and customize the application skeleton so that it provides the required user inter-
face functionality. 

A GUI application does not execute the same way as the script-like applications 
we write when learning to program. In such programs, the code executes sequen-
tially from the first statement of the application entry point (the main method in 
Java) and the flow of control is entirely dictated by the application code. With GUI 
frameworks, the application must be started by launching the framework using a 
special library method. The framework then starts an event loop that continually 
monitors the system for input from user interface devices. Throughout the execution 
of the GUI application, the framework remains in control of calling the application 
code. The application code, written by the GUI developers, only get executed at 
specific points, in response to calls by the framework. This process is thus a clear 
example of inversion of control. Application code does not tell the framework what 
to do: it waits for the framework to call it. 

Figure 8.13 illustrates the essence of the relation between the LuckyNumber ap-
plication and the JavaFX framework. The class diagram shows how the application 
code defines a LuckyNumber class that inherits from the framework’s Application 
class. To launch the framework, the following code is used: 

Fig. 8.13 Relation between 
application and framework 
code for the LuckyNumber 
application

Framework

Application

+ launch(String[]):void
+ start(Stage):void

Application

LuckyNumber

+ main(String[]):void
+ start(Stage):void
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public class LuckyNumber extends Application { 
public static void main(String[] pArgs) { 

launch(pArgs); 
} 

@Override 
public void start(Stage pPrimaryStage) { 

/* ... */ 
} 

} 

This code calls the static method Application.launch, which launches the 
GUI framework, instantiates class LuckyNumber and then executes method start() 
on this instance.6 With this setup, class LuckyNumber is effectively used as the con-
nection point between the application code used to extend the GUI and the frame-
work code in charge of running the show. 

Conceptually, the application code for a GUI application can be split into two 
categories: the component graph,7 and the event handling code. 

The component graph is the actual user interface and is comprised of a number 
of objects that represent both visible (e.g., buttons) and invisible (e.g., regions) el-
ements of the application. These objects are organized as a tree, with the root of 
the tree being the main window or area of the GUI. In modern GUI frameworks, 
constructing a component graph can be done by writing code, but also through con-
figuration files that can be generated by GUI building tools. Ultimately, the two 
approaches are equivalent because, once the code runs, the outcome is the same: a 
graph of objects that form the user interface. The design of the library classes that 
support the construction of a component graph makes heavy use of polymorphism 
and the COMPOSITE and DECORATOR patterns. In JavaFX, the component graph for a 
user interface is typically instantiated in the application’s start(Stage) method. 

Once the framework is launched and displaying the desired component graph, its 
event loop will automatically map low-level system events to specific interactions 
with components in the graph (for example, placing the mouse over a text box, or 
clicking a button). In common GUI programming terminology, such interactions 
are called events. Unless specific application code is provided to react to an event, 
nothing will happen as a result of the framework detecting this event. For example, 
clicking on a button will graphically show the button to be clicked using some user 
interface cue, but then the code will simply continue executing without having any 
impact on the application logic. To build interactive GUI applications, it is necessary 
to handle events like button clicks and other user interactions. Event handling in 
GUI frameworks is an application of the OBSERVER pattern, where the model is a 
GUI component (such as a button). Handling a button click, or any similar event, 
then becomes a matter of defining an observer and registering it with the button. The 
next two sections detail how to design component graphs and handle events on GUI 
components. 

6 Method launch uses metaprogramming to discover which application class to instantiate. 
7 In the JavaFX documentation, the component graph is called the scene graph.
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8.6 Graphical User Interface Component Graphs 

The component graph is the collection of objects that forms what we usually think 
of as the user interface: windows, textboxes, buttons, etc. At different stages in the 
development of a graphical user interface, it can be useful to think about this user 
interface from three different point of views, or perspectives: user experience, source 
code, and run time. 

The User Experience Perspective 

The user experience perspective corresponds to what the user experiences when in-
teracting with the component graph. Figure 8.2, shown earlier in this chapter, shows 
the user experience perspective on the component graph for the LuckyNumber ap-
plication. Because not every object in the component graph is necessarily visible, 
it is important to remember that the user experience perspective does not show the 
complete picture of the application. This picture is complemented by the other two 
perspectives. 

The Source Code Perspective 

The source code perspective shows the kind of information about the component 
graph that is readily available from the declarations of the classes of the objects 
that form the component graph. This information is best summarized by a class 
diagram. Figure 8.14 models the source code perspective on the component graph 
of the LuckyNumber application. Despite the application being tiny, the diagram 
shows that a lot of code is required to instantiate its component graph. Let us walk 
through this diagram. 

The Scene holds a reference to the root node of the component graph, something 
we can deduce from the fact that it is not a subtype of Node, and no class in the 
diagram aggregates it. The Scene class aggregates class Parent. This is an example 
of polymorphism in use. To allow users to build any kind of application, the Scene 
library class accepts any subtype of type Parent as its target object. In turn, Parent 
is a subtype of the general Node type that adds functionality to handle children 
nodes. In JavaFX, all objects that can be part of a component graph need to be a 
subtype of Node, either directly or, more generally, indirectly by inheriting from 
other subtypes of Node. The fact that Parent nodes, which can contain children 
nodes, are themselves of type Node shows that the design of the GUI component 
hierarchy is an application of the COMPOSITE pattern. 

By continuing our investigation of the diagram, we find class GridPane as a 
subtype of Parent. This is the reason it is possible to add a GridPane to a scene. A 
GridPane is a type of user interface Node that specializes in organizing its children 
into a grid. I used it for LuckyNumber to lay out the number views vertically on top 
of each other.
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Slider

Scene

Node

GridPaneParent

TextPanel IntegerPanel SliderPanel

TextField

1

*

111

Fig. 8.14 Source code perspective on the LuckyNumber application 

In the general case, a GridPane can contain any subtype of Node. However, 
in my design of the application, I created three classes that inherit from Parent: 
TextPanel, IntegerPanel, and SliderPanel. These classes represent the three 
views of the number in the Model–View–Controller decomposition. By defining 
these classes as subclasses of Parent, I achieve two useful properties: 

• I reuse the parenting functionality of Parent to add a widget (e.g., a slider) to a 
Node; 

• By defining my view classes as subtypes of Node, I make it possible to add them 
as children of a GridPane through polymorphism. 

The remainder of the diagram shows how the tree would generate its leaves: 
the SliderPanel aggregates a Slider instance, and both the TextPanel and 
the IntegerPanel aggregate a TextField instance. It is worth noting that, al-
though both TextPanel and IntegerPanel have an association to the TextField 
model element, it does not mean that their respective instances refers to the same 
TextField instance. 

The diagram of Figure 8.14, already somewhat involved, actually omits, for clar-
ity, many intermediate types in the inheritance hierarchy for nodes. For example, the 
diagram shows GridPane to be a direct subclass of Parent. In reality, GridPane 
is a subclass of Pane, which itself is a subclass of Region, which is a subclass of 
Parent. Figure 8.15, while still an incomplete model, shows a bigger picture of the 
class hierarchy that can be leveraged to define component graphs in JavaFX.
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Fig. 8.15 Partial Node class hierarchy in JavaFX
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The Run-time Perspective 

The run-time perspective is the instantiated component graph for a graphical inter-
face. This perspective can best be represented as an object diagram. Figure 8.16 
shows the instantiated component graph for LuckyNumber. 

:TextField

:Scene

root =

:Slider

:TextField

:TextPanel

aText =

:IntegerPanel

aText =

:SliderPanel

aSlider =

:GridPane

children =

Fig. 8.16 Run-time perspective of the LuckyNumber user interface 

Defining the Object Graph 

In Section 8.5 I mentioned how, after the framework starts, it calls the start method 
of the main application class (LuckyNumber in our case). This start method is the 
natural integration point for extending the framework, and this is where we put the 
code that builds the component graph. The code below is the minimum required to 
get the application to create the LuckyNumber component graph. In practice, this 
kind of code would typically be extended with additional configuration code and 
organized using helper methods. The additional configuration code can be used to 
beautify the application, for example by adding margins around components, a title 
to the window, etc. The JavaFX functionality to generate component graphs from 
configuration files is outside the scope of this book. 
public class LuckyNumber extends Application { 

public void start(Stage pStage) { 
Model model = new Model(); 

GridPane root = new GridPane(); 
root.add(new SliderPanel(model), 0, 0, 1, 1); 
root.add(new IntegerPanel(model), 0, 1, 1, 1); 
root.add(new TextPanel(model), 0, 2, 1, 1); 

pStage.setScene(new Scene(root)); 
pStage.show(); 

} 
}



2218.6 Graphical User Interface Component Graphs

The first statement of method start is to create an instance of Model. This in-
stance will play the role of the model in the OBSERVER pattern. It is related to the 
construction of the component graph because, as detailed later, some of the com-
ponents in the graph need access to the model. The second statement creates a 
GridPane, which is an invisible component used for assisting with the layout of 
children components. The local variable that holds a reference to this component is 
helpfully named root to indicate that it is the root of the component graph. Then, 
three application-defined components are added to the grid. The parameters to the 
add method indicate the column and row index and span. For example, the state-
ment: 

root.add(new SliderPanel(model), 0, 0, 1, 1); 

specifies to add an instance of the SliderPanel in the top-left cell in the grid, and 
span only one column and one row. Because SliderPanel is a subtype of Parent, 
and thus a subtype of Node, it can be added to the grid. Another important thing to 
note about the instantiation of the panel components is that their constructor takes 
as argument a reference to the model. 

The last two statements of the method are not related to the construction of the 
component graph, but are nevertheless crucial steps in the creation of the GUI. The 
statement with the call to setScene creates a Scene from the component graph 
and assigns it to the framework’s Stage. Finally, the last statement requests that the 
framework display the Stage onto the user’s display. 

For additional insights on the creation of the component graph, the code below 
shows the relevant part of the constructor of the IntegerPanel (the other panels 
are very similar). 

public class IntegerPanel extends Parent implements Observer { 
private TextField aText = new TextField(); 
private Model aModel; 

public IntegerPanel(Model pModel) { 
aModel = pModel; 
aModel.addObserver(this); 
aText.setText(Integer.valueOf(aModel.getNumber()).toString()); 
getChildren().add(aText); 
/* ... */ 

} 

public void newNumber(int pNumber) { 
aText.setText(Integer.valueOf(pNumber).toString()); 

} 
} 

This code illustrates a number of insights about the design of the component 
graph. First, the application-defined IntegerPanel class extends the framework-
defined Parent class so that it can become part of the component graph. Second, an 
instance of IntegerPanel aggregates a framework-defined TextField component. 
However, the mere fact of defining an instance variable of type TextField inside the 
class does not add the TextField to the component graph. To do this, it is necessary
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for the IntegerPanel to add the instance of TextField to itself, something that 
is done with the call getChildren() .add(aText). Method getChildren() is 
inherited from class Parent, and used to obtain the list of children of the parent 
user interface Node, to which the TextField instance can then be added. 

The IntegerPanel instance also maintains a reference to the Model. The reason 
for this is that the IntegerPanel needs to act as a controller for the Model, some-
thing that will be explained in more detail in the next section. Also, it is worth notic-
ing how the IntegerPanel is an observer of the Model instance: it declares to im-
plement Observer, it registers itself as an observer upon construction (second state-
ment of the constructor), and it supplies an implementation for the newNumber call-
back. As expected, the behavior of the callback is to set the value of the TextField 
user interface component with the most recent value in the model, obtained from 
the callback parameter. 

As a final insight on the design of the component graph, we can note how the 
instance of Model created in method start (see preceding code fragment) is stored 
in a local variable. In other words, the application class LuckyNumber does not 
manage an instance of the model: this is only done within each panel. This design 
decision is to respect the guideline provided in Chapter 4, to keep the number of 
fields to a minimum. Without care, an application-defined user interface component 
can become a GOD CLASS† bloated with numerous references to stateful objects, 
which makes a design much harder to understand. 

8.7 Event Handling 

In GUI frameworks, objects in the component graph act as models in the OBSERVER. 
Once the framework is launched, it continually goes through a loop that monitors 
input events and checks whether they map to events that can be observed by the 
application code. This process is illustrated in Figure 8.17. 

Fig. 8.17 The event loop in a 
GUI framework

Is a user interface
event detected?

Execute the registered
event handler

Did the
application

register interest
in this event?

Yes

No

Yes

No



event handler, or even just handler. It is the concrete observer.

2238.7 Event Handling

Typically, events are defined by the component library supplied by the frame-
work. For example, the TextField user interface component defines an action 
event. According to its class documentation “The action handler is normally called 
when the user types the ENTER key”. This means that an instance of TextField 
can play the role of the model in the OBSERVER. Figure 8.18 shows the correspon-
dence between the code elements and the roles in the OBSERVER pattern. 

«interface»
EventHandler<ActionEvent>

handle(ActionEvent):void

Abstract Observer
Model

TextField

setOnAction(EventHandler<ActionEvent>):void

Fig. 8.18 Correspondence between TextField and the roles in the OBSERVER 

Handling the action event on a text field is thus a matter of completing three 
steps: 

• Defining a handler for the event. This means defining a class that is a subtype 
of EventHandler<ActionEvent>. The class will be our event handler class. 

• Instantiating a handler. This means creating an instance of the class we defined 
in the previous step. The instance will be our event handler instance, also called 

• Registering the handler. This means calling the registration method on the 
model and passing the handler as an argument. In the case of TextField, we 
need to call setOnAction(handler). It is worth noticing an interesting design 
choice for this application of OBSERVER: it is only possible to have a single ob-
server for a TextField. 

Although the basic mechanism for specifying and registering event handlers is 
always the same, one design choice that must be resolved is where to place the def-
inition of the handling code. For this, different designs are possible. These include: 

• To define the handler as a function object using an anonymous class or a 
lambda expression (see Section 3.4). This is a good choice if the code of the 
handler is simple and does not require storing data that is specific to the handler; 

• To delegate the handling to an element of the component graph by declaring 
to implement the observer interface. This is a good choice if the code of the 
handler is more complex or requires knowing about many different aspects of 
the internal structure of the target component. 

Let us see how these two options can be realized in the context of the LuckyNum-
ber application. Using the function object strategy, we could complete the code of 
the constructor of IntegerPanel as follows:
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public class IntegerPanel extends Parent implements Observer { 
private TextField aText = new TextField(); 
private Model aModel; 

public IntegerPanel(Model pModel) { 
aModel = pModel; 
aModel.addObserver(this); 
aText.setText(Integer.valueOf(aModel.getNumber()).toString()); 
getChildren().add(aText); 
aText.setOnAction(new EventHandler<ActionEvent>() { 

public void handle(ActionEvent pEvent) { 
int number = 1; 
try { 

number = Integer.parseInt(aText.getText()); 
} catch(NumberFormatException pException ) { 

/* Just ignore. We use 1 instead. */ 
} 
aModel.setNumber(number); 

} 
}); 

} 
} 

With this strategy, the constructor of IntegerPanel creates a function object 
using an anonymous class and, at the same time, registers this object to become the 
handler of the action event on the text field. The behavior of the handler is to serve 
as the controller for the model. 

At this point, we now have two applications of the OBSERVER at play. One sub-
ject is the Model being observed by all three panels, and another subject is the 
IntegerPanel’s TextField that is observed by the anonymous function object. 
Figure 8.19 captures the design. Naturally, in the finished application, we would 
also have an event handler for the text panel and the slider panel, which would bring 
the total number of applications of the OBSERVER to four. 

Model

IntegerPanel

«interface»
Observer

newNumber(int):void

TextField

setOnAction(EventHandler<ActionEvent>):void

«interface»
EventHandler

handle(ActionEvent):void

«anonymous»

Fig. 8.19 Two applications of the OBSERVER pattern
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In the case of the LuckyNumber application, one alternative to using function 
objects for defining handlers is to delegate the handling of GUI events to the pan-
els themselves. In our case, this would mean declaring IntegerPanel to imple-
ment both Observer and EventHandler<ActionEvent>. The Observer interface 
is the same one as before, used to receive callbacks when the model (the number) 
is changed. The difference in this case is the addition of the EventHandler inter-
face, which allows the IntegerPanel to respond to the event that corresponds to 
the Enter key being pressed in the panel’s text field. 

public class IntegerPanel extends Parent implements Observer, 
EventHandler<ActionEvent> { 
private TextField aText = new TextField(); 
private Model aModel; 

public IntegerPanel(Model pModel) { 
aModel = pModel; 
aModel.addObserver(this); 
aText.setText(Integer.valueOf(aModel.getNumber()).toString()); 
getChildren().add(aText); 
aText.setOnAction(this); 

} 

public void handle(ActionEvent pEvent) { 
int number = 1; 
try { 
number = Integer.parseInt(aText.getText()); 

} catch(NumberFormatException pException ) { 
/* Just ignore. We’ll use 1 instead. */ 

} 
aModel.setNumber(number); 

} 

public void newNumber(int pNumber) { 
aText.setText(Integer.valueOf(pNumber).toString()); 

} 
} 

There are two main implications of this choice on the code. First, the handle 
method needs to be declared directly in class IntegerPanel. Second, the argument 
passed to aText.setOnAction is now this, because it is the IntegerPanel in-
stance itself that is now responsible for handling the event. 

Although both design options for locating the handler code are workable, for the 
LuckyNumber application I prefer the function object alternative. The handler code 
is just a few lines long, and with the function object the behavior of the handler is 
located with other code that initializes the text field, so everything is in one place. 
Although there is an element of subjectivity to this argument, the use of function 
objects to specify GUI handlers is a common practice. In the absence of a good 
reason to do things otherwise, my recommendation would be to use it by default.
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Code Exploration: Solitaire · Solitaire 
Overview of the GUI design for a small application. 
The GUI code for Solitaire is located in the ...solitaire.gui pack-
age. The application class is Solitaire. With the exception of the appli-
cation class and CardDragHandler, each remaining class in the package 
defines a graphical component panel that specializes in viewing a specific 
part of the data of the GameModel. For example, DiscardPileView is a 
subclass of the framework class Hbox that is also a GameModelListener. 
Whenever the game model changes, this component responds to the event 
(gameStateChanged()) and shows an image of the card at the top of the dis-
card pile. As usual, the component graph is constructed in the application’s 
start method. The design of the Solitaire application relies on a GUI fea-
ture called drag-and-drop. Although the design of drag-and-drop functional-
ity was not covered explicitly in the chapter, its operation is also based on 
the OBSERVER pattern. The basic idea is that images of cards are objects in 
the component graph, and it is possible to register a handler for an event that 
corresponds to a drag gesture being detected on this component. 

Code Exploration: JetUML · EditorFrame 
Pointers into the GUI design of a full-features application. 
The user interface of JetUML makes use of a wide variety of GUI framework 
features (menus, tabs, dialog boxes, persistent properties, etc.), so studying its 
code should have a high return on investment for readers interested in learning 
GUI programming in more depth. The application class is JetUML, but a lot of 
the functionality is implemented in class EditorFrame, which is responsible 
for creating the top window of the application. Reading through the code of 
EditorFrame will reveal many of the main design decisions that underlie the 
user interface code, including how tabs are managed, how menus are created, 
and how we create dialog boxes. 

8.8 The VISITOR Design Pattern 

Inversion of control can be useful to create loosely coupled design solutions in con-
texts other than applications of the OBSERVER pattern and event handling mecha-
nisms. An additional recognized use for inversion of control is the VISITOR design 
pattern. The context for applying the VISITOR pattern is when we want to make it 
possible to support an open-ended number of operations that can be applied to an 
object graph, but without impacting the interface of the objects in the graph. To
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illustrate such a context, we will use yet another variant of the CardSource type hi-
erarchy. Figure 8.20 shows a design where different types of concrete card sources 
have the CardSource interface in common, but then different individual interfaces 
for services other than draw() and isEmpty(); 

«interface»
CardSource

draw()Card
isEmpty():boolean

Deck

Deck()
shuffle():void
isEmpty():boolean
draw():Card
iterator():Iterator<Card>

CompositeCardSource

CompositeCardSource(CardSource...)
draw():Card
isEmpty():boolean

«interface»
Iterable<Card>

iterator():Iterator<Card>

CardSequence

CardSequence(Card...)
isEmpty():boolean
draw():Card
get(int):Card
size():int

*

Fig. 8.20 Design context for a sample application of the VISITOR. Two of the constructors use the 
vararg mechanism to accept an unspecified number of cards as argument. 

In this design, there are three different types of card sources. Although they all 
implement the CardSource interface, their commonality ends there. Class Deck 
can be shuffled and is iterable. A CardSequence can be initialized with a pre-
determined list of cards, but cannot be shuffled and is not iterable. Instead, elements 
in a CardSequence can be accessed through an integer index. For this reason, the 
class also includes a size() method. Finally, CompositeCardSource is an appli-
cation of the COMPOSITE with a narrow interface, as it offers no services besides 
those of CardSource. In this example as well as in general, the reason classes that 
implement an interface have methods other than the ones in the interface is simply 
that each class is intended to work in a specific context where its additional methods 
are necessary and, to respect the Interface Segregation Principle, the only methods 
in the common type are those used by all contexts (see Section 3.9). 

The above design will fulfill its mandate as long as the client code only requires 
the limited functionality it currently provides. Problems will arise, however, when 
we start needing additional functionality from the card sources. Examples of opera-
tions that may be necessary at some point include: 

• Printing to the console a description of each of the cards in the source; 
• Obtaining the number of cards in the card source; 
• Removing a certain card from a card source; 
• Determining if a card source contains a certain card; 
• Obtaining an iterator over all the cards in the source;



228 8 Inversion of Control

Because all of the concrete card source classes share a common supertype, there 
is a straightforward solution to the problem of adding these operations: we can 
define new methods on the CardSource interface, one per operation, and imple-
ment them in each subclass. For example, we could make CardSource extend 
Iterable<Card>, and add the methods print(), size(), remove(Card), and 
contains(Card) to its declaration. If such a solution is a good fit in a design con-
text, then we can adopt it and we do not need the VISITOR pattern. However, adding 
methods to an interface has drawbacks and limitations: 

• The CardSource interface will get much bigger. Not all methods might be used 
in all usage contexts. As mentioned above, there is a risk of violating the Interface 
Segregation Principle; 

• For a versatile data structure that can be used as a library, it may be hard to 
anticipate which operations are going to be necessary in the future. Adding op-
erations that end up unused is a clear case of SPECULATIVE GENERALITY†. In fact, 
if the code is distributed as a library, future users may not be able to, or want to, 
change the code to add additional operations. 

The VISITOR provides a solution in such a context by supporting a mechanism 
whereby it is possible to define an operation of interest in a separate class and inject 
it into the class hierarchy that needs to support it. In our case, this means we could 
write a separate class to implement, for instance, the contains(Card) operation, 
and use this class to determine if any concrete CardSource contains the card of 
interest. 

Abstract and Concrete Visitors 

The cornerstone of the VISITOR pattern is an interface that describes objects that can 
visit objects of all classes of interest in an object graph. This interface is appropri-
ately called the abstract visitor. An abstract visitor follows a prescribed structure: 
it contains one method with signature visitElementX(ElementX pElementX) for 
each different type of concrete class ElementX in the object structure.8 In our case, 
the abstract visitor would be defined as follows: 

public interface CardSourceVisitor { 
void visitCompositeCardSource(CompositeCardSource pSource); 
void visitDeck(Deck pDeck); 
void visitCardSequence(CardSequence pCardSequence); 

} 

As usual, a concrete visitor is an implementation of this interface. In the VISITOR 

pattern, we implement one concrete visitor for each operation of interest. In a con-
crete visitor, each visitElementX method provides the behavior of the operation 

8 Technically, the methods can be overloaded, which leads to the more compact form 
visit(ElementX pElementX). For the reasons discussed in Section 7.5, I recommend avoiding 
overloading by using the longer form.
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as applied to a given class. For example, a simple visitor that prints all the cards in 
a card source to the console would be defined as such: 

public class PrintingVisitor implements CardSourceVisitor { 

public void visitCompositeCardSource(CompositeCardSource pSource) 
{} 

public void visitDeck(Deck pDeck) { 
for (Card card : pDeck) { 

System.out.println(card); 
} 

} 

public void visitCardSequence(CardSequence pCardSequence) { 
for (int i = 0; i < pCardSequence.size(); i++ ) { 

System.out.println(pCardSequence.get(i)); 
} 

} 
} 

The first thing to notice in this code is that method visitCompositeCardSource 
does not do anything. Because composite card sources do not store cards directly 
(they store other card sources), we can defer the printing behavior to the actual card 
sources they aggregate. How this works exactly is described below. The second thing 
to notice is that methods visitDeck and visitCardSequence do not require Deck 
and CardSequence to have the same interface: they can use whatever methods are 
available on the concrete type to implement the required behavior. 

Another interesting observation about the implementation of the concrete visitor 
is that it provides a way to organize code in terms of functionality as opposed to data. 
In a classic design, the code to implement the printing operation would be scattered 
throughout the three card source classes. In this design, all this code in located in a 
single class. One of the benefits of the VISITOR is thus to allow a different style of 
assignment of responsibilities to classes, and thus a separation of concerns along a 
different criterion (functionality-centric vs. data-centric). 

Integrating Operations into a Class Hierarchy 

Although a concrete visitor separates a well-defined operation into its own class, it 
still needs to be integrated with the class hierarchy that defines the object graph on 
which the operation will be applied (henceforth referred to as the class hierarchy). 
This integration is accomplished by way of a method, usually called accept, that 
acts as a gateway into the object graph for visitor objects. An accept method takes 
as single argument an object of the abstract visitor type (CardSourceVisitor in our 
case). Unless there is a good reason not to, we normally define the accept method 
on the common supertype of the class hierarchy:
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public interface CardSource { 
Card draw(); 
boolean isEmpty(); 
void accept(CardSourceVisitor pVisitor); 

} 

The implementation of accept by concrete types is where the integration re-
ally happens. This implementation follows a prescribed formula: to call the visit 
method for the type of the class that defines the accept method. For example, the 
implementation of accept for class Deck is: 

public void accept(CardSourceVisitor pVisitor) { 
pVisitor.visitDeck(this); 

} 

and the one for class CardSequence is: 

public void accept(CardSourceVisitor pVisitor) { 
pVisitor.visitCardSequence(this); 

} 

The only difference between the two implementations of accept is the specific 
visitElementX method that is being called. The version of accept for the Compos-
iteCardSource class is more involved, and is discussed further below, in the sec-
tion Traversing the Object Graph. 

Figure 8.21 shows the result of applying the VISITOR to our context. The figure 
includes two concrete visitors to emphasize that the goal of the pattern is to support 
adding multiple operations to a class hierarchy. 

«interface»
Iterable<Card>

iterator():Iterator<Card>

«interface»
CardSource

draw():Card
isEmpty():boolean
accept(CardSourceVisitor)

Deck

Deck()
shuffle():void
isEmpty():boolean
draw():Card
iterator():Iterator<Card>
accept(CardSourceVisitor)

CardSequence

CardSequence(Card...)
isEmpty():boolean
draw():Card
get(int):Card
size():int
accept(CardSourceVisitor)

Concrete Elements

«interface»
CardSourceVisitor

visitDeck(Deck):void
visitCardSequence(CardSequence):void
visitCompositeCardSource(CompositeCardSource):void

CompositeCardSource

CompositeCardSource(CardSource...)
draw():Card
isEmpty():boolean
accept(CardSourceVisitor)

Abstract Visitor

ComputeSizeVisitorPrintingVisitor

Concrete Visitors

Element

*

Fig. 8.21 Sample application of the VISITOR pattern with the name of the roles in notes
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With the accept method in place, executing an operation on the object graph is 
now a matter of creating the concrete visitor object that represents the operation, 
and passing this object as argument to method accept on the target element: 

PrintingVisitor visitor = new PrintingVisitor(); 
Deck deck = new Deck(); 
deck.accept(visitor); 

Figure 8.22 shows the result of calling accept on an instance of Deck. The client 
code, which holds the reference to the concrete visitor, calls accept on an instance 
of Deck with the visitor as argument. The accept method then calls back the appro-
priate method on the visitor. In this sequence, the visitDeck method qualifies as a 
callback method. With complex object structures, it may not always be possible to 
determine when a visit method will be called. Just like in the OBSERVER pattern, 
the model calls its observers back at the appropriate time, in the VISITOR, concrete 
elements call the visitors at the appropriate time. 

deck:Deckclient: visitor:PrintingVisitor

accept(visitor)

visitDeck(deck)

Fig. 8.22 Sequence diagram of a call to an accept method in an application of VISITOR 

Traversing the Object Graph 

So far in our application of the VISITOR we have left out a critical aspect of the pat-
tern: the traversal of the object graph. Any object graph with more than one element 
will have an aggregate node as its root. In our case this is CompositeCardSource, 
so let us look at what happens when we apply an operation to such a node. Let us 
say we implement accept for this class similarly as for Deck and CardSequence: 

public class CompositeCardSource implements CardSource { 
public void accept(CardSourceVisitor pVisitor) { 
pVisitor.visitCompositeCardSource(this); 

} 
} 

Then, if we call accept on an instance of CompositeCardSource, the method in-
vokes its callback visitCompositeCardSource, which does nothing.
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The two core ideas of the VISITOR pattern are to 1) enable the integration of an 
open-ended set of operations that 2) can be applied by traversing an object graph, 
often a recursive one. Let us consider the object graph illustrated in Figure 8.23. If 
we want to print the cards reachable through the root card source, we would need 
to traverse the entire graph to find all the cards. We would also need to do such a 
traversal to count the total number of cards in a source, remove all instances of a 
specific card, etc. 

root:CompositeCardSource

aElements =

deck2:Deck

composite:CompositeCardSource

aElements =

deck1:Deck

sequence:CardSequence

Fig. 8.23 Sample object graph generated by the CardSource types 

There are two main ways to implement the traversal of the object graph in the 
VISITOR. One option is to place the traversal code in the accept method of aggregate 
types. The other option is to place this code in the visit methods that serve as 
callbacks for aggregate types. 

In our case, placing the traversal code in the accept method is relatively straight-
forward: 

public class CompositeCardSource implements CardSource { 
private final List<CardSource> aElements; 

public void accept(CardSourceVisitor pVisitor) { 
pVisitor.visitCompositeCardSource(this); 
for (CardSource source : aElements) { 

source.accept(pVisitor); } 
} 

} 

Because the traversal code is implemented within the class of the aggregate, it can 
refer to the private field that stores the aggregation (aElements). This access to pri-
vate structures is one major motivation for implementing the traversal code within 
the accept method. I discuss additional advantages and disadvantages of this choice 
below. Figure 8.24 shows the beginning of the call sequence that results from calling 
accept on the root target node of Figure 8.23. From this figure it becomes easier 
to visualize the concrete visitor as an implementation of callback methods: some 
independent code traverses an object structure and calls the visitElementX call-
backs as appropriate, and methods of the visitor object respond to these visitation 
notifications. The fact that the traversal code is implemented in accept is visible
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by the fact that some calls to accept originate from the activation bar of a different 
accept invocation. 

client: composite:CompositeCardSource deck1:Deckroot:CompositeCardSource v:PrintVisitor

accept(v)

visitCompositeCardSource(root)

accept(v)

visitCompositeCardSource(composite)

accept(v)

visitDeck(deck1)

Fig. 8.24 Partial call sequence resulting from a call to root.accept on the object graph of Fig-
ure 8.23 when the traversal code is implemented in the accept method 

The second option for implementing the traversal code is to put it in the visit 
method that corresponds to the element types that are aggregates. In our case this 
means, as before, CompositeCardSource. Unfortunately, in our context it is not 
possible to implement this option directly, because the aggregate class offers no 
public access to the CardSource objects it aggregates. Because the code of the 
visit methods is in a separate class, we need a way to access the objects stored by 
the private field aElements. To make this work we make CompositeCardSource 
iterable over the CardSource instances it aggregates. However, this requirement 
to decrease the level of encapsulation of the class is a disadvantage of this design 
decision. 
public class CompositeCardSource implements CardSource, 
Iterable<CardSource> { 
private final List<CardSource> aElements; 

public Iterator<CardSource> iterator() { 
return aElements.iterator(); 

} 
/* ... */ 

} 

With this additional service available on CompositeCardSource, we can now re-
move the traversal code from the accept method and update the code of visit-
CompositeCardSource in our concrete visitor:



234 8 Inversion of Control

public class PrintVisitor implements CardSourceVisitor { 
public void visitCompositeCardSource( 
CompositeCardSource pCompositeCardSource) { 
for (CardSource source : pCompositeCardSource) { 

source.accept(this); 
} 

} 
/* ... */ 

} 

Figure 8.25 shows the corresponding call sequence on the root of the object graph 
illustrated in Figure 8.23. 

root:CompositeCardSourceclient: composite:CompositeCardSource deck1:Deck v:PrintVisitor

accept(v)

visitCompositeCardSource(root)

accept(v)

visitCompositeCardSource(composite)

accept(v)

visitDeck(deck1)

Fig. 8.25 Partial call sequence resulting from a call to root.accept on the object graph of Fig-
ure 8.23 when the traversal code is implemented in the visit method 

As we have seen above, the main advantage of placing the traversal code in the 
accept method is that it can help achieve stronger encapsulation because the inter-
nal structures can be accessed without being part of the class’s interface. The main 
disadvantage of placing the traversal code in the accept method, however, is that 
the traversal order is fixed in the sense that it cannot be adapted by different visitors. 
In our simple example, the traversal order did not really matter. But let us say that in 
our print visitor we care about the order in which the cards are printed. The code for 
the accept method, above, implements a pre-order traversal (visit the node, then the 
children). Some operations, however, might require a post-order traversal (visit the 
children, then the node). If the traversal code is implemented in accept, concrete 
visitors cannot change it. In a nutshell, if encapsulation of target elements is more 
important, it is better to place the traversal code in the accept method. If the ability
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to change the traversal order is more important, then it is better to place the traversal 
code in the visit method. 

Using Inheritance in the Pattern 

The question of where to place the traversal code brings up the issue of code DUPLI-
CATED CODE† again. If we place the traversal code in the visit methods, and have 
more than one concrete visitor class, every class is bound to repeat the traversal 
code in its visit method. A common solution to alleviate this issue is to define an 
abstract visitor class to hold default traversal code.9 In our case, the following 
would be a suitable implementation of an abstract visitor class: 

public abstract class AbstractCardSourceVisitor 
implements CardSourceVisitor { 
public void visitCompositeCardSource( 
CompositeCardSource pCompositeCardSource) { 
for (CardSource source : pCompositeCardSource) { 

source.accept(this); 
} 

} 

public void visitDeck(Deck pDeck) {} 
public void visitCardSequence(CardSequence pCardSequence) {} 

} 

There are two important things to observe about this implementation. First, I re-
tained the interface. Because most concrete visitors would be implemented as sub-
classes of AbstractCardSourceVisitor, one can wonder, why not just use this 
abstract class to serve in the role of abstract visitor, and get rid of the interface? The 
general reason is that interfaces promote more flexibility in a design. For example, 
one concrete drawback of using an abstract class is that, because Java only supports 
single inheritance, defining the abstract visitor as an abstract class prevents classes 
that already inherit from another class to serve as concrete visitors. 

The second notable detail in the above code is that the visit methods for 
classes Deck and CardSequence are implemented with empty bodies. Given that 
AbstractCardSourceVisitor is declared abstract, we do not need these dec-
larations. However, providing empty implementations for visit methods allows the 
abstract visitor class to serve as an adapter. In more realistic applications of the 
pattern, the element type hierarchy can have dozens of different types, with a cor-
responding high number of visit methods. With empty implementations, concrete 
visitors only need to override the methods that correspond to types they are inter-
ested in visiting. 

As an example, the following declaration creates an anonymous visitor class that 
prints the number of cards in every CardSequence in a card source structure, and 

9 Here it is important to distinguish between an abstract visitor class and an abstract visitor, 
which is usually an interface.
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ignores the rest. Because the class inherits the traversal code, card sequences aggre-
gated within composite card sources will also be reached. 

CardSourceVisitor visitor = new AbstractCardSourceVisitor() { 
public void visitCardSequence(CardSequence pSequence) { 

System.out.println(pSequence.size() + " cards"); 
} 

}; 

As a more elaborate example, the following implements a visitor that prints a 
representation of the object graph that takes into account the nesting depth of a card 
source type and indents it in consequence: 

public class StructurePrinterVisitor 
extends AbstractCardSourceVisitor { 

private static final String TAB = " "; 
private String aTab = ""; 

private void tab() { 
aTab += TAB; 

} 

private void untab() { 
aTab = aTab.substring(TAB.length()); 

} 

public void visitCompositeCardSource( 
CompositeCardSource pCompositeCardSource) { 

System.out.println(aTab + "Composite"); 
tab(); 
super.visitCompositeCardSource(pCompositeCardSource); 
untab(); 

} 

public void visitDeck(Deck pDeck) { 
System.out.println(aTab + "Deck"); 

} 

public void visitCardSequence(CardSequence pCardSequence) { 
System.out.println(aTab + "CardSequence"); 

} 
} 

The result of using this visitor on the object graph of Figure 8.23 would be: 

Composite 
Deck 
Composite 

Deck 
CardSequence 

This example introduces two new aspects to our discussion so far. First, the visi-
tor is stateful, as it stores data. Specifically, the class defines a field aTab that stores
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the indentation of the element currently being visited. This indentation increases 
when visiting the elements aggregated by a composite card source. Correspondingly, 
the second notable aspect in the code above is the reuse of the traversal code through 
a super call. Here, the pre-order traversal implemented in the abstract visitor class 
is what we need. However, additional code is required when visiting a composite 
card source. To make this possible, visitCompositeCardSource is overridden to 
manage the indentation level, and a super call is made to trigger the traversal code 
at the appropriate point. 

Supporting Data Flow in Visitor Structures 

So far our examples of concrete visitors have carefully avoided the issue of data 
flow, because the PrintVisitor neither requires input nor produces output. Most 
realistic operations, however, do involve some data flow. For example, a visitor to 
compute the total number of cards in a card source must be able to return this num-
ber. As another example, an operation to determine if a certain card is contained 
in a card source must receive the card of interest as input. When operations are 
implemented in traditional methods, this kind of data flow is not an issue: input is 
passed in as argument to a method, and output can be returned to the calling context 
through return statements. In the VISITOR pattern, this is more complex. To support 
a general and extensible mechanism for defining operations on an object graph, the 
pattern requires that no assumption be made about the nature of the input and output 
of operations. 

Data flow for VISITOR-based operations is thus implemented differently, by stor-
ing data within a visitor object. Input values can be provided when constructing a 
new visitor object and made accessible to the visit methods. Output values can be 
stored internally by visit methods during the traversal of the object graph, and 
made accessible to client code through a getter method.10 To exemplify the process, 
we implement a visitor that provides an operation to check whether a card source 
structure contains a certain card. Such an operation requires both input and output. 

public class CheckContainmentVisitor 
extends AbstractCardSourceVisitor { 

private final Card aCard; 
private boolean aResult = false; 

public CheckContainmentVisitor(Card pCard) { 
aCard = pCard; 

} 

10 Using generic types, it is also possible to design a solution that does not necessarily require 
this accumulation of state for output values. In this solution, the accept and visit methods return 
a value of a generic type. Design with generic types is outside the scope of this book, so I do 
not present the solution here. However, a sample implementation is available on the companion 
website.
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public void visitDeck(Deck pDeck) { 
for (Card card : pDeck) { 

if (card.equals(aCard)) { 
aResult = true; 
break; 

} 
} 

} 

public void visitCardSequence(CardSequence pCardSequence) { 
for (int i = 0; i < pCardSequence.size(); i++) { 
if (pCardSequence.get(i).equals(aCard)) { 
aResult = true; 
break; 

} 
} 

} 

public boolean contains() { return aResult; } 
} 

Although this implementation works, it is not as efficient as it should be because 
aggregate nodes are traversed even when a card has already been found. Fortunately, 
the structure of the VISITOR allows us to eliminate this source of inefficiency with 
very little impact on the overall design: all we need to do is to provide an implemen-
tation for visitCompositeCardSource that only triggers the traversal if the card 
has not already been found. 
public void visitCompositeCardSource( 
CompositeCardSource pCompositeCardSource) { 
if (!aResult) { 
super.visitCompositeCardSource(pCompositeCardSource); 

} 
} 

Insights 

This chapter introduced inversion of control as a way to separate the management 
of stateful information from the viewing of this information. Inversion of control is 
the principle behind the OBSERVER pattern which, in turn, is the key mechanism that 
enables the development of graphical user interface frameworks. 

• Avoid PAIRWISE DEPENDENCIES† to keep state synchronized between objects; 
• Consider separating the code responsible for storing data from the code respon-

sible for viewing this data from the code responsible for changing the data (the 

• To decrease the coupling between views and model, consider using the OBSERVER 

• With an application of the OBSERVER, the model class does not depend on the 
specific types of any observer that observes it;



that notification is a design decision;

out of the model via query methods. These strategies can be combined;

defining how observers can respond to events;

using adapter classes or default methods;

into one of two categories: component graph construction and event handling;

graphical components that can be added to an application’s GUI;

defined as observers of objects in the component graph;

objects of the component graph.

• In the OBSERVER, the model aggregates a number of observers. The abstract ob-
server is an interface that is implemented by the concrete observers; 

• The abstract observer interface should define one or more callback methods that 
map to state-changing events in the model; 

• The model needs to notify observers when it changes its state, but when to issue 

• There are two strategies for exchanging data between a model and its observers: 
the model can push data to observers via callbacks, or the observers can pull data 

• Callback methods can be thought of as events in an event-based programming 
style. In this case, models are event sources and observers are event handlers; 

• An abstract observer can define multiple callbacks. Abstract observer interfaces 
can also be split up in smaller observer interfaces to afford more flexibility in 

• If it is the case that observers implement callbacks by doing nothing, consider 

• A GUI application is built by extending an application skeleton provided by the 
GUI framework. Application code to extend and customize the framework falls 

• It can be useful to think of the GUI component graph from three different per-
spectives: user experience, source code, and run time; 

• You can inherit from component classes of the GUI framework to create custom 

• To make a GUI application interactive, it is necessary to define handlers for GUI 
events that originate from different objects in the component graph. Handlers are 

• Handlers can be defined as function objects, or the handling can be delegated to 

• Consider using the VISITOR pattern to allow extending an object structure with an 
open-ended set of operations, without requiring modification to the interface of 
the classes that define this object structure. 
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Further Reading 

As for the other patterns, the Gang of Four book [7] has the original treatment of the 
OBSERVER and VISITOR patterns. 

In the book Patterns of Enterprise Application Architecture [5], Fowler pro-
vides a description of the Model–View–Controller as a web presentation pattern. 
The book Pattern-Oriented Software Architecture Volume 4: A Pattern Language 
for Distributed Computing [3] presents it as a pattern for software architecture, and 
integrates it into a general system of patterns for designing distributed applications. 

Additional information on JavaFX is available on the websites of Java technology 
providers, and in particular Oracle and OpenJDK.



Chapter 9 
Functional Design 

Concepts and Principles: Behavior parameterization, first-class function, 
functional interface, functional programming, function type, higher-order 
function, lambda expression, map–reduce, method reference, stream; 
Patterns and Antipatterns: COMMAND, STRATEGY. 

Object-oriented design offers valuable principles and techniques for structuring data 
and computation. However, alternative ways to structure software can also be lever-
aged when designing applications. This chapter provides an introduction to a style 
of design that uses the function as its primary building block. With functional-style 
design, structuring the code is achieved through the use of higher-order functions, 
that is, functions that take other functions as argument. To use higher-order functions 
requires the programming language to provide support for functions as a first-class 
program entity. This chapter provides an overview of the Java mechanisms that sup-
port functional-style programming and how to use them to integrate elements of 
functional style into the design of an overall application. 

Design Context 

The design problems considered in this chapter focus on the processing of col-
lections of objects to represent playing cards. Problems include sorting a collec-
tion of cards, comparing cards, filtering cards, and computing various aggregate 
values about a collection of cards. We will also revisit the implementation of the 
CardSource interface introduced in Section 3.1.
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9.1 First-Class Functions 

Up to now, we have applied most software design principles by organizing data 
and computation in terms of classes and objects, and interactions between them. 
This is consistent with the object-oriented programming paradigm. There are, how-
ever, situations where the use of objects to realize a design solution seems a bit 
contrived. We have already seen an example of such a situation in Section 3.4, 
which introduced function objects. For example, to sort a list of cards, the li-
brary method Collections.sort(...) requires as input an argument of type 
Comparator<Card> whose sole purpose is to provide an implementation of the 
method compare(Card, Card).1 We can provide this argument by creating a func-
tion object that is an instance of an anonymous class: 

List<Card> cards = ... ; 
Collections.sort(cards, new Comparator<Card>() { 
public int compare(Card pCard1, Card pCard2) { 
return pCard1.rank().compareTo(pCard2.rank()); 

} 
}); 

The reason the code above is contrived is that, from a software design point 
of view, what the sort method needs is only the desired comparison behavior for 
cards, yet what we actually supply is a reference to an object, something generally 
understood as an assembly of data and methods to operate on this data. There is thus 
a conceptual mismatch between the design goal and the programming mechanism 
employed to fulfill it. The design goal is to parameterize the behavior of the sort 
method, and the mechanism we use to do this is to pass a reference to an object. 
What would be a better fit, would be for the sort method to take in as input the 
desired sorting function directly. 

Providing functions as input to other functions, however, requires the program-
ming language to allow this by supporting first-class functions. This essentially 
means treating functions as values that can be passed as argument, stored in vari-
ables, and returned by other functions. 

Since version 8, Java supports a syntax which, in practice, emulates first-class 
functions. For example, we could define a function in class Card that compares two 
cards by rank: 

public class Card { 
public static int comparingByRank(Card pCard1, Card pCard2) { 
return pCard1.rank().compareTo(pCard2.rank()); 

} 
} 

and supply a reference to this function as the second argument to method sort: 

Collections.sort(cards, Card::comparingByRank); 

1 In this chapter, the term function is used as a general abstraction of computation. In Java, the term 
would refer to both static and instance methods.
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This code, which compiles and does what we want, is actually syntactic sugar 
that gives the illusion of first-class functions but conceptually converts the method 
reference Card::comparingByRank into an instance of Comparator<Card>. The 
syntax and detailed behavior of the code above is described in Section 9.2. The 
implications of being able to design with first-class functions is significant. They 
are a major design tool which, in some cases, allows us to consider design solutions 
that make the intent behind the solution clearer, reduce clutter in the code, and help 
reuse code more effectively. 

With first-class functions, it becomes possible to design functions that take other 
functions as arguments. Such functions are called higher-order functions. In a way, 
when considering the above code from a functional point of view, we can say that 
Collections.sort is a higher-order function. In some contexts, it is possible to 
build entire applications from the principled use of higher-order functions. In such 
cases, we would say that the application is designed in the functional programming 
paradigm. Using higher-order functions does not, by itself, mean that an applica-
tion’s entire design becomes functional. Functional programming is a much more 
comprehensive paradigm whereby computation is organized by transforming data, 
ideally without mutating state. 

Functional programming, even in the limited context of the Java language, is a 
major topic whose detailed treatment is outside the scope of this book. There are 
good references available for learning about the ins and outs of functional program-
ming features in Java and beyond (see Further Reading). The goal of this chapter 
is to provide enough of an introduction to basic functional programming features 
to allow the integration of functional elements into an otherwise object-oriented de-
sign. First-class functions support a whole new level of versatility for exploring the 
design space, realizing design principles, and applying design patterns. For this rea-
son, it is important to know about functional-style programming even if we are not 
building an application strictly in the functional paradigm. This being said, the last 
part of the chapter introduces the map–reduce programming model, which will take 
us as close to full-fledged functional programming as we will get in this book. 

9.2 Functional Interfaces, Lambda Expressions, and Method 
References 

The three mechanisms that enable first-class functions in Java are functional inter-
faces, lambda expressions, and method references. 

Functional Interfaces 

In Java, a functional interface is an interface type that declares a single abstract 
method. For example, we could define an interface to represent filtering behavior 
for a collection of cards:
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public interface Filter { 
boolean accept(Card pCard); 

} 

Except for the constraint that they must only have one abstract method, there is 
nothing special about functional interfaces. We can declare classes to implement 
them as usual. For example, we can use an anonymous class to define a filter that 
only accepts cards with a black suit (Spades or Clubs); 
Filter blackCardFilter = new Filter() { 
public boolean accept(Card pCard) { 

return pCard.suit().color() == Suit.Color.BLACK; 
} 

}; 

This example shows how the functional interface Filter defines a small slice 
of behavior, an idea introduced in Section 3.2. In the context of functional-style 
programming, functional interfaces serve another important purpose, though: they 
define a function type. The idea of a function type basically goes as follows. If we 
forget about the implicit parameter for a second, we can consider method accept of 
interface Filter to be a function that takes as parameter a Card instance and returns 
a boolean. Thus, we have a function of type Card → boolean . Now, because our 
Filter interface only defines a single abstract method, implementing this interface 
amounts to supplying the implementation for this single function. With a bit of 
imagination, we can consider that obtaining an instance of Filter is equivalent 
to obtaining an implementation of a method that takes as argument a reference to a 
Card instance and returns a boolean. Hence, functional interfaces can play the role 
of function types. 

The use of the word abstract in the definition of a functional interface is im-
portant. Starting with version 8 of the language, interfaces in Java can define static 
and default methods. Because an implementation for such methods is provided di-
rectly in the interface, implementing types are not required to provide one. Static 
and default methods are thus, by definition, not abstract. This means that an in-
terface can define multiple methods, and still qualify as a functional interface if 
only one of them is abstract. An example of such an interface is Comparator<T> 
(see Section 3.4). The Comparator<T> interface defines numerous static and default 
methods, whose purpose is going to become clear later in this chapter. However, the 
interface defines a single abstract method: compare(T,T):int (where T is a type 
parameter). For this reason, Comparator is a functional interface that defines the 
function type (T,T) → int . The implication for functional-style programming is 
that we are able to treat instances of Comparator<T> as first-class functions. 

With functional-style programming, Java 8 introduced a library of convenient 
functional interfaces, located in package java.util.function. These interfaces 
provide the most common function types, such as Function<T,R>, a generic type 
that can represent the type of any unary function between reference types.2 The 
interface has a single method apply. 

2 There are equivalent interfaces to represent functions that involve primitive types, such as 
IntFunction<R>.
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To use a library type instead of our custom Filter interface, we use the func-
tional interface Predicate<T>, which represents the type of a function with a single 
argument of type T that returns a boolean.3 The name of the abstract method for 
Predicate<T> is test(T). We can thus rewrite the code above as follows: 

Predicate<Card> blackCardFilter = new Predicate<Card>() { 
public boolean test(Card pCard) { 

return pCard.suit().color() == Suit.Color.BLACK; 
} 

}; 

Because they define function types, functional interfaces serve as the basis for all 
functional-style design in Java. 

Lambda Expressions 

With functional interfaces, we get one step closer to being able to program with 
first-class functions. However, with anonymous classes, specifying the behavior of 
our example function still has a definite object-oriented look. If we recall our imple-
mentation of the black cards predicate, above: 

Predicate<Card> blackCardFilter = new Predicate<Card>() { ... }; 

The use of the new keyword in the definition of the behavior of our predicate be-
trays the fact that we are still creating an object. To more directly express our design 
in terms of a first-class function, we can define the implementation of a functional 
interface as a lambda expression. Lambda expressions are a compact form of expres-
sion of functional behavior whose name is derived from the term lambda calculus, 
a mathematical system for expressing computation. In Java, lambda expressions are 
basically anonymous functions. They were briefly introduced in Section 3.4. Now 
we can take a second look at them in the context of functional-style programming. 
To convert our example to use a lambda expression, we would write: 

Predicate<Card> blackCardFilter = 
(Card card) -> card.suit().color() == Suit.Color.BLACK; 

The syntax of lambda expressions is detailed below, but for now it is sufficient to 
know that the function parameter is declared on the left of the arrow (->), and the 
expression on the right of the arrow represents the body of the function. Although, 
from the point of view of software design, this code has an effect equivalent to using 
an anonymous class, the syntax no longer makes use of the new keyword. In addition 
to being more compact, the code makes it more obvious that what we are trying to 
achieve is to initialize blackCardFilter with behavior (a function) as opposed to 
data (an object). We can also say that the function is anonymous because no function 

3 In contrast to Function<T,R>, Predicate<T> has a single type parameter because the return 
type is implied by the interface. The function type that corresponds to Predicate<T> is thus 
T → boolean . We could also specify our filter interface as Function<Card, Boolean>, but this 
option is less efficient because it relies on autoboxing.
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name appears in its declaration. From a design point of view, we do not care about 
the name of the function because it will get called polymorphically through the name 
of the method in the functional interface. Because functional interfaces are intended 
to be reused, the name of the method they define tends to be very general, and so it 
carries little information about what the method does. In our example, the method 
in the Predicate<T> functional interface is test(T): this says nothing about the 
actual behavior of our lambda expression (which is to return true if the suit of the 
card is black). Information about the behavior of the lambda expression is typically 
the code of the lambda expression itself or, at best, an informative variable name (as 
above). In practice, lambda expressions are not typically documented with a header 
comment. 

The syntax of lambda expressions comprises three parts: a list of parameters, a 
right arrow (the characters ->), and a body. In the example above, the list of parame-
ters is (Card card). When the lambda expression requires no parameter, we simply 
provide an empty set of parentheses ()->. The body of the lambda expression can 
take one of two forms: 

• a single expression (e.g., a == 1). 
• a block of one or more statements (e.g., {return a == 1;}). 

In the blackCardFilter example, the definition of the body of the lambda ex-
pression uses the first option. Because, given the functional interface, the return 
type is expected to be boolean and the expression evaluates to a Boolean value, 
the use of the return keyword is superfluous and can be assumed to be the re-
sult of the evaluation. Using the return keyword would turn the expression into 
a statement, thus breaking the syntax. It is worth noting how expressing the body 
of a lambda as an expression does not require a semicolon after the expression. In 
the blackCardFilter example, the final semicolon terminates the entire assign-
ment statement, not the lambda expression. Let us rewrite the lambda expression to 
express the body as a block: 

Predicate<Card> blackCards = 
(Card card) -> { 
return card.suit().color() == Suit.Color.BLACK; 

}; 

This code does exactly the same thing as previously. However, because the body of 
the lambda expression is no longer a single expression, we need to add curly braces 
around the block that consists of a single statement, use the return keyword to in-
dicate what we are returning, and terminate the statement within the block with a 
semicolon. As can be seen, the first form (using an expression) is more compact. 
Normally, when we write lambda expressions, we define them as expressions when-
ever possible and, if we require multiple statements, fall back on defining them as a 
block. 

Behind the scenes, lambda expressions are checked by the compiler and, con-
ceptually, turned into function objects through a process of inference. Essentially, 
when the Java compiler sees a lambda expression, it tries to match it to a func-
tional interface. In the code above, the right-hand side of the assignment is a lambda
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expression. The compiler will thus look for the type of the variable to which this 
lambda is assigned to make sure everything matches, namely: 

• The type of the variable is a functional interface; 
• The parameter types of the lambda expression are compatible with those of the 

functional interface; 
• The type of the value returned by the body of the lambda expression is compatible 

with that of the abstract method of the functional interface. 

The compiler can actually do a bit more than check the code for correctness: 
it can also infer some information about it. Because the types of the parameters 
of the function implemented by the lambda expression are already encoded in the 
definition of the abstract method of the corresponding functional interface, it is not 
necessary to repeat them in the declaration of the lambda expression. To make our 
code more compact, we could also omit the optional declaration of parameter type 
Card: 
Predicate<Card> blackCardFilter = 

(card) -> card.suit().color() == Suit.Color.BLACK; 

In fact, if the function type takes a single parameter, we can even omit the parenthe-
ses around the parameter: 
Predicate<Card> blackCardFilter = 

card -> card.suit().color() == Suit.Color.BLACK; 

Whether or not to include parameter types in the declaration of a lambda expression 
is a matter of style. However, it is good to keep in mind that they can help make the 
code more readable. When types are provided, a compact variable name becomes 
more acceptable. For example, we could rewrite the above as: 
Predicate<Card> blackCardFilter = 

(Card c) -> c.suit().color() == Suit.Color.BLACK; 

Essentially, lambda expressions are an idiom used to instantiate functional in-
terfaces. As such, the single method implemented through a lambda expression is 
called like any other method. For example, to count the number of black cards in an 
instance of Deck, we could do (assuming the Deck is iterable): 
Deck deck = ... ; 
Predicate<Card> blackCardFilter = 
card -> card.suit().color() == Suit.Color.BLACK; 

int total = 0; 
for (Card card : deck) { 
if (blackCardFilter.test(card)) { 
total++; 

} 
} 

Lambda expressions are also a good match for providing behavior in-place when 
required by library or application functions. For example, the method removeIf of 
class ArrayList takes a single argument of type Predicate<T> and removes all 
elements in the ArrayList for which the predicate is true. Given an ArrayList of 
Card objects, we can remove all black cards from the list with a single call:
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ArrayList<Card> cards = ... ; 
cards.removeIf( 
card -> card.suit().color() == Suit.Color.BLACK); 

Method References 

Lambda expressions are especially useful when we need to supply custom behavior 
not defined anywhere else. However, it is also common that one part of the code 
requires behavior that is already implemented. Let us consider a slight variant of the 
design of the Card class where the class includes the definition of the method: 

public final class Card { 
public boolean hasBlackSuit() { 
return aSuit.color() == Color.BLACK; 

} 
} 

If, as above, we are writing some code to delete all back cards from an ArrayList: 

ArrayList<Card> cards = ... ; 
cards.removeIf( 
card -> card.suit().color() == Suit.Color.BLACK); 

then we are essentially rewriting the code of method Card#hasBlackSuit. This 
does not look so bad here because the code is tiny. However, the reasoning would 
become more compelling for a larger piece of code (for example, code with a com-
pound condition). In any case, writing a solution we have already coded is an exam-
ple of DUPLICATED CODE†, which it is a good idea to avoid whenever possible. One 
solution is to call the method within the lambda expression: 

cards.removeIf(card -> card.hasBlackSuit()); 

This is better, but what we really want in the present scenario is to reuse our 
method hasBlackSuit as a first-class function. In other words, we want to pass a 
reference to hasBlackSuit as an argument to method removeIf. We can do just 
that with method references. In Java, method references are indicated with a double 
colon expression P::m where m refers to the name of the method of interest and P is 
a prefix that can take different forms. In our case, P refers to the class in which the 
method is defined. Thus, Card::hasBlackSuit refers to method hasBlackSuit of 
class Card. With this method reference, we can rewrite our code as: 

cards.removeIf(Card::hasBlackSuit); 

Using method references in Java is not trivial, though, because there are different 
ways to refer to a method. In the code above, we have used a reference to an instance 
method of an arbitrary object of a particular type. Remembering that the functional 
type we are working with is Card → boolean , in this scenario the function’s 
parameter is matched with the implicit parameter of the referenced method. This 
can be seen from the lambda equivalent card -> card.hasBlackSuit(). There
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are other ways in which the compiler can match method references to functional 
interfaces. 

Another way is to use a reference to a static method. For example, we could also 
have the following static method in some utility class: 

public final class CardUtils { 
public static boolean hasBlackSuit(Card pCard) { 

return pCard.suit().color() == Color.BLACK; 
} 

} 

and use a reference to that method instead: 

cards.removeIf(CardUtils::hasBlackSuit); 

Although the method reference looks the same as if referring to an instance 
method, the compiler interprets the reference in a different way. In this case, the 
method reference is interpreted as: 

cards.removeIf(card -> CardUtils.hasBlackSuit(card)); 

As we see, in this case, the function’s parameter is matched with the explicit 
parameter of the referenced method . 

Java also supports supplying a reference to an instance method of a particular 
object, using the notation o::m where o is an expression that evaluates to a reference 
to an object and m is the method. For example, let us assume that our Deck class has 
a method topSameColorAs(Card) which returns true if the argument is of the 
same color as the card at the top of the deck. To remove all cards in the list whose 
color is the same as the card at the top of the deck, we would do: 

Deck deck = new Deck(); 
/* ... */ 
cards.removeIf(deck::topSameColorAs); 

In this case, the parameter of type Card would be matched with the explicit pa-
rameter of the instance method of Deck that is called on a specified instance of deck. 
The equivalent lambda expression is: 

cards.removeIf(card -> deck.topSameColorAs(card)); 

Finally, an important aspect of method references is that they do not have to 
match their corresponding functional interface exactly. Technically, a method ref-
erence only needs to be compatible with its required assignment, invocation, or 
casting context (see Section 9.4 for an example). How the compiler correctly deter-
mines what to do is outside the scope of this book. However, it is important to know 
that method references support using both static and instance methods as first-class 
functions, and that the mapping between the reference and the interface method is 
based on the parameter and return types.4 In our case, both Card::hasBlackSuit, 
CardUtils::hasBlackSuit, and deck::topSameColorAs return a boolean and 
take as input a single parameter of type Card. In the case of the instance method of 

4 It is also possible to use method references to refer to constructors and array initializers: see 
Further Reading.
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a given type (Card::hasBlackSuit), the parameter is the implicit parameter of the 
method; In the case of the static method (CardUtils::hasBlackSuit), the param-
eter is the explicit parameter of the method; In the case of the instance method of a 
particular object, the parameter is also the explicit parameter of the method, whose 
implicit argument is specified in the method reference. In all cases, the function type 
is Card → boolean and the reference can thus be assigned to a variable of type 
Predicate<Card>. 

9.3 Using Functions to Compose Behavior 

First-class functions make it possible to define small pieces of behavior, such as 
to filter or compare objects. Taking this idea further, we can use the strategy of 
divide and conquer to express more complex behavior in terms of simpler behavior. 
Let us consider the problem of comparing two cards, introduced in Section 3.4. 
Using a lambda expression, we can define the behavior of the comparison using the 
Comparator<Card> interface as follows: 

public class Card { 
public static Comparator<Card> comparingBySuit() { 

return (card1, card2) -> 
card1.suit().compareTo(card2.suit()); 

} 
} 

This design involves a static factory method to return a comparator object that com-
pares two cards in terms of their suit, as defined by the declaration order in the 
enumerated type Suit. Because we use a lambda expression, the code expresses the 
solution more in terms of a first-class function than a function object. 

This solution is incomplete because if two cards have the same suit, their relative 
order is undefined. To complete the solution, we need to specify a secondary com-
parison order by rank. One way to do this would be to extend the code of the lambda 
expression: 

public static Comparator<Card> comparingBySuitThenRank() { 
return (card1, card2) -> { 
if (card1.suit() == card2.suit()) { 
return card1.rank().compareTo(card2.rank()); 

} 
else { 
return card1.suit().compareTo(card2.suit()); 

} 
}; 

} 

This code supports a well-defined total order for cards, at the cost of a more complex 
lambda expression for which we need to resort to the less compact block form. This 
code is also less flexible, because if we wish to sort by rank, then suit instead, we 
need to write an entirely new comparator that repeats most of the code, but with
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the order of comparison switched. Moreover, if we want to sort in descending order 
instead of ascending order for either rank or suit, we need to yet again rewrite the 
code. Ultimately, we have eight options for a basic card comparator: by rank then 
suit or suit then rank (two options), where either rank or suit can be ascending or 
descending (times four options). To cover all possibilities, we would thus need eight 
factory methods, and plenty of DUPLICATED CODE†. 

To work with finer abstractions, we could start by offering comparison in both 
relative levels (suit, then rank, and rank, then suit) by creating two factories for 
single-level comparison (rank or suit) and two additional factories for complete 
comparisons, where the two complete comparisons are composed of the single-level 
comparisons by suit and rank. 

public static Comparator<Card> comparingByRank() { 
return (card1, card2) -> 
card1.rank().compareTo(card2.rank()); 

} 

public static Comparator<Card> comparingBySuit() { 
return (card1, card2) -> 
card1.suit().compareTo(card2.suit()); 

} 

public static Comparator<Card> comparingByRankThenSuit() { 
return (card1, card2) -> { 
if (comparingByRank().compare(card1, card2) == 0) { 
return comparingBySuit().compare(card1, card2); 

} 
else { 
return comparingByRank().compare(card1, card2); 

} 
}; 

} 

/* etc. */ 

Unfortunately, without extra help, this idea does not mitigate the complexity of 
the composite function (and does not even cover the option to reverse the order of 
either suit- or rank-based ordering). The way out of this situation is the insight that 
if we want to express a solution in terms of first-class functions, we can also use 
functions to do the composition. In the case of functions to express comparisons, 
the Comparator interface provides many static and default methods intended to 
compose comparison functions out of smaller abstractions. Let us try to rewrite our 
solution to the problem of supporting the comparison of cards by either rank, then 
suit, or suit, then rank, in ascending or descending order, using these helper methods. 
We will proceed bottom up, from the smaller abstractions to the more complex ones. 

A first key method is Comparator.comparing(...). The signature of this 
method is a bit complex but, essentially, it creates a comparator by building on a 
function that extracts a comparable from its input argument. For example, we could 
rewrite comparingByRank() as:
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public static Comparator<Card> comparingByRank() { 
return Comparator.comparing(card -> card.rank()); 

} 

and similarly for bySuitComparator. How exactly the method comparing works 
is explained in the next section. For now, it is sufficient to understand the behavior 
intuitively: the argument to the method is itself a function that extracts the value we 
want to compare on, and the return value is a comparator structure. The resulting 
behavior is identical to the original solution using the direct comparison between 
Rank instances. 

Another major service available in class Comparator is a method to cascade 
comparisons (for example to compare by suit if the rank is the same, or vice versa). 
This functionality is provided by the method thenComparing. This method is a 
default method called on a comparator that takes as input another comparator for 
the same type.5 With thenComparing, we can express our cascaded comparison 
more directly: 

public static Comparator<Card> comparingByRankThenSuit() { 
return comparingByRank().thenComparing(comparingBySuit()); 

} 

We can observe how this code is already much more explicit about the intent of the 
computation than the version above, which explicitly does the cascading of com-
parisons. Inverting the comparison levels then becomes a question of inverting the 
order of the comparators in the call chain: 

public static Comparator<Card> comparingBySuitThenRank() { 
return comparingBySuit().thenComparing(comparingByRank()); 

} 

The final step required to complete our solution is to provide a way to reverse 
the comparison order, from ascending to descending and vice-versa. For example, 
this would mean going from either Ace to King or from King to Ace for the rank 
comparison (assuming Ace is the first card in the sequence, called an Ace-low se-
quence). To accomplish this without helper methods, we would need to go back to 
our basic implementation of comparators and switch the order of the arguments: 

public static Comparator<Card> comparingByRankReversed() { 
return (card1, card2) -> 

card2.rank().compareTo(card1.rank()); 
} 

In the code above, the order of the two parameters in the body of the lambda 
expression is reversed. Expressing this difference requires a different factory. For-
tunately, it is possible to avoid this DUPLICATED CODE† thanks to the default method 
reversed(), which creates a new comparator that orders elements using the re-
verse of the order used by the implicit argument of reversed(). We can then use 
reversed() to reverse either or both of the comparison levels. For example, to sort 
by descending suit, then ascending rank, we create a comparator factory as follows: 

5 Or a super type, although this eventuality is not covered here.
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public static Comparator<Card> 
comparingBySuitReversedThenRank() { 
return comparingBySuit() 

.reversed() 

.thenComparing(comparingByRank()); 
} 

and similarly to sort by descending suit, then descending rank. 
At this point, we can express all eight possible comparison orders simply by com-

bining functions with the help of other functions. The resulting code is so straight-
forward to understand that the abstraction benefit gained by encapsulating compara-
tors in a factory method becomes marginal. In the last code fragment above, the 
name of the factory method is basically the list of steps directly visible in the func-
tion call chain in the body of the method. 

Because the only part of the Card interface needed to define the comparison 
behavior is already available through the getter methods suit() and rank(), the 
factory methods are not strictly necessary. Removing the comparator factories from 
the interface of class Card helps mitigate the threats of SPECULATIVE GENERALITY†, 
namely to provide services that are never used. With the non-abstract methods of 
Comparator, developers will be able to provide compact and explicit definitions 
of the desired comparison behavior directly where needed. For example, if a code 
location requires sorting cards by descending order of suit, then rank, the following 
code could be used:6 

List<Card> cards = ... ; 
cards.sort(Comparator.comparing((Card card) -> card.suit()) 

.reversed() 

.thenComparing(Comparator.comparing( 
(Card card) -> card.rank()) 

.reversed())); 

Although this code is already explicit, there are three significant ways in which we 
can further improve it. First, we can use Java’s static import feature to eliminate the 
need to qualify the static methods: 

import static java.util.Comparator.comparing; 

This allows us to remove the qualification of the static method comparing: 

cards.sort(comparing((Card card) -> card.suit()) 
.reversed() 
.thenComparing(comparing((Card card) -> card.rank()) 

.reversed())); 

Second, as explained in Section 9.2, we can use method references to refer to 
suit() and rank() instead of redefining a lambda expression that simply calls 
them. 

6 In this context the parameter types must be supplied as part of the lambda expression because the 
compiler does not have enough information to infer them.
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cards.sort(comparing(Card::suit) 
.reversed() 
.thenComparing(comparing(Card::rank) 
.reversed())); 

Finally, we can observe that class Comparator has an overloaded version of then-
Comparing that combines the behavior of comparing and thenComparing by di-
rectly taking a function that returns the value of the key we wish to use for compari-
son. In this case we can move the reversal of the comparison to the final comparator. 
Our code can thus be reduced to: 

cards.sort(comparing(Card::suit) 
.thenComparing(Card::rank) 
.reversed()); 

This general principle of leveraging library functions to compose first-class func-
tions can be used in a variety of contexts, so before writing Java code that uses 
first-class functions as abstractions, it is worthwhile to study the options possible. 
Many of the functional interfaces provided in package java.util.function in-
clude some static or default methods that can be used to compose other functions. 
For example, returning to our definition of a Predicate for filtering black cards 
(see Section 9.2): 

Predicate<Card> blackCardFilter = 
card -> card.suit().color() == Suit.Color.BLACK; 

Assuming there are only black and red suits, if we want only red cards, we can do: 

Predicate<Card> redCardFilter = blackCardFilter.negate(); 

9.4 Using Functions to Supply, Consume, and Map Objects 

In Section 9.1, I presented how first-class functions can be used to parameterize the 
behavior of a higher-order function. Another way to think about this design feature 
is that first-class functions allow us to specify some processing behavior but to defer 
its execution to the point where it is required. In this section I discuss examples 
of three common types of deferred processing: supplying an object, consuming an 
object, and mapping an object to another object. 

Let us start with the problem of defining an implementation of CardSource (in-
troduced in Section 3.1) that can provide an infinite number of cards: 

public class InfiniteCardSource implements CardSource { 
public Card draw() { 

// Return a card. 
} 

public boolean isEmpty() { 
return false; 

} 
}
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How can we return an infinite number of cards? Clearly, it is not possible to ini-
tialize the card source with all of the different cards to return, because there should 
be an infinity of them. One potential solution is to initialize InfiniteCardSource 
with a STRATEGY that is a card factory. In our context, a card factory is any function 
that can return a Card object. In Section 3.7 we saw how to implement this idiom in 
pure object-oriented style. I now present a variant of the solution that uses the con-
cepts seen in this chapter. The Java class library conveniently provides a functional 
interface to capture the behavior of a method responsible for returning an object: 
Supplier<T>. Its method get takes no argument and returns a value of type T, the 
type argument of the Supplier<T> interface. In our case we replace the type pa-
rameter with the concrete type Card to yield the function type () → Card . A basic 
supplier-based solution would look like this: 

public class InfiniteCardSource implements CardSource { 
private final Supplier<Card> aCardSupplier; 

public InfiniteCardSource(Supplier<Card> pCardSupplier) { 
aCardSupplier = pCardSupplier; 

} 

public Card draw() { 
return aCardSupplier.get(); 

} 

public boolean isEmpty() { 
return false; 

} 
} 

With this class, we can now easily create various kinds of infinite card sources. 
For example, we could define a static method random() on class Card, which re-
turns a random card, and do: 

InfiniteCardSource randomCardSource = 
new InfiniteCardSource(Card::random); 

As another example, we could also create an infinite source of Ace of Hearts 
cards: 

InfiniteCardSource aceOfHearts = 
new InfiniteCardSource(()-> Card.get(Rank.ACE, Suit.HEARTS)); 

The key insight to observe from this demonstration is that, conceptually, what 
we are handling are functions to obtain objects, as opposed to the required objects 
themselves. This allows us to defer the execution of the factory method until the 
very point where the object is required. 

A similar idea can be used to parameterize how a certain object is used, or con-
sumed. As an example, we will design a ConsumingDecorator which executes 
some parameterized behavior whenever a card is drawn from a CardSource (see 
Section 6.4 to review the design of a DECORATOR). In this case, we need to param-
eterize what will happen to the card being drawn. This requires a function type
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Card → void , which can be realized by invoking the generic functional interface 
Consumer<T>, which has the abstract function accept(T) which returns void. 

public class ConsumingDecorator implements CardSource { 
private final CardSource aSource; 
private final Consumer<Card> aCardConsumer; 

public ConsumingDecorator(CardSource pSource, 
Consumer<Card> pCardConsumer) { 
aSource = pSource; 
aCardConsumer = pCardConsumer; 

} 

public Card draw() { 
Card card = aSource.draw(); 
aCardConsumer.accept(card); 
return card; 

} 

public boolean isEmpty() { 
return aSource.isEmpty(); 

} 
} 

As can be seen from the implementation of draw, we are parameterizing our 
class with behavior that is executed only at the specific point where it is needed, 
namely when a card is drawn. The following code shows how we can use a 
ConsumingDecorator to create a Deck that prints every card drawn to the console: 

CardSource source = new ConsumingDecorator(new Deck(), 
System.out::println); 

In this example, the first argument is an instance of Deck (a concrete subtype of 
CardSource), and the second argument is our consumer of Card objects. The argu-
ment is a reference to an instance method of a particular object, namely the method 
println(Object) of the library static field System.out (of class Printstream), 
which is the standard mechanism for printing to the console. The code thus pro-
vides an example of a case where a method reference is matched to a functional 
interface with a compatible, but not identical, function type (see Section 9.2). In our 
case, we are supplying a method of type Object → void to a context that requires 
Card → void . This assignment is compatible because, according to the rules of the 
type system, it is safe for the type of a method argument to be more specific that the 
type of the formal parameter.7 

Supplier and consumer functions support one-way deferred data flow. Naturally, 
there can also be situations where we need to both consume and supply a value. The 
generic function type that captures this requirement is T → R , and it is supported by 
the functional interface Function<T,R> (introduced in Section 9.2). Another way 

7 In consequence, a reference to println can be used when a Consumer is expected. For example, 
the default library interface method Iterable#forEach takes a Consumer as input. Hence, to print 
all elements in an iterable, we can simply call forEach(System.out::println) on that iterable.
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to understand this behavior is that we need a function that maps an object of type T 
into an object of type R. As it turns out, we have already used this mechanism. 

The static method Comparator.comparing, presented in the previous section, 
requires as input a Function called a key extractor. If we want to build a comparator 
that compares Card objects based on their suit, we do: 

Comparator<Card> bySuit = Comparator.comparing(Card::suit); 

The argument to comparing is an instance of Function<Card,Suit>, an in-
vocation of the functional interface Function<T,R> whose method apply takes an 
argument of type Card and returns a reference to an object of type Suit. This means 
that the code that implements method comparing will have a way to map from an in-
stance of Card to a corresponding instance of Suit whenever necessary in the logic 
of the method’s implementation. Let us explore how the method works. The code 
below is a slightly simplified version of the actual implementation of comparing as 
invoked for the Card and Suit type parameters: 

public static Comparator<Card> comparing( 
Function<Card, Suit> keyExtractor) { 
return (card1, card2) -> keyExtractor.apply(card1) 
.compareTo(keyExtractor.apply(card2)); 

} 

A sample use of this code is as follows: 

Comparator<Card> comparator = 
Comparator.comparing(Card::suit()); 

comparator.compare(card1, card2); 

When comparing is called, it creates a new function object that binds Card:: 
suit to keyExtractor, but without calling either apply or its delegate method 
suit. That is, comparing uses the function as a building block when creating a 
new function. Similarly to how we used suppliers and consumers, above, this in-
direction is necessary because the comparison behavior needs to be executed on-
demand within the compare method. Hence, when method compare is called, only 
then is apply called, this time twice, once for each card. Because apply delegates 
to method suit, at that point the suit value is obtained from the card and used in the 
comparison. Figure 9.1 illustrates the complete sequence. 

Code Exploration: JetUML · Property 
Using suppliers and consumers to define general properties. 
In JetUML, diagram elements have different properties. For example, a class 
node in a class diagram has name, attributes, and methods properties. A 
Property object represents a property value, but does not store the value. 
Instead, an instance of Property acts as proxy for obtaining and supply-
ing a value. A Property object thus has a field of type Supplier<Object> 
that it uses to get the value from the host object, and a field of type
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c:Comparatorclient: lambda1:Function card1:Card card2:Card suit1:Suit

compare(card1,card2)

apply(card1)

suit()

suit1

suit1

apply(card2)

compareTo(suit2)

suit()

suit2

suit2

Fig. 9.1 Sequence of calls for comparing two cards using a comparator created with Comparator. 
comparing 

Consumer<Object> to set the value within the host object. Properties are cre-
ated in method buildProperties() of the different DiagramElement sub-
types, and used by class PropertySheet. 

9.5 First-Class Functions and Design Patterns 

Many design patterns rely on polymorphism to enable variation points in the so-
lution. For example, the STRATEGY pattern relies on polymorphism to allow client 
code to dispatch the execution of an algorithm to a dynamically selected variant 
(see Section 3.7). Similarly, the OBSERVER pattern relies on polymorphism to allow 
a subject to notify observers whose exact nature is also determined at run time (see 
Section 8.3). In the original object-oriented description of the design patterns, this 
polymorphism is enabled by extending classes and implementing interfaces. 

In functional-style design, first-class functions provide a new options for behav-
ior parameterization. Instead of creating objects of different classes and enabling 
polymorphism through a common supertype, we can define families of functions 
whose type is compatible and invoke them interchangeably. This is possible in any 
context, but it is interesting to note that first-class functions allow a re-thinking of
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the implementation of design patterns. By way of illustration, in this section I revisit 
the implementation of the STRATEGY and OBSERVER patterns using a functional style. 

Functional-Style STRATEGY 

In simple cases where strategies are stateless and their interface boils down to a 
single method, we can express the abstract strategy as a functional interface. I have 
already illustrated this scenario in Section 9.4, by using the Supplier<T> interface 
as an abstract strategy for card factories. 

As a different illustration, let us consider a context where client code can use 
different strategies for selecting a card in a list. Here, concrete strategies are imple-
mentations of method apply of interface Function<List<Card>, Card>, which 
becomes the abstract strategy. In our case, method apply takes as input a list of 
cards and returns a single card. As an example of a client class for the strategy, we 
could have: 

public class AutoPlayer { 
private Function<List<Card>, Card> aSelectionStrategy; 

public AutoPlayer(Function<List<Card>, Card> pStrategy) { 
aSelectionStrategy = pStrategy; 

} 

public void play() { 
Card selected = aSelectionStrategy.apply(getCards()); 
/* ... */ 

} 

// Gets the cards to supply to the strategy 
private List<Card> cards() { /* ... */ } 

} 

In this design, the card selection strategy is provided as an argument to the con-
structor when the client AutoPlayer object is created. Because the strategy is a 
first-class function, defining it involves defining the behavior of this function at any 
convenient point in the code. One option could be to define it on the fly at the loca-
tion where the instance of AutoPlayer is created. For example, a strategy to always 
select the first card would be: 

AutoPlayer player = new AutoPlayer(cards -> cards.get(0)); 

For more elaborate strategies, another option could be to define a collection of 
common strategies in a utility class: 

public final class CardSelection { 
private CardSelection() {} 

public static Card lowestBlackCard(List<Card> pCards) { ... } 
public static Card highestFaceCard(List<Card> pCards) { ... } 
/* ... */ 

}
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and use method references to select a strategy: 

AutoPlayer player = 
new AutoPlayer(CardSelection::lowestBlackCard); 

This implementation style is very compact, and even perhaps too much so. The 
use of the general Function functional interface in this context has two poten-
tial limitations. First, it has low documentation effectiveness. Looking at the type 
Function<List<Card>, Card>, all we know is that it can return a Card given a 
list of cards. For this reason, any reference to the card selection strategy needs to 
be done through well-named variables for the code to remain readable. Here, field 
aSelectionStrategy fulfills the requirement. A second problem is that the single 
method in the Function interface is also general-purpose, and for this reason can-
not include any context-specific information. In our example, we need to determine 
how to handle the case where the list is empty. One possibility would be to redefine 
the strategy as Function<List<Card>, Optional<Card>, and somehow remem-
ber that by convention passing an empty list results in an empty optional object. 
Another possibility would be to state that the input list must not be empty is a pre-
condition for the strategy. In both cases, it is not clear where one would document 
this critical piece of information. 

For these reasons, defining an additional functional interface to represent the 
strategy will lead to clearer code and a more self-explanatory design. The new in-
terface can also be used to hold some standard strategies. The following code shows 
an implementation of a STRATEGY application for selecting cards that uses design 
by contract to guard against the case of selecting from an empty list and uses the 
Optional type to guard against the case where a strategy yields no card. Although 
in this case it would make sense to return Optional.empty() if the input list is also 
empty, both options are included for the sake of illustration. 

public interface CardSelectionStrategy { 
/** 
* Select an instance of Card from pCards. 

* @param A list of cards to choose from. 

* @pre pCards != null && !pCards.isEmpty() 

* @post If RETURN.isPresent(), pCards.contains(RETURN.get()) 

*/ 
Optional<Card> select(List<Card> pCards); 

public static Optional<Card> first(List<Card> pCards) { 
return Optional.of(pCards.get(0)); 

} 

public static Optional<Card> lowestBlackCard(List<Card> pCards) 
{ /* ... */ } 

public static Optional<Card> highestFaceCard(List<Card> pCards) 
{ /* ... */} 

}



2619.5 First-Class Functions and Design Patterns

Code Exploration: Solitaire · GreedyPlayingStrategy 
Using method references to build a main strategy out of sub-strategies. 
The Solitaire application provides an example of behavior composition us-
ing first-class functions in the definition of automatic playing strategies. One 
of the features of the application is to automatically play a move based 
on some heuristic when a user types the Enter key. However, in a game 
of Solitaire, there are often situations where multiple legal moves are pos-
sible. Class GreedyPlayingStrategy provides an implementation of the 
PlayingStrategy interface by defining a number of sub-strategies as static 
methods, where each sub-strategy is one type of move (e.g., to select a card 
from the deck, to move a card to a foundation pile, etc.). The overall strat-
egy can then be reduced to the order in which substrategies are attempted. 
The meta-heuristic (high-level operation) implemented by the actual strategy 
method is to cycle through a collection of first-class functions that represent 
sub-strategies, apply them, and stop as soon as one strategy is successful (as 
determined by a non-empty value in the Optional return value). 

Functional-Style OBSERVER 

In the OBSERVER pattern, an observable object notifies its observer objects by calling 
their callback method(s). In contexts where we can define an abstract observer with 
a single callback, we can use functional-style design to create a compact application 
of the pattern. 

As an example, we will create an ObservableDeck class that is essentially a 
version of Deck whose calls to method draw() can be observed. Using the push 
data-flow strategy, we want to notify observers every time a card is drawn from the 
deck, letting them know which card was drawn. The functional type for the callback 
is thus Card → void . This is exactly the functional type of Consumer<Card>, so 
we can use Consumer<Card> as our observer interface: 

public class ObservableDeck extends Deck { 
private Consumer<Card> aDrawHandler; 

public ObservableDeck(Consumer<Card> pDrawHandler) { 
aDrawHandler = pDrawHandler; 

} 

public Card draw() { 
Card card = super.draw(); 
aDrawHandler.accept(card); 
return card; 

} 
}
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To create an observable deck, we instantiate the class with a function that imple-
ments the callback. For a basic logging feature, we could just use println: 

ObservableDeck deck = new ObservableDeck(System.out::println); 

With this code in place, extending the class to support observer to shuffle() 
events would simply be a matter of duplicating the design to support a second ob-
server. 

It is interesting to contrast the design of ObservableDeck with the design of the 
ConsumingDecorator, presented in Section 9.4. In light of the current discussion, 
it should become apparent that the ConsumingDecorator is essentially an observ-
able CardSource. While the ConsumingDecorator used aggregation to attach an 
observer, the ObservableDeck used inheritance. The use of the Consumer<Card> 
interface, however, fulfills exactly the same role in both designs: to inject additional 
behavior that executes in response to an event in the life-cycle of the observable 
object. 

Code Exploration: JetUML · EditorFrame 
Using lambda expressions to define event handlers. 
In JavaFX, the interface used to represent handlers of different GUI events 
is a functional interface. This decision enables using lambda expression 
to define concrete observers (that is, event handlers). JetUML makes ex-
tensive use of lambda expressions to define event handlers in classes of 
package ...gui. Class EditorFrame contains the code that implements 
the menu actions. The creation of menu item objects is done with the 
help of method createMenuItem of class MenuFactory. This method 
takes, as one of its argument, an object of the functional interface type 
EventHandler<ActionEvent>. Most calls to method createMenuItem 
specify the event handler for a menu item using a lambda expression. 

9.6 Functional-Style Data Processing 

Up to now, the ideas presented in this chapter involve introducing functional ele-
ments into an otherwise object-oriented design. In some cases, the design context 
motivates solutions that have a much stronger flavor of functional-style program-
ming. One scenario where functional-style programming shines involves applying 
transformations to a sequence of data elements. An example of data processing that 
meets this definition is counting the number of acronyms in a body of text. In this 
case, the input is a sequence of words, and the transformations are to filter the input 
for acronyms, and then to compute the total number of instances found. 

Functional-style design is a good match for this type of data processing because 
it naturally calls for the use of behavior parameterization and higher-order functions.
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Higher-order functions implement the general data-processing strategies, which are 
then parameterized for a particular context with first-class functions. In the text-
processing example above, the general strategy is to check whether each input ele-
ment (a word) matches a certain predicate (acronym or not). Although the general 
strategy of filtering over a predicate is likely to apply to many different problems, 
the predicate itself (acronym detection) is specific to the particular design context. 
In other cases we might want to write code that detects short words, proper nouns, 
etc. This idiom can be illustrated by the statement: 

data.higherOrderFunction(firstClassFunction); 

Applied to our current example, this would mean: 

listOfWords.filter(isAcronym); 

Functional-style data processing is a major topic in software design. This section 
provides a basic overview of the main concepts and techniques that underlie this 
design style, and how to realize them in Java. 

Data as a Stream 

The main concept that enables functional-style data processing in Java and similar 
technologies is that of a stream. Simply stated, a stream is a sequence of data el-
ements, a bit like a collection. However, the major conceptual difference between 
a stream and a collection is that a collection represents a store of data whereas a 
stream represents a flow of data. This distinction is similar to the difference be-
tween storing music as a file vs. playing music via an on-line streaming service. For 
software design, the distinction between collections and streams has many practical 
implications: 

• Elements in a collection have to exist before they are added to the collection, but 
elements in a stream can be computed on-demand. 

• Although collections can only store a finite number of elements, streams can 
technically be infinite. For example, although it is not possible to define a list 
that contains all the even numbers, it is possible to create a stream that produces 

• Collections can be traversed multiple times, but the traversal code is located out-
side the collection, for example in a for loop or iterator class. In contrast, streams 
can only be traversed once: their elements are consumed as part of the traversal. 
However, the traversal code is hidden within the higher-order functions provided 
by the stream’s interface. 

• Streams are amenable to being parallelized, mainly because the traversal of their 
elements is hidden as part of the stream abstraction. 

An additional, more pragmatic, difference relates to the evolution of the Java lan-
guage. Collection classes (List, Set, etc.) were released before the language had 
explicit support for first-class functions, so collections provide limited support for
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higher-order functions.8 In contrast, Java 8 provides support for first-class functions 
(in the form of method references and lambda expressions) and includes a powerful 
Stream API designed to support functional-style design. The remainder of this sec-
tion shows how to design functional-style data processing in Java using the Stream 
API. 

A simple way to obtain a stream is to call the stream() method on an instance 
of a collection class. For example, if we have a method to return the list of cards 
in an instance of the Deck class, we can also stream this data. Figure 9.2 shows the 
structures involved. 

CardStack

cards(): List<Card>

Deck

cards(): List<Card>

«interface»
List<Card>

stream():Stream<Card>

1 1

Fig. 9.2 Version of the Deck and CardStack classes with methods for returning the cards they 
contain 

Obtaining a stream of cards from the deck is then just a matter of calling 
stream() or the output of cards(): 

new Deck().cards().stream(); 

By themselves, streams already support many useful non-higher-order functions. 
For example, we can count the elements in the stream: 

Stream<Card> cards = new Deck().cards().stream(); 
long total = cards.count(); 

Streams also support operations that take a stream as their implicit argument and 
output a different stream. This process is called pipelining. For example, the sorted 
method returns the elements of the original stream in sorted order. Because method 
sorted() requires the instances in the stream to be subtypes of Comparable, the 
code below assumes the version of class Card used implements Comparable: 

Stream<Card> sortedCards = cards.stream().sorted(); 

Pipelining also makes it possible to combine operations on streams. For example, 
method limit(int max) returns up to max elements from the stream. To obtain the 
first ten cards in sorted order, we can thus write: 

Stream<Card> sortedCards = cards.stream().sorted().limit(10); 

It is also possible to combine multiple streams. For example, to assemble all the 
cards from two decks and sort them, we can do: 

Stream<Card> cards = 
Stream.concat(new Deck().cards().stream(), 
new Deck().cards().stream()); 

8 The notable exception is the default method forEach available on the Iterable<T> interface 
since Java 8.
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To revert to a single deck, one option is to remove the duplicates using distinct(): 

Stream<Card> withDuplicates = 
Stream.concat(new Deck().cards().stream(), 
new Deck().cards().stream()); 

Stream<Card> withoutDuplicates = withDuplicates.distinct(); 

Applying Higher-Order Functions to Streams 

The main way that streams support functional-style programming is that they define 
a number of higher-order functions. A basic higher-order function for streams is 
forEach, which applies an input consumer function to all elements of the stream. 
For example, to print all cards in a stream in a functional way, we could do the 
following: 

new Deck().cards().stream() 
.forEach(card -> System.out.println(card)); 

The method forEach takes an argument of type Consumer<? super T>, which 
means we can supply it a reference to a function that defines a single parameter of 
type Card (or any supertype of Card). In the example above this reference is sup-
plied in the form of a lambda expression, but we could also use a method reference 
System.out::println (see Section 9.4). Because forEach is not guaranteed to 
respect the order in which elements are encountered in the stream, a second version, 
forEachOrdered, can be used if ordering is important. Because it does not return 
a stream, the outcome of the forEach function (either variant) cannot be further 
transformed as part of a pipeline. Stream functions that do not produce a stream of 
results that can be further processed as part of a pipeline are called terminal oper-
ations. Another example of a terminal operation on streams is the count function 
seen above. 

Other types of terminal higher-order functions that can be applied to streams 
include searching functions such as allMatch, anyMatch, and noneMatch, which 
take as argument a predicate on the stream element type and return a Boolean value 
that indicates respectively whether all, any, or none of the elements in the stream 
evaluate the predicate to true. For example, to determine whether all cards in a list 
are in the Clubs suit, we would do: 

List<Card> cards = ... ; 
boolean allClubs = cards.stream() 
.allMatch(card -> card.suit() == Suit.CLUBS); 

Filtering Streams 

The sorted() stream function, mentioned above, shows how we can define inter-
mediate operations to create a pipeline of transformations on a stream. An inter-
mediate operation thus has a stream as an implicit argument, and returns a stream.
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An important function in this pipelining process is the filter method, which takes 
a Predicate and returns a stream that consists of all the elements of the original 
stream for which the predicate evaluates to true. For example, let us assume we want 
to count the face cards in a list of cards: 

long numberOfFaceCards = cards.stream() 
.filter(card -> card.rank().ordinal() >= 
Rank.JACK.ordinal()) 

.count(); 

To leverage the benefits of both object-orientation and functional-style program-
ming, predicates such as the one above are best captured as instance methods: 

public class Card { 
public boolean isFaceCard() { 
return rank().ordinal() >= Rank.JACK.ordinal(); 

} 
} 

This allows us to use a method reference: 

long numberOfFaceCards = cards.stream() 
.filter(Card::isFaceCard) 
.count(); 

At first glance, capturing predicates in dedicated methods may seem like an ob-
stacle to the creation of compound predicates. For example, what if we want to 
count only face cards in the Clubs suit? Do we have to revert to our original lambda 
expression? 

long result = cards.stream() 
.filter(card -> card.rank().ordinal() >= Rank.JACK.ordinal() 
&& card.suit()==Suit.CLUBS) 

.count(); 

A key insight to avoid ugly code like this is to observe that filters, being an interme-
diate operation, can also be pipelined: 

long result = cards.stream() 
.filter(Card::isFaceCard) 
.filter(card -> card.suit() == Suit.CLUBS) 
.count(); 

At this point, our functional-style code is starting to look much more like a set 
of high-level rules for processing data than a set of instructions telling a program 
how to operate on inputs. Indeed, one advantage of writing data-processing code 
in a functional style is that the result is more declarative than imperative, and thus 
better conveys the intent behind the code. Here, for example, a single glance at the 
statement shows that we wish to only consider face cards, then further restrict the 
data to only consider cards in the Clubs suit, and then finally count the data ele-
ments. It is also worth noting how the code is formatted, with each stream operation 
indented and prefixed with its period starting the visible part of a line. This coding 
style is a usual convention for formatting stream operations in Java. Its benefit is 
that it emphasizes the declarative nature of the code.



2679.6 Functional-Style Data Processing

Mapping Data Elements 

There are often situations in data processing where we need to transform all data el-
ements in a stream into a derived value. In this case, we leverage the idea of mapping 
objects to their desired value, already introduced in Section 9.4. In functional-style 
programming, the word mapping is employed in the mathematical sense synony-
mous to a function. For example, we can consider how the function that computes 
the square of a number x, denoted x2, actually maps a number x to its square x2. 

Many programming languages that support some form of functional-style pro-
cessing provide a mechanism to apply a map (that is, a function) to every element 
in a data collection. In Java, the Stream class defines a map method that takes as 
input a parameter of type Function<? super T, ? extends R>. In other words, 
the argument to the map function is another function that takes as input an object 
of type T and returns an object of type R.9 This means that the map function will 
transform a stream of objects into another stream where every object is obtained by 
applying a function to an object in the first stream. 

As an example, we can consider a function that maps an instance of Card to an 
instance of an enumerated type Color that represents the color of the card’s suit. 
We can apply this function systematically to all elements in a stream using the map 
method: 

cards.stream().map(card -> card.suit().color()); 

If this expression is evaluated on a shuffled deck, the resulting stream will be a 
random interleaving of the values Color.BLACK and Color.RED. Because the result 
is also a stream, we can pipeline the result of a mapping operation as for any other 
stream. For example, to count the number of black cards in a collection, we could 
write: 

long result = cards.stream() 
.map(card -> card.suit().color()) 
.filter(color -> color == Color.BLACK) 
.count(); 

Although the same result can be achieved more directly by using filter with a 
lambda expression that retrieves the card’s color, the example above illustrates how 
we can use map to unpack an object and use only the part of the object that is of 
interest for a given computation. 

Mapping, however, can accomplish more than extracting data from an input ele-
ment. Let us consider a second example, where we want to compute the score that a 
card represents. In some games, cards are assigned a point value that corresponds to 
their rank (for instance, Three of Clubs is worth three points), except for face cards 
which are all worth ten points. With a mapping process, we can convert a stream of 
card objects into a stream of integers that correspond to the score of each card in the 
original stream: 

9 Technically, T or one of its supertypes, and R or one of its subtypes. The same type argument can 
be used for both type parameters T and R.
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cards.stream() 
.map(card -> Math.min(10, card.rank().ordinal() + 1)); 

The result of this expression will be a stream of Integer objects that represent the 
score of each card. As usual, whether to encapsulate the score computation in an 
instance method of class Card is a context-sensitive design decision. If the score 
value is used in multiple calling contexts, then it would make sense to add a method 
score() to the interface of class Card. Otherwise, the lambda expression will suf-
fice. 

When mapping to numerical values, as in this case, it is useful to know that the 
language provides specialized support for streams of numbers in the form of classes 
such as IntStream and DoubleStream. These types of streams work like other 
streams, but they define additional operations that only make sense when processing 
numbers, such as summing the elements in the stream. To adapt our scoring example 
to get the total score, the code needs to explicitly map to an IntStream, and then 
call the sum terminal operation: 

int total = cards.stream() 
.mapToInt(card -> Math.min(10, card.rank().ordinal() + 1)) 
.sum(); 

As an alternative and more declarative way to specify this computation, we could 
also do: 

int total = cards.stream() 
.map(Card::rank) 
.mapToInt(Rank::ordinal) 
.map(ordinal -> Math.min(10, ordinal + 1)) 
.sum(); 

In the various examples above, we mapped values one-to-one: Card to Color, 
Card to Integer, int to int, etc. In some cases, however, we want to be able to 
operate on a stream created from a structure that involves a one-to-many relation 
between objects. For example, let us say we have a list of Deck instances: 

List<Deck> listOfDecks = Arrays.asList(new Deck(), new Deck()); 

How can we operate on all the cards reachable through the list? Streaming the 
list with deck.stream() will produce a stream of instances of Deck, not Card. We 
need an additional operation to unpack the decks into a stream of cards. We could 
try mapping using Deck#cards(): 

listOfDecks.stream() 
.map(deck -> deck.cards().stream()) 
.forEach(System.out::println); 

This, however, will not work because the map function returns a stream of the 
return type of its argument function. Because the function type of the argument is 
Deck → Stream<Card> , map will return an instance of Stream<Stream<Card>> 
when what we want is just Stream<Card>. The requirement to map an object to 
multiple (zero or more) objects can instead be handled using a special kind of map-
ping function called a flat map. Conceptually, a flat map operation maps each input
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object to a stream, but merges the resulting streams into a single one instead of col-
lecting the streams as individual elements of another stream. In Java, this service 
is provided by method flatMap. In our scenario, we would thus use flatMap as 
follows: 

listOfDecks.stream() 
.flatMap(deck -> deck.cards().stream()) 
.forEach(System.out::println); 

Reducing Streams 

When working with streams of data, a common scenario is that we want to not only 
process each data element, but also do something with the data as a whole. Typically, 
this means either: 

• Aggregating the effect of the operations into a single result. Terminal operations 
such as count() and sum() are examples of data aggregation in that sense; 

• Collecting the individual results of the operations into a stored data structure. In 
Java this would typically mean a List or other collection type. 

Although they may seem like different operations, these alternatives have in com-
mon that, conceptually, they represent reducing a stream to a single entity. In the 
second case, the entity may be a collection of many elements, but conceptually it is 
nevertheless a single, stored structure as opposed to a stream. The advantage of gen-
eralizing all types of data aggregation as a single high-level operation, reduction, is 
that it introduces a clear distinction between intermediate operations, namely map-
ping,10 and terminal operations, namely reducing. In fact, programming systems 
where computation is expressed as a series of mapping operations followed by a 
reduction operation are commonly known as the map–reduce programming model. 
Although the term map–reduce is mostly used in the context of cluster computing, 
the basic model itself is directly applicable to functional-style programming with 
streams. 

In Java, reduction is supported through various overloaded versions of the reduce 
method available in Stream classes. Implementing a reduction from scratch can be 
tricky, and the complete details are outside the scope of this book. However, the 
general idea is to provide the reduce function with an accumulator object that can 
incrementally update the reduced version of the input every time an element is en-
countered. For example, to implement the sum operation on an IntStream using the 
reduce method, the following code is used: 

IntStream numbers = ... ; 
int sum = numbers.reduce(0, (a, b) -> a+b); 

This summing reduction uses 0 as the base case and accumulates results by itera-
tively adding elements. The code below shows a simplified mock-up implementation 
of the reduce method for IntStream: 
10 We can consider that filtering is a type of mapping without loss of generality.
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public int reduce(int pBase, IntBinaryOperator operator) { 
int result = pBase; 
Iterator<Integer> iterator = this.iterator(); 
while (iterator.hasNext()) { 
int number = iterator.next(); 
result = operator.applyAsInt(result, number); 

} 
return result; 

} 

Initially, the result of the reduction operation is set to the base provided, in our 
case 0. Then, for each element in the stream, the binary operator provided as input 
to reduce is applied, using as arguments the current result and the next element in 
the stream. In our case the binary operator was specified using the lambda expres-
sion (a,b) -> a+b. Thus, for each element in the stream, the value of the current 
reduction will be assigned to itself plus the value of the next element. 

This being said, because most common reduction operations (min, max, count, 
sum, etc.) are directly supported by the stream classes, it is possible to get started 
with streams and get quite far without mastering the art of writing reductions. 

Reductions that serve to accumulate data in a structure are a special case. Let us 
say we wish to collect all face cards in a list of cards into a separate list. One quick 
solution would be to use the forEach method to store the elements of the stream in 
the target list: 

List<Card> result = new ArrayList<>(); 
cards.stream() 
.filter(Card::isFaceCard) 
.forEach(card -> result.add(card)); 

Although workable, this design loses some of the properties of declarative, 
functional-style expressions of a computation, because the first-class function that 
simulates the reduction is implemented using explicit list manipulation operations. 
As an alternative that supports a more functional style, the Java libraries provide 
methods to create a type of reduction called a collector. A collector is a reduction 
that accumulates elements into a collection. With a collector, the code above can be 
rewritten as: 

List<Card> result = cards.stream() 
.filter(Card::isFaceCard) 
.collect(Collectors.toList()); 

In this last example, the details of the implementation of the accumulation of ele-
ments into a list remain hidden, and the code directly expresses the desired intent: 
to collect the elements of the stream into a list.
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Code Exploration: JetUML · EditorFrame 
Streaming operations on GUI components. 
JetUML makes targeted use of the streaming API to streamline some algo-
rithms within methods. Among others, class EditorFrame provides two ex-
amples. In method getNumberOfUnsavedDiagrams, I use stream operations 
to count the number of graphical user interface tabs that contain an unsaved 
diagram. In method setMenuVisibility, I use a flat map to flatten top-
level menu items and their sub-items into a single stream, which I then fil-
ter for some property, and then disable. Searching the project for the string 
".stream()" will reveal numerous other examples of streaming within the 
code base. 

Insights 

This chapter introduced functional-style design and the programming language 
mechanisms that support it, and showed how to employ these mechanisms to embed 
functional elements into an object-oriented design. 

• Consider a solution in the functional style for parts of a design that involve pa-
rameterizing behavior; 

• Lambda expressions should be short and self-documenting: consider reorganiz-
ing your code to make them so; 

• Favor short lambda expressions where the body is also an expression (as opposed 
to a block of statements); 

• To emphasize flexibility and extensibility in your design, use library functional 
interfaces to define function types; to emphasize design constraints and intent, 
use application-defined functional interfaces; 

• When designing methods, keep in mind how they could be used through refer-
ences: ensure they are a good match for likely functional interfaces; 

methods of library types to compose functionality in intuitive w• 
• 

Use the ays; 
Consider using supplier, consumer, and mapping function types to parameterize 
behavior; 

• Consider functional variants when applying design patterns; 
• Structure data-processing code so that it is more declarative than imperative in 

style; 
• Use the mapping abstract operation to convert data elements into the values that 

are directly used by a computation; 
Use collector objects to accumulate the result of stream operations.•
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Further Reading 

A resource for diving more deeply into functional-style programming in Java is the 
book Java 8 in Action by Urma et al. [16]. The book is for experienced programmers, 
but it provides an accessible introduction to the topic and a progressive treatment, 
which allows the reader to go as far as they are comfortable with. In terms of code 
style, Effective Java by Bloch [2] includes a chapter Lambdas and Streams which 
provides additional coaching on using these mechanisms in practice. The advice 
therein is consistent with the recommendations provided in this chapter, but includes 
additional discussions and examples. 

For a more pragmatic review of the topic, the Java Tutorial [11] has a section on 
Lambda Expressions which also covers method references. The section of the tuto-
rial on collections also covers streams, in a subsection titled Aggregate Operations.



Appendix A 
Essential Java Programming Concepts 

This appendix provides a brief orientation through the concepts of object-oriented 
programming in Java that are critical for understanding the material in this book and 
that are not specifically introduced as part of the main content. It is not intended as a 
general Java programming primer, but rather as a refresher and orientation through 
the features of the language that play a major role in the design of software in Java. 
If necessary, this overview should be complemented by an introductory book on 
Java programming, or by the relevant sections in the Java Tutorial [11]. 

A.1 Variables and Types 

Variables store values. In Java, variables are typed and the type of the variable must 
be declared before the name of the variable. Java distinguishes between two major 
categories of types: primitive types and reference types. Primitive types are used to 
represent numbers and Boolean values. Variables of a primitive type store the actual 
data that represents the value. When the content of a variable of a primitive type 
is assigned to another variable, a copy of the data stored in the initial variable is 
created and stored in the destination variable. For example: 

int original = 10; 
int copy = original; 

In this case variable original of the primitive type int (short for integer) is as-
signed the integer literal value 10. In the second assignment, a copy of the value 10 
is used to initialize the new variable copy. 

Reference types represent more complex arrangements of data as defined by 
classes (see Section A.2). The important thing to know about references types is 
that a variable of a reference type T stores a reference to an object of type T . Hence, 
values of reference types are not the data itself, but a reference to this data. The 
main implication is that copying a value means sharing a reference. Arrays are also 
reference types. For example:
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int[] original = new int[] {1,2}; 
int[] copy = original; 
copy[0] = 3; 
int result = original[0]; // result == 3 

In this case, copy is assigned the value stored in original. However, because the 
value stored in original is a reference to an object of an array type, the copy also 
refers to the object created in the first statement. Because, in effect, copy is only a 
different name (or alias) for original, modifying an element in copy also modifies 
that element in original. 

A.2 Objects and Classes 

Essentially, an object is a cohesive group of variables that store pieces of data that 
correspond to a given abstraction, and methods that apply to this abstraction. For 
example, an object to represent the abstraction book could include, among others, 
the book’s title, author name, and publication year. In Java, the class is the compile-
time entity that defines how to build objects. For example, the class: 

class Book { 
String title; 
String author; 
int year; 

} 

states that objects intended to represent a book will have three instance variables 
named title, author, and year of type String, String, and int, respectively. 
In addition to serving as a template for creating objects, classes also define a cor-
responding reference type. Objects are created from classes through a process of 
instantiation with the new keyword: 

Book book = new Book(); 

The statement above creates a new instance (object) of class Book and stores 
a reference to this object in variable book declared to be of reference type Book. 
Instance variables, also known as fields, can be accessed by dereferencing a variable 
that stores a reference to the object. The dereferencing operator is the period (.). 
For example, to obtain the title of a book stored in a variable book, we do: 

String title = book.title; 

When discussing software design, it is good to avoid subconsciously using the 
terms class and object interchangeably. Objects and classes are different concepts. 
A class is a compile-time entity that does not exist in running code. Conversely, 
objects are run-time entities that do not have any representation in program source 
code.
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A.3 Static Fields 

Java allows the declaration of static fields: 

class Book { 
static int MIN_PAGES = 50; 
String title; 
String author; 
int year; 

} 

The effect of declaring a field static means that the field is not associated with 
any object. Rather, a single copy of the field is created when the corresponding class 
is loaded by the Java virtual machine, and the field exists for the duration of the 
program’s execution. Access to static fields can be restricted to only the code of the 
class in which it is declared using the access modifier private. If declared to be 
public, a static field can be accessed by any code in the application, in which case 
it effectively constitutes a global variable. Because it is generally a bad practice to 
modify globally-accessible data, global variables are best defined as constants, that 
is, values not meant to be changed. Globally-accessible constants are declared with 
the modifiers public, static, and final, and typically named using uppercase 
letters (see Appendix B). 

class Book { 
public static final int MIN_PAGES = 50; 
/* ... */ 

} 

Static fields are accessed in classes other than the class that declares them by 
prefixing their name with the name of their declaring class, followed by a period. 
For example: 

int minNumberOfPages = Book.MIN_PAGES; 

A.4 Methods 

In Java and other object-oriented programming languages, a method is the abstrac-
tion for a piece of computation. A method definition includes a return type, a name, 
a (possibly empty) list of parameters, a (possibly empty) list of exceptions that can 
be thrown by the method, and a method body. The return type can be replaced by 
the keyword void to indicate that the method does not return a value. The method 
body comprises the statements that form the implementation of the method. 

Methods correspond to procedures in procedural languages and functions in 
functional languages. Java supports two main categories of methods: static methods 
and instance methods. Static methods are essentially procedures, or “non-object-
oriented” methods. Although they are declared in a class for reasons discussed in 
Chapter 2, they are not automatically related to any object of the class and must
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explicitly list all their parameters in their signature. Method abs(int), declared in 
the library class java.lang.Math, is a typical example of a static method. It takes 
an integer as an input and returns an integer that is the absolute value of the input 
number: no object is involved in this computation. Static methods are declared with 
the static modifier: 

static int abs(int a) { /* ... */ } 

and called by prefixing the name of the method with the name of the class that 
declares the method, for example: 

int absolute = Math.abs(-4); 

Another example of a static method would be a method getTitle(Book book) 
that returns the title of a book. Because this is a static method, it requires all neces-
sary data to be provided as input: 

class Book { 
String title; 
/* ... */ 
static String getTitle(Book book) { 

return book.title; 
} 

} 

In contrast, instance methods are methods intended to operate on a given instance 
of a class. For this reason, instance methods have an implicit parameter of the same 
type as the type of the class they are declared in. For example, because method 
getTitle(Book) operates on an instance of class Book, it makes more sense to 
declare it as an instance method of class Book. In this case, the parameter book 
becomes implicit: it is not declared in the method’s list of parameters, and its cor-
responding value becomes accessible inside the body of the method in a special 
variable called this. The code for getTitle written as an instance method is thus: 

class Book { 
String title; 
/* ... */ 
String getTitle() { 

return this.title; 
} 

} 

An instance method gets invoked by dereferencing a variable that stores a refer-
ence to an object. The result of the process is that the object referenced becomes the 
implicit argument to the instance method. In the statement: 

Book book = ...; 
String title = book.getTitle(); 

the object referenced by variable book becomes bound to the this pseudo-variable 
within the body of getTitle().
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A.5 Packages and Importing 

Compilation units (i.e., Java code files) that declare types such as classes are orga-
nized into packages. Types declared to be in one package can be referenced from 
code in a different package using their fully-qualified name. A fully-qualified name 
consists of the name of the type in the package prefixed by the package name. For 
example, class Random of package java.util is a pseudo-random number gener-
ator. Its fully-qualified name is java.util.Random. Declaring a variable using a 
fully-qualified name can be rather verbose: 

java.util.Random randomNumberGenerator = new java.util.Random(); 

For this reason, it is possible to import types from another package using the import 
statement at the top of a Java source code file: 

import java.util.Random; 

This makes it possible to refer to the imported type using its simple name (here 
Random) instead of the fully-qualified name. In Java, the import statement is only 
a mechanism to avoid having to refer to various program elements using fully-
qualified names. In contrast to other languages, it does not have the effect of making 
libraries available that were not already available through their fully-qualified name. 

In addition to importing types, Java also makes it possible to import static 
fields and methods. For example, instead of referring to the abs method of class 
java.util.Math as Math.abs, we can statically import it: 

import static java.lang.Math.abs; 

and then just refer to abs in the code: 

int absolute = abs(-4); 

In the code fragments in this book, all types referenced in the code are assumed 
to be imported. When necessary, the surrounding text will clarify the source of the 
imported type. 

A.6 Generic Types 

A type definition can depend on another type. For example, we can consider the 
following type OptionalString, which may hold a String (the concept of the 
optional type is covered in more detail in Section 4.4): 

public class OptionalString { 
String object = null; 

OptionalString(String object) { 
this.object = object; 

}



278 A Essential Java Programming Concepts

boolean isPresent() { 
return object != null; 

} 

String get() { 
return object; 

} 
} 

A class such as this one could, in principle, be used to wrap any other kind of 
reference type. For this reason, it is useful to be able to parameterize some of the 
types that a class depends on. This concept is supported in Java through generic 
types. Generic types are type declarations that include one or more type parameters. 
Type parameters are specified in angle brackets after the type name. In the declara-
tion of a type, a type parameter acts as a placeholder for an actual type, which will 
be supplied when the generic type is used. Class OptionalString can be rewritten 
to work with any reference type by parameterizing the type of the object it holds: 

class Optional<T> { 
T object = null; 

Optional(T object) { 
this.object = object; 

} 

boolean isPresent() { 
return object != null; 

} 

T get() { 
return object; 

} 
} 

In the above code, the letter T does not represent an actual type, but a parameter (i.e., 
a placeholder) that is replaced by the actual type when the generic type is used: 

Optional<String> myString = new Optional<>(); 

The type declaration for variable myString includes a type argument String. The 
effect of this type parameter invocation is to replace the type parameter T with 
String everywhere in the declaration of Optional<T>. In the corresponding con-
structor call, the argument of the type parameter can be inferred, so an empty set of 
angle brackets (<>) need only be provided. This empty set of angle brackets is also 
called the diamond operator. 

Generic types are used extensively in the library implementations of abstract data 
types (see Section A.7). Other features that involve generic types include generic 
methods, type bounds, and type wildcards. This book does not delve into the design 
of generic types because it is a relatively specialized topic. The content occasionally 
uses generic types to elaborate design solutions, but to the extent possible, these are 
limited to the invocation of the generic types.
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A.7 Collection Classes 

Many of the examples in this book use library implementations of abstract data types 
(list, set, etc.). In Java, this set of classes is commonly referred to as the Collections 
framework, and located in the package java.util. Collection classes are generic 
(see Section A.6). This means that the type of the elements held in a collection, 
such as an ArrayList, is a parameter that is provided when the collection type is 
used. For example, the following statement declares and instantiates a list of String 
instances: 

ArrayList<String> myStrings = new ArrayList<>(); 

A comprehensive knowledge of the Collections frameworks is not necessary to 
appreciate the material in the book. However, at a minimum, readers should be fa-
miliar with the interface types List<T>, Set<T>, and Map<T> as well as their com-
monly used implementations ArrayList<T>, HashSet<T>, and HashMap<T>. 

A.8 Exception Handling 

Java provides a way for methods to indicate when they cannot complete normally 
through an exception handling mechanism. Exceptions are objects of a type that is 
a subtype of Exception. To throw an exception, an exception object must be first 
created, and then thrown using the throw keyword: 

void setMonth(int month) { 
if (month < 1 || month > 12) 

throw new InvalidDateException(); 
} 

Throwing an exception causes the control flow of the executing code to jump to 
a point in the code where the exception can be handled, unwinding the call stack as 
it goes. To handle an exception, it is necessary to declare a try block with one or 
more catch clauses. A catch clauses declares a variable of an exception type. An 
exception raised in or propagated into a try block is caught by the block’s catch 
clause if the type of the exception can be legally assigned to the exception variable. 
In this example: 

try { 
calendar.setMonth(13); 

} catch (InvalidDateException e) { 
System.out.println(e.getMessage()); 

} 

the call to setMonth throws an exception of type InvalidDateException which is 
immediately caught by the catch clause and bound to the variable e, which can then 
be dereferenced, for example to retrieve the message of the exception. If the type of 
the catch clause had been something else (for example NumberFormatException),
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the exception would not have been caught, and would have propagated to the previ-
ous enclosing try block in the control flow. 

Exceptions in Java can be checked or unchecked. Exceptions are checked if they 
inherit from class Exception but not from RuntimeException. If a method throws 
a checked exception, it must declare it in a throws clause in the method’s signature, 
e.g.: 

void readFile(String name) throws IOException { 
/* ... */ 
throws new IOException("Cannot read file"); 
/* ... */ 

} 

Methods that call a method that declares to throw a checked exception must either 
explicitly catch the exception, or re-declare it in their own throws clause. These 
requirements do not apply to unchecked exceptions.



Appendix B 
Coding Conventions 

Coding conventions are guidelines for organizing the presentation of source code. 
Aspects that fall under coding conventions include naming conventions, indenta-
tion, use of spaces, and line length. Following a set of coding conventions can help 
improve the readability of the code and prevent some types of errors. Coding con-
ventions can vary from one organization to another because of cultural or practical 
reasons (each convention has its advantages and disadvantages). 

In this appendix, I highlight the coding conventions used in this book and in the 
sample applications (see Appendix C). For additional discussion of coding conven-
tions and why they matter, see Chapters 2, 4, and 5 of the book Clean Code: A 
Handbook of Agile Software Craftmanship by Robert C. Martin [8]. 

Medial Capitals for Identifier Names 

As is usual in Java, the identifier names use medial capitalization, also known as 
camel case. With medial capitalization, words in a phrase are in lower case and each 
new word in the phrase starts with an uppercase letter. Type names start with an up-
percase letter (e.g., ArrayList, HashMap) and method names start with a lowercase 
letter (e.g., indexOf, replaceAll). Instance variables (i.e., fields), class variables 
(i.e., static fields), and local variable names also follow medial capitalization, but 
with a special convention for fields (see below). 

All Capitals for Constants 

Constants (i.e., fields declared static and final) are named in all uppercase letters, 
with an underscore separating words (e.g., WINDOW_SIZE).
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Variable Name Prefixes 

Field names are prefixed with a lowercase a (for attribute, a synonym for field), e.g., 
aData. Method parameter types are camel-cased and prefixed with a lowercase p 
(for parameter), e.g., (pData). Local variables are camel-cased and start with a low-
ercase letter, without a prefix (e.g., data). The only exception to these guidelines is 
for the names of the parameters in lambda expressions and records (see Section 2.3), 
which are named like local variables. The advantages of this convention are: 

• Within a code block, it is always possible to determine what type of variable a 
name refers to without having to navigate to the declaration of this variable. In 
a book that makes extensive use of partial code fragments, the prefixes are also 
helpful for providing the necessary context for a name; 

• The convention eliminates the risk of having a local variable hide a field by 
reusing the same name; 

• The convention eliminates the necessity to use the this keyword to disam-
biguate a field that has the same name as a method or constructor parameter 
(e.g., this.data = data;). 

Code Blocks, Braces, and Indentation 

Code blocks are defined with braces. There are two families of conventions for 
structuring code blocks in Java, based on where the opening brace is located. A first 
style is to locate the opening brace on the same line as its corresponding declaration 
or statement: 

String getTitle() { 
return title; 

} 

An alternative style is to position the braces on their own line such that corre-
sponding braces are vertically aligned: 

String getTitle() 
{ 

return title; 
} 

In either case, code statements within a block are indented by one unit (typically 
four spaces or one tab character) with respect to the statement or declaration that 
introduces the block. In the book, I use the same-line variant because it is more 
compact and thus amenable to presentation in a book. 

Code Comments 

Classes and interfaces should include a Javadoc [10] header comment, along with 
the methods they declare. In-line comments are kept to a minimum.
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Ellipses and Adaptations 

Code in the sample applications follows these coding conventions strictly. However, 
for code fragments in the chapter content I make various concessions for concise-
ness. 

In particular, code fragments should not be assumed to constitute complete im-
plementations. In most cases, I silently elide parts of the code not essential to the 
discussion. When there is a risk of ambiguity, I use an ellipsis (...) to indicate eli-
sion, either in a block of code or in the parameter list of a method signature or the 
argument list of a method call. When space permits, I put the ellipsis in a comment 
block (/* ... */) to facilitate the use of the code in a programming environment. 

I also use an indentation tighter than four characters. For one-line methods, I may 
also inline the statement and both curly braces. If necessary to avoid a page break 
in a code fragment, I place the body of the method on the same line as its signature. 
I will also typically not include the comments. The code below is a version of the 
toString() method above with the three adaptations discussed: 

public String toString() { return String.format(...); }
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Sample Applications 

Reading and trying to understand existing code is an essential part of learning soft-
ware design. The two software projects described below provide sample code in the 
form of complete working applications. 

Both applications were developed following the principles and techniques pre-
sented in this book. Throughout the chapters, brief sections titled Code Exploration 
illustrate how some of the material presented in the chapter is applied in practice. To 
maximally benefit from the sample applications, I recommend downloading a local 
copy of the code. The Code Exploration sections are indexed with the name of the 
application followed by the class where the relevant code can be found. The intent 
for this structure is to facilitate diving into code with a minimum of effort by using 
the open file shortcut key combination available in most development environments. 

The two applications offer distinct levels of challenge in code understanding. 
The complete source code and installation and usage instructions can be found on 
GitHub at the URLs indicated below. 

Solitaire 

The first sample application, Solitaire, implements the card game of the same name. 
This application serves as the context for many of the running examples in the book. 
It realizes some non-trivial requirements while remaining of overall manageable 
complexity. It should thus be possible to understand the general architecture of this 
project and many of the detailed design and implementation decisions after a few 
months of study. For some of the discussions in the chapters, knowledge of the game 
terminology will be useful. Figure C.1 illustrates the layout of a game of Solitaire 
in progress and includes overlays to indicate important terms. At the top-left is the 
deck of face-down cards. A user draws a card from the deck and places it face up 
in the discard pile. The four piles at the top right of the layout are the foundation 
piles (these can be empty). Finally, the seven piles of cards that fan downwards are 
jointly called the tableau (tableau piles can also be empty). The code discussed in 
the book is consistent with Release 1.3. 

https://github.com/prmr/Solitaire
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Fig. C.1 Domain terminology for the Solitaire card game 

JetUML 

The second application, JetUML, is the interactive tool used to create all of the UML 
diagrams in this book. Although still modest in size compared to many software 
applications, it can be considered real production code and its design involves some 
decisions that go beyond the material covered in the book. The code discussed is 
consistent with Release 3.9. 

https://github.com/prmr/JetUML
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