

Core Java

Volume I: Fundamentals

Fourteenth Edition

Cay S. Horstmann

.

Cover image: emotionPicture/stock.adobe.com
Figure 1.1: Sourceforge
Figures 2.2, 3.2-3.5, 4.9, 5.4, 7.2, 10.5, 10.6, 11.1: Oracle Corporation
Figures 2.3-2.5, 12.2: Eclipse Foundation AISBL
Figure 4.2: Violet UML Editor

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

Please contact us with concerns about any potential bias at pearson.com/en-us/report-bias.html.

Author websites are not owned or managed by Pearson.

Visit us on the Web: informit.com

Library of Congress Control Number: 2025945021

Copyright © 2026 Pearson Education, Inc.
Hoboken, New Jersey

Portions copyright © 1996-2013 Oracle and/or its affiliates. All Rights Reserved.

Oracle America Inc. does not make any representations or warranties as to the accuracy, adequacy or
completeness of any information contained in this work, and is not responsible for any errors or
omissions.

The views expressed in this book are those of the author and do not necessarily reflect the views of
Oracle.

Microsoft and/or its respective suppliers make no representations about the suitability of the
information contained in the documents and related graphics published as part of the services for any
purpose. All such documents and related graphics are provided "as is" without warranty of any kind.
Microsoft and/or its respective suppliers hereby disclaim all warranties and conditions with regard to
this information, including all warranties and conditions of merchantability, whether express, implied
or statutory, fitness for a particular purpose, title and non-infringement. In no event shall Microsoft
and/or its respective suppliers be liable for any special, indirect or consequential damages or any
damages whatsoever resulting from loss of use, data or profits, whether in an action of contract,
negligence or other tortious action, arising out of or in connection with the use or performance of
information available from the services. The documents and related graphics contained herein could
include technical inaccuracies or typographical errors. Changes are periodically added to the
information herein. Microsoft and/or its respective suppliers may make improvements and/or changes
in the product(s) and/or the program(s) described herein at any time. Partial screen shots may be
viewed in full within the software version specified.

Microsoft® Windows®, and Microsoft Office® are registered trademarks of the Microsoft
Corporation in the U.S.A. and other countries. This book is not sponsored or endorsed by or affiliated
with the Microsoft Corporation.

All rights reserved. This publication is protected by copyright, and permission must be obtained from
the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in
any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, request forms and the appropriate contacts within the Pearson
Education Global Rights & Permissions Department, please visit pearson.com/en-us/global-
permission-granting.html.

ISBN-13: 978-0-13-555857-7
ISBN-10: 0-13-555857-3

Contents

Preface

Acknowledgments

1. An Introduction to Java

1.1. Java as a Programming Platform

1.2. The Java “White Paper” Buzzwords

1.2.1. Simple

1.2.2. Object-Oriented

1.2.3. Distributed

1.2.4. Robust

1.2.5. Secure

1.2.6. Architecture-Neutral

1.2.7. Portable

1.2.8. Interpreted

1.2.9. High-Performance

1.2.10. Multithreaded

1.2.11. Dynamic

1.3. Java Applets and the Internet

1.4. A Short History of Java

1.5. Common Misconceptions about Java

2. The Java Programming Environment

2.1. Installing the Java Development Kit

2.1.1. Downloading the JDK

2.1.2. Setting Up the JDK

2.1.3. Source Files and Documentation

2.2. Using the Command-Line Tools

2.3. Using an Integrated Development Environment

2.4. JShell

3. Fundamental Programming Structures in Java

3.1. A Simple Java Program

3.2. Comments

3.3. Data Types

3.3.1. Integer Types

3.3.2. Floating-Point Types

3.3.3. The char Type

3.3.4. Unicode and the char Type

3.3.5. The boolean Type

3.4. Variables and Constants

3.4.1. Declaring Variables

3.4.2. Initializing Variables

3.4.3. Constants

3.4.4. Enumerated Types

3.5. Operators

3.5.1. Arithmetic Operators

3.5.2. Mathematical Functions and Constants

3.5.3. Conversions between Numeric Types

3.5.4. Casts

3.5.5. Assignment

3.5.6. Increment and Decrement Operators

3.5.7. Relational and boolean Operators

3.5.8. The Conditional Operator

3.5.9. Switch Expressions

3.5.10. Bitwise Operators

3.5.11. Parentheses and Operator Hierarchy

3.6. Strings

3.6.1. Concatenation

3.6.2. Static and Instance Methods

3.6.3. Indexes and Substrings

3.6.4. Strings Are Immutable

3.6.5. Testing Strings for Equality

3.6.6. Empty and Null Strings

3.6.7. The String API

3.6.8. Reading the Online API Documentation

3.6.9. Building Strings

3.6.10. Text Blocks

3.7. Input and Output

3.7.1. Reading Input

3.7.2. Formatting Output

3.8. Control Flow

3.8.1. Block Scope

3.8.2. Conditional Statements

3.8.3. Loops

3.8.4. Determinate Loops

3.8.5. Multiple Selections with switch

3.8.6. Statements That Break Control Flow

3.9. Big Numbers

3.10. Arrays

3.10.1. Declaring Arrays

3.10.2. Accessing Array Elements

3.10.3. The “for each” Loop

3.10.4. Array Copying

3.10.5. Command-Line Arguments

3.10.6. Array Sorting

3.10.7. Multidimensional Arrays

3.10.8. Ragged Arrays

4. Objects and Classes

4.1. Introduction to Object-Oriented Programming

4.1.1. Classes

4.1.2. Objects

4.1.3. Identifying Classes

4.1.4. Relationships between Classes

4.2. Using Predefined Classes

4.2.1. Objects and Object Variables

4.2.2. The LocalDate Class of the Java Library

4.2.3. Mutator and Accessor Methods

4.3. Defining Your Own Classes

4.3.1. An Employee Class

4.3.2. Dissecting the Employee Class

4.3.3. First Steps with Constructors

4.3.4. Declaring Local Variables with var

4.3.5. Working with null References

4.3.6. Implicit and Explicit Parameters

4.3.7. Benefits of Encapsulation

4.3.8. Class-Based Access Privileges

4.3.9. Private Methods

4.3.10. Final Instance Fields

4.4. Static Fields and Methods

4.4.1. Static Fields

4.4.2. Static Constants

4.4.3. Static Methods

4.4.4. Factory Methods

4.4.5. The main Method

4.5. Method Parameters

4.6. Object Construction

4.6.1. Overloading

4.6.2. Default Field Initialization

4.6.3. The Constructor with No Arguments

4.6.4. Explicit Field Initialization

4.6.5. Parameter Names

4.6.6. Calling Another Constructor

4.6.7. Initialization Blocks

4.6.8. Static Initialization

4.7. Records

4.7.1. The Record Concept

4.7.2. Constructors: Canonical, Compact, and Custom

4.8. Packages

4.8.1. Encapsulation

4.8.2. Package Names

4.8.3. Class Importation

4.8.4. Module Imports

4.8.5. Static Imports

4.8.6. Addition of a Class into a Package

4.8.7. Compiling with Packages

4.8.8. Package Access

4.8.9. The Class Path

4.8.10. Setting the Class Path

4.9. JAR Files

4.9.1. Creating JAR files

4.9.2. The Manifest

4.9.3. Executable JAR Files

4.9.4. Multi-Release JAR Files

4.9.5. A Note about Command-Line Options

4.10. Documentation Comments

4.10.1. Comment Insertion

4.10.2. Class Comments

4.10.3. Method Comments

4.10.4. Field Comments

4.10.5. Package Comments

4.10.6. HTML Markup

4.10.7. Links

4.10.8. General Comments

4.10.9. Code Snippets

4.10.10. Comment Extraction

4.11. Class Design Hints

5. Inheritance

5.1. Classes, Superclasses, and Subclasses

5.1.1. Defining Subclasses

5.1.2. Overriding Methods

5.1.3. Subclass Constructors

5.1.4. Inheritance Hierarchies

5.1.5. Polymorphism

5.1.6. Understanding Method Calls

5.1.7. Preventing Inheritance: Final Classes and Methods

5.1.8. Casting

5.1.9. Pattern Matching for instanceof

5.1.10. Protected Access

5.2. Object: The Cosmic Superclass

5.2.1. Variables of Type Object

5.2.2. The equals Method

5.2.3. Equality Testing and Inheritance

5.2.4. The hashCode Method

5.2.5. The toString Method

5.3. Generic Array Lists

5.3.1. Declaring Array Lists

5.3.2. Accessing Array List Elements

5.3.3. Compatibility between Typed and Raw Array Lists

5.4. Object Wrappers and Autoboxing

5.5. Methods with a Variable Number of Arguments

5.6. Abstract Classes

5.7. Enumeration Classes

5.8. Sealed Classes

5.9. Pattern Matching

5.9.1. Null Handling

5.9.2. Guards

5.9.3. Exhaustiveness

5.9.4. Dominance

5.9.5. Patterns and Constants

5.9.6. Variable Scope and Fallthrough

5.10. Reflection

5.10.1. The Class Class

5.10.2. A Primer on Declaring Exceptions

5.10.3. Resources

5.10.4. Using Reflection to Analyze the Capabilities of Classes

5.10.5. Using Reflection to Analyze Objects at Runtime

5.10.6. Using Reflection to Write Generic Array Code

5.10.7. Invoking Arbitrary Methods and Constructors

5.11. Design Hints for Inheritance

6. Interfaces, Lambda Expressions, and Inner Classes

6.1. Interfaces

6.1.1. The Interface Concept

6.1.2. Properties of Interfaces

6.1.3. Interfaces and Abstract Classes

6.1.4. Static and Private Methods

6.1.5. Default Methods

6.1.6. Resolving Default Method Conflicts

6.1.7. Interfaces and Callbacks

6.1.8. The Comparator Interface

6.1.9. Object Cloning

6.2. Lambda Expressions

6.2.1. Why Lambdas?

6.2.2. The Syntax of Lambda Expressions

6.2.3. Functional Interfaces

6.2.4. Function Types

6.2.5. Method References

6.2.6. Constructor References

6.2.7. Variable Scope

6.2.8. Lambda Expressions and this

6.2.9. Processing Lambda Expressions

6.2.10. Creating Comparators

6.3. Inner Classes

6.3.1. Use of an Inner Class to Access Object State

6.3.2. Special Syntax Rules for Inner Classes

6.3.3. Are Inner Classes Useful? Actually Necessary? Secure?

6.3.4. Local Inner Classes

6.3.5. Accessing Variables from Outer Methods

6.3.6. Anonymous Inner Classes

6.3.7. Static Classes

6.3.8. Nested Records

6.4. Service Loaders

6.5. Proxies

6.5.1. When to Use Proxies

6.5.2. Creating Proxy Objects

6.5.3. Properties of Proxy Classes

7. Exceptions, Assertions, and Logging

7.1. Dealing with Errors

7.1.1. The Classification of Exceptions

7.1.2. Declaring Checked Exceptions

7.1.3. How to Throw an Exception

7.1.4. Creating Exception Classes

7.2. Catching Exceptions

7.2.1. Catching an Exception

7.2.2. Catching Multiple Exceptions

7.2.3. Rethrowing and Chaining Exceptions

7.2.4. The finally Clause

7.2.5. The try-with-Resources Statement

7.2.6. Analyzing Stack Trace Elements

7.3. Tips for Using Exceptions

7.4. Using Assertions

7.4.1. The Assertion Concept

7.4.2. Assertion Enabling and Disabling

7.4.3. Using Assertions for Parameter Checking

7.4.4. Using Assertions for Documenting Assumptions

7.5. Logging

7.5.1. Should You Use the Java Logging Framework?

7.5.2. Logging 101

7.5.3. The Platform Logging API

7.5.4. Logging Configuration

7.5.5. Log Handlers

7.5.6. Filters and Formatters

7.5.7. A Logging Recipe

7.6. Debugging Tips

8. Generic Programming

8.1. Type Parameters

8.1.1. The Advantage of Generic Programming

8.1.2. Who Wants to Be a Generic Programmer?

8.1.3. Defining a Simple Generic Class

8.1.4. Generic Methods

8.1.5. Bounds for Type Variables

8.1.6. Generic Exceptions

8.2. Generic Code and the Virtual Machine

8.2.1. Type Erasure

8.2.2. Translating Generic Expressions

8.2.3. Translating Generic Methods

8.2.4. Calling Legacy Code

8.3. Inheritance Rules for Generic Types

8.4. Wildcard Types

8.4.1. The Wildcard Concept

8.4.2. Supertype Bounds for Wildcards

8.4.3. Unbounded Wildcards

8.4.4. Wildcard Capture

8.5. Restrictions and Limitations

8.5.1. Type Parameters Cannot Be Instantiated with Primitive

Types

8.5.2. Casts Only Work with Raw Types

8.5.3. You Cannot Create Arrays of Parameterized Types

8.5.4. Varargs Warnings

8.5.5. Generic Varargs Do Not Spread Primitive Arrays

8.5.6. You Cannot Instantiate Type Variables

8.5.7. You Cannot Construct a Generic Array

8.5.8. Type Variables Are Not Valid in Static Contexts of Generic

Classes

8.5.9. You Can Defeat Checked Exception Checking

8.5.10. Beware of Clashes after Erasure

8.5.11. Type Inference in Generic Record Patterns is Limited

8.6. Reflection and Generics

8.6.1. The Generic Class Class

8.6.2. Using Class<T> Parameters for Type Matching

8.6.3. Generic Type Information in the Virtual Machine

8.6.4. Type Literals

9. Collections

9.1. The Java Collections Framework

9.1.1. Separating Collection Interfaces and Implementation

9.1.2. The Collection Interface

9.1.3. Iterators

9.1.4. Generic Utility Methods

9.2. Interfaces in the Collections Framework

9.3. Concrete Collections

9.3.1. Linked Lists

9.3.2. Array Lists

9.3.3. Hash Sets

9.3.4. Tree Sets

9.3.5. Queues and Deques

9.3.6. Priority Queues

9.4. Maps

9.4.1. Basic Map Operations

9.4.2. Updating Map Entries

9.4.3. Map Views

9.4.4. Weak Hash Maps

9.4.5. Linked Hash Sets and Maps

9.4.6. Enumeration Sets and Maps

9.4.7. Identity Hash Maps

9.5. Copies and Views

9.5.1. Small Collections

9.5.2. Unmodifiable Copies and Views

9.5.3. Subranges

9.5.4. Sets From Boolean-Valued Maps

9.5.5. Reversed Views

9.5.6. Checked Views

9.5.7. Synchronized Views

9.5.8. A Note on Optional Operations

9.6. Algorithms

9.6.1. Why Generic Algorithms?

9.6.2. Sorting and Shuffling

9.6.3. Binary Search

9.6.4. Simple Algorithms

9.6.5. Bulk Operations

9.6.6. Converting between Collections and Arrays

9.6.7. Writing Your Own Algorithms

9.7. Legacy Collections

9.7.1. The Hashtable Class

9.7.2. Enumerations

9.7.3. Property Maps

9.7.4. System Properties

9.7.5. Stacks

9.7.6. Bit Sets

10. Concurrency

10.1. Running Threads

10.2. Thread States

10.2.1. New Threads

10.2.2. Runnable Threads

10.2.3. Blocked and Waiting Threads

10.2.4. Terminated Threads

10.3. Thread Properties

10.3.1. Virtual Threads

10.3.2. Thread Interruption

10.3.3. Daemon Threads

10.3.4. Thread Names and Ids

10.3.5. Handlers for Uncaught Exceptions

10.3.6. Thread Priorities

10.3.7. Thread Factories and Builders

10.4. Coordinating Tasks

10.4.1. Callables and Futures

10.4.2. Executor Services

10.4.3. Invoking a Group of Tasks

10.4.4. Thread-Local Variables

10.4.5. Scoped Values

10.4.6. The Fork-Join Framework

10.5. Synchronization

10.5.1. An Example of a Race Condition

10.5.2. The Race Condition Explained

10.5.3. Lock Objects

10.5.4. Condition Objects

10.5.5. Deadlocks

10.5.6. The synchronized Keyword

10.5.7. Synchronized Blocks

10.5.8. The Monitor Concept

10.5.9. Volatile Fields

10.5.10. Final Fields

10.5.11. Atomics

10.5.12. On-Demand Initialization

10.5.13. Safe Publication

10.5.14. Sharing with Thread-Local Variables

10.6. Thread-Safe Collections

10.6.1. Blocking Queues

10.6.2. Efficient Maps, Sets, and Queues

10.6.3. Atomic Update of Map Entries

10.6.4. Bulk Operations on Concurrent Hash Maps

10.6.5. Concurrent Set Views

10.6.6. Copy on Write Arrays

10.6.7. Parallel Array Algorithms

10.6.8. Older Thread-Safe Collections

10.7. Asynchronous Computations

10.7.1. Completable Futures

10.7.2. Composing Completable Futures

10.7.3. Long-Running Tasks in User Interface Callbacks

10.8. Processes

10.8.1. Building a Process

10.8.2. Running a Process

10.8.3. Process Handles

11. Annotations

11.1. Using Annotations

11.1.1. Annotation Elements

11.1.2. Multiple and Repeated Annotations

11.1.3. Annotating Declarations

11.1.4. Annotating Type Uses

11.1.5. Receiver Parameters

11.2. Defining Annotations

11.3. Annotations in the Java API

11.3.1. Annotations for Compilation

11.3.2. Meta-Annotations

11.4. Processing Annotations at Runtime

11.5. Source-Level Annotation Processing

11.5.1. Annotation Processors

11.5.2. The Language Model API

11.5.3. Using Annotations to Generate Source Code

11.6. Bytecode Engineering

11.6.1. Modifying Class Files

11.6.2. Modifying Bytecodes at Load Time

12. The Java Platform Module System

12.1. The Module Concept

12.2. Naming Modules

12.3. The Modular “Hello, World!” Program

12.4. Requiring Modules

12.5. Exporting Packages

12.6. Modular JARs

12.7. Modules and Reflective Access

12.8. Automatic Modules

12.9. The Unnamed Module

12.10. Command-Line Flags for Migration

12.11. Transitive and Static Requirements

12.12. Importing Modules

12.13. Qualified Exporting and Opening

12.14. Service Loading

12.15. Tools for Working with Modules

Appendix

Index

Preface

To the Reader

In late 1995, the Java programming language burst onto the Internet scene

and gained instant celebrity status. The promise of Java technology was that

it would become the universal glue that connects users with information

wherever it comes from—web servers, databases, information providers, or

any other imaginable source. Indeed, Java is in a unique position to fulfill

this promise. It is an extremely solidly engineered language that has gained

wide acceptance. Its built-in security and safety features are reassuring both

to programmers and to the users of Java programs. Java has built-in support

for advanced programming tasks, such as network programming, database

connectivity, and concurrency.

Since 1995, over twenty revisions of the Java Development Kit have been

released. The Application Programming Interface (API) has grown from

about a hundred to over 4,000 classes. The API now spans such diverse

areas as concurrent programming, collections, user interface construction,

database management, internationalization, security, and XML processing.

The book that you are reading right now is the first volume of the

fourteenth edition of Core Java. Each edition closely followed a release of

the Java Development Kit, and each time, I rewrote the book to take

advantage of the newest Java features. This edition has been updated to

reflect the features of Java 25.

As with the previous editions, this book still targets serious programmers

who want to put Java to work on real projects. I think of you, the reader, as

a programmer with a solid background in a programming language other

than Java. I assume that you don’t like books filled with toy examples (such

as toasters, zoo animals, or “nervous text”). You won’t find any of these in

the book. My goal is to enable you to fully understand the Java language

and library, not to give you an illusion of understanding.

In this book, you will find lots of sample code demonstrating almost every

language and library feature. The sample programs are purposefully simple

to focus on the major points, but, for the most part, they aren’t fake and they

don’t cut corners. They should make good starting points for your own

code.

I assume you are willing, even eager, to learn about all the features that the

Java language puts at your disposal. In this volume, you will find a detailed

treatment of

Object-oriented programming

Reflection and proxies

Interfaces and inner classes

Exception handling

Generic programming

The collections framework

Concurrency

Annotations

The Java platform module system

With the explosive growth of the Java class library, a one-volume treatment

of all the features of Java that serious programmers need to know is simply

not possible. Hence, the book is broken up into two volumes. This first

volume concentrates on the fundamental concepts of the Java language. The

second volume, Core Java, Volume II: Advanced Features, goes further into

the most important libraries.

For twelve editions, user interface programming was considered

fundamental, but the time has come to recognize that it is no more, and to

move it into the second volume. That volume includes detailed discussions

of these topics:

The Stream API

File processing and regular expressions

Databases

XML processing

Scripting and Compiling APIs

Internationalization

Network programming

Graphical user interface design

Graphics programming

Foreign functions and memory

When writing a book, errors and inaccuracies are inevitable. I’d very much

like to know about them. But, of course, I’d prefer to learn about each of

them only once. You will find a list of frequently asked questions and bug

fixes at https://horstmann.com/corejava. Strategically placed at the end of

the errata page (to encourage you to read through it first) is a form you can

use to report bugs and suggest improvements. Please don’t be disappointed

if I don’t answer every query or don’t get back to you immediately. I do

read all e-mails and appreciate your input to make future editions of this

book clearer and more informative.

https://horstmann.com/corejava

A Tour of This Book

Chapter 1 gives an overview of the capabilities of Java that set it apart

from other programming languages. The chapter explains what the

designers of the language set out to do and to what extent they succeeded. A

short history of Java follows, detailing how Java came into being and how it

has evolved.

In Chapter 2, you will see how to download and install the JDK and the

program examples for this book. Then I’ll guide you through compiling and

running a console application and a graphical application. You will see how

to use the plain JDK, a Java IDE, and the JShell tool.

Chapter 3 starts the discussion of the Java language. In this chapter, I cover

the basics: variables, loops, and simple functions. If you are a C or C++

programmer, this is smooth sailing because the syntax for these language

features is essentially the same as in C. If you come from a non-C

background such as Visual Basic, you will want to read this chapter

carefully.

Object-oriented programming (OOP) is now in the mainstream of

programming practice, and Java is an object-oriented programming

language. Chapter 4 introduces encapsulation, the first of two fundamental

building blocks of object orientation, and the Java language mechanism to

implement it—that is, classes and methods. In addition to the rules of the

Java language, you will also find advice on sound OOP design. Finally, I

cover the marvelous javadoc tool that formats your code comments as a set

of hyperlinked web pages. If you are familiar with C++, you can browse

through this chapter quickly. Programmers coming from a non-object-

oriented background should expect to spend some time mastering the OOP

concepts before going further with Java.

Classes and encapsulation are only one part of the OOP story, and Chapter

5 introduces the other—namely, inheritance. Inheritance lets you take an

existing class and modify it according to your needs. This is a fundamental

technique for programming in Java. The inheritance mechanism in Java is

quite similar to that in C++. Once again, C++ programmers can focus on

the differences between the languages.

Chapter 6 shows you how to use Java’s notion of an interface. Interfaces

let you go beyond the simple inheritance model of Chapter 5. Mastering

interfaces allows you to have full access to the power of Java’s completely

object-oriented approach to programming. After covering interfaces, I move

on to lambda expressions, a concise way for expressing a block of code that

can be executed at a later point in time. I then explain a useful technical

feature of Java called inner classes.

Chapter 7 discusses exception handling—Java’s robust mechanism to deal

with the fact that bad things can happen to good programs. Exceptions give

you an efficient way of separating the normal processing code from the

error handling. Of course, even after hardening your program by handling

all exceptional conditions, it still might fail to work as expected. Then the

chapter moves on to logging. In the final part of this chapter, I give you a

number of useful debugging tips.

Chapter 8 gives an overview of generic programming. Generic

programming makes your programs easier to read and safer. I show you

how to use strong typing and remove unsightly and unsafe casts, and how to

deal with the complexities that arise from the need to stay compatible with

older versions of Java.

The topic of Chapter 9 is the collections framework of the Java platform.

Whenever you want to collect multiple objects and retrieve them later, you

should use a collection that is best suited for your circumstances, instead of

just tossing the elements into an array. This chapter shows you how to take

advantage of the standard collections that are prebuilt for your use.

Chapter 10 covers concurrency, which enables you to program tasks to be

done in parallel. This is an important and exciting application of Java

technology in an era where processors have multiple cores that you want to

keep busy.

In Chapter 11, you will learn about annotations, which allow you to add

arbitrary information (sometimes called metadata) to a Java program. We

show you how annotation processors can harvest these annotations at the

source or class file level, and how annotations can be used to influence the

behavior of classes at runtime. Annotations are only useful with tools, and

we hope that our discussion will help you select useful annotation

processing tools for your needs.

In Chapter 12, you will learn about the Java Platform Module System that

facilitates an orderly evolution of the Java platform and core libraries. This

module system provides encapsulation for packages and a mechanism for

describing module requirements. You will learn the properties of modules

so that you can decide whether to use them in your own applications. Even

if you decide not to, you need to know the new rules so that you can interact

with the Java platform and other modularized libraries.

The Appendix lists the reserved words of the Java language.

Conventions

As is common in many computer books, I use monospace type to represent

computer code.

Note: Notes are tagged with “note” icons that look like this.

Tip: Tips are tagged with “tip” icons that look like this.

Caution: When there is danger ahead, I warn you with a “caution”

icon.

Preview: Preview features that are slated to become a part of the

language or API in the future are labeled with this icon.

Java comes with a large programming library, or Application Programming

Interface (API). When using an API call for the first time, I add a short

summary description at the end of the section. These descriptions are a bit

more informal but, hopefully, also a little more informative than those in the

official online API documentation. The names of interfaces are in italics,

just like in the official documentation. The number after a class, interface,

or method name is the JDK version in which the feature was introduced, as

shown in the following example:

java.lang.IO 25

println(Object obj)

Converts the object to a string and prints it on the console, followed

by a line separator.

Programs whose source code is on the book’s companion web site are

presented as listings, for instance:

Listing NotHelloWorld.java

1 void main() {

2 IO.println("We will not use 'Hello, World!'");

3 }

Sample Code

The web site for this book at https://horstmann.com/corejava contains all

sample code from the book. See Chapter 2 for more information on

installing the Java Development Kit and the sample code.

https://horstmann.com/corejava

Acknowledgments

Writing a book is always a monumental effort, and rewriting it doesn’t seem

to be much easier, especially with the continuous change in Java

technology. Making a book a reality takes many dedicated people, and it is

my great pleasure to acknowledge the contributions of the entire Core Java

team.

My thanks go to my editor, Harry Misthos, and to Julie Nahil from Pearson

for steering the book through the production process. I wrote the book using

HTML and CSS, and Prince (https://princexml.com) turned it into PDF—a

workflow that I highly recommend.

Thanks to the many readers of earlier editions who reported errors and

made lots of thoughtful suggestions for improvement. I am particularly

https://princexml.com/

grateful to the excellent reviewing team who went over the manuscript with

an amazing eye for detail and saved me from many embarrassing errors.

Reviewers of this and earlier editions include Chuck Allison (Utah Valley

University), Lance Andersen (Oracle), Gail Anderson (Anderson Software

Group), Paul Anderson (Anderson Software Group), Alan Bateman

(Oracle), Alec Beaton (IBM), Cliff Berg, Andrew Binstock (Oracle), Joshua

Bloch, David Brown, Brian Burkhalter (Oracle), Corky Cartwright, Hillmer

Chona, Frank Cohen (PushToTest), Chris Crane (devXsolution), Joe Darcy

(Oracle), Nicholas J. De Lillo (Manhattan College), Rakesh Dhoopar

(Oracle), Ahmad R. Elkomey, Hanno Embregts (Info Support), Robert

Evans (Senior Staff, The Johns Hopkins University Applied Physics Lab),

David Geary (Clarity Training), Jim Gish (Oracle), Brian Goetz (Oracle),

Angela Gordon, Dan Gordon (Electric Cloud), Rob Gordon, John Gray

(University of Hartford), Cameron Gregory (olabs.com), Andrzej Grzesik,

Marty Hall, Majid Hameed, Vincent Hardy (Adobe Systems), Dan Harkey

(San Jose State University), Steve Haines, William Higgins (IBM), Marc

Hoffmann (mtrail), Vladimir Ivanovic (PointBase), Jerry Jackson (CA

Technologies), Josh Juneau, Heinz Kabutz (The Java Specialists’

Newsletter, https://javaspecialists.eu), Stepan V. Kalinin (I-Teco/Servionica

LTD), Tim Kimmet (Walmart), John Kostaras, Jerzy Krolak, Chris Laffra,

Charlie Lai (Apple), Angelika Langer, Jeff Langr (Langr Software

Solutions), Doug Langston, Hang Lau (McGill University), Mark

Lawrence, Doug Lea (SUNY Oswego), Jason Lee (IBM), Gregory

Longshore, Bob Lynch (Lynch Associates), Michael McMahon (Oracle),

Rustam Mehmandarov, Philip Milne (consultant), Mark Morrissey (The

Oregon Graduate Institute), Maurice Naftalin, Mahesh Neelakanta (Florida

Atlantic University), José Paumard (Oracle), Hao Pham, Paul Philion,

Blake Ragsdell, Ylber Ramadani (Ryerson University), Stuart Reges

(University of Arizona), Simon Ritter (Azul Systems), Rich Rosen

https://javaspecialists.eu/

(Interactive Data Corporation), Peter Sanders (ESSI University, Nice,

France), Dr. Paul Sanghera (San Jose State University and Brooks College),

Naoto Sato (Oracle), Paul Sevinc (Teamup AG), Devang Shah (Sun

Microsystems), Yoshiki Shibata, Richard Slywczak (NASA/Glenn Research

Center), Bradley A. Smith, Steven Stelting (Oracle), Christopher Taylor,

Luke Taylor (Valtech), George Thiruvathukal, Kim Topley

(StreamingEdge), Janet Traub, Henri Tremblay, Paul Tyma (consultant),

Christian Ullenboom, Peter van der Linden, Joe Wang (Oracle), Sven

Woltmann, Burt Walsh, Dan Xu (Oracle), and John Zavgren (Oracle).

Finally, a warm thank you to my coauthor of earlier editions, Gary Cornell,

and to Greg Doench who was my editor for almost thirty years.

Cay Horstmann

Düsseldorf, Germany

September 2025

Chapter 1 ▪ An Introduction to
Java

The first release of Java in 1996 generated an incredible amount of

excitement, not just in the computer press, but in mainstream media such as

The New York Times, The Washington Post, and BusinessWeek. Java has the

distinction of being the first and only programming language that had a ten-

minute story on National Public Radio. A $100,000,000 venture capital

fund was set up solely for products using a specific computer language. I

hope you will enjoy a brief history of Java that you will find in this chapter.

1.1. Java as a Programming Platform

In the first edition of this book, my coauthor Gary Cornell and I had this to

write about Java:

“As a computer language, Java’s hype is overdone: Java is certainly a good

programming language. There is no doubt that it is one of the better

languages available to serious programmers. We think it could potentially

have been a great programming language, but it is probably too late for that.

Once a language is out in the field, the ugly reality of compatibility with

existing code sets in.”

Our editor got a lot of flack for this paragraph from someone very high up

at Sun Microsystems, the company that originally developed Java. The Java

language has a lot of nice features that we will examine in detail later in this

chapter. It has its share of warts, and some of the newer additions to the

language are not as elegant as the original features because of compatibility

requirements.

But, as we already said in the first edition, Java was never just a language.

There are lots of programming languages out there, but few of them make

much of a splash. Java is a whole platform, with a huge library, containing

lots of reusable code, and an execution environment that provides services

such as security, portability across operating systems, and automatic

garbage collection.

As a programmer, you will want a language with a pleasant syntax and

comprehensible semantics (i.e., not C++). Java fits the bill, as do dozens of

other fine languages. Some languages give you portability, garbage

collection, and the like, but they don’t have much of a library, forcing you

to roll your own if you want fancy graphics or networking or database

access. Well, Java has everything—a good language, a high-quality

execution environment, and a vast library. That combination is what makes

Java an irresistible proposition to so many programmers.

1.2. The Java “White Paper” Buzzwords

The authors of Java wrote an influential white paper that explains their

design goals and accomplishments. They also published a shorter overview

that is organized along the following 11 buzzwords:

1. Simple

2. Object-Oriented

3. Distributed

4. Robust

5. Secure

6. Architecture-Neutral

7. Portable

8. Interpreted

9. High-Performance

10. Multithreaded

11. Dynamic

In the following subsections, you will find a summary, with excerpts from

the white paper, of what the Java designers say about each buzzword,

together with a commentary based on my experiences with the current

version of Java.

Note: The white paper can be found at

https://www.oracle.com/java/technologies/language-

environment.html. You can retrieve the overview with the 11

buzzwords at https://horstmann.com/corejava/java-an-

overview/7Gosling.pdf.

1.2.1. Simple

We wanted to build a system that could be programmed easily without

a lot of esoteric training and which leveraged today’s standard

practice. So even though we found that C++ was unsuitable, we

https://www.oracle.com/java/technologies/language-environment.html
https://horstmann.com/corejava/java-an-overview/7Gosling.pdf

designed Java as closely to C++ as possible in order to make the

system more comprehensible. Java omits many rarely used, poorly

understood, confusing features of C++ that, in our experience, bring

more grief than benefit.

The syntax for Java is, indeed, a cleaned-up version of C++ syntax. There is

no need for header files, pointer arithmetic (or even a pointer syntax),

unions, operator overloading, virtual base classes, and so on. The designers

did not, however, attempt to fix all of the clumsy features of C++. For

example, the syntax of the switch statement still exists in Java. If you know

C++, you will find the transition to the Java syntax easy.

At the time Java was released, C++ was actually not the most commonly

used programming language. Many developers used Visual Basic and its

drag-and-drop programming environment. These developers did not find

Java simple. It took several years for Java development environments to

catch up. Nowadays, Java development environments are far ahead of those

for most other programming languages.

Another aspect of being simple is being small. One of the goals of Java

is to enable the construction of software that can run stand-alone on

small machines. The size of the basic interpreter and class support is

about 40K; the basic standard libraries and thread support (essentially

a self-contained microkernel) add another 175K.

This was a great achievement at the time. Of course, the library has since

grown to huge proportions. There are now separate editions with a smaller

library, suitable for embedded devices and smart cards.

1.2.2. Object-Oriented

Simply stated, object-oriented design is a programming technique that

focuses on the data—objects—and on the interfaces to those objects.

To make an analogy with carpentry, an “object-oriented” carpenter

would be mostly concerned with the chair he is building, and

secondarily with the tools used to make it; a “non-object-oriented”

carpenter would think primarily of his tools. The object-oriented

facilities of Java are essentially those of C++.

Object orientation was pretty well established when Java was developed.

The object-oriented features of Java are comparable to those of C++. The

major difference between Java and C++ lies in multiple inheritance, which

Java has replaced with a simpler concept of interfaces. Java has a richer

capacity for runtime introspection (discussed in Chapter 5) than C++.

1.2.3. Distributed

Java has an extensive library of routines for coping with TCP/IP

protocols like HTTP and FTP. Java applications can open and access

objects across the Net via URLs with the same ease as when accessing

a local file system.

Nowadays, one takes this for granted—but in 1995, connecting to a web

server from a C++ or Visual Basic program was a major undertaking.

1.2.4. Robust

Java is intended for writing programs that must be reliable in a variety

of ways. Java puts a lot of emphasis on early checking for possible

problems, later dynamic (runtime) checking, and eliminating situations

that are error-prone. . . . The single biggest difference between Java

and C/C++ is that Java has a pointer model that eliminates the

possibility of overwriting memory and corrupting data.

The Java compiler detects many problems that in other languages would

show up only at runtime. As for the second point, anyone who has spent

hours chasing memory corruption caused by a pointer bug will be very

happy with this aspect of Java.

1.2.5. Secure

Java is intended to be used in networked/distributed environments.

Toward that end, a lot of emphasis has been placed on security. Java

enables the construction of virus-free, tamper-free systems.

From the beginning, Java was designed to make certain kinds of attacks

impossible, among them:

Overrunning the runtime stack—a common attack of worms and

viruses

Corrupting memory outside its own process space

Reading or writing files without permission

Originally, the Java attitude towards downloaded code was “Bring it on!”

Untrusted code was executed in a sandbox environment where it could not

impact the host system. Users were assured that nothing bad could happen

because Java code, no matter where it came from, could never escape from

the sandbox.

However, the security model of Java is complex. Not long after the first

version of the Java Development Kit was shipped, a group of security

experts at Princeton University found subtle bugs that allowed untrusted

code to attack the host system.

Initially, security bugs were fixed quickly. Unfortunately, over time, hackers

got quite good at spotting subtle flaws in the implementation of the security

architecture. Sun, and then Oracle, had a tough time keeping up with bug

fixes.

After a number of high-profile attacks, browser vendors and Oracle became

increasingly cautious. For a time, remote code had to be digitally signed.

Nowadays, browsers no longer trust Java, and the secure delivery of Java

applications is a distant memory.

Note: Even though in hindsight, the Java security model was not as

successful as originally envisioned, Java was well ahead of its time.

A competing code delivery mechanism from Microsoft, called

ActiveX, relied on digital signatures alone for security. Clearly this

was not sufficient: As any user of Microsoft’s own products can

confirm, programs from well-known vendors do crash and create

damage.

1.2.6. Architecture-Neutral

The compiler generates an architecture-neutral object file format. The

compiled code is executable on many processors, given the presence of

the Java runtime system. The Java compiler does this by generating

bytecode instructions which have nothing to do with a particular

computer architecture. Rather, they are designed to be both easy to

interpret on any machine and easy to translate into native machine

code on the fly.

Generating code for a “virtual machine” was not a new idea at the time.

Programming languages such as Lisp, Smalltalk, and Pascal had employed

this technique for many years.

Of course, interpreting virtual machine instructions is slower than running

machine instructions at full speed. However, virtual machines have the

option of translating the most frequently executed bytecode sequences into

machine code—a process called just-in-time compilation.

Java’s virtual machine has another advantage. It increases security because

it can check the behavior of instruction sequences.

1.2.7. Portable

Unlike C and C++, there are no “implementation-dependent” aspects

of the specification. The sizes of the primitive data types are specified,

as is the behavior of arithmetic on them.

For example, an int in Java is always a 32-bit integer. In C/C++, int can

mean a 16-bit integer, a 32-bit integer, or any other size that the compiler

vendor likes. The only restriction is that the int type must have at least as

many bytes as a short int and cannot have more bytes than a long int.

Having a fixed size for number types eliminates a major porting headache.

Binary data is stored and transmitted in a fixed format, eliminating

confusion about byte ordering. Strings are saved in a standard Unicode

format.

The libraries that are a part of the system define portable interfaces.

For example, there is an abstract Window class and implementations

of it for UNIX, Windows, and the Macintosh.

The example of a Window class was perhaps poorly chosen. As anyone

who has ever tried knows, it is an effort of heroic proportions to implement

a user interface that looks good on Windows, the Macintosh, and ten flavors

of UNIX. Java 1.0 made the heroic effort, delivering a simple toolkit that

provided common user interface elements on a number of platforms.

Unfortunately, the result was a library that, with a lot of work, could give

barely acceptable results on different systems. That initial user interface

toolkit has since been replaced, and replaced again, and portability across

platforms remains an issue.

However, for everything that isn’t related to user interfaces, the Java

libraries do a great job of letting you work in a platform-independent

manner. You can work with files, regular expressions, XML, dates and

times, databases, network connections, threads, and so on, without worrying

about the underlying operating system. Not only are your programs

portable, but the Java APIs are often of higher quality than the native ones.

1.2.8. Interpreted

The Java interpreter can execute Java bytecodes directly on any

machine to which the interpreter has been ported. Since linking is a

more incremental and lightweight process, the development process

can be much more rapid and exploratory.

This was a real stretch. Anyone who has used Lisp, Smalltalk, Visual Basic,

Python, R, or Scala knows what a “rapid and exploratory” development

process is. You try out something, and you instantly see the result. For the

first 20 years of Java’s existence, development environments were not

focused on that experience. It wasn’t until Java 9 that the jshell tool

supported rapid and exploratory programming.

1.2.9. High-Performance

While the performance of interpreted bytecodes is usually more than

adequate, there are situations where higher performance is required.

The bytecodes can be translated on the fly (at runtime) into machine

code for the particular CPU the application is running on.

In the early years of Java, many users disagreed with the statement that the

performance was “more than adequate.” Today, however, the just-in-time

compilers have become so good that they are competitive with traditional

compilers and, in some cases, even outperform them because they have

more information available. For example, a just-in-time compiler can

monitor which code is executed frequently and optimize just that code for

speed. A more sophisticated optimization is the elimination (or “inlining”)

of function calls. The just-in-time compiler knows which classes have been

loaded. It can use inlining when, based upon the currently loaded collection

of classes, a particular function is never overridden, and it can undo that

optimization later if necessary.

1.2.10. Multithreaded

[The] benefits of multithreading are better interactive responsiveness

and real-time behavior.

Nowadays, we care about concurrency because Moore’s law has come to an

end. Instead of faster processors, we just get more of them, and we have to

keep them busy. Yet when you look at most programming languages, they

show a shocking disregard for this problem.

Java was well ahead of its time. It was the first mainstream language to

support concurrent programming. As you can see from the white paper, its

motivation was a little different. At the time, multicore processors were

exotic, but web programming had just started, and processors spent a lot of

time waiting for a response from the server. Concurrent programming was

needed to make sure the user interface didn’t freeze.

Concurrent programming is never easy, but Java has done a very good job

making it manageable.

1.2.11. Dynamic

In a number of ways, Java is a more dynamic language than C or

C++. It was designed to adapt to an evolving environment. Libraries

can freely add new methods and instance variables without any effect

on their clients. In Java, finding out runtime type information is

straightforward.

This is an important feature in situations where code needs to be added to a

running program. A prime example is code that is downloaded from the

Internet to run in a browser. In C or C++, this is indeed a major challenge,

but the Java designers were well aware of dynamic languages that made it

easy to evolve a running program. Their achievement was to bring this

feature to a mainstream programming language.

Note: Shortly after the initial success of Java, Microsoft released a

product called J++ with a programming language and virtual

machine that were almost identical to Java. This effort failed to gain

traction, and Microsoft followed through with another language

called C# that also has many similarities to Java but runs on a

different virtual machine. This book does not cover J++ or C#.

1.3. Java Applets and the Internet

The idea here is simple: Users will download Java bytecodes from the

Internet and run them on their own machines. Java programs that work on

web pages are called applets. To use an applet, you only need a Java-

enabled web browser, which will execute the bytecodes for you. You need

not install any software. You get the latest version of the program whenever

you visit the web page containing the applet. Most importantly, thanks to

the security of the virtual machine, you never need to worry about attacks

from hostile code.

Inserting an applet into a web page works much like embedding an image.

The applet becomes a part of the page, and the text flows around the space

used for the applet. The point is, this image is alive. It reacts to user

commands, changes its appearance, and exchanges data between the

computer presenting the applet and the computer serving it.

Figure 1.1 shows the Jmol applet that displays molecular structures. By

using the mouse, you can rotate and zoom each molecule to better

understand its structure. At the time that applets were invented, this kind of

direct manipulation was not achievable with web pages—there was only

rudimentary JavaScript and no HTML canvas.

Figure 1.1: The Jmol applet

When applets first appeared, they created a huge amount of excitement.

Many people believe that the lure of applets was responsible for the

astonishing popularity of Java. However, the initial excitement soon turned

into frustration. Various versions of the Netscape and Internet Explorer

browsers ran different versions of Java, some of which were seriously

outdated. This sorry situation made it increasingly difficult to develop

applets that took advantage of the most current Java version. Instead,

Adobe’s Flash technology became popular for achieving dynamic effects in

the browser. Later, when Java was dogged by serious security issues,

browsers dropped applet support altogether. Of course, Flash fared no

better.

1.4. A Short History of Java

This section gives a short history of Java’s evolution. It is based on various

published sources (most importantly an interview with Java’s creators in the

July 1995 issue of SunWorld’s online magazine).

Java goes back to 1991, when a group of Sun engineers, led by Patrick

Naughton and James Gosling (a Sun Fellow and an all-around computer

wizard), wanted to design a small computer language that could be used for

consumer devices like cable TV switchboxes. Since these devices do not

have a lot of power or memory, the language had to be small and generate

very tight code. Also, as different manufacturers may choose different

central processing units (CPUs), it was important that the language not be

tied to any single architecture. The project was code-named “Green.”

The requirements for small, tight, and platform-neutral code led the team to

design a portable language that generated intermediate code for a virtual

machine.

The Sun people came from a UNIX background, so they based their

language on C++ rather than Lisp, Smalltalk, or Pascal. But, as Gosling

says in the interview, “All along, the language was a tool, not the end.”

Gosling decided to call his language “Oak” (presumably because he liked

the look of an oak tree that was right outside his window at Sun). The

people at Sun later realized that Oak was the name of an existing computer

language, so they changed the name to Java. This turned out to be an

inspired choice.

In 1992, the Green project delivered its first product, called “*7.” It was an

extremely intelligent remote control. Unfortunately, no one was interested

in producing this at Sun, and the Green people had to find other ways to

market their technology. However, none of the standard consumer

electronics companies were interested either. The group then bid on a

project to design a cable TV box that could deal with emerging cable

services such as video-on-demand. They did not get the contract.

(Amusingly, the company that did was led by the same Jim Clark who

started Netscape—a company that did much to make Java successful.)

The Green project (with a new name of “First Person, Inc.”) spent all of

1993 and half of 1994 looking for people to buy its technology. No one was

found. (Patrick Naughton, one of the founders of the group and the person

who ended up doing most of the marketing, claims to have accumulated

300,000 air miles in trying to sell the technology.) First Person was

dissolved in 1994.

While all of this was going on at Sun, the World Wide Web part of the

Internet was growing bigger and bigger. The key to the World Wide Web

was the browser translating hypertext pages to the screen. In 1994, most

people were using Mosaic, a noncommercial web browser that came out of

the supercomputing center at the University of Illinois in 1993. (Mosaic

was partially written by Marc Andreessen as an undergraduate student on a

work-study project, for $6.85 an hour. He moved on to fame and fortune as

one of the cofounders and the chief of technology at Netscape.)

In the SunWorld interview, Gosling says that in mid-1994, the language

developers realized that “We could build a real cool browser. It was one of

the few things in the client/server mainstream that needed some of the

weird things we’d done: architecture-neutral, real-time, reliable, secure—

issues that weren’t terribly important in the workstation world. So we built

a browser.”

The actual browser was built by Patrick Naughton and Jonathan Payne and

evolved into the HotJava browser, which was designed to show off the

power of Java. The browser was capable of executing Java code inside web

pages. This “proof of technology” was shown at SunWorld ’95 on May 23,

1995, and inspired the Java craze that continues today.

Sun released the first version of Java in early 1996. People quickly realized

that Java 1.0 was not going to cut it for serious application development.

Sure, you could use Java 1.0 to make a nervous text applet that moved text

randomly around in a canvas. But you couldn’t even print in Java 1.0. To be

blunt, Java 1.0 was not ready for prime time. Its successor, version 1.1,

filled in the most obvious gaps, greatly improved the reflection capability,

and added a new event model for GUI programming. It was still rather

limited, though.

The big news of the 1998 JavaOne conference was the upcoming release of

Java 1.2, which replaced the early toylike GUI and graphics toolkits with

sophisticated scalable versions. Three days (!) after its release in December

1998, Sun’s marketing department changed the name to the catchy Java 2

Standard Edition Software Development Kit Version 1.2.

Besides the Standard Edition, two other editions were introduced: the Micro

Edition for embedded devices such as cell phones, and the Enterprise

Edition for server-side processing. This book focuses on the Standard

Edition.

Versions 1.3 and 1.4 of the Standard Edition were incremental

improvements over the initial Java 2 release, with an ever-growing standard

library, increased performance, and, of course, quite a few bug fixes. During

this time, much of the initial hype about Java applets and client-side

applications abated, but Java became the platform of choice for server-side

applications.

Version 5.0 was the first release since version 1.1 that updated the Java

language in significant ways. (This version was originally numbered 1.5,

but the version number jumped to 5.0 at the 2004 JavaOne conference.)

After many years of research, generic types (roughly comparable to C++

templates) have been added—the challenge was to add this feature without

requiring changes in the virtual machine. Several other useful language

features were inspired by C#: a “for each” loop, autoboxing, and

annotations.

Version 6 (without the .0 suffix) was released at the end of 2006. Again,

there were no language changes but additional performance improvements

and library enhancements.

As datacenters increasingly relied on commodity hardware instead of

specialized servers, Sun Microsystems fell on hard times and was purchased

by Oracle in 2009. Development of Java stalled for a long time. In 2011,

Oracle released a new version, with simple enhancements, as Java 7.

In 2014, the release of Java 8 followed, with the most significant changes to

the Java language in almost two decades. Java 8 embraces a “functional”

style of programming that makes it easy to express computations that can

be executed concurrently. All programming languages must evolve to stay

relevant, and Java has shown a remarkable capacity to do so.

The main feature of Java 9 goes all the way back to 2008. At that time,

Mark Reinhold, the chief engineer of the Java platform, started an effort to

break up the huge, monolithic Java platform. This was to be achieved by

introducing modules, self-contained units of code that provide a specific

functionality. It took eleven years to design and implement a module system

that is a good fit for the Java platform, and it remains to be seen whether it

is also a good fit for Java applications and libraries.

Starting in 2018, Java versions are released every six months, to enable

faster introduction of preview features. New features may go through

several rounds of preview. For example, pattern matching for switch was

previewed four times, starting in Java 17, before it was finalized in Java 21.

Ever so often, a version is designated by Oracle and other vendors to have

long-term support (LTS), with bug fixes and security updates provided for

several years. When using Java in production, it is common to stick to a

LTS release and not use any preview features. So far, this has happened

with Java versions 11, 17, 21, and 25.

Table 1.1 shows the evolution of the Java language and library. As you can

see, the size of the application programming interface (API) has grown

tremendously.

Table 1.1: Evolution of the Java Language

Version Year New Language Features

Number

of Classes

and

Interfaces

1.0 1996 The language itself 211

1.1 1997 Inner classes 477

1.2 1998 The strictfp modifier 1,524

1.3 2000 None 1,840

1.4 2002 Assertions 2,723

5.0 2004

Generic classes, “for each”

loop, varargs, autoboxing,

annotations, enumerations,

static import

3,279

6 2006 None 3,793

7 2011

Switch with strings, diamond

operator, binary literals,

exception handling

enhancements

4,024

8 2014

Lambda expressions, interfaces

with default methods, stream

and date/time libraries

4,240

9 2017

Modules, miscellaneous

language and library

enhancements

6,005

11 2018

Local variable type inference

(var), HTTP client, removal of

Java FX, JNLP, Java EE

overlap, and CORBA

4,410

17 2021

Switch expressions, text

blocks, instanceof pattern

matching, records, sealed

classes

4,396

21 2023
Virtual threads, pattern

matching
4,443

25 2025
Compact compilation units,

foreign functions
4,695

1.5. Common Misconceptions about Java

This chapter closes with a commented list of some common misconceptions

about Java.

Java is an extension of HTML.

Java is a programming language; HTML is a way to describe the structure

of a web page. They have nothing in common except that there once were

HTML extensions for placing Java applets on a web page.

I use XML, so I don’t need Java.

Java is a programming language; XML is a way to describe data. You can

process XML data with any programming language, but the Java API

contains excellent support for XML processing. In addition, many

important XML tools are implemented in Java. See Volume II for more

information.

Java is an easy programming language to learn.

No programming language as powerful as Java is easy. You always have to

distinguish between how easy it is to write toy programs and how hard it is

to do serious work. Also, consider that only seven chapters in this book

discuss the Java language. The remaining chapters of both volumes show

how to put the language to work, using the Java libraries. The Java libraries

contain thousands of classes and interfaces and tens of thousands of

functions. Luckily, you do not need to know every one of them, but you do

need to know surprisingly many to use Java for anything realistic.

Java will become a universal programming language for all platforms.

This is possible in theory. But in practice, there are domains where other

languages are entrenched. Objective C and its successor, Swift, are not

going to be replaced on iOS devices. Anything that happens in a browser is

controlled by JavaScript. Windows programs are written in C++ or C#. Java

has the edge in server-side programming and in cross-platform client

applications.

Java is just another programming language.

Java is a nice programming language; most programmers prefer it to C,

C++, or C#. But there have been hundreds of nice programming languages

that never gained widespread popularity, whereas languages with obvious

flaws, such as C++ and Visual Basic, have been wildly successful.

Why? The success of a programming language is determined far more by

the utility of the support system surrounding it than by the elegance of its

syntax. Are there useful, convenient, and standard libraries for the features

that you need to implement? Are there tool vendors that build great

programming and debugging environments? Do the language and the

toolset integrate with the rest of the computing infrastructure? Java is

successful because its libraries let you easily do things such as networking,

web applications, and concurrency. The fact that Java reduces pointer errors

is a bonus, so programmers seem to be more productive with Java—but

these factors are not the source of its success.

Java is proprietary, and should therefore be avoided.

When Java was first created, Sun Microsystems gave free licenses to

distributors and end users. Although Sun had ultimate control over Java, the

company involved many outside organizations and individuals in the

development of language revisions and the design of new libraries. Source

code for the virtual machine and the libraries has always been freely

available, but only for inspection, not for modification and redistribution.

Java was “closed source, but playing nice.”

This situation changed dramatically in 2007, when Sun announced that

future versions of Java would be available under the General Public License

(GPL), the same open-source license that is used by Linux. Oracle has

committed to keeping Java open source. There are now multiple providers

of open Java implementations, with various levels of commitment and

support.

Java is interpreted, so it is too slow for serious applications.

In the early days of Java, the language was interpreted. Nowadays, the Java

virtual machine uses a just-in-time compiler. The “hot spots” of your code

will run just as fast in Java as they would in C++, and in some cases even

faster.

All Java programs run inside a web page.

There was a time when Java applets ran inside a web browser. Nowadays,

Java programs are stand-alone applications that run outside of a web

browser. In fact, most Java programs run on servers, producing code for

web pages or computing business logic.

Java programs are a major security risk.

In the early days of Java, there were some well-publicized reports of

failures in the Java security system. Researchers viewed it as a challenge to

find chinks in the Java armor and to defy the strength and sophistication of

the applet security model. The technical failures that they found had been

quickly corrected. Later, there were more serious exploits, to which Sun,

and later Oracle, responded slowly. Browser manufacturers discontinued

support for Java applets. The security manager architecture that made

applets possible is now deprecated. These days, Java applications are no

less secure than other applications. Due to the protections of the virtual

machine, they are far more secure than applications written in C or C++.

JavaScript is a simpler version of Java.

JavaScript, a scripting language that can be used inside web pages, was

invented by Netscape and originally called LiveScript. JavaScript has a

syntax that is reminiscent of Java, and the languages’ names sound similar,

but otherwise they are unrelated. In particularly, Java is strongly typed—the

compiler catches many errors that arise from type misuse. In JavaScript,

such errors are only found when the program runs, which makes their

elimination far more laborious.

With Java, I can replace my desktop computer with a cheap “Internet

appliance.”

When Java was first released, some people bet big that this was going to

happen. Companies produced prototypes of Java-powered network

computers, but users were not ready to give up a powerful and convenient

desktop for a limited machine with no local storage. Nowadays, of course,

the world has changed, and for a large majority of end users, the platform

that matters is a mobile phone or tablet. The majority of these devices are

controlled by the Android platform which is based on Java. Learning Java

programming will help you with Android programming as well.

Chapter 2 ▪ The Java
Programming Environment

In this chapter, you will learn how to install the Java Development Kit

(JDK) and how to compile and run Java programs. You can run the JDK

tools by typing commands in a terminal window. However, many

programmers prefer the comfort of an integrated development environment.

You will learn how to use a freely available development environment to

compile and run Java programs. Once you have mastered the techniques in

this chapter and picked your development tools, you are ready to move on

to Chapter 3, where you will begin exploring the Java programming

language.

2.1. Installing the Java Development Kit

In days past, the most complete and up-to-date version of the Java

Development Kit (JDK) was available from Oracle. Nowadays many

different companies and organizations, including Amazon, Azul, Microsoft,

and Red Hat, provide up-to-date OpenJDK builds. Each vendor has

different licensing conditions and support offerings. The Eclipse

Foundation provides free JDK builds for Linux, Mac OS, and Windows,

which work well for learning Java.

2.1.1. Downloading the JDK

You can download the Java Development Kit from the Eclipse Foundation

at https://adoptium.net, or from Oracle at

https://www.oracle.com/java/technologies/downloads, or from many other

providers.

Depending on the provider, the Java Development Kit may have a brand

name, such as Temurin (Eclipse Foundation), Corretto (Amazon), or Zulu

(Azul). The brand name is of no importance to Java programmers.

https://adoptium.net/
https://www.oracle.com/java/technologies/downloads

You should use the Java SE 25 (LTS) JDK. See Table 2.1 for a summary of

the acronyms and jargon that you may encounter on the download site.

Table 2.1: Java Jargon

Name Acronym Explanation

Java

Development

Kit

JDK
The software for programmers

who want to write Java programs.

Java

Runtime

Environment

JRE

The software for running Java

programs, without development

tools. Only supported until Java 8.

You do not want that.

Name Acronym Explanation

Standard

Edition
SE

The Java platform for use on

desktops and simple server

applications. You want that.

OpenJDK —
A free and open-source

implementation of Java SE.

Hotspot —

The “just in time” compiler

developed by Oracle. If asked,

choose this one.

OpenJ9 —
Another “just in time” compiler

developed by IBM.

Name Acronym Explanation

GraalVM —

An “ahead of time” compiler for

executables that start quickly, but

don’t support all Java features.

You don’t want it for this book.

Long Term

Support
LTS

A release that is supported for

multiple years, unlike the six-

month releases that showcase new

features. Choose the latest LTS

release.

Eclipse —
A foundation that distributes

open-source software.

Name Acronym Explanation

Temurin —

The brand name for the OpenJDK

version that the Eclipse

foundation distributes.

Adoptium —

The project within the Eclipse

Foundation that provides an

OpenJDK version and

infrastructure support for its

distribution.

2.1.2. Setting Up the JDK

After downloading the JDK, you need to install it and figure out where it

was installed—you’ll need that information later.

If you run Windows or have a Mac, simply launch the setup program and

choose the default options.

On Linux, uncompress the .tar.gz file to a location of your choice, such as

your home directory or /opt. Then set the PATH to the bin subdirectory of

the directory into which the JDK was placed, such as /opt/jdk-25.0.4/bin.

This is usually achieved by adding a line such as the following to the end of

your ~/.bashrc or ~/.bash_profile file:

export PATH=/opt/jdk-25.0.4/bin:$PATH

Here is how you test whether you did it right. Start a terminal window. Type

the line

javac --version

and press the Enter key. You should get a display such as this one:

javac 25.0.4

If instead you get a message such as “javac: command not found” or “The

name specified is not recognized as an internal or external command,

operable program or batch file,” then you need to double-check your

installation.

It is often useful to know where the JDK is installed on your system—see

Table 2.2. In this book, the installation directory is denoted as

$JAVA_HOME. For example, when referring to the $JAVA_HOME/bin

directory, I mean the directory such as /opt/jdk-25.0.4/bin or C:\Program

Files\Java\jdk-25\bin. You may want to set the JAVA_HOME environment

variable. Otherwise replace $JAVA_HOME in any commands with the

installation directory on your system.

Caution: In the Windows terminal, use %JAVA_HOME% instead

of $JAVA_HOME to refer to the JAVA_HOME environment

variable.

Table 2.2: The JDK Installation Directory

Platform Sample Directory

Windows

(Adoptium)

C:\Program Files\Eclipse Adoptium\jdk-

25.0.4.11-hotspot

Windows

(Oracle

OpenJDK)

C:\Program Files\Java\jdk-25

Mac OS
/Library/Java/JavaVirtualMachines/jdk-

25.0.4_11.jdk/Contents/Home

Linux
Where you uncompressed the .tar.gz file,

such as /opt/jdk-25.0.4

Note: On Windows, the Oracle JDK installer adds the directory

C:\Program Files\Common Files\Oracle\Java\javapath to the PATH

environment variable. That directory only contains the javac, javaw,

java, and jshell executables. (You will see how to use javac, java,

and jshell in this chapter. The javaw executable is a Windows-only

feature for launching a program without a console window.) The

other tools in the Java Development Kit can be found in the bin

subdirectory of the JDK installation directory. When invoking those

programs, either specify the complete path (such as C:\Program

Files\Java\jdk-25\bin\javadoc for the javadoc tool), or add the bin

subdirectory to the PATH environment variable. One way to achieve

this is with the setx command:

setx PATH "%PATH%;c:\Program Files\Java\jdk-25\bin"

Open another terminal window for the change to take effect.

The https://adoptium.net installer does not have this issue. It adds all

JDK tools to the PATH.

2.1.3. Source Files and Documentation

To effectively work with this book, you should install the Core Java

program examples. Download them from https://horstmann.com/corejava.

The programs are packaged into a zip file corejava.zip. Just unzip them into

any directory of your choice. The files are located in two subdirectories

corejava-bookcode and corejava-modulechapter. In the following examples,

they are placed into the home directory.

The library source files are delivered in the JDK as a compressed file

$JAVA_HOME/lib/src.zip. If you are interested in learning how the Java

API is implemented, unzip that file to get access to the source code.

https://adoptium.net/
https://horstmann.com/corejava

Tip: The src.zip file contains the source code for all public libraries.

To obtain even more source (for the compiler, the virtual machine,

the native methods, and the private helper classes), go to

https://openjdk.org.

You can read the JDK documentation at

https://docs.oracle.com/en/java/javase/25/docs/. If you have a nomadic

lifestyle and prefer an offline version, visit

https://www.oracle.com/java/technologies/downloads and look for a

“Documentation Download” button or link.

Tip: With many browsers, you can define your own search engine.

It is very handy to set up search for the Java API. The search string

is https://docs.oracle.com/en/java/javase/21/docs/api/search.html?

https://openjdk.org/
https://docs.oracle.com/en/java/javase/25/docs/
https://www.oracle.com/java/technologies/downloads

q=%s. If you associate this with a key such as @j, then you can type

queries like @j println into your browser’s address bar.

2.2. Using the Command-Line Tools

If your programming experience comes from a development environment

such as Microsoft Visual Studio, you are accustomed to a system with a

built-in text editor, menus to compile and launch a program, and a

debugger. The JDK contains nothing even remotely similar. You do

everything by typing in commands in a terminal window. This may sound

cumbersome, but it is nevertheless an essential skill. When you first install

Java, you will want to troubleshoot your installation before you install a

development environment. Moreover, by executing the basic steps yourself,

you gain a better understanding of what a development environment does

behind your back.

However, after you have mastered the basic steps of compiling and running

Java programs, you will want to use a professional development

environment. You will see how to do that in the following section.

Let’s get started the hard way: launching a Java program from the command

line.

1. Open a terminal window.

2. Change to the corejava-bookcode directory (where you installed the

source code for the book examples, as explained in Section 2.1.3.)

3. Enter the following command:

java Welcome.java

In the terminal window, you should see the output shown in Figure 2.1.

Figure 2.1: Running the Welcome.java program

Congratulations! You have just run your first Java program.

Note: In prior versions of Java, you had to use two steps:

javac Welcome.java

java Welcome

The javac program is the Java compiler. It compiles the file

Welcome.java into the file Welcome.class. The java program

launches the Java virtual machine. It executes the bytecodes that the

compiler placed in the class file. Note that here we launch the java

program with the name of the class, not a file name. Then the java

program simply loads the class file and runs it.

It is more efficient to compile a program once and then run it

whenever you need it, by calling javac and java separately. But for

simple demo programs, just run java followed by the file name, to

compile and run the program.

The Welcome program is extremely simple. It merely prints a message to

the terminal. You may enjoy looking inside the program, shown in Listing

2.1. You will see how it works in the next chapter.

Note: This program uses Java 25 features that were designed to

make simple programs shorter. If you use an older version of Java,

download the sample code of the preceding edition which is

available at https://horstmann.com/corejava/corejava13.zip.

Listing 2.1 Welcome.java

1 /**

2 * This program displays a greeting for the reader.

3 */

4 void main() {

5 String greeting = "Welcome to Core Java!";

https://horstmann.com/corejava/corejava13.zip

6 IO.println(greeting);

7 IO.println("=".repeat(greeting.length()));

8 }

In the age of integrated development environments, many programmers are

unfamiliar with running programs in a terminal window. Any number of

things can go wrong, leading to frustrating results.

Pay attention to the following points:

1. If you type in the program by hand, make sure you correctly enter the

uppercase and lowercase letters. For example, you must type main and

not Main or MAIN.

2. If you get a message such as “Bad command or file name” or “javac:

command not found,” go back and double-check your installation, in

particular the executable path setting.

3. If java or javac reports that it cannot find the file Welcome.java, you

should check whether that file is present in the directory.

Under Linux, check that you used the correct capitalization for

Welcome.java.

Some Windows text editors insist on adding an extension .txt to every

file’s name. Under the default settings, Windows Explorer hides the

.txt extension because it belongs to a “known file type.” Therefore, use

the dir console command, not the graphical Explorer tool, to check the

actual file name. Rename it if necessary.

The Welcome program was not terribly exciting. Next, try out a graphical

application. This program is a simple image file viewer that loads and

displays an image. As before, run the program from the command line.

1. Open a terminal window.

2. Change to the directory corejava-bookcode.

3. Enter the following:

java ImageViewer.java

A new program window pops up with the ImageViewer application. Now,

select File → Open and look for an image file to open. (There are sample

files in the images directory.) The image is displayed (see Figure 2.2). To

close the program, click on the Close box in the title bar or select File →
Exit from the menu.

Figure 2.2: Running the ImageViewer application

Have a quick look at the source code (Listing 2.2). The program is

substantially longer than the first program, but it is not too complex if you

consider how much code it would take in C or C++ to write a similar

application. Of course, nowadays it is not common to write desktop

applications with graphical user interfaces, but if you are interested, you can

find more details in Chapter 10 of Volume II.

Listing 2.2 ImageViewer.java

1 import module java.desktop;

2

3 /**

4 * A program for viewing images.

5 */

6 void main() {

7 EventQueue.invokeLater(() -> {

8 var frame = new ImageViewerFrame();

9 frame.setTitle("ImageViewer");

10 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

11 frame.setVisible(true);

12 });

13 }

14

15 /**

16 * A frame with a label to show an image.

17 */

18 class ImageViewerFrame extends JFrame {

19 private static final int DEFAULT_WIDTH = 300;

20 private static final int DEFAULT_HEIGHT = 400;

21

22 public ImageViewerFrame() {

23 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

24

25 // use a label to display the images

26 var label = new JLabel();

27 add(label);

28

29 // set up the file chooser

30 var chooser = new JFileChooser();

31 chooser.setCurrentDirectory(new File("images"));

32

33 // set up the menu bar

34 var menuBar = new JMenuBar();

35 setJMenuBar(menuBar);

36

37 var menu = new JMenu("File");

38 menuBar.add(menu);

39

40 var openItem = new JMenuItem("Open");

41 menu.add(openItem);

42 openItem.addActionListener(_ -> {

43 // show file chooser dialog

44 int result = chooser.showOpenDialog(null);

45

46 // if file selected, set it as icon of the label

47 if (result == JFileChooser.APPROVE_OPTION) {

48 String name = chooser.getSelectedFile().getPath();

49 label.setIcon(new ImageIcon(name));

50 }

51 });

52

53 var exitItem = new JMenuItem("Exit");

54 menu.add(exitItem);

55 exitItem.addActionListener(_ -> System.exit(0));

56 }

57 }

2.3. Using an Integrated Development
Environment

In the preceding section, you saw how to compile and run a Java program

from the command line. That is a useful skill for troubleshooting, but for

most day-to-day work, you should use an integrated development

environment. These environments are so powerful and convenient that it

simply doesn’t make much sense to labor on without them. Excellent

choices are the freely available Eclipse, IntelliJ IDEA, NetBeans, and

Visual Studio Code. In this section, you will see how to get started with

Eclipse. Of course, if you prefer a different development environment, you

can certainly use it with this book.

Get started by downloading Eclipse from https://eclipse.org/downloads.

Versions exist for Linux, Mac OS X, and Windows. Run the installation

program and pick the installation set called “Eclipse IDE for Java

Developers.”

Here are the steps to load the sample code into Eclipse:

1. After starting Eclipse, select File → New → Project from the menu.

2. Select “Java Project” from the wizard dialog (see Figure 2.3).

https://eclipse.org/downloads

Figure 2.3: The New Project dialog in Eclipse

3. Click the Next button. Uncheck the “Use default location” checkbox.

Click on Browse and navigate to the corejava-bookcode directory

(Figure 2.4).

Figure 2.4: Configuring a project in Eclipse

4. Uncheck the box labeled “Create modul-info.java file.” Click the

Finish button. The project is now created.

5. Click on the triangles in the left pane next to the project until you

locate the file Welcome.java inside the “default package”, and double-

click on it. You should now see a pane with the program code.

6. With the right mouse button, click on the file name (Welcome.java) in

the left pane. Select Run → Run As → Java Application. The program

output is displayed in the console pane (see Figure 2.5).

Figure 2.5: Running a source file with Eclipse

2.4. JShell

The JShell program provides a “read-evaluate-print loop,” or REPL. You

type a Java expression; JShell evaluates your input, prints the result, and

waits for your next input. This is an excellent way to experiment—much

faster than writing a complete program in an integrated development

environment.

To start JShell, simply type jshell in a terminal window (see Figure 2.6).

Figure 2.6: Running JShell

JShell starts with a greeting, followed by a prompt:

| Welcome to JShell -- Version 25.0.4

| For an introduction type: /help intro

jshell>

Now type an expression, such as

"Core Java".length()

JShell responds with the result—in this case, the number of characters in

the string “Core Java”.

$1 ==> 9

Note that you do not type IO.println. JShell automatically prints the value

of every expression that you enter.

The $1 in the output indicates that the result is available in further

calculations. For example, if you type

5 * $1 - 3

the response is

$2 ==> 42

If you need a variable many times, you can give it a more memorable name.

For example,

jshell> var answer = 6 * 7

answer ==> 42

Another useful feature is tab completion. Type

Math.

followed by the Tab key. Because there are so many completions, you are

prompted to hit the Tab key again. You get a list of all methods that you can

invoke with the Math class:

jshell> Math.

E IEEEremainder(PI

TAU abs(absExact(

acos(addExact(asin(

atan(atan2(cbrt(

ceil(ceilDiv(ceilDivExact(

ceilMod(clamp(class

copySign(cos(cosh(

decrementExact(divideExact(exp(

expm1(floor(floorDiv(

floorDivExact(floorMod(fma(

getExponent(hypot(incrementExact(

log(log10(log1p(

max(min(multiplyExact(

multiplyFull(multiplyHigh(negateExact(

nextAfter(nextDown(nextUp(

pow(random() rint(

round(scalb(signum(

sin(sinh(sqrt(

subtractExact(tan(tanh(

toDegrees(toIntExact(toRadians(

ulp(unsignedMultiplyHigh(

Now type l and hit the Tab key again. The method name is completed to

log, and you get a shorter list:

jshell> Math.log

log(log10(log1p(

Now you can fill in the rest by hand:

jshell> Math.log10(0.001)

$4 ==> -3.0

To repeat a command, hit the ↑ key until you see the line that you want to

reissue or edit. You can move the cursor in the line with the ← and → keys,

and add or delete characters. Hit Enter when you are done. For example, hit

the ↑ key and replace 0.001 with 1000, then hit Enter:

jshell> Math.log10(1000)

$5 ==> 3.0

You exit JShell with the command

/exit

JShell makes it easy and fun to learn the Java language and library without

having to launch a heavy-duty development environment and without

fussing with a program and a main method.

In this chapter, you learned about the mechanics of compiling and running

Java programs. You are now ready to move on to Chapter 3 where you will

start learning the Java language.

Chapter 3 ▪ Fundamental
Programming Structures in Java

At this point, you should have successfully installed the JDK and executed

the sample programs from Chapter 2. It’s time to start programming. This

chapter shows you how the basic programming concepts such as data types,

branches, and loops are implemented in Java.

3.1. A Simple Java Program

Let’s look more closely at one of the simplest Java programs you can have

—one that merely prints a message to console:

void main() {

 IO.println("We will not use 'Hello, World!'");

}

First and foremost, Java is case sensitive. If you made any mistakes in

capitalization (such as typing Main instead of main), the program will not

run.

The program declares a method called main. The term “method” is Java-

speak for a function—a block of code that carries out a specific task. You

must have a main method in every program. You can, of course, add your

own methods and call them from the main method.

Notice the braces { } in the source code. In Java, as in C/C++, braces are

used to form a group of statements (called a block). In Java, the code for

any method must be started by an opening brace { and ended by a closing

brace }.

Brace styles have inspired an inordinate amount of useless controversy.

This book follows a compact style that is common among Java

programmers, sometimes called the “Kernighan and Ritche” style. In other

styles, matching braces line up. As whitespace is irrelevant to the Java

compiler, you can use whatever brace style you like.

The main method calls another method, called println, defined in the IO

class. You will learn a lot more about classes in the next chapter. For now,

think of a class as a container for the program logic that defines the

behavior of an application. Classes are the building blocks with which all

Java applications are built.

In fact, everything in a Java program lives inside a class, even our main

method. It is placed inside a class whose name is the name of the file,

without the extension. If we place the code in a file named

FirstSample.java, main is a method of a class FirstSample.

The standard naming convention (used in the name FirstSample) is that

class names are nouns that start with an uppercase letter. If a name consists

of multiple words, use an initial uppercase letter in each of the words. This

use of uppercase letters in the middle of a name is sometimes called “camel

case” or, self-referentially, “CamelCase.”

Note: Prior to Java 25, you had to explicitly declare the class

containing the main method. This is no longer necessary.

It used to be a requirement to declare the main method as

public static void main(String[] args)

You will learn in Chapter 4 what the keywords public and static

mean. The String[] args parameter holds command line arguments—

see Section 3.10.5.

Moreover, Java 25 introduced the IO class to simplify console input

and output. Previously, you had to use the special System.out object,

which was yet another concept that was confusing to beginners.

To run any of the programs in this chapter with an older version of

Java, do the following:

1. Place all code inside a class whose name equals the file name,

without the extension.

2. Declare main in the old style.

3. Replace IO.println with System.out.println

For example:

public class FirstSample {

 public static void main(String[] args) {

 System.out.println("We will not use 'Hello, World!'");

 }

}

Note: Version 1.0 of the Java Language Specification decreed that

the main method must be declared public, static, and void. (The Java

Language Specification is the official document that describes the

Java language. You can view or download it from

https://docs.oracle.com/javase/specs.)

However, early versions of the Java launcher were willing to

execute Java programs even when the main method was not public.

A programmer filed a bug report. To see it, visit

https://bugs.openjdk.org/browse/JDK-4252539. In 1999, that bug

was marked as “closed, will not be fixed.” An engineer added an

explanation that the Java Virtual Machine Specification does not

mandate that main is public and that “fixing it will cause potential

troubles.” In the end, sanity prevailed. As of Java 1.4, the Java

launcher enforces that the main method is public, as intended in the

https://docs.oracle.com/javase/specs
https://bugs.openjdk.org/browse/JDK-4252539

language specification. That behavior was in place until Java 25,

which allows other forms of the main method.

It is remarkable that the bug reports and their resolutions have been

available for anyone to scrutinize for as long as Java existed, even

before it became open source.

Now turn your attention to the contents inside the braces of the main

method,

IO.println("We will not use 'Hello, World!'");

This is the body of the method. The body of most methods contains

multiple statements, but here we have just one. As with most programming

languages, you can think of Java statements as sentences of the language. In

Java, every statement must end with a semicolon. In particular, carriage

returns do not mark the end of a statement, so statements can span multiple

lines if need be.

Here, we are calling the println method that is declared in a class called IO.

Notice the period that separates the name of the IO class and the println

method.

The println method receives a string argument. The method displays the

string argument on the console. It then terminates the output line, so that

each call to println displays its output on a new line. Notice that Java, like

C/C++, uses double quotes to delimit strings. (You can find more

information about strings later in this chapter.)

Methods in Java, like functions in any programming language, can use zero,

one, or more arguments, which are enclosed in parentheses. Even if a

method has no arguments, you must still use empty parentheses. For

example, a variant of the println method with no arguments just prints a

blank line. You invoke it with the call

IO.println();

Note: The IO class also has a print method that doesn’t add a

newline character to the output. For example, IO.print("Hello")

prints Hello without a newline. The next output appears

immediately after the letter o.

You compile the file with the command

You run the sample program with this command:

java FirstSample.java

When the program executes, it simply displays the string We will not use

'Hello, World!' on the console.

If you intend to run a program multiple times, it is more efficient to compile

it first:

javac FirstSample.java

You end up with a file containing the bytecodes for this class. These are

instructions for the Java virtual machine. The Java compiler names the

bytecode file FirstSample.class and stores it in the same directory as the

source file. Whenever you want to launch the program, issue the following

command:

java FirstSample

Remember to leave off the .class extension.

When you use

java ClassName

to run a compiled program, the Java virtual machine is launched, and

execution starts with the code in the main method of the class you indicate.

3.2. Comments

Comments in Java, as in most programming languages, do not show up in

the executable program. Thus, you can add as many comments as needed

without fear of bloating the code. Java has three ways of marking

comments. The most common form is a //. Use this for a comment that runs

from the // to the end of the line.

IO.println("We will not use 'Hello, World!'"); // is this too cute?

When longer comments are needed, you can mark each line with a //, or you

can use the /* and */ comment delimiters that let you block off a longer

comment.

Finally, a third kind of comment is used to generate documentation

automatically. This comment uses a /** to start and a */ to end. You can see

this type of comment in Listing 3.1. For more on this type of comment and

on automatic documentation generation, see Chapter 4.

Listing 3.1 FirstSample.java

1 /**

2 * This is the first sample program in Core Java Chapter 3

3 */

4 void main() {

5 IO.println("We will not use 'Hello, World!'");

6 }

Caution: /* */ comments do not nest in Java. That is, you might not

be able to deactivate code simply by surrounding it with /* and */

because the code you want to deactivate might itself contain a */

delimiter.

3.3. Data Types

Java is a strongly typed language. This means that every variable must have

a declared type. There are eight primitive types in Java. Four of them are

integer types; two are floating-point number types; one is the character type

char, used for UTF-16 code units in the Unicode encoding scheme (see

Section 3.3.3); and one is a boolean type for truth values.

Note: Java has an arbitrary-precision arithmetic package. However,

“big numbers,” as they are called, are Java objects and not a

primitive Java type. You will see how to use them later in this

chapter.

3.3.1. Integer Types

The integer types are for numbers without fractional parts. Negative values

are allowed. Java provides the four integer types shown in Table 3.1.

Table 3.1: Java Integer Types

Type
Storage

Requirement
Range (Inclusive)

byte 1 byte –128 to 127

short 2 bytes –32,768 to 32,767

int 4 bytes
–2,147,483,648 to 2,147,483,647 (just

over 2 billion)

long 8 bytes
–9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

In most situations, the int type is the most practical. If you want to represent

the number of inhabitants of our planet, you’ll need to resort to a long. The

byte and short types are mainly intended for specialized applications, such

as low-level file handling, or for large arrays when storage space is at a

premium.

Under Java, the ranges of the integer types do not depend on the machine

on which you will be running the Java code. This alleviates a major pain for

the programmer who wants to move software from one platform to another,

or even between operating systems on the same platform. In contrast, C and

C++ programs use the most efficient integer type for each processor. As a

result, a C program that runs well on a 32-bit processor may exhibit integer

overflow on a 16-bit system. Since Java programs must run with the same

results on all machines, the ranges for the various types are fixed.

Long integer numbers have a suffix L or l (for example, 4000000000L).

Hexadecimal numbers have a prefix 0x or 0X (for example, 0xCAFE).

Octal numbers have a prefix 0 (for example, 010 is 8)—naturally, this can

be confusing, and few programmers use octal constants.

You can write numbers in binary, with a prefix 0b or 0B. For example,

0b1001 is 9. You can add underscores to number literals, such as

1_000_000 (or 0b1111_0100_0010_0100_0000) to denote one million. The

underscores are for human eyes only. The Java compiler simply removes

them.

Note: In C and C++, the sizes of types such as int and long depend

on the target platform. On a 32-bit processor, integers have 4 bytes,

but on a 64-bit processor they may have 4 bytes or 8 bytes. These

differences make it challenging to write cross-platform programs. In

Java, the sizes of all numeric types are platform-independent.

Note that Java does not have any unsigned versions of the int, long,

short, or byte types.

Note: If you work with integer values that can never be negative

and you really need an additional bit, you can, with some care,

interpret signed integer values as unsigned. For example, instead of

having a byte value b represent the range from –128 to 127, you

may want a range from 0 to 255. You can store it in a byte. Due to

the nature of binary arithmetic, addition, subtraction, and

multiplication will work provided they don’t overflow. For other

operations, call Byte.toUnsignedInt(b) to get an int value between 0

and 255, then process the integer value and cast back to byte. The

Integer and Long classes have methods for unsigned division and

remainder.

3.3.2. Floating-Point Types

The floating-point types denote numbers with fractional parts. The two

floating-point types are shown in Table 3.2.

Table 3.2: Floating-Point Types

Type
Storage

Requirement
Range

float 4 bytes
Approximately ±3.40282347×1038

(6–7 significant decimal digits)

double 8 bytes

Approximately

±1.79769313486231570×10308 (15

significant decimal digits)

The name double refers to the fact that these numbers have twice the

precision of the float type. (Some people call these double-precision

numbers.) The limited precision of float (6-7 significant digits) is simply

not sufficient for many situations. Use float values only when you work

with a library that requires them, or when you need to store a very large

number of them.

Java 20 adds a couple of methods (Float.floatToFloat16 and

Float.float16toFloat) for storing “half-precision” 16-bit floating-point

numbers in short values. These are used for implementating neural

networks.

Numbers of type float have a suffix F or f (for example, 3.14F). Floating-

point numbers without an F suffix (such as 3.14) are always considered to

be of type double. You can optionally supply the D or d suffix (for example,

3.14D).

An E or e denotes a decimal exponent. For example, 1.729E3 is the same as

1729.

Note: You can specify floating-point literals in hexadecimal. For

example, 0.125 = 2–3 can be written as 0x1.0p-3. In hexadecimal

notation, you use a p, not an e, to denote the exponent. (An e is a

hexadecimal digit.) Note that the mantissa is written in hexadecimal

and the exponent in decimal. The base of the exponent is 2, not 10.

All floating-point computations follow the IEEE 754 specification. In

particular, there are three special floating-point values to denote overflows

and errors:

Positive infinity

Negative infinity

NaN (not a number)

For example, the result of dividing a positive floating-point number by 0 is

positive infinity. Dividing 0.0 by 0 or the square root of a negative number

yields NaN.

Note: The constants Double.POSITIVE_INFINITY,

Double.NEGATIVE_INFINITY, and Double.NaN (as well as

corresponding Float constants) represent these special values, but

they are rarely used in practice. In particular, you cannot test

if (x == Double.NaN) // is never true

to check whether a particular result equals Double.NaN. All “not a

number” values are considered distinct. However, you can use the

Double.isNaN method:

if (Double.isNaN(x)) // check whether x is "not a number"

Note: There are both positive and negative floating-point zeroes, 0.0

and -0.0, but you can’t tell them apart with ==. To check whether a

value is negative zero, use this test:

if (Double.compare(x, -0.0) == 0)

Caution: Floating-point numbers are not suitable for financial

calculations in which roundoff errors cannot be tolerated. For

example, the command IO.println(2.0 - 1.1) prints

0.8999999999999999, not 0.9 as you would expect. Such roundoff

errors are caused by the fact that floating-point numbers are

represented in the binary number system. There is no precise binary

representation of the fraction 9/10, just as there is no accurate

representation of the fraction 1/3 in the decimal system. If you need

precise numerical computations without roundoff errors, use the

BigDecimal class, which is introduced later in this chapter.

3.3.3. The char Type

The char type was originally intended to describe individual characters.

However, this is no longer the case. Nowadays, some Unicode characters

can be described with one char value, and other Unicode characters require

two char values. Read the next section for the gory details.

Literal values of type char are enclosed in single quotes. For example, 'A' is

a character constant with value 65. It is different from "A", a string

containing a single character. Values of type char can be expressed as

hexadecimal values that run from \u0000 to \uFFFF.

Besides the \u escape sequences, there are several escape sequences for

special characters, as shown in Table 3.3. You can use these escape

sequences inside quoted character literals and strings, such as '\u005B' or

"Hello\n". The \u escape sequence (but none of the other escape sequences)

can even be used outside quoted character constants and strings. For

example,

void main()\u007BIO.println("Hello, World!");\u007D

is perfectly legal—\u007B and \u007D are the encodings for { and }.

Table 3.3: Escape Sequences for Special Characters

Escape

Sequence
Name

Unicode

Value

\b Backspace \u0008

\t Tab \u0009

\n Line feed \u000a

\r Carriage return \u000d

\f Form feed \u000c

\" Double quote \u0022

Escape

Sequence
Name

Unicode

Value

\' Single quote \u0027

\\ Backslash \u005c

\s
Space. Used in text blocks to retain

trailing whitespace.
\u0020

\newline
In text blocks only: Join this line

with the next
—

Caution: Unicode escape sequences are processed before the code

is parsed. For example, "\u0022+\u0022" is not a string consisting

of a plus sign surrounded by quotation marks (U+0022). Instead, the

\u0022 are converted into " before parsing, yielding ""+"", or an

empty string.

Even more insidiously, you must beware of \u inside comments. The

comment

// \u000A is a newline

yields a syntax error since \u000A is replaced with a newline when

the program is read. Similarly, a comment

// look inside c:\users

yields a syntax error because the \u is not followed by four hex

digits.

Note: You can have any number of u in a Unicode escape sequence:

\u00E9 and \uuu00E9 both denote the character é. There is a reason

for this oddity. Consider a programmer happily coding in Unicode

who is forced, for some archaic reason, to check in code as ASCII

only. A conversion tool can turn any character > U+007F into a

Unicode escape and add a u to every existing Unicode escape. That

makes the conversion reversible. For example, \uD800 é is turned

into \uuD800 \u00E9 and can be converted back to \uD800 é.

3.3.4. Unicode and the char Type

To fully understand the char type, you have to know about the Unicode

encoding scheme. Before Unicode, there were many different character

encoding standards: ASCII in the United States, ISO 8859-1 for Western

European languages, KOI-8 for Russian, GB18030 and BIG-5 for Chinese,

and so on. This caused two problems. First, a particular code value

corresponds to different letters in the different encoding schemes. Second,

the encodings for languages with large character sets have variable length:

Some common characters are encoded as single bytes, others require two or

more bytes.

Unicode was designed to solve both problems. When the unification effort

started in the 1980s, a fixed 2-byte code was more than sufficient to encode

all characters used in all languages in the world, with room to spare for

future expansion—or so everyone thought at the time. In 1991, Unicode 1.0

was released, using slightly less than half of the available 65,536 code

values. Java was designed from the ground up to use 16-bit Unicode

characters, which was a major advance over other programming languages

that used 8-bit characters.

Unfortunately, over time, the inevitable happened. Unicode grew beyond

65,536 characters, primarily due to the addition of a very large set of

ideographs used for Chinese, Japanese, and Korean. Now, the 16-bit char

type is insufficient to describe all Unicode characters.

We need a bit of terminology to explain how this problem is resolved in

Java. A code point is an integer value associated with a character in an

encoding scheme. In the Unicode standard, code points are written in

hexadecimal and prefixed with U+, such as U+0041 for the code point of

the Latin letter A. Unicode has code points that are grouped into 17 code

planes, each holding 65536 characters. The first code plane, called the basic

multilingual plane, consists of the “classic” Unicode characters with code

points U+0000 to U+FFFF. Sixteen additional planes, with code points

U+10000 to U+10FFFF, hold many more characters called supplementary

characters.

How a Unicode code point (that is, an integer ranging from 0 to

hexadecimal 10FFFF) is represented in bits depends on the character

encoding. You could encode each character as a sequence of 21 bits, but

that is impractical for computer hardware. The UTF-32 encoding simply

places each code point into 32 bits, where the top 11 bits are zero. That is

rather wasteful. The most common encoding on the Internet is UTF-8, using

between one and four bytes per character. See Chapter 2 of Volume II for

details of that encoding.

Java strings use the UTF-16 encoding. It encodes all Unicode code points in

a variable-length code of 16-bit units, called code units. The characters in

the basic multilingual plane are encoded as a single code unit. All other

characters are encoded as consecutive pairs of code units. Each of the code

units in such an encoding pair falls into a range of 2048 unused values of

the basic multilingual plane, called the surrogates area ('\uD800' to

'\uDBFF' for the first code unit, '\uDC00' to '\uDFFF' for the second code

unit). This is rather clever, because you can immediately tell whether a code

unit encodes a single character or it is the first or second part of a

supplementary character. For example, the beer mug emoji 🍺 has code

point U+1F37A and is encoded by the two code units '\uD83C' and

'\uDF7A'. (See https://tools.ietf.org/html/rfc2781 for a description of the

encoding algorithm.) Each code unit is stored as a char value. The details

are not important. All you need to know is that a single Unicode character

may require one or two char values.

You cannot ignore characters with code units above U+FFFF. Your

customers may well write in a language where these characters are needed,

or they may be fond of putting emojis such as 🍺 into their messages.

Nowadays, Unicode has become so complex that even code points no

longer correspond to what a human viewer would perceive as a single

character or symbol. This happens with languages whose characters are

made from smaller building blocks, with emojis that can have modifiers for

gender and skin tone, and with an ever-growing number of other

compositions.

https://tools.ietf.org/html/rfc2781

Consider the pirate flag 🏴☠ . You perceive a single symbol: the flag.

However, this symbol is composed of four Unicode code points: U+1F3F4

(waving black flag), U+200D (zero width joiner), U+2620 (skull and

crossbones), and U+FE0F (variation selector-16). In Java, you need five

char values to represent the flag: two char for the first code point, and one

each for the other three.

In summary, a visible character or symbol is encoded as a sequence of some

number of char values, and there is almost never a need to look at the

individual values. Always work with strings (see Section 3.6) and don’t

worry about their representation as char sequences.

3.3.5. The boolean Type

The boolean type has two values, false and true. It is used for evaluating

logical conditions. You cannot convert between integers and boolean

values.

Note: In languages such as C++ and JavaScript, other values, such

as numbers and even strings, can be used in place of boolean values.

The value 0 is equivalent to the bool value false, and a nonzero

value is equivalent to true. This is not the case in Java. Thus, Java

programmers are shielded from accidents such as

if (x = 0) // oops... meant x == 0

In C++ and JavaScript, this test compiles and runs, always

evaluating to false. In Java, the test does not compile because the

integer expression x = 0 cannot be converted to a boolean value.

3.4. Variables and Constants

As in every programming language, variables are used to store values.

Constants are variables whose values don’t change. In the following

sections, you will learn how to declare variables and constants.

3.4.1. Declaring Variables

In Java, every variable has a type. You declare a variable by placing the

type first, followed by the name of the variable. Here are some examples:

double salary;

int vacationDays;

long earthPopulation;

boolean done;

Notice the semicolon at the end of each declaration. The semicolon is

necessary because a declaration is a complete Java statement, which must

end in a semicolon.

The identifier for a variable name (as well as for other names) is made up of

letters, digits, currency symbols, and “punctuation connectors.” The first

character cannot be a digit.

Symbols like '+' or '©' cannot be used inside variable names, nor can

spaces. Letter case is significant: main and Main are distinct identifiers. The

length of an identifier is essentially unlimited.

The terms “letter,” “digit,” and “currency symbol” are much broader in Java

than in most languages. A letter is any Unicode character that denotes a

letter in a language. For example, German users can use umlauts such as ä

in variable names; Greek speakers could use a π. Similarly, digits are 0–9

and any Unicode characters that denote a digit. Currency symbols are $, €,

¥, and so on. Punctuation connectors include the underscore character _, a

“wavy low line” , and a few others. In practice, most programmers stick

to A-Z, a-z, 0-9, and the underscore _.

Tip: If you are really curious as to what Unicode characters can be

used in identifiers, you can use the isJavaIdentifierStart and

isJavaIdentifierPart methods in the Character class to check.

Tip: Even though $ is a valid character in an identifier, you should

not use it in your own code. It is intended for names that are

generated by the Java compiler and other tools.

You also cannot use a Java keyword such as class as a variable name.

Underscores can be parts of identifiers. This is common for constant names,

such as Double.POSITIVE_INFINITY. However, a single underscore _ is a

keyword.

Note: As of Java 21, a single underscore _ denotes a variable that is

syntactially required but never used. You will see examples in

Chapters 6 and 7.

You can declare multiple variables on a single line:

int i, j; // both are integers

I don’t recommend this style. If you declare each variable separately, your

programs are easier to read.

Note: As you saw, names are case sensitive, for example, hireday

and hireDay are two separate names. In general, you should not

have two names that only differ in their letter case. However,

sometimes it is difficult to come up with a good name for a variable.

Many programmers then give the variable the same name as the

type, for example

Box box; // "Box" is the type and "box" is the variable name

Other programmers prefer to use an “a” prefix for the variable:

Box aBox;

3.4.2. Initializing Variables

After you declare a variable, you must explicitly initialize it by means of an

assignment statement—you can never use the value of an uninitialized

variable. For example, the Java compiler flags the following sequence of

statements as an error:

int vacationDays;

IO.println(vacationDays); // ERROR--variable not initialized

You assign to a previously declared variable by using the variable name on

the left, an equal sign (=), and then some Java expression with an

appropriate value on the right.

int vacationDays;

vacationDays = 12;

You can both declare and initialize a variable on the same line. For

example:

int vacationDays = 12;

Finally, in Java you can put declarations anywhere in your code. For

example, the following is valid code in Java:

double salary = 65000.0;

IO.println(salary);

int vacationDays = 12; // OK to declare a variable here

In Java, it is considered good style to declare variables as closely as

possible to the point where they are first used.

Note: You do not need to declare the types of local variables if they

can be inferred from the initial value. Simply use the keyword var

instead of the type:

var vacationDays = 12; // vacationDays is an int

var greeting = "Hello"; // greeting is a String

This is not too important for number and string types, but, as you

will see in the next chapter, this feature can make the declaration of

objects less verbose.

3.4.3. Constants

In Java, you use the keyword final to denote a constant. For example:

void main() {

 final double CM_PER_INCH = 2.54;

 double paperWidth = 8.5;

 double paperHeight = 11;

 IO.println("Paper size in centimeters: "

 + paperWidth * CM_PER_INCH + " by " + paperHeight *

CM_PER_INCH);

}

The keyword final indicates that you can assign to the variable once, and

then its value is set once and for all. It is customary to name constants in all

uppercase.

It is probably more common in Java to create a constant so it’s available to

all methods of a class:

final double CM_PER_INCH = 2.54;

void main() {

 double paperWidth = 8.5;

 double paperHeight = 11;

 IO.println("Paper size in centimeters: "

 + paperWidth * CM_PER_INCH + " by " + paperHeight *

CM_PER_INCH);

}

// CM_PER_INCH also accessible in other methods

You will see in Chapter 4 how a class can declare constants that are usable

in other classes. For example, the Math class declares a constant PI that you

can use as Math.PI.

Caution: Some coding style guides state that uppercase letters

should only be used for class constants, not local ones. If you need

to follow such a style guide, and you have a local constant, decide

what is more important to you—the fact that it is local (and

lowercase), or that it is visibly a constant (in uppercase).

Note: const is a Java keyword, but it is not currently used for

anything. You must use final for a constant.

3.4.4. Enumerated Types

Sometimes, a variable should only hold a restricted set of values. For

example, you may sell clothes or pizza in four sizes: small, medium, large,

and extra large. Of course, you could encode these sizes as integers 1, 2, 3,

4 or characters S, M, L, and X. But that is an error-prone setup. It is too

easy for a variable to hold a wrong value (such as 0 or m).

You can define your own enumerated type whenever such a situation arises.

An enumerated type has a finite number of named values. For example,

enum Size { SMALL, MEDIUM, LARGE, EXTRA_LARGE };

Now you can declare variables of this type:

Size s = Size.MEDIUM;

A variable of type Size can hold only one of the values listed in the type

declaration, or the special value null that indicates that the variable is not

set to any value at all. (See Chapter 4 for more information about null.)

Enumerated types are discussed in greater detail in Chapter 5.

3.5. Operators

Operators are used to combine values. As you will see in the following

sections, Java has a rich set of arithmetic and logical operators and

mathematical functions.

3.5.1. Arithmetic Operators

The usual arithmetic operators +, -, *, and / are used in Java for addition,

subtraction, multiplication, and division.

The / operator denotes integer division if both operands are integers, and

floating-point division otherwise. Integer division by 0 raises an exception,

whereas floating-point division by 0 yields an infinite or NaN result.

Integer remainder (sometimes called modulus) is denoted by %. For

example, 15 / 2 is 7, 15 % 2 is 1, and 15.0 / 2 is 7.5.

Caution: When one of the operands of % is negative, so is the

result. For example, n % 2 is 0 if n is even, 1 if n is odd and

positive, and -1 if n is odd and negative. Why? When the first

computers were built, someone had to make rules for how integer

remainder should work for negative operands. Mathematicians had

known the optimal (or “Euclidean”) rule for a few hundred years:

always leave the remainder ≥ 0. But, rather than open a math

textbook, those pioneers came up with rules that seemed reasonable

but are actually inconvenient.

Consider this problem. You compute the position of the hour hand

of a clock. An adjustment is applied, and you want to normalize to a

number between 0 and 11. That is easy: (position + adjustment) %

12. But what if the adjustment is negative? Then you might get a

negative number. So you have to introduce a branch, or use

((position + adjustment) % 12 + 12) % 12. Either way, it is a hassle.

A better remedy is to use the floorMod method:

Math.floorMod(position + adjustment, 12) always yields a value

between 0 and 11. Unfortunately, floorMod still gives negative

remainders for negative divisors, but that situation doesn’t often

occur in practice.

Note: One of the stated goals of the Java programming language is

portability. A computation should yield the same results no matter

which virtual machine executes it. For that reason, the Java 1.0

language specification requires adherence to the IEEE 754 standard

for 32- and 64-bit floating-point numbers. However, for many years,

Intel processors used “extended” 80-bit floating-point registers for

64-bit floating-point operations, occasionally yielding more accurate

but non-standard results.

3.5.2. Mathematical Functions and Constants

The Math class contains an assortment of mathematical functions that you

may occasionally need, depending on the kind of programming that you do.

To take the square root of a number, use the sqrt method:

double x = 4;

double y = Math.sqrt(x);

IO.println(y); // prints 2.0

The Java programming language has no operator for raising a quantity to a

power: You must use the pow method in the Math class. The statement

double y = Math.pow(x, a);

sets y to be x raised to the power a (xa). The pow method’s arguments are

both of type double, and it returns a double as well.

The Math class supplies the usual trigonometric functions:

Math.sin

Math.cos

Math.tan

Math.atan

Math.atan2

and the exponential function with its inverse, the natural logarithm, as well

as the decimal logarithm:

Math.exp

Math.log

Math.log10

Java 21 adds a method Math.clamp that forces a number to fit within given

bounds. For example:

Math.clamp(-1, 0, 10) // too small, yields lower bound 0

Math.clamp(11, 0, 10) // too large, yields upper bound 10

Math.clamp(3, 0, 10) // within bounds, yields value 3

Finally, three constants denote the closest possible approximations to the

mathematical constants π, τ = 2π, and e:

Math.PI

Math.TAU

Math.E

Tip: You can avoid the Math prefix for the mathematical methods

and constants by adding the following line to the top of your source

file:

import static java.lang.Math.*;

For example:

IO.println("The square root of π is " + sqrt(PI));

Static imports are covered in Chapter 4.

Note: The methods in the Math class use the routines in the

computer’s floating-point unit for fastest performance. If completely

predictable results are more important than performance, use the

StrictMath class instead. It implements the algorithms from the

“Freely Distributable Math Library”

(https://www.netlib.org/fdlibm), guaranteeing identical results on all

platforms.

Note: The Math class provides several methods to make integer

arithmetic safer. The mathematical operators quietly return wrong

results when a computation overflows. For example, one billion

times three (1000000000 * 3) evaluates to -1294967296 because the

largest int value is just over two billion. If you call

Math.multiplyExact(1000000000, 3) instead, an exception is

generated. You can catch that exception or let the program terminate

rather than quietly continue with a wrong result. There are

additional methods, including addExact, subtractExact,

incrementExact, decrementExact, negateExact, absExact, powExact,

all with arguments of type int and long.

https://www.netlib.org/fdlibm

3.5.3. Conversions between Numeric Types

It is often necessary to convert from one numeric type to another. Figure 3.1

shows the legal conversions.

.

Figure 3.1: Legal conversions between numeric types

The six solid arrows in Figure 3.1 denote conversions without information

loss. The three dotted arrows denote conversions that may lose precision.

For example, a large integer such as 123456789 has more digits than the

float type can represent. When the integer is converted to a float, the

resulting value has the correct magnitude but loses some precision.

int n = 123456789;

float f = n; // f is 1.23456792E8

When two values are combined with a binary operator (such as n + f where

n is an integer and f is a floating-point value), both operands are converted

to a common type before the operation is carried out.

If either of the operands is of type double, the other one will be

converted to a double.

Otherwise, if either of the operands is of type float, the other one will

be converted to a float.

Otherwise, if either of the operands is of type long, the other one will

be converted to a long.

Otherwise, both operands will be converted to an int.

3.5.4. Casts

In the preceding section, you saw that int values are automatically

converted to double values when necessary. On the other hand, there are

obviously times when you want to consider a double as an integer. Numeric

conversions are possible in Java, but of course information may be lost.

Conversions in which loss of information is possible are done by means of

casts. The syntax for casting is to give the target type in parentheses,

followed by the variable name. For example:

double x = 9.997;

int nx = (int) x;

Now, the variable nx has the value 9 because casting a floating-point value

to an integer discards the fractional part.

If you want to round a floating-point number to the nearest integer (which

in most cases is a more useful operation), use the Math.round method:

double x = 9.997;

int nx = (int) Math.round(x);

Now the variable nx has the value 10. You still need to use the cast (int)

when you call round. The reason is that the return value of the round

method is a long, and a long can only be assigned to an int with an explicit

cast because there is the possibility of information loss.

Caution: If you try to cast a number of one type to another that is

out of range for the target type, the result will be a truncated number

that has a different value. For example, (byte) 300 is actually 44.

Preview: Safe casts are a preview feature of Java 25. The syntax is

as follows:

if (n instanceof byte b) . . .

If n fits into a byte without loss, then b is set to (byte) n.

3.5.5. Assignment

There is a convenient shortcut for using binary operators in an assignment.

For example, the compound assignment operator

x += 4;

is equivalent to

x = x + 4;

(In general, place the operator to the left of the = sign, such as *= or %=.)

Caution: If a compound assignment operator yields a value whose

type is different from that of the left-hand side, then it is coerced to

fit. For example, if x is an int, then the statement

x += 3.5;

is valid. It sets x to (int)(x + 3.5), that is, x + 3, with no warning!

As of Java 20, you get a warning if you compile with the -

Xlint:lossy-conversions command line option, like this:

javac -Xlint:lossy-conversions MyProg.java

Note that in Java, an assignment is an expression. That is, it has a value—

namely, the value that is being assigned. You can use that value—for

example, to assign it to another variable. Consider these statements:

int x = 1;

int y = x += 4;

The value of x += 4 is 5, since that’s the value that is being assigned to x.

Next, that value is assigned to y.

Many programmers find such nested assignments confusing and prefer to

write them more clearly, like this:

int x = 1;

x += 4;

int y = x;

3.5.6. Increment and Decrement Operators

Programmers, of course, know that one of the most common operations

with a numeric variable is to add or subtract 1. Java, following in the

footsteps of C and C++, has both increment and decrement operators: n++

adds 1 to the current value of the variable n, and n-- subtracts 1 from it. For

example, the code

int n = 12;

n++;

changes n to 13. Since these operators change the value of a variable, they

cannot be applied to numbers themselves. For example, 4++ is not a legal

statement.

There are two forms of these operators; you’ve just seen the postfix form of

the operator that is placed after the operand. There is also a prefix form,

++n. Both change the value of the variable by 1. The difference between the

two appears only when they are used inside expressions. The prefix form

does the addition first; the postfix form evaluates to the old value of the

variable.

int m = 7;

int n = 7;

int a = 2 * ++m; // now a is 16, m is 8

int b = 2 * n++; // now b is 14, n is 8

Many programmers find this behavior confusing. In Java, using ++ inside

expressions is uncommon.

3.5.7. Relational and boolean Operators

Java has the full complement of relational operators. To test for equality,

use a double equal sign, ==. For example, the value of

3 == 7

is false.

Use a != for inequality. For example, the value of

3 != 7

is true.

Finally, you have the usual < (less than), > (greater than), <= (less than or

equal), and >= (greater than or equal) operators.

Java, following C++, uses && for the logical “and” operator and || for the

logical “or” operator. As you can easily remember from the != operator, the

exclamation point ! is the logical negation operator. The && and || operators

are evaluated in “short-circuit” fashion: The second operand is not

evaluated if the first operand already determines the value. If you combine

two expressions with the && operator,

expression1 && expression2

and the truth value of the first expression has been determined to be false,

then it is impossible for the result to be true. Thus, the value for the second

expression is not calculated. This behavior can be exploited to avoid errors.

For example, in the expression

x != 0 && 1 / x > x + y // no division by 0

the second operand is never evaluated if x equals zero. Thus, 1 / x is not

computed if x is zero, and no divide-by-zero error can occur.

Similarly, the value of expression1 || expression2 is automatically true if the

first expression is true, without evaluating the second expression.

3.5.8. The Conditional Operator

Java provides the conditional ?: operator that selects a value, depending on

a Boolean expression. The expression

condition ? expression1 : expression2

evaluates to the first expression if the condition is true, and to the second

expression otherwise. For example,

x < y ? x : y

gives the smaller of x and y.

3.5.9. Switch Expressions

If you need to choose among more than two values, then you can use a

switch expression, which was introduced in Java 14. It looks like this:

String seasonName = switch (seasonCode) {

 case 0 -> "Spring";

 case 1 -> "Summer";

 case 2 -> "Fall";

 case 3 -> "Winter";

 default -> "???";

};

The expression following the switch keyword is called the selector

expression, and its value is the selector. For now, we only consider selectors

and case labels that are numbers, strings, or constants of an enumerated

type. In Chapter 5, you will see how to use switch expressions with other

types for pattern matching.

Note: The switch expression, like every expression, has a value.

Note the -> arrow preceding the value in each branch.

Note: As of Java 14, there are four forms of switch. This section

focuses on the most useful one. See Section 3.8.5 for a thorough

discussion of all forms of switch expressions and statements.

Preview: As a preview feature since Java 23, the switch selector can

have type float, double, long, or boolean. These selector types were

previously invalid.

A case label must be a compile-time constant whose type matches the

selector type. You can provide multiple labels for each case, separated by

commas:

int numLetters = switch (seasonName) {

 case "Spring", "Summer", "Winter" -> 6;

 case "Fall" -> 4;

 default -> -1;

};

When you use the switch expression with enumerated constants, you need

not supply the name of the enumeration in each label—it is deduced from

the switch value. For example:

enum Size { SMALL, MEDIUM, LARGE, EXTRA_LARGE };

. . .

Size itemSize = . . .;

String label = switch (itemSize) {

 case SMALL -> "S"; // no need to use Size.SMALL

 case MEDIUM -> "M";

 case LARGE -> "L";

 case EXTRA_LARGE -> "XL";

};

In the example, it was legal to omit the default since there was a case for

each possible value.

Caution: When the selector is an enum, and you don’t have cases

for all constants, you need a default. A switch expression with a

numeric or String selector must always have a default.

Caution: If the selector is null, a NullPointerException is thrown. If

you want to avoid this possibility, add a case null, like this:

String label = switch (itemSize) {

 . . .

 case null -> "???";

};

This is a feature of Java 21. Note that default does not match null!

3.5.10. Bitwise Operators

For any of the integer types, you have operators that can work directly with

the bits that make up the integers. This means that you can use masking

techniques to get at individual bits in a number. The bitwise operators are

& ("and") | ("or") ^ ("xor") ~ ("not")

These operators work on bit patterns. For example, if n is an integer

variable, then

int fourthBitFromRight = (n & 0b1000) / 0b1000;

gives you a 1 if the fourth bit from the right in the binary representation of n

is 1, and 0 otherwise. Using & with the appropriate power of 2 lets you

mask out all but a single bit.

Note: When applied to boolean values, the & and | operators yield a

boolean value. These operators are similar to the && and ||

operators, except that the & and | operators are not evaluated in

“short-circuit” fashion—that is, both operands are evaluated before

the result is computed.

There are also >> and << operators which shift a bit pattern right or left.

These operators are convenient when you need to build up bit patterns to do

bit masking:

int fourthBitFromRight = (n & (1 << 3)) >> 3;

Finally, a >>> operator fills the top bits with zero, unlike >> which extends

the sign bit into the top bits. There is no <<< operator.

Caution: The right-hand operand of the shift operators is reduced

modulo 32 (unless the left-hand operand is a long, in which case the

right-hand operand is reduced modulo 64). For example, the value

of 1 << 35 is the same as 1 << 3 or 8.

Note: In C and C++, there is no guarantee as to whether >>

performs an arithmetic shift (extending the sign bit) or a logical shift

(filling in with zeroes). Implementors are free to choose whichever

is more efficient. That means the >> operator may yield

implementation-dependent results for negative numbers. Java

removes that uncertainty.

Note: The Integer class has a number of methods for bit-level

operations. For example, Integer.bitCount(n) yields the number of

bits that are 1 in the binary representation of n, and

Integer.reverse(n) yields the number obtained by reversing the bits

of n. Not many programmers need bit-level operations, but if you

do, have a look at the Integer class to see whether there is a method

for the task that you need to accomplish.

3.5.11. Parentheses and Operator Hierarchy

Table 3.4 shows the precedence of operators. If no parentheses are used,

operations are performed in the hierarchical order indicated. Operators on

the same level are processed from left to right, except for those that are

right-associative, as indicated in the table. For example, && has a higher

precedence than ||, so the expression

a && b || c

means

(a && b) || c

Since += associates right to left, the expression

a += b += c

means

a += (b += c)

That is, the value of b += c (which is the value of b after the addition) is

added to a.

Table 3.4: Operator Precedence

Operators Associativity

[] . () (method call) Left to right

! ~ ++ -- + (unary) - (unary) () (cast) new Right to left

* / % Left to right

+ - Left to right

Operators Associativity

<< >> >>> Left to right

< <= > >= instanceof Left to right

== != Left to right

& Left to right

^ Left to right

| Left to right

&& Left to right

|| Left to right

?: Right to left

= += -= *= /= %= &= |= ^= <<= >>= >>>= Right to left

Note: Some programming languages (such as C++ and JavaScript)

have a comma operator that evaluates one expression (only for its

side effect), then another. Java does not have such an operator.

However, you can use a comma-separated list of expressions in the

first and third slot of a for statement (see Section 3.8.4).

3.6. Strings

Conceptually, Java strings are sequences of Unicode characters. As you

have seen in Section 3.3.4, the concept of what exactly a character is has

become complicated. And the encoding of the characters into char values

has also become complicated.

However, most of the time, you don’t care. You get strings from string

literals or from methods, and you operate on them with methods of the

String class. The following sections cover the details.

Note: You have already seen string literals such as "Hello, World!",

which are instances of the String class.

To include “complicated” characters in string literals, be sure that

you use the UTF-8 encoding for source files (which is the default

for most IDEs). Then you can just paste them from web pages, and

produce string literals such as "Ahoy 🏴☠ ".

In the past, programmers were more concerned that their

collaborators might use a different file encoding, and instead

provided escape sequences for the UTF-16 encoding: "Ahoy

\uD83C\uDFF4\u200D\u2620\uFE0F".

3.6.1. Concatenation

Java, like most programming languages, allows you to use + to join

(concatenate) two strings.

String expletive = "Expletive";

String PG13 = "deleted";

String message = expletive + PG13;

The preceding code sets the variable message to the string

"Expletivedeleted". (Note the lack of a space between the words: The +

operator joins two strings in the order received, exactly as they are given.)

When you concatenate a string with a value that is not a string, the latter is

converted to a string. For example,

int age = 13;

String rating = "PG" + age;

sets rating to the string "PG13".

This feature is commonly used in output statements. For example,

IO.println("The answer is " + answer);

is perfectly acceptable and prints what you would expect (and with correct

spacing because of the space after the word is).

Caution: Beware of string concatenations with expressions that

have a + operator, such as:

int age = 42;

String output = "Next year, you'll be " + age + 1 + "."; // ERROR

Because the + operators are evaluated from left to right, the result is

"Next year, you'll be 421.". The remedy is to use parentheses:

String output = "Next year, you'll be " + (age + 1) + "."; // OK

Caution: Concatenation only works with strings, not char literals.

For example, the expression ':' + 8080 is not a string, but the integer

8138. (The colon character has Unicode value 58.)

If you need to put multiple strings together, separated by a delimiter, use the

join method:

String all = String.join(" / ", "S", "M", "L", "XL");

 // all is the string "S / M / L / XL"

The repeat method produces a string that repeats a given string a number of

times:

String repeated = "Java".repeat(3); // repeated is "JavaJavaJava"

3.6.2. Static and Instance Methods

At the end of the preceding section, you saw two methods of the String

class, join and repeat. There is a crucial difference between these two

methods. When you call

String all = String.join(" / ", "S", "M", "L", "XL");

you provide all arguments that the method needs inside the parentheses.

Contrast this with the call

String repeated = "Java".repeat(3);

To compute the repetition of a string, two pieces of information are

required: the string itself, and the number of times that it should be

repeated.

Note that the string is written before the name of the method, with a dot (.)

separating the two. The repeat method is an example of an instance method.

As you will see in Chapter 4, an instance method has one special argument;

in this case, a string. That value precedes the method name. Supplementary

arguments are provided after the method name in parentheses.

The String.join method, on the other hand, is a static method. It doesn’t

have a special argument. The dot serves a different function, separating the

name of the class in which the method is declared from the method name.

To tell the two apart, locate the dot. Is it preceded by a value (such as the

string "Java")? Then you are looking at the call to an instance method. Or is

it preceded by the name of a class (such as String)? Then it is a static

method.

Many of the methods that you have seen so far, including IO.println,

Integer.parseInt, and Math.sqrt, are static methods. However, as you learn

more about Java, you will mostly use instance methods.

Note: The choice between static and instance methods may feel

arbitrary at times. For example, why do we call

Integer.parseInt("42") and not "42".parseInt()? The designers of the

Java API had to decide. They preferred that the conversion of

strings to integers should the responsibility of the Integer class, and

not the String class.

3.6.3. Indexes and Substrings

Java strings are sequences of char values. As you saw in Section 3.3.4, the

char data type is used for representing Unicode code points in the UTF-16

encoding. Some characters can be represented with a single char value, but

many characters and symbols require more than one char value.

Note: The virtual machine is not required to store strings as

sequences of char values. For efficiency, strings that hold only

single-byte code units store byte sequences, and all others char

sequences. This is an implementation detail that has changed in the

past and may again change in the future.

The length instance method yields the number of char values required for a

given string. For example:

String greeting = "Ahoy 🏴☠ ";

int n = greeting.length(); // is 10

The call s.charAt(n) returns the char value at position n, where n is between

0 and s.length() – 1. (Like C and C++, Java counts positions in a string

starting with 0.) For example:

char first = greeting.charAt(0); // first is 65 or 'A'

char last = greeting.charAt(9); // last is 65039

However, these calls are not very useful. The last char value is just a part of

the flag symbol, and you won’t generally care what these values are.

Still, you sometimes need to know where a substring is located in a string.

Use the indexOf method:

String sub = " ";

int start = greeting.indexOf(sub); // 4

As it happens, the position or index of the space is 4, but the exact value

doesn’t matter. It depends on the characters preceding the substring, and the

number of char values needed to encode each of them. Always treat an

index as an opaque number, not the count of perceived characters preceding

it.

You can compute where the next character starts:

int nextStart = start + sub.length(); // 5

The string " " has length 1, but do not hard-code the length of a string.

Always use the length method instead.

You can extract a substring from a larger string with the substring method

of the String class. For example,

String greeting = "Hello, World!";

int a = greeting.indexOf(",") + 2; // 7

int b = greeting.indexOf("!"); // 12

String s = greeting.substring(a, b);

creates a string consisting of the characters "World".

The second argument of substring is the first position that you do not want

to copy. In our case, we copy everything from the beginning up to, but not

including, the comma.

Note that the string s.substring(a, b) always has length b − a. For example,

the substring "World" has length 12 − 7 = 5.

3.6.4. Strings Are Immutable

The String class gives no methods that let you change a character in an

existing string. If you want to turn greeting into "Help!", you cannot

directly change the last positions of greeting into 'p' and '!'. If you are a C

programmer, this can make you feel pretty helpless. How are we going to

modify the string? In Java, it is quite easy: Concatenate the substring that

you want to keep with the characters that you want to replace.

String greeting = "Hello";

int n = greeting.indexOf("lo");

greeting = greeting.substring(0, n) + "p!";

This declaration changes the current value of the greeting variable to

"Help!".

Since you cannot change the individual characters in a Java string, the

documentation refers to the objects of the String class as immutable. Just as

the number 3 is always 3, the string "Hello" will always contain the code-

unit sequence for the characters H, e, l, l, o. You cannot change these

values. Yet you can, as you just saw, change the contents of the string

variable greeting and make it refer to a different string, just as you can

make a numeric variable currently holding the value 3 hold the value 4.

Isn’t that a lot less efficient? It would seem simpler to change the characters

than to build up a whole new string from scratch. Well, yes and no. Indeed,

it is some amount of work to generate a new string that holds the

concatenation of "Hel" and "p!". But immutable strings have one great

advantage: The compiler can arrange that strings are shared.

To understand how this works, think of the various strings as sitting in a

common pool. String variables then point to locations in the pool. If you

copy a string variable, both the original and the copy share the same

characters.

Overall, the designers of Java decided that the efficiency of sharing

outweighs the inefficiency of string creation. Look at your own programs;

most of the time, you probably don’t change strings—you just compare

them. (There is one common exception—assembling strings from

individual characters or from shorter strings that come from the keyboard or

a file. For these situations, Java provides a separate class—see Section

3.6.9.)

3.6.5. Testing Strings for Equality

To test whether two strings are equal, use the equals method. The

expression

s.equals(t)

returns true if the strings s and t are equal, false otherwise. Note that s and t

can be string variables or string literals. For example, the expression

"Hello".equals(greeting)

is perfectly legal. To test whether two strings are identical except for the

upper/lowercase letter distinction, use the equalsIgnoreCase method.

"Hello".equalsIgnoreCase("hello")

Do not use the == operator to test whether two strings are equal! It only

determines whether or not the strings are stored in the same location. Sure,

if strings are in the same location, they must be equal. But it is entirely

possible to store multiple copies of identical strings in different places.

String greeting = "Hello"; // initialize greeting to a string

greeting == "Hello" // true

greeting.substring(0, greeting.indexOf("l")) == "He" // false

greeting.substring(0, greeting.indexOf("l")).equals("He") // true

If the virtual machine always arranges for equal strings to be shared, then

you could use the == operator for testing equality. But only string literals

are shared, not strings that are computed at runtime. Therefore, never use

== to compare strings. Always use equals instead.

Caution: In most programming languages, such as Python,

JavaScript, or C++, the == operator compares strings by their

content. If you come from one of those languages, be particularly

careful about string comparisons.

3.6.6. Empty and Null Strings

The empty string "" is a string of length 0. You can test whether a string is

empty by calling

if (str.length() == 0)

or

if (str.equals(""))

or , for optimum efficiency

if (str.isEmpty())

An empty string is a Java object which holds the string length (namely, 0)

and an empty contents. However, a String variable can also hold a special

value, called null, that indicates that no object is currently associated with

the variable. To test whether a string is null, use

if (str == null)

Sometimes, you need to test that a string is neither null nor empty. Then use

if (str != null && str.length() != 0)

You need to test that str is not null first. As you will see in Chapter 4, it is

an error to invoke a method on a null value.

3.6.7. The String API

The String class in Java contains close to 100 methods. The following API

note summarizes the most useful ones.

These API notes, found throughout the book, will help you understand the

Java Application Programming Interface (API). Each API note starts with

the name of a class, such as java.lang.String. (The significance of the so-

called package name java.lang is explained in Chapter 4.) The class name is

followed by the names, explanations, and parameter descriptions of one or

more methods. A parameter variable of a method is the variable that

receives a method argument. For example, as you will see in the first API

note below, the charAt method has a parameter called index of type int. If

you call the method, you supply an argument of that type, such as

str.charAt(0).

The API notes do not list all methods of a particular class but present the

most commonly used ones in a concise form. For a full listing, consult the

online documentation (see Section 3.6.8).

The number following the class name is the JDK version number in which

it was introduced. If a method has been added later, it has a separate version

number.

java.lang.String 1.0

char charAt(int index)

returns the code unit at the specified location. You probably don’t

want to call this method unless you are interested in low-level code

units.

int length()

returns the number of code units of the string.

boolean equals(Object other)

returns true if the string equals other.

boolean equalsIgnoreCase(String other)

returns true if the string equals other, except for upper/lowercase

distinction.

int compareTo(String other)

returns a negative value if the string comes before other in dictionary

order, a positive value if the string comes after other in dictionary

order, or 0 if the strings are equal.

boolean isEmpty() 6

boolean isBlank() 11

return true if the string is empty or consists of whitespace.

boolean startsWith(String prefix)

boolean endsWith(String suffix)

return true if the string starts with prefix or ends with suffix.

int indexOf(String str)

int indexOf(String str, int fromIndex)

int indexOf(String str, int fromIndex, int toIndex) 21

return the start of the first substring equal to the string str, starting at

index 0 or at fromIndex, and ending at the end of the string or at

toIndex. Return -1 if str does not occur in this string or the specified

substring.

int lastIndexOf(String str)

int lastIndexOf(String str, int fromIndex)

return the start of the last substring equal to the string str, starting at

the end of the string or at fromIndex, or -1 if str does not occur.

String replace(CharSequence oldString, CharSequence newString)

returns a new string that is obtained by replacing all substrings

matching oldString in the string with the string newString. You can

supply String or StringBuilder arguments for the CharSequence

parameters.

String substring(int beginIndex)

String substring(int beginIndex, int endIndex)

return a new string consisting of all code units from beginIndex until

the end of the string or until endIndex– 1.

String toLowerCase()

String toUpperCase()

return a new string containing all characters in the original string, with

uppercase characters converted to lowercase, or lowercase characters

converted to uppercase.

String strip() 11

String stripLeading() 11

String stripTrailing() 11

return a new string by eliminating leading and trailing, or just leading

or trailing whitespace in the original string. Use these methods instead

of the archaic trim method that eliminates characters ≤ U+0020.

String join(CharSequence delimiter, CharSequence... elements) 8

returns a new string joining all elements with the given delimiter.

String repeat(int count) 11

returns a string that repeats this string count times.

Note: In the API notes, there are a few parameters of type

CharSequence. This is an interface type to which all strings belong.

You will learn about interface types in Chapter 6. For now, you just

need to know that you can pass arguments of type String whenever

you see a CharSequence parameter.

3.6.8. Reading the Online API Documentation

As you just saw, the String class has lots of methods. Furthermore, there are

thousands of classes in the standard libraries, with many more methods. It is

plainly impossible to remember all useful classes and methods. Therefore, it

is essential that you become familiar with the online API documentation

that lets you look up all classes and methods in the standard library. You can

download the API documentation from Oracle and save it locally, or you

can point your browser to

https://docs.oracle.com/en/java/javase/25/docs/api.

The API documentation has a search box (see Figure 3.2). Older versions

have frames with lists of packages and classes. You can still get those lists

by clicking on the Frames menu item. For example, to get more information

on the methods of the String class, type “String” into the search box and

select the type java.lang.String, or locate the link in the frame with class

names and click it. You get the class description, as shown in Figure 3.3.

https://docs.oracle.com/en/java/javase/25/docs/api

Figure 3.2: The Java API documentation

Figure 3.3: Class description for the String class

When you scroll down, you reach a summary of all methods, sorted in

alphabetical order (see Figure 3.4). Click on any method name for a

detailed description of that method (see Figure 3.5). For example, if you

click on the compareToIgnoreCase link, you’ll get the description of the

compareToIgnoreCase method.

Figure 3.4: Method summary of the String class

Figure 3.5: Detailed description of a String method

Tip: If you have not already done so, download the JDK

documentation, as described in Chapter 2. Bookmark the index.html

page of the documentation in your browser right now!

You can also add a new search engine to your browser with the

query string

https://docs.oracle.com/en/java/javase/25/docs/api/search.html?

q=%s

3.6.9. Building Strings

Occasionally, you need to build up strings from shorter strings, such as

keystrokes or words from a file. It would be inefficient to use string

concatenation for this purpose. Every time you concatenate strings, a new

String object is constructed. This is time consuming and wastes memory.

Using the StringBuilder class avoids this problem.

Follow these steps if you need to build a string from many small pieces.

First, construct an empty string builder:

StringBuilder builder = new StringBuilder();

You can also provide initial content:

StringBuilder builder = new StringBuilder("INVOICE\n");

Each time you need to add another part, call the append method.

builder.append(str); // appends a string

builder.appendCodePoint(cp); // appends a single code point

The latter method is occasionally useful when you need to compute a code

point. Here is an example. Flag emojis are made up of two code points,

each in the range between 127462 (regional indicator symbol letter A) to

127487 (regional indicator symbol letter Z). Now suppose you have a

country string such as "IT". Then you can compute the code points as

follows:

final int REGIONAL_INDICATOR_SYMBOL_LETTER_A = 127462;

String country = . . .;

builder.appendCodePoint(country.charAt(0) - 'A' +

REGIONAL_INDICATOR_SYMBOL_LETTER_A);

builder.appendCodePoint(country.charAt(1) - 'A' +

REGIONAL_INDICATOR_SYMBOL_LETTER_A);

When you are done building the string, call the toString method. You will

get a String object with the character sequence contained in the builder.

String completedString = builder.toString();

Cleverly, the StringBuilder methods return the builder object, so that you

can chain multiple method calls:

String completedString = new StringBuilder()

 .append(str)

 .appendCodePoint(cp)

 .toString();

The String class doesn’t have a method to reverse the Unicode characters of

a string, but StringBuilder does. To reverse a string, use this code snippet:

String reversed = new StringBuilder(original).reverse().toString();

Caution: Reversing works correctly for characters that are encoded

with two char values, but it fails when a symbol is composed of

multiple code points. For example, reversing a string containing the

pirate flag described in Section 3.3.4 does not preserve the flag.

Note: The legacy StringBuffer class is less efficient than

StringBuilder, but it allows multiple threads to add or remove

characters. If all string editing happens in a single thread (which is

usually the case), you should use StringBuilder. The APIs of both

classes are identical.

The following API notes contain the most important methods for the

StringBuilder class.

java.lang.StringBuilder 5.0

StringBuilder()

StringBuilder(CharSequence seq)

constructs an empty string builder, or one with the given initial

content.

int length()

returns the number of code units of the builder or buffer.

StringBuilder append(String str)

appends a string and returns the string builder.

StringBuilder appendCodePoint(int cp)

appends a code point, converting it into one or two code units, and

returns this.

StringBuilder insert(int offset, String str)

inserts a string at position offset and returns the string builder.

StringBuilder delete(int startIndex, int endIndex)

deletes the code units with offsets startIndex to endIndex– 1 and

returns the string builder.

StringBuilder repeat(CharSequence cs, int count) 21

Appends count copies of cs and returns the string builder.

StringBuilder reverse()

Reverses the code points in this string builder and returns the builder.

String toString()

returns a string with the same data as the builder or buffer contents.

3.6.10. Text Blocks

The text block feature, added in Java 15, makes it easy to provide string

literals that span multiple lines. A text block starts with """, followed by a

line feed. The block ends with another """:

String greeting = """

Hello

World

""";

A text block is easier to read and write than the equivalent string literal:

"Hello\nWorld\n"

This string contains two \n: one after Hello and one after World. The

newline after the opening """ is not included in the string literal.

If you don’t want a newline after the last line, put the closing """

immediately after the last character:

String prompt = """

Hello, my name is Hal.

Please enter your name:""";

Text blocks are particularly suited for including code in some other

language, such as SQL or HTML. You can just paste it between the triple

quotes:

String html = """

<div class="Warning">

 Beware of those who say "Hello" to the world

</div>

""";

All escape sequences from regular strings work the same way in text

blocks.

Note that you don’t have to use escape sequences with the quotation marks

around Hello. There are just two situations where you need to use the \"

escape sequence in a text block:

If the text block ends in a quotation mark

If the text block contains a sequence of three or more quotation marks

Unfortunately, you still need the escape sequence \\ to denote a backslash in

a text block.

There is one escape sequence that only works in text blocks. A \ directly

before the end of a line joins this line and the next. For example,

"""

Hello, my name is Hal. \

Please enter your name:""";

is the same as

"Hello, my name is Hal. Please enter your name:"

Line endings are normalized by removing trailing whitespace and changing

any Windows line endings (\r\n) to simple newlines (\n). If you need to

preserve trailing spaces, turn the last one into a \s escape. In fact, that’s

what you probably want for prompt strings. The following string ends in a

space:

"""

Hello, my name is Hal. \

Please enter your name:\s""";

The story is more complex for leading whitespace. Consider a typical

variable declaration that is indented from the left margin. You can indent

the text block as well:

 String html = """

 <div class="Warning">

 Beware of those who say "Hello" to the world

 </div>

 """;

The indentation that is common to all lines in the text block is subtracted.

The actual string is

"<div class=\"Warning\">\n Beware of those who say \"Hello\" to the

world\n</div>\n"

Note that there are no indentations in the first and third lines.

You can always avoid this indentation stripping by having no whitespace in

the last line, before the closing """. But many programmers seem to find

that it looks neater when text blocks are indented. Your IDE may cheerfully

offer to indent all text blocks, using tabs or spaces.

Java wisely does not prescribe the width of a tab. The whitespace prefix has

to match exactly for all lines in the text block.

Entirely blank lines are not considered when stripping common indentation.

However, the whitespace before the closing """ is significant. Be sure to

indent to the end of the whitespace that you want to have stripped.

Caution: Be careful about mixed tabs and spaces in indentations.

An overlooked space can easily yield a wrongly indented string.

Tip: If a text block contains code that isn’t Java, you may actually

prefer to place it at the left margin. It stands out from the Java code,

and you have more room for long lines.

3.7. Input and Output

To make our example programs more interesting, we want to accept input

and properly format the program output. Of course, modern programs use a

GUI for collecting user input. However, programming such an interface

requires more tools and techniques than we have at our disposal at this time.

Our first order of business is to become more familiar with the Java

programming language, so we use the humble console for input and output.

3.7.1. Reading Input

You saw that it is easy to print output to the console window just by calling

IO.println. Reading from the console is just as simple.

The readln method reads one line of input and returns it as a string value.

You can optionally pass a prompt string as an argument.

String name = IO.readln("What is your name? ");

To read an integer, use the Integer.parseInt method to convert the entered

string into an integer.

int age = Integer.parseInt(IO.readln("How old are you? "));

Similarly, the parseDouble method converts a string to a floating-point

number.

double rate = Double.parseDouble(IO.readln("Interest rate: "));

The program in Listing 3.2 asks for the user’s name and age and then prints

a message like

Hello, Cay. Next year, you'll be 65.

Listing 3.2 InputDemo.java

1 /**

2 * This program demonstrates console input.

3 */

4 void main() {

5 // get first input

6 String name = IO.readln("What is your name? ");

7

8 // get second input

9 int age = Integer.parseInt(IO.readln("How old are you? "));

10

11 // display output on console

12 IO.println("Hello, " + name + ". Next year, you'll be " + (age + 1) + ".");

13 }

Caution: If you run this program from a Windows terminal, special

characters in your name may not show up correctly. By default,

Windows terminals use an archaic character encoding. To fix this,

switch the terminal to the UTF-8 encoding, by issuing the following

command prior to running the program:

chcp 65001

Then, if you use Java 18 or above, all will be well. With older

versions of Java, run the program as:

java -Dfile.encoding=utf-8 InputDemo

If you use a development environment, you should not have to

worry about this issue.

Note: Prior to Java 25, reading console input was not so easy. To

use an older version of Java, make these adaptations:

First first construct a Scanner object that is attached to System.in:

Scanner in = new Scanner(System.in);

(Objects, constructors, and the new operator are discussed in detail

in Chapter 4.)

The nextLine method reads a line of input.

System.out.print("What is your name? ");

String name = in.nextLine();

To read an integer, use the nextInt method.

System.out.print("How old are you? ");

int age = in.nextInt();

Similarly, the nextDouble method reads the next floating-point

number.

Finally, include the line

import java.util.Scanner;

at the beginning of the program, to tell the compiler that the Scanner

class is defined in the java.util package. Packages and import

directives are covered in more detail in Chapter 4.

Caution: The parseInt and parseDouble methods are not intended

for parsing user input, and IO.println is not intended for presenting

numbers to a general audience. They use the number format for

decimal Java literals. That’s ok for sample programs in a

programming book. However, most users expect to see the decimal

digits and separators to which they are accustomed.

To parse human input, use the nextInt and nextDouble methods of

the Scanner class. For output, use the formatted method that you

will see in Section 3.7.2. These methods use the number format of

the host system.

Note: The IO.readLine method is not suitable for reading a

password from a console since the input is plainly visible to anyone.

Use the readPassword method of the Console class to read a

password while hiding the user input:

String username = System.console().readLine("User name: ");

char[] passwd = System.console().readPassword("Password: ");

. . .

Arrays.fill(passwd, '*');

For security reasons, the password is returned in an array of

characters rather than a string. After you are done processing the

password, you should immediately overwrite the array elements

with a filler value.

java.lang.IO 25

println(Object obj)

Converts the object to a string and prints it on the console, followed

by a line separator.

print(Object ob)

Converts the object to a string and prints it on the console without a

line separator.

println()

Prints a line separator.

String readln(String prompt)

Prints a prompt on the console and returns one line of user input.

String readln()

Returns one line of user input without printing a prompt.

java.util.Scanner 5.0

Scanner(InputStream in)

constructs a Scanner object from the given input stream.

String nextLine()

reads the next line of input.

String next()

reads the next word of input (delimited by whitespace).

int nextInt()

double nextDouble()

read and convert the next character sequence that represents an integer

or floating-point number.

boolean hasNext()

tests whether there is another word in the input.

boolean hasNextInt()

boolean hasNextDouble()

test whether the next character sequence represents an integer or

floating-point number.

java.lang.System 1.0

static Console console() 6

returns a Console object for interacting with the user through a

console window if such interaction is possible, null otherwise. A

Console object is available for any program that is launched in a

console window. Otherwise, the availability is system-dependent.

java.io.Console 6

char[] readPassword(String prompt, Object... args)

String readLine(String prompt, Object... args)

display the prompt and read the user input until the end of the input

line. The optional args parameters are used to supply formatting

arguments, as described in the next section.

3.7.2. Formatting Output

You can print a number x to the console with the statement IO.print(x). That

command will print x with the maximum number of nonzero digits for that

type. For example,

double x = 10000.0 / 3.0;

IO.print(x);

prints

3333.3333333333335

That is a problem if you want to display, for example, dollars and cents.

The remedy is the formatted method, which follows the venerable

conventions from the C library. For example, the call

IO.print("%8.2f".formatted(x));

prints x with a field width of 8 characters and a precision of 2 characters.

That is, the printout contains a leading space and the seven characters

3333.33

You can supply multiple arguments to formatted. For example:

IO.print("Hello, %s. Next year, you'll be %d.".formatted(name, age + 1));

Each of the format specifiers that start with a % character is replaced with

the corresponding argument. The conversion character that ends a format

specifier indicates the type of the value to be formatted: f is a floating-point

number, s a string, and d a decimal integer. Table 3.5 shows all conversion

characters.

The uppercase variants produce uppercase letters. For example, "%8.2E"

formats 3333.33 as 3.33E+03, with an uppercase E.

Table 3.5: Conversions for formatted

Conversion

Character
Type Example

d Decimal integer 159

x or X

Hexadecimal integer. For more

control over hexadecimal

formatting, use the HexFormat

class.

9f

o Octal integer 237

f or F Fixed-point floating-point 15.9

Conversion

Character
Type Example

e or E Exponential floating-point 1.59e+01

g or G
General floating-point (the shorter

of e and f)
—

a or A Hexadecimal floating-point 0x1.fccdp3

s or S String Hello

c or C Character H

b or B boolean true

h or H Hash code 42628b2

Conversion

Character
Type Example

tx or Tx

Legacy date and time formatting.

Use the java.time classes instead

—see Chapter 6 of Volume II.

—

% The percent symbol %

n
The platform-dependent line

separator
—

Note: You can use the s conversion to format arbitrary objects. If an

arbitrary object implements the Formattable interface, the object’s

formatTo method is invoked. Otherwise, the toString method is

invoked to turn the object into a string. The toString method is

discussed in Chapter 5 and interfaces in Chapter 6.

In addition, you can specify flags that control the appearance of the

formatted output. Table 3.6 shows all flags. For example, the comma flag

adds group separators. That is,

IO.println("%,.2f".formatted(10000.0 / 3.0));

prints

3,333.33

You can use multiple flags, for example "%,(.2f" to use group separators

and enclose negative numbers in parentheses.

Table 3.6: Flags for printf

Flag Purpose Example

Flag Purpose Example

+
Prints sign for positive and negative

numbers.
+3333.33

space Adds a space before positive numbers. | 3333.33|

0 Adds leading zeroes. 003333.33

- Left-justifies field. |3333.33 |

(
Encloses negative numbers in

parentheses.
(3333.33)

, Adds group separators. 3,333.33

(for f

format)
Always includes a decimal point. 3,333.

Flag Purpose Example

(for x

or o

format)

Adds 0x or 0 prefix. 0xcafe

$

Specifies the index of the argument to

be formatted. For example, %1$d %1$x

prints the first argument in decimal and

hexadecimal.

159 9F

<

Formats the same value as the previous

specification. For example, %d %<x

prints the same number in decimal and

hexadecimal.

159 9F

Figure 3.6 shows a syntax diagram for format specifiers.

.

Figure 3.6: Format specifier syntax

Note: Formatting is locale-specific. For example, in Germany, the

group separator is a period, not a comma. On a computer with a

German locale, the call

double x = 10000.0 / 3.0;

IO.print("%8.2f".formatted(x));

yields the output

 3333,33

This locale-specific behavior is normally what you want when you

communicate with users. However, if you produce a file that is later

consumed by a computer program, you may need to choose a fixed

locale for the output. Specify the locale as the first argument to the

static format method of the String class:

IO.print(String.format(Locale.US, "%8.2f", x));

3.8. Control Flow

Java, like any programming language, supports both conditional statements

and loops to determine control flow. I will start with the conditional

statements, then move on to loops, to end with a thorough discussion of the

four forms of switch.

Note: The Java control flow constructs are similar to those in C,

C++, or JavaScript. There is no goto, but there is a “labeled” version

of break that you can use to break out of a nested loop (where, in C,

you perhaps would have used a goto). Finally, there is a variant of

the for loop that is similar to the range-based for loop in C++ and

the for of loop in JavaScript.

3.8.1. Block Scope

Before learning about control structures, you need to know more about

blocks.

A block, or compound statement, consists of a number of Java statements,

surrounded by a pair of braces. Blocks define the scope of your variables. A

block can be nested inside another block. Here is a block that is nested

inside the block of the main method:

void main() {

 int n;

 . . .

 {

 int k;

 . . .

 } // k is only defined up to here

}

You may not declare identically named local variables in two nested blocks.

For example, the following is an error and will not compile:

void main() {

 int n;

 . . .

 {

 int k;

 int n; // ERROR--can't redeclare n in inner block

 . . .

 }

}

Note: In many programming languages, it is possible to redefine a

variable inside a nested block. The inner definition then shadows the

outer one. This can be a source of programming errors; hence, Java

does not allow it.

3.8.2. Conditional Statements

The conditional statement in Java has the form

if (condition) statement

The condition must be surrounded by parentheses.

In Java, as in most programming languages, you will often want to execute

multiple statements when a single condition is true. In this case, use a block

statement that takes the form

{

 statement1

 statement2

 . . .

}

For example:

if (yourSales >= target) {

 performance = "Satisfactory";

 bonus = 100;

}

In this code all the statements surrounded by the braces will be executed

when yourSales is greater than or equal to target (see Figure 3.7).

.

Figure 3.7: Flowchart for the if statement

Note: A block (sometimes called a compound statement) enables

you to have more than one (simple) statement in any Java

programming structure that otherwise allows for a single (simple)

statement.

The more general conditional in Java looks like this (see Figure 3.8):

if (condition) statement1 else statement2

.

Figure 3.8: Flowchart for the if/else statement

For example:

if (yourSales >= target) {

 performance = "Satisfactory";

 bonus = 100 + 0.01 * (yourSales - target);

}

else {

 performance = "Unsatisfactory";

 bonus = 0;

}

The else part is always optional. An else groups with the closest if. Thus, in

the statement

if (x <= 0) if (x == 0) sign = 0; else sign = -1;

the else belongs to the second if. Of course, it is a good idea to use braces to

clarify this code:

if (x <= 0) { if (x == 0) sign = 0; else sign = -1; }

Repeated if . . . else if . . . alternatives are common (see Figure 3.9). For

example:

if (yourSales >= 2 * target) {

 performance = "Excellent";

 bonus = 1000;

}

else if (yourSales >= 1.5 * target) {

 performance = "Fine";

 bonus = 500;

}

else if (yourSales >= target) {

 performance = "Satisfactory";

 bonus = 100;

}

else {

 IO.println("You're fired");

}

.

Figure 3.9: Flowchart for the if/else if (multiple branches)

3.8.3. Loops

The while loop executes a statement (which may be a block statement)

while a condition is true. The general form is

while (condition) statement

The while loop will never execute if the condition is false at the outset (see

Figure 3.10).

.

Figure 3.10: Flowchart for the while statement

The program in Listing 3.3 determines how long it will take to save a

specific amount of money for your well-earned retirement, assuming you

deposit the same amount of money per year and the money earns a specified

interest rate.

In the example, we are incrementing a counter and updating the amount

currently accumulated in the body of the loop until the total exceeds the

targeted amount.

while (balance < goal) {

 balance += payment;

 double interest = balance * interestRate / 100;

 balance += interest;

 years++;

}

IO.println(years + " years.");

(Don’t rely on this program to plan for your retirement. It lacks a few

niceties such as inflation and your life expectancy.)

A while loop tests at the top. Therefore, the code in the block might never

be executed. If you want to make sure a block is executed at least once, you

need to move the test to the bottom, using the do/while loop. Its syntax

looks like this:

do statement while (condition);

This loop executes the statement (which is typically a block) and only then

tests the condition. If it’s true, it repeats the statement and retests the

condition, and so on. The code in Listing 3.4 computes the new balance in

your retirement account and then asks if you are ready to retire:

do {

 balance += payment;

 double interest = balance * interestRate / 100;

 balance += interest;

 years++;

 // print current balance

 . . .

 // ask if ready to retire and get input

 . . .

} while (input.equals("N"));

As long as the user answers "N", the loop is repeated (see Figure 3.11). This

program is a good example of a loop that needs to be entered at least once,

because the user needs to see the balance before deciding whether it is

sufficient for retirement.

.

Figure 3.11: Flowchart for the do/while statement

Listing 3.3 Retirement.java

1 /**

2 * This program demonstrates a <code>while</code> loop.

3 */

4 void main() {

5 // read inputs

6 double goal = Double.parseDouble(IO.readln("How much money do you need to retire?

"));

7 double payment

8 = Double.parseDouble(IO.readln("How much money will you contribute every year?

"));

9 double interestRate = Double.parseDouble(IO.readln("Interest rate in %: "));

10

11 double balance = 0;

12 int years = 0;

13

14 // update account balance while goal isn't reached

15 while (balance < goal) {

16 // add this year's payment and interest

17

18 balance += payment;

19 double interest = balance * interestRate / 100;

20 balance += interest;

21 years++;

22 }

23

24 IO.println("You can retire in " + years + " years.");

25 }

Listing 3.4 Retirement2.java

1 /**

2 * This program demonstrates a <code>do/while</code> loop.

3 */

4 void main() {

5 double payment = Double.parseDouble(

6 IO.readln("How much money will you contribute every year? "));

7 double interestRate = Double.parseDouble(IO.readln("Interest rate in %: "));

8

9 double balance = 0;

10 int year = 0;

11

12 String input;

13

14 // update account balance while user isn't ready to retire

15 do {

16 // add this year's payment and interest

17 balance += payment;

18 double interest = balance * interestRate / 100;

19 balance += interest;

20

21 year++;

22

23 // print current balance

24 IO.println("After year %d, your balance is %,.2f".formatted(year,

25 balance));

26

27 // ask if ready to retire and get input

28 input = IO.readln("Ready to retire? (Y/N) ");

29 }

30 while (input.equals("N"));

31 }

3.8.4. Determinate Loops

The for loop is a general construct to support iteration controlled by a

counter or similar variable that is updated after every iteration. As Figure

3.12 shows, the following loop prints the numbers from 1 to 10 on the

screen:

for (int i = 1; i <= 10; i++)

 IO.println(i);

The first slot of the for statement usually holds the counter initialization.

The second slot gives the condition that will be tested before each new pass

through the loop, and the third slot specifies how to update the counter.

.

Figure 3.12: Flowchart for the for statement

Although Java, like C++, allows almost any expression in the various slots

of a for loop, it is an unwritten rule of good taste that the three slots should

only initialize, test, and update the same counter variable. One can write

very obscure loops by disregarding this rule.

Even within the bounds of good taste, much is possible. For example, you

can have loops that count down:

for (int i = 10; i > 0; i--)

 IO.println("Counting down . . . " + i);

IO.println("Blastoff!");

Caution: Be careful with testing for equality of floating-point

numbers in loops. A for loop like this one

for (double x = 0; x != 10; x += 0.1) . . .

might never end. Because of roundoff errors, the final value might

not be reached exactly. In this example, x jumps from

9.99999999999998 to 10.09999999999998 because there is no exact

binary representation for 0.1.

When you declare a variable in the first slot of the for statement, the scope

of that variable extends until the end of the body of the for loop.

for (int i = 1; i <= 10; i++) {

 . . .

}

// i no longer defined here

In particular, if you define a variable inside a for statement, you cannot use

its value outside the loop. Therefore, if you wish to use the final value of a

loop counter outside the for loop, be sure to declare it outside the loop

header.

int i;

for (i = 1; i <= 10; i++) {

 . . .

}

// i is still defined here

On the other hand, you can define variables with the same name in separate

for loops:

for (int i = 1; i <= 10; i++) {

 . . .

}

. . .

for (int i = 11; i <= 20; i++) { // OK to define another variable named i

 . . .

}

A for loop is merely a convenient shortcut for a while loop. For example,

for (i = 10; i > 0; i--)

 IO.println("Counting down . . . " + i);

can be rewritten as follows:

i = 10;

while (i > 0) {

 IO.println("Counting down . . . " + i);

 i--;

}

The first slot of a for loop can declare multiple variables, provided they are

of the same type. And the third slot can contain multiple comma-separated

expressions:

for (int i = 1, j = 10; i <= 10; i++, j--) { . . . }

While technically legal, this stretches the intuitive meaning of the for loop,

and you should consider a while loop instead.

Listing 3.5 shows a typical example of a for loop.

The program computes the odds of winning a lottery. For example, if you

must pick six numbers from the numbers 1 to 50 to win, then there are (50 ×

49 × 48 × 47 × 46 × 45)/(1 × 2 × 3 × 4 × 5 × 6) possible outcomes, so your

chance is 1 in 15,890,700. Good luck!

In general, if you pick k numbers out of n, there are

n× (n− 1) × (n− 2) ×⋯× (n− k+ 1)

1 × 2 × 3 × 4 ×⋯× k

possible outcomes. The following for loop computes this value:

int lotteryOdds = 1;

for (int i = 1; i <= k; i++)

 lotteryOdds = lotteryOdds * (n - i + 1) / i;

Note: Section 3.10.3 describes the “generalized for loop” (also

called “for each” loop) that makes it convenient to visit all elements

of an array or collection.

Listing 3.5 LotteryOdds.java

1 /**

2 * This program demonstrates a <code>for</code> loop.

3 */

4 void main() {

5 int k = Integer.parseInt(IO.readln("How many numbers do you need to draw? "));

6 int n = Integer.parseInt(IO.readln("What is the highest number you can draw? "));

7

8 // Binomial coefficient n*(n-1)*(n-2)*...*(n-k+1)/(1*2*3*...*k)

9

10 int lotteryOdds = 1;

11 for (int i = 1; i <= k; i++)

12 lotteryOdds = lotteryOdds * (n - i + 1) / i;

13

14 IO.println("Your odds are 1 in " + lotteryOdds + ". Good luck!");

15 }

3.8.5. Multiple Selections with switch

The if/else construct can be cumbersome when you have to deal with

multiple alternatives for the same expression. The switch statement makes

this easier, particularly with the form that has been introduced in Java 14.

For example, if you set up a menu system with four alternatives like that in

Figure 3.13, you could use code that looks like this:

int choice = Integer.parseInt(IO.readln("Select an option (1, 2, 3, 4) "));

switch (choice) {

 case 1 ->

 . . .

 case 2 ->

 . . .

 case 3 ->

 . . .

 case 4 ->

 . . .

 default ->

 IO.println("Bad input");

}

.

Figure 3.13: Flowchart for the switch statement

Note the similarity to the switch expressions that you saw in Section 3.5.9.

Unlike a switch expression, a switch statement has no value. Each case

carries out an action.

The “classic” form of the switch statement, which dates all the way back to

the C language, has been supported since Java 1.0. It has the form:

int choice = . . .;

switch (choice) {

 case 1:

 . . .

 break;

 case 2:

 . . .

 break;

 case 3:

 . . .

 break;

 case 4:

 . . .

 break;

 default:

 IO.println("Bad input");

}

Execution starts at the case label that matches the value on which the

selection is performed and continues until the next break or the end of the

switch. If none of the case labels match, then the default clause is executed,

if it is present.

Caution: It is possible for multiple alternatives to be triggered. If

you forget to add a break at the end of an alternative, execution falls

through to the next alternative! This behavior is plainly dangerous

and a common cause for errors.

To detect such problems, compile your code with the -

Xlint:fallthrough option. Then the compiler will issue a warning

whenever an alternative does not end with a break statement.

If you actually want to use the fallthrough behavior, tag the

surrounding method with the annotation

@SuppressWarnings("fallthrough"). Then no warnings will be

generated for that method. (An annotation is a mechanism for

supplying information to the compiler or a tool that processes Java

source or class files. Volume II has an in-depth coverage of

annotations.)

For symmetry, Java 14 also introduced a switch expression with

fallthrough, for a total of four forms of switch. Table 3.7 shows them all.

Table 3.7: The four forms of switch

Expression StatementExpression Statement

No

Fallthrough

int numLetters = switch

(seasonName) {

 case "Spring" -> {

 IO.println("spring

time!");

 yield 6;

 }

 case "Summer",

"Winter" -> 6;

 case "Fall" -> 4;

 default -> -1;

};

switch

(seasonName) {

 case "Spring" ->

{

IO.println("spring

time!");

 numLetters =

6;

 }

 case "Summer",

"Winter" ->

 numLetters =

Expression Statement

6;

 case "Fall" ->

 numLetters =

4;

 default ->

 numLetters =

-1;

}

Fallthrough int numLetters = switch

(seasonName) {

 case "Spring":

 IO.println("spring

time!");

switch

(seasonName) {

 case "Spring":

IO.println("spring

Expression Statement case "Summer",

"Winter":

 yield 6;

 case "Fall":

 yield 4;

 default:

 yield -1;

};

time!");

 case "Summer",

"Winter":

 numLetters =

6;

 break;

 case "Fall":

 numLetters =

4;

 break;

 default:

Expression Statement

 numLetters =

-1;

}

In the fallthrough variants, each case ends with a colon. If the cases end

with arrows ->, then there is no fallthrough. You can’t mix colons and

arrows in a single switch statement.

Each branch of a switch expression must yield a value. Most commonly,

each value follows an -> arrow:

case "Summer", "Winter" -> 6;

If you cannot compute the result in a single expression, use braces and a

yield statement. Like break, it terminates execution. Unlike break, it also

yields a value—the value of the expression:

case "Spring" -> {

 IO.println("spring time!");

 yield 6;

}

Note: It is legal to throw an exception in a branch of a switch

expression. For example:

default -> throw new IllegalArgumentException("Not a valid

season");

Exceptions are covered in detail in Chapter 7.

Caution: The point of a switch expression is to produce a value (or

to fail with an exception). You are not allowed to "jump out":

default -> { return -1; } // ERROR

Specifically, you cannot use return, break, or continue statements in

a switch expression. (See Section 3.8.6 for the latter two.)

With so many variations of switch, which one should you choose?

1. Avoid the fallthrough forms. It is very uncommon to need fallthrough.

2. Prefer switch expressions over statements.

For example, consider:

switch (seasonName) {

 case "Spring", "Summer", "Winter":

 numLetters = 6;

 break;

 case "Fall":

 numLetters = 4;

 break;

 default:

 numLetters = -1;

}

Since every case ends with a break, there is no need to use the fallthrough

form. The following is an improvement:

switch (seasonName) {

 case "Spring", "Summer", "Winter" ->

 numLetters = 6;

 case "Fall" ->

 numLetters = 4;

 default ->

 numLetters = -1;

}

Now note that each branch assigns a value to the same variable. It is much

more elegant to use a switch expression here:

numLetters = switch (seasonName) {

 case "Spring", "Summer", "Winter" -> 6

 case "Fall" -> 4

 default -> -1

};

3.8.6. Statements That Break Control Flow

Although the designers of Java kept goto as a keyword, they decided not to

include it in the language. In general, goto statements are considered poor

style. Some programmers feel the anti-goto forces have gone too far (see,

for example, the famous article of Donald Knuth called “Structured

Programming with goto statements”). They argue that unrestricted use of

goto is error-prone but that an occasional jump out of a loop is beneficial.

The Java designers agreed and even added a new statement, the labeled

break, to support this programming style.

Let us first look at the unlabeled break statement. The same break statement

that you use to exit a switch statement can also be used to break out of a

loop. For example:

while (years <= 100) {

 balance += payment;

 double interest = balance * interestRate / 100;

 balance += interest;

 if (balance >= goal) break;

 years++;

}

Now the loop is exited if either years > 100 occurs at the top of the loop or

balance >= goal occurs in the middle of the loop. Of course, you could have

computed the same value for years without a break, like this:

while (years <= 100 && balance < goal) {

 balance += payment;

 double interest = balance * interestRate / 100;

 balance += interest;

 if (balance < goal) years++;

}

But note that the test balance < goal is repeated twice in this version. To

avoid this repeated test, some programmers prefer the break statement.

The labeled break statement lets you break out of multiple nested loops.

Occasionally something weird happens inside a deeply nested loop. In that

case, you may want to break completely out of all the nested loops. It is

inconvenient to program that simply by adding extra conditions to the

various loop tests.

Here’s an example that shows the labeled break statement at work. Notice

that the label must precede the outermost loop out of which you want to

break. It also must be followed by a colon.

int n;

read_data:

while (. . .) { // this loop statement is tagged with the label

 . . .

 for (. . .) { // this inner loop is not labeled

 IO.print();

 n = Integer.parseInt(IO.readln("Enter a number >= 0: "));

 if (n < 0) { // should never happen—can't go on

 break read_data; // break out of read_data loop

 }

 . . .

 }

}

// this statement is executed immediately after the labeled break

if (n < 0) { // check for bad situation

 // deal with bad situation

}

else {

 // carry out normal processing

}

If there is a bad input, the labeled break moves past the end of the labeled

block. As with any use of the break statement, you then need to test whether

the loop exited normally or as a result of a break.

Note: Curiously, you can apply a label to any statement, even an if

statement or a block statement, like this:

label: {

 . . .

 if (condition) break label; // exits block

 . . .

}

// jumps here when the break statement executes

Thus, if you are lusting after a goto and you can place a block that

ends just before the place to which you want to jump, you can use a

break statement! Naturally, I don’t recommend this approach. Note,

however, that you can only jump out of a block, never into a block.

Finally, there is a continue statement that, like the break statement, breaks

the regular flow of control. The continue statement transfers control to the

header of the innermost enclosing loop. Here is an example:

while (sum < goal) {

 n = Integer.parseInt(IO.readln("Enter a number: "));

 if (n < 0) continue;

 sum += n; // not executed if n < 0

}

If n < 0, then the continue statement jumps immediately to the loop header,

skipping the remainder of the current iteration.

If the continue statement is used in a for loop, it jumps to the “update” part

of the for loop. For example:

for (count = 1; count <= 100; count++) {

 n = Integer.parseInt(IO.readln("Enter a number, -1 to quit: "));

 if (n < 0) continue;

 sum += n; // not executed if n < 0

}

If n < 0, then the continue statement jumps to the count++ statement.

There is also a labeled form of the continue statement that jumps to the

header of the loop with the matching label.

Tip: Many programmers find the break and continue statements

confusing. These statements are entirely optional—you can always

express the same logic without them. None of the programs in this

book use break or continue.

3.9. Big Numbers

If the precision of the basic integer and floating-point types is not sufficient,

you can turn to a couple of handy classes in the java.math package:

BigInteger and BigDecimal. These are classes for manipulating numbers

with an arbitrarily long sequence of digits. The BigInteger class implements

arbitrary-precision integer arithmetic, and BigDecimal does the same for

floating-point numbers.

Use the static valueOf method to turn an ordinary number into a big

number:

BigInteger a = BigInteger.valueOf(100);

For longer numbers, use a constructor with a string argument:

BigInteger reallyBig

 = new

BigInteger("2222322446294204455297398934619099672066669390964

99764990979600");

There are also constants BigInteger.ZERO, BigInteger.ONE,

BigInteger.TWO, and BigInteger.TEN.

Caution: Always construct BigDecimal objects from integers or

strings. Avoid the constructor BigDecimal(double) that is inherently

prone to roundoff. For example, new BigDecimal(0.1) has digits

0.100000000000000005551115123125782702118158340454101

5625

Unfortunately, you cannot use the familiar mathematical operators such as +

and * to combine big numbers. Instead, you must use methods such as add

and multiply in the big number classes.

BigInteger c = a.add(b); // c = a + b

BigInteger d = c.multiply(b.add(BigInteger.valueOf(2))); // d = c * (b +

2)

Note: Java has no programmable operator overloading. There was

no way for the programmers of the BigInteger class to redefine the +

and * operators to give the add and multiply operations of the

BigInteger classes. The language designers did overload the +

operator to denote concatenation of strings. They chose not to

overload other operators, and they did not give Java programmers

the opportunity to overload operators in their own classes.

Note: In Java 19, the BigInteger class provides a parallelMultiply

method that yields the same result as multiply but can potentially

compute the result faster by using multiple processor cores. Use this

method if you have to do a lot of multiplications and you know that

your application does not need the CPU resources for other

computations.

Listing 3.6 shows a modification of the lottery odds program of Listing 3.5,

updated to work with big numbers. For example, if you are invited to

participate in a lottery in which you need to pick 60 numbers out of a

possible 490 numbers, you can use this program to tell you your odds of

winning. They are 1 in

7163958434619955574151162225400929334117176127892634934933510

13459481104668848. Good luck!

The program in Listing 3.5 computed the statement

lotteryOdds = lotteryOdds * (n - i + 1) / i;

When big integers are used for lotteryOdds and n, the equivalent statement

becomes

lotteryOdds = lotteryOdds

 .multiply(n.subtract(BigInteger.valueOf(i - 1)))

 .divide(BigInteger.valueOf(i));

Note: To run this program with a version prior to Java 25, add the

line

import java.math.BigInteger;

to the top of the program, in addition to the general modifications

described in the notes in Section 3.1 and Section 3.7.1.

Listing 3.6 BigIntegerDemo.java

1 /**

2 * This program uses big numbers to compute the odds of winning the grand prize

3 * in a lottery.

4 */

5 void main() {

6 IO.print("How many numbers do you need to draw? ");

7 int k = Integer.parseInt(IO.readln());

8

9 IO.print("What is the highest number you can draw? ");

10 BigInteger n = new BigInteger(IO.readln());

11

12 // Binomial coefficient n*(n-1)*(n-2)*...*(n-k+1)/(1*2*3*...*k)

13

14 BigInteger lotteryOdds = BigInteger.ONE;

15

16 for (int i = 1; i <= k; i++)

17 lotteryOdds = lotteryOdds

18 .multiply(n.subtract(BigInteger.valueOf(i - 1)))

19 .divide(BigInteger.valueOf(i));

20

21 IO.println("Your odds are 1 in " + lotteryOdds + " Good luck!");

22 }

java.math.BigInteger 1.1

BigInteger add(BigInteger other)

BigInteger subtract(BigInteger other)

BigInteger multiply(BigInteger other)

BigInteger divide(BigInteger other)

BigInteger mod(BigInteger other)

BigInteger pow(int exponent)

return the sum, difference, product, quotient, remainder, and power of

this big integer and other.

BigInteger sqrt() 9

yields the square root of this BigInteger.

int compareTo(BigInteger other)

returns 0 if this big integer equals other, a negative result if this big

integer is less than other, and a positive result otherwise.

static BigInteger valueOf(long x)

returns a big integer whose value equals x.

java.math.BigDecimal 1.1

BigDecimal(String digits)

constructs a big decimal with the given digits.

BigDecimal add(BigDecimal other)

BigDecimal subtract(BigDecimal other)

BigDecimal multiply(BigDecimal other)

BigDecimal divide(BigDecimal other) 5.0

BigDecimal divide(BigDecimal other, RoundingMode mode) 5.0

return the sum, difference, product, or quotient of this big decimal and

other. The first divide method throws an exception if the quotient does

not have a finite decimal expansion. To obtain a rounded result, use

the second method. The mode RoundingMode.HALF_UP is the

rounding mode that you learned in school: round down the digits 0 to

4, round up the digits 5 to 9. It is appropriate for routine calculations.

See the API documentation for other rounding modes.

int compareTo(BigDecimal other)

returns 0 if this big decimal equals other, a negative result if this big

decimal is less than other, and a positive result otherwise.

3.10. Arrays

Arrays hold sequences of values of the same type. In the following sections,

you will see how to work with arrays in Java.

3.10.1. Declaring Arrays

Declare an array variable by specifying the array type—which is the

element type followed by []—and the array variable name. For example,

here is the declaration of an array a of integers:

int[] a;

However, this statement only declares the variable a. It does not yet

initialize a with an actual array. Use the new operator to create the array.

int[] a = new int[100]; // or var a = new int[100];

This statement declares and initializes an array of 100 integers.

The array length need not be a constant: new int[n] creates an array of

length n.

Once you create an array, you cannot change its length (although you can,

of course, change an individual array element). If you frequently need to

expand the length of arrays while your program is running, you should use

array lists, which are covered in Chapter 5.

The type of an array variable does not include the length. For example, the

variable a in the preceding example has type int[] and can be set to an int

array of any length.

Note: You can define an array variable either as

int[] a;

or as

int a[];

Most Java programmers prefer the former style because it neatly

separates the type int[] (integer array) from the variable name.

Java has a shortcut for creating an array object and supplying initial values:

int[] smallPrimes = { 2, 3, 5, 7, 11, 13 };

Notice that you do not use new with this syntax, and you don’t specify the

length.

A comma after the last value is allowed, which can be convenient for an

array to which you keep adding values over time:

String[] authors = {

 "James Gosling",

 "Bill Joy",

 "Guy Steele",

 // add more names here and put a comma after each name

};

You can declare an anonymous array:

new int[] { 17, 19, 23, 29, 31, 37 }

This expression allocates a new array and fills it with the values inside the

braces. It counts the number of initial values and sets the array length

accordingly. You can use this syntax to reinitialize an array without creating

a new variable. For example,

smallPrimes = new int[] { 17, 19, 23, 29, 31, 37 };

is shorthand for

int[] anonymous = { 17, 19, 23, 29, 31, 37 };

smallPrimes = anonymous;

Note: It is legal to have arrays of length 0. Such an array can be

useful if you write a method that computes an array result and the

result happens to be empty. Construct an array of length 0 as

new elementType[0]

or

new elementType[] {}

Note that an array of length 0 is not the same as null.

3.10.2. Accessing Array Elements

You access each individual element of an array through an integer index,

using the bracket operator. For example, if a is an array of integers, then a[i]

is the element with index i in the array.

The array elements are numbered starting from 0. The last valid index is

one less than the length. In the example below, the index values range from

0 to 99. Once the array is created, you can fill the elements in an array, for

example, by using a loop:

int[] a = new int[100];

for (int i = 0; i < 100; i++)

 a[i] = i; // fills the array with numbers 0 to 99

When you create an array of numbers, all elements are initialized with zero.

Arrays of boolean are initialized with false. Arrays of objects are initialized

with the special value null, which indicates that they do not (yet) hold any

objects. This can be surprising for beginners. For example,

String[] names = new String[10];

creates an array of ten strings, all of which are null. If you want the array to

hold empty strings, you must supply them:

for (int i = 0; i < 10; i++) names[i] = "";

Caution: If you construct an array with 100 elements and then try to

access the element a[100] (or any other index outside the range from

0 to 99), an “array index out of bounds” exception will occur.

To find the number of elements of an array, use array.length. For example:

for (int i = 0; i < a.length; i++)

 IO.println(a[i]);

3.10.3. The “for each” Loop

Java has a powerful looping construct that allows you to loop through each

element in an array (or any other collection of elements) without having to

fuss with index values.

The enhanced for loop

for (variable : collection) statement

sets the given variable to each element of the collection and then executes

the statement (which, of course, may be a block). The collection expression

must be an array or an object of a class that implements the Iterable

interface, such as ArrayList. Array lists are covered in Chapter 5 and the

Iterable interface in Chapter 9.

For example,

for (int element : a)

 IO.println(element);

prints each element of the array a on a separate line.

You should read this loop as “for each element in a.” The designers of the

Java language considered using keywords, such as foreach and in. But this

loop was a late addition to the Java language, and in the end nobody wanted

to break the old code that already contained methods or variables with these

names (such as System.in).

Of course, you could achieve the same effect with a traditional for loop:

for (int i = 0; i < a.length; i++)

 IO.println(a[i]);

However, the “for each” loop is more concise and less error-prone, as you

don’t have to worry about those pesky start and end index values.

Note: The loop variable of the “for each” loop traverses the

elements of the array, not the index values.

The “for each” loop is a pleasant improvement over the traditional loop if

you need to process all elements in a collection. However, there are still

plenty of opportunities to use the traditional for loop. For example, you

might not want to traverse the entire collection, or you may need the index

value inside the loop.

Tip: There is an even easier way to print all values of an array,

using the toString method of the Arrays class. The call

Arrays.toString(a) returns a string containing the array elements,

enclosed in brackets and separated by commas, such as "[2, 3, 5, 7,

11, 13]". To print the array, simply call

IO.println(Arrays.toString(a));

3.10.4. Array Copying

You can copy one array variable into another, but then both variables refer

to the same array:

int[] luckyNumbers = smallPrimes;

luckyNumbers[5] = 12; // now smallPrimes[5] is also 12

Figure 3.14 shows the result.

.

Figure 3.14: Copying an array variable

If you actually want to copy all values of one array into a new array, use the

copyOf method in the Arrays class:

int[] copiedLuckyNumbers = Arrays.copyOf(luckyNumbers,

luckyNumbers.length);

The second argument is the length of the new array. A common use of this

method is to increase the length of an array:

luckyNumbers = Arrays.copyOf(luckyNumbers, 2 *

luckyNumbers.length);

The additional elements are filled with 0 if the array contains numbers, false

if the array contains boolean values. Conversely, if the length is less than

the length of the original array, only the initial values are copied.

Note: As in Python and JavaScript, Java arrays are allocated on the

heap. This is quite different from a C array or C++ vector on the

stack. If you come from C or C++, you should think of a Java arrays

as a pointer to an array allocated on the heap. That is,

int[] a = new int[100]; // Java

is not the same as

int a[100]; // C++

but rather

int* a = new int[100]; // C++

3.10.5. Command-Line Arguments

If you want to process arguments that a user of your program specified on

the command line, your main method needs a parameter that is an array of

strings.

For example, consider this program in a file Message.java:

void main(String[] args) {

 IO.print(switch (args[0])) {

 case "-a" -> "🏴☠ ";

 case "-b" -> "🍺";

 case "-h" -> "Hello,";

 default -> args[0];

 }

 IO.print(" " + args[1]);

 IO.println("!");

}

If the program is called as

java Message.java -h World

or

javac Message.java

java Message -h World

then args[0] is the string "-h", and args[1] is "World".

Note: Unlike in Python or C, the name of the program is not stored

in the array of command-line arguments. When you start up a

program as

java Message.java -h World

from the command line, then the args array does not contain java or

"Message.java".

3.10.6. Array Sorting

To sort an array of numbers, you can use one of the sort methods in the

Arrays class:

int[] a = new int[10000];

. . .

Arrays.sort(a)

This method uses a tuned version of the QuickSort algorithm that is claimed

to be very efficient on most data sets. The Arrays class provides several

other convenience methods for arrays that are included in the API notes at

the end of this section.

The program in Listing 3.7 puts arrays to work. This program draws a

random combination of numbers for a lottery game. For example, if you

play a “choose 6 numbers from 49” lottery, the program might print this:

Bet the following combination. It'll make you rich!

4

7

8

19

30

44

To select such a random set of numbers, first fill an array numbers with the

values 1, 2, . . ., n:

int[] numbers = new int[n];

for (int i = 0; i < numbers.length; i++)

 numbers[i] = i + 1;

A second array holds the numbers to be drawn:

int[] result = new int[k];

Now draw k numbers. The Math.random method returns a random floating-

point number that is between 0 (inclusive) and 1 (exclusive). Multiplying

the result with n yields a random number between 0 and n – 1.

int r = (int) (Math.random() * n);

Set the ith result to be the number at that index. Initially, that is just r + 1,

but as you’ll see presently, the contents of the numbers array are changed

after each draw.

result[i] = numbers[r];

Now, you must be sure never to draw that number again—all lottery

numbers must be distinct. Therefore, overwrite numbers[r] with the last

number in the array and reduce n by 1.

numbers[r] = numbers[n - 1];

n--;

The point is that in each draw we pick an index, not the actual value. The

index points into an array that contains the values that have not yet been

drawn.

After drawing k lottery numbers, sort the result array for a more pleasing

output:

Arrays.sort(result);

for (int r : result)

 IO.println(r);

Listing 3.7 LotteryDrawing.java

1 /**

2 * This program demonstrates array manipulation.

3 */

4 void main() {

5 int k = Integer.parseInt(IO.readln("How many numbers do you need to draw? "));

6 int n = Integer.parseInt(IO.readln("What is the highest number you can draw? "));

7

8 // fill an array with numbers 1 2 3 . . . n

9 int[] numbers = new int[n];

10 for (int i = 0; i < numbers.length; i++)

11 numbers[i] = i + 1;

12

13 // draw k numbers and put them into a second array

14 int[] result = new int[k];

15 for (int i = 0; i < result.length; i++) {

16 // make a random index between 0 and n - 1

17 int r = (int) (Math.random() * n);

18

19 // pick the element at the random location

20 result[i] = numbers[r];

21

22 // move the last element into the random location

23 numbers[r] = numbers[n - 1];

24 n--;

25 }

26

27 // print the sorted array

28 Arrays.sort(result);

29 IO.println("Bet the following combination. It'll make you rich!");

30 for (int r : result)

31 IO.println(r);

32 }

java.util.Arrays 1.2

static String toString(T[] a) 5.0

returns a string with the elements of a, enclosed in brackets and

delimited by commas. In this and the following methods, the

component type T of the array can be int, long, short, char, byte,

boolean, float, or double.

static T[] copyOf(T[] a, int end) 6

static T[] copyOfRange(T[] a, int start, int end) 6

return an array of the same type as a, of length either end or end–start,

filled with the values of a. If end is larger than a.length, the result is

padded with 0 or false values.

static void sort(T[] a)

sorts the array, using a tuned QuickSort algorithm.

static void fill(T[] a, T v)

sets all elements of the array to v.

static boolean equals(T[] a, T[] b)

returns true if the arrays have the same length and if the elements at

corresponding indexes match.

3.10.7. Multidimensional Arrays

Multidimensional arrays use more than one index to access array elements.

They are used for tables and other more complex arrangements. You can

safely skip this section until you have a need for this storage mechanism.

Suppose you want to make a table of numbers that shows how much an

investment of $10,000 will grow under different interest rate scenarios in

which interest is paid annually and reinvested.

 5% 6% 7% 8% 9% 10%

 10000.00 10000.00 10000.00 10000.00 10000.00 10000.00

 10500.00 10600.00 10700.00 10800.00 10900.00 11000.00

 11025.00 11236.00 11449.00 11664.00 11881.00 12100.00

 11576.25 11910.16 12250.43 12597.12 12950.29 13310.00

 12155.06 12624.77 13107.96 13604.89 14115.82 14641.00

 12762.82 13382.26 14025.52 14693.28 15386.24 16105.10

 13400.96 14185.19 15007.30 15868.74 16771.00 17715.61

 14071.00 15036.30 16057.81 17138.24 18280.39 19487.17

 14774.55 15938.48 17181.86 18509.30 19925.63 21435.89

 15513.28 16894.79 18384.59 19990.05 21718.93 23579.48

You can store this information in a two-dimensional array named balances.

Declaring a two-dimensional array in Java is simple enough. For example:

double[][] balances;

You cannot use the array until you initialize it. In this case, you can do the

initialization as follows:

balances = new double[NYEARS][NRATES];

In other cases, if you know the array elements, you can use a shorthand

notation for initializing a multidimensional array without a call to new. For

example:

int[][] magicSquare = {

 { 16, 3, 2, 13 },

 { 5, 10, 11, 8 },

 { 9, 6, 7, 12 },

 { 4, 15, 14, 1 }

};

Once the array is initialized, you can access individual elements by

supplying two pairs of brackets—for example, balances[i][j].

The example program stores a one-dimensional array interestRates of

interest rates and a two-dimensional array balances of account balances, one

for each year and interest rate. Initialize the first row of the array with the

initial balance:

for (int j = 0; j < balances[0].length; j++)

 balances[0][j] = 10000;

Then compute the other rows, as follows:

for (int i = 1; i < balances.length; i++) {

 for (int j = 0; j < balances[i].length; j++) {

 double oldBalance = balances[i - 1][j];

 double interest = . . .;

 balances[i][j] = oldBalance + interest;

 }

}

Listing 3.8 shows the full program. In this program, you can see how to use

multiple methods. The main method calls a printTable method that prints

the table of balances.

Note: A “for each” loop does not automatically loop through all

elements in a two-dimensional array. Instead, it loops through the

rows, which are themselves one-dimensional arrays. To visit all

elements of a two-dimensional array a, nest two loops, like this:

for (double[] row : values)

 for (double value : row)

 do something with value

Tip: To print out a quick-and-dirty list of the elements of a two-

dimensional array, call

IO.println(Arrays.deepToString(a));

The output is formatted like this:

[[16, 3, 2, 13], [5, 10, 11, 8], [9, 6, 7, 12], [4, 15, 14, 1]]

Listing 3.8 CompoundInterest.java

1 /**

2 * This program shows how to store tabular data in a 2D array.

3 */

4 void main() {

5 final double STARTRATE = 5;

6 final int NRATES = 6;

7 final int NYEARS = 10;

8

9 // set interest rates to 5 . . . 10%

10 double[] interestRates = new double[NRATES];

11 for (int j = 0; j < interestRates.length; j++)

12 interestRates[j] = (STARTRATE + j) / 100.0;

13

14 double[][] balances = new double[NYEARS][NRATES];

15

16 // set initial balances to 10000

17 for (int j = 0; j < balances[0].length; j++)

18 balances[0][j] = 10000;

19

20 // compute interest for future years

21 for (int i = 1; i < balances.length; i++) {

22 for (int j = 0; j < balances[i].length; j++) {

23 // get last year's balances from previous row

24 double oldBalance = balances[i - 1][j];

25

26 // compute interest

27 double interest = oldBalance * interestRates[j];

28

29 // compute this year's balances

30 balances[i][j] = oldBalance + interest;

31 }

32 }

33

34 printTable(interestRates, balances);

35 }

36

37 void printTable(double[] headers, double[][] values) {

38 for (double header : headers) {

39 IO.print("%10.2f".formatted(header));

40 }

41 IO.println();

42 IO.println("-".repeat(10 * headers.length));

43 // print balance table

44 for (double[] row : values) {

45 // print table row

46 for (double value : row)

47 IO.print("%10.2f".formatted(value));

48

49 IO.println();

50 }

51 }

3.10.8. Ragged Arrays

So far, what you have seen is not too different from other programming

languages. But there is actually something subtle going on behind the

scenes that you can sometimes turn to your advantage: Java has no

multidimensional arrays at all, only one-dimensional arrays.

Multidimensional arrays are faked as “arrays of arrays.”

For example, the balances array in the preceding example is actually an

array that contains ten elements, each of which is an array of six floating-

point numbers (Figure 3.15).

.

Figure 3.15: A two-dimensional array

The expression balances[i] refers to the ith subarray—that is, the ith row of

the table. It is itself an array, and balances[i][j] refers to the jth element of

that array.

Since rows of arrays are individually accessible, you can actually swap

them!

double[] temp = balances[i];

balances[i] = balances[i + 1];

balances[i + 1] = temp;

Note that the number of rows and columns is not a part of the type of an

array variable. The variable balances has type double[][]: an array of double

arrays.

Therefore, you can make “ragged” arrays—that is, arrays in which different

rows have different lengths. Here is the standard example. Let us make an

array in which the element at row i and column j equals the number of

possible outcomes of a “choose j numbers from i numbers” lottery.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

As j can never be larger than i, the matrix is triangular. The ith row has i + 1

elements. (It is OK to choose 0 elements; there is one way to make such a

choice.) To build this ragged array, first allocate the array holding the rows:

final int NMAX = 10;

int[][] odds = new int[NMAX + 1][];

Next, allocate the rows:

for (int n = 0; n <= NMAX; n++)

 odds[n] = new int[n + 1];

Now that the array is allocated, you can access the elements in the normal

way, provided you do not overstep the bounds:

for (int n = 0; n < odds.length; n++) {

 for (int k = 0; k < odds[n].length; k++) {

 // compute lotteryOdds

 . . .

 odds[n][k] = lotteryOdds;

 }

}

Listing 3.9 gives the complete program.

Note: Just as with one-dimensional arrays, it is legal to construct

multi-dimensional arrays where a dimension is zero. For example,

new int[3][0]

has three rows, each of which happen to have length zero. In

contrast,

new int[0][3]

has no rows. The row length is immaterial, since no rows are

actually allocated. In other words, new int[0][3], new int[0][4], and

new int[0][] are all the same.

Note: The Java declaration

double[][] balances = new double[10][6]; // Java

is very different from declaring a two-dimensional array in C or

C++.

double balances[10][6]; // C/C++

The latter declares a contiguous block of 60 floating-point numbers

on the stack. In Java, each row is stored separately on the heap, as

you have seen in Figure 3.15.

Listing 3.9 LotteryArray.java

1 /**

2 * This program demonstrates a triangular array.

3 */

4 void main() {

5 final int NMAX = 10;

6

7 // allocate triangular array

8 int[][] odds = new int[NMAX + 1][];

9 for (int n = 0; n <= NMAX; n++)

10 odds[n] = new int[n + 1];

11

12 // fill triangular array

13 for (int n = 0; n < odds.length; n++)

14 for (int k = 0; k < odds[n].length; k++) {

15 /*

16 * compute binomial coefficient

17 * n*(n-1)*(n-2)*...*(n-k+1)/(1*2*3*...*k)

18 */

19 int lotteryOdds = 1;

20 for (int i = 1; i <= k; i++)

21 lotteryOdds = lotteryOdds * (n - i + 1) / i;

22

23 odds[n][k] = lotteryOdds;

24 }

25

26 // print triangular array

27 for (int[] row : odds) {

28 for (int odd : row)

29 IO.print("%4d".formatted(odd));

30 IO.println();

31 }

32 }

You have now seen the fundamental programming structures of the Java

language. The next chapter covers object-oriented programming in Java.

Chapter 4 ▪ Objects and Classes

In this chapter, I

Introduce you to object-oriented programming;

Show you how you can create objects that belong to classes from the standard Java library; and

Show you how to write your own classes.

If you do not have a background in object-oriented programming, you will want to read this chapter

carefully. Object-oriented programming requires a different way of thinking than procedural

languages. The transition is not always easy, but you do need some familiarity with object concepts to

go further with Java.

For experienced C++ programmers, this chapter, like the previous chapter, presents familiar

information; however, there are enough differences between the two languages that you should read

the later sections of this chapter carefully. You’ll find the C++ notes helpful for making the transition.

4.1. Introduction to Object-Oriented Programming

Object-oriented programming, or OOP for short, is the dominant programming paradigm these days,

having replaced the “structured” or procedural programming techniques that were developed in the

1970s. Since Java is object-oriented, you have to be familiar with OOP to become productive with

Java.

An object-oriented program is made of objects. Each object has a specific functionality, exposed to its

users, and a hidden implementation. Many objects in your programs will be taken “off the shelf” from

a library; others will be custom-designed. Whether you build an object or use a pre-built one might

depend on your budget or time. But, basically, as long as an object satisfies your specifications, you

don’t care how the functionality is implemented.

Traditional structured programming consists of designing a set of procedures (or algorithms) to solve a

problem. Once the procedures are determined, the traditional next step was to find appropriate ways to

store the data. This is why the designer of the Pascal language, Niklaus Wirth, called his famous book

on programming Algorithms + Data Structures = Programs (Prentice Hall, 1976). Notice that in

Wirth’s title, algorithms come first, and data structures second. This reflects the way programmers

worked at that time. First, they decided on the procedures for manipulating the data; then, they decided

what structure to impose on the data to make the manipulations easier. OOP reverses the order: puts

the data first, then looks at the algorithms to operate on the data.

For small problems, the breakdown into procedures works very well. But objects are more appropriate

for larger problems. Consider a simple web browser. It might require 2,000 procedures for its

implementation, all of which manipulate a set of global data. In the object-oriented style, there might

be 100 classes with an average of 20 methods per class (see Figure 4.1). This structure is much easier

for a programmer to grasp. It is also much easier to find bugs in. Suppose the data of a particular object

is in an incorrect state. It is far easier to search for the culprit among the 20 methods that had access to

that data item than among 2,000 procedures.

.

Figure 4.1: Procedural vs. OO programming

4.1.1. Classes

A class specifies how objects are made. Think of classes as cookie cutters; objects are the cookies

themselves. When you construct an object from a class, you are said to have created an instance of the

class.

As you have seen, all code that you write in Java is inside a class. The standard Java library supplies

several thousand classes for such diverse purposes as user interface design, dates and calendars, and

network programming. Nonetheless, in Java you still have to create your own classes to describe the

objects of your application’s problem domain.

Encapsulation (sometimes called information hiding) is a key concept in working with objects.

Formally, encapsulation is simply combining data and behavior in one package and hiding the

implementation details from the users of the object. The bits of data in an object are called its instance

fields, and the procedures that operate on the data are called its methods. A specific object that is an

instance of a class will have specific values of its instance fields. The set of those values is the current

state of the object. Whenever you invoke a method on an object, its state may change.

The key to making encapsulation work is to have methods never directly access instance fields in a

class other than their own. Programs should interact with object data only through the object’s

methods. Encapsulation is the way to give an object its “black box” behavior, which is the key to reuse

and reliability. This means a class may totally change how it stores its data, but as long as it continues

to use the same methods to manipulate the data, no other object will know or care.

When you start writing your own classes in Java, another tenet of OOP will make this easier: Classes

can be built by extending other classes. Java, in fact, comes with a “cosmic superclass” called Object.

All other classes extend this class. You will learn more about the Object class in Chapter 5.

When you extend an existing class, the new class has all the properties and methods of the class that

you extend. You then supply new methods and instance fields that apply to your new class only. The

concept of extending a class to obtain another class is called inheritance. See Chapter 5 for more on

inheritance.

4.1.2. Objects

To work with OOP, you should be able to identify three key characteristics of objects:

The object’s behavior—what can you do with this object, or what methods can you apply to it?

The object’s state—how does the object react when you invoke those methods?

The object’s identity—how is the object distinguished from others that may have the same

behavior and state?

All objects that are instances of the same class share a family resemblance by supporting the same

behavior. The behavior of an object is defined by the methods that you can call.

Next, each object stores information about what it currently looks like. This is the object’s state. An

object’s state may change over time, but not spontaneously. A change in the state of an object must be

a consequence of method calls. (If an object’s state changed without a method call on that object,

someone broke encapsulation.)

However, the state of an object does not completely describe it, because each object has a distinct

identity. For example, in an order processing system, two orders are distinct even if they request

identical items. Notice that the individual objects that are instances of a class always differ in their

identity and usually differ in their state.

These key characteristics can influence each other. For example, the state of an object can influence its

behavior. (If an order is “shipped” or “paid,” it may reject a method call that asks it to add or remove

items. Conversely, if an order is “empty”—that is, no items have yet been ordered—it should not allow

itself to be shipped.)

4.1.3. Identifying Classes

In a traditional procedural program, you start the process at the top, with the main function. When

designing an object-oriented system, there is no “top,” and newcomers to OOP often wonder where to

begin. The answer is: Identify your classes and then add methods to each class.

A simple rule of thumb in identifying classes is to look for nouns in the problem analysis. Methods, on

the other hand, correspond to verbs.

For example, in an order-processing system, some of the nouns are

Item

Order

Shipping address

Payment

Account

These nouns may lead to the classes Item, Order, and so on.

Next, look for verbs. Items are added to orders. Orders are shipped or canceled. Payments are applied

to orders. With each verb, such as “add,” “ship,” “cancel,” or “apply,” you identify the object that has

the major responsibility for carrying it out. For example, when a new item is added to an order, the

order object should be the one in charge because it knows how it stores and sorts items. That is, add

should be a method of the Order class that has an Item object as a parameter.

Of course, the “noun and verb” is but a rule of thumb; only experience can help you decide which

nouns and verbs are the important ones when building your classes.

4.1.4. Relationships between Classes

The most common relationships between classes are

Dependence (“uses–a”)

Aggregation (“has–a”)

Inheritance (“is–a”)

The dependence, or “uses–a” relationship, is the most obvious and also the most general. For example,

the Order class uses the Account class because Order objects need to access Account objects to check

for credit status. But the Item class does not depend on the Account class, because Item objects never

need to worry about customer accounts. Thus, a class depends on another class if its methods use or

manipulate objects of that class.

Try to minimize the number of classes that depend on each other. The point is, if a class A is unaware

of the existence of a class B, it is also unconcerned about any changes to B. (And this means that

changes to B do not introduce bugs into A.) In software engineering terminology, you want to

minimize the coupling between classes.

The aggregation, or “has–a” relationship, is easy to understand because it is concrete; for example, an

Order object contains Item objects. Containment means that objects of class A contain objects of class

B.

Note: Some methodologists view the concept of aggregation with disdain and prefer to use a

more general “association” relationship. From the point of view of modeling, that is

understandable. But for programmers, the “has–a” relationship makes a lot of sense. I like to

use aggregation for another reason as well: The standard notation for associations is less clear.

See Table 4.1.

The inheritance, or “is–a” relationship, expresses a relationship between a more special and a more

general class. For example, a RushOrder class inherits from an Order class. The specialized RushOrder

class has special methods for priority handling and a different method for computing shipping charges,

but its other methods, such as adding items and billing, are inherited from the Order class. In general,

if class D extends class C, class D inherits methods from class C but has more capabilities. (See

Chapter 5 which discusses this important notion at some length.)

Many programmers use the UML (Unified Modeling Language) notation to draw class diagrams that

describe the relationships between classes. You can see an example of such a diagram in Figure 4.2.

You draw classes as rectangles, and relationships as arrows with various adornments. Table 4.1 shows

the UML arrow styles that this book uses.

Figure 4.2: A class diagram

Table 4.1: UML Notation for Class Relationships

Relationship UML Connector

Inheritance

Interface

implementation

Dependency

Relationship UML Connector

Aggregation

4.2. Using Predefined Classes

You can’t do anything in Java without classes, and you have already seen several classes at work.

However, not all of these show off the typical features of object orientation. Take, for example, the

Math class. You have seen that you can use methods of the Math class, such as Math.random, without

needing to know how they are implemented—all you need to know is the name and parameter types (if

any). That’s the point of encapsulation, and it will certainly be true of all classes. But the Math class

only encapsulates functionality; it neither needs nor hides data. Since there is no data, you do not need

to worry about making objects and initializing their instance fields—there aren’t any!

In the next section, we will look at a more typical class, the Date class. You will see how to construct

objects and call methods of this class.

4.2.1. Objects and Object Variables

To work with objects, you first construct them and specify their initial state. Then you apply methods

to the objects.

In the Java programming language, you use constructors to construct new instances. A constructor is a

special method whose purpose is to construct and initialize objects. Let us look at an example. The

standard Java library contains a Date class. Its objects describe points in time, such as December 31,

1999, 23:59:59 GMT.

Note: You may be wondering: Why use a class to represent dates rather than (as in some

languages) a built-in type? For example, Visual Basic has a built-in date type, and programmers

can specify dates in the format #12/31/1999#. On the surface, this sounds convenient—

programmers can simply use the built-in date type without worrying about classes. But

actually, how suitable is the Visual Basic design? In some locales, dates are specified as

month/day/year, in others as day/month/year. Are the language designers really equipped to

foresee these kinds of issues? If they do a poor job, the language becomes an unpleasant

muddle, but unhappy programmers are powerless to do anything about it. With classes, the

design task is offloaded to a library designer. If the class is not perfect, other programmers can

easily write their own classes to enhance or replace the system classes. (To prove the point: The

Java date library started out a bit muddled, and it has been redesigned twice.)

Constructors always have the same name as the class name. Thus, the constructor for the Date class is

called Date. To construct a Date object, combine the constructor with the new operator, as follows:

new Date()

This expression constructs a new object. The object is initialized to the current date and time.

If you like, you can pass the object to a method:

IO.println(new Date());

Alternatively, you can apply a method to the object that you just constructed. One of the methods of

the Date class is the toString method. That method yields a string representation of the date. Here is

how you would apply the toString method to a newly constructed Date object:

String s = new Date().toString();

In these two examples, the constructed object is used only once. Usually, you will want to hang on to

the objects that you construct so that you can keep using them. Simply store the object in a variable:

Date rightNow = new Date();

Figure 4.3 shows the object variable rightNow that refers to the newly constructed object.

.

Figure 4.3: Creating a new object

There is an important difference between objects and object variables. For example, the statement

Date startTime; // startTime doesn't refer to any object

defines an object variable, startTime, that can refer to objects of type Date. It is important to realize

that the variable startTime is not an object and, in fact, does not even refer to an object yet. You cannot

use any Date methods on this variable at this time. The statement

s = startTime.toString(); // not yet

would cause a compile-time error.

You must first initialize the startTime variable. You have two choices. Of course, you can initialize the

variable so that it refers to a newly constructed object:

startTime = new Date();

Or you can set the variable to refer to an existing object:

startTime = rightNow;

Now both variables refer to the same object (see Figure 4.4).

.

Figure 4.4: Object variables that refer to the same object

It is important to realize that an object variable doesn’t actually contain an object. It only refers to an

object.

In Java, the value of any object variable is a reference to an object that is stored elsewhere. The return

value of the new operator is also a reference. A statement such as

Date startTime = new Date();

has two parts. The expression new Date() makes an object of type Date, and its value is a reference to

that newly created object. That reference is then stored in the startTime variable.

You can explicitly set an object variable to null to indicate that it currently refers to no object.

startTime = null;

. . .

if (startTime != null)

 IO.println(startTime);

I discuss null in more detail in Section 4.3.5.

Note: If you are a C++ programmer, do not confuse C++ reference variables with Java

references. In C++ there are no null references, and references cannot be assigned. You should

think of Java object variables as analogous to object pointers in C++. For example,

Date rightNow; // Java

is equivalent to

Date* rightNow; // C++ pointer

and not

Date& rightNow; // C++ reference

In C++, pointers make you nervous because they are so error-prone. It is easy to create bad

pointers or to mess up memory management. In Java, these problems simply go away. If you

use an uninitialized pointer, the runtime system will reliably generate a runtime error instead of

producing random results. You don’t have to worry about memory management, because the

garbage collector takes care of it.

4.2.2. The LocalDate Class of the Java Library

In the preceding examples, we used the Date class that is a part of the standard Java library. An

instance of the Date class has a state—namely, a particular point in time.

Although you don’t need to know this when you use the Date class, the time is represented by the

number of milliseconds (positive or negative) from a fixed point, the so-called epoch, which is

00:00:00 UTC, January 1, 1970. UTC is the Coordinated Universal Time, the scientific time standard

which is, for practical purposes, the same as the more familiar GMT, or Greenwich Mean Time.

But as it turns out, the Date class is not very useful for manipulating the kind of calendar information

that humans use for dates, such as “December 31, 1999.” This particular description of a day follows

the Gregorian calendar, which is the calendar used in most countries of the world. The same point in

time would be described quite differently in the Chinese or Hebrew lunar calendars, not to mention the

calendar used by your customers from Mars.

Note: Throughout human history, civilizations grappled with the design of calendars to attach

names to dates and bring order to the solar and lunar cycles. For a fascinating explanation of

calendars around the world, from the French Revolutionary calendar to the Mayan long count,

see Calendrical Calculations by Nachum Dershowitz and Edward M. Reingold (Cambridge

University Press, 4th ed., 2018).

The library designers decided to separate the concerns of keeping time and attaching names to points

in time. Therefore, the standard Java library contains two separate classes: the Date class, which

represents a point in time, and the LocalDate class, which expresses days in the familiar calendar

notation. Nowadays there is a much more robust set of classes for manipulating various aspects of date

and time—see Chapter 6 of Volume II.

Separating time measurement from calendars is good object-oriented design. In general, it is a good

idea to use different classes to express different concepts.

You do not use a constructor to construct objects of the LocalDate class. Instead, use static factory

methods that call constructors on your behalf. The expression

LocalDate.now()

constructs a new object that represents the date at which the object was constructed.

You can construct an object for a specific date by supplying year, month, and day:

LocalDate.of(1999, 12, 31)

Of course, you will usually want to store the constructed object in an object variable:

LocalDate newYearsEve = LocalDate.of(1999, 12, 31);

Once you have a LocalDate object, you can find out the year, month, and day with the methods

getYear, getMonthValue, and getDayOfMonth:

int year = newYearsEve.getYear(); // 1999

int month = newYearsEve.getMonthValue(); // 12

int day = newYearsEve.getDayOfMonth(); // 31

This may seem pointless because they are the very same values that you just used to construct the

object. But sometimes, you have a date that has been computed, and then you will want to invoke

those methods to find out more about it. For example, the plusDays method yields a new LocalDate

that is a given number of days away from the object to which you apply it:

LocalDate aThousandDaysLater = newYearsEve.plusDays(1000);

year = aThousandDaysLater.getYear(); // 2002

month = aThousandDaysLater.getMonthValue(); // 09

day = aThousandDaysLater.getDayOfMonth(); // 26

The LocalDate class has encapsulated instance fields to maintain the date to which it is set. Without

looking at the source code, it is impossible to know the representation that the class uses internally.

But, of course, the point of encapsulation is that this doesn’t matter. What matters are the methods that

a class exposes.

Note: Actually, the Date class also has methods to get the day, month, and year, called getDay,

getMonth, and getYear, but these methods are deprecated. A method is deprecated when a

library designer realizes that the method should have never been introduced in the first place.

These methods were a part of the Date class before the library designers realized that it makes

more sense to supply separate classes to deal with calendars. When an earlier set of calendar

classes was introduced in Java 1.1, the Date methods were tagged as deprecated. You can still

use them in your programs, but you will get unsightly compiler warnings if you do. It is a good

idea to stay away from using deprecated methods because they may be removed in a future

version of the library.

Tip: The JDK provides the jdeprscan tool for checking whether your code uses deprecated

features of the Java API. See

https://docs.oracle.com/en/java/javase/25/docs/specs/man/jdeprscan.html for instructions.

4.2.3. Mutator and Accessor Methods

https://docs.oracle.com/en/java/javase/25/docs/specs/man/jdeprscan.html

Have another look at the plusDays method call that you saw in the preceding section:

LocalDate aThousandDaysLater = newYearsEve.plusDays(1000);

What happens to newYearsEve after the call? Has it been changed to be a thousand days later? As it

turns out, it has not. The plusDays method yields a new LocalDate object, which is then assigned to

the aThousandDaysLater variable. The original object remains unchanged. We say that the plusDays

method does not mutate the object on which it is invoked. (This is similar to the toUpperCase method

of the String class that you saw in Chapter 3. When you call toUpperCase on a string, that string stays

the same, and a new string with uppercase characters is returned.)

An earlier version of the Java library had a different class for dealing with calendars, called

GregorianCalendar. This code snippet adds a thousand days to a date represented by that class:

GregorianCalendar someDay = new GregorianCalendar(1999, 11, 31);

 // odd feature of that class: month numbers go from 0 to 11

someDay.add(Calendar.DAY_OF_MONTH, 1000);

Unlike the LocalDate.plusDays method, the GregorianCalendar.add method is a mutator method. After

invoking it, the state of the someDay object has changed. Here is how you can find out the new state:

year = someDay.get(Calendar.YEAR); // 2002

month = someDay.get(Calendar.MONTH) + 1; // 09

day = someDay.get(Calendar.DAY_OF_MONTH); // 26

That’s why the variable is called someDay and not newYearsEve—it is no longer new year’s eve after

calling the mutator method.

In contrast, methods that only access objects without modifying them are sometimes called accessor

methods. For example, LocalDate.getYear and GregorianCalendar.get are accessor methods.

Note: In some object-oriented languages, you can explicitly declare accessor or mutator

methods. For example, in C++, the const suffix denotes accessor methods. However, in the

Java programming language, no special syntax distinguishes accessors from mutators.

I finish this section with a program that puts the LocalDate class to work. The program displays a

calendar for the current month, like this:

Mon Tue Wed Thu Fri Sat Sun

 1

 2 3 4 5 6 7 8

 9 10 11 12 13 14 15

 16 17 18 19 20 21 22

 23 24 25 26* 27 28 29

 30

The current day is marked with an asterisk (*). As you can see, the program needs to know how to

compute the length of a month and the weekday of a given day.

Let us go through the key steps of the program. First, we construct an object that is initialized with the

current date.

LocalDate date = LocalDate.now();

We capture the current month and day.

int month = date.getMonthValue();

int today = date.getDayOfMonth();

Then we set date to the first of the month and get the weekday of that date.

date = date.minusDays(today - 1); // set to start of month

DayOfWeek weekday = date.getDayOfWeek();

int value = weekday.getValue(); // 1 = Monday, . . . , 7 = Sunday

The variable weekday is set to an object of type DayOfWeek. We call the getValue method of that

object to get a numerical value for the weekday. This yields an integer that follows the international

convention where the weekend comes at the end of the week, returning 1 for Monday, 2 for Tuesday,

and so on. Sunday has the value 7.

Note that the first line of the calendar is indented, so that the first day of the month falls on the

appropriate weekday. Here is the code to print the header and the indentation for the first line:

IO.println("Mon Tue Wed Thu Fri Sat Sun");

for (int i = 1; i < value; i++) {

 IO.print(" ");

}

Now, we are ready to print the body of the calendar. We enter a loop in which date traverses the days

of the month.

In each iteration, we print the date value. If date is today, the date is marked with an *. Then, we

advance date to the next day. When we reach the beginning of each new week, we print a new line:

while (date.getMonthValue() == month) {

 IO.print("%3d".formatted(date.getDayOfMonth()));

 if (date.getDayOfMonth() == today) {

 IO.print("*");

 }

 else {

 IO.print(" ");

 }

 date = date.plusDays(1);

 if (date.getDayOfWeek().getValue() == 1) {

 IO.println();

 }

}

When do we stop? We don’t know whether the month has 31, 30, 29, or 28 days. Instead, we keep

iterating while date is still in the current month.

Listing 4.1 shows the complete program.

As you can see, the LocalDate class makes it possible to write a calendar program that takes care of

complexities such as weekdays and the varying month lengths. You don’t need to know how the

LocalDate class computes months and weekdays. You just use the interface of the class—the methods

such as plusDays and getDayOfWeek.

The point of this example program is to show you how you can use the interface of a class to carry out

fairly sophisticated tasks without having to know the implementation details.

Listing 4.1 CalendarDemo.java

1 /**

2 * This program prints a calendar for the current month.

3 */

4 void main() {

5 LocalDate date = LocalDate.now();

6 int month = date.getMonthValue();

7 int today = date.getDayOfMonth();

8

9 date = date.minusDays(today - 1); // set to start of month

10 DayOfWeek weekday = date.getDayOfWeek();

11 int value = weekday.getValue(); // 1 = Monday, . . . , 7 = Sunday

12

13 IO.println("Mon Tue Wed Thu Fri Sat Sun");

14 for (int i = 1; i < value; i++) {

15 IO.print(" ");

16 }

17 while (date.getMonthValue() == month) {

18 IO.print("%3d".formatted(date.getDayOfMonth()));

19 if (date.getDayOfMonth() == today) {

20 IO.print("*");

21 }

22 else {

23 IO.print(" ");

24 }

25 date = date.plusDays(1);

26 if (date.getDayOfWeek().getValue() == 1) {

27 IO.println();

28 }

29 }

30 if (date.getDayOfWeek().getValue() != 1) {

31 IO.println();

32 }

33 }

java.time.LocalDate 8

static LocalDate now()

constructs an object that represents the current date.

static LocalDate of(int year, int month, int day)

constructs an object that represents the given date.

int getYear()

int getMonthValue()

int getDayOfMonth()

get the year, month, and day of this date.

DayOfWeek getDayOfWeek()

gets the weekday of this date as an instance of the DayOfWeek class. Call getValue on the

DayOfWeek instance to get a weekday between 1 (Monday) and 7 (Sunday).

LocalDate plusDays(int n)

LocalDate minusDays(int n)

yield the date that is n days after or before this date.

4.3. Defining Your Own Classes

In Chapter 3, you started writing simple programs with compact source files, each with a main method.

Now the time has come to show you how to write the kind of “workhorse classes” that are needed for

more sophisticated applications. These classes typically do not have a main method. Instead, they have

their own instance fields and methods. To build a complete program, you combine several source files,

one of which has a main method.

4.3.1. An Employee Class

The simplest form for a class definition in Java is

class ClassName {

 field1

 field2

 . . .

 constructor1

 constructor2

 . . .

 method1

 method2

 . . .

}

Consider the following, very simplified, version of an Employee class that might be used by a business

in writing a payroll system:

class Employee {

 // instance fields

 private String name;

 private double salary;

 private LocalDate hireDay;

 // constructor

 Employee(String n, double s, int year, int month, int day) {

 name = n;

 salary = s;

 hireDay = LocalDate.of(year, month, day);

 }

 // a method

 String getName() {

 return name;

 }

 // more methods

 . . .

}

We break down the implementation of this class, in some detail, in the sections that follow. First,

though, the main method in Listing 4.2 shows the Employee class in action.

In the program, we construct an Employee array and fill it with three Employee objects. Next, we use

the raiseSalary method of the Employee class to raise each employee’s salary by 5%. Finally, we print

out information about each employee, by calling the getName, getSalary, and getHireDay methods.

for (Employee e : staff) {

 IO.println("name=" + e.getName()

 + ",salary=" + e.getSalary()

 + ",hireDay=" + e.getHireDay());

}

Listing 4.2 EmployeeDemo.java

1 /**

2 * This program tests the Employee class.

3 */

4 void main() {

5 // fill the staff array with three Employee objects

6 Employee[] staff = new Employee[3];

7

8 staff[0] = new Employee("Carl Cracker", 75000, 1987, 12, 15);

9 staff[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);

10 staff[2] = new Employee("Tony Tester", 40000, 1990, 3, 15);

11

12 // raise everyone's salary by 5%

13 for (Employee e : staff) {

14 e.raiseSalary(5);

15 }

16

17 // print out information about all Employee objects

18 for (Employee e : staff) {

19 IO.println("name=" + e.getName() + ",salary=" + e.getSalary()

20 + ",hireDay=" + e.getHireDay());

21 }

22 }

23

24 /**

25 * Variations of this class will be used throughout the book.

26 */

27 class Employee {

28 private String name;

29 private double salary;

30 private LocalDate hireDay;

31

32 Employee(String n, double s, int year, int month, int day) {

33 name = n;

34 salary = s;

35 hireDay = LocalDate.of(year, month, day);

36 }

37

38 String getName() {

39 return name;

40 }

41

42 double getSalary() {

43 return salary;

44 }

45

46 LocalDate getHireDay() {

47 return hireDay;

48 }

49

50 void raiseSalary(double byPercent) {

51 double raise = salary * byPercent / 100;

52 salary += raise;

53 }

54 }

4.3.2. Dissecting the Employee Class

In the sections that follow, we will dissect the Employee class. Let’s start with the methods in this

class. As you can see by examining the source code, this class has one constructor and four methods:

Employee(String n, double s, int year, int month, int day)

String getName()

double getSalary()

LocalDate getHireDay()

void raiseSalary(double byPercent)

In many ways, this is a great example of a class. It describes an entity of a business domain. There is

state: the name and salary. The state can change, on the happy occasion of a raise. There are different

kinds of employees: managers, executives, and so on, which can be modeled as a hierarchy of related

classes.

But the example is not perfect. Should the name be a string, or should there be a separate Name class,

so one can properly deal with the finer points of names, such as first and last names and middle

initials? Is double the right type for a salary? Why pass year, month, and day separately to the

constructor instead of a LocalDate object? Would it be better to have immutable state? And is it really

a good idea to use separate classes for managers and executives, as we will do in the next chapter?

These are valid concerns, but I decided to stick with this Employee class. It models a familiar context,

and it is convenient for exploring Java features by considering various implementations.

Note: It is common to declare classes and methods as public. We discuss access levels later in

this chapter. For our first programs, the default access rules are sufficient.

Notice the three instance fields that will hold the data manipulated inside an instance of the Employee

class.

private String name;

private double salary;

private LocalDate hireDay;

The private keyword makes sure that the only methods that can access these instance fields are the

methods of the Employee class itself. No outside method can read or write to these fields.

Note: You could omit the private keyword with your instance fields, but it would be a very bad

idea. Having non-private instance fields would allow other parts of the program to read and

modify the instance fields, completely ruining encapsulation. If it is possible to modify fields,

in my experience, some code will take advantage of that access privilege when you least expect

it. It is best to make all your instance fields private.

Finally, note that two of the instance fields are themselves objects: The name and hireDay fields are

references to String and LocalDate objects. This is quite usual: Classes will often contain instance

fields of class type.

4.3.3. First Steps with Constructors

Let’s look at the constructor listed in our Employee class.

Employee(String n, double s, int year, int month, int day) {

 name = n;

 salary = s;

 hireDay = LocalDate.of(year, month, day);

}

As you can see, the name of the constructor is the same as the name of the class. This constructor runs

when you construct objects of the Employee class—giving the instance fields the initial state you want

them to have.

For example, when you create an instance of the Employee class with code like this:

new Employee("James Bond", 100000, 1950, 1, 1)

you have set the instance fields as follows:

name = "James Bond";

salary = 100000;

hireDay = LocalDate.of(1950, 1, 1); // January 1, 1950

There is an important difference between constructors and other methods. A constructor can only be

called in conjunction with the new operator. You can’t apply a constructor to an existing object to reset

the instance fields. For example,

james.Employee("James Bond", 250000, 1950, 1, 1) // ERROR

is a compile-time error.

We will have more to say about constructors later in this chapter. For now, keep the following in mind:

A constructor has the same name as the class.

A class can have more than one constructor.

A constructor can have zero, one, or more parameters.

A constructor has no return value.

A constructor is always called with the new operator.

Note: In Python, you don’t use the new operator with constructors. Still, all Python objects are

allocated on the heap. In C++, you can construct objects on the stack (without new) or on the

heap (with new).

Employee number007("James Bond", 100000, 1950, 1, 1); // C++, on stack

Employee* mata_hari = new Employee("Mata Hari", 100000, 1876, 8, 7); // C++, on heap

Caution: Be careful not to introduce local variables with the same names as the instance fields.

For example, the following constructor will not set the name or salary instance fields:

Employee(String n, double s, . . .) {

 String name = n; // ERROR

 double salary = s; // ERROR

 . . .

}

The constructor declares local variables name and salary. These variables are only accessible

inside the constructor. They shadow the instance fields with the same name. Some

programmers accidentally write this kind of code when they type faster than they think,

because their fingers are used to adding the data type. This is a nasty error that can be hard to

track down. You just have to be careful in all of your methods to not use variable names that

equal the names of instance fields.

4.3.4. Declaring Local Variables with var

You can declare local variables with the var keyword instead of specifying their type, provided their

type can be inferred from the initial value. For example, instead of declaring

Employee harry = new Employee("Harry Hacker", 50000, 1989, 10, 1);

you simply write

var harry = new Employee("Harry Hacker", 50000, 1989, 10, 1);

This is nice since it avoids the repetition of the type name Employee.

From now on, I will use the var notation in those cases where the type is obvious from the right-hand

side without any knowledge of the Java API. But I won’t use var with numeric types such as int, long,

or double so that you don’t have to look out for the difference between 0, 0L, and 0.0. Once you are

more experienced with the Java API, you may want to use the var keyword more frequently.

Note that the var keyword can only be used with local variables inside methods. You must always

declare the types of parameters and fields.

Note: Many programmers use the var keyword quite liberally, whenever they think that the

variable type is obvious or obviously uninteresting. A good set of guidelines is at

https://openjdk.org/projects/amber/guides/lvti-style-guide.

4.3.5. Working with null References

In Section 4.2.1, you saw that an object variable holds a reference to an object, or the special value null

to indicate the absence of an object.

This sounds like a convenient mechanism for dealing with special situations, such as an unknown

name or hire date. But you need to be very careful with null values.

If you apply a method to a null value, a NullPointerException occurs.

LocalDate rightNow = null;

String s = rightNow.toString(); // NullPointerException

https://openjdk.org/projects/amber/guides/lvti-style-guide

This is a serious error, similar to an “index out of bounds” exception. If your program does not “catch”

an exception, it is terminated. Normally, programs don’t catch these kinds of exceptions but rely on

programmers not to cause them in the first place.

Tip: When your program is terminated with a NullPointerException, the stack trace shows you

in which line of your code the problem occurred. Since Java 14, the error message includes the

name of the variable or method with the null value. For example, in a call

String s = e.getHireDay().toString();

the error message tells you whether e was null or getHireDay returned null.

When you define a class, it is a good idea to be clear about which fields can be null. In our example,

we don’t want the name or hireDay field to be null. (We don’t have to worry about the salary field. It

has primitive type and can never be null.)

The hireDay field is guaranteed to be non-null because it is initialized with a new LocalDate object.

But name will be null if the constructor is called with a null argument for n.

There are two solutions. The “permissive” approach is to turn a null argument into an appropriate non-

null value:

if (n == null) name = "unknown"; else name = n;

The Objects class has a convenience method for this purpose:

Employee(String n, double s, int year, int month, int day) {

 name = Objects.requireNonNullElse(n, "unknown");

 . . .

}

The “tough love” approach is to reject a null argument:

Employee(String n, double s, int year, int month, int day) {

 name = Objects.requireNonNull(n, "The name cannot be null");

 . . .

}

If someone constructs an Employee object with a null name, then a NullPointerException occurs. At

first glance, that may not seem a useful remedy. But there are two advantages:

1. The exception report has a description of the problem.

2. The exception report pinpoints the location of the problem. Otherwise, a NullPointerException

would have occurred elsewhere, with no easy way of tracing it back to the faulty constructor

argument.

Note: Whenever a parameter is an object reference, ask yourself whether you really intend to

model values that can be present or absent. If not, the “tough love” approach of throwing an

exception is preferred.

4.3.6. Implicit and Explicit Parameters

Methods operate on objects and access their instance fields. For example, the method

void raiseSalary(double byPercent) {

 double raise = salary * byPercent / 100;

 salary += raise;

}

sets a new value for the salary instance field in the object on which this method is invoked. Consider

the call

number007.raiseSalary(5);

The effect is to increase the value of the number007.salary field by 5%. More specifically, the call

executes the following instructions:

double raise = number007.salary * 5 / 100;

number007.salary += raise;

The raiseSalary method is called with two arguments. The first argument, called the implicit argument,

is the object of type Employee that appears before the method name. The second argument, the number

inside the parentheses after the method name, is an explicit argument.

The method declaration has a parameter variable for the explicit argument, namely double byPercent.

However, no parameter variable is declared for the implicit argument.

Every method has an implicit parameter, whose name is the keyword this, which is initialized with the

implicit argument. If you like, you can write the raiseSalary method as follows:

void raiseSalary(double byPercent) {

 double raise = this.salary * byPercent / 100;

 this.salary += raise;

}

Some programmers prefer that style because it clearly distinguishes between instance fields and local

variables.

Note: I find the “implicit/explicit” terminology useful for describing the behavior of a method,

but it is not an official part of Java. The Java Language Specification simply talks about “the

object for which the method was invoked.”

When object-oriented programming was first invented, objects were said to communicate by

sending messages to each other. In that terminology, the object to which the message is sent is

called the receiver. In Java, sending a message to a receiver is the same as invoking a method

on an object.

4.3.7. Benefits of Encapsulation

Finally, let’s look more closely at the rather simple getName, getSalary, and getHireDay methods.

String getName() {

 return name;

}

double getSalary() {

 return salary;

}

LocalDate getHireDay() {

 return hireDay;

}

These are obvious examples of accessor methods. As they simply return the values of instance fields,

they are sometimes called field accessors.

Wouldn’t it be easier to make the name, salary, and hireDay fields directly accessible, instead of

having separate accessor methods?

Using methods gives you more control and safety. Consider the salary field which is only changed by

the raiseSalary method. Should the value ever turn out wrong, only that method needs to be debugged.

Had the salary field been directly accessible, the culprit for messing up the value could have been

anywhere.

Sometimes, it happens that you want to get and set the value of an instance field. Then you need to

supply three items:

A private instance field;

A field accessor method; and

A field mutator method.

This is a lot more tedious than making the instance field directly accessible, but there are considerable

benefits.

First, you can change the internal implementation without affecting any code other than the methods of

the class. For example, if the storage of the name is changed to

private String firstName;

private String lastName;

then the getName method can be changed to return

firstName + " " + lastName

This change is completely invisible to the remainder of the program.

Of course, the accessor and mutator methods may need to do a lot of work to convert between the old

and the new data representation. That leads us to our second benefit: Mutator methods can perform

error checking, whereas code that simply assigns to a field may not go into the trouble. For example, a

setSalary method might check that the salary is never less than 0.

Caution: Be careful not to write accessor methods that return references to mutable objects. In

a previous edition of this book, I violated that rule in the Employee class in which the

getHireDay method returned an object of class Date:

class Employee {

 private Date hireDay;

 . . .

 Date getHireDay() {

 return hireDay; // BAD

 }

 . . .

}

Unlike the LocalDate class, which has no mutator methods, the Date class has a mutator

method, setTime, where you can set the number of milliseconds.

The fact that Date objects are mutable breaks encapsulation! Consider the following rogue

code:

Employee harry = . . .;

Date d = harry.getHireDay();

double tenYearsInMilliseconds = 10 * 365.25 * 24 * 60 * 60 * 1000;

d.setTime(d.getTime() - (long) tenYearsInMilliseconds);

// let's give Harry ten years of added seniority

The reason is subtle. Both d and harry.hireDay refer to the same object (see Figure 4.5).

Applying mutator methods to d automatically changes the private state of the Employee object!

.

Figure 4.5: Returning a reference to a mutable instance field

You will see in Chapter 6 how to solve this problem by cloning the mutable object before

returning it.

A better remedy is to use immutable objects when possible, such as LocalDate instead of the

legacy Date class.

4.3.8. Class-Based Access Privileges

You know that a method can access the private data of the object on which it is invoked. What people

often find surprising is that a method can access the private data of all objects of its class. For

example, consider a method equals that compares two employees.

class Employee {

 . . .

 public boolean equals(Employee other) {

 return id == other.id;

 }

}

A typical call is

if (harry.equals(boss)) . . .

This method accesses the private fields of harry, which is not surprising. It also accesses the private

fields of boss. This is legal because boss is an object of type Employee, and a method of the Employee

class is permitted to access the private fields of any object of type Employee.

4.3.9. Private Methods

When implementing a class, we make all instance fields private because public data are dangerous. But

what about the methods? Sometimes, you may wish to break up the code for a computation into

separate helper methods. Typically, these helper methods should not be part of the public interface—

they may be too close to the current implementation or require a special protocol or calling order. Such

methods are best implemented as private.

To implement a private method in Java, simply add the private modifier.

By making a method private, you are under no obligation to keep it available if you change your

implementation. The method may well be harder to implement or unnecessary if the data

representation changes; this is irrelevant. The point is that as long as the method is private, the

designers of the class can be assured that it is never used elsewhere, so they can simply drop it. If a

method is not private, you cannot simply drop it because other code might rely on it.

4.3.10. Final Instance Fields

You can define an instance field as final. Such a field must be initialized when the object is

constructed. That is, you must guarantee that the field value has been set after the end of every

constructor. Afterwards, the field may not be modified again. For example, the name field of the

Employee class may be declared as final because it never changes after the object is constructed—

there is no setName method.

class Employee {

 private final String name;

 . . .

}

The final modifier is particularly useful for fields whose type is primitive or an immutable class. (A

class is immutable if none of its methods ever mutate its objects. For example, the String class is

immutable.)

For mutable classes, the final modifier can be confusing. For example, consider a field

private final StringBuilder evaluations;

that is initialized in the Employee constructor as

evaluations = new StringBuilder();

The final keyword merely means that the object reference stored in the evaluations variable will never

again refer to a different StringBuilder object. But the object can be mutated:

void giveGoldStar() {

 evaluations.append(LocalDate.now() + ": Gold star!\n");

}

Note: A final field can be null:

name = n != null && n.length() == 0 ? null : n;

Of course, it can then never be changed to a non-null value.

4.4. Static Fields and Methods

When you declare a class, you specify the data that each object stores, and the methods that work with

the data. Sometimes, a class wants to specify data outside of objects, or methods that are not invoked

on objects. These features are the topics of the following subsections.

4.4.1. Static Fields

If you define a field as static, then the field is not present in the objects of the class. There is only a

single copy of each static field. You can think of static fields as belonging to the class, not to the

individual objects. For example, let’s suppose we want to assign a unique identification number to

each employee. We add an instance field id and a static field nextId to the Employee class:

class Employee {

 private static int nextId = 1;

 private int id;

 . . .

}

Every Employee object now has its own id field, but there is only one nextId field that is shared among

all instances of the class. Let’s put it another way. If there are 1,000 objects of the Employee class,

then there are 1,000 instance fields id, one for each object. But there is a single static field nextId.

Even if there are no Employee objects, the static field nextId is present. It belongs to the class, not to

any individual object.

In the constructor, we assign the next available ID to the new Employee object and then increment it:

id = nextId;

nextId++;

Suppose we construct the object harry. Then the id field of harry is set to the current value of the static

field nextId, and the value of the static field is incremented:

harry.id = Employee.nextId;

Employee.nextId++;

Caution: If you accidentally declare what you want to be an instance field as static, the

compiler won’t help you find your mistake.

Conceptually, a static field (such as nextId in the preceding example) belongs to the class, not

to any object. Nevertheless, in Java, you can refer to the field as Employee.nextId, or e.nextId,

where e is any Employee object. And inside the methods of the Employee class, you can use

nextId, this.nextId, or Employee.nextId.

Therefore, it is a good idea to pay attention to any static declarations in a class. Static variables

are uncommon and deserve close scrutiny. Static constants, discussed in the following section,

stand out because their names are typically in all caps.

4.4.2. Static Constants

Static variables are quite rare. However, static constants are more common. For example, the Math

class defines a static constant:

public class Math {

 . . .

 public static final double PI = 3.14159265358979323846;

 . . .

}

You can access this constant in your programs as Math.PI.

If the keyword static had been omitted, then PI would have been an instance field of the Math class.

That is, you would need an object of this class to access PI, and every Math object would have its own

copy of PI.

The static constant System.out is declared in the System class as follows:

public class System {

 . . .

 public static final PrintStream out = . . .;

 . . .

}

As mentioned several times, fields should be private, because otherwise other code can modify them.

However, public constants (that is, final fields) are fine. Since out has been declared as final, you

cannot reassign another print stream to it:

System.out = new PrintStream(. . .); // ERROR--out is final

Note: If you look at the System class, you will notice a method setOut that sets System.out to a

different stream. You may wonder how that method can change the value of a final variable.

However, the setOut method is a native method, not implemented in the Java programming

language. Native methods can bypass the access control mechanisms of the Java language. This

is a very unusual workaround that you should not emulate in your programs.

Note: For thirty years, invoking the println method on System.out was the preferred way to

produce console output.

However, it is not easy to explain System.out to beginners. Why a public field? Why not

uppercase OUT like all other public final fields in the Java API? Why native methods for

changing it?

For ease of learning, Java 25 introduced the IO.println method instead.

4.4.3. Static Methods

Static methods are methods that do not operate on objects. For example, the pow method of the Math

class is a static method. The expression

Math.pow(x, a)

computes the power xa. It does not use any Math object to carry out its task. In other words, it has no

implicit parameter.

You can think of static methods as methods that don’t have a this parameter. (In a nonstatic method,

the this parameter refers to the implicit parameter of the method—see Section 4.3.6.)

A static method of the Employee class cannot access the id instance field because it does not operate

on an object. However, a static method can access a static field. Here is an example of such a static

method:

static int advanceId() {

 int r = nextId; // obtain next available id

 nextId++;

 return r;

}

To call this method, you supply the name of the class:

int n = Employee.advanceId();

Could you have omitted the keyword static for this method? Yes, but then you would need to have an

object reference of type Employee to invoke the method.

Note: It is legal to use an object to call a static method. For example, if harry is an Employee

object, then you can call harry.advanceId() instead of Employee.advanceId(). However, I find

that notation confusing. The advanceId method doesn’t look at harry at all to compute the

result. I recommend that you use class names, not objects, to invoke static methods. (Your IDE

will probably suggest a refactoring otherwise.)

Use static methods in two situations:

When a method doesn’t need to access the object state because all needed parameters are supplied

as explicit parameters (example: Math.pow)

When a method only needs to access static fields of the class (example: Employee.advanceId)

Note: In some object-oriented programming languages, static fields and methods are called

class fields and class methods.

The term “static” has a curious history. At first, the keyword static was introduced in C to

denote local variables that don’t go away when a block is exited. In that context, the term

“static” makes sense: The variable stays around and is still there when the block is entered

again. Then static got a second meaning in C, to denote global variables and functions that

cannot be accessed from other files. The keyword static was simply reused to avoid introducing

a new keyword. Finally, C++ reused the keyword for a third, unrelated, interpretation—to

denote variables and functions that belong to a class but not to any particular object of the

class. That is the same meaning the keyword has in Java.

4.4.4. Factory Methods

Here is another common use for static methods. Classes such as LocalDate and NumberFormat use

static factory methods that construct objects. You have already seen the factory methods

LocalDate.now and LocalDate.of. Here is how to obtain formatter objects for various styles:

NumberFormat currencyFormatter = NumberFormat.getCurrencyInstance();

NumberFormat percentFormatter = NumberFormat.getPercentInstance();

double x = 0.1;

IO.println(currencyFormatter.format(x)); // prints $0.10

IO.println(percentFormatter.format(x)); // prints 10%

Why doesn’t the NumberFormat class use a constructor instead? There are three reasons to prefer a

factory method over a constructor:

You can’t give names to constructors. The constructor name is always the same as the class name.

But we want two different names to get the currency instance and the percent instance.

When you use a constructor, you can’t vary the type of the constructed object. But the factory

methods actually return objects of the class DecimalFormat, a more specialized class that inherits

from NumberFormat. (See Chapter 5 for more on inheritance.)

A constructor always constructs a new object. You may want to share instances. For example, the

call Set.of() yields the same instance of an empty set when you call it twice.

4.4.5. The main Method

Note that you can call static methods without having any objects. For example, you never construct

any objects of the Math class to call Math.pow.

For the same reason, the main method was traditionally a static method.

class Application {

 public static void main(String[] args) {

 // construct objects here

 . . .

 }

}

The static main method does not operate on any objects. After all, when a program starts, there aren’t

any objects yet. The main method executes and constructs the objects that the program needs.

As of Java 25, the main method no longer needs to be public or static, and it need not have a parameter

of type String[] args. Here are the complete rules for main methods:

If there is more than one main method, static main methods are preferred over instance methods

Methods with a String[] parameter are preferred over those with no parameters.

Private main methods are not considered.

If main is not static, the class must have a non-private no-argument constructor (see Section

4.6.3). Then the launcher constructs an instance of the class and invokes the main method on it.

Also as of Java 25, a main method no longer needs to be declared inside a class. A source file with

method declarations outside a class is a compact compilation unit. It implicitly declares a class whose

name is derived from the source file. For example, consider a source file with this content:

void main() { // top level method

 . . .

}

int counter = 0; // instance field

void work() { // another method

 counter++;

}

Technically, the choice of class name can depend on the host system. It will usually be the file name

with the extension removed. If the file name is Application.java, the result is most likely a class with

name Application. Top-level variables and methods become instance fields and methods of that class.

Note: You cannot declare a constructor for an implicitly declared class. After all, you can’t

completely rely on the name of the class, which is also the name of any constructor.

For the same reason, it doesn’t make sense to implicitly declare classes that you want to use in

other classes. You need a reliable name to use the class.

The practical use for a compact compilation unit is a class with a main method, which you

launch as a source file.

Now let us turn to the next example program. The Employee class in Listing 4.4 has a static field

nextId and a static method advanceId. In the sample program (Listing 4.3), we fill an array with three

Employee objects and then print the employee information. Finally, we print the next available

identification number, to demonstrate the static method.

Note: In the code for this section, the Employee class was declared in a separate file

Employee.java. In contrast, the compact compilation unit in the EmployeeDemo.javafile of the

preceding section contained both the main method of the program and the Employee class.

Technically, in that situation, the Employee class is an inner class of the implicit

EmployeeDemo class. By using inner classes, we can present different variations of the

Employee class in our sample programs. You will learn more about inner classes in Chapter 6.

Tip: Every class can have a main method. That can be handy for adding demonstration code to

a class. For example, you can add a main method to the Employee class:

class Employee {

 Employee(String n, double s) {

 name = n;

 salary = s;

 }

 . . .

 static void main() { // runs demo

 var e = new Employee("Harry", 50000);

 IO.println(e.getName() + " " + e.getSalary());

 }

}

Note that in this example, main must be static since the Employee class doesn’t have a no-

argument constructor.

To see the demo of the Employee class, simply execute

java Employee.java

If the Employee class is a part of another program, its main method is not executed (unless, of

course, it is explicitly called.)

Listing 4.3 StaticDemo.java

1 /**

2 * This program demonstrates static methods.

3 */

4 void main(String[] args) {

5 // fill the staff array with three Employee objects

6 var staff = new Employee[3];

7

8 staff[0] = new Employee("Tom", 40000);

9 staff[1] = new Employee("Dick", 60000);

10 staff[2] = new Employee("Harry", 65000);

11

12 // print out information about all Employee objects

13 for (Employee e : staff) {

14 IO.println("name=" + e.getName() + ",id=" + e.getId()

15 + ",salary=" + e.getSalary());

16 }

17

18 int n = Employee.advanceId(); // calls static method

19 IO.println("Next issued id=" + n);

20 }

Listing 4.4 Employee.java

1 /**

2 * A simplified employee class to demonstrate static fields and methods.

3 * This class is used in StaticDemo.java and ParamDemo.java

4 */

5 class Employee {

6 private static int nextId = 1;

7

8 private String name;

9 private double salary;

10 private int id;

11

12 Employee(String n, double s) {

13 name = n;

14 salary = s;

15 id = advanceId();

16 }

17

18 String getName() {

19 return name;

20 }

21

22 double getSalary() {

23 return salary;

24 }

25

26 int getId() {

27 return id;

28 }

29

30 void raiseSalary(double byPercent) {

31 double raise = salary * byPercent / 100;

32 salary += raise;

33 }

34

35 static int advanceId() {

36 int r = nextId; // obtain next available id

37 nextId++;

38 return r;

39 }

40

41 static void main() { // runs demo

42 var e = new Employee("Harry", 50000);

43 IO.println(e.getName() + " " + e.getSalary());

44 }

45 }

java.util.Objects 7

static <T> void requireNonNull(T obj)

static <T> void requireNonNull(T obj, String message)

static <T> void requireNonNull(T obj, Supplier<String> messageSupplier) 8

If obj is null, these methods throw a NullPointerException with no message or the given

message. (Chapter 6 explains how to obtain a value lazily with a supplier. Chapter 8 explains the

<T> syntax.)

static <T> T requireNonNullElse(T obj, T defaultObj) 9

static <T> T requireNonNullElseGet(T obj, Supplier<T> defaultSupplier) 9

return obj if it is not null, or the default object if obj is null.

4.5. Method Parameters

Let us review the computer science terms that describe how parameters can be passed to a method (or

a function) in a programming language. The term call by value means that the method gets just the

value that the caller provides. In contrast, call by reference means that the method gets the location of

the variable that the caller provides. Thus, a method can modify the value stored in a variable passed by

reference but not in one passed by value. These “call by . . .” terms are standard computer science

terminology describing the behavior of method parameters in various programming languages, not just

Java. (There is also a call by name that is mainly of historical interest, being employed in the Algol

programming language, one of the oldest high-level languages.)

The Java programming language always uses call by value. That means that the method gets a copy of

all arguments. In particular, the method cannot modify the contents of any variables in the method call.

For example, consider the following call:

double percent = 10;

harry.raiseSalary(percent);

No matter how the method is implemented, we know that after the method call, the value of percent is

still 10.

Let us look a little more closely at this situation. Suppose a method tried to triple the value of a method

parameter:

void tripleValue(double x) { // doesn't work

 x = 3 * x;

}

Let’s call this method:

double percent = 10;

tripleValue(percent);

However, this does not work. After the method call, the value of percent is still 10. Here is what

happens:

1. x is initialized with a copy of the value of percent (that is, 10).

2. x is tripled—it is now 30. But percent is still 10 (see Figure 4.6).

.

Figure 4.6: Modifying a parameter variable has no lasting effect.

3. The method ends, and the parameter variable x is no longer in use.

There are, however, two kinds of method parameters:

Primitive types (number types, char, boolean)

Object references

You have seen that it is impossible for a method to change a primitive type parameter. The situation is

different for object parameters. You can easily implement a method that triples the salary of an

employee:

void tripleSalary(Employee x) { // works

 x.raiseSalary(200);

}

When you call

harry = new Employee(. . .);

tripleSalary(harry);

then the following happens:

1. x is initialized with a copy of the value of harry—that is, an object reference.

2. The raiseSalary method is applied to that object reference. The Employee object to which both x

and harry refer gets its salary raised by 200 percent.

3. The method ends, and the parameter variable x is no longer in use. Of course, the object variable

harry continues to refer to the object whose salary was tripled (see Figure 4.7).

.

Figure 4.7: Modifying an object referenced by a parameter has a lasting effect.

As you have seen, it is easily possible—and in fact very common—to implement methods that change

the state of an object parameter. The reason is simple. The method gets a copy of the object reference,

and both the original and the copy refer to the same object.

Many programming languages (in particular, C++ and Pascal) have two mechanisms for parameter

passing: call by value and call by reference. Some programmers (and unfortunately even some book

authors) claim that Java uses call by reference for objects. That is false. As this is such a common

misunderstanding, it is worth examining a counterexample in detail.

Let’s try to write a method that swaps two Employee objects:

void swap(Employee x, Employee y) { // doesn't work

 Employee temp = x;

 x = y;

 y = temp;

}

If Java used call by reference for objects, this method would work:

var a = new Employee("Alice", . . .);

var b = new Employee("Bob", . . .);

swap(a, b);

// does a now refer to Bob, b to Alice?

However, the method does not actually change the object references that are stored in the variables a

and b. The x and y parameters of the swap method are initialized with copies of these references. The

method then proceeds to swap these copies.

// x refers to Alice, y to Bob

Employee temp = x;

x = y;

y = temp;

// now x refers to Bob, y to Alice

But ultimately, this is a wasted effort. When the method ends, the parameter variables x and y are

abandoned. The original variables a and b still refer to the same objects as they did before the method

call (see Figure 4.8).

.

Figure 4.8: Swapping parameter variables has no lasting effect.

This demonstrates that the Java programming language does not use call by reference for objects.

Instead, object references are passed by value.

Here is a summary of what you can and cannot do with method parameters in Java:

A method cannot modify a parameter of a primitive type (that is, number types, char, or boolean).

A method can change the state of an object parameter.

A method cannot make an object parameter refer to a new object.

The program in Listing 4.5 demonstrates these facts. The program first tries to triple the value of a

number parameter and does not succeed:

Testing tripleValue:

Before: percent=10.0

End of method: x=30.0

After: percent=10.0

It then successfully triples the salary of an employee:

Testing tripleSalary:

Before: salary=50000.0

End of method: salary=150000.0

After: salary=150000.0

After the method, the state of the object to which harry refers has changed. This is possible because the

method modified the state through a copy of the object reference.

Finally, the program demonstrates the failure of the swap method:

Testing swap:

Before: a=Alice

Before: b=Bob

End of method: x=Bob

End of method: y=Alice

After: a=Alice

After: b=Bob

As you can see, the parameter variables x and y are swapped, but the variables a and b are not affected.

Note: Some programming languages have both call by value and call by reference. In C++, you

tag reference parameters with &. For example, you can easily implement methods void

tripleValue(double& x) or void swap(Employee& x, Employee& y) that modify their reference

parameters.

In C#, reference parameters are declared as ref (bidirectional), in, or out.

Listing 4.5 ParamDemo.java

1 /**

2 * This program demonstrates parameter passing in Java.

3 */

4 void main() {

5 /*

6 * Test 1: Methods can't modify numeric parameters

7 */

8 IO.println("Testing tripleValue:");

9 double percent = 10;

10 IO.println("Before: percent=" + percent);

11 tripleValue(percent);

12 IO.println("After: percent=" + percent);

13

14 /*

15 * Test 2: Methods can change the state of object parameters

16 */

17 IO.println("\nTesting tripleSalary:");

18 var harry = new Employee("Harry", 50000);

19 IO.println("Before: salary=" + harry.getSalary());

20 tripleSalary(harry);

21 IO.println("After: salary=" + harry.getSalary());

22

23 /*

24 * Test 3: Methods can't attach new objects to object parameters

25 */

26 IO.println("\nTesting swap:");

27 var a = new Employee("Alice", 70000);

28 var b = new Employee("Bob", 60000);

29 IO.println("Before: a=" + a.getName());

30 IO.println("Before: b=" + b.getName());

31 swap(a, b);

32 IO.println("After: a=" + a.getName());

33 IO.println("After: b=" + b.getName());

34 }

35

36 void tripleValue(double x) { // doesn't work

37 x = 3 * x;

38 IO.println("End of method: x=" + x);

39 }

40

41 void tripleSalary(Employee x) { // works

42 x.raiseSalary(200);

43 IO.println("End of method: salary=" + x.getSalary());

44 }

45

46 void swap(Employee x, Employee y) {

47 Employee temp = x;

48 x = y;

49 y = temp;

50 IO.println("End of method: x=" + x.getName());

51 IO.println("End of method: y=" + y.getName());

52 }

4.6. Object Construction

You have seen how to write simple constructors that define the initial state of your objects. However,

since object construction is so important, Java offers quite a variety of mechanisms for writing

constructors. We go over these mechanisms in the sections that follow.

4.6.1. Overloading

Some classes have more than one constructor. For example, you can construct an empty StringBuilder

object as

var messages = new StringBuilder();

Alternatively, you can specify an initial string:

var todoList = new StringBuilder("To do:\n");

This capability is called overloading. Overloading occurs if several methods have the same name (in

this case, the StringBuilder constructor method) but different parameters. The compiler must sort out

which method to call. It picks the correct method by matching the parameter types in the declarations

of the various methods with the types of the arguments used in the specific method call. A compile-

time error occurs if the compiler cannot match the parameters, either because there is no match at all or

because there is not one that is better than all others. (The process of finding a match is called

overloading resolution.)

Note: Java allows you to overload any method—not just constructor methods. Thus, to

completely describe a method, you need to specify its name together with its parameter types.

This is called the signature of the method. For example, the String class has six public methods

called indexOf. They have signatures

indexOf(int)

indexOf(int, int)

indexOf(int, int, int)

indexOf(String)

indexOf(String, int)

indexOf(String, int, int)

The return type is not part of the method signature. That is, you cannot have two methods with

the same names and parameter types but different return types.

Caution: The statement

StringBuilder builder = new StringBuilder('\n'); // ERROR

does not produce a StringBuilder containing a newline. There is a constructor with an int

parameter, which yields a StringBuilder with a preallocated capacity. The char literal '\n' can be

converted to an int but not to a String. The result is a builder with no contents and capacity 10,

the integer value of '\n'.

In general, be careful with overloading when the argument types do not match the parameter

types exactly.

4.6.2. Default Field Initialization

If you don’t set a field explicitly in a constructor, it is automatically set to a default value: numbers to

0, boolean values to false, and object references to null. Some people consider it poor programming

practice to rely on the defaults. Certainly, it makes it harder for someone to understand your code if

fields are being initialized invisibly.

Note: This is an important difference between fields and local variables. You must always

explicitly initialize local variables in a method. But in a class, if you don’t initialize a field, it is

automatically initialized to a default (0, false, or null).

For example, consider the Employee class. Suppose you don’t specify how to initialize some of the

fields in a constructor. By default, the salary field would be initialized with 0 and the name and

hireDay fields would be initialized with null.

However, that would not be a good idea. If anyone called the getName or getHireDay method, they

would get a null reference that they probably don’t expect:

LocalDate h = harry.getHireDay();

int year = h.getYear(); // throws exception if h is null

4.6.3. The Constructor with No Arguments

Many classes contain a constructor with no arguments that creates an object whose state is set to an

appropriate default. For example, here is a no-argument constructor for the Employee class:

Employee() {

 name = "";

 salary = 0;

 hireDay = LocalDate.now();

}

If you write a class with no constructors whatsoever, then a no-argument constructor is provided for

you. This constructor sets all the instance fields to their default values. So, all numeric data contained

in the instance fields would be 0, all boolean values would be false, and all object variables would be

null.

If a class supplies at least one constructor but does not supply a no-argument constructor, it is illegal to

construct objects without supplying arguments. For example, our original Employee class in Listing

4.2 provided a single constructor:

Employee(String n, double s, int year, int month, int day)

With that class, it was not legal to construct default employees. That is, the call

e = new Employee();

would have been an error.

Caution: Please keep in mind that you get a free no-argument constructor only when your class

has no other constructors. If you write your class with even a single constructor of your own

and you want the users of your class to have the ability to create an instance by a call to

new ClassName()

then you must provide a no-argument constructor. Of course, if you are happy with the default

values for all fields, you can simply supply a constructor with an empty body:

ClassName() { }

Note: Some object-oriented programming languages, notably C++, have explicit destructor

methods for any cleanup code that may be needed when an object is no longer used. The most

common activity in a destructor is reclaiming the memory set aside for objects. Since Java does

automatic garbage collection, manual memory reclamation is not needed, so Java does not

support destructors.

Of course, some objects utilize a resource other than memory, such as a file or a handle to

another object that uses system resources. In this case, it is important that the resource be

reclaimed and recycled when it is no longer needed.

The Object class has a finalize method that classes can override for cleanup. That method was

intended to be called before the garbage collector sweeps away an object. However, you simply

cannot know when this method will be called, and it is now deprecated for removal.

If a resource needs to be closed as soon as you have finished using it, supply a close method

that does the necessary cleanup. You can call the close method when you are done with the

object. In Chapter 7, you will see how you can ensure that this method is called automatically.

4.6.4. Explicit Field Initialization

By overloading the constructor methods in a class, you can build many ways to set the initial state of

the instance fields of your classes. It is always a good idea to make sure that, regardless of the

constructor call, every instance field is set to something meaningful.

You can simply assign a value to any field in the class definition. For example:

class Employee {

 private String name = "";

 . . .

}

This assignment is carried out before the constructor executes. This syntax is particularly useful if all

constructors of a class need to set a particular instance field to the same value.

The initialization value doesn’t have to be a constant value. Here is an example in which a field is

initialized with a method call. Consider the Employee class where each employee has an id field. You

can initialize it as follows:

class Employee {

 private static int nextId;

 private int id = advanceId();

 . . .

 private static int advanceId() {

 int r = nextId;

 nextId++;

 return r;

 }

 . . .

}

4.6.5. Parameter Names

When you write very trivial constructors (and you’ll write a lot of them), it can be somewhat

frustrating to come up with parameter names.

We have generally opted for single-letter parameter names:

Employee(String n, double s) {

 name = n;

 salary = s;

}

However, the drawback is that you need to read the code to tell what the n and s parameters mean.

Some programmers prefix each parameter with an “a”:

Employee(String aName, double aSalary) {

 name = aName;

 salary = aSalary;

}

That is better. Any reader can immediately figure out the meaning of the parameters.

Another commonly used trick relies on the fact that parameter variables shadow instance fields with

the same name. For example, if you call a parameter salary, then salary refers to the parameter, not the

instance field. But you can still access the instance field as this.salary. Recall that this denotes the

implicit parameter—that is, the object being constructed. Here is an example:

Employee(String name, double salary) {

 this.name = name;

 this.salary = salary;

}

Note: Some programmers like to prefix instance fields with an underscore or a fixed letter.

(The letters m and x are common choices.) For example, the salary field might be called

_salary, mSalary, or xSalary. However, this style is not common in Java.

4.6.6. Calling Another Constructor

The keyword this refers to the implicit parameter of a method. However, this keyword has a second

meaning.

A constructor can call another constructor of the same class. Here is a typical example:

Employee(double s) {

 // calls Employee(String, double)

 this("Employee #" + nextId, s);

 nextId++;

}

When you call new Employee(60000), the Employee(double) constructor calls the Employee(String,

double) constructor.

By having one constructor call another, you can often eliminate duplicate construction code.

Before Java 25, the call to the other constructor had to be the first statement of the constructor body.

This restriction has now been removed.

However there are some restrictions on what can happen between the start of a constructor and the call

of another constructor. This phase is called the early construction context.

In the early construction context, you may not:

Read any instance variable

Write any instance variable that has an explicit initialization

Invoke any methods on this

Pass this to any other methods

Due to these restrictions, no code can observe a partially constructed object in the early construction

context.

One useful action in the early construction context is to validate or normalize construction parameters:

Employee(double s) {

 if (s < 0) s = 0; // Cannot have negative salary

 this("Employee #" + nextId, s);

 nextId++;

}

4.6.7. Initialization Blocks

You have already seen two ways to initialize an instance field:

By setting a value in a constructor

By assigning a value in the declaration

There is a third mechanism in Java, called an initialization block. Class declarations can contain

arbitrary blocks of code. These blocks are executed whenever an object of that class is constructed. For

example:

class Employee {

 private static int nextId;

 private int id;

 private String name;

 private double salary;

 // object initialization block

 {

 id = nextId;

 nextId++;

 }

 Employee(String n, double s) {

 name = n;

 salary = s;

 }

 Employee() {

 name = "";

 salary = 0;

 }

 . . .

}

In this example, the id field is initialized in the object initialization block, no matter which constructor

is used to construct an object. The initialization block runs first, and then the body of the constructor is

executed.

This mechanism is never necessary and is not common. It is usually more straightforward to place the

initialization code inside a constructor.

Note: It is legal to set fields in initialization blocks even if they are only defined later in the

class. However, to avoid circular definitions, it is not legal to read from fields that are only

initialized later. The exact rules are spelled out in Section 8.3.3 of the Java Language

Specification (https://docs.oracle.com/javase/specs). The rules are complex enough to baffle

the compiler implementors—early versions of Java implemented them with subtle errors.

Therefore, you should always place initialization blocks after the field definitions.

To summarize, here is what happens in detail when a constructor is called:

1. All instance fields are initialized to their default values (0, false, or null).

2. All field initializers and initialization blocks are executed, in the order in which they occur in the

class declaration.

3. The body of the constructor is executed.

4. If the constructor invokes another constructor, the body of that constructor executes as well.

4.6.8. Static Initialization

To initialize a static field, either supply an initial value or use a static initialization block. You have

already seen the first mechanism:

https://docs.oracle.com/javase/specs

private static int nextId = 1;

If the static fields of your class require complex initialization code, use a static initialization block.

Place the code inside a block and tag it with the keyword static. Here is an example. We want the

employee ID numbers to start at a random integer less than 10,000.

private static RandomGenerator generator = RandomGenerator.getDefault();

// static initialization block

static {

 nextId = generator.nextInt(10000);

}

Static initialization occurs when the class is first loaded. Like instance fields, static fields are 0, false,

or null unless you explicitly set them to another value. All static field initializers and static

initialization blocks are executed in the order in which they occur in the class declaration.

Note: Amazingly enough, up to Java 6, it was possible to write a “Hello, World” program in

Java without ever writing a main method.

public class Hello {

 static {

 System.out.println("Hello, World");

 }

}

When you invoked the class with java Hello, the class was loaded, the static initialization block

printed “Hello, World”, and only then was a message displayed that main is not defined. Since

Java 7, the java program first checks that there is a main method.

Caution: It is possible to have cycles in static initialization. Consider these classes:

class Config {

 static final Config DEFAULT = new Config();

 String get(String key) { . . . }

}

class Logger {

 static final Logger DEFAULT

 = new Logger(Config.DEFAULT.get("logger.default.file"));

 void log(String message) { . . . }

}

Now suppose the Config constructor adds a logging message:

Config() {

 // read configuration

 Logger.DEFAULT.log("Config read successfully");

}

The first time you use a Logger, the static initializization of the Config class invokes the

Config constructor. It calls the log method on the Logger.DEFAULT variable, which has not

yet been set. A NullPointerException occurs, which causes a fatal ExceptionInInitializerError.

Such errors are not common, but when they occur, they can be challenging to debug.

The program in Listing 4.6 shows many of the features discussed in this section:

Overloaded constructors

A call to another constructor with this(. . .)

A no-argument constructor

An object initialization block

A static initialization block

An instance field initialization

The example uses a RandomGenerator instance for generating random numbers. Since JDK 17, the

java.util.random package provides implementations of strong algorithms with various tradeoffs. There

is a default that works well for most purposes, but if you are interested in alternatives, read through the

API documentation of the java.util.random package for advice on which algorithm to choose.

Generate random numbers by calling generator.nextInt(n) or other RandomGenerator methods.

(Technically, RandomGenerator is an interface, a concept introduced in Chapter 6. You don’t need to

worry about that when you invoke methods on a RandomGenerator instance.)

Tip: The RandomGenerator interface improves upon the Random class from Java 1.0, which

has a fairly short period of 248, after which the internal state repeats. As a rule of thumb, to

generate n random numbers, the period should be at least n2. By that rule, the classic Random

generator is unsuitable if n exceeds 224, which is not that large—about 17 million. These days,

much better algorithms are known, and it is a good idea to move away from the Random class.

Listing 4.6 ConstructorDemo.java

1 /**

2 * This program demonstrates object construction.

3 */

4 void main() {

5 // fill the staff array with three Employee objects

6 var staff = new Employee[3];

7

8 staff[0] = new Employee("Harry", 40000);

9 staff[1] = new Employee(60000);

10 staff[2] = new Employee();

11

12 // print out information about all Employee objects

13 for (Employee e : staff) {

14 IO.println("name=" + e.getName() + ",id=" + e.getId()

15 + ",salary=" + e.getSalary());

16 }

17 }

18

19 /**

20 * This version of the Employee class demonstrates overloaded constructors

21 * and initialization blocks.

22 */

23 class Employee {

24 private static int nextId;

25

26 private int id;

27 private String name = ""; // instance field initialization

28 private double salary;

29

30 private static RandomGenerator generator = RandomGenerator.getDefault();

31

32 // static initialization block

33 static {

34 // set nextId to a random number between 0 and 9999

35 nextId = generator.nextInt(10000);

36 }

37

38 // object initialization block

39 {

40 id = nextId;

41 nextId++;

42 }

43

44 // three overloaded constructors

45 public Employee(String n, double s) {

46 name = n;

47 salary = s;

48 }

49

50 public Employee(double s) {

51 // calls the Employee(String, double) constructor

52 this("Employee #" + nextId, s);

53 }

54

55 // the no-argument constructor

56 public Employee() {

57 // name initialized to ""--see above

58 // salary not explicitly set--initialized to 0

59 // id initialized in initialization block

60 }

61

62 public String getName() {

63 return name;

64 }

65

66 public double getSalary() {

67 return salary;

68 }

69

70 public int getId() {

71 return id;

72 }

73 }

java.util.random.RandomGenerator 17

int nextInt(int n)

returns a random integer between 0 and n– 1.

static RandomGenerator of(String name)

yields a random generator for the given algorithm name. The algorithm named

"L64X128MixRandom" is suitable for most applications.

static RandomGenerator getDefault()

yields a strong random generator with 64 or more state bits.

java.util.Random 1.0

static from(RandomGenerator generator) 19

returns a Random instance whose methods delegate to the given RandomGenerator. This allows

legacy code to use strong random number generators.

4.7. Records

Sometimes, data is just data, and the data hiding that object-oriented programming provides gets in the

way. Consider a class Point that describes a point in the plane, with x- and y-coordinates.

Sure, you can create a class:

class Point {

 private final double x;

 private final double y;

 Point(double x, double y) { this.x = x; this.y = y; }

 double getX() { return x; }

 double getY() { return y; }

 // More methods . . .

}

But does it really buy us anything to hide x and y, and then make the values available through the

getter methods?

Would we ever want to change the implementation of a Point? Sure, there are polar coordinates, but

you would not use them with a graphics API. In practice, a point in the plane is completely described

by its x- and y-coordinates.

To define such classes more concisely, JDK 14 introduced “records” as a preview feature. The final

version was delivered in JDK 16.

4.7.1. The Record Concept

A record is a special form of a class whose state is immutable and readable by the public. To declare a

record, provide the name and the instance fields that hold the object state. Here is how you define

Point as a record:

record Point(double x, double y) { }

The result is a class with instance fields:

private final double x;

private final double y;

In the Java language specification, the instance fields of a record are called its components.

The class has a constructor

Point(double x, double y)

and public accessor methods

double x()

double y()

Note that the accessors are called x and y, not getX and getY. (It is legal in Java to have an instance

field and a method with the same name.)

var p = new Point(3, 4);

IO.println(p.x() + " " + p.y());

Note: Records don’t follow the get convention because it is a bit messy. For boolean fields, it is

common to use is instead of get. And the capitalization of the first letter can be problematic.

What should happen if a class has fields x and X? Some programmers are unhappy because

their legacy classes cannot trivially become records. But in practice, many of those legacy

classes are mutable and therefore not candidates for conversion to records.

In addition to the field accessor methods, every record has three methods defined automatically:

toString, equals, and hashCode. You will learn more about these methods in Chapter 5.

You can add your own methods to a record:

record Point(double x, double y) {

 double distanceFromOrigin() { return Math.hypot(x, y); }

}

Caution: You can define your own versions of the automatically provided methods, as long as

they have the same parameter and return types. For example, this definition is legal:

record Point(double x, double y) {

 public double x() { return 2 * x; } // BAD

}

But it is surely not a good idea.

You cannot add additional instance fields to a record.

record Point(double x, double y) {

 private double z; // ERROR

 . . .

}

Caution: Instance fields of a record are automatically final. However, they may be references

to mutable objects:

record PointInTime(double x, double y, Date when) { }

Then record instances are mutable:

var pt = new PointInTime(0, 0, new Date());

pt.when().setTime(0);

If you intend record instances to be immutable, don’t use mutable types for fields.

Note: As you will see in detail in Chapter 6, you can declare a record inside another class.

Then the enclosing class has access to the fields. For example, enclosing class code can refer to

p.x instead of p.x(), where p is a variable of a nested record Point.

Note that this applies to any record in a compact compilation unit, since it is nested inside the

implicitly declared class.

A record, like any class, can have static fields and methods:

record Point(double x, double y) {

 static Point ORIGIN = new Point(0, 0);

 static double distance(Point p, Point q) {

 return Math.hypot(p.x - q.x, p.y - q.y);

 }

 . . .

}

Tip: Use a record instead of a class for immutable data that is completely represented by a set

of variables. Use a class if the data is mutable, or if the representation may evolve over time.

Records are easier to read, more efficient, and safer in concurrent programs.

4.7.2. Constructors: Canonical, Compact, and Custom

The automatically defined constructor that sets all instance fields is called the canonical constructor.

To validate or normalize the parameters for the canonical constructor, use a compact form. Don’t

specify the parameter list:

record Range(int from, int to) {

 Range { // Compact form, validating parameters

 if (from > to) throw new IllegalArgumentException();

 }

}

or

record Range(int from, int to) {

 Range { // Compact form, normalizing parameters

 if (from > to) { // Swap the bounds

 int temp = from;

 from = to;

 to = temp;

 }

 }

}

The body of the compact form is the “prelude” to the canonical constructor. It merely modifies the

parameter variables from and to before they are assigned to the instance fields this.from and this.to.

You cannot read or modify the instance fields in the body of the compact constructor.

You can define additional custom constructors. A custom constructor must call another constructor, so

that ultimately the canonical constructor is invoked. Here is an example:

record Point(double x, double y) {

 Point() { this(0, 0); }

}

This record has two constructors: the canonical constructor and a no-argument constructor yielding the

origin.

Note: Before Java 25, the call to the other constructor had to be the first statement. Nowadays,

you can have code in the early execution context, before the call to the other constructor.

Section 4.6.6 describes what you can do in that context.

If the canonical constructor needs to do additional work, you can provide your own implementation.

But this is very uncommon. For example, the following implementation is valid, but, as you have seen,

the same effect is easier to achieve with a compact constructor.

record Range(int from, int to) {

 Range(int from, int to) { // legal, but more work than a compact constructor

 if (from <= to) {

 this.from = from;

 this.to = to;

 }

 else {

 this.from = to;

 this.to = from;

 }

 }

}

Listing 4.7 RecordDemo.java

1 /**

2 * This program demonstrates records.

3 */

4 void main(String[] args) {

5 var p = new Point(3, 4);

6 IO.println("Coordinates of p: " + p.x() + " " + p.y());

7 IO.println("Distance from origin: " + p.distanceFromOrigin());

8 // Same computation with static field and method

9 IO.println("Distance from origin: " + Point.distance(Point.ORIGIN, p));

10

11 // Invoking a compact constructor

12 var r = new Range(4, 3);

13 IO.println("r: " + r);

14

15 // A mutable record

16 var pt = new PointInTime(3, 4, new Date());

17 IO.println("Before: " + pt);

18 pt.when().setTime(0);

19 IO.println("After: " + pt);

20 }

21

22 record Point(double x, double y) {

23 // A custom constructor

24 Point() {

25 this(0, 0);

26 }

27

28 // A method

29 double distanceFromOrigin() {

30 return Math.hypot(x, y);

31 }

32

33 // A static field and method

34 static Point ORIGIN = new Point();

35

36 static double distance(Point p, Point q) {

37 return Math.hypot(p.x - q.x, p.y - q.y);

38 }

39 }

40

41 record Range(int from, int to) {

42 // A compact constructor

43 Range {

44 if (from > to) { // Swap the bounds

45 int temp = from;

46 from = to;

47 to = temp;

48 }

49 }

50 }

51

52 record PointInTime(double x, double y, Date when) { }

4.8. Packages

Java allows you to group classes in a collection called a package. Packages are convenient for

organizing your work and for separating your work from code libraries provided by others. In the

following sections, you will learn how to use and create packages.

4.8.1. Encapsulation

You already know how classes can hide implementation details, by declaring fields and methods as

private. Packages provide a similar mechanism, but encapsulation is the default. Only classes that are

declared as public can be used in other packages, and only methods that are declared as public can be

called by other packages.

A class or method that is not declared public can only be accessed by code from the same package.

If we want to make our Employee class and its methods available to other packages, we should declare

it as follows:

public class Employee {

 private String name;

 private double salary;

 private LocalDate hireDay;

 public Employee(String name, double salary, int year, int month, int day) {

 . . .

 }

 public String getName() {

 . . .

 }

 . . .

}

4.8.2. Package Names

One reason for using packages is to guarantee the uniqueness of class names. Suppose two

programmers come up with the bright idea of supplying an Employee class. As long as both of them

place their class into different packages, there is no conflict. In fact, to absolutely guarantee a unique

package name, use an Internet domain name (which is known to be unique) written in reverse. You

then use subpackages for different projects. For example, consider the domain horstmann.com. When

written in reverse order, it turns into the package name com.horstmann. You can then append a project

name, such as com.horstmann.corejava. If you then place the Employee class into that package, the

qualified name becomes com.horstmann.corejava.Employee.

Note: From the point of view of the compiler, there is absolutely no relationship between

nested packages. For example, the packages java.util and java.util.random have nothing to do

with each other. Each is its own independent collection of classes.

4.8.3. Class Importation

A class can use all classes from its own package and all classes declared as public from other

packages.

You can access the public classes in another package in two ways. The first is simply to use the

qualified name; that is, the package name followed by the class name. For example:

java.time.LocalDate today = java.time.LocalDate.now();

That is obviously tedious. A simpler, and more common, approach is to use the import statement. The

point of the import statement is to give you a shorthand to refer to the classes in the package. Once you

add an import, you no longer have to give the classes their full names.

You can import a specific class or the whole package. You place import statements at the top of your

source files (but below any package statements). For example, you can import all classes in the

java.time package with the statement

import java.time.*;

Then you can use

LocalDate today = LocalDate.now();

without a package prefix. You can also import a specific class inside a package:

import java.time.LocalDate;

The java.time.* syntax is less tedious. It has no negative effect on code size. However, if you import

classes explicitly, the reader of your code knows exactly which classes you use.

However, note that you can only use the * notation to import a single package. You cannot use import

java.* or import java.*.* to import all packages with the java prefix.

Note: You never need to import classes from the java.lang package.

Tip: Integrated development environments have commands to organize imports. Package

statements such as import java.util.*; are automatically expanded into a list of specific imports

such as

import java.util.ArrayList;

import java.util.Date;

Unused import statements are removed. This is an extremely convenient feature, and it is a

good idea to find out how to accomplish it with your IDE.

Most of the time, you just import the packages that you need, without worrying too much about them.

The only time that you need to pay attention to packages is when you have a name conflict. For

example, both the java.util and java.sql packages have a Date class. Suppose you write a program that

imports both packages.

import java.util.*;

import java.sql.*;

If you now use the Date class, you get a compile-time error:

Date today; // ERROR--java.util.Date or java.sql.Date?

The compiler cannot figure out which Date class you want. You can solve this problem by adding a

specific import statement:

import java.util.*;

import java.sql.*;

import java.util.Date;

What if you really need both Date classes? Then use the full package name with every class name:

var startTime = new java.util.Date();

var today = new java.sql.Date(. . .);

Locating classes in packages is an activity of the compiler. The bytecodes in class files always use full

package names to refer to other classes.

Note: It bears repeating that the only benefit of the import statement is convenience. Imports

allow you to use a simple name such as LocalDate instead of the qualified name

java.time.LocalDate.

Note: C and C++ programmers sometimes confuse import with #include. The two have

nothing in common. In C/C++, you must use #include to include the declarations of external

features because the compiler does not look inside any source files except the one that it is

compiling. The Java compiler will happily consult other source or class files.

In C++, the construction analogous to the package mechanism is the namespace feature. Think

of the package and import statements in Java as the analogs of the namespace and using

directives in C++.

4.8.4. Module Imports

As you will see in Chapter 12, Java packages can be organized into modules. As of Java 25, you can

import all packages in a module with a directive such as the following:

import module java.xml;

The java.xml module is specialized for processing XML files. With the module import, you can enjoy

the convenience of importing all of the packages used for that purpose.

For general programming tasks, the most interesting module is java.base, which includes the packages

java.lang, java.util, java.io, and over thirty others.

You can import it with the directive:

import module java.base;

Since the java.base module includes the java.time and java.util packages, you can use unqualified

names for classes in those packages, such as LocalDate and Date.

In a compact source file, the java.base module is imported automatically. If you only use the packages

in that module, you don’t need any import statements.

Caution: When you import a module, it is possible that two or more packages have a class

with the same name. For example, the java.base module has classes java.net.Proxy and

java.lang.reflect.Proxy. If you need one of those classes, you can import it, or use the qualified

name.

4.8.5. Static Imports

A form of the import statement permits the importing of static methods and fields, not just classes.

For example, if you add the directive

import static java.lang.System.*;

to the top of your source file, then you can use the static methods and fields of the System class

without the class name prefix:

err.println("Goodbye, World!"); // i.e., System.err

exit(0); // i.e., System.exit

You can also import a specific method or field:

import static java.lang.System.exit;

In practice, it seems doubtful that many programmers will want to abbreviate System.err or

System.exit. The resulting code seems less clear. On the other hand,

sqrt(pow(x, 2) + pow(y, 2))

seems much clearer than

Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2))

You can import enumerated constants:

import java.time.DayOfWeek;

import static java.time.DayOfWeek.*;

DayOfWeek w = FRIDAY; // Same as DayOfWeek.FRIDAY

4.8.6. Addition of a Class into a Package

To place classes inside a package, put the name of the package at the top of your source file, before the

code that defines the classes in the package. For example, the file Employee.java in Listing 4.9 starts

out like this:

package com.horstmann.corejava;

public class Employee {

 . . .

}

If you don’t put a package statement in the source file, then the classes in that source file belong to the

unnamed package. The unnamed package has no package name. Up to now, all our example classes

have been located in the unnamed package.

Note: The implicitly declared class of a compact compilation unit (with methods declared

outside a class) is always in the unnamed package.

When using named packages, place source files into a subdirectory that matches the full package

name. For example, all source files in the com.horstmann.corejava package should be in a subdirectory

com/horstmann/corejava (com\horstmann\corejava on Windows).

Here is a sample program that is distributed over two packages: The PackageDemo class belongs to the

unnamed package—see Listing 4.8. The Employee class, shown in Listing 4.9, belongs to the

com.horstmann.corejava package. Therefore, the Employee.java file must be in a subdirectory

com/horstmann/corejava. In other words, the directory structure is as follows:

. (base directory)

 ├─ PackageDemo.java

 └─ com/

 └─ horstmann/

 └─ corejava/

 └─ Employee.java

To run this program, simply change to the base directory and run the command

java PackageDemo.java

The compiler automatically finds the file com/horstmann/corejava/Employee.java and compiles it.

Listing 4.8 PackageDemo.java

1 import com.horstmann.corejava.Employee;

2 // the Employee class is defined in that package

3

4 /**

5 * This program demonstrates the use of packages.

6 */

7 void main() {

8 // because of the import statement, we don't have to use

9 // com.horstmann.corejava.Employee here

10 var harry = new Employee("Harry Hacker", 50000, 1989, 10, 1);

11

12 harry.raiseSalary(5);

13

14 // because of the static import statement, we don't have to use IO.println here

15 IO.println("name=" + harry.getName() + ",salary=" + harry.getSalary());

16 }

Listing 4.9 com/horstmann/corejava/Employee.java

1 package com.horstmann.corejava;

2 // the classes in this file are part of this package

3

4 import module java.base;

5 // import statements come after the package statement

6

7 /**

8 * This class is almost identical to the initial Employee class, but it is inside

9 * a package. Note that the class and its methods are public.

10 */

11 public class Employee {

12 private String name;

13 private double salary;

14 private LocalDate hireDay;

15

16 public Employee(String name, double salary, int year, int month, int day) {

17 this.name = name;

18 this.salary = salary;

19 hireDay = LocalDate.of(year, month, day);

20 }

21

22 public String getName() {

23 return name;

24 }

25

26 public double getSalary() {

27 return salary;

28 }

29

30 public LocalDate getHireDay() {

31 return hireDay;

32 }

33

34 public void raiseSalary(double byPercent) {

35 double raise = salary * byPercent / 100;

36 salary += raise;

37 }

38 }

4.8.7. Compiling with Packages

Except for demonstration programs, it is not common to use the unnamed package. Instead, classes

would be distributed over several packages, such as com.horstmann.corejava and com.mycompany.

. (base directory)

 └─ com/

 ├─ horstmann/

 │ └─ corejava/

 │ └─ Employee.java

 └─ mycompany/

 └─ MyProgram.java

You start the program from the base directory—that is, the directory containing the com directory:

java com/mycompany/MyProgram.java

So far, we have launched source files without compiling them. That is fine for simple demos, but for

larger programs, it is better to compile the code first. The compiler produces a class file for each class,

containing the virtual machine code of its methods. For example, after you call

javac com/mycompany/MyProgram.java

the subdirectories contain the class files:

. (base directory)

 └─ com/

 ├─ horstmann/

 │ └─ corejava/

 │ ├─ Employee.java

 │ └─ Employee.class

 └─ mycompany/

 ├─ MyProgram.java

 └─ MyProgram.class

Note: When you use an IDE or a build tool, the class files are typically placed in a separate

directory tree.

To run the compiled program, you call

java com.mycompany.MyProgram

Note that the javac compiler operates on files (with file separators and an extension .java), whereas the

Java virtual machine loads a class (with dot separators).

Caution: The compiler does not check the directory structure when it compiles source files.

For example, suppose you have a source file that starts with the directive

package com.mycompany;

You can compile the file even if it is not contained in a subdirectory com/mycompany. The

source file will compile without errors if it doesn’t depend on other packages. However, the

resulting program will not run unless you first move all class files to the right place. The virtual

machine won’t find the classes if the packages don’t match the directories.

4.8.8. Package Access

You have already encountered the access modifiers public and private. Features tagged as public can

be used by any class. Private features can be used only by the class that defines them. If you don’t

specify either public or private, the feature (that is, the class, method, or variable) can be accessed by

all methods in the same package.

Consider the program in Listing 4.2. The Employee class was not defined as a public class. Therefore,

only the other classes (such as EmployeeDemo) in the same package—the unnamed package in this

case—can access it. For classes, this is a reasonable default. However, for variables, this was an

unfortunate choice. Variables must explicitly be marked private, or they will default to having package

access. This, of course, breaks encapsulation. The problem is that it is awfully easy to forget to type

the private keyword. Here is an example from the Window class in the java.awt package, which is part

of the source code supplied with the JDK:

public class Window extends Container {

 String warningString;

 . . .

}

Note that the warningString variable is not private! That means the methods of all classes in the

java.awt package can access this variable and set it to whatever they like (such as "Trust me!").

Actually, the only methods that access this variable are in the Window class, so it would have been

entirely appropriate to make the variable private. Perhaps the programmer typed the code in a hurry

and simply forgot the private modifier? Perhaps nobody cared? After more than twenty years, that

variable is still not private. Not only that—new fields have been added to the class over time, and

about half of them aren’t private either.

This can be a problem. By default, packages are not closed entities. That is, anyone can add more

classes to a package. Of course, hostile or clueless programmers can then add code that modifies

variables with package access. For example, in early versions of Java, it was an easy matter to smuggle

another class into the java.awt package. Simply start out the class with

package java.awt;

Then, place the resulting class file inside a subdirectory java/awt, and you have gained access to the

internals of the java.awt package. Through this subterfuge, it was possible to modify warning strings

(see Figure 4.9).

Figure 4.9: Changing the warning string in a window

Starting with version 1.2, the JDK implementors rigged the class loader to explicitly disallow loading

of user-defined classes whose package name starts with "java.". Of course, your own classes don’t

benefit from that protection. Another mechanism, now obsolete, lets a JAR file declare packages as

sealed, preventing third parties from augmenting them. Nowadays, you should use modules to

encapsulate packages. Modules are discussed in detail in Chapter 12.

4.8.9. The Class Path

As you have seen, classes are stored in subdirectories of the file system. The path to the class must

match the package name.

Class files can also be stored in a JAR (Java archive) file. A JAR file contains multiple class files and

subdirectories in a compressed format, saving space and improving performance. When you use a

third-party library in your programs, you will usually be given one or more JAR files to include. You

will see in Section 4.9.1 how to create your own JAR files.

Tip: JAR files use the ZIP format to organize files and subdirectories. You can use any ZIP

utility to peek inside JAR files.

To share classes among programs, you need to do the following:

1. Place your class files inside a directory—for example, /home/user/classdir. Note that this

directory is the base directory for the package tree. If you add the class

com.horstmann.corejava.Employee, then the Employee.class file must be located in the

subdirectory /home/user/classdir/com/horstmann/corejava.

2. Place any JAR files inside a directory—for example, /home/user/archives.

3. Set the class path. The class path is the collection of all locations that can contain class files.

In UNIX, the elements on the class path are separated by colons:

/home/user/classdir:.:/home/user/archives/archive.jar

In Windows, they are separated by semicolons:

c:\classdir;.;c:\archives\archive.jar

In both cases, the period denotes the current directory.

This class path contains

The base directory /home/user/classdir or c:\classdir;

The current directory (.); and

The JAR file /home/user/archives/archive.jar or c:\archives\archive.jar.

You can specify a wildcard for a JAR file directory, like this:

/home/user/classdir:.:/home/user/archives/'*'

or

c:\classdir;.;c:\archives*

In UNIX, the * must be escaped to prevent shell expansion.

All JAR files (but not .class files) in the archives directory are included in this class path.

The Java API is always searched for classes; don’t include it explicitly in the class path.

Caution: The javac compiler always looks for files in the current directory, but the java virtual

machine launcher only looks into the current directory if the “.” directory is on the class path. If

you have no class path set, it’s not a problem—the default class path consists of the “.”

directory. But if you have set the class path and forgot to include the “.” directory, your

programs will compile without error, but they won’t run.

The class path lists all directories and archive files that are starting points for locating classes. Let’s

consider our sample class path:

/home/user/classdir:.:/home/user/archives/archive.jar

Suppose the virtual machine searches for the class file of the com.horstmann.corejava.Employee class.

It first looks in the Java API classes. It won’t find the class file there, so it turns to the class path. It

then looks for the following files:

/home/user/classdir/com/horstmann/corejava/Employee.class

com/horstmann/corejava/Employee.class starting from the current directory

com/horstmann/corejava/Employee.class inside /home/user/archives/archive.jar

The compiler has a harder time locating files than does the virtual machine. If you refer to a class

without specifying its package, the compiler first needs to find out the package that contains the class.

It consults all import directives as possible sources for the class. For example, suppose the source file

contains directives

import java.util.*;

import com.horstmann.corejava.*;

and the source code refers to a class Employee. The compiler then tries to find java.lang.Employee

(because the java.lang package is always imported by default), java.util.Employee,

com.horstmann.corejava.Employee, and Employee in the current package. It searches for each of these

classes in all of the locations of the class path. It is a compile-time error if more than one class is

found. (Qualified names must be unique, so the order of the import statements doesn’t matter.)

The compiler goes one step further. It looks at the source files to see if the source is newer than the

class file. If so, the source file is recompiled automatically. Recall that you can import only public

classes from other packages. A source file can only contain one public class, and the names of the file

and the public class must match. Therefore, the compiler can easily locate source files for public

classes. However, you can import nonpublic classes from the current package. These classes may be

defined in source files with different names. If you import a class from the current package, the

compiler searches all source files of the current package to see which one defines the class.

4.8.10. Setting the Class Path

IDEs and build tools have their own mechanisms for managing the class path. But it is a good idea to

know how to set it by hand so you can troubleshoot any configuration issues.

It is best to specify the class path with the option -classpath (or -cp or the more modern variant, --class-

path):

java -classpath /home/user/classdir:.:/home/user/archives/archive.jar MyProg

or

java -classpath c:\classdir;.;c:\archives\archive.jar MyProg

The entire command must be typed onto a single line. It is a good idea to place such a long command

line into a shell script or a batch file.

Using the -classpath option is the preferred approach for setting the class path. An alternate approach

is the CLASSPATH environment variable. The details depend on your shell. With the Bourne Again

shell (bash), use the command

export CLASSPATH=/home/user/classdir:.:/home/user/archives/archive.jar

With the Windows shell, use

set CLASSPATH=c:\classdir;.;c:\archives\archive.jar

The class path is set until the shell exits.

Note: When using a JAR in jshell, launch it with

CLASSPATH=archive.jar jshell

The seemingly equivalent

jshell --class-path=archive.jar

doesn’t give you autocomplete for the classes in the JAR file (see

https://bugs.openjdk.org/browse/JDK-8177650).

Caution: Some people recommend to set the CLASSPATH environment variable permanently.

This is generally a bad idea. People forget the global setting and are surprised when their

classes are not loaded properly. A particularly reprehensible example was Apple’s QuickTime

installer in Windows. For several years, it globally set CLASSPATH to point to a JAR file it

needed, but did not include the current directory in the classpath. As a result, countless Java

programmers were driven to distraction when their programs compiled but failed to run.

Caution: In the past, some people recommended to bypass the class path altogether, by

dropping all JAR files into the jre/lib/ext directory. That mechanism is obsolete with Java 9, but

it was always bad advice. It was easy to get confused when long-forgotten classes were loaded

from the extension directory.

Note: Classes can also be loaded from the module path. Modules and the module path are

discussed in Chapter 12.

4.9. JAR Files

When you package your application, you want to give your users a single file, not a directory structure

filled with class files. Java Archive (JAR) files were designed for this purpose. A JAR file can contain

both class files and other file types such as image and sound files. Moreover, JAR files are

compressed, using the familiar ZIP compression format.

4.9.1. Creating JAR files

Use the jar tool to make JAR files. (In the default JDK installation, it’s in the $JAVA_HOME/bin

directory.) The most common command to make a new JAR file uses the following syntax:

jar cvf jarFileName file1 file2 . . .

For example:

jar cvf CalculatorClasses.jar *.class icon.png

In general, the jar command has the following format:

jar options file1 file2 . . .

Table 4.2 lists all the options for the jar program. They are similar to the options of the UNIX tar

command.

Table 4.2: jar Program Options

Option Description

c
Creates a new or empty archive and adds files to it. If any of the specified file

names are directories, the jar program processes them recursively.

Option Description

C

Temporarily changes the directory. For example,

jar cvf jarFileName.jar -C classes *.class

changes to the classes subdirectory to add class files.

e Creates an entry point in the manifest (see Section 4.9.3).

f

Specifies the JAR file name as the second command-line argument. If this

argument is missing, jar will write the result to standard output (when creating a

JAR file) or read it from standard input (when extracting or tabulating a JAR

file).

i Creates an index file (for speeding up lookups in a large archive).

m

Adds a manifest to the JAR file. A manifest is a description of the archive

contents and origin. Every archive has a default manifest, but you can supply

your own if you want to authenticate the contents of the archive.

M Does not create a manifest file for the entries.

t Displays the table of contents.

u Updates an existing JAR file.

Option Description

v Generates verbose output.

x
Extracts files. If you supply one or more file names, only those files are

extracted. Otherwise, all files are extracted.

0 Stores without ZIP compression.

You can package application programs and code libraries into JAR files. For example, if you want to

send mail in a Java program, you use a library that is packaged in a file javax.mail.jar.

4.9.2. The Manifest

In addition to class files, images, and other resources, each JAR file contains a manifest file that

describes special features of the archive.

The manifest file is called MANIFEST.MF and is located in a special META-INF subdirectory of the

JAR file. The minimum legal manifest is quite boring—just

Manifest-Version: 1.0

Complex manifests can have many more entries. The manifest entries are grouped into sections. The

first section in the manifest is called the main section. It applies to the whole JAR file. Subsequent

entries can specify properties of named entities such as individual files, packages, or URLs. Those

entries must begin with a Name entry. Sections are separated by blank lines. For example:

Manifest-Version: 1.0

lines describing this archive

Name: Woozle.class

lines describing this file

Name: com/mycompany/mypkg/

lines describing this package

To edit the manifest, place the lines that you want to add to the manifest into a text file. Then run

jar cfm jarFileName manifestFileName . . .

For example, to make a new JAR file with a manifest, run

jar cfm MyArchive.jar manifest.mf com/mycompany/mypkg/*.class

To update the manifest of an existing JAR file, place the additions into a text file and use a command

such as

jar ufm MyArchive.jar manifest-additions.mf

Note: See https://docs.oracle.com/en/java/javase/25/docs/specs/jar/jar.html for more

information on the JAR and manifest file formats.

4.9.3. Executable JAR Files

https://docs.oracle.com/en/java/javase/25/docs/specs/jar/jar.html

You can use the e option of the jar command to specify the entry point of your program—the class that

you would normally specify when invoking the java program launcher:

jar cvfe MyProgram.jar com.mycompany.mypkg.MainAppClass files to add

Alternatively, you can specify the main class of your program in the manifest, including a statement of

the form

Main-Class: com.mycompany.mypkg.MainAppClass

Do not add a .class extension to the main class name.

Caution: The last line in the manifest must end with a newline character. Otherwise, the

manifest will not be read correctly. It is a common error to produce a text file containing just

the Main-Class line without a line terminator.

With either method, users can simply start the program as

java -jar MyProgram.jar

Depending on the operating system configuration, users may even be able to launch the application by

double-clicking the JAR file icon. Here are behaviors for various operating systems:

On Windows, the Java runtime installer creates a file association for the “.jar” extension that

launches the file with the javaw -jar command. (Unlike the java command, the javaw command

doesn’t open a shell window.)

On Mac OS X, the operating system recognizes the “.jar” file extension and executes the Java

program when you double-click a JAR file.

However, a Java program in a JAR file does not have the same feel as a native application. On

Windows, you can use third-party wrapper utilities that turn JAR files into Windows executables. A

wrapper is a Windows program with the familiar .exe extension that locates and launches the Java

virtual machine (JVM) or tells the user what to do when no JVM is found. There are a number of

commercial and open-source products, such as Launch4J (https://launch4j.sourceforge.net) and IzPack

(https://github.com/izpack/izpack).

4.9.4. Multi-Release JAR Files

With the introduction of modules and strong encapsulation of packages, some previously accessible

internal APIs are no longer available. This may require library providers to distribute different code for

different Java versions. Multi-release JARs take care of this use case.

For backward compatibility, version-specific class files are placed in the META-INF/versions

directory:

Application.class

BuildingBlocks.class

Util.class

META-INF

https://launch4j.sourceforge.net/
https://github.com/izpack/izpack

 ├─ MANIFEST.MF (with line Multi-Release: true)

 └─ versions

 ├─ 9

 │ ├─ Application.class

 │ └─ BuildingBlocks.class

 └─ 10

 └─ BuildingBlocks.class

Suppose the Application class makes use of the CssParser class. Then the legacy Application.class file

can be compiled to use com.sun.javafx.css.CssParser, while the Java 9 version uses

javafx.css.CssParser.

Java 8 knows nothing about the META-INF/versions directory and will simply load the legacy classes.

When the JAR file is read by Java 9, the new version is used instead.

To add versioned class files, use the --release flag:

jar uf MyProgram.jar --release 9 Application.class

To build a multi-release JAR file from scratch, use the -C option and switch to a different class file

directory for each version:

jar cf MyProgram.jar -C bin/8 . --release 9 -C bin/9 Application.class

When compiling for different releases, use the --release flag and the -d flag to specify the output

directory:

javac -d bin/8 --release 8 . . .

The -d option creates the directory if it doesn’t exist.

The JDK ships with symbol files for two prior versions of the API. In Java 21, you can compile with --

release set to 21, 20, or 19.

Multi-release JARs are not intended for different versions of a program or library. The public API of

all classes should be the same for both releases. The sole purpose of multi-release JARs is to enable a

particular version of your program or library to work with multiple JDK releases. If you add

functionality or change an API, you should provide a new version of the JAR instead.

Note: Tools such as javap are not retrofitted to handle multi-release JAR files. If you call

javap -classpath MyProgram.jar Application.class

you get the base version of the class (which, after all, is supposed to have the same public API

as the newer version). If you must look at the newer version, call

javap -classpath MyProgram.jar\!/META-INF/versions/9/Application.class

4.9.5. A Note about Command-Line Options

The options of commands in the Java Development Kit have traditionally used single dashes followed

by multiletter option names, such as

java -jar . . .

javac -Xlint:fallthrough -classpath . . .

The exception was the jar command, which followed the classic option format of the tar command

without dashes:

jar cvf . . .

JEP 293 (https://openjdk.org/jeps/293) provides guidelines for moving toward a more common option

format, starting with Java 9. With most Linux tools, multiletter option names are preceded by double

dashes, with single-letter shortcuts for common options. For example, the Linux ls command can be

called with a “human-readable” option as

ls --human-readable

or

ls -h

With javac and java, you can now use --version instead of -version and --class-path instead of -

classpath. As you will see in Chapter 12, the --module-path option has a shortcut -p.

Arguments of options with -- and multiple letters are separated by whitespace or an = sign:

https://openjdk.org/jeps/293

java --class-path /home/user/classdir . . .

or

java --class-path=/home/user/classdir . . .

The = form is useful when an option needs to be passed through to another tool, where the passthrough

mechanism cannot handle white space.

Tip: You can use the JDK_JAVA_OPTIONS environment variable to pass command-line

options to the java launcher:

export JDK_JAVA_OPTIONS='--class-path /home/user/classdir -enableassertions'

Caution: According to JEP 293, single-letter options without arguments can be grouped

together:

jar -c -v -f myapp.jar -m MANIFEST.MF *.class

can be simplified to

jar -cv -f myapp.jar -m MANIFEST.MF *.class

But that does not currently work. Strangely,

jar -cvfm myapp.jar MANIFEST.MF *.class

works even though it should not. Until this is sorted out, it seems best to stick with the classic

tar-style options for the jar command.

Caution: According to JEP 293, arguments of single-letter options can be separated by

whitespace or directly follow the option:

javac -d outputdir . . .

or

javac -doutputdir . . .

The latter doesn’t currently work. It also seems like a bad idea since it would invite conflicts

with legacy options. For example, what should happen if the output directory happens to be

named eprecation?

4.10. Documentation Comments

The JDK contains a very useful tool, called javadoc, that generates HTML documentation from your

source files. In fact, the online API documentation described in Chapter 3 is simply the result of

running javadoc on the source code of the standard Java library.

If you add comments that start with the special delimiter /** to your source code, you too can easily

produce professional-looking documentation. This is a very nice approach because it lets you keep

your code and documentation in one place. If you put your documentation into a separate file, then, as

you probably know, the code and comments tend to diverge over time. When documentation

comments are in the same file as the source code, it is an easy matter to update both and run javadoc

again.

4.10.1. Comment Insertion

The javadoc utility extracts information for the following items:

Modules

Packages

Public classes and interfaces

Public and protected fields

Public and protected constructors and methods

Protected members are introduced in Chapter 5, interfaces in Chapter 6, and modules in Chapter 12.

You can (and should) supply a comment for each of these members. Each comment is placed

immediately above the member it describes. A comment starts with a /** and ends with a */.

Each /** . . . */ documentation comment contains free-form text followed by tags. A tag starts with an

@, such as @since or @param.

The first sentence of the free-form text should be a summary statement. The javadoc utility

automatically generates summary pages that extract these sentences.

The most common javadoc tags are block tags. They must appear at the beginning of a line and start

with @, optionally preceded by whitespace, the comment delimiter /**, or leading * which are often

used for multiline comments. In contrast, inline tags are enclosed in braces: {@tagname contents}.

The contents may contain braces, but they must be balanced. Examples are the @code and @link tags.

JavaDoc text can contain HTML tags such as or ul. They are passed through to the generated

HTML pages.

Note: Starting with Java 23, you can author JavaDoc comments in Markdown instead of plain

text and HTML. This can be easier to read and write, particularly with complex mixtures of

text and code.

Markdown comments are delimited with /// in front of each line, instead of /** and */. This

makes it easy to include code with comments.

JavaDoc follows the CommonMarc specification, and in addition supports the Github Flavored

Markdown extension for tables.

At this point, JavaDoc Markdown comments are not yet commonly used. You can find the

details at https://openjdk.org/jeps/467.

4.10.2. Class Comments

The class comment must be placed after any import statements, directly before the class definition.

https://openjdk.org/jeps/467

Here is an example of a class comment:

/**

 * A {@code Card} object represents a playing card, such

 * as "Queen of Hearts". A card has a suit (Diamond, Heart,

 * Spade or Club) and a value (1 = Ace, 2 . . . 10, 11 = Jack,

 * 12 = Queen, 13 = King).

 */

public class Card {

 . . .

}

Note: There is no need to add an * in front of every line. For example, the following comment

is equally valid:

/**

 A <code>Card</code> object represents a playing card, such

 as "Queen of Hearts". A card has a suit (Diamond, Heart,

 Spade or Club) and a value (1 = Ace, 2 . . . 10, 11 = Jack,

 12 = Queen, 13 = King).

*/

However, most IDEs supply the asterisks automatically and rearrange them when the line

breaks change.

4.10.3. Method Comments

Each method comment must immediately precede the method that it describes. In addition to the

general-purpose tags, you can use the following tags:

@param variable description

This tag adds an entry to the “parameters” section of the current method. The description can span

multiple lines and can use HTML tags. All @param tags for one method must be kept together.

@return description

This tag adds a “returns” section to the current method. The description can span multiple lines

and can use HTML tags.

@throws class description

This tag adds a note that this method may throw an exception. Exceptions are the topic of Chapter

7.

Here is an example of a method comment:

/**

 * Raises the salary of an employee.

 * @param byPercent the percentage by which to raise the salary (e.g., 10 means 10%)

 * @return the amount of the raise

 */

public double raiseSalary(double byPercent) {

 double raise = salary * byPercent / 100;

 salary += raise;

 return raise;

}

Tip: It can be tedious to write comments for methods whose description and return value are

identical, such as:

/**

 * Returns the name of the employee.

 * @return the name of the employee

 */

In such cases, consider the inline form of @return introduced in Java 16:

/**

 * {@return the name of the employee}

 */

The description section becomes “Returns the name of the employee.”, and a “Returns” section

with the same contents is added.

Note: Methods can also have a @throws tag to document the exceptions that a method throws.

Exceptions are covered in Chapter 7.

Note: If you add {@inheritDoc} into a method description or the @param, @return, or

@throws tag bodies, then the documentation from the method in a superclass or interface is

copied verbatim. (See Chapter 5 and Chapter 6 for superclasses and interfaces.)

4.10.4. Field Comments

You only need to document public fields—generally that means static constants. For example:

/**

 * The "Hearts" card suit

 */

public static final int HEARTS = 1;

4.10.5. Package Comments

Place the class, method, and variable comments directly into the Java source files, delimited by /** . . .

*/ documentation comments. However, to generate package comments, you need to add a separate file

in each package directory. You have two choices:

1. Supply a Java file named package-info.java. The file must contain an initial documentation

comment, delimited with /** and */, followed by a package statement. It should contain no further

code or comments.

2. Supply an HTML file named package.html. All text between the tags <body>. . .</body> is

extracted.

4.10.6. HTML Markup

In the free-form text, you can use HTML modifiers such as . . . for emphasis, . . .

 for strong emphasis, / for bulleted lists, and to include an image.

To type monospaced code, use {@code . . . } instead of <code>. . .</code>—then you don’t have to

worry about escaping < and & characters inside the code. If you want to write unescaped < or & in the

plain font, use the @literal{ . . .} tag.

For multiline code displays in an HTML pre tag, you can use:

/**

 * . . .

 * <pre>{@code

 * . . .

 * . . .

 * }</pre>

 */

or, since Java 18:

/**

 * . . .

 * {@snippet :

 * . . .

 * . . .

 * }

 */

Either way, you don’t have to escape < or & characters in the code. However, braces have to match,

and you cannot have /* . . . */ comments.

4.10.7. Links

You can use hyperlinks to other relevant parts of the javadoc documentation, or to external documents,

with the @see and @link tags.

The tag @see reference adds a hyperlink in the “see also” section. It can be used with both classes and

methods. Here, reference can be one of the following:

package.class#member label

label

"text"

The first case is the most useful. You supply the name of a class, method, or variable, and javadoc

inserts a hyperlink to the documentation. For example,

@see com.horstmann.corejava.Employee#raiseSalary(double)

makes a link to the raiseSalary(double) method in the com.horstmann.corejava.Employee class. You

can omit the name of the package, or both the package and class names. Then, the member will be

located in the current package or class.

Note that you must use a #, not a period, to separate the class from the method or variable name. The

Java compiler itself is highly skilled in determining the various meanings of the period character as

separator between packages, subpackages, classes, inner classes, and methods and variables. But the

javadoc utility isn’t quite as clever, so you have to help it along.

Constructors have the special name <init>, not the name of the class, such as

@see com.horstmann.corejava.Employee#<init>()

You can specify an optional label after the member that will appear as the link anchor. If you omit the

label, the user will see the member name.

If the @see tag is followed by a < character, then you need to specify a hyperlink. You can link to any

URL you like. For example:

@see The Core Java home page

If the @see tag is followed by a " character, then the text is displayed in the “see also” section. For

example:

@see "Core Java Volume 2"

You can add multiple @see tags for one member, but you must keep them all together.

If you like, you can place hyperlinks to other classes or methods anywhere in any of your

documentation comments. Insert a tag of the form

{@link package.class#member}

anywhere in a comment. The member reference follows the same rules as for the @see tag.

In a code snippet, place the @link tag in the comment, so that it doesn’t interfere with the code:

{@snippet

 IO.println(); // @link substring=println target=java.lang.IO#println()

}

Since Java 20, ids are automatically generated for level 2 and level 3 headings. For example,

<h2>General Principles</h2>

gets an id general-principles-heading, which you can refer from @see and @link tags. You need two #

symbols to link to an id:

{@link com.horstmann.corejava.Employee##general-principles-heading}

Use @linkplain instead of @link if a link should be displayed in the plain font instead of the code font.

Note: If your comments contain links to other files, such as images (for example, diagrams or

images of user interface components), place those files into a subdirectory, named doc-files, of

the directory containing the source file. The javadoc utility will copy the doc-files directories

and their contents from the source directory to the documentation directory. You need to use the

doc-files directory in your link, for example <img src="doc-files/uml.png" alt="UML

diagram"/>.

4.10.8. General Comments

The tag @since text makes a “since” entry. The text can be any description of the version that

introduced this feature. For example, @since 1.7.1.

The following tags can be used in class documentation comments:

@author name

This tag makes an “author” entry. You can have multiple @author tags, one for each author. Don’t

feel compelled to use this tag—your version control system does a more thorough job tracking

authorship.

@version text

This tag makes a “version” entry. The text can be any description of the current version.

The {@value optionalFormat constantFieldReference} inline tag inserts the value of a constant field,

with an optional printf-style formatter since Java 20. For example, {@value %X

Integer#MAX_VALUE} yields 7FFFFFFF.

The @deprecated tag is used together with the @Deprecated annotation. It is followed by text that tells

the user when and why the deprecation occurred, and to describe alternatives.

Finally, you can use the {@index entry} tag to add an entry to the generated index.

4.10.9. Code Snippets

The purpose of this feature is to allow you to import (presumably well-tested and up-to-date) code

from external files. This minimizes the risk of incorrect or stale documentation. Code snippets were

introduced in Java 18.

You can import an entire file with these tags:

{@snippet file=EmployeeDemo.java}

{@snippet class=com.horstmann.corejava.EmployeeDemo.java}

Files should be placed in the snippet-files subdirectory of the current package.

More commonly, you want to copy a region from a file. In the source file, you specify the name and

extent of a region as follows:

public class EmployeeDemo {

 . . .

 // @start region=default-employee

 var e = new Employee();

 String name = e.getName(); // name is null

 // @end

 . . .

}

To highlight a part of the snippet, use a comment:

var e = new Employee(); // @hightlight substring=new

String name = e.getName(); // @highlight regex=get[A-Z][a-z]+

Inside a region, you can replace a part with another string, for example to make the documentation

more general:

var e = new Employee("Fred", 100000); // @replace regex=([^)]+) replacement="(..., ...)"

Then the documentation contains:

var e = new Employee(..., ...);

To add a link, use:

var c = new Card(); // @link substring=Card target=com.horstmann.games#Card.<init>()

These decorations and transformations are specified as comments, so that your source file compiles

and runs.

4.10.10. Comment Extraction

Here, docDirectory is the name of the directory where you want the HTML files to go. Follow these

steps:

1. Change to the directory that contains the source files you want to document. If you have nested

packages to document, such as com.horstmann.corejava, you must be working in the directory

that contains the subdirectory com. (This is the directory that contains the overview.html file, if

you supplied one.)

2. Run the command

javadoc -d docDirectory nameOfPackage

for a single package. Or, run

javadoc -d docDirectory nameOfPackage1 nameOfPackage2. . .

to document multiple packages. If your files are in the unnamed package, run instead

javadoc -d docDirectory *.java

If you omit the -d docDirectory option, the HTML files are extracted to the current directory. That can

get messy, and I don’t recommend it.

The javadoc program can be fine-tuned by numerous command-line options. For example, you can use

the -author and -version options to include the @author and @version tags in the documentation. (By

default, they are omitted.) Another useful option is -link, to include hyperlinks to standard classes. For

example, if you use the command

javadoc -link https://docs.oracle.com/en/java/javase/25/docs/api *.java

all standard library classes are automatically linked to the documentation on the Oracle web site.

If you use the -linksource option, each source file is converted to HTML (without color coding, but

with line numbers), and each class and method name turns into a hyperlink to the source.

You can also supply an overview comment for all source files. Place it in a file such as overview.html

and run the javadoc tool with the command line option -overview filename. All text between the tags

<body>. . .</body> is extracted. The content is displayed when the user selects “Overview” from the

navigation bar.

For additional options, refer to the online documentation of the javadoc utility at

https://docs.oracle.com/en/java/javase/25/javadoc/index.html.

4.11. Class Design Hints

https://docs.oracle.com/en/java/javase/25/javadoc/index.html

Without trying to be comprehensive or tedious, I want to end this chapter with some hints that will

make your classes more acceptable in well-mannered OOP circles.

1. Always keep data private.

This is first and foremost; doing anything else violates encapsulation. You may need to write an

accessor or mutator method occasionally, but you are still better off keeping the instance fields

private. Bitter experience shows that the data representation may change, but how these data are

used will change much less frequently. When data are kept private, changes in their representation

will not affect the users of the class, and bugs are easier to detect.

2. Always initialize data.

Java won’t initialize local variables for you, but it will initialize instance fields of objects. Don’t

rely on the defaults, but initialize all variables explicitly, either by supplying a default or by

setting defaults in all constructors.

3. Don’t use too many basic types in a class.

The idea is to replace multiple related uses of basic types with other classes. This keeps your

classes easier to understand and to change. For example, replace the following instance fields in a

Customer class:

private String street;

private String city;

private String state;

private int zip;

with a new class called Address. This way, you can easily cope with changes to addresses, such as

the need to deal with international addresses.

4. Not all fields need individual field accessors and mutators.

You may need to get and set an employee’s salary. You certainly won’t need to change the hiring

date once the object is constructed. And, quite often, objects have instance fields that you don’t

want others to get or set, such as an array of state abbreviations in an Address class.

5. Break up classes that have too many responsibilities.

This hint is, of course, vague: “too many” is obviously in the eye of the beholder. However, if

there is an obvious way to break one complicated class into two classes that are conceptually

simpler, seize the opportunity. (On the other hand, don’t go overboard; ten classes, each with only

one method, are usually an overkill.)

Here is an example of a bad design:

public class CardDeck { // bad design

 private int[] value;

 private int[] suit;

 public CardDeck() { . . . }

 public void shuffle() { . . . }

 public int getTopValue() { . . . }

 public int getTopSuit() { . . . }

 public void draw() { . . . }

}

This class really implements two separate concepts: a deck of cards, with its shuffle and draw

methods, and a card, with the methods to inspect its value and suit. It makes sense to introduce a

Card class that represents an individual card. Now you have two classes, each with its own

responsibilities. Since the Card class is so simple, it can be implemented as a record. Also, instead

of using integer values for the suits, an enumeration is a better choice:

public class CardDeck {

 private Card[] cards;

 public CardDeck() { . . . }

 public void shuffle() { . . . }

 public Card getTop() { . . . }

 public void draw() { . . . }

}

public enum Suit { DIAMONDS, HEARTS, SPADES, CLUBS }

public record Card(int value, Suit suit) { }

6. Make the names of your classes and methods reflect their responsibilities.

Just as variables should have meaningful names that reflect what they represent, so should

classes. (The standard library certainly contains some dubious examples, such as the Date class

that describes time.)

A good convention is that a class name should be a noun (Order), or a noun preceded by an

adjective (RushOrder) or a gerund (an “-ing” word, as in BillingAddress). As for methods, follow

the standard convention that accessor methods begin with a lowercase get (getSalary) and mutator

methods use a lowercase set (setSalary).

7. Prefer immutable classes.

The LocalDate class, and other classes from the java.time package, are immutable—no method

can modify the state of an object. Instead of mutating objects, methods such as plusDays return

new objects with the modified state.

The problem with mutation is that it can happen concurrently when multiple threads try to update

an object at the same time. The results are unpredictable. When classes are immutable, it is safe to

share their objects among multiple threads.

Therefore, it is a good idea to make classes immutable when you can. This is particularly easy

with classes that represent values, such as a string or a point in time. Computations can simply

yield new values instead of updating existing ones.

Of course, not all classes should be immutable. It would be strange to have the raiseSalary

method return a new Employee object when an employee gets a raise.

In this chapter, we covered the fundamentals of objects and classes that make Java an “object-based”

language. In order to be truly object-oriented, a programming language must also support inheritance

and polymorphism. The Java support for these features is the topic of the next chapter.

Chapter 5 ▪ Inheritance

Chapter 4 introduced you to classes and objects. In this chapter, you will

learn about inheritance, another fundamental concept of object-oriented

programming. The idea behind inheritance is that you can create new

classes that are built on existing classes. When you inherit from an existing

class, you reuse (or inherit) its methods, and you can add new methods and

fields to adapt your new class to new situations. This technique is essential

in Java programming.

This chapter also covers reflection, the ability to find out more about classes

and their properties in a running program. Reflection is a powerful feature,

but it is undeniably complex. Since reflection is of greater interest to tool

builders than to application programmers, you can probably glance over

that part of the chapter upon first reading and come back to it later.

5.1. Classes, Superclasses, and Subclasses

Let’s return to the Employee class discussed in the previous chapter.

Suppose (alas) you work for a company where managers are treated

differently from other employees. Managers are, of course, just like

employees in many respects. Both employees and managers are paid a

salary. However, while employees are expected to complete their assigned

tasks in return for receiving their salary, managers get bonuses if they

actually achieve what they are supposed to do. This is the kind of situation

that cries out for inheritance. Why? Well, you need to define a new class,

Manager, and add functionality. But you can retain some of what you have

already programmed in the Employee class, and all the fields of the original

class can be preserved. More abstractly, there is an obvious “is–a”

relationship between Manager and Employee. Every manager is an

employee: This “is–a” relationship is the hallmark of inheritance.

Note: In this chapter, I use the classic example of employees and

managers, but I must ask you to take this example with a grain of

salt. In the real world, an employee can become a manager, so you

would want to model being a manager as a role of an employee, not

a subclass. In this chapter, however, I assume the corporate world is

populated by two kinds of people: those who are forever employees,

and those who have always been managers.

More generally, inheritance may not be as common as was

envisioned when object-oriented programming first became popular.

Nevertheless, it is a powerful and indispensable notion in many

programming situations.

5.1.1. Defining Subclasses

Here is how you define a Manager class that inherits from the Employee

class. Use the Java keyword extends to denote inheritance.

public class Manager extends Employee {

 added methods and fields

}

Note: Some programming languages use a more cryptic syntax for

inheritance than Java. In Python, you declare class

Manager(Employee), and in C++, you write class Manager : public

Employee. All inheritance in Java is public inheritance; there is no

analog to the C++ features of private and protected inheritance.

The keyword extends indicates that you are making a new class that derives

from an existing class. The existing class is called the superclass, base

class, or parent class. The new class is called the subclass, derived class, or

child class. The terms superclass and subclass are those most commonly

used by Java programmers, although some programmers prefer the

parent/child analogy, which also ties in nicely with the “inheritance” theme.

The Employee class is a superclass, but not because it is superior to its

subclass or contains more functionality. In fact, the opposite is true:

Subclasses have more functionality than their superclasses. For example, as

you will see when we go over the rest of the Manager class code, the

Manager class encapsulates more data and has more functionality than its

superclass Employee.

Note: The prefixes super and sub come from the language of sets

used in theoretical computer science and mathematics. The set of all

employees contains the set of all managers, and thus is said to be a

superset of the set of managers. Or, to put it another way, the set of

all managers is a subset of the set of all employees.

Our Manager class has a new field to store the bonus, and a new method to

set it:

public class Manager extends Employee {

 private double bonus;

 . . .

 public void setBonus(double bonus) {

 this.bonus = bonus;

 }

}

There is nothing special about these methods and fields. If you have a

Manager object, you can simply apply the setBonus method.

Manager boss = . . .;

boss.setBonus(5000);

Of course, if you have an Employee object, you cannot apply the setBonus

method—it is not among the methods defined in the Employee class.

However, you can use methods such as getName and getHireDay with

Manager objects. Even though these methods are not explicitly defined in

the Manager class, they are automatically inherited from the Employee

superclass.

Every Manager object has four fields: name, salary, hireDay, and bonus.

The fields name, salary, and hireDay are taken from the superclass.

Note: The Java language specification states: “Members of a class

that are declared private are not inherited by subclasses of that

class.” This has confused my readers over the years. The

specification uses the word “inherits” narrowly. It considers the

private fields non-inherited because the Manager class cannot access

them directly. Thus, every Manager object has three fields from the

superclass, but the Manager class does not “inherit” them.

When defining a subclass by extending its superclass, you only need to

indicate the differences between the subclass and the superclass. When

designing classes, you place the most general methods in the superclass and

more specialized methods in its subclasses. Factoring out common

functionality by moving it to a superclass is routine in object-oriented

programming.

Note: In Chapter 4, you learned about records: classes whose state

is entirely defined by the constructor parameters. You cannot extend

a record, and a record cannot extend another class.

5.1.2. Overriding Methods

Some of the superclass methods are not appropriate for the Manager

subclass. In particular, the getSalary method should return the sum of the

base salary and the bonus. You need to supply a new method to override the

superclass method:

public class Manager extends Employee {

 . . .

 public double getSalary() {

 . . .

 }

 . . .

}

How can you implement this method? At first glance, it appears to be

simple—just return the sum of the salary and bonus fields:

public double getSalary() {

 return salary + bonus; // won't work

}

However, that won’t work. Recall that only the Employee methods have

direct access to the private fields of the Employee class. This means that the

getSalary method of the Manager class cannot directly access the salary

field. If the Manager methods want to access those private fields, they have

to do what every other method does—use the public interface, in this case

the public getSalary method of the Employee class.

So, let’s try again. You need to call getSalary instead of simply accessing

the salary field:

public double getSalary() {

 double baseSalary = getSalary(); // still won't work

 return baseSalary + bonus;

}

Now, the problem is that the call to getSalary simply calls itself, because the

Manager class has a getSalary method (namely, the method we are trying to

implement). The consequence is an infinite chain of calls to the same

method, leading to a program crash.

We need to indicate that we want to call the getSalary method of the

Employee superclass, not the current class. Use the special keyword super

for this purpose. The call

super.getSalary()

calls the getSalary method of the Employee class. Here is the correct

version of the getSalary method for the Manager class:

public double getSalary() {

 double baseSalary = super.getSalary();

 return baseSalary + bonus;

}

Note: Some people think of super as being analogous to the this

reference. However, that analogy is not quite accurate: super is not a

reference to an object. For example, you cannot assign the value

super to another object variable. Instead, super is a special keyword

that directs the compiler to invoke the superclass method.

As you saw, a subclass can add fields, and it can add methods or override

the methods of the superclass. However, inheritance can never take away

any fields or methods.

5.1.3. Subclass Constructors

To complete our example, let us supply a constructor.

public Manager(String name, double salary, int year, int month, int day) {

 super(name, salary, year, month, day);

 bonus = 0;

}

Here, the keyword super has a different meaning. The instruction

super(name, salary, year, month, day);

is shorthand for “call the constructor of the Employee superclass with

name, salary, year, month, and day as arguments.”

Since the Manager constructor cannot access the private fields of the

Employee class, it must initialize them through a constructor. The

constructor is invoked with the special super syntax.

Before Java 25, the call to super had to be the first statement in the

constructor for the subclass. Now, the code between the start of the

constructor and the call to super is an early execution context. As you have

already seen in Chapter 4, only limited actions are permitted in this context.

Except for assignment to uninitialized fields, you cannot access the object

under construction in any way.

When a subclass object is constructed without an explicit invocation of a

superclass constructor, the superclass must have a no-argument constructor.

That constructor is invoked prior to the subclass construction.

Note: Recall that the this keyword has two meanings: to denote a

reference to the implicit parameter and to call another constructor of

the same class. Likewise, the super keyword has two meanings: to

invoke a superclass method and to invoke a superclass constructor.

When used to invoke constructors, the this and super keywords are

closely related. The constructor parameters are either passed to

another constructor of the same class (this) or a constructor of the

superclass (super).

After you redefine the getSalary method for Manager objects, managers

will automatically have the bonus added to their salaries.

Here’s an example of this at work. We make a new manager and set the

manager’s bonus:

Manager boss = new Manager("Carl Cracker", 80000, 1987, 12, 15);

boss.setBonus(5000);

We make an array of three employees:

var staff = new Employee[3];

We populate the array with a mix of managers and employees:

staff[0] = boss;

staff[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);

staff[2] = new Employee("Tony Tester", 40000, 1990, 3, 15);

We print out everyone’s salary:

for (Employee e : staff)

 IO.println(e.getName() + " " + e.getSalary());

This loop prints the following data:

Carl Cracker 85000.0

Harry Hacker 50000.0

Tommy Tester 40000.0

Now staff[1] and staff[2] each print their base salary because they are

Employee objects. However, staff[0] is a Manager object whose getSalary

method adds the bonus to the base salary.

What is remarkable is that the call

e.getSalary()

picks out the correct getSalary method. Note that the declared type of e is

Employee, but the actual type of the object to which e refers can be either

Employee or Manager.

When e refers to an Employee object, the call e.getSalary() calls the

getSalary method of the Employee class. However, when e refers to a

Manager object, then the getSalary method of the Manager class is called

instead. The virtual machine knows about the actual type of the object to

which e refers, and therefore can invoke the correct method.

The fact that an object variable (such as the variable e) can refer to multiple

actual types is called polymorphism. Automatically selecting the

appropriate method at runtime is called dynamic binding. I discuss both

topics in more detail in this chapter.

Note: In C++ and C#, you need to declare a method as virtual if you

want dynamic binding. In Java, dynamic binding is the default

behavior; if you do not want a method to be virtual, you tag it as

final. (I discuss the final keyword later in this chapter.)

Listing 5.1 contains a program that shows how the salary computation

differs for Employee and Manager objects. The Employee class is the final

version of the preceding chapter, and the Manager class is shown in Listing

5.2.

Starting with this chapter, classes are in packages and have (mostly) public

methods, which is the form that you normally see them in production code.

However, the class with the main method is kept as simple as possible.

You can launch the program in this section as

java InheritanceDemo.java

Listing 5.1 v1ch05/InheritanceDemo.java

1 package v1ch05;

2

3 import com.horstmann.corejava.*;

4

5 /**

6 * This program demonstrates inheritance.

7 */

8 class InheritanceDemo {

9 void main() {

10 // construct a Manager object

11 var boss = new Manager("Carl Cracker", 80000, 1987, 12, 15);

12 boss.setBonus(5000);

13

14 var staff = new Employee[3];

15

16 // fill the staff array with Manager and Employee objects

17

18 staff[0] = boss;

19 staff[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);

20 staff[2] = new Employee("Tommy Tester", 40000, 1990, 3, 15);

21

22 // print out information about all Employee objects

23 for (Employee e : staff)

24 IO.println("name=" + e.getName() + ",salary=" + e.getSalary());

25 }

26 }

Listing 5.2 com/horstmann/corejava/Manager.java

1 package com.horstmann.corejava;

2

3 public class Manager extends Employee {

4 private double bonus;

5

6 public Manager(String name, double salary, int year, int month, int day) {

7 super(name, salary, year, month, day);

8 bonus = 0;

9 }

10

11 public double getSalary() {

12 double baseSalary = super.getSalary();

13 return baseSalary + bonus;

14 }

15

16 public void setBonus(double b) {

17 bonus = b;

18 }

19 }

5.1.4. Inheritance Hierarchies

Inheritance need not stop at deriving one layer of classes. We could have an

Executive class that extends Manager, for example. The collection of all

classes extending a common superclass is called an inheritance hierarchy,

as shown in Figure 5.1. The path from a particular class to its ancestors in

the inheritance hierarchy is its inheritance chain.

.

Figure 5.1: Employee inheritance hierarchy

There is usually more than one chain of descent from a distant ancestor

class. You could form subclasses Programmer or Secretary that extend

Employee, and they would have nothing to do with the Manager class (or

with each other). This process can continue as long as is necessary.

Note: In Python and C++, a class can have multiple superclasses.

Java does not support multiple inheritance. For ways to recover

much of the functionality of multiple inheritance, see Chapter 6.

5.1.5. Polymorphism

A simple rule can help you decide whether or not inheritance is the right

design for your data. The “is–a” rule states that every object of the subclass

is an object of the superclass. For example, every manager is an employee.

Thus, it makes sense for the Manager class to be a subclass of the Employee

class. Naturally, the opposite is not true—not every employee is a manager.

Another way of formulating the “is–a” rule is the substitution principle.

That principle states that you can use a subclass object whenever the

program expects a superclass object.

For example, you can assign a subclass object to a superclass variable.

Employee e;

e = new Employee(. . .); // Employee object expected

e = new Manager(. . .); // OK, Manager can be used as well

In the Java programming language, object variables are polymorphic. A

variable of type Employee can refer to an object of type Employee or to an

object of any subclass of the Employee class (such as Manager, Executive,

Secretary, and so on).

We took advantage of this principle in Listing 5.1:

Manager boss = new Manager(. . .);

Employee[] staff = new Employee[3];

staff[0] = boss;

In this case, the variables staff[0] and boss refer to the same object.

However, staff[0] is considered to be only an Employee object by the

compiler.

That means you can call

boss.setBonus(5000); // OK

but you can’t call

staff[0].setBonus(5000); // ERROR

The declared type of staff[0] is Employee, and the setBonus method is not a

method of the Employee class.

However, you cannot assign a superclass reference to a subclass variable.

For example, it is not legal to make the assignment

Manager m = staff[i]; // ERROR

The reason is clear: Not all employees are managers. If this assignment

were to succeed and m were to refer to an Employee object that is not a

manager, then it would later be possible to call m.setBonus(. . .) and a

runtime error would occur.

Caution: In Java, arrays of subclass references can be converted to

arrays of superclass references without a cast. For example, consider

this array of managers:

Manager[] managers = new Manager[10];

It is legal to convert this array to an Employee[] array:

Employee[] staff = managers; // OK

Sure, why not, you may think. After all, if managers[i] is a Manager,

it is also an Employee. But actually, something surprising is going

on. Keep in mind that managers and staff are references to the same

array. Now consider the statement

staff[0] = new Employee("Harry Hacker", . . .);

The compiler will cheerfully allow this assignment. But staff[0] and

managers[0] are the same reference, so it looks as if we managed to

smuggle a mere employee into the management ranks. That would

be very bad—calling managers[0].setBonus(1000) would try to

access a nonexistent instance field and would corrupt neighboring

memory.

To make sure no such corruption can occur, all arrays remember the

element type with which they were created, and they monitor that

only compatible references are stored into them. For example, the

array created as new Manager[10] remembers that it is an array of

managers. Attempting to store an Employee reference causes an

ArrayStoreException.

5.1.6. Understanding Method Calls

It is important to understand exactly how a method call is applied to an

object. Let’s say we call x.f(args), and the implicit argument x is declared to

be an object of class C. Here is what happens:

1. The compiler looks at the declared type of the object and the method

name. Note that there may be multiple methods, all with the same

name, f, but with different parameter types. For example, there may be

a method f(int) and a method f(String). The compiler enumerates all

methods called f in the class C and all accessible methods called f in

the superclasses of C. (Private methods of the superclass are not

accessible.)

Now the compiler knows all possible candidates for the method to be

called.

2. Next, the compiler determines the types of the arguments supplied in

the method call. If among all the methods called f there is a unique

method whose parameter types are a best match for the supplied

arguments, that method is chosen to be called. This process is called

overloading resolution. For example, in a call x.f("Hello"), the

compiler picks f(String) and not f(int). The situation can get complex

because of type conversions (int to double, Manager to Employee, and

so on). If the compiler cannot find any method with matching

parameter types or if multiple methods all match after applying

conversions, the compiler reports an error.

Now the compiler knows the name and parameter types of the method

that needs to be called.

Note: Recall that the name and parameter type list for a method

are called the method’s signature. For example, f(int) and

f(String) are two methods with the same name but different

signatures. If you define a method in a subclass that has the

same signature as a superclass method, you override the

superclass method.

The return type is not part of the signature. However, when you

override a method, you need to keep the return type

compatible. A subclass may change the return type to a subtype

of the original type. For example, suppose the Employee class

has a method

public Employee getBuddy() { . . . }

A manager would never want to have a lowly employee as a

buddy. To reflect that fact, the Manager subclass can override

this method as

public Manager getBuddy() { . . . } // OK to change return

type

We say that the two getBuddy methods have covariant return

types.

3. If the method is private, static, final, or a constructor, then the compiler

knows exactly which method to call. (The final modifier is explained

in the next section.) This is called static binding. Otherwise, the

method to be called depends on the actual type of the implicit

argument, and dynamic binding must be used at runtime. In our

example, the compiler would generate an instruction to call f(String)

with dynamic binding.

4. When the program runs and uses dynamic binding to call a method, the

virtual machine must call the version of the method that is appropriate

for the actual type of the object to which x refers. Let’s say the actual

type is D, a subclass of C. If the class D defines a method f(String),

that method is called. If not, D’s superclass is searched for a method

f(String), and so on.

It would be time-consuming to carry out this search every time a

method is called. Instead, the virtual machine precomputes a method

table for each class. The method table lists all method signatures and

the actual methods to be called.

The virtual machine can build the method table after loading a class,

by combining the methods that it finds in the class file with the method

table of the superclass.

When a method is actually called, the virtual machine simply makes a

table lookup. In our example, the virtual machine consults the method

table for the class D and looks up the method to call for f(String). That

method may be D.f(String) or X.f(String), where X is some superclass

of D. There is one twist to this scenario. If the call is super.f(param),

then the virtual machine consults the method table of the superclass.

Let’s look at this process in detail in the call e.getSalary() in Listing 5.1.

The declared type of e is Employee. The Employee class has a single

method, called getSalary, with no method parameters. Therefore, in this

case, we don’t worry about overloading resolution.

The getSalary method is not private, static, or final, so it is dynamically

bound. The virtual machine produces method tables for the Employee and

Manager classes. The Employee table shows that all methods are defined in

the Employee class itself:

Employee:

 getName() -> Employee.getName()

 getSalary() -> Employee.getSalary()

 getHireDay() -> Employee.getHireDay()

 raiseSalary(double) -> Employee.raiseSalary(double)

Actually, that isn’t the whole story—as you will see later in this chapter, the

Employee class has a superclass Object from which it inherits a number of

methods. I ignore the Object methods for now.

The Manager method table is slightly different. Three methods are

inherited, one method is redefined, and one method is added.

Manager:

 getName() -> Employee.getName()

 getSalary() -> Manager.getSalary()

 getHireDay() -> Employee.getHireDay()

 raiseSalary(double) -> Employee.raiseSalary(double)

 setBonus(double) -> Manager.setBonus(double)

At runtime, the call e.getSalary() is resolved as follows:

1. First, the virtual machine fetches the method table for the actual type

of e. That may be the table for Employee, Manager, or another

subclass of Employee.

2. Then, the virtual machine looks up the defining class for the

getSalary() signature. Now it knows which method to call.

3. Finally, the virtual machine calls the method.

Dynamic binding has a very important property: It makes programs

extensible without the need for modifying existing code. Suppose a new

class Executive is added and there is the possibility that the variable e refers

to an object of that class. The code containing the call e.getSalary() need

not be recompiled. The Executive.getSalary() method is called

automatically if e happens to refer to an object of type Executive.

Caution: When you override a method, the subclass method must

be at least as visible as the superclass method. In particular, if the

superclass method is public, the subclass method must also be

declared public. It is a common error to accidentally omit the public

specifier for the subclass method. The compiler then complains that

you try to supply a more restrictive access privilege.

5.1.7. Preventing Inheritance: Final Classes and Methods

Occasionally, you want to prevent someone from forming a subclass of one

of your classes. Classes that cannot be extended are called final classes, and

you use the final modifier in the definition of the class to indicate this. For

example, suppose we want to prevent others from subclassing the Executive

class. Simply declare the class using the final modifier, as follows:

public final class Executive extends Manager {

 . . .

}

You can also make a specific method in a class final. If you do this, then no

subclass can override that method. (All methods in a final class are

automatically final.) For example:

public class Employee {

 . . .

 public final String getName() {

 return name;

 }

 . . .

}

Note: Recall that fields can also be declared as final. A final field

cannot be changed after the object has been constructed. However, if

a class is declared final, only the methods, not the fields, are

automatically final.

There is only one good reason to make a method or class final: to make sure

its semantics cannot be changed in a subclass. For example, the getTime

and setTime methods of the Calendar class are final. This indicates that the

designers of the Calendar class have taken over responsibility for the

conversion between the Date class and the calendar state. No subclass

should be allowed to mess up this arrangement. Similarly, the String class is

a final class. That means nobody can define a subclass of String. In other

words, if you have a String reference, you know it refers to a String and

nothing but a String.

If you call a method in a constructor, you should declare it as final.

Otherwise, it can be overridden in a subclass, and it can access a partially

constructed subclass instance. Here is an example. For debugging purposes,

the Employee constructor displays a description of the constructed object.

public class Employee {

 public Employee(String name, double salary, int year, int month, int

day) {

 this.name = name;

 this.salary = salary;

 hireDay = LocalDate.of(year, month, day);

 IO.println("Constructed " + description());

 }

 public String description() {

 return "An employee with a salary of " + salary;

 }

 . . .

}

Now a new class is added to the hierarchy of employee classes—executives

with titles:

public class Executive extends Manager {

 private String title;

 public Executive(String name, String title, double salary,

 int year, int month, int day) {

 super(name, salary, year, month, day);

 this.title = title;;

 }

 public String getTitle() {

 return title;

 }

 public String description() {

 if (title.length() >= 20)

 return "An executive with an impressive title";

 else

 return "An executive with a title of " + title;

 }

}

When an Executive is constructed, its constructor first calls the Manager

constructor, which calls the Employee constructor, which calls the

description method. Because of polymorphism, that is the description

method in the Executive class! Unfortunately, the Executive constructor

hasn’t finished yet. The title instance field is still null, causing a

NullPointerException.

Caution: Calling a method in a constructor is inherently dangerous.

The constructor must have done enough work for the method to

function correctly. If the method can be overridden, this becomes

very difficult to ensure. Therefore, it is best to call only final or

private methods in a constructor.

Some languages handle this differently. In C++, method calls in a

constructor are not polymorphic. For example, if you call

getDescription in an Employee constructor, it always invokes

Employee::getDescription.

Tip: Since Java 21, if you compile with the -Xlint:this-escape

option, the compiler issues a warning when the constructor of a

public class calls a method that is not final or private.

The name of the flag is a bit unfortunate since there are other

situations where the this reference can “escape” from a constructor

that the compiler does not currently detect.

Some programmers believe that you should declare all methods as final

unless you have a good reason to want polymorphism. In fact, in C++ and

C#, methods do not use polymorphism unless you specifically request it.

That may be a bit extreme, but I agree that it is a good idea to think

carefully about final methods and classes when you design a class

hierarchy.

In the early days of Java, some programmers used the final keyword hoping

to avoid the overhead of dynamic binding. If a method is not overridden,

and it is short, then a compiler can optimize the method call away—a

process called inlining. For example, inlining the call e.getName() replaces

it with the field access e.name. This is a worthwhile improvement—CPUs

hate branching because it interferes with their strategy of prefetching

instructions while processing the current one. However, if getName can be

overridden in another class, then the compiler cannot inline it because it has

no way of knowing what the overriding code may do.

Fortunately, the just-in-time compiler in the virtual machine can do a better

job than a traditional compiler. It knows exactly which classes extend a

given class, and it can check whether any class actually overrides a given

method. If a method is short, frequently called, and not actually overridden,

the just-in-time compiler can inline it. What happens if the virtual machine

loads another subclass that overrides an inlined method? Then the optimizer

must undo the inlining. That takes time, but it happens rarely.

Note: Enumerations and records are always final—you cannot

extend them.

5.1.8. Casting

Recall from Chapter 3 that the process of forcing a conversion from one

type to another is called casting. The Java programming language has a

special notation for casts. For example,

double x = 3.405;

int nx = (int) x;

converts the value of the expression x into an integer, discarding the

fractional part.

Just as you occasionally need to convert a floating-point number to an

integer, you may need to convert an object reference from one class to

another. Let’s again use the example of an array containing a mix of

Employee and Manager objects:

var staff = new Employee[3];

staff[0] = new Manager("Carl Cracker", 80000, 1987, 12, 15);

staff[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);

staff[2] = new Employee("Tony Tester", 40000, 1990, 3, 15);

To actually make a cast of an object reference, use a syntax similar to what

you use for casting numeric expressions. Surround the target class name

with parentheses and place it before the object reference you want to cast.

For example:

Manager boss = (Manager) staff[0];

There is only one reason why you would want to make a cast—to use an

object in its full capacity after its actual type has been temporarily

forgotten. For example, in the ManagerDemo class, the staff array had to be

an array of Employee objects because some of its elements were regular

employees. We would need to cast the managerial elements of the array

back to Manager to access any of its new variables. (Note that in the sample

code for the first section, I made a special effort to avoid the cast. I

initialized the boss variable with a Manager object before storing it in the

array. I needed the correct type to set the bonus of the manager.)

As you know, in Java every variable has a type. The type describes the kind

of object the variable refers to and what it can do. For example, staff[i]

refers to an Employee object (so it can also refer to a Manager object).

The compiler checks that you do not promise too much when you store a

value in a variable. If you assign a subclass reference to a superclass

variable, you are promising less, and the compiler will simply let you do it.

If you assign a superclass reference to a subclass variable, you are

promising more. Then you must use a cast so that your promise can be

checked at runtime.

What happens if you try to cast down an inheritance chain and are “lying”

about what an object contains?

Manager boss = (Manager) staff[1]; // ERROR

When the program runs, the Java runtime system notices the broken

promise and generates a ClassCastException. If you do not catch the

exception, your program terminates. Thus, it is good programming practice

to find out whether a cast will succeed before attempting it. Simply use the

instanceof operator. For example:

if (staff[i] instanceof Manager) {

 boss = (Manager) staff[i];

 . . .

}

Finally, the compiler will not let you make a cast if there is no chance for

the cast to succeed. For example, the cast

String c = (String) staff[i];

is a compile-time error because String is not a subclass of Employee.

To sum up:

You can cast only within an inheritance hierarchy.

Use instanceof to check before casting from a superclass to a subclass.

Note: The test

x instanceof C

does not generate an exception if x is null. It simply returns false.

That makes sense: null refers to no object, so it certainly doesn’t

refer to an object of type C.

Actually, converting the type of an object by a cast is not usually a good

idea. In our example, you do not need to cast an Employee object to a

Manager object for most purposes. The getSalary method will work

correctly on both objects of both classes. The dynamic binding that makes

polymorphism work locates the correct method automatically.

The only reason to make the cast is to use a method that is unique to

managers, such as setBonus. If for some reason you find yourself wanting

to call setBonus on Employee objects, ask yourself whether this is an

indication of a design flaw in the superclass. It may make sense to redesign

the superclass and add a setBonus method. Remember, it takes only one

uncaught ClassCastException to terminate your program. In general, it is

best to minimize the use of casts and the instanceof operator.

Note: Java uses the cast syntax from the “bad old days” of C, but it

works like the safe dynamic_cast operation of C++. For example,

Employee[] staff = . . .;

Manager boss = (Manager) staff[i]; // Java

is equivalent to

Employee* staff[] = . . .;

Manager* boss = dynamic_cast<Manager*>(staff[i]); // C++

There is one notable difference. If the dynamic_cast fails, it yields a

null pointer instead of throwing an exception.

5.1.9. Pattern Matching for instanceof

The code

if (staff[i] instanceof Manager) {

 Manager boss = (Manager) staff[i];

 boss.setBonus(5000);

}

is rather verbose. Do we really need to mention the subclass Manager three

times?

As of Java 16, there is an easier way. You can declare the subclass variable

right in the instanceof test:

if (staff[i] instanceof Manager boss) {

 boss.setBonus(5000);

}

If staff[i] is an instance of the Manager class, then the variable boss is set to

staff[i], and you can use it as a Manager. You skip the cast.

If staff[i] doesn’t refer to a Manager, boss is not set, and the instanceof

operator yields the value false. The body of the if statement is skipped.

Tip: In most situations in which you use instanceof, you need to

apply a subclass method. Then use this “pattern-matching” form of

instanceof instead of a cast.

A useless instanceof pattern is a compile-time error:

Manager boss = . . .;

if (boss instanceof Employee e) . . . // ERROR: Of course it's an

Employee

Note: The equally useless

if (boss instanceof Employee) . . .

is allowed, for backward compatibility with Java 1.0.

When an instanceof pattern introduces a variable, you can use it right away,

in the same expression:

Employee e = . . .;

if (e instanceof Executive exec && exec.getTitle().getLength() >= 20) . .

.

This works because the right-hand side of an && expression is only

evaluated if the left-hand side is true. If the right-hand side is evaluated,

exec must have been bound to an Executive instance.

However, the following is a compile-time error:

if (e instanceof Manager exec || exec.getTitle().getLength() >= 20) . . . //

ERROR

The right-hand side of || is executed when the left-hand side is false, and

then nothing is bound to the variable exec.

Here is another example with the conditional operator:

String title = e instanceof Executive exec ? exec.getTitle() : "";

The variable exec is defined in the subexpression after the ?, but not in the

subexpression after the :.

Note: The variable-declaring instanceof forms are called “pattern-

matching” because they are similar to type patterns in switch, which

are covered in detail in Section 5.9.

Caution: As any local variable, the local variable defined by a

pattern can shadow a field. For example:

class Value {

 private double v;

 public boolean equals(Object other) {

 if (other instanceof LabeledValue v)

 // v is the same as other

 else

 // v denotes the field

 }

 . . .

}

The preceding example showed a type pattern. If the type matches, the

object is bound to a variable of that type. When the type is a record, you

can, as of Java 21, do better and declare variables that are bound to the

components. This is called a record pattern:

record Point(double x, double y) {}

Point p = . . .;

if (p instanceof Point(var a, var b)) distance = Math.hypot(a, b);

Now a and b are bound to the x and y components of p. Of course, you

could also invoke p.x() and p.y(), but a record pattern can be more concise.

For added clarity, you can also specify explicit types for the introduced

variables:

if (p instanceof Point(double a, double b)) . . .;

Record patterns can be nested:

record Circle(Point center, double radius) {}

Circle c = . . .;

if (c instanceof Circle(Point(var a, var b), var r)) . . .;

Since Java 22, you can denote unmatched parts in a record pattern with an

underscore:

if (p instanceof Point(var a, _)) distance = Math.abs(a);

5.1.10. Protected Access

As you know, fields in a class are best tagged as private, and methods are

usually tagged as public. Any features declared private won’t be accessible

in other classes. As explained at the beginning of this chapter, this is also

true for subclasses: A subclass cannot access the private fields of its

superclass.

There are times, however, when you want to restrict a method to subclasses

only or, less commonly, to allow subclass methods to access a superclass

field. In that case, you declare a class feature as protected. For example, if

the superclass Employee declares the hireDay field as protected instead of

private, then the Manager methods can access it directly.

In Java, a protected field is accessible by any class in the same package.

Now consider an Administrator subclass in a different package. The

methods of the Administrator class can peek inside the hireDay field of

Administrator objects only, not of other Employee objects. This restriction

is made so that you can’t abuse the protected mechanism by forming

subclasses just to gain access to the protected fields.

In practice, use protected fields with caution. Suppose your class is used by

other programmers and you designed it with protected fields. Unknown to

you, other programmers may inherit classes from your class and start

accessing your protected fields. In this case, you can no longer change the

implementation of your class without upsetting those programmers. That is

against the spirit of OOP, which encourages data encapsulation.

Protected methods make more sense. A class may declare a method as

protected if it is tricky to use. This indicates that the subclasses (which,

presumably, know their ancestor well) can be trusted to use the method

correctly, but other classes cannot.

A good example of this kind of method is the clone method of the Object

class—see Chapter 6 for more details.

Note: As already mentioned, protected features in Java are

accessible to all subclasses as well as to all other classes in the same

package. This is slightly different from the C++ meaning of

protected, and it makes the notion of protected in Java even less safe

than in C++.

Here is a summary of the four access control modifiers in Java:

1. Accessible in the class only (private).

2. Accessible by the world (public).

3. Accessible in the package and all subclasses (protected).

4. Accessible in the package—the (unfortunate) default. No modifiers are

needed.

5.2. Object: The Cosmic Superclass

The Object class is the ultimate ancestor—every class in Java extends

Object. However, you never have to write

public class Employee extends Object

The ultimate superclass Object is taken for granted if no superclass is

explicitly mentioned. Since every class in Java extends Object, it is

important to be familiar with the services provided by the Object class. I go

over the basic ones in this chapter; consult the later chapters or view the

online documentation for what is not covered here. (Several methods of

Object come up only when dealing with concurrency—see Chapter 10.)

5.2.1. Variables of Type Object

You can use a variable of type Object to refer to objects of any type:

Object obj = new Employee("Harry Hacker", 35000);

Of course, a variable of type Object is only useful as a generic holder for

arbitrary values. To do anything specific with the value, you need to have

some knowledge about the original type and apply a cast:

Employee e = (Employee) obj;

In Java, only the values of primitive types (numbers, characters, and

boolean values) are not objects.

All array types, no matter whether they are arrays of objects or arrays of

primitive types, are class types that extend the Object class.

Employee[] staff = new Employee[10];

obj = staff; // OK

obj = new int[10]; // OK

Note: In many object-oriented programming languages, all classes

extend a common root class; for example, object in Python or

Object in JavaScript. The exception is C++, where classes can be

completely unrelated.

5.2.2. The equals Method

The equals method in the Object class tests whether one object is

considered equal to another. The equals method, as implemented in the

Object class, determines whether two object references are identical. This is

a pretty reasonable default—if two objects are identical, they should

certainly be equal. For quite a few classes, nothing else is required. For

example, it makes little sense to compare two PrintStream objects for

equality. However, you will often want to implement state-based equality

testing, in which two objects are considered equal when they have the same

state.

For example, let us consider two employees equal if they have the same

name, salary, and hire date. (In an actual employee database, it would be

more sensible to compare IDs instead. I use this example to demonstrate the

mechanics of implementing the equals method.)

public class Employee {

 . . .

 public boolean equals(Object otherObject) {

 // a quick test to see if the objects are identical

 if (this == otherObject) return true;

 // must return false if the explicit parameter is null

 if (otherObject == null) return false;

 // if the classes don't match, they can't be equal

 if (getClass() != otherObject.getClass())

 return false;

 // now we know otherObject is a non-null Employee

 Employee other = (Employee) otherObject;

 // test whether the fields have identical values

 return name.equals(other.name)

 && salary == other.salary

 && hireDay.equals(other.hireDay);

 }

}

The getClass method returns the class of an object—we discuss this method

in detail later in this chapter. In our test, two objects can only be equal when

they belong to the same class.

Tip: To guard against the possibility that name or hireDay are null,

use the Objects.equals method. The value of Objects.equals(a, b) is

true if both arguments are null, false if only one is null, and

a.equals(b) otherwise. With that method, the last statement of the

Employee.equals method becomes

return Objects.equals(name, other.name)

 && salary == other.salary

 && Objects.equals(hireDay, other.hireDay);

Caution: When a class has few fields, the test if (this ==

otherObject) may block the virtual machine from inlining calls to

equals. Consider benchmarking both versions.

When you define the equals method for a subclass, first call equals on the

superclass. If that test doesn’t pass, then the objects can’t be equal. If the

superclass fields are equal, you are ready to compare the instance fields of

the subclass.

public class Manager extends Employee {

 . . .

 public boolean equals(Object otherObject) {

 if (!super.equals(otherObject)) return false;

 // super.equals checked that this and otherObject belong to the same

class

 Manager other = (Manager) otherObject;

 return bonus == other.bonus;

 }

}

Note: Recall from Chapter 4 that a record is a special form of an

immutable class whose state is entirely defined by the fields set in a

“canonical” constructor. Records automatically define an equals

method that compares the components. Two record instances are

equal when the corresponding component values are equal.

Caution: Components of type double are compared with

Double.equals, not with ==. This makes a difference for -0.0 and

Double.NaN.

5.2.3. Equality Testing and Inheritance

How should the equals method behave if the implicit and explicit

parameters don’t belong to the same class? This has been an area of some

controversy. In the preceding example, the equals method returns false if

the classes don’t match exactly. But many programmers use an instanceof

test instead:

if (!(otherObject instanceof Employee)) return false;

This leaves open the possibility that otherObject can belong to a subclass.

However, this approach can get you into trouble. Here is why. The Java

Language Specification requires that the equals method has the following

properties:

1. It is reflexive: For any non-null reference x, x.equals(x) should return

true.

2. It is symmetric: For any references x and y, x.equals(y) should return

true if and only if y.equals(x) returns true.

3. It is transitive: For any references x, y, and z, if x.equals(y) returns

true and y.equals(z) returns true, then x.equals(z) should return true.

4. It is consistent: If the objects to which x and y refer haven’t changed,

then repeated calls to x.equals(y) return the same value.

5. For any non-null reference x, x.equals(null) should return false.

These rules are certainly reasonable. You wouldn’t want a library

implementor to ponder whether to call x.equals(y) or y.equals(x) when

locating an element in a data structure.

However, the symmetry rule has subtle consequences when the parameters

belong to different classes. Consider a call

e.equals(m)

where e is an Employee object and m is a Manager object, both of which

happen to have the same name, salary, and hire date. If Employee.equals

uses an instanceof test, the call returns true. But that means that the reverse

call

m.equals(e)

also needs to return true—the symmetry rule does not allow it to return

false or to throw an exception.

That leaves the Manager class in a bind. Its equals method must be willing

to compare itself to any Employee, without taking manager-specific

information into account! All of a sudden, the instanceof test looks less

attractive.

Some authors have gone on record that the getClass test is wrong because it

violates the substitution principle. A commonly cited example is the equals

method in the AbstractSet class that tests whether two sets have the same

elements. The AbstractSet class has two concrete subclasses, TreeSet and

HashSet, that use different algorithms for locating set elements. You really

want to be able to compare any two sets, no matter how they are

implemented.

However, the set example is rather specialized. It would make sense to

declare AbstractSet.equals as final, because nobody should redefine the

semantics of set equality. (The method is not actually final. This allows a

subclass to implement a more efficient algorithm for the equality test.)

The way I see it, there are two distinct scenarios:

If subclasses can have their own notion of equality, then the symmetry

requirement forces you to use the getClass test.

If the notion of equality is fixed in the superclass, then you can use the

instanceof test and allow objects of different subclasses to be equal to

one another.

In the example with employees and managers, we consider two objects to

be equal when they have matching fields. If we have two Manager objects

with the same name, salary, and hire date, but with different bonuses, we

want them to be different. Therefore, we use the getClass test.

But suppose we used an employee ID for equality testing. This notion of

equality makes sense for all subclasses. Then we could use the instanceof

test, and we should have declared Employee.equals as final.

Note: The standard Java library contains over 150 implementations

of equals methods, with a mishmash of using instanceof, calling

getClass, catching a ClassCastException, or doing nothing at all.

Check out the API documentation of the java.sql.Timestamp class,

where the implementors note with some embarrassment that they

have painted themselves in a corner. The Timestamp class inherits

from java.util.Date, whose equals method uses an instanceof test,

and it is impossible to override equals to be both symmetric and

accurate.

Caution: The commonly cited example of set equality is a

cautionary tale, showing just how difficult it is to provide symmetric

equality across subclasses.

Consider these two sets:

Set<String> x = new HashSet<>();

x.add("Hello");

x.add("World");

Set<String> y = new TreeSet<>

(String.CASE_INSENSITIVE_ORDER);

y.add("Hello");

y.add("WORLD");

With these sets, equals is not symmetric:

x.equals(y) // false

y.equals(x) // true

TreeSet uses the sort order, and not equals, to compare elements.

With case-insensitive order, the strings "World" and "WORLD" are

deemed equal.

Here is a recipe for writing the perfect equals method:

1. Name the explicit parameter otherObject—later, you will need to cast

it to another variable that you should call other.

2. Test whether this happens to be identical to otherObject:

if (this == otherObject) return true;

This statement is an optimization that can worthwhile for classes with

complex state. It may be counterproductive in some cases, though.

3. Test whether otherObject is null and return false if it is. This test is

required.

if (otherObject == null) return false;

4. Compare the classes of this and otherObject. If the semantics of equals

can change in subclasses, use the getClass test:

if (getClass() != otherObject.getClass()) return false;

ClassName other = (ClassName) otherObject;

If the same semantics holds for all subclasses, you can use an

instanceof test instead:

if (!(otherObject instanceof ClassName other)) return false;

Note that the instanceof test sets other to otherObject if it succeeds. No

cast is necessary.

5. Now compare the fields, as required by your notion of equality. Use

== for primitive type fields, Objects.equals for object fields. Return

true if all fields match, false otherwise.

return field1 == other.field1

 && Objects.equals(field2, other.field2)

 && . . .;

If you redefine equals in a subclass, include a call to

super.equals(other).

Tip: If you have fields of array type, you can use the static

Arrays.equals method to check that the corresponding array

elements are equal. Use the Arrays.deepEquals method for

multidimensional arrays.

Caution: Here is a common mistake when implementing the equals

method. Can you spot the problem?

public class Employee {

 public boolean equals(Employee other) {

 return other != null

 && getClass() == other.getClass()

 && Objects.equals(name, other.name)

 && salary == other.salary

 && Objects.equals(hireDay, other.hireDay);

 }

 . . .

}

This method declares the explicit parameter type as Employee. As a

result, it does not override the equals method of the Object class but

defines a completely unrelated method.

You can protect yourself against this type of error by tagging

methods that are intended to override superclass methods with

@Override:

@Override public boolean equals(Object other)

If you made a mistake and are defining a new method, the compiler

reports an error. For example, suppose you add the following

declaration to the Employee class:

@Override public boolean equals(Employee other)

An error is reported because this method doesn’t override any

method from the Object superclass.

java.util.Arrays 1.2

static boolean equals(xxx[] a, xxx[] b) 5.0

returns true if the arrays have equal lengths and equal elements in

corresponding positions. The component type xxx of the array can be

Object, int, long, short, char, byte, boolean, float, or double.

java.util.Objects 7

static boolean equals(Object a, Object b)

returns true if a and b are both null, false if exactly one of them is

null, and a.equals(b) otherwise.

5.2.4. The hashCode Method

A hash code is an integer that is derived from an object. Hash codes should

be scrambled—if x and y are two distinct objects, there should be a high

probability that x.hashCode() and y.hashCode() are different. Table 5.1 lists

a few examples of hash codes that result from the hashCode method of the

String class.

Table 5.1: Hash Codes

Resulting from the

hashCode Method

String Hash Code

Hello 69609650

Harry 69496448

Hacker -2141031506

The String class uses the following algorithm to compute the hash code:

int hash = 0;

for (int i = 0; i < length(); i++)

 hash = 31 * hash + charAt(i);

The hashCode method is defined in the Object class. Therefore, every

object has a default hash code, called the identity hash code. How that hash

code is determined depends on the virtual machine. Consider this example:

var s = "Ok";

var sb = new StringBuilder(s);

IO.println(s.hashCode() + " " + sb.hashCode());

var t = new String("Ok");

var tb = new StringBuilder(t);

IO.println(t.hashCode() + " " + tb.hashCode());

Table 5.2 shows the result.

Table 5.2: Hash Codes of Strings and String

Builders

Object Hash Code Object Hash Code

s 2556 t 2556

sb 20526976 tb 20527144

Note that the strings s and t have the same hash code because, for strings,

the hash codes are derived from their contents. The string builders sb and tb

have different hash codes because no hashCode method has been defined

for the StringBuilder class, and the default hashCode method in the Object

class derives the hash code from the object’s memory address.

If you redefine the equals method, you will also need to redefine the

hashCode method for objects that users might insert into a hash table. (I

discuss hash tables in Chapter 9.)

The hashCode method should return an integer (which can be negative).

Just combine the hash codes of the instance fields so that the hash codes for

different objects are likely to be widely scattered.

For example, here is a hashCode method for the Employee class:

public class Employee {

 public int hashCode() {

 return 7 * name.hashCode()

 + 11 * Double.valueOf(salary).hashCode()

 + 13 * hireDay.hashCode();

 }

 . . .

}

However, you can do better. First, use the null-safe method

Objects.hashCode. It returns 0 if its argument is null and the result of

calling hashCode on the argument otherwise. Also, use the static

Double.hashCode method to avoid creating a Double object:

public int hashCode() {

 return 7 * Objects.hashCode(name)

 + 11 * Double.hashCode(salary)

 + 13 * Objects.hashCode(hireDay);

}

Caution: If the instance fields have small ranges of possible values,

you need to achieve as many distinct hash codes as possible.

Consider hashing calendar dates. Computing 7 * year + 11 * month

+ 13 * day yields many collisions. In contrast, 31 * 12 * year + 31 *

month + day is a "perfect hash function." Assuming a reasonable

year range, no two dates have the same hash code. (The actual

hashCode method of the LocalDate class, which supports a range of

±999,999,999 years, is a bit more complex.)

Combining multiple hash values can be tedious. In many cases, you can

simply call Objects.hash with all fields. It will combine the hash codes of its

arguments. Then the Employee.hashCode method is simply

public int hashCode() {

 return Objects.hash(name, salary, hireDay);

}

However, you need to be careful with fields that are arrays. The hash code

of an array is computed with Object.hashCode and does notdepend on its

elements. Instead, use the static Arrays.hashCode method which combines

the hash codes of the array elements. There are overloads for primitive type

arrays and arrays of objects. For multi-dimensional arrays, use

Arrays.deepHashCode.

Note: The Arrays.hashCode(Object[]) method works almost like

String.hashCode, using the “multiply with 31 and add” operation to

combine element hash codes. But there is a twist. A zero-length

array has hash code 1, to distinguish it from null. Here is the

implementation:

public static int hashCode(Object[] a) {

 if (a == null) return 0;

 int result = 1; // Starting at 1, not 0

 for (Object element : a)

 result = 31 * result + (element == null ? 0 :

element.hashCode());

 return result;

}

The Objects.hash method calls Arrays.hashCode. As a consequence,

Objects.hash(x) equals 31 + x.hashCode().

A record type automatically provides a hashCode method that derives a

hash code from the hash codes of the component values. Its exact behavior

is left open in the Java Language Specification. In OpenJDK, the

component hashes are simply combined with the “multiply with 31 and

add” operation, starting with zero.

Your definitions of equals and hashCode must be compatible: If x.equals(y)

is true, then x.hashCode() must return the same value as y.hashCode(). For

example, if you define Employee.equals to compare employee IDs, then the

hashCode method needs to hash the IDs, not employee names or memory

addresses.

java.lang.Object 1.0

int hashCode()

returns a hash code for this object. A hash code can be any integer,

positive or negative. Equal objects need to return identical hash codes.

java.util.Objects 7

static int hash(Object... objects)

returns a hash code that is combined from the hash codes of all

supplied objects.

static int hashCode(Object a)

returns 0 if a is null or a.hashCode() otherwise.

java.lang.Integer 1.0

java.lang.Long 1.0

java.lang.Short 1.0

java.lang.Byte 1.0

java.lang.Double 1.0

java.lang.Float 1.0

java.lang.Character 1.0

java.lang.Boolean 1.0

static int hashCode(xxx value) 8

returns the hash code of the given value. Here xxx is the primitive type

corresponding to the given wrapper type. (See for wrapper types.)

java.util.Arrays 1.2

static int hashCode(xxx[] a) 5.0

computes the hash code of the array a. The component type xxx of the

array can be Object, int, long, short, char, byte, boolean, float, or

double.

5.2.5. The toString Method

Another important method in Object is the toString method that returns a

string representing the value of this object. Here is a typical example. The

toString method of the Point class returns a string like this:

java.awt.Point[x=10,y=20]

Most (but not all) toString methods follow this format: the name of the

class, then the field values enclosed in square brackets. Here is an

implementation of the toString method for the Employee class:

public String toString() {

 return "Employee[name=" + name

 + ",salary=" + salary

 + ",hireDay=" + hireDay

 + "]";

}

Actually, you can do a little better. Instead of hardwiring the class name into

the toString method, call getClass().getName() to obtain a string with the

class name.

public String toString() {

 return getClass().getName()

 + "[name=" + name

 + ",salary=" + salary

 + ",hireDay=" + hireDay

 + "]";

}

Such toString method will also work for subclasses.

Of course, the subclass programmer should define its own toString method

and add the subclass fields. If the superclass uses getClass().getName(),

then the subclass can simply call super.toString(). For example, here is a

toString method for the Manager class:

public class Manager extends Employee {

 . . .

 public String toString() {

 return super.toString()

 + "[bonus=" + bonus

 + "]";

 }

}

Now a Manager object is printed as

Manager[name=. . .,salary=. . .,hireDay=. . .][bonus=. . .]

The toString method is ubiquitous for an important reason: Whenever an

object is concatenated with a string by the “+” operator, the Java compiler

automatically invokes the toString method to obtain a string representation

of the object. For example:

var p = new Point(10, 20);

String message = "The current position is " + p;

 // automatically invokes p.toString()

Tip: Instead of writing x.toString(), you can write "" + x. This

statement concatenates the empty string with the string

representation of x that is exactly x.toString(). Unlike toString, this

statement even works if x is of primitive type.

If x is any object and you call

IO.println(x);

then the println method simply calls x.toString() and prints the resulting

string.

The Object class defines the toString method to print the class name and the

hash code of the object. For example, the call

IO.println(System.err)

produces an output that looks like this:

java.io.PrintStream@2f6684

The reason is that the implementor of the PrintStream class didn’t bother to

override the toString method.

Caution: Annoyingly, arrays inherit the toString method from

Object, with the added twist that the array type is printed in an

archaic format. For example,

int[] luckyNumbers = { 2, 3, 5, 7, 11, 13 };

String s = "" + luckyNumbers;

yields the string "[I@1a46e30". (The prefix [I denotes an array of

integers.) The remedy is to call the static Arrays.toString method

instead. The code

String s = Arrays.toString(luckyNumbers);

yields the string "[2, 3, 5, 7, 11, 13]".

To correctly print multidimensional arrays (that is, arrays of arrays),

use Arrays.deepToString.

The toString method is a great tool for logging. Many classes in the

standard class library define the toString method so that you can get useful

information about the state of an object. This is particularly useful in

logging messages like this:

IO.println("Current position = " + position);

As explained in Chapter 7, an even better solution is to use a logger object

and call

logger.log(INFO, "Current position = " + position);

Tip: I strongly recommend that you add a toString method to each

class that you write. You, as well as other programmers who use

your classes, will be grateful for the logging support.

However, for record types, a toString method is already provided. It

simply lists the class name and the names and stringified values of

the fields.

Note: In the preceding sections, you learned how to override the

equals, hashCode, and toString methods. In the perhaps unlikely

case that you need access to the unmodified behavior, do this:

Compare with == instead of equals

Call System.indentityHashCode(obj) or

Objects.identityToString(obj) to get what would have been

returned if you had not overriden hashCode or toString

The program in Listing 5.3 tests the equals, hashCode, and toString

methods for the classes Employee (Listing 5.4) and Manager (Listing 5.5).

Listing 5.3 v1ch05/equals/EqualsDemo.java

1 package v1ch05.equals;

2

3 /**

4 * This program demonstrates the equals method.

5 */

6 class EqualsDemo {

7 void main() {

8 var alice1 = new Employee("Alice Adams", 75000, 1987, 12, 15);

9 var alice2 = alice1;

10 var alice3 = new Employee("Alice Adams", 75000, 1987, 12, 15);

11 var bob = new Employee("Bob Brandson", 50000, 1989, 10, 1);

12

13 IO.println("alice1 == alice2: " + (alice1 == alice2));

14

15 IO.println("alice1 == alice3: " + (alice1 == alice3));

16

17 IO.println("alice1.equals(alice3): " + alice1.equals(alice3));

18

19 IO.println("alice1.equals(bob): " + alice1.equals(bob));

20

21 IO.println("bob.toString(): " + bob);

22

23 var carl = new Manager("Carl Cracker", 80000, 1987, 12, 15);

24 var boss = new Manager("Carl Cracker", 80000, 1987, 12, 15);

25 boss.setBonus(5000);

26 IO.println("boss.toString(): " + boss);

27 IO.println("carl.equals(boss): " + carl.equals(boss));

28 IO.println("alice1.hashCode(): " + alice1.hashCode());

29 IO.println("alice3.hashCode(): " + alice3.hashCode());

30 IO.println("bob.hashCode(): " + bob.hashCode());

31 IO.println("carl.hashCode(): " + carl.hashCode());

32 }

33 }

Listing 5.4 v1ch05/equals/Employee.java

1 package v1ch05.equals;

2

3 import module java.base;

4

5 /**

6 * The familiar Employee class, with equals, hashCode, and toString methods.

7 */

8 public class Employee {

9 private String name;

10 private double salary;

11 private LocalDate hireDay;

12

13 public Employee(String name, double salary, int year, int month, int day) {

14 this.name = name;

15 this.salary = salary;

16 hireDay = LocalDate.of(year, month, day);

17 }

18

19 public String getName() {

20 return name;

21 }

22

23 public double getSalary() {

24 return salary;

25 }

26

27 public LocalDate getHireDay() {

28 return hireDay;

29 }

30

31 public void raiseSalary(double byPercent) {

32 double raise = salary * byPercent / 100;

33 salary += raise;

34 }

35

36 public boolean equals(Object otherObject) {

37 // a quick test to see if the objects are identical

38 if (this == otherObject) return true;

39

40 // must return false if the explicit parameter is null

41 if (otherObject == null) return false;

42

43 // if the classes don't match, they can't be equal

44 if (getClass() != otherObject.getClass()) return false;

45

46 // now we know otherObject is a non-null Employee

47 var other = (Employee) otherObject;

48

49 // test whether the fields have identical values

50 return Objects.equals(name, other.name) && salary == other.salary

51 && Objects.equals(hireDay, other.hireDay);

52 }

53

54 public int hashCode() {

55 return Objects.hash(name, salary, hireDay);

56 }

57

58 public String toString() {

59 return getClass().getName() + "[name=" + name + ",salary=" + salary

60 + ",hireDay=" + hireDay + "]";

61 }

62 }

Listing 5.5 v1ch05/equals/Manager.java

1 package v1ch05.equals;

2

3 /**

4 * The familiar Manager class, with equals, hashCode, and toString methods.

5 */

6 public class Manager extends Employee {

7 private double bonus;

8

9 public Manager(String name, double salary, int year, int month, int day) {

10 super(name, salary, year, month, day);

11 bonus = 0;

12 }

13

14 public double getSalary() {

15 double baseSalary = super.getSalary();

16 return baseSalary + bonus;

17 }

18

19 public void setBonus(double bonus) {

20 this.bonus = bonus;

21 }

22

23 public boolean equals(Object otherObject) {

24 if (!super.equals(otherObject)) return false;

25 var other = (Manager) otherObject;

26 // super.equals checked that this and other belong to the same class

27 return bonus == other.bonus;

28 }

29

30 public int hashCode() {

31 return java.util.Objects.hash(super.hashCode(), bonus);

32 }

33

34 public String toString() {

35 return super.toString() + "[bonus=" + bonus + "]";

36 }

37 }

java.lang.Object 1.0

Class getClass()

returns a class object that contains information about the object. As

you will see later in this chapter, Java has a runtime representation for

classes that is encapsulated in the Class class.

boolean equals(Object otherObject)

compares two objects for equality; returns true if the objects point to

the same area of memory, and false otherwise. You should override

this method in your own classes.

String toString()

returns a string that represents the value of this object. You should

override this method in your own classes.

java.lang.Class 1.0

String getName()

returns the name of this class.

Class getSuperclass()

returns the superclass of this class as a Class object.

java.lang.System 1.0

static int identityHashCode(Object x) 1.1

returns the hash code that Object.hashCode would return for x if not

overridden, or 0 if x is null.

java.util.Objects 7

static String identityToString(Object o) 19

returns the string that Object.toString would return for o if not

overridden. Throws a NullPointerException if o is null.

5.3. Generic Array Lists

In some programming languages—in particular, in C and C++—you have

to fix the sizes of all arrays at compile time. Programmers hate this because

it forces them into uncomfortable tradeoffs. How many employees will be

in a department? Surely no more than 100. What if there is a humongous

department with 150 employees? Do we want to waste 90 entries for every

department with just 10 employees?

In Java, the situation is somewhat better. You can set the size of an array at

runtime.

int actualSize = . . .;

var staff = new Employee[actualSize];

Of course, this code does not completely solve the problem of dynamically

modifying arrays at runtime. Once you set the array size, you cannot change

it easily. Instead, in Java you can deal with this common situation by using

another Java class, called ArrayList. The ArrayList class is similar to an

array, but it automatically adjusts its capacity as you add and remove

elements, without any additional code.

ArrayList is a generic class with a type parameter. To specify the type of

the element objects that the array list holds, you append a class name

enclosed in angle brackets, such as ArrayList<Employee>. You will see in

Chapter 8 how to define your own generic class, but you don’t need to

know any of those technicalities to use the ArrayList type.

The following sections show you how to work with array lists.

5.3.1. Declaring Array Lists

Here is how to declare and construct an array list that holds Employee

objects:

ArrayList<Employee> staff = new ArrayList<Employee>();

It is a good idea to use the var keyword to avoid duplicating the class name:

var staff = new ArrayList<Employee>();

It you don’t use the var keyword, you can omit the type argument on the

right-hand side:

ArrayList<Employee> staff = new ArrayList<>();

This is called the “diamond” syntax because the empty brackets <>

resemble a diamond. Use the diamond syntax together with the new

operator. The compiler checks what happens to the new value. If it is

assigned to a variable, passed into a method, or returned from a method,

then the compiler checks the generic type of the variable, parameter, or

method. It then places that type into the <>. In our example, the new

ArrayList<>() is assigned to a variable of type ArrayList<Employee>.

Therefore, the generic type is Employee.

Caution: If you declare an ArrayList with var, do not use the

diamond syntax. The declaration

var elements = new ArrayList<>();

yields an ArrayList<Object>.

Note: Before Java 5, there were no generic classes. Instead, there

was a single ArrayList class, a one-size-fits-all collection holding

elements of type Object. You can still use ArrayList without a <. . .>

suffix. It is considered a “raw” type, with the type parameter erased.

Note: In even older versions of Java, programmers used the Vector

class for dynamic arrays. However, the ArrayList class is more

efficient, and there is no longer any good reason to use the Vector

class.

Use the add method to add new elements to an array list. For example, here

is how you populate an array list with Employee objects:

staff.add(new Employee("Harry Hacker", . . .));

staff.add(new Employee("Tony Tester", . . .));

The array list manages an internal array of object references. Eventually,

that array will run out of space. This is where array lists work their magic:

If you call add and the internal array is full, the array list automatically

creates a bigger array and copies all the objects from the smaller to the

bigger array.

If you already know, or have a good guess, how many elements you want to

store, call the ensureCapacity method before filling the array list:

staff.ensureCapacity(100);

That call allocates an internal array of 100 objects. Then, the first 100 calls

to add will not involve any costly reallocation.

You can also pass an initial capacity to the ArrayList constructor:

ArrayList<Employee> staff = new ArrayList<>(100);

Caution: Allocating an array list as

new ArrayList<>(100) // capacity is 100

is not the same as allocating a new array as

new Employee[100] // size is 100

There is an important distinction between the capacity of an array

list and the size of an array. If you allocate an array with 100 entries,

then the array has 100 slots, ready for use. An array list with a

capacity of 100 elements has the potential of holding 100 elements

(and, in fact, more than 100, at the cost of additional reallocations)

—but at the beginning, even after its initial construction, an array

list holds no elements at all.

The size method returns the actual number of elements in the array list. For

example,

staff.size()

returns the current number of elements in the staff array list. This is the

equivalent of

a.length

for an array a.

Once you are reasonably sure that the array list is at its permanent size, you

can call the trimToSize method. This method adjusts the size of the memory

block to use exactly as much storage space as is required to hold the current

number of elements. The garbage collector will reclaim any excess memory.

Once you trim the size of an array list, adding new elements will move the

block again, which takes time. You should only use trimToSize when you

are sure you won’t add any more elements to the array list.

Note: The ArrayList class is similar to the C++ vector template.

Both ArrayList and vector are generic types. But the C++ vector

template overloads the [] operator for convenient element access.

Java does not have operator overloading, so it must use explicit

method calls instead. Moreover, C++ vectors are copied by value. If

a and b are two vectors, then the assignment a = b makes a into a

new vector with the same length as b, and all elements are copied

from b to a. The same assignment in Java makes both a and b refer

to the same array list.

java.util.ArrayList<E> 1.2

ArrayList<E>()

constructs an empty array list.

ArrayList<E>(int initialCapacity)

constructs an empty array list with the specified capacity.

boolean add(E obj)

appends obj at the end of the array list. Always returns true.

int size()

returns the number of elements currently stored in the array list. (Of

course, this is never larger than the array list’s capacity.)

void ensureCapacity(int capacity)

ensures that the array list has the capacity to store the given number of

elements without reallocating its internal storage array.

void trimToSize()

reduces the storage capacity of the array list to its current size.

5.3.2. Accessing Array List Elements

Unfortunately, nothing comes for free. The automatic growth convenience

of array lists requires a more complicated syntax for accessing the elements.

The reason is that the ArrayList class is not a part of the Java programming

language; it is just a utility class programmed by someone and supplied in

the standard library.

Instead of the pleasant [] syntax to access or change the element of an array,

you use the get and set methods.

For example, to set the ith element, use

staff.set(i, harry);

This is equivalent to

a[i] = harry;

for an array a. (As with arrays, the index values are zero-based.)

Caution: Do not call list.set(i, x) until the size of the array list is

larger than i. For example, the following code is wrong:

var list = new ArrayList<Employee>(100); // capacity 100, size 0

list.set(0, x); // no element 0 yet

Use the add method instead of set to fill up an array, and use set

only to replace a previously added element.

To get an array list element, use

Employee e = staff.get(i);

This is equivalent to

Employee e = a[i];

Note: When there were no generic classes, the get method of the

raw ArrayList class had no choice but to return an Object.

Consequently, callers of get had to cast the returned value to the

desired type:

Employee e = (Employee) staff.get(i);

The raw ArrayList is also a bit dangerous. Its add and set methods

accept objects of any type. A call

staff.set(i, "Harry Hacker");

compiles without so much as a warning, and you run into grief only

when you retrieve the object and try to cast it. If you use an

ArrayList<Employee> instead, the compiler will detect this error.

You can sometimes get the best of both worlds—flexible growth and

convenient element access—with the following trick. First, make an array

list and add all the elements:

var list = new ArrayList<X>();

while (. . .) {

 x = . . .;

 list.add(x);

}

When you are done, use the toArray method to copy the elements into an

array:

var a = new X[list.size()];

list.toArray(a);

Sometimes, you need to add elements in the middle of an array list. Use the

add method with an index argument:

int n = staff.size() / 2;

staff.add(n, e);

The elements at locations n and above are shifted up to make room for the

new entry. If the new size of the array list after the insertion exceeds the

capacity, the array list reallocates its storage array.

Similarly, you can remove an element from the middle of an array list:

Employee e = staff.remove(n);

The elements located above it are copied down, and the size of the array is

reduced by one.

Inserting and removing elements is not terribly efficient. It is probably not

worth worrying about for small array lists. But if you store many elements

and frequently insert and remove in the middle of a collection, consider

using a linked list instead. I explain how to program with linked lists in

Chapter 9.

You can use the “for each” loop to traverse the contents of an array list:

for (Employee e : staff)

 do something with e

This loop has the same effect as

for (int i = 0; i < staff.size(); i++) {

 Employee e = staff.get(i);

 do something with e

}

Listing 5.6 is a modification of the EmployeeDemo program of Chapter 4.

The Employee[] array is replaced by an ArrayList<Employee>. Note the

following changes:

You don’t have to specify the array size.

You use add to add as many elements as you like.

You use size() instead of length to count the number of elements.

You use a.get(i) instead of a[i] to access an element.

Listing 5.6 v1ch05/ArrayListDemo.java

1 package v1ch05;

2

3 import module java.base;

4 import com.horstmann.corejava.*;

5

6 /**

7 * This program demonstrates the ArrayList class.

8 */

9 class ArrayListDemo {

10 void main() {

11 // fill the staff array list with three Employee objects

12 var staff = new ArrayList<Employee>();

13

14 staff.add(new Employee("Carl Cracker", 75000, 1987, 12, 15));

15 staff.add(new Employee("Harry Hacker", 50000, 1989, 10, 1));

16 staff.add(new Employee("Tony Tester", 40000, 1990, 3, 15));

17

18 // raise everyone's salary by 5%

19 for (Employee e : staff)

20 e.raiseSalary(5);

21

22 // print out information about all Employee objects

23 for (Employee e : staff)

24 IO.println("name=" + e.getName() + ",salary=" + e.getSalary()

25 + ",hireDay=" + e.getHireDay());

26 }

27 }

java.util.ArrayList<E> 1.2

E set(int index, E obj)

puts the value obj in the array list at the specified index, returning the

previous contents.

E get(int index)

gets the value stored at a specified index.

void add(int index, E obj)

shifts up elements to insert obj at the specified index.

E remove(int index)

removes the element at the given index and shifts down all elements

above it. The removed element is returned.

5.3.3. Compatibility between Typed and Raw Array Lists

In your own code, you will always want to use type parameters for added

safety. In this section, you will see how to interoperate with legacy code

that does not use type parameters.

Suppose you have the following legacy class:

public class EmployeeDB {

 public void update(ArrayList list) { . . . }

 public ArrayList find(String query) { . . . }

}

You can pass a typed array list to the update method without any casts.

ArrayList<Employee> staff = . . .;

employeeDB.update(staff);

The staff object is simply passed to the update method.

Caution: Even though you get no error or warning from the

compiler, this call is not completely safe. The update method might

add elements into the array list that are not of type Employee. When

these elements are retrieved, an exception occurs. This sounds scary,

but if you think about it, the behavior is simply as it was before

generics were added to Java. The integrity of the virtual machine is

never jeopardized. In this situation, you do not lose security, but you

also do not benefit from the compile-time checks.

Conversely, when you assign a raw ArrayList to a typed one, you get a

warning.

ArrayList<Employee> result = employeeDB.find(query); // yields

warning

Note: To see the text of the warning, compile with the option -

Xlint:unchecked.

Using a cast does not make the warning go away.

ArrayList<Employee> result = (ArrayList<Employee>)

employeeDB.find(query);

 // yields another warning

Instead, you get a different warning, telling you that the cast is misleading.

This is the consequence of a somewhat unfortunate limitation of generic

types in Java. For compatibility, the compiler translates all typed array lists

into raw ArrayList objects after checking that the type rules were not

violated. In a running program, all array lists are the same—there are no

type parameters in the virtual machine. Thus, the casts (ArrayList) and

(ArrayList<Employee>) carry out identical runtime checks.

There isn’t much you can do about that situation. When you interact with

legacy code, study the compiler warnings and satisfy yourself that the

warnings are not serious.

Once you are satisfied, you can tag the variable that receives the cast with

the @SuppressWarnings("unchecked") annotation, like this:

@SuppressWarnings("unchecked") ArrayList<Employee> result

 = (ArrayList<Employee>) employeeDB.find(query); // yields another

warning

5.4. Object Wrappers and Autoboxing

Occasionally, you need to convert a primitive type like int to an object. All

primitive types have class counterparts. For example, a class Integer

corresponds to the primitive type int. These kinds of classes are usually

called wrappers. The wrapper classes have obvious names: Integer, Long,

Float, Double, Short, Byte, Character, and Boolean. (The first six inherit

from the common superclass Number.) The wrapper classes are immutable

—you cannot change a wrapped value after the wrapper has been

constructed. They are also final, so you cannot subclass them.

Suppose we want an array list of integers. Unfortunately, the type argument

inside the angle brackets cannot be a primitive type. It is not possible to

form an ArrayList<int>. Here, the Integer wrapper class comes in. It is OK

to declare an array list of Integer objects.

var list = new ArrayList<Integer>();

Caution: An ArrayList<Integer> is far less efficient than an int[]

array because each value is separately wrapped inside an object. You

would only want to use this construct for small collections when

programmer convenience is more important than efficiency.

Fortunately, there is a useful feature that makes it easy to add an element of

type int to an ArrayList<Integer>. The call

list.add(3);

is automatically translated to

list.add(Integer.valueOf(3));

This conversion is called autoboxing.

Note: You might think that autowrapping would be more consistent,

but the “boxing” metaphor was taken from C#.

Conversely, when you assign an Integer object to an int value, it is

automatically unboxed. That is, the compiler translates

int n = list.get(i);

into

int n = list.get(i).intValue();

Automatic boxing and unboxing also takes place in arithmetic expressions.

For example, you can apply the increment operator to a wrapper reference:

Integer n = 3;

n++;

The compiler automatically inserts instructions to unbox the object,

increment the resulting value, and box it back.

In most cases, you get the illusion that the primitive types and their

wrappers are one and the same. There is just one point in which they differ

considerably: identity. As you know, the == operator, applied to wrapper

objects, only tests whether the objects have identical memory locations. The

following comparison would therefore probably fail:

Integer a = 1000;

Integer b = 1000;

if (a == b) . . .

However, a Java implementation may, if it chooses, wrap commonly

occurring values into identical objects, and thus the comparison might

succeed. This ambiguity is not what you want. The remedy is to call the

equals method when comparing wrapper objects.

Note: The autoboxing specification requires that boolean, byte, char

<= 127, short, and int between -128 and 127 are wrapped into fixed

objects. For example, if a and b had been initialized with 100 in the

preceding example, then the comparison would have had to succeed.

Tip: Never rely on the identity of wrapper objects. Don’t compare

them with == and don’t use them as locks (see Chapter 10).

Don’t use the wrapper class constructors. They are deprecated and

scheduled for removal. For example, use Integer.valueOf(1000),

never new Integer(1000). Or, simply rely on autoboxing: Integer a =

1000.

Note: For the special values -0.0 and Double.NaN, the equals

method of the Double class is more convenient than the == operator.

While 0.0 == -0.0, the result of

Double.valueOf(-0.0).equals(Double.valueOf(0.0)) is false.

Moreover, Double.NaN != Double.NaN, but

Double.valueOf(Double.NaN).equals(Double.valueOf(Double.NaN)

) is true.

Mathematically speaking, equals is an “equivalence relation”, but

== is not.

There are a couple of other subtleties about boxing and unboxing. First off,

since wrapper class references can be null, it is possible for unboxing to

throw a NullPointerException:

Integer n = null;

IO.println(2 * n); // throws NullPointerException

Also, if you mix Integer and Double types in a conditional expression, then

the Integer value is unboxed, promoted to double, and boxed into a Double:

Integer n = 1;

Double x = 2.0;

IO.println(true ? n : x); // prints 1.0

Finally, keep in mind that compiler, not the virtual machine, is in charge of

boxing and unboxing. The compiler inserts the necessary calls when it

generates the bytecodes of a class. The virtual machine simply executes

those bytecodes.

Preview: A future version of Java will allow value types, user-

defined types that are like primitive types—with values that are not

stored inside objects. For example, a value of a primitive type Point

with double fields x and y is simply a 16-byte block in memory,

with two adjacent double values. You can copy it, but you can’t

have a reference to it.

It is planned that at some point, the primitive wrapper classes will

become value classes.

You will often see the number wrappers for another reason. The designers

of Java found the wrappers a convenient place to put certain basic methods,

such as those for converting strings of digits to numbers.

To convert a string to an integer, use the following statement:

int x = Integer.parseInt(s);

This has nothing to do with Integer objects—parseInt is a static method. But

the Integer class was a good place to put it.

The API notes show some of the more important methods of the Integer

class. The other number classes implement corresponding methods.

The wrapper classes also define constants. For all integral wrapper types,

MIN_VALUE and MAX_VALUE are the smallest and largest value of the

type. For example, Integer.MIN_VALUE is -2147483648, and

Integer.MAX_VALUE is 2147483647. Here is a typical example:

int largest = Integer.MIN_VALUE; // Replaced with first input

while (in.hasNextInt()) largest = Math.max(largest, in.nextInt());

Caution: The MIN_VALUE constant of the Double and Float

classes is the smallest positive value. If you want to compute the

largest floating-point number and there may be negative inputs, you

need to use:

int largest = -Double.MAX_VALUE; // Do NOT use

Double.MIN_VALUE

while (in.hasNextDouble()) largest = Math.max(largest,

in.nextDouble());

Caution: Some people think that the wrapper classes can be used to

implement methods that can modify numeric parameters. However,

that is not correct. Recall from Chapter 4 that it is impossible to

write a Java method that increments an integer parameter because

parameters to Java methods are always passed by value.

public static void triple(int x) { // won't work

 x = 3 * x; // modifies local variable

}

Could we overcome this by using an Integer instead of an int?

public static void triple(Integer x) { // won't work

 . . .

}

The problem is that Integer objects are immutable: The information

contained inside the wrapper can’t change. You cannot use these

wrapper classes to create a method that modifies numeric

parameters.

java.lang.Integer 1.0

int intValue()

returns the value of this Integer object as an int (overrides the intValue

method in the Number class).

static String toString(int i)

returns a new String object representing the number i in base 10.

static String toString(int i, int radix)

lets you return a representation of the number i in the base specified

by the radix parameter.

static int parseInt(String s)

static int parseInt(String s, int radix)

return the integer whose digits are contained in the string s. The string

must represent an integer in base 10 (for the first method) or in the

base given by the radix parameter (for the second method).

static Integer valueOf(String s)

static Integer valueOf(String s, int radix)

return a new Integer object initialized to the integer whose digits are

contained in the string s. The string must represent an integer in base

10 (for the first method) or in the base given by the radix parameter

(for the second method).

java.text.NumberFormat 1.1

Number parse(String s)

returns the numeric value, assuming the specified String represents a

number.

5.5. Methods with a Variable Number of
Arguments

It is possible to provide methods that can be called with a variable number

of arguments. These are sometimes called “varargs” methods.

You have already seen such a method: the formatted method of the String

class. For example, the calls

"%d".formatted(n)

and

"%d %s".formatted(n, "widgets")

both call the same method, even though one call has two arguments and the

other has three.

The formatted method is defined like this:

public class String {

 . . .

 public String formatted(Object... args) {

 . . .

 }

}

Here, the ellipsis ... is part of the Java code. It denotes that the method can

receive an arbitrary number of objects (in addition to the fmt parameter).

The formatted method has a parameter of type Object[] that holds all values

to be formatted. (If the caller supplies integers or other primitive type

values, autoboxing turns them into objects.) It now faces the unenviable

task of scanning the format string and matching up the ith format specifier

with the value args[i].

In other words, for the implementor of formatted, the Object... parameter

type is exactly the same as Object[].

The compiler needs to transform each call to formatted, bundling the

arguments into an array and autoboxing as necessary:

"%d %s".formatted(new Object[] { Integer.valueOf(n), "widgets" })

You can define your own methods with variable arguments, and you can

specify any type for the arguments, even a primitive type. Here is a simple

example: a function that computes the maximum of a variable number of

values.

public static double max(double... values) {

 double largest = Double.NEGATIVE_INFINITY;

 for (double v : values) if (v > largest) largest = v;

 return largest;

}

Simply call the function like this:

double m = max(3.1, 40.4, -5);

The compiler passes a new double[] { 3.1, 40.4, -5 } to the max function.

Note: It is legal to pass an array of the variable argument type

instead of the variable arguments. For example, you can call:

"%d %s".formatted(new Object[] { Integer.valueOf(1), "widgets"

})

Therefore, you can redefine an existing method whose last argument

is an array to a method with variable arguments, without breaking

any existing code. If you like, you can even declare the main

method as

public static void main(String... args)

5.6. Abstract Classes

As you move up the inheritance hierarchy, classes become more general and

probably more abstract. At some point, the ancestor class becomes so

general that you think of it more as a basis for other classes than as a class

with specific instances you want to use. Consider, for example, an extension

of our Employee class hierarchy. An employee is a person, and so is a

student. Let us extend our class hierarchy to include classes Person and

Student. Figure 5.2 shows the inheritance relationships between these

classes.

.

Figure 5.2: Inheritance diagram for Person and its subclasses

Why bother with so high a level of abstraction? There are some attributes

that make sense for every person, such as a name. Both students and

employees have names, and introducing a common superclass lets us factor

out the getName method to a higher level in the inheritance hierarchy.

Now let’s add another method, getDescription, whose purpose is to return a

brief description of the person, such as

an employee with a salary of $50,000.00

a student majoring in computer science

It is easy to implement this method for the Employee and Student classes.

But what information can you provide in the Person class? The Person class

knows nothing about the person except the name. Of course, you could

implement Person.getDescription() to return an empty string. But there is a

better way. If you use the abstract keyword, you do not need to implement

the method at all.

public abstract String getDescription();

 // no implementation required

For added clarity, a class with one or more abstract methods must itself be

declared abstract.

public abstract class Person {

 . . .

 public abstract String getDescription();

}

In addition to abstract methods, abstract classes can have fields and

concrete methods. For example, the Person class stores the name of the

person and has a concrete method that returns it.

public abstract class Person {

 private String name;

 public Person(String name) {

 this.name = name;

 }

 public abstract String getDescription();

 public String getName() {

 return name;

 }

}

Tip: Some programmers don’t realize that abstract classes can have

concrete methods. You should always move common fields and

methods (whether abstract or not) to the superclass (whether abstract

or not).

Abstract methods act as placeholders for methods that are implemented in

the subclasses. When you extend an abstract class, you have two choices.

You can leave some or all of the abstract methods undefined; then, you

must tag the subclass as abstract as well. Or, you can define all methods,

and the subclass is no longer abstract.

For example, we will define a Student class that extends the abstract Person

class and implements the getDescription method. None of the methods of

the Student class are abstract, so it does not need to be declared as an

abstract class.

A class can even be declared as abstract though it has no abstract methods.

Abstract classes cannot be instantiated. That is, if a class is declared as

abstract, no objects of that class can be created. For example, the expression

new Person("Vince Vu")

is an error. However, you can create objects of concrete subclasses.

Note that you can still create object variables of an abstract class, but such a

variable must refer to an object of a nonabstract subclass. For example:

Person p = new Student("Vince Vu", "Economics");

Here p is a variable of the abstract type Person that refers to an instance of

the nonabstract subclass Student.

Note: In Python, abstract methods have an empty body and an

@abstractmethod decorator.

In C++, an abstract method is called a pure virtual function and is

tagged with a trailing = 0.

Let us define a concrete subclass Student that extends the abstract class

Person:

public class Student extends Person {

 private String major;

 public Student(String name, String major) {

 super(name);

 this.major = major;

 }

 public String getDescription() {

 return "a student majoring in " + major;

 }

}

The Student class defines the getDescription method. Therefore, all

methods in the Student class are concrete, and the class is no longer an

abstract class.

The program shown in Listing 5.7 defines the abstract superclass Person

(Listing 5.8) and two concrete subclasses, Employee (Listing 5.9) and

Student (Listing 5.10). We fill an array of Person references with employee

and student objects:

var people = new Person[2];

people[0] = new Employee(. . .);

people[1] = new Student(. . .);

We then print the names and descriptions of these objects:

for (Person p : people)

 IO.println(p.getName() + ", " + p.getDescription());

Some people are baffled by the call

p.getDescription()

Isn’t this a call to an undefined method? Keep in mind that the variable p

never refers to a Person object because it is impossible to construct an

object of the abstract Person class. The variable p always refers to an object

of a concrete subclass such as Employee or Student. For these objects, the

getDescription method is defined.

Could you have omitted the abstract method altogether from the Person

superclass, simply defining the getDescription methods in the Employee

and Student subclasses? If you did that, you wouldn’t have been able to

invoke the getDescription method on the variable p. The compiler ensures

that you invoke only methods that are declared in the class.

Abstract methods are an important concept in the Java programming

language. You will encounter them most commonly inside interfaces. For

more information about interfaces, turn to Chapter 6.

Listing 5.7 v1ch05/abstractClasses/AbstractClassesDemo.java

1 package v1ch05.abstractClasses;

2

3 /**

4 * This program demonstrates abstract classes.

5 */

6 class AbstractClassesDemo {

7 void main() {

8 var people = new Person[2];

9

10 // fill the people array with Student and Employee objects

11 people[0] = new Employee("Harry Hacker", 50000, 1989, 10, 1);

12 people[1] = new Student("Maria Morris", "computer science");

13

14 // print out names and descriptions of all Person objects

15 for (Person p : people)

16 IO.println(p.getName() + ", " + p.getDescription());

17 }

18 }

Listing 5.8 v1ch05/abstractClasses/Person.java

1 package v1ch05.abstractClasses;

2

3 public abstract class Person {

4 public abstract String getDescription();

5

6 private String name;

7

8 public Person(String name) {

9 this.name = name;

10 }

11

12 public String getName() {

13 return name;

14 }

15 }

Listing 5.9 v1ch05/abstractClasses/Employee.java

1 package v1ch05.abstractClasses;

2

3 import module java.base;

4

5 /**

6 * The familiar Employee class, modified to extend the abstract class Person.

7 */

8 public class Employee extends Person {

9 private double salary;

10 private LocalDate hireDay;

11

12 public Employee(String name, double salary, int year, int month, int day) {

13 super(name);

14 this.salary = salary;

15 hireDay = LocalDate.of(year, month, day);

16 }

17

18 public double getSalary() {

19 return salary;

20 }

21

22 public LocalDate getHireDay() {

23 return hireDay;

24 }

25

26 public String getDescription() {

27 return "an employee with a salary of $%.2f".formatted(salary);

28 }

29

30 public void raiseSalary(double byPercent) {

31 double raise = salary * byPercent / 100;

32 salary += raise;

33 }

34 }

Listing 5.10 v1ch05/abstractClasses/Student.java

1 package v1ch05.abstractClasses;

2

3 public class Student extends Person {

4 private String major;

5

6 /**

7 * @param name the student's name

8 * @param major the student's major

9 */

10 public Student(String name, String major) {

11 // pass name to superclass constructor

12 super(name);

13 this.major = major;

14 }

15

16 public String getDescription() {

17 return "a student majoring in " + major;

18 }

19 }

5.7. Enumeration Classes

You saw in Chapter 3 how to define enumerated types. Here is a typical

example:

public enum Size { SMALL, MEDIUM, LARGE, EXTRA_LARGE }

When you refer to these constants, qualify them with the class name, such

as Size.SMALL. You can use the simple name in three situations:

1. As you will see shortly, enumerations can have methods. Inside the

methods of an enumeration, you can use the simple name.

2. In a case of a switch whose selector has an enumerated type, you don’t

need the qualification:

Size s = . . .;

String abbrev = switch (s) {

 case SMALL -> "S";

 . . .

};

3. You can statically import all constants of an enumeration:

import com.horstmann.util.Size;

import static com.horstmann.util.Size.*;

. . .

Size s = SMALL;

Caution: You cannot statically import constants from an

enumeration in the default package. For example, if Size is in the

default package, you cannot use

import static Size.*;

The type defined by an enum declaration is actually a class. The class has

exactly four instances—it is not possible to construct new objects.

Therefore, you never need to use equals for values of enumerated types.

Simply use == to compare them.

Note: You are allowed to put a comma after the last value. Trailing

commas can be useful if you expect the number of values to grow.

public enum Size {

 SMALL,

 MEDIUM,

 LARGE,

 EXTRA_LARGE,

 XXL,

 // add more values here and put a comma after each

}

All enumerated types are subclasses of the abstract class Enum. They

inherit a number of methods from that class. The most useful one is name,

which returns the name of the enumerated constant. For example,

Size.SMALL.toString() returns the string "SMALL".

By default, the toString method returns name. However, you can override

toString, whereas name is final.

The converse of name is the static valueOf method. For example, the

statement

Size s = Enum.valueOf(Size.class, "SMALL");

sets s to Size.SMALL.

Each enumerated type has a static values method that returns an array of all

values of the enumeration. For example, the call

Size[] values = Size.values();

returns the array with elements Size.SMALL, Size.MEDIUM,

Size.LARGE, and Size.EXTRA_LARGE.

The ordinal method yields the position of an enumerated constant in the

enum declaration, counting from zero. For example,

Size.MEDIUM.ordinal() returns 1.

You can, if you like, add constructors, methods, and fields to an enumerated

type. Of course, the constructors are only invoked when the instances are

constructed. Here is an example:

public enum Size {

 SMALL("S"), MEDIUM("M"), LARGE("L"),

EXTRA_LARGE("XL");

 private final String abbreviation;

 Size(String abbreviation) { this.abbreviation = abbreviation; }

 // automatically private

 public String getAbbreviation() { return abbreviation; }

}

Note: When an enum has fields or methods, you must terminate the

list of constants with a semicolon, as in the example above.

It is legal to have a trailing comma and then a semicolon.

You can even override methods in each instance:

public enum Size {

 SMALL,

 MEDIUM,

 LARGE,

 EXTRA_LARGE {

 public String toString() { return "XL"; }

 };

}

However, this is not common. In the preceding example, EXTRA_LARGE

is an instance of a subclass of Size. Apart from this, you cannot form

subclasses of an enumeration.

The constructor of an enumeration is always private. You can omit the

private modifier, as in the preceding example. It is a syntax error to declare

an enum constructor as public or protected.

Note: An enumeration with no instances cannot be instantiated. This

is useful for indicating that a class is a utility class, with only static

methods:

public enum FileUtils {

 ; // No instances

 public static String extension(String filename) {

 int n = filename.lastIndexOf(".");

 return n >= 0 ? filename.substring(n + 1) : "";

 }

 . . .

}

Caution: The constructor of an enumeration class cannot invoke a

switch on the instance that is being constructed:

public enum Size {

 SMALL, MEDIUM, LARGE, EXTRA_LARGE;

 private final boolean largish;

 Size() {

 largish = switch (this) { // ERROR

 case LARGE, EXTRA_LARGE -> true;

 default -> false;

 };

 }

}

This curious limitation is caused by the implementation strategy for

switch on enum. Each switch consults an array that maps the ordinal

values of the enum constants, as currently defined, to the ordinal

values of the time when the switch was compiled. These arrays can

only be built after the enum instances are constructed.

In a method, such a switch works fine.

The short program in Listing 5.11 demonstrates how to work with

enumerated types.

Note: The Enum class has a type parameter that I have ignored for

simplicity. For example, the enumerated type Size actually extends

Enum<Size>. The type parameter is used in the compareTo method.

(I discuss the compareTo method in Chapter 6 and type parameters

in Chapter 8.)

Listing 5.11 v1ch05/EnumDemo.java

1 package v1ch05;

2

3 /**

4 * This program demonstrates enumerated types.

5 */

6 class EnumDemo {

7 void main() {

8 String input = IO

9 .readln("Enter a size: (SMALL, MEDIUM, LARGE, EXTRA_LARGE): ")

10 .toUpperCase();

11 Size size = Enum.valueOf(Size.class, input);

12 IO.println("size=" + size);

13 IO.println("abbreviation=" + size.getAbbreviation());

14 if (size == Size.EXTRA_LARGE)

15 IO.println("Good job--you paid attention to the _.");

16 }

17 }

18

19 enum Size {

20 SMALL("S"), MEDIUM("M"), LARGE("L"), EXTRA_LARGE("XL");

21

22 private Size(String abbreviation) {

23 this.abbreviation = abbreviation;

24 }

25

26 public String getAbbreviation() {

27 return abbreviation;

28 }

29

30 private String abbreviation;

31 }

java.lang.Enum<E> 5.0

static Enum valueOf(Class enumClass, String name)

returns the enumerated constant of the given class with the given

name.

String name()

returns the name of this enumerated constant.

int ordinal()

returns the zero-based position of this enumerated constant in the

enum declaration.

int compareTo(E other)

returns a negative integer if this enumerated constant comes before

other, zero if this == other, and a positive integer otherwise. The

ordering of the constants is given by the enum declaration.

5.8. Sealed Classes

Unless a class is declared final, anyone can form a subclass of it. What if

you want to have more control? For example, suppose you need to write

your own JSON library because none of the existing ones does exactly what

you need.

The JSON standard says that a JSON value is an array, number, string,

Boolean value, object, or null. An obvious approach is to model this with

classes JSONArray, JSONNumber, and so on that extend an abstract class

JSONValue:

public abstract class JSONValue {

 // Methods that apply to all JSON values

}

public final class JSONArray extends JSONValue {

 . . .

}

public final class JSONNumber extends JSONValue {

 . . .

}

By declaring the classes JSONArray, JSONNumber, and so on as final, we

can ensure that nobody forms a subclass. But we cannot stop anyone from

forming another subclass of JSONValue.

Why might we want that control? Consider this code:

JSONValue v = . . .;

if (v instanceof JSONArray a) . . .

else if (v instanceof JSONNumber n) . . .

else if (v instanceof JSONString s) . . .

else if (v instanceof JSOBoolean b) . . .

else if (v instanceof JSONObject o) . . .

else . . . // Must be JSONNull

Here, the control flow implies that we know all direct subclasses of

JSONValue. This is not an open-ended hierarchy. The JSON standard won’t

change; if it does, we as the library implementors will add a seventh

subclass. We don’t want anyone else out there mess with the class

hierarchy.

In Java, a sealed class controls which classes may inherit from it. Sealed

classes were added as a preview feature in Java 15 and finalized in Java 17.

Here is how to declare the JSONValue class as sealed:

public abstract sealed class JSONValue

 permits JSONArray, JSONNumber, JSONString, JSONBoolean,

JSONObject, JSONNull {

 . . .

}

It is an error to define a nonpermitted subclass:

public class JSONComment extends JSONValue { . . . } // Error

That’s just as well, since JSON doesn’t allow for comments. Sealed classes

thus allow for accurate modeling of domain constraints.

The permitted subclasses of a sealed class must be accessible. They cannot

be private classes that are nested in another class, or package-visible classes

from another package.

For permitted subclasses that are public, the rules are more stringent. They

must be in the same package as the sealed class. However, if you use

modules (see Chapter 12), then they must only be in the same module.

Note: A sealed class can be declared without a permits clause. Then

all of its direct subclasses must be declared in the same file.

Programmers without access to that file cannot form subclasses.

A file can have at most one public class, so this arrangement appears

to be only useful if the subclasses are not for use by the public.

However, as you will see in the next chapter, you can use inner

classes as public subclasses.

An important motivation for sealed classes is compile-time checking.

Consider this method of the JSONValue class, which uses a switch

expression with pattern matching (see Section 5.9):

public String type() {

 return switch (this) {

 case JSONArray _ -> "array";

 case JSONNumber _ -> "number";

 case JSONString _ -> "string";

 case JSONBoolean _ -> "boolean";

 case JSONObject _ -> "object";

 case JSONNull _ -> "null";

 // No default needed here

 };

}

The compiler can check that no default clause is needed since all direct

subclasses of JSONValue occur as cases.

Note: The preceding type method doesn’t look very object-oriented.

It would be in the spirit of OOP to have each of the six classes

provide its own type method, relying on polymorphism instead of a

switch. For an open-ended hierarchy, that is a good approach. But

when there is a fixed set of classes, it is often more convenient to

have all alternatives in one method.

At first glance, it appears as if a subclass of a sealed class must be final. But

for exhaustiveness testing, we only need to know all direct subclasses. It is

not a problem if those classes have further subclasses. For example, we can

reorganize our JSON hierarchy as shown in Figure 5.3.

.

Figure 5.3: The complete hierarchy of classes for representing JSON

values

In this hierarchy, JSONValue permits three subclasses:

public abstract sealed class JSONValue permits JSONObject,

JSONArray, JSONPrimitive {

 . . .

}

The JSONPrimitive class is sealed as well:

public abstract sealed class JSONPrimitive extends JSONValue

 permits JSONString, JSONNumber, JSONBoolean, JSONNull {

 . . .

}

A subclass of a sealed class must specify whether it is sealed, final, or open

for subclassing. In the latter case, it must be declared as non-sealed.

Note: The non-sealed keyword is the first Java keyword with a

hyphen. This may well be a future trend. Adding keywords to the

language always comes with a risk. Existing code may no longer

compile. For that reason, sealed is a “contextual” keyword. You can

still declare variables or methods named sealed:

int sealed = 1; // OK to use contextual keyword as identifier

With a hyphenated keyword, one doesn’t have to worry about this.

The only ambiguity is with subtraction:

int non = 0;

non = non-sealed; // Subtraction, not keyword

Why would you ever want a non-sealed subclass? Consider an XML node

class with six direct subclasses:

public abstract sealed class Node permits Element, Text, Comment,

 CDATASection, EntityReference, ProcessingInstruction {

 . . .

}

We allow arbitrary subclasses of Element:

public non-sealed class Element extends Node {

 . . .

}

public class HTMLDivElement extends Element {

 . . .

}

In this section, you learned about sealed classes. In the next chapter, you

will learn about interfaces, a generalization of abstract classes. Java

interfaces can also have subtypes. Sealed interfaces work exactly the same

as sealed classes, controlling the direct subtypes.

The following sample program fleshes out the JSON hierarchy. The

implementation of JSONObject uses a HashMap, which will be covered in

Chapter 9. In the example, we use interfaces instead of abstract classes so

that JSONNumber and JSONString can be records and the JSONBoolean

and JSONNull classes can be enumerations. Records and enumerations can

implement interfaces, but they cannot extend classes.

Listing 5.12 v1ch05/SealedDemo.java

1 package v1ch05;

2

3 import module java.base;

4

5 sealed interface JSONValue permits JSONArray, JSONObject, JSONPrimitive {

6 public default String type() {

7 if (this instanceof JSONArray) return "array";

8 else if (this instanceof JSONObject) return "object";

9 else if (this instanceof JSONNumber) return "number";

10 else if (this instanceof JSONString) return "string";

11 else if (this instanceof JSONBoolean) return "boolean";

12 else return "null";

13 }

14 }

15

16 final class JSONArray extends ArrayList<JSONValue> implements JSONValue {

17 }

18

19 final class JSONObject extends HashMap<String, JSONValue> implements JSONValue {

20 public String toString() {

21 StringBuilder result = new StringBuilder();

22 result.append("{");

23 for (Map.Entry<String, JSONValue> entry : entrySet()) {

24 if (result.length() > 1) result.append(",");

25 result.append(" \"");

26 result.append(entry.getKey());

27 result.append("\": ");

28 result.append(entry.getValue());

29 }

30 result.append(" }");

31 return result.toString();

32 }

33 }

34

35 sealed interface JSONPrimitive extends JSONValue

36 permits JSONNumber, JSONString, JSONBoolean, JSONNull {

37 }

38

39 final record JSONNumber(double value) implements JSONPrimitive {

40 public String toString() {

41 return "" + value;

42 }

43 }

44

45 final record JSONString(String value) implements JSONPrimitive {

46 public String toString() {

47 return "\"" + value.translateEscapes() + "\"";

48 }

49 }

50

51 enum JSONBoolean implements JSONPrimitive {

52 FALSE, TRUE;

53

54 public String toString() {

55 return super.toString().toLowerCase();

56 }

57 }

58

59 enum JSONNull implements JSONPrimitive {

60 INSTANCE;

61

62 public String toString() {

63 return "null";

64 }

65 }

66

67 class SealedDemo {

68 void main() {

69 JSONObject obj = new JSONObject();

70 obj.put("name", new JSONString("Harry"));

71 obj.put("salary", new JSONNumber(90000));

72 obj.put("married", JSONBoolean.FALSE);

73 JSONArray arr = new JSONArray();

74 arr.add(new JSONNumber(13));

75 arr.add(JSONNull.INSTANCE);

76

77 obj.put("luckyNumbers", arr);

78 IO.println(obj);

79 IO.println(obj.type());

80 }

81 }

5.9. Pattern Matching

You have already seen how to use the instanceof operator to check whether

an object has a particular type. The most convenient form of instanceof

declares a variable of the matching type:

Employee e = . . .;

String description;

if (e instanceof Executive exec)

 description = "An executive with a title of " + exec.getTitle();

else if (e instanceof Manager)

 description = "A manager who deserves a bonus";

else

 description = "A lowly employee with a salary of " + e.getSalary();

The pattern-matching form of switch simplifies this type analysis:

Employee e = . . .;

String description = switch (e) {

 case Executive exec -> "An executive with a title of " +

exec.getTitle();

 case Manager _ -> "A manager who deserves a bonus";

 default -> "A lowly employee with a salary of " + e.getSalary();

};

Note the symmetry between the clauses e instanceof Executive exec and

case Executive exec. Both declare a variable of the matched type. You can

use that variable to access subclass methods (such as getTitle in our

example).

Starting with Java 22, you can use an underscore if you don’t need the

variable, as was done in the clause case Manager _.

Note: Generally, you cannot combine multiple type patterns in the

same case, but you can when they don’t have pattern variables:

case Employee _, Manager _ -> "Not an executive" // Ok to

combine these patterns

Using the expression form of switch is simpler than a chain of if statements.

The switch expression yields a value that is assigned to the description

variable. In contrast, when using instanceof, each branch of the conditional

statements must set the description value separately.

It is possible to use the statement and fallthrough forms of switch with type

patterns. But the expression form without fallthrough is usually the most

natural choice.

As you have just seen, the basic structure of pattern matching is

straightforward. The following subsections go into technical details, some

of which are a bit gnarly for compatibility reasons.

Preview: Java 25 introduces primitive type patterns as a preview

feature. For example,

case byte b -> . . .;

matches if the selector is an integer between -128 and 127. Then the

variable b of type byte is set to the selector value.

5.9.1. Null Handling

The classic switch statement is null-hostile. If the selector expression is

null, the switch throws a NullPointerException. You can avoid this by

adding a case null:

String description = switch (e) {

 case Executive exec -> "An executive with a title of " +

exec.getTitle();

 case Manager m -> "A manager who deserves a bonus";

 case null -> "No employee";

 default -> "A lowly employee with a salary of " + e.getSalary();

};

You can combine case null with default, but not with any other case:

case null, default -> "No free parking";

Note: You cannot use case _ to express a default case. That was

done on purpose, so that you don’t have to remember whether such

a case covers null or not.

5.9.2. Guards

You can add a condition to a pattern called a guard, using the restricted

when keyword.

case Executive exec when exec.getTitle().getLength() >= 20 ->

 "An executive with an impressive title";

In the guard expression, you can use the variable that the pattern introduces.

If the guard expression is not fulfilled, the case is not selected and the next

case is tested.

If an exception occurs in the when clause, the switch throws that exception.

Guards are particularly useful in record patterns:

Point p = . . .;

String description = switch (p) {

 case Point(var x, var y) when x == 0 && y == 0 -> "origin";

 case Point(var x, _) when x == 0 -> "on x-axis";

 case Point(_, var y) when y == 0 -> "on y-axis";

 default -> "not on either axis";

};

Caution: A record pattern invokes the component accessors. In the

unlikely case that one of them throws an exception, the switch

throws a MatchException. This can only happen for custom

accessors.

5.9.3. Exhaustiveness

Any switch expression must be exhaustive: there must be a case for each

possible selector value. This is an obvious requirement since the expression

must always yield a value.

There are several ways for a switch to be exhaustive:

Cases for every instance of an enum

Unguarded type patterns that cover every subtype of a sealed type

An unguarded type pattern of the selector type

A default clause

Guarded patterns cannot be used for exhaustiveness checks since the

compiler cannot evaluate them. For example,

case Executive exec when exec.getTitle().getLength() >= 20 -> . . .

case Executive exec when exec.getTitle().getLength() < 20 -> . . .

is not exhaustive. You need to rewrite the second clause as

case Executive exec -> . . .

or

default -> . . .

Note: When a sealed type hierarchy or an enumeration class is

modified, then a previously exhaustive switch might become non-

exhaustive. If no cases match, the switch throws a MatchException.

A classic switch statement need not be exhaustive. If no cases match, then

no action takes place. But for greater clarity, all enhanced switch statements

must be exhaustive. A switch statement is enhanced if it has a pattern, case

null, or a selector type other than a primitive type, primitive type wrapper,

String, or enum.

If you don’t want to do anything when there is no match, add

default -> {} // No fallthrough

or

default: break; // Fallthrough

Caution: Testing whether the selector value is null is not required

for exhaustiveness. You can have an exhaustive switch without case

null. It throws a NullPointerException when invoked with a null

selector.

Caution: The absence of null checking for exhaustiveness is

problematic for nested records. Consider

record Box<T>(T contents) { }

Box<Box<String>> doubleBoxed = . . .;

String unboxed = switch (doubleBoxed) {

 case Box(Box(String s)) -> s;

};

If doubleBoxed is null, the switch throws a NullPointerException.

Conversely, if doubleBoxed is new Box<>(new Box<>(null)), the

result of the expression is null.

However, if doubleBoxed is initialized with new Box<>(null), then

a MatchException occurs. There should have been a case such as

case Box(b) where b == null

but the exhaustiveness checker ignores null.

5.9.4. Dominance

In a classic switch with only constant cases, it is illegal to have the same

constant in two cases. Therefore, the branches are disjoint and their order

does not matter. However, when the cases are patterns, then the order

matters. The cases are checked in order, and the first matching case is

followed.

When the compiler finds that a case can never match because of a preceding

one, a compile-time error occurs. Here is an example:

Employee e = . . .;

String description = switch (e) {

 case Employee _ -> "A lowly employee with a salary of " +

e.getSalary();

 case Manager m -> "A manager who deserves a bonus"; // ERROR

};

Since every Manager is an Employee, the second case will never match.

The first case dominates it.

This dominance checking is useful for finding programming errors, but it is

not perfect. Here are the fine points that you need to worry about:

Guarded patterns are not used for dominance checking. There is no

way for the compiler to reason about the guards. For example, the

compiler cannot tell that

case Executive exec when exec.getTitle().getLength() >= 20 -> . . .

dominates

case Executive exec when exec.getTitle().getLength() >= 30 -> . . .

default does not dominate constant cases.

default dominates case null, even though it does not cover it.

Tip: While it is possible to place default before constant cases, it is

a poor idea. Always put it last.

5.9.5. Patterns and Constants

You cannot match against constants inside record patterns. For example,

case Point(0, y) // ERROR

is wrong. Use a guard:

case Point(x, y) when x == 0 // Ok

Numeric constant patterns are only allowed when the selector type is int,

short, char, or byte, or their wrapper types. String constant patterns are only

allowed for a selector of type String. For example, the following is not

legal:

Object obj = . . .;

String description = switch (obj) {

 case 0 -> "zero"; // ERROR

 case "" -> "empty string"; // ERROR

 case null -> "null";

 default -> obj.toString();

};

Since the selector type is Object, the switch cannot have numeric or string

constant patterns. The remedy is:

case Integer i when i == 0

case String s when s.equals("null")

The rules are different for enum constants. The selector type must merely

be a supertype of the enumerated type; that is, Object, Enum, or an interface

(see Chapter 6):

Object obj = . . .;

String description = switch (obj) {

 case DayOfWeek.FRIDAY -> "TGIF"; // Ok

 . . .

};

5.9.6. Variable Scope and Fallthrough

This section covers subtle points about variables when execution falls

through from one case to the next. If you never use fallthrough, just move

on to the next section.

When a type or record pattern introduces a variable, its scope extends to the

end of the case, even if execution falls through the next case. For example,

consider the variable s in the following code snippet:

Object obj = . . .;

switch (obj) {

 case String s when s.length() == 0:

 IO.println("empty string"); // Scope ends here

 default:

 IO.println(obj.toString());

}

You can use s in the guard clause and the statements following the :, but not

in the next case. This makes sense since execution can start in that case

when obj is not a String.

You cannot fall into a type pattern:

switch (obj) {

 case String s when s.length() > 0:

 IO.println(s.codePointAt(0)); // Fallthrough

 case Integer n:

 IO.println(n); // ERROR

 . . .

}

If execution fell from the first case to the body of the second case, n could

not be bound.

You can fall into a type pattern with an unnamed variable:

switch (obj) {

 case String s when s.length() == 0:

 IO.print("empty "); // Fallthrough

 case String _:

 IO.println("string"); break; // Ok

 . . .

}

Caution: Ever since Java 1.0, it has been legal to declare a variable

in the body of a case. The scope of that variable extends to the end

of the switch. This scope has never been useful since it leads to an

error if you access the variable outside the case:

switch (obj) {

 case String s:

 String t = s; // OK

 default:

 IO.println(t); // ERROR—t may not have been initialized

}

The programs in Listing 5.13 and Listing 5.14 demonstrate pattern

matching with type and record patterns.

Listing 5.13 v1ch05/TypePatternDemo.java

1 package v1ch05;

2

3 import com.horstmann.corejava.*;

4

5 class TypePatternDemo {

6 void main() {

7 int r = (int) (4 * Math.random());

8 Employee e = switch (r) {

9 case 0 -> new Employee("Harry Hacker", 50000, 1989, 10, 1);

10 case 1 -> new Manager("Carl Cracker", 80000, 1987, 12, 15);

11 case 2 -> new Executive("Sue Striver", "Senior Associate Vice President",

12 200000, 1995,1, 20);

13 default -> null;

14 };

15 String description = switch (e) {

16 case Executive exec when exec.getTitle().length() >= 20

17 -> "An executive with an impressive title";

18 case Executive exec

19 -> "An executive with a title of " + exec.getTitle();

20 case Manager m -> {

21 m.setBonus(10000);

22 yield "A manager who just got a bonus";

23 }

24 case null -> "No employee";

25 default -> "A lowly employee with a salary of " + e.getSalary();

26 };

27 IO.println(description);

28 }

29 }

Listing 5.14 v1ch05/RecordPatternDemo.java

1 package v1ch05;

2

3 record Point(double x, double y) {

4 }

5

6 class RecordPatternDemo {

7 void main() {

8 int r = (int) (4 * Math.random());

9 Point p = switch (r) {

10 case 0 -> new Point(0, 0);

11 case 1 -> new Point(1, 0);

12 case 2 -> new Point(0, 1);

13 default -> new Point(1, 1);

14 };

15 String description = switch (p) {

16 case Point(var x, var y) when x == 0 && y == 0 -> "origin";

17 case Point(var x, var _) when x == 0 -> "on x-axis";

18 case Point(var _, var y) when y == 0 -> "on y-axis";

19 default -> "not on either axis";

20 };

21 IO.println("%s %s%n".formatted(p, description));

22 }

23 }

5.10. Reflection

The reflection library gives you a very rich and elaborate toolset to write

programs that manipulate Java code dynamically. Using reflection, Java can

support user interface builders, object-relational mappers, and many other

development tools that dynamically inquire about the capabilities of classes.

A program that can analyze the capabilities of classes is called reflective.

The reflection mechanism is extremely powerful. As the next sections

show, you can use it to

Analyze the capabilities of classes at runtime

Inspect objects at runtime—for example, to write a single toString

method that works for all classes

Implement generic array manipulation code

Take advantage of Method objects that work just like function pointers

in languages such as C++

Reflection is a powerful and complex mechanism; however, it is of interest

mainly to tool builders, not application programmers. If you are interested

in programming applications rather than tools for other Java programmers,

you can safely skip the remainder of this chapter and return to it later.

5.10.1. The Class Class

While your program is running, the Java runtime system always maintains

what is called runtime type identification on all objects. This information

keeps track of the class to which each object belongs. Runtime type

information is used by the virtual machine to select the correct methods to

execute.

However, you can also access this information by working with a special

Java class. The class that holds this information is called, somewhat

confusingly, Class. The getClass() method in the Object class returns an

instance of Class type.

Employee e;

. . .

Class cl = e.getClass();

Just like an Employee object describes the properties of a particular

employee, a Class object describes the properties of a particular class.

Probably the most commonly used method of Class is getName. This

returns the name of the class. For example, the statement

IO.println(e.getClass().getName() + " " + e.getName());

prints

Employee Harry Hacker

if e is an employee, or

Manager Harry Hacker

if e is a manager.

If the class is in a package, the package name is part of the class name:

var now = new Date();

Class cl = now.getClass();

String className = cl.getName(); // name is set to "java.util.Date"

You can obtain a Class object corresponding to a class name by using the

static forName method.

String className = "java.util.Date";

Class cl = Class.forName(className);

Use this method if the class name is stored in a string that varies at runtime.

This works if className is the name of a class or interface. Otherwise, the

forName method throws a checked exception. See Section 5.10.2 for how to

supply an exception handler whenever you use this method.

A third method for obtaining an object of type Class is a convenient

shorthand. If T is any Java type (or the void keyword), then T.class is the

matching class object. For example:

Class cl1 = Date.class; // if you import java.util.*;

Class cl2 = int.class;

Class cl3 = Double[].class;

Note that a Class object really describes a type, which may or may not be a

class. For example, int is not a class, but int.class is nevertheless an object

of type Class.

Note: The Class class is actually a generic class. For example,

Employee.class is of type Class<Employee>. In this chapter, I’m not

dwelling on this issue because it would further complicate an

already abstract concept. For most practical purposes, you can

ignore the type parameter and work with the raw Class type. See

Chapter 8 for more information on the type parameter of Class.

Caution: For historical reasons, the getName method returns

somewhat strange names for array types:

Double[].class.getName() returns "[Ljava.lang.Double;".

int[].class.getName() returns "[I".

The virtual machine manages a unique Class object for each type.

Therefore, you can use the == operator to compare class objects. For

example:

if (e.getClass() == Employee.class) . . .

This test passes if e is an instance of Employee. Unlike the condition e

instanceof Employee, this test fails if e is an instance of a subclass such as

Manager.

Caution: The getClass test fails for anonymous subclasses, which

you will see in Chapter 6. Actually, you have already encountered

one such case. If you override a method in an enum instance, then it

belongs to a different class:

public enum Size {

 SMALL,

 MEDIUM,

 LARGE,

 EXTRA_LARGE {

 public String toString() { return "XL"; }

 };

}

Here Size.EXTRA_LARGE.getClass() != Size.class.

If you have an object of type Class, you can use it to construct instances of

the class. Call the getConstructor method to get an object of type

Constructor, then use the newInstance method to construct an instance. For

example:

var className = "java.util.Date";

 // or any other name of a class with a no-arg constructor

Class cl = Class.forName(className);

Object obj = cl.getConstructor().newInstance();

If the class doesn’t have a constructor without arguments, the

getConstructor method throws an exception. You will see in Section 5.10.7

how to invoke other constructors.

Note: There is a Class.newInstance method that also constructs an

instance with the no-argument constructor. However, it is deprecated

for a subtle reason. Any exception thrown in the constructor is

rethrown as is. For checked exceptions, this violates the compile-

time checking. In contrast, Constructor.newInstance wraps any

constructor exception into an InvocationTargetException.

Note: The Class class is similar to the type_info class in C++ or the

type class in Python. The Java Class is quite a bit more versatile

than its analog in C++, but less flexible than in Python, where you

can modify classes after they have been declared.

java.lang.Class 1.0

static Class forName(String className)

returns the Class object representing the class with name className.

Constructor getConstructor(Class... parameterTypes) 1.1

yields an object describing the constructor with the given parameter

types. See for more information on how to supply parameter types.

java.lang.reflect.Constructor 1.1

Object newInstance(Object... initargs)

constructs a new instance of the constructor’s declaring class, passing

initargs to the constructor. See for more information on how to supply

arguments.

java.lang.Throwable 1.0

void printStackTrace()

prints the Throwable object and the stack trace to the standard error

stream.

5.10.2. A Primer on Declaring Exceptions

I cover exception handling fully in Chapter 7, but in the meantime you will

occasionally need to declare methods that can throw exceptions.

When an error occurs at runtime, a program can “throw an exception.”

Throwing an exception is more flexible than terminating the program

because you can provide a handler that “catches” the exception and deals

with it.

If you don’t provide a handler, the program terminates and prints a message

to the console, giving the type of the exception. You may have already seen

exception reports when you accidentally used a null reference or

overstepped the bounds of an array.

There are two kinds of exceptions: unchecked exceptions and checked

exceptions. With checked exceptions, the compiler checks that you, the

programmer, are aware of the exception and are prepared to deal with the

consequences. However, many common exceptions, such as bounds errors,

or accessing a null reference, are unchecked. The compiler does not expect

that you provide a handler—after all, you should spend your mental energy

on avoiding these mistakes rather than coding handlers for them.

But not all errors are avoidable. If an exception can occur despite your best

efforts, then most Java APIs will throw a checked exception. One example

is the Class.forName method. There is no way for you to ensure that a class

with the given name exists. In Chapter 7, you will see several strategies for

exception handling. For now, I just show you the simplest strategy.

Whenever a method contains a statement that might throw a checked

exception, add a throws Exception clause to the method name.

public static void doSomethingWithClass(String name)

 throws Exception {

 Class cl = Class.forName(name); // might throw exception

 do something with cl

}

Any method that calls this method also needs a throws Exception

declaration. This includes the main method. If an exception actually occurs,

the main method terminates with a stack trace. (You will learn in Chapter 7

how to catch exceptions instead of having them terminate your programs.)

You only need to supply a throws Exception clause for checked exceptions.

It is easy to find out which methods throw checked exceptions—the

compiler will complain whenever you call a method that threatens to throw

a checked exception.

5.10.3. Resources

Classes often have associated data files, such as:

Image and sound files

Text files with message strings and button labels

In Java, such an associated file is called a resource.

For example, consider a dialog box that displays a message such as the one

in Figure 5.4.

Figure 5.4: Displaying image and text resources

Of course, the book title and copyright year in the panel will change for the

next edition of the book. To make it easy to track this change, we will put

the text inside a file and not hardcode it as a string.

But where should you put a file such as about.txt? Of course, it would be

convenient to simply place it with the rest of the program files inside a JAR

file.

The Class class provides a useful service for locating resource files. Here

are the necessary steps:

1. Get the Class object of the class that has a resource—for example,

ResourceDemo.class.

2. Some methods, such as the getImage method of the ImageIcon class,

accept URLs that describe resource locations. Then you call

URL url = cl.getResource("about.png");

3. Otherwise, use the getResourceAsStream method to obtain an input

stream for reading the data in the file.

The point is that the Java virtual machine knows how to locate a class, so it

can then search for the associated resource in the same location. For

example, suppose the ResourceDemo class is in a package resources. Then

the ResourceDemo.class file is located in a resources directory, and you

place an icon file into the same directory.

Instead of placing a resource file inside the same directory as the class file,

you can provide a relative or absolute path such as

data/about.txt

/images/about.gif

Automating the loading of files is all the resource loading feature does.

There are no standard methods for interpreting the contents of resource

files. Each program must have its own way of interpreting its resource files.

Another common application of resources is the internationalization of

programs. Language-dependent strings, such as messages and user interface

labels, are stored in resource files, with one file per language. The

internationalization API, which is discussed in Chapter 7 of Volume II,

supports a standard method for organizing and accessing these localization

files.

Listing 5.15 is a program that demonstrates resource loading. (Do not worry

about the code for reading text and displaying dialogs—we cover those

details later.) Compile, build a JAR file, and execute it:

javac v1ch05/resources/ResourceDemo.java

jar cvfe ResourceDemo.jar v1ch05.resources.ResourceDemo \

 v1ch05/resources/*.class images/*.gif v1ch05/resources/data/*.txt

java -jar ResourceDemo.jar

Move the JAR file to a different directory and run it again to check that the

program reads the resource files from the JAR file, not from the current

directory.

Listing 5.15 v1ch05/resources/ResourceDemo.java

1 package v1ch05.resources;

2

3 import module java.base;

4 import module java.desktop;

5

6 /**

7 */

8 class ResourceDemo {

9 void main() throws Exception {

10 URL aboutURL = getClass().getResource("/images/about.gif");

11 var icon = new ImageIcon(aboutURL);

12

13 InputStream stream = getClass().getResourceAsStream("data/about.txt");

14 var about = new String(stream.readAllBytes());

15

16 InputStream stream2 = getClass().getResourceAsStream("data/title.txt");

17 var title = new String(stream2.readAllBytes()).strip();

18

19 JOptionPane.showMessageDialog(null, about, title,

JOptionPane.INFORMATION_MESSAGE,

20 icon);

21 }

22 }

java.lang.Class 1.0

URL getResource(String name) 1.1

InputStream getResourceAsStream(String name) 1.1

find the resource in the same place as the class and then return a URL

or input stream that you can use for loading the resource. Return null

if the resource isn’t found, so do not throw an exception for an I/O

error.

5.10.4. Using Reflection to Analyze the Capabilities of Classes

Here is a brief overview of the most important parts of the reflection

mechanism for letting you examine the structure of a class.

The three classes Field, Method, and Constructor in the java.lang.reflect

package describe the fields, methods, and constructors of a class,

respectively. All three classes have a method called getName that returns

the name of the item. The Field class has a method getType that returns an

object, again of type Class, that describes the field type. The Method and

Constructor classes have methods to report the types of the parameters, and

the Method class also reports the return type.

All three of these classes also have a method called getModifiers that

returns an integer, with various bits turned on and off, that describes the

modifiers used, such as public and static. You can then use the static

methods in the Modifier class in the java.lang.reflect package to analyze the

integer that getModifiers returns. Use methods like isPublic, isPrivate, or

isFinal in the Modifier class to tell whether a method or constructor was

public, private, or final. All you have to do is have the appropriate method

in the Modifier class work on the integer that getModifiers returns. You can

also use the Modifier.toString method to print the modifiers.

Alternatively, the accessFlags method returns a set of values of the

AccessFlag enumeration. For example, here is how you can test whether a

method is static:

if (Modifiers.isStatic(m.getModifiers())) . . .

if (m.accessFlags().contains(AccessFlag.STATIC)) . . .

The getFields, getMethods, and getConstructors methods of the Class class

return arrays of the public fields, methods, and constructors that the class

supports. This includes public members of superclasses. The

getDeclaredFields, getDeclaredMethods, and getDeclaredConstructors

methods of the Class class return arrays consisting of all fields, methods,

and constructors that are declared in the class. This includes private,

package, and protected members, as well as members with package access,

but not members of superclasses.

Listing 5.16 shows you how to print out all information about a class. The

program prompts you for the name of a class and writes out the signatures

of all methods and constructors as well as the names of all instance fields of

a class. For example, if you enter

java.lang.Double

the program prints

public final class java.lang.Double extends java.lang.Number {

 public java.lang.Double(double);

 public java.lang.Double(java.lang.String);

 public boolean equals(java.lang.Object);

 public static java.lang.String toString(double);

 public java.lang.String toString();

 public static int hashCode(double);

 public int hashCode();

 public static double min(double, double);

 public static double max(double, double);

 public static native long doubleToRawLongBits(double);

 // more methods

 public static final double POSITIVE_INFINITY;

 public static final double NEGATIVE_INFINITY;

 public static final double NaN;

 public static final double MAX_VALUE;

 public static final double MIN_NORMAL;

 public static final double MIN_VALUE;

 private final double value;

 // more fields

}

What is remarkable about this program is that it can analyze any class that

the Java interpreter can load, not just the classes that were available when

the program was compiled. We will use this program in the next chapter to

peek inside the inner classes that the Java compiler generates automatically.

Listing 5.16 v1ch05/ReflectionDemo.java

1 package v1ch05;

2

3 import module java.base;

4

5 /**

6 * This program uses reflection to print all features of a class.

7 */

8 class ReflectionDemo {

9 void main(String[] args) throws Exception {

10 // read class name from command line args or user input

11 String name = args.length > 0 ? args[0] :

12 IO.readln("Enter class name (e.g. java.util.Date): ");

13

14 // print class modifiers, name, and superclass name (if != Object)

15 Class cl = Class.forName(name);

16 String modifiers = Modifier.toString(cl.getModifiers());

17 if (modifiers.length() > 0) IO.print(modifiers + " ");

18 if (cl.isSealed()) IO.print("sealed ");

19 if (cl.isEnum())

20 IO.print("enum " + name);

21 else if (cl.isRecord())

22 IO.print("record " + name);

23 else if (cl.isInterface())

24 IO.print("interface " + name);

25 else

26 IO.print("class " + name);

27 Class supercl = cl.getSuperclass();

28 if (supercl != null && supercl != Object.class)

29 IO.print(" extends " + supercl.getName());

30

31 printInterfaces(cl);

32 printPermittedSubclasses(cl);

33

34 IO.print(" {\n");

35 printConstructors(cl);

36 IO.println();

37 printMethods(cl);

38 IO.println();

39 printFields(cl);

40 IO.println("}");

41 }

42

43 /**

44 * Prints all constructors of a class

45 * @param cl a class

46 */

47 public static void printConstructors(Class cl) {

48 Constructor[] constructors = cl.getDeclaredConstructors();

49

50 for (Constructor c : constructors) {

51 String name = c.getName();

52 IO.print(" ");

53 String modifiers = Modifier.toString(c.getModifiers());

54 if (modifiers.length() > 0) IO.print(modifiers + " ");

55 IO.print(name + "(");

56

57 // print parameter types

58 Class[] paramTypes = c.getParameterTypes();

59 for (int j = 0; j < paramTypes.length; j++) {

60 if (j > 0) IO.print(", ");

61 IO.print(paramTypes[j].getName());

62 }

63 IO.println(");");

64 }

65 }

66

67 /**

68 * Prints all methods of a class

69 * @param cl a class

70 */

71 public static void printMethods(Class cl) {

72 Method[] methods = cl.getDeclaredMethods();

73

74 for (Method m : methods) {

75 Class retType = m.getReturnType();

76 String name = m.getName();

77

78 IO.print(" ");

79 // print modifiers, return type and method name

80 String modifiers = Modifier.toString(m.getModifiers());

81 if (modifiers.length() > 0) IO.print(modifiers + " ");

82 IO.print(retType.getName() + " " + name + "(");

83

84 // print parameter types

85 Class[] paramTypes = m.getParameterTypes();

86 for (int j = 0; j < paramTypes.length; j++) {

87 if (j > 0) IO.print(", ");

88 IO.print(paramTypes[j].getName());

89 }

90 IO.println(");");

91 }

92 }

93

94 /**

95 * Prints all fields of a class

96 * @param cl a class

97 */

98 public static void printFields(Class cl) {

99 Field[] fields = cl.getDeclaredFields();

100

101 for (Field f : fields) {

102 Class type = f.getType();

103 String name = f.getName();

104 IO.print(" ");

105 String modifiers = Modifier.toString(f.getModifiers());

106 if (modifiers.length() > 0) IO.print(modifiers + " ");

107 IO.println(type.getName() + " " + name + ";");

108 }

109 }

110

111 /**

112 * Prints all permitted subtypes of a sealed class

113 * @param cl a class

114 */

115 public static void printPermittedSubclasses(Class cl) {

116 if (cl.isSealed()) {

117 Class<?>[] permittedSubclasses = cl.getPermittedSubclasses();

118 for (int i = 0; i < permittedSubclasses.length; i++) {

119 if (i == 0)

120 IO.print(" permits ");

121 else

122 IO.print(", ");

123 IO.print(permittedSubclasses[i].getName());

124 }

125 }

126 }

127

128 /**

129 * Prints all directly implemented interfaces of a class

130 * @param cl a class

131 */

132 public static void printInterfaces(Class cl) {

133 Class<?>[] interfaces = cl.getInterfaces();

134 for (int i = 0; i < interfaces.length; i++) {

135 if (i == 0)

136 IO.print(cl.isInterface() ? " extends " : " implements ");

137 else

138 IO.print(", ");

139 IO.print(interfaces[i].getName());

140 }

141 }

142 }

java.lang.Class 1.0

Field[] getFields() 1.1

Field[] getDeclaredFields() 1.1

getFields returns an array containing Field objects for the public fields

of this class or its superclasses; getDeclaredFields returns an array of

Field objects for all fields of this class. The methods return an array of

length 0 if there are no such fields or if the Class object represents a

primitive or array type.

Method[] getMethods() 1.1

Method[] getDeclaredMethods() 1.1

return an array containing Method objects: getMethods returns public

methods and includes inherited methods; getDeclaredMethods returns

all methods of this class or interface but does not include inherited

methods.

Constructor[] getConstructors() 1.1

Constructor[] getDeclaredConstructors() 1.1

return an array containing Constructor objects that give you all the

public constructors (for getConstructors) or all constructors (for

getDeclaredConstructors) of the class represented by this Class object.

isInterface()

returns true if this Class object describes an interface. (See Chapter 6

for interfaces.)

isEnum() 1.5

returns true if this Class object describes an enum.

isRecord() 16

returns true if this Class object describes a record.

RecordComponent[] getRecordComponents() 16

returns an array of RecordComponent objects that describe the record

fields, or null if this class is not a record.

String getPackageName() 9

gets the name of the package containing this type, or the package of

the element type if this type is an array type, or "java.lang" if this type

is a primitive type.

java.lang.reflect.Field 1.1

java.lang.reflect.Method 1.1

java.lang.reflect.Constructor 1.1

Class getDeclaringClass()

returns the Class object for the class that defines this constructor,

method, or field.

Class[] getExceptionTypes() (in Constructor and Method classes)

returns an array of Class objects that represent the types of the

exceptions thrown by the method.

int getModifiers()

returns an integer that describes the modifiers of this constructor,

method, or field. Use the methods in the Modifier class to analyze the

return value.

Set<AccessFlag> accessFlags() 20

returns a set of values in the AccessFlag enumeration that describe the

access modifiers of this constructor, method, or field.

String getName()

returns a string that is the name of the constructor, method, or field.

Class[] getParameterTypes() (in Constructor and Method classes)

returns an array of Class objects that represent the types of the

parameters.

Class getReturnType() (in Method class)

returns a Class object that represents the return type.

java.lang.reflect.RecordComponent 16

String getName()

Class getType()

get the name and type of this record component.

Method getAccessor()

returns the Method object for accessing this record component.

java.lang.reflect.Modifier 1.1

static String toString(int modifiers)

returns a string with the modifiers that correspond to the bits set in

modifiers.

static boolean isAbstract(int modifiers)

static boolean isFinal(int modifiers)

static boolean isInterface(int modifiers)

static boolean isNative(int modifiers)

static boolean isPrivate(int modifiers)

static boolean isProtected(int modifiers)

static boolean isPublic(int modifiers)

static boolean isStatic(int modifiers)

static boolean isStrict(int modifiers)

static boolean isSynchronized(int modifiers)

static boolean isVolatile(int modifiers)

test the bit in the modifiers value that corresponds to the modifier in

the method name.

5.10.5. Using Reflection to Analyze Objects at Runtime

In the preceding section, we saw how we can find out the names and types

of the instance fields of any object:

Get the corresponding Class object.

Call getDeclaredFields on the Class object.

In this section, we will go one step further and actually look at the contents

of the fields. Of course, it is easy to look at the contents of a specific field

of an object whose name and type are known when you write a program.

But reflection lets you look at fields of objects that were not known at

compile time.

The key method to achieve this is the get method in the Field class. If f is an

object of type Field (for example, one obtained from getDeclaredFields)

and obj is an object of the class of which f is a field, then f.get(obj) returns

an object whose value is the current value of the field of obj. This is all a bit

abstract, so let’s run through an example.

var harry = new Employee("Harry Hacker", 50000, 10, 1, 1989);

Class cl = harry.getClass();

 // the class object representing Employee

Field f = cl.getDeclaredField("name");

 // the name field of the Employee class

Object v = f.get(harry);

 // the value of the name field of the harry object, i.e.,

 // the String object "Harry Hacker"

Actually, there is a problem with this code. Since the name field is a private

field, the get and set methods will throw an IllegalAccessException. You

can only use get and set with accessible fields. The security mechanism of

Java lets you find out what fields an object has, but it won’t let you read and

write the values of those fields unless you have permission.

The default behavior of the reflection mechanism is to respect Java access

control. However, you can override access control by invoking the

setAccessible method on a Field, Method, or Constructor object. For

example:

f.setAccessible(true); // now OK to call f.get(harry)

The setAccessible method is a method of the AccessibleObject class, the

common superclass of the Field, Method, and Constructor classes. This

feature is provided for debuggers, persistent storage, and similar

mechanisms. We will use it for a generic toString method later in this

section.

When you run the program with Java 17 or higher, the call to setAccessible

throws an InaccessibleObjectException exception.

To keep the program running, “open” the java.util and java.lang packages in

the java.base module to the “unnamed module.” The details are in Chapter

12. Here is the syntax:

java --add-opens java.base/java.util=ALL-UNNAMED \

 --add-opens java.base/java.lang=ALL-UNNAMED \

 v1ch05/objectAnalyzer/ObjectAnalyzerDemo.java

Once you have reflective access to an object, you can set any field values.

The call f.set(obj, value) sets the field represented by f of the object obj to

the new value. This works even for final fields! However, record

components cannot be set by reflection.

Note: It is possible that future libraries will use variable handles

instead of reflection for reading and writing fields. A VarHandle is

similar to a Field. You can use it to read or write a specific field of

any instance of a specific class. However, to obtain a VarHandle, the

library code needs a Lookup object:

public Object getFieldValue(Object obj, String fieldName,

Lookup lookup)

 throws NoSuchFieldException, IllegalAccessException {

 Class cl = obj.getClass();

 Field field = cl.getDeclaredField(fieldName);

 VarHandle handle = MethodHandles.privateLookupIn (cl,

lookup)

 .unreflectVarHandle(field);

 return handle.get(obj);

}

This works provided that the Lookup object is generated in the

module that has the permission to access the field. There must be a

method in the module that calls MethodHandles.lookup(), yielding

an object encapsulating the access rights of the caller. In this way,

one module can give permission for accessing private members to

another module. The practical issue is how those permissions can be

given with a minimum of hassle.

While we can still do so, let us look at a generic toString method that works

for any class (see Listing 5.17). The generic toString method uses

getDeclaredFields to obtain all instance fields and the setAccessible

convenience method to make all fields accessible. For each field, it obtains

the name and the value. Each value is turned into a string by recursively

invoking toString.

The generic toString method needs to address a couple of complexities.

Cycles of references could cause an infinite recursion. Therefore, the

ObjectAnalyzer keeps track of objects that were already visited. Also, to

peek inside arrays, you need a different approach. You’ll learn about the

details in the next section.

You can use this toString method to peek inside any object. For example,

the call

var squares = new ArrayList<Integer>();

for (int i = 1; i <= 5; i++) squares.add(i * i);

IO.println(new ObjectAnalyzer().toString(squares));

yields the printout

java.util.ArrayList[elementData=class java.lang.Object[]{

java.lang.Integer[value=1][][],java.lang.Integer[value=4][][],

java.lang.Integer[value=9][][],java.lang.Integer[value=16][][],

java.lang.Integer[value=25][][], null,null,null,null,null},size=5]

[modCount=5][][]

You can use this generic toString method to implement the toString

methods of your own classes, like this:

public String toString() {

 return new ObjectAnalyzer().toString(this);

}

However, before you get too excited about never having to implement

toString again, remember that showing arbitrary field values requires flags

that can compromise security.

Listing 5.17 v1ch05/objectAnalyzer/ObjectAnalyzerDemo.java

1 package v1ch05.objectAnalyzer;

2

3 import module java.base;

4

5 /**

6 * This program uses reflection to spy on objects.

7 */

8 class ObjectAnalyzerDemo {

9 void main() throws Exception {

10 var squares = new ArrayList<Integer>();

11 for (int i = 1; i <= 5; i++)

12 squares.add(i * i);

13 IO.println(new ObjectAnalyzer().toString(squares));

14 }

15 }

Listing 5.18 v1ch05/objectAnalyzer/ObjectAnalyzer.java

1 package v1ch05.objectAnalyzer;

2

3 import module java.base;

4

5 public class ObjectAnalyzer {

6 private ArrayList<Object> visited = new ArrayList<>();

7

8 /**

9 * Converts an object to a string representation that lists all fields.

10 * @param obj an object

11 * @return a string with the object's class name and all field names and values

12 */

13 public String toString(Object obj) throws Exception {

14 if (obj == null) return "null";

15 if (visited.contains(obj)) return "...";

16 visited.add(obj);

17 Class cl = obj.getClass();

18 if (cl == String.class) return (String) obj;

19 if (cl.isArray()) {

20 String r = cl.getComponentType() + "[]{";

21 for (int i = 0; i < Array.getLength(obj); i++) {

22 if (i > 0) r += ",";

23 Object val = Array.get(obj, i);

24 if (cl.getComponentType().isPrimitive())

25 r += val;

26 else

27 r += toString(val);

28 }

29 return r + "}";

30 }

31

32 String r = cl.getName();

33 // inspect the fields of this class and all superclasses

34 do {

35 r += "[";

36 Field[] fields = cl.getDeclaredFields();

37 AccessibleObject.setAccessible(fields, true);

38 // get the names and values of all fields

39 for (Field f : fields) {

40 if (!Modifier.isStatic(f.getModifiers())) {

41 if (!r.endsWith("[")) r += ",";

42 r += f.getName() + "=";

43 Class t = f.getType();

44 Object val = f.get(obj);

45 if (t.isPrimitive())

46 r += val;

47 else

48 r += toString(val);

49 }

50 }

51 r += "]";

52 cl = cl.getSuperclass();

53 }

54 while (cl != null);

55

56 return r;

57 }

58 }

java.lang.reflect.AccessibleObject 1.2

void setAccessible(boolean flag)

sets or clears the accessibility flag for this accessible object, or throws

an IllegalAccessException if the access is denied.

boolean trySetAccessible() 9

sets the accessibility flag for this accessible object, or returns false if

the access is denied.

boolean canAccess(Object obj) 9

checks if the caller can access obj through this field, method, or

constructor object. Pass null for a static field or method, or for a

constructor.

static void setAccessible(AccessibleObject[] array, boolean flag)

is a convenience method to set the accessibility flag for an array of

objects.

java.lang.Class 1.1

Field getField(String name)

Field[] getFields()

get the public field with the given name, or an array of all fields.

Field getDeclaredField(String name)

Field[] getDeclaredFields()

get the field that is declared in this class with the given name, or an

array of all fields.

java.lang.reflect.Field 1.1

Object get(Object obj)

gets the value of the field described by this Field object in the object

obj.

void set(Object obj, Object newValue)

sets the field described by this Field object in the object obj to a new

value.

5.10.6. Using Reflection to Write Generic Array Code

The Array class in the java.lang.reflect package allows you to create arrays

dynamically. This is used, for example, in the implementation of the

copyOf method in the Arrays class. Recall how this method can be used to

grow an array that has become full.

var a = new Employee[100];

. . .

// array is full

a = Arrays.copyOf(a, 2 * a.length);

How can one write such a generic method? It helps that an Employee[]

array can be converted to an Object[] array. That sounds promising. Here is

a first attempt:

public static Object[] badCopyOf(Object[] a, int newLength) // not useful

{

 var newArray = new Object[newLength];

 System.arraycopy(a, 0, newArray, 0, Math.min(a.length, newLength));

 return newArray;

}

However, there is a problem with actually using the resulting array. The

type of array that this code returns is an array of objects (Object[]) because

we created the array using the line of code

new Object[newLength]

An array of objects cannot be cast to an array of employees (Employee[]).

The virtual machine would generate a ClassCastException at runtime. The

point is that, as mentioned earlier, a Java array remembers the type of its

entries—that is, the element type used in the new expression that created it.

It is legal to cast an Employee[] temporarily to an Object[] array and then

cast it back, but an array that started its life as an Object[] array can never

be cast into an Employee[] array. To write this kind of generic array code,

we need to be able to make a new array of the same type as the original

array. For this, we need the methods of the Array class in the

java.lang.reflect package. The key is the static newInstance method of the

Array class that constructs a new array. You must supply the type for the

entries and the desired length as arguments to this method.

Object newArray = Array.newInstance(componentType, newLength);

To actually carry this out, we need to get the length and the component type

of the new array.

We obtain the length by calling Array.getLength(a). The static getLength

method of the Array class returns the length of an array. To get the

component type of the new array:

1. First, get the class object of a.

2. Confirm that it is indeed an array.

3. Use the getComponentType method of the Class class (which is

defined only for class objects that represent arrays) to find the right

type for the array.

4. Conversely, for any Class object representing a class C, the arrayType

method yields the Class object representing C[].

Why is getLength a method of Array but getComponentType a method of

Class? I don’t know—the distribution of the reflection methods seems a bit

ad hoc at times.

Here’s the code:

public static Object goodCopyOf(Object a, int newLength) {

 Class cl = a.getClass();

 if (!cl.isArray()) return null;

 Class componentType = cl.getComponentType();

 int length = Array.getLength(a);

 Object newArray = Array.newInstance(componentType, newLength);

 System.arraycopy(a, 0, newArray, 0, Math.min(length, newLength));

 return newArray;

}

Note that this copyOf method can be used to grow arrays of any type, not

just arrays of objects.

int[] a = { 1, 2, 3, 4, 5 };

a = (int[]) goodCopyOf(a, 10);

To make this possible, the parameter of goodCopyOf is declared to be of

type Object, not an array of objects (Object[]). The integer array type int[]

can be converted to an Object, but not to an array of objects!

Listing 5.19 shows both methods in action. Note that the cast of the return

value of badCopyOf will throw an exception.

Listing 5.19 v1ch05/CopyOfDemo.java

1 package v1ch05;

2

3 import module java.base;

4

5 /**

6 * This program demonstrates the use of reflection for manipulating arrays.

7 */

8 class CopyOfDemo {

9 void main() {

10 int[] a = { 1, 2, 3 };

11 a = (int[]) goodCopyOf(a, 10);

12 IO.println(Arrays.toString(a));

13

14 String[] b = { "Tom", "Dick", "Harry" };

15 b = (String[]) goodCopyOf(b, 10);

16 IO.println(Arrays.toString(b));

17

18 IO.println("The following call will generate an exception.");

19 b = (String[]) badCopyOf(b, 10);

20 }

21

22 /**

23 * This method attempts to grow an array by allocating a new array and

24 * copying all elements.

25 * @param a the array to grow

26 * @param newLength the new length

27 * @return a larger array that contains all elements of a. However, the

28 * returned array has type Object[], not the same type as a

29 */

30 Object[] badCopyOf(Object[] a, int newLength) { // not useful

31 var newArray = new Object[newLength];

32 System.arraycopy(a, 0, newArray, 0, Math.min(a.length, newLength));

33 return newArray;

34 }

35

36 /**

37 * This method grows an array by allocating a new array of the same type and

38 * copying all elements.

39 * @param a the array to grow. This can be an object array or a primitive

40 * type array

41 * @return a larger array that contains all elements of a

42 */

43 Object goodCopyOf(Object a, int newLength) {

44 Class cl = a.getClass();

45 if (!cl.isArray()) return null;

46 Class componentType = cl.getComponentType();

47 int length = Array.getLength(a);

48 Object newArray = Array.newInstance(componentType, newLength);

49 System.arraycopy(a, 0, newArray, 0, Math.min(length, newLength));

50 return newArray;

51 }

52 }

java.lang.Class 1.1

boolean isArray()

returns true if this object represents an array type.

Class getComponentType()

Class componentType() 12

return the Class describing the component type if this object

represents an array type, or null otherwise.

Class arrayType() 12

returns the Class describing the array type whose component type is

represented by this object.

java.lang.reflect.Array 1.1

static Object get(Object array, int index)

static xxx getXxx(Object array, int index)

These methods return the value of the given array that is stored at the

given index. Here, xxx is one of the primitive types boolean, byte,

char, double, float, int, long, or short.

static void set(Object array, int index, Object newValue)

static setXxx(Object array, int index, xxx newValue)

These methods store a new value into the given array at the given

index. Here, xxx is one of the primitive types boolean, byte, char,

double, float, int, long, or short.

static int getLength(Object array)

returns the length of the given array.

static Object newInstance(Class componentType, int length)

static Object newInstance(Class componentType, int[] lengths)

return a new array of the given component type with the given

dimensions.

5.10.7. Invoking Arbitrary Methods and Constructors

In C and C++, you can execute an arbitrary function through a function

pointer. On the surface, Java does not have method pointers—that is, ways

of giving the location of a method to another method, so that the second

method can invoke it later. In fact, the designers of Java have said that

method pointers are dangerous and error-prone, and that Java interfaces and

lambda expressions (discussed in the next chapter) are a superior solution.

However, the reflection mechanism allows you to call arbitrary methods.

Recall that you can inspect a field of an object with the get method of the

Field class. Similarly, the Method class has an invoke method that lets you

call the method that is wrapped in the current Method object. The signature

for the invoke method is

Object invoke(Object obj, Object... args)

The first parameter is the implicit argument, and the remaining objects

provide the explicit arguments.

For a static method, the first argument is ignored—you can set it to null.

For example, if m1 represents the getName method of the Employee class,

the following code shows how you can call it:

String n = (String) m1.invoke(harry);

If the return type is a primitive type, the invoke method will return the

wrapper type instead. For example, suppose that m2 represents the

getSalary method of the Employee class. Then, the returned object is

actually a Double, and you must cast it accordingly. Use automatic

unboxing to turn it into a double:

double s = (Double) m2.invoke(harry);

How do you obtain a Method object? You can, of course, call

getDeclaredMethods and search through the returned array of Method

objects until you find the method you want. Or, you can call the getMethod

method of the Class class. This is similar to the getField method that takes a

string with the field name and returns a Field object. However, there may be

several methods with the same name, so you need to be careful that you get

the right one. For that reason, you must also supply the parameter types of

the desired method. The signature of getMethod is

Method getMethod(String name, Class... parameterTypes)

For example, here is how you can get method pointers to the getName and

raiseSalary methods of the Employee class:

Method m1 = Employee.class.getMethod("getName");

Method m2 = Employee.class.getMethod("raiseSalary", double.class);

Use a similar approach for invoking arbitrary constructors. Supply the

constructor’s parameter types to the Class.getConstructor method, and

supply the argument values to the Constructor.newInstance method:

Class cl = BigInteger.class;

 // or any other class with a constructor that has a String parameter

Constructor cons = cl.getConstructor(String.class);

Object obj = cons.newInstance("11235813213455");

Note: The Method and Constructor classes extend the Executable

class. As of Java 17, the Executable class is sealed, permitting only

Method and Constructor as subclasses.

Now that you have seen the rules for using Method objects, let’s put them to

work. Listing 5.20 is a program that prints a table of values for a

mathematical function such as Math.sqrt or Math.sin. The printout looks

like this:

public static native double java.lang.Math.sqrt(double)

 1.0000 | 1.0000

 2.0000 | 1.4142

 3.0000 | 1.7321

 4.0000 | 2.0000

 5.0000 | 2.2361

 6.0000 | 2.4495

 7.0000 | 2.6458

 8.0000 | 2.8284

 9.0000 | 3.0000

 10.0000 | 3.1623

The code for printing a table is, of course, independent of the actual

function that is being tabulated.

double dx = (to - from) / (n - 1);

for (double x = from; x <= to; x += dx) {

 double y = (Double) f.invoke(null, x);

 IO.println("%10.4f | %10.4f%n".formatted(x, y));

}

Here, f is an object of type Method. The first argument of invoke is null

because we are calling a static method.

To tabulate the Math.sqrt function, we set f to

Math.class.getMethod("sqrt", double.class)

That is the method of the Math class that has the name sqrt and a single

parameter of type double.

Listing 5.20 shows the complete code of the generic tabulator and a couple

of test runs.

Listing 5.20 v1ch05/MethodTableDemo.java

1 package v1ch05;

2

3 import module java.base;

4

5 /**

6 * This program shows how to invoke methods through reflection.

7 */

8 class MethodTableDemo {

9 void main() throws Exception {

10 // get method pointers to the square and sqrt methods

11 Method square = this.getClass().getDeclaredMethod("square",

12 double.class);

13 Method sqrt = Math.class.getMethod("sqrt", double.class);

14

15 // print tables of x- and y-values

16 printTable(1, 10, 10, square);

17 printTable(1, 10, 10, sqrt);

18 }

19

20 /**

21 * Returns the square of a number

22 * @param x a number

23 * @return x squared

24 */

25 static double square(double x) {

26 return x * x;

27 }

28

29 /**

30 * Prints a table with x- and y-values for a method

31 * @param from the lower bound for the x-values

32 * @param to the upper bound for the x-values

33 * @param n the number of rows in the table

34 * @param f a method with a double parameter and double return value

35 */

36 void printTable(double from, double to, int n, Method f) throws Exception {

37 // print out the method as table header

38 IO.println(f);

39

40 double dx = (to - from) / (n - 1);

41

42 for (double x = from; x <= to; x += dx) {

43 double y = (Double) f.invoke(null, x);

44 IO.println("%10.4f | %10.4f".formatted(x, y));

45 }

46 }

47 }

As this example clearly shows, you can do anything with Method objects

that you can do with function pointers in C or delegates in C#. Just as in C,

this style of programming is usually quite inconvenient, and always error-

prone. What happens if you invoke a method with the wrong arguments?

The invoke method throws an exception.

Also, the parameters and return values of invoke are necessarily of type

Object. That means you must cast back and forth a lot. As a result, the

compiler is deprived of the chance to check your code, so errors surface

only during testing, when they are more tedious to find and fix. Moreover,

code that uses reflection to get at method pointers is significantly slower

than code that simply calls methods directly.

For that reason, I suggest that you use Method objects in your own

programs only when absolutely necessary. Using interfaces and lambda

expressions (the subject of the next chapter) is almost always a better idea.

java.lang.reflect.Method 1.1

public Object invoke(Object obj, Object[] args)

invokes the method described by this object, passing the given

arguments and returning the value that the method returns. For static

methods, pass null as the implicit argument. Pass primitive type

values by using wrappers. Primitive type return values must be

unwrapped.

5.11. Design Hints for Inheritance

I want to end this chapter with some hints that I have found useful when

using inheritance.

1. Place common operations and fields in the superclass.

This is why we put the name field into the Person class instead of

replicating it in the Employee and Student classes.

2. Don’t use protected fields.

Some programmers think it is a good idea to define most instance

fields as protected, “just in case,” so that subclasses can access these

fields if they need to. However, the protected mechanism doesn’t give

much protection, for two reasons. First, the set of subclasses is

unbounded—anyone can form a subclass of your classes and then

write code that directly accesses protected instance fields, thereby

breaking encapsulation. And second, in Java, all classes in the same

package have access to protected fields, whether or not they are

subclasses.

However, protected methods can be useful to indicate methods that are

not ready for general use and should be redefined in subclasses.

3. Use inheritance to model the “is–a” relationship.

Inheritance is a handy code-saver, but sometimes people overuse it.

For example, suppose we need a Contractor class. Contractors have

names and hire dates, but they do not have salaries. Instead, they are

paid by the hour, and they do not stay around long enough to get a

raise. There is the temptation to form a subclass Contractor from

Employee and add an hourlyWage field.

public class Contractor extends Employee {

 private double hourlyWage;

 . . .

}

This is not a good idea, however, because now each contractor object

has both a salary and hourly wage field. It will cause you no end of

grief when you implement methods for printing paychecks or tax

forms. You will end up writing more code than you would have written

by not inheriting in the first place.

The contractor-employee relationship fails the “is–a” test. A contractor

is not a special case of an employee.

4. Don’t use inheritance unless all inherited methods make sense.

Suppose we want to write a Holiday class. Surely every holiday is a

day, and days can be expressed as instances of the GregorianCalendar

class, so we can use inheritance.

class Holiday extends GregorianCalendar { . . . }

Unfortunately, the set of holidays is not closed under the inherited

operations. One of the public methods of GregorianCalendar is add.

And add can turn holidays into nonholidays:

Holiday christmas;

christmas.add(Calendar.DAY_OF_MONTH, 12);

Therefore, inheritance is not appropriate in this example.

Note that this problem does not arise if you extend an immutable class.

Suppose you have an immutable date class, similar to LocalDate but

not final. If you form a Holiday subclass, there is no method that can

turn a holiday into a nonholiday.

5. Don’t change the expected behavior when you override a method.

The substitution principle applies not just to syntax but, more

importantly, to behavior. When you override a method, you should not

unreasonably change its behavior. The compiler can’t help you—it

cannot check whether your redefinitions make sense. For example, you

can “fix” the issue of the add method in the Holiday class by

redefining add, perhaps to do nothing, or to throw an exception, or to

move on to the next holiday.

However, such a fix violates the substitution principle. The sequence

of statements

int d1 = x.get(Calendar.DAY_OF_MONTH);

x.add(Calendar.DAY_OF_MONTH, 1);

int d2 = x.get(Calendar.DAY_OF_MONTH);

IO.println(d2 - d1);

should have the expected behavior, no matter whether x is of type

GregorianCalendar or Holiday.

Of course, therein lies the rub. Reasonable and unreasonable people

can argue at length about what the expected behavior is. For example,

some authors argue that the substitution principle requires

Manager.equals to ignore the bonus field because Employee.equals

ignores it. These discussions are pointless if they occur in a vacuum.

Ultimately, what matters is that you do not circumvent the intent of the

original design when you override methods in subclasses.

6. Use polymorphism, not type information.

Whenever you find code of the form

if (x is of type 1)

 action1(x);

else if (x is of type 2)

 action2(x);

think polymorphism.

Do action1 and action2 represent a common concept? If so, make the

concept a method of a common superclass or interface of both types.

Then, you can simply call

x.action();

and have the dynamic dispatch mechanism inherent in polymorphism

launch the correct action.

Code that uses polymorphic methods or interface implementations is

much easier to maintain and extend than code using multiple type

tests.

7. Don’t overuse reflection.

The reflection mechanism lets you write programs with amazing

generality, by detecting fields and methods at runtime. This capability

can be extremely useful for systems programming, but it is usually not

appropriate in applications. Reflection is fragile—with it, the compiler

cannot help you find programming errors. Any errors are found at

runtime and result in exceptions.

You have now seen how Java supports the fundamentals of object-oriented

programming: classes, inheritance, and polymorphism. In the next chapter, I

will tackle two advanced topics that are very important for using Java

effectively: interfaces and lambda expressions.

Chapter 6 ▪ Interfaces, Lambda
Expressions, and Inner Classes

You have now learned about classes and inheritance, the key concepts of object-oriented

programming in Java. This chapter shows you several advanced techniques that are

commonly used. Despite their less obvious nature, you will need to master them to

complete your Java tool chest.

The first technique, called interfaces, is a way of describing what classes should do,

without specifying how they should do it. A class can implement one or more interfaces.

You can then use objects of these implementing classes whenever conformance to the

interface is required. After discussing interfaces, we move on to lambda expressions, a

concise way to create blocks of code that can be executed at a later point in time. Using

lambda expressions, you can express code that uses callbacks or variable behavior in an

elegant and concise fashion.

We then discuss the mechanism of inner classes. Inner classes are technically somewhat

complex—they are defined inside other classes, and their methods can access the fields of

the surrounding class. Inner classes are useful when you design collections of cooperating

classes.

This chapter concludes with a discussion of proxies, objects that implement arbitrary

interfaces. A proxy is a very specialized construct that is useful for building system-level

tools. You can safely skip that section on first reading.

6.1. Interfaces

In the following sections, you will learn what Java interfaces are and how to use them.

You will also find out how interfaces have been made more powerful in recent versions of

Java.

6.1.1. The Interface Concept

In the Java programming language, an interface is not a class but a set of requirements for

the classes that want to conform to the interface.

Typically, the supplier of some service states: “If your class conforms to a particular

interface, then I’ll perform the service.” Let’s look at a concrete example. The sort method

of the Arrays class promises to sort an array of objects, but under one condition: The

objects must belong to classes that implement the Comparable interface.

Here is what the Comparable interface looks like:

public interface Comparable {

 int compareTo(Object other);

}

In the interface, the compareTo method is abstract—it has no implementation. A class that

implements the Comparable interface needs to have a compareTo method, and the method

must have an Object parameter and return an integer. Otherwise, the class is also abstract

—that is, you cannot construct any objects.

Note: As of Java 5, the Comparable interface has been enhanced to be a generic

type.

public interface Comparable<T> {

 int compareTo(T other); // parameter has type T

}

For example, a class that implements Comparable<Employee> must supply a

method

int compareTo(Employee other)

You can still use the “raw” Comparable type without a type parameter. Then the

compareTo method has a parameter of type Object, and you have to manually cast

that parameter of the compareTo method to the desired type. I will do just that for a

little while so that you don’t have to worry about two new concepts at the same

time.

All methods of an interface are automatically public. For that reason, it is not necessary to

supply the keyword public when declaring a method in an interface.

Of course, there is an additional requirement that the interface syntax cannot express:

When calling x.compareTo(y), the compareTo method must compare the two objects and

return an indication whether x or y is larger. The method is supposed to return a negative

number if x is smaller than y, zero if they are equal, and a positive number otherwise.

This particular interface has a single method. Some interfaces have multiple methods. As

you will see later, interfaces can also define constants. What is more important, however,

is what interfaces cannot supply. Interfaces never have instance fields. Before Java 8, all

methods in an interface were abstract. As you will see in Section 6.1.4 and Section 6.1.5, it

is now possible to have other methods in interfaces. Of course, those methods cannot refer

to instance fields—interfaces don’t have any.

Now, suppose we want to use the sort method of the Arrays class to sort an array of

Employee objects. Then the Employee class must implement the Comparable interface.

To make a class implement an interface, you carry out two steps:

1. You declare that your class intends to implement the given interface.

2. You supply definitions for all methods in the interface.

To declare that a class implements an interface, use the implements keyword:

class Employee implements Comparable

Of course, now the Employee class needs to supply the compareTo method. Let’s suppose

that we want to compare employees by their salary. Here is an implementation of the

compareTo method:

public int compareTo(Object otherObject) {

 Employee other = (Employee) otherObject;

 return Double.compare(salary, other.salary);

}

Here, we use the static Double.compare method that returns a negative if the first

argument is less than the second argument, 0 if they are equal, and a positive value

otherwise.

Caution: In the interface declaration, the compareTo method was not declared

public because all methods in an interface are automatically public. However,

when implementing the interface, you must declare the method as public.

Otherwise, the compiler assumes that the method has package access—the default

for a class. The compiler then complains that you’re trying to supply a more

restrictive access privilege.

We can do a little better by supplying a type parameter for the generic Comparable

interface:

class Employee implements Comparable<Employee> {

 public int compareTo(Employee other) {

 return Double.compare(salary, other.salary);

 }

 . . .

}

Note that the unsightly cast of the Object parameter has gone away.

Tip: The compareTo method of the Comparable interface returns an integer. If the

objects are not equal, it does not matter what negative or positive value you return.

This flexibility can be useful when you are comparing integer fields. For example,

suppose each employee has a unique integer id and you want to sort by the

employee ID number. Then you can simply return id - other.id. That value will be

some negative value if the first ID number is less than the other, 0 if they are the

same ID, and some positive value otherwise. However, there is one caveat: The

range of the integers must be small enough so that the subtraction does not

overflow. If you know that the IDs are not negative or that their absolute value is at

most (Integer.MAX_VALUE - 1) / 2, you are safe. Otherwise, call the static

Integer.compare method.

Of course, the subtraction trick doesn’t work for floating-point numbers. The

difference salary - other.salary can round to 0 if the salaries are close together but

not identical. The call Double.compare(x, y) simply returns -1 if x < y or 1 if x > y.

Note: The documentation of the Comparable interface suggests that the compareTo

method should be compatible with the equals method. That is, x.compareTo(y)

should be zero exactly when x.equals(y). Most classes in the Java API that

implement Comparable follow this advice.

A notable exception is BigDecimal. Consider x = new BigDecimal("1.0") and y =

new BigDecimal("1.00"). Then x.equals(y) is false because the numbers differ in

precision. But x.compareTo(y) is zero. Ideally, it shouldn’t be, but there is no

obvious way of deciding which one should come first.

Another exception is StringBuilder, which implements Comparable but does not

override equals:

StringBuilder x = new StringBuilder("Hello");

StringBuilder y = new StringBuilder("Hello");

x.equals(y) // false

x.compareTo(y) // 0

Caution: There are minor differences between comparison operators with double

operands and the corresponding methods of the Double class.

The first issue is negative zero, or -0.0. When compared with a relational operator,

it is indistinguishable from 0.0:

0.0 < -0.0 // false

-0.0 < 0.0 // false

But Double.compare can tell them apart:

Double.compare(-0.0, 0.0) // -1

The other issue is Double.NaN. Any comparison with a relational operator where

an operand is NaN returns false:

Double.NaN < Double.NaN // false

However, Double.compare behaves differently:

Double.compare(Double.NaN, Double.NaN) // 0

Remarkably, Double.NaN is deemed larger than Double.POSITIVE_INFINITY:

Double.compare(Double.POSITIVE_INFINITY, Double.NaN) // -1

Mathematically speaking, the compare method provides a “total ordering”, but the

< operator does not.

Now you saw what a class must do to avail itself of the sorting service—it must

implement a compareTo method. That’s eminently reasonable. There needs to be some

way for the sort method to compare objects. But why can’t the Employee class simply

provide a compareTo method without implementing the Comparable interface?

The reason for interfaces is that the Java programming language is strongly typed. When

making a method call, the compiler needs to be able to check that the method actually

exists. Somewhere in the sort method will be statements like this:

if (a[i].compareTo(a[j]) > 0) {

 // rearrange a[i] and a[j]

 . . .

}

The compiler must know that a[i] actually has a compareTo method. If a is an array of

Comparable objects, then the existence of the method is assured because every class that

implements the Comparable interface must supply the method.

Note: You would expect that the sort method in the Arrays class is defined to

accept a Comparable[] array so that the compiler can complain if anyone ever calls

sort with an array whose element type doesn’t implement the Comparable

interface. Sadly, that is not the case. Instead, the sort method accepts an Object[]

array and uses a clumsy cast:

// approach used in the standard library--not recommended

if (((Comparable) a[i]).compareTo(a[j]) > 0) {

 // rearrange a[i] and a[j]

 . . .

}

If a[i] does not belong to a class that implements the Comparable interface, the

virtual machine throws an exception.

Listing 6.1 presents the full code for sorting an array of instances of the class Employee

(Listing 6.2).

Listing 6.1 v1ch06/interfaces/InterfacesDemo.java

1 package v1ch06.interfaces;

2

3 import module java.base;

4

5 /**

6 * This program demonstrates the use of the Comparable interface.

7 */

8 class InterfacesDemo {

9 void main() {

10 var staff = new Employee[3];

11

12 staff[0] = new Employee("Harry Hacker", 35000);

13 staff[1] = new Employee("Carl Cracker", 75000);

14 staff[2] = new Employee("Tony Tester", 38000);

15

16 Arrays.sort(staff);

17

18 // print out information about all Employee objects

19 for (Employee e : staff)

20 IO.println("name=" + e.getName() + ",salary=" + e.getSalary());

21 }

22 }

Listing 6.2 v1ch06/interfaces/Employee.java

1 package v1ch06.interfaces;

2

3 /**

4 * The familiar Employee class, implementing the Comparable interface.

5 */

6 public class Employee implements Comparable<Employee> {

7 private String name;

8 private double salary;

9

10 public Employee(String name, double salary) {

11 this.name = name;

12 this.salary = salary;

13 }

14

15 public String getName() {

16 return name;

17 }

18

19 public double getSalary() {

20 return salary;

21 }

22

23 public void raiseSalary(double byPercent) {

24 double raise = salary * byPercent / 100;

25 salary += raise;

26 }

27

28 /**

29 * Compares employees by salary.

30 * @param other another Employee object

31 * @return a negative value if this employee has a lower salary than other,

32 * 0 if the salaries are the same, a positive value otherwise

33 */

34 public int compareTo(Employee other) {

35 return Double.compare(salary, other.salary);

36 }

37 }

java.lang.Comparable<T> 1.0

int compareTo(T other)

compares this object with other and returns a negative integer if this object is less

than other, zero if they are equal, and a positive integer otherwise.

java.util.Arrays 1.2

static void sort(Object[] a)

sorts the elements in the array a. All elements in the array must belong to classes that

implement the Comparable interface, and they must all be comparable to each other.

java.lang.Integer 1.0

static int compare(int x, int y) 7

returns a negative integer if x < y, zero if x and y are equal, and a positive integer

otherwise.

java.lang.Double 1.0

static int compare(double x, double y) 1.4

returns a negative integer if x < y, zero if x and y are equal, and a positive integer

otherwise.

Note: According to the language standard: “The implementor must ensure

sgn(x.compareTo(y)) = -sgn(y.compareTo(x)) for all x and y. (This implies that

x.compareTo(y) must throw an exception if y.compareTo(x) throws an exception.)”

Here, sgn is the sign of a number: sgn(n) is –1 if n is negative, 0 if n equals 0, and

1 if n is positive. In plain English, if you flip the arguments of compareTo, the sign

(but not necessarily the actual value) of the result must also flip.

As with the equals method, problems can arise when inheritance comes into play.

Since Manager extends Employee, it implements Comparable<Employee> and not

Comparable<Manager>. If Manager chooses to override compareTo, it must be

prepared to compare managers to employees. It can’t simply cast an employee to a

manager:

class Manager extends Employee {

 public int compareTo(Employee other) {

 Manager otherManager = (Manager) other; // NO

 . . .

 }

 . . .

}

That violates the “antisymmetry” rule. If x is an Employee and y is a Manager,

then the call x.compareTo(y) doesn’t throw an exception—it simply compares x

and y as employees. But the reverse, y.compareTo(x), throws a

ClassCastException.

This is the same situation as with the equals method discussed in Chapter 5, and

the remedy is the same. There are two distinct scenarios.

If subclasses have different notions of comparison, then you should outlaw

comparison of objects that belong to different classes. Each compareTo method

should start out with the test

if (getClass() != other.getClass()) throw new ClassCastException();

If there is a common algorithm for comparing subclass objects, simply provide a

single compareTo method in the superclass and declare it as final.

For example, suppose you want managers to be better than regular employees,

regardless of salary. What about other subclasses such as Executive and Secretary?

If you need to establish a pecking order, supply a method such as rank in the

Employee class. Have each subclass override rank, and implement a single

compareTo method that takes the rank values into account.

6.1.2. Properties of Interfaces

Interfaces are not classes. In particular, you can never use the new operator to instantiate

an interface:

x = new Comparable(. . .); // ERROR

However, even though you can’t construct interface objects, you can still declare interface

variables.

Comparable x; // OK

An interface variable must refer to an object of a class that implements the interface:

x = new Employee(. . .); // OK provided Employee implements Comparable

Next, just as you use instanceof to check whether an object is of a specific class, you can

use instanceof to check whether an object implements an interface:

if (anObject instanceof Comparable) { . . . }

Just as you can build hierarchies of classes, you can extend interfaces. This allows for

multiple chains of interfaces that go from a greater degree of generality to a greater degree

of specialization. For example, suppose you had an interface called Moveable.

public interface Moveable {

 void move(double x, double y);

}

Then, you could imagine an interface called Powered that extends it:

public interface Powered extends Moveable {

 double milesPerGallon();

}

Although you cannot put instance fields in an interface, you can supply constants in them.

For example:

public interface Powered extends Moveable {

 double milesPerGallon();

 double SPEED_LIMIT = 95; // a public static final constant

}

Just as methods in an interface are automatically public, fields are always public static

final.

Note: It is legal to tag interface methods as public, and fields as public static final.

Some programmers do that, either out of habit or for greater clarity. However, the

Java Language Specification recommends that the redundant keywords not be

supplied, and I follow that recommendation.

While each class can have only one superclass, classes can implement multiple interfaces.

This gives you the maximum amount of flexibility in defining a class’s behavior. For

example, the Java programming language has an important interface built into it, called

Cloneable. (This interface is discussed in detail in Section 6.1.9.) If your class implements

Cloneable, the clone method in the Object class will make an exact copy of your class’s

objects. If you want both cloneability and comparability, simply implement both

interfaces. Use commas to separate the interfaces that you want to implement:

class Employee implements Cloneable, Comparable

Note: Records and enumeration classes cannot extend other classes (since they

implicitly extend the Record and Enum class). However, they can implement

interfaces.

Note: Interfaces can be sealed. As with sealed classes, the direct subtypes (which

can be classes or interfaces) must be declared in a permits clause or be located in

the same source file.

6.1.3. Interfaces and Abstract Classes

If you read the section about abstract classes in Chapter 5, you may wonder why the

designers of the Java programming language bothered with introducing the concept of

interfaces. Why can’t Comparable simply be an abstract class:

abstract class Comparable { // why not?

 public abstract int compareTo(Object other);

}

The Employee class would then simply extend this abstract class and supply the

compareTo method:

class Employee extends Comparable { // why not?

 public int compareTo(Object other) { . . . }

}

There is, unfortunately, a major problem with using an abstract base class to express a

generic property. A class can only extend a single class. Suppose the Employee class

already extends a different class, say, Person. Then it can’t extend a second class.

class Employee extends Person, Comparable // ERROR

But each class can implement as many interfaces as it likes:

class Employee extends Person implements Comparable // OK

Other programming languages, in particular C++, allow a class to have more than one

superclass. This feature is called multiple inheritance. The designers of Java chose not to

support multiple inheritance, because it makes the language either very complex (as in

C++) or less efficient (as in Eiffel).

Instead, interfaces afford most of the benefits of multiple inheritance while avoiding the

complexities and inefficiencies.

Note: C++ has multiple inheritance and all the complications that come with it,

such as virtual base classes, dominance rules, and transverse pointer casts. Few

C++ programmers use multiple inheritance, and some say it should never be used.

Other programmers recommend using multiple inheritance only for the “mix-in”

style of inheritance. In the mix-in style, a primary superclass describes the parent

object, and additional superclasses (the so-called mix-ins) may supply auxiliary

characteristics. That style is similar to a Java class with a single superclass and

additional interfaces.

Tip: You have seen the CharSequence interface in Chapter 3. Both String and

StringBuilder (as well as a few more esoteric string-like classes) implement this

interface. The interface contains methods that are common to all classes that

manage sequences of characters. A common interface encourages programmers to

write methods that use the CharSequence interface. Those methods work with

instances of String, StringBuilder, and the other string-like classes.

Sadly, the CharSequence interface is rather paltry. You can get the length, iterate

over the code points or code units, extract subsequences, and lexicographically

compare two sequences. Java 17 adds an isEmpty method.

If you process strings, and those operations suffice for your tasks, accept

CharSequence instances instead of strings.

6.1.4. Static and Private Methods

As of Java 8, you are allowed to add static methods to interfaces. There was never a

technical reason why this should be outlawed. It simply seemed to be against the spirit of

interfaces as abstract specifications.

Previously, it had been common to place static methods in companion classes. In the

standard library, you’ll find pairs of interfaces and utility classes such as

Collection/Collections.

As an example, you can construct a path to a file or directory from a URI, or from a

sequence of strings, using static methods in the Path interface:

public interface Path {

 public static Path of(URI uri) { . . . }

 public static Path of(String first, String... more) { . . . }

 . . .

}

In previous versions of Java, there was a separate Paths class to hold these methods.

Nowadays, there is no longer a reason to provide a separate companion class for utility

methods.

Methods in an interface can be private. A private method can be static or an instance

method. Since private methods can only be used in the methods of the interface itself, their

use is limited to being helper methods for the other methods of the interface.

6.1.5. Default Methods

You can supply a default implementation for any interface method. You must tag such a

method with the default modifier.

public interface Comparable<T> {

 default int compareTo(T other) { return 0; }

 // by default, all elements are the same

}

Of course, that is not very useful since every realistic implementation of Comparable

would override this method. But there are other situations where default methods can be

useful. For example, in Chapter 9 you will see an Iterator interface for visiting elements in

a data structure. It declares a remove method as follows:

public interface Iterator<E> {

 boolean hasNext();

 E next();

 default void remove() { throw new UnsupportedOperationException("remove"); }

 . . .

}

If you implement an iterator, you need to provide the hasNext and next methods. There are

no defaults for these methods—they depend on the data structure that you are traversing.

But if your iterator is read-only, you don’t have to worry about the remove method.

A default method can call other methods. For example, a Collection interface can define a

convenience method

public interface Collection {

 int size(); // an abstract method

 default boolean isEmpty() { return size() == 0; }

 . . .

}

Then a programmer implementing Collection doesn’t have to worry about implementing

an isEmpty method.

Note: The Collection interface in the Java API does not actually do this. Instead,

there is a class AbstractCollection that implements Collection and defines isEmpty

in terms of size. Implementors of a collection are advised to extend

AbstractCollection. That technique is obsolete. Just implement the methods in the

interface.

An important use for default methods is interface evolution. Consider, for example, the

Collection interface that has been a part of Java for many years. Suppose that a long time

ago, you provided a class

public class Bag implements Collection

Later, in Java 8, a stream method was added to the interface.

Suppose the stream method was not a default method. Then the Bag class would no longer

compile since it doesn’t implement the new method. Adding a nondefault method to an

interface is not source-compatible.

But suppose you don’t recompile the class and simply use an old JAR file containing it.

The class will still load, even with the missing method. Programs can still construct Bag

instances, and nothing bad will happen. (Adding a method to an interface is binary

compatible.) However, if a program calls the stream method on a Bag instance, an

AbstractMethodError occurs.

Making the method a default method solves both problems. The Bag class will again

compile. And if the class is loaded without being recompiled and the stream method is

invoked on a Bag instance, the Collection.stream method is called.

6.1.6. Resolving Default Method Conflicts

What happens if the exact same method is defined as a default method in one interface and

then again as a method of a superclass or another interface? Languages such as Scala and

C++ have complex rules for resolving such ambiguities. Fortunately, the rules in Java are

much simpler. Here they are:

1. Superclasses win. If a superclass provides a concrete method, default methods with

the same name and parameter types are simply ignored.

2. Interfaces clash. If an interface provides a default method, and another interface

contains a method with the same name and parameter types (default or not), then you

must resolve the conflict by overriding that method.

Let’s look at the second rule. Consider two interfaces with a getName method:

interface Person {

 default String getName() { return ""; }

}

interface Named {

 default String getName() { return getClass().getName() + "_" + hashCode(); }

}

What happens if you form a class that implements both of them?

class Student implements Person, Named { . . . }

The class inherits two inconsistent getName methods provided by the Person and Named

interfaces. Instead of choosing one over the other, the Java compiler reports an error and

leaves it up to the programmer to resolve the ambiguity. Simply provide a getName

method in the Student class. In that method, you can choose one of the two conflicting

methods, like this:

class Student implements Person, Named {

 public String getName() { return Person.super.getName(); }

 . . .

}

Now assume that the Named interface does not provide a default implementation for

getName:

interface Named {

 String getName();

}

Can the Student class inherit the default method from the Person interface? This might be

reasonable, but the Java designers decided in favor of uniformity. It doesn’t matter how

two interfaces conflict. If at least one interface provides an implementation, the compiler

reports an error, and the programmer must resolve the ambiguity.

If neither interface provides a default for a shared method, then there is no conflict. An

implementing class has two choices: implement the method, or leave it unimplemented. In

the latter case, the class is itself abstract.

We just discussed name clashes between two interfaces. Now consider a class that extends

a superclass and implements an interface, inheriting the same method from both. For

example, suppose that Person is a class and Student is defined as

class Student extends Person implements Named { . . . }

In that case, only the superclass method matters, and any default method from the interface

is simply ignored. In our example, Student inherits the getName method from Person, and

it doesn’t make any difference whether the Named interface provides a default for

getName or not. This is the “class wins” rule.

The “class wins” rule ensures compatibility with old versions of Java. If you add default

methods to an interface, it has no effect on code that worked before there were default

methods.

Caution: You can never make a default method that redefines one of the methods

in the Object class. For example, you can’t define a default method for toString or

equals, even though that might be attractive for interfaces such as List. As a

consequence of the “class wins” rule, such a method could never win against

Object.toString or Object.equals.

6.1.7. Interfaces and Callbacks

A common pattern in programming is the callback pattern. In this pattern, you specify the

action that should occur whenever a particular event happens. For example, you may want

a particular action to occur when a button is clicked or a menu item is selected. However,

as you have not yet seen how to implement user interfaces, we will consider a similar but

simpler situation.

The javax.swing package contains a Timer class that is useful if you want to be notified

whenever a time interval has elapsed. For example, if a part of your program contains a

clock, you can ask to be notified every second so that you can update the clock face.

When you construct a timer, you set the time interval and tell it what it should do

whenever the time interval has elapsed.

How do you tell the timer what it should do? In many programming languages, you supply

the name of a function that the timer should call periodically. However, the classes in the

Java standard library take an object-oriented approach. You pass an object of some class.

The timer then calls one of the methods on that object. Passing an object is more flexible

than passing a function because the object can carry additional information.

Of course, the timer needs to know what method to call. The timer requires that you

specify an object of a class that implements the ActionListener interface of the

java.awt.event package. Here is that interface:

public interface ActionListener {

 void actionPerformed(ActionEvent event);

}

The timer calls the actionPerformed method when the time interval has expired.

Suppose you want to print a message “At the tone, the time is . . .”, followed by a beep,

once every second. You would define a class that implements the ActionListener interface.

You would then place whatever statements you want to have executed inside the

actionPerformed method.

class TimePrinter implements ActionListener {

 public void actionPerformed(ActionEvent event) {

 IO.println("At the tone, the time is "

 + Instant.ofEpochMilli(event.getWhen()));

 Toolkit.getDefaultToolkit().beep();

 }

}

Note the ActionEvent parameter of the actionPerformed method. This parameter gives

information about the event, such as the time when the event happened. The call

event.getWhen() returns the event time, measured in milliseconds since the “epoch”

(January 1, 1970). By passing it to the static Instant.ofEpochMilli method, we get a more

readable description.

Next, construct an object of this class and pass it to the Timer constructor.

var listener = new TimePrinter();

Timer t = new Timer(1000, listener);

The first argument of the Timer constructor is the time interval that must elapse between

notifications, measured in milliseconds. We want to be notified every second. The second

argument is the listener object.

Finally, start the timer.

t.start();

Every second, a message like

At the tone, the time is 2025-12-16T05:01:49.550Z

is displayed, followed by a beep.

Caution: Be sure to import javax.swing.Timer. There is also a java.util.Timer class

that is slightly different.

Listing 6.3 puts the timer and its action listener to work. After the timer is started, the

program puts up a message dialog and waits for the user to click the OK button to stop.

While the program waits for the user, the current time is displayed every second. (If you

omitted the dialog, the program would terminate as soon as the main method exits.)

Listing 6.3 v1ch06/TimerDemo.java

1 package v1ch06;

2

3 import module java.base;

4 import module java.desktop;

5

6 import javax.swing.Timer;

7

8 /**

9 * This program demonstrates how to use a Timer.

10 */

11 class TimerDemo {

12 void main() {

13 var listener = new TimePrinter();

14

15 // construct a timer that calls the listener once every second

16 var timer = new Timer(1000, listener);

17 timer.start();

18

19 // keep program running until the user selects "OK"

20 JOptionPane.showMessageDialog(null, "Quit program?");

21 System.exit(0);

22 }

23

24 }

25

26 class TimePrinter implements ActionListener {

27 public void actionPerformed(ActionEvent event) {

28 IO.println("At the tone, the time is " + Instant.ofEpochMilli(event.getWhen()));

29 Toolkit.getDefaultToolkit().beep();

30 }

31 }

javax.swing.JOptionPane 1.2

static void showMessageDialog(Component parent, Object message)

displays a dialog box with a message prompt and an OK button. The dialog is

centered over the parent component. If parent is null, the dialog is centered on the

screen.

javax.swing.Timer 1.2

Timer(int interval, ActionListener listener)

constructs a timer that notifies listener whenever interval milliseconds have elapsed.

void start()

starts the timer. Once started, the timer calls actionPerformed on its listeners.

void stop()

stops the timer. Once stopped, the timer no longer calls actionPerformed on its

listeners.

java.awt.Toolkit 1.0

static Toolkit getDefaultToolkit()

gets the default toolkit. A toolkit contains information about the GUI environment.

void beep()

emits a beep sound.

6.1.8. The Comparator Interface

In Section 6.1.1, you have seen how you can sort an array of objects, provided they are

instances of classes that implement the Comparable interface. For example, you can sort

an array of strings since the String class implements Comparable<String>, and the

String.compareTo method compares strings in dictionary order.

Now suppose we want to sort strings by increasing length, not in dictionary order. We

can’t have the String class implement the compareTo method in two ways—and at any

rate, the String class isn’t ours to modify.

To deal with this situation, there is a second version of the Arrays.sort method whose

parameters are an array and a comparator—an instance of a class that implements the

Comparator interface.

public interface Comparator<T> {

 int compare(T first, T second);

}

To compare strings by length, define a class that implements Comparator<String>:

class LengthComparator implements Comparator<String> {

 public int compare(String first, String second) {

 return first.length() - second.length();

 }

}

To actually do the comparison, you need to make an instance:

var comp = new LengthComparator();

if (comp.compare(words[i], words[j]) > 0) . . .

Contrast this call with words[i].compareTo(words[j]). The compare method is called on

the comparator object, not the string itself.

Note: Even though the LengthComparator object has no state, you still need to

make an instance of it. You need the instance to call the compare method—it is not

a static method.

To sort an array, pass a LengthComparator object to the Arrays.sort method:

String[] friends = { "Peter", "Paul", "Mary" };

Arrays.sort(friends, new LengthComparator());

Now the array is either ["Paul", "Mary", "Peter"] or ["Mary", "Paul", "Peter"].

You will see in Section 6.2 how to use a Comparator much more easily with a lambda

expression.

Note: The String class provides a Comparator for case-insensitive comparison.

Here is how you can use it:

Arrays.sort(friends, String.CASE_INSENSITIVE_ORDER);

Caution: Do not try to shuffle an array by sorting it with a comparator that

randomly returns positive or negative integers.

There are three rules that a comparator needs to fulfill:

1. Reflexivity: When x and y are equal, the comparator yields 0.

2. Antisymmetry: When swapping the arguments of the comparator, the sign of

the result is swapped.

3. Transitivity: When x comes before y and y comes before z, then x must come

before z.

The algorithm that Arrays.sort uses (called “Timsort”) doesn’t check these rules for

all elements, but it can sometimes detect a rule violation at a trivial cost. Then it

throws an exception with the message “Comparison method violates its general

contract!”. With an array of 1,000 elements, the chance of this occurring with a

random comparator is over 10%.

The Collections.shuffle method randomly shuffles a list. To shuffle an array, first

turn it into a list and then shuffle that.

6.1.9. Object Cloning

In this section, we discuss the Cloneable interface that indicates that a class has provided a

safe clone method. Since cloning is not all that common, and the details are quite

technical, you may just want to glance at this material until you need it.

To understand what cloning means, recall what happens when you make a copy of a

variable holding an object reference. The original and the copy are references to the same

object (see Figure 6.1). This means a change to either variable also affects the other.

var original = new Employee("John Public", 50000);

Employee copy = original;

copy.raiseSalary(10); // oops--also changed original

.

Figure 6.1: Copying and cloning

If you would like copy to be a new object that begins its life being identical to original but

whose state can diverge over time, use the clone method.

Employee copy = original.clone();

copy.raiseSalary(10); // OK--original unchanged

But it isn’t quite so simple. The clone method is a protected method of Object, which

means that your code cannot simply call it. Only the Employee class can clone Employee

objects. There is a reason for this restriction. Think about the way in which the Object

class can implement clone. It knows nothing about the object at all, so it can make only a

field-by-field copy. If all instance fields in the object are numbers or other basic types,

copying the fields is just fine. But if the object contains references to subobjects, then

copying the field gives you another reference to the same subobject, so the original and the

cloned objects still share some information.

To visualize that, consider the Employee class that was introduced in Chapter 4. Figure 6.2

shows what happens when you use the clone method of the Object class to clone such an

Employee object. As you can see, the default cloning operation is “shallow”—it doesn’t

clone objects that are referenced inside other objects. (The figure shows a shared Date

object. For reasons that will become clear shortly, this example uses a version of the

Employee class in which the hire day is represented as a Date.)

.

Figure 6.2: A shallow copy

Does it matter if the copy is shallow? It depends. If the subobject shared between the

original and the shallow clone is immutable, then the sharing is safe. This certainly

happens if the subobject belongs to an immutable class, such as String. Alternatively, the

subobject may simply remain constant throughout the lifetime of the object, with no

mutators touching it and no methods yielding a reference to it.

Quite frequently, however, subobjects are mutable, and you must redefine the clone

method to make a deep copy that clones the subobjects as well. In our example, the

hireDay field is a Date, which is mutable, so it too must be cloned. (For that reason, this

example uses a field of type Date, not LocalDate, to demonstrate the cloning process. Had

hireDay been an instance of the immutable LocalDate class, no further action would have

been required.)

For every class, you need to decide whether

1. The default clone method is good enough;

2. The default clone method can be patched up by calling clone on the mutable

subobjects; or

3. clone should not be attempted.

The third option is actually the default. To choose either the first or the second option, a

class must

1. Implement the Cloneable interface; and

2. Redefine the clone method with the public access modifier.

Note: The clone method is declared protected in the Object class, so that your code

can’t simply call anObject.clone(). But aren’t protected methods accessible from

any subclass, and isn’t every class a subclass of Object? Fortunately, the rules for

protected access are more subtle (see Chapter 5). A subclass can call a protected

clone method only to clone its own objects. You must redefine clone to be public to

allow objects to be cloned by any method.

In this case, the appearance of the Cloneable interface has nothing to do with the normal

use of interfaces. In particular, it does not specify the clone method—that method is

inherited from the Object class. The interface merely serves as a tag, indicating that the

class designer understands the cloning process. Objects are so paranoid about cloning that

they generate a checked exception if an object requests cloning but does not implement

that interface.

Note: The Cloneable interface is one of a handful of tagging interfaces that Java

provides. (Some programmers call them marker interfaces.) Recall that the usual

purpose of an interface such as Comparable is to ensure that a class implements a

particular method or set of methods. A tagging interface has no methods; its only

purpose is to allow the use of instanceof in a type inquiry:

if (obj instanceof Cloneable) . . .

I recommend that you do not use tagging interfaces in your own programs.

Even if the default (shallow copy) implementation of clone is adequate, you still need to

implement the Cloneable interface, redefine clone to be public, and call super.clone().

Here is an example:

class Employee implements Cloneable {

 // public access, change return type

 public Employee clone() throws CloneNotSupportedException {

 return (Employee) super.clone();

 }

 . . .

}

Note: Note that in the Object class, the clone method has return type Object. In a

subclass, you can specify the correct return type for your clone methods. This is an

example of covariant return types (see Chapter 5).

The clone method that you just saw adds no functionality to the shallow copy provided by

Object.clone. It merely makes the method public. To make a deep copy, you have to work

harder and clone the mutable instance fields.

Here is an example of a clone method that creates a deep copy:

class Employee implements Cloneable {

 . . .

 public Employee clone() throws CloneNotSupportedException {

 // call Object.clone()

 Employee cloned = (Employee) super.clone();

 // clone mutable fields

 cloned.hireDay = (Date) hireDay.clone();

 return cloned;

 }

}

The clone method of the Object class threatens to throw a CloneNotSupportedException—

it does that whenever clone is invoked on an object whose class does not implement the

Cloneable interface. Of course, the Employee and Date classes implement the Cloneable

interface, so the exception won’t be thrown. However, the compiler does not know that.

Therefore, we declared the exception:

public Employee clone() throws CloneNotSupportedException

Note: Would it be better to catch the exception instead? (See Chapter 7 for details

on catching exceptions.)

public Employee clone() {

 try {

 Employee cloned = (Employee) super.clone();

 . . .

 }

 catch (CloneNotSupportedException e) { return null; }

 // this won't happen, since we are Cloneable

}

This is appropriate for final classes. Otherwise, it is better to leave the throws

specifier in place. That gives subclasses the option of throwing a

CloneNotSupportedException if they can’t support cloning.

You have to be careful about cloning of subclasses. For example, once you have defined

the clone method for the Employee class, anyone can use it to clone Manager objects. Can

the Employee clone method do the job? It depends on the fields of the Manager class. In

our case, there is no problem because the bonus field has primitive type. But Manager

might have acquired fields that require a deep copy or are not cloneable. There is no

guarantee that the implementor of the subclass has fixed clone to do the right thing. For

that reason, the clone method is declared as protected in the Object class. But you don’t

have that luxury if you want the users of your classes to invoke clone.

Should you implement clone in your own classes? If your clients need to make deep

copies, then you probably should. Some authors feel that you should avoid clone

altogether and instead implement another method for the same purpose. I agree that clone

is rather awkward, but you’ll run into the same issues if you shift the responsibility to

another method. At any rate, cloning is less common than you may think. Less than five

percent of the classes in the standard library implement clone.

The program in Listing 6.4 clones an instance of the class Employee (Listing 6.5), then

invokes two mutators. The raiseSalary method changes the value of the salary field,

whereas the setHireDay method changes the state of the hireDay field. Neither mutation

affects the original object because clone has been defined to make a deep copy.

Note: All array types have a clone method that is public, not protected. You can

use it to make a new array that contains copies of all elements. For example:

int[] luckyNumbers = { 2, 3, 5, 7, 11, 13 };

int[] cloned = luckyNumbers.clone();

cloned[5] = 12; // doesn't change luckyNumbers[5]

Listing 6.4 v1ch06/clone/CloneDemo.java

1 package v1ch06.clone;

2

3 /**

4 * This program demonstrates cloning.

5 */

6 class CloneDemo {

7 void main() throws Exception {

8 var original = new Employee("John Q. Public", 50000);

9 original.setHireDay(2000, 1, 1);

10 Employee copy = original.clone();

11 copy.raiseSalary(10);

12 copy.setHireDay(2002, 12, 31);

13 IO.println("original=" + original);

14 IO.println("copy=" + copy);

15 }

16 }

Listing 6.5 v1ch06/clone/Employee.java

1 package v1ch06.clone;

2

3 import module java.base;

4

5 /**

6 * The familiar Employee class, modified to be cloneable, and with hireDay of type Date.

7 */

8 public class Employee implements Cloneable {

9 private String name;

10 private double salary;

11 private Date hireDay;

12

13 public Employee(String name, double salary) {

14 this.name = name;

15 this.salary = salary;

16 hireDay = new Date();

17 }

18

19 public Employee clone() throws CloneNotSupportedException {

20 // call Object.clone()

21 Employee cloned = (Employee) super.clone();

22

23 // clone mutable fields

24 cloned.hireDay = (Date) hireDay.clone();

25

26 return cloned;

27 }

28

29 /**

30 * Set the hire day to a given date.

31 * @param year the year of the hire day

32 * @param month the month of the hire day

33 * @param day the day of the hire day

34 */

35 public void setHireDay(int year, int month, int day) {

36 long epochMillis = LocalDate.of(year, month, day).atStartOfDay(ZoneId.systemDefault())

37 .toEpochSecond() * 1000;

38

39 // example of instance field mutation

40 hireDay.setTime(epochMillis);

41 }

42

43 public void raiseSalary(double byPercent) {

44 double raise = salary * byPercent / 100;

45 salary += raise;

46 }

47

48 public String toString() {

49 return "Employee[name=" + name + ",salary=" + salary + ",hireDay=" + hireDay + "]";

50 }

51 }

6.2. Lambda Expressions

In the following sections, you will learn how to use lambda expressions for defining

blocks of code with a concise syntax, and how to write code that consumes lambda

expressions.

6.2.1. Why Lambdas?

A lambda expression is a block of code that you can pass around so it can be executed

later, once or multiple times. Before getting into the syntax (or even the curious name),

let’s step back and observe where we have used such code blocks in Java.

In Section 6.1.7, you saw how to do work in timed intervals. Put the work into the

actionPerformed method of an ActionListener:

class Worker implements ActionListener {

 public void actionPerformed(ActionEvent event) {

 // do some work

 }

}

Then, when you want to repeatedly execute this code, you construct an instance of the

Worker class. You then submit the instance to a Timer object.

The key point is that the actionPerformed method contains code that you want to execute

later.

Or consider sorting with a custom comparator. If you want to sort strings by length instead

of the default dictionary order, you can pass a Comparator object to the sort method:

class LengthComparator implements Comparator<String> {

 public int compare(String first, String second) {

 return first.length() - second.length();

 }

}

. . .

Arrays.sort(strings, new LengthComparator());

The compare method isn’t called right away. Instead, the sort method keeps calling the

compare method, rearranging the elements if they are out of order, until the array is sorted.

You give the sort method a snippet of code needed to compare elements, and that code is

integrated into the rest of the sorting logic, which you’d probably not care to reimplement.

Both examples have something in common. A block of code was passed to someone—a

timer, or a sort method. That code block was called at some later time.

But giving someone a block of code doesn’t seem easy. Java is an object-oriented

language, so we constructed an object belonging to a class that has a method with the

desired code.

In other languages, it is possible to work with blocks of code directly. The Java designers

have resisted adding this feature for a long time. After all, a great strength of Java is its

simplicity and consistency. A language can become an unmaintainable mess if it includes

every feature that yields marginally more concise code. However, in those other languages

it isn’t just easier to spawn a thread or to register a button click handler; large swaths of

their APIs are simpler, more consistent, and more powerful. In Java, one could have

written similar APIs taking objects of classes that implement a particular interface, but

such APIs would be unpleasant to use.

For some time, the question was not whether to augment Java for functional programming,

but how to do it. It took several years of experimentation before a design emerged that is a

good fit for Java. In the next section, you will see how you can work with blocks of code

in Java.

6.2.2. The Syntax of Lambda Expressions

Consider again the sorting example from the preceding section. We pass code that checks

whether one string is shorter than another. We compute

first.length() - second.length()

What are first and second? They are both strings. Java is a strongly typed language, and

we must specify that as well:

(String first, String second) ->

 first.length() - second.length()

You have just seen your first lambda expression. Such an expression is simply a block of

code, together with the specification of any variables that must be passed to the code.

Why the name? Many years ago, before there were any computers, the logician Alonzo

Church wanted to formalize what it means for a mathematical function to be effectively

computable. (Curiously, there are functions that are known to exist, but nobody knows

how to compute their values.) He used the Greek letter lambda (λ) to mark parameters.

Had he known about the Java API, he would have written

λfirst.λsecond.first.length() - second.length()

Note: Why the letter λ? Did Church run out of other letters of the alphabet?

Actually, the venerable Principia Mathematica used the ^ accent to denote free

variables, which inspired Church to use an uppercase lambda Λ for parameters. But

in the end, he switched to the lowercase version. Ever since, an expression with

parameter variables has been called a lambda expression.

What you have just seen is a simple form of lambda expressions in Java: parameters, the -

> arrow, and an expression. If the code carries out a computation that doesn’t fit in a single

expression, write it exactly like you would have written a method: enclosed in {} and with

explicit return statements. For example,

(String first, String second) -> {

 if (first.length() < second.length()) return -1;

 else if (first.length() > second.length()) return 1;

 else return 0;

}

If a lambda expression has no parameters, you still supply empty parentheses, just as with

a parameterless method:

() -> { return 1 + (int)(Math.random() * 6); }

If the parameter types of a lambda expression can be inferred, you can omit them. For

example,

Comparator<String> comp =

 (first, second) // same as (String first, String second)

 -> first.length() - second.length();

Here, the compiler can deduce that first and second must be strings because the lambda

expression is assigned to a string comparator. (We will have a closer look at this

assignment in the next section.)

If a method has a single parameter with inferred type, you can even omit the parentheses:

ActionListener listener = event ->

 IO.println("The time is "

 + Instant.ofEpochMilli(event.getWhen()));

 // instead of (event) -> . . . or (ActionEvent event) -> . . .

If a parameter of a lambda expression is never used, you can denote it with an underscore:

ActionListener listener = _ ->

 IO.println("The action occurred at " + Instant.now());

Comparator<String> comp = (_, _) -> 0;

Note: You can also use var to denote an inferred parameter type. This isn’t

common. The syntax was invented for attaching annotations (see Chapter 11):

(@NonNull var first, @NonNull var second) -> first.length() - second.length()

You never specify the result type of a lambda expression. It is always inferred from

context. For example, the expression

(String first, String second) -> first.length() - second.length()

can be used in any context where a result of type int is expected.

Note: It is illegal for a lambda expression to return a value in some branches but

not in others. For example, (int x) -> { if (x >= 0) return 1; } is invalid.

The program in Listing 6.6 shows how to use lambda expressions for a comparator and an

action listener.

Listing 6.6 v1ch06/LambdaDemo.java

1 package v1ch06;

2

3 import module java.base;

4 import module java.desktop;

5

6 import javax.swing.Timer;

7

8 /**

9 * This program demonstrates the use of lambda expressions.

10 */

11 class LambdaDemo {

12 void main() {

13 var planets = new String[]{"Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn",

14 "Uranus", "Neptune"};

15 IO.println(Arrays.toString(planets));

16 IO.println("Sorted in dictionary order:");

17 Arrays.sort(planets);

18 IO.println(Arrays.toString(planets));

19 IO.println("Sorted by length:");

20 Arrays.sort(planets, (first, second) -> first.length() - second.length());

21 IO.println(Arrays.toString(planets));

22

23 var timer = new Timer(1000, _ -> IO.println("The time is " + Instant.now()));

24 timer.start();

25

26 // keep program running until user selects "OK"

27 JOptionPane.showMessageDialog(null, "Quit program?");

28 System.exit(0);

29 }

30 }

6.2.3. Functional Interfaces

As we discussed, there are many existing interfaces in Java that encapsulate blocks of

code, such as ActionListener or Comparator. Lambdas are compatible with these

interfaces.

You can supply a lambda expression whenever an object of an interface with a single

abstract method is expected. Such an interface is called a functional interface.

Note: You may wonder why a functional interface must have a single abstract

method. Aren’t all methods in an interface abstract? Actually, it has always been

possible for an interface to redeclare methods from the Object class such as

toString or clone, and these declarations do not make the methods abstract. (Some

interfaces in the Java API redeclare Object methods in order to attach javadoc

comments. Check out the Comparator API for an example.) More importantly, as

you saw in Section 6.1.5, interfaces can declare nonabstract methods.

To demonstrate the conversion to a functional interface, consider the Arrays.sort method.

Its second parameter requires an instance of Comparator, an interface with a single

method. Simply supply a lambda:

Arrays.sort(words,

 (first, second) -> first.length() - second.length());

Behind the scenes, the Arrays.sort method receives an object of some class that

implements Comparator<String>. Invoking the compare method on that object executes

the body of the lambda expression. The management of these objects and classes is

completely implementation-dependent, and it can be much more efficient than using

traditional inner classes. It is best to think of a lambda expression as a function, not an

object, and to accept that it can be passed to a functional interface.

This conversion to interfaces is what makes lambda expressions so compelling. The syntax

is short and simple. Here is another example:

var timer = new Timer(1000, event -> {

 IO.println("At the tone, the time is "

 + Instant.ofEpochMilli(event.getWhen()));

 Toolkit.getDefaultToolkit().beep();

});

That’s a lot easier to read than the alternative with a class that implements the

ActionListener interface.

In fact, conversion to a functional interface is the only thing that you can do with a lambda

expression in Java. In other programming languages that support function literals, you can

declare function types such as (String, String) -> int, declare variables of those types, and

use the variables to save function expressions. However, the Java designers decided to

stick with the familiar concept of interfaces instead of adding function types to the

language.

Note: You can’t even assign a lambda expression to a variable of type Object—

Object is not a functional interface.

6.2.4. Function Types

The Java API defines a number of very generic functional interfaces in the

java.util.function package. One of the interfaces, BiFunction<T, U, R>, describes

functions with parameter types T and U and return type R. You can save your string

comparison lambda in a variable of that type:

BiFunction<String, String, Integer> comp =

 (first, second) -> first.length() - second.length();

Note that this interface does not help you with sorting. There is no Arrays.sort method that

wants a BiFunction. If you have used a functional programming language before, you may

find this curious. But for Java programmers, it’s pretty natural. An interface such as

Comparator has a specific purpose, not just a method with given parameter and return

types. When you want to do something with lambda expressions, you still want to keep the

purpose of the expression in mind, and have a specific functional interface for it.

A particularly useful interface in the java.util.function package is Predicate:

public interface Predicate<T> {

 boolean test(T t);

 // additional default and static methods

}

The ArrayList class has a removeIf method whose parameter is a Predicate. It is

specifically designed to pass a lambda expression. For example, the following statement

removes all null values from an array list:

list.removeIf(e -> e == null);

Another useful functional interface is Supplier<T>:

public interface Supplier<T> {

 T get();

}

A supplier has no parameters and yields a value of type T when the get method is called:

Supplier<Integer> die = () -> (int)(Math.random() * 6) + 1;

int outcome = die.get();

Suppliers are used for lazy evaluation. For example, consider the call

LocalDate hireDay = Objects.requireNonNullElse(day,

 LocalDate.of(1970, 1, 1));

This is not optimal. We expect that day is rarely null, so we only want to construct the

default LocalDate when necessary. By using the supplier, we can defer the computation:

LocalDate hireDay = Objects.requireNonNullElseGet(day,

 () -> LocalDate.of(1970, 1, 1));

The requireNonNullElseGet method only calls the supplier when the value is needed.

Functional interfaces that involve primitive types are a little cumbersone. Consider a

function consuming an int and yielding an object of type T. You could use a

Function<Integer, T>, but then the argument must be boxed in each call. Instead, there is a

functional interface IntFunction<T>. Conversely, if a function has a return value of type

int, the ToIntFunction<T> interface is more efficient than Function<T, Integer>. Finally, if

both argument and return value are int, there is an IntUnaryOperator interface.

As the user of an API, you don’t usually care about this subtlety. Consider the

Arrays.setAll method. It sets all values of an array to the result of a function whose

argument is the array index. Here, we set all elements to the square of the index:

var values = new int[100];

Arrays.setAll(values, i -> i * i); // [0, 1, 4, 9, 16, . . ., 9801]

There are overloaded versions of setAll for arrays of type int[], long[], double[], and a

generic array T[]. Here, the int[] overload has as second parameter an IntUnaryOperator.

But as the user of the method, you don’t care. You just supply the lambda expression,

which you can do without worrying about the difference between primitive types and their

wrapper classes.

Caution: It is nice that a lambda expression can match primitive and wrapper

types in a functional interface. But it is an error if both matches could occur.

Consider a utility class that provides these methods:

public static int[] fill(int n, IntUnaryOperator op)

public static Object[] fill(int n, IntFunction<Object> op)

A call fill(n, i -> i * i) will not compile since it is ambiguous.

You can catch such problems in your API by compiling with the -Xlint:overloads

option.

6.2.5. Method References

Sometimes, a lambda expression involves a single method. For example, suppose you

simply want to print the event object whenever a timer event occurs. Of course, you could

call

var timer = new Timer(1000, event -> IO.println(event));

It would be nicer if you could just pass the println method to the Timer constructor. Here is

how you do that:

var timer = new Timer(1000, IO::println);

The expression IO::println is a method reference. It directs the compiler to produce an

instance of a functional interface, overriding the single abstract method of the interface to

call the given method. In this example, an ActionListener is produced whose

actionPerformed(ActionEvent e) method calls IO.println(e).

Note: Like a lambda expression, a method reference is not an object. It gives rise

to an object when assigned to a variable whose type is a functional interface.

Note: There are two overloaded println methods in the IO class, one with a

parameter of type Object, and another with no parameters. The compiler needs to

figure out which one to use, depending on context. In our example, the method

reference IO::println must be turned into an ActionListener instance with a method

void actionPerformed(ActionEvent e)

The println(Object obj) method is selected from the overloaded println methods.

When the actionPerformed method is called, the event object is printed.

Now suppose we assign the same method reference to a different functional

interface:

Runnable task = IO::println;

The Runnable functional interface has a single abstract method with no parameters

void run()

In this case, the println() method with no parameters is chosen. Calling task.run()

prints a blank line.

In this example, IO::println is a reference to a static method. The :: notation has three

variants:

1. Class::staticMethod

2. Class::instanceMethod

3. object::instanceMethod

Table 6.1 walks you through several examples.

Table 6.1: Method Reference Examples

Method

Reference

Equivalent

Lambda

Expression

Notes

separator::equals
x ->

separator.equals(x)

This is a method expression with an

object and an instance method. The

lambda parameter is passed as the

explicit parameter of the method.

Method

Reference

Equivalent

Lambda

Expression

Notes

String::strip x -> x.strip()

This is a method expression with a

class and an instance method. The

lambda parameter becomes the

implicit parameter.

String::concat
(x, y) ->

x.concat(y)

Again, we have an instance method,

but this time, with an explicit

parameter. As before, the first

lambda parameter becomes the

implicit parameter, and the

remaining ones are passed to the

method.

Method

Reference

Equivalent

Lambda

Expression

Notes

Integer::valueOf
x ->

Integer.valueOf(x)

This is a method expression with a

static method. The lambda

parameter is passed to the static

method.

Integer::sum
(x, y) ->

Integer.sum(x, y)

This is another static method, but

this time with two parameters. Both

lambda parameters are passed to the

static method. The Integer.sum

method was specifically created to

be used as a method reference. As a

lambda, you could just write (x, y) -

> x + y.

Method

Reference

Equivalent

Lambda

Expression

Notes

String::new x -> new String(x)

This is a constructor reference—see

Section 6.2.6. The lambda

parameters are passed to the

constructor.

String[]::new n -> new String[n]

This is an array constructor

reference—see Section 6.2.6. The

lambda parameter is the array

length.

Note that a lambda expression can only be rewritten as a method reference if the body of

the lambda expression calls a single method and doesn’t do anything else. Consider the

lambda expression

s -> s.length() == 0

There is a single method call. But there is also a comparison, so you can’t use a method

reference here.

Note: When there are multiple overloaded methods with the same name, the

compiler will try to find from the context which one you mean. For example, there

are two versions of the Math.max method, one for integers and one for double

values. Which one gets picked depends on the method parameters of the functional

interface to which Math::max is converted. Just like lambda expressions, method

references don’t live in isolation. They are always turned into instances of

functional interfaces.

Note: Sometimes, the API contains methods that are specifically intended to be

used as method references. For example, the Objects class has a method isNull to

test whether an object reference is null. At first glance, this doesn’t seem useful

because the test obj == null is easier to read than Objects.isNull(obj). But you can

pass the method reference to any method with a Predicate parameter. For example,

to remove all null references from a list, you can call

list.removeIf(Objects::isNull);

 // A bit easier to read than list.removeIf(e -> e == null);

Note: There is a tiny difference between a method reference with an object and its

equivalent lambda expression. Consider a method reference such as

separator::equals. If separator is null, forming separator::equals immediately

throws a NullPointerException. The lambda expression x -> separator.equals(x)

only throws a NullPointerException if it is invoked.

You can capture the this parameter in a method reference. For example, this::equals is the

same as x -> this.equals(x). It is also valid to use super. The method expression

super::instanceMethod

uses this as the target and invokes the superclass version of the given method. Here is an

artificial example that shows the mechanics:

class Greeter {

 public void greet(ActionEvent event) {

 IO.println("Hello, the time is "

 + Instant.ofEpochMilli(event.getWhen()));

 }

}

class RepeatedGreeter extends Greeter {

 public void greet(ActionEvent event) {

 var timer = new Timer(1000, super::greet);

 timer.start();

 }

}

When the RepeatedGreeter.greet method starts, a Timer is constructed that executes the

super::greet method on every timer tick.

6.2.6. Constructor References

Constructor references are just like method references, except that the name of the method

is new. For example, Person::new is a reference to a Person constructor. Which

constructor? It depends on the context. Suppose you have a list of strings. Then you can

turn it into an array of Person objects, by calling the constructor on each of the strings,

with the following invocation:

ArrayList<String> names = . . .;

Stream<Person> stream = names.stream().map(Person::new);

List<Person> people = stream.toList();

We will discuss the details of the stream, map, and toList methods in Chapter 1 of Volume

II. For now, what’s important is that the map method calls the Person(String) constructor

for each list element. If there are multiple Person constructors, the compiler picks the one

with a String parameter because it infers from the context that the constructor is called

with a string.

You can form constructor references with array types. For example, int[]::new is a

constructor reference with one parameter: the length of the array. It is equivalent to the

lambda expression n -> new int[n].

Array constructor references are useful to overcome a limitation of Java. As you will see

in Chapter 8, it is not possible to construct an array of a generic type T. (The expression

new T[n] is an error since it would be “erased” to new Object[n]). That is a problem for

library authors. For example, suppose we want to have an array of Person objects. The

Stream interface has a toArray method that returns an Object array:

Object[] people = stream.toArray();

But that is unsatisfactory. The user wants an array of references to Person, not references

to Object. The stream library solves that problem with constructor references. Pass

Person[]::new to the toArray method:

Person[] people = stream.toArray(Person[]::new);

The toArray method invokes this constructor to obtain an array of the correct type. Then it

fills and returns the array.

Caution: Sometimes, it is surprising which overloaded variant is chosen when

passing a method or constructor reference. Consider this code snippet:

var dates = new Date[100];

Arrays.setAll(dates, Date::new);

At first glance, it looks as if all elements would be set to the current date, by

calling the no-argument constructor new Date() each time. But actually, the second

parameter of setAll is an IntFunction, which receives the index of the element.

Therefore, an entirely different constructor is invoked, new Date(i), where i ranges

from 0 to 99. That constructor sets the date to a given number of milliseconds from

the “epoch,” January 1, 1970.

6.2.7. Variable Scope

Often, you want to be able to access a variable from the enclosing method in a lambda

expression. Consider this example:

public static void repeatMessage(String text, int delay) {

 ActionListener listener = event -> {

 IO.println(text);

 };

 new Timer(delay, listener).start();

}

Consider a call

repeatMessage("Hello", 1000); // prints Hello every 1,000 milliseconds

Now look at the variable text inside the lambda expression. Note that this variable is not

defined in the lambda expression. Instead, it is a parameter variable of the repeatMessage

method.

If you think about it, something nonobvious is going on here. The code of the lambda

expression may run long after the call to repeatMessage has returned and the parameter

variables are gone. How does the text variable stay around?

To understand what is happening, we need to refine our understanding of a lambda

expression. A lambda expression has three ingredients:

1. A block of code

2. Parameters

3. Values for the free variables—that is, the variables that are not parameters and not

defined inside the code

In our example, the lambda expression has one free variable, text. The data structure

representing the lambda expression must store the values for the free variables—in our

case, the string "Hello". We say that such values have been captured by the lambda

expression. (It’s an implementation detail how that is done. For example, one can translate

a lambda expression into an object with a single method, so that the values of the free

variables are copied into instance fields of that object.)

Note: The technical term for a block of code together with the values of the free

variables is a closure. If someone gloats that their language has closures, rest

assured that Java has them as well. In Java, lambda expressions are closures.

As you have seen, a lambda expression can capture the value of a variable in the enclosing

scope. In Java, to ensure that the captured value is well-defined, there is an important

restriction. In a lambda expression, you can only reference variables whose value doesn’t

change. For example, the following is illegal:

public static void countDown(int start, int delay) {

 ActionListener listener = _ -> {

 start--; // ERROR: Can't mutate captured variable

 IO.println(start);

 if (start > 0) countDown(start, delay);

 };

 new Timer(delay, listener).start();

}

There is a reason for this restriction. Mutating variables in a lambda expression is not safe

when multiple actions are executed concurrently. This won’t happen for the kinds of

actions that we have seen so far, but in general, it is a serious problem. See Chapter 10 for

more information on this important issue.

It is also illegal to refer, in a lambda expression, to a variable that is mutated outside. For

example, the following is illegal:

public static void multiMessage(String text, int count) {

 for (int i = 1; i <= count; i++) {

 ActionListener listener = _ -> IO.println(i + ": " + text);

 // ERROR: Cannot refer to changing i

 new Timer(1000, listener).start();

 }

}

The rule is that any captured variable in a lambda expression must be effectively final. An

effectively final variable is a variable that is never assigned a new value after it has been

initialized. In our case, text always refers to the same String object, and it is OK to capture

it. However, the value of i is mutated, and therefore i cannot be captured.

The body of a lambda expression has the same scope as a nested block. The same rules for

name conflicts and shadowing apply. It is illegal to declare a parameter or a local variable

in the lambda that has the same name as a local variable.

Path first = Path.of("/usr/bin");

Comparator<String> comp =

 (first, second) -> first.length() - second.length();

 // ERROR: Variable first already defined

Inside a method, you can’t have two local variables with the same name, and therefore,

you can’t introduce such variables in a lambda expression either.

6.2.8. Lambda Expressions and this

A lambda expression does not have its own this reference.

When you use the this keyword in a lambda expression, it denotes the this parameter of the

enclosing method. For example, consider

public class Greeter {

 public void greet(String text) {

 ActionListener listener = event -> {

 IO.println(this);

 IO.println(text);

 }

 }

 . . .

}

In the call IO.println(this), the Greeter object, not the ActionListener instance, is printed.

There is nothing special about the use of this in a lambda expression. The scope of the

lambda expression is nested inside the greet method, and this has the same meaning

anywhere in that method.

So far, we have discussed what happens when a lambda expression accesses a variable

from the enclosing method. It is also ok to access fields from the enclosing class.

class Greeter {

 private String text;

 public void delayMessage(int delay) {

 ActionListener listener = event -> IO.println(text);

 // Ok to access field

 new Timer(delay, listener).start();

 }

 public void greet() {

 text = "Hello";

 delayMessage(1000);

 text = "Goodbye";

 delayMessage(2000);

 }

}

Note that text is not final! It seems like there are different rules for local variables and

fields. But actually, there is only one rule. In the lambda expression, IO.println(text) means

IO.println(this.text). The lambda expression accesses the final this value.

6.2.9. Processing Lambda Expressions

Up to now, you have seen how to produce lambda expressions and pass them to a method

that expects a functional interface. Now let us see how to write methods that can consume

lambda expressions.

The point of using lambdas is deferred execution. After all, if you wanted to execute some

code right now, you’d do that, without wrapping it inside a lambda. There are many

reasons for executing code later, such as:

Running the code in a separate thread

Running the code multiple times

Running the code at the right point in an algorithm (for example, the comparison

operation in sorting)

Running the code when something happens (a button was clicked, data has arrived,

and so on)

Running the code only when necessary

Let’s look at a simple example. Suppose you want to repeat an action n times. The action

and the count are passed to a repeat method:

repeat(10, () -> IO.println("Hello, World!"));

To accept the lambda, we need to pick (or, in rare cases, provide) a functional interface.

Table 6.2 lists the most important functional interfaces that are provided in the Java API.

In this case, we can use the Runnable interface:

public static void repeat(int n, Runnable action) {

 for (int i = 0; i < n; i++) action.run();

}

Note that the body of the lambda expression is executed when action.run() is called.

Now let’s make this example a bit more sophisticated. We want to tell the action in which

iteration it occurs. For that, we need to pick a functional interface that has a method with

an int parameter and a void return. The standard interface for processing int values is

public interface IntConsumer {

 void accept(int value);

}

Here is the improved version of the repeat method:

public static void repeat(int n, IntConsumer action) {

 for (int i = 0; i < n; i++) action.accept(i);

}

And here is how you call it:

repeat(10, i -> IO.println("Countdown: " + (9 - i)));

Table 6.2: Common Functional Interfaces

Functional

Interface

Parameter

Types

Return

Type

Abstract

Method

Name

Description
Other

Methods

Functional

Interface

Parameter

Types

Return

Type

Abstract

Method

Name

Description
Other

Methods

Runnable none void run

Runs an

action

without

parameters

or return

value

Supplier<T> none T get

Supplies a

value of

type T

Consumer<T> T void accept

Consumes a

value of

type T

andThen

Functional

Interface

Parameter

Types

Return

Type

Abstract

Method

Name

Description
Other

Methods

BiConsumer<T, U> T, U void accept

Consumes

values of

types T and

U

andThen

Function<T, R> T R apply

A function

with

parameter

of type T

compose,

andThen,

identity

BiFunction<T, U,

R>
T, U R apply

A function

with

parameters

of types T

and U

andThen

Functional

Interface

Parameter

Types

Return

Type

Abstract

Method

Name

Description
Other

Methods

UnaryOperator<T> T T apply

A unary

operator on

the type T

compose,

andThen,

identity

BinaryOperator<T> T, T T apply

A binary

operator on

the type T

andThen,

maxBy,

minBy

Predicate<T> T boolean test

A boolean-

valued

function

and, or,

negate,

isEqual,

not

Functional

Interface

Parameter

Types

Return

Type

Abstract

Method

Name

Description
Other

Methods

BiPredicate<T, U> T, U boolean test

A boolean-

valued

function

with two

parameters

and, or,

negate

Table 6.3 lists the 34 available specializations for primitive types int, long, and double. As

you will see in Chapter 8, it is more efficient to use these specializations than the generic

interfaces. For that reason, I used an IntConsumer instead of a Consumer<Integer> in the

example of the preceding section.

Table 6.3: Functional Interfaces for Primitive Types

p, q is int, long, double; P, Q is Int, Long, Double

Functional

Interface

Parameter

Types

Return

Type

Abstract Method

Name

Functional

Interface

Parameter

Types

Return

Type

Abstract Method

Name

BooleanSupplier none boolean getAsBoolean

PSupplier none p getAsP

PConsumer p void accept

ObjPConsumer<T> T, p void accept

PFunction<T> p T apply

PToQFunction p q applyAsQ

ToPFunction<T> T p applyAsP

ToPBiFunction<T,

U>
T, U p applyAsP

PUnaryOperator p p applyAsP

PBinaryOperator p, p p applyAsP

Functional

Interface

Parameter

Types

Return

Type

Abstract Method

Name

PPredicate p boolean test

Tip: Use the standard interfaces for function types whenever you can. For

example, suppose you write a method to process files that match a certain criterion.

There is a legacy interface java.io.FileFilter. But if you use the standard

Predicate<File> interface, you can take advantage of methods for creating,

adapting, and combining predicates. The only reason not to do so would be if you

already have many useful methods producing FileFilter instances.

Note: Most of the standard functional interfaces have nonabstract methods for

producing or combining functions. For example, Predicate.isEqual(a) is the same

as a::equals, but it also works if a is null. There are default methods and, or, negate

for combining predicates. For example,

Predicate.isEqual(a).or(Predicate.isEqual(b)) is the same as x -> a.equals(x) ||

b.equals(x).

Note: If you design your own interface with a single abstract method, you can tag

it with the @FunctionalInterface annotation. This has two advantages. The

compiler gives an error message if you accidentally add another abstract method.

And the javadoc page includes a statement that your interface is a functional

interface.

It is not required to use the annotation. Any interface with a single abstract method

is, by definition, a functional interface. But using the @FunctionalInterface

annotation is a good idea.

Note: Some programmers love chains of method calls, such as

String input = " 618970019642690137449562111 ";

boolean isPrime = input.strip().transform(BigInteger::new).isProbablePrime(20);

The transform method of the String class (added in Java 12) applies a Function to

the string and yields the result. You could have equally well written

boolean prime = new BigInteger(input.strip()).isProbablePrime(20);

But then your eyes jump inside-out and left-to-right to find out what happens first

and what happens next: Calling strip, then constructing the BigInteger, and finally

testing if it is a probable prime.

I am not sure that the eyes-jumping-inside-out-and-left-to-right is a huge problem.

But if you prefer the orderly left-to-right sequence of chained method calls, then

transform is your friend.

Sadly, it only works for strings. Why isn’t there a

transform(java.util.function.Function) method in the Object class?

The Java API designers weren’t fast enough. They had one chance to do this right

—in Java 8, when the java.util.function.Function interface was added to the API.

Up to that point, nobody could have added a transform(java.util.function.Function)

method to their own classes. But in Java 12, it was too late. Someone somewhere

could have defined transform(java.util.function.Function) in their class, with a

different meaning. Admittedly, it is unlikely that this ever happened, but there is no

way to know.

That is how Java works. It takes its commitments seriously, and won’t renege on

them for convenience.

6.2.10. Creating Comparators

The Comparator interface has a number of convenient static methods for creating

comparators. These methods are intended to be used with lambda expressions or method

references.

The static comparing method takes a “key extractor” function that maps a type T to a

comparable type (such as String). The function is applied to the objects to be compared,

and the comparison is then made on the returned keys. For example, suppose you have an

array of Person objects. Here is how you can sort them by name:

Arrays.sort(people, Comparator.comparing(Person::getName));

This is certainly much easier than implementing a Comparator by hand. Moreover, the

code is clearer since it is obvious that we want to compare people by name.

You can chain comparators with the thenComparing method for breaking ties. For

example,

Arrays.sort(people,

 Comparator.comparing(Person::getLastName)

 .thenComparing(Person::getFirstName));

If two people have the same last name, then the second comparator is used.

There are a few variations of these methods. You can specify a comparator to be used for

the keys that the comparing and thenComparing methods extract. For example, here we

sort people by the length of their names:

Arrays.sort(people, Comparator.comparing(Person::getName,

 (s, t) -> Integer.compare(s.length(), t.length())));

Moreover, both the comparing and thenComparing methods have variants that avoid

boxing of int, long, or double values:

Arrays.sort(people, Comparator.comparing(Person::getName,

 Comparator.comparingInt(String::length)))

A shorter but perhaps less elegant way of producing the preceding operation would be:

Arrays.sort(people, Comparator.comparingInt(p -> p.getName().length()));

If your key function can return null, you will like the nullsFirst and nullsLast adapters.

These static methods take an existing comparator and modify it so that it doesn’t throw an

exception when encountering null values but ranks them as smaller or larger than regular

values. For example, suppose getMiddleName returns a null when a person has no middle

name. Then you can use Comparator.comparing(Person::getMiddleName,

Comparator.nullsFirst(. . .)).

The nullsFirst method needs a comparator—in this case, one that compares two strings.

The naturalOrder method makes a comparator for any class implementing Comparable. A

Comparator.<String>naturalOrder() is what we need. (See Chapter 8 for an explanation of

this syntax. Fortunately, the generic type can usually be inferred.) Here is the complete call

for sorting by potentially null middle names. I use a static import of

java.util.Comparator.*, to make the expression more legible.

Arrays.sort(people, comparing(Person::getMiddleName, nullsFirst(naturalOrder())));

The static reverseOrder method gives the reverse of the natural order. To reverse any

comparator, use the reversed instance method. For example, naturalOrder().reversed() is

the same as reverseOrder().

6.3. Inner Classes

An inner class is a class that is defined inside another class. Why would you want to do

that? There are two reasons:

Inner classes can be hidden from other classes in the same package.

Inner class methods can access the data from the scope in which they are defined—

including the data that would otherwise be private.

Inner classes used to be very important for concisely implementing callbacks, but

nowadays lambda expressions do a much better job. Still, inner classes can be very useful

for structuring your code. The following sections walk you through all the details.

Note: C++ has nested classes. A nested class is contained inside the scope of the

enclosing class. Here is a typical example: A linked list class defines a nested class

to hold the nodes.

template<typename T>

class LinkedList {

public:

 class Node { // a nested class

 public:

 . . .

 private:

 T data;

 Node* next;

 };

 . . .

private:

 Node* head;

 Node* tail;

};

Nested classes are similar to inner classes in Java. However, the Java inner classes

have an additional feature that makes them richer and more useful than nested

classes in C++. An object that comes from an inner class has an implicit reference

to the outer class object that instantiated it. Through this pointer, it gains access to

the total state of the outer object. For example, in Java, the Iterator class would not

need an explicit pointer to the LinkedList into which it points.

In Java, nested classes that are declared as static do not have this added pointer.

They are the Java analog to nested classes in C++.

6.3.1. Use of an Inner Class to Access Object State

The syntax for inner classes is rather complex. For that reason, I present a simple but

somewhat artificial example to demonstrate the use of inner classes. Let’s refactor the

TimerDemo example and extract a TalkingClock class. The constructor for a talking clock

has two parameters: the interval between announcements and a flag to turn beeps on or off.

public class TalkingClock {

 private int interval;

 private boolean beep;

 public TalkingClock(int interval, boolean beep) { . . . }

 public void start() { . . . }

 public class TimePrinter implements ActionListener {

 // an inner class

 . . .

 }

}

Note that the TimePrinter class is now located inside the TalkingClock class. This does not

mean that every TalkingClock has a TimePrinter instance field. As you will see, the

TimePrinter objects are constructed by methods of the TalkingClock class.

Here is the TimePrinter class in greater detail. Note that the actionPerformed method

checks the beep flag before emitting a beep.

public class TimePrinter implements ActionListener {

 public void actionPerformed(ActionEvent event) {

 IO.println("At the tone, the time is "

 + Instant.ofEpochMilli(event.getWhen()));

 if (beep) Toolkit.getDefaultToolkit().beep();

 }

}

Something surprising is going on. The TimePrinter class has no instance field or variable

named beep. Instead, beep refers to the field of the TalkingClock object that created this

TimePrinter. As you can see, an inner class method gets to access both its own instance

fields and those of the outer object creating it.

For this to work, an object of an inner class always gets an implicit reference to the object

that created it (see Figure 6.3).

.

Figure 6.3: An inner class object has a reference to an outer class object.

This reference is invisible in the definition of the inner class. However, to illuminate the

concept, let us call the reference to the outer object outer. Then the actionPerformed

method is equivalent to the following:

public void actionPerformed(ActionEvent event) {

 IO.println("At the tone, the time is "

 + Instant.ofEpochMilli(event.getWhen()));

 if (outer.beep) Toolkit.getDefaultToolkit().beep();

}

The outer class reference is set in the constructor. The compiler modifies all inner class

constructors, adding a parameter for the outer class reference. The TimePrinter class

defines no constructors; therefore, the compiler synthesizes a no-argument constructor,

generating code like this:

public TimePrinter(TalkingClock clock) { // automatically generated code

 outer = clock;

}

Again, please note that outer is not a Java keyword. We just use it to illustrate the

mechanism involved in an inner class.

When a TimePrinter object is constructed in the start method, the compiler passes the this

reference to the current talking clock into the constructor:

var listener = new TimePrinter(this); // parameter automatically added

Listing 6.7 shows the complete program that tests the inner class. Have another look at the

access control. Had the TimePrinter class been a regular class, it would have needed to

access the beep flag through a public method of the TalkingClock class. Using an inner

class is an improvement. There is no need to provide accessors that are of interest only to

one other class.

Note: We could have declared the TimePrinter class as private. Then only

TalkingClock methods would be able to construct TimePrinter objects. Only inner

classes can be private. Regular classes always have either package or public access.

Listing 6.7 v1ch06/innerClass/InnerClassDemo.java

1 package v1ch06.innerClass;

2

3 import module java.desktop;

4

5 /**

6 * This program demonstrates the use of inner classes.

7 */

8 class InnerClassDemo {

9 void main() {

10 var clock = new TalkingClock(1000, true);

11 clock.start();

12

13 // keep program running until the user selects "OK"

14 JOptionPane.showMessageDialog(null, "Quit program?");

15 System.exit(0);

16 }

17 }

Listing 6.8 v1ch06/innerClass/TalkingClock.java

1 package v1ch06.innerClass;

2

3 import module java.base;

4 import module java.desktop;

5 import javax.swing.Timer;

6

7 /**

8 * A clock that prints the time in regular intervals.

9 */

10 public class TalkingClock {

11 private int interval;

12 private boolean beep;

13

14 /**

15 * Constructs a talking clock.

16 * @param interval the interval between messages (in milliseconds)

17 * @param beep true if the clock should beep

18 */

19 public TalkingClock(int interval, boolean beep) {

20 this.interval = interval;

21 this.beep = beep;

22 }

23

24 /**

25 * Starts the clock.

26 */

27 public void start() {

28 var listener = new TimePrinter();

29 var timer = new Timer(interval, listener);

30 timer.start();

31 }

32

33 public class TimePrinter implements ActionListener {

34 public void actionPerformed(ActionEvent event) {

35 IO.println("At the tone, the time is " + Instant.ofEpochMilli(event.getWhen()));

36 if (beep) Toolkit.getDefaultToolkit().beep();

37 }

38 }

39 }

6.3.2. Special Syntax Rules for Inner Classes

In the preceding section, we explained the outer class reference of an inner class by calling

it outer. Actually, the proper syntax for the outer reference is a bit more complex. The

expression

OuterClass.this

denotes the outer class reference. For example, you can write the actionPerformed method

of the TimePrinter inner class as

public void actionPerformed(ActionEvent event) {

 . . .

 if (TalkingClock.this.beep) Toolkit.getDefaultToolkit().beep();

}

Conversely, you can write the inner object constructor more explicitly, using the syntax

outerObject.new InnerClass(construction arguments)

For example:

ActionListener listener = this.new TimePrinter();

Here, the outer class reference of the newly constructed TimePrinter object is set to the

this reference of the method that creates the inner class object. This is the most common

case. As always, the this. qualifier is redundant. However, it is also possible to set the

outer class reference to another object by explicitly naming it. For example, since

TimePrinter is a public inner class, you can construct a TimePrinter for any talking clock:

var jabberer = new TalkingClock(1000, true);

TalkingClock.TimePrinter listener = jabberer.new TimePrinter();

Note that you refer to an inner class as

OuterClass.InnerClass

when it occurs outside the scope of the outer class.

Note: As of Java 16, inner classes can have static members. Previously, static

methods in inner classes were disallowed, and static fields declared in an inner

class had to be final and initialized with a compile-time constant.

Static methods of an inner class can access static fields and methods from the inner

class or enclosing classes.

6.3.3. Are Inner Classes Useful? Actually Necessary? Secure?

When inner classes were added to the Java language in Java 1.1, many programmers

considered them a major new feature that was out of character with the Java philosophy of

being simpler than C++. The inner class syntax is undeniably complex. (It gets more

complex as we study anonymous inner classes later in this chapter.) It is not obvious how

inner classes interact with other features of the language, such as access control and

security.

Inner classes are translated into regular class files with $ (dollar signs) separating the outer

and inner class names. For example, the TimePrinter class inside the

innerClass.TalkingClock class is translated to a class file

innerClass.TalkingClock$TimePrinter.class. To see this at work, try the following

experiment: run the ReflectionDemo program of Chapter 5, and give it the class

innerClass.TalkingClock$TimePrinter to reflect upon. Alternatively, use the javap utility:

javap -private ClassName

Note: If you use UNIX, remember to escape the $ character when you supply the

class name on the command line. That is, run the ReflectionDemo or javap

program as

java v1ch05/ReflectionDemo.java

v1ch06.innerClass.TalkingClock\$TimePrinter

or

javap -private v1ch06.innerClass.TalkingClock\$TimePrinter

You will get the following printout:

public class v1ch06.innerClass.TalkingClock$TimePrinter

 implements java.awt.event.ActionListener {

 final v1ch06.innerClass.TalkingClock this$0;

 public

v1ch06.innerClass.TalkingClock$TimePrinter(v1ch06.innerClass.TalkingClock);

 public void actionPerformed(java.awt.event.ActionEvent);

}

You can plainly see that the compiler has generated an additional instance field, this$0, for

the reference to the outer class. (The name this$0 is synthesized by the compiler—you

cannot refer to it in your code.) You can also see the TalkingClock parameter for the

constructor.

Note: Since Java 18, the this$0 field is only provided when it is actually needed. It

is dropped if no methods of the inner class access the outer class.

If the compiler can automatically do this transformation, couldn’t you simply program the

same mechanism by hand? Let’s try it. We would make TimePrinter a regular class,

outside the TalkingClock class. When constructing a TimePrinter object, we pass it the this

reference of the object that is creating it.

class TalkingClock {

 . . .

 public void start() {

 var listener = new TimePrinter(this);

 var timer = new Timer(interval, listener);

 timer.start();

 }

}

class TimePrinter implements ActionListener {

 private TalkingClock outer;

 . . .

 public TimePrinter(TalkingClock clock) {

 outer = clock;

 }

}

Now let us look at the actionPerformed method. It needs to access outer.beep.

if (outer.beep) . . . // ERROR

Here we run into a problem. The inner class can access the private data of the outer class,

but our external TimePrinter class cannot.

Thus, inner classes are genuinely more powerful than regular classes because they have

more access privileges.

In Java 11, the virtual machine specification was updated to allow this “nest mate” access

directly (see https://openjdk.org/jeps/181). In prior versions, the compiler generated helper

methods.

6.3.4. Local Inner Classes

If you look carefully at the code of the TalkingClock example, you will find that you need

the name of the type TimePrinter only once: when you create an object of that type in the

start method.

In a situation like this, you can define the class locally in a single method.

public void start() {

 class TimePrinter implements ActionListener {

 public void actionPerformed(ActionEvent event) {

 IO.println("At the tone, the time is "

 + Instant.ofEpochMilli(event.getWhen()));

 if (beep) Toolkit.getDefaultToolkit().beep();

 }

 }

https://openjdk.org/jeps/181

 var listener = new TimePrinter();

 var timer = new Timer(interval, listener);

 timer.start();

}

Local classes are never declared with an access specifier (that is, public or private). Their

scope is always restricted to the block in which they are declared.

Local classes have one great advantage: They are completely hidden from the outside

world—not even other code in the TalkingClock class can access them. No method except

start has any knowledge of the TimePrinter class.

6.3.5. Accessing Variables from Outer Methods

Local classes have another advantage over other inner classes. Not only can they access

the fields of their outer classes; they can even access local variables! However, those local

variables must be effectively final. That means, they may never change once they have

been assigned.

Here is a typical example. Let’s move the interval and beep parameters from the

TalkingClock constructor to the start method.

public void start(int interval, boolean beep) {

 class TimePrinter implements ActionListener {

 public void actionPerformed(ActionEvent event) {

 IO.println("At the tone, the time is "

 + Instant.ofEpochMilli(event.getWhen()));

 if (beep) Toolkit.getDefaultToolkit().beep();

 }

 }

 var listener = new TimePrinter();

 var timer = new Timer(interval, listener);

 timer.start();

}

Note that the TalkingClock class no longer needs to store a beep instance field. It simply

refers to the beep parameter variable of the start method.

Maybe this should not be so surprising. The line

if (beep) . . .

is, after all, ultimately inside the start method, so why shouldn’t it have access to the value

of the beep variable?

To see why there is a subtle issue here, let’s consider the flow of control more closely.

1. The start method is called.

2. The object variable listener is initialized by a call to the constructor of the inner class

TimePrinter.

3. The listener reference is passed to the Timer constructor, the timer is started, and the

start method exits. At this point, the beep parameter variable of the start method no

longer exists.

4. A second later, the actionPerformed method executes if (beep) . . .

For the code in the actionPerformed method to work, the TimePrinter class must have

copied the beep field as a local variable of the start method, before the beep parameter

value went away. That is indeed exactly what happens. In our example, the compiler

synthesizes the name localInnerClass.TalkingClock$1TimePrinter for the local inner class.

If you use the ReflectionDemo program again to spy on the

localInnerClass.TalkingClock$1TimePrinter class, you will get the following output:

class v1ch06.localInnerClass.TalkingClock$1TimePrinter {

 v1ch06.localInnerClass.TalkingClock$1TimePrinter(

 v1ch06.localInnerClass.TalkingClock, boolean);

 public void actionPerformed(java.awt.event.ActionEvent);

 final boolean val$beep;

}

When an object is created, the current value of the beep variable is stored in the val$beep

field. The inner class field persists after the local variable goes out of scope.

Note: You can follow the virtual machine instructions that are used to initialize and

read the val$beep field by running

javap -private -c v1ch06.localInnerClass.TalkingClock\$1TimePrinter

The variable is set in the constructor, before the call to the Object constructor. It is

read in the actionPerformed method.

6.3.6. Anonymous Inner Classes

When using local inner classes, you can often go a step further. If you want to make only a

single object of this class, you don’t even need to give the class a name. Such a class is

called an anonymous inner class.

public void start(int interval, boolean beep) {

 var listener = new ActionListener() {

 public void actionPerformed(ActionEvent event) {

 IO.println("At the tone, the time is "

 + Instant.ofEpochMilli(event.getWhen()));

 if (beep) Toolkit.getDefaultToolkit().beep();

 }

 };

 var timer = new Timer(interval, listener);

 timer.start();

}

This syntax is very cryptic indeed. What it means is this: Create a new object of a class

that implements the ActionListener interface, where the required method actionPerformed

is the one defined inside the braces { }.

In general, the syntax is

new SuperType(construction arguments) {

 inner class methods and data

}

Here, SuperType can be an interface, such as ActionListener; then, the inner class

implements that interface. SuperType can also be a class; then, the inner class extends that

class.

An anonymous inner class cannot have constructors because the name of a constructor

must be the same as the name of a class, and the class has no name. Instead, the

construction arguments are given to the superclass constructor. In particular, whenever an

inner class implements an interface, it cannot have any construction arguments.

Nevertheless, you must supply a set of parentheses as in

new InterfaceType() {

 methods and data

}

You have to look carefully to see the difference between the construction of a new object

of a class and the construction of an object of an anonymous inner class extending that

class.

var queen = new Person("Mary");

 // a Person object

var count = new Person("Dracula") { . . . };

 // an object of an inner class extending Person

If the closing parenthesis of the construction argument list is followed by an opening

brace, then an anonymous inner class is being defined.

Note: Even though an anonymous class cannot have constructors, you can provide

an object initialization block:

var count = new Person("Dracula") {

 {

 initialization

 }

 . . .

};

Listing 6.9 contains the complete source code for the talking clock program with an

anonymous inner class. If you compare this program with Listing 6.7, you will see that in

this case, the solution with the anonymous inner class is quite a bit shorter and, hopefully,

with some practice, as easy to comprehend.

For many years, Java programmers routinely used anonymous inner classes for event

listeners and other callbacks. Nowadays, you are better off using a lambda expression. For

example, the start method from the beginning of this section can be written much more

concisely with a lambda expression like this:

public void start(int interval, boolean beep) {

 var timer = new Timer(interval, event -> {

 IO.println("At the tone, the time is "

 + Instant.ofEpochMilli(event.getWhen()));

 if (beep) Toolkit.getDefaultToolkit().beep();

 });

 timer.start();

}

Note: If you store an anonymous class instance in a variable defined with var, the

variable knows about added methods or fields:

var bob = new Object() { String name = "Bob"; }

IO.println(bob.name);

The object constructed with new Object() { String name = "Bob"; } has type

“Object with a String name field.” This is a nondenotable type—a type that you

cannot express with Java syntax. Nevertheless, the compiler understands the type,

and it becomes the type for the bob variable.

If you declare bob as having type Object, then bob.name does not compile.

Note: The following trick, called double brace initialization, takes advantage of

the inner class syntax. Suppose you want to construct an array list and pass it to a

method:

var friends = new ArrayList<String>();

friends.add("Harry");

friends.add("Tony");

invite(friends);

If you don’t need the array list again, it would be nice to make it anonymous. But

then how can you add the elements? Here is how:

invite(new ArrayList<String>() {{ add("Harry"); add("Tony"); }});

Note the double braces. The outer braces make an anonymous subclass of

ArrayList. The inner braces are an object initialization block (see Chapter 4).

In practice, this trick is rarely useful. More likely than not, the invite method is

willing to accept any List<String>, and you can simply pass List.of("Harry",

"Tony").

Caution: It is often convenient to make an anonymous subclass that is almost, but

not quite, like its superclass. But you need to be careful with the equals method. In

Chapter 5, I recommended that your equals methods use a test

if (getClass() != other.getClass()) return false;

An anonymous subclass will fail this test.

Tip: When you produce logging or debugging messages, you often want to include

the name of the current class, such as

System.err.println("Something awful happened in " + getClass());

But that fails in a static method. After all, the call to getClass calls this.getClass(),

and a static method has no this. Use the following expression instead:

new Object(){}.getClass().getEnclosingClass() // gets class of static method

Here, new Object(){} makes an anonymous object of an anonymous subclass of

Object, and getEnclosingClass gets its enclosing class—that is, the class containing

the static method.

Listing 6.9 v1ch06/anonymousInnerClass/AnonymousInnerClassDemo.java

1 package v1ch06.anonymousInnerClass;

2

3 import module java.desktop;

4

5 /**

6 * This program demonstrates anonymous inner classes.

7 */

8 class AnonymousInnerClassDemo {

9 void main() {

10 var clock = new TalkingClock();

11 clock.start(1000, true);

12

13 // keep program running until the user selects "OK"

14 JOptionPane.showMessageDialog(null, "Quit program?");

15 System.exit(0);

16 }

17 }

Listing 6.10 v1ch06/anonymousInnerClass/TalkingClock.java

1 package v1ch06.anonymousInnerClass;

2

3 import module java.base;

4 import module java.desktop;

5 import javax.swing.Timer;

6

7 /**

8 * A clock that prints the time in regular intervals.

9 */

10 public class TalkingClock {

11 /**

12 * Starts the clock.

13 * @param interval the interval between messages (in milliseconds)

14 * @param beep true if the clock should beep

15 */

16 public void start(int interval, boolean beep) {

17 var listener = new ActionListener() {

18 public void actionPerformed(ActionEvent event) {

19 IO.println(

20 "At the tone, the time is " + Instant.ofEpochMilli(event.getWhen()));

21 if (beep) Toolkit.getDefaultToolkit().beep();

22 }

23 };

24 var timer = new Timer(interval, listener);

25 timer.start();

26 }

27 }

6.3.7. Static Classes

Occasionally, you may want to nest one class inside another, but you don’t need the nested

class to have a reference to the outer class object. You can suppress the generation of that

reference by declaring the nested class static.

The Java Language Specification uses the term “nested class” for any class that is declared

inside another class or interface, “static class” for a (necessarily nested) static class, and

“inner class” for a nested class that is not static.

Here is a typical example of where you would want to do this. In an ArrayAlg class, we

have a task that finds a range of elements of an array. Then you need to return the start and

the end of the range. We can achieve that by defining a class Range that holds two values:

class Range {

 private int from;

 private int to;

 public Range(int from) { . . . }

 public void extend() { . . . }

 . . .

}

Of course, Range is an exceedingly common name, and in a large project, it is quite

possible that some other programmer had the same bright idea and defined another Range

class in the same package. We can solve this potential name clash by making Range a

public inner class inside ArrayAlg. Then the class will be known to the public as

ArrayAlg.Range:

ArrayAlg.Range r = ArrayAlg.longestRun(numbers);

However, unlike the inner classes used in previous examples, we do not want to have a

reference to any other object inside a Range object. That reference can be suppressed by

declaring the nested class static:

class ArrayAlg {

 public static class Range {

 . . .

 }

 . . .

}

A static class is exactly like an inner class, except that an object of a static class does not

have a reference to the outer class object that generated it.

In our example, we must use a static class because the nested class instance is constructed

inside a static method:

public static Pair longestRun(double[] values) {

 . . .

 Range current = new Range(. . .);

 . . .

}

Had the Range class not been declared as static, the compiler would have flagged the

constructor call as an error. After all, there is no object of type ArrayAlg available to

initialize the inner class instance.

You should use a static class whenever a nested class does not need to access an outer

class object.

Note: Classes that are declared inside an interface are automatically static. They

could not possibly hold a reference to an outer class object, because its type would

be unknowable. Any number of classes can implement the interface.

Note: Prior to Java 16, it was not possible to declare a static class inside an inner

class. This restriction was never necessary and has now been removed.

Listing 6.11 contains the complete source code of the ArrayAlg class and the nested Pair

class.

Listing 6.11 v1ch06/StaticInnerClassDemo.java

1 package v1ch06;

2

3 /**

4 * This program demonstrates the use of static inner classes.

5 */

6 class StaticInnerClassDemo {

7 void main() {

8 double[] numbers = { 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6 };

9 ArrayAlg.Range r = ArrayAlg.longestRun(numbers);

10 IO.println("from = " + r.getFrom());

11 IO.println("to = " + r.getTo());

12 }

13

14 }

15

16 class ArrayAlg {

17 /**

18 * A range of index values.

19 */

20 public static class Range {

21 private int from;

22 private int to;

23

24 /**

25 * Constructs a range of length 1.

26 *

27 * @param from the initial index value of this range

28 */

29 public Range(int from) {

30 this.from = from;

31 this.to = from + 1;

32 }

33

34 /**

35 * Extends this range by one element.

36 */

37 public void extend() {

38 this.to++;

39 }

40

41 /**

42 * Gets the starting index value of this range.

43 * @return the starting index

44 */

45 public int getFrom() {

46 return from;

47 }

48

49 /**

50 * Gets the first index past the end of this range.

51 * @return the past-the-end index

52 */

53 public int getTo() {

54 return to;

55 }

56

57 /**

58 * Returns the number of elements in this range.

59 * @return the number of elements

60 */

61 public int length() {

62 return to - from;

63 }

64 }

65

66 /**

67 * A "run" is a sequence of repeating adjacent elements. For example, in the

68 * array 1 2 3 3 3 4 4, the runs are (trivially) 1 and 2, and 3 3 3 3 and 4

69 * 4. Returns the range of the longest run.

70 *

71 * @param values an array of length at least 1

72 * @return the range of the longest run

73 */

74 public static Range longestRun(double[] values) {

75 Range longest = new Range(0);

76 Range current = new Range(0);

77 for (int i = 1; i < values.length; i++) {

78 if (values[i] == values[i - 1])

79 current.extend();

80 else {

81 if (longest.length() < current.length()) longest = current;

82 current = new Range(i);

83 }

84 }

85 if (longest.length() < current.length()) longest = current;

86 return longest;

87 }

88 }

6.3.8. Nested Records

In the preceding example, I purposefully made the Range class mutable. It might be better

to make the Range class immutable, and to declare it as a record.

class ArrayAlg {

 record Range(int from, int to) {}

 . . .

}

A nested record is automatically static. For example, this Range record has exactly two

components, the integers from and to, and no reference to an outer class object.

With compact compilation units, the static nature of records can be unintuitive. Consider a

program like this:

int[] values;

void main() { . . . }

record Range(int from, int to) { // Nested in the implicitly declared class

 int sum() {

 int result = 0;

 for (int i = from; i <= to; i++) {

 result += values[i]; // ERROR

 }

 return result;

 }

}

It looks as if the sum method could access the “global” values variable. But that is an

instance variable of the enclosing implicit class. And the methods of the static nested

record have no access to enclosing instance variables.

Note: A nested enumeration is automatically static, just like a nested record. The

instances of the enumeration do not have references to any outer class object.

Similarly, nested interfaces are implicitly static, since interfaces have no data.

6.4. Service Loaders

Sometimes, you develop an application with a service architecture. There are platforms

that encourage this approach, such as OSGi (https://osgi.org), which are used in

development environments, application servers, and other complex applications. Such

platforms go well beyond the scope of this book, but the JDK also offers a simple

mechanism for loading services, described here. This mechanism is well supported by the

Java Platform Module System—see Chapter 12.

Often, when providing a service, a program wants to give the service designer some

freedom of how to implement the service’s features. It can also be desirable to have

https://osgi.org/

multiple implementations to choose from. The ServiceLoader class makes it easy to load

services that conform to a common interface.

Define an interface (or, if you prefer, a superclass) with the methods that each instance of

the service should provide. For example, suppose your service provides encryption.

package serviceLoader;

public interface Cipher {

 byte[] encrypt(byte[] source, byte[] key);

 byte[] decrypt(byte[] source, byte[] key);

 int strength();

}

The service provider supplies one or more classes that implement this service, for example

package serviceLoader.impl;

public class CaesarCipher implements Cipher {

 public byte[] encrypt(byte[] source, byte[] key) {

 var result = new byte[source.length];

 for (int i = 0; i < source.length; i++)

 result[i] = (byte)(source[i] + key[0]);

 return result;

 }

 public byte[] decrypt(byte[] source, byte[] key) {

 return encrypt(source, new byte[] { (byte) -key[0] });

 }

 public int strength() { return 1; }

}

The implementing classes can be in any package, not necessarily the same package as the

service interface. Each of them must have a no-argument constructor.

Now add the names of the classes to a UTF-8 encoded text file in the META-INF/services

directory whose name matches the qualified interface name. In our example, the file

META-INF/services/serviceLoader.Cipher would contain the line

serviceLoader.impl.CaesarCipher

In this example, we provide a single implementing class. You could also provide multiple

classes and later pick among them.

With this preparation done, the program initializes a service loader as follows:

public static ServiceLoader<Cipher> cipherLoader = ServiceLoader.load(Cipher.class);

This should be done just once in the program.

The iterator method of the service loader returns an iterator through all provided

implementations of the service. (See Chapter 9 for more information about iterators.) It is

easiest to use an enhanced for loop to traverse them. In the loop, pick an appropriate object

to carry out the service.

public static Cipher getCipher(int minStrength) {

 for (Cipher cipher : cipherLoader) { // implicitly calls cipherLoader.iterator()

 if (cipher.strength() >= minStrength) return cipher;

 }

 return null;

}

Alternatively, you can use streams (see Chapter 1 of Volume II) to locate the desired

service. The stream method yields a stream of ServiceLoader.Provider instances. That

interface has methods type and get for getting the provider class and the provider instance.

If you select a provider by type, then you just call type and no service instances are

unnecessarily instantiated.

public static Optional<Cipher> getCipher2(int minStrength) {

 return cipherLoader.stream()

 .filter(descr -> descr.type() == serviceLoader.impl.CaesarCipher.class)

 .findFirst()

 .map(ServiceLoader.Provider::get);

}

Finally, if you are willing to take any service instance, simply call findFirst:

Optional<Cipher> cipher = cipherLoader.findFirst();

The Optional class is explained in Chapter 1 of Volume II.

java.util.ServiceLoader<S> 1.6

static <S> ServiceLoader<S> load(Class<S> service)

creates a service loader for loading the classes that implement the given service

interface.

Iterator<S> iterator()

yields an iterator that lazily loads the service classes. That is, a class is loaded

whenever the iterator advances.

Stream<ServiceLoader.Provider<S>> stream() 9

returns a stream of provider descriptors, so that a provider of a desired class can be

loaded lazily.

Optional<S> findFirst() 9

finds the first available service provider, if any.

java.util.ServiceLoader.Provider<S> 9

Class<? extends S> type()

gets the type of this provider.

S get()

gets an instance of this provider.

6.5. Proxies

In the final section of this chapter, we discuss proxies. You can use a proxy to create, at

runtime, new classes that implement a given set of interfaces. Proxies are only necessary

when you don’t yet know at compile time which interfaces you need to implement. This is

not a common situation for application programmers, so feel free to skip this section if you

are not interested in advanced wizardry. However, for certain systems programming

applications, the flexibility that proxies offer can be very important.

6.5.1. When to Use Proxies

Suppose you want to construct an object of a class that implements one or more interfaces

whose exact nature you may not know at compile time. This is a difficult problem. To

construct an actual class, you can simply use the newInstance method or use reflection to

find a constructor. But you can’t instantiate an interface. You need to define a new class in

a running program.

To overcome this problem, some programs generate code, place it into a file, invoke the

compiler, and then load the resulting class file. Naturally, this is slow, and it also requires

deployment of the compiler together with the program. The proxy mechanism is a better

solution. The proxy class can create brand-new classes at runtime. Such a proxy class

implements the interfaces that you specify. In particular, the proxy class has the following

methods:

All methods required by the specified interfaces; and

All methods defined in the Object class (toString, equals, and so on).

However, you cannot define new code for these methods at runtime. Instead, you must

supply an invocation handler. An invocation handler is an object of any class that

implements the InvocationHandler interface. That interface has a single method:

Object invoke(Object proxy, Method method, Object[] args)

Whenever a method is called on the proxy object, the invoke method of the invocation

handler gets called, with the Method object and arguments of the original call. The

invocation handler must then figure out how to handle the call.

6.5.2. Creating Proxy Objects

To create a proxy object, use the newProxyInstance method of the Proxy class. The

method has three parameters:

A class loader. As part of the Java security model, different class loaders can be used

for platform and application classes, classes that are downloaded from the Internet,

and so on. We will discuss class loaders in Chapter 9 of Volume II. In this example,

we specify the "system class loader" that loads platform and application classes.

An array of Class objects, one for each interface to be implemented.

An invocation handler.

There are two remaining questions. How do we define the handler? And what can we do

with the resulting proxy object? The answers depend, of course, on the problem that we

want to solve with the proxy mechanism. Proxies can be used for many purposes, such as

Routing method calls to remote servers

Associating user interface events with actions in a running program

Tracing method calls for debugging purposes

In our example program, we use proxies and invocation handlers to trace method calls. We

define a TraceHandler wrapper class that stores a wrapped object. Its invoke method

simply prints the name and arguments of the method to be called and then calls the method

with the wrapped object as the implicit argument.

class TraceHandler implements InvocationHandler {

 private Object target;

 public TraceHandler(Object t) {

 target = t;

 }

 public Object invoke(Object proxy, Method m, Object[] args)

 throws Throwable {

 // print method name and arguments

 . . .

 // invoke actual method

 return m.invoke(target, args);

 }

}

Here is how you construct a proxy object that causes the tracing behavior whenever one of

its methods is called:

Object value = . . .;

// construct wrapper

var handler = new TraceHandler(value);

// construct proxy for one or more interfaces

var interfaces = new Class[] { Comparable.class };

Object proxy = Proxy.newProxyInstance(

 ClassLoader.getSystemClassLoader(),

 new Class[] { Comparable.class }, handler);

Now, whenever a method from one of the interfaces is called on proxy, the method name

and arguments are printed out and the method is then invoked on value.

In the program shown in Listing 6.12, we use proxy objects to trace a binary search. We

fill an array with proxies to the integers 1 . . . 1000. Then we invoke the binarySearch

method of the Arrays class to search for a random integer in the array. Finally, we print the

matching element.

var elements = new Object[1000];

// fill elements with proxies for the integers 1 . . . 1000

for (int i = 0; i < elements.length; i++) {

 Integer value = i + 1;

 elements[i] = Proxy.newProxyInstance(. . .); // proxy for value;

}

// construct a random integer

Integer key = (int) (Math.random() * elements.length) + 1;

// search for the key

int result = Arrays.binarySearch(elements, key);

// print match if found

if (result >= 0) IO.println(elements[result]);

The Integer class implements the Comparable interface. The proxy objects belong to a

class that is defined at runtime. (It has a name such as $Proxy0.) That class also

implements the Comparable interface. However, its compareTo method calls the invoke

method of the proxy object’s handler.

Note: As you saw earlier in this chapter, the Integer class actually implements

Comparable<Integer>. However, at runtime, all generic types are erased and the

proxy is constructed with the class object for the raw Comparable class.

The binarySearch method makes calls like this:

if (elements[i].compareTo(key) < 0) . . .

Since we filled the array with proxy objects, the compareTo calls the invoke method of the

TraceHandler class. That method prints the method name and arguments and then invokes

compareTo on the wrapped Integer object.

Finally, at the end of the sample program, we call

IO.println(elements[result]);

The println method calls toString on the proxy object, and that call is also redirected to the

invocation handler.

Here is the complete trace of a program run:

500.compareTo(288)

250.compareTo(288)

375.compareTo(288)

312.compareTo(288)

281.compareTo(288)

296.compareTo(288)

288.compareTo(288)

288.toString()

You can see how the binary search algorithm homes in on the key by cutting the search

interval in half in every step. Note that the toString method is proxied even though it does

not belong to the Comparable interface—as you will see in the next section, certain Object

methods are always proxied.

Listing 6.12 v1ch06/ProxyDemo.java

1 package v1ch06;

2

3 import module java.base;

4 import java.lang.reflect.Proxy;

5

6 /**

7 * This program demonstrates the use of proxies.

8 */

9 class ProxyDemo {

10 void main() {

11 var elements = new Object[1000];

12

13 // fill elements with proxies for the integers 1 . . . 1000

14 for (int i = 0; i < elements.length; i++) {

15 Integer value = i + 1;

16 var handler = new TraceHandler(value);

17 Object proxy = Proxy.newProxyInstance(ClassLoader.getSystemClassLoader(),

18 new Class[]{Comparable.class}, handler);

19 elements[i] = proxy;

20 }

21

22 // construct a random integer

23 Integer key = (int) (Math.random() * elements.length) + 1;

24

25 // search for the key

26 int result = Arrays.binarySearch(elements, key);

27

28 // print match if found

29 if (result >= 0) IO.println(elements[result]);

30 }

31 }

32

33 /**

34 * An invocation handler that prints out the method name and parameters, then

35 * invokes the original method.

36 */

37 class TraceHandler implements InvocationHandler {

38 private Object target;

39

40 /**

41 * Constructs a TraceHandler.

42 *

43 * @param t the implicit parameter of the method call

44 */

45 public TraceHandler(Object t) {

46 target = t;

47 }

48

49 public Object invoke(Object proxy, Method m, Object[] args) throws Throwable {

50 // print implicit argument

51 IO.print(target);

52 // print method name

53 IO.print("." + m.getName() + "(");

54 // print explicit arguments

55 if (args != null) {

56 for (int i = 0; i < args.length; i++) {

57 IO.print(args[i]);

58 if (i < args.length - 1) IO.print(", ");

59 }

60 }

61 IO.println(")");

62

63 // invoke actual method

64 return m.invoke(target, args);

65 }

66 }

6.5.3. Properties of Proxy Classes

Now that you have seen proxy classes in action, let’s go over some of their properties.

Remember that proxy classes are created on the fly in a running program. However, once

they are created, they are regular classes, just like any other classes in the virtual machine.

All proxy classes extend the class Proxy. A proxy class has only one instance field—the

invocation handler, which is defined in the Proxy superclass. Any additional data required

to carry out the proxy objects’ tasks must be stored in the invocation handler. For example,

when we proxied Comparable objects in the program shown in Listing 6.12, the

TraceHandler wrapped the actual objects.

All proxy classes override the toString, equals, and hashCode methods of the Object class.

Like all proxy methods, these methods simply call invoke on the invocation handler. The

other methods of the Object class (such as clone and getClass) are not redefined.

The names of proxy classes are not defined. The Proxy class in Oracle’s virtual machine

generates class names that begin with the string $Proxy.

There is only one proxy class for a particular class loader and ordered set of interfaces.

That is, if you call the newProxyInstance method twice with the same class loader and

interface array, you get two objects of the same class. You can also obtain that class with

the getProxyClass method:

Class proxyClass = Proxy.getProxyClass(null, interfaces);

A proxy class is always public and final. If all interfaces that the proxy class implements

are public, the proxy class does not belong to any particular package. Otherwise, all non-

public interfaces must belong to the same package, and the proxy class will also belong to

that package.

You can test whether a particular Class object represents a proxy class by calling the

isProxyClass method of the Proxy class.

Note: Calling a default method of a proxy triggers the invocation handler. To

actually invoke the method, use the static invokeDefault method of the

InvocationHandler interface. For example, here is an invocation handler that calls

the default methods and passes the abstract methods to another target:

InvocationHandler handler = (proxy, method, args) -> {

 if (method.isDefault())

 return InvocationHandler.invokeDefault(proxy, method, args)

 else

 return method.invoke(target, args);

};

java.lang.reflect.InvocationHandler 1.3

Object invoke(Object proxy, Method method, Object[] args)

define this method to contain the action that you want carried out whenever a

method was invoked on the proxy object.

static Object invokeDefault(Object proxy, Method method, Object... args) 16

invokes a default method of the proxy instance with the given arguments, bypassing

the invocation handler.

java.lang.reflect.Proxy 1.3

static Class<?> getProxyClass(ClassLoader loader, Class<?>... interfaces)

returns the proxy class that implements the given interfaces.

static Object newProxyInstance(ClassLoader loader, Class<?>[] interfaces,

InvocationHandler handler)

constructs a new instance of the proxy class that implements the given interfaces. All

methods call the invoke method of the given handler object.

static boolean isProxyClass(Class<?> cl)

returns true if cl is a proxy class.

This ends the final chapter on the object-oriented features of the Java programming

language. Interfaces, lambda expressions, and inner classes are concepts that you will

encounter frequently, whereas cloning, service loaders, and proxies are advanced

techniques that are of interest mainly to library designers and tool builders, not application

programmers. You are now ready to learn how to deal with exceptional situations in your

programs in Chapter 7.

Chapter 7 ▪ Exceptions, Assertions, and
Logging

In a perfect world, users would never enter data in the wrong form, files they choose to open

would always exist, and code would never have bugs. So far, I’ve mostly presented code as if

we all lived in this kind of perfect world. It is now time to turn to the mechanisms the Java

programming language has for dealing with the real world of bad data and buggy code.

Encountering errors is unpleasant. If a user loses all the work he or she did during a program

session because of a programming mistake or some external circumstance, that user may

forever turn away from your program. At the very least, you must:

Notify the user of an error;

Save all work; and

Allow users to gracefully exit the program.

For exceptional situations, such as bad input data with the potential to bomb the program, Java

uses a form of error trapping called, naturally enough, exception handling. Exception handling

in Java is similar to that in C++ or Delphi. The first part of this chapter covers Java’s

exceptions.

During testing, you need to run lots of checks to make sure your program does the right thing.

But those checks can be time-consuming and unnecessary after testing has completed. You

could just remove the checks and stick them back in when additional testing is required—but

that is tedious. The second part of this chapter shows you how to use the assertion facility for

selectively activating checks.

When your program does the wrong thing, you can’t always communicate with the user or

terminate. Instead, you may want to record the problem for later analysis. The third part of this

chapter discusses the standard Java logging framework.

7.1. Dealing with Errors

Suppose an error occurs while a Java program is running. The error might be caused by a file

containing wrong information, a flaky network connection, or (I hate to mention it) use of an

invalid array index or an object reference that hasn’t yet been assigned to an object. Users

expect that programs will act sensibly when errors happen. If an operation cannot be completed

because of an error, the program ought to either

Return to a safe state and enable the user to execute other commands; or

Allow the user to save all work and terminate the program gracefully.

This may not be easy to do, because the code that detects the error condition is usually far away

from the code that can roll back the data to a safe state or save the user’s work and exit

cheerfully. The mission of exception handling is to transfer control from where the error

occurred to an error handler that can deal with the situation. To handle exceptional situations in

your program, you must take into account the errors and problems that may occur. What sorts

of problems do you need to consider?

User input errors. In addition to the inevitable typos, some users like to blaze their own

trail instead of following directions. Suppose, for example, that a user asks to connect to a

URL that is syntactically wrong. Your code should check the syntax, but suppose it does

not. Then the network layer will complain.

Device errors. Hardware does not always do what you want it to. The printer may be

turned off. A web page may be temporarily unavailable. Devices will often fail in the

middle of a task. For example, a printer may run out of paper during printing.

Physical limitations. Disks can fill up; you can run out of available memory.

Code errors. A method may not perform correctly. For example, it could deliver wrong

answers or use other methods incorrectly. Computing an invalid array index, trying to find

a nonexistent entry in a hash table, or trying to pop an empty stack are all examples of a

code error.

The traditional reaction to an error in a method is to return a special error code that the calling

method analyzes. For example, methods that read information back from files often return a -1

end-of-file value marker rather than a standard character. Another common return value to

denote an error condition is the null reference.

However, it is not always possible to return an error code. There may be no obvious way of

distinguishing valid and invalid data. A method returning an integer cannot simply return -1 to

denote the error; the value -1 might be a perfectly valid result.

Returning null to indicate failure is particularly problematic. Consider the listFiles method of

the legacy java.io.File class. It returns a File[] array, or null in case of failure. If the

programmer did not check for null, a NullPointerException occurs when the return value is first

used, masking the original problem.

Java allows every method an alternative exit path if it is unable to complete its task in the

normal way. In this situation, the method does not return a value. Instead, it throws an object

that encapsulates the error information. Note that the method exits immediately; it does not

return its normal (or any) value. Moreover, execution does not resume at the code that called

the method; instead, the exception-handling mechanism begins its search for an exception

handler that can deal with this particular error condition.

Exceptions have their own syntax and are part of a special inheritance hierarchy. I’ll take up the

syntax first and then give a few hints on how to use this language feature effectively.

Tip: Favor methods that use exceptions over those that return error codes. It is easy to

forget checking error codes, but exceptions cannot be overlooked. Exceptions can also

carry more information. For example, the delete method of the legacy java.io.File class

returns false if the deletion was unsuccessful. The delete method in the

java.nio.file.Files class is more useful. In case of failure it throws an exception of a type

that clearly indicates the nature of the problem.

7.1.1. The Classification of Exceptions

In the Java programming language, an exception object is always an instance of a class derived

from Throwable. As you will soon see, you can create your own exception classes if those built

into Java do not suit your needs.

Figure 7.1 is a simplified diagram of the exception hierarchy in Java.

.

Figure 7.1: Exception hierarchy in Java

Notice that all exceptions descend from Throwable, but the hierarchy immediately splits into

two branches: Error and Exception.

The Error hierarchy describes internal errors and resource exhaustion situations inside the Java

runtime system. You should not throw an object of this type. There is little you can do if such

an internal error occurs, beyond notifying the user and trying to terminate the program

gracefully. These situations are quite rare.

When doing Java programming, focus on the Exception hierarchy. The Exception hierarchy

also splits into two branches: exceptions that derive from RuntimeException and those that do

not. The general rule is this: A RuntimeException happens because you made a programming

error. Any other exception occurs because a bad thing, such as an I/O error, happened to your

otherwise good program.

Exceptions that inherit from RuntimeException include such problems as

A bad cast

An out-of-bounds array access

A null pointer access

Exceptions that do not inherit from RuntimeException include

Trying to read past the end of a file

Trying to open a file that doesn’t exist

Trying to find a Class object for a string that does not denote an existing class

The rule “If it is a RuntimeException, it was your fault” works pretty well. You could have

avoided that ArrayIndexOutOfBoundsException by testing the array index against the array

bounds. The NullPointerException would not have happened had you checked whether the

variable was null before using it.

How about a file that doesn’t exist? Can’t you first check whether the file exists, and then open

it? Well, the file might be deleted right after the check for its existence. Thus, the notion of

“existence” depends on the environment, not just on your code.

The Java Language Specification calls any exception that derives from the class Error or the

class RuntimeException an unchecked exception. All other exceptions are called checked

exceptions. This is useful terminology that I also adopt in this book. The compiler checks that

you provide exception handlers for all checked exceptions.

Note: The name RuntimeException is somewhat confusing. Of course, all of the errors

we are discussing occur at runtime. The name originated in prehistoric times, when the

“runtime” of Oak, the predecessor of Java, generated out-of-bounds exceptions and null

pointer exceptions. Presumably I/O exceptions were produced by some other

component.

Note: If you are familiar with the (much more limited) exception hierarchy of the

standard C++ library, you may be really confused at this point. C++ has two

fundamental exception classes, runtime_error and logic_error. The logic_error class is

the equivalent of Java’s RuntimeException and also denotes logical errors in the

program. The runtime_error class is the superclass for exceptions caused by

unpredictable problems. It is equivalent to those exceptions in Java that are not of type

RuntimeException.

7.1.2. Declaring Checked Exceptions

A Java method can throw an exception if it encounters a situation it cannot handle. The idea is

simple: A method will not only tell the Java compiler what values it can return, it is also going

to tell the compiler what can go wrong. For example, code that attempts to read from a file

knows that the file might not exist or that it might be empty. The code that tries to process the

information in a file therefore will need to notify the compiler that it can throw some sort of

IOException.

The place in which you advertise that your method can throw an exception is the header of the

method; the header changes to reflect the checked exceptions the method can throw. For

example, here is the declaration of one of the constructors of the FileInputStream class from the

standard library. (See Chapter 2 of Volume II for more on input and output.)

public FileInputStream(String name) throws FileNotFoundException

The declaration says that this constructor produces a FileInputStream object from a String

parameter but that it also can go wrong in a special way—by throwing a

FileNotFoundException. If this sad state should come to pass, the constructor call will not

initialize a new FileInputStream object but instead will throw an object of the

FileNotFoundException class. If it does, the runtime system will begin to search for an

exception handler that knows how to deal with FileNotFoundException objects.

When you write your own methods, you don’t have to advertise every possible throwable

object that your method might actually throw. To understand when (and what) you have to

advertise in the throws clause of the methods you write, keep in mind that an exception is

thrown in any of the following four situations:

You call a method that throws a checked exception—for example, the FileInputStream

constructor.

You detect an error and throw a checked exception with the throw statement (the throw

statement is covered in the next section).

You make a programming error, such as a[-1] = 0 that gives rise to an unchecked

exception (in this case, an ArrayIndexOutOfBoundsException).

An internal error occurs in the virtual machine or runtime library.

If either of the first two scenarios occurs, you must tell the programmers who will use your

method about the possibility of an exception. Why? Any method that throws an exception is a

potential death trap. If no handler catches the exception, the current thread of execution

terminates.

As with Java methods that are part of the supplied classes, you declare that your method may

throw an exception with an exception specification in the method header.

class MyAnimation {

 . . .

 public Image loadImage(String s) throws IOException {

 . . .

 }

}

If a method might throw more than one checked exception type, you must list all exception

classes in the header. Separate them by commas, as in the following example:

class MyAnimation {

 . . .

 public Image loadImage(String s) throws FileNotFoundException, EOFException {

 . . .

 }

}

However, you do not need to advertise internal Java errors—that is, exceptions inheriting from

Error. Any code could potentially throw those exceptions, and they are entirely beyond your

control.

Similarly, you should not advertise unchecked exceptions inheriting from RuntimeException.

class MyAnimation {

 . . .

 void drawImage(int i) throws ArrayIndexOutOfBoundsException { // bad style

 . . .

 }

}

These runtime errors are completely under your control. If you are so concerned about array

index errors, you should spend your time fixing them instead of advertising the possibility that

they can happen.

In summary, a method must declare all the checked exceptions that it might throw. Unchecked

exceptions are either beyond your control (Error) or result from conditions that you should not

have allowed in the first place (RuntimeException). If your method fails to faithfully declare all

checked exceptions, the compiler will issue an error message.

Of course, as you have already seen in quite a few examples, instead of declaring the exception,

you can also catch it. Then the exception won’t be thrown out of the method, and no throws

specification is necessary. You will see later in this chapter how to decide whether to catch an

exception or to enable someone else to catch it.

Caution: If you override a method from a superclass, the checked exceptions that the

subclass method declares cannot be more general than those of the superclass method.

(It is OK to throw more specific exceptions, or not to throw any exceptions in the

subclass method.) In particular, if the superclass method throws no checked exception at

all, neither can the subclass. For example, if you override the toString method, you must

not throw any checked exceptions, because the superclass method doesn’t throw any.

When a method declares that it might throw an exception of a particular class, it may throw an

instance of any of its subclasses. For example, suppose the loadImage method declares that it

throws an IOException. In that case, you do not know what kind of IOException it is; it could

be a plain IOException or an object of one of the various subclasses, such as

FileNotFoundException.

Note: The throws specifier is the same as the throw specifier in C++, with one

important difference. In C++, throw specifiers are enforced at runtime, not at compile

time. That is, the C++ compiler pays no attention to exception specifications. But if an

exception is thrown in a function that is not part of the throw list, the unexpected

function is called, and, by default, the program terminates.

Also, in C++, a function may throw any exception if no throw specification is given. In

Java, a method without a throws specifier may not throw any checked exceptions at all.

7.1.3. How to Throw an Exception

Now, suppose something terrible has happened in your code. You have a method, readData, that

is reading in a file whose header promised

Content-length: 1024

but you got an end of file after 733 characters. You may decide this situation is so abnormal

that you want to throw an exception.

You need to decide what exception type to throw. Some kind of IOException would be a good

choice. Perusing the Java API documentation, you find an EOFException with the description

“Signals that an EOF has been reached unexpectedly during input.” Perfect. Here is how you

throw it:

throw new EOFException();

or, if you prefer,

var e = new EOFException();

throw e;

Here is how it all fits together:

String readData(Scanner in) throws EOFException {

 . . .

 while (. . .) {

 if (!in.hasNextLine()) { // EOF encountered

 if (n < len)

 throw new EOFException();

 }

 . . .

 }

 return s;

}

The EOFException has a second constructor that takes a string argument. You can put this to

good use by describing the exceptional condition more carefully.

String gripe = "Content-length: " + len + ", Received: " + n;

throw new EOFException(gripe);

As you can see, throwing an exception is easy if one of the existing exception classes works for

you. In this case:

1. Find an appropriate exception class.

2. Make an object of that class.

3. Throw it.

Once a method throws an exception, it does not return to its caller. This means you do not have

to worry about cooking up a default return value or an error code.

Note: Throwing an exception is the same in C++ and in Java, with one small difference.

In Java, you can throw only objects of subclasses of Throwable. In C++, you can throw

values of any type.

7.1.4. Creating Exception Classes

Your code may run into a problem which is not adequately described by any of the standard

exception classes. In this case, it is easy enough to create your own exception class. Just derive

it from Exception, or from a child class of Exception such as IOException. It is customary to

give both a default constructor and a constructor that contains a detailed message. (The toString

method of the Throwable superclass returns a string containing that detailed message, which is

handy for debugging.)

class FileFormatException extends IOException {

 public FileFormatException() {}

 public FileFormatException(String gripe) {

 super(gripe);

 }

}

Now you are ready to throw your very own exception type.

String readData(Scanner in) throws FileFormatException {

 . . .

 while (. . .) {

 if (!in.hasNextLine()) { // EOF encountered

 if (n < len)

 throw new FileFormatException();

 }

 . . .

 }

 return s;

}

java.lang.Throwable 1.0

Throwable()

constructs a new Throwable object with no detailed message.

Throwable(String message)

constructs a new Throwable object with the specified detailed message. By convention,

all derived exception classes support both a default constructor and a constructor with a

detailed message.

String getMessage()

gets the detailed message of the Throwable object.

7.2. Catching Exceptions

You now know how to throw an exception. It is pretty easy: You throw it and you forget it. Of

course, some code has to catch the exception. Catching exceptions requires more planning.

That’s what the next sections will cover.

7.2.1. Catching an Exception

If an exception occurs that is not caught anywhere, the program will terminate and print a

message to the console, giving the type of the exception and a stack trace. However, GUI

programs may catch exceptions, print stack trace messages, and then go back to the user

interface processing loop. (When you are debugging a GUI program, it is a good idea to keep

the console on the screen and not minimized.)

To catch an exception, set up a try/catch block. The simplest form of the try block is as follows:

try {

 code

 more code

 more code

}

catch (ExceptionType e) {

 handler for this type

}

Suppose any code inside the try block throws an exception of the class specified in the catch

clause, or its subclass. In that case:

1. The program skips the remainder of the code in the try block.

2. The program executes the handler code inside the catch clause.

If none of the code inside the try block throws an exception, then the program skips the catch

clause.

If any of the code in a method throws an exception of a type other than the one named in the

catch clause, this method exits immediately. (Hopefully, one of its callers has already provided

a catch clause for that type.)

To show this at work, here’s some fairly typical code for reading in data:

public void read(String filename) {

 try {

 var in = new FileInputStream(filename);

 int b;

 while ((b = in.read()) != -1) {

 process input

 }

 }

 catch (IOException exception) {

 exception.printStackTrace();

 }

}

Notice that most of the code in the try clause is straightforward: It reads and processes bytes

until it encounters the end of the file. As you can see by looking at the Java API, there is the

possibility that the read method will throw an IOException. In that case, we skip out of the

entire while loop, enter the catch clause, and generate a stack trace. For a toy program, that

seems like a reasonable way to deal with this exception. What other choice do you have?

Often, the best choice is to do nothing at all and simply pass the exception on to the caller. If an

error occurs in the read method, let the caller of the read method worry about it! If we take that

approach, then we have to advertise the fact that the method may throw an IOException.

public void read(String filename) throws IOException {

 var in = new FileInputStream(filename);

 int b;

 while ((b = in.read()) != -1) {

 process input

 }

}

Remember, the compiler strictly enforces the throws specifiers. If you call a method that throws

a checked exception, you must either handle it or pass it on.

Which of the two is better? As a general rule, you should catch those exceptions that you know

how to handle and propagate those that you do not know how to handle.

When you propagate an exception, you must add a throws specifier to alert the caller that an

exception may be thrown.

Look at the Java API documentation to see what methods throw which exceptions. Then decide

whether you should handle them or add them to the throws list. There is nothing embarrassing

about the latter choice. It is better to direct an exception to a competent handler than to squelch

it.

However, when overriding a method, you are not allowed to add more throws specifiers to a

subclass method than are present in the superclass method. Then you must catch the undeclared

checked exceptions. In particular, if you override a method which throws no exceptions (such

as compareTo in Comparable), then you have no choice but to catch each checked exception.

Sometimes, you do not need the exception object in a catch clause. Starting in Java 25, you can

use an underscore as an unnamed variable:

catch (FileNotFoundException _) {

 System.exit(0);

}

7.2.2. Catching Multiple Exceptions

You can catch multiple exception types in a try block and handle each type differently. Use a

separate catch clause for each type, as in the following example:

try {

 code that might throw exceptions

}

catch (FileNotFoundException e) {

 emergency action for missing files

}

catch (UnknownHostException e) {

 emergency action for unknown hosts

}

catch (IOException e) {

 emergency action for all other I/O problems

}

You need to order the catch clauses so that the more specific exception types come before the

more general ones.

The exception object may contain information about the nature of the exception. To find out

more about the object, try

e.getMessage()

to get the detailed error message (if there is one), or

e.getClass().getName()

to get the actual type of the exception object.

You can catch multiple exception types in the same catch clause. For example, suppose that the

action for missing files and unknown hosts is the same. Then you can combine the catch

clauses:

try {

 code that might throw exceptions

}

catch (FileNotFoundException | UnknownHostException e) {

 emergency action for missing files and unknown hosts

}

catch (IOException e) {

 emergency action for all other I/O problems

}

This feature is only needed when catching exception types that are not subclasses of one

another.

When you catch multiple exceptions, the exception variable is implicitly final. For example,

you cannot assign a different value to e in the body of the clause

catch (FileNotFoundException | UnknownHostException e) { . . . }

Catching multiple exceptions doesn’t just make your code look simpler but also more efficient.

The generated bytecodes contain a single block for the shared catch clause.

Caution: The type of the variable e is not the “union type” FileNotFoundException |

UnknownHostException, even if your IDE reports it as such. Java variables cannot have

such union types. The actual type of e is the least upper bound of those types; in this

case, IOException.

In most cases, you don’t care. But it matters if you analyze e with a switch. The obvious

switch has a problem—it is not exhaustive:

catch (FileNotFoundException | UnknownHostException e) {

 switch (e) { // ERROR: not exhaustive

 case FileNotFoundException fe -> . . .;

 case UnknownHostException ue -> . . .;

 }

 . . .

}

You can fix the problem by adding a default clause. However, it might be clearer to

reorganize the code and use separate catch clauses.

Caution: Catch clauses do not pay attention to sealed exception hierarchies. Suppose

you provide

sealed abstract class DomainException extends Exception

 permits FatalDomainException, SurvivableDomainException {}

Then the catch clauses

try {

 domainMethod(); // throws DomainException

}

catch (FatalDomainException e) { . . . }

catch (SurvivableDomainException e) { . . . }

are not sufficient, even though there can be no other checked exception instances.

7.2.3. Rethrowing and Chaining Exceptions

You can throw an exception in a catch clause. Typically, you do this when you want to change

the exception type. If you build a subsystem that other programmers use, it makes a lot of sense

to use an exception type that indicates a failure of the subsystem. An example of such an

exception type is the ServletException. The code that executes a servlet may not want to know

in minute detail what went wrong, but it definitely wants to know that the servlet was at fault.

Here is how you can catch an exception and rethrow it:

try {

 access the database

}

catch (SQLException e) {

 throw new ServletException("database error: " + e.getMessage());

}

Here, the ServletException is constructed with the message text of the exception.

However, it is a better idea to set the original exception as the “cause” of the new exception:

try {

 access the database

}

catch (SQLException original) {

 var e = new ServletException("database error", original);

 throw e;

}

The ServletException class has a constructor to which you can pass the cause. If you use an

exception type for which that is not the case, you can instead call

e.initCause(original);

When the exception is caught, the original exception can be retrieved:

Throwable original = caughtException.getCause();

This wrapping technique is highly recommended. It allows you to throw high-level exceptions

in subsystems without losing the details of the original failure.

Tip: The wrapping technique is also useful if a checked exception occurs in a method

that is not allowed to throw a checked exception. You can catch the checked exception

and wrap it into a runtime exception.

As this situation often arises with input/output, the Java API provides an

UncheckedIOException that you can use as a wrapper for the checked IOException.

Sometimes, you just want to log an exception and rethrow it without any change:

try {

 access the database

}

catch (Exception e) {

 logger.log(level, message, e);

 throw e;

}

There is a subtle point here. Suppose the code is inside a method

public void updateRecord() throws SQLException

The Java compiler tracks the fact that e originates from the try block. Provided that the only

checked exceptions in that block are SQLException instances, and provided that e is not

changed in the catch block, it is valid to declare the enclosing method as throws SQLException.

7.2.4. The finally Clause

When your code throws an exception, it stops processing the remaining code in your method

and exits the method. This is a problem if the method has acquired some local resource, which

only this method knows about, and that resource must be cleaned up. One solution is to catch

all exceptions, carry out the cleanup, and rethrow the exceptions. But this solution is tedious

because you need to clean up the resource allocation in two places—in the normal code and in

the exception code. The finally clause can solve this problem.

Note: There is a more elegant solution, the try-with-resources statement that you will

see in the following section. We discuss the finally mechanism in detail because it is the

conceptual foundation. But in practice, you will use try-with-resources statements far

more often than finally clauses.

The code in the finally clause executes whether or not an exception was caught. In the

following example, the program will close the input stream under all circumstances:

var in = new FileInputStream(. . .);

try {

 // 1

 code that might throw exceptions

 // 2

}

catch (IOException e) {

 // 3

 show error message

 // 4

}

finally {

 // 5

 in.close();

}

// 6

Let us look at the three possible situations in which the program will execute the finally clause.

1. The code throws no exceptions. In this case, the program first executes all the code in the

try block. Then, it executes the code in the finally clause. Afterwards, execution continues

with the first statement after the finally clause. In other words, execution passes through

points 1, 2, 5, and 6.

2. The code throws an exception that is caught in a catch clause—in our case, an

IOException. For this, the program executes all code in the try block, up to the point at

which the exception was thrown. The remaining code in the try block is skipped. The

program then executes the code in the matching catch clause, and then the code in the

finally clause.

If the catch clause does not throw an exception, the program executes the first line after

the finally clause. In this scenario, execution passes through points 1, 3, 4, 5, and 6.

If the catch clause throws an exception, then the exception is thrown back to the caller of

this method, and execution passes through points 1, 3, and 5 only.

3. The code throws an exception that is not caught in any catch clause. Here, the program

executes all code in the try block until the exception is thrown. The remaining code in the

try block is skipped. Then, the code in the finally clause is executed, and the exception is

thrown back to the caller of this method. Execution passes through points 1 and 5 only.

You can use the finally clause without a catch clause. For example, consider the following try

statement:

InputStream in = . . .;

try {

 code that might throw exceptions

}

finally {

 in.close();

}

The in.close() statement in the finally clause is executed whether or not an exception is

encountered in the try block. Of course, if an exception is encountered, it is rethrown and must

be caught in another catch clause.

InputStream in = . . .;

try {

 try {

 code that might throw exceptions

 }

 finally {

 in.close();

 }

}

catch (IOException e) {

 show error message

}

The inner try block has a single responsibility: to make sure that the input stream is closed. The

outer try block has a single responsibility: to ensure that errors are reported. Not only is this

solution clearer, it is also more functional: Errors in the finally clause are reported.

Caution: A finally clause can yield unexpected results when it contains return

statements. Suppose you exit the middle of a try block with a return statement. Before

the method returns, the finally block is executed. If the finally block also contains a

return statement, then it masks the original return value. Consider this example:

public static int parseInt(String s) {

 try {

 return Integer.parseInt(s);

 }

 finally {

 return 0; // ERROR

 }

}

It looks as if in the call parseInt("42"), the body of the try block returns the integer 42.

However, the finally clause is executed before the method actually returns and causes

the method to return 0, ignoring the original return value.

And it gets worse. Consider the call parseInt("zero"). The Integer.parseInt method

throws a NumberFormatException. Then the finally clause is executed, and the return

statement swallows the exception!

The body of the finally clause is intended for cleaning up resources. Don’t put

statements that change the control flow (return, throw, break, continue) inside a finally

clause.

7.2.5. The try-with-Resources Statement

There is a useful shortcut to the code pattern

open a resource

try {

 work with the resource

}

finally {

 close the resource

}

provided the resource belongs to a class that implements the AutoCloseable interface. That

interface has a single method

void close() throws Exception

Note: There is also a Closeable interface. It is a subinterface of AutoCloseable, also

with a single close method. However, that method is declared to throw an IOException.

In its simplest variant, the try-with-resources statement has the form

try (Resource res = . . .) {

 work with res

}

When the try block exits, then res.close() is called automatically. Here is a typical example—

processing all lines of a file:

try (var in = new Scanner(Path.of("in.txt"))) {

 while (in.hasNextLine()) {

 String line = in.nextLine();

 // Process line

 }

}

When the block exits normally, or when there was an exception, the in.close() method is called,

exactly as if you had used a finally block.

You can specify multiple resources. For example,

try (var in = new Scanner(Path.of("in.txt"));

 var out = new PrintWriter("out.txt")) {

 while (in.hasLine()) {

 String line = in.nextLine();

 out.println(line.toUpperCase());

 }

}

No matter how the block exits, both in and out are closed. If you programmed this by hand, you

would have needed two nested try/finally statements.

You can provide previously declared effectively final variables in the try header:

public static void printAll(String[] lines, PrintWriter out) {

 try (out) { // effectively final variable

 for (String line : lines)

 out.println(line);

 } // out.close() called here

}

This is not common, since one generally prefers to invoke close in the same scope in which the

object was constructed.

A difficulty arises when the try block throws an exception and the close method also throws an

exception. The try-with-resources statement handles this situation quite elegantly. The original

exception is rethrown, and any exceptions thrown by close methods are considered

“suppressed.” They are automatically caught and added to the original exception with the

addSuppressed method. If you are interested in them, call the getSuppressed method which

yields an array of the suppressed expressions from close methods.

You don’t want to program this by hand. Use the try-with-resources statement whenever you

need to close a resource.

Note: A try-with-resources statement can itself have catch clauses and even a finally

clause. These are executed after closing the resources.

7.2.6. Analyzing Stack Trace Elements

A stack trace is a listing of all pending method calls at a particular point in the execution of a

program. You have almost certainly seen stack trace listings—they are displayed whenever a

Java program terminates with an uncaught exception.

You can access the text description of a stack trace by calling the printStackTrace method of the

Throwable class.

var t = new Throwable();

var out = new StringWriter();

t.printStackTrace(new PrintWriter(out));

String description = out.toString();

A more flexible approach is the StackWalker class that yields a stream of

StackWalker.StackFrame instances, each describing one stack frame. You can iterate over the

stack frames with this call:

StackWalker walker = StackWalker.getInstance();

walker.forEach(frame -> analyze frame)

If you want to process the Stream<StackWalker.StackFrame> lazily, call

walker.walk(stream -> process stream)

Stream processing is described in detail in Chapter 1 of Volume II.

The StackWalker.StackFrame class has methods to obtain the file name and line number, as

well as the class object and method name, of the executing line of code. The toString method

yields a formatted string containing all of this information.

Note: The Throwable.getStackTrace method yields a StackTraceElement[] array with

similar information as the stream of StackWalker.StackFrame instances. However, that

call is less efficient since it captures the entire stack even though the caller may only

need a few frames, and it only provides access to the class names, but not the class

objects, of the pending methods.

Listing 7.1 prints the stack trace of a recursive factorial function. For example, if you compute

factorial(3), the printout is

factorial(3):

stackTrace.StackTraceDemo.factorial(StackTraceDemo.java:20)

stackTrace.StackTraceDemo.main(StackTraceDemo.java:36)

factorial(2):

stackTrace.StackTraceDemo.factorial(StackTraceDemo.java:20)

stackTrace.StackTraceDemo.factorial(StackTraceDemo.java:26)

stackTrace.StackTraceDemo.main(StackTraceDemo.java:36)

factorial(1):

stackTrace.StackTraceDemo.factorial(StackTraceDemo.java:20)

stackTrace.StackTraceDemo.factorial(StackTraceDemo.java:26)

stackTrace.StackTraceDemo.factorial(StackTraceDemo.java:26)

stackTrace.StackTraceDemo.main(StackTraceDemo.java:36)

return 1

return 2

return 6

Listing 7.1 v1ch07/StackTraceDemo.java

1 package v1ch07;

2

3 /**

4 * A program that displays a trace feature of a recursive method call.

5 */

6 class StackTraceDemo {

7 void main() {

8 int n = Integer.parseInt(IO.readln("Enter n: "));

9 factorial(n);

10 }

11

12 /**

13 * Computes the factorial of a number

14 * @param n a non-negative integer

15 * @return n! = 1 * 2 * . . . * n

16 */

17 int factorial(int n) {

18 IO.println("factorial(" + n + "):");

19 var walker = StackWalker.getInstance();

20 walker.forEach(IO::println);

21 int r;

22 if (n <= 1)

23 r = 1;

24 else

25 r = n * factorial(n - 1);

26 IO.println("return " + r);

27 return r;

28 }

29 }

java.lang.Throwable 1.0

Throwable(Throwable cause) 1.4

Throwable(String message, Throwable cause) 1.4

construct a Throwable with a given cause.

Throwable initCause(Throwable cause) 1.4

sets the cause for this object or throws an exception if this object already has a cause.

Returns this.

Throwable getCause() 1.4

gets the exception object that was set as the cause for this object, or null if no cause was

set.

StackTraceElement[] getStackTrace() 1.4

gets the trace of the call stack at the time this object was constructed.

void addSuppressed(Throwable t) 7

adds a “suppressed” exception to this exception. This happens in a try-with-resources

statement where t is an exception thrown by a close method.

Throwable[] getSuppressed() 7

gets all “suppressed” exceptions of this exception. Typically, these are exceptions thrown

by a close method in a try-with-resources statement.

java.lang.Exception 1.0

Exception(Throwable cause) 1.4

Exception(String message, Throwable cause)

construct an Exception with a given cause.

java.lang.RuntimeException 1.0

RuntimeException(Throwable cause) 1.4

RuntimeException(String message, Throwable cause) 1.4

construct a RuntimeException with a given cause.

java.lang.StackWalker 9

static StackWalker getInstance()

static StackWalker getInstance(StackWalker.Option option)

static StackWalker getInstance(Set<StackWalker.Option> options)

get a StackWalker instance. The options include RETAIN_CLASS_REFERENCE,

SHOW_HIDDEN_FRAMES, and SHOW_REFLECT_FRAMES from the

StackWalker.Option enumeration.

forEach(Consumer<? super StackWalker.StackFrame> action)

carries out the given action on each stack frame, starting with the most recently called

method.

walk(Function<? super Stream<StackWalker.StackFrame>,? extends T> function)

applies the given function to the stream of stack frames and returns the result of the

function.

java.lang.StackWalker.StackFrame 9

String getFileName()

gets the name of the source file containing the execution point of this element, or null if

the information is not available.

int getLineNumber()

gets the line number of the source file containing the execution point of this element, or

-1 if the information is not available.

String getClassName()

gets the qualified name of the class whose method contains the execution point of this

element.

Class<?> getDeclaringClass()

gets the Class object of the method containing the execution point of this element. An

exception is thrown if the stack walker was not constructed with the

RETAIN_CLASS_REFERENCE option.

String getMethodName()

gets the name of the method containing the execution point of this element. The name of

a constructor is <init>. The name of a static initializer is <clinit>. You can’t distinguish

between overloaded methods with the same name.

boolean isNativeMethod()

returns true if the execution point of this element is inside a native method.

String toString()

returns a formatted string containing the class and method name and the file name and

line number, if available.

java.lang.StackTraceElement 1.4

String getFileName()

gets the name of the source file containing the execution point of this element, or null if

the information is not available.

int getLineNumber()

gets the line number of the source file containing the execution point of this element, or

-1 if the information is not available.

String getClassName()

gets the qualified name of the class containing the execution point of this element.

String getMethodName()

gets the name of the method containing the execution point of this element. The name of

a constructor is <init>. The name of a static initializer is <clinit>. You can’t distinguish

between overloaded methods with the same name.

boolean isNativeMethod()

returns true if the execution point of this element is inside a native method.

String toString()

returns a formatted string containing the class and method name and the file name and

line number, if available.

7.3. Tips for Using Exceptions

There is a certain amount of controversy about the proper use of exceptions. Some

programmers believe that all checked exceptions are a nuisance, others can’t seem to throw

enough of them. I think that exceptions (even checked exceptions) have their place, so I offer

you these tips for their proper use.

1. Exception handling is not supposed to replace a simple test.

As an example of this, here’s code that tries 10,000,000 times to pop an empty stack. It

first does this by finding out whether the stack is empty.

if (!s.empty()) s.pop();

Next, we force it to pop the stack no matter what and catch the EmptyStackException that

tells us we should not have done that.

try {

 s.pop();

}

catch (EmptyStackException e) {

}

On my test machine, the version that calls isEmpty ran in 0.167 seconds. The version that

catches the EmptyStackException ran in 3.629 seconds.

As you can see, it took far longer to catch an exception than to perform a simple test. The

moral is: Use exceptions for exceptional circumstances only.

2. Do not micromanage exceptions.

Some programmers wrap every statement in a separate try block.

PrintStream out;

Stack s;

for (i = 0; i < 100; i++) {

 try {

 n = s.pop();

 }

 catch (EmptyStackException e) {

 // stack was empty

 }

 try {

 out.writeInt(n);

 }

 catch (IOException e) {

 // problem writing to file

 }

}

This approach blows up your code dramatically. Think about the task that you want the

code to accomplish. Here, we want to pop 100 numbers off a stack and save them to a file.

(Never mind why—it is just a toy example.) There is nothing we can do if a problem rears

its ugly head. If the stack is empty, it will not become occupied. If the file contains an

error, the error will not magically go away. It therefore makes sense to wrap the entire task

in a try block. If any one operation fails, you can then abandon the task.

try {

 for (i = 0; i < 100; i++) {

 n = s.pop();

 out.writeInt(n);

 }

}

catch (IOException e) {

 // problem writing to file

}

catch (EmptyStackException e) {

 // stack was empty

}

This code looks much cleaner. It fulfills one of the promises of exception handling: to

separate normal processing from error handling.

3. Make good use of the exception hierarchy.

Don’t just throw an Exception or RuntimeException. Find an appropriate subclass or

create your own.

Don’t just catch Exception. It makes your code hard to read and maintain. Catch only

those exception classes that you expect. And don’t catch Throwable. You might hide an

OutOfMemoryError.

Respect the difference between checked and unchecked exceptions. Checked exceptions

are inherently burdensome—don’t throw them for logic errors. (For example, the

reflection library gets this wrong. Callers often need to catch exceptions that they know

can never happen.)

Do not hesitate to turn an exception into another exception that is more appropriate. For

example, when you parse an integer in a file, catch the NumberFormatException and set it

as the cause of a subclass of IOException or MySubsystemException.

4. Do not squelch exceptions.

In Java, there is a tremendous temptation to shut up exceptions. If you’re writing a method

that calls a method that might throw an exception once a century, the compiler whines

because you have not declared the exception in the throws list of your method. You do not

want to put it in the throws list because then the compiler will whine about all the methods

that call your method. So you just shut it up:

public Image loadImage(String s) {

 try {

 code that threatens to throw checked exceptions

 }

 catch (Exception e) {

 } // so there

}

Now your code will compile without a hitch. It will run fine, except when an exception

occurs. Then, the exception will be silently ignored. If you believe that exceptions are at

all important, you should make some effort to handle them right.

5. When you detect an error, “tough love” works better than indulgence.

Some programmers worry about throwing exceptions when they detect errors. Maybe it

would be better to return a dummy value rather than throw an exception when a method is

called with invalid arguments? For example, should Stack.pop return null, or throw an

exception when a stack is empty? I think it is better to throw an EmptyStackException at

the point of failure than to have a NullPointerException occur at later time.

6. Propagating exceptions is not a sign of shame.

Some programmers feel compelled to catch all exceptions that are thrown. If they call a

method that throws an exception, such as the FileInputStream constructor or the readLine

method, they instinctively catch the exception that may be generated. In many situations, it

is actually better to propagate the exception instead of catching it:

public void readStuff(String filename) throws IOException { // not a sign of shame!

 var in = new FileInputStream(filename);

 . . .

}

Higher-level methods are often better equipped to inform the user of errors or to abandon

unsuccessful commands.

7. Use standard methods for reporting null-pointer and out-of-bounds exceptions.

The Objects class has methods

requireNonNull

checkIndex

checkFromToIndex

checkFromIndexSize

for these common checks. Use them for parameter validation:

public void putData(int position, Object newValue) {

 Objects.checkIndex(position, data.length);

 Objects.requireNonNull(newValue);

 . . .

}

If the method is called with an invalid index or a null argument, an exception is thrown,

using the familiar message that the Java library uses.

8. Don’t show stack traces to end users.

If your program encounters an unexpected exception, it may seem a good idea to display

the stack trace so the users can report it, making it easier for you to pinpoint the issue.

However, stack traces can contain implementation details that you do not want to reveal to

potential attackers, such as the versions of libraries that you are using.

Log the stack trace so that you can retrieve it, but only display a summary message to your

users.

Note: Rules 5 and 6 can be summarized as “throw early, catch late.”

7.4. Using Assertions

Assertions are a commonly used idiom of defensive programming. In the following sections,

you will learn how to use them effectively.

7.4.1. The Assertion Concept

Suppose you are convinced that a particular property is fulfilled, and you rely on that property

in your code. For example, you may be computing

double y = Math.sqrt(x);

You are certain that x is not negative. Perhaps it is the result of another computation that can’t

have a negative result, or it is a parameter of a method that requires its callers to supply only

positive inputs. Still, you want to double-check rather than allow confusing “not a number”

floating-point values creep into your computation. You could, of course, throw an exception:

if (x < 0) throw new IllegalArgumentException("x < 0");

But this code stays in the program, even after testing is complete. If you have lots of checks of

this kind, the program may run quite a bit slower than it should.

The assertion mechanism allows you to put in checks during testing and to have them

automatically removed in the production code.

The Java language has a keyword assert. There are two forms:

assert condition;

and

assert condition : expression;

Both statements evaluate the condition and throw an AssertionError if it is false. In the second

statement, the expression is passed to the constructor of the AssertionError object and turned

into a message string.

Note: The sole purpose of the expression part is to produce a message string. The

AssertionError object does not store the actual expression value, so you can’t query it

later. As the JDK documentation states, doing so “would encourage programmers to

attempt to recover from assertion failure, which defeats the purpose of the facility.”

To assert that x is non-negative, you can simply use the statement

assert x >= 0;

Or you can pass the actual value of x into the AssertionError object, so that it gets displayed

later.

assert x >= 0 : x;

Note: The assert macro of the C language turns the assertion condition into a string that

is printed if the assertion fails. For example, if assert(x >= 0) fails, it prints that "x >= 0"

is the failing condition. In Java, the condition is not automatically part of the error

report. If you want to see it, you have to pass it as a string into the AssertionError

object: assert x >= 0 : "x >= 0".

7.4.2. Assertion Enabling and Disabling

By default, assertions are disabled. Enable them by running the program with the -

enableassertions or -ea option:

java -enableassertions MyProgram

Note that you do not have to recompile your program to enable or disable assertions. Enabling

or disabling assertions is a function of the class loader. When assertions are disabled, the class

loader strips out the assertion code so that it won’t slow execution.

You can even turn on assertions in specific classes or in entire packages. For example:

java -ea:MyClass -ea:com.mycompany.mypackage... MyProgram

This command turns on assertions for the class MyClass and all classes in the

com.mycompany.mypackage package and its subpackages. The option -ea:... turns on

assertions in all classes of the unnamed package.

You can also disable assertions in certain classes and packages with the -disableassertions or -

da option:

java -ea:... -da:MyClass MyProgram

Some classes are not loaded by a class loader but directly by the virtual machine. You can use

these switches to selectively enable or disable assertions in those classes.

However, the -ea and -da switches that enable or disable all assertions do not apply to the

“system classes” without class loaders. Use the -enablesystemassertions/-esa switch to enable

assertions in system classes.

It is also possible to programmatically control the assertion status of class loaders. See the API

notes at the end of this section.

Caution: When assertions are turned off, the assertion condition does not execute.

Therefore, it is important that the condition does not have a side effect. Here is an

example of something that you should not do:

File file = new File(filename);

. . .

assert file.delete(); // BAD

The intent was to make sure that the delete method returns true, which means the file

was properly deleted. But when assertions are turned off, the deletion won’t happen!

The remedy is to move the side effect outside the assert statement:

boolean deletionSuccessful = file.delete();

assert deletionSuccessful;

Note: The source code for the Java library has over four hundred assertions that are

commented out. Some programmers comment out assertions after testing because

otherwise they take up space in the class files. If you are concerned about that, you can

conditionally include them as follows:

public static final boolean ASSERTS = true; // Recompile with false for production

. . .

if (ASSERTS) assert x >= 0;

7.4.3. Using Assertions for Parameter Checking

The Java language gives you three mechanisms to deal with system failures:

Throwing an exception

Logging

Using assertions

When should you choose assertions? Keep these points in mind:

Assertion failures are intended to be fatal, unrecoverable errors.

Assertion checks are turned on only during development and testing. (This is sometimes

jokingly described as “wearing a life jacket when you are close to shore, and throwing it

overboard once you are in the middle of the ocean.”)

Therefore, you would not use assertions for signaling recoverable conditions to another part of

the program or for communicating problems to the program user. Assertions should only be

used to locate internal program errors during testing.

Let’s look at a common scenario—the checking of method parameters. Should you use

assertions to check for illegal index values or null references? To answer that question, you

have to look at the documentation of the method. Suppose you implement a sorting method.

/**

 Sorts the specified range of the specified array in ascending numerical order.

 The range to be sorted extends from fromIndex, inclusive, to toIndex, exclusive.

 @param a the array to be sorted

 @param fromIndex the index of the first element (inclusive) to be sorted

 @param toIndex the index of the last element (exclusive) to be sorted

 @throws IllegalArgumentException if fromIndex > toIndex

 @throws ArrayIndexOutOfBoundsException if fromIndex < 0 or toIndex > a.length

*/

static void sort(int[] a, int fromIndex, int toIndex)

The documentation states that the method throws an exception if the index values are incorrect.

That behavior is part of the contract that the method makes with its callers. If you implement

the method, you have to respect that contract and throw the indicated exceptions. It would not

be appropriate to use assertions instead.

Should you assert that a is not null? That is not appropriate either. The method documentation

is silent on the behavior of the method when a is null. The callers have the right to assume that

the method will return successfully in that case and not throw an assertion error.

However, suppose the method contract had been slightly different:

@param a the array to be sorted (must not be null)

Now the callers of the method have been put on notice that it is illegal to call the method with a

null array. Then the method may start with the assertion

assert a != null;

Computer scientists call this kind of contract a precondition. The original method had no

preconditions on its parameters—it promised a well-defined behavior in all cases. The revised

method has a single precondition: that a is not null. If the caller fails to fulfill the precondition,

then all bets are off and the method can do anything it wants. In fact, with the assertion in

place, the method does just that. It sometimes throws an assertion error, and sometimes a null

pointer exception, depending on how its class loader is configured.

7.4.4. Using Assertions for Documenting Assumptions

Often, programmers use comments to document their underlying assumptions. Consider this

example from https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html:

https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html

if (i % 3 == 0)

 . . .

else if (i % 3 == 1)

 . . .

else // (i % 3 == 2)

 . . .

In this case, it makes a lot of sense to use an assertion instead.

if (i % 3 == 0)

 . . .

else if (i % 3 == 1)

 . . .

else {

 assert i % 3 == 2;

 . . .

}

Of course, it would make even more sense to think through the issue thoroughly. What are the

possible values of i % 3? If i is positive, the remainders must be 0, 1, or 2. If i is negative, then

the remainders can be -1 or -2. Thus, the real assumption is that i is not negative. A better

assertion would be

assert i >= 0;

before the if statement.

At any rate, this example shows a good use of assertions as a self-check for the programmer. As

you can see, assertions are a tactical tool for testing and debugging. In contrast, logging is a

strategic tool for the entire lifecycle of a program. We will examine logging in the next section.

java.lang.ClassLoader 1.0

void setDefaultAssertionStatus(boolean b) 1.4

enables or disables assertions for all classes loaded by this class loader that don’t have an

explicit class or package assertion status.

void setClassAssertionStatus(String className, boolean b) 1.4

enables or disables assertions for the given class and its inner classes.

void setPackageAssertionStatus(String packageName, boolean b) 1.4

enables or disables assertions for all classes in the given package and its subpackages.

void clearAssertionStatus() 1.4

removes all explicit class and package assertion status settings and disables assertions for

all classes loaded by this class loader.

7.5. Logging

Every Java programmer is familiar with the process of inserting print statements into

troublesome code to gain insight into program behavior. Of course, once you have figured out

the cause of trouble, you remove the print statements—only to put them back in when the next

problem surfaces. Logging frameworks are designed to overcome this problem.

7.5.1. Should You Use the Java Logging Framework?

Java has a standard logging framework, usually called after its package name java.util.logging

and sometimes abbreviated as j.u.l. However, other logging frameworks have more features and

are in common use, such as Log4j (https://logging.apache.org/log4j/2.x) and Logback

(https://logback.qos.ch).

If you want to give users of your code the choice of logging framework, then you should use a

“façade” library that sends log messages to the preferred framework. A commonly used façade

with a pleasant API is SLF4J (https://www.slf4j.org). Another façade is the “platform logging

API” (also known as JEP 264). It is very basic but a part of the JDK. The façade is sometimes

called the frontend. It provides the API that programmers use to log messages. The backend is

https://logging.apache.org/log4j/2.x
https://logback.qos.ch/
https://www.slf4j.org/

in charge of filtering and formatting the messages, and putting them somewhere. The backend

needs to be configurable by deployers, usually by editing configuration files.

In the following sections, I will show you how to use the platform logging API as frontend and

java.util.logging as a backend. This can be a reasonable choice if you find the frontend API

sufficient, since you can always swap out the backend.

The java.util.logging backend has fewer features than its more popular alternatives, but it

suffices for many use cases. Because of its simplicity, it is less susceptible to attacks. In

contrast, obscure features of Log4j allowed hackers to craft program inputs that, when logged,

caused malicious code execution.

Whether or not you end up using them, studying the platform logging API and java.util.logging

backend gives you a good foundation of the capabilities of logging frameworks.

Note: The API and backend that the following sections describe are for application

logging. You can also turn on logging for the virtual machine, for example to log

garbage collection. Use the -Xlog command-line option when starting the VM. For

example,

java -Xlog:gc=trace:file=gc.log:uptime,tid MyProgram

See https://docs.oracle.com/en/java/javase/21/docs/specs/man/java.html#enable-

logging-with-the-jvm-unified-logging-framework for details.

7.5.2. Logging 101

Platform loggers implement the System.Logger interface. Each logger has a name. The name

can be arbitrary, but it is often the package name of the class whose methods generate logging

messages. You get a platform logger like this:

System.Logger logger = System.getLogger("com.mycompany.myapp");

When you request a logger with a given name for the first time, it is created. Subsequent calls

to the same name yield the same logger object.

Now you are ready to log:

logger.log(System.Logger.Level.INFO, "Opening file " + filename);

The record is printed like this:

Aug 04, 2025 09:53:34 AM com.mycompany.myapp.Main read

INFO: Opening file data.txt

Note that the time and the names of the calling class and method are automatically included.

https://docs.oracle.com/en/java/javase/21/docs/specs/man/java.html#enable-logging-with-the-jvm-unified-logging-framework

To turn off these informational messages when your program is deployed, you can configure

the backend. In the case of the java.util.logging backend, prepare a file logging.properties with

the following contents:

handlers=java.util.logging.ConsoleHandler

com.mycompany.myapp.level=WARNING

Then start the application like this:

java -Djava.util.logging.config.file=logging.properties com.mycompany.myapp.Main

Since the INFO level is below the WARNING level, the message no longer shows up.

The API for getting the logger and logging a message is part of the frontend—in this case, the

platform logging API. If you use a different frontend, the API will be different.

The message destination, formatting, and filtering, as well as the mechanisms for the

configuration are part of the backend—here, java.util.logging. If you use a different backend,

follow its instructions for configuration.

7.5.3. The Platform Logging API

As you saw in the preceding section, each logged message has a level. The enumeration

System.Logger.Level has the following values, in decreasing severity: ERROR, WARNING,

INFO, DEBUG, and TRACE.

Tip: With the import statement

import static java.lang.System.Logger.Level.*;

you can shorten the levels:

logger.log(INFO, "Opening file " + filename);

 // Instead of System.Logger.Level.INFO

In the above example, the message "Opening file " + filename is created even if the message is

suppressed. If you are concerned with the cost of creating the message string, you can use a

lambda expression instead:

logger.log(INFO, () -> "Opening file " + filename);

Then the message is only computed when it is actually logged.

It is common to log an exception. The log includes the stack trace.

catch (IOException ex) {

 logger.log(WARNING, "Cannot open file " + filename, ex);

}

You can format the message using a pattern:

logger.log(WARNING, "Cannot open file {0}", filename);

Caution: This is not a printf style pattern. The pattern is processed by the

MessageFormat class that is used for localization of program messages (see Volume II

for details). Here, you just need to know that string placeholders are {0}, {1}, and so

on. Braces must be escaped with single quotes: '{', '}'. Use two single quotes '' to

include a literal single quote in the message.

Log messages can be localized to different languages, using the resource bundle mechanism

that is introduced in Volume II.

Supply the bundle and the key for the formatting string:

logger.log(WARNING, bundle, "file.bad", filename);

 // Looks up file.bad in the bundle

Alternatively, get the logger as

System.Logger logger = System.getLogger("com.mycompany.myapp", bundle);

When calling one of the logger methods with a String parameter for the message or format, the

argument is interpreted as a key in the bundle. The methods with Object or Supplier<String>

parameters are unaffected.

Some, but not all combinations of these features (deferred message computation, adding a

throwable, formatting, using a bundle) are supported. See the API notes for details.

7.5.4. Logging Configuration

Let us now turn to the logging backend. As already mentioned, the default backend of the

platform logging API is java.util.logging. The information in the following sections is specific

to that backend.

You can change various properties of the backend by editing a configuration file. The default

configuration file is located at conf/logging.properties in the JDK. To use another file, set the

java.util.logging.config.file property to the file location by starting your application with

java -Djava.util.logging.config.file=configFile MainClass

Caution: Calling System.setProperty("java.util.logging.config.file", configFile) in main

has no effect because the log manager is initialized during VM startup, before main

executes.

You can specify the logging levels for your own loggers by adding lines such as

com.mycompany.myapp.level=WARNING

That is, append the .level suffix to the logger name.

Note: Properties in the logging configuration are not system properties. You cannot set

them with the -D command-line option. Instead, place the logging properties into a file

that you specify with -Djava.util.logging.config.file=configFile.

You can also specify the root level:

.level=WARNING

Caution: For historical reasons, some of the levels have different names in the platform

logging API and the java.util.logging framework. You need to use the latter in the

configuration file. Table 7.1 shows the correspondences.

Table 7.1: Corresponding Levels for

Platform Logging and the Java Logging

Framework

Platform Logging java.util.logging

ERROR SEVERE

WARNING WARNING

INFO INFO

DEBUG FINE

TRACE FINER

Similar to package names, logger names are hierarchical. In fact, they are more hierarchical

than packages. There is no semantic relationship between a package and its parent, but logger

parents and children share certain properties. For example, if you turn off messages to the

logger "com.mycompany", then its child loggers are also deactivated.

As you will see in the next section, loggers don’t actually send the messages to the console—

that is the job of the handlers. Handlers also have levels. To see DEBUG/FINE messages on the

console, you also need to set

java.util.logging.ConsoleHandler.level=FINE

Caution: The settings in the log manager configuration are not system properties.

Starting a program with -Dcom.mycompany.myapp.level=FINE does not have any

effect on the logger.

It is also possible to change logging levels in a running program by using the jconsole program.

For details, see https://www.oracle.com/technical-

resources/articles/java/jconsole.html#LoggingControl.

Note: As of Java 21, the system logger with name java.lang.Runtime logs calls to the

Runtime.exit method (which System.exit calls to terminate the virtual machine). The

log contains the stack trace, so you can tell how termination was requested. To receive

the log message, set

java.lang.Runtime.level=FINE

in the log configuration.

7.5.5. Log Handlers

https://www.oracle.com/technical-resources/articles/java/jconsole.html#LoggingControl

The backend of the java.util.logging API is based on handlers. The simplest handler is the

ConsoleHandler that prints log records to the System.err stream.

Each handler has a parent. By default, the handler simply sends each record to the parent

handler. The standard logging configuration uses a ConsoleHandler by default. Its default

logging level is INFO.

To send log records elsewhere, add another handler. The java.util.logging API provides two

handlers for this purpose: a FileHandler and a SocketHandler. The SocketHandler sends

records to a specified host and port. Of greater interest is the FileHandler that collects records

in a file.

To add a file handler, provide this entry in the logging properties:

handlers=java.util.logging.ConsoleHandler,java.util.logging.FileHandler

The records are sent to a file javan.log in the user’s home directory, where n is a number to

make the file unique. By default, the records are formatted in XML. A typical log record has

the form

<record>

 <date>2025-12-04T09:53:34</date>

 <millis>1407146014072</millis>

 <sequence>1</sequence>

 <logger>com.mycompany.myapp</logger>

 <level>INFO</level>

 <class>com.horstmann.corejava.Employee</class>

 <method>read</method>

 <thread>10</thread>

 <message>Opening file staff.txt</message>

</record>

You can modify the default behavior of the file handler by setting various parameters in the

logging properties (see Table 7.2).

You probably don’t want to use the default log file name. Use a pattern such as

%h/myapp%u.log (see Table 7.3 for an explanation of the pattern variables). The %u in the file

name pattern yields a unique copy of the log for each application run.

For long-running programs, it is a good idea to turn file rotation on. Log files are kept in a

rotation sequence, such as myapp.log.0, myapp.log.1, myapp.log.2, and so on. Whenever a file

exceeds the size limit, the oldest log is deleted, the other files are renamed, and a new file with

generation number 0 is created.

Table 7.2: File Handler Configuration Parameters

Configuration Property Description Default

java.util.logging.FileHandler.level
The handler

level.
Level.ALL

java.util.logging.FileHandler.append When true,

log records

are

appended to

an existing

file;

otherwise, a

new file is

opened for

false

each

program

run.

java.util.logging.FileHandler.limit

The

approximate

maximum

number of

bytes to

write in a

file before

opening

another (0 =

no limit).

0 in the FileHandler class,

50000 in the default log

manager configuration

java.util.logging.FileHandler.pattern

The file

name

pattern (see

Table 7.3).

%h/java%u.log

java.util.logging.FileHandler.count The number

of logs in a

rotation

sequence.

1 (no rotation)

java.util.logging.FileHandler.filter

The filter

for filtering

log records

(see Section

7.5.6).

No filtering

java.util.logging.FileHandler.encoding

The

character

encoding.

The platform character

encoding

java.util.logging.FileHandler.formatter

The

formatter

for each log

record.

java.util.logging.XMLFormatter

Table 7.3: Log File Pattern Variables

Variable Description

%h The user’s home directory (the user.home property).

%t The system’s temporary directory.

%u A unique number.

%g
The generation number for rotated logs. A .%g suffix is used if rotation

is specified and the pattern doesn’t contain %g.

%% The percent character.

Caution: When java.util.logging.FileHandler.append is true, and the log format is

XML, then a new XML header is emitted when appending to an existing log file. The

result is not valid XML.

7.5.6. Filters and Formatters

Besides filtering by logging levels, each handler can have an additional filter that implements

the Filter interface, a functional interface with a method

boolean isLoggable(LogRecord record)

To install a filter into a handler, add an entry such as the following into the logging

configuration:

java.util.logging.ConsoleHandler.filter=com.mycompany.myapp.MyFilter

The ConsoleHandler and FileHandler classes emit the log records in text and XML formats.

However, you can define your own formats as well. Extend the java.util.logging.Formatter

class and override the method

String format(LogRecord record)

Format the record in any way you like and return the resulting string. In your format method,

you can get information about the LogRecord by calling one of the methods in the API notes.

In your format method, you may want to call the method

String formatMessage(LogRecord record)

That method formats the message part of the record, looking up the message key in a resource

bundle and substituting message format parameters.

Many file formats (such as XML) require head and tail parts that surround the formatted

records. To achieve this, override the methods

String getHead(Handler h)

String getTail(Handler h)

Finally, set the formatter in the logging configuration:

java.util.logging.FileHandler.formatter=com.mycompany.myapp.MyFormatter

7.5.7. A Logging Recipe

With so many options for logging, it is easy to lose track of the fundamentals. The following

recipe summarizes the most common operations.

1. For a simple application, choose a single logger. It is a good idea to give the logger the

same name as your main application package, such as com.mycompany.myprog. You can

always get the logger by calling

System.Logger logger = System.getLogger("com.mycompany.myprog");

For convenience, you may want to add static fields

private static final System.Logger logger

 = System.getLogger("com.mycompany.myprog");

to classes with a lot of logging activity.

2. The default logging configuration of the java.util.logging backend logs all messages of

level INFO or higher to the console. To customize, prepare a file logging.properties with

entries such as the following:

handlers=java.util.logging.ConsoleHandler,java.util.logging.FileHandler

com.mycompany.myapp.level=FINER

java.util.logging.ConsoleHandler.level=FINE

Then start your app with

java -Djava.util.logging.config.file=logging.properties com.mycompany.myapp.Main

3. Now you are ready to log to your heart’s content. Whenever you are tempted to print a

message to the console, use a logger instead:

logger.log(System.Logger.Level.TRACE, "File open dialog canceled");

It is also a good idea to log unexpected exceptions. For example:

try {

 . . .

}

catch (SomeException e) {

 logger.log(System.Logger.Level.WARNING, string describing context, e);

}

Listing 7.2 puts this recipe to use with an added twist: Logging messages are also displayed in a

log window, thanks to a handler whose code is in Listing 7.3.

Run the program as

java -Djava.util.logging.config.file=v1ch07/logging/logging.properties \

 v1ch07.logging.LoggingImageViewer

Listing 7.2 v1ch07/logging/LoggingImageViewer.java

1 package v1ch07.logging;

2

3 import module java.base;

4 import module java.desktop;

5 import javax.swing.filechooser.FileFilter;

6

7 import static java.lang.System.Logger.Level.*;

8

9 /**

10 * A modification of the image viewer program that logs various events. Run as java

11 * -Djava.util.logging.config.file=logging.properties logging.LoggingImageViewer

12 */

13 class LoggingImageViewer {

14 void main() {

15 EventQueue.invokeLater(() -> {

16 var frame = new ImageViewerFrame();

17 frame.setTitle("LoggingImageViewer");

18 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

19 System.Logger logger = System.getLogger("com.horstmann.corejava");

20 logger.log(INFO, "Showing frame");

21 frame.setVisible(true);

22 });

23 }

24 }

25

26 /**

27 * The frame that shows the image.

28 */

29 class ImageViewerFrame extends JFrame {

30 private static final int DEFAULT_WIDTH = 300;

31 private static final int DEFAULT_HEIGHT = 400;

32

33 private JLabel label;

34 private static System.Logger logger = System.getLogger("com.horstmann.corejava");

35

36 public ImageViewerFrame() {

37 logger.log(TRACE, "Entering ImageViewerFrame()");

38 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

39

40 // set up menu bar

41 var menuBar = new JMenuBar();

42 setJMenuBar(menuBar);

43

44 var menu = new JMenu("File");

45 menuBar.add(menu);

46

47 var openItem = new JMenuItem("Open");

48 menu.add(openItem);

49 openItem.addActionListener(new FileOpenListener());

50

51 var exitItem = new JMenuItem("Exit");

52 menu.add(exitItem);

53 exitItem.addActionListener(new ActionListener() {

54 public void actionPerformed(ActionEvent event) {

55 logger.log(INFO, "Exiting.");

56 System.exit(0);

57 }

58 });

59

60 // use a label to display the images

61 label = new JLabel();

62 add(label);

63 logger.log(TRACE, "Exiting ImageViewerFrame()");

64 }

65

66 private class FileOpenListener implements ActionListener {

67 public void actionPerformed(ActionEvent event) {

68 logger.log(TRACE, "Entering ImageViewerFrame.FileOpenListener.actionPerformed(%s)",

69 event);

70

71 // set up file chooser

72 var chooser = new JFileChooser();

73 chooser.setCurrentDirectory(new File("."));

74

75 // accept all files ending with .gif

76 chooser.setFileFilter(new FileFilter() {

77 public boolean accept(File f) {

78 return f.getName().toLowerCase().endsWith(".gif") || f.isDirectory();

79 }

80

81 public String getDescription() {

82 return "GIF Images";

83 }

84 });

85

86 // show file chooser dialog

87 int r = chooser.showOpenDialog(ImageViewerFrame.this);

88

89 // if image file accepted, set it as icon of the label

90 if (r == JFileChooser.APPROVE_OPTION) {

91 String name = chooser.getSelectedFile().getPath();

92 logger.log(DEBUG, "Reading file %s", name);

93 label.setIcon(new ImageIcon(name));

94 }

95 else

96 logger.log(DEBUG, "File open dialog canceled.");

97 logger.log(TRACE, "Exiting ImageViewerFrame.FileOpenListener.actionPerformed");

98 }

99 }

100 }

Listing 7.3 v1ch07/logging/WindowHandler.java

1 package v1ch07.logging;

2

3 import module java.base;

4 import module java.desktop;

5 import module java.logging;

6

7 /**

8 * A handler for displaying log records in a window.

9 */

10 public class WindowHandler extends StreamHandler {

11 private JFrame frame;

12

13 public WindowHandler() {

14 frame = new JFrame();

15 var output = new JTextArea();

16 output.setEditable(false);

17 frame.setSize(200, 200);

18 frame.add(new JScrollPane(output));

19 frame.setFocusableWindowState(false);

20 frame.setVisible(true);

21 setOutputStream(new OutputStream() {

22 public void write(int b) {

23 } // not called

24

25 public void write(byte[] b, int off, int len) {

26 output.append(new String(b, off, len));

27 }

28 });

29 }

30

31 public void publish(LogRecord record) {

32 if (!frame.isVisible()) return;

33 super.publish(record);

34 flush();

35 }

36 }

java.lang.System.Logger 9

String getName()

returns the name of this logger.

boolean isLoggable(System.Logger.Level level)

returns true if this logger processes logs at the given level.

void log(System.Logger.Level level, String msg)

void log(System.Logger.Level level, String msg, Throwable thrown)

void log(System.Logger.Level level, Object obj)

log the given message and any provided Throwable, or obj.toString.

void log(System.Logger.Level level, Supplier<String> msgSupplier)

void log(System.Logger.Level level, Supplier<String> msgSupplier, Throwable thrown)

If this logger processes logs at the given level, invokes the supplier and logs the result and

any provided Throwable.

void log(System.Logger.Level level, String format, Object... params)

logs the formatted message with the given parameters.

void log(System.Logger.Level level, ResourceBundle bundle, String format, Object...

params)

If bundle is null, uses the format string directly, otherwise looks it up using format as key

in the bundle. Then uses the format string as a MessageFormat with the given parameters

and logs the result.

void log(System.Logger.Level level, ResourceBundle bundle, String msg, Throwable

thrown)

If bundle is null, logs msg, otherwise the string with msg as key in the bundle. Then logs

thrown if not null.

java.util.logging.Handler 1.4

abstract void publish(LogRecord record)

sends the record to the intended destination.

abstract void flush()

flushes any buffered data.

abstract void close()

flushes any buffered data and releases all associated resources.

Filter getFilter()

void setFilter(Filter f)

get and set the filter of this handler.

Formatter getFormatter()

void setFormatter(Formatter f)

get and set the formatter of this handler.

Level getLevel()

void setLevel(Level l)

get and set the level of this handler.

java.util.logging.ConsoleHandler 1.4

ConsoleHandler()

constructs a new console handler.

java.util.logging.FileHandler 1.4

FileHandler(String pattern)

FileHandler(String pattern, boolean append)

FileHandler(String pattern, int limit, int count)

FileHandler(String pattern, int limit, int count, boolean append)

FileHandler(String pattern, long limit, int count, boolean append) 9

construct a file handler. See for the pattern format. limit is the approximate maximum

number of bytes before a new log file is opened. count is the number of files in a rotation

sequence. If append is true, records should be appended to an existing log file.

java.util.logging.LogRecord 1.4

Level getLevel()

gets the logging level of this record.

String getLoggerName()

gets the name of the logger that is logging this record.

ResourceBundle getResourceBundle()

String getResourceBundleName()

get the resource bundle, or its name, to be used for localizing the message, or null if none

is provided.

String getMessage()

gets the “raw” message before localization or formatting.

Object[] getParameters()

gets the parameter objects, or null if none is provided.

Throwable getThrown()

gets the thrown object, or null if none is provided.

String getSourceClassName()

String getSourceMethodName()

get the location of the code that logged this record. This information may be supplied by

the logging code or automatically inferred from the runtime stack. It might be inaccurate

if the logging code supplied the wrong value or if the running code was optimized so that

the exact location cannot be inferred.

long getMillis()

gets the creation time, in milliseconds since 1970.

Instant getInstant() 9

gets the creation time as a java.time.Instant (see Chapter 6 of Volume II).

long getSequenceNumber()

gets the unique sequence number of this record.

long getLongThreadID() 16

gets the unique ID for the thread in which this record was created. (The getThreadID

method returns int IDs. It is now deprecated because a long-running program might

generate more than Integer.MAX_VALUE thread IDs.)

java.util.logging.Filter 1.4

boolean isLoggable(LogRecord record)

returns true if the given log record should be logged.

java.util.logging.Formatter 1.4

abstract String format(LogRecord record)

returns the string that results from formatting the given log record.

String getHead(Handler h)

String getTail(Handler h)

return the strings that should appear at the head and tail of the document containing the

log records. The Formatter superclass defines these methods to return the empty string;

override them if necessary.

String formatMessage(LogRecord record)

returns the localized and formatted message part of the log record.

7.6. Debugging Tips

Suppose you wrote your program and made it bulletproof by catching and properly handling all

exceptions. Then you run it, and it does not work right. Now what? (If you never have this

problem, you can skip the remainder of this chapter.)

Of course, it is best if you have a convenient and powerful debugger. Debuggers are available

as a part of professional development environments such as Eclipse, IntelliJ, and NetBeans. In

this section, I offer a number of tips that may be worth trying before you launch the debugger.

1. You can print or log the value of any variable with code like this:

IO.println("x=" + x);

or

logger.log(DEBUG, "x=" + x);

If x is a number, it is converted to its string equivalent. If x is an object, Java calls its

toString method. It can also be useful to log the state of the this object.

logger.log(DEBUG, "this=" + this);

Most of the classes in the Java library are very conscientious about overriding the toString

method to give you useful information about the class. This is a real boon for debugging.

You should make the same effort in your classes.

2. You can put a separate main method in each class. Inside it, put code that demonstrates

how the class should be used.

public class MyClass {

 methods and fields

 . . .

 void main() {

 demo code

 }

}

Make a few objects, call methods, and show that each of them does the right thing.

3. For more professional unit testing, you should check out JUnit from https://junit.org. JUnit

is a very popular unit testing framework that makes it easy to organize suites of test cases.

Run the tests whenever you make changes to a class, and add another test case whenever

you find a bug.

4. A logging proxy is an object of a subclass that intercepts method calls, logs them, and then

calls the original method. For example, if you have trouble with the nextDouble method of

the Random class, you can create a proxy object as an instance of an anonymous subclass:

https://junit.org/

var generator = new Random()

 {

 public double nextDouble()

 {

 double result = super.nextDouble();

 logger.log(DEBUG, "nextDouble: " + result);

 return result;

 }

 };

Whenever the nextDouble method is called, a log message is generated.

Note that this only works if the class is not final. With interfaces, one can implement a

proxy that logs all methods, as shown in Chapter 6.

5. You can get a stack trace from any exception object with the printStackTrace method in

the Throwable class. The following code catches any exception, prints the exception

object and the stack trace, and rethrows the exception so it can find its intended handler.

try {

 . . .

}

catch (Throwable t) {

 t.printStackTrace();

 throw t;

}

You don’t even need to catch an exception to generate a stack trace. Simply insert the

statement

Thread.dumpStack();

anywhere into your code to get a stack trace.

6. Normally, the stack trace is displayed on System.err. If you want to log or display the

stack trace, here is how you can capture it into a string:

var out = new StringWriter();

new Throwable().printStackTrace(new PrintWriter(out));

String description = out.toString();

7. It is often handy to trap program errors in a file. However, errors are sent to System.err,

not the standard console output. Therefore, you cannot simply trap them by running

java MyProgram > errors.txt

Instead, capture the error stream as

java MyProgram 2> errors.txt

To capture both System.err and console output in the same file, use

java MyProgram 1> errors.txt 2>&1

This works in bash and the Windows shell.

8. Having the stack traces of uncaught exceptions show up in System.err is not ideal. These

messages are confusing to end users if they happen to see them, and they are not available

for diagnostic purposes when you need them. A better approach is to log them. You can

change the handler for uncaught exceptions with the static

Thread.setDefaultUncaughtExceptionHandler method:

Thread.setDefaultUncaughtExceptionHandler((Thread t, Throwable e) ->

 logger.log(TRACE, "Uncaught exception in " + t, e));

9. To watch class loading, launch the Java virtual machine with the -verbose flag. You will

get a printout such as the following:

[0.012s][info][class,load] opened: /opt/jdk-21.0.1/lib/modules

[0.034s][info][class,load] java.lang.Object source: jrt:/java.base

[0.035s][info][class,load] java.io.Serializable source: jrt:/java.base

[0.035s][info][class,load] java.lang.Comparable source: jrt:/java.base

[0.035s][info][class,load] java.lang.CharSequence source: jrt:/java.base

[0.035s][info][class,load] java.lang.String source: jrt:/java.base

[0.036s][info][class,load] java.lang.reflect.AnnotatedElement source: jrt:/java.base

[0.036s][info][class,load] java.lang.reflect.GenericDeclaration source: jrt:/java.base

[0.036s][info][class,load] java.lang.reflect.Type source: jrt:/java.base

[0.036s][info][class,load] java.lang.Class source: jrt:/java.base

[0.036s][info][class,load] java.lang.Cloneable source: jrt:/java.base

[0.037s][info][class,load] java.lang.ClassLoader source: jrt:/java.base

[0.037s][info][class,load] java.lang.System source: jrt:/java.base

[0.037s][info][class,load] java.lang.Throwable source: jrt:/java.base

[0.037s][info][class,load] java.lang.Error source: jrt:/java.base

[0.037s][info][class,load] java.lang.ThreadDeath source: jrt:/java.base

[0.037s][info][class,load] java.lang.Exception source: jrt:/java.base

[0.037s][info][class,load] java.lang.RuntimeException source: jrt:/java.base

[0.038s][info][class,load] java.lang.SecurityManager source: jrt:/java.base

. . .

This can occasionally be helpful to diagnose class path problems.

10. The -Xlint option tells the compiler to spot common code problems. For example, if you

compile with the command

javac -Xlint sourceFiles

the compiler will report missing break statements in switch statements and many other

categories of warnings. (The term “lint” originally described a tool for locating potential

problems in C programs, but is now generically applied to any tools that flag constructs

that are questionable but not illegal.)

You will get messages such as

warning: [fallthrough] possible fall-through into case

The string in square brackets identifies the warning category. You can enable and disable

each category. Since most of them are quite useful, it seems best to leave them all in place

and disable only those that you don’t care about, like this:

javac -Xlint:all,-fallthrough,-serial sourceFiles

You get a list of all warnings from the command

javac --help-lint

11. The Java VM has support for monitoring and management of Java applications, allowing

the installation of agents in the virtual machine that track memory consumption, thread

usage, class loading, and so on. This feature is particularly important for large and long-

running Java programs. As a demonstration of these capabilities, the JDK ships with a

graphical tool called jconsole that displays statistics about the performance of a virtual

machine (see Figure 7.2). Start your program, then start jconsole and pick your program

from the list of running Java programs.

Figure 7.2: The jconsole program

This program gives you a wealth of information about your running program. See

https://www.oracle.com/technical-resources/articles/java/jconsole.html for more

information.

https://www.oracle.com/technical-resources/articles/java/jconsole.html

12. Java Flight Recorder is an instrumentation technology of the OpenJDK virtual machine

that collects diagnostic and profiling data. You can use the open-source VisualVM

(https://visualvm.github.io) and Java Mission Control (https://adoptium.net/jmc) to collect

and view flight recording data. These tools also do everything that you can do with

jconsole. See https://github.com/thegreystone/jmc-tutorial for a comprehensive tutorial for

the latter.

13. The JDK comes with a number of command-line tools with overlapping use cases for

monitoring the virtual machine (jcmd, jhsdb, jinfo, jmap, jps, jstat). The jcmd tool is a

good starting point since it covers several of those use cases. Run

jcmd

to get a list of all Java processes on your computer, with process ID and the name of the

main class.

To list system properties or VM flags, run

jcmd pidOrMainClass VM.system_properties

jcmd pidOrMainClass VM.flags

You can configure the virtual machine log:

jcmd pidOrMainClass VM.log output=gc.log what=gc=trace decorators=uptime,tid

https://visualvm.github.io/
https://adoptium.net/jmc
https://github.com/thegreystone/jmc-tutorial

To get a thread dump, run

jcmd pidOrMainClass Thread.print

or

jcmd pidOrMainClass Thread.dump_to_file -overwrite -format=json dump.json

To start Java Flight Recorder, run

jcmd pidOrMainClass JFR.start filename=filename

To stop recording, run

jcmd pidOrMainClass JFR.stop name=1

To get a list of all available commands, run

jcmd pidOrMainClass

To get help for a particular command, run

jcmd pidOrMainClass help commandName

This chapter introduced you to exception handling and logging. You also saw useful hints for

testing and debugging. The next two chapters cover generic programming and its most

important application: the Java collections framework.

Chapter 8 ▪ Generic
Programming

Generic classes and methods have type parameters. This allows them to

describe precisely how the types should be used in the implementation.

Prior to generic classes, programmers had to use the Object class for writing

code that works with multiple types. This was both cumbersome and

unsafe.

With the introduction of generics, Java has an expressive type system that

allows designers to describe in detail how types of variables and methods

should vary. In straightforward situations, you will find it simple to

implement generic code. In more advanced cases, it can get quite complex

—for implementors. The goal is to provide classes and methods that other

programmers can use without surprises.

The introduction of generics in Java 5 was a significant change in the Java

programming language. A major design goal was to be backward

compatible with earlier releases. As a result, Java generics have some

uncomfortable limitations. You will learn about the benefits and challenges

of generic programming in this chapter.

8.1. Type Parameters

Generic programming means writing code that can be reused for objects of

many different types. For example, you don’t want to program separate

classes to collect String and File objects. And you don’t have to—the single

class ArrayList collects objects of any class. This is one example of generic

programming.

Actually, Java had an ArrayList class before it had generic classes. Let us

investigate how the mechanism for generic programming has evolved, and

what that means for users and implementors.

8.1.1. The Advantage of Generic Programming

Before generic classes were added to Java, generic programming was

achieved with inheritance. The ArrayList class simply maintained an array

of Object references:

public class ArrayList { // before generic classes

 private Object[] elementData;

 . . .

 public Object get(int i) { . . . }

 public void add(Object o) { . . . }

}

This approach has two problems. A cast is necessary whenever you retrieve

a value:

ArrayList files = new ArrayList();

. . .

String filename = (String) files.get(i);

Moreover, there is no error checking. You can add values of any class:

files.add(Path.of(". . ."));

files.add(new File(". . ."));

These calls compile and run without error. Elsewhere, casting the result of

files.get(i) to a String will throw an exception.

Generics offer a better solution: type parameters. The ArrayList class now

has a type parameter that indicates the element type:

var files = new ArrayList<String>();

This makes your code easier to read. You can tell right away that this

particular array list contains String objects.

Note: If you declare a variable with an explicit type instead of var,

you can omit the type parameter in the constructor by using the

“diamond” syntax:

ArrayList<String> files = new ArrayList<>();

The omitted type is inferred from the type of the variable. (The

nickname of the syntax comes from the empty <> that vaguely looks

like a diamond.)

The compiler can make good use of the type information too. No cast is

required for calling get. The compiler knows that the return type is String,

not Object:

String filename = files.get(0);

The compiler also knows that the add method of an ArrayList<String> has a

parameter of type String. That is a lot safer than having an Object

parameter. Now the compiler can check that you don’t insert objects of the

wrong type. For example, the statement

files.add(new File(". . .")); // can only add String objects to an

ArrayList<String>

will not compile. A compiler error is much better than a class cast exception

at runtime.

This is the appeal of type parameters: They make your programs easier to

read and safer.

8.1.2. Who Wants to Be a Generic Programmer?

It is easy to use a generic class such as ArrayList. Most Java programmers

will simply use types such as ArrayList<String> as if they had been built

into the language, just like String[] arrays. (Of course, array lists are better

than arrays because they can expand automatically.)

However, it is not so easy to implement a generic class. The programmers

who use your code will want to plug in all sorts of classes for your type

parameters. They will expect everything to work without onerous

restrictions and confusing error messages. Your job as a generic

programmer, therefore, is to anticipate all the potential future uses of your

class.

How hard can this get? Here is a typical issue that the designers of the

standard class library had to grapple with. The ArrayList class has a method

addAll to add all elements of another collection. A programmer may want

to add all elements from an ArrayList<Manager> to an

ArrayList<Employee>. But, of course, doing it the other way round should

not be legal. How do you allow one call and disallow the other? The Java

language designers invented an ingenious new concept, the wildcard type,

to solve this problem. Wildcard types are rather abstract, but they allow a

library builder to make methods as flexible as possible.

Generic programming falls into three skill levels. At a basic level, you just

use generic classes—typically, collections such as ArrayList—without

thinking how and why they work. Most application programmers will want

to stay at that level until something goes wrong. You may, however,

encounter a confusing error message when mixing different generic classes.

At that point, you’ll need to learn enough about Java generics to solve

problems systematically rather than through random tinkering. Finally, of

course, you may want to implement your own generic classes and methods.

In this chapter, I will show you everything you need to know to implement

your own generic code. However, I expect that most readers will use this

knowledge primarily for help with troubleshooting and to satisfy their

curiosity about the inner workings of the generic classes that they use

regularly.

8.1.3. Defining a Simple Generic Class

A generic class is a class with one or more type variables. In this chapter, I

use a simple Pair class as the primary example. This class allows us to focus

on generics without being distracted by data storage details. Here is the

code for the generic Pair class:

public class Pair<T> {

 private T first;

 private T second;

 public Pair() { first = null; second = null; }

 public Pair(T first, T second) { this.first = first; this.second = second; }

 public T getFirst() { return first; }

 public T getSecond() { return second; }

 public void setFirst(T newValue) { first = newValue; }

 public void setSecond(T newValue) { second = newValue; }

}

Why not just use an immutable record? As you will soon see, there is a

reason for making this class mutable.

The Pair class introduces a type variable T, enclosed in angle brackets < >,

after the class name. A generic class can have more than one type variable.

For example, I could have defined the Pair class with separate types for the

first and second field:

public class Pair<T, U> { . . . }

The type variables are used throughout the class definition to specify

method return types and the types of fields and local variables. For

example:

private T first; // uses the type variable

Note: It is common practice to use uppercase letters for type

variables, and to keep them short. The Java library uses the variable

E for the element type of a collection, K and V for key and value

types of a table, and T (and the neighboring letters U and S, if

necessary) for “any type at all.”

You instantiate the generic type by substituting types for the type variables,

such as

Pair<String>

You can think of the result as an ordinary class with constructors

Pair<String>()

Pair<String>(String, String)

and methods

String getFirst()

String getSecond()

void setFirst(String)

void setSecond(String)

In other words, the generic class acts as a factory for ordinary classes.

The program in Listing 8.1 puts the Pair class to work. The minmax method

traverses an array and simultaneously computes the minimum and

maximum values. It uses a Pair object to return both results.

Listing 8.1 v1ch08/PairDemo1.java

1 package v1ch08;

2

3 import com.horstmann.corejava.Pair;

4

5 class PairDemo1 {

6 void main() {

7 String[] words = { "Mary", "had", "a", "little", "lamb" };

8 Pair<String> mm = minmax(words);

9 IO.println("min = " + mm.getFirst());

10 IO.println("max = " + mm.getSecond());

11 }

12

13 /**

14 * Gets the minimum and maximum of an array of strings.

15 * @param a an array of strings

16 * @return a pair with the min and max values, or null if a is null or empty

17 */

18 Pair<String> minmax(String[] a) {

19 if (a == null || a.length == 0) return null;

20 String smallest = a[0];

21 String largest = a[0];

22 for (int i = 1; i < a.length; i++) {

23 if (smallest.compareTo(a[i]) > 0) smallest = a[i];

24 if (largest.compareTo(a[i]) < 0) largest = a[i];

25 }

26 return new Pair<>(smallest, largest);

27 }

28 }

8.1.4. Generic Methods

In the preceding section, you have seen how to define a generic class. You

can also define a single method with type parameters.

<T> T getMiddle(T... a) {

 return a[a.length / 2];

}

This method is defined inside an ordinary class, not inside a generic class.

However, it is a generic method, as you can see from the angle brackets and

the type variable. Note that the type variables are inserted after the

modifiers (public static, in our case) and before the return type.

You can define generic methods both inside ordinary classes and inside

generic classes.

When you call a generic method, you do not normally provide any generic

type parameter. The compiler has enough information to infer the method

that you want. In the following expression, the type of the arguments

implies that T must be String:

getMiddle("John", "Q.", "Public")

In the rare case that you must specify a type, place it, enclosed in angle

brackets, directly before the method name:

Collections.<String>emptySet()

Note: Perhaps you find that placing the type before the method

looks weird. But there is a good reason.

In C++, you place the type arguments after the method name. That

can lead to nasty parsing ambiguities. For example, g(f<a,b>(c)) can

mean “call g with the result of f<a,b>(c),” or “call g with the two

boolean values f<a and b>(c).”

In Java, the type arguments must follow a dot and precede the

method name. With an instance method, for example in a compact

source file, it looks like this:

this.<String>getMiddle("John", "Q.", "Public")

In almost all cases, type inference for generic methods works smoothly.

Occasionally, the compiler gets it wrong, and you’ll need to decipher an

error message. Consider this example:

double middle = getMiddle(3.14, 1729, 0);

There is a cryptic error message that varies from one compiler version to

another, somewhat like this one:

incompatible types: inferred type does not conform to upper bound(s)

 inferred: java.lang.Number&java.lang.Comparable<? extends

java.lang.Number&java.lang.Comparable<?

>&java.lang.constant.Constable

&java.lang.constant.ConstantDesc>&java.lang.constant.Constable

&java.lang.constant.ConstantDesc

 upper bound(s): java.lang.Double,java.lang.Object

The compiler is struggling to find a common type T for the double and int

arguments. It actually found two: Number and the Comparable interface,

which is itself a generic type. In this case, the remedy is to write all

arguments as double values.

Tip: Peter von der Ahé recommends this trick if you want to see

which type the compiler infers for a generic method call:

Purposefully introduce an error and study the resulting error

message. For example, consider the call getMiddle("Hello", 0, null).

Assign the result to a LocalDate, which can’t possibly be right. You

will get an error report:

inferred:

java.lang.Object&java.io.Serializable&java.lang.Comparable<?

extends

java.lang.Object&java.io.Serializable&java.lang.Comparable<?>

&java.lang.constant.Constable&java.lang.constant.ConstantDesc

>

&java.lang.constant.Constable&java.lang.constant.ConstantDesc

In plain English, you can assign the result to a variable of any of

these types: Object, Serializable, Comparable, Constable, or

ConstantDesc.

Caution: Inferring large numbers of types can be slow. Suppose you

call

List.of(

 new Pair<>("John", "Smith"),

 new Pair<>("Betty", "Jones"),

 . . .

)

with a few hundred pairs. It takes the compiler a surprisingly long

time to figure out that all the diamonds should be <String>. If you

help the compiler out, it is much faster:

List.<Pair<String>>of(

 new Pair<>("John", "Smith"),

 new Pair<>("Betty", "Jones"),

 . . .

)

8.1.5. Bounds for Type Variables

Sometimes, a class or a method needs to place restrictions on type

variables. Here is a typical example. We want to compute the smallest

element of an array of any type:

<T> T min(T[] a) { // almost correct

 if (a == null || a.length == 0) return null;

 T smallest = a[0];

 for (int i = 1; i < a.length; i++) {

 if (smallest.compareTo(a[i]) > 0) smallest = a[i];

 }

 return smallest;

}

But there is a problem. Look inside the code of the min method. The

variable smallest has type T, which means it could be an object of an

arbitrary class. How do we know that the class to which T belongs has a

compareTo method?

The solution is to restrict T to a class that implements the Comparable

interface—a standard interface with a single method, compareTo. You can

achieve this by giving a bound for the type variable T:

<T extends Comparable> T min(T[] a) . . .

Actually, the Comparable interface is itself a generic type. For now, ignore

that complexity and the warnings that the compiler generates. Section 8.4

discusses how to properly use type parameters with the Comparable

interface.

Now, the generic minmax method can only be called with arrays of classes

that implement the Comparable interface, such as String, LocalDate, and so

on. Calling minmax with a Rectangle array is a compile-time error because

the Rectangle class does not implement Comparable.

You may wonder about the extends keyword. Why not use the implements

keyword in this situation? After all, Comparable is an interface. The

notation

<T extends BoundingType>

expresses that T should be a subtype of the bounding type. Both T and the

bounding type can be either a class or an interface. The extends keyword

was chosen because it is a reasonable approximation of the subtype

concept, and the Java designers did not want to add a new keyword to the

language.

A type variable can have multiple bounds. For example:

T extends Comparable & Serializable

The bounding types are separated by ampersands (&) because commas are

used to separate type variables.

As with Java inheritance, you can have as many interface supertypes as you

like, but at most one of the bounds can be a class. If you have a class as a

bound, it must be the first one in the bounds list.

In the next sample program (Listing 8.2), we rewrite the minmax method to

be generic. The method computes the minimum and maximum of a generic

array, returning a Pair<T>.

Listing 8.2 v1ch08/PairDemo2.java

1 package v1ch08;

2

3 import module java.base;

4 import com.horstmann.corejava.Pair;

5

6 class PairDemo2 {

7 void main() {

8 LocalDate[] birthdays = {

9 LocalDate.of(1906, 12, 9), // G. Hopper

10 LocalDate.of(1815, 12, 10), // A. Lovelace

11 LocalDate.of(1903, 12, 3), // J. von Neumann

12 LocalDate.of(1910, 6, 22), // K. Zuse

13 };

14 Pair<LocalDate> mm = minmax(birthdays);

15 IO.println("min = " + mm.getFirst());

16 IO.println("max = " + mm.getSecond());

17 }

18

19 /**

20 * Gets the minimum and maximum of an array of objects of type T.

21 * @param a an array of objects of type T

22 * @return a pair with the min and max values, or null if a is null or empty

23 */

24 <T extends Comparable> Pair<T> minmax(T[] a) {

25 if (a == null || a.length == 0) return null;

26 T smallest = a[0];

27 T largest = a[0];

28 for (int i = 1; i < a.length; i++) {

29 if (smallest.compareTo(a[i]) > 0) smallest = a[i];

30 if (largest.compareTo(a[i]) < 0) largest = a[i];

31 }

32 return new Pair<>(smallest, largest);

33 }

34 }

8.1.6. Generic Exceptions

A method can have a throws clause with a type variable. Consider this

functional interface:

interface Task<T extends Throwable> {

 void run() throws T;

}

You can then propagate the generic exception in methods that use the

functional interface:

<T extends Throwable> void repeat(Task<T> t, int n) throws T {

 for (int i = 0; i < n; i++) t.run();

}

For example, the Thread.sleep method is declared to throw the checked

InterruptedException. Therefore, the call

repeat(() -> Thread.sleep(100), 10)

throws the same exception.

Caution: If the lambda expression throws both an

InterruptedException and an IOException, then the inferred type for

T is the least upper bound, Exception. We would like it to be

InterruptedException | IOException, but that is not an actual Java

type.

You cannot use a type variable in a catch clause. For example, the following

method will not compile:

<T extends Throwable> void repeat(Task<T> t, int n) {

 try {

 for (int i = 0; i < n; i++) t.run();

 } catch (T e) { // ERROR

 e.printStackTrace();

 }

}

You can neither throw nor catch objects of a generic class. In fact, it is not

even legal for a generic class to extend Throwable. For example, the

following definition will not compile:

public class Problem<T> extends Exception { /* . . . */ }

 // ERROR--can't extend Throwable

8.2. Generic Code and the Virtual Machine

The virtual machine does not have objects of generic types—all objects

belong to ordinary classes. An earlier version of the generics

implementation was even able to compile a program that used generics into

class files that executed on 1.0 virtual machines! In the following sections,

you will see how the compiler “erases” type parameters, and what

implication that process has for Java programmers.

8.2.1. Type Erasure

Whenever you define a generic type, a corresponding raw type is

automatically provided. The name of the raw type is simply the name of the

generic type, with the type parameters removed. The type variables are

erased and replaced by their bounding types (or Object for variables

without bounds).

For example, the raw type for Pair<T> looks like this:

public class Pair {

 private Object first;

 private Object second;

 public Pair(Object first, Object second) {

 this.first = first;

 this.second = second;

 }

 public Object getFirst() { return first; }

 public Object getSecond() { return second; }

 public void setFirst(Object newValue) { first = newValue; }

 public void setSecond(Object newValue) { second = newValue; }

}

Since T is an unbounded type variable, it is simply replaced by Object.

The result is an ordinary class, just as you might have implemented it

before generics were added to Java.

Your programs may contain different kinds of Pair, such as Pair<String> or

Pair<LocalDate>, but erasure turns them all into raw Pair types.

Note: Erasure is efficient, but it only works because all type

parameters are reference types. In contrast, the C++ compiler must

generate separate code for generic methods with different type

parameters. C# takes a middle ground, providing one

implementation for all reference types and separate ones for each

value type. (Value types are primitive types and other types that can

be stored directly, without needing a reference.)

There are plans to add value types to Java, and allow them as

generic type parameters. The virtual machine will optimize the

memory layout, placing values directly into fields and arrays when

possible. Sometime in the future, you will be able to use an

ArrayList<int> that is backed by an int[] array, rather than an array

of references to Integer objects.

The raw type replaces type variables with the first bound, or Object if no

bounds are given. For example, the type variable in the class Pair<T> has

no explicit bounds, hence the raw type replaces T with Object. Suppose we

declare a slightly different type:

public class Interval<T extends Comparable & Serializable> implements

Serializable {

 private T lower;

 private T upper;

 . . .

 public Interval(T first, T second) {

 if (first.compareTo(second) <= 0) { lower = first; upper = second; }

 else { lower = second; upper = first; }

 }

}

The raw type Interval looks like this:

public class Interval implements Serializable {

 private Comparable lower;

 private Comparable upper;

 . . .

 public Interval(Comparable first, Comparable second) { . . . }

}

Note: You may wonder what happens if you switch the bounds:

class Interval<T extends Serializable & Comparable>. In that case,

the raw type replaces T with Serializable, and the compiler inserts

casts to Comparable when necessary.

8.2.2. Translating Generic Expressions

When you program a call to a generic method, the compiler inserts casts

when the return type has been erased. For example, consider the sequence

of statements

Pair<Employee> buddies = . . .;

Employee buddy = buddies.getFirst();

The erasure of getFirst has return type Object. The compiler automatically

inserts the cast to Employee. That is, the compiler translates the method call

into two virtual machine instructions:

A call to the raw method Pair.getFirst

A cast of the returned Object to the type Employee

Casts are also inserted when you access a generic field. Suppose the first

and second fields of the Pair class were public. (Not a good programming

style, perhaps, but it is legal Java.) Then the expression

Employee buddy = buddies.first;

also has a cast inserted in the resulting bytecodes.

8.2.3. Translating Generic Methods

Type erasure also happens for generic methods. Programmers usually think

of a generic method such as

<T extends Comparable> T min(T[] a)

as a whole family of methods, but after erasure, only a single method is left:

Comparable min(Comparable[] a)

Note that the type parameter T has been erased, leaving only its bounding

type Comparable.

Erasure of methods brings up a couple of complexities. Consider this

example:

class DateInterval extends Pair<LocalDate> {

 public void setSecond(LocalDate second) {

 if (second.compareTo(getFirst()) >= 0)

 super.setSecond(second);

 }

 . . .

}

A date interval is a pair of LocalDate objects, and we’ll want to override the

methods to ensure that the second value is never smaller than the first. This

class is erased to

class DateInterval extends Pair { // after erasure

 public void setSecond(LocalDate second) { . . . }

 . . .

}

Perhaps surprisingly, there is another setSecond method, inherited from

Pair, namely

public void setSecond(Object second)

This is clearly a different method because it has a parameter of a different

type—Object instead of LocalDate. But it shouldn’t be different. Consider

this sequence of statements:

var interval = new DateInterval(. . .);

Pair<LocalDate> pair = interval; // OK--assignment to superclass

pair.setSecond(aDate);

Our expectation is that the call to setSecond is polymorphic and that the

appropriate method is called. Since pair refers to a DateInterval object, that

should be DateInterval.setSecond. The problem is that the type erasure

interferes with polymorphism. To fix this problem, the compiler generates a

bridge method in the DateInterval class:

public void setSecond(Object second) { setSecond((LocalDate) second);

}

To see why this works, let us carefully follow the execution of the statement

pair.setSecond(aDate)

The variable pair has declared type Pair<LocalDate>, and that type only has

a single method called setSecond, namely setSecond(Object). The virtual

machine calls that method on the object to which pair refers. That object is

of type DateInterval. Therefore, the method DateInterval.setSecond(Object)

is called. That method is the synthesized bridge method. It calls

DateInterval.setSecond(LocalDate), which is what we want.

Bridge methods can get even stranger. Suppose the DateInterval class also

overrides the getSecond method:

class DateInterval extends Pair<LocalDate> {

 public LocalDate getSecond() { return (LocalDate) super.getSecond();

}

 . . .

}

In the DateInterval class, there are two getSecond methods:

LocalDate getSecond() // defined in DateInterval

Object getSecond() // overrides the method defined in Pair to call the first

method

You could not write Java code like that; it would be illegal to have two

methods with the same parameter types—here, with no parameters.

However, in the virtual machine, the parameter types and the return type

specify a method. Therefore, the compiler can produce bytecodes for two

methods that differ only in their return type, and the virtual machine will

handle this situation correctly.

Note: Bridge methods are not limited to generic types. You already

saw in Chapter 5 that it is legal for a method to specify a more

restrictive return type when overriding another method. For

example:

public class Employee implements Cloneable {

 public Employee clone() throws CloneNotSupportedException

{ . . . }

}

The Object.clone and Employee.clone methods are said to have

covariant return types.

Actually, the Employee class has two clone methods:

Employee clone() // defined above

Object clone() // synthesized bridge method, overrides

Object.clone

The synthesized bridge method calls the newly defined method.

In summary, you need to remember these facts about translation of Java

generics:

There are no generics in the virtual machine, only ordinary classes and

methods.

All type parameters are replaced by their bounds.

Bridge methods are synthesized to preserve polymorphism.

Casts are inserted as necessary to preserve type safety.

8.2.4. Calling Legacy Code

When Java generics were designed, a major goal was to allow

interoperability between generics and legacy code. Let us look at a concrete

example of such legacy. The Swing user interface toolkit provides a JSlider

class whose “ticks” can be customized with labels that contain text or

images. The labels are set with the call

void setLabelTable(Dictionary table)

The Dictionary class maps integers to labels. Before Java 5, that class was

implemented as a map of Object instances. Java 5 made Dictionary into a

generic class, but JSlider was never updated. At this point, Dictionary

without type parameters is a raw type. This is where compatibility comes

in.

When you populate the dictionary, you can use the generic type.

Dictionary<Integer, Component> labelTable = new Hashtable<>();

labelTable.put(0, new JLabel(new ImageIcon("nine.png")));

labelTable.put(20, new JLabel(new ImageIcon("ten.png")));

. . .

When you pass the Dictionary<Integer, Component> object to

setLabelTable, the compiler issues a warning.

slider.setLabelTable(labelTable); // warning

After all, the compiler has no assurance about what the setLabelTable might

do to the Dictionary object. That method might replace all the keys with

strings. That breaks the guarantee that the keys have type Integer, and

future operations may cause class cast exceptions.

You should ponder it and ask what the JSlider is actually going to do with

this Dictionary object. In our case, it is pretty clear that the JSlider only

reads the information, so you can ignore the warning.

Now consider the opposite case, in which you get an object of a raw type

from a legacy class. You can assign it to a variable whose type uses

generics, but of course you will get a warning. For example:

Dictionary<Integer, Components> labelTable = slider.getLabelTable(); //

warning

That’s OK—review the warning and make sure that the label table really

contains Integer and Component objects. Of course, there never is an

absolute guarantee. A malicious coder might have installed a different

Dictionary in the slider. But again, the situation is no worse than it was

before generics. In the worst case, your program will throw an exception.

After you are done pondering the warning, you can use an annotation to

make it disappear. You can annotate a local variable:

@SuppressWarnings("unchecked")

Dictionary<Integer, Components> labelTable = slider.getLabelTable(); //

no warning

Or you can annotate an entire method, like this:

@SuppressWarnings("unchecked")

public void configureSlider() { . . . }

This annotation turns off checking for all code inside the method.

8.3. Inheritance Rules for Generic Types

When you work with generic classes, you need to learn a few rules about

inheritance and subtypes. Let’s start with a situation which many

programmers find unintuitive. Consider a class and a subclass, such as

Employee and Manager. Is Pair<Manager> a subtype of Pair<Employee>?

Perhaps surprisingly, the answer is “no.” For example, the following code

will not compile:

Pair<Employee> buddies = new Pair<Manager>(ceo, cfo); // illegal

In general, there is no relationship between Pair<S> and Pair<T>, no matter

how S and T are related (see Figure 8.1).

.

Figure 8.1: No inheritance relationship between Pair classes

This seems like a cruel restriction, but it is necessary for type safety.

Suppose we were allowed to convert a Pair<Manager> to a

Pair<Employee>. Consider this code:

var managerBuddies = new Pair<Manager>(ceo, cfo);

Pair<Employee> employeeBuddies = managerBuddies; // illegal, but

suppose it wasn't

employeeBuddies.setFirst(lowlyEmployee);

Clearly, the last statement is legal. But employeeBuddies and

managerBuddies refer to the same object. We now managed to pair up the

CFO with a lowly employee, which should not be possible for a

Pair<Manager>.

Note: You just saw an important difference between generic types

and Java arrays. You can assign a Manager[] array to a variable of

type Employee[]:

Manager[] managerBuddies = { ceo, cfo };

Employee[] employeeBuddies = managerBuddies; // OK

However, arrays come with special protection. If you try to store a

lowly employee into employeeBuddies[0], the virtual machine

throws an ArrayStoreException.

You can always convert a parameterized type to a raw type. For example,

Pair<Employee> is a subtype of the raw type Pair. This conversion is

necessary for interfacing with legacy code.

Can you convert to the raw type and then cause a type error? Indeed, you

can. Consider this example:

var managerBuddies = new Pair<Manager>(ceo, cfo);

Pair rawBuddies = managerBuddies; // OK

rawBuddies.setFirst(new File(". . .")); // only a compile-time warning

This sounds scary. However, keep in mind that the security of the virtual

machine is not at stake. When the foreign object is retrieved with getFirst

and assigned to a Manager variable, a ClassCastException is thrown.

Finally, generic classes can extend or implement other generic classes. In

this regard, they are no different from ordinary classes. For example, the

class ArrayList<T> implements the interface List<T>. That means an

ArrayList<Manager> can be converted to a List<Manager>. However, as

you just saw, an ArrayList<Manager> is not an ArrayList<Employee> or

List<Employee>. Figure 8.2 shows these relationships.

.

Figure 8.2: Subtype relationships among generic list types

8.4. Wildcard Types

It was known for some time among researchers of type systems that a rigid

system of generic types is quite unpleasant to use. The Java designers

invented an ingenious (but nevertheless safe) “escape hatch”: the wildcard

type. The following sections show you how to work with wildcards.

8.4.1. The Wildcard Concept

In a wildcard type, a type parameter is allowed to vary. For example, the

wildcard type

Pair<? extends Employee>

denotes any generic Pair type whose type parameter is a subclass of

Employee, such as Pair<Manager>, but not Pair<String>.

Let’s say you want to write a method that prints out pairs of employees, like

this:

void printBuddies(Pair<Employee> p) {

 Employee first = p.getFirst();

 Employee second = p.getSecond();

 IO.println(first.getName() + " and " + second.getName() + " are

buddies.");

}

As you saw in the preceding section, you cannot pass a Pair<Manager> to

that method, which is rather limiting. But the solution is simple—use a

wildcard type:

void printBuddies(Pair<? extends Employee> p)

The type Pair<Manager> is a subtype of Pair<? extends Employee> (see

Figure 8.3).

.

Figure 8.3: Subtype relationships with wildcards

Can we use wildcards to corrupt a Pair<Manager> through a Pair<? extends

Employee> reference?

var managerBuddies = new Pair<Manager>(ceo, cfo);

Pair<? extends Employee> wildcardBuddies = managerBuddies; // OK

wildcardBuddies.setFirst(lowlyEmployee); // compile-time error

No corruption is possible. The call to setFirst is a type error. To see why, let

us have a closer look at the type Pair<? extends Employee>. Its methods

look like this:

? extends Employee getFirst()

void setFirst(? extends Employee)

It is impossible to call the setFirst method! Consider the call

wildcardBuddies.setFirst(lowlyEmployee) The compiler knows that the

parameter of setFirst has some specific type, which extends Employee. Is

that specific type Employee? Is it Manager, or some other subclass? There

is no way for the compiler to know. Therefore, the compiler cannot accept

lowlyEmployee. For the same reason, the call

wildcardBuddies.setFirst(cio), where cio is a Manager instance, also fails.

The compiler must reject all arguments to setFirst other than null.

The getFirst method continues to work. The return value of getFirst is an

instance of some specific type, which is a subtype of Employee. The

compiler doesn’t know what that specific type is, but it can guarantee that

the assignment to an Employee reference is safe.

This is the key idea behind bounded wildcards. We now have a way of

distinguishing between the safe accessor methods and the unsafe mutator

methods.

8.4.2. Supertype Bounds for Wildcards

Wildcard bounds are similar to type variable bounds, but they have an

added capability—you can specify a supertype bound, like this:

? super Executive

This wildcard is restricted to all supertypes of Executive. (It was a stroke of

good luck that the existing super keyword describes the relationship so

accurately.)

Why would you want to do this? A wildcard with a supertype bound gives

you a behavior that is opposite to that of the wildcards described in Section

8.4.1. You can supply arguments to methods, but you can’t use the return

values. For example, Pair<? super Executive> has methods that can be

described as follows:

void setFirst(? super Executive)

? super Executive getFirst()

This is not the actual Java syntax, but it shows what the compiler knows.

The setFirst parameter type, denoted as ? super Executive, is some specific

type T, and Executive is a subtype of T. There are exactly four choices for

T: Object, Employee, Manager, or Executive. (There would have been more

choices if any of these classes had implemented interfaces.) However, the

compiler cannot know which of these choices applies. Therefore, the

compiler cannot accept a call with an argument of type Employee or Object.

After all, T might have been Manager.

Conversely, if you call getFirst, there is no guarantee about the type of the

returned object. You can only assign it to an Object.

This is all rather abstract, so let us look at a concrete situation. We have an

array of executives and want to put the executive with the shortest and

longest title into a Pair object. What kind of Pair? A Pair<Executive> is the

obvious choice, but there are other possibilities. A Pait<Manager> or

Pair<Employee> should be fair game or, for that matter, a Pair<Object>

(see Figure 8.4). The following method will accept any appropriate Pair:

void minmaxTitle(Executive[] a, Pair<? super Executive> result) {

 if (a.length == 0) return;

 Executive smallest = a[0];

 Executive largest = a[0];

 for (int i = 1; i < a.length; i++) {

 if (smallest.getTitle().length() > a[i].getTitle().length()) smallest =

a[i];

 if (largest.getTitle().length() < a[i].getTitle().length()) largest = a[i];

 }

 result.setFirst(smallest);

 result.setSecond(largest);

}

.

Figure 8.4: A wildcard with a supertype bound

Intuitively speaking, wildcards with supertype bounds let you write to a

generic object, while wildcards with subtype bounds let you read from a

generic object.

Here is another use for supertype bounds. The Comparable interface is itself

a generic type. It is declared as follows:

public interface Comparable<T> {

 public int compareTo(T other);

}

Here, the type variable indicates the type of the other parameter. For

example, the String class implements Comparable<String>, and its

compareTo method is declared as

public int compareTo(String other)

This is nice—the explicit parameter has the correct type. Before the

interface was generic, other was an Object, and a cast was necessary in the

implementation of the method.

Now that Comparable is a generic type, perhaps we should have done a

better job with the minmax method? We could have declared it as

<T extends Comparable<T>> Pair<T> minmax(T[] a)

This looks more thorough than just using T extends Comparable, and it

would work fine for many classes. For example, if you compute the

minimum of a String array, then T is the type String, and String is a subtype

of Comparable<String>. But we run into a problem when processing an

array of LocalDate objects. As it happens, LocalDate implements

ChronoLocalDate, and ChronoLocalDate extends

Comparable<ChronoLocalDate>. Thus, LocalDate implements

Comparable<ChronoLocalDate> but not Comparable<LocalDate>.

In a situation such as this one, supertypes come to the rescue:

<T extends Comparable<? super T>> Pair<T> minmax(T[] a)

Now the compareTo method has the form

int compareTo(? super T)

Maybe it is declared to take an object of type T, or—for example, when T is

LocalDate—a supertype of T. At any rate, it is safe to pass an object of type

T to the compareTo method.

To the uninitiated, a declaration such as <T extends Comparable<? super

T>> is bound to look intimidating. This is unfortunate, because the intent of

this declaration is to help application programmers by removing

unnecessary restrictions on the call arguments. Application programmers

with no interest in generics will probably learn quickly to gloss over these

declarations and just take for granted that library programmers will do the

right thing. If you are a library programmer, you’ll need to get used to

wildcards, or your users will curse you and throw random casts at their code

until it compiles.

Note: Another common use for supertype bounds is a parameter

type of a functional interface. For example, the Collection interface

has a method

default boolean removeIf(Predicate<? super E> filter)

The method removes all elements that fulfill the given predicate. For

example, if you hate employees with odd hash codes, you can

remove them like this:

ArrayList<Employee> staff = . . .;

Predicate<Object> oddHashCode = obj -> obj.hashCode() %2 !=

0;

staff.removeIf(oddHashCode);

You want to be able to pass a Predicate<Object>, not just a

Predicate<Employee>. The super wildcard makes that possible.

8.4.3. Unbounded Wildcards

You can even use wildcards with no bounds at all—for example, Pair<?>.

At first glance, this looks identical to the raw Pair type. Actually, the types

are very different. The type Pair<?> has methods such as

? getFirst()

void setFirst(?)

The return value of getFirst can only be assigned to an Object. The setFirst

method can never be called, not even with an Object. That’s the essential

difference between Pair<?> and Pair: you can call the setFirst method of the

raw Pair class with any Object.

Note: You can call setFirst(null).

Why would you ever want such a wimpy type? It is useful for very simple

operations. For example, the following method tests whether a pair contains

a null reference. It never needs the actual type.

boolean hasNulls(Pair<?> p) {

 return p.getFirst() == null || p.getSecond() == null;

}

You could have avoided the wildcard type by turning hasNulls into a

generic method:

<T> boolean hasNulls(Pair<T> p)

However, the version with the wildcard type seems easier to read.

8.4.4. Wildcard Capture

Let us write a method that swaps the elements of a pair:

void swap(Pair<?> p)

A wildcard is not a type variable, so we can’t write code that uses ? as a

type. In other words, the following would be illegal:

? t = p.getFirst(); // ERROR

p.setFirst(p.getSecond());

p.setSecond(t);

That’s a problem because we need to temporarily hold the first element

when we do the swapping. Fortunately, there is an interesting solution to

this problem. We can write a helper method, swapHelper, like this:

<T> void swapHelper(Pair<T> p) {

 T t = p.getFirst();

 p.setFirst(p.getSecond());

 p.setSecond(t);

}

Note that swapHelper is a generic method, whereas swap is not—it has a

fixed parameter of type Pair<?>.

Now we can call swapHelper from swap:

void swap(Pair<?> p) { swapHelper(p); }

In this case, the parameter T of the swapHelper method captures the

wildcard. It isn’t known what type the wildcard denotes, but it is a definite

type, and the definition of <T>swapHelper makes perfect sense when T

denotes that type.

Of course, in this case, we were not compelled to use a wildcard. We could

have directly implemented <T> void swap(Pair<T> p) as a generic method

without wildcards. However, consider this example in which a wildcard

type occurs naturally in the middle of a computation:

void maxminTitle(Executive[] a, Pair<? super Executive> result) {

 minmaxTitle(a, result);

 swap(result); // OK—swapHelper captures wildcard type

}

Here, the wildcard capture mechanism cannot be avoided.

Wildcard capture is only legal in very limited circumstances. The compiler

must be able to guarantee that the wildcard represents a single definite type.

For example, the T in ArrayList<Pair<T>> can never capture the wildcard

in ArrayList<Pair<?>>. The array list might hold several Pair<?>, each of

which has a different type for ?.

The test program in Listing 8.3 gathers up the various methods discussed in

the preceding sections so you can see them in context.

Listing 8.3 v1ch08/PairDemo3.java

1 package v1ch08;

2

3 import com.horstmann.corejava.*;

4

5 class PairDemo3 {

6 void main() {

7 var ceo = new Executive("Gus Greedy", "CEO",

8 800000, 2003, 12, 15);

9 var savp = new Executive("Sue Striver", "Senior Associate Vice President",

10 200000, 1995,1, 20);;

11 var buddies = new Pair<Manager>(ceo, savp);

12 printBuddies(buddies);

13

14 Executive[] executives = { ceo, savp };

15

16 var result = new Pair<Employee>();

17 IO.println("hasNulls: " + hasNulls(result));

18 minmaxTitle(executives, result);

19 IO.println("first: " + result.getFirst().getName() + ", second: "

20 + result.getSecond().getName());

21 maxminTitle(executives, result);

22 IO.println("first: " + result.getFirst().getName() + ", second: "

23 + result.getSecond().getName());

24 }

25

26 void printBuddies(Pair<? extends Employee> p) {

27 Employee first = p.getFirst();

28 Employee second = p.getSecond();

29 IO.println(first.getName() + " and " + second.getName() + " are buddies.");

30 }

31

32 void minmaxTitle(Executive[] a, Pair<? super Executive> result) {

33 if (a.length == 0) return;

34 Executive smallest = a[0];

35 Executive largest = a[0];

36 for (int i = 1; i < a.length; i++) {

37 if (smallest.getTitle().length() > a[i].getTitle().length()) smallest = a[i];

38 if (largest.getTitle().length() < a[i].getTitle().length()) largest = a[i];

39 }

40 result.setFirst(smallest);

41 result.setSecond(largest);

42 }

43

44 void maxminTitle(Executive[] a, Pair<? super Executive> result) {

45 minmaxTitle(a, result);

46 swap(result); // OK--swapHelper captures wildcard type

47 }

48

49 boolean hasNulls(Pair<?> p) {

50 return p.getFirst() == null || p.getSecond() == null;

51 }

52

53 void swap(Pair<?> p) {

54 swapHelper(p);

55 }

56

57 <T> void swapHelper(Pair<T> p) {

58 T t = p.getFirst();

59 p.setFirst(p.getSecond());

60 p.setSecond(t);

61 }

62 }

8.5. Restrictions and Limitations

In the following sections, I discuss a number of restrictions that you need to

consider when working with Java generics. Most of these restrictions are a

consequence of type erasure.

8.5.1. Type Parameters Cannot Be Instantiated with Primitive
Types

You cannot substitute a primitive type for a type parameter. Thus, there is

no Pair<double>, only Pair<Double>. The reason is, of course, type

erasure. After erasure, the Pair class has fields of type Object, and you can’t

use them to store double values.

This is an annoyance, to be sure, but it is consistent with the separate status

of primitive types in the Java language. It is not a fatal flaw—there are only

eight primitive types, and you can always handle them with separate classes

and methods when wrapper types are not an acceptable substitute.

8.5.2. Casts Only Work with Raw Types

Objects in the virtual machine always have a specific nongeneric type.

Therefore, all type inquiries yield only the raw type. For example, consider

this cast:

Pair<String> p = (Pair<String>) obj; // warning--can only test that obj is

some Pair

The cast will succeed if obj is a Pair of any type.

Similarly, in a generic method, a cast

Pair<T> p = (Pair<T>) obj;

cannot actually test whether obj is a pair of the appropriate type. It will just

check for a raw Pair.

Finally, a cast

T t = (T) obj;

does nothing at runtime.

Note: The casts compile with warnings, but the corresponding

instanceof tests are compile-time errors:

if (obj instanceof Pair<String> p) // ERROR

if (obj instanceof Pair<T> p) // ERROR

if (obj instanceof T) // ERROR

Why do you need such casts at all? Consider the following example:

<T> T defaultValue(Class<T> cl) {

 if (cl == String.class) return ""; // ERROR

 . . .;

}

The compiler complains that the result type is T, but "" is a String. You

have to use a cast to keep the compiler happy:

<T> T defaultValue(Class<T> cl) {

 if (cl == String.class) return (T) "";

 . . .;

}

Note: It is surprisingly difficult to handle primitive types in this

situation. You need two or even three casts:

if (cl == Integer.class) return (T) (Integer) 0;

if (cl == Character.class) return (T) (Character) (char) 0;

8.5.3. You Cannot Create Arrays of Parameterized Types

You cannot instantiate arrays of parameterized types, such as

var table = new Pair<String>[10]; // ERROR

What’s wrong with that? After erasure, the type of table is Pair[]. You can

convert it to Object[]:

Object[] objarray = table;

An array remembers its component type and throws an

ArrayStoreException if you try to store an element of the wrong type:

objarray[0] = "Hello"; // ERROR--component type is Pair

But erasure renders this mechanism ineffective for generic types. The

assignment

objarray[0] = new Pair<Employee>();

would pass the array store check but still result in a type error. For this

reason, arrays of parameterized types are outlawed.

Note that only the creation of these arrays is outlawed. You can declare a

variable of type Pair<String>[]. But you can’t initialize it with a new

Pair<String>[10].

Note: You can declare arrays of wildcard types and then cast them:

var table = (Pair<String>[]) new Pair<?>[10];

The result is not safe. If you store a Pair<Employee> in table[0] and

then call a String method on table[0].getFirst(), you get a

ClassCastException.

Tip: If you need to collect parameterized type objects, simply use an

ArrayList: ArrayList<Pair<String>> is safe and effective.

8.5.4. Varargs Warnings

In the preceding section, you saw that Java doesn’t support arrays of

generic types. In this section, I discuss a related issue: passing instances of a

generic type to a method with a variable number of arguments.

Consider this simple method with variable arguments:

<E> void addAll(Collection<E> coll, E... elements) {

 for (E element : elements) coll.add(element);

}

Recall that the parameter elements is actually an array that holds all

supplied arguments.

Now consider this call:

Collection<Pair<String>> table = . . .;

Pair<String> pair1 = . . .;

Pair<String> pair2 = . . .;

addAll(table, pair1, pair2);

In order to call this method, the Java virtual machine must make an array of

Pair<String>, which is against the rules. However, the rules have been

relaxed for this situation, and you only get a warning at the call site, not an

error. You can suppress that warning by adding the annotation

@SuppressWarnings("unchecked") to the method containing the call to

addAll. However, this is an annoying burden for the callers of the addAll

method. For that reason, there is another warning about “possible heap

pollution” at the declaration site.

To avoid both warnings, annotate the addAll method itself with

@SafeVarargs:

@SafeVarargs

static <E> void addAll(Collection<E> coll, E... elements)

This method can now be called with generic types. By using the annotation,

you promise that your method doesn’t write to the parameter array, and

doesn’t pass the array to others who might do that. See the note below for

an example of abuse.

The @SafeVarargs annotation can only be used with constructors and

methods that are static, final, or private. Any other method could be

overridden, making the annotation meaningless.

Caution: You can use the @SafeVarargs annotation to defeat the

restriction against generic array creation, using this method:

@SafeVarargs static <E> E[] array(E... array) { return array; }

Now you can call

Pair<String>[] table = array(pair1, pair2);

This seems convenient, but there is a hidden danger. The code

Object[] objarray = table;

objarray[0] = new Pair<Employee>();

will run without an ArrayStoreException because the array store

only checks the erased type. You’ll get an exception elsewhere when

you work with table[0].

8.5.5. Generic Varargs Do Not Spread Primitive Arrays

Recall that you can pass an array to a varargs parameter. For example,

consider the addAll method of the preceding section. When the items to be

added happen to be in an array, you just pass the array. The call behaves as

if the elements had been “spread out”:

Collection<String> strings = . . .;

String[] moreStrings = new String[] { "Mary", "had", "a", "little", "lamb"

};

addAll(strings, moreStrings);

 // OK, same as addAll(strings, "Mary", "had", "a", "little", "lamb")

Of course, the elements are not actually spread out. In fact, the converse is

true. If the arguments had been individually specified, they would be

gathered in an array, which would then be passed to the method. If you

supply an array, it is passed directly.

Now consider a collection of numbers:

Collection<Integer> numbers = . . .;

int[] moreNumbers = new int[] { 11, 12, 13, 14, 15 };

addAll(numbers, moreNumbers); // ERROR

This does not work. There is no valid match for the type variable E. An int[]

cannot be converted to an Integer[].

Here is a more insidious example. The List interface has a static of method:

public static <E> List<E> of(E... elements)

The call

List.of(moreStrings) // ["Mary", "had", "a", "little", "lamb"]

yields a list of 5 elements. But

List.of(moreNumbers)

yields a List<int[]> of a single element, the array of five int values. The

type parameter E cannot match the primitive type int, so the moreNumbers

elements are not spread. Instead, the type parameter E matches the array

type int[].

8.5.6. You Cannot Instantiate Type Variables

You cannot use type variables in an expression such as new T(. . .). For

example, the following method is illegal:

<T> Pair<T> makePair() { return new Pair<T>(new T(); new T()); } //

ERROR

Type erasure would change T to Object, and surely you don’t want to call

new Object().

A common workaround in modern Java is to make the caller provide a

constructor expression. For example:

Pair<String> p = makePair(String::new);

The makePair method receives a Supplier<T>, the functional interface for a

function with no parameters and a result of type T:

<T> Pair<T> makePair(Supplier<T> constr) {

 return new Pair<>(constr.get(), constr.get());

}

A more traditional workaround is to construct generic objects through

reflection, by calling the Constructor.newInstance method.

Unfortunately, the details are a bit complex. You cannot call

first = T.class.getConstructor().newInstance(); // ERROR

The expression T.class is not legal because it would erase to Object.class.

Instead, you must design the API so that you are handed a Class object, like

this:

<T> Pair<T> makePair(Class<T> cl) throws

ReflectiveOperationException {

 Constructor<T> constr = cl.getConstructor();

 return new Pair<>(constr.newInstance(), constr.newInstance());

}

The method is declared to throw a ReflectiveOperationException because

the class might not have a no-argument constructor.

When calling the method, provide a class literal as follows:

Pair<String> p = Pair.makePair(String.class);

Note that the Class class is itself generic. For example, String.class is an

instance (indeed, the sole instance) of Class<String>. Therefore, the

makePair method can infer the type of the pair that it is making.

Another workaround makes use of variable arguments. This method has a

varargs parameter that is not intended to be used. It’s only purpose is to

provide the component type.

<T> Pair<T> makePair(T... dummy) throws

ReflectiveOperationException {

 Constructor<?> constr =

dummy.getClass().getComponentType().getConstructor();

 return new Pair<>((T) constr.newInstance(), (T) constr.newInstance());

}

When you call

Pair<String> names = makePair();

the method <String>makePair is called with an empty array of type

String[]. That array yields the component type String.

A drawback is the confusing API. One would need to explain to users that

the method is intended to be invoked with no arguments.

8.5.7. You Cannot Construct a Generic Array

Just as you cannot instantiate a single generic instance, you cannot

instantiate an array. The reasons are different—an array is, after all, filled

with null values, which would seem safe to construct. But an array also

carries a type, which is used to monitor array stores in the virtual machine.

That type is erased. For example, consider

<T extends Comparable> T[] minmax(T... a) {

 T[] mm = new T[2]; // ERROR

 . . .

}

Type erasure would cause this method to always construct an array

Comparable[2].

If the array is only used as a private instance field of a class, you can

declare the element type of the array to be the erased type and use casts. For

example, the ArrayList class can be implemented as follows:

public class ArrayList<E> {

 private Object[] elements;

 . . .

 @SuppressWarnings("unchecked") public E get(int n) { return (E)

elements[n]; }

 public void set(int n, E e) { elements[n] = e; } // no cast needed

}

This technique does not work for our minmax method since we are

returning a T[] array, and a runtime error results if we lie about its type.

Suppose we implement

<T extends Comparable> T[] minmax(T... a) {

 var result = new Comparable[2]; // array of erased type

 . . .

 return (T[]) result; // compiles with warning

}

The call

String[] names = minmax("Tom", "Dick", "Harry");

compiles without any warning. A ClassCastException occurs when the

Comparable[] reference is cast to String[] after the method returns.

In this situation, it is best to ask the user to provide an array constructor

expression:

String[] names = minmax(String[]::new, "Tom", "Dick", "Harry");

The constructor expression String[]::new denotes a function that, given the

desired length, constructs a String array of that length.

The method uses that parameter to produce an array of the correct type:

<T extends Comparable> T[] minmax(IntFunction<T[]> constr, T... a)

{

 T[] result = constr.apply(2);

 . . .

}

A more old-fashioned approach is to use reflection and call

Array.newInstance:

<T extends Comparable> T[] minmax(T... a) {

 var result = (T[])

Array.newInstance(a.getClass().getComponentType(), 2);

 . . .

}

The toArray method of the ArrayList class is not so lucky. It needs to

produce a T[] array, but it doesn’t have the component type. Therefore,

there are two variants:

Object[] toArray()

T[] toArray(T[] result)

The second method receives an array argument. If the array is large enough,

it is used. Otherwise, a new array of sufficient size is created, using the

component type of result.

8.5.8. Type Variables Are Not Valid in Static Contexts of
Generic Classes

You cannot reference type variables in static fields or methods. For

example, the following clever idea won’t work:

public class Singleton<T> {

 private static T singleInstance; // ERROR

 public static T getSingleInstance() { // ERROR

 if (singleInstance == null) construct new instance of T

 return singleInstance;

 }

}

If this could be done, then a program could declare a Singleton<Random>

to share a random number generator and a Singleton<JFileChooser> to

share a file chooser dialog. But it can’t work. After type erasure there is

only one Singleton class, and only one singleInstance field. For that reason,

static fields and methods with type variables are simply outlawed.

8.5.9. You Can Defeat Checked Exception Checking

A bedrock principle of Java exception handling is that you must provide a

handler for all checked exceptions. You can use generics to defeat this

scheme. The key ingredient is this method:

class Sneaky {

 @SuppressWarnings("unchecked")

 static <T extends Throwable> void throwAs(Throwable t) throws T {

 throw (T) t;

 }

 . . .

}

When you have a checked exception e and call

Sneaky.<RuntimeException>throwAs(e);

then the compiler will believe that e becomes an unchecked exception.

In fact, the exception stays checked. The cast (T) t is meaningless and does

not lead to any check at runtime.

Note that you must use generics. You cannot simply call

throw (RuntimeException) t; // Does not work

Then there would be a check at runtime, and a ClassCastException would

occur.

Let’s use this to solve a vexing problem. To run code in a thread, you have

to place it into the run method of a class that implements the Runnable

interface. But that method is not allowed to throw checked exceptions. We

will provide an adaptor from a Sneaky.Runnable, whose run method is

allowed to throw arbitrary exceptions, to a Runnable:

class Sneaky {

 . . .

 interface Runnable { void run() throws Exception; }

 static java.lang.Runnable asRunnable(Sneaky.Runnable task) {

 return () -> {

 try {

 task.run();

 }

 catch (Exception e) {

 Sneaky.<RuntimeException>throwAs(e);

 }

 };

 }

}

For example, this program runs a thread that will throw a checked

exception:

void main() {

 var thread = new Thread(Sneaky.asRunnable(() -> {

 Thread.sleep(1000);

 IO.println("Hello, World!");

 throw new Exception("Check this out!");

 }));

 thread.start();

}

The Thread.sleep method is declared to throw an InterruptedException, and

we no longer have to catch it. Since we don’t interrupt the thread, that

exception won’t be thrown. However, the program throws a checked

exception. When you run the program, you will get a stack trace.

What’s so remarkable about that? Normally, you have to catch all checked

exceptions inside the run method of a Runnable and wrap them into

unchecked exceptions—the run method is declared to throw no checked

exceptions.

But here, we don’t wrap into an unchecked exception. We simply rethrow

the checked exception, tricking the compiler into believing that it is a

RuntimeException.

Using generic classes and erasure, we were able to defeat an essential part

of the Java type system.

8.5.10. Beware of Clashes after Erasure

It is illegal to create conditions that cause clashes when generic types are

erased. Here is an example. Suppose we add an equals method to the Pair

class, like this:

public class Pair<T> {

 public boolean equals(T value) { return first.equals(value) &&

second.equals(value); }

 . . .

}

Consider a Pair<String>. Conceptually, it has two equals methods:

boolean equals(String) // defined in Pair<T>

boolean equals(Object) // inherited from Object

But the intuition leads us astray. The erasure of the method

boolean equals(T)

is

boolean equals(Object)

which clashes with the Object.equals method.

The remedy is, of course, to rename the offending method.

The generics specification cites another rule: “To support translation by

erasure, we impose the restriction that a class or type variable may not at

the same time be a subtype of two interface types which are different

parameterizations of the same interface.” For example, the following is

illegal:

class Employee implements Comparable<Employee> { . . . }

class Manager extends Employee implements Comparable<Manager> { .

. . } // ERROR

Manager would then implement both Comparable<Employee> and

Comparable<Manager>, which are different parameterizations of the same

interface.

It is not obvious what this restriction has to do with type erasure. After all,

the nongeneric version

class Employee implements Comparable { . . . }

class Manager extends Employee implements Comparable { . . . }

is legal. The reason is far more subtle. There would be a conflict with the

synthesized bridge methods. A class that implements Comparable<X> gets

a bridge method

public int compareTo(Object other) { return compareTo((X) other); }

You cannot have two such methods for different types X.

8.5.11. Type Inference in Generic Record Patterns is Limited

Let us make our Pair class into a record:

record Pair<T>(T first, T second) {}

Now you can form a record pattern with the generic record:

var p = new Pair<String>("Hello", "World");

String content = switch (p) {

 case Pair(var a, var b) -> a + " " + b.toUpperCase();

};

Note: In the pattern, the type argument is inferred—here, as

Pair<String>. You can also be more explicit:

case Pair<String>(var a, var b)

case Pair(String a, String b)

case Pair<String>(String a, String b)

When generic types are involved, the compiler may need to work pretty

hard to verify exhaustiveness of a switch. Consider this incomplete

hierarchy of JSON types:

sealed interface JSONPrimitive<T> {}

record JSONNumber(double value) implements

JSONPrimitive<Double> {}

record JSONBoolean(boolean value) implements

JSONPrimitive<Boolean> {}

record JSONString(String value) implements JSONPrimitive<String> {}

The switch in the following method is exhaustive:

<T> double toNumber(JSONPrimitive<T> v) {

 return switch (v) {

 case JSONNumber(var n) -> n;

 case JSONBoolean(var b) -> b ? 1 : 0;

 case JSONString(var s) -> {

 try {

 yield Double.parseDouble(s);

 }

 catch (NumberFormatException ex) {

 yield Double.NaN;

 }

 }

 };

}

At first glance, it appears as if there might be an unbounded number of

classes implementing JSONPrimitive<T>, but the compiler can track that

there are only three of them.

Now we want to form the sum of two JSON primitives:

Object sum(Pair<? extends JSONPrimitive<?>> pair) {

 return switch (pair) {

 case Pair(JSONNumber(var left), JSONNumber(var right)) -> left +

right;

 case Pair(JSONBoolean(var left), JSONBoolean(var right)) -> left |

right;

 case Pair(JSONString(var left), JSONString(var right)) ->

left.concat(right);

 // ERROR--not exhaustive

 };

}

This switch is not exhaustive. After all, it would be possible to call sum1 as

sum(Pair.of(new JSONNumber(42), new JSONString("Fred")))

You can make the switch exhaustive by adding the other six combinations

of JSON primitives and throwing an exception in each case. But that is a

runtime check. It would be nicer to reject mixed pairs at compile time.

Here is how to only accept homogeneous pairs:

<T extends JSONPrimitive<U>, U> Object sum(Pair<T> pair) {

 return switch (pair) {

 case Pair(JSONNumber(var left), JSONNumber(var right)) -> left +

right;

 case Pair(JSONBoolean(var left), JSONBoolean(var right)) -> left |

right;

 case Pair(JSONString(var left), JSONString(var right)) ->

left.concat(right);

 default -> throw new AssertionError(); // Sadly Java can't tell this

won't happen

 };

}

Now the call

sum(Pair.of(new JSONNumber(42), new JSONString("Fred")))

no longer compiles, since there are no matching types for T and U.

Unfortunately, the default clause is necessary to make the switch

exhaustive. In theory, there is enough information to determine that the pair

components must be instances of the same type, but the Java type system

can’t prove it.

Caution: Trying to use explicit type arguments does not work:

<T extends JSONPrimitive<U>, U> Object sum(Pair<T> pair) {

 return switch (pair) {

 // ERROR—unsafe casts

 case Pair<JSONNumber>(JSONNumber(var left),

JSONNumber(var right))

 -> left + right;

 case Pair<JSONBoolean>(JSONBoolean(var left),

JSONBoolean(var right))

 -> left | right;

 case Pair<JSONString>(JSONString(var left),

JSONString(var right))

 -> left.concat(right);

 };

}

The Java compiler does not know how to prove that the cast from

Pair<T> to Pair<JSONNumber> is safe when the components have

type JSONNumber.

8.6. Reflection and Generics

Reflection lets you analyze arbitrary objects at runtime. If the objects are

instances of generic classes, you don’t get much information about the

generic type parameters because they have been erased. In the following

sections, you will learn what you can nevertheless find out about generic

classes with reflection.

8.6.1. The Generic Class Class

The Class class has a type parameter. For example, String.class is actually

an object (in fact, the sole object) of the class Class<String>.

The type parameter is useful because it allows the methods of Class<T> to

be more specific about their return types. The following methods of

Class<T> take advantage of the type parameter:

T cast(Object obj)

T[] getEnumConstants()

Class<? super T> getSuperclass()

Constructor<T> getConstructor(Class<?>... parameterTypes)

Constructor<T> getDeclaredConstructor(Class<?>... parameterTypes)

The getConstructor method returns an instance of Constructor<T>, so that

no cast is required in

Class<T> cl = . . .;

T noArgInstance = cl.getConstructor().newInstance();

The cast method returns the given object, now declared as type T if its type

is indeed a subtype of T. Otherwise, it throws a ClassCastException.

The getEnumConstants method returns null if this class is not an enum class

or an array of the enumeration values which are known to be of type T.

java.lang.Class<T> 1.0

T cast(Object obj)

returns obj if it is null or can be converted to the type T, or throws a

ClassCastException otherwise.

T[] getEnumConstants() 5.0

returns an array of all values if T is an enumerated type, null

otherwise.

Class<? super T> getSuperclass()

returns the superclass of this class, or null if T is not a class or the

class Object.

Constructor<T> getConstructor(Class... parameterTypes) 1.1

Constructor<T> getDeclaredConstructor(Class...

parameterTypes) 1.1

get the public constructor, or the constructor with the given parameter

types.

8.6.2. Using Class<T> Parameters for Type Matching

It is sometimes useful to match the type variable of a Class<T> parameter

in a generic method. Here is the canonical example:

public static <T> Pair<T> makePair(Class<T> c) throws

ReflectiveOperationException {

 Constructor<T> constr = c.getConstructor();

 return new Pair<>(constr.newInstance(), constr.newInstance());

}

If you call

makePair(String.class)

then String.class is an object of type Class<String>. The type parameter T

of the makePair method matches String, and the compiler can infer that the

method returns a Pair<String>.

8.6.3. Generic Type Information in the Virtual Machine

One of the notable features of Java generics is the erasure of generic types

in the virtual machine. Perhaps surprisingly, the erased classes still retain

some faint memory of their generic origin. For example, the raw Pair class

knows that it originated from the generic class Pair<T>, even though an

object of type Pair can’t tell whether it was constructed as a Pair<String> or

Pair<Employee>.

Similarly, consider a method

Comparable min(Comparable[] a)

that is the erasure of a generic method

<T extends Comparable<? super T>> T min(T[] a)

You can use the reflection API to determine that

The generic method has a type parameter called T;

The type parameter has a subtype bound that is itself a generic type;

The bounding type has a wildcard parameter;

The wildcard parameter has a supertype bound; and

The generic method has a generic array parameter.

In other words, you can reconstruct everything about generic classes and

methods that their implementors declared. However, you won’t know how

the type parameters were resolved for specific objects or method calls.

In order to express generic type declarations, use the interface Type in the

java.lang.reflect package. The interface has the following subtypes:

The Class class, describing concrete types

The TypeVariable interface, describing type variables (such as T

extends Comparable<? super T>)

The WildcardType interface, describing wildcards (such as ? super T)

The ParameterizedType interface, describing generic class or interface

types (such as Comparable<? super T>)

The GenericArrayType interface, describing generic arrays (such as

T[])

Figure 8.5 shows the inheritance hierarchy. Note that the last four subtypes

are interfaces—the virtual machine instantiates suitable classes that

implement these interfaces.

.

Figure 8.5: The Type interface and its descendants

The program in Listing 8.4 and Listing 8.5 uses the generic reflection API

to print out what it discovers about a given class. If you run it with the Pair

class, you get this report:

class com.horstmann.corejava.Pair<T> extends java.lang.Object

public T getFirst()

public T getSecond()

public void setFirst(T)

public void setSecond(T)

If you run it with java.util.Collections, the report displays methods with

impressive generic types, such as:

public static <T extends java.lang.Object & java.lang.Comparable<?

super T>>

T min(java.util.Collection<? extends T>)

Listing 8.4 v1ch08/genericReflection/GenericReflectionDemo.java

1 package v1ch08.genericReflection;

2

3 import module java.base;

4

5 class GenericReflectionDemo {

6 void main(String[] args) throws Exception {

7 // read class name from command line args or user input

8 String name = args.length > 0 ? args[0]

9 : IO.readln("Enter class name (e.g., java.util.Collections): ");

10

11 // print generic info for class and public methods

12 Class<?> cl = Class.forName(name);

13 Printer.printClass(cl);

14 for (Method m : cl.getDeclaredMethods())

15 Printer.printMethod(m);

16 }

17 }

Listing 8.5 v1ch08/genericReflection/Printer.java

1 package v1ch08.genericReflection;

2

3 import module java.base;

4

5 public class Printer {

6 public static void printClass(Class<?> cl) {

7 IO.print(cl);

8 printTypes(cl.getTypeParameters(), "<", ", ", ">", true);

9 Type sc = cl.getGenericSuperclass();

10 if (sc != null) {

11 IO.print(" extends ");

12 printType(sc, false);

13 }

14 printTypes(cl.getGenericInterfaces(), " implements ", ", ", "", false);

15 IO.println();

16 }

17

18 public static void printMethod(Method m) {

19 String name = m.getName();

20 IO.print(Modifier.toString(m.getModifiers()));

21 IO.print(" ");

22 printTypes(m.getTypeParameters(), "<", ", ", "> ", true);

23

24 printType(m.getGenericReturnType(), false);

25 IO.print(" ");

26 IO.print(name);

27 IO.print("(");

28 printTypes(m.getGenericParameterTypes(), "", ", ", "", false);

29 IO.println(")");

30 }

31

32 public static void printTypes(Type[] types, String prefix, String separator, String suffix,

33 boolean isDefinition) {

34 if (prefix.equals(" extends ") && Arrays.equals(types, new Type[] { Object.class }))

35 return;

36 if (types.length > 0) IO.print(prefix);

37 for (int i = 0; i < types.length; i++) {

38 if (i > 0) IO.print(separator);

39 printType(types[i], isDefinition);

40 }

41 if (types.length > 0) IO.print(suffix);

42 }

43

44 public static void printType(Type type, boolean isDefinition) {

45 if (type instanceof Class<?> t) {

46 IO.print(t.getName());

47 }

48 else if (type instanceof TypeVariable<?> t) {

49 IO.print(t.getName());

50 if (isDefinition) printTypes(t.getBounds(), " extends ", " & ", "", false);

51 }

52 else if (type instanceof WildcardType t) {

53 IO.print("?");

54 printTypes(t.getUpperBounds(), " extends ", " & ", "", false);

55 printTypes(t.getLowerBounds(), " super ", " & ", "", false);

56 }

57 else if (type instanceof ParameterizedType t) {

58 Type owner = t.getOwnerType();

59 if (owner != null) {

60 printType(owner, false);

61 IO.print(".");

62 }

63 printType(t.getRawType(), false);

64 printTypes(t.getActualTypeArguments(), "<", ", ", ">", false);

65 }

66 else if (type instanceof GenericArrayType t) {

67 IO.print("");

68 printType(t.getGenericComponentType(), isDefinition);

69 IO.print("[]");

70 }

71 }

72 }

8.6.4. Type Literals

Sometimes, you want to drive program behavior by the type of a value. For

example, in a persistence mechanism, you may want the user to specify a

way of saving an object of a particular class. This is typically implemented

by associating the Class object with an action.

However, with generic classes, erasure poses a problem. How can you have

different actions for, say, ArrayList<Integer> and ArrayList<String> when

both erase to the same raw ArrayList type?

There is a trick that can offer relief in some situations. You can capture an

instance of the Type interface that you encountered in the preceding section.

Construct an anonymous subclass like this:

var type = new TypeLiteral<ArrayList<Integer>>(){} // note the {}

The TypeLiteral constructor captures the generic supertype:

class TypeLiteral<T> {

 public TypeLiteral() {

 Type parentType = getClass().getGenericSuperclass();

 if (parentType instanceof ParameterizedType paramType)

 type = paramType.getActualTypeArguments()[0];

 else

 throw new UnsupportedOperationException(

 "Construct as new TypeLiteral<. . .>(){}");

 }

 . . .

}

If we have a generic type available at runtime, we can match it against the

TypeLiteral. We can’t get a generic type from an object—it is erased. But,

as you have seen in the preceding section, generic types of fields and

method parameters survive in the virtual machine.

Injection frameworks such as CDI and Guice use type literals to control

injection of generic types. The example program in the book’s companion

code shows a simpler example. Given an object, we enumerate its fields,

whose generic types are available, and look up associated formatting

actions.

We format an ArrayList<Integer> by separating the values with spaces, an

ArrayList<Character> by joining the characters to a string. Any other array

lists are formatted by ArrayList.toString.

Listing 8.6 v1ch08/genericReflection/TypeLiterals.java

1 package v1ch08.genericReflection;

2

3 import module java.base;

4

5 /**

6 * A type literal describes a type that can be generic, such as

7 * ArrayList<String>.

8 */

9 class TypeLiteral<T> {

10 private Type type;

11

12 /**

13 * This constructor must be invoked from an anonymous subclass as new

14 * TypeLiteral<. . .>(){}.

15 */

16 public TypeLiteral() {

17 Type parentType = getClass().getGenericSuperclass();

18 if (parentType instanceof ParameterizedType paramType)

19 type = paramType.getActualTypeArguments()[0];

20 else

21 throw new UnsupportedOperationException("Construct as new TypeLiteral<. . .>()

{}");

22 }

23

24 private TypeLiteral(Type type) {

25 this.type = type;

26 }

27

28 /**

29 * Yields a type literal that describes the given type.

30 */

31 public static TypeLiteral<?> of(Type type) {

32 return new TypeLiteral<>(type);

33 }

34

35 public String toString() {

36 if (type instanceof Class<?> cl)

37 return cl.getName();

38 else

39 return type.toString();

40 }

41

42 public boolean equals(Object otherObject) {

43 return otherObject instanceof TypeLiteral<?> otherLiteral

44 && type.equals(otherLiteral.type);

45 }

46

47 public int hashCode() {

48 return type.hashCode();

49 }

50 }

51

52 /**

53 * Formats objects, using rules that associate types with formatting functions.

54 */

55 class Formatter {

56 private Map<TypeLiteral<?>, Function<?, String>> rules = new HashMap<>();

57

58 /**

59 * Add a formatting rule to this formatter.

60 * @param type the type to which this rule applies

61 * @param formatterForType the function that formats objects of this type

62 */

63 public <T> void forType(TypeLiteral<T> type, Function<T, String> formatterForType) {

64 rules.put(type, formatterForType);

65 }

66

67 /**

68 * Formats all fields of an object using the rules of this formatter.

69 * @param obj an object

70 * @return a string with all field names and formatted values

71 */

72 public String formatFields(Object obj)

73 throws IllegalArgumentException, IllegalAccessException {

74 var result = new StringBuilder();

75 for (Field f : obj.getClass().getDeclaredFields()) {

76 result.append(f.getName());

77 result.append("=");

78 f.setAccessible(true);

79 Function<?, String> formatterForType = rules

80 .get(TypeLiteral.of(f.getGenericType()));

81 if (formatterForType != null) {

82 // formatterForType has parameter type ?. Nothing can be passed to its

83 // apply method. The cast makes the parameter type to Object so we can

84 // invoke it.

85 @SuppressWarnings("unchecked") Function<Object, String> objectFormatter

86 = (Function<Object, String>) formatterForType;

87 result.append(objectFormatter.apply(f.get(obj)));

88 }

89 else

90 result.append(f.get(obj).toString());

91 result.append("\n");

92 }

93 return result.toString();

94 }

95 }

96

97 public class TypeLiterals {

98 public static class Sample {

99 ArrayList<Integer> nums;

100 ArrayList<Character> chars;

101 ArrayList<String> strings;

102

103 public Sample() {

104 nums = new ArrayList<>();

105 nums.add(42);

106 nums.add(1729);

107 chars = new ArrayList<>();

108 chars.add('H');

109 chars.add('i');

110 strings = new ArrayList<>();

111 strings.add("Hello");

112 strings.add("World");

113 }

114 }

115

116 private static <T> String join(String separator, ArrayList<T> elements) {

117 var result = new StringBuilder();

118 for (T e : elements) {

119 if (result.length() > 0) result.append(separator);

120 result.append(e.toString());

121 }

122 return result.toString();

123 }

124

125 void main() throws Exception {

126 var formatter = new Formatter();

127 formatter.forType(new TypeLiteral<ArrayList<Integer>>() { },

128 lst -> join(" ", lst));

129 formatter.forType(new TypeLiteral<ArrayList<Character>>() { },

130 lst -> "\"" + join("", lst) + "\"");

131 IO.println(formatter.formatFields(new Sample()));

132 }

133 }

java.lang.Class<T> 1.0

TypeVariable[] getTypeParameters() 5.0

gets the generic type variables if this type was declared as a generic

type, or an array of length 0 otherwise.

Type getGenericSuperclass() 5.0

gets the generic type of the superclass that was declared for this type,

or null if this type is Object or not a class type.

Type[] getGenericInterfaces() 5.0

gets the generic types of the interfaces that were declared for this

type, in declaration order, or an array of length 0 if this type doesn’t

implement interfaces.

java.lang.reflect.Method 1.1

TypeVariable[] getTypeParameters() 5.0

gets the generic type variables if this method was declared as a

generic method, or an array of length 0 otherwise.

Type getGenericReturnType() 5.0

gets the generic return type with which this method was declared.

Type[] getGenericParameterTypes() 5.0

gets the generic parameter types with which this method was

declared. If the method has no parameters, an array of length 0 is

returned.

java.lang.reflect.TypeVariable 5.0

String getName()

gets the name of this type variable.

Type[] getBounds()

gets the subclass bounds of this type variable, or an array of length 0

if the variable is unbounded.

java.lang.reflect.WildcardType 5.0

Type[] getUpperBounds()

gets the subclass (extends) bounds of this type variable, or an array of

length 0 if the variable has no subclass bounds.

Type[] getLowerBounds()

gets the superclass (super) bounds of this type variable, or an array of

length 0 if the variable has no superclass bounds.

java.lang.reflect.ParameterizedType 5.0

Type getRawType()

gets the raw type of this parameterized type.

Type[] getActualTypeArguments()

gets the type parameters with which this parameterized type was

declared.

Type getOwnerType()

gets the outer class type if this is an inner type, or null if this is a top-

level type.

java.lang.reflect.GenericArrayType 5.0

Type getGenericComponentType()

gets the generic component type with which this array type was

declared.

You now know how to use generic classes and how to program your own

generic classes and methods if the need arises. Just as importantly, you

know how to decipher the generic type declarations that you may encounter

in the API documentation and in error messages.

In the next chapter, you will see how the Java collections framework puts

generics to work.

Chapter 9 ▪ Collections

The data structures that you choose can make a big difference when you try

to implement methods in a natural style or are concerned with performance.

Do you need to search quickly through thousands (or even millions) of

sorted items? Do you need to rapidly insert and remove elements in the

middle of an ordered sequence? Do you need to establish associations

between keys and values?

This chapter shows how the Java Collections Framework can help you

accomplish the traditional data structuring needed for serious programming.

In college computer science programs, a course called Data Structures

usually takes a semester to complete, and there are many, many books

devoted to this important topic. Our coverage differs from that of a college

course; we will skip the theory and just look at how to use the collection

classes in the Java API.

9.1. The Java Collections Framework

The initial release of Java supplied only a small set of classes for the most

useful data structures: Vector, Stack, Hashtable, BitSet, and the

Enumeration interface that provides an abstract mechanism for visiting

elements in an arbitrary container. That was certainly a wise choice—it

takes time and skill to come up with a comprehensive collection class

library.

With the advent of Java 1.2, the designers felt that the time had come to roll

out a full-fledged framework for data structures. They faced a number of

conflicting design challenges. They wanted the library to be small and easy

to learn. They did not want the complexity of the Standard Template

Library (or STL) of C++, but they wanted the benefit of “generic

algorithms” that STL pioneered. They wanted the legacy classes to fit into

the new framework. As all designers of collections libraries do, they had to

make some hard choices, and they came up with a number of idiosyncratic

design decisions along the way. In this section, we will explore the basic

design of the Java Collections Framework, demonstrate how to put it to

work, and explain the reasoning behind some of the more controversial

features.

9.1.1. Separating Collection Interfaces and Implementation

As is common with modern data structure libraries, the Java Collections

Framework separates interfaces and implementations. Let us look at that

separation with a familiar data structure, the queue.

A queue interface specifies that you can add elements at the tail end of the

queue, remove them at the head, and find out how many elements are in the

queue. You use a queue when you need to collect objects and retrieve them

in a “first in, first out” fashion (see Figure 9.1).

.

Figure 9.1: A queue

A minimal form of a queue interface might look like this:

public interface Queue<E> { // a simplified form of the interface in the

Java API

 void add(E e);

 E remove();

 int size();

}

The interface tells you nothing about how the queue is implemented. Of the

two common implementations of a queue, one uses a “circular array” and

one uses a linked list (see Figure 9.2).

.

Figure 9.2: Queue implementations

Each implementation can be expressed by a class that implements the

Queue interface. In the Java API, these classes are called ArrayDeque and

LinkedList.

public class ArrayDeque<E> implements Queue<E> { // simplified

from the Java API

 private int first;

 private int last;

 private E[] elements;

 public ArrayDeque(int numElements) { . . . }

 public void add(E e) { . . . }

 public E remove() { . . . }

 public int size() { . . . }

 . . .

}

public class LinkedList<E> implements Queue<E> { // simplified from

the Java API

 private Node<E> first;

 private Node<E> last;

 public LinkedList() { . . . }

 public void add(E e) { . . . }

 public E remove() { . . . }

 public int size() { . . . }

 . . .

}

When you use a queue in your program, you don’t need to know which

implementation is actually used once the collection has been constructed.

Therefore, it makes sense to use the concrete class only when you construct

the collection object. Use the interface type to hold the collection reference.

Queue<Customer> expressLane = new ArrayDeque<>(100);

expressLane.add(new Customer("Harry"));

With this approach, if you change your mind, you can easily use a different

implementation. You only need to change your program in one place—in

the constructor call. If you decide that a linked list is a better choice after

all, your code becomes

Queue<Customer> expressLane = new LinkedList<>();

expressLane.add(new Customer("Harry"));

There is another reason to stick with the interface. Both the ArrayDeque

and LinkedList classes have methods that are unrelated to queueing.

Accidentally using one of them will be reported as a compile-time error,

since you can’t invoke them on a variable of type Queue.

Why would you choose one implementation over another? The interface

says nothing about the efficiency of an implementation. A circular array is

more memory-efficient. However, the circular array has a finite capacity

and needs to be reallocated whenever it fills up. In fact, measurements show

that an ArrayDeque generally outperforms a LinkedList because it has less

impact on the garbage collector. When the ArrayDeque appeared in Java 6,

the programmers who made use of the Queue interface were able to swap

out the LinkedList by changing a single line of code.

9.1.2. The Collection Interface

The fundamental interface for collection classes in the Java Collections

Framework is the Collection interface. The interface has two fundamental

methods:

public interface Collection<E> {

 boolean add(E element);

 Iterator<E> iterator();

 . . .

}

There are several methods in addition to these two; we will discuss them

later.

The add method adds an element to the collection. The add method returns

true if adding the element actually changes the collection, and false if the

collection is unchanged. For example, if you try to add an object to a set

and the object is already present, the add request has no effect because sets

reject duplicates.

The iterator method returns an object that implements the Iterator interface.

With that object, you can visit the elements in the collection one by one. We

discuss iterators in the next section.

9.1.3. Iterators

The Iterator interface has four methods:

public interface Iterator<E> {

 boolean hasNext();

 E next();

 default void remove();

 default void forEachRemaining(Consumer<? super E> action);

}

By repeatedly calling the next method, you can visit the elements from the

collection one by one. However, if you reach the end of the collection, the

next method throws a NoSuchElementException. Therefore, you need to

call the hasNext method before calling next. That method returns true if the

iterator has not yet reached the end, and there is at least one more element

to visit. If you want to inspect all elements in a collection, request an

iterator and then keep calling the next method while hasNext returns true.

For example:

Collection<String> coll = . . .;

Iterator<String> iter = coll.iterator();

while (iter.hasNext()) {

 String element = iter.next();

 do something with element

}

You can write such a loop more concisely as the “for each” loop:

for (String element : coll) {

 do something with element

}

The compiler simply translates the “for each” loop into a loop with an

iterator.

The “for each” loop works with any object that implements the Iterable

interface, an interface with an abstract method:

public interface Iterable<E> {

 Iterator<E> iterator();

 . . .

}

The Collection interface extends the Iterable interface. Therefore, you can

use the “for each” loop with any collection in the Java Collections

Framework.

Instead of writing a loop, you can call the Collection.forEach or

Iterator.forEachRemaining methods with a lambda expression that

consumes an element. The lambda expression is invoked on all elements of

the collection, or the remaining elements that the iterator can visit.

coll.forEach(element -> do something with element);

iter.forEachRemaining(element -> do something with element);

The order in which the elements are visited depends on the collection type.

If you iterate over an ArrayList, the iterator starts at index 0 and increments

the index in each step. However, if you visit the elements in a HashSet, you

will get them in an essentially random order. You can be assured that you

will encounter all elements of the collection during the course of the

iteration, but you cannot make any assumptions about their ordering. This is

usually not a problem because the ordering does not matter for

computations such as computing totals or counting matches.

Note: Old-timers will notice that the next and hasNext methods of

the Iterator interface serve the same purpose as the nextElement and

hasMoreElements methods of an Enumeration. The designers of the

Java Collections Framework could have chosen to make use of the

Enumeration interface. But they disliked the cumbersome method

names and instead introduced a new interface with shorter method

names.

There is an important conceptual difference between iterators in the Java

collections library and iterators in other libraries. In traditional collections

libraries, such as the Standard Template Library of C++, iterators are

modeled after array indexes. Given such an iterator, you can look up the

element that is stored at that position, much like you can look up an array

element a[i] if you have an array index i. Independently of the lookup, you

can advance the iterator to the next position. This is the same operation as

advancing an array index by calling i++, without performing a lookup.

However, the Java iterators do not work like that. The lookup and position

change are tightly coupled. The only way to look up an element is to call

next, and that lookup advances the position.

Instead, think of Java iterators as being between elements. When you call

next, the iterator jumps over the next element, and it returns a reference to

the element that it just passed (see Figure 9.3).

.

Figure 9.3: Advancing an iterator

Note: Here is another useful analogy. You can think of Iterator.next

as the equivalent of InputStream.read. Reading a byte from a stream

automatically “consumes” the byte. The next call to read consumes

and returns the next byte from the input. Similarly, repeated calls to

next let you read all elements in a collection.

The remove method of the Iterator interface removes the element that was

returned by the last call to next. In many situations, that makes sense—you

need to see the element before you can decide that it is the one that should

be removed. But if you want to remove an element in a particular position,

you still need to skip past the element. For example, here is how you

remove the first element in a collection of strings:

Iterator<String> iter = coll.iterator();

iter.next(); // skip over the first element

iter.remove(); // now remove it

More importantly, there is a dependency between the calls to the next and

remove methods. It is illegal to call remove if it wasn’t preceded by a call to

next. If you try, an IllegalStateException is thrown.

If you want to remove two adjacent elements, you cannot simply call

iter.remove();

iter.remove(); // ERROR

Instead, you must first call next to jump over the element to be removed.

iter.remove();

iter.next();

iter.remove(); // OK

9.1.4. Generic Utility Methods

The Collection and Iterator interfaces are generic, which means you can

write utility methods that operate on any kind of collection. For example,

here is a generic method that tests whether an arbitrary collection contains a

given element:

public static <E> boolean contains(Collection<E> c, Object obj) {

 for (E element : c)

 if (element.equals(obj))

 return true;

 return false;

}

The designers of the Java Collections Framework decided that some of

these utility methods are so useful that the framework should make them

available. That way, API users don’t have to keep reinventing the wheel.

The contains method is one such method.

In fact, the Collection<E> interface declares quite a few useful methods that

all implementing classes must supply:

int size()

boolean isEmpty()

boolean contains(Object obj)

boolean containsAll(Collection<?> c)

boolean add(E obj)

boolean addAll(Collection<? extends E> from)

boolean remove(Object obj)

boolean removeAll(Collection<?> c)

boolean retainAll(Collection<?> c)

void clear()

Object[] toArray()

T[] toArray(T[] a)

Note: The Collection interface declares the equals and hashCode

methods that are inherited from Object. There is no technical need

to include these declarations. It merely provides a good place for

adding collection-specific API documentation. The Set and List

subinterfaces mandate specific behavior for equals. Other

collections can inherit Object.equals, or override it and compare the

elements in some way. In the latter case, the hashCode method also

needs to be overridden.

Many of these methods are self-explanatory; you will find full

documentation in the API notes at the end of this section.

Caution: The Java Collections Framework was designed before

generic types were added to Java. For backwards compatibility, the

contains and remove methods have a parameter of type Object and

not E. The containsAll, removeAll, and retainAll methods have a

parameter of type Collection<?> and not Collection<? extends E>.

This means that type errors may not be detected at compile time. As an

example, consider this code snippet where accidentally a String is removed

from a collection of Path objects:

Collection<Path> paths = . . .;

paths.remove("/tmp"); // Compiles, but can have no effect

Of course, it is a bother if every class that implements the Collection

interface has to supply so many routine methods. To make life easier for

implementors, the framework supplies a class AbstractCollection that

leaves the fundamental methods size and iterator abstract but implements

the routine methods in terms of them. For example:

public abstract class AbstractCollection<E> implements Collection<E> {

 . . .

 public abstract Iterator<E> iterator();

 public abstract int size();

 public boolean isEmpty() {

 return size() == 0;

 }

 public boolean contains(Object obj) {

 Iterator<E> it = iterator();

 if (o == null) {

 while (it.hasNext()) if (it.next() == null) return true;

 }

 else {

 while (it.hasNext()) if (o.equals(it.next())) return true;

 }

 return false;

 }

 . . .

}

A concrete collection class can now extend the AbstractCollection class. It

is up to the concrete collection class to supply iterator and size methods.

Mutable collections also need an add method. The other methods have been

taken care of by the AbstractCollection superclass. However, if the subclass

has a more efficient way of implementing contains, it is free to do so.

This approach is a bit outdated. It would be nicer if the methods were

default methods of the Collection interface, but default methods didn’t exist

when the Java Collections Framework was designed. However, several

default methods have been added. Three of them deal with streams

(discussed in Volume II). See Section 9.6.6 for the toArray method. In

addition, there is a useful method

default boolean removeIf(Predicate<? super E> filter)

for removing elements that fulfill a condition.

java.util.Collection<E> 1.2

Iterator<E> iterator()

returns an iterator that can be used to visit the elements in the

collection.

int size()

returns the number of elements currently stored in the collection.

boolean isEmpty()

returns true if this collection contains no elements.

boolean contains(Object obj)

returns true if this collection contains an object equal to obj.

boolean containsAll(Collection<?> other)

returns true if this collection contains all elements in the other

collection.

boolean add(E element)

attempts to add an element to the collection. Returns true if the

collection changed as a result of this call.

boolean addAll(Collection<? extends E> other)

adds all elements from the other collection to this collection. Returns

true if the collection changed as a result of this call.

boolean remove(Object obj)

attempts to remove an object equal to obj from this collection. Returns

true if a matching object was removed.

boolean removeAll(Collection<?> other)

removes from this collection all elements from the other collection.

Returns true if the collection changed as a result of this call.

default boolean removeIf(Predicate<? super E> filter) 8

removes all elements for which filter returns true. Returns true if the

collection changed as a result of this call.

void clear()

removes all elements from this collection.

boolean retainAll(Collection<?> other)

removes all elements from this collection that do not equal one of the

elements in the other collection. Returns true if the collection changed

as a result of this call.

Object[] toArray()

returns an array of the objects in the collection.

<T> T[] toArray(IntFunction<T[]> generator) 11

returns an array of the objects in the collection. The array is

constructed with the generator, which is typically a constructor

expression T[]::new.

java.util.Iterator<E> 1.2

boolean hasNext()

returns true if there is another element to visit.

E next()

returns the next object to visit. Throws a NoSuchElementException if

the end of the collection has been reached.

void remove()

removes the last visited object. This method must immediately follow

an element visit. If the collection has been modified since the last

element visit, this method throws an IllegalStateException. Iterators

are not required to support this operation. The default implementation

throws an UnsupportedOperationException.

default void forEachRemaining(Consumer<? super E> action) 8

visits elements and passes them to the given action until no elements

remain or the action throws an exception.

9.2. Interfaces in the Collections Framework

The Java Collections Framework defines a number of interfaces for

different types of collections. These are shown in Figure 9.4, except for

interfaces for concurrent programming, which are covered in Chapter 10.

.

Figure 9.4: The interfaces of the Java Collections Framework

There are two fundamental interfaces for collections: Collection and Map.

As you already saw, you insert elements into a collection with a method

boolean add(E element)

However, maps hold key/value pairs, and you use the put method to insert

them:

V put(K key, V value)

To read elements from a collection, visit them with an iterator. However,

you can read values from a map with the get method:

V get(Object key)

A List is an ordered collection. Elements are added into a particular

position in the container. An element can be accessed in two ways: by an

iterator or by an integer index. The latter is called random access because

elements can be visited in any order. In contrast, when using an iterator, one

must visit them sequentially.

The List interface defines several methods for random access:

void add(int index, E element)

E remove(int index)

E get(int index)

E set(int index, E element)

Caution: With a List<Integer, there are two remove methods:

boolean remove(int index) // Removes the element with the given

index

boolean remove(Integer o) // Removes the element equal to o

When calling remove with a parameter of type int, the first method

is chosen. No boxing is considered, and there is no warning. This

may not be what you want:

List<Integer> ids = . . .;

int id = . . .;

if (id == 0) ids.remove(id); // Removes index 0, not the element

with value 0

Note: The API documentation for the List interface defines the

behavior of the equals method for lists. For a list to be equal to

another object, the other object must also be a list of some kind.

Both lists must have the same size. When iterating over each list,

corresponding elements must be equal.

Frankly, there is a problem with the List interface in the Java Collections

Framework. There are two kinds of ordered collections, with very different

performance tradeoffs. An ordered collection that is backed by an array has

fast random access, and it makes sense to use the List methods with an

integer index. In contrast, a linked list, while also ordered, has slow random

access, and it is best traversed sequentially with an iterator. It would have

been better to provide two interfaces.

Note: To avoid carrying out random access operations for linked

lists, Java 1.4 introduced a tagging interface, RandomAccess. That

interface has no methods, but you can use it to test whether a

particular collection supports efficient random access:

if (c instanceof RandomAccess) {

 random traversal

}

else {

 sequential traversal

}

The Set interface has the same instance methods as the Collection interface,

but the behavior of the methods is more tightly defined. The add method of

a set should reject duplicates. The equals method of a set should be defined

so that two sets are identical if they have the same elements, but not

necessarily in the same order. The hashCode method should be defined so

that two sets with the same elements yield the same hash code.

Why make a separate interface if the method signatures are the same?

Conceptually, not all collections are sets. Making a Set interface enables

programmers to write methods that accept only sets.

To see why this distinction matters, consider equality testing. Two lists are

equal if they have the same elements in the same order. Two sets are equal

if they have the same elements in some order. The equals method for a class

implementing the Set interface needs to ensure that the argument is also a

Set and not just any Collection.

The SortedSet and SortedMap interfaces expose the comparator object used

for sorting, and they define methods to obtain views of subsets of the

collections. We discuss these in Section 9.5.3.

The interfaces NavigableSet and NavigableMap contain additional methods

for finding the next or previous element in sorted sets and maps. The

TreeSet and TreeMap classes implement these interfaces. The navigation

operations can be efficiently implemented in tree-based data structures.

Java 21 introduces the SequencedCollection<E> interface that provides

uniform access to the first and last elements of a collection and reverse

traversal.

E getFirst()

E getLast()

void addFirst(E e)

void addLast(E e)

E removeFirst()

E removeLast()

SequencedCollection<E> reversed()

Previously, these operations were carried out by different methods in lists,

sets, and deques. The SequencedSet subinterface sharpens the return type of

the reversed method to SequencedSet. The SequencedMap interface has

analogous methods for maps.

9.3. Concrete Collections

Table 9.1 shows the collections in the Java Collections Framework and

briefly describes the purpose of each collection class. (For simplicity, I omit

the thread-safe collections that will be discussed in Chapter 10.)

All classes in Table 9.1 implement the Collection interface, with the

exception of the classes with names ending in Map. Those classes

implement the Map interface instead. We will discuss maps in Section 9.4.

Table 9.1: Concrete Collections in the Java Collections

Framework

Collection Type Description See

ArrayList
An indexed sequence that grows

and shrinks dynamically

Section

9.3.2

Collection Type Description See

LinkedList

An ordered sequence that allows

efficient insertion and removal at

any location

Section

9.3.1

ArrayDeque
A double-ended queue that is

implemented as a circular array

Section

9.3.5

HashSet
An unordered collection that

rejects duplicates

Section

9.3.3

TreeSet A sorted set
Section

9.4.5

EnumSet A set of enumerated type values
Section

9.4.6

Collection Type Description See

LinkedHashSet
A set that remembers the order

in which elements were inserted

Section

9.4.5

PriorityQueue
A collection that allows efficient

removal of the smallest element

Section

9.3.6

HashMap
A data structure that stores

key/value associations

Section

9.4.1

TreeMap
A map in which the keys are

sorted

Section

9.4.1

EnumMap
A map in which the keys belong

to an enumerated type

Section

9.4.6

Collection Type Description See

LinkedHashMap
A map that remembers the order

in which entries were added

Section

9.4.5

WeakHashMap

A map with values that can be

reclaimed by the garbage

collector if they are not used

elsewhere

Section

9.4.4

IdentityHashMap
A map with keys that are

compared by ==, not equals

Section

9.4.7

Figure 9.5 shows the relationships between these classes.

.

Figure 9.5: Classes in the Java Collections Framework

9.3.1. Linked Lists

We already used arrays and their dynamic cousin, the ArrayList class, for

many examples in this book. However, arrays and array lists suffer from a

major drawback. Removing an element from the middle of an array is

expensive since all array elements beyond the removed one must be moved

toward the beginning of the array (see Figure 9.6). The same is true for

inserting elements in the middle.

.

Figure 9.6: Removing an element from an array

Another well-known data structure, the linked list, solves this problem.

Where an array stores object references in consecutive memory locations, a

linked list stores each object in a separate link. Each link also stores a

reference to the next link in the sequence. In the Java Collections

Framework, all linked lists are actually doubly linked; that is, each link also

stores a reference to its predecessor (see Figure 9.7).

.

Figure 9.7: A doubly linked list

Removing an element from the middle of a linked list is an inexpensive

operation—only the links around the element to be removed need to be

updated (see Figure 9.8).

.

Figure 9.8: Removing an element from a linked list

Perhaps you once took a data structures course in which you learned how to

implement linked lists. You may have bad memories of tangling up the links

when removing or adding elements in the linked list. If so, you will be

pleased to learn that the Java Collections Framework supplies a class

LinkedList ready for you to use.

The following code example adds three elements and then removes the

second one:

var staff = new LinkedList<String>();

staff.add("Amy");

staff.add("Bob");

staff.add("Carl");

Iterator<String> iter = staff.iterator();

String first = iter.next(); // visit first element (Amy)

String second = iter.next(); // visit second element (Bob)

iter.remove(); // remove last visited element (Bob)

There is, however, an important difference between linked lists and generic

collections. A linked list is an ordered collection in which the position of

the objects matters. The LinkedList.add method adds the object to the end

of the list. But you will often want to add objects somewhere in the middle

of a list. This position-dependent add method is the responsibility of an

iterator, since iterators describe positions in collections. Using iterators to

add elements makes sense only for collections that have a natural ordering.

For example, the set data type that we discuss in the next section does not

impose any ordering on its elements. Therefore, there is no add method in

the Iterator interface. Instead, the Java Collections Framework supplies a

subinterface ListIterator that contains an add method:

interface ListIterator<E> extends Iterator<E> {

 void add(E element);

 . . .

}

Unlike Collection.add, this method does not return a boolean—it is

assumed that the add operation always modifies the list.

In addition, the ListIterator interface has two methods that you can use for

traversing a list backwards.

boolean hasPrevious()

E previous()

Like the next method, the previous method returns the object that it skipped

over.

The listIterator method of the LinkedList class returns an iterator object that

implements the ListIterator interface.

ListIterator<String> iter = staff.listIterator();

The add method adds the new element before the iterator position. For

example, the following code skips over the first element in the linked list

and adds "Juliet" before the second element (see Figure 9.9):

var staff = new LinkedList<String>();

staff.add("Amy");

staff.add("Bob");

staff.add("Carl");

ListIterator<String> iter = staff.listIterator();

iter.next(); // skip past first element

iter.add("Juliet");

.

Figure 9.9: Adding an element to a linked list

If you call the add method multiple times, the elements are simply added in

the order in which you supplied them. They are all added in turn before the

current iterator position.

When you use the add operation with an iterator that was freshly returned

from the listIterator method and that points to the first element of the list,

the newly added element becomes the first element. When the iterator has

passed the last element of the list (that is, when hasNext returns false), the

added element becomes the new tail of the list. If the linked list has n

elements, there are n + 1 spots for adding a new element. These spots

correspond to the n + 1 possible positions of the iterator. For example, if a

linked list contains three elements, A, B, and C, there are four possible

positions (marked as |) for inserting a new element:

|ABC

A|BC

AB|C

ABC|

Note: Be careful with the “cursor” analogy. The remove operation

does not work exactly like the Backspace key. Immediately after a

call to next, the remove method indeed removes the element to the

left of the iterator, just like the Backspace key would. However, if

you have just called previous, the element to the right will be

removed. And you can’t call remove twice in a row.

Unlike the add method, which depends only on the iterator position,

the remove method depends on the iterator state.

Finally, a set method replaces the last element, returned by a call to next or

previous, with a new element. For example, the following code replaces the

first element of a list with a new value:

ListIterator<String> iter = list.listIterator();

String oldValue = iter.next(); // returns first element

iter.set(newValue); // sets first element to newValue

As you might imagine, if an iterator traverses a collection while another

iterator is modifying it, confusing situations can occur. For example,

suppose an iterator points before an element that another iterator has just

removed. The iterator is now invalid and should no longer be used. The

linked list iterators have been designed to detect such modifications. If an

iterator finds that its collection has been modified by another iterator or by a

method of the collection itself, it throws a

ConcurrentModificationException. For example, consider the following

code:

List<String> list = . . .;

ListIterator<String> iter1 = list.listIterator();

ListIterator<String> iter2 = list.listIterator();

iter1.next();

iter1.remove();

iter2.next(); // throws ConcurrentModificationException

The call to iter2.next throws a ConcurrentModificationException since iter2

detects that the list was modified externally.

To avoid concurrent modification exceptions, follow this simple rule: You

can attach as many iterators to a collection as you like, provided that all of

them are only readers. Alternatively, you can attach a single iterator that can

both read and write.

Concurrent modification detection is done in a simple way. The collection

keeps track of the number of mutating operations (such as adding and

removing elements). Each iterator keeps a separate count of the number of

mutating operations that it was responsible for. At the beginning of each

iterator method, the iterator simply checks whether its own mutation count

equals that of the collection. If not, it throws a

ConcurrentModificationException.

Note: There is, however, a curious exception to the detection of

concurrent modifications. The linked list only keeps track of

structural modifications to the list, such as adding and removing

links. The set method does not count as a structural modification.

You can attach multiple iterators to a linked list, all of which call set

to change the contents of existing links. This capability is required

for a number of algorithms in the Collections class that we discuss

later in this chapter.

Now you have seen the fundamental methods of the LinkedList class. Use a

ListIterator to traverse the elements of the linked list in either direction and

to add and remove elements.

As you saw in Section 9.2, many other useful methods for operating on

linked lists are declared in the Collection interface. These are, for the most

part, implemented in the AbstractCollection superclass of the LinkedList

class. For example, the toString method invokes toString on all elements

and produces one long string of the format [A, B, C]. This is handy for

debugging. Use the contains method to check whether an element is present

in a linked list. For example, the call staff.contains("Harry") returns true if

the linked list already contains a string equal to the string "Harry".

The Java Collections Framework also supplies a number of methods that

are, from a theoretical perspective, somewhat dubious. Linked lists do not

support fast random access. If you want to see the nth element of a linked

list, you have to start at the beginning and skip past the first n – 1 elements.

There is no shortcut. For that reason, programmers don’t usually use linked

lists in situations where elements need to be accessed by an integer index.

Nevertheless, the LinkedList class supplies a get method that lets you

access a particular element:

LinkedList<String> list = . . .;

String obj = list.get(n);

Of course, this method is not very efficient. If you find yourself using it,

you are probably using a wrong data structure for your problem.

You should never use this illusory random access method to step through a

linked list. The code

for (int i = 0; i < list.size(); i++)

 do something with list.get(i);

is staggeringly inefficient. Each time you look up another element, the

search starts again from the beginning of the list. The LinkedList object

makes no effort to cache the position information.

Note: The get method has one slight optimization: If the index is at

least size() / 2, the search for the element starts at the end of the list.

The list iterator interface also has a method to tell you the index of the

current position. In fact, since Java iterators conceptually point between

elements, it has two of them: The nextIndex method returns the integer

index of the element that would be returned by the next call to next; the

previousIndex method returns the index of the element that would be

returned by the next call to previous. Of course, that is simply one less than

nextIndex. These methods are efficient for LinkedList iterators—each

iterator keeps a count of its current position. Finally, if you have an integer

index n, then list.listIterator(n) returns an iterator that points just before the

element with index n. That is, calling next yields the same element as

list.get(n); obtaining that iterator is inefficient.

If you have a linked list with only a handful of elements, you don’t have to

be overly paranoid about the cost of the get and set methods. But then, why

use a linked list in the first place? The only reason to use a linked list is to

minimize the cost of insertion and removal in the middle of the list. If you

have only a few elements, you can just use an ArrayList.

I recommend that you simply stay away from all methods that use an

integer index to denote a position in a linked list. If you want random access

into a collection, use an array or ArrayList, not a linked list.

The program in Listing 9.1 puts linked lists to work. It simply creates two

lists, merges them, then removes every second element from the second list,

and finally tests the removeAll method. I recommend that you trace the

program flow and pay special attention to the iterators. You may find it

helpful to draw diagrams of the iterator positions, like this:

|ACE |BDFG

A|CE |BDFG

AB|CE B|DFG

. . .

Note that the call

IO.println(a);

prints all elements in the linked list a by invoking the toString method in

AbstractCollection.

Listing 9.1 v1ch09/LinkedListDemo.java

1 package v1ch09;

2

3 import module java.base;

4

5 /**

6 * This program demonstrates operations on linked lists.

7 */

8 class LinkedListDemo {

9 void main() {

10 var a = new LinkedList<String>();

11 a.add("Amy");

12 a.add("Carl");

13 a.add("Erica");

14

15 var b = new LinkedList<String>();

16 b.add("Bob");

17 b.add("Doug");

18 b.add("Frances");

19 b.add("Gloria");

20

21 // merge the elements from b into a

22

23 ListIterator<String> aIter = a.listIterator();

24 Iterator<String> bIter = b.iterator();

25

26 while (bIter.hasNext()) {

27 if (aIter.hasNext()) aIter.next();

28 aIter.add(bIter.next());

29 }

30

31 IO.println(a);

32

33 // remove every second element from b

34

35 bIter = b.iterator();

36 while (bIter.hasNext()) {

37 bIter.next(); // skip one element

38 if (bIter.hasNext()) {

39 bIter.next(); // skip next element

40 bIter.remove(); // remove that element

41 }

42 }

43

44 IO.println(b);

45

46 // bulk operation: remove all elements in b from a

47

48 a.removeAll(b);

49

50 IO.println(a);

51 }

52 }

java.util.List<E> 1.2

ListIterator<E> listIterator()

returns a list iterator for visiting the elements of the list.

ListIterator<E> listIterator(int index)

returns a list iterator for visiting the elements of the list whose first

call to next will return the element with the given index.

void add(int i, E element)

adds an element at the specified position.

boolean addAll(int i, Collection<? extends E> elements)

adds all elements from a collection to the specified position.

E remove(int i)

removes and returns the element at the specified position.

E get(int i)

gets the element at the specified position.

E set(int i, E element)

replaces the element at the specified position with a new element and

returns the old element.

int indexOf(Object element)

returns the position of the first occurrence of an element equal to the

specified element, or -1 if no matching element is found.

int lastIndexOf(Object element)

returns the position of the last occurrence of an element equal to the

specified element, or -1 if no matching element is found.

java.util.ListIterator<E> 1.2

void add(E newElement)

adds an element before the current position.

void set(E newElement)

replaces the last element visited by next or previous with a new

element. Throws an IllegalStateException if the list structure was

modified since the last call to next or previous.

boolean hasPrevious()

returns true if there is another element to visit when iterating

backwards through the list.

E previous()

returns the previous object. Throws a NoSuchElementException if the

beginning of the list has been reached.

int nextIndex()

returns the index of the element that would be returned by the next

call to next, or the size of the list if the iterator is past the last element.

int previousIndex()

returns the index of the element that would be returned by the next

call to previous, or -1 if the iterator is before the first element.

java.util.LinkedList<E> 1.2

LinkedList()

constructs an empty linked list.

LinkedList(Collection<? extends E> elements)

constructs a linked list and adds all elements from a collection.

void addFirst(E element)

void addLast(E element)

add an element to the beginning or the end of the list.

E getFirst()

E getLast()

return the element at the beginning or the end of the list.

E removeFirst()

E removeLast()

remove and return the element at the beginning or the end of the list.

9.3.2. Array Lists

In the preceding section, you saw the List interface and the LinkedList class

that implements it. The List interface describes an ordered collection in

which the position of elements matters. There are two protocols for visiting

the elements: through an iterator and by random access with methods get

and set. The latter is not appropriate for linked lists, but of course get and

set make a lot of sense for arrays. The Java Collections Framework supplies

the familiar ArrayList class that also implements the List interface. An

ArrayList encapsulates a dynamically reallocated array of objects.

Note: Java 1.0 came with a different array-based collection, the

Vector class. All methods of the Vector class are synchronized. It is

safe to access a Vector object from two threads. But if you access a

vector from only a single thread—by far the more common case—

the synchronization is wasteful. In contrast, the ArrayList methods

are not synchronized. As you will see in Chapter 10, there are now

better threadsafe choices as well. There is no reason to use Vector

nowadays unless you need to interface with an ancient API.

9.3.3. Hash Sets

Linked lists and arrays let you specify the order in which you want to

arrange the elements. However, if you are looking for a particular element

and don’t remember its position, you need to visit all elements until you

find a match. That can be time consuming if the collection contains many

elements. If you don’t care about the ordering of the elements, there are

data structures that let you find elements much faster. The drawback is that

those data structures give you no control over the order in which the

elements appear. These data structures organize the elements in an order

that is convenient for their own purposes.

A well-known data structure for finding objects quickly is the hash table. A

hash table computes an integer, called the hash code, for each object. A

hash code is somehow derived from the instance fields of an object,

preferably in such a way that objects with different data yield different

codes. Table 9.2 lists a few examples of hash codes that result from the

hashCode method of the String class.

Table 9.2: Hash Codes

Resulting from the

hashCode Method

String Hash Code

"Lee" 76268

"lee" 107020

"eel" 100300

If you define your own classes, you are responsible for implementing your

own hashCode method—see Chapter 5 for more information. Your

implementation needs to be compatible with the equals method: If

a.equals(b), then a and b must have the same hash code.

What’s important for now is that hash codes can be computed quickly and

that the computation depends only on the state of the object that needs to be

hashed, not on the other objects in the hash table.

In Java, hash tables are implemented as arrays of linked lists. Each list is

called a bucket (see Figure 9.10). To find the place of an object in the table,

compute its hash code and reduce it modulo the total number of buckets.

The resulting number is the index of the bucket that holds the element. For

example, if an object has hash code 76268 and there are 128 buckets, then

the object is placed in bucket 108 (because the remainder 76268 % 128 is

108). Perhaps you are lucky and there is no other element in that bucket.

Then, you simply insert the element into that bucket. Of course, sometimes

you will hit a nonempty bucket. This is called a hash collision. Then,

compare the new object with all objects in that bucket to see if it is already

present. If the hash codes are reasonably randomly distributed and the

number of buckets is large enough, only a few comparisons should be

necessary.

.

Figure 9.10: A hash table

Note: In the HashMap implementation, a bucket changes from a

linked list into a balanced binary tree when its size exceeds a

threshold. This improves performance if a hash function was poorly

chosen and yields many collisions, or if malicious code tries to flood

a hash table with many values that have identical hash codes.

Tip: If at all possible, the keys of a hash table should belong to a

class that implements the Comparable interface. Then you are

guaranteed not to suffer poor performance due to poorly distributed

hash codes.

If the hash table gets too full, it needs to be rehashed. To rehash the table, a

table with more buckets is created, all elements are inserted into the new

table, and the original table is discarded. The load factor determines when a

hash table is rehashed. For example, if the load factor is 0.75 (which is the

default) and the table is more than 75% full, it is automatically rehashed

with twice as many buckets. For most applications, it is reasonable to leave

the load factor at 0.75.

If you want more control over the performance of the hash table, you can

specify the initial bucket count. You should set it to the expected element

count, divided by the load factor. Or, as of Java 19, you can use the static

newHashSet convenience method that does this computation for you:

HashSet<String> strings =

HashSet.newHashSet(expectedElementCount);

Note: Some researchers believe that it is a good idea to make the

bucket count a prime number to prevent a clustering of keys. The

evidence for this isn’t conclusive, however. The Java Collections

Framework uses bucket counts that are powers of 2, with a default

of 16. (Any value you supply for the bucket count is automatically

rounded to the next power of 2.)

Hash tables can be used to implement several important data structures. The

simplest among them is the set type. A set is a collection of elements

without duplicates. The add method of a set first tries to find the object to

be added, and adds it only if it is not yet present.

The Java Collections Framework supplies a HashSet class that implements

a set based on a hash table. You add elements with the add method. The

contains method is redefined to make a fast lookup to see if an element is

already present in the set. It checks only the elements in one bucket and not

all elements in the collection.

The hash set iterator visits all buckets in turn. Since hashing scatters the

elements around in the table, they are visited in a seemingly random order.

You would only use a HashSet if you don’t care about the ordering of the

elements in the collection.

The sample program at the end of this section (Listing 9.2) reads words

from a file, adds them to a set, and prints out the first twenty words in the

set. For example, you can feed the program the text from Alice in

Wonderland by launching it from a command shell as

java v1ch09.set.SetDemo gutenberg/alice30.txt

Alice in Wonderland has 28,195 words, of which 5,909 are unique,

including the copyright notice at the beginning. The words appear in

random order. The same words are then inserted into a tree set, which, as

you will see in the following section, keeps the elements in sorted order.

Caution: Be careful when you mutate set elements. If the hash code

of an element were to change, the element would no longer be in the

correct position in the data structure.

var rects = new HashSet<Rectangle>();

var rect = new Rectangle(5, 10, 20, 30);

rects.add(rect);

rect.setLocation(0, 0);

 // rects is now

[java.awt.Rectangle[x=0,y=0,width=20,height=30]]

rects.remove(new Rectangle(0, 0, 20, 30)); // Returns false,

doesn't remove

Listing 9.2 v1ch09/SetDemo.java

1 package v1ch09;

2

3 import module java.base;

4

5 /**

6 * This program compares insertion into a hash set and a tree set. You can specify

7 * a filename and a repetition count on the command line.

8 */

9 class SetDemo {

10 void main(String[] args) throws Exception {

11 List<String> words = new ArrayList<>();

12 String filename = args.length > 0 ? args[0] : "gutenberg/crsto10.txt";

13 int repetitions = args.length > 1 ? Integer.parseInt(args[1]) : 1;

14 try (var in = new Scanner(Path.of(filename))) {

15 while (in.hasNext()) {

16 String word = in.next();

17 words.add(word);

18 }

19 }

20 time(new HashSet<>(), words, repetitions);

21 time(new TreeSet<>(), words, repetitions);

22 }

23

24 void time(Set<String> wordSet, List<String> wordList, int repetitions) {

25 long totalTime = 0;

26 for (int i = 1; i <= repetitions; i++) {

27 for (String word : wordList) {

28 long start = System.nanoTime();

29 wordSet.add(word);

30 long end = System.nanoTime();

31 totalTime += end - start;

32 }

33 }

34 Iterator<String> iter = wordSet.iterator();

35 for (int i = 1; i <= 20 && iter.hasNext(); i++)

36 IO.print(iter.next() + " ");

37 IO.println("...");

38 IO.println("%s: %d words, %d distinct, %.3f seconds.".formatted(

39 wordSet.getClass().getSimpleName(), wordList.size(), wordSet.size(),

40 totalTime * 1E-9));

41 }

42

43 }

java.util.HashSet<E> 1.2

HashSet()

constructs an empty hash set.

HashSet(Collection<? extends E> elements)

constructs a hash set and adds all elements from a collection.

HashSet(int initialCapacity)

HashSet(int initialCapacity, float loadFactor)

construct an empty hash set with the specified capacity and load

factor, or a load factor of 0.75. If the ratio size/capacity exceeds the

load factor, the hash table will be rehashed into a larger one.

static <E> HashSet<E> newHashSet(int numMappings) 19

constructs an empty hash set with sufficient initial capacity to hold the

expected number of elements (numMappings) without rehashing.

java.lang.Object 1.0

int hashCode()

returns a hash code for this object. A hash code can be any integer,

positive or negative. The definitions of equals and hashCode must be

compatible: If x.equals(y) is true, then x.hashCode() must be the same

value as y.hashCode().

9.3.4. Tree Sets

The TreeSet class is similar to the hash set, with one added improvement. A

tree set is a sorted collection. You insert elements into the collection in any

order. When you iterate through the collection, the values are automatically

presented in sorted order. For example, suppose you insert three strings and

then visit all elements that you added.

var sorter = new TreeSet<String>();

sorter.add("Bob");

sorter.add("Amy");

sorter.add("Carl");

for (String s : sorter) IO.println(s);

Then, the values are printed in sorted order: Amy Bob Carl. As the name of

the class suggests, the sorting is accomplished by a tree data structure. (The

current implementation uses a red-black tree. For a detailed description of

red-black trees see, for example, Introduction to Algorithms by Thomas

Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein, The MIT

Press, 2022.) Every time an element is added to a tree, it is placed into its

proper sorting position. Therefore, the iterator always visits the elements in

sorted order.

Adding an element to a tree is slower than adding it to a hash table. But it is

still much faster than checking for duplicates in an array or linked list. If the

tree contains n elements, then an average of log2 n comparisons are required

to find the correct position for the new element. For example, if the tree

already contains 1,000 elements, adding a new element requires about 10

comparisons.

Note: In order to use a tree set, you must be able to compare the

elements. The elements must implement the Comparable interface,

or you must supply a Comparator when constructing the set. (The

Comparable and Comparator interfaces were introduced in Chapter

6.)

How much slower is a tree set? Run the program in Listing 9.2 as

java v1ch09.set.SetDemo gutenberg/crsto10.txt 100

The Count of Monte Cristo has 466.300 words, each of which is inserted

100 times. On my test machine, the TreeSet is almost 4 times slower. If you

don’t need the data sorted, there is no reason to pay for the sorting

overhead. More importantly, with some data it is much more difficult to

come up with a sort order than a hash function. A hash function only needs

to do a reasonably good job of scrambling the objects, whereas a

comparison function must tell objects apart with complete precision.

To make this distinction more concrete, consider the task of collecting a set

of rectangles. If you use a TreeSet, you need to supply a

Comparator<Rectangle>. How do you compare two rectangles? By area?

That doesn’t work. You can have two different rectangles with different

coordinates but the same area, and you want to keep both. The comparator

must be compatible with equals; that is, the comparison can only be zero if

the elements are equal. There is such a sort order for rectangles (the

lexicographic ordering on its coordinates), but it is cumbersome to

compute. In contrast, a hash function is already defined for the Rectangle

class. It simply hashes the coordinates.

Caution: If the comparator is not compatible with the equals

method of the element type, set equality can give inconsistent

results. Here is a typical example:

var words = new TreeSet<String>

(String.CASE_INSENSITIVE_ORDER);

The intent is not to collect elements that only differ in letter case:

commands.add("QUIT");

commands.add("quit"); // Not added

However, now equals is no longer symmetric:

commands.equals(Set.of("quit")) // true

Set.of("quit").equals(commands) // false

The TreeSet considers two elements equal when the comparator

returns zero. But the other set uses String.equals.

A better approach is to use the String.compare ordering and only

insert lowercase strings into the set.

Note: The TreeSet class implements the NavigableSet interface.

That interface adds several convenient methods for locating adjacent

elements. See the API notes for details.

The program in Listing 9.3 builds two tree sets of Item objects. The first

one is sorted by part number, the default sort order of Item objects. The

second set is sorted by description, using a custom comparator.

Listing 9.3 v1ch09/TreeSetDemo.java

1 package v1ch09;

2

3 import module java.base;

4

5 /**

6 * This program sorts a set of Item objects by comparing their part numbers,

7 * then their descriptions.

8 */

9 class TreeSetDemo {

10 void main() {

11 var parts = new TreeSet<Item>();

12 parts.add(new Item("Toaster", 1234));

13 parts.add(new Item("Widget", 4562));

14 parts.add(new Item("Router", 9912));

15 IO.println(parts);

16

17 var sortByDescription = new TreeSet<Item>

(Comparator.comparing(Item::description));

18

19 sortByDescription.addAll(parts);

20 IO.println(sortByDescription);

21 }

22

23 record Item(String description, int partNumber) implements Comparable<Item> {

24 public int compareTo(Item other) {

25 return Integer.compare(partNumber, other.partNumber);

26 }

27 }

28 }

java.util.TreeSet<E> 1.2

TreeSet()

TreeSet(Comparator<? super E> comparator)

construct an empty tree set.

TreeSet(Collection<? extends E> elements)

TreeSet(SortedSet<E> s)

construct a tree set and add all elements from a collection or sorted set

(in the latter case, using the same ordering).

java.util.SortedSet<E> 1.2

Comparator<? super E> comparator()

returns the comparator used for sorting the elements, or null if the

elements are compared with the compareTo method of the

Comparable interface.

E first()

E last()

return the smallest or largest element in the sorted set.

java.util.NavigableSet<E> 6

E higher(E value)

E lower(E value)

return the least element >value or the largest element <value, or null if

there is no such element.

E ceiling(E value)

E floor(E value)

return the least element ≥value or the largest element ≤value, or null if

there is no such element.

E pollFirst()

E pollLast()

remove and return the smallest or largest element in this set, or null if

the set is empty.

9.3.5. Queues and Deques

As we already discussed, a queue lets you efficiently add an element after

the last and remove the first element. A double-ended queue, or deque, lets

you efficiently add or remove elements at both ends. Adding elements in

the middle is not supported. The Deque interface is implemented by the

ArrayDeque and LinkedList classes, both of which provide deques whose

size grows as needed. In Chapter 10, you will see bounded queues and

deques.

In Java 21, the methods

E getFirst()

E getLast()

void addFirst(E e)

void addLast(E e)

E removeFirst()

E removeLast()

were moved from the Deque interface to the SequencedCollection interface,

which the List and Set interfaces also extend. This provides uniform

methods for accessing the first and last element of a collection.

java.util.Queue<E> 5.0

boolean add(E e)

boolean offer(E e)

add the given element after the last element of this queue and return

true, provided the queue is not full. If the queue is full, the first

method throws an IllegalStateException, whereas the second method

returns false.

E remove()

E poll()

remove and return the first element of this queue, provided the queue

is not empty. If the queue is empty, the first method throws a

NoSuchElementException, whereas the second method returns null.

E element()

E peek()

return the element at the head of this queue without removing it,

provided the queue is not empty. If the queue is empty, the first

method throws a NoSuchElementException, whereas the second

method returns null.

java.util.SequencedCollection<E> 21

void addFirst(E element)

void addLast(E element)

add the given element before the first or after the last elemet of this

collection. If the collection is full, throw an IllegalStateException.

E removeFirst()

E removeLast()

remove and return the first or last element of this collection, provided

the collection is not empty. If the collection is empty, throw a

NoSuchElementException.

E getFirst()

E getLast()

return the first or last element of this collection without removing it,

provided the collection is not empty. If the collection is empty, throw

a NoSuchElementException.

java.util.Deque<E> 6

boolean offerFirst(E element)

boolean offerLast(E element)

add the given element before the first or after the last element of this

deque. If the deque is full, return false.

E pollFirst()

E pollLast()

remove and return the first or last element of this deque, provided the

deque is not empty. If the deque is empty, return null.

E peekFirst()

E peekLast()

return the first or last element of this deque without removing it,

provided the deque is not empty. If the deque is empty, return null.

java.util.ArrayDeque<E> 6

ArrayDeque()

ArrayDeque(int initialCapacity)

construct an unbounded deque with an initial capacity of 16 or the

given initial capacity.

9.3.6. Priority Queues

A priority queue retrieves elements in sorted order after they were inserted

in arbitrary order. That is, whenever you call the remove method, you get

the smallest element currently in the priority queue. However, the priority

queue does not sort all its elements. If you iterate over the elements, they

are not necessarily sorted. The priority queue makes use of an elegant and

efficient data structure called a heap. A heap is a self-organizing binary tree

in which the add and remove operations cause the smallest element to

gravitate to the root, without wasting time on sorting all elements.

Just like a TreeSet, a priority queue can either hold elements of a class that

implements the Comparable interface or a Comparator object you supply in

the constructor.

A typical use for a priority queue is job scheduling. Each job has a priority.

Jobs are added in random order. Whenever a new job can be started, the

highest priority job is removed from the queue. (Since it is traditional for

priority 1 to be the “highest” priority, the remove operation yields the

minimum element.)

Listing 9.4 shows a priority queue in action. Unlike iteration in a TreeSet,

the iteration here does not visit the elements in sorted order. However,

removal always yields the smallest remaining element.

Listing 9.4 v1ch09/PriorityQueueDemo.java

1 package v1ch09;

2

3 import module java.base;

4

5 /**

6 * This program demonstrates the use of a priority queue.

7 */

8 class PriorityQueueDemo {

9 void main() {

10 var pq = new PriorityQueue<LocalDate>();

11 pq.add(LocalDate.of(1906, 12, 9)); // G. Hopper

12 pq.add(LocalDate.of(1815, 12, 10)); // A. Lovelace

13 pq.add(LocalDate.of(1903, 12, 3)); // J. von Neumann

14 pq.add(LocalDate.of(1910, 6, 22)); // K. Zuse

15

16 IO.println("Iterating over elements . . .");

17 for (LocalDate date : pq)

18 IO.println(date);

19 IO.println("Removing elements . . .");

20 while (!pq.isEmpty())

21 IO.println(pq.remove());

22 }

23 }

java.util.PriorityQueue 5.0

PriorityQueue()

PriorityQueue(int initialCapacity)

construct a priority queue for storing Comparable objects.

PriorityQueue(int initialCapacity, Comparator<? super E> c)

constructs a priority queue and uses the specified comparator for

sorting its elements.

9.4. Maps

A set is a collection that lets you quickly find an existing element. However,

to look up an element, you need to have an exact copy of the element to

find. That isn’t a very common lookup—usually, you have some key

information, and you want to look up the associated element. The map data

structure serves that purpose. A map stores key/value pairs. You can find a

value if you provide the key. For example, you may store a table of

employee records, where the keys are the employee IDs and the values are

Employee objects. In the following sections, you will learn how to work

with maps.

9.4.1. Basic Map Operations

The Java Collections Framework supplies two general-purpose

implementations for maps: HashMap and TreeMap. Both classes implement

the Map interface.

A hash map hashes the keys, and a tree map uses an ordering on the keys to

organize them in a search tree. The hash or comparison function is applied

only to the keys. The values associated with the keys are not hashed or

compared.

Should you choose a hash map or a tree map? As with sets, hashing is

usually a bit faster, and it is the preferred choice if you don’t need to visit

the keys in sorted order.

Here is how you set up a hash map for storing employees:

var staff = new HashMap<String, Employee>(); // HashMap implements

Map

var harry = new Employee("Harry Hacker");

staff.put("987-98-9996", harry);

. . .

Whenever you add an object to a map, you must supply a key as well. In

our case, the key is a string, and the corresponding value is an Employee

object.

To retrieve an object, you must use (and, therefore, remember) the key.

var id = "987-98-9996";

Employee e = staff.get(id); // gets harry

Caution: For historical reasons, the get method is declared with a

parameter of type Object, and not the key type. For example, the

following code compiles:

long numericId = . . .

Employee e = staff.get(numericId); // Compiles but never gets a

value

If no information is stored in the map with the particular key specified, get

returns null.

The null return value can be inconvenient. Sometimes, you have a good

default that can be used for keys that are not present in the map. Then use

the getOrDefault method.

Map<String, Integer> scores = . . .;

int score = scores.getOrDefault(id, 0); // gets 0 if the id is not present

Keys must be unique. You cannot store two values with the same key. If

you call the put method twice with the same key, the second value replaces

the first one. In fact, put returns the previous value associated with its key

argument.

The remove method removes an element with a given key from the map.

The size method returns the number of entries in the map.

The easiest way of iterating over the keys and values of a map is the

forEach method. Provide a lambda expression that receives a key and a

value. That expression is invoked for each map entry in turn.

scores.forEach((k, v) ->

 IO.println("key=" + k + ", value=" + v));

Listing 9.5 illustrates a map at work. We first add key/value pairs to a map.

Then, we remove one key from the map, which removes its associated

value as well. Next, we change the value that is associated with a key and

call the get method to look up a value. Finally, we iterate through the entry

set.

Listing 9.5 v1ch09/MapDemo.java

1 package v1ch09;

2

3 import module java.base;

4

5 /**

6 * This program demonstrates the use of a map.

7 */

8 class MapDemo {

9 void main() {

10 var birthdays = new HashMap<String, LocalDate>();

11 birthdays.put("Grace Hopper", LocalDate.of(1906, 12, 9));

12 birthdays.put("Ada Lovelace", LocalDate.of(1915, 12, 10));

13 birthdays.put("John von Neumann", LocalDate.of(1903, 12, 3));

14 birthdays.put("Konrad Zuse", LocalDate.of(1910, 6, 22));

15

16 // print all entries

17 IO.println(birthdays);

18

19 // remove an entry

20 birthdays.remove("Konrad Zuse");

21

22 // replace an entry

23 birthdays.put("Ada Lovelace", LocalDate.of(1815, 12, 10));

24

25 // look up a value

26 IO.println(birthdays.get("Ada Lovelace"));

27

28 // iterate through all entries

29 birthdays.forEach((k, v) -> IO.println("key=" + k + ", value=" + v));

30 }

31 }

java.util.Map<K, V> 1.2

V get(Object key)

gets the value associated with the key; returns the object associated

with the key, or null if the key is not found in the map. Implementing

classes may forbid null keys.

default V getOrDefault(Object key, V defaultValue)

gets the value associated with the key; returns the object associated

with the key, or defaultValue if the key is not found in the map.

V put(K key, V value)

puts the association of a key and a value into the map. If the key is

already present, the new object replaces the old one previously

associated with the key. This method returns the old value of the key,

or null if the key was not previously present. Implementing classes

may forbid null keys or values.

void putAll(Map<? extends K, ? extends V> entries)

adds all entries from the specified map to this map.

boolean containsKey(Object key)

returns true if the key is present in the map.

boolean containsValue(Object value)

returns true if the value is present in the map.

default void forEach(BiConsumer<? super K,? super V> action) 8

applies the action to all key/value pairs of this map.

java.util.HashMap<K, V> 1.2

HashMap()

HashMap(int initialCapacity)

HashMap(int initialCapacity, float loadFactor)

construct an empty hash map with the specified capacity and load

factor (a number between 0.0 and 1.0 that determines at what

percentage of fullness the hash table will be rehashed into a larger

one). The default load factor is 0.75.

static <K, V> HashMap<K, V> newHashMap(int numMappings) 19

constructs an empty hash map with sufficient initial capacity to hold

the expected number of entries (numMappings) without rehashing.

java.util.TreeMap<K,V> 1.2

TreeMap()

constructs an empty tree map for keys that implement the Comparable

interface.

TreeMap(Comparator<? super K> c)

constructs a tree map and uses the specified comparator for sorting its

keys.

TreeMap(Map<? extends K, ? extends V> entries)

constructs a tree map and adds all entries from a map.

TreeMap(SortedMap<? extends K, ? extends V> entries)

constructs a tree map, adds all entries from a sorted map, and uses the

same element comparator as the given sorted map.

java.util.SortedMap<K, V> 1.2

Comparator<? super K> comparator()

returns the comparator used for sorting the keys, or null if the keys are

compared with the compareTo method of the Comparable interface.

K firstKey()

K lastKey()

return the smallest or largest key in the map.

9.4.2. Updating Map Entries

A tricky part of dealing with maps is updating an entry. Normally, you get

the old value associated with a key, update it, and put back the updated

value. But you have to worry about the special case of the first occurrence

of a key. Consider using a map for counting how often a word occurs in a

file. When we see a word, we’d like to increment a counter like this:

counts.put(word, counts.get(word) + 1);

That works, except in the case when word is encountered for the first time.

Then get returns null, and a NullPointerException occurs.

A simple remedy is to use the getOrDefault method:

counts.put(word, counts.getOrDefault(word, 0) + 1);

Another approach is to first call the putIfAbsent method. It only puts a

value if the key was previously absent (or mapped to null).

counts.putIfAbsent(word, 0);

counts.put(word, counts.get(word) + 1); // now we know that get will

succeed

But you can do better than that. The merge method simplifies this common

operation. The call

counts.merge(word, 1, Integer::sum);

associates word with 1 if the key wasn’t previously present, and otherwise

combines the previous value and 1, using the Integer::sum function.

Now consider another common situation. We want to associate a set with

each key. For example, in a book index, each term has a set of page

numbers where the term occurs. Here is how to update the map:

var index = new TreeMap<String, TreeSet<Integer>>();

. . .

index.computeIfAbsent(term, _ -> new TreeSet<>()).add(pageNumber);

Here, it is better to use computeIfAbsent because the TreeSet is only

constructed when there was no prior set associated with the term.

Conveniently, computeIfAbsent returns the new value, so that we can chain

the call to add. In contrast, putIfAbsent returns the previous key or null,

which is not useful for chaining.

Caution: It is tempting to try changing k -> new TreeSet<>() into

TreeSet::new, but that does not work. The function has a parameter

k for the given key, which would be passed on to the constructor.

Fortunately, there is no TreeSet constructor with a String parameter,

and the code does not compile.

It could have been worse. Suppose you have a Map<Integer,

ArrayList<String>> and call

map.computeIfAbsent(n, ArrayList::new)

There is an ArrayList constructor that takes an integer capacity. For

large values of n, large array lists would be allocated, which was

surely not intended.

Caution: The map methods are not very consistent about null

values. Some methods treat null as a valid value, but others consider

it in the same way as a missing key.

The getOrDefault method falls in the former camp, and putIfAbsent

in the latter:

counts.put("C++", null);

counts.getOrDefault("C++", -1) // Yields null without using the

default

counts.putIfAbsent("C++", 1) // Puts 1, interpreting null as absent

The API notes describe other methods for updating map entries that are less

commonly used.

java.util.Map<K, V> 1.2

default V merge(K key, V value, BiFunction<? super V,? super V,?

extends V> remappingFunction) 8

If key is associated with a non-null value v, applies the function to v

and value and either associates key with the result or, if the result is

null, removes the key. Otherwise, associates key with value. Returns

get(key).

default V compute(K key, BiFunction<? super K,? super V,? extends

V> remappingFunction) 8

Applies the function to key and get(key). Either associates key with

the result or, if the result is null, removes the key. Returns get(key).

default V computeIfPresent(K key, BiFunction<? super K,? super V,?

extends V> remappingFunction) 8

If key is associated with a non-null value v, applies the function to

key and v and either associates key with the result or, if the result is

null, removes the key. Returns get(key).

default V computeIfAbsent(K key, Function<? super K,? extends V>

mappingFunction) 8

Applies the function to key unless key is associated with a non-null

value. Either associates key with the result or, if the result is null,

removes the key. Returns get(key).

default void replaceAll(BiFunction<? super K,? super V,? extends V>

function) 8

Calls the function on all entries. Associates keys with non-null results

and removes keys with null results.

default V putIfAbsent(K key, V value) 8

If key is absent or associated with null, associates it with value and

returns null. Otherwise returns the associated value.

9.4.3. Map Views

The Java Collections Framework does not consider a map itself as a

collection. (Other frameworks for data structures consider a map as a

collection of key/value pairs, or as a collection of values indexed by the

keys.) However, you can obtain views of the map—objects that implement

the Collection interface or one of its subinterfaces.

There are three views: the set of keys, the collection of values (which is not

a set), and the set of key/value pairs. The keys and key/value pairs form a

set because there can be only one copy of a key in a map. The methods

Set<K> keySet()

Collection<V> values()

Set<Map.Entry<K, V>> entrySet()

return these three views. (The elements of the entry set are objects of a class

implementing the Map.Entry interface.)

Note that the keySet is not a HashSet or TreeSet, but an object of some

other class that implements the Set interface. The Set interface extends the

Collection interface. Therefore, you can use a keySet as you would use any

collection.

For example, you can enumerate all keys of a map:

Set<String> keys = map.keySet();

for (String key : keys) {

 do something with key

}

If you want to look at both keys and values, you can avoid value lookups by

enumerating the entries. Use the following code skeleton:

for (Map.Entry<String, Integer> entry : counts.entrySet()) {

 String k = entry.getKey();

 Integer v = entry.getValue();

 do something with k, v

}

The Map.Entry instances are connected to the map. You can use an entry

object to update a value in the underlying map.

for (Map.Entry<String, Integer> entry : counts.entrySet()) {

 String k = entry.getKey();

 Integer v = entry.getValue();

 entry.setValue(v + 1); // same as counts.put(k, v + 1);

}

Conversely, if you update a value through other means (for example, by

calling the map’s put method), then the entry is also updated.

If you want to pass entries to some other method, you should disassociate

them from the map by calling Map.Entry.copyOf(entry). You can also

create unassociated Map.Entry instances by calling Map.entry(key, value).

This is handy whenever you need a pair of values.

Tip: You can avoid the cumbersome Map.Entry by using a var

declaration.

for (var entry : map.entrySet()) {

 do something with entry.getKey(), entry.getValue()

}

Or simply use the forEach method:

map.forEach((k, v) -> {

 do something with k, v

});

If you invoke the remove method of the iterator on the key set view, you

actually remove the key and its associated value from the map. However,

you cannot add an element to the key set view. It makes no sense to add a

key without also adding a value. If you try to invoke the add method, it

throws an UnsupportedOperationException. The entry set view has the

same restriction, even though it would make conceptual sense to add a new

key/value pair.

java.util.Map<K, V> 1.2

Set<Map.Entry<K, V>> entrySet()

returns a set view of Map.Entry objects, the key/value pairs in the

map. You can remove elements from this set and they are removed

from the map, but you cannot add any elements.

Set<K> keySet()

returns a set view of all keys in the map. You can remove elements

from this set and the keys and associated values are removed from the

map, but you cannot add any elements.

Collection<V> values()

returns a collection view of all values in the map. You can remove

elements from this collection and the removed value and its key are

removed from the map, but you cannot add any elements.

java.util.Map.Entry<K, V> 1.2

K getKey()

V getValue()

return the key or value of this entry.

V setValue(V newValue)

changes the value in the associated map to the new value and returns

the old value.

static <K, V> Map.Entry<K,V> copyOf(Map.Entry<? extends K,?

extends V> map) 17

yields a copy of the given map entry. Unlike the elements of a map’s

entry set, the copy is not “live.” Calling setValue does not update any

map.

9.4.4. Weak Hash Maps

The Java Collections Framework has several map classes for specialized

needs that we briefly discuss in this and the following sections.

The WeakHashMap class was designed to solve an interesting problem.

What happens with a value whose key is no longer used anywhere in your

program? Suppose the last reference to a key has gone away. Then, there is

no longer any way to refer to the value object. But, as no part of the

program has the key any more, the key/value pair cannot be removed from

the map. Why can’t the garbage collector remove it? Isn’t it the job of the

garbage collector to remove unused objects?

Unfortunately, it isn’t quite so simple. The garbage collector traces live

objects. As long as the map object is live, all buckets in it are live and won’t

be reclaimed. Thus, your program should take care to remove unused values

from long-lived maps. Or, you can use a WeakHashMap instead. This data

structure cooperates with the garbage collector to remove key/value pairs

when the only reference to the key is the one from the hash table entry.

Here are the inner workings of this mechanism. The WeakHashMap uses

weak references to hold keys. A WeakReference object holds a reference to

another object—in our case, a hash table key. Objects of this type are

treated in a special way by the garbage collector. Normally, if the garbage

collector finds that a particular object has no references to it, it simply

reclaims the object. However, if the object is reachable only by a

WeakReference, the garbage collector still reclaims the object, but places

the weak reference that led to it into a queue. The operations of the

WeakHashMap periodically check that queue for newly arrived weak

references. The arrival of a weak reference in the queue signifies that the

key was no longer used by anyone and has been collected. The

WeakHashMap then removes the associated entry.

9.4.5. Linked Hash Sets and Maps

The LinkedHashSet and LinkedHashMap classes remember in which order

you inserted items. That way, you can avoid the seemingly random order of

items in a hash table. As entries are inserted into the table, they are joined in

a doubly linked list (see Figure 9.11).

.

Figure 9.11: A linked hash table

For example, consider the following map insertions from Listing 9.5:

var staff = new LinkedHashMap<String, Employee>();

staff.put("144-25-5464", new Employee("Amy Lee"));

staff.put("567-24-2546", new Employee("Harry Hacker"));

staff.put("157-62-7935", new Employee("Gary Cooper"));

staff.put("456-62-5527", new Employee("Francesca Cruz"));

Then, staff.keySet().iterator() enumerates the keys in this order:

144-25-5464

567-24-2546

157-62-7935

456-62-5527

and staff.values().iterator() enumerates the values in this order:

Amy Lee

Harry Hacker

Gary Cooper

Francesca Cruz

A linked hash map can alternatively use access order, not insertion order, to

iterate through the map entries. Every time you call get or put, the affected

entry is removed from its current position and placed at the end of the

linked list of entries. (Only the position in the linked list of entries is

affected, not the hash table bucket. An entry always stays in the bucket that

corresponds to the hash code of the key.) To construct such a hash map, call

LinkedHashMap<K, V>(initialCapacity, loadFactor, true)

Access order is useful for implementing a “least recently used” discipline

for a cache. For example, you may want to keep frequently accessed entries

in memory and read less frequently accessed objects from a database. When

you don’t find an entry in the table, and the table is already pretty full, you

can get an iterator into the table and remove the first few elements that it

enumerates. Those entries were the least recently used ones.

You can even automate that process. Form a subclass of LinkedHashMap

and override the method

protected boolean removeEldestEntry(Map.Entry<K, V> eldest)

This method is called after adding a new entry. If the method returns true,

the eldest entry is removed. For example, the following cache is kept at a

size of at most 100 elements:

var cache = new LinkedHashMap<K, V>(128, 0.75F, true) {

 protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {

 return size() > 100;

 }

};

You can inspect the eldest entry to decide whether to remove it. For

example, you may want to check a time stamp stored with eldest and only

ask for removal if it is sufficiently old. This will not automatically remove

all old elements since the removeEldestEntry method is only called once for

each new entry. You are allowed to modify the map in the

removeEldestEntry method, for example by removing the initial elements

that are sufficiently old. In that case, you must return false.

If you need a set of least recently used elements instead of a map, see

Section 9.5.4.

9.4.6. Enumeration Sets and Maps

The EnumSet is an efficient set implementation with elements that belong

to an enumerated type. Since an enumerated type has a finite number of

instances, the EnumSet is internally implemented simply as a sequence of

bits. A bit is turned on if the corresponding value is present in the set.

The EnumSet class has no public constructors. Use a static factory method

to construct the set:

enum Weekday { MONDAY, TUESDAY, WEDNESDAY, THURSDAY,

FRIDAY, SATURDAY, SUNDAY };

EnumSet<Weekday> always = EnumSet.allOf(Weekday.class);

EnumSet<Weekday> never = EnumSet.noneOf(Weekday.class);

EnumSet<Weekday> workday = EnumSet.range(Weekday.MONDAY,

Weekday.FRIDAY);

EnumSet<Weekday> mwf = EnumSet.of(Weekday.MONDAY,

Weekday.WEDNESDAY, Weekday.FRIDAY);

You can use the usual methods of the Set interface to modify an EnumSet.

An EnumMap is a map with keys that belong to an enumerated type. It is

simply and efficiently implemented as an array of values. You need to

specify the key type in the constructor:

var personInCharge = new EnumMap<Weekday, Employee>

(Weekday.class);

Note: In the API documentation for EnumSet and EnumMap, you

will see odd-looking type parameters of the form E extends

Enum<E>. This simply means “E is an enumerated type.” All

enumerated types extend the generic Enum class. For example,

Weekday extends Enum<Weekday>.

Note: An EnumSet is not a SequencedSet. There is no fundamental

reason for this restriction. Even implementing NavigableSet would

be possible. But the Java team has not seen a use case that would

warrant the effort. For the same reason, EnumMap is not a

SequencedMap.

9.4.7. Identity Hash Maps

The IdentityHashMap has a quite specialized purpose. Here, the hash values

for the keys should not be computed by the hashCode method but by the

System.identityHashCode method. That’s the method that Object.hashCode

uses to compute a hash code from the object’s memory address. Also, for

comparison of objects, the IdentityHashMap uses ==, not equals.

In other words, different key objects are considered distinct even if they

have equal contents. This class is useful for implementing object traversal

algorithms, such as object serialization, in which you want to keep track of

which objects have already been traversed.

Caution: Java 20 fixed a subtle bug with IdentityHashMap that was

introduced in Java 8 (https://bugs.openjdk.org/browse/JDK-

8284901). Two uncommon methods falsely used equals instead of

==:

void remove(Object key, Object value)

void replace(K key, V oldValue, V newValue)

These methods are sometimes used in concurrent algorithms, where

a map should only be updated if it hasn’t been modified by another

thread. One can only imagine the frustration of the first programmer

who ran into this bug.

No software system as complex as the Java platform can be

completely free from bugs. That is why it is important to regularly

update to the latest version.

https://bugs.openjdk.org/browse/JDK-8284901

java.util.WeakHashMap<K, V> 1.2

WeakHashMap()

WeakHashMap(int initialCapacity)

WeakHashMap(int initialCapacity, float loadFactor)

construct an empty hash map with the specified capacity and load

factor.

java.util.LinkedHashSet<E> 1.4

LinkedHashSet()

LinkedHashSet(int initialCapacity)

LinkedHashSet(int initialCapacity, float loadFactor)

construct an empty linked hash set with the specified capacity and

load factor.

java.util.LinkedHashMap<K, V> 1.4

LinkedHashMap()

LinkedHashMap(int initialCapacity)

LinkedHashMap(int initialCapacity, float loadFactor)

LinkedHashMap(int initialCapacity, float loadFactor, boolean

accessOrder)

construct an empty linked hash map with the specified capacity, load

factor, and ordering. The accessOrder parameter is true for access

order, false for insertion order.

protected boolean removeEldestEntry(Map.Entry<K, V> eldest)

should be overridden to return true if you want the eldest entry to be

removed. The eldest parameter is the entry whose removal is being

contemplated. This method is called after an entry has been added to

the map. The default implementation returns false—old elements are

not removed by default. However, you can redefine this method to

selectively return true—for example, if the eldest entry fits a certain

condition or if the map exceeds a certain size.

java.util.EnumSet<E extends Enum<E>> 5.0

static <E extends Enum<E>> EnumSet<E> allOf(Class<E>

enumType)

returns a mutable set that contains all values of the given enumerated

type.

static <E extends Enum<E>> EnumSet<E> noneOf(Class<E>

enumType)

returns a mutable set that is initially empty.

static <E extends Enum<E>> EnumSet<E> range(E from, E to)

returns a mutable set that contains all values between from and to

(inclusive).

static <E extends Enum<E>> EnumSet<E> of(E e)

. . .

static <E extends Enum<E>> EnumSet<E> of(E e1, E e2, E e3, E e4,

E e5)

static <E extends Enum<E>> EnumSet<E> of(E first, E... rest)

return a mutable set containing the given elements which must not be

null.

public static <E extends Enum<E>> EnumSet<E>

copyOf(EnumSet<E> s)

public static <E extends Enum<E>> EnumSet<E>

copyOf(Collection<E> c)

create a mutable set initially containing the given elements. In the

second method, c must either be an EnumSet or be nonempty (in

order to determine the element type).

java.util.EnumMap<K extends Enum<K>, V> 5.0

EnumMap(Class<K> keyType)

constructs an empty mutable map whose keys have the given type.

java.util.IdentityHashMap<K, V> 1.4

IdentityHashMap()

IdentityHashMap(int expectedMaxSize)

construct an empty identity hash map whose capacity is the smallest

power of 2 exceeding 1.5 ×expectedMaxSize. (The default for

expectedMaxSize is 21.)

java.lang.System 1.0

static int identityHashCode(Object obj) 1.1

returns the same hash code (derived from the object’s memory

address) that Object.hashCode computes, even if the class to which

obj belongs has redefined the hashCode method.

9.5. Copies and Views

You might think it is overkill to have lots of interfaces (Figure 9.4) and

abstract classes (Figure 9.5) to implement a modest number of concrete

collection classes. However, these figures don’t tell the whole story. By

using views, you can obtain other objects that implement the Collection or

Map interfaces. You saw one example of this with the keySet method of the

map classes. At first glance, it appears as if the method creates a new set,

fills it with all the keys of the map, and returns it. However, that is not the

case. Instead, the keySet method returns an object of a class that

implements the Set interface and whose methods manipulate the original

map. Such a collection is called a view.

The technique of views has a number of useful applications in the Java

Collections Framework. We will discuss these applications in the following

sections.

9.5.1. Small Collections

There are static methods yielding a set or list with given elements, and a

map with given key/value pairs.

For example,

List<String> names = List.of("Peter", "Paul", "Mary");

Set<Integer> numbers = Set.of(2, 3, 5);

yield a list and a set with three elements.

You can also provide an array of objects:

String[] namesArray = { "Peter", "Paul", "Mary" };

List<String> names = List.of(namesArray); // A list containing three

objects

Caution: if you provide an array of primitive type values, the result

is a list with a single element, namely the array:

int[] numbersArray = { 2, 3, 5 };

List<int[]> arrays = List.of(numbersArray);

 // A list containing a single object, an int[] array

There is no convenience method for turning a primitive type array

into a list of its wrapped elements.

For a map, you specify the keys and values, like this:

Map<String, Integer> scores = Map.of("Peter", 2, "Paul", 3, "Mary", 5);

The elements, keys, or values may not be null. Set and map keys may not

be duplicated:

numbers = Set.of(13, null); // Error--null element

scores = Map.of("Peter", 4, "Peter", 2); // Error--duplicate key

Caution: No guarantee is made about the iteration order of these

sets and maps. In fact, the order is deliberately scrambled with a

seed that is randomized at each virtual machine startup. Look at

these two jshell runs:

$ jshell -q

jshell> Set.of("Peter", "Paul", "Mary")

$1 ==> [Peter, Mary, Paul]

jshell> /exit

$ jshell -q

jshell> Set.of("Peter", "Paul", "Mary")

$1 ==> [Paul, Mary, Peter]

Some Java programmers write programs whose correctness depends

on the assumption that implementation details will never change.

That can make it very difficult for the framework implementors to

make useful implementation changes. In this case, the message is

clear—don’t write programs that assume anything about the element

order.

The List and Set interfaces have eleven of methods with zero to ten

arguments, and an of method with a variable number of arguments. The

specializations are provided for efficiency.

For the Map interface, it is not possible to provide a version with variable

arguments since the argument types alternate between the key and value

types. There is a static method ofEntries that accepts an arbitrary number of

Map.Entry<K, V> objects, which you can create with the static entry

method. For example,

import static java.util.Map.*;

. . .

Map<String, Integer> scores = ofEntries(

 entry("Peter", 2),

 entry("Paul", 3),

 entry("Mary", 5));

The of and ofEntries methods produce objects of classes that have an

instance field for each element, or that are backed by an array.

These collection objects are unmodifiable. Any attempt to change their

contents results in an UnsupportedOperationException.

If you want a mutable collection, you can pass the unmodifiable collection

to the constructor:

var names = new ArrayList<>(List.of("Peter", "Paul", "Mary")); // A

mutable list of names

The method call

Collections.nCopies(n, anObject)

returns an immutable object that implements the List interface and gives the

illusion of having n elements, each of which appears as anObject.

For example, the following call creates a List containing 100 strings, all set

to "DEFAULT":

List<String> settings = Collections.nCopies(100, "DEFAULT");

There is very little storage cost—the object is stored only once.

Note: The Collections class contains a number of utility methods

with parameters or return values that are collections. Do not confuse

it with the Collection interface.

Tip: Java doesn’t have a Pair class, and some programmers use a

Map.Entry as a poor man’s pair.

9.5.2. Unmodifiable Copies and Views

To make an unmodifiable copy of a collection, use the copyOf method of

the collection type:

ArrayList<String> names = . . .;

Set<String> nameSet = Set.copyOf(names); // The names as an

unmodifiable set

List<String> nameList = List.copyOf(names); // The names as an

unmodifiable list

As with the of methods, thecopyOf methods refuse to create collections

containing null elements, instead throwing a NullPointerException.

Each copyOf method makes a copy of the collection. If the original

collection is modified, the copy is not affected.

If the original collection happens to be unmodifiable and of the correct type,

then copyOf simply returns it:

Set<String> names = Set.of("Peter", "Paul", "Mary");

Set<String> nameSet = Set.copyOf(names); // No need to make a copy:

names == nameSet

The Collections class has methods that produce unmodifiable views of

collections. These views add a runtime check to an existing collection. If an

attempt to modify the unmodifiable collection is detected, an exception is

thrown.

However, if the original collection changes, the view reflects those changes.

That is what makes views different from copies.

You obtain unmodifiable views by eight methods:

Collections.unmodifiableCollection

Collections.unmodifiableList

Collections.unmodifiableSet

Collections.unmodifiableSortedSet

Collections.unmodifiableNavigableSet

Collections.unmodifiableMap

Collections.unmodifiableSortedMap

Collections.unmodifiableNavigableMap

Each method is defined to work on an interface. For example,

Collections.unmodifiableList works with an ArrayList, a LinkedList, or any

other class that implements the List interface.

For example, suppose you want to let some part of your code look at, but

not touch, the contents of a collection. Here is what you could do:

var staff = new LinkedList<String>();

. . .

lookAt(Collections.unmodifiableList(staff));

The Collections.unmodifiableList method returns an object of a class

implementing the List interface. Its accessor methods retrieve values from

the staff collection. Of course, the lookAt method can call all methods of

the List interface, not just the accessors. But all mutator methods (such as

add) have been redefined to throw an UnsupportedOperationException

instead of forwarding the call to the underlying collection.

The unmodifiable view does not make the collection itself immutable. You

can still modify the collection through its original reference (staff, in our

case). And you can still call mutator methods on the elements of the

collection.

The views wrap the interface and not the actual collection object, so you

only have access to those methods that are defined in the interface. For

example, the LinkedList class has convenience methods, addFirst and

addLast, that are not part of the List interface. These methods are not

accessible through the unmodifiable view.

Caution: The unmodifiableCollection method (as well as the

synchronizedCollection and checkedCollection methods discussed

later in this section) returns a collection whose equals method does

not invoke the equals method of the underlying collection. Instead,

it inherits the equals method of the Object class, which just tests

whether the objects are identical. If you turn a set or list into just a

collection, you can no longer test for equal contents. The view acts

in this way because equality testing is not well defined at this level

of the hierarchy. The views treat the hashCode method in the same

way.

Prefer the unmodifiableSet and unmodifiableList wrappers whose

equals and hashCode methods are appropriate for sets and lists.

For example:

var names = Set.of("Peter", "Paul", "Mary");

Collections.unmodifiableCollection(names).equals(names) // false

Collections.unmodifiableSet(names).equals(names) // true

9.5.3. Subranges

You can form subrange views for a number of collections. For example,

suppose you have a list staff and want to extract elements 10 to 19. Use the

subList method to obtain a view into the subrange of the list:

List<Employee> group2 = staff.subList(10, 20);

The first index is inclusive, the second exclusive—just like the parameters

for the substring operation of the String class.

You can apply any operations to the subrange, and they automatically

reflect the entire list. For example, you can erase the entire subrange:

group2.clear(); // staff reduction

The elements get automatically cleared from the staff list, and group2

becomes empty.

For sorted sets and maps, you use the sort order, not the element position, to

form subranges. The SortedSet interface declares three methods:

SortedSet<E> subSet(E from, E to)

SortedSet<E> headSet(E to)

SortedSet<E> tailSet(E from)

These return the subsets of all elements that are larger than or equal to from

and strictly smaller than to. For sorted maps, the similar methods

SortedMap<K, V> subMap(K from, K to)

SortedMap<K, V> headMap(K to)

SortedMap<K, V> tailMap(K from)

return views into the maps consisting of all entries in which the keys fall

into the specified ranges.

The NavigableSet interface gives more control over these subrange

operations. You can specify whether the bounds are included:

NavigableSet<E> subSet(E from, boolean fromInclusive, E to, boolean

toInclusive)

NavigableSet<E> headSet(E to, boolean toInclusive)

NavigableSet<E> tailSet(E from, boolean fromInclusive)

9.5.4. Sets From Boolean-Valued Maps

Sometimes, an API provides maps with useful features that you would like

in a set. In Section 9.4.5, you saw how you can use a LinkedHashMap to

build a cache that discards older elements. The LinkedHashSet class does

not have this capability.

If you want to have a set of the 100 least recently inserted strings, make a

LinkedHashMap<String, Boolean>, and then call the

Collections.newSetFromMap method:

Set<String> cache = Collections.newSetFromMap(new

LinkedHashMap<String, Boolean>() {

 protected boolean removeEldestEntry(Map.Entry<String, Boolean>

eldest) {

 return size() > 100;

 }

});

The set view is backed by the map. When you add an element e, the view

puts an entry with key e and value Boolean.TRUE into the map. If that

causes the map to have more than 100 entries, the oldest one is removed.

You should call newSetFromMap with an empty map. Afterwards, do not

modify the map, but let all modifications occur through methods of the set

view. This is best achieved by passing the map to the newSetFromMap

method without retaining a reference to it, as in the preceding example.

The newSetFromMap method is also useful with WeakHashMap (see

Section 9.4.4). With a ConcurrentHashMap, use the newKeySet method

instead (see Chapter 10).

9.5.5. Reversed Views

The reversed methods of the SequencedCollection and SequencedSet

interfaces yield views that iterate over the elements in reverse order. For

example, here is how to traverse a list or tree set of strings in reverse:

for (String element : collection.reversed()) {

 do something with element

}

With SequencedMap, the reversed method views the map with the keys in

reverse order.

9.5.6. Checked Views

Checked views are intended as debugging support for a problem that can

occur with generic types. As explained in Chapter 8, it is actually possible

to smuggle elements of the wrong type into a generic collection. For

example:

var strings = new ArrayList<String>();

ArrayList rawList = strings; // warning only, not an error,

 // for compatibility with legacy code

rawList.add(new Date()); // now strings contains a Date object!

The erroneous add command is not detected at runtime. Instead, a class cast

exception will happen later when another part of the code calls get and casts

the result to a String.

A checked view can detect this problem. Define a safe list as follows:

List<String> safeStrings = Collections.checkedList(strings, String.class);

The view’s add method checks that the inserted object belongs to the given

class and immediately throws a ClassCastException if it does not. The

advantage is that the error is reported at the correct location:

ArrayList rawList = safeStrings;

rawList.add(new Date()); // checked list throws a ClassCastException

Caution: The checked views are limited by the runtime checks that

the virtual machine can carry out. For example, if you have an

ArrayList<Pair<String>>, you cannot protect it from inserting a

Pair<Date> since the virtual machine has a single “raw” Pair class.

9.5.7. Synchronized Views

If you access a collection from multiple threads, you need to ensure that the

collection is not accidentally damaged. For example, it would be disastrous

if one thread tried to add to a hash table while another thread was rehashing

the elements.

Instead of implementing thread-safe collection classes, the framework

designers used the view mechanism to make regular collections thread-safe.

For example, the static synchronizedMap method in the Collections class

can turn any map into a Map with synchronized access methods:

var map = Collections.synchronizedMap(new HashMap<String,

Employee>());

You can now access the map object from multiple threads. The methods

such as get and put are synchronized—each method call must be finished

completely before another thread can call another method. We discuss the

issue of synchronized access to data structures in greater detail in Chapter

10.

9.5.8. A Note on Optional Operations

A view usually has some restriction—it may be read-only, it may not be

able to change the size, or it may support removal but not insertion (as is

the case for the key view of a map). A restricted view throws an

UnsupportedOperationException if you attempt an inappropriate operation.

In the API documentation for the collection and iterator interfaces, many

methods are described as “optional operations.” This seems to be in conflict

with the notion of an interface. After all, isn’t the purpose of an interface to

lay out the methods that a class must implement? Indeed, this arrangement

is unsatisfactory from a theoretical perspective. A better solution might

have been to design separate interfaces for read-only views and views that

can’t change the size of a collection. However, that would have tripled the

number of interfaces, which the designers of the framework found

unacceptable.

Should you extend the technique of “optional” methods to your own

designs? I think not. Even though collections are used frequently, the

coding style for implementing them is not typical for other problem

domains. The designers of a collection class library have to resolve a

particularly brutal set of conflicting requirements. Users want the library to

be easy to learn, convenient to use, completely generic, idiot-proof, and at

the same time as efficient as hand-coded algorithms. It is plainly impossible

to achieve all these goals simultaneously, or even to come close. But in your

own programming problems, you will rarely encounter such an extreme set

of constraints. You should be able to find solutions that do not rely on the

drastic measure of “optional” interface operations.

java.util.List 1.2

static <E> List<E> of() 9

static <E> List<E> of(E e1) 9

. . .

static <E> List<E> of(E e1, E e2, E e3, E e4, E e5, E e6, E e7, E e8, E

e9, E e10) 9

static <E> List<E> of(E... elements) 9

yield an unmodifiable list of the given elements, which must not be

null.

static <E> List<E> copyOf(Collection<? extends E> coll) 10

yields an unmodifiable copy of the given collection.

java.util.Set 1.2

static <E> Set<E> of() 9

static <E> Set<E> of(E e1) 9

. . .

static <E> Set<E> of(E e1, E e2, E e3, E e4, E e5, E e6, E e7, E e8, E

e9, E e10) 9

static <E> Set<E> of(E... elements) 9

yield an unmodifiable set of the given elements, which must not be

null.

static <E> Set<E> copyOf(Collection<? extends E> coll) 10

yields an unmodifiable copy of the given collection.

java.util.Map 1.2

static <K, V> Map<K, V> of() 9

static <K, V> Map<K, V> of(K k1, V v1) 9

. . .

static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3, K

k4, V v4, K k5, V v5, K k6, V v6, K k7, V v7, K k8, V v8, K k9, V

v9, K k10, V v10) 9

yield an unmodifiable map of the given keys and values, which must

not be null.

static <K,V> Map.Entry<K,V> entry(K k, V v) 9

yields an unmodifiable map entry of the given key and value, which

must not be null.

static <K,V> Map<K,V> ofEntries(Map.Entry<? extends K,? extends

V>... entries) 9

yields an unmodifiable map of the given entries.

static <K, V> Map<K,V> copyOf(Map<? extends K,? extends V>

map) 10

yields an unmodifiable copy of the given map.

java.util.Collections 1.2

static <E> Set<E> newSetFromMap(Map<E, Boolean> map) 6

yields a set backed by the given map, which should initially be empty

and afterwards only accessed through the returned view.

static <E> Collection<E> unmodifiableCollection(Collection<E> c)

static <E> SequencedCollection<E>

unmodifiableSequencedCollection(SequencedCollection<E> c) 21

static <E> List<E> unmodifiableList(List<E> c)

static <E> Set<E> unmodifiableSet(Set<E> c)

static <E> SequencedSet<E>

unmodifiableSequencedSet(SequencedCollection<E> c) 21

static <E> SortedSet<E> unmodifiableSortedSet(SortedSet<E> c)

static <E> SortedSet<E>

unmodifiableNavigableSet(NavigableSet<E> c) 8

static <K, V> Map<K, V> unmodifiableMap(Map<K, V> c)

static <K, V> SortedMap<K, V>

unmodifiableSortedMap(SortedMap<K, V> c)

static <K, V> SequencedMap<K, V>

unmodifiableSequencedMap(SequencedMap<K, V> c) 21

static <K, V> SortedMap

unmodifiableNavigableMap(NavigableMap<K, V> c) 8

construct a view of the collection; the view’s mutator methods throw

an UnsupportedOperationException.

static <E> Collection<E> synchronizedCollection(Collection<E> c)

static <E> List synchronizedList(List<E> c)

static <E> Set synchronizedSet(Set<E> c)

static <E> SortedSet synchronizedSortedSet(SortedSet<E> c)

static <E> NavigableSet synchronizedNavigableSet(NavigableSet<E>

c) 8

static <K, V> Map<K, V> synchronizedMap(Map<K, V> c)

static <K, V> SortedMap<K, V>

synchronizedSortedMap(SortedMap<K, V> c)

static <K, V> NavigableMap<K, V>

synchronizedNavigableMap(NavigableMap<K, V> c) 8

construct a view of the collection; the view’s methods are

synchronized.

static <E> Collection checkedCollection(Collection<E> c, Class<E>

elementType)

static <E> List checkedList(List<E> c, Class<E> elementType)

static <E> Set checkedSet(Set<E> c, Class<E> elementType)

static <E> SortedSet checkedSortedSet(SortedSet<E> c, Class<E>

elementType)

static <E> NavigableSet checkedNavigableSet(NavigableSet<E> c,

Class<E> elementType) 8

static <K, V> Map checkedMap(Map<K, V> c, Class<K> keyType,

Class<V> valueType)

static <K, V> SortedMap checkedSortedMap(SortedMap<K, V> c,

Class<K> keyType, Class<V> valueType)

static <K, V> NavigableMap

checkedNavigableMap(NavigableMap<K, V> c, Class<K> keyType,

Class<V> valueType) 8

static <E> Queue<E> checkedQueue(Queue<E> queue, Class<E>

elementType) 8

construct a view of the collection; the view’s methods throw a

ClassCastException if an element of the wrong type is inserted.

static <E> List<E> nCopies(int n, E value)

yields an unmodifiable list with n identical values.

static <E> List<E> singletonList(E value)

static <E> Set<E> singleton(E value)

static <E> List<E> emptyList()

static <T> Set<T> emptySet()

static <E> SortedSet<E> emptySortedSet()

static NavigableSet<E> emptyNavigableSet()

static <K,V> Map<K,V> emptyMap()

static <K,V> SortedMap<K,V> emptySortedMap()

static <K,V> NavigableMap<K,V> emptyNavigableMap()

static <T> Enumeration<T> emptyEnumeration()

static <T> Iterator<T> emptyIterator()

static <T> ListIterator<T> emptyListIterator()

yield an empty collection, map, or iterator.

java.util.Arrays 1.2

static <E> List<E> asList(E... array)

returns a list view of the elements in an array that is modifiable but

not resizable.

java.util.List<E> 1.2

List<E> subList(int firstIncluded, int firstExcluded)

returns a list view of the elements within a range of positions.

java.util.SortedSet<E> 1.2

SortedSet<E> subSet(E firstIncluded, E firstExcluded)

SortedSet<E> headSet(E firstExcluded)

SortedSet<E> tailSet(E firstIncluded)

return a view of the elements within a range.

java.util.NavigableSet<E> 6

NavigableSet<E> subSet(E from, boolean fromIncluded, E to,

boolean toIncluded)

NavigableSet<E> headSet(E to, boolean toIncluded)

NavigableSet<E> tailSet(E from, boolean fromIncluded)

return a view of the elements within a range. The boolean flags

determine whether the bounds are included in the view.

java.util.SortedMap<K, V> 1.2

SortedMap<K, V> subMap(K firstIncluded, K firstExcluded)

SortedMap<K, V> headMap(K firstExcluded)

SortedMap<K, V> tailMap(K firstIncluded)

return a map view of the entries whose keys are within a range.

java.util.NavigableMap<K, V> 6

NavigableMap<K, V> subMap(K from, boolean fromIncluded, K to,

boolean toIncluded)

NavigableMap<K, V> headMap(K from, boolean fromIncluded)

NavigableMap<K, V> tailMap(K to, boolean toIncluded)

return a map view of the entries whose keys are within a range. The

boolean flags determine whether the bounds are included in the view.

java.util.SequencedCollection<E> 21

SequencedCollection<E> reversed()

yields a view of this sequenced collection with the elements in reverse

order.

java.util.SequencedSet<E> 21

SequencedSet<E> reversed()

yields a view of this sequenced set with the elements in reverse order.

java.util.SequencedMap<E> 21

SequencedMap<E> reversed()

yields a view of this sequenced map with the keys in reverse order.

9.6. Algorithms

In addition to implementing collection classes, the Java Collections

Framework also provides a number of useful algorithms. In the following

sections, you will see how to use these algorithms and how to write your

own algorithms that work well with the framework.

9.6.1. Why Generic Algorithms?

Generic collection interfaces have a great advantage—you only need to

implement your algorithms once. For example, consider a simple algorithm

to compute the maximum element in a collection. Traditionally,

programmers would implement such an algorithm as a loop. Here is how

you can find the largest element of an array:

if (a.length == 0) throw new NoSuchElementException();

T largest = a[0];

for (int i = 1; i < a.length; i++)

 if (largest.compareTo(a[i]) < 0)

 largest = a[i];

Of course, to find the maximum of an array list, you would write the code

slightly differently.

if (v.size() == 0) throw new NoSuchElementException();

T largest = v.get(0);

for (int i = 1; i < v.size(); i++)

 if (largest.compareTo(v.get(i)) < 0)

 largest = v.get(i);

What about a linked list? You don’t have efficient random access in a linked

list, but you can use an iterator.

if (l.isEmpty()) throw new NoSuchElementException();

Iterator<T> iter = l.iterator();

T largest = iter.next();

while (iter.hasNext()) {

 T next = iter.next();

 if (largest.compareTo(next) < 0)

 largest = next;

}

These loops are tedious to write, and just a bit error-prone. Is there an off-

by-one error? Do the loops work correctly for empty containers? For

containers with only one element? You don’t want to test and debug this

code every time, but you also don’t want to implement a whole slew of

methods, such as these:

static <T extends Comparable> T max(ArrayList<T> v)

static <T extends Comparable> T max(LinkedList<T> l)

That’s where the collection interfaces come in. Think of the minimal

collection interface that you need to efficiently carry out the algorithm.

Random access with get and set comes higher in the food chain than simple

iteration. As you have seen in the computation of the maximum element in

a linked list, random access is not required for this task. Computing the

maximum can be done simply by iterating through the elements. Therefore,

you can implement the max method to take any object that implements the

Collection interface.

public static <T extends Comparable> T max(Collection<T> elements) {

 if (elements.isEmpty()) throw new NoSuchElementException();

 Iterator<T> iter = elements.iterator();

 T largest = iter.next();

 while (iter.hasNext()) {

 T next = iter.next();

 if (largest.compareTo(next) < 0)

 largest = next;

 }

 return largest;

}

Of course, since arrays are not collections, you need to write a separate

method for arrays:

static <T extends Comparable> T max(T[] a)

Generic algorithms are a powerful concept. In fact, the standard C++ library

has dozens of useful algorithms, each operating on a generic collection. The

Java Collections Framework is not quite so rich, but the Collections and

Arrays classes provide the basics: sorting, binary search, and some simple

utility algorithms.

Note: Some useful algorithms are missing from the Java Collections

Framework, but you can find them in the streams library that is

covered in Volume II. For example, to find the maximum or

minimum, turn a collection or array into a stream:

largest = coll.stream().max(Comparator.naturalOrder()).get();

9.6.2. Sorting and Shuffling

Computer old-timers will sometimes reminisce about how they had to use

punched cards and to actually program, by hand, algorithms for sorting.

Nowadays, of course, sorting algorithms are part of the standard library for

most programming languages, and the Java programming language is no

exception.

The sort method in the Collections class sorts a collection that implements

the List interface.

var staff = new ArrayList<String>();

fill collection

Collections.sort(staff);

This method assumes that the list elements implement the Comparable

interface. If you want to sort the list in some other way, you can use the sort

method of the List interface and pass a Comparator object. Here is how you

can sort a list of employees by salary:

Collections.sort(staff,

Comparator.comparingDouble(Employee::getSalary));

If you want to sort a list in descending order, use the static convenience

method Comparator.reverseOrder(). It returns a comparator that returns

b.compareTo(a). For example,

Collections.sort(staff, Comparator.reverseOrder());

sorts the elements in the list staff in reverse order, according to the ordering

given by the compareTo method of the element type. Similarly,

Collections.sort(staff,

Comparator.comparingDouble(Employee::getSalary).reversed());

sorts by descending salary.

You may wonder how the sort method sorts a list. Typically, when you look

at a sorting algorithm in a book on algorithms, it is presented for arrays and

uses random element access. However, random access in a linked list is

inefficient. You can actually sort linked lists efficiently by using a form of

merge sort. However, the implementation in the Java programming

language does not do that. It simply dumps all elements into an array, sorts

the array, and then copies the sorted sequence back into the list.

The sort algorithm used in the Java Collections Framework is a bit slower

than QuickSort, the traditional choice for a general-purpose sorting

algorithm. However, it has one major advantage: It is stable, that is, it

doesn’t switch equal elements. Why do you care about the order of equal

elements? Here is a common scenario. Suppose you have an employee list

that you already sorted by name. Now you sort by salary. What happens to

employees with equal salary? With a stable sort, the ordering by name is

preserved. In other words, the outcome is a list that is sorted first by salary,

then by name.

Collections need not implement all of their “optional” methods, so all

methods with collection parameters must describe when it is safe to pass a

collection to an algorithm. For example, you clearly cannot pass an

unmodifiableList list to the sort algorithm. What kind of list can you pass?

According to the documentation, the list must be modifiable but need not be

resizable.

The terms are defined as follows:

A list is modifiable if it supports the set method.

A list is resizable if it supports the add and remove operations.

Note: In Chapter 6, you have seen the Arrays.sort method. There are

two versions, one for sorting an array of Comparable instances, and

another with a comparator:

String[] staff = . . .;

Arrays.sort(staff);

Arrays.sort(staff,

Comparator.comparingDouble(Employee::getSalary));

The Collections class has an algorithm shuffle that does the opposite of

sorting—it randomly permutes the order of the elements in a list. For

example:

ArrayList<Card> cards = . . .;

Collections.shuffle(cards, RandomGenerator.getDefault());

If you supply a list that does not implement the RandomAccess interface,

the shuffle method copies the elements into an array, shuffles the array, and

copies the shuffled elements back into the list.

The program in Listing 9.6 fills an array list with 49 Integer objects

containing the numbers 1 through 49. It then randomly shuffles the list and

selects the first six values from the shuffled list. Finally, it sorts the selected

values and prints them.

Listing 9.6 v1ch09/ShuffleDemo.java

1 package v1ch09;

2

3 import module java.base;

4

5 /**

6 * This program demonstrates the random shuffle and sort algorithms.

7 */

8 class ShuffleDemo {

9 void main() {

10 var numbers = new ArrayList<Integer>();

11 for (int i = 1; i <= 49; i++)

12 numbers.add(i);

13 Collections.shuffle(numbers, RandomGenerator.getDefault());

14 List<Integer> winningCombination = numbers.subList(0, 6);

15 Collections.sort(winningCombination);

16 IO.println(winningCombination);

17 }

18 }

java.util.Collections 1.2

static <T extends Comparable<? super T>> void sort(List<T>

elements)

sorts the elements in the list, using a stable sort algorithm. The

algorithm is guaranteed to run in O(n log n) time, where n is the

length of the list.

static void shuffle(List<?> elements)

static void shuffle(List<?> elements, Random r)

static void shuffle(List<?> elements, RandomGenerator r) 21

randomly shuffle the elements in the list. This algorithm runs in

O(na(n)) time, where n is the length of the list and a(n) is the average

time to access an element.

java.util.List<E> 1.2

default void sort(Comparator<? super T> comparator) 8

sorts this list, using the given comparator.

java.util.Comparator<T> 1.2

static <T extends Comparable<? super T>> Comparator<T>

reverseOrder() 8

yields a comparator that reverses the ordering provided by the

Comparable interface.

default Comparator<T> reversed() 8

yields a comparator that reverses the ordering provided by this

comparator.

9.6.3. Binary Search

To find an object in an array, you normally visit all elements until you find a

match. However, if the array is sorted, you can look at the middle element

and check whether it is larger than the element that you are trying to find. If

so, keep looking in the first half of the array; otherwise, look in the second

half. That cuts the problem in half, and you keep going in the same way.

For example, if the array has 1024 elements, you will locate the match (or

confirm that there is none) after 10 steps, whereas a linear search would

have taken you an average of 512 steps if the element is present, and 1024

steps to confirm that it is not.

The binarySearch method of the Collections class implements this

algorithm. Note that the collection must already be sorted, or the algorithm

will return the wrong answer. Supply the collection (which must implement

the List interface) and the target to be located. If the collection is not sorted

by the compareTo element of the Comparable interface, supply a

comparator object as well.

i = Collections.binarySearch(elements, target);

i = Collections.binarySearch(elements, target, comparator);

A non-negative return value from the binarySearch method denotes the

index of the matching object. That is, elements.get(i) is equal to target

under the comparison order. If the value is negative, then there is no

matching element. However, you can use the return value to compute the

location where you should insert target into the collection to keep it sorted.

The insertion location is

insertionPoint = -i - 1;

It isn’t simply -i because then the value of 0 would be ambiguous. In other

words, the operation

if (i < 0)

 elements.add(-i - 1, target);

adds the target in the correct place.

To be worthwhile, binary search requires random access. If you have to

iterate one by one through half of a linked list to find the middle element,

you have lost the advantage of the binary search. The binarySearch

algorithm reverts to an iterative algorithm of the same efficiency as linear

search if you give it a list that does not implement the RandomAccess

interface.

The Arrays class has binary search implementations for arrays of primitive

types and objects.

java.util.Collections 1.2

static <T extends Comparable<? super T>> int binarySearch(List<T>

elements, T key)

static <T> int binarySearch(List<T> elements, T key, Comparator<?

super T> c)

search for a key in a sorted list, using a binary search if the element

type implements the RandomAccess interface, and a linear search in

all other cases. The methods are guaranteed to run in O(a(n) log n)

time, where n is the length of the list and a(n) is the average time to

access an element. The methods return either the index of the key in

the list, or a negative value i if the key is not present in the list. In that

case, the key should be inserted at index -i - 1 for the list to stay

sorted.

java.util.Arrays 1.2

static int binarySearch(T[] a, T key)

static int binarySearch(T[] a, int start, int end, T key) 6

use the binary search algorithm to search for the key in the sorted

array a. If the key is found, its index is returned. Otherwise, a negative

value r is returned; –r– 1 is the spot at which key should be inserted to

keep a sorted. The component type T of the array can be Object, int,

long, short, char, byte, boolean, float, or double.

static <T> T binarySearch(T[] a, T key, Comparator<? super T> c)

static <T> T binarySearch(T[] a, int start, int end, T key,

Comparator<? super T> c) 6

use the binary search algorithm to search for the key in the array a that

has been sorted with the given comparator.

9.6.4. Simple Algorithms

The Collections class contains several simple but useful algorithms. Among

them is the example from the beginning of this section—finding the

maximum value of a collection. Others include copying elements from one

list to another, filling a container with a constant value, and reversing a list.

Why supply such simple algorithms in the framework? Surely most

programmers could easily implement them with simple loops. I like the

algorithms because they make life easier for the programmer reading the

code. When you read a loop that was implemented by someone else, you

have to decipher the original programmer’s intentions. For example, look at

this loop:

for (int i = 0; i < words.size(); i++)

 if (words.get(i).equals("C++")) words.set(i, "Java");

Now compare the loop with the call

Collections.replaceAll(words, "C++", "Java");

When you see the method call, you know right away what the code does.

The API notes at the end of this section describe the simple algorithms in

the Collections class.

The default methods Collection.removeIf and List.replaceAll are just a bit

more complex. You provide a lambda expression to test or transform

elements. For example, here we remove all short words and change the

remaining ones to lowercase:

words.removeIf(w -> w.length() <= 3);

words.replaceAll(String::toLowerCase);

Caution: The predicate of removeIf should only look at the element

whose removal is being decided, and not at the collection. If you do

the latter, the behavior is implementation-dependent.

The ArrayList version of removeIf method makes two passes over

the elements. It first finds the elements that should be removed, and

then it removes all of them. With other collections, matching

elements are removed as soon as they are found.

This makes a difference if the predicate reads the collection.

Consider this example, where words is an ArrayList of length 3:

var words = new ArrayList<String>(List.of("Ada", "C++",

"Java"))

words.removeIf(w -> w.length() == words.size()); // Now words

is ["Java"]

In the first pass, all words of length 3 are marked for removal, and

in the second pass, they are removed.

However, if words is a LinkedList or a HashSet, then the same call

to removeIf only removes one of the three-letter words. After the

first removal, the predicate tests whether the collection has size 2.

Why the difference? A naïve one-pass implementation would have

been inefficient for array-backed collections. It didn’t immediately

occur to the developers that there is an efficient one-pass algorithm.

By the time they thought of it, they decided not to use it for

compatibility’s sake—see https://bugs.openjdk.org/browse/JDK-

8143577.

java.util.Collections 1.2

static <T extends Comparable<? super T>> T min(Collection<T>

elements)

https://bugs.openjdk.org/browse/JDK-8143577

static <T extends Comparable<? super T>> T max(Collection<T>

elements)

static <T> min(Collection<T> elements, Comparator<? super T> c)

static <T> max(Collection<T> elements, Comparator<? super T> c)

return the smallest or largest element in the collection. (The parameter

bounds are simplified for clarity.)

static <T> void copy(List<? super T> to, List<T> from)

copies all elements from a source list to the same positions in the

target list. The target list must be at least as long as the source list.

static <T> void fill(List<? super T> l, T value)

sets all positions of a list to the same value.

static <T> boolean addAll(Collection<? super T> c, T... values) 5.0

adds all values to the given collection and returns true if the collection

changed as a result.

static <T> boolean replaceAll(List<T> l, T oldValue, T

newValue) 1.4

replaces all elements equal to oldValue with newValue.

static int indexOfSubList(List<?> l, List<?> s) 1.4

static int lastIndexOfSubList(List<?> l, List<?> s) 1.4

return the index of the first or last sublist of l equaling s, or -1 if no

sublist of l equals s. For example, if l is [s, t, a, r] and s is [t, a, r], then

both methods return the index 1.

static void swap(List<?> l, int i, int j) 1.4

swaps the elements at the given offsets.

static void reverse(List<?> l)

reverses the order of the elements in a list. For example, reversing the

list [t, a, r] yields the list [r, a, t]. This method runs in O(n) time,

where n is the length of the list.

static void rotate(List<?> l, int d) 1.4

rotates the elements in the list, moving the entry with index i to

position (i + d) % l.size(). For example, rotating the list [t, a, r] by 2

yields the list [a, r, t]. This method runs in O(n) time, where n is the

length of the list.

static int frequency(Collection<?> c, Object o) 5.0

returns the count of elements in c that equal the object o.

boolean disjoint(Collection<?> c1, Collection<?> c2) 5.0

returns true if the collections have no elements in common.

java.util.Collection<T> 1.2

default boolean removeIf(Predicate<? super E> filter) 8

removes all matching elements.

java.util.List<E> 1.2

default void replaceAll(UnaryOperator<E> op) 8

applies the operation to all elements of this list.

9.6.5. Bulk Operations

There are several operations that copy or remove elements “in bulk.” The

call

coll1.removeAll(coll2);

removes all elements from coll1 that are present in coll2. Conversely,

coll1.retainAll(coll2);

removes all elements from coll1 that are not present in coll2. Here is a

typical application.

Suppose you want to find the intersection of two sets—the elements that

two sets have in common. First, make a new set to hold the result.

var result = new HashSet<String>(firstSet);

Here, we use the fact that every collection has a constructor whose

parameter is another collection that holds the initialization values.

Now, use the retainAll method:

result.retainAll(secondSet);

It retains all elements that occur in both sets. You have formed the

intersection without programming a loop.

You can carry this idea further and apply a bulk operation to a view. For

example, suppose you have a map that maps employee IDs to employee

objects, and you have a set of the IDs of all employees that are to be

terminated.

Map<String, Employee> staffMap = . . .;

Set<String> terminatedIDs = . . .;

Simply form the key set and remove all IDs of terminated employees.

staffMap.keySet().removeAll(terminatedIDs);

Since the key set is a view into the map, the keys and associated employee

names are automatically removed from the map.

By using a subrange view, you can restrict bulk operations to sublists and

subsets. For example, suppose you want to add the first ten elements of a

list to another container. Form a sublist to pick out the first ten:

relocated.addAll(staff.subList(0, 10));

The subrange can also be a target of a mutating operation.

staff.subList(0, 10).clear();

9.6.6. Converting between Collections and Arrays

Large portions of the Java API were designed before the Java Collections

Framework was created. As a result, you will occasionally need to translate

between traditional arrays and the more modern collections.

If you have an array that you need to turn into a collection, the List.of

method serves this purpose. For example:

String[] names = . . .;

List<String> staff = List.of(names);

Obtaining an array from a collection is a bit trickier. You can use the

toArray method:

Object[] names = staff.toArray();

But the result is an array of objects. Even if you know that your collection

contained objects of a specific type, you cannot use a cast:

String[] names = (String[]) staff.toArray(); // ERROR

The array returned by the toArray method was created as an Object[] array,

and you cannot change its type. Instead, pass an array constructor

expression to the toArray method. The constructor is used to create an array

of the correct type:

String[] values = staff.toArray(String[]::new);

Note: Prior to JDK 11, you had to use another form of the toArray

method, passing an array of the correct type:

String[] values = staff.toArray(new String[0]);

This toArray method constructs another array of the same type. Or,

if the array has sufficient length, it is reused:

staff.toArray(new String[staff.size()]);

In this case, no new array is created.

9.6.7. Writing Your Own Algorithms

If you write your own algorithm (or, in fact, any method that has a

collection as a parameter), you should work with interfaces, not concrete

implementations, whenever possible. For example, suppose you want to

process items. Of course, you can implement a method like this:

public void processItems(ArrayList<Item> items) {

 for (Item item : items)

 do something with item

}

However, you now constrained the caller of your method—the caller must

supply the items in an ArrayList. If the items happen to be in another

collection, they first need to be repackaged. It is much better to accept a

more general collection.

You should ask yourself this: What is the most general collection interface

that can do the job? Do you care about the order? Then you should accept a

List. But if the order doesn’t matter, you can accept collections of any kind:

public void processItems(Collection<Item> items) {

 for (Item item : items)

 do something with item

}

Now, anyone can call this method with an ArrayList or a LinkedList, or

even with an array wrapped in a call to the List.of method.

Tip: In this case, you can do even better by accepting an

Iterable<Item>. The Iterable interface has a single abstract method

iterator which the enhanced for loop uses behind the scenes. The

Collection interface extends Iterable.

Conversely, if your method returns multiple elements, you don’t want to

constrain yourself against future improvements. For example, consider

public ArrayList<Item> lookupItems(. . .) {

 var result = new ArrayList<Item>();

 . . .

 return result;

}

This method promises to return an ArrayList, even though the caller almost

certainly doesn’t care what kind of lists it is. If instead you return a List,

you can at any time add a branch that returns an empty or singleton list by

calling List.of.

Note: If it is such a good idea to use collection interfaces as

parameter and return type, why doesn’t the Java API follow this rule

consistently? For example, the JComboBox class has two

constructors:

JComboBox(Object[] items)

JComboBox(Vector<?> items)

The reason is simply timing. The Swing API was created before the

Java Collections Framework.

9.7. Legacy Collections

A number of “legacy” container classes have been present since the first

release of Java, before there was a collections framework.

They have been integrated into the Java Collections Framework—see

Figure 9.12. I will briefly introduce them in the following sections.

.

Figure 9.12: Legacy classes in the Java Collections Framework

9.7.1. The Hashtable Class

The classic Hashtable class serves the same purpose as the HashMap class

and has essentially the same interface. Just like methods of the Vector class,

the Hashtable methods are synchronized. If you do not require compatibility

with legacy code, you should use a HashMap instead. If you need

concurrent access, use a ConcurrentHashMap—see Chapter 10.

9.7.2. Enumerations

The legacy collections use the Enumeration interface for traversing

sequences of elements. The Enumeration interface has two methods,

hasMoreElements and nextElement. These are entirely analogous to the

hasNext and next methods of the Iterator interface.

If you find this interface with legacy classes, you can use Collections.list to

collect the elements in an ArrayList. For example, the LogManager class is

only willing to reveal logger names as an Enumeration. Here is how you

can get them all:

ArrayList<String> loggerNames =

Collections.list(LogManager.getLoggerNames());

Alternatively, you can turn an enumeration into an iterator:

LogManager.getLoggerNames().asIterator().forEachRemaining(n -> { . .

. });

You will occasionally encounter a legacy method with an enumeration

parameter. The static method Collections.enumeration yields an

enumeration object that enumerates the elements in the collection. For

example:

List<InputStream> streams = . . .;

var in = new SequenceInputStream(Collections.enumeration(streams));

 // the SequenceInputStream constructor expects an enumeration

Note: In C++, it is quite common to use iterators as parameters.

Fortunately, on the Java platform, very few programmers use this

idiom. It is much smarter to pass around the collection than to pass

an iterator. The collection object is more useful. The recipients can

always obtain the iterator from the collection when they need to do

so, plus they have all the collection methods at their disposal.

However, you may find enumerations in some legacy code because

they were the only available mechanism for generic collections until

the Java Collections Framework appeared in Java 1.2.

java.util.Enumeration<E> 1.0

boolean hasMoreElements()

returns true if there are more elements yet to be inspected.

E nextElement()

returns the next element to be inspected. Do not call this method if

hasMoreElements() returned false.

default Iterator<E> asIterator() 9

yields an iterator that iterates over the enumerated elements.

java.util.Collections 1.2

static <T> Enumeration<T> enumeration(Collection<T> c)

returns an enumeration that enumerates the elements of c.

public static <T> ArrayList<T> list(Enumeration<T> e)

returns an array list containing the elements enumerated by e.

9.7.3. Property Maps

A property map is a map structure of a special type. It has three particular

characteristics:

The keys and values are strings.

The map can easily be saved to a file and loaded from a file.

There is a secondary table for default values.

The Java platform class that implements a property map is called

Properties. Property maps are useful in specifying configuration options for

programs. For example:

var settings = new Properties();

settings.setProperty("width", "600.0");

settings.setProperty("filename",

"/home/cay/books/corejava/code/v1ch09/raven.html");

Use the getProperty method to look up the value for a key:

String filename = settings.getProperty("filename");

Caution: For historical reasons, the Properties class implements

Map<Object, Object>. Therefore, you can use the get and put

methods of the Map interface. But the get method returns the type

Object, and the put method allows you to insert any object. It is best

to stick with the getProperty and setProperty methods that work

with strings, not objects.

Use the store method to save the properties to a file. The second argument

is a comment that is included in the file.

var out = new FileWriter("program.properties");

settings.store(out, "Program Properties");

The sample set gives the following output:

#Program Properties

#Sun Dec 31 12:54:19 PST 2025

top=227.0

left=1286.0

width=423.0

height=547.0

filename=/home/cay/books/corejava/code/v1ch09/raven.html

To load the properties from a file, use

var in = new FileReader("program.properties");

settings.load(in);

Caution: If you use the load and store methods with input/output

streams, then the archaic ISO 8859-1 character encoding is used,

and characters > U+00FF are saved as Unicode escapes. For UTF-8,

use readers/writers, as in the code snippets above. Prior to Java 18,

set the character encoding explicitly to StandardCharsets.UTF_8.

The Properties class has two mechanisms for providing defaults. First,

whenever you look up the value of a string, you can specify a default that

should be used automatically when the key is not present.

String filename = settings.getProperty("filename", "");

If there is a "filename" property in the property map, filename is set to that

string. Otherwise, filename is set to the empty string.

If you find it too tedious to specify the default in every call to getProperty,

you can pack all the defaults into a secondary property map and supply that

map in the constructor of your primary property map.

var defaultSettings = new Properties();

defaultSettings.setProperty("width", "600");

defaultSettings.setProperty("height", "400");

defaultSettings.setProperty("filename", "");

. . .

var settings = new Properties(defaultSettings);

Yes, you can even specify defaults to defaults if you give another property

map argument to the defaultSettings constructor, but it is not something one

would normally do.

The companion code has a sample program that shows how you can use

properties for storing and loading program state. The program uses the

ImageViewer program from Chapter 2 and remembers the frame position,

size, and last loaded file. Run the program, load a file, and move and resize

the window. Then close the program and reopen it to see that it remembers

your file and your favorite window placement. You can also manually edit

the file .corejava/ImageViewer.properties in your home directory.

Properties are simple tables without a hierarchical structure. It is common

to introduce a fake hierarchy with key names such as window.main.color,

window.main.title, and so on. But the Properties class has no methods that

help organize such a hierarchy. If you store complex configuration

information, you should use the Preferences class instead—see Chapter 10

of Volume II.

java.util.Properties 1.0

Properties()

creates an empty property map.

Properties(Properties defaults)

creates an empty property map with a map of defaults.

String getProperty(String key)

gets a property. Returns the string associated with the key, or the

string associated with the key in the default table if it wasn’t present

in the table, or null if the key wasn’t present in the default table either.

String getProperty(String key, String defaultValue)

gets a property with a default value if the key is not found. Returns

the string associated with the key, or the default string if it wasn’t

present in the table.

Object setProperty(String key, String value)

sets a property. Returns the previously set value of the given key.

Set<String> stringPropertyNames() 6

returns a set of all keys, including the keys from the default map.

void load(Reader in) throws IOException 6

loads a property map from a reader.

void store(Writer out, String header) 6

saves a property map to a writer. The header is in the first line of the

stored file.

9.7.4. System Properties

The System.getProperties method yields a Properties object to describe

system information. For example, the home directory has the key

"user.home".

You can read it with the getProperty method that yields the key as a string:

String userDir = System.getProperty("user.home");

To get the Java version of the virtual machine, look up the "java.version"

property. You get a string such as "21.0.1" (but "1.8.0" up to Java 8).

Tip: As you can see, the version numbering changed in Java 9. This

seemingly small change broke a good number of tools that had

relied on the old format. If you parse the version string, be sure to

read JEP 322 at https://openjdk.org/jeps/322 to see how version

strings will be formatted in the future—or at least, until the

numbering scheme changes again.

Tip: To print out all system properties, run:

java -XshowSettings:properties

The java.version system property is set by the virtual machine and should

not be changed. Other system properties can be set with the -D command

line option:

java -Duser.language=fr -Duser.country=CA MyProgram

To make properties available in jshell, use the -R option like this:

jshell -R-Duser.language=fr -R-Duser.country=CA

https://openjdk.org/jeps/322

To get a numeric or Boolean system property value, use the static methods

Boolean.getBoolean(), Integer.getInteger, and Long.getLong:

Integer version = Integer.getInteger("java.specification.version");

java.lang.System 1.0

Properties getProperties()

retrieves all system properties. The application must have permission

to retrieve all properties, or a security exception is thrown.

String getProperty(String key)

retrieves the system property with the given key name. The following

properties are always present:

java.version

java.version.date

java.vendor

java.vendor.url

java.home

java.class.path

java.library.path

java.class.version

java.specification.version

java.specification.vendor

java.specification.name

java.vm.specification.version

java.vm.specification.vendor

java.vm.specification.name

java.vm.version

java.vm.vendor

java.vm.name

os.name

os.version

os.arch

file.separator

path.separator

line.separator

java.io.tmpdir

user.name

user.home

user.dir

native.encoding

stdout.encoding

stderr.encoding

java.lang.Boolean 1.0

static boolean getBoolean(String name)

returns true if the system property with the given name has value

"true" (ignoring letter case), false otherwise.

java.lang.Integer 1.0

static Integer getInteger(String nm)

static Integer getInteger(String nm, int val)

static Integer getInteger(String nm, Integer val)

returns the result of calling Integer.decode on the system property

with the given name. If there is no system property with the given

name, or its value cannot be decoded, this method returns the default

value or, if none provided, null.

java.lang.Long 1.0

static Long getLong(String nm)

static Long getLong(String nm, int val)

static Long getLong(String nm, Long val)

returns the result of calling Long.decode on the system property with

the given name. If there is no system property with the given name, or

its value cannot be decoded, this method returns the default value or,

if none provided, null.

9.7.5. Stacks

Since version 1.0, the Java API had a Stack class with the familiar push and

pop methods. However, the Stack class extends the Vector class, which is

not satisfactory from a theoretical perspective—you can apply such un-

stack-like operations as insert and remove to insert and remove values

anywhere, not just at the top of the stack.

java.util.Stack<E> 1.0

E push(E item)

pushes item onto the stack and returns item.

E pop()

pops and returns the top item of the stack. Don’t call this method if

the stack is empty.

E peek()

returns the top of the stack without popping it. Don’t call this method

if the stack is empty.

9.7.6. Bit Sets

The Java platform’s BitSet class stores a sequence of bits, packed into

implementation-specific “words”, which are currently long values. That is

much more efficient than using an array of boolean values.

The BitSet class gives you a convenient interface for reading, setting, and

resetting individual bits. Using this interface avoids the masking and other

bit-fiddling operations that are necessary if you store bits in int or long

variables.

For example, for a BitSet named bucketOfBits,

bucketOfBits.get(i)

returns true if the ith bit is on, and false otherwise. Similarly,

bucketOfBits.set(i)

turns the ith bit on. Finally,

bucketOfBits.clear(i)

turns the ith bit off.

You can use a BitSet to represent a set of nonnegative integers with an

upper bound. Set the ith bit to indicate that the integer i is in the set. This is

more efficient than using a Set<Integer> if the upper bound is not too large

and the set has many elements.

java.util.BitSet 1.0

BitSet(int initialCapacity)

constructs a bit set.

int cardinality() 1.4

returns the number of bits that are set, or, when considered as a set of

integers, the number of elements.

int length() 1.2

returns the “logical length” (1 plus the index of the highest set bit).

This is useful for iterating over the elements.

int size()

returns the number of bits currently available in the internal data

structure, not the number of set elements.

boolean get(int bit)

gets a bit.

void set(int bit)

sets a bit.

void clear(int bit)

clears a bit.

void and(BitSet set)

logically ANDs this bit set with another.

void or(BitSet set)

logically ORs this bit set with another.

void xor(BitSet set)

logically XORs this bit set with another.

void andNot(BitSet set)

clears all bits in this bit set that are set in the other bit set.

IntStream stream() 8

yields a stream of the index values of the bits that are set, or, when

considered as a set of integers, a stream of the elements.

As an example of using bit sets, I want to show you an implementation of

the “sieve of Eratosthenes” algorithm for finding prime numbers. (A prime

number is a number like 2, 3, or 5 that is divisible only by itself and 1, and

the sieve of Eratosthenes was one of the first methods discovered to

enumerate these fundamental building blocks.) This isn’t a terribly good

algorithm for finding the primes, but for some reason it has become a

popular benchmark for compiler performance. (It isn’t a good benchmark

either, because it mainly tests bit operations.)

Oh well, I bow to tradition and present an implementation. This program

counts all prime numbers between 2 and 2,000,000. (There are 148,933

primes in this interval, so you probably don’t want to print them all out.)

Without going into too many details of this program, the idea is to march

through a bit set with 2 million bits. First, we turn on all the bits. After that,

we turn off the bits that are multiples of numbers known to be prime. The

positions of the bits that remain after this process are themselves prime

numbers. Listing 9.7 lists this program in the Java programming language,

and Listing 9.8 is the C++ code.

Note: Even though the sieve isn’t a good benchmark, I couldn’t

resist timing the two implementations of the algorithm. Here are the

timing results with an Intel i7-1165G7 processor and 32 GB of

RAM, running Ubuntu 24.04:

C++ (g++ 11.4.0): 70 milliseconds

Java (Java 25): 20 milliseconds

I have run this test for fourteen editions of Core Java, and in the last

ten editions, Java easily beat C++. In all fairness, if one cranks up

the optimization level in the C++ compiler, it beats Java with a time

of 16 milliseconds. Java could only match that if the program ran

long enough to trigger the Hotspot just-in-time compiler.

Listing 9.7 v1ch09/sieve/Sieve.java

1 package v1ch09.sieve;

2

3 import module java.base;

4

5 /**

6 * This program runs the Sieve of Erathostenes benchmark. It computes all primes

7 * up to 2,000,000.

8 */

9 public class Sieve {

10 void main() {

11 int n = 2000000;

12 long start = System.nanoTime();

13 var bitSet = new BitSet(n + 1);

14 int i;

15 for (i = 2; i <= n; i++)

16 bitSet.set(i);

17 i = 2;

18 while (i * i <= n) {

19 if (bitSet.get(i)) {

20 int k = i * i;

21 while (k <= n) {

22 bitSet.clear(k);

23 k += i;

24 }

25 }

26 i++;

27 }

28 long end = System.nanoTime();

29 IO.println(bitSet.cardinality() + " primes");

30 IO.println((end - start) / 1000 + " milliseconds");

31 }

32 }

Listing 9.8 v1ch09/sieve/sieve.cpp

1 #include <bitset>

2 #include <iostream>

3 #include <ctime>

4

5 using namespace std;

6

7 int main() {

8 const int N = 2000000;

9 clock_t cstart = clock();

10

11 bitset<N + 1> b;

12 int i;

13 for (i = 2; i <= N; i++)

14 b.set(i);

15 i = 2;

16 while (i * i <= N) {

17 if (b.test(i)) {

18 int k = i * i;

19 while (k <= N) {

20 b.reset(k);

21 k += i;

22 }

23 }

24 i++;

25 }

26

27 clock_t cend = clock();

28 double millis = 1000.0 * (cend - cstart) / CLOCKS_PER_SEC;

29

30 cout << b.count() << " primes\n" << millis << " milliseconds\n";

31

32 return 0;

33 }

This completes our tour through the Java Collections Framework. As you

have seen, the framework offers a wide variety of collection classes for

your programming needs.

Chapter 10 ▪ Concurrency

You are probably familiar with multitasking—your operating system’s ability

to have more than one program working at what seems like the same time.

For example, one program can print while you are editing a file or

downloading your email. The operating system manages processes for

different programs and switches between them, giving the impression of

concurrent activity.

Multithreaded programs extend the idea of multitasking by taking it one level

lower. Individual programs can execute multiple tasks concurrently. Each

task is executed in a thread. Programs that can run more than one thread at

once are said to be multithreaded.

Multithreading is extremely useful in practice. For example, a browser

should be able to simultaneously download multiple images. A web server

needs to be able to serve concurrent requests. Graphical user interface (GUI)

programs have a separate thread for gathering user interface events from the

host operating environment. This chapter shows you how to add

multithreading capability to your Java applications.

Fair warning: Concurrent programming can get very complex. In this chapter,

I cover all the tools that an application programmer is likely to need.

However, for more intricate system-level programming, I suggest that you

turn to a more advanced reference, such as Java Concurrency in Practice by

Brian Goetz et al. (Addison-Wesley Professional, 2006).

10.1. Running Threads

Here is a simple procedure for running a task in a separate thread:

1. Place the code for the task into the run method of a class that

implements the Runnable interface. That interface is very simple, with a

single method:

public interface Runnable {

 void run();

}

Since Runnable is a functional interface, you can make an instance with

a lambda expression:

Runnable r = () -> {

 task code

};

2. Construct a Thread object from the Runnable:

var t = new Thread(r);

3. Start the thread:

t.start();

Let us look at a simple program that uses threads to move money between

bank accounts. We make use of a Bank class that stores the balances of a

given number of accounts. The transfer method transfers an amount from one

account to another. See Listing 10.2 for the implementation.

In each thread, we will move money between random accounts. Here is the

first one.

Runnable task1 = () -> {

 var bank = new Bank(NACCOUNTS, INITIAL_BALANCE);

 try {

 for (int i = 0; i < STEPS; i++) {

 int fromAccount = (int) (bank.size() * Math.random());

 int toAccount = (int) (bank.size() * Math.random());

 double amount = MAX_AMOUNT * Math.random();

 bank.transfer(fromAccount, toAccount, amount);

 Thread.sleep((int) (DELAY * Math.random()));

 }

 }

 catch (InterruptedException e) {

 }

};

new Thread(task1).start();

For a given number of steps, this thread transfers a random amount between

random accounts, and then sleeps for a random delay.

We need to catch an InterruptedException that the sleep method threatens to

throw. We will discuss this exception in Section 10.3.2. Typically,

interruption is used to request that a thread terminates. Accordingly, our run

method exits when an InterruptedException occurs.

Note: As already mentioned, real applications don’t use floating-point

numbers for financial data such as bank balances. In this chapter, we

are concerned about concurrency, not financial accuracy, so we use

the double type for convenience.

Note: Calling Math.random() from a large number of different

threads is slightly inefficient. For this and the following

demonstration programs, we do not care. But see Section 10.5.14 for

a more performant approach.

Our program starts a second thread that moves money in a different bank.

When you run this program, you get a printout like this:

Thread[#25,Thread-0,5,main] 179.67 from 63 to 7 Total Balance:

100000.00

Thread[#26,Thread-1,5,main] 389.09 from 3 to 56 Total Balance:

100000.00

Thread[#25,Thread-0,5,main] 176.47 from 32 to 34 Total Balance:

100000.00

Thread[#26,Thread-1,5,main] 292.84 from 31 to 74 Total Balance:

100000.00

Thread[#25,Thread-0,5,main] 129.54 from 66 to 84 Total Balance:

100000.00

Thread[#25,Thread-0,5,main] 30.24 from 41 to 21 Total Balance:

100000.00

Thread[#25,Thread-0,5,main] 245.82 from 80 to 25 Total Balance:

100000.00

Thread[#25,Thread-0,5,main] 29.29 from 6 to 57 Total Balance:

100000.00

Thread[#25,Thread-0,5,main] 797.79 from 26 to 41 Total Balance:

100000.00

Thread[#25,Thread-0,5,main] 844.39 from 54 to 30 Total Balance:

100000.00

Thread[#25,Thread-0,5,main] 229.91 from 7 to 66 Total Balance:

100000.00

Thread[#26,Thread-1,5,main] 765.00 from 48 to 44 Total Balance:

100000.00

Thread[#26,Thread-1,5,main]Thread[#25,Thread-0,5,main] 630.95 from

0 to 11 957.41 from

 98 to 82 Total Balance: 100000.00

 Total Balance: 100000.00

Thread[#25,Thread-0,5,main] 467.15 from 52 to 64 Total Balance:

100000.00

Thread[#26,Thread-1,5,main] 937.94 from 64 to 51 Total Balance:

100000.00

. . .

As you can see, the output of the two threads is interleaved, showing that

they run concurrently. Sometimes the output is a bit messy when two output

lines are interleaved.

For now, the details of the bank transfers are not important, but you will soon

see this example developed to show a more complicated scenario, where

multiple threads access a single bank. At this point, simply observe that the

threads are executed concurrently.

The complete code is shown in Listing 10.1.

Caution: Do not call the run method of the Thread class or the

Runnable object. Calling the run method directly merely executes the

task in the same thread—no new thread is started. Instead, call the

Thread.start method. It creates a new thread that executes the run

method.

Note: You can also define a thread by forming a subclass of the

Thread class, like this:

class MyThread extends Thread {

 public void run() {

 task code

 }

}

Then you construct an object of the subclass and call its start method.

However, this approach is no longer recommended. You should

decouple the task that is to be run in parallel from the mechanism of

running it. As you will see throughout this chapter, there are many

ways of scheduling the execution of a task.

Listing 10.1 v1ch10/ThreadDemo.java

1 package v1ch10;

2

3 import v1ch10.unsynch.Bank;

4

5 /**

6 * This program demonstrates the use of two concurrent threads.

7 */

8

9 class ThreadDemo {

10 final int NACCOUNTS = 100;

11 final double INITIAL_BALANCE = 1000;

12 final double MAX_AMOUNT = 1000;

13 final int DELAY = 10;

14 final int STEPS = 100;

15

16 void main() {

17 Runnable task1 = () -> {

18 var bank = new Bank(NACCOUNTS, INITIAL_BALANCE);

19 try {

20 for (int i = 0; i < STEPS; i++) {

21 int fromAccount = (int) (bank.size() * Math.random());

22 int toAccount = (int) (bank.size() * Math.random());

23 double amount = MAX_AMOUNT * Math.random();

24 bank.transfer(fromAccount, toAccount, amount);

25 Thread.sleep((int) (DELAY * Math.random()));

26 }

27 }

28 catch (InterruptedException e) {

29 }

30 };

31

32 Runnable task2 = () -> {

33 var bank = new Bank(NACCOUNTS, INITIAL_BALANCE);

34 try {

35 for (int i = 0; i < STEPS; i++) {

36 int fromAccount = (int) (bank.size() * Math.random());

37 int toAccount = (int) (bank.size() * Math.random());

38 double amount = MAX_AMOUNT * Math.random();

39 bank.transfer(fromAccount, toAccount, amount);

40 Thread.sleep((int) (DELAY * Math.random()));

41 }

42 }

43 catch (InterruptedException e) {

44 }

45 };

46

47 new Thread(task1).start();

48 new Thread(task2).start();

49 }

50 }

Listing 10.2 v1ch10/unsynch/Bank.java

1 package v1ch10.unsynch;

2

3 import module java.base;

4

5 /**

6 * A bank with a number of bank accounts.

7 */

8 public class Bank {

9 private final double[] accounts;

10

11 /**

12 * Constructs the bank.

13 * @param n the number of accounts

14 * @param initialBalance the initial balance for each account

15 */

16 public Bank(int n, double initialBalance) {

17 accounts = new double[n];

18 Arrays.fill(accounts, initialBalance);

19 }

20

21 /**

22 * Transfers money from one account to another.

23 * @param from the account to transfer from

24 * @param to the account to transfer to

25 * @param amount the amount to transfer

26 */

27 public void transfer(int from, int to, double amount) {

28 if (accounts[from] < amount) return;

29 IO.print(Thread.currentThread());

30 accounts[from] -= amount;

31 IO.print(" %10.2f from %d to %d".formatted(amount, from, to));

32 accounts[to] += amount;

33 IO.println(" Total Balance: %10.2f".formatted(getTotalBalance()));

34 }

35

36 /**

37 * Gets the sum of all account balances.

38 * @return the total balance

39 */

40 public double getTotalBalance() {

41 double sum = 0;

42

43 for (double a : accounts)

44 sum += a;

45

46 return sum;

47 }

48

49 /**

50 * Gets the number of accounts in the bank.

51 * @return the number of accounts

52 */

53 public int size() {

54 return accounts.length;

55 }

56 }

java.lang.Thread 1.0

Thread(Runnable target)

constructs a new thread that calls the run() method of the specified

target.

void start()

starts this thread, causing the run() method to be called. This method

will return immediately. The new thread runs concurrently.

void run()

calls the run method of the associated Runnable.

static void sleep(long millis)

static void sleep(Duration duration) 19

sleep for the given number of milliseconds.

java.lang.Runnable 1.0

void run()

must be overridden and supplied with instructions for the task that you

want to have executed.

10.2. Thread States

Threads can be in one of six states:

New

Runnable

Blocked

Waiting

Timed waiting

Terminated

Each of these states is explained in the sections that follow.

To determine the current state of a thread, simply call the getState method.

10.2.1. New Threads

When you create a thread with the new operator—for example, new

Thread(r)—the thread is not yet running. This means that it is in the new

state. When a thread is in the new state, the program has not started executing

code inside of it. A certain amount of bookkeeping needs to be done before a

thread can run.

10.2.2. Runnable Threads

Once you invoke the start method, the thread is in the runnable state. A

runnable thread may or may not actually be running. In particular, if there are

more runnable threads than available processors, they cannot all be running

simultaneously. It is up to the thread scheduler to give each runnable thread

time to run.

Once a thread is running, it doesn’t necessarily keep running. The scheduler

can preempt a thread that has run for a long time and give another thread an

opportunity to work. The scheduler can also preempt certain blocked threads

(see Section 10.3.1), and threads that call the yield method.

java.lang.Thread 1.0

static void yield()

signals to the scheduler that this thread is willing to yield execution to

another thread. Note that this is a static method.

10.2.3. Blocked and Waiting Threads

When a thread is blocked or waiting, it is temporarily inactive. It doesn’t

execute any code and consumes minimal resources. It is up to the thread

scheduler to reactivate it. The details depend on how the inactive state was

reached.

When the thread tries to acquire an intrinsic object lock (but not a Lock

in the java.util.concurrent library) that is currently held by another

thread, it becomes blocked. (We discuss java.util.concurrent locks in

Section 10.5.3 and intrinsic object locks in Section 10.5.6.) The thread

becomes unblocked when all other threads have relinquished the lock

and the thread scheduler has allowed this thread to hold it.

When the thread waits for another thread to notify the scheduler of a

condition, it enters the waiting state. We discuss conditions in Section

10.5.4. This happens by calling the Object.wait or Thread.join methods,

or by waiting for a Lock or Condition in the java.util.concurrent library.

Several methods have a timeout parameter. Calling them causes the

thread to enter the timed waiting state. This state persists either until the

timeout expires or the appropriate notification has been received.

Methods with timeout include Thread.sleep and the timed versions of

Object.wait, Thread.join, Lock.tryLock, and Condition.await.

Figure 10.1 shows the states that a thread can have and the possible

transitions from one state to another.

In practice, the difference between the blocked and waiting states is not

usually significant. We will often say that a thread is blocked when it is in the

blocked, waiting, or timed waiting state. When a thread is blocked or waiting

(or, of course, when it terminates), another thread will be scheduled to run.

When a thread is reactivated (for example, because its timeout has expired or

it has succeeded in acquiring a lock), it becomes runnable and is eligible for

being scheduled.

.

Figure 10.1: Thread states

10.2.4. Terminated Threads

A thread is terminated for one of two reasons:

It dies a natural death because the run method exits normally.

It dies abruptly because an uncaught exception terminates the run

method.

java.lang.Thread 1.0

void join()

waits for the specified thread to terminate.

void join(long millis)

void join(Duration duration) 19

wait for the specified thread to terminate or for the specified number of

milliseconds or duration to pass.

Thread.State getState() 5.0

gets the state of this thread: one of NEW, RUNNABLE, BLOCKED,

WAITING, TIMED_WAITING, or TERMINATED.

void stop()

This method is deprecated for removal and, as of Java 21, throws an

UnsupportedOperationException.

void suspend()

void resume()

These methods have been removed in Java 25.

10.3. Thread Properties

In the following sections, we discuss the various properties of threads:

platform and virtual threads, the interrupted status, daemon threads, handlers

for uncaught exceptions, as well as some legacy features that you should not

use.

10.3.1. Virtual Threads

By default, a Java thread runs on a platform thread provided by the operating

system in which the Java virtual machine executes. For many workloads, this

is a good arrangement since operating systems have evolved to do a good job

of thread scheduling.

However, platform threads are not lightweight. They require a few thousand

CPU instructions to start, and they consume (or at least reserve) a significant

amount of memory. This limits the number of platform threads that the

operating system can handle.

This is a problem for some classes of applications. A typical web application

would like to serve a very large number of concurrent requests, many more

than there are platform threads. The application can handle the workload

because the tasks don’t do CPU-intensive work. Each task spends most of its

time blocking on database queries or other external requests.

One solution is to use a non-blocking API for the requests. Instead of a

synchronous call

response = service.request(parameters);

process(response);

pass the processing code as a callback:

service.request(parameters, response -> process(response));

Then the call to request returns immediately without blocking, freeing its

thread to serve additional requests. The callback is invoked when the

response is available.

Non-blocking APIs provide high throughput, but at a steep cost for the

programmer. Instead of using familiar programming constructs for

sequences, branches, loops, and exception handling, all program logic must

be placed into callback code.

Virtual threads, available since Java 21, are an attractive alternative. A

number of platform threads, called carrier threads, execute virtual threads. In

order to run, a virtual thread is mounted on a carrier thread. It is unmounted

when it executes a blocking operation. Once the blocking operation has

finished, the virtual thread is remounted on another available carrier thread.

The term “virtual thread” is meant to be analogous to virtual memory. Just

like virtual memory is mapped to a smaller amount of actual RAM, virtual

threads are mounted on a smaller number of platform threads. These platform

threads are called the carrier threads. By default, the scheduler uses one

carrier thread per processor. This can be tuned with the

jdk.virtualThreadScheduler.parallelism VM option.

Tip: Use virtual threads for tasks that call blocking operations, such

as database or web requests. Do not use them for computationally

intensive operations.

Virtual threads have the same API as platform threads. A simple way to

create and start a virtual thread is:

Thread t = Thread.startVirtualThread(myRunnable);

The isVirtual method of the Thread class returns true when a thread is virtual.

java.lang.Thread 1.0

boolean isVirtual() 21

returns true when this thread is virtual.

static Thread startVirtualThread(Runnable task) 21

starts and returns a virtual thread running the given task.

10.3.2. Thread Interruption

A thread terminates when its run method returns—by executing a return

statement, after executing the last statement in the method body, or if an

exception occurs that is not caught in the method.

There is no way to force a thread to terminate. However, the interrupt method

can be used to request termination of a thread.

When the interrupt method is called on a thread, the interrupted status of the

thread is set. This is a boolean flag that is present in every thread. Each

thread should occasionally check whether it has been interrupted.

To find out whether the interrupted status was set, first call the static

Thread.currentThread method to get the current thread, and then call the

isInterrupted method:

while (!Thread.currentThread().isInterrupted() && more work to do) {

 do more work

}

However, if a thread is blocked, it cannot check the interrupted status. This is

where the InterruptedException comes in. When the interrupt method is

called on a thread that blocks on a call such as sleep or wait, the blocking call

is terminated by an InterruptedException. There are blocking I/O calls that

cannot be interrupted. Then the InterruptedException is thrown when the I/O

operation has completed.

There is no language requirement that a thread which is interrupted should

terminate. Interrupting a thread simply grabs its attention. The interrupted

thread can decide how to react to the interruption. Some threads are so

important that they should handle the exception and continue. But far more

often, a thread will simply want to interpret an interruption as a request for

termination. The run method of such a thread has the following form:

Runnable r = () -> {

 try {

 . . .

 while (!Thread.currentThread().isInterrupted() && more work to do)

{

 do more work

 }

 }

 catch (InterruptedException e) {

 // thread was interrupted

 }

 finally {

 cleanup, if required

 }

 // exiting the run method terminates the thread

};

The isInterrupted check is neither necessary nor useful if you call the sleep

method (or another interruptible method) after every work iteration. If you

call the sleep method when the interrupted status is set, it doesn’t sleep.

Instead, it clears the status (!) and throws an InterruptedException. Therefore,

if your loop calls sleep, don’t check the interrupted status. Instead, catch the

InterruptedException, like this:

Runnable r = () -> {

 try {

 . . .

 while (more work to do) {

 do more work

 Thread.sleep(delay);

 }

 }

 catch (InterruptedException e) {

 // thread was interrupted during sleep

 }

 finally {

 cleanup, if required

 }

 // exiting the run method terminates the thread

};

Note: There are two very similar methods, interrupted and

isInterrupted. The interrupted method is a static method that checks

whether the current thread has been interrupted. Furthermore, calling

the interrupted method clears the interrupted status of the thread. On

the other hand, the isInterrupted method is an instance method that

you can use to check whether any thread has been interrupted. Calling

it does not change the interrupted status.

You’ll find lots of published code in which the InterruptedException is

squelched at a subtask level, like this:

void mySubTask() {

 . . .

 try {

 sleep(delay);

 }

 catch (InterruptedException e) {

 // Nothing here--BAD

 }

 . . .

}

Don’t do that! If you do, the task cannot be interrupted while it is sleeping.

You have two reasonable choices:

Tag your method with throws InterruptedException and drop the try

block. Then the caller (or, ultimately, the run method) can catch it.

void mySubTask() throws InterruptedException {

 . . .

 sleep(delay);

 . . .

}

If you cannot do that, set the interrupted status in the catch clause. Then

the caller can test it.

void mySubTask() {

 . . .

 try {

 sleep(delay);

 }

 catch (InterruptedException e) {

 Thread.currentThread().interrupt();

 }

 . . .

}

Caution: In the initial release of Java, there also was a stop method

that another thread could call to terminate a thread. However, that

method was soon recognized to be unsafe and now throws an

UnsupportedOperationException instead of stopping the thread.

java.lang.Thread 1.0

void interrupt()

sends an interrupt request to a thread. The interrupted status of the

thread is set to true. If the thread is currently blocked, then an

InterruptedException is thrown.

static boolean interrupted()

tests whether the current thread (that is, the thread that is executing this

instruction) has been interrupted. Note that this is a static method. The

call has a side effect—it resets the interrupted status of the current

thread to false.

boolean isInterrupted()

tests whether a thread has been interrupted. Unlike the static interrupted

method, this call does not change the interrupted status of the thread.

static Thread currentThread()

returns the Thread object representing the currently executing thread.

10.3.3. Daemon Threads

You can turn a thread into a daemon thread by calling

t.setDaemon(true);

There is nothing demonic about such a thread. A daemon is simply a thread

that has no other role in life than to serve others. Examples are timer threads

that send regular “timer ticks” to other threads or threads that clean up stale

cache entries. When only daemon threads remain, the virtual machine exits.

There is no point in keeping the program running if all remaining threads are

daemons.

All virtual threads are daemon threads. Calling setDaemon(false) has no

effect on a virtual thread.

java.lang.Thread 1.0

void setDaemon(boolean isDaemon)

marks this thread as a daemon thread or a user thread. This method

must be called before the thread is started.

10.3.4. Thread Names and Ids

By default, threads have catchy names such as Thread-2. You can set any

name with the setName method:

var t = new Thread(runnable);

t.setName("Web crawler");

That can be useful in thread dumps.

Each thread also has a positive ID number that you can retrieve as

long id = t.threadId();

Caution: There is also a getId method. It is deprecated because it was

not defined as final. Someone might override it to return something

other than the thread ID. Call the final threadId method instead.

java.lang.Thread 1.0

void setName(String name)

String getName()

set or get the name of this thread.

long threadId() 19

returns the unique ID of this thread.

10.3.5. Handlers for Uncaught Exceptions

The run method of a thread cannot throw any checked exceptions, but it can

be terminated by an unchecked exception. In that case, the thread terminates.

However, there is no catch clause to which the exception can be propagated.

Instead, just before the thread dies, the exception is passed to a handler for

uncaught exceptions.

The handler must belong to a class that implements the

Thread.UncaughtExceptionHandler interface. That interface has a single

method,

void uncaughtException(Thread t, Throwable e)

You can install a handler into any thread with the

setUncaughtExceptionHandler method. You can also install a default handler

for all threads with the static method setDefaultUncaughtExceptionHandler

of the Thread class. A replacement handler might use the logging API to send

reports of uncaught exceptions into a log file. If you don’t install a default

handler, the default handler is null.

If you don’t install an uncaught exception handler for a thread, it uses a

handler that takes the following actions:

1. If the thread’s thread group has a parent, then the uncaughtException

method of the parent group is called. (This is not common.)

2. Otherwise, if the Thread.getDefaultUncaughtExceptionHandler method

returns a non-null handler, it is called.

3. Otherwise, if the Throwable is an instance of the deprecated

ThreadDeath class (which was once used to stop a thread), nothing

happens.

4. Otherwise, the name of the thread and the stack trace of the Throwable

are printed on System.err.

That is the stack trace that you have undoubtedly seen many times in your

programs.

Note: Technically, the uncaught exception handler is defined by a

thread’s thread group. A thread group is a collection of threads that

can be managed together. By default, all threads that you create

belong to the same thread group, but it is possible to establish other

groupings. Since there are now better features for operating on

collections of threads, I recommend that you do not use thread groups

in your programs.

java.lang.Thread 1.0

static void

setDefaultUncaughtExceptionHandler(Thread.UncaughtExceptionHand

ler handler) 5.0

static Thread.UncaughtExceptionHandler

getDefaultUncaughtExceptionHandler() 5.0

set or get the default handler for uncaught exceptions.

void

setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler

handler) 5.0

Thread.UncaughtExceptionHandler

getUncaughtExceptionHandler() 5.0

set or get the handler for uncaught exceptions. If no handler is installed,

the thread group object is the handler.

java.lang.Thread.UncaughtExceptionHandler 5.0

void uncaughtException(Thread t, Throwable e)

defined to log a custom report when a thread is terminated with an

uncaught exception.

java.lang.ThreadGroup 1.0

void uncaughtException(Thread t, Throwable e)

calls this method of the parent thread group if there is a parent, or calls

the default handler of the Thread class if there is a default handler, or

otherwise prints a stack trace to the standard error stream.

10.3.6. Thread Priorities

Every thread has a priority. By default, a thread inherits the priority of the

thread that constructed it. You can increase or decrease the priority of any

platform thread with the setPriority method. You can set the priority to any

value between MIN_PRIORITY (defined as 1 in the Thread class) and

MAX_PRIORITY (defined as 10). NORM_PRIORITY is defined as 5.

Whenever the platform thread scheduler has a chance to pick a new thread, it

prefers threads with higher priority. However, thread priorities are highly

system-dependent. Since the Java virtual machine relies on the thread

implementation of the host platform, the Java thread priorities are mapped to

the priority levels of the host platform, which may have more or fewer thread

priority levels.

For example, Windows has seven priority levels. Some of the Java priorities

will map to the same operating system level. In the OpenJDK VM for Linux,

thread priorities are ignored altogether—all threads have the same priority.

Thread priorities may have been useful in early versions of Java that didn’t

use operating systems threads. You should not use them nowadays.

For backwards compatibility, all virtual threads have priority

NORM_PRIORITY. Attempting to change the priority has no effect.

java.lang.Thread 1.0

void setPriority(int newPriority)

sets the priority of this thread. The priority must be between

Thread.MIN_PRIORITY and Thread.MAX_PRIORITY. Use

Thread.NORM_PRIORITY for normal priority.

static int MIN_PRIORITY

is the minimum priority that a Thread can have. The minimum priority

value is 1.

static int NORM_PRIORITY

is the default priority of a Thread. The default priority is 5.

static int MAX_PRIORITY

is the maximum priority that a Thread can have. The maximum priority

value is 10.

10.3.7. Thread Factories and Builders

You often want to produce multiple threads with the same properties. The

ThreadFactory interface has a single method

Thread newThread(Runnable r)

that produces a new thread instance which, when started, will execute the

given Runnable.

You can provide your own class that implements this interface, or, since Java

21, use a convenient builder syntax.

The static methods Thread.ofPlatform() and Thread.ofVirtual() yield builders

for platform or virtual threads. You can customize the threads to be built:

Thread.Builder builder = Thread.ofVirtual().name("request-", 1);

See the API notes for additional customization methods.

Then call either unstarted or start to get a single thread, or factory to get a

thread factory:

Thread t = builder.unstarted(myRunnable);

builder.start(myRunnable);

ThreadFactory factory = builder.factory();

t = factory.newThread(myRunnable);

java.util.concurrent.ThreadFactory 5.0

Thread newThread(Runnable r)

creates a thread that, when started, calls the run method of the given

Runnable.

java.lang.Thread 1.0

Thread.Builder.OfPlatform ofPlatform() 21

Thread.Builder.OfVirtual ofVirtual() 21

create a builder for platform or virtual threads.

java.lang.Thread.Builder 21

Thread.Builder name(String prefix, long start)

Thread.Builder name(String name)

cause the built threads to be named with the given prefix and a counter

with the given start value, or with the given name.

ThreadFactory factory()

yields a factory for building threads with the configuration of this

builder.

Thread unstarted(Runnable task)

Thread start(Runnable task)

construct a thread executing the given task. The second method starts

the thread.

Thread.Builder

uncaughtExceptionHandler(Thread.UncaughtExceptionHandler ueh)

causes the built threads to use the given uncaught exception handler.

java.lang.Thread.Builder.OfPlatform 21

Thread.Builder.OfPlatform daemon()

Thread.Builder.OfPlatform daemon(boolean on)

cause the built threads to be daemon threads unless on is false.

Thread.Builder.OfPlatform stackSize(long stackSize)

Thread.Builder.OfPlatform group(ThreadGroup group)

Thread.Builder.OfPlatform priority(int priority)

cause the built threads to have the given stack size hint, group, or

priority (not recommended).

10.4. Coordinating Tasks

It is common to break tasks into subtasks whose results are combined when

they are available. In the following sections, you will see the tools that the

Java concurrency framework provides for coordinating concurrent tasks.

10.4.1. Callables and Futures

A Runnable encapsulates a task that runs asynchronously; you can think of it

as an asynchronous method with no parameters and no return value. A

Callable is similar to a Runnable, but it returns a value. The Callable

interface is a parameterized type, with a single method call.

public interface Callable<V> {

 V call() throws Exception;

}

The type parameter is the type of the returned value. For example, a

Callable<Integer> represents an asynchronous task that eventually returns an

Integer object.

A Future holds the result of an asynchronous task. When you schedule a task

for execution, you receive a Future object. Using the Future object, you can

obtain the result when it is ready.

The Future<V> interface has the following methods:

V get()

V get(long timeout, TimeUnit unit)

V resultNow()

Throwable exceptionNow()

void cancel(boolean mayInterrupt)

boolean isCancelled()

boolean isDone()

Future.State state()

A call to the first get method blocks until the task is finished. The second get

method also blocks, but it throws a TimeoutException if the call timed out

before the task finished. If the thread running the task is interrupted, both

methods throw an InterruptedException. If the task was terminated with an

exception, the get methods throw an ExecutionException whose cause is the

terminating exception.

If the task has already finished, get returns immediately.

The resultNow method is a non-blocking version of get that you should only

call if you know that the task has completed successfully. If you know that

the task has failed, you can retrieve the terminating exception with the

exceptionNow method.

You can attempt to cancel the task with the cancel method. If the task has not

yet started, it is canceled and will never start. If the task is currently in

progress, it is interrupted if the mayInterrupt parameter is true, and otherwise

runs to completion.

Caution: Task cancelation in Java always requires cooperation from

the task implementor. As described in Section 10.3.2, the task needs

to monitor the interrupted status of the thread.

The isDone method returns true if the task has completed (successfully or

unsuccessfully), or it has been canceled.

The state method returns the task state as a value of the Task.State

enumeration with four values:

RUNNING: The task has not completed and was not cancelled

SUCCESS: The task has completed successfully

FAILED: The task has completed with an exception

CANCELLED: The task was cancelled

You should call the state method before calling resultNow or exceptionNow.

One way to execute a Callable is to use a FutureTask, which implements both

the Future and Runnable interfaces, so that you can construct a thread for

running it:

Callable<Integer> task = . . .;

var futureTask = new FutureTask<Integer>(task);

Thread.ofPlatform().start(futureTask); // futureTask is a Runnable

. . .

Integer result = futureTask.get(); // futureTask is a Future

More commonly, you will pass a Callable to an executor. That is the topic of

the next section.

To get a Future for a Runnable, you can call:

var futureTask = new FutureTask<Void>(myRunnable, null);

java.util.concurrent.Callable<V> 5.0

V call()

runs a task that yields a result.

java.util.concurrent.Future<V> 5.0

V get()

V get(long time, TimeUnit unit)

get the result, blocking until it is available or the given time has

elapsed. Throw a CancellationException if the task was canceled, an

ExecutionException whose cause is the terminating exception if the

task completed unsuccessfully, and an InterruptedException if the

current thread was interrupted. The second method throws a

TimeoutException if the task was not done within the given timeout.

V resultNow() 19

gets the result if the task completed successfully, throws an

IllegalStateException otherwise.

Throwable exceptionNow() 19

gets the terminating exception if the task completed unsuccessfully,

throws an IllegalStateException otherwise.

boolean cancel(boolean mayInterrupt)

attempts to cancel the execution of this task. If the task has already

started and the mayInterrupt parameter is true, it is interrupted. Returns

true if the cancellation was successful.

boolean isCancelled()

returns true if the task was canceled before it completed.

boolean isDone()

returns true if the task completed, successfully or unsuccessfully, or

was canceled.

Future.State state() 19

returns the state of this task, as RUNNING, SUCCESS, FAILED, or

CANCELLED.

java.util.concurrent.FutureTask<V> 5.0

FutureTask(Callable<V> task)

constructs an object that is both a Future<V> and a Runnable.

FutureTask(Runnable task, V result)

constructs an object that, as a Runnable, executes the task, and as a

Future<V>, yields the result upon completion.

10.4.2. Executor Services

An executor service is an object that runs a set of tasks. You submit tasks for

execution, and the executor service runs them on suitable threads. You can

wait for all tasks to complete, or cancel any remaining tasks once you have a

desired result.

An executor service that runs tasks on virtual threads will simply start a new

virtual thread for each submitted task. However, executor services that use

platform threads employ a thread pool instead, to avoid the costly creation of

new threads. A thread pool manages a number of threads for executing

submitted tasks. When a thread from the pool has finished a task, it looks for

the next one among the submitted Runnable or Callable tasks, and calls its

run or call method. When that method exits, the pool thread doesn’t terminate

but stays around to execute the next task.

The Executors class has a number of static factory methods for constructing

executor service instances. Table 10.1 lists the most useful ones.

Table 10.1: Common Executors Factory Methods

Method Description

newCachedThreadPool

New threads are created as

needed; idle threads are

kept for 60 seconds.

Method Description

newFixedThreadPool

The pool contains a fixed

set of threads; idle threads

are kept indefinitely.

newSingleThreadExecutor

A “pool” with a single

thread that executes the

submitted tasks

sequentially.

newVirtualThreadPerTaskExecutor

An executor that runs each

task on a new virtual

thread.

The newCachedThreadPool method constructs a thread pool that executes

each task immediately, using an existing idle thread when available and

creating a new thread otherwise. The newFixedThreadPool method

constructs a thread pool with a fixed size. If more tasks are submitted than

there are idle threads, the unserved tasks are placed on a queue. They are run

when other tasks have completed. The newSingleThreadExecutor is a

degenerate pool of size 1 where a single thread executes the submitted tasks,

one after another.

Use a cached thread pool when you have platform threads that are short-lived

or spend a lot of time blocking. However, if you have threads that are

working hard without blocking, you don’t want to run a large number of them

together. For optimum speed, the number of concurrent threads is the number

of processor cores. In such a situation, you should use a fixed thread pool that

bounds the total number of concurrent platform threads.

Another reason for using a fixed thread pool is to throttle the number of

concurrent tasks. If many of the tasks access a service that can only handle a

limited number of concurrent clients, then you can use the pool size to

enforce that limit. This is a rather crude way of tuning an application, but it is

surprisingly common because it is easy to do.

Caution: If your application uses virtual threads, you need to come

up with alternative mechanisms for throttling concurrent requests,

such as a counting semaphore or bounded queue.

For example, this code snippet limits the number of concurrent web

requests:

private static final int CONCURRENT_REQUESTS = 200;

private static final Semaphore SEMAPHORE = new

Semaphore(CONCURRENT_REQUESTS);

...

public static String get(URI uri) throws InterruptedException,

IOException {

 var request = HttpRequest.newBuilder().uri(uri).GET().build();

 SEMAPHORE.acquire();

 try {

 return client.send(request,

HttpResponse.BodyHandlers.ofString()).body();

 } finally {

 SEMAPHORE.release();

 }

}

With a high number of concurrent requests, the acquire method

blocks. For virtual threads, that is not a problem. For effective

scaling, it is better to move the blocking to the point of pressure

instead of the thread pool.

The single-thread executor is potentially useful for performance analysis. If

you temporarily replace a cached or fixed thread pool with a single-thread

pool, you can measure how much slower your application runs without the

benefit of concurrency. It can also be helpful for debugging race conditions.

Most of the Executors factory methods have a version with a ThreadFactory

parameter, allowing you to customize the threads that execute the submitted

tasks. If you provide your own factory for a thread pool, it should produce

platform threads, not virtual threads, since pooling virtual threads is never

useful. If you want to customize virtual threads, pass a factory for virtual

threads to the newThreadPerTaskExecutor method.

All of the Executors factory methods return objects of classes that implement

the ExecutorService interface. Submit a Runnable or Callable to an

ExecutorService with one of the following methods:

Future<T> submit(Callable<T> task)

Future<?> submit(Runnable task)

Future<T> submit(Runnable task, T result)

When you call submit, the executor will schedule the submitted task. You get

back a Future object that you can use to get the result or cancel the task.

The second submit method returns a Future<?>. The get method blocks until

completion and then returns null.

Note: Other methods in the java.util.concurrent API return a

Future<Void> instead of a Future<?>. For all practical purposes, these

types have the same function. You can use instances to query the task

state and to block until the task completes, but there is no result value.

The third version of submit yields a Future whose get method returns the

given result object upon completion.

When you are done with an executor, call the close method. An executor that

is closed down accepts no new tasks. The close method blocks until all

submitted tasks are finished. (If the thread calling close is interrupted, then

the submitted tasks are canceled.) A convenient way to invoke close is to use

a try-with-resources statement:

try (ExecutorService executor =

Executors.newVirtualThreadPerTaskExecutor()) {

 . . .

 Future<V> f = submit(myCallable);

 . . .

} // executor.close() called here

Note: Some programmers view an executor as a global resource.

There are situations where a global executor makes sense, but you

should not hesitate to have local executors, submit a few tasks, and

then close them. This is particularly useful with virtual threads, where

the blocking call to close is not a concern.

There are other methods to shut down an executor: shutdown, shutdownNow,

and awaitTermination. These give you some finer-grained control, and they

are needed in legacy code since the close method was only added in Java 19.

If you need to run the demo program in this section with an older version of

Java, replace the call executor.close() with:

executor.shutdown();

executor.awaitTermination(10, TimeUnit.MINUTES);

Here, in summary, is what you do to use an executor:

1. Call one of the static methods of the Executors class, most commonly

newCachedThreadPool, newFixedThreadPool, or

newVirtualThreadPerTaskExecutor.

2. Call submit to submit Callable or Runnable objects.

3. Hang on to the returned Future objects so that you can query task states,

get the results, or cancel the tasks.

4. Shut down the executor when you no longer want to submit any tasks.

Caution: When an executor uses threads from a thread factory,

setting the factory’s uncaught exception handler has no effect. Thread

pools need to install their own handler for catching task exceptions.

java.util.concurrent.Executors 5.0

static ExecutorService newCachedThreadPool()

static ExecutorService newCachedThreadPool(ThreadFactory

threadFactory)

return a cached thread pool that creates threads as needed and

terminates threads that have been idle for 60 seconds.

static ExecutorService newFixedThreadPool(int threads)

static ExecutorService newFixedThreadPool(int threads, ThreadFactory

threadFactory)

return a thread pool that uses the given number of threads to execute

tasks.

static ExecutorService newSingleThreadExecutor()

static ExecutorService newSingleThreadExecutor(ThreadFactory

threadFactory)

return an executor that executes tasks sequentially in a single thread.

static ExecutorService newVirtualThreadPerTaskExecutor() 21

static ExecutorService newThreadPerTaskExecutor(ThreadFactory

threadFactory) 21

return an executor that executes each task in a new virtual thread, or a

thread produced by the given factory.

java.util.concurrent.ExecutorService 5.0

Future<T> submit(Callable<T> task)

Future<T> submit(Runnable task, T result)

Future<?> submit(Runnable task)

submit the given task for execution.

void close() 19

sets this executor into shutdown mode where it no longer accepts new

submissions, and blocks until the already submitted tasks have

completed. If interrupted while blocking, running tasks are interrupted.

void shutdown()

sets this executor into shutdown mode where it no longer accepts new

submissions. This method does not block for completion of submitted

tasks.

List<Runnable> shutdownNow()

sets this executor into shutdown mode, interrupts tasks that have

started, and removes tasks that have not yet started. Returns a list of the

removed tasks. This method does not block for completion of submitted

tasks.

boolean awaitTermination(long timeout, TimeUnit unit)

blocks until all submitted tasks have completed, the timeout has

elapsed, or the blocking is interrupted. Returns true if all tasks have

completed.

10.4.3. Invoking a Group of Tasks

Often, you want to launch multiple concurrent tasks and get the result of the

first successful one, or combine the results of all completed ones.

The invokeAny method submits all tasks in a collection of Callable objects

and blocks until one of them has completed successfully, returning its result.

Any tasks that have not completed are canceled. You don’t know which task

succeeded—presumably, it is the one that finished most quickly. If no task

succeeded, an ExecutionException is thrown.

Use this method for a search problem in which you are willing to accept any

solution. For example, suppose that you need to find a factor of a large

integer—a computation that is required for breaking the RSA cipher. You

could submit a number of tasks, each attempting a factorization with numbers

in a different range. As soon as one of these tasks has an answer, your

computation can stop.

The invokeAll method submits all tasks in a collection of Callable objects,

blocks until all of them complete, and returns a list of Future objects that

represent the solutions to all tasks, in the same order as the submitted tasks.

You can process the results of the computation like this:

List<Callable<T>> tasks = . . .;

List<Future<T>> results = executor.invokeAll(tasks);

for (Future<T> result : results) {

 if (result.state() == Future.State.SUCCESS)

 process result.resultNow();

 else

 handle result.exceptionNow();

}

The call to invokeAll blocks until all tasks have completed. If you want to

obtain the results in the order in which they are available, use an

ExecutorCompletionService.

Start with an executor, obtained in the usual way. Then construct an

ExecutorCompletionService. Submit tasks to the completion service. The

service manages a blocking queue of Future objects, containing the results of

the submitted tasks as they become available:

var service = new ExecutorCompletionService<T>(executor);

for (Callable<T> task : tasks) service.submit(task);

for (int i = 0; i < tasks.size(); i++) {

 Future<T> result = service.take();

}

The program in Listing 10.3 shows how to use callables and executors. In the

first computation, we count how many files in a directory tree contain a given

word. We make a separate task for each file:

Set<Path> files = descendants(Path.of(start));

var tasks = new ArrayList<Callable<Long>>();

for (Path file : files) {

 Callable<Long> task = () -> occurrences(word, file);

 tasks.add(task);

}

Then we pass the tasks to an executor service:

ExecutorService executor = Executors.newCachedThreadPool();

List<Future<Long>> results = executor.invokeAll(tasks);

To get the combined count, we add all results, blocking until they are

available:

long total = 0;

for (Future<Long> result : results)

 total += result.get();

The program also displays the time spent during the search. Unzip the source

code for the JDK somewhere and run the search. Then replace the executor

service with a single-thread executor and try again to see whether the

concurrent computation was faster. Also try with virtual threads.

In the second part of the program, we search for the first file that contains the

given word. We use invokeAny to parallelize the search. Here, we have to be

more careful about formulating the tasks. The invokeAny method terminates

as soon as any task returns. So we cannot have the search tasks return a

boolean to indicate success or failure. We don’t want to stop searching when

a task failed. Instead, a failing task throws a NoSuchElementException. Also,

when one task has succeeded, the others are canceled. Therefore, we monitor

the interrupted status. If the underlying thread is interrupted, the search task

prints a message before terminating, so that you can see that the cancellation

is effective.

public static Callable<Path> searchForTask(String word, Path path) {

 return () -> {

 try (var in = new Scanner(path)) {

 while (in.hasNextLine()) {

 if (in.nextLine().contains(word)) return path;

 if (Thread.currentThread().isInterrupted()) {

 IO.println("Search in " + path + " canceled.");

 return null;

 }

 }

 throw new NoSuchElementException();

 }

 };

}

Preview: Just like structured programming replaced “goto”

statements with branches, loops, and functions, structured

concurrency is an effort to find programming constructs that make it

easier to reason about concurrent programs.

Java 25 contains a preview of a structured concurrency API. Tasks are

submitted to a StructuredTaskScope. Then the join method blocks

until the scope is shut down, according to the scope’s shutdown

policy. The API provides two simple policies ShutdownOnFailure and

ShutdownOnSuccess. Here is a usage example:

// Java 25 preview API

try (var scope = StructuredTaskScope.open()) {

 Supplier<T1> f1 = scope.fork(callable1);

 Supplier<T2> f2 = scope.fork(callable2);

 scope.join();

 result = combine(f1.get(), f2.get());

}

The join method returns when all forked subtasks have completed

normally. If any of them fails with an exception, then the others are

interrupted, and the join method throws a

StructuredTaskScope.FailedException whose cause is the exception

of the failed subtask.

If the current thread is interrupted, started tasks are interrupted, and

the join method throws an InterruptedException.

By passing a joiner to the open method, you can customize the

subtask execution and the gathering of results. The following example

executes two callables with the same return type and yields the result

of the first successful subtask:

// Java 25 preview API

try (var scope = StructuredTaskScope.open(Joiner.

<T>anySuccessfulResultOrThrow())) {

 scope.fork(callable3);

 scope.fork(callable4);

 result = scope.join();

}

You could have achieved similar effects with the invokeAll and

invokeAny methods of an executor service. However, the structured

concurrency API is more convenient, less error-prone, and much

more flexible. Moreover, thread dumps show the hierarchies of nested

scopes.

Listing 10.3 v1ch10/ExecutorDemo.java

1 package v1ch10;

2

3 import module java.base;

4

5 /**

6 * This program demonstrates the Callable interface and executors.

7 */

8 class ExecutorDemo {

9 void main() throws Exception {

10 String start = IO.readln("Enter base directory (e.g. /opt/jdk-25-src): ");

11 String word = IO.readln("Enter keyword (e.g. volatile): ");

12

13 Set<Path> files = descendants(Path.of(start));

14 var tasks = new ArrayList<Callable<Long>>();

15 for (Path file : files) {

16 Callable<Long> task = () -> occurrences(word, file);

17 tasks.add(task);

18 }

19 ExecutorService executor = Executors.newCachedThreadPool();

20 // use a single thread executor instead to see if multiple threads speed up the search

21 // ExecutorService executor = Executors.newSingleThreadExecutor();

22 // Or try virtual threads

23 // ExecutorService executor = Executors.newVirtualThreadPerTaskExecutor();

24 Instant startTime = Instant.now();

25 List<Future<Long>> results = executor.invokeAll(tasks);

26 Instant endTime = Instant.now();

27 long total = 0;

28 for (Future<Long> result : results)

29 total += result.get();

30 IO.println("Occurrences of " + word + ": " + total);

31 IO.println(

32 "Time elapsed: " + Duration.between(startTime, endTime).toMillis() + " ms");

33

34 var searchTasks = new ArrayList<Callable<Path>>();

35 for (Path file : files)

36 searchTasks.add(searchForTask(word, file));

37 startTime = Instant.now();

38 Path found = executor.invokeAny(searchTasks);

39 endTime = Instant.now();

40 IO.println(word + " occurs in: " + found);

41 IO.println(

42 "Time elapsed: " + Duration.between(startTime, endTime).toMillis() + " ms");

43

44 executor.close();

45 }

46

47 /**

48 * Counts occurrences of a given word in a file.

49 * @return the number of times the word occurs in the given word

50 */

51 long occurrences(String word, Path path) {

52 try (var in = new Scanner(path)) {

53 int count = 0;

54 while (in.hasNext())

55 if (in.next().equals(word)) count++;

56 return count;

57 }

58 catch (IOException ex) {

59 return 0;

60 }

61 }

62

63 /**

64 * Returns all descendants of a given directory--see Chapters 1 and 2 of Volume II.

65 * @param rootDir the root directory

66 * @return a set of all descendants of the root directory

67 */

68 Set<Path> descendants(Path rootDir) throws IOException {

69 try (Stream<Path> entries = Files.walk(rootDir)) {

70 return entries.filter(Files::isRegularFile).collect(Collectors.toSet());

71 }

72 }

73

74 /**

75 * Yields a task that searches for a word in a file.

76 * @param word the word to search

77 * @param path the file in which to search

78 * @return the search task that yields the path upon success

79 */

80 Callable<Path> searchForTask(String word, Path path) {

81 return () -> {

82 try (var in = new Scanner(path)) {

83 while (in.hasNext()) {

84 if (in.next().equals(word)) return path;

85 if (Thread.currentThread().isInterrupted()) {

86 IO.println("Search in " + path + " canceled.");

87 return null;

88 }

89 }

90 throw new NoSuchElementException();

91 }

92 };

93 }

94

95 }

java.util.concurrent.ExecutorService 5.0

T invokeAny(Collection<Callable<T>> tasks)

T invokeAny(Collection<Callable<T>> tasks, long timeout, TimeUnit

unit)

execute the given tasks and return the result of one that completed

successfully, canceling the remaining tasks. The second method throws

a TimeoutException if a timeout occurs.

List<Future<T>> invokeAll(Collection<Callable<T>> tasks)

List<Future<T>> invokeAll(Collection<Callable<T>> tasks, long

timeout, TimeUnit unit)

execute the given tasks and return the results when all tasks have

completed. The second method throws a TimeoutException if a timeout

occurs.

java.util.concurrent.ExecutorCompletionService<V> 5.0

ExecutorCompletionService(Executor e)

constructs an executor completion service that collects the results of the

given executor.

Future<V> submit(Callable<V> task)

Future<V> submit(Runnable task, V result)

submit a task to the underlying executor.

Future<V> take()

removes the next completed result, blocking if no completed results are

available.

Future<V> poll()

Future<V> poll(long time, TimeUnit unit)

remove and return the next completed result, or returns null if no

completed results are available. The second method waits for the given

time.

10.4.4. Thread-Local Variables

Sometimes you want to make a task-specific object available to all methods

that collaborate on the task, without having to pass the object as a parameter

of each method call. You can use a thread-local variable for this purpose.

This is not an actual variable, but an object whose get and set methods access

a value that depends on the current thread.

Suppose, for example, that you want to share a database connection. Declare

a variable

public static final ThreadLocal<Connection> CONNECTION = new

ThreadLocal<>();

When the task starts, initialize the connection for this thread:

CONNECTION.set(connect(uri, username, password));

The task calls some methods, all within the same thread, and eventually one

of them needs the connection:

Connection connection = CONNECTION.get();

var result = connection.executeQuery(query);

Note that the same call may happen on multiple threads. Each of them gets its

own connection object.

Caution: When executing tasks with a thread pool, you don’t want to

make thread-local data available to the other tasks that are scheduled

on the same thread. You also want to make sure they get garbage

collected when your task is done. It is essential that you call

CONNECTION.remove();

upon task completion (successfully or with an exception).

An InheritableThreadLocal is a subclass of ThreadLocal, used to propagate

thread-local data to subtasks. When a new thread is started, it receives a copy

of the parent’s inheritable thread locals. (The copy is necessary because the

child thread might mutate the thread-local values.)

Tip: Sharing resource-intensive objects as thread locals can be a

problem when migrating to virtual threads. There will likely be far

more of them than threads in a thread pool, and now you have many

more instances. In such a situation, you should rethink your sharing

strategy.

To identify the use of thread-local variables, run with the VM flag

jdk.traceVirtualThreadLocals. You will get a stack trace when a

virtual thread mutates a thread-local variable.

java.lang.ThreadLocal<T> 1.2

T get()

gets the current value for this thread. If get is called for the first time

and set was never called, the value is obtained by calling initialize.

void set(T t)

sets a new value for this thread.

void remove()

removes the value for this thread.

10.4.5. Scoped Values

Scoped values are a feature of Java 25 that provide more performant thread-

based data sharing than inheritable thread-local variables. Just like thread-

local variables, scoped values have per-thread instances, and they allow

transfer of data inside nested method calls. But they are immutable and have

a bounded lifetime.

This code snippet shows how to use them:

public static final ScopedValue<Connection> CONNECTION =

ScopedValue.newInstance();

. . .

ScopedValue.where(CONNECTION, connect(uri, username, password))

 .run(() -> doWork());

. . .

public void doWork() {

 . . .

 Connection connection = CONNECTION.get();

 var result = connection.executeQuery(query);

 . . .

}

You can also bind multiple values, with repeated calls to where. The run

method executes the task in the current thread, with the specified binding of

the scoped values. It blocks until the task returns or throws an exception.

Then the scoped value bindings are removed.

Note how the scope of the bindings is clearly delimited. In contrast, thread-

local variables must be removed manually.

You can also execute a task that returns a value, using the

ScopedValue.CallableOp functional interface. It is essentially equivalent to

the java.util.concurrent.Callable interface. However, rather than allowing any

exception, the exception type is a generic type parameter. The call method

throws only that exception.

String result = ScopedValue.where(CONNECTION, connect(uri,

username, password))

 .call(() -> getData()); // throws SQLException

. . .

public String getData() throws SQLException {

 . . .

}

Unlike thread-local variables, scoped values cannot be mutated. However,

you can rebind them in a nested run or call. When the nested task completes,

rebound scoped values revert to their previous bindings.

Thread local variables are inherited in child threads when they are instances

of InheritableThreadLocal. In contrast, scoped values are inherited in virtual

threads created by a StructuredTaskScope (which is a preview feature of Java

25). Due to their immutability, inheritance of scoped values can be

implemented much more efficiently than that of inheritable thread locals.

java.lang.ScopedValue<T> 25

static <T> ScopedValue<T> newInstance()

yields an unbound scoped value.

T get()

gets the current value for this thread.

T orElse(T other)

gets the current value for this thread, if this scoped value is bound, or

other if not.

T isBound()

returns true if this scoped value is bound, or false if not.

static T ScopedValue.Carrier where(ScopedValue<T> key, T value)

creates a carrier in which a scoped value is initialized with a given

value.

java.lang.ScopedValue.Carrier 25

T ScopedValue.Carrier where(ScopedValue<T> key, T value)

initializes a scoped value with a given value in this carrier.

void run(Runnable op)

runs the runnable with the established bindings of scoped values. Upon

normal or exceptional completion, each scoped value in the scope

reverts to its previous value.

<R, X extends Throwable> R call(ScopedValue.CallableOp<? extends

R, X> op)

runs the callable with the established bindings of scoped values and

returns the value of the callable. Upon normal or exceptional

completion, each scoped value in the scope reverts to its previous value.

10.4.6. The Fork-Join Framework

Some applications use a large number of threads that are mostly idle. An

example would be a web server that uses one thread per connection. Other

applications use one thread per processor core, in order to carry out

computationally intensive tasks, such as image or video processing. The fork-

join framework is designed to support the latter. Suppose you have a

processing task that naturally decomposes into subtasks, like this:

if (problemSize < threshold) {

 solve problem directly

}

else {

 break problem into subproblems

 recursively solve each subproblem

 combine the results

}

One example is image processing. To enhance an image, you can transform

the top half and the bottom half. If you have enough idle processors, those

operations can run in parallel. (You will need to do a bit of extra work along

the strip that separates the two halves, but that’s a technical detail.)

Here, we discuss a simpler example. Suppose we want to count how many

elements of an array fulfill a particular property. We cut the array in half,

compute the counts of each half, and add them up.

To put the recursive computation in a form that is usable by the framework,

supply a class that extends RecursiveTask<T> (if the computation produces a

result of type T) or RecursiveAction (if it doesn’t produce a result). Override

the compute method to generate and invoke subtasks and to combine their

results.

class Counter extends RecursiveTask<Integer> {

 . . .

 protected Integer compute() {

 if (to - from < THRESHOLD) {

 solve problem directly

 }

 else {

 int mid = from + (to - from) / 2;

 var first = new Counter(values, from, mid, filter);

 var second = new Counter(values, mid, to, filter);

 invokeAll(first, second);

 return first.join() + second.join();

 }

 }

}

The invokeAll method receives a number of tasks and blocks until all of them

have completed. The join method yields the result. Here, we apply join to

each subtask and return the sum.

Note: There is also a get method for getting the current result, but it is

less attractive since it can throw checked exceptions that we are not

allowed to throw in the compute method.

Listing 10.4 shows the complete example.

Behind the scenes, the fork-join framework uses an effective heuristic, called

work stealing, for balancing the workload among available threads. Each

worker thread has a deque (double-ended queue) for tasks. A worker thread

pushes smaller subtasks onto the head of its own deque. (Only one thread

accesses the head, so no locking is required.) When a worker thread is idle, it

“steals” a task from the tail of another deque (which requires locking). By

stealing larger subtasks, which are at the tail, more time elapses until the next

“theft,” reducing contention at the tails.

Caution: Fork-join pools are optimized for non-blocking workloads.

If you add many blocking tasks into a fork-join pool, you can starve

it. It is possible to overcome this by having tasks implement the

ForkJoinPool.ManagedBlocker interface, but this is an advanced

technique that we won’t discuss.

Listing 10.4 v1ch10/ForkJoinDemo.java

1 package v1ch10;

2

3 import module java.base;

4

5 /**

6 * This program demonstrates the fork-join framework.

7 */

8 class ForkJoinDemo {

9 void main(String[] args) {

10 final int SIZE = 10000000;

11 var numbers = new double[SIZE];

12 for (int i = 0; i < SIZE; i++)

13 numbers[i] = Math.random();

14 var counter = new Counter(numbers, 0, numbers.length, x -> x > 0.5);

15 try (var pool = new ForkJoinPool()) {

16 pool.invoke(counter);

17 IO.println(counter.join());

18 }

19 }

20

21 }

22

23 class Counter extends RecursiveTask<Integer> {

24 public static final int THRESHOLD = 1000;

25 private double[] values;

26 private int from;

27 private int to;

28 private DoublePredicate filter;

29

30 public Counter(double[] values, int from, int to, DoublePredicate filter) {

31 this.values = values;

32 this.from = from;

33 this.to = to;

34 this.filter = filter;

35 }

36

37 protected Integer compute() {

38 if (to - from < THRESHOLD) {

39 int count = 0;

40 for (int i = from; i < to; i++) {

41 if (filter.test(values[i])) count++;

42 }

43 return count;

44 } else {

45 int mid = from + (to - from) / 2;

46 var first = new Counter(values, from, mid, filter);

47 var second = new Counter(values, mid, to, filter);

48 invokeAll(first, second);

49 return first.join() + second.join();

50 }

51 }

52 }

10.5. Synchronization

In most practical multithreaded applications, two or more threads need to

share access to the same data. What happens if two threads have access to the

same object and each calls a method that modifies the state of the object? As

you might imagine, the threads can step on each other’s toes. Depending on

the order in which the data were accessed, corrupted objects can result. Such

a situation is often called a race condition.

10.5.1. An Example of a Race Condition

To avoid corruption of shared data by multiple threads, you must learn how

to synchronize the access. In this section, you’ll see what happens if you do

not use synchronization. In the next section, you’ll see how to synchronize

data access.

In the next test program, we continue working with our simulated bank.

Unlike the example in Section 10.1, multiple threads will access the same

Bank instance. Since this will cause problems, let us look more carefully at

the code for the transfer method of the Bank class.

public void transfer(int from, int to, double amount) {

 // CAUTION: unsafe when called from multiple threads

 IO.print(Thread.currentThread());

 accounts[from] -= amount;

 IO.printf(" %10.2f from %d to %d", amount, from, to);

 accounts[to] += amount;

 IO.printf(" Total Balance: %10.2f%n", getTotalBalance());

}

Here is the code for the Runnable instances. The run method keeps moving

money out of a given bank account. In each iteration, the run method picks a

random target account and a random amount, calls transfer on the bank

object, and then sleeps.

Runnable r = () -> {

 try {

 while (true) {

 int toAccount = (int) (bank.size() * Math.random());

 double amount = MAX_AMOUNT * Math.random();

 bank.transfer(fromAccount, toAccount, amount);

 Thread.sleep((int) (DELAY * Math.random()));

 }

 }

 catch (InterruptedException e) {

 }

};

When this simulation runs, we do not know how much money is in any one

bank account at any time. But we do know that the total amount of money in

all the accounts should remain unchanged because all we do is move money

from one account to another.

At the end of each transaction, the transfer method recomputes the total and

prints it.

This program never finishes. Just press Ctrl+C to kill the program.

Here is a typical printout:

. . .

Thread[Thread-11,5,main] 588.48 from 11 to 44 Total Balance:

100000.00

Thread[Thread-12,5,main] 976.11 from 12 to 22 Total Balance:

100000.00

Thread[Thread-14,5,main] 521.51 from 14 to 22 Total Balance:

100000.00

Thread[Thread-13,5,main] 359.89 from 13 to 81 Total Balance:

100000.00

. . .

Thread[Thread-36,5,main] 401.71 from 36 to 73 Total Balance:

99291.06

Thread[Thread-35,5,main] 691.46 from 35 to 77 Total Balance:

99291.06

Thread[Thread-37,5,main] 78.64 from 37 to 3 Total Balance:

99291.06

Thread[Thread-34,5,main] 197.11 from 34 to 69 Total Balance:

99291.06

Thread[Thread-36,5,main] 85.96 from 36 to 4 Total Balance:

99291.06

. . .

Thread[Thread-4,5,main]Thread[Thread-33,5,main] 7.31 from 31 to 32

Total Balance:

99979.24

 627.50 from 4 to 5 Total Balance: 99979.24

. . .

As you can see, something is very wrong. For a few transactions, the bank

balance remains at $100,000, which is the correct total for 100 accounts of

$1,000 each. But after some time, the balance changes slightly. When you

run this program, errors may happen quickly, or it may take a very long time

for the balance to become corrupted. This situation does not inspire

confidence, and you would probably not want to deposit your hard-earned

money in such a bank.

See if you can spot the problems with the code in Listing 10.5 and the Bank

class in Listing 10.2. We will unravel the mystery in the next section.

Listing 10.5 v1ch10/unsynch/UnsynchBankDemo.java

1 package v1ch10.unsynch;

2

3 /**

4 * This program shows data corruption when multiple threads access a data structure.

5 */

6 class UnsynchBankDemo {

7 final int NACCOUNTS = 100;

8 final double INITIAL_BALANCE = 1000;

9 final double MAX_AMOUNT = 1000;

10 final int DELAY = 10;

11

12 void main() {

13 var bank = new Bank(NACCOUNTS, INITIAL_BALANCE);

14 for (int i = 0; i < NACCOUNTS; i++) {

15 int fromAccount = i;

16 Runnable r = () -> {

17 try {

18 while (true) {

19 int toAccount = (int) (bank.size() * Math.random());

20 double amount = MAX_AMOUNT * Math.random();

21 bank.transfer(fromAccount, toAccount, amount);

22 Thread.sleep((int) (DELAY * Math.random()));

23 }

24 }

25 catch (InterruptedException e) {

26 }

27 };

28 Thread.ofPlatform().start(r);

29 }

30 }

31 }

10.5.2. The Race Condition Explained

In the previous section, we ran a program in which several threads updated

bank account balances. After a while, errors crept in and some amount of

money was either lost or spontaneously created. This problem occurs when

two threads are simultaneously trying to update an account. Suppose two

threads simultaneously carry out the instruction

accounts[to] += amount;

The problem is that these are not atomic operations. The instruction might be

processed as follows:

1. Load accounts[to] into a register.

2. Add amount.

3. Move the result back to accounts[to].

Now, suppose the first thread executes Steps 1 and 2, and then it is

preempted. Suppose the second thread awakens and updates the same entry

in the account array. Then, the first thread awakens and completes its Step 3.

That action wipes out the modification of the other thread. As a result, the

total is no longer correct (see Figure 10.2).

.

Figure 10.2: Simultaneous access by two threads

The UnsyncBankDemo program demonstrates this corruption. (There is also

a slight chance of false alarms during the computation of getTotalBalance.)

Note: You can actually peek at the virtual machine bytecodes that

execute each statement in our class. Run the command

javap -c -v Bank

to decompile the Bank.class file. For example, the line

accounts[to] += amount;

is translated into the following bytecodes:

aload_0

getfield #2; // Field accounts:[D

iload_2

dup2

daload

dload_3

dadd

dastore

What these codes mean does not matter. The point is that the

increment command is made up of several instructions, and the thread

executing them can be preempted at any instruction.

What is the chance of this corruption occurring? On a modern processor with

multiple cores, the risk of corruption is quite high. I boosted the chance of

observing the problem by interleaving the print statements with the

statements that update the balance.

If you run lots of threads on a heavily loaded machine, the program will still

fail even after you have eliminated the print statements. The failure may take

a few seconds or many hours to occur. Frankly, there are few things worse in

the life of a programmer than an error that only manifests itself irregularly.

The real problem is that the work of the transfer method can be preempted in

the middle. If we could ensure that the method runs to completion before the

thread loses control, the state of the bank account object would never be

corrupted.

10.5.3. Lock Objects

There are two mechanisms for protecting a code block from concurrent

access. The Java language provides a synchronized keyword for this purpose,

and the java.util.concurrent package provides explicit classes for locking.

The synchronized keyword automatically provides a lock as well as an

associated “condition,” which makes it powerful and convenient for many

cases that require explicit locking. However, I believe that it is easier to

understand the synchronized keyword after you have seen locks and

conditions in isolation. I explain the explicit classes here and in Section

10.5.4. Once you have understood these building blocks, you can read about

the synchronized keyword in Section 10.5.6.

The basic outline for protecting a code block with a ReentrantLock is:

myLock.lock(); // a ReentrantLock object

try {

 critical section

}

finally {

 myLock.unlock(); // make sure the lock is unlocked even if an exception

is thrown

}

This construct guarantees that only one thread at a time can enter the critical

section. As soon as one thread locks the lock object, no other thread can get

past the lock statement. When other threads call lock, they are deactivated

until the first thread unlocks the lock object.

Caution: It is critically important that the unlock operation is

enclosed in a finally clause. If the code in the critical section throws

an exception, the lock must be unlocked. Otherwise, the other threads

will be blocked forever.

Note: When you use locks, you cannot use the try-with-resources

statement. The unlock method isn’t called close. Some programmers

proposed to make Lock extend AutoCloseable, with close calling

lock. But Java designers felt that lock usage is fairly uncommon and

deserves to be noticeable.

Let us use a lock to protect the transfer method of the Bank class.

public class Bank {

 private final Lock bankLock = new ReentrantLock();

 . . .

 public void transfer(int from, int to, int amount) {

 bankLock.lock();

 try {

 IO.print(Thread.currentThread());

 accounts[from] -= amount;

 IO.printf(" %10.2f from %d to %d", amount, from, to);

 accounts[to] += amount;

 IO.printf(" Total Balance: %10.2f%n", getTotalBalance());

 }

 finally {

 bankLock.unlock();

 }

 }

}

Suppose one thread calls transfer and gets preempted before it is done.

Suppose a second thread also calls transfer. The second thread cannot acquire

the lock and is blocked in the call to the lock method. It is deactivated and

must wait for the first thread to finish executing the transfer method. When

the first thread unlocks the lock, then the second thread can proceed (see

Figure 10.3).

.

Figure 10.3: Comparison of unsynchronized and synchronized threads

Try it out. Add the locking code to the transfer method and run the program

again. You can run it forever, and the bank balance will not become

corrupted.

Note that each Bank object has its own ReentrantLock object. If two threads

try to access the same Bank object, then the lock serves to serialize the

access. However, if two threads access different Bank objects, each thread

acquires a different lock and neither thread is blocked. This is as it should be,

because the threads cannot interfere with one another when they manipulate

different Bank instances.

The lock is called reentrant because a thread can repeatedly acquire a lock

that it already owns. The lock has a hold count that keeps track of the nested

calls to the lock method. The thread has to call unlock for every call to lock

in order to relinquish the lock. Because of this feature, code protected by a

lock can call another method that uses the same lock.

For example, the transfer method calls the getTotalBalance method, which

also locks the bankLock object, which now has a hold count of 2. When the

getTotalBalance method exits, the hold count is back to 1. When the transfer

method exits, the hold count is 0, and the thread relinquishes the lock.

In general, you will want to use a lock around any block of code that updates

or inspects a shared object, so you can be assured that these operations run to

completion before another thread can use the same object.

Caution: Be careful to ensure that the code in a critical section is not

bypassed by throwing an exception. If an exception is thrown before

the end of the section, the finally clause will relinquish the lock, but

the object may be in a damaged state.

java.util.concurrent.locks.Lock 5.0

void lock()

acquires this lock; blocks if the lock is currently owned by another

thread.

void unlock()

releases this lock.

java.util.concurrent.locks.ReentrantLock 5.0

ReentrantLock()

constructs a reentrant lock that can be used to protect a critical section.

ReentrantLock(boolean fair)

constructs a lock with the given fairness policy. A fair lock favors the

thread that has been waiting for the longest time. However, this fairness

guarantee can be a significant drag on performance. Therefore, by

default, locks are not required to be fair.

Caution: It sounds nice to be fair, but fair locks can be a lot slower

than regular locks. You should only enable fair locking if you truly

know what you are doing and have a specific reason to consider

fairness essential for your program. Even if you use a fair lock, you

have no guarantee that the thread scheduler is fair. If the thread

scheduler chooses to neglect a thread that has been waiting a long

time for the lock, it doesn’t get the chance to be treated fairly by the

lock.

10.5.4. Condition Objects

Often, a thread enters a critical section only to discover that it can’t proceed

until a condition is fulfilled. Use a condition object to manage threads that

have acquired a lock but cannot do useful work. In this section, I introduce

the implementation of condition objects in the Java library. (For historical

reasons, condition objects are often called condition variables.)

Let us refine our simulation of the bank. We do not want to transfer money

out of an account that does not have the funds to cover the transfer. Note that

we cannot use code like

if (bank.getBalance(from) >= amount)

 bank.transfer(from, to, amount);

It is entirely possible that the current thread will be deactivated between the

successful outcome of the test and the call to transfer.

if (bank.getBalance(from) >= amount)

 // thread might be deactivated at this point

 bank.transfer(from, to, amount);

By the time the thread is running again, the account balance may have fallen

below the withdrawal amount. You must make sure that no other thread can

modify the balance between the test and the transfer action. You do so by

protecting both the test and the transfer action with a lock:

public void transfer(int from, int to, int amount) {

 bankLock.lock();

 try {

 while (accounts[from] < amount) {

 // wait

 . . .

 }

 // transfer funds

 . . .

 }

 finally {

 bankLock.unlock();

 }

}

Now, what do we do when there is not enough money in the account? We

wait until some other thread has added funds. But this thread has just gained

exclusive access to the bankLock, so no other thread has a chance to make a

deposit. This is where condition objects come in.

A lock object can have one or more associated condition objects. You obtain

a condition object with the newCondition method. It is customary to give

each condition object a name that evokes the condition that it represents. For

example, here we set up a condition object to represent the “sufficient funds”

condition.

class Bank {

 . . .

 private final Condition sufficientFunds = bankLock.newCondition();

 . . .

}

If the transfer method finds that sufficient funds are not available, it calls

sufficientFunds.await();

The current thread is now deactivated and gives up the lock. This lets in

another thread that can, we hope, increase the account balance.

There is an essential difference between a thread that is waiting to acquire a

lock and a thread that has called await. Once a thread calls the await method,

it enters a wait set for that condition. The thread is not made runnable when

the lock is available. Instead, it stays deactivated until another thread has

called the signalAll method on the same condition.

When another thread has transferred money, it should call

sufficientFunds.signalAll();

This call reactivates all threads waiting for the condition. When the threads

are removed from the wait set, they are again runnable and the scheduler will

eventually activate them again. At that time, they will attempt to reenter the

object. As soon as the lock is available, one of them will acquire the lock and

continue where it left off, returning from the call to await.

At this time, the thread should test the condition again. There is no guarantee

that the condition is now fulfilled—the signalAll method merely signals to

the waiting threads that it may be fulfilled at this time and that it is worth

checking for the condition again.

Note: In general, a call to await should be inside a loop of the form

while (!(OK to proceed))

 condition.await();

It is crucially important that some other thread calls the signalAll method

eventually. When a thread calls await, it has no way of reactivating itself. It

puts its faith in the other threads. If none of them bother to reactivate the

waiting thread, it will never run again. This can lead to unpleasant deadlock

situations. If all other threads are blocked and the last active thread calls

await without unblocking one of the others, it also blocks. No thread is left to

unblock the others, and the program hangs.

When should you call signalAll? The rule of thumb is to call signalAll

whenever the state of an object changes in a way that might be advantageous

to waiting threads. For example, whenever an account balance changes, the

waiting threads should be given another chance to inspect the balance. In our

example, we call signalAll when we have finished the funds transfer.

public void transfer(int from, int to, int amount) {

 bankLock.lock();

 try {

 while (accounts[from] < amount)

 sufficientFunds.await();

 // transfer funds

 . . .

 sufficientFunds.signalAll();

 }

 finally {

 bankLock.unlock();

 }

}

Note that the call to signalAll does not immediately activate a waiting thread.

It only unblocks the waiting threads so that they can compete for entry into

the object after the current thread has relinquished the lock.

Another method, signal, unblocks only a single thread from the wait set,

chosen at random. That is more efficient than unblocking all threads, but

there is a danger. If the randomly chosen thread finds that it still cannot

proceed, it becomes blocked again. If no other thread calls signal again, the

system deadlocks.

Caution: A thread can only call await, signalAll, or signal on a

condition if it owns the lock of the condition.

The sample program in the synch package has the same main method as the

unsynch version in Listing 10.5, but the Bank class (Listing 10.6) uses locks.

You will notice that nothing ever goes wrong. The total balance stays at

$100,000 forever. No account ever has a negative balance. (Again, press

Ctrl+C to terminate the program.) You may also notice that the program runs

a bit slower—that is the price you pay for the added bookkeeping involved in

the synchronization mechanism.

When reading through the source code, notice that the transfer and

getTotalBalance methods are protected by a lock, but the size method is not.

In this simulation, the number of accounts never changes after construction,

so there is no need for granting exclusive access to the size method.

Listing 10.6 v1ch10/synch/Bank.java

1 package v1ch10.synch;

2

3 import module java.base;

4

5 /**

6 * A bank with a number of bank accounts that uses locks for serializing access.

7 */

8 public class Bank {

9 private final double[] accounts;

10 private final Lock bankLock = new ReentrantLock();

11 private final Condition sufficientFunds = bankLock.newCondition();

12

13 /**

14 * Constructs the bank.

15 * @param n the number of accounts

16 * @param initialBalance the initial balance for each account

17 */

18 public Bank(int n, double initialBalance) {

19 accounts = new double[n];

20 Arrays.fill(accounts, initialBalance);

21 }

22

23 /**

24 * Transfers money from one account to another.

25 * @param from the account to transfer from

26 * @param to the account to transfer to

27 * @param amount the amount to transfer

28 */

29 public void transfer(int from, int to, double amount) throws InterruptedException {

30 bankLock.lock();

31 try {

32 while (accounts[from] < amount)

33 sufficientFunds.await();

34 IO.print(Thread.currentThread());

35 accounts[from] -= amount;

36 IO.print(" %10.2f from %d to %d".formatted(amount, from, to));

37 accounts[to] += amount;

38 IO.println(" Total Balance: %10.2f".formatted(getTotalBalance()));

39 sufficientFunds.signalAll();

40 }

41 finally {

42 bankLock.unlock();

43 }

44 }

45

46 /**

47 * Gets the sum of all account balances.

48 * @return the total balance

49 */

50 public double getTotalBalance() {

51 bankLock.lock();

52 try {

53 double sum = 0;

54

55 for (double a : accounts)

56 sum += a;

57

58 return sum;

59 }

60 finally {

61 bankLock.unlock();

62 }

63 }

64

65 /**

66 * Gets the number of accounts in the bank.

67 * @return the number of accounts

68 */

69 public int size() {

70 return accounts.length;

71 }

72 }

java.util.concurrent.locks.Lock 5.0

Condition newCondition()

returns a condition object associated with this lock.

java.util.concurrent.locks.Condition 5.0

void await()

puts this thread on the wait set for this condition.

void signalAll()

unblocks all threads in the wait set for this condition.

void signal()

unblocks one randomly selected thread in the wait set for this condition.

10.5.5. Deadlocks

Locks and conditions cannot solve all problems that might arise in

multithreading. Consider the following situation:

1. Account 1: $200

2. Account 2: $300

3. Thread 1: Transfer $300 from Account 1 to Account 2

4. Thread 2: Transfer $400 from Account 2 to Account 1

As Figure 10.4 indicates, Threads 1 and 2 are clearly blocked. Neither can

proceed because the balances in Accounts 1 and 2 are insufficient.

.

Figure 10.4: A deadlock situation

It is possible that all threads get blocked because each is waiting for more

money. Such a situation is called a deadlock.

In our program, a deadlock cannot occur for a simple reason. Each transfer

amount is for, at most, $1,000. Since there are 100 accounts and a total of

$100,000 in them, at least one of the accounts must have at least $1,000 at

any time. The thread moving money out of that account can therefore

proceed.

But if you change the run method of the threads to remove the $1,000

transaction limit, deadlocks will occur quickly. Try it out. Set NACCOUNTS

to 10. Construct each transfer runnable with a max value of 2 *

INITIAL_BALANCE and run the program. The program will run for a while

and then hang.

Tip: When the program hangs, press Ctrl+\. You will get a thread

dump that lists all threads. Each thread has a stack trace, telling you

where it is currently blocked. Alternatively, run jconsole, as described

in Chapter 7, and consult the Threads panel (see Figure 10.5).

Figure 10.5: The Threads panel in jconsole

Another way to create a deadlock is to make the ith thread responsible for

putting money into the ith account, rather than for taking it out of the ith

account. In this case, there is a chance that all threads will simultaneously try

to overdraw the same account, leaving no thread that can replenish it. Try it

out. In the SynchBankDemo program, turn to the run method of the

TransferRunnable class. In the call to transfer, flip fromAccount and

toAccount. Run the program and see how it deadlocks almost immediately.

Here is another situation in which a deadlock can occur easily. Change the

signalAll method to signal in the SynchBankDemo program. You will find

that the program eventually hangs. (Again, set NACCOUNTS to 10 to

observe the effect more quickly.) Unlike signalAll, which notifies all threads

that are waiting for added funds, the signal method unblocks only one thread.

If that thread can’t proceed, all threads can be blocked. Consider the

following sample scenario of a developing deadlock:

1. Account 1: $1,990

2. All other accounts: $990 each

3. Thread 1: Transfer $995 from Account 1 to Account 2

4. All other threads: Transfer $995 from their account to another account

Clearly, all threads but Thread 1 are blocked, because there isn’t enough

money in their accounts.

Thread 1 proceeds. Afterward, we have the following situation:

1. Account 1: $995

2. Account 2: $1,985

3. All other accounts: $990 each

Then, Thread 1 calls signal. The signal method picks a thread at random to

unblock. Suppose it picks Thread 3. That thread is awakened, finds that there

isn’t enough money in its account, and calls await again. But Thread 1 is still

running. A new random transaction is generated, say,

1. Thread 1: Transfer $997 from Account 1 to Account 2

Now, Thread 1 also calls await, and all threads are blocked. The system has

deadlocked.

The culprit here is the call to signal. It only unblocks one thread, and it may

not pick the thread that is essential to make progress. (In our scenario, Thread

2 must proceed to take money out of Account 2.)

As you can see, programming with locks and conditions can be quite

challenging. You must design your program to ensure that a deadlock

situation cannot occur.

10.5.6. The synchronized Keyword

In the preceding sections, you saw how to use Lock and Condition objects.

Before going any further, let us summarize the key points about locks and

conditions:

A lock protects sections of code, allowing only one thread to execute the

code at a time.

A lock manages threads that are trying to enter a critical section.

A lock can have one or more associated condition objects.

Each condition object manages threads that have entered a critical

section but that cannot proceed.

The Lock and Condition interfaces give programmers a high degree of

control over locking. However, in most situations, you don’t need that control

—you can use a mechanism that is built into the Java language. Ever since

version 1.0, every object in Java has an intrinsic lock. If a method is declared

with the synchronized keyword, the object’s lock protects the entire method.

That is, to call the method, a thread must acquire the intrinsic object lock.

In other words,

public synchronized void method() {

 method body

}

is the equivalent of

public void method() {

 this.intrinsicLock.lock();

 try {

 method body

 }

 finally {

 this.intrinsicLock.unlock();

 }

}

For example, instead of using an explicit lock, we can simply declare the

transfer method of the Bank class as synchronized.

The intrinsic object lock has a single associated condition. The wait method

adds a thread to the wait set, and the notifyAll/notify methods unblock

waiting threads. In other words, calling wait or notifyAll is the equivalent of

intrinsicCondition.await();

intrinsicCondition.signalAll();

Note: The wait, notifyAll, and notify methods are final methods of

the Object class. The Condition methods had to be named await,

signalAll, and signal so that they don’t conflict with those methods.

For example, you can implement the Bank class in Java like this:

class Bank {

 private double[] accounts;

 public synchronized void transfer(int from, int to, int amount)

 throws InterruptedException {

 while (accounts[from] < amount)

 wait(); // wait on intrinsic object lock's single condition

 accounts[from] -= amount;

 accounts[to] += amount;

 notifyAll(); // notify all threads waiting on the condition

 }

 public synchronized double getTotalBalance() {

 . . .

 }

}

As you can see, using the synchronized keyword yields code that is much

more concise. Of course, to understand this code, you have to know that each

object has an intrinsic lock, and that the lock has an intrinsic condition. The

lock manages the threads that try to enter a synchronized method. The

condition manages the threads that have called wait.

It is also legal to declare static methods as synchronized. If such a method is

called, it acquires the intrinsic lock of the associated class object. For

example, if the Bank class has a static synchronized method, then the lock of

the Bank.class object is locked when it is called. As a result, no other thread

can call this or any other synchronized static method of the same class.

The intrinsic locks and conditions have some limitations. Among them:

Before Java 25, virtual threads were pinned when executing a

synchronized block or method. A pinned thread cannot be unmounted

from its carrier thread. Brief pinning is not a problem. But if many

virtual threads block while pinned, this seriously degrades throughput,

since their carrier threads are now unable to run other virtual threads.

You cannot interrupt a thread that is trying to acquire an intrinsic lock.

With a ReentrantLock, you can call lockInterruptibly.

You cannot specify a timeout when trying to acquire an intrinsic lock.

Having a single condition per lock can be inefficient.

What should you use in your code—Lock and Condition objects or

synchronized methods? Here is my recommendation:

It is best to avoid explicit locking. In many situations, you can use one

of the mechanisms of the java.util.concurrent package that do all the

locking for you. For example, in Section 10.6.1, you will see how to use

a blocking queue to synchronize threads that work on a common task.

If the synchronized keyword works for your situation, by all means, use

it. You’ll write less code and have less room for error. Listing 10.7

shows the bank example, implemented with synchronized methods.

However, consider the fact that the lock is public—see the next section.

Use Lock/Condition if you use virtual threads before Java 25, or if you

really need the additional power that these constructs give you.

Note: Since Java 25, synchronized blocks and methods no longer pin

virtual threads. However, native methods and foreign functions still

do.

To view pinned threads, use Java Flight Recorder, and look for

VirtualThreadPinned and VirtualThreadSubmitFailed events. Or

simply run

jcmd pid JFR.start

jcmd pid JFR.view pinned-threads

Here, pid is the process ID of the Java process. To get it, run jcmd

without arguments, and look at the list of Java processes.

Alternatively, prior to Java 25, start the JVM with one of the options

-Djdk.tracePinnedThreads=short

-Djdk.tracePinnedThreads=full

You get a stack trace that shows when a pinned thread blocks:

. . .

org.apache.tomcat.util.net.SocketProcessorBase.run(SocketProcess

orBase.java:49)

 <== monitors:1

. . .

Note that you get only one warning per pinning location.

Listing 10.7 v1ch10/synch2/Bank.java

1 package v1ch10.synch2;

2

3 import module java.base;

4

5 /**

6 * A bank with a number of bank accounts that uses synchronization primitives.

7 */

8 public class Bank {

9 private final double[] accounts;

10

11 /**

12 * Constructs the bank.

13 * @param n the number of accounts

14 * @param initialBalance the initial balance for each account

15 */

16 public Bank(int n, double initialBalance) {

17 accounts = new double[n];

18 Arrays.fill(accounts, initialBalance);

19 }

20

21 /**

22 * Transfers money from one account to another.

23 * @param from the account to transfer from

24 * @param to the account to transfer to

25 * @param amount the amount to transfer

26 */

27 public synchronized void transfer(int from, int to, double amount)

28 throws InterruptedException {

29 while (accounts[from] < amount)

30 wait();

31 IO.print(Thread.currentThread());

32 accounts[from] -= amount;

33 IO.print(" %10.2f from %d to %d".formatted(amount, from, to));

34 accounts[to] += amount;

35 IO.println(" Total Balance: %10.2f".formatted(getTotalBalance()));

36 notifyAll();

37 }

38

39 /**

40 * Gets the sum of all account balances.

41 * @return the total balance

42 */

43 public synchronized double getTotalBalance() {

44 double sum = 0;

45

46 for (double a : accounts)

47 sum += a;

48

49 return sum;

50 }

51

52 /**

53 * Gets the number of accounts in the bank.

54 * @return the number of accounts

55 */

56 public int size() {

57 return accounts.length;

58 }

59 }

java.lang.Object 1.0

void notifyAll()

unblocks the threads that called wait on this object. This method can

only be called from within a synchronized method or block. The

method throws an IllegalMonitorStateException if the current thread is

not the owner of the object’s lock.

void notify()

unblocks one randomly selected thread among the threads that called

wait on this object. This method can only be called from within a

synchronized method or block. The method throws an

IllegalMonitorStateException if the current thread is not the owner of

the object’s lock.

void wait()

causes a thread to wait until it is notified. This method can only be

called from within a synchronized method or block. It throws an

IllegalMonitorStateException if the current thread is not the owner of

the object’s lock.

void wait(long millis)

void wait(long millis, int nanos)

cause a thread to wait until it is notified or until the specified amount of

time has passed. These methods can only be called from within a

synchronized method or block. They throw an

IllegalMonitorStateException if the current thread is not the owner of

the object’s lock. The number of nanoseconds may not exceed

1,000,000.

10.5.7. Synchronized Blocks

As we just discussed, every Java object has a lock. A thread can acquire the

lock by calling a synchronized method. There is a second mechanism for

acquiring the lock: by entering a synchronized block. When a thread enters a

block of the form

synchronized (obj) // this is the syntax for a synchronized block {

 critical section

}

then it acquires the lock for obj.

You will sometimes find “ad hoc” locks, such as

public class Bank {

 private double[] accounts;

 private final Object lock = new Object();

 . . .

 public void transfer(int from, int to, double amount) {

 synchronized (lock) { // an ad-hoc lock

 accounts[from] -= amount;

 accounts[to] += amount;

 }

 IO.println(. . .);

 }

}

Here, the lock object is created only to use the lock that every Java object

possesses.

Caution: With synchronized blocks, be careful about the lock object.

For example, this will not work:

private final String lock = "LOCK";

. . .

synchronized (lock) { . . . } // Don't lock on string literal!

If this occurs twice in the same program, the locks are the same object

since string literals are shared. This can lead to a deadlock.

Also, stay away from using primitive type wrappers as locks:

private final Integer lock = new Integer(42); // Don't lock on

wrappers

The constructor call new Integer(42) is deprecated, and you don’t

want a maintenance programmer to change the call to

Integer.valueOf(42). If done twice with the same magic number, the

lock will be accidentally shared.

If you need to modify a static field, lock on the specific class, not on

the value returned by getClass():

synchronized (MyClass.class) { staticCounter++; } // OK

synchronized (getClass()) { staticCounter++; } // Don't

If the method containing this code is called from a subclass, then

getClass() returns a different Class object! You are no longer

guaranteed mutual exclusion!

In general, if you must use synchronized blocks, know your lock

object! You must use the same lock for all critical sections, and

nobody else must use your lock.

Sometimes, programmers use the lock of an object to implement additional

atomic operations—a practice known as client-side locking. Consider, for

example, the Vector class, which is a list whose methods are synchronized.

Now suppose we stored our bank balances in a Vector<Double>. Here is a

naive implementation of a transfer method:

public void transfer(Vector<Double> accounts, int from, int to, double

amount) { // ERROR

 accounts.set(from, accounts.get(from) - amount);

 accounts.set(to, accounts.get(to) + amount);

 IO.println(. . .);

}

The get and set methods of the Vector class are synchronized, but that doesn’t

help us. It is entirely possible for a thread to be preempted in the transfer

method after the first call to get has been completed. Another thread may

then store a different value into the same position. However, we can hijack

the lock:

public void transfer(Vector<Double> accounts, int from, int to, double

amount) {

 synchronized (accounts) {

 accounts.set(from, accounts.get(from) - amount);

 accounts.set(to, accounts.get(to) + amount);

 }

 IO.println(. . .);

}

This approach works, but it is entirely dependent on the fact that the Vector

class uses the intrinsic lock for all of its mutator methods. However, is this

really a fact? The documentation of the Vector class makes no such promise.

You have to carefully study the source code and hope that future versions do

not introduce unsynchronized mutators. As you can see, client-side locking is

very fragile and not generally recommended.

Note: The Java virtual machine has built-in support for synchronized

methods. However, synchronized blocks are compiled into a lengthy

sequence of bytecodes to manage the intrinsic lock.

10.5.8. The Monitor Concept

Locks and conditions are powerful tools for thread synchronization, but they

are not very object-oriented. For many years, researchers have looked for

ways to make multithreading safe without forcing programmers to think

about explicit locks. One of the most successful solutions is the monitor

concept that was pioneered by Per Brinch Hansen and Tony Hoare in the

1970s. In the terminology of Java, a monitor has these properties:

A monitor is a class with only private fields.

Each object of that class has an associated lock.

All methods are locked by that lock. In other words, if a client calls

obj.method(), then the lock for obj is automatically acquired at the

beginning of the method call and relinquished when the method returns.

Since all fields are private, this arrangement ensures that no thread can

access the fields while another thread manipulates them.

The lock can have any number of associated conditions.

Earlier versions of monitors had a single condition, with a rather elegant

syntax. You can simply call await accounts[from] >= amount without using

an explicit condition variable. However, research showed that indiscriminate

retesting of conditions can be inefficient. This problem is solved with explicit

condition variables, each managing a separate set of threads.

The Java designers loosely adapted the monitor concept. Every object in Java

has an intrinsic lock and an intrinsic condition. If a method is declared with

the synchronized keyword, it acts like a monitor method. The condition

variable is accessed by calling wait/notifyAll/notify.

However, a Java object differs from a monitor in three important ways,

compromising thread safety:

Fields are not required to be private.

Methods are not required to be synchronized.

The intrinsic lock is available to clients.

This disrespect for security enraged Per Brinch Hansen. In a scathing review

of the multithreading primitives in Java, he wrote: “It is astounding to me

that Java’s insecure parallelism is taken seriously by the programming

community, a quarter of a century after the invention of monitors and

Concurrent Pascal. It has no merit” (Java’s Insecure Parallelism, ACM

SIGPLAN Notices 34:38–45, April 1999).

10.5.9. Volatile Fields

Sometimes, it seems excessive to pay the cost of synchronization just to read

or write an instance field or two. After all, what can go wrong?

Unfortunately, with modern processors and compilers, there is plenty of room

for error.

Computers with multiple processors can temporarily hold memory

values in registers or local memory caches. As a consequence, threads

running in different processors may see different values for the same

memory location!

Compilers can reorder instructions for maximum throughput. Compilers

won’t choose an ordering that changes the meaning of the code, but they

make the assumption that memory values are only changed when there

are explicit instructions in the code. However, a memory value can be

changed by another thread!

If you use locks to protect code that can be accessed by multiple threads, you

won’t have these problems. Compilers are required to respect locks by

flushing or re-fetching register values, not reordering instructions

inappropriately, and issuing memory fence instructions. The details are

explained in the Java Memory Model Specification (section 17.4 of the Java

Language Specification). Much of the specification is highly complex and

technical, but the section also contains a number of clearly explained

examples.

Note: Brian Goetz coined the following “synchronization motto”: “If

you write a variable which may next be read by another thread, or you

read a variable which may have last been written by another thread,

you must use synchronization.”

The volatile keyword offers a lock-free mechanism for synchronizing access

to an instance field. If you declare a field as volatile, then the compiler and

the virtual machine take into account that the field may be concurrently

updated by another thread.

For example, suppose an object has a boolean flag done that is set by one

thread and queried by another thread. As we already discussed, you can use a

lock:

private boolean done;

public synchronized boolean isDone() { return done; }

public synchronized void setDone() { done = true; }

Perhaps it is not a good idea to use the intrinsic object lock. The isDone and

setDone methods can block if another thread has locked the object. If that is a

concern, one can use a separate lock just for this variable. But this is getting

to be a lot of trouble.

In this case, it is reasonable to declare the field as volatile:

private volatile boolean done;

public boolean isDone() { return done; }

public void setDone() { done = true; }

The compiler will insert the appropriate code to ensure that a change to the

done variable in one thread is visible from any other thread that reads the

variable.

Caution: Volatile variables do not provide any atomicity. For

example, the method

public void flipDone() { done = !done; } // not atomic

is not guaranteed to flip the value of the field. There is no guarantee

that the reading, flipping, and writing is uninterrupted.

10.5.10. Final Fields

As you saw in the preceding section, you cannot safely read a field from

multiple threads unless you use locks or the volatile modifier.

There is one other situation in which it is safe to access a shared field—when

it is declared final. Once the constructor has completed, any thread with a

reference to the object will see the final fields with their initialized values.

Consider

public class Bank {

 final HashMap<String, Double> accounts;

 public Bank() {

 accounts = new HashMap<>();

 }

}

Other threads get to see the initialized accounts variable after the constructor

has finished.

Without using final, there would be no guarantee that other threads would see

the updated value of accounts—they might all see null, not the constructed

HashMap.

Of course, the operations on the map are not thread-safe. If multiple threads

mutate and read the map, you still need synchronization.

Caution: The guarantee has an important caveat: the reference to this

must not have escaped during construction. The reference escapes if

the constructor assigns this to a field of another object or passes this

to another method.

An object is properly constructed if the this reference does not escape during

construction. If an object was properly constructed and all fields are final, it

can be safely shared without synchronization.

10.5.11. Atomics

You can declare shared variables as volatile provided you perform no

operations other than assignment.

There are a number of classes in the java.util.concurrent.atomic package that

use efficient machine-level instructions to guarantee atomicity of other

operations without using locks. For example, the AtomicInteger class has

methods incrementAndGet and decrementAndGet that atomically increment

or decrement an integer. For example, you can safely generate a sequence of

numbers like this:

public static final AtomicLong nextNumber = new AtomicLong();

// in some thread. . .

long id = nextNumber.incrementAndGet();

The incrementAndGet method atomically increments the AtomicLong and

returns the post-increment value. That is, the operations of getting the value,

adding 1, setting it, and producing the new value cannot be preempted. It is

guaranteed that the correct value is computed and returned, even if multiple

threads access the same instance concurrently.

There are methods for atomically setting, adding, and subtracting values, but

if you want to make a more complex update, you have to use the

compareAndSet method. For example, suppose you want to keep track of the

largest value that is observed by different threads. The following won’t work:

public static final AtomicLong largest = new AtomicLong();

// in some thread. . .

largest.set(Math.max(largest.get(), observed)); // ERROR--race condition!

This update is not atomic. Instead, provide a lambda expression for updating

the variable, and the update is done for you. In our example, we can call

largest.updateAndGet(x -> Math.max(x, observed));

or

largest.accumulateAndGet(observed, Math::max);

The accumulateAndGet method takes a binary operator that is used to

combine the atomic value and the supplied argument.

There are also methods getAndUpdate and getAndAccumulate that return the

old value.

Note: These methods are also provided for the classes AtomicInteger,

AtomicIntegerArray, AtomicIntegerFieldUpdater, AtomicLongArray,

AtomicLongFieldUpdater, AtomicReference, AtomicReferenceArray,

and AtomicReferenceFieldUpdater.

When you have a very large number of threads accessing the same atomic

values, performance suffers because the optimistic updates require too many

retries. The LongAdder and LongAccumulator classes solve this problem. A

LongAdder is composed of multiple variables whose collective sum is the

current value. Multiple threads can update different summands, and new

summands are automatically provided when the number of threads increases.

This is efficient in the common situation where the value of the sum is not

needed until after all work has been done. The performance improvement can

be substantial.

If you anticipate high contention, you should simply use a LongAdder

instead of an AtomicLong. The method names are slightly different. Call

increment to increment a counter or add to add a quantity, and sum to retrieve

the total.

final var adder = new LongAdder();

for (. . .)

 executor.submit(() -> {

 while (. . .) {

 . . .

 if (. . .) adder.increment();

 }

 });

. . .

long total = adder.sum();

Note: Of course, the increment method does not return the old value.

Doing that would undo the efficiency gain of splitting the sum into

multiple summands.

The LongAccumulator generalizes this idea to an arbitrary accumulation

operation. In the constructor, you provide the operation, as well as its neutral

element. To incorporate new values, call accumulate. Call get to obtain the

current value. The following has the same effect as a LongAdder:

final var adder = new LongAccumulator(Long::sum, 0);

// in some thread. . .

adder.accumulate(value);

Internally, the accumulator has variables a1, a2, . . ., an. Each variable is

initialized with the neutral element (0 in our example).

When accumulate is called with value v, then one of them is atomically

updated as ai = ai op v, where op is the accumulation operation written in

infix form. In our example, a call to accumulate computes ai = ai + v for

some i.

The result of get is a1 op a2 op . . . op an. In our example, that is the sum of

the accumulators, a1 + a2 + . . . + an.

To compute maximum or minimum, use Math.max or Math.min for the

operation. In general, the operation must be associative and commutative.

That means that the final result must be independent of the order in which the

intermediate values were combined.

There are also DoubleAdder and DoubleAccumulator that work in the same

way, except with double values.

10.5.12. On-Demand Initialization

Sometimes, you have a data structure that you only want to initialize when it

is first needed. And you want to ensure that initialization happens exactly

once. Instead of designing your own mechanism, make use of the fact that the

virtual machine executes a static initializer exactly once when the class is

first used. The virtual machine ensures this with a lock, so you don’t have to

program your own.

public class OnDemandData {

 // private constructor to ensure only one object is constructed

 private OnDemandData() {

 . . .

 }

 public static OnDemandData getInstance() {

 return Holder.INSTANCE;

 }

 // only initialized on first use, i.e. in the first call to getInstance

 private static class Holder {

 // VM guarantees that this happens lazily and at most once

 static final OnDemandData INSTANCE = new OnDemandData();

 }

}

Caution: To use this idiom, you must ensure that the constructor

doesn’t throw any exceptions. The virtual machine will not make a

second attempt to initialize the holder class.

10.5.13. Safe Publication

As you saw in Section 10.5.10, the final fields of a properly constructed

object will be seen by all threads with their initialized values. What about the

non-final fields?

The Java language makes no guarantee in general. For example, consider:

public class BankAccount {

 private double balance;

 public BankAccount(double initialBalance) { balance = initialBalance; }

 public double getBalance() { return balance; }

 . . .

}

If you construct a new BankAccount(1000) object in one thread, and another

thread has a reference to the object, it might see getBalance() return zero.

Of course, a mutable BankAccount class should have thread-safe methods

getBalance, deposit, withdraw that protect the balance field with a lock. Then

getBalance will report the correct balance.

Now consider the hopefully uncommon case where you share an object that

is neither thread-safe nor immutable. Then you need to ensure that the object

is safely published—that is, all fields are visible with the values that were set

in the constructor. This is ensured when the object reference is stored:

In a static initializer (as in the preceding section)

In a volatile field or AtomicReference

In any field when the assignment is protected by a lock

In a final field of a properly constructed object

The third condition is fulfilled when a Runnable or Callable is an inner class

or lambda expression that captures a variable from the enclosing scope. The

captured variable is stored in a final field of the inner class.

The last condition is fulfilled when you store the object reference in a thread-

safe data structure, for example a BlockingQueue or ConcurrentHashMap.

The retrieving thread will see the object in its published state.

As you can see, in most reasonable circumstances, nothing evil will happen.

If you find yourself in a situation where these details matter, you are on thin

ice and may want to rethink your sharing strategy.

10.5.14. Sharing with Thread-Local Variables

In the preceding sections, we discussed the risks of sharing variables between

threads. Sometimes, you can avoid sharing by giving each thread its own

instance, using the thread-local variables (see Section 10.4.4). For example,

the SimpleDateFormat class is not thread-safe. Suppose we have a static

variable

public static final SimpleDateFormat DATEFORMAT = new

SimpleDateFormat("yyyy-MM-dd");

If two threads execute an operation such as

String dateStamp = DATEFORMAT.format(new Date());

then the result can be garbage since the internal data structures used by the

dateFormat can be corrupted by concurrent access. You could use

synchronization, which is expensive, or you could construct a local

SimpleDateFormat object whenever you need it, but that is also wasteful.

To construct one instance per thread, use the following code:

public static final ThreadLocal<SimpleDateFormat> DATEFORMAT =

 ThreadLocal.withInitial(() -> new SimpleDateFormat("yyyy-MM-dd"));

To access the actual formatter, call

String dateStamp = DATEFORMAT.get().format(new Date());

The first time you call get in a given thread, the lambda in the constructor is

called. From then on, the get method returns the instance belonging to the

current thread.

A related problem is the generation of random numbers in multiple threads.

The Math.random method and the methods of the java.util.Random class are

thread-safe. However, the computation that yields a new random value and

updates the state of the generator can be inefficient if multiple threads use a

single shared generator.

You could use ThreadLocal variables to give each thread a separate

generator. But there is a convenience method that is optimized for this

situation:

int random = ThreadLocalRandom.current().nextInt(upperBound);

The call ThreadLocalRandom.current() returns a random number generator

with a per-thread state. In its current implementation, it stores the generator

state in instance fields of the Thread object.

java.lang.ThreadLocal<T> 1.2

static <S> ThreadLocal<S> withInitial(Supplier<? extends S>

supplier) 8

creates a thread-local variable whose initial value is produced by

invoking the given supplier.

java.util.concurrent.ThreadLocalRandom 7

static ThreadLocalRandom current()

returns a random generator class whose state is local to the current

thread.

10.6. Thread-Safe Collections

If multiple threads concurrently modify a data structure, such as a hash table,

it is easy to damage that data structure. (See Chapter 9 for more information

on hash tables.) For example, one thread may begin to insert a new element.

Suppose it is preempted in the middle of rerouting the links between the hash

table’s buckets. If another thread starts traversing the same list, it may follow

invalid links and create havoc, perhaps throwing exceptions or getting

trapped in an infinite loop.

You can protect a shared data structure by supplying a lock, but it is usually

easier to choose a thread-safe implementation instead. In the following

sections, we discuss the thread-safe collections that the Java library provides.

10.6.1. Blocking Queues

Many threading problems can be formulated elegantly and safely by using

one or more queues. Producer threads insert items into the queue, and

consumer threads retrieve them. The queue lets you safely hand over data

from one thread to another. For example, consider our bank transfer program.

Instead of accessing the bank object directly, the transfer threads insert

transfer instruction objects into a queue. Another thread removes the

instructions from the queue and carries out the transfers. Only that thread has

access to the internals of the bank object. No synchronization is necessary.

(Of course, the implementors of the thread-safe queue classes had to worry

about locks and conditions, but that was their problem, not yours.)

A blocking queue causes a thread to block when you try to add an element

when the queue is currently full or to remove an element when the queue is

empty. Blocking queues are a useful tool for coordinating the work of

multiple threads. Worker threads can periodically deposit intermediate results

into a blocking queue. Other worker threads remove the intermediate results

and modify them further. The queue automatically balances the workload. If

the first set of threads runs slower than the second, the second set blocks

while waiting for the results. If the first set of threads runs faster, the queue

fills up until the second set catches up. Table 10.2 shows the methods for

blocking queues.

Table 10.2: Blocking Queue Methods

Method Normal Action
Action in Special

Circumstances

add Adds an element

Throws an

IllegalStateException if the

queue is full

element
Returns the head

element

Throws a

NoSuchElementException if

the queue is empty

offer
Adds an element

and returns true

Returns false if the queue is

full

peek
Returns the head

element

Returns null if the queue is

empty

poll

Removes and

returns the head

element

Returns null if the queue is

empty

put Adds an element Blocks if the queue is full

remove

Removes and

returns the head

element

Throws a

NoSuchElementException if

the queue is empty

take

Removes and

returns the head

element

Blocks if the queue is empty

The blocking queue methods fall into three categories that differ by the

action they perform when the queue is full or empty. If you use the queue as a

thread management tool, use the put and take methods. The add, remove, and

element operations throw an exception when you try to add to a full queue or

get the head of an empty queue. Of course, in a multithreaded program, the

queue might become full or empty at any time, so you will instead want to

use the offer, poll, and peek methods. These methods simply return with a

failure indicator instead of throwing an exception if they cannot carry out

their tasks.

Note: The poll and peek methods return null to indicate failure.

Therefore, it is illegal to insert null values into these queues.

There are also variants of the offer and poll methods with a timeout. For

example, the call

boolean success = q.offer(x, 100, TimeUnit.MILLISECONDS);

tries for up to 100 milliseconds to insert an element to the tail of the queue. If

it succeeds, it returns true; otherwise, it returns false when it times out.

Similarly, the call

Object head = q.poll(100, TimeUnit.MILLISECONDS);

tries for up to 100 milliseconds to remove the head of the queue. If it

succeeds, it returns the head; otherwise, it returns null when it times out.

The put method blocks if the queue is full, and the take method blocks if the

queue is empty. These are the equivalents of offer and poll with no timeout.

The java.util.concurrent package supplies several variations of blocking

queues. By default, the LinkedBlockingQueue has no upper bound on its

capacity, but a maximum capacity can be optionally specified. The

LinkedBlockingDeque is a double-ended version. The ArrayBlockingQueue

is constructed with a given capacity and an optional parameter to require

fairness. If fairness is specified, then the longest-waiting threads are given

preferential treatment. As always, fairness exacts a significant performance

penalty, and you should only use it if your problem specifically requires it.

The PriorityBlockingQueue is a priority queue, not a first-in/first-out queue.

Elements are removed in order of their priority. The queue has unbounded

capacity, but retrieval will block if the queue is empty. (See Chapter 9 for

more information on priority queues.)

The TransferQueue interface allows a producer thread to wait until a

consumer is ready to take on an item. When a producer calls

q.transfer(item);

the call blocks until another thread removes it. The LinkedTransferQueue

class implements this interface.

The program in Listing 10.8 shows how to use a blocking queue to control a

set of threads. The program searches through all files in a directory and its

subdirectories, printing lines that contain a given keyword.

A producer thread enumerates all files in all subdirectories and places them

in a blocking queue. This operation is fast, and the queue would quickly fill

up with all files in the file system if it was not bounded.

We also start a large number of search threads. Each search thread takes a file

from the queue, opens it, prints all lines containing the keyword, and then

takes the next file. We use a trick to terminate the application when no further

work is required. In order to signal completion, the enumeration thread places

a special termination object into the queue. (This is similar to a dummy

suitcase with a label “last bag” in a baggage claim belt.) When a search

thread takes the special object, it terminates, after putting the object back for

other consumers to see.

Note: Some programmers use the term “poison pill” for an object that

signals termination to the consumers.

Note that no explicit thread synchronization is required. In this application,

we use the queue data structure as a synchronization mechanism.

Listing 10.8 v1ch10/BlockingQueueDemo.java

1 package v1ch10;

2

3 import module java.base;

4

5 class BlockingQueueDemo {

6 final int FILE_QUEUE_SIZE = 10;

7 final int SEARCH_THREADS = 100;

8 final Path TERMINATION = Path.of("");

9

10 BlockingQueue<Path> queue = new ArrayBlockingQueue<>(FILE_QUEUE_SIZE);

11

12 void main() {

13 String directory = IO.readln("Enter base directory (e.g. /tmp/jdk-21-src): ");

14 String keyword = IO.readln("Enter keyword (e.g. volatile): ");

15

16 Runnable enumerator = () -> {

17 try {

18 enumerate(Path.of(directory));

19 queue.put(TERMINATION);

20 }

21 catch (IOException e) {

22 e.printStackTrace();

23 }

24 catch (InterruptedException e) {

25 }

26 };

27

28 Thread.ofPlatform().start(enumerator);

29 for (int i = 1; i <= SEARCH_THREADS; i++) {

30 Runnable searcher = () -> {

31 try {

32 boolean done = false;

33 while (!done) {

34 Path file = queue.take();

35 if (file == TERMINATION) {

36 queue.put(file);

37 done = true;

38 } else

39 search(file, keyword);

40 }

41 }

42 catch (IOException e) {

43 e.printStackTrace();

44 }

45 catch (InterruptedException e) {

46 }

47 };

48 Thread.ofPlatform().start(searcher);

49 }

50 }

51

52 /**

53 * Recursively enumerates all files in a given directory and its subdirectories.

54 * See Chapters 1 and 2 of Volume II for the stream and file operations.

55 * @param directory the directory in which to start

56 */

57 void enumerate(Path directory) throws IOException, InterruptedException {

58 try (Stream<Path> children = Files.list(directory)) {

59 for (Path child : children.toList()) {

60 if (Files.isDirectory(child))

61 enumerate(child);

62 else

63 queue.put(child);

64 }

65 }

66 }

67

68 /**

69 * Searches a file for a given keyword and prints all matching lines.

70 * @param file the file to search

71 * @param keyword the keyword to search for

72 */

73 void search(Path file, String keyword) throws IOException {

74 try (var in = new Scanner(file)) {

75 int lineNumber = 0;

76 while (in.hasNextLine()) {

77 lineNumber++;

78 String line = in.nextLine();

79 if (line.contains(keyword))

80 IO.println("%s:%d:%s".formatted(file, lineNumber, line));

81 }

82 }

83 }

84 }

java.util.concurrent.ArrayBlockingQueue<E> 5.0

ArrayBlockingQueue(int capacity)

ArrayBlockingQueue(int capacity, boolean fair)

construct a blocking queue with the given capacity and fairness

settings. The queue is implemented as a circular array.

java.util.concurrent.LinkedBlockingQueue<E> 5.0

java.util.concurrent.LinkedBlockingDeque<E> 6

LinkedBlockingQueue()

LinkedBlockingDeque()

construct an unbounded blocking queue or deque, implemented as a

linked list.

LinkedBlockingQueue(int capacity)

LinkedBlockingDeque(int capacity)

construct a bounded blocking queue or deque with the given capacity,

implemented as a linked list.

java.util.concurrent.PriorityBlockingQueue<E> 5.0

PriorityBlockingQueue()

PriorityBlockingQueue(int initialCapacity)

PriorityBlockingQueue(int initialCapacity, Comparator<? super E>

comparator)

construct an unbounded blocking priority queue implemented as a heap.

The default for the initial capacity is 11. If the comparator is not

specified, the elements must implement the Comparable interface.

java.util.concurrent.BlockingQueue<E> 5.0

void put(E element)

adds the element, blocking if necessary.

E take()

removes and returns the head element, blocking if necessary.

boolean offer(E element, long time, TimeUnit unit)

adds the given element and returns true if successful, blocking if

necessary until the element has been added or the time has elapsed.

E poll(long time, TimeUnit unit)

removes and returns the head element, blocking if necessary until an

element is available or the time has elapsed. Returns null upon failure.

java.util.concurrent.BlockingDeque<E> 6

void putFirst(E element)

void putLast(E element)

add the element, blocking if necessary.

E takeFirst()

E takeLast()

remove and return the head or tail element, blocking if necessary.

boolean offerFirst(E element, long time, TimeUnit unit)

boolean offerLast(E element, long time, TimeUnit unit)

add the given element and return true if successful, blocking if

necessary until the element has been added or the time has elapsed.

E pollFirst(long time, TimeUnit unit)

E pollLast(long time, TimeUnit unit)

remove and return the head or tail element, blocking if necessary until

an element is available or the time has elapsed. Returns null upon

failure.

java.util.concurrent.TransferQueue<E> 7

void transfer(E element)

boolean tryTransfer(E element, long time, TimeUnit unit)

transfer a value, or try transferring it with a given timeout, blocking

until another thread has removed the item. The second method returns

true if successful.

10.6.2. Efficient Maps, Sets, and Queues

The java.util.concurrent package supplies efficient implementations for

maps, sorted sets, and queues: ConcurrentHashMap,

ConcurrentSkipListMap, ConcurrentSkipListSet, and

ConcurrentLinkedQueue.

These collections use sophisticated algorithms that minimize contention by

allowing concurrent access to different parts of the data structure.

Unlike most collections, the size method of these classes does not necessarily

operate in constant time. Determining the current size of one of these

collections usually requires traversal.

Note: Some applications use humongous concurrent hash maps, so

large that the size method is insufficient because it returns an int.

What is one to do with a map that has over two billion entries? The

mappingCount method returns the size as a long.

The collections return weakly consistent iterators. That means that the

iterators may or may not reflect all modifications that are made after they

were constructed, but they will not return a value twice and they will not

throw a ConcurrentModificationException.

Note: In contrast, an iterator of a collection in the java.util package

throws a ConcurrentModificationException when the collection has

been modified after construction of the iterator.

The concurrent hash map can efficiently support a large number of readers

and a bounded number of writers.

Note: A hash map keeps all entries with the same hash code in the

same “bucket.” Some applications use poor hash functions, and as a

result all entries end up in a small number of buckets, severely

degrading performance. Even generally reasonable hash functions,

such as that of the String class, can be problematic. For example, an

attacker can slow down a program by crafting a large number of

strings that hash to the same value. In recent Java versions, the

concurrent hash map organizes the buckets as trees, not lists, when

the key type implements Comparable, guaranteeing O(log n)

performance.

java.util.concurrent.ConcurrentLinkedQueue<E> 5.0

ConcurrentLinkedQueue<E>()

constructs an unbounded, non-blocking queue that can be safely

accessed by multiple threads.

java.util.concurrent.ConcurrentHashMap<K, V> 5.0

ConcurrentHashMap<K, V>()

ConcurrentHashMap<K, V>(int initialCapacity)

ConcurrentHashMap<K, V>(int initialCapacity, float loadFactor, int

concurrencyLevel)

construct a hash map that can be safely accessed by multiple threads.

The default for the initial capacity is 16. If the average load per bucket

exceeds the load factor, the table is resized. The default is 0.75. The

concurrency level is the estimated number of concurrent writer threads.

java.util.concurrent.ConcurrentSkipListSet<E> 6

ConcurrentSkipListSet<E>()

ConcurrentSkipListSet<E>(Comparator<? super E> comp)

construct a sorted set that can be safely accessed by multiple threads.

The first constructor requires that the elements implement the

Comparable interface.

java.util.concurrent.ConcurrentSkipListMap<K, V> 6

ConcurrentSkipListMap<K, V>()

ConcurrentSkipListMap<K, V>(Comparator<? super K> comp)

construct a sorted map that can be safely accessed by multiple threads.

The first constructor requires that the keys implement the Comparable

interface.

10.6.3. Atomic Update of Map Entries

The original version of ConcurrentHashMap only had a few methods for

atomic updates, which made for somewhat awkward programming. Suppose

we want to count how often certain features are observed. As a simple

example, suppose multiple threads encounter words, and we want to count

their frequencies.

Can we use a ConcurrentHashMap<String, Long>? Consider the code for

incrementing a count. Obviously, the following is not thread-safe:

Long oldValue = map.get(word);

Long newValue = oldValue == null ? 1 : oldValue + 1;

map.put(word, newValue); // ERROR--might not replace oldValue

Another thread might be updating the exact same count at the same time.

Note: Some programmers are surprised that a supposedly thread-safe

data structure permits operations that are not thread-safe. But there

are two entirely different considerations. If multiple threads modify a

plain HashMap, they can destroy the internal structure (an array of

linked lists). Some of the links may go missing, or even go in circles,

rendering the data structure unusable. That will never happen with a

ConcurrentHashMap. In the example above, the code for get and put

will never corrupt the data structure. But, since the sequence of

operations is not atomic, the result is not predictable.

In old versions of Java, it was necessary to use the replace method, which

atomically replaces an old value with a new one, provided that no other

thread has come before and replaced the old value with something else. You

had to keep doing it until the attempt succeeded:

do {

 oldValue = map.get(word);

 newValue = oldValue == null ? 1 : oldValue + 1;

}

while (!map.replace(word, oldValue, newValue));

An alternative was to use a ConcurrentHashMap<String, AtomicLong> and

the following update code:

map.putIfAbsent(word, new AtomicLong());

map.get(word).incrementAndGet();

Unfortunately, in the first line, a new AtomicLong is constructed for each

increment, and it will be discarded when it is not needed.

Nowadays, the Java API provides methods that make atomic updates more

convenient and performant. The compute method is called with a key and a

function to compute the new value. That function receives the key and the

associated value, or null if there is none, and it computes the new value. For

example, here is how we can update a map of integer counters:

map.compute(word, (_, v) -> v == null ? 1 : v + 1);

Note: You cannot have null values in a ConcurrentHashMap. There

are many methods that use a null value as an indication that a given

key is not present in the map.

There are also variants computeIfPresent and computeIfAbsent that only

compute a new value when there is already an old one, or when there isn’t

yet one. A map of LongAdder counters can be updated with

map.computeIfAbsent(word, k -> new LongAdder()).increment();

That is almost like the call to putIfAbsent that you saw before, but the

LongAdder constructor is only called when a new counter is actually needed.

You often need to do something special when a key is added for the first

time. The merge method makes this particularly convenient. It has a

parameter for the initial value that is used when the key is not yet present.

Otherwise, the function that you supplied is called, combining the existing

value and the initial value. (Unlike compute, the function does not process

the key.)

map.merge(word, 1L, (existingValue, newValue) -> existingValue +

newValue);

or simply

map.merge(word, 1L, Long::sum);

It doesn’t get more concise than that.

Note: If the function that is passed to compute or merge returns null,

the existing entry is removed from the map.

Caution: When you use compute or merge, keep in mind that the

function that you supply should not do a lot of work. While that

function runs, some other updates to the map may be blocked. Of

course, that function should also not update other parts of the map.

The program in Listing 10.9 uses a concurrent hash map to count all words in

the Java files of a directory tree.

Listing 10.9 v1ch10/ConcurrentHashMapDemo.java

1 package v1ch10;

2

3 import module java.base;

4

5 /**

6 * This program demonstrates concurrent hash maps.

7 */

8 class ConcurrentHashMapDemo {

9 ConcurrentHashMap<String, Long> map = new ConcurrentHashMap<>();

10

11 void main() throws Exception {

12 ExecutorService executor = Executors.newVirtualThreadPerTaskExecutor();

13 Path pathToRoot = Path.of(".");

14 for (Path p : descendants(pathToRoot)) {

15 if (p.getFileName().toString().endsWith(".java"))

16 executor.execute(() -> process(p));

17 }

18 executor.close();

19 map.forEach((k, v) -> {

20 if (v >= 10) IO.println(k + " occurs " + v + " times");

21 });

22 }

23

24 /**

25 * Adds all words in the given file to the concurrent hash map.

26 * @param file a file

27 */

28 void process(Path file) {

29 try (var in = new Scanner(file)) {

30 while (in.hasNext()) {

31 String word = in.next();

32 map.merge(word, 1L, Long::sum);

33 }

34 }

35 catch (IOException e) {

36 e.printStackTrace();

37 }

38 }

39

40 /**

41 * Returns all descendants of a given directory--see Chapters 1 and 2 of Volume II

42 * @param rootDir the root directory

43 * @return a set of all descendants of the root directory

44 */

45 Set<Path> descendants(Path rootDir) throws IOException {

46 try (Stream<Path> entries = Files.walk(rootDir)) {

47 return entries.collect(Collectors.toSet());

48 }

49 }

50 }

10.6.4. Bulk Operations on Concurrent Hash Maps

The Java API provides bulk operations on concurrent hash maps that can

safely execute even while other threads operate on the map. The bulk

operations traverse the map and operate on the elements they find as they go

along. No effort is made to freeze a snapshot of the map in time. Unless you

happen to know that the map is not being modified while a bulk operation

runs, you should treat its result as an approximation of the map’s state.

There are three kinds of operations:

search applies a function to each key and/or value, until the function

yields a non-null result. Then the search terminates and the function’s

result is returned.

reduce combines all keys and/or values, using a provided accumulation

function.

forEach applies a function to all keys and/or values.

Each operation has four versions:

operationKeys: operates on keys.

operationValues: operates on values.

operation: operates on keys and values.

operationEntries: operates on Map.Entry objects.

With each of the operations, you need to specify a parallelism threshold. If

the map contains more elements than the threshold, the bulk operation is

parallelized. If you want the bulk operation to run in a single thread, use a

threshold of Long.MAX_VALUE. If you want the maximum number of

threads to be made available for the bulk operation, use a threshold of 1.

Let’s look at the search methods first. Here are the versions:

U searchKeys(long threshold, Function<? super K, ? extends U> f)

U searchValues(long threshold, Function<? super V, ? extends U> f)

U search(long threshold, BiFunction<? super K, ? super V,? extends U> f)

U searchEntries(long threshold, Function<Map.Entry<K, V>, ? extends

U> f)

For example, suppose we want to find the first word that occurs more than

1,000 times. We need to search keys and values:

String result = map.search(threshold, (k, v) -> v > 1000 ? k : null);

Then result is set to the first match, or to null if the search function returns

null for all inputs.

The forEach methods have two variants. The first one simply applies a

consumer function for each map entry, for example

map.forEach(threshold,

 (k, v) -> IO.println(k + " -> " + v));

The second variant takes an additional transformer function, which is applied

first, and its result is passed to the consumer:

map.forEach(threshold,

 (k, v) -> k + " -> " + v, // transformer

 IO::println); // consumer

The transformer can be used as a filter. Whenever the transformer returns

null, the value is silently skipped. For example, here we only print the entries

with large values:

map.forEach(threshold,

 (k, v) -> v > 1000 ? k + " -> " + v : null, // filter and transformer

 IO::println); // the nulls are not passed to the consumer

The reduce operations combine their inputs with an accumulation function.

For example, here is how you can compute the sum of all values:

Long sum = map.reduceValues(threshold, Long::sum);

As with forEach, you can also supply a transformer function. Here we

compute the length of the longest key:

Integer maxlength = map.reduceKeys(threshold,

 String::length, // transformer

 Integer::max); // accumulator

The transformer can act as a filter, by returning null to exclude unwanted

inputs. Here, we count how many entries have value > 1000:

Long count = map.reduceValues(threshold,

 v -> v > 1000 ? 1L : null,

 Long::sum);

Note: If the map is empty, or all entries have been filtered out, the

reduce operation returns null. If there is only one element, its

transformation is returned, and the accumulator is not applied.

There are specializations for int, long, and double outputs with suffixes ToInt,

ToLong, and ToDouble. You need to transform the input to a primitive value

and specify a default value and an accumulator function. The default value is

returned when the map is empty.

long sum = map.reduceValuesToLong(threshold,

 Long::longValue, // transformer to primitive type

 0, // default value for empty map

 Long::sum); // primitive type accumulator

Caution: These specializations act differently from the object

versions where there is only one element to be considered. Instead of

returning the transformed element, it is accumulated with the default.

Therefore, the default must be the neutral element of the accumulator.

10.6.5. Concurrent Set Views

Suppose you want a large, thread-safe set instead of a map. There is no

ConcurrentHashSet class, and you know better than trying to create your

own. Of course, you can use a ConcurrentHashMap with bogus values, but

then you get a map, not a set, and you can’t apply operations of the Set

interface.

The static newKeySet method yields a Set<K> that is actually a wrapper

around a ConcurrentHashMap<K, Boolean>. (All map values are

Boolean.TRUE, but you don’t actually care since you just use it as a set.)

Set<String> words = ConcurrentHashMap.<String>newKeySet();

Of course, if you have an existing map, the keySet method yields the set of

keys. That set is mutable. If you remove the set’s elements, the keys (and

their values) are removed from the map. But it doesn’t make sense to add

elements to the key set, because there would be no corresponding values to

add. There is a second keySet method to ConcurrentHashMap, with a default

value, to be used when adding elements to the set:

Set<String> words = map.keySet(1L);

words.add("Java");

If "Java" wasn’t already present in words, it now has a value of one.

Note: You could also use the Collections.newSetFromMap method,

but newKeySet is simpler and a bit more efficient.

10.6.6. Copy on Write Arrays

The CopyOnWriteArrayList and CopyOnWriteArraySet are thread-safe

collections in which all mutators make a copy of the underlying array. This

arrangement is useful if the threads that iterate over the collection greatly

outnumber the threads that mutate it. When you construct an iterator, it

contains a reference to the current array. If the array is later mutated, the

iterator still has the old array, but the collection’s array is replaced. As a

consequence, the older iterator has a consistent (but potentially outdated)

view that it can access without any synchronization expense.

10.6.7. Parallel Array Algorithms

The Arrays class has a number of parallelized operations. The static

Arrays.parallelSort method can sort an array of primitive values or objects.

For example,

var contents = Files.readString(Path.of("alice.txt")); // Read file into string

String[] words = contents.split("\\PL+"); // Split into words

Arrays.parallelSort(words);

When you sort objects, you can supply a Comparator.

Arrays.parallelSort(words, Comparator.comparing(String::length));

With all methods, you can supply the bounds of a range, such as

Arrays.parallelSort(words, words.length / 2, words.length); // sort the

upper half

Note: At first glance, it seems a bit odd that these methods have

parallel in their name, since the user shouldn’t care how the sorting

happens. However, the API designers wanted to make it clear that the

sorting is parallelized. That way, users are on notice to avoid

comparators with side effects.

The parallelSetAll method fills an array with values that are computed from a

function. The function receives the element index and computes the value at

that location.

Arrays.parallelSetAll(values, i -> i % 10);

 // fills values with 0 1 2 3 4 5 6 7 8 9 0 1 2 . . .

Clearly, this operation benefits from being parallelized. There are versions

for all primitive type arrays and for object arrays.

Finally, there is a parallelPrefix method that replaces each array element with

the accumulation of the prefix for a given associative operation. Huh? Here is

an example. Consider the array [1, 2, 3, 4, . . .] and the × operation. After

executing Arrays.parallelPrefix(values, (x, y) -> x * y), the array contains

[1, 1 × 2, 1 × 2 × 3, 1 × 2 × 3 × 4, . . .]

Perhaps surprisingly, this computation can be parallelized. First, join

neighboring elements, as indicated here:

[1, 1 × 2, 3, 3 × 4, 5, 5 × 6, 7, × 8]

The gray values are left alone. Clearly, one can make this computation in

parallel in separate regions of the array. In the next step, update the indicated

elements by multiplying them with elements that are one or two positions

below:

[1, 1 × 2, 1 × 2 × 3, 1 × 2 × 3 × 4, 5, 5 × 6, 5 × 6 × 7, 5 × 6 × 7 × 8]

This, again, can be done in parallel. After log n steps, the process is

complete. This is a win over the straightforward linear computation if

sufficient processors are available. On special-purpose hardware, this

algorithm is commonly used, and users of such hardware are quite ingenious

in adapting it to a variety of problems.

10.6.8. Older Thread-Safe Collections

Ever since the initial release of Java, the Vector and Hashtable classes

provided thread-safe implementations of a dynamic array and a hash table.

These classes are now considered obsolete, having been replaced by the

ArrayList and HashMap classes. Those classes are not thread-safe. Instead, a

different mechanism is supplied in the collections library. Any collection

class can be made thread-safe by means of a synchronization wrapper:

List<E> synchArrayList = Collections.synchronizedList(new ArrayList<>

());

Map<K, V> synchHashMap = Collections.synchronizedMap(new

HashMap<>());

The methods of the resulting collections use locking to provide thread-safe

access.

You should make sure that no thread accesses the data structure through the

original unsynchronized methods. The easiest way to ensure this is not to

save any reference to the original object. Simply construct a collection and

immediately pass it to the wrapper, as we did in our examples.

You still need to use “client-side” locking if you want to iterate over the

collection while another thread has the opportunity to mutate it:

synchronized (synchHashMap) {

 Iterator<K> iter = synchHashMap.keySet().iterator();

 while (iter.hasNext()) . . .;

}

You must use the same code if you use a “for each” loop because the loop

uses an iterator. Note that the iterator actually fails with a

ConcurrentModificationException if another thread mutates the collection

while the iteration is in progress. The synchronization is still required so that

the concurrent modification can be reliably detected.

You are usually better off using the collections defined in the

java.util.concurrent package instead of the synchronization wrappers. In

particular, the ConcurrentHashMap has been carefully implemented so that

multiple threads can access it without blocking each other, provided they

access different buckets. One exception is an array list that is frequently

mutated. In that case, a synchronized ArrayList can outperform a

CopyOnWriteArrayList.

java.util.Collections 1.2

static <E> Collection<E> synchronizedCollection(Collection<E> c)

static <E> List synchronizedList(List<E> c)

static <E> Set synchronizedSet(Set<E> c)

static <E> SortedSet synchronizedSortedSet(SortedSet<E> c)

static <K, V> Map<K, V> synchronizedMap(Map<K, V> c)

static <K, V> SortedMap<K, V>

synchronizedSortedMap(SortedMap<K, V> c)

construct a view of the collection whose methods are synchronized.

10.7. Asynchronous Computations

So far, our approach to concurrent computation has been to break up a task,

and then wait until all pieces have completed. Waiting works well with

virtual threads, but with platform threads, a wait-free, or asynchronous,

programming style provides higher throughput. The following sections are

devoted to asynchronous computations.

10.7.1. Completable Futures

When you have a Future object, you need to call get to obtain the value,

blocking until the value is available. The CompletableFuture class

implements the Future interface, and it provides a second mechanism for

obtaining the result. You register a callback that will be invoked (in some

thread) with the result once it is available.

CompletableFuture<String> f = . . .;

f.thenAccept(s -> Process the result string s);

In this way, you can process the result without blocking once it is available.

There are a few API methods that return CompletableFuture objects. For

example, you can fetch a web page asynchronously with the HttpClient class

that you will encounter in Chapter 4 of Volume II:

HttpClient client = HttpClient.newHttpClient();

HttpRequest request =

HttpRequest.newBuilder(URI.create(urlString)).GET().build();

CompletableFuture<HttpResponse<String>> f = client.sendAsync(

 request, BodyHandlers.ofString());

It is nice if there is a method that produces a ready-made CompletableFuture,

but most of the time, you need to make your own. To run a task

asynchronously and obtain a CompletableFuture, you don’t submit it directly

to an executor service. Instead, you call the static method

CompletableFuture.supplyAsync. Here is how to read the web page without

the benefit of the HttpClient class:

public CompletableFuture<String> readPage(URI uri) {

 return CompletableFuture.supplyAsync(() -> {

 try {

 return new String(uri.toURL().openStream().readAllBytes());

 }

 catch (IOException e) {

 throw new UncheckedIOException(e);

 }

 }, executor);

}

If you omit the executor, the task is run on a default executor (namely the

executor returned by ForkJoinPool.commonPool()). You usually don’t want

to do that.

Caution: Note that the first parameter of the supplyAsync method is

a Supplier<T>, not a Callable<T>. Both interfaces describe functions

with no parameters and return type T, but a Supplier function cannot

throw a checked exception. As you can see from the code above, that

was not an inspired choice.

A CompletableFuture can complete in two ways: either with a result, or with

an uncaught exception. In order to handle both cases, use the whenComplete

method. The supplied function is called with the result (or null if none) and

the exception (or null if none).

f.whenComplete((s, t) -> {

 if (t == null) {

 Process the result s;

 }

 else {

 Process the Throwable t;

 }

});

The CompletableFuture is called completable because one can set a

completion value. (In other concurrency libraries, such an entity is called a

promise, and the act of completion is called “fulfilling the promise”.) As a

consumer of the Future, you don’t care how the value is set. That is the job of

the producer of the promise. The supplyAsync method produces a

CompletableFuture, and it sets the completion value when the task has

finished. Other producers can use a more complex approach. For example,

this example produces a future where two tasks work simultaneously on

completing it:

var f = new CompletableFuture<Integer>();

executor.execute(() -> {

 int n = workHard(arg);

 f.complete(n);

});

executor.execute(() -> {

 int n = workSmart(arg);

 f.complete(n);

});

executor.execute(() -> {

 try {

 Thread.sleep(timeout);

 f.completeExceptionally(new TimeoutException());

 }

 catch (InterruptedException e) {

 f.completeExceptionally(e);

 }

});

It is safe to call complete or completeExceptionally on the same instance in

multiple threads. If the future is already completed, these calls have no effect.

Caution: Unlike a plain Future, the computation of a

CompletableFuture is not interrupted when you invoke its cancel

method. Canceling simply completes the future exceptionally, with a

CancellationException. In general, this makes sense since a

CompletableFuture may not have a single thread that is responsible

for its completion. However, this restriction also applies to

CompletableFuture instances returned by methods such as

supplyAsync, which could in principle be interrupted.

10.7.2. Composing Completable Futures

Non-blocking calls are implemented through callbacks. The programmer

registers a callback for the action that should occur after a task completes. Of

course, if the next action is also asynchronous, the next action after that is in

a different callback. Even though the programmer thinks in terms of “first do

step 1, then step 2, then step 3,” the program logic can become dispersed in

“callback hell.” It gets even worse when one has to add error handling.

Suppose step 2 is “the user logs in.” You may need to repeat that step since

the user can mistype the credentials. Trying to implement such a control flow

in a set of callbacks, or to understand it once it has been implemented, can be

quite challenging.

The CompletableFuture class addresses this problem by providing a

mechanism for composing asynchronous tasks into a processing pipeline.

For example, suppose we want to extract all images from a web page. Let’s

say we have a method

public CompletableFuture<String> readPage(URI uri)

that yields the text of a web page when it becomes available. If the method

public List<URI> getImageLinks(String page)

yields the links of images in an HTML page, you can schedule it to be called

when the page is available:

CompletableFuture<String> contents = readPage(uri);

CompletableFuture<List<URI>> imageLinks =

contents.thenApply(this::getImageLinks);

The thenApply method doesn’t block either. It returns another future. When

the first future has completed, its result is fed to the getImageLinks method,

and the return value of that method becomes the final result.

With completable futures, you just specify what you want to have done and

in which order. It won’t all happen right away, of course, but what is

important is that all the code is in one place.

Conceptually, CompletableFuture is a simple API, but there are many

variants of methods for composing completable futures. Let us first look at

those that add an action to a single future (see Table 10.3). In the table, I use

a shorthand notation for the ponderous functional interfaces, writing T -> U

instead of Function<? super T, ? extends U>. These aren’t actual Java types,

of course.

You have already seen the thenApply method. Suppose f is a T -> U function.

The call

CompletableFuture<U> future.thenApply(f);

returns a future that applies the function f to the result of future when it is

available.

The thenCompose method, instead of taking a T -> U function, receives a

function mapping T to CompletableFuture<U>. That sounds rather abstract,

but it can be quite natural. It is a function that eventually yields a U.

The call

CompletableFuture<U> future.thenCompose(f);

works exactly like thenApply, applying f to the result of future. However, the

result of f is not immediately available. When it arrives, the composition

completes.

In the preceding section, you saw the whenComplete method for handling

exceptions. There is also a handle method that requires a function processing

the result or exception and computing a new result. In many cases, it is

simpler to call the exceptionally method instead. That method computes a

dummy value when an exception occurs:

CompletableFuture<List<URI>> imageLinks = readPage(uri)

 .exceptionally(ex -> "<html></html>")

 .thenApply(this::getImageLinks);

You can handle a timeout in the same way:

CompletableFuture<List<URI>> imageLinks = readPage(uri)

 .completeOnTimeout("<html></html>", 30, TimeUnit.SECONDS)

 .thenApply(this::getImageLinks);

Alternatively, you can throw an exception on timeout:

CompletableFuture<String> = readPage(uri).orTimeout(30,

TimeUnit.SECONDS);

The methods in Table 10.3 with void result are normally used at the end of a

processing pipeline.

Table 10.3: Adding an Action to a CompletableFuture<T> Object

Method Parameter Description

thenApply T -> U
Apply a function

to the result.

Method Parameter Description

thenAccept T -> void

Like thenApply,

but with void

result.

thenCompose
T ->

CompletableFuture<U>

Invoke the

function on the

result and execute

the returned

future.

thenRun Runnable

Execute the

Runnable with

void result.

Method Parameter Description

handle (T, Throwable) -> U

Process the result

or error and yield

a new result.

whenComplete (T, Throwable) -> void
Like handle, but

with void result.

exceptionally Throwable -> U
Compute a result

from the error.

exceptionallyCompose
Throwable ->

CompletableFuture<U>

Invoke the

function on the

exception and

execute the

returned future.

Method Parameter Description

completeOnTimeout T, long, TimeUnit

Yield the given

value as the result

in case of timeout.

orTimeout long, TimeUnit

Yield a

TimeoutException

in case of timeout.

Now let us turn to methods that combine multiple futures (see Table 10.4). of

CompletableFuture

The first three methods run a CompletableFuture<T> and a

CompletableFuture<U> action concurrently and combine the results.

The next three methods run two CompletableFuture<T> actions concurrently.

As soon as one of them finishes, its result is passed on, and the other result is

ignored.

Finally, the static allOf and anyOf methods shown in Table 10.5 take a

variable number of completable futures and yield a

CompletableFuture<Void> that completes when all of them, or any one of

them, completes. The allOf method does not yield a result. The anyOf

method does not terminate the remaining tasks.

Caution: The anyOf method may yield a future that completed

exceptionally even if others completed successfully.

Table 10.4: Combining Another Future with a

CompletableFuture<T>

Method Parameters Description

Method Parameters Description

thenCombine
CompletableFuture<U>,

(T, U) -> V

Execute both and

combine the

results with the

given function.

thenAcceptBoth
CompletableFuture<U>,

(T, U) -> void

Like

thenCombine, but

with void result.

runAfterBoth
CompletableFuture<?>,

Runnable

Execute the

runnable after

both complete.

Method Parameters Description

applyToEither
CompletableFuture<T>,

T -> V

When a result is

available from one

or the other, pass

it to the given

function.

acceptEither
CompletableFuture<T>,

T -> void

Like

applyToEither, but

with void result.

runAfterEither
CompletableFuture<?>,

Runnable

Execute the

runnable after one

or the other

completes.

Table 10.5: Combining Multiple Futures

Method Parameter Description

static

allOf

CompletableFuture<?

>...

Complete with void result

after all given futures

complete (some perhaps with

an exception).

static

anyOf

CompletableFuture<?

>...

Complete after any of the

given futures completes,

yielding its result or

exception.

Note: For each method shown, there are also two Async variants for

specifying the executor of the “dependent completion” (that is, the

action to be executed upon completion of the future) executor. One of

the variants uses a default executor (not recommended), and the other

has an Executor parameter.

For a pipeline of actions, start off with an Async variant to set the

desired executor, and then use the non-Async methods to continue

with the same executor.

Note: Technically speaking, the methods in this section have

parameters of type CompletionStage, not CompletableFuture. The

CompletionStage interface describes how to compose asynchronous

computations, whereas the Future interface focuses on the result of a

computation. A CompletableFuture is both a CompletionStage and a

Future.

Listing 10.10 shows a complete program that reads a web page, scans it for

images, loads the images and saves them locally. Note how all asynchronous

methods return a CompletableFuture. To kick off the computation, we use a

little trick. Rather than calling the readPage method in a lambda expression

passed to supplyAsync, a completed future provides the URI argument,

which is then composed with this::readPage. That way, the pipeline has a

very uniform appearance:

CompletableFuture.completedFuture(uri)

 .thenComposeAsync(this::readPage, executor)

 .thenApply(this::getImageLinks)

 .thenCompose(this::getImages)

 .thenAccept(this::saveImages);

Tip: This example shows the ideal form of an asynchronous pipeline.

Each step is a function of one of the following three types:

An asynchronous function T -> CompletableFuture<U> that

yields a result in the future, passed to thenCompose

A synchronous function T -> U that returns a result immediately,

passed to thenApply

A final consumer that returns no result, passed to thenAccept

The initial completedFuture provides the argument for the first

function.

The first asynchronous step uses composeAsync to supply an

executor.

Listing 10.10 v1ch10/CompletableFutureDemo.java

1 package v1ch10;

2

3 import module java.base;

4 import module java.desktop;

5

6 import java.util.List;

7

8 class CompletableFutureDemo {

9 Pattern IMG_PATTERN = Pattern.compile(

10 "[<]\\s*[iI][mM][gG]\\s*[^>]*[sS][rR][cC]\\s*[=]\\s*['\"]([^'\"]*)['\"][^>]*[>]");

11 ExecutorService executor = Executors.newCachedThreadPool();

12 URI uriToProcess = URI.create("http://horstmann.com/index.html");

13

14 void main() throws Exception {

15 CompletableFuture.completedFuture(uriToProcess)

16 .thenComposeAsync(this::readPage, executor)

17 .thenApply(this::getImageLinks)

18 .thenCompose(this::getImages)

19 .thenAccept(this::saveImages);

20

21 // or use the HTTP client:

22 /*

23 HttpClient client = HttpClient.newBuilder().build();

24 HttpRequest request = HttpRequest.newBuilder(uriToProcess).GET().build();

25 client.sendAsync(request, BodyHandlers.ofString())

26 .thenApply(HttpResponse::body)

27 .thenApply(this::getImageLinks)

28 .thenCompose(this::getImages)

29 .thenAccept(this::saveImages);

30 */

31 }

32

33 CompletableFuture<String> readPage(URI uri) {

34 return CompletableFuture.supplyAsync(() -> {

35 try {

36 var contents = new String(uri.toURL().openStream().readAllBytes());

37 IO.println("Read page from " + uri);

38 return contents;

39 }

40 catch (IOException e) {

41 throw new UncheckedIOException(e);

42 }

43 }, executor);

44 }

45

46 List<URI> getImageLinks(String webpage) // not blocking

47 {

48 var result = new ArrayList<URI>();

49 Matcher matcher = IMG_PATTERN.matcher(webpage);

50 while (matcher.find()) {

51 URI uri = URI.create(uriToProcess + "/" + matcher.group(1));

52 result.add(uri);

53 }

54 IO.println("Found links: " + result);

55 return result;

56 }

57

58 CompletableFuture<List<BufferedImage>> getImages(List<URI> uris) {

59 return CompletableFuture.supplyAsync(() -> {

60 try {

61 var result = new ArrayList<BufferedImage>();

62 for (URI uri : uris) {

63 result.add(ImageIO.read(uri.toURL()));

64 IO.println("Loaded " + uri);

65 }

66 return result;

67 }

68 catch (IOException e) {

69 throw new UncheckedIOException(e);

70 }

71 }, executor);

72 }

73

74 void saveImages(List<BufferedImage> images) {

75 IO.println("Saving " + images.size() + " images");

76 try {

77 for (int i = 0; i < images.size(); i++) {

78 String filename = "/tmp/image" + (i + 1) + ".png";

79 ImageIO.write(images.get(i), "PNG", new File(filename));

80 }

81 }

82 catch (IOException e) {

83 throw new UncheckedIOException(e);

84 }

85 executor.shutdown();

86 }

87 }

10.7.3. Long-Running Tasks in User Interface Callbacks

One of the reasons to use threads is to make your programs more responsive.

This is particularly important in an application with a user interface. With

Swing, JavaFX, and Android, user interface components are not threadsafe,

and all user interface actions run in a single thread. When your program

needs to do something time-consuming, you cannot do the work in the user

interface thread, or the user interface will be frozen. Instead, fire up another

worker thread.

For example, if you want to read a file when the user clicks a button, don’t do

this:

var open = new JButton("Open");

open.addActionListener(event -> { // BAD--long-running action is

executed on UI thread

 var in = new Scanner(path);

 while (in.hasNextLine()) {

 String line = in.nextLine();

 . . .

 }

});

Instead, do the work in a separate thread.

open.addActionListener(event -> { // GOOD--long-running action in

separate thread

 Runnable task = () -> {

 var in = new Scanner(path);

 while (in.hasNextLine()) {

 String line = in.nextLine();

 . . .

 }

 };

 executor.execute(task);

});

However, you cannot directly update the user interface from the worker

thread that executes the long-running task. Since Swing, JavaFX, and

Android are not thread-safe, you cannot manipulate user interface elements

from multiple threads, or they risk becoming corrupted. In fact, JavaFX and

Android check for this, and throw an exception if you try to access the user

interface from a thread other than the UI thread.

Therefore, you need to schedule any UI updates to happen on the UI thread.

Each user interface library provides some mechanism to schedule a Runnable

for execution on the UI thread. For example, in Swing, you call

EventQueue.invokeLater(() -> label.setText(percentage + "% complete"));

It is tedious to implement user feedback in a worker thread, so each user

interface library provides some kind of helper class for managing the details,

such as SwingWorker in Swing, Task in JavaFX, and AsyncTask in Android.

You specify actions for the long-running task (which is run on a separate

thread) as well as progress updates and the final disposition (which are run on

the UI thread).

The program in Listing 10.11 has commands for loading a text file and for

canceling the file loading process. You should try the program with a long

file, such as the full text of The Count of Monte Cristo, supplied in the

gutenberg directory of the book’s companion code. The file is loaded in a

separate thread. While the file is being read, the Open menu item is disabled

and the Cancel item is enabled (see Figure 10.6). After each line is read, a

line counter in the status bar is updated. After the reading process is

complete, the Open menu item is reenabled, the Cancel item is disabled, and

the status line text is set to Done.

Figure 10.6: Loading a file in a separate thread

This example shows the typical UI activities of a background task:

After each work unit, update the UI to show progress.

After the work is finished, make a final change to the UI.

The SwingWorker class makes it easy to implement such a task. Override the

doInBackground method to do the time-consuming work and occasionally

call publish to communicate work progress. This method is executed in a

worker thread. The publish method causes a process method to execute in the

event dispatch thread to deal with the progress data. When the work is

complete, the done method is called in the event dispatch thread so that you

can finish updating the UI.

Whenever you want to do some work in the worker thread, construct a new

worker. (Each worker object is meant to be used only once.) Then call the

execute method. You will typically call execute on the event dispatch thread,

but that is not a requirement.

It is assumed that a worker produces a result of some kind; therefore,

SwingWorker<T, V> implements Future<T>. This result can be obtained by

the get method of the Future interface. Since the get method blocks until the

result is available, you don’t want to call it immediately after calling execute.

It is a good idea to call it only when you know that the work has been

completed. Typically, you call get from the done method. (There is no

requirement to call get. Sometimes, processing the progress data is all you

need.)

Both the intermediate progress data and the final result can have arbitrary

types. The SwingWorker class has these types as type parameters. A

SwingWorker<T, V> produces a result of type T and progress data of type V.

To cancel the work in progress, use the cancel method of the Future interface.

When the work is canceled, the get method throws a CancellationException.

As already mentioned, the worker thread’s call to publish will cause calls to

process on the event dispatch thread. For efficiency, the results of several

calls to publish may be batched up in a single call to process. The process

method receives a List<V> containing all intermediate results.

Let us put this mechanism to work for reading in a text file. As it turns out, a

JTextArea is quite slow. Appending lines from a long text file (such as all

lines in The Count of Monte Cristo) takes considerable time.

To show the user that progress is being made, we want to display the number

of lines read in a status line. Thus, the progress data consist of the current line

number and the current line of text. We package these into a record:

private record ProgressData(int number, String line) {}

The final result is the text that has been read into a StringBuilder. Thus, we

need a SwingWorker<StringBuilder, ProgressData>.

In the doInBackground method, we read a file, a line at a time. After each

line, we call publish to publish the line number and the text of the current

line.

@Override public StringBuilder doInBackground() throws IOException,

InterruptedException {

 int lineNumber = 0;

 var in = new Scanner(path);

 while (in.hasNextLine()) {

 String line = in.nextLine();

 lineNumber++;

 text.append(line).append("\n");

 var data = new ProgressData(lineNumber, line);

 publish(data);

 Thread.sleep(1); // to test cancellation; no need to do this in your

programs

 }

 return text;

}

We also sleep for a millisecond after every line so that you can test

cancellation without getting stressed out, but you wouldn’t want to slow

down your own programs by sleeping. If you comment out this line, you will

find that The Count of Monte Cristo loads quite quickly, with only a few

batched user interface updates.

In the process method, we ignore all line numbers but the last one, and we

concatenate all lines for a single update of the text area.

@Override public void process(List<ProgressData> data) {

 if (isCancelled()) return;

 var b = new StringBuilder();

 statusLine.setText("" + data.getLast().number());

 for (ProgressData d : data) b.append(d.line()).append("\n");

 textArea.append(b.toString());

}

In the done method, the text area is updated with the complete text, and the

Cancel menu item is disabled.

Note how the worker is started in the event listener for the Open menu item.

This simple technique allows you to execute time-consuming tasks while

keeping the user interface responsive.

Listing 10.11 v1ch10/SwingWorkerDemo.java

1 package v1ch10;

2

3 import module java.base;

4 import module java.desktop;

5

6 import java.util.List;

7

8 /**

9 * This program demonstrates a worker thread that runs a potentially time-consuming task.

10 */

11 class SwingWorkerDemo {

12 void main(String[] args) {

13 EventQueue.invokeLater(() -> {

14 var frame = new SwingWorkerFrame();

15 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

16 frame.setVisible(true);

17 });

18 }

19

20 /**

21 * This frame has a text area to show the contents of a text file, a menu to open a file and

22 * cancel the opening process, and a status line to show the file loading progress.

23 */

24 }

25

26 class SwingWorkerFrame extends JFrame {

27 public static final int TEXT_ROWS = 20;

28 public static final int TEXT_COLUMNS = 60;

29 private JFileChooser chooser;

30 private JTextArea textArea;

31 private JLabel statusLine;

32 private JMenuItem openItem;

33 private JMenuItem cancelItem;

34 private SwingWorker<StringBuilder, ProgressData> textReader;

35

36 public SwingWorkerFrame() {

37 chooser = new JFileChooser();

38 chooser.setCurrentDirectory(new File("."));

39

40 textArea = new JTextArea(TEXT_ROWS, TEXT_COLUMNS);

41 add(new JScrollPane(textArea));

42

43 statusLine = new JLabel(" ");

44 add(statusLine, BorderLayout.SOUTH);

45

46 var menuBar = new JMenuBar();

47 setJMenuBar(menuBar);

48

49 var menu = new JMenu("File");

50 menuBar.add(menu);

51

52 openItem = new JMenuItem("Open");

53 menu.add(openItem);

54 openItem.addActionListener(_ -> {

55 // show file chooser dialog

56 int result = chooser.showOpenDialog(null);

57

58 // if file selected, set it as icon of the label

59 if (result == JFileChooser.APPROVE_OPTION) {

60 textArea.setText("");

61 openItem.setEnabled(false);

62 textReader = new TextReader(chooser.getSelectedFile());

63 textReader.execute();

64 cancelItem.setEnabled(true);

65 }

66 });

67

68 cancelItem = new JMenuItem("Cancel");

69 menu.add(cancelItem);

70 cancelItem.setEnabled(false);

71 cancelItem.addActionListener(_ -> textReader.cancel(true));

72 pack();

73 }

74

75 private record ProgressData(int number, String line) {

76 }

77

78 private class TextReader extends SwingWorker<StringBuilder, ProgressData> {

79 private File file;

80 private StringBuilder text = new StringBuilder();

81

82 public TextReader(File file) {

83 this.file = file;

84 }

85

86 // The following method executes in the worker thread.

87 // It doesn't touch Swing components.

88

89 public StringBuilder doInBackground() throws IOException, InterruptedException {

90 int lineNumber = 0;

91 try (var in = new Scanner(new FileInputStream(file))) {

92 while (in.hasNextLine()) {

93 String line = in.nextLine();

94 lineNumber++;

95 text.append(line).append("\n");

96 var data = new ProgressData(lineNumber, line);

97 publish(data);

98 // To test cancellation; no need to do this in your programs

99 Thread.sleep(1);

100 }

101 }

102 return text;

103 }

104

105 // the following methods execute in the event dispatch thread

106

107 public void process(List<ProgressData> data) {

108 if (isCancelled()) return;

109 var builder = new StringBuilder();

110 statusLine.setText("" + data.getLast().number());

111 for (ProgressData d : data)

112 builder.append(d.line()).append("\n");

113 textArea.append(builder.toString());

114 }

115

116 public void done() {

117 try {

118 StringBuilder result = get();

119 textArea.setText(result.toString());

120 statusLine.setText("Done");

121 }

122 catch (InterruptedException ex) {

123 }

124 catch (CancellationException ex) {

125 textArea.setText("");

126 statusLine.setText("Cancelled");

127 }

128 catch (ExecutionException ex) {

129 statusLine.setText("" + ex.getCause());

130 }

131

132 cancelItem.setEnabled(false);

133 openItem.setEnabled(true);

134 }

135 }

136 }

javax.swing.SwingWorker<T, V> 6

abstract T doInBackground()

is the method to override to carry out the background task and to return

the result of the work.

void process(List<V> data)

is the method to override to process intermediate progress data in the

event dispatch thread.

void publish(V... data)

forwards intermediate progress data to the event dispatch thread. Call

this method from doInBackground.

void execute()

schedules this worker for execution on a worker thread.

SwingWorker.StateValue getState()

gets the state of this worker—one of PENDING, STARTED, or DONE.

10.8. Processes

Up to now, you have seen how to execute Java code in separate threads

within the same program. Sometimes, you need to execute another program.

For this, use the ProcessBuilder and Process classes. The Process class

executes a command in a separate operating system process and lets you

interact with its standard input, output, and error streams. The ProcessBuilder

class lets you configure a Process object.

Note: The ProcessBuilder class is a more flexible replacement for the

Runtime.exec calls.

10.8.1. Building a Process

Start by specifying the command that you want to execute. You can supply a

List<String> or simply the strings that make up the command.

var builder = new ProcessBuilder("gcc", "myapp.c");

Caution: The first string must be an executable command, not a shell

builtin. For example, to run the dir command in Windows, you need

to build a process with strings "cmd.exe", "/C", and "dir".

Each process has a working directory, which is used to resolve relative

directory names. By default, a process has the same working directory as the

virtual machine, which is typically the directory from which you launched

the java program. You can change it with the directory method:

builder = builder.directory(path.toFile());

Note: Each of the methods for configuring a ProcessBuilder returns

itself, so that you can chain commands. Ultimately, you will call

Process p = new ProcessBuilder(command).directory(file).…start();

Next, you will want to specify what should happen to the standard input,

output, and error streams of the process. By default, each of them is a pipe

that you can access with

OutputStream processIn = p.getOutputStream();

InputStream processOut = p.getInputStream();

InputStream processErr = p.getErrorStream();

or, for text input and output

BufferedWriter processIn = p.outputWriter();

BufferedReader processOut = p.inputReader();

BufferedReader processErr = p.errorReader();

Note that the input stream of the process is an output stream in the JVM! You

write to that stream, and whatever you write becomes the input of the

process. Conversely, you read what the process writes to the output and error

streams. For you, they are input streams. The same holds for readers and

writers.

You can specify that the input, output, and error streams of the new process

should be the same as the JVM. If the user runs the JVM in a console, any

user input is forwarded to the process, and the process output shows up in the

console. Call

builder.inheritIO();

to make this setting for all three streams. If you only want to inherit some of

the streams, pass the value

ProcessBuilder.Redirect.INHERIT

to the redirectInput, redirectOutput, or redirectError methods. For example,

builder.redirectOutput(ProcessBuilder.Redirect.INHERIT);

You can redirect the process streams to files by supplying File objects:

builder.redirectInput(inputFile)

 .redirectOutput(outputFile)

 .redirectError(errorFile)

;

The files for output and error are created or truncated when the process starts.

To append to existing files, use

builder.redirectOutput(ProcessBuilder.Redirect.appendTo(outputFile));

It is often useful to merge the output and error streams, so you can see the

outputs and error messages in the sequence in which the process generates

them. Call

builder.redirectErrorStream(true);

to activate the merging. If you do that, you can no longer call redirectError

on the ProcessBuilder or getErrorStream on the Process.

You may also want to modify the environment variables of the process. Here,

the builder chain syntax breaks down. You need to get the builder’s

environment (which is initialized by the environment variables of the process

running the JVM), then put or remove entries.

Map<String, String> env = builder.environment();

env.put("LANG", "fr_FR");

env.remove("JAVA_HOME");

Process p = builder.start();

If you want to pipe the output of one process into the input of another (as

with the | operator in a shell), use the startPipeline method. Pass a list of

process builders and read the result from the last process. Here is an example,

enumerating the unique extensions in a directory tree:

List<Process> processes = ProcessBuilder.startPipeline(List.of(

 new ProcessBuilder("find", "/opt/jdk-25"),

 new ProcessBuilder("grep", "-o", "\\.[^./]*$"),

 new ProcessBuilder("sort"),

 new ProcessBuilder("uniq")

));

Process last = processes.getLast();

var result = new String(last.getInputStream().readAllBytes());

Of course, this particular task would be more efficiently solved by making

the directory walk in Java instead of running four processes. Chapter 2 of

Volume II will show you how to do that.

10.8.2. Running a Process

After you have configured the builder, invoke its start method to start the

process. If you configured the input, output, and error streams as pipes, you

can now write to the input stream and read the output and error streams. For

example,

Process process = new ProcessBuilder("/bin/ls", "-l")

 .directory(Path.of("/tmp").toFile())

 .start();

try (var in = new Scanner(process.getInputStream())) {

 while (in.hasNextLine())

 IO.println(in.nextLine());

}

Caution: There is limited buffer space for the process streams. You

should not flood the input, and you should read the output promptly.

If there is a lot of input and output, you may need to produce and

consume it in separate threads.

To wait for the process to finish, call

int result = process.waitFor();

or, if you don’t want to wait indefinitely,

long delay = . . .;

if (process.waitFor(delay, TimeUnit.SECONDS)) {

 int result = process.exitValue();

 . . .

}

else {

 process.destroyForcibly();

}

The first call to waitFor returns the exit value of the process (by convention,

0 for success or a nonzero error code). The second call returns true if the

process didn’t time out. Then you need to retrieve the exit value by calling

the exitValue method.

Instead of waiting for the process to finish, you can just leave it running and

occasionally call isAlive to see whether it is still alive. To kill the process,

call destroy or destroyForcibly. The difference between these calls is

platform-dependent. On UNIX, the former terminates the process with

SIGTERM, the latter with SIGKILL. (The supportsNormalTermination

method returns true if the destroy method can terminate the process

normally.)

Finally, you can receive an asynchronous notification when the process has

completed. The call process.onExit() yields a CompletableFuture<Process>

that you can use to schedule any action.

process.onExit().thenAccept(

 p -> IO.println("Exit value: " + p.exitValue()));

Note: Since Java 21, the logger with name java.lang.ProcessBuilder

logs processes executed by Runtime.exec and ProcessBuilder at the

logging levels DEBUG and TRACE. The command arguments are

only included at the TRACE level. Both levels log the process id,

directory, command, and stack trace.

10.8.3. Process Handles

To get more information about a process that your program started, or any

other process that is currently running on your machine, use the

ProcessHandle interface. You can obtain a ProcessHandle in four ways:

1. Given a Process object p, p.toHandle() yields its ProcessHandle.

2. Given a long operating system process ID, ProcessHandle.of(id) yields

the handle of that process.

3. ProcessHandle.current() is the handle of the process that runs this Java

virtual machine.

4. ProcessHandle.allProcesses() yields a Stream<ProcessHandle> of all

operating system processes that are visible to the current process.

Given a process handle, you can get its process ID, its parent process, its

children, and its descendants:

long pid = handle.pid();

Optional<ProcessHandle> parent = handle.parent();

Stream<ProcessHandle> children = handle.children();

Stream<ProcessHandle> descendants = handle.descendants();

Note: The Stream<ProcessHandle> instances that are returned by the

allProcesses, children, and descendants methods are just snapshots in

time. Any of the processes in the stream might be terminated by the

time you get around to seeing them, and other processes may have

started that are not in the stream.

The info method yields a ProcessHandle.Info object with methods for

obtaining information about the process.

Optional<String[]> arguments()

Optional<String> command()

Optional<String> commandLine()

Optional<Instant> startInstant()

Optional<Duration> totalCpuDuration()

Optional<String> user()

All of these methods return Optional values since it is possible that a

particular operating system may not be able to report the information.

For monitoring or forcing process termination, the ProcessHandle interface

has the same isAlive, supportsNormalTermination, destroy, destroyForcibly,

and onExit methods as the Process class. However, there is no equivalent to

the waitFor method.

Listing 10.12 shows how to start a process and read its output, and how to list

all Java processes.

Listing 10.12 v1ch10/ProcessDemo.java

1 package v1ch10;

2

3 import module java.base;

4

5 /**

6 * This program demonstrates running a process and reading its output, and listing all Java

7 * processes

8 */

9 class ProcessDemo {

10 void main() throws Exception {

11 Process p = new ProcessBuilder("/bin/ls", "-l")

12 .directory(Path.of("/tmp").toFile())

13 .start();

14 try (var in = new Scanner(p.getInputStream())) {

15 while (in.hasNextLine())

16 IO.println(in.nextLine());

17 }

18 IO.println("pid: " + p.toHandle().pid());

19 int result = p.waitFor();

20 IO.println("Exit value: " + result);

21

22 ProcessHandle.allProcesses()

23 .map(ProcessHandle::info)

24 .filter(info -> info.command().filter(s -> s.contains("java")).isPresent())

25 .forEach(info -> info.commandLine()

26 .ifPresent(IO::println));

27 }

28 }

java.lang.ProcessBuilder 5.0

ProcessBuilder(String... command)

ProcessBuilder(List<String> command)

construct a process builder with the given command and arguments.

ProcessBuilder directory(File directory)

sets the working directory for the process.

ProcessBuilder inheritIO() 9

makes the process use the standard input, output, and error of the

virtual machine.

ProcessBuilder redirectErrorStream(boolean redirectErrorStream)

If redirectErrorStream is true, the standard error of the process is

merged into the standard output.

ProcessBuilder redirectInput(File file) 7

ProcessBuilder redirectOutput(File file) 7

ProcessBuilder redirectError(File file) 7

redirect the standard input, output, or error of the process to the given

file.

ProcessBuilder redirectInput(ProcessBuilder.Redirect source) 7

ProcessBuilder redirectOutput(ProcessBuilder.Redirect destination) 7

ProcessBuilder redirectError(ProcessBuilder.Redirect destination) 7

redirect the standard input, output, or error of the process, where

destination is one of:

Redirect.PIPE—the default behavior, access via the Process object

Redirect.INHERIT—the stream from the virtual machine

Redirect.DISCARD

Redirect.from(file)

Redirect.to(file)

Redirect.appendTo(file)

Map<String, String> environment()

yields a mutable map for setting environment variables for the process.

Process start()

starts the process and yields its Process object.

static List<Process> startPipeline(List<ProcessBuilder> builders) 9

starts a pipeline of processes, connecting the standard output of each

process to the standard input of the next one.

java.lang.Process 1.0

abstract OutputStream getOutputStream()

gets a stream for writing to the input stream of the process.

abstract InputStream getInputStream()

abstract InputStream getErrorStream()

get an input stream for reading the output or error stream of the process.

abstract int waitFor()

waits for the process to finish and yields the exit value.

boolean waitFor(long timeout, TimeUnit unit) 8

waits for the process to finish, but no longer than the given timeout.

Returns true if the process exited.

abstract int exitValue()

returns the exit value of the process. By convention, a nonzero exit

value indicates an error.

boolean isAlive() 8

checks whether this process is still alive.

abstract void destroy()

Process destroyForcibly() 8

terminate this process, either normally or forcefully.

boolean supportsNormalTermination() 9

checks whether this process can be terminated normally or must be

destroyed forcefully.

ProcessHandle toHandle() 9

yields the ProcessHandle describing this process.

CompletableFuture<Process> onExit() 9

yields a CompletableFuture that is executed when this process exits.

java.lang.ProcessHandle 9

static Optional<ProcessHandle> of(long pid)

static Stream<ProcessHandle> allProcesses()

static ProcessHandle current()

yield the process handle(s) of the process with the given PID, of all

processes, or the process of the virtual machine.

Stream<ProcessHandle> children()

Stream<ProcessHandle> descendants()

yield the process handles of the children or descendants of this process.

long pid()

yields the PID of this process.

ProcessHandle.Info info()

yields detail information about this process.

java.lang.ProcessHandle.Info 9

Optional<String[]> arguments()

Optional<String> command()

Optional<String> commandLine()

Optional<Instant> startInstant()

Optional<Duration> totalCpuDuration()

Optional<String> user()

yield the given detail information if available.

Chapter 11 ▪ Annotations

Annotations are tags that you insert into your source code so that some tool

can process them. The tools can operate on the source level, or they can

process class files into which the compiler has placed annotations.

Annotations do not change the way your programs are compiled. The Java

compiler generates the same virtual machine instructions with or without

the annotations.

To benefit from annotations, you need to select a processing tool and use

annotations that your processing tool understands, before you can apply that

tool to your code.

There is a wide range of uses for annotations. For example, JUnit (available

at https://junit.org) uses annotations to mark methods that execute tests and

to specify how the tests should be run. Jakarta Persistence

https://junit.org/

(https://jakarta.ee/specifications/persistence/) uses annotations to define

mappings between classes and database tables, so that objects can be

persisted automatically without the developer having to write SQL queries.

In this chapter, you will learn the details of the annotation syntax, how to

define your own annotations, and how to write annotation processors.

Note: For a compelling use of annotations, check out JCommander

(https://jcommander.org) and picocli (https://picocli.info). These

libraries use annotations for the processing of command-line

arguments.

11.1. Using Annotations

Here is an example of a simple annotation:

https://jakarta.ee/specifications/persistence/
https://jcommander.org/
https://picocli.info/

class CacheTest {

 . . .

 @Test void checkRandomInsertions()

}

The annotation @Test annotates the checkRandomInsertions method. In

Java, an annotation is used like a modifier (such as public or static). The

name of each annotation is preceded by an @ symbol.

By itself, the @Test annotation does not do anything. It needs a tool to be

useful. When running JUnit, it finds the methods that are annotated with

@Test and calls them.

11.1.1. Annotation Elements

Annotations can have key/value pairs called elements, such as

@RepeatedTest(value=10, failureThreshold=3)

The names and types of the permissible elements are defined by each

annotation (see Section 11.2). The elements can be processed by the tools

that read the annotations.

An annotation element is one of the following:

A primitive type value

A String

A Class object

An instance of an enum

An annotation

An array of the preceding (but not an array of arrays)

To illustrate these possibilities, here is a @BugReport annotation, not from

an actual library:

@BugReport(showStopper=true,

 assignedTo="Harry",

 testCase=CacheTest.class,

 status=BugReport.Status.CONFIRMED,

 ref=@Reference(id=11235811),

 reportedBy={"Harry", "Fred"})

Note: Since annotations are processed by the compiler, all element

values must be compile-time constants.

Caution: An annotation element can never have the value null.

If an element value is an array with a single element, you can omit the

braces:

@BugReport(reportedBy="Harry") // Same as reportedBy={"Harry"}

Elements can have default values. For example, the failureThreshold

element of the JUnit @RepeatedTest annotation has default

Integer.MAX_VALUE. Therefore, the annotation

@RepeatedTest(value=10) is equivalent to @RepeatedTest(value=10,

failureThreshold=Integer.MAX_VALUE). When running this test, it is

repeated ten times, no matter how often it failed.

If the element name is value, and that is the only element you specify, you

can omit value=. For example, @RepeatedTest(10) is the same as

@RepeatedTest(value=10).

11.1.2. Multiple and Repeated Annotations

An item can have multiple annotations:

@Test

@Tag("localized")

void testHello()

If the author of an annotation declared it to be repeatable, you can repeat the

same annotation multiple times:

@Tag("localized")

@Tag("showstopper")

void testHello()

11.1.3. Annotating Declarations

So far, you have seen annotations applied to method declarations. There are

many other places where annotations can occur. They fall into two

categories: declarations and type uses. Declaration annotations can appear

at the declarations of

Classes (including enum) and interfaces (including annotation

interfaces)

Methods

Constructors

Fields (including enum constants and record components)

Local variables (including those declared in for and try-with-resources

statements)

Parameter variables and catch clause parameters

Type parameters

Packages and modules

For classes, interfaces, and modules, put the annotations before the class,

interface, or module keyword and any modifiers:

@Entity public class User { . . . }

For variables, put them before the type:

@SuppressWarnings("unchecked") List<User> users = . . .;

public User getUser(@Param("id") String userId)

This also holds for record components:

public record Rectangle(@ToString(includeName=false) Point topLeft,

 int width, int height) {}

A type parameter in a generic class or method can be annotated like this:

public class Cache<@NonNull V> { . . . }

A package is annotated in a file package-info.java that contains only the

package statement preceded by annotations.

/**

 Package-level documentation

*/

@Generated("com.horstmann.generator")

package com.horstmann.corejava.generated;

import javax.annotation.processing.Generated;

Note that the import statement for the annotation comes after the package

declaration.

Note: Annotations for local variables and packages are discarded

when a class is compiled. Therefore, they can only be processed at

the source level.

11.1.4. Annotating Type Uses

A declaration annotation provides some information about the item being

declared. For example, in the declaration

public User getUser(@NonNull String userId)

it is asserted that the userId parameter is not null.

Note: The @NonNull and @Localized annotations are a part of the

Checker Framework (https://types.cs.washington.edu/checker-

https://types.cs.washington.edu/checker-framework

framework). With that framework, you can include assertions in

your program, such that a parameter is non-null or that a String has

been localized—that is, adapted to the user’s local language and

usage. A static analysis tool then checks whether the assertions are

valid in a given body of source code.

Now, suppose we have a parameter of type List<String>, and we want to

express that all of the strings are non-null. That is where type use

annotations come in. Place the annotation before the type argument:

List<@NonNull String>

Type use annotations can appear in the following places:

1. With generic type arguments: List<@NonNull String>, Comparator.

<@NonNull String> reverseOrder().

2. Before array brackets:

https://types.cs.washington.edu/checker-framework

String[] @NonNull [] words: Applies to String[]—the arrays

words[i] are not null

String @NonNull [][] words: Applies to String[][]—the variable

words is not null

But note that @NonNull String[][] words applies to String—the

elements words[i][j] are not null

3. With superclasses and implemented interfaces: class Warning extends

@Localized Message.

4. With constructor invocations: new @Localized String(. . .).

5. With nested types: Map.@Localized Entry.

6. With casts and instanceof checks:

(@Localized String) text

if (text instanceof @Localized String)

The annotations are only for use by external tools. They have no effect

on the behavior of a cast or an instanceof check.

7. With exception specifications: public String read() throws @Localized

IOException.

8. With wildcard types and type bounds: List<@Localized ? extends

Message>, List<? extends @Localized Message>.

9. With method and constructor references: @Localized

Message::getText.

There are a few type positions that cannot be annotated:

@NonNull String.class // Error--cannot annotate class literal

import java.lang.@NonNull String; // Error--cannot annotate import

You can place annotations before or after other modifiers such as private

and static. It is customary (but not required) to put type use annotations

after other modifiers, and declaration annotations before other modifiers.

For example,

private @NonNull String text; // Annotates the type use

@Id private String userId; // Annotates the variable

Note: As you will see in Section 11.2, an annotation author needs to

specify where a particular annotation can appear. If an annotation is

permissible both for a variable and a type use, and it is used in a

variable declaration, then both the variable and the type use are

annotated. For example, consider

public User getUser(@NonNull String userId)

if @NonNull can apply both to parameters and to type uses, the

userId parameter is annotated, and the parameter type is @NonNull

String.

11.1.5. Receiver Parameters

Suppose you want to annotate parameters that are not being mutated by a

method.

public class Point {

 public boolean equals(@Nullable Object other) { . . . }

}

Then a tool that processes this annotation would, upon seeing a call

p.equals(q)

reason that q has not been changed.

But what about p?

When the method is called, the variable this is bound to p, but this is never

declared, so you cannot annotate it.

Actually, you can declare it, with a rarely used syntax variant, just so that

you can add an annotation:

public class Point {

 public boolean equals(@NonNull Point this, @Nullable Object other)

{ . . . }

}

The first parameter is called the receiver parameter. It must be named this.

Its type is the class that is being constructed.

Note: You can provide a receiver parameter only for methods, not

for constructors. Conceptually, the this reference in a constructor is

not an object of the given type until the constructor has completed.

Instead, an annotation placed on the constructor describes a property

of the constructed object.

A different hidden parameter is passed to the constructor of an inner class,

namely the reference to the enclosing class object. You can make this

parameter explicit as well:

static class Sequence {

 private int from;

 private int to;

 class Iterator implements java.util.Iterator<Integer> {

 private int current;

 public Iterator(@NonNull Sequence Sequence.this) {

 this.current = Sequence.this.from;

 }

 . . .

 }

 . . .

}

The parameter must be named just like when you refer to it,

EnclosingClass.this, and its type is the enclosing class.

11.2. Defining Annotations

Each annotation must be declared by an annotation interface, with the

@interface syntax. The methods of the interface correspond to the elements

of the annotation. For example, the JUnit RepeatedTest annotation is

defined by the following interface:

@Target(ElementType.METHOD)

@Retention(RetentionPolicy.RUNTIME)

public @interface RepeatedTest {

 int failureThreshold();

 . . .

}

The @interface declaration creates an actual Java interface. Tools that

process annotations receive objects that implement the annotation interface.

When the JUnit test runner tool gets an object that implements

RepeatedTest, it simply invokes the failureThreshold method to retrieve the

failure threshold of a particular RepeatedTest annotation.

The element declarations in the annotation interface are actually method

declarations. The methods of an annotation interface can have no

parameters and no throws clauses, and they cannot be generic.

The @Target and @Retention annotations are meta-annotations. They

annotate the @RepeatedTest annotation, indicating the places where the

annotation can occur and where it can be accessed.

The value of the @Target meta-annotation is an array of ElementType

objects, specifying the items to which the annotation can apply. You can

specify any number of element types, enclosed in braces. For example,

@Target({ElementType.FIELD,

ElementType.RECORD_COMPONENT, ElementType.TYPE})

public @interface ToString

Table 11.1 shows all possible targets. The compiler checks that you use an

annotation only where permitted. For example, if you apply @ToString to a

method, a compile-time error results.

Note: An annotation without an @Target restriction can be used

with any declarations but not with type parameters and type uses.

(These were the only possible targets in the first Java release that

supported annotations.)

Table 11.1: Element Types for the @Target Annotation

Element Type Annotation Applies To

ANNOTATION_TYPE Annotation type declarations

MODULE Modules

PACKAGE Packages

TYPE

Classes (including enum) and

interfaces (including annotation

types)

METHOD Methods

CONSTRUCTOR Constructors

FIELD
Fields (including enum

constants)

PARAMETER Method or constructor

parameters

RECORD_COMPONENT Record components

LOCAL_VARIABLE Local variables

TYPE_PARAMETER Type parameters

TYPE_USE Uses of a type

When you annotate a record component, the annotation is applied to the

fields and methods to which the component gives rise, provided the

annotation is permitted on fields or methods. For example, in the annotation

public record Rectangle(@ToString(includeName=false) Point topLeft,

 int width, int height) {}

the topLeft field receives the annotation if its target types include

ElementType.FIELD.

The @Retention meta-annotation specifies where the annotation can be

accessed. There are three choices.

1. RetentionPolicy.SOURCE: The annotation is available to source

processors, but it is not included in class files.

2. RetentionPolicy.CLASS: The annotation is included in class files, but

the virtual machine does not load them. This is the default.

3. RetentionPolicy.RUNTIME: The annotation is available at runtime

and can be accessed through the reflection API.

You will see examples of all three scenarios later in this chapter.

There are several other meta-annotations—see Section 11.3 for a complete

list.

To specify a default value for an element, add a default clause after the

method defining the element. For example,

public @interface RepeatedTest {

 int failureThreshold() default Integer.MAX_VALUE;

 . . .

}

This example shows how to denote a default of an empty array and a

default for an annotation:

public @interface BugReport {

 String[] reportedBy() default {};

 // Defaults to empty array

 Reference ref() default @Reference(id=0);

 // Default for an annotation

 . . .

}

Caution: Defaults are not stored with the annotation; instead, they

are dynamically computed. If you change a default and recompile

the annotation class, all annotated elements will use the new default,

even in class files that have been compiled before the default

changed.

All annotation interfaces implicitly extend the

java.lang.annotation.Annotation interface. That interface is a regular

interface, not an annotation interface. See the API notes at the end of this

section for the methods provided by this interface.

You cannot extend annotation interfaces, and you never supply classes that

implement annotation interfaces. Instead, source processing tools and the

virtual machine generate proxy classes and objects when needed.

java.lang.annotation.Annotation 5.0

Class<? extends Annotation> annotationType()

returns the Class object that represents the annotation interface of this

annotation object. Note that calling getClass on an annotation object

would return the actual class, not the interface.

boolean equals(Object other)

returns true if other is an object that implements the same annotation

interface as this annotation object and if all elements of this object and

other are equal.

int hashCode()

returns a hash code, compatible with the equals method, derived from

the name of the annotation interface and the element values.

String toString()

returns a string representation that contains the annotation interface

name and the names and values of the elements.

11.3. Annotations in the Java API

The Java API defines a number of annotation interfaces in the java.lang,

java.lang.annotation, and javax.annotation packages. Four of them are

meta-annotations that describe the behavior of annotation interfaces. The

others are regular annotations that you can use to annotate items in your

source code. Table 11.2 shows these annotations. I will discuss them in

detail in the following two sections.

Table 11.2: Annotations in the Java API

Annotation

Interface

Applicable

To

Purpose

Override Methods

Checks that this method

overrides a superclass

method.

Serial Methods

Checks that this method

is a correct serialization

method.

Deprecated
All

declarations
Marks item as deprecated.

SuppressWarnings All

declarations

Suppresses warning

messages of a given type.

except

packages

SafeVarargs

Methods

and

constructors

Asserts that the varargs

parameter is safe to use.

FunctionalInterface Interfaces

Marks an interface as

functional (with a single

abstract method).

Generated
All

declarations

Marks an item as source

code that has been

generated by a tool.

Target Annotations Specifies the locations to

which this annotation can

be applied.

Retention Annotations
Specifies where this

annotation can be used.

Documented Annotations

Specifies that this

annotation should be

included in the

documentation of

annotated items.

Inherited Annotations

Specifies that this

annotation is inherited by

subclasses.

Repeatable Annotations Specifies that this

annotation can be applied

multiple times to the

same item.

11.3.1. Annotations for Compilation

The @Deprecated annotation can be attached to any items whose use is no

longer encouraged. The compiler will warn when you use a deprecated

item. This annotation has the same role as the @deprecated JavaDoc tag.

However, the annotation persists until runtime.

Note: The jdeprscan utility which is part of the JDK can scan a set

of JAR files for deprecated elements.

The @Override annotation makes the compiler check that the annotated

method really overrides a method from the superclass. For example, if you

declare

public class Point {

 @Override public boolean equals(Point other) { . . . }

 . . .

}

then the compiler will report an error—this equals method does not override

the equals method of the Object class because that method has a parameter

of type Object, not Point.

The @Serial annotation checks that methods used for serialization, which

are not declared in interfaces, have the correct parameter types.

The @SuppressWarnings annotation tells the compiler to suppress warning

messages of a particular category, for example

@SuppressWarnings("unchecked") T[] result

 = (T[]) Array.newInstance(cl, n);

The @SafeVarargs annotation asserts that a method does not corrupt its

varargs parameter (see Chapter 8).

The @Generated annotation is intended for use by code generator tools.

Any generated source code can be annotated to differentiate it from

programmer-provided code. For example, a code editor can hide the

generated code, or a code generator can remove older versions of generated

code. Each annotation must contain a unique identifier for the code

generator. A date string (in ISO 8601/RFC 3339 format) and a comment

string are optional. For example,

@Generated(value="com.horstmann.generator",

 date="2025-12-04T12:08:56.235-0700");

You have seen the FunctionalInterface annotation in Chapter 6. It is used to

annotate conversion targets for lambda expressions, such as

@FunctionalInterface

public interface IntFunction<R> {

 R apply(int value);

}

If you later add another abstract method, the compiler will generate an

error.

Of course, you should only add this annotation to interfaces that describe

functions. There are other interfaces with a single abstract method (such as

AutoCloseable) that are not conceptually functions.

11.3.2. Meta-Annotations

You have already seen the @Target and @Retention meta-annotations in

Section 11.2.

The @Documented meta-annotation gives a hint to documentation tools

such as JavaDoc. Documented annotations should be treated just like other

modifiers (such as private or static) for documentation purposes. In

contrast, other annotations should not be included in the documentation.

For example, the @SuppressWarnings annotation is not documented. If a

method or field has that annotation, it is an implementation detail that is of

no interest to the JavaDoc reader. On the other hand, the

@FunctionalInterface annotation is documented since it is useful for the

programmer to know that the interface is intended to describe a function.

Figure 11.1 shows the documentation.

Figure 11.1: A documented annotation

The @Inherited meta-annotation applies only to annotations for classes.

When a class has an inherited annotation, then all of its subclasses

automatically have the same annotation. This makes it easy to create

annotations that work similar to marker interfaces (such as the Serializable

interface).

Suppose you define an inherited annotation @Persistent to indicate that

objects of a class can be saved in a database. Then the subclasses of

persistent classes are automatically annotated as persistent.

@Inherited @interface Persistent { }

@Persistent class Employee { . . . }

class Manager extends Employee { . . . } // Also @Persistent

The @Repeatable meta-annotation makes it possible to apply the same

annotation multiple times. For example, the JUnit @Tag annotation is

repeatable. It can be used like this:

@Tag("localized")

@Tag("showstopper")

void testHello() { . . . }

For historical reasons, the implementor of a repeatable annotation needs to

provide a container annotation that holds the repeated annotations in an

array.

Here is how to define the @Tag annotation and its container:

@Repeatable(Tag.class)

@interface Tag {

 String value();

}

@interface Tags {

 Tag[] value();

}

Whenever the user supplies two or more @Tag annotations, they are

automatically wrapped into a @Tags annotation. This complicates

processing of the annotation, as you will see in the next section.

11.4. Processing Annotations at Runtime

So far, you have seen how to add annotations to source files and how to

define annotation types. Now the time has come to see what good can come

out of that.

In this section, I show you a simple example of processing an annotation at

runtime using the reflection API that you have already seen in Chapter 5.

Suppose we want to reduce the tedium of implementing toString methods.

Of course, one can write a generic toString method using reflection that

simply includes all field names and values. But suppose we want to

customize that process. We may not want to include all fields, or we may

want to skip class and variable names. For example, for the Point class we

may prefer [5,10] instead of Point[x=5,y=10]. Of course, any number of

other enhancements would be plausible, but let’s keep it simple. The point

is to demonstrate what an annotation processor can do.

Annotate all classes that you want to benefit from this service with the

@ToString annotation. In addition, all fields that should be included need to

be annotated as well. The annotation is defined like this:

@Target({ElementType.FIELD,

ElementType.RECORD_COMPONENT, ElementType.TYPE})

@Retention(RetentionPolicy.RUNTIME)

public @interface ToString {

 boolean includeName() default true;

}

Here are annotated Point and Rectangle classes:

@ToString(includeName=false)

public class Point {

 @ToString(includeName=false) private int x;

 @ToString(includeName=false) private int y;

 . . .

}

@ToString

public record Rectangle(

 @ToString(includeName=false) Point topLeft,

 @ToString int width,

 @ToString int height)

{}

The intent is for a rectangle to be represented as string as Rectangle[[5,

10],width=20,height=30].

At runtime, we cannot modify the implementation of the toString method

for a given class. Instead, let us provide a method that can format any

object, discovering and using the ToString annotations if they are present.

The key are the methods

T getAnnotation(Class<T>)

T getDeclaredAnnotation(Class<T>)

T[] getAnnotationsByType(Class<T>)

T[] getDeclaredAnnotationsByType(Class<T>)

Annotation[] getAnnotations()

Annotation[] getDeclaredAnnotations()

boolean isAnnotationPresent(Class<? extends Annotation>

annotationClass)

of the AnnotatedElement interface. The reflection classes Class, Field,

Parameter, Method, Constructor, and Package implement that interface.

As with other reflection methods, the methods with Declared in their name

yield annotations in the class itself, whereas the others include inherited

ones. In the context of annotations, this means that the annotation is

@Inherited and applied to a superclass.

If an annotation is not repeatable, call getAnnotation to locate it. For

example:

Class<?> cl = obj.getClass();

ToString ts = cl.getAnnotation(ToString.class);

if (ts != null && ts.includeName()) . . .

Note that you pass the class object for the annotation (here, ToString.class)

and you get back an object of some proxy class that implements the

ToString interface. You can then invoke the interface methods to get the

values of the annotation elements. If the annotation is not present, the

getAnnotation method returns null.

It gets a bit messy if an annotation is repeatable. If you call getAnnotation

to look up a repeatable annotation, and the annotation was actually

repeated, then you also get null. That is because the repeated annotations

were wrapped inside the container annotation.

In this case, you should call getAnnotationsByType. That call “looks

through” the container and gives you an array of the repeated annotations. If

there was just one annotation, you get it in an array of length 1. With this

method, you don’t have to worry about the container annotation.

The getAnnotations method gets all annotations (of any type) with which an

item is annotated, with repeated annotations wrapped into containers.

Listing 11.2 shows the implementation of the annotation-aware toString

method.

When a class is annotated with ToString, the method iterates over its fields

and prints the ones that are also annotated. If the includeName element is

true, then the class or field name is included in the string.

Note that the method calls itself recursively. Whenever an object belongs to

a class that isn’t annotated, its regular toString method is used and the

recursion stops.

Figure 11.2 shows how annotations are handled in this example.

.

Figure 11.2: Processing annotations at runtime

This is a simple but typical use of the runtime annotation API. Look up

classes, fields, and so on, using reflection; call getAnnotation or

getAnnotationsByType on the potentially annotated elements to retrieve the

annotations; then, invoke the methods of the annotation interfaces to obtain

the element values.

Listing 11.1 v1ch11/RuntimeAnnotationDemo.java

1 package v1ch11;

2

3 import v1ch11.runtimeAnnotations.*;

4

5 class RuntimeAnnotationDemo {

6 void main() {

7 var rect = new Rectangle(new Point(5, 10), 20, 30);

8 IO.println(ToStrings.toString(rect));

9 }

10 }

Listing 11.2 v1ch11/runtimeAnnotations/ToStrings.java

1 package v1ch11.runtimeAnnotations;

2

3 import module java.base;

4

5 public class ToStrings {

6 public static String toString(Object obj) {

7 if (obj == null) return "null";

8 Class<?> cl = obj.getClass();

9 ToString ts = cl.getAnnotation(ToString.class);

10 if (ts == null) return obj.toString();

11 var result = new StringBuilder();

12 if (ts.includeName()) result.append(cl.getName());

13 result.append("[");

14 boolean first = true;

15 for (Field f : cl.getDeclaredFields()) {

16 ts = f.getAnnotation(ToString.class);

17 if (ts != null) {

18 if (first)

19 first = false;

20 else

21 result.append(",");

22 f.setAccessible(true);

23 if (ts.includeName()) {

24 result.append(f.getName());

25 result.append("=");

26 }

27 try {

28 result.append(ToStrings.toString(f.get(obj)));

29 }

30 catch (ReflectiveOperationException ex) {

31 ex.printStackTrace();

32 }

33 }

34 }

35 result.append("]");

36 return result.toString();

37 }

38 }

java.lang.reflect.AnnotatedElement 5.0

boolean isAnnotationPresent(Class<? extends Annotation>

annotationType)

returns true if this item has an annotation of the given type.

<T extends Annotation> T getAnnotation(Class<T> annotationType)

gets the annotation of the given type, or null if this item has no such

annotation.

<T extends Annotation> T[] getAnnotationsByType(Class<T>

annotationType) 8

gets all annotations of a repeatable annotation type (see). If none are

present, an array of length 0 is returned.

Annotation[] getAnnotations()

gets all annotations present for this item, including inherited

annotations. If none are present, an array of length 0 is returned.

Annotation[] getDeclaredAnnotations()

gets all annotations declared for this item, excluding inherited

annotations. If none are present, an array of length 0 is returned.

11.5. Source-Level Annotation Processing

In the preceding section, you saw how to analyze annotations in a running

program. Another use for annotation is the automatic processing of source

files to produce more source code, configuration files, scripts, or whatever

else one might want to generate.

To show you the mechanics, I will repeat the example of generating

toString methods. However, this time, let’s generate them in Java source.

Then the methods will get compiled with the rest of the program, and they

will run at full speed instead of using reflection.

11.5.1. Annotation Processors

Annotation processing is integrated into the Java compiler. During

compilation, you can invoke annotation processors by running

javac -processor ProcessorClassName1,ProcessorClassName2,. . .

sourceFiles

The compiler locates the annotations of the source files. Each annotation

processor is executed in turn and given the annotations in which it

expressed an interest. If an annotation processor creates a new source file,

the process is repeated. Once a processing round yields no further source

files, all source files are compiled.

Note: An annotation processor can only generate new source files. It

cannot modify an existing source file.

An annotation processor implements the Processor interface, generally by

extending the AbstractProcessor class. You need to specify which

annotations your processor supports. In our case:

@SupportedAnnotationTypes("annotations.ToString")

@SupportedSourceVersion(SourceVersion.RELEASE_8)

public class ToStringAnnotationProcessor extends AbstractProcessor {

 public boolean process(Set<? extends TypeElement> annotations,

 RoundEnvironment currentRound) {

 . . .

 }

}

A processor can claim specific annotation types, wildcards such as

"com.horstmann.*" (all annotations in the com.horstmann package or any

subpackage), or even "*" (all annotations).

The process method is called once for each round, with the set of all

annotations that were found in any files during this round, and a

RoundEnvironment reference that contains information about the current

processing round.

11.5.2. The Language Model API

Use the language model API for analyzing source-level annotations. Unlike

the reflection API, which presents the virtual machine representation of

classes and methods, the language model API lets you analyze a Java

program according to the rules of the Java language.

The compiler produces a tree whose nodes are instances of classes that

implement the javax.lang.model.element.Element interface and its

subinterfaces, TypeElement, VariableElement, ExecutableElement, and so

on. These are the compile-time analogs to the Class, Field/Parameter,

Method/Constructor reflection classes.

I do not want to cover the API in detail, but here are the highlights that you

need to know for processing annotations.

The RoundEnvironment gives you a set of all elements annotated with

a particular annotation, by calling the one of the methods

Set<? extends Element> getElementsAnnotatedWith(Class<?

extends Annotation> a)

Set<? extends Element> getElementsAnnotatedWithAny (

 Set<Class<? extends Annotation>> annotations)

The second method is useful for repeated annotations.

The source-level equivalent of the AnnotatedElement interface is

AnnotatedConstruct. Use the methods

A getAnnotation(Class<A> annotationType)

A[] getAnnotationsByType(Class<A> annotationType)

to get the annotation or repeated annotations for a given annotation

class.

A TypeElement represents a class or interface. The

getEnclosedElements method yields a list of its fields and methods.

Calling getSimpleName on an Element or getQualifiedName on a

TypeElement yields a Name object that can be converted to a string

with toString.

11.5.3. Using Annotations to Generate Source Code

Let us return to our task of automatically generating toString methods. We

can’t put these methods into the original classes—annotation processors can

only produce new classes, not modify existing ones.

Therefore, we’ll add all methods into a utility class ToStrings:

public class ToStrings {

 public static String toString(Point obj) {

 Generated code

 }

 public static String toString(Rectangle obj) {

 Generated code

 }

 . . .

 public static String toString(Object obj) {

 return Objects.toString(obj);

 }

}

Since we don’t want to use reflection, we annotate accessor methods, not

fields:

@ToString

public class Rectangle {

 . . .

 @ToString(includeName=false) public Point getTopLeft() { return

topLeft; }

 @ToString public int getWidth() { return width; }

 @ToString public int getHeight() { return height; }

}

The annotation processor should then generate the following source code:

public static String toString(Rectangle obj) {

 var result = new StringBuilder();

 result.append("Rectangle");

 result.append("[");

 result.append(toString(obj.getTopLeft()));

 result.append(",");

 result.append("width=");

 result.append(toString(obj.getWidth()));

 result.append(",");

 result.append("height=");

 result.append(toString(obj.getHeight()));

 result.append("]");

 return result.toString();

}

The “boilerplate” code is in gray. Here is an outline of the method that

produces the toString method for a class with given TypeElement:

private void writeToStringMethod(PrintWriter out, TypeElement te) {

 String className = te.getQualifiedName().toString();

 Print method header and declaration of string builder

 ToString ann = te.getAnnotation(ToString.class);

 if (ann.includeName()) Print code to add class name

 for (Element c : te.getEnclosedElements()) {

 ann = c.getAnnotation(ToString.class);

 if (ann != null) {

 if (ann.includeName()) Print code to add field name

 Print code to append toString(obj.methodName())

 }

 }

 Print code to return string

}

And here is an outline of the process method of the annotation processor. It

creates a source file for the helper class and writes the class header and one

method for each annotated class.

public boolean process(Set<? extends TypeElement> annotations,

 RoundEnvironment currentRound) {

 if (annotations.size() == 0) return true;

 try {

 JavaFileObject sourceFile =

processingEnv.getFiler().createSourceFile(

 "annotations.ToStrings");

 try (var out = new PrintWriter(sourceFile.openWriter())) {

 Print code for package and class

 for (Element e :

currentRound.getElementsAnnotatedWith(ToString.class))

 if (e instanceof TypeElement te)

 writeToStringMethod(out, te);

 Print code for toString(Object)

 }

 }

 catch (IOException ex) {

 processingEnv.getMessager().printMessage(Kind.ERROR,

ex.getMessage());

 }

 return true;

}

Note that the process method is called in subsequent rounds with an empty

list of annotations. It then returns immediately so it doesn’t create the

source file twice.

Tip: To see the rounds, run the javac command with the -

XprintRounds flag:

Round 1:

 input files: {v1ch11.annotated.Point,

v1ch11.annotated.Rectangle}

 annotations: [v1ch11.sourceAnnotations.ToString]

 last round: false

Round 2:

 input files: {}

 annotations: []

 last round: true

To run the example program, first build the annotation processor, then use it

to compile the demo:

javac v1ch11/sourceAnnotations/ToStringAnnotationProcessor.java

javac -XprintRounds -processor

v1ch11.sourceAnnotations.ToStringAnnotationProcessor \

 v1ch11/annotated/*.java

java v1ch11/sourceAnnotations/SourceLevelAnnotationDemo.java

This example demonstrates how tools can harvest source file annotations to

produce other files. The generated files don’t have to be source files.

Annotation processors may choose to generate XML descriptors, property

files, shell scripts, HTML documentation, and so on.

Note: Some people have suggested using annotations to remove an

even bigger drudgery. Wouldn’t it be nice if trivial getters and

setters were generated automatically? For example, the annotation

@Property private String title;

could produce the methods

public String getTitle() { return title; }

public void setTitle(String title) { this = title; }

However, those methods need to be added to the same class. This

requires editing a source file, not just generating another file, and is

beyond the capabilities of annotation processors. It would be

possible to build another tool for this purpose, but such a tool would

go beyond the mission of annotations. An annotation is intended as

a description about a code item, not a directive for adding or

changing code.

A popular tool called Project Lombok has found a way around this

limitation. By modifying internal compiler data structures during

annotation processing, it can produce getter and setter methods. At

least for now, it works, but it is not standard Java.

Listing 11.3 v1ch11/SourceLevelAnnotationDemo.java

1 package v1ch11;

2

3 import v1ch11.annotated.*;

4 import v1ch11.sourceAnnotations.ToStrings;

5

6 class SourceLevelAnnotationDemo {

7 void main() {

8 var rect = new Rectangle(new Point(5, 10), 20, 30);

9 IO.println(ToStrings.toString(rect));

10 }

11 }

Listing 11.4
v1ch11/sourceAnnotations/ToStringAnnotationProcessor.java

1 package v1ch11.sourceAnnotations;

2

3 import module java.base;

4 import module java.compiler;

5 import module java.desktop;

6 import javax.lang.model.element.Element;

7

8 @SupportedAnnotationTypes("sourceAnnotations.ToString")

9 @SupportedSourceVersion(SourceVersion.RELEASE_21)

10 public class ToStringAnnotationProcessor extends AbstractProcessor {

11 public boolean process(Set<? extends TypeElement> annotations,

12 RoundEnvironment currentRound) {

13 if (annotations.size() == 0) return true;

14 try {

15 JavaFileObject sourceFile = processingEnv.getFiler()

16 .createSourceFile("sourceAnnotations.ToStrings");

17 try (var out = new PrintWriter(sourceFile.openWriter())) {

18 out.println("// Automatically generated by"

19 + " sourceAnnotations.ToStringAnnotationProcessor");

20 out.println("package sourceAnnotations;");

21 out.println("public class ToStrings {");

22

23 for (Element e : currentRound.getElementsAnnotatedWith(ToString.class))

24 if (e instanceof TypeElement te) writeToStringMethod(out, te);

25 out.println(" public static String toString(Object obj) {");

26 out.println(" return java.util.Objects.toString(obj);");

27 out.println(" }");

28 out.println("}");

29 }

30 }

31 catch (IOException e) {

32 processingEnv.getMessager().printMessage(Diagnostic.Kind.ERROR,

e.getMessage());

33 }

34 return true;

35 }

36

37 private void writeToStringMethod(PrintWriter out, TypeElement te) {

38 String className = te.getQualifiedName().toString();

39 out.println(" public static String toString(" + className + " obj) {");

40 ToString ann = te.getAnnotation(ToString.class);

41 out.println(" var result = new StringBuilder();");

42 if (ann.includeName()) out.println(" result.append(\"" + className + "\");");

43 out.println(" result.append(\"[\");");

44 boolean first = true;

45 for (Element c : te.getEnclosedElements()) {

46 String methodName = c.getSimpleName().toString();

47 ann = c.getAnnotation(ToString.class);

48 if (ann != null) {

49 if (first)

50 first = false;

51 else

52 out.println(" result.append(\",\");");

53 if (ann.includeName()) {

54 String fieldName = Introspector

55 .decapitalize(methodName.replaceAll("^(get|is)", ""));

56 // Turn getWidth into width, isDone into done, getURL into URL

57 out.println(" result.append(\"" + fieldName + "=" + "\");");

58 }

59 out.println(" result.append(toString(obj." + methodName + "()));");

60 }

61 }

62 out.println(" result.append(\"]\");");

63 out.println(" return result.toString();");

64 out.println(" }");

65 }

66 }

11.6. Bytecode Engineering

You have seen how annotations can be processed at runtime or at the source

code level. There is a third possibility: processing at the bytecode level.

Unless annotations are removed at the source level, they are present in the

class files. The class file format is documented at

https://docs.oracle.com/javase/specs/jvms/se21/html. The format is rather

complex, and it would be challenging to process class files without special

libraries. Since Java 24, the JDK has its own library for editing class files—

see https://openjdk.org/jeps/484.

11.6.1. Modifying Class Files

In this section, we use the class file API to add logging messages to

annotated methods. If a method is annotated with

https://docs.oracle.com/javase/specs/jvms/se21/html
https://openjdk.org/jeps/484

@LogEntry(logger=loggerName)

then we add the bytecodes for the following statement at the beginning of

the method:

System.getLogger(loggerName).log(System.Logger.Level.TRACE,

 "Entering {0}.{1}", className, methodName);

For example, if you annotate the hashCode method of the Item class as

@LogEntry(logger="com.horstmann") public int hashCode()

then a message similar to the following is printed whenever the method is

called:

Dec 03, 2025 5:58:44 PM set.Item hashCode

INFO: Entering set.Item.hashCode

To achieve this, we do the following:

1. Load the bytecodes in the class file.

2. Locate all methods.

3. For each method, check whether it has a LogEntry annotation.

4. If it does, add the bytecodes for the following instructions at the

beginning of the method:

ldc loggerName

invokestatic System.getLogger(String)

getstatic System.Logger.Level.INFO

ldc "Entering {0}.{1}"

iconst_2

anewarray

dup

iconst_0

ldc className

aastore

dup

iconst_1

ldc methodName

aastore

invokeinterface System.Logger.log(System.Logger.Level, String,

Object[])

Inserting these bytecodes sounds tricky, but the class file API library makes

it possible. I won’t describe the process of analyzing and inserting

bytecodes in detail. The important point is that the program in Listing 11.5

edits a class file and inserts a logging call at the beginning of the methods

annotated with the LogEntry annotation.

For example, here is how you add the logging instructions to Item.java in

Listing 11.6 and run the test program:

javac v1ch11/set/Item.java v1ch11/set/SetDemo.java

javac v1ch11/bytecodeAnnotations/EntryLogger.java

java v1ch11.bytecodeAnnotations.EntryLogger v1ch11/set/Item.class

java v1ch11.set.SetDemo

Try running

javap -c set.Item

before and after modifying the Item class file. You can see the inserted

instructions at the beginning of the hashCode, equals, and compareTo

methods.

public int hashCode();

 Code:

 0: ldc #42 // String com.horstmann

 2: invokestatic #48

 // Method java/lang/System.getLogger:(Ljava/lang/String;)Ljava/lang/System$Logger;

 5: getstatic #54

 // Field java/lang/System$Logger$Level.INFO:Ljava/lang/System$Logger$Level;

 8: ldc #56 // String Entering {0}.{1}

 10: iconst_2

 11: anewarray #4 // class java/lang/Object

 14: dup

 15: iconst_0

 16: ldc #58 // String set.Item

 18: aastore

 19: dup

 20: iconst_1

 21: ldc #77 // String hashCode

 23: aastore

 24: invokeinterface #65, 4 // InterfaceMethod java/lang/System$Logger.log:

 // (Ljava/lang/System$Logger$Level;Ljava/lang/String;[Ljava/lang/Object;)V

 . . .

The index values into the constant pool may be different when you try this.

The SetDemo program in Listing 11.7 inserts Item objects into a hash set.

When you run it with the modified class file, you will see the logging

messages.

Dec 03, 2025 5:58:44 PM set.Item hashCode

INFO: Entering set.Item.hashCode

Dec 03, 2025 5:58:44 PM set.Item hashCode

INFO: Entering set.Item.hashCode

Dec 03, 2025 5:58:44 PM set.Item hashCode

INFO: Entering set.Item.hashCode

Dec 03, 2025 5:58:44 PM set.Item equals

INFO: Entering set.Item.equals

[[description=Microwave, partNumber=4104], [description=Toaster,

partNumber=1279]]

Note the call to equals when we insert the same item twice.

This example shows the power of bytecode engineering. Annotations are

used to add directives to a program, and a bytecode editing tool picks up the

directives and modifies the virtual machine instructions.

Listing 11.5 v1ch11/bytecodeAnnotations/EntryLogger.java

1 package v1ch11.bytecodeAnnotations;

2

3 import module java.base;

4 import java.lang.classfile.Annotation;

5 import java.lang.classfile.Attributes;

6 import static java.lang.constant.ConstantDescs.*;

7

8 /**

9 * Adds "entering" logs to all methods of a class that have the LogEntry annotation.

10 */

11 public class EntryLogger {

12 static byte[] addLogging(byte[] classFileBytes) {

13 ClassFile cf = ClassFile.of();

14 ClassModel classModel = cf.parse(classFileBytes);

15 String className = classModel.thisClass().asInternalName().replace('/', '.');

16 MethodTransform methodTransform = (methodBuilder, me) -> {

17 switch (me) {

18 case CodeModel cm -> methodBuilder.withCode(codeBuilder -> {

19 MethodModel mm = cm.parent().get();

20 String methodName = mm.methodName().stringValue();

21 String loggerName = getLoggerName(mm);

22 addLoggingCode(codeBuilder, className, methodName, loggerName);

23 for (var e : cm.elementList())

24 codeBuilder.with(e);

25 });

26 default -> methodBuilder.accept(me);

27 }

28 };

29 ClassTransform classTransform = ClassTransform

30 .transformingMethods(EntryLogger::hasLoggingAnnotation, methodTransform);

31

32 return cf.transformClass(classModel, classTransform);

33 }

34

35 private static final String LOGENTRY_DESC = LogEntry.class.descriptorString();

36

37 private static boolean hasLoggingAnnotation(MethodModel mm) {

38 var annotations = mm.findAttribute(Attributes.runtimeVisibleAnnotations())

39 .map(RuntimeVisibleAnnotationsAttribute::annotations).orElse(List.of());

40 for (Annotation a : annotations) {

41 if (a.className().equalsString(LOGENTRY_DESC)) { return true; }

42 }

43 return false;

44 }

45

46 private static String getLoggerName(MethodModel mm) {

47 var annotations = mm.findAttribute(Attributes.runtimeVisibleAnnotations())

48 .map(RuntimeVisibleAnnotationsAttribute::annotations).orElse(List.of());

49 for (Annotation a : annotations) {

50 if (a.className().equalsString(LOGENTRY_DESC)) {

51 for (AnnotationElement e : a.elements()) {

52 if (e.name().equalsString("logger"))

53 return ((AnnotationValue.OfString) e.value()).stringValue();

54 }

55 }

56 }

57 return null;

58 }

59

60 private static void addLoggingCode(CodeBuilder cb, String className, String

methodName,

61 String loggerName) {

62 ClassDesc cdSystem = ClassDesc.of("java.lang.System");

63 ClassDesc cdLogger = ClassDesc.of("java.lang.System$Logger");

64 ClassDesc cdLevel = ClassDesc.of("java.lang.System$Logger$Level");

65 cb.ldc(loggerName)

66 .invokestatic(cdSystem, "getLogger", MethodTypeDesc.of(cdLogger, CD_String))

67 .getstatic(cdLevel, "INFO", cdLevel)

68 .ldc("Entering {0}.{1}")

69 .iconst_2()

70 .anewarray(CD_Object).dup().iconst_0().ldc(className)

71 .aastore()

72 .dup()

73 .iconst_1()

74 .ldc(methodName)

75 .aastore()

76 .invokeinterface(cdLogger, "log",

77 MethodTypeDesc.of(CD_void, cdLevel, CD_String,

CD_Object.arrayType()));

78 }

79

80 /**

81 * Adds entry logging code to the given class.

82 * @param args the name of the class file to patch

83 */

84 public static void main(String[] args) throws Exception {

85 if (args.length == 0) {

86 IO.println("USAGE: java v1ch11.bytecodeAnnotations.EntryLogger classfile");

87 System.exit(1);

88 }

89 Path path = Path.of(args[0]);

90 byte[] bytes = Files.readAllBytes(path);

91 bytes = addLogging(bytes);

92 Files.write(path, bytes);

93 }

94 }

Listing 11.6 v1ch11/set/Item.java

1 package v1ch11.set;

2

3 import module java.base;

4 import v1ch11.bytecodeAnnotations.*;

5

6 /**

7 * An item with a description and a part number.

8 */

9 public class Item {

10 private String description;

11 private int partNumber;

12

13 /**

14 * Constructs an item.

15 * @param aDescription the item's description

16 * @param aPartNumber the item's part number

17 */

18 public Item(String aDescription, int aPartNumber) {

19 description = aDescription;

20 partNumber = aPartNumber;

21 }

22

23 /**

24 * Gets the description of this item.

25 * @return the description

26 */

27 public String getDescription() {

28 return description;

29 }

30

31 public String toString() {

32 return "[description=" + description + ", partNumber=" + partNumber + "]";

33 }

34

35 @LogEntry(logger = "com.horstmann")

36 public boolean equals(Object otherObject) {

37 if (this == otherObject) return true;

38 if (otherObject == null) return false;

39 if (getClass() != otherObject.getClass()) return false;

40 var other = (Item) otherObject;

41 return Objects.equals(description, other.description)

42 && partNumber == other.partNumber;

43 }

44

45 @LogEntry(logger = "com.horstmann")

46 public int hashCode() {

47 return Objects.hash(description, partNumber);

48 }

49 }

Listing 11.7 v1ch11/set/SetDemo.java

1 package v1ch11.set;

2

3 import module java.base;

4 import module java.logging;

5

6 class SetDemo {

7 void main() {

8 Logger.getLogger("com.horstmann").setLevel(Level.FINEST);

9 var handler = new ConsoleHandler();

10 handler.setLevel(Level.FINEST);

11 Logger.getLogger("com.horstmann").addHandler(handler);

12

13 var parts = new HashSet<Item>();

14 parts.add(new Item("Toaster", 1279));

15 parts.add(new Item("Microwave", 4104));

16 parts.add(new Item("Toaster", 1279));

17 System.out.println(parts);

18 }

19 }

11.6.2. Modifying Bytecodes at Load Time

In the last section, you saw a tool that edits class files. However, it can be

cumbersome to add yet another tool into the build process. An attractive

alternative is to defer the bytecode engineering until load time, when the

class loader loads the class.

The instrumentation API has a hook for installing a bytecode transformer.

The transformer must be installed before the main method of the program is

called. You can meet this requirement by defining an agent, a library that is

loaded to monitor a program in some way. The agent code can carry out

initializations in a premain method.

Here are the steps required to build an agent:

1. Implement a class with a method

public static void premain(String arg, Instrumentation instr)

This method is called when the agent is loaded. The agent can get a

single command-line argument, which is passed in the arg parameter.

The instr parameter can be used to install various hooks.

2. Make a manifest file EntryLoggingAgent.mf that sets the Premain-

Class attribute, for example:

Premain-Class: v1ch11.bytecodeAnnotations.EntryLoggingAgent

3. Package the agent code and the manifest into a JAR file:

javac v1ch11/bytecodeAnnotations/EntryLoggingAgent.java

jar cvfm EntryLoggingAgent.jar

v1ch11/bytecodeAnnotations/EntryLoggingAgent.mf \

 v1ch11/bytecodeAnnotations/Entry*.class

To launch a Java program together with the agent, use the following

command-line options:

java -javaagent:AgentJARFile=agentArgument . . .

For example, to run the SetDemo program with the entry logging agent, call

javac v1ch11/set/*.java

java -javaagent:EntryLoggingAgent.jar=v1ch11.set.Item

v1ch11.set.SetDemo

The Item argument is the name of the class that the agent should modify.

Listing 11.8 shows the agent code. The agent installs a class file

transformer. The transformer first checks whether the class name matches

the agent argument. If so, it uses the EntryLogger class from the preceding

section to modify the bytecodes. However, the modified bytecodes are not

saved to a file. Instead, the transformer returns them for loading into the

virtual machine (see Figure 11.3). In other words, this technique carries out

“just in time” modification of the bytecodes.

.

Figure 11.3: Modifying classes at load time

Listing 11.8 v1ch11/bytecodeAnnotations/EntryLoggingAgent.java

1 package v1ch11.bytecodeAnnotations;

2

3 import module java.base;

4 import module java.instrument;

5

6 /**

7 */

8 public class EntryLoggingAgent {

9 public static void premain(final String arg, Instrumentation instr) {

10 instr.addTransformer(new ClassFileTransformer() {

11 public byte[] transform(ClassLoader loader, String className, Class<?> cl,

12 ProtectionDomain pd, byte[] data) throws IllegalClassFormatException {

13 if (!className.replace("/", ".").equals(arg)) return null;

14 return EntryLogger.addLogging(data);

15 }

16 });

17 }

18 }

In this chapter, you have learned how to

Add annotations to Java programs

Design your own annotation interfaces

Implement tools that make use of the annotations

You have seen three technologies for processing code: scripting, compiling

Java programs, and processing annotations. The first two were quite

straightforward. On the other hand, building annotation tools is undeniably

complex and not something that most developers will need to tackle. This

chapter gave you the background for understanding the inner workings of

the annotation tools you will encounter, and perhaps piqued your interest in

developing your own tools.

The following chapter discusses the Java Platform Module System, a key

feature for insuring the integrity of the Java platform.

Chapter 12 ▪ The Java Platform
Module System

An important characteristic of object-oriented programming is

encapsulation. A class declaration consists of a public interface and a

private implementation. A class can evolve by changing the implementation

without affecting its users. A module system provides the same benefits for

programming in the large. A module can make classes and packages

selectively available so that its evolution can be controlled.

Several existing Java module systems rely on class loaders to isolate

classes. However, Java 9 introduced a new system, called the Java Platform

Module System, that is supported by the Java compiler and virtual machine.

It was designed to modularize the large code base of the Java platform. You

can, if you choose, use this system to modularize your own applications.

Whether or not you use Java platform modules in your own applications,

you may be impacted by the modularized Java platform. This chapter shows

you how to declare and use Java platform modules. You will also learn how

to migrate your applications to work with the modularized Java platform

and third-party modules.

12.1. The Module Concept

In object-oriented programming, the fundamental building block is the

class. Classes provide encapsulation. Private features can only be accessed

by code that has explicit permission—namely, the methods of the class.

This makes it possible to reason about access. If a private variable has

changed, you can produce a set of all possible culprits. If you need to

modify the private representation, you know which methods are affected.

In Java, packages provide the next larger organizational grouping. A

package is a collection of classes. Packages also provide a level of

encapsulation. Any feature with package access (neither public nor private)

is accessible only from methods in the same package.

However, in large systems, this level of access control is not enough. Any

public feature (that is, a feature that is accessible outside a package) is

accessible everywhere. Suppose you want to modify or drop a rarely used

feature. Once it is public, there is no way to reason about the impact of that

change.

This is the situation that the Java platform designers faced. Over twenty

years, the JDK grew by leaps and bounds, but clearly some features are now

essentially obsolete. Everyone’s favorite example is CORBA. When was

the last time you used it? Yet, the org.omg.corba package was shipped with

every JDK until Java 10. As of Java 11, those few who still need it must add

the required JAR files to their projects.

What about java.awt? It shouldn’t be required in a server-side application,

right? Except that the class java.awt.DataFlavor is used in the

implementation of SOAP, an XML-based web services protocol.

The Java platform designers, faced with a giant hairball of code, decided

that they needed a structuring mechanism that provides more control. They

looked at existing module systems (such as OSGi) and found them

unsuitable for their problem. Instead, they designed a new system, called

the Java Platform Module System, that is now a part of the Java language

and virtual machine. That system has been used successfully to modularize

the Java API, and you can, if you so choose, use it with your own

applications.

A Java platform module consists of

A collection of packages

Optionally, resource files and other files such as native libraries

A list of the accessible packages in the module

A list of all modules on which this module depends

The Java platform enforces encapsulation and dependencies, both at

compile time and in the virtual machine.

Why should you consider using the Java Platform Module System for your

own programs instead of following the traditional approach of using JAR

files on the class path? There are two advantages.

1. Strong encapsulation: You can control which of your packages are

accessible, and you don’t have to worry about maintaining code that

you didn’t intend for public consumption.

2. Reliable configuration: You avoid common class path problems such

as duplicate or missing classes.

There are some issues that the Java Platform Module System does not

address, such as versioning of modules. There is no support for specifying

which version of a module is required, or for using multiple versions of a

module in the same program. These can be desirable features, but you must

use mechanisms other than the Java Platform Module System if you need

them.

12.2. Naming Modules

A module is a collection of packages. The package names in the module

need not be related. For example, the module java.sql contains packages

java.sql and javax.sql. As you can see from this example, it is perfectly

acceptable for the module name to be the same as a package name.

Just like a package name, a module name is made up of letters, digits,

underscores, and periods. Also, just as with package names, there is no

hierarchical relationship between modules. If you had a module

com.horstmann and another module com.horstmann.corejava, they would

be unrelated, as far as the module system is concerned.

When creating a module for use by others, it is important to ensure that its

name is globally unique. It is expected that most module names will follow

the “reverse domain name” convention, just like package names.

The easiest approach is to name a module after the top-level package that

the module provides. For example, the SLF4J logging façade has a module

org.slf4j with packages org.slf4j, org.slf4j.spi, org.slf4j.event, and

org.slf4j.helpers.

This convention prevents package name conflicts in modules. Any given

package can only be placed in one module. If your module names are

unique and your package names start with the module name, then your

package names will also be unique.

You can use shorter module names for modules that are not meant to be

used by other programmers, such as a module containing an application

program. Just to show that it can be done, I will do the same in this chapter.

Modules with what could plausibly be library code will have names such as

com.horstmann.util, and modules containing programs (with a class that has

a main method) will have catchy names such as v1ch12.hellomod.

Note: When referring to a package inside a module, you do not

specify the module name. You simply use the package name.

12.3. The Modular “Hello, World!” Program

Let us put the traditional “Hello, World!” program into a module. First, we

need to put the class into a package—the “unnamed package” cannot be

contained in a module. Here it is:

package com.horstmann.hello;

public class HelloWorld {

 public static void main(String[] args) {

 IO.println("Hello, Modular World!");

 }

}

So far, nothing has changed. To make a module v1ch12.hellomod

containing this package, you need to add a module declaration. You place it

in a file named module-info.java, located in the base directory (that is, the

same directory that contains the com directory). By convention, the name of

the base directory is the same as the module name.

v1ch12.hellomod/

└ module-info.java

 com/

 └ horstmann/

 └ hello/

 └ HelloWorld.java

The module-info.java file contains the module declaration:

module v1ch12.hellomod {

}

This module declaration is empty because the module has nothing to offer

to anyone, nor does it need anything.

Now, compile as usual:

javac v1ch12.hellomod/module-info.java \

 v1ch12.hellomod/com/horstmann/hello/HelloWorld.java

The module-info.java file doesn’t look like a Java source file, and of course

there can’t be a class with the name module-info, since class names cannot

contain hyphens. The module keyword, as well as keywords requires,

exports, and so on, that you will see in the following sections, are

“restricted keywords” that have a special meaning only in module

declarations. The file is compiled into a class file module-info.class that

contains the module definition in binary form.

To run this program as a modular application, you specify the module path,

which is similar to the class path but contains modules. You also specify the

main class in the format modulename/classname:

java --module-path v1ch12.hellomod \

 --module v1ch12.hellomod/com.horstmann.hello.HelloWorld

Instead of --module-path and --module, you can use the single-letter options

-p and -m:

java -p v1ch12.hellomod -m

v1ch12.hellomod/com.horstmann.hello.HelloWorld

Either way, the "Hello, Modular World!" greeting will appear,

demonstrating that you have successfully modularized your first

application.

Note: When you compile this module, you get a warning:

warning: [module] module name component v1ch12 should avoid

terminal digits

This warning is intended to discourage programmers from adding

version numbers to module names. You can ignore the warning, or

suppress it with an annotation:

@SuppressWarnings("module")

module v1ch12.hellomod {

}

In this one respect, the module declaration is just like a class

declaration: You can annotate it. (The annotation type must have

target ElementType.MODULE.)

12.4. Requiring Modules

Let us make a new module v1ch12.requiremod in which a program uses a

JOptionPane to show the “Hello, Modular World!” message:

package com.horstmann.hello;

import javax.swing.JOptionPane;

public class HelloWorld {

 public static void main(String[] args) {

 JOptionPane.showMessageDialog(null, "Hello, Modular World!");

 }

}

Now compilation fails with this message:

error: package javax.swing is not visible

 (package javax.swing is declared in module java.desktop,

 but module v1ch12.requiremod does not read it)

The JDK has been modularized, and the javax.swing package is now

contained in the java.desktop module. Our module needs to declare that it

relies on that module:

module v1ch12.requiremod {

 requires java.desktop;

}

It is a design goal of the module system that modules are explicit about

their requirements, so the virtual machine can ensure that all requirements

are fulfilled before starting a program.

In the preceding section, the need for explicit requirements did not arise

because we only used the java.lang and java.io packages. These packages

are included in the java.base module which is required by default.

Note that our v1ch12.requiremod module lists only its own module

requirements. It requires the java.desktop module so that it can use the

javax.swing package. The java.desktop module itself declares that it

requires three other modules, namely java.datatransfer, java.prefs, and

java.xml.

Figure 12.1 shows the module graph whose nodes are modules. The edges

of the graph (that is, the arrows joining nodes) are either declared

requirements or, when no requirement is declared, the implied requirement

of java.base.

Figure 12.1: The module graph of the Swing “Hello, Modular World”

application

You cannot have cycles in the module graph—that is, a module cannot

directly or indirectly require itself.

A module does not automatically pass on access rights to other modules. In

our example, the java.desktop module declares that it requires java.prefs,

and the java.prefs module declares that it requires java.xml. That does not

give java.desktop the right to use packages from the java.xml module. It

needs to explicitly declare that requirement. In mathematical terms, the

requires relationship is not “transitive.” Generally, this behavior is desirable

because it makes requirements explicit, but as you will see in Section 12.11,

you can relax it in some cases.

Note: The error message at the beginning of this section stated that

our v1ch12.requiremod module did not “read” the java.desktop

module. In the parlance of the Java Platform Module System,

module M reads module N in the following cases:

1. M requires N.

2. M requires a module that transitively requires N (see Section

12.11).

3. N is M or java.base.

12.5. Exporting Packages

In the preceding section, you saw that a module must require another

module if it wants to use its packages. However, that does not automatically

make all packages in the required module available. A module states which

of its packages are accessible, using the exports keyword. For example,

here is a part of the module declaration for the java.xml module:

module java.xml {

 exports javax.xml;

 exports javax.xml.catalog;

 exports javax.xml.datatype;

 exports javax.xml.namespace;

 exports javax.xml.parsers;

 . . .

}

This module makes many packages available, but hides others (such as

jdk.xml.internal) by not exporting them.

When a package is exported, its public and protected classes and interfaces,

and their public and protected members, are accessible outside the module.

(As always, protected types and members are accessible only in subclasses

and the same package).

However, a package that is not exported is not accessible outside its own

module. This is quite different from Java before modules. In the past, you

were able to use public classes from any package, even if it was not part of

the public API. For example, it was commonly recommended to use classes

such as sun.misc.BASE64Encoder or com.sun.rowset.CachedRowSetImpl

when the public API did not provide the appropriate functionality.

Nowadays, you can no longer access unexported packages from the Java

platform API since all of them are contained inside modules. As a result,

some programs will no longer run with Java 9. Of course, nobody ever

committed to keeping non-public APIs available, so this should not come as

a shock.

Let us put exports to use in a simple situation. We will prepare a module

com.horstmann.greet that exports a package, also called

com.horstmann.greet, following the convention that a module that provides

code for others should be named after the top-level package inside it. There

is also a package com.horstmann.greet.internal that we don’t export.

A public Greeter interface is in the first package.

package com.horstmann.greet;

public interface Greeter {

 static Greeter newInstance() {

 return new com.horstmann.greet.internal.GreeterImpl();

 }

 String greet(String subject);

}

The second package has a class that implements the interface. The class is

public since it is accessed in the first package.

package com.horstmann.greet.internal;

import com.horstmann.greet.Greeter;

public class GreeterImpl implements Greeter {

 public String greet(String subject) {

 return "Hello, " + subject + "!";

 }

}

The com.horstmann.greet module contains both packages but only exports

the first:

module com.horstmann.greet {

 exports com.horstmann.greet;

}

The second package is inaccessible outside the module.

We put our application into a second module, which will require the first

module:

module v1ch12.exportedpkg {

 requires com.horstmann.greet;

}

Note: The exports statement is followed by a package name,

whereas requires is followed by a module name.

Our application now uses a Greeter to obtain a greeting:

package com.horstmann.hello;

import com.horstmann.greet.Greeter;

public class HelloWorld {

 public static void main(String[] args) {

 Greeter greeter = Greeter.newInstance();

 IO.println(greeter.greet("Modular World"));

 }

}

Here is the source file structure for these two modules:

com.horstmann.greet

├ module-info.java

└ com

 └ horstmann

 └ greet

 ├ Greeter.java

 └ internal

 └ GreeterImpl.java

v1ch12.exportedpkg

├ module-info.java

└ com

 └ horstmann

 └ hello

 └ HelloWorld.java

To build this application, first compile the com.horstmann.greet module:

javac com.horstmann.greet/module-info.java \

 com.horstmann.greet/com/horstmann/greet/Greeter.java \

 com.horstmann.greet/com/horstmann/greet/internal/GreeterImpl.java

Then compile the application module with the first module on the module

path:

javac -p com.horstmann.greet v1ch12.exportedpkg/module-info.java \

 v1ch12.exportedpkg/com/horstmann/hello/HelloWorld.java

Finally, run the program with both modules on the module path:

java -p v1ch12.exportedpkg:com.horstmann.greet \

 -m v1ch12.exportedpkg/com.horstmann.hello.HelloWorld

This example demonstrates how an implementation can be hidden in a

module. The implementing class is inaccessible outside the module. Clients

use an interface and a factory method, instead of instantiating the

implementing class.

Note: In the Windows cmd shell, you have to enclose

v1ch12.exportedpkg:com.horstmann.greet in quotation marks

because the colon character has a special meaning. You also need to

use ^ instead of \ for multiline commands.

Tip: To build this application with Eclipse, make a separate project

for each module. In the v1ch12.exportedpkg project, edit the project

properties. In the Projects tab, add the com.horstmann.greet module

to the module path—see Figure 12.2.

Figure 12.2: Adding a dependent module to an Eclipse project

You have now seen the requires and exports statements that form the

backbone of the Java Platform Module System. As you can see, the module

system is conceptually simple. Modules specify what modules they need,

and which packages they offer to other modules. Section 12.13 shows a

minor variation of the exports statement.

Caution: A module does not provide a scope. You cannot have two

packages with the same name in different modules. This is true even

for hidden packages (that is, packages that are not exported.)

12.6. Modular JARs

So far, we have simply compiled modules into the directory tree of the

source code. Clearly, that is not satisfactory for deployment. Instead, a

module can be deployed by placing all its classes in a JAR file, with a

module-info.class in the root. Such a JAR file is called a modular JAR.

To create a modular JAR file, use the jar tool in the usual way. If you have

multiple packages, it is best to compile with the -d option which places

class files into a separate directory. The directory is created if it doesn’t

already exist. Then use the -C option of the jar command to change to that

directory when collecting files.

javac -d modules/com.horstmann.greet \

 com.horstmann.greet/module-info.java \

 com.horstmann.greet/com/horstmann/greet/internal/GreeterImpl.java \

 com.horstmann.greet/com/horstmann/greet/Greeter.java

jar -c -v -f com.horstmann.greet.jar -C modules/com.horstmann.greet .

If you use a build tool such as Maven, Ant, or Gradle, just keep building

your JAR file as you always do. As long as module-info.class is included,

you get a modular JAR.

Then, include the modular JAR in the module path, and the module will be

loaded.

Caution: In the past, classes of a package were sometimes

distributed over multiple JAR files. (Such a package is called a

“split package”.) This was probably never a good idea, and it is not

possible with modules.

As with regular JAR files, you can specify a main class in a modular JAR:

javac -p com.horstmann.greet.jar \

 -d modules/v1ch12.exportedpkg \

 v1ch12.exportedpkg/module-info.java \

 v1ch12.exportedpkg/com/horstmann/hello/HelloWorld.java

jar -c -v -f v1ch12.exportedpkg.jar -e com.horstmann.hello.HelloWorld

\

 -C modules/v1ch12.exportedpkg .

When you launch the program, you specify the module containing the main

class:

java -p com.horstmann.greet.jar:v1ch12.exportedpkg.jar -m

v1ch12.exportedpkg

When creating a JAR file, you can optionally specify a version number. Use

the --module-version argument, and also add the version number to the JAR

file name:

jar -c -v -f com.horstmann.greet-1.0.jar --module-version 1.0 -C

com.horstmann.greet .

As already discussed, the version number is not used by the Java Platform

Module System for resolving modules, but it can be queried by other tools

and frameworks.

Note: You can find out the version number through the reflection

API. In our example:

Optional<String> version =

Greeter.class.getModule().getDescriptor().rawVersion();

yields an Optional containing the version string "1.0".

Note: The module equivalent to a class loader is a layer. The Java

Platform Module System loads the JDK modules and application

modules into the boot layer. A program can load other modules,

using the layer API (which is not covered in this book). Such a

program may choose to take module versions into account. It is

expected that developers of programs such as Java EE application

servers will make use of the layer API to provide support for

modules.

Tip: If you want to load a module into JShell, include the JAR on

the module path and use the --add-modules option:

jshell --module-path com.horstmann.greet-1.0.jar --add-modules

com.horstmann.greet

12.7. Modules and Reflective Access

In the preceding sections, you saw that the module system enforces

encapsulation. A module can only access explicitly exported packages from

another module. In the past, it was always possible to overcome pesky

access restrictions by using reflection. As you have seen in Chapter 5,

reflection can access private members of any class.

However, in the modular world, that is no longer true. If a class is inside a

module, reflective access to non-public members will fail. Specifically,

recall how we accessed private fields:

Field f = obj.getClass().getDeclaredField("salary");

f.setAccessible(true);

double value = f.getDouble(obj);

f.setDouble(obj, value * 1.1);

The call f.setAccessible(true) succeeds unless a security manager disallows

private field access. However, it is not common to run Java applications

with security managers, and there are many libraries that use reflective

access. Typical examples are object-relational mappers, such as JPA, that

automatically persist objects in databases and libraries that convert between

objects and XML or JSON, such as JAXB and JSON-B.

If you use such a library, and you also want to use modules, you have to be

careful. To demonstrate this issue, let us place the ObjectAnalyzer class

from Chapter 5 into a module com.horstmann.util. That class has a toString

method that prints the fields of an object, using reflection.

A separate v1ch12.openpkg module contains a simple Country class:

package com.horstmann.places;

public class Country {

 private String name;

 private double area;

 public Country(String name, double area) {

 this.name = name;

 this.area = area;

 }

 // . . .

}

A short program demonstrates how to analyze a Country object:

package com.horstmann.places;

import com.horstmann.util.*;

public class Demo {

 public static void main(String[] args) throws

ReflectiveOperationException {

 var belgium = new Country("Belgium", 30510);

 var analyzer = new ObjectAnalyzer();

 IO.println(analyzer.toString(belgium));

 }

}

Now compile both modules and the Demo program:

javac com.horstmann.util/module-info.java \

 com.horstmann.util/com/horstmann/util/ObjectAnalyzer.java

javac -p com.horstmann.util v1ch12.openpkg/module-info.java \

 v1ch12.openpkg/com/horstmann/places/*.java

java -p v1ch12.openpkg:com.horstmann.util -m

v1ch12.openpkg/com.horstmann.places.Demo

The program will fail with an exception:

Exception in thread "main"

java.lang.reflect.InaccessibleObjectException:

 Unable to make field private java.lang.String

com.horstmann.places.Country.name

 accessible: module v1ch12.openpkg does not "opens

com.horstmann.places" to module

 com.horstmann.util

Of course, in pristine theory, it is wrong to violate encapsulation and poke

around in the private members of an object. But mechanisms such as object-

relational mapping or XML/JSON binding are so common that the module

system must accommodate them.

Using the opens keyword, a module can open a package, which enables

reflective access to all instances of classes in the given package. Here is

what our module has to do:

module v1ch12.openpkg {

 requires com.horstmann.util;

 opens com.horstmann.places;

}

With this change, the ObjectAnalyzer will work correctly.

A module can be declared as open, such as

open module v1ch12.openpkg {

 requires com.horstmann.util;

}

An open module grants runtime access to all of its packages, as if all

packages had been declared with exports and opens. However, only

explicitly exported packages are accessible at compile time. Open modules

combine the compile-time safety of the module system with the classic

permissive runtime behavior.

Recall from Chapter 5 that JAR files can contain, in addition to class files

and a manifest, file resources which can be loaded with the method

Class.getResourceAsStream, and now also with

Module.getResourceAsStream. If a resource is stored in a directory that

matches a package in a module, then the package must be opened to the

caller. Resources in other directories, as well as the class files and manifest,

can be read by anyone.

Note: For a more realistic example, we can convert the Country

object to XML or JSON, using the JSON-B specification. To use the

Yasson implementation of JSON-B, download the JAR files

jakarta.json-api-2.1.2.jar, jakarta.json.bind-api-3.0.0.jar, parsson-

1.1.4.jar, and yasson-3.0.3.jar from the Maven Central Repository.

Place the JAR files on the module path and run the

com.horstmann.places.Demo program in the v1ch12.openpkg2

module. When the com.horstmann.places package is opened,

conversion to JSON succeeds.

Note: It is possible that future libraries will use variable handles

instead of reflection for reading and writing fields. A VarHandle is

similar to a Field. You can use it to read or write a specific field of

any instance of a specific class. However, to obtain a VarHandle, the

library code needs a Lookup object:

public Object getFieldValue(Object obj, String fieldName,

Lookup lookup)

 throws NoSuchFieldException, IllegalAccessException {

 Class<?> cl = obj.getClass();

 Field field = cl.getDeclaredField(fieldName);

 VarHandle handle = MethodHandles.privateLookupIn (cl,

lookup)

 .unreflectVarHandle(field);

 return handle.get(obj);

}

This works provided the Lookup object is generated in the module

that has the permission to access the field. Some method in the

module simply calls MethodHandles.lookup(), which yields an

object encapsulating the access rights of the caller. In this way, one

module can give permission for accessing private members to

another module. The practical issue is how those permissions can be

given with a minimum of hassle.

12.8. Automatic Modules

You now know to put the Java Platform Module System to use. If you start

with a brand-new project in which you write all the code yourself, you can

design modules, declare module dependencies, and package your

application into modular JAR files.

However, that is an extremely uncommon scenario. Almost all projects rely

on third-party libraries. Of course, you can wait until the providers of all

libraries have turned them into modules, and then modularize your own

code.

But what if you don’t want to wait? The Java Platform Module System

provides two mechanisms for crossing the chasm that separates today’s

premodular world and fully modular applications: automatic modules and

the unnamed module.

For migration purposes, you can turn any JAR file into a module simply by

placing it onto a directory in the module path instead of the class path. A

JAR without a module-info.class on the module path is called an automatic

module. An automatic module has the following properties:

1. The module implicitly has a requires clause for all other modules.

2. All of its packages are exported and opened.

3. If there is an entry with key Automatic-Module-Name in the JAR file

manifest META-INF/MANIFEST.MF, its value becomes the module

name.

4. Otherwise the module name is obtained from the JAR file name,

dropping any trailing version number and replacing sequences of non-

alphanumeric characters with a dot.

The first two rules imply that the packages in the automatic module act as if

they were on the class path. The reason for using the module path is for the

benefit of other modules, allowing them to express dependencies on this

module.

Suppose, for example, that you are implementing a module that processes

CSV files and uses the Apache Commons CSV library. You would like to

express in your module-info.java file that your module depends on Apache

Commons CSV.

If you add commons-csv-1.9.0.jar onto the module path, then your modules

can reference the module. Its name is commons.csv since the trailing

version number -1.9.0 is removed and the non-alphanumeric character - is

replaced by a dot.

This name might be an acceptable module name because Commons CSV is

well known and it is unlikely that someone else will try to use the same

name for a different module. But it would be better if the maintainers of this

JAR file could use a name that they control, preferably the top-level

package name org.apache.commons.csv, as the module name. They just

need to add a line

Automatic-Module-Name: org.apache.commons.csv

to the META-INF/MANIFEST.MF file inside the JAR. In fact, they did just

that with commons-csv-1.10.0.jar.

Eventually, hopefully, they will turn the JAR file into a true module by

adding module-info.java with that module name. Every other module that

refers to the CSV module with that name will just continue to work.

Note: The migration plan to modules is a great social experiment,

and nobody knows whether it will end well. Before you put third-

party JARs on the module path, check whether they are modular,

and if not, whether their manifest has a module name. If not, you

can still turn the JAR into an automatic module, but be prepared to

update the module name later.

To experiment with automatic JARs, download versions 1.9.0 and 1.10.0 of

the Commons CSV library from

https://commons.apache.org/proper/commons-csv. The v2ch9.automod

module in the companion code contains a simple program that reads a CSV

file with country data:

package com.horstmann.places;

import java.io.*;

import org.apache.commons.csv.*;

public class CSVDemo {

 public static void main(String[] args) throws IOException{

 var in = new FileReader("countries.csv");

 Iterable<CSVRecord> records =

https://commons.apache.org/proper/commons-csv

CSVFormat.EXCEL.withDelimiter(';')

 .withHeader().parse(in);

 for (CSVRecord record : records) {

 String name = record.get("Name");

 double area = Double.parseDouble(record.get("Area"));

 IO.println(name + " has area " + area);

 }

 }

}

To use commons-csv-1.9.0.jar as an automatic module, we need to require it

using its file name:

@SuppressWarnings("module")

module v1ch12.automod {

 requires commons.csv;

}

For commons-csv-1.10.0.jar, use the Automatic-Module-Name from the

manifest:

requires org.apache.commons.csv

Here are the commands for compiling and running the program:

javac -p v1ch12.automod:jars/commons-csv-1.10.0.jar \

 v1ch12.automod/com/horstmann/places/CSVDemo.java \

 v1ch12.automod/module-info.java

java -p v1ch12.automod:jars/commons-csv-1.10.0.jar \

 -m v1ch12.automod/com.horstmann.places.CSVDemo

12.9. The Unnamed Module

Any class that is not on the module path is part of an unnamed module.

Technically, there may be more than one unnamed module, but all of them

together act as if they are a single module which is called the unnamed

module. As with automatic modules, the unnamed module can access all

other modules, and all of its packages are exported and opened.

However, no explicit module can access the unnamed module. (An explicit

module is a module that is neither automatic nor unnamed—that is, a

module with a module-info.class on the module path.) In other words,

explicit modules are always free from the “class path hell.”

Consider, for example, the program of the preceding section. Suppose you

put commons-csv-1.9.0.jar onto the class path instead of the module path:

java --module-path v1ch12.automod \

 --class-path jars/commons-csv-1.10.0.jar \

 -m v1ch12.automod/com.horstmann.places.CSVDemo

Now the program won’t start:

Error occurred during initialization of boot layer

java.lang.module.FindException: Module commons.csv not found,

required by v1ch12.automod

Therefore, migration to the Java Platform Module System is necessarily a

bottom-up process:

1. The Java platform itself is modularized.

2. Next, libraries are modularized, either by using automatic modules or

by turning them into explicit modules.

3. Once all libraries used by your application are modularized, you can

turn the code of your application into a module.

Note: Automatic modules can read the unnamed module, so their

dependencies can go onto the class path.

12.10. Command-Line Flags for Migration

Even if your programs do not use modules, you cannot escape the modular

world when using Java 9 and beyond. Your application code may reside on

the class path in an unnamed module, so that all packages are exported and

opened. Still, the code interacts with the Java platform, which is

modularized.

As of Java 11, compile-time encapsulation is strictly enforced. However,

before Java 16, runtime access was permitted. The default behavior was to

display a warning on the console for the first instance of each offense. As of

Java 16, reflective access at runtime is also enforced. In order to give you

time to prepare for that change, the java launcher in Java 9 through 16 had

an --illegal-access flag with four possible settings:

1. --illegal-access=permit was the Java 9 default behavior, printing a

message for the first instance of illegal access.

2. --illegal-access=warn prints a message for each illegal access.

3. --illegal-access=debug prints a message and stack trace for each illegal

access.

4. --illegal-access=deny was the Java 16 default behavior, denying all

illegal access.

The --illegal-access flag is no longer usable as of Java 17.

The --add-exports and --add-opens flags allow you to tweak legacy

applications. Consider an application that uses an internal API which is no

longer accessible, such as com.sun.rowset.CachedRowSetImpl. The best

remedy is to change the implementation. (As of Java 7, you can get a

cached row set from a RowSetProvider.) But suppose you don’t have access

to the source code.

In that case, start the application with the --add-exports flag. Specify the

module and the package that you want to export, and the module to which

you want to export the package, which in our case is the unnamed module.

java --add-exports java.sql.rowset/com.sun.rowset=ALL_UNNAMED \

 -jar MyApp.jar

Now, suppose your application uses reflection to access private fields or

methods. Reflection inside the unnamed module is OK, but it is no longer

possible to reflectively access non-public members of the Java platform

classes. For example, some libraries that dynamically generate Java classes

call the protected ClassLoader.defineClass method through reflection. If an

application uses such a library, add the flag

--add-opens java.base/java.lang=ALL-UNNAMED

When adding all those command-line options to get a legacy app to work,

you may well end up with the command line from hell. To better manage

multiple options, you can put them in one or more files specified with an @

prefix. For example,

java @options1 @options2 -jar MyProg.java

where the files options1 and options2 contain options for the java

command.

There are a few syntax rules for the options files:

Separate options with spaces, tabs, or newlines.

Use double quotes around arguments that include spaces, such as

"Program Files".

A line ending in a \ is merged with the next line.

Backslashes must be escaped, such as C:\\Users\\Fred.

Comment lines start with #.

12.11. Transitive and Static Requirements

In Section 12.4, you have seen the basic form of the requires statement. In

this section, you will see two variants that are occasionally useful.

In some situations, it can be tedious for a user of a given module to declare

all required modules. Consider, for example, the java.desktop module. It

requires three modules: java.prefs, java.datatransfer and java.xml. The

java.prefs module is only used internally. However, classes from

java.datatransfer and java.xml appear in the public API, in methods such as

java.awt.datatransfer.Clipboard java.awt.Toolkit.getSystemClipboard()

java.beans.XMLDecoder(org.xml.sax.InputSource is)

That is not something that a user of the java.desktop module should have to

think about. For that reason, the java.desktop module declares the

requirement with the transitive modifier:

module java.desktop {

 requires java.prefs;

 requires transitive java.datatransfer;

 requires transitive java.xml;

 . . .

}

Any module that declares a requirement on java.desktop now automatically

requires these two modules.

Note: Some programmers recommend that you should always use

requires transitive when a package from another module is used in

the public API. But that is not a requirement of the Java language.

Consider, for example, the java.sql module:

module java.sql {

 requires transitive java.logging;

 . . .

}

There is a single use of a package from the java.logging module in

the entire java.sql API, namely the java.sql.Driver.parentLogger

method that returns a java.util.logging.Logger. It would have been

perfectly acceptable to not declare this module requirement as

transitive. Then, those modules—and only those—who actually use

that method would need to declare that they require java.logging.

One compelling use of the requires transitive statement is an aggregator

module—a module with no packages and only transitive requirements. One

such module is the java.se module, declared like this:

module java.se {

 requires transitive java.compiler;

 requires transitive java.datatransfer;

 requires transitive java.desktop;

 . . .

 requires transitive java.sql;

 requires transitive java.sql.rowset;

 requires transitive java.xml;

 requires transitive java.xml.crypto;

}

A programmer who isn’t interested in fine-grained module dependencies

can simply require java.se and get all modules of the Java SE platform.

Finally, there is an uncommon requires static variant that declares that a

module must be present at compile time but is optional at runtime. There

are two use cases:

1. To access an annotation that is processed at compile time and declared

in a different module.

2. To use a class in a different module if it is available, and otherwise do

something else, such as:

try {

 new oracle.jdbc.driver.OracleDriver();

 . . .

}

catch (NoClassDefFoundError er) {

 Do something else

}

12.12. Importing Modules

As you have seen in Chapter 4, a variant of the import statement lets you

import all packages in a module. For example,

import module java.desktop;

is equivalent to importing more than fifty packages: java.awt, javax.swing,

and so on.

In a compact compilation unit, the java.base module is automatically

imported.

Note: Prior to Java 25, jshell imported an ad-hoc set of packages.

Now it imports the java.base module.

Of course, when importing that many packages, name clashes become more

likely. A number of sample programs in this book import the java.base and

java.desktop modules, each of which has a a List class in one of its

packages. In order to use the by far more common java.util.List without its

qualified name, a further import statement is required:

import java.util.List;

You can import an aggregator module. In particular, the statement

import module java.se;

imports all packages in the Java API. However, that only works in a

modular program when a module requires java.se. It won’t work in a

compact compilation unit.

12.13. Qualified Exporting and Opening

In this section, you will see a variant of the exports and opens statement that

narrows their scope to a specified set of modules. For example, the

java.base module contains a statement

exports sun.net to

 java.net.http,

 jdk.naming.dns;

Such a statement is called a qualified export. The listed modules can access

the exported package, but other modules cannot.

Excessive use of qualified exports can indicate a poor modular structure.

Nevertheless, they can arise when modularizing an existing code base.

Here, the sun.net package is placed inside the java.base module because

that is where it is mostly needed. However, a couple of other modules also

use that package. The Java platform designers didn’t want to make

java.base even bigger, and they didn’t want to make the internal sun.net

package generally available. In a greenfield project, one can instead design

a more modular API.

Similarly, you can restrict the opens statement to specific modules. For

example, in Section 12.7 we could have used a qualified opens statement,

like this:

module v1ch12.openpkg {

 requires com.horstmann.util;

 opens com.horstmann.places to com.horstmann.util;

}

Now the com.horstmann.places package is only opened to the

com.horstmann.util module.

12.14. Service Loading

The ServiceLoader class (see Chapter 6) provides a lightweight mechanism

for matching up service interfaces with implementations. The Java Platform

Module System makes this mechanism easier to use.

Here is a quick reminder of service loading. A service has an interface and

one or more possible implementations. Here is a simple example of an

interface:

public interface GreeterService {

 String greet(String subject);

 Locale getLocale();

}

One or more modules provide implementations, such as

public class FrenchGreeter implements GreeterService {

 public String greet(String subject) { return "Bonjour " + subject; }

 public Locale getLocale() { return Locale.FRENCH; }

}

The service consumer must pick an implementation among all offered

implementations, based on whatever criteria it deems appropriate.

ServiceLoader<GreeterService> greeterLoader =

ServiceLoader.load(GreeterService.class);

GreeterService chosenGreeter;

for (GreeterService greeter : greeterLoader) {

 if (. . .) {

 chosenGreeter = greeter;

 }

}

In the past, implementations were offered by placing text files into the

META-INF/services directory of the JAR file containing the

implementation classes. The module system provides a better approach.

Instead of text files, you can add statements to the module descriptors.

A module providing an implementation of a service adds a provides

statement that lists the service interface (which may be defined in any

module) and the implementing classes (which must be a part of this

module). Here is an example from the jdk.security.auth module:

module jdk.security.auth {

 . . .

 provides javax.security.auth.spi.LoginModule with

 com.sun.security.auth.module.Krb5LoginModule,

 com.sun.security.auth.module.UnixLoginModule,

 com.sun.security.auth.module.JndiLoginModule,

 com.sun.security.auth.module.KeyStoreLoginModule,

 com.sun.security.auth.module.LdapLoginModule,

 com.sun.security.auth.module.NTLoginModule;

}

A consuming module contains a uses statement.

module java.base {

 . . .

 uses javax.security.auth.spi.LoginModule;

}

When code in a consuming module calls

ServiceLoader.load(ServiceInterface.class), the matching provider classes

will be loaded, even though they may not be in accessible packages.

In our code example, we provide implementations for a German and French

greeter in the package com.horstmann.greetsvc.internal. The service module

exports the com.horstmann.greetsvc package, but not the package with the

implementations. The provides statement declares the service and its

implementing classes in the unexported package:

module com.horstmann.greetsvc {

 exports com.horstmann.greetsvc;

 provides com.horstmann.greetsvc.GreeterService with

 com.horstmann.greetsvc.internal.FrenchGreeter,

 com.horstmann.greetsvc.internal.GermanGreeterFactory;

}

The v1ch12.useservice module consumes the service. Using the

ServiceLoader facility, we iterate over the provided services and pick the

one matching the desired language:

package com.horstmann.hello;

import java.util.*;

import com.horstmann.greetsvc.*;

public class HelloWorld {

 public static void main(String[] args) {

 ServiceLoader<GreeterService> greeterLoader

 = ServiceLoader.load(GreeterService.class);

 String desiredLanguage = args.length > 0 ? args[0] : "de";

 GreeterService chosenGreeter = null;

 for (GreeterService greeter : greeterLoader) {

 if (greeter.getLocale().getLanguage().equals(desiredLanguage))

 chosenGreeter = greeter;

 }

 if (chosenGreeter == null)

 IO.println("No suitable greeter.");

 else

 IO.println(chosenGreeter.greet("Modular World"));

 }

}

The module declaration requires the service module and declares that the

GreeterService is being used.

module v1ch12.useservice {

 requires com.horstmann.greetsvc;

 uses com.horstmann.greetsvc.GreeterService;

}

As a result of the provides and uses declarations, the module that consumes

the service is allowed access to the module-private implementation classes.

To build and run the program, first compile the service:

javac com.horstmann.greetsvc/module-info.java \

 com.horstmann.greetsvc/com/horstmann/greetsvc/GreeterService.java

\

 com.horstmann.greetsvc/com/horstmann/greetsvc/internal/*.java

Then compile and run the consuming module:

javac -p com.horstmann.greetsvc \

 v1ch12.useservice/com/horstmann/hello/HelloWorld.java \

 v1ch12.useservice/module-info.java

java -p com.horstmann.greetsvc:v1ch12.useservice \

 -m v1ch12.useservice/com.horstmann.hello.HelloWorld

12.15. Tools for Working with Modules

This section covers the jdeps, jlink, and jmod tools that are a part of the

Java Development Kit.

The jdeps tool analyzes the dependencies of a given set of JAR files.

Suppose, for example, that you want to modularize JUnit 4. Run

jdeps -s junit-4.12.jar hamcrest-core-1.3.jar

The -s flag generates a summary output:

hamcrest-core-1.3.jar -> java.base

junit-4.12.jar -> hamcrest-core-1.3.jar

junit-4.12.jar -> java.base

junit-4.12.jar -> java.management

That tells you the module graph, as shown in Figure 12.3.

Figure 12.3: The JUnit4 Module Graph

If you omit the -s flag, you get the module summary followed by a mapping

from packages to required packages and modules. If you add the -v flag, the

listing maps classes to required packages and modules.

The --generate-module-info option produces module-info files for each

analyzed module:

jdeps --generate-module-info /tmp/junit junit-4.12.jar hamcrest-core-

1.3.jar

Note: There is also an option to generate graphical output in the

“dot” language for describing graphs. Assuming you have the dot

tool installed, run these commands:

jdeps -s -dotoutput /tmp/junit junit-4.12.jar hamcrest-core-1.3.jar

dot -Tpng /tmp/junit/summary.dot > /tmp/junit/summary.png

Then summary.png looks as in Figure 12.4.

Figure 12.4: The Dot Output of jdeps

Use the jlink tool to produce an application that executes without a separate

Java runtime. The resulting image is much smaller than the entire JDK. You

specify the modules that you want to have included and an output directory.

jlink --module-path

com.horstmann.greet.jar:v1ch12.exportedpkg.jar:$JAVA_HOME/jmods \

 --add-modules v1ch12.exportedpkg --output /tmp/hello

The output directory has a subdirectory bin with a java executable. If you

run

bin/java -m v1ch12.exportedpkg

the main method of the module’s main class is invoked.

The point of jlink is that it bundles up the minimal set of modules required

to run the application. You can list them all:

bin/java --list-modules

In this example, the output is

v1ch12.exportedpkg

com.horstmann.greet

java.base@25

All modules are included in a runtime image file lib/modules. On my

computer, that file is 29MB, whereas the runtime image of all JDK modules

takes up 133MB. The entire application takes up 55MB, a fraction of the

size of the JDK.

This can be the basis of a useful tool for packaging applications. You would

still need to produce file sets for multiple platforms and launch scripts for

the application.

Note: You can inspect the runtime image with the jimage command.

However, the format is internal to the JVM, and runtime images are

not meant to be generated or used by other tools.

Finally, the jmod tool builds and inspects the module files that are included

with the JDK. When you look into the jmods directory inside the JDK, you

will find a file with extension jmod for each module. There is no longer a

rt.jar file.

Like JAR files, these files contain class files. In addition, they can hold

native code libraries, commands, header files, configuration files, and legal

notices. The JMOD files use the ZIP format. You can inspect their contents

with any ZIP tool.

Unlike JAR files, JMOD files are only useful for linking—that is, for

producing runtime images. There is no need for you to produce JMOD files

unless you also want to bundle binary files such as native code libraries

with your modules.

You have now reached the end of Volume I of Core Java. This volume

covered the fundamentals of the Java programming language and the parts

of the standard library that you need for most programming projects. I hope

that you enjoyed your tour through the Java fundamentals and that you

found useful information along the way. For advanced topics, such as the

stream library, file input and output, networking, security,

internationalization, user interfaces, and graphics programming, please turn

to Volume II.

Appendix

This appendix lists all keywords and keyword-like words of the Java

language. A “restricted keyword” is a keyword only in a module

declaration, and otherwise an identifier. A “restricted identifier” is an

identifier unless it is used in certain positions. For example, var is always an

identifier unless it is used where a type is expected. The symbols null, false,

and true are not keywords but literals.

Table : Java Keywords

Keyword Meaning Type
See

Chapter

abstract
An abstract class or

method
Keyword 5

Keyword Meaning Type
See

Chapter

assert
Used to locate internal

program error
Keyword 7

boolean The Boolean type Keyword 3

break
Breaks out of a switch

or loop
Keyword 3

byte The 8-bit integer type Keyword 3

case A case of a switch Keyword 3

catch

The clause of a try

block catching an

exception

Keyword 7

Keyword Meaning Type
See

Chapter

char
The type for UTF-16

code units
Keyword 3

class Defines a class type Keyword 4

const Not used Keyword

continue
Continues at the end

of a loop
Keyword 3

default

The default clause of a

switch, or a default

method in an interface

Keyword 3, 6

Keyword Meaning Type
See

Chapter

do
The top of a do/while

loop
Keyword 3

double
The double-precision

floating-number type
Keyword 3

else
The else clause of an

if statement
Keyword 3

enum An enumerated type Keyword 3

exports
Exports a package of a

module

Restricted

keyword
12

Keyword Meaning Type
See

Chapter

extends

Defines the parent

class of a class, or an

upper bound of a

wildcard

Keyword 4

false
One of the two

Boolean values
Literal 3

final

A constant, or a class

or method that cannot

be overridden

Keyword 5

Keyword Meaning Type
See

Chapter

finally

The part of a try block

that is always

executed

Keyword 7

float
The single-precision

floating-point type
Keyword 3

for A loop type Keyword 3

goto Not used Keyword

if
A conditional

statement
Keyword 3

Keyword Meaning Type
See

Chapter

implements

Defines the

interface(s) that a class

implements

Keyword 6

import Imports a package Keyword 4

instanceof
Tests if an object is an

instance of a class
Keyword 5

int The 32-bit integer type Keyword 3

interface

An abstract type with

methods that a class

can implement

Keyword 6

Keyword Meaning Type
See

Chapter

long
The 64-bit long

integer type
Keyword 3

native

A method

implemented by the

host system

Keyword
13 (Vol.

II)

new
Allocates a new object

or array
Keyword 3

non-sealed

A subtype of a sealed

type of which arbitrary

subtypes may be

formed

Keyword 5

Keyword Meaning Type
See

Chapter

null A null reference Literal 3

module Declares a module
Restricted

keyword
12

open
Modifies a module

declaration

Restricted

keyword
12

opens
Opens a package of a

module

Restricted

keyword
12

package A package of classes Keyword 4

Keyword Meaning Type
See

Chapter

permits

Introduces a list of

permitted subtypes of

a sealed type

Restricted

identifier
3

private

A feature that is

accessible only by

methods of this class

Keyword 4

Keyword Meaning Type
See

Chapter

protected

A feature that is

accessible only by

methods of this class,

its children, and other

classes in the same

package

Keyword 5

provides
Indicates that a

module uses a service

Restricted

keyword
12

public

A feature that is

accessible by methods

of all classes

Keyword 4

Keyword Meaning Type
See

Chapter

record

Declares a class with a

given set of final

instance variables

Restricted

identifier
4

return
Returns from a

method
Keyword 3

sealed

A type with a

controlled set of direct

subtypes

Restricted

identifier
5

short The 16-bit integer type Keyword 3

Keyword Meaning Type
See

Chapter

static

A feature that is

unique to a class or

interface, not to

instances of a class

Keyword 3, 6

strictfp

Use strict rules for

floating-point

computations

(obsolete)

Keyword 2

Keyword Meaning Type
See

Chapter

super

The superclass object

or constructor, or a

lower bound in a

wildcard

Keyword 5

switch
A selection statement

or expression
Keyword 3

synchronized

A method or code

block that is atomic to

a thread

Keyword 12

Keyword Meaning Type
See

Chapter

this

The implicit argument

of a method, or a

constructor of this

class

Keyword 4

throw Throws an exception Keyword 7

throws
The exceptions that a

method can throw
Keyword 7

to
A part of an exports or

opens declaration

Restricted

keyword
12

Keyword Meaning Type
See

Chapter

transient
Marks data that should

not be persistent
Keyword

2 (Vol.

II)

transitive
Modifies a requires

declaration

Restricted

keyword
12

true
One of the two

Boolean values
Literal 3

try
A block of code that

traps exceptions
Keyword 7

uses
Indicates that a

module uses a service

Restricted

keyword
12

Keyword Meaning Type
See

Chapter

var
Declares a variable

whose type is inferred

Restricted

identifier
3

void
Denotes a method that

returns no value
Keyword 3

volatile

Ensures that a field is

coherently accessed

by multiple threads

Keyword 12

when
Introduces a guard of

a pattern

Restricted

keyword
5

while A loop Keyword 3

Keyword Meaning Type
See

Chapter

with

Defines the service

class in a provides

statement

Restricted

keyword
12

yield
Yields the value of a

switch expression

Restricted

identifier
3

_

(underscore)

An unnamed variable

or pattern (preview)
Keyword 5

Index

Symbols
! operator 3.5.7, 3.5.11

!= operator 3.5.7, 3.5.11, 3.8.4

(number sign)

in JavaDoc hyperlinks 4.10.7

printf flag 3.7.2

$ (dollar sign)

delimiter, for inner classes 6.3.3

in variable names 3.4.1

printf flag 3.7.2

% (percent sign)

arithmetic operator 3.5.1, 3.5.11

conversion character 3.7.2

🍺

🍺 3.3.4

“for each” loop 3.10.3

for array lists 5.3.2

for collections 9.1.3, 10.6.8

for multidimensional arrays 3.10.7

“Has–a” relationship 4.1.4

“Is–a” relationship 4.1.4, 5.1.5, 5.11

“Uses–a” relationship 4.1.4

& (ampersand)

bitwise operator 3.5.10, 3.5.11

in bounding types 8.1.5

in reference parameters (C++) 4.5

&& operator 3.5.7, 3.5.11

> (right angle bracket)

in shell syntax 7.6

relational operator 3.5.7, 3.5.11

>& (shell syntax) 7.6

>>, >>> operators 3.5.10, 3.5.11

>= operator 3.5.7, 3.5.11

< (left angle bracket)

printf flag 3.7.2

relational operator 3.5.7, 3.5.11

<< operator 3.5.10, 3.5.11

<. . .> (angle brackets) 5.3.1, 8.1.3

<= operator 3.5.7, 3.5.11

""". . .""" 3.6.10

". . ." 3.1

', " (single, double quote), escape sequences for

3.3.3

((left parenthesis) 3.7.2

printf flag 3.7.2

(. . .) (parentheses)

empty, in method calls 3.1

for casts 3.5.4, 3.5.11, 5.1.8

for operator hierarchy 3.5.11

* (asterisk)

arithmetic operator 3.5.1, 3.5.11

for annotation processors 11.5.1

in class path 4.8.9

in imports 4.8.3

+ (plus sign)

arithmetic operator 3.5.1, 3.5.3, 3.5.11

for objects and strings 3.6.1, 5.2.5

printf flag 3.7.2

++ operator 3.5.6, 3.5.11

, (comma)

operator (C++) 3.5.11

printf flag 3.7.2

- (minus sign)

arithmetic operator 3.5.1, 3.5.11

printf flag 3.7.2

-> operator

in lambda expressions 6.2.2

in switch expressions 3.8.5

-- operator 3.5.6, 3.5.11

. (period) 4.8.9

... (ellipsis) 5.5

.class extension 3.1

.exe extension 4.9.3

/ (slash) 3.5.1, 3.5.11

/* . . . */ comments 3.2

/** . . . */ (Javadoc comment delimiters) 3.2,

4.10, 4.10.1

// comments 3.2

0, 0b, 0B, 0x, 0X prefixes (in integers) 3.3.1

0, printf flag 3.7.2

2> (shell syntax) 7.6

: (colon)

in assertions 7.4.1

in class path (UNIX) 4.8.9

inheritance token (C++) 5.1.1

:: (C++ operator) 6.2.5

; (semicolon)

in class path (Windows) 4.8.9

in statements 3.1, 3.4.1

= operator 3.4.2, 3.5.5

== operator 3.5.7, 3.5.11

for class objects 5.10.1

for enumerated types 5.7

for floating-point numbers 3.8.4

for identity hash maps 9.4.7

for strings 3.6.5

wrappers and 5.4

? (question mark)

for wildcard types 8.4.1

?: operator 3.5.8, 3.5.11

with pattern matching 5.1.9

@ (at sign) 4.10.1

in java command-line options 12.10

@author

JavaDoc tag 4.10.8

@Deprecated annotation 11.3, 11.3.1

@deprecated JavaDoc tag 11.3.1

@Documented annotation 11.3, 11.3.2

@FunctionalInterface annotation 6.2.9, 11.3,

11.3.1, 11.3.2

@Generated annotation 11.3, 11.3.1

@index

JavaDoc tag 4.10.8

@Inherited annotation 11.3, 11.3.2

@link

JavaDoc tag 4.10.7

@LogEntry annotation 11.6.1

@NonNull annotation 11.1.4

@Override annotation 5.2.3, 11.3, 11.3.1

@param

JavaDoc tag 4.10.3

@Persistent annotation 11.3.2

@Property annotation 11.5.3

@Repeatable annotation 11.3, 11.3.2

@RepeatedTest annotation 11.1.1

@Retention annotation 11.2, 11.3

@return

JavaDoc tag 4.10.3

@SafeVarargs annotation 8.5.4, 11.3, 11.3.1

@see

JavaDoc tag 4.10.7

@Serial annotation 11.3, 11.3.1

@since

JavaDoc tag 4.10.8

@SuppressWarnings annotation 3.8.5, 5.3.3,

8.2.4, 8.5.4, 8.5.9, 11.3, 11.3.1, 11.3.2

@Target annotation 11.2, 11.3

@Test annotation 11.1, 11.2

@throws

JavaDoc tag 4.10.3

@version

JavaDoc tag 4.10.8, 4.10.10

[. . .] (brackets)

empty, in generics 8.1.4

for arrays 3.10.2

\ (backslash)

escape sequence for 3.3.3

in text blocks 3.6.10

\b (backslash character literal) 3.3.3

\f (form feed character literal) 3.3.3

\n (newline character literal) 3.3.3, 3.6.10

\r (carriage return character literal) 3.3.3

\s (space character literal) 3.3.3, 3.6.10

\t (tab character literal) 3.3.3

\u (Unicode character literal) 3.3.3

^ (caret) 3.5.10, 3.5.11, 6.2.2

_ (underscore)

as a reserved word Appendix

delimiter, in number literals 3.3.1

{. . .} (braces)

double, in inner classes 6.3.6

for blocks 3.1, 3.8.1

for enumerated type 3.4.4

in annotation elements 11.1.1

in lambda expressions 6.2.2

| operator 3.5.10, 3.5.11

|| operator 3.5.7, 3.5.11

~ operator 3.5.10, 3.5.11

A
A, a conversion characters 3.7.2

Abstract classes 5.6

extending 5.6

interfaces and 6.1.1, 6.1.3

no instantiating for 5.6

object variables of 5.6

abstract keyword 5.6, Appendix

Abstract methods 5.6

in functional interfaces 6.2.3

AbstractCollection class 6.1.5, 9.1.4, 9.3.1

AbstractProcessor class 11.5.1

acceptEither method 10.7.2

Access modifiers

checking 5.10.4

final 3.4.3, 4.3.10, 5.1.7, 6.1.1, 6.3.5,

10.5.10

private 4.3.2, 4.8.8, 6.3.1

protected 5.1.10, 5.11, 6.1.9

public 3.1, 4.3.2, 4.8.8, 6.1.1

public static final 6.1.2

redundant 6.1.2

static 4.4

accessFlags method

of Constructor 5.11

of Field 5.11

of Method 5.11

AccessibleObject class 5.11

canAccess method 5.11

setAccessible method 5.10.5, 5.11

trySetAccessible method 5.11

Accessor methods 4.2.3, 4.3.7, 8.4.1

accumulate method

of LongAccumulator 10.5.11

accumulateAndGet method

of AtomicXxx 10.5.11

ActionListener interface

actionPerformed method 6.1.7, 6.2.1, 6.3.1,

6.3.3, 6.3.6

implementing 6.2.3

ActiveX 1.2.5

add method

of ArrayList 5.3.1, 5.11

of BigDecimal 3.10.8

of BigInteger 3.10.8

of BlockingQueue 10.6.1

of Collection 9.1.2, 9.1.4, 9.2, 9.7.6

of GregorianCalendar 4.2.3

of HashSet 9.3.3

of List 9.2, 9.7.6

of ListIterator 9.3.1, 9.7.6

of LongAdder 10.5.11

of Queue 9.7.6

of Set 9.2

addAll method

of ArrayList 8.1.2

of Collection 9.1.4, 9.7.6

of Collections 9.7.6

of List 9.7.6

addExact method 3.5.2

addFirst method

of LinkedList 9.7.6

of SequencedCollection 9.7.6

Addition 3.5.1, 3.5.11

for different numeric types 3.5.3

for objects and strings 3.6.1, 5.2.5

addLast method

of LinkedList 9.7.6

of SequencedCollection 9.7.6

addSuppressed method 7.2.5

of Throwable 7.6

Adobe Flash 1.3

Agent code 11.6.2

Aggregation 4.1.4

Algorithms 4.1

for binary search 9.6.3

for shuffling 9.6.2

for sorting 9.6.2

QuickSort 3.10.6, 9.6.2

simple, in the Java Collections Framework

9.6.4

writing 9.6.7

Algorithms + Data Structures = Programs

(Wirth) 4.1

Algorithms in C++ (Sedgewick) 9.6.2

allOf method

of CompletableFuture 10.7.2

of EnumSet 9.7.6

allProcesses method 10.8.3

of ProcessHandle 10.8.3

Amazon 2.1

and method

of BitSet 9.7.6

andNot method

of BitSet 9.7.6

Andreessen, Mark 1.4

Android 1.5, 10.7.3

AnnotatedConstruct interface 11.5.2

AnnotatedElement interface 11.4, 11.6.2

getAnnotation method 11.6.2

getAnnotation, getAnnotationsByType

methods 11.4

getAnnotations method 11.6.2

getAnnotationsByType method 11.6.2

getDeclaredAnnotations method 11.6.2

isAnnotationPresent method 11.6.2

Annotation interface 11.6.2

annotationType method 11.6.2

equals method 11.6.2

extending 11.2

hashCode method 11.6.2

toString method 11.6.2

Annotation interfaces 11.2

Annotation processors 11.5.1

at bytecode level 11.6

Annotations 8.2.4

accessing 11.2

applicability of 11.3

container 11.3.2, 11.4

declaration 11.1.3

documented 11.3, 11.3.2

generating source code with 11.5.3

inherited 11.3, 11.3.2, 11.4

key/value pairs in 11.1.1, 11.2

meta 11.2, 11.3.2

modifiers and 11.1.4

multiple 11.1.2

processing

at runtime 11.4

source-level 11.5

repeatable 11.1.2, 11.3, 11.3.2, 11.4

standard 11.3

type use 11.1.4

annotationType method

of Annotation 11.6.2

Anonymous arrays 3.10.1

Anonymous inner classes 6.3.6

Antisymmetry rule 6.1.1

anyOf method 10.7.2

of CompletableFuture 10.7.2

Apache

Commons CSV library 12.8

append method

of StringBuilder 3.6.9, 3.10.8

appendCodePoint method

of StringBuilder 3.10.8

Applets 1.3, 1.5

running in a browser 1.3

Application Programming Interfaces (APIs),

online documentation for 3.6.7, 3.6.8

Applications

compiling/launching from the command line

2.2, 3.1

debugging 2.2, 7.1

executing

without a separate Java runtime 12.15

extensible 5.1.6

for different Java releases 4.9.4

localizing 4.2.1, 5.10.3

managing in JVM 7.6

monitoring 11.6.2

responsive 10.7.3

terminating 4.3.5

testing 7.4

applyToEither method 10.7.2

Arguments 3.1

string 3.1

variable number of 5.5

arguments method

of ProcessHandle.Info 10.8.3

Arguments. See Parameters

Arithmetic operators 3.5.1

autoboxing with 5.4

combining with assignment 3.5.5

precedence of 3.5.11

Array class 5.10.6, 5.11

get method 5.11

getLength method 5.10.6, 5.11

getXxx method 5.11

newInstance method 5.10.6, 5.11

set method 5.11

setXxx method 5.11

Array lists 9.3.2

anonymous 6.3.6

capacity of 5.3.1

elements of

accessing 5.3.2

adding 5.3.1, 5.3.2

removing 5.3.2

traversing 5.3.2

generic 5.3

raw vs. typed 5.3.3

Array variables 3.10.1

ArrayBlockingQueue class 10.6.1, 10.8.3

Constructor 10.8.3

ArrayDeque class 9.3.5, 9.7.6

as a concrete collection type 9.3

Constructor 9.7.6

ArrayIndexOutOfBoundsException class

3.10.2, 7.1.1, 7.1.2

ArrayList class 3.10.3, 5.3, 5.11, 8.1, 9.3.1

add method 5.3.1, 5.11

addAll method 8.1.2

ArrayList<E> method 5.11

as a concrete collection type 9.3

declaring with var 5.3.1

ensureCapacity method 5.3.1, 5.11

get method 5.11

get, set methods 5.3.2

iterating over 9.1.3

remove method 5.3.2, 5.11

removeIf method 6.2.4

set method 5.11

size method 5.11

size, trimToSize methods 5.3.1

synchronized 10.6.8

toArray method 8.5.7

trimToSize method 5.11

ArrayList<E> method

of ArrayList 5.11

Arrays 3.10.2

annotating 11.1.4

anonymous 3.10.1

circular 9.1.1

cloning 6.1.9

converting to collections 9.6.6

copying 3.10.4

on write 10.6.6

creating 3.10.1

elements of

computing in parallel 10.6.7

numbering 3.10.2

remembering types of 5.1.5

removing from the middle 9.3.1

traversing 3.10.3, 3.10.7

equality testing for 5.2.3

generic methods for 5.10.6

hash codes of 5.2.4

in command-line arguments 3.10.5

initializing 3.10.1, 3.10.2

length of 3.10.2

equal to 0 3.10.1

increasing 3.10.4

multidimensional 3.10.7, 3.10.8, 5.2.3,

5.2.5

not of generic types 6.2.6, 8.3, 8.5.3, 8.5.7

of integers 5.2.5

of subclass/superclass references 5.1.5

of wildcard types 8.5.3

out-of-bounds access in 7.1.1

parallel operations on 10.6.7

printing 3.10.7, 5.2.5

ragged 3.10.8

size of 5.3.1, 5.10.6

setting at runtime 5.3

sorting 3.10.6, 6.1.1, 10.6.7

Arrays class 3.10.8, 5.11, 6.5.3, 9.7.6

asList method 9.7.6

binarySearch method 6.5.2, 9.7.6

copyOf method 3.10.4, 3.10.8, 5.10.6

copyOfRange method 3.10.8

deepEquals method 5.2.3

deepToString method 3.10.7, 5.2.5

equals method 3.10.8, 5.2.3, 5.11

fill method 3.10.8

hashCode method 5.2.4, 5.11

parallelXxx methods 10.6.7

sort method 3.10.6, 3.10.8, 6.1.1, 6.2.1,

6.2.3, 6.5.3

toString method 3.10.3, 3.10.8

ArrayStoreException class 5.1.5, 8.3, 8.5.3,

8.5.4

arrayType method 5.10.6

of Class 5.11

ASCII 3.3.4

asIterator method 9.7.2

of Enumeration 9.7.6

asList method

of Arrays 9.7.6

assert keyword 7.4, Appendix

Assertions 7.4

checking 11.1.4

checking parameters with 7.4.3

defined 7.4

documenting assumptions with 7.4.4

enabling/disabling 7.4.1, 7.4.2

Assignment 3.4.2, 3.5.5

Asynchronous computations 10.7

Asynchronous methods 10.4.1

AsyncTask class (Android) 10.7.3

atan, atan2 methods

of Math 3.5.2

Atomic operations 10.5.11

client-side locking for 10.5.7

in concurrent hash maps 10.6.3

performance of 10.5.11

AtomicType classes 10.5.11

@author 4.10.10

Autoboxing 5.4

AutoCloseable interface 7.2.5

close method 7.2.5

await method 10.2.3

of Condition 10.5.4, 10.8.3

awaitTermination method

of ExecutorService 10.8.3

Azul 2.1

B
B, b conversion characters 3.7.2

Base classes. See Superclasses

BASE64Encoder class 12.5

Basic multilingual planes 3.3.4

Batch files 4.8.10

Beans class 4.9.1

beep method

of Toolkit 6.5.3

BiConsumer interface 6.2.9

BiFunction interface 6.2.4, 6.2.9

BIG-5 3.3.4

BigDecimal class 3.9, 3.10.8

add method 3.10.8

compareTo method 3.10.8

Constructor 3.10.8

divide method 3.10.8

multiply method 3.10.8

subtract method 3.10.8

BigInteger class 3.9, 3.10.8

add method 3.10.8

compareTo method 3.10.8

divide method 3.10.8

mod method 3.10.8

multiply method 3.10.8

pow method 3.10.8

sqrt method 3.10.8

subtract method 3.10.8

valueOf method 3.9, 3.10.8

Binary search 9.6.3

BinaryOperator interface 6.2.9

binarySearch method

of Arrays 6.5.2, 9.7.6

of Collections 9.6.3, 9.7.6

BiPredicate interface 6.2.9

Bit masks 3.5.10

Bit sets 9.7.6

BitSet class 9.1, 9.7.6

and method 9.7.6

andNot method 9.7.6

cardinality method 9.7.6

clear method 9.7.6

Constructor 9.7.6

get method 9.7.6

length method 9.7.6

or method 9.7.6

set method 9.7.6

size method 9.7.6

stream method 9.7.6

xor method 9.7.6

Bitwise operators 3.5.10, 3.5.11

Blank lines, printing 3.1

Blocking queues 10.6.1

BlockingDeque interface 10.8.3

offerFirst method 10.8.3

offerLast method 10.8.3

pollFirst method 10.8.3

pollLast method 10.8.3

putFirst method 10.8.3

putLast method 10.8.3

takeFirst method 10.8.3

takeLast method 10.8.3

BlockingQueue interface 10.8.3

add, element, peek, remove methods 10.6.1

offer method 10.8.3

offer, poll, put, take methods 10.6.1

poll method 10.8.3

put method 10.8.3

take method 10.8.3

Blocks 3.1, 3.8.1

nested 3.8.1

synchronized 10.5.7

Boolean class 5.11, 9.7.6

converting from boolean 5.4

getBoolean method 9.7.6

hashCode method 5.11

boolean operators 3.5.7, 3.5.11

boolean type 3.3.5, Appendix

default initialization of 4.6.2

formatting output for 3.7.2

Bounded collections 9.1.1

Brace style

Kernighan and Ritchie 3.1

break keyword 3.8.5, 3.8.6, Appendix

labeled/unlabeled 3.8.6

not allowed in switch expressions 3.8.5

Bridge methods 8.2.3, 8.5.10

Buckets (of hash tables) 9.3.3

Bulk operations 9.6.5

Byte class 5.11

converting from byte 5.4

hashCode method 5.11

toUnsignedInt method 3.3.1

byte type 3.3.1, Appendix

Bytecode files 3.1

Bytecodes

engineering 11.6

at load time 11.6.2

C
C

assert macro in 7.4.1

function pointers in 5.10.7

integer types in 1.2.7, 3.3.1

C# 1.2.11

polymorphism in 5.1.7

useful features of 1.4

C++

#include in 4.8.3

>> operator in 3.5.10

, (comma) operator in 3.5.11

algorithms in 9.6.1

arrays in 3.10.4, 3.10.8

boolean values in 3.3.5

classes in 6.3

dynamic binding in 5.1.3

dynamic casts in 5.1.8

exceptions in 7.1.1, 7.1.2, 7.1.3

for loop in 3.8.4

function pointers in 5.10.7

inheritance in 5.1.1, 5.1.4, 6.1.3

integer types in 1.2.7, 3.3.1

iterators as parameters in 9.7.2

methods in

accessor 4.2.3

default 6.1.6

destructor 4.6.3

namespace directive in 4.8.3

NULL pointer in 4.2.1

object pointers in 4.2.1

operator overloading in 3.9

passing parameters in 4.5

performance of, compared to Java 9.7.6

polymorphism in 5.1.7

protected modifier in 5.1.10

pure virtual functions (= 0) in 5.6

range-based for loop in 3.8

references in 4.2.1

Standard Template Library in 9.1, 9.1.3

syntax of 1.2.1

templates in 1.4, 8.2.1

type parameters in 8.1.4

using directive in 4.8.3

variables in

redefining in nested blocks 3.8.1

vector template in 5.3.1

C, c conversion characters 3.7.2

CachedRowSetImpl class 12.5

Calendar class 4.2.2

get/setTime methods 5.1.7

Calendars

displaying 4.2.3

vs. time measurement 4.2.2

Call by reference 4.5

Call by value 4.5

call method

of Callable 10.8.3

of ScopedValue.Carrier 10.4.5

Callable interface 10.4.3, 10.8.3

call method 10.4.1, 10.8.3

wrapper for 10.4.1

Callables 10.4.1

Callbacks 6.1.7

CamelCase 3.1

canAccess method

of AccessibleObject 5.11

Cancel 10.4.2

cancel method 10.4.1

of Future 10.7.3, 10.8.3

CancellationException class 10.7.3

cardinality method

of BitSet 9.7.6

Carriage return character 3.3.3

case keyword 3.5.9, 3.8.5, Appendix

cast method

of Class 8.6.1, 8.6.4

Casts 3.5.4, 5.1.8

annotating 11.1.4

bad 7.1.1

checking before attempting 5.1.8

catch keyword 7.2, Appendix

annotating parameters of 11.1.3

ceiling method

of NavigableSet 9.7.6

char type 3.3.3, Appendix

Character class 5.11

converting from char 5.4

hashCode method 5.11

isJavaIdentifierXxx methods 3.4.1

Characters

escape sequences for 3.3.3

exotic 3.3.4

formatting output for 3.7.2

charAt method 3.6.3

of String 3.10.8

CharSequence interface 3.6.7, 6.1.3

Checked exceptions 5.10.1, 5.10.2

applicability of 7.3

declaring 7.1.2

suppressing with generics 8.5.9

Checked views 9.5.6

checkedCollection method

of Collections 9.7.6

checkedList method

of Collections 9.7.6

checkedMap method

of Collections 9.7.6

checkedNavigableMap method

of Collections 9.7.6

checkedNavigableSet method

of Collections 9.7.6

checkedQueue method

of Collections 9.7.6

checkedSet method

of Collections 9.7.6

checkedSortedMap method

of Collections 9.7.6

checkedSortedSet method

of Collections 9.7.6

Checker Framework 11.1.4

checkFromIndexSize, checkFromToIndex,

checkIndex methods

of Objects 7.3

Child classes. See Subclasses

children method

of ProcessHandle 10.8.3

ChronoLocalDate 8.4.2

Church, Alonzo 6.2.2

Circular arrays 9.1.1

Clark, Jim 1.4

Class class 5.10.1, 5.11, 8.6.4

arrayType method 5.10.6, 5.11

cast method 8.6.1, 8.6.4

forName method 5.10.1, 5.11

getClass method 5.10.1

getComponentType method 5.10.6, 5.11

getConstructor method 5.11, 8.6.4

getConstructors method 5.10.4, 5.11

getDeclaredConstructor method 8.6.4

getDeclaredConstructors method 5.10.4,

5.11

getDeclaredField method 5.11

getDeclaredFields method 5.11

getDeclaredMethods method 5.10.4, 5.10.7,

5.11

getEnumConstants method 8.6.1, 8.6.4

getField method 5.11

getFields method 5.11

getFields, getDeclaredFields methods

5.10.4, 5.10.5

getGenericInterfaces method 8.6.4

getGenericSuperclass method 8.6.4

getImage method 5.10.3

getMethod method 5.10.7

getMethods method 5.10.4, 5.11

getName method 5.10.1, 5.11

getPackageName method 5.11

getRecordComponents method 5.11

getResource method 5.11

getResource, getResourceAsStream methods

5.10.3

getResourceAsStream method 5.11, 12.7

getSuperclass method 5.11, 8.6.4

getTypeParameters method 8.6.4

isArray method 5.11

isEnum method 5.11

isInterface method 5.11

isRecord method 5.11

newInstance method 5.10.1, 8.6.1

Class constants 3.4.3

Class declarations

annotations in 11.1.3, 11.3.2

Class diagrams 4.1.4

Class file API 11.6

Class files 4.8.6, 4.8.9

compiling 3.1

format of 11.6

locating 4.8.9

modifying 11.6.1

transformers for 11.6.2

class keyword Appendix

implicitly declared 4.4.5

Class literals

no annotations for 11.1.4

Class loaders 6.5.2, 7.4.1, 7.4.2

Class path 4.8.9, 4.8.10

Class wins rule 6.1.6

Class<T> parameters 8.6.2

ClassCastException class 5.1.8, 5.10.6, 6.1.1,

8.3, 8.5.7, 8.6.1, 9.5.6

Classes 4.1.1, 5.1

abstract 5.6, 6.1.1, 6.1.3

access privileges for 4.3.8

adding to packages 4.8.6

capabilities of 5.10.4

companion 6.1.4, 6.1.5

constructors for 4.3.2

defining 4.3

at runtime 6.5.1

deprecated 11.3, 11.3.1

designing 4.1.3, 4.11

documentation comments for 4.10.1, 4.10.7

encapsulation of 4.1.1, 4.1.2, 4.3.7, 12

extending 4.1.1

final 5.1.7, 6.1.9

generic 5.3, 5.3.1, 8.1.3, 8.3, 8.5.6, 8.6.1,

8.6.3

immutable 4.3.10, 4.7.1, 5.11

implementing multiple interfaces 6.1.2,

6.1.3

importing 4.8.3

inner 6.3

instances of 4.1.1, 4.2.1

legacy 4.7.1

loading 7.6

names of 4.8.2, 4.11

full package 4.8.3

nested 11.1.4

number of basic types in 4.11

objects of, at runtime 5.10.5

package scope of 4.8.8

parameters in 4.3.6

predefined 4.2

private methods in 4.3.9

protected 5.1.10

public 4.8.3, 4.10.1

relationships between 4.1.4

sealed 5.8

sharing, among programs 4.8.9

wrapper 5.4

ClassLoader class 7.6

clearAssertionStatus method 7.6

setClassAssertionStatus method 7.6

setDefaultAssertionStatus method 7.6

setPackageAssertionStatus method 7.6

CLASSPATH 4.8.10

clear method

of BitSet 9.7.6

of Collection 9.1.4, 9.7.6

clearAssertionStatus method

of ClassLoader 7.6

Client-side locking 10.5.7

clone method

of array types 6.1.9

of Object 4.3.7, 6.1.9, 6.2.3

Cloneable interface 6.1.9

CloneNotSupportedException class 6.1.9

close method

of AutoCloseable 7.2.5

of Closeable 7.2.5

of ExecutorService 10.8.3

of Handler 7.6

Closures 6.2.7

Code errors 7.1

Code generator tools 11.3.1

Code planes 3.3.4

Code points, code units 3.3.4, 3.6.3

Collection interface 9.1.2, 9.2, 9.3.1, 9.7.6

add method 9.1.2, 9.1.4, 9.2, 9.7.6

addAll method 9.1.4, 9.7.6

clear method 9.1.4, 9.7.6

contains method 9.7.6

contains, containsAll methods 9.1.4, 9.3.1

containsAll method 9.7.6

equals method 9.1.4

generic 9.1.4

implementing 6.1.5

isEmpty method 6.1.5, 9.1.4, 9.7.6

iterator method 9.1.2, 9.7.6

remove method 9.1.4, 9.7.6

removeAll method 9.1.4, 9.7.6

removeIf method 9.7.6

retain method 9.1.4

retainAll method 9.7.6

size method 9.1.4, 9.7.6

stream method 6.1.5

toArray method 5.3.2, 9.1.4, 9.6.6, 9.7.6

Collections class 9, 9.6.2, 9.7.6, 10.8.3

addAll method 9.7.6

algorithms for 9.6.1

binarySearch method 9.6.3, 9.7.6

bounded 9.1.1

bulk operations in 9.6.5

checkedCollection method 9.7.6

checkedList method 9.7.6

checkedMap method 9.7.6

checkedNavigableMap method 9.7.6

checkedNavigableSet method 9.7.6

checkedQueue method 9.7.6

checkedSet method 9.7.6

checkedSortedMap method 9.7.6

checkedSortedSet method 9.7.6

concrete 9.3

concurrent modifications of 9.3.1

converting to arrays 9.6.6

copy method 9.7.6

debugging 9.3.1

disjoint method 9.7.6

elements of

inserting 9.2

maximum 9.6.1

removing 9.1.3

traversing 9.1.3

emptyEnumeration method 9.7.6

emptyIterator method 9.7.6

emptyList method 9.7.6

emptyListIterator method 9.7.6

emptyMap method 9.7.6

emptyNavigableMap method 9.7.6

emptyNavigableSet method 9.7.6

emptySet method 9.7.6

emptySortedMap method 9.7.6

emptySortedSet method 9.7.6

enumeration method 9.7.2, 9.7.6

fill method 9.7.6

frequency method 9.7.6

indexOfSubList method 9.7.6

interfaces for 9.1

lastIndexOfSubList method 9.7.6

legacy 9.7

list method 9.7.6

max method 9.7.6

min method 9.7.6

mutable 9.5.1

nCopies method 9.5.1, 9.7.6

newSetFromMap method 9.7.6

ordered 9.2, 9.3.1

performance of 9.2, 9.3.3

replaceAll method 9.7.6

reverse method 9.7.6

rotate method 9.7.6

searching in 9.6.3

shuffle method 9.6.2, 9.7.6

singleton method 9.7.6

singletonList method 9.7.6

sort method 9.6.2, 9.7.6

sorted 9.3.4

swap method 9.7.6

synchronizedCollection method 9.7.6,

10.8.3

synchronizedCollection methods 9.5.7

synchronizedList method 9.7.6, 10.8.3

synchronizedMap method 9.7.6, 10.8.3

synchronizedNavigableMap method 9.7.6

synchronizedNavigableSet method 9.7.6

synchronizedSet method 9.7.6, 10.8.3

synchronizedSortedMap method 9.7.6,

10.8.3

synchronizedSortedSet method 9.7.6,

10.8.3

thread-safe 9.5.7, 10.6

unmodifiableCollection method 9.7.6

unmodifiableCollection methods 9.5.2

unmodifiableList method 9.7.6

unmodifiableMap method 9.7.6

unmodifiableNavigableMap method 9.7.6

unmodifiableNavigableSet method 9.7.6

unmodifiableSequencedCollection method

9.7.6

unmodifiableSequencedMap method 9.7.6

unmodifiableSequencedSet method 9.7.6

unmodifiableSet method 9.7.6

unmodifiableSortedMap method 9.7.6

unmodifiableSortedSet method 9.7.6

using for method parameters 9.6.7

Command line

arguments in 3.10.5

compiling/launching from 2.2, 3.1

command method

of ProcessHandle.Info 10.8.3

commandLine method

of ProcessHandle.Info 10.8.3

Comments 3.2

automatic documentation and 3.2, 4.10

blocks of 3.2

not nesting 3.2

to the end of line 3.2

Commons CSV library 12.8

Compact compilation unit 4.4.5

Compact source file 4.8.4

Companion classes 6.1.4, 6.1.5

Comparable interface 6.1.1, 6.5.2, 6.5.3, 8.1.5,

9.3.3, 9.6.2

compareTo method 6.1.1, 6.5.3, 8.1.5, 8.4.2

Comparator interface 6.1.8, 6.2.1, 6.2.10,

9.6.2, 9.7.6

chaining comparators in 6.2.10

comparing method 6.2.10

lambda expressions and 6.2.3

naturalOrder method 6.2.10

nullFirst/Last methods 6.2.10

reversed method 9.7.6

reversed, reverseOrder methods 6.2.10,

9.6.2

reverseOrder method 9.7.6

thenComparing method 6.2.10

comparator method

of SortedMap 9.7.6

of SortedSet 9.7.6

compare method

of Double 6.5.3

of Integer 6.5.3

compare method (integer types) 6.2.3

compareAndSet method 10.5.11

compareTo method

in subclasses 6.1.1

of BigDecimal 3.10.8

of BigInteger 3.10.8

of Comparable 6.1.1, 6.5.3, 8.1.5, 8.4.2

of Enum 5.11

of String 3.10.8

Compilation unit

compact 4.4.5

Compiler

autoboxing in 5.4

bridge methods in 8.2.3

command-line options of 7.6

creating bytecode files in 3.1

deducting method types in 8.1.4

enforcing throws specifiers in 7.2.1

error messages in 7.1.2

just-in-time 1.2.6, 1.2.8, 1.5, 5.1.7, 9.7.6

launching 2.2

optimizing method calls in 1.2.9, 5.1.7

overloading resolution in 5.1.6

shared strings in 3.6.4, 3.6.5

translating typed array lists in 5.3.3

type parameters in 8.1.1

warnings in 3.8.5, 5.3.3

whitespace in 3.1

CompletableFuture class 10.7.2

acceptEither method 10.7.2

allOf, anyOf methods 10.7.2

applyToEither method 10.7.2

exceptionally, exceptionallyCompose methods

10.7.2

handle method 10.7.2

orTimeout method 10.7.2

runAfterXxx methods 10.7.2

thenAccept, thenAcceptBoth, thenCombine,

thenRun methods 10.7.2

thenApply, thenApplyAsync, thenCompose

methods 10.7.2

whenComplete method 10.7.2

CompletionStage interface 10.7.2

Components (of records) 4.7.1

Computations

asynchronous 10.7

performance of 3.5.2

compute method

of Map 9.7.6

compute, computeIfXxx methods

of ConcurrentHashMap 10.6.3

computeIfAbsent method

of Map 9.7.6

computeIfPresent method

of Map 9.7.6

Concrete collections 9.3

Concrete methods 5.6

Concurrent hash maps

atomic updates in 10.6.3

bulk operations on 10.6.4

efficiency of 10.6.2

size of 10.6.2

vs. synchronization wrappers 10.6.8

Concurrent modification detection 9.3.1

Concurrent programming 1.2.10, 10, 10.8.2

records in 4.7.1

synchronization in 10.5

Concurrent sets 10.6.5

ConcurrentHashMap class 10.6.2, 10.8.3

atomic updates in 10.6.3

compute, computeIfXxx methods 10.6.3

forEach method 10.6.4

forEach, forEachXxx methods 10.6.4

get method 10.6.3

keySet, newKeySet methods 10.6.5

mappingCount method 10.6.2

merge method 10.6.3

organizing buckets as trees in 10.6.2

put, putIfAbsent methods 10.6.3

reduce, reduceXxx methods 10.6.4

replace method 10.6.3

search, searchXxx methods 10.6.4

V> method 10.8.3

ConcurrentLinkedQueue class 10.6.2, 10.8.3

ConcurrentLinkedQueue<E> method 10.8.3

ConcurrentLinkedQueue<E> method

of ConcurrentLinkedQueue 10.8.3

ConcurrentModificationException class 9.3.1,

10.6.2, 10.6.8

ConcurrentSkipListMap class 10.8.3

V> method 10.8.3

ConcurrentSkipListMap/Set classes 10.6.2

ConcurrentSkipListSet class 10.8.3

ConcurrentSkipListSet<E> method 10.8.3

ConcurrentSkipListSet<E> method

of ConcurrentSkipListSet 10.8.3

Condition interface 10.5.6, 10.8.3

await method 10.2.3, 10.8.3

signal method 10.8.3

signal, signalAll methods 10.5.5

signalAll method 10.8.3

vs. synchronization methods 10.5.6

Condition objects 10.5.4

Condition variables 10.5.4

Conditional operator 3.5.8

with pattern matching 5.1.9

Conditional statements 3.8.2

Configuration files

editing 7.5.4

Console class 3.7.1, 3.10.8

printing output to 3.1, 3.7.2

reading input from 3.7.1

readLine method 3.10.8

readPassword method 3.10.8

console method

of System 3.10.8

ConsoleHandler class 7.5.5, 7.5.6, 7.6

Constructor 7.6

const keyword 3.4.3, Appendix

Constants 3.4.3

documentation comments for 4.10.4

names of 3.4.3

public 4.4.2

static 4.4.2

Constructor class 5.10.4, 5.11

accessFlags method 5.11

getDeclaringClass method 5.11

getExceptionTypes method 5.11

getModifiers method 5.11

getModifiers, getName methods 5.10.4

getName method 5.11

getParameterTypes method 5.11

getReturnType method 5.11

newInstance method 5.11

Constructor expressions 8.5.6

Constructor references 6.2.6

annotating 11.1.4

Constructors 4.3.2, 4.3.3, 4.6

annotating 11.1.3, 11.1.4

calling another constructor in 4.6.6

canonical, compact, custom 4.7.2

defined 4.2.1

documentation comments for 4.10.1

field initialization in 4.6.2, 4.6.4

final 5.10.4

initialization blocks in 4.6.7

names of 4.2.1, 4.3.3

no-argument 4.6.3, 5.1.3, 6.4

overloading 4.6.1

parameter names in 4.6.5

private 5.10.4

protected 4.10.1

public 4.10.1, 5.10.4

with super keyword 5.1.3

Consumer interface 6.2.9

Consumer threads 10.6.1

contains method

of Collection 9.1.4, 9.3.1, 9.7.6

of HashSet 9.3.3

containsAll method 9.1.4, 9.3.1

of Collection 9.7.6

containsKey method

of Map 9.7.6

containsValue method

of Map 9.7.6

Context

early execution 4.6.6

continue keyword 3.8.6, Appendix

not allowed in switch expressions 3.8.5

Control flow 3.8

block scope 3.8.1

breaking 3.8.6

conditional statements 3.8.2

loops 3.8.3

“for each” 3.10.3

determinate 3.8.4

multiple selections 3.8.5

Conversion characters 3.7.2

Coordinated Universal Time (UTC) 4.2.2

Copies 9.5

unmodifiable 9.5.2

copy method

of Collections 9.7.6

copyOf method

of Arrays 3.10.4, 3.10.8, 5.10.6

of EnumSet 9.7.6

of List 9.7.6

of List, Map, Set 9.5.2

of Map 9.7.6

of Map.Entry 9.7.6

of Set 9.7.6

copyOfRange method

of Arrays 3.10.8

CopyOnWriteArrayList class 10.6.6, 10.6.8

CopyOnWriteArraySet class 10.6.6

CORBA 12.1

Cornell, Gary 1.1

Corruption of data 10.5.1, 10.5.2

cos method

of Math 3.5.2

Count of Monte Cristo, The (Dumas) 10.7.3

Covariant return types 8.2.3

CSV files 12.8

Ctrl+\, for thread dump 10.5.5

Ctrl+C, for program termination 10.5.1,

10.5.4

current method

of ProcessHandle 10.8.3

of ThreadLocalRandom 10.8.3

currentThread method 10.3.2

of Thread 10.8.3

D
d conversion character 3.7.2

D, d suffixes (for double numbers) 3.3.2

daemon method

of Thread.Builder.OfPlatform 10.8.3

Daemon threads 10.3.3

Data types 3.3

boolean type 3.3.5

casting between 3.5.4

char type 3.3.3

conversions between 3.5.3, 5.1.8

floating-point 3.3.2

integer 3.3.1

Databases 11

DataFlavor class 12.1

Date and time

formatting output for 3.7.2

hash codes for 5.2.4

no built-in types for 4.2.1

Date class 4.2.2

getDay/Month/Year methods (deprecated)

4.2.2

toString method 4.2.1

Deadlocks 10.5.4, 10.5.5

Debugging 1.2.11, 7.6

collections 9.3.1

debuggers for 7.6

generic types 9.5.6

GUI programs 7.2.1

including class names in 6.3.6

messages for 7.1.4

reflection for 5.10.5

trapping program errors in a file for 7.6

when running applications in terminal window

2.2

Decrement operators 3.5.6

decrementExact method 3.5.2

Deep copies 6.1.9

deepEquals method 5.2.3

deepToString method 3.10.7, 5.2.5

Default for annotation element 11.2

default keyword 3.8.5, 6.1.5, Appendix

sealed classes and 5.8

Default methods 6.1.5

conflicts in 6.1.6

Deferred execution 6.2.9

delete method

of StringBuilder 3.10.8

Dependence 4.1.4

Deprecated methods 4.2.2, 4.2.3

Deque interface 9.3.5, 9.7.6

offerFirst method 9.7.6

offerLast method 9.7.6

peekFirst method 9.7.6

peekLast method 9.7.6

pollFirst method 9.7.6

pollLast method 9.7.6

Deques 9.3.5

Derived classes. See Subclasses

descendants method

of ProcessHandle 10.8.3

destroy method

of Process 10.8.3

destroy, destroyForcibly methods

of Process 10.8.2

destroyForcibly method

of Process 10.8.3

Determinate loops 3.8.4

Development environments

choosing 2.2

in terminal window 2.2

integrated 2.3

Device errors 7.1

Diamond syntax 5.3.1

Digital signatures 1.2.5

Directories

working, for a process 10.8.1

directory method

of ProcessBuilder 10.8.1, 10.8.3

disjoint method

of Collections 9.7.6

divide method

of BigDecimal 3.10.8

of BigInteger 3.10.8

Division 3.5.1

do/while loop 3.8.3, Appendix

Documentation comments 3.2, 4.10

extracting 4.10.10

for fields 4.10.4

for methods 4.10.3

for packages 4.10.5

general 4.10.8

HTML markup in 4.10.6

hyperlinks in 4.10.7

inserting 4.10.1

links to other files in 4.10.7

overview 4.10.10

doInBackground method 10.7.3

of SwingWorker 10.8.3

Double brace initialization 6.3.6

Double class 5.11, 6.5.3

compare method 6.5.3

converting from double 5.4

hashCode method 5.11

parseDouble method 3.7.1

POSITIVE_INFINITY,

NEGATIVE_INFINITY, NaN constants

3.3.2

double type 3.3.2, Appendix

arithmetic computations with 3.5.1

converting to other numeric types 3.5.3

Double-precision numbers 3.3.2

DoubleAccumulator, DoubleAdder classes

10.5.11

Doubly linked lists 9.3.1

Dynamic binding 5.1.3, 5.1.6

Dynamic languages 1.2.11

E
E

of Math 3.5.2

E, e conversion characters 3.3.2, 3.7.2

Early construction context 4.6.6

Eclipse 2.3, 7.6

Adoptium 2.1

configuring projects in 2.3

IDE 12.5

imports in 4.8.3

running source files in 2.3

Yasson framework 12.7

Effectively final variables 7.2.5

Eiffel programming language 6.1.3

Element interface 11.5.2

element method

of BlockingQueue 10.6.1

of Queue 9.7.6

Elements 11.1.1

else if 3.8.2

else keyword 3.8.2, Appendix

Emoji characters 3.3.4

emptyEnumeration method

of Collections 9.7.6

emptyIterator method

of Collections 9.7.6

emptyList method

of Collections 9.7.6

emptyListIterator method

of Collections 9.7.6

emptyMap method

of Collections 9.7.6

emptyNavigableMap method

of Collections 9.7.6

emptyNavigableSet method

of Collections 9.7.6

emptySet method

of Collections 9.7.6

emptySortedMap method

of Collections 9.7.6

emptySortedSet method

of Collections 9.7.6

EmptyStackException class 7.3

Encapsulation 4.1.1, 4.1.2, 12

benefits of 4.3.7

compile-time 12.10

protected instance fields and 5.11

endsWith method

of String 3.10.8

ensureCapacity method 5.3.1

of ArrayList 5.11

Enterprise Edition 1.4

entry method

of Map 9.5.1, 9.7.6

EntryLogger 11.6.2

EntryLoggingAgent.mf 11.6.2

entrySet method 9.4.3

of Map 9.7.6

Enum class 5.7, 5.11

compareTo method 5.11

name method 5.11

ordinal method 5.11

toString, valueOf methods 5.7

valueOf method 5.11

enum keyword 3.4.4, Appendix

Enumerated types 3.4.4

equality testing for 5.7

in switch statement 3.5.9

Enumeration interface 9.1, 9.7.2, 9.7.6

asIterator method 9.7.2, 9.7.6

hasMoreElements method 9.7.6

hasMoreElements, nextElement methods

9.1.3, 9.7.2

nextElement method 9.7.6

Enumeration maps/sets 9.4.6

enumeration method

of Collections 9.7.6

Enumerations 5.7

always final 5.1.7

annotating 11.1.3

declared inside a class 6.3.8

implementing interfaces 6.1.2

legacy 9.7.2

EnumMap class 9.4.6, 9.7.6

as a concrete collection type 9.3

Constructor 9.7.6

EnumSet class 9.4.6, 9.7.6

allOf method 9.7.6

as a concrete collection type 9.3

copyOf method 9.7.6

noneOf method 9.7.6

of method 9.7.6

range method 9.7.6

environment method

of ProcessBuilder 10.8.3

Environment variables, modifying 10.8.1

EOFException class 7.1.3

Epoch 4.2.2

Equals 6.1.6

hashCode method and 5.2.4

implementing 5.2.3

inheritance and 5.2.3

of proxy classes 6.5.3

of records 4.7.1, 5.2.2

redefining 5.2.4

wrappers and 5.4

equals method

of Annotation 11.6.2

of Arrays 3.10.8, 5.2.3, 5.11

of Collection 9.1.4

of Object 5.2.2, 5.11, 9.5.2

of Objects 5.11

of Set 9.2

of String 3.6.5, 3.10.8

equalsIgnoreCase method 3.6.5

of String 3.10.8

Error class 7.1.1

Errors

checking, in mutator methods 4.3.7

code 7.1

device 7.1

internal 7.1.1, 7.1.2, 7.4.3

messages for 7.2.2

physical limitations 7.1

user input 7.1

Escape sequences 3.3.3

Exception class 7.1.1, 7.6

Constructor 7.6

Exception handlers 5.10.2, 7.1

Exception specification 7.1.2

exceptionally, exceptionallyCompose methods

of CompletableFuture 10.7.2

exceptionally, exceptionallyCompose methods

(CompletableFuture) 10.7.2

exceptionNow method

of Future 10.8.3

Exceptions 7.1.1

“throw early, catch late” 7.3

annotating 11.1.4

ArrayIndexOutOfBoundsException 3.10.2,

7.1.1, 7.1.2

ArrayStoreException 5.1.5, 8.3, 8.5.3, 8.5.4

CancellationException 10.7.3

catching 4.3.5, 5.10.2, 6.1.9, 7.1.2, 7.2

changing type of 7.2.3

checked 5.10.1, 5.10.2, 7.1.1, 7.1.2, 7.3

ClassCastException 5.1.8, 5.10.6, 6.1.1,

8.3, 8.5.7, 8.6.1, 9.5.6

CloneNotSupportedException 6.1.9

ConcurrentModificationException 9.3.1,

10.6.2, 10.6.8

creating classes for 7.1.3, 7.1.4

documentation comments for 4.10.3

EmptyStackException 7.3

EOFException 7.1.3

FileNotFoundException 7.1.2

finally clause in 7.2.4

generics in 8.5.9

hierarchy of 7.1.1, 7.3

IllegalAccessException 5.10.5

IllegalStateException 9.1.3, 10.6.1

InaccessibleObjectException 5.10.5

InterruptedException 10.1, 10.3.2, 10.4.1

InvocationTargetException 5.10.1

IOException 7.1.2, 7.1.3, 7.2.1, 7.2.5

logging 7.5.7

micromanaging 7.3

NoSuchElementException 9.1.3

NullPointerException 4.3.5, 5.4, 6.2.5,

7.1.1, 7.3

NumberFormatException 7.3

out-of-bounds 7.3

propagating 7.2.1, 7.3

rethrowing and chaining 7.2.3, 7.6

RuntimeException 7.1.1, 7.3

ServletException 7.2.3

squelching 7.3

stack trace for 7.2.6

throwing 5.10.2, 7.1.3

TimeoutException 10.4.1

tips for using 7.3

type variables in 8.1.6

uncaught 7.6, 10.2.4, 10.3.5

unchecked 5.10.2, 7.1.1, 7.1.2, 7.3

unexpected 7.5.7

UnsupportedOperationException 9.4.3,

9.5.2, 9.5.8

variables for, implicitly final 7.2.2

vs. simple tests 7.3

wrapping 7.2.3

exec method

of Runtime 10.8

Executable class 5.10.7

Executable JAR files 4.9.3

ExecutableElement interface 11.5.2

Execute 10.7.3

execute method

of SwingWorker 10.8.3

ExecutorCompletionService class 10.4.3,

10.8.3

Constructor 10.8.3

poll method 10.8.3

submit method 10.8.3

take method 10.8.3

Executors class 10.4.2, 10.8.3

groups of tasks, controlling 10.4.3

newCachedThreadPool method 10.8.3

newFixedThreadPool method 10.8.3

newSingleThreadExecutor method 10.8.3

newThreadPerTaskExecutor method 10.8.3

newVirtualThreadPerTaskExecutor method

10.8.3

Executors class, newXxx methods 10.4.2

ExecutorService interface 10.8.3

awaitTermination method 10.8.3

close method 10.8.3

invokeAll method 10.8.3

invokeAny method 10.8.3

invokeAny/All methods 10.4.3

shutdown method 10.4.2, 10.8.3

shutdownNow method 10.4.2, 10.8.3

submit method 10.4.2, 10.8.3

exitValue method 10.8.2

of Process 10.8.3

exp method

of Math 3.5.2

Explicit parameters 4.3.6

Exploratory programming 1.2.8

exports keyword 12.5, 12.13, Appendix

Expressions 3.5.5

extends keyword 5.1, 8.1.5, Appendix

F
F, f conversion characters 3.7.2

F, f suffixes (for float numbers) 3.3.2

factory method

of Thread.Builder 10.8.3

Factory methods 4.4.4

Fair locks 10.5.3

Fallthrough behavior 3.8.5

false literal Appendix

fdlibm library 3.5.2

Field class 5.10.4, 5.11

accessFlags method 5.11

get method 5.10.5, 5.11

getDeclaringClass method 5.11

getExceptionTypes method 5.11

getModifiers method 5.11

getModifiers, getName methods 5.10.4

getName method 5.11

getParameterTypes method 5.11

getReturnType method 5.11

getType method 5.10.4

set method 5.11

Fields

adding, in subclasses 5.1.2

annotating 11.1.3

default initialization of 4.6.2

documentation comments for 4.10.1, 4.10.4

final 4.4.2, 5.1.7

instance 4.1.1, 4.3.2, 4.3.7, 4.3.10, 4.6.4,

4.11

private 4.11, 5.1.1, 5.1.2

protected 4.10.1, 5.1.10, 5.11

public 4.10.1, 4.10.4

public static final 6.1.2

static 4.4.1, 4.6.8, 4.8.5, 8.5.8

volatile 10.5.9

with the null value 4.3.5

File handlers 7.5.5

FileHandler class 7.5.5, 7.5.6, 7.6

Constructor 7.6

FileNotFoundException class 7.1.2

Files class

reading

all words from 7.2.5

in a separate thread 10.7.3

fill method

of Arrays 3.10.8

of Collections 9.7.6

Filter class 7.5.6

Filter interface 7.6

isLoggable method 7.6

final keyword 3.4.3, 5.1.7, Appendix

checking 5.10.4

for fields in interfaces 6.1.2

for instance fields 4.3.10

for methods in superclass 6.1.1

for shared fields 10.5.10

inner classes and 6.3.5

finalize method

of Object 4.6.3

finally keyword 7.2.4, Appendix

return statements in 7.2.4

unlock operation in 10.5.3

without catch 7.2.4

Financial calculations 3.3.2

findFirst method

of ServiceLoader 6.5.3

first method

of SortedSet 9.7.6

First Person, Inc. 1.4

firstKey method

of SortedMap 9.7.6

Flags, for formatted output 3.7.2

Float class 5.11

converting from float 5.4

hashCode method 5.11

POSITIVE_INFINITY,

NEGATIVE_INFINITY, NaN constants

3.3.2

float type 3.3.2, Appendix

converting to other numeric types 3.5.3

Floating-point numbers 3.3.2

arithmetic computations with 3.5.1

converting from/to integers 5.1.8

equality of 3.8.4

formatting output for 3.7.2

rounding 3.3.2, 3.5.4

floor method

of NavigableSet 9.7.6

floorMod method 3.5.1

flush method

of Handler 7.6

for keyword 3.8.4, Appendix

comma-separated expressions in 3.5.11

defining variables inside 3.8.4

for collections 9.1.3

forEach method

of ConcurrentHashMap 10.6.4

of Map 9.7.6

of StackWalker 7.6

forEach, forEachXxx methods

of ConcurrentHashMap 10.6.4

forEachRemaining method 9.1.3

of Iterator 9.7.6

Fork-join framework 10.4.6

Form feed character 3.3.3

format method

of Formatter 7.6

Format specifiers 3.7.2

formatMessage method

of Formatter 7.6

Formattable interface 3.7.2

formatted method

of String 3.7.2

Formatter class 7.5.6, 7.6

format method 7.6

formatMessage method 7.6

getHead method 7.6

getTail method 7.6

forName method 5.10.1

of Class 5.11

frequency method

of Collections 9.7.6

from method

of Random 4.11

Function interface 6.2.9

Functional interfaces 6.2.3, 11.3, 11.3.1

abstract methods in 6.2.3

annotating 6.2.9

conversion to 6.2.3

generic 6.2.4

using supertype bounds in 8.4.2

Functions. See Methods

Future interface 10.4.3, 10.8.3

cancel method 10.8.3

cancel, get methods 10.4.1, 10.4.2, 10.7.3

exceptionNow method 10.8.3

get method 10.8.3

isCancelled method 10.8.3

isCancelled, isDone methods 10.4.1, 10.4.2

isDone method 10.8.3

resultNow method 10.8.3

state method 10.8.3

Futures 10.4.1

combining 10.7.2

completable 10.7.2

FutureTask class 10.4.1, 10.8.3

Constructor 10.8.3

G
G, g conversion characters 3.7.2

Garbage collection 4.2.1

hash maps and 9.4.4

GB18030 3.3.4

General Public License (GPL) 1.5

Generic programming 8

arrays and 6.2.6, 8.5.7

classes in 5.3, 5.3.1, 8.1.3

extending/implementing other generic

classes 8.3

no throwing or catching instances of

8.1.6

collection interfaces in 9.6.6

converting to raw types 8.3

debugging 9.5.6

expressions in 8.2.2

in JVM 8.2, 8.6.3

inheritance rules for 8.3

legacy code and 8.2.4

methods in 8.1.4, 8.2.3, 9.1.4

reflection and 8.6

required skill levels for 8.1.1

static fields or methods and 8.5.8

type erasure in 8.2.1, 8.5.1, 8.5.7

clashes after 8.5.10

type matching in 8.6.2

vs. inheritance 8.1

wildcard types in 8.4

Generic types

annotating 11.1.4

GenericArrayType interface 8.6.3, 8.6.4

getGenericComponentType method 8.6.4

get method

of Array 5.11

of ArrayList 5.3.2, 5.11

of BitSet 9.7.6

of ConcurrentHashMap 10.6.3

of Field 5.10.5, 5.11

of Future 10.4.1, 10.4.2, 10.7.3, 10.8.3

of LinkedList 9.3.1

of List 9.2, 9.7.6

of LongAccumulator 10.5.11

of Map 9.2, 9.4.1, 9.7.6

of Paths 6.1.4

of ScopedValue 10.8.3

of ServiceLoader.Provider 6.4, 6.5.3

of ThreadLocal 10.8.3

of Vector 10.5.7

getAccessor method

of RecordComponent 5.11

getActualTypeArguments method

of ParameterizedType 8.6.4

getAndUpdate, getAndAccumulate methods

of AtomicXxx 10.5.11

getAnnotation method

of AnnotatedElement 11.6.2

getAnnotation, getAnnotationsByType methods

of AnnotatedConstruct 11.5.2

of AnnotatedElement 11.4

getAnnotations method

of AnnotatedElement 11.6.2

getAnnotationsByType method

of AnnotatedElement 11.6.2

getBoolean method

of Boolean 9.7.6

getBounds method

of TypeVariable 8.6.4

getCause method

of Throwable 7.6

getClass method

of Class 5.10.1

of Object 5.11

getClassName method

of StackTraceElement 7.6

of StackWalker.StackFrame 7.6

getComponentType method 5.10.6

of Class 5.11

getConstructor method

of Class 5.11, 8.6.4

getConstructors method 5.10.4

of Class 5.11

getDay method

of Date 4.2.2

getDayOfMonth method

of LocalDate 4.2.2, 4.11

getDayOfWeek method

of LocalDate 4.11

getDeclaredAnnotations method

of AnnotatedElement 11.6.2

getDeclaredAnnotationXxx methods

of AnnotatedElement 11.4

getDeclaredConstructor method

of Class 8.6.4

getDeclaredConstructors method 5.10.4

of Class 5.11

getDeclaredField method

of Class 5.11

getDeclaredFields method 5.10.4, 5.10.5

of Class 5.11

getDeclaredMethods method 5.10.4, 5.10.7

of Class 5.11

getDeclaringClass method

of Constructor 5.11

of Field 5.11

of Method 5.11

of StackWalker.StackFrame 7.6

getDefault method

of RandomGenerator 4.11

getDefaultToolkit method

of Toolkit 6.5.3

getDefaultUncaughtExceptionHandler method

of Thread 10.8.3

getElementsAnnotatedWith method 11.5.2

getEnclosedElements method 11.5.2

getEnumConstants method 8.6.1

of Class 8.6.4

getErrorStream method 10.8.1

of Process 10.8.3

getExceptionTypes method

of Constructor 5.11

of Field 5.11

of Method 5.11

getField method

of Class 5.11

getFields method 5.10.4

of Class 5.11

getFileName method

of StackTraceElement 7.6

of StackWalker.StackFrame 7.6

getFilter method

of Handler 7.6

getFirst method

of LinkedList 9.7.6

of SequencedCollection 9.7.6

getFormatter method

of Handler 7.6

getGenericComponentType method

of GenericArrayType 8.6.4

getGenericInterfaces method

of Class 8.6.4

getGenericParameterTypes method

of Method 8.6.4

getGenericReturnType method

of Method 8.6.4

getGenericSuperclass method

of Class 8.6.4

getGlobal method 7.6

getHead method 7.5.6

of Formatter 7.6

getImage method

of Class 5.10.3

getInputStream method 10.8.1

of Process 10.8.3

getInstance method 7.2.6

of StackWalker 7.6

getInstant method

of LogRecord 7.6

getInteger method

of Integer 9.7.6

getKey method

of Map.Entry 9.7.6

getLast method

of LinkedList 9.7.6

of SequencedCollection 9.7.6

getLength method 5.10.6

of Array 5.11

getLevel method

of Handler 7.6

of LogRecord 7.6

getLineNumber method

of StackTraceElement 7.6

of StackWalker.StackFrame 7.6

getLogger method 7.5.3

of System 7.5.2

getLoggerName method

of LogRecord 7.6

getLong method

of Long 9.7.6

getLongThreadID method

of LogRecord 7.6

getLowerBounds method

of WildcardType 8.6.4

getMessage method

of LogRecord 7.6

of Throwable 7.6

getMethod method 5.10.7

getMethodName method

of StackTraceElement 7.6

of StackWalker.StackFrame 7.6

getMethods method 5.10.4

of Class 5.11

getMillis method

of LogRecord 7.6

getModifiers method

of Constructor 5.11

of Field 5.11

of java.lang.reflect.Member 5.10.4

of Method 5.11

getMonth method

of Date 4.2.2

getMonthValue method

of LocalDate 4.2.2, 4.11

getName method

of Class 5.10.1, 5.11

of Constructor 5.11

of Field 5.11

of java.lang.reflect.Member 5.10.4

of Method 5.11

of RecordComponent 5.11

of System.Logger 7.6

of Thread 10.8.3

of TypeVariable 8.6.4

getOrDefault method

of Map 9.7.6

getOutputStream method 10.8.1

of Process 10.8.3

getOwnerType method

of ParameterizedType 8.6.4

getPackageName method

of Class 5.11

getParameters method

of LogRecord 7.6

getParameterTypes method

of Constructor 5.11

of Field 5.11

of Method 5.11

getProperties method 9.7.4

of System 9.7.6

getProperty method

of Properties 9.7.3, 9.7.6

of System 9.7.6

getProxyClass method 6.5.3

of Proxy 6.5.3

getQualifiedName method 11.5.2

getRawType method

of ParameterizedType 8.6.4

getRecordComponents method

of Class 5.11

getResource method

of Class 5.11

getResource, getResourceAsStream methods

of Class 5.10.3

getResourceAsStream method

of Class 5.11, 12.7

of Module 12.7

getResourceBundle method

of LogRecord 7.6

getResourceBundleName method

of LogRecord 7.6

getReturnType method

of Constructor 5.11

of Field 5.11

of Method 5.11

getSequenceNumber method

of LogRecord 7.6

getSimpleName method

of Element 11.5.2

getSourceClassName method

of LogRecord 7.6

getSourceMethodName method

of LogRecord 7.6

getStackTrace method 7.2.6

of Throwable 7.6

getState method

of SwingWorker 10.8.3

of Thread 10.8.3

getSuperclass method

of Class 5.11, 8.6.4

getSuppressed method 7.2.5

of Throwable 7.6

getTail method 7.5.6

of Formatter 7.6

Getters/setters, generated automatically 11.5.3

getThrown method

of LogRecord 7.6

getTime method 5.1.7

getType method

of Field 5.10.4

of RecordComponent 5.11

getTypeParameters method

of Class 8.6.4

of Method 8.6.4

getUncaughtExceptionHandler method

of Thread 10.8.3

getUpperBounds method

of WildcardType 8.6.4

getValue method

of Map.Entry 9.7.6

getXxx method

of Array 5.11

getYear method

of Date 4.2.2

of LocalDate 4.2.2, 4.11

GMT (Greenwich Mean Time) 4.2.2

Goetz, Brian 10, 10.5.9

Gosling, James 1.4

goto keyword 3.8, 3.8.6, Appendix

Graphical User Interface

debugging 7.2.1

long-running tasks in 10.7.3

Green project 1.4

GregorianCalendar class 4.2.3

add method 4.2.3

constructors for 4.2.2, 4.6.1

group method

of Thread.Builder.OfPlatform 10.8.3

GUI. See Graphical User Interface

H
H, h conversion characters 3.7.2

handle method

of CompletableFuture 10.7.2

Handler class 7.6

close method 7.6

flush method 7.6

getFilter method 7.6

getFormatter method 7.6

getLevel method 7.6

publish method 7.6

setFilter method 7.6

setFormatter method 7.6

setLevel method 7.6

Hansen, Per Brinch 10.5.8

Hash codes 5.2.4, 9.3.3

default 5.2.4

formatting output for 3.7.2

Hash collisions 5.2.4, 9.3.3

Hash maps 9.4.1

concurrent 10.6.2

identity 9.4.7

linked 9.4.5

setting 9.4.1

vs. tree maps 9.4.1

weak 9.4.4

hash method

of Objects 5.2.4, 5.11

Hash sets 9.3.3

linked 9.4.5

Hash tables 9.3.3

legacy 9.7.1

load factor of 9.3.3

rehashing 9.3.3

hashCode method 5.2.4

equals method and 5.2.4

null-safe 5.2.4

of Annotation 11.6.2

of Arrays 5.2.4, 5.11

of Boolean 5.11

of Byte 5.11

of Character 5.11

of Double 5.11

of Float 5.11

of Integer 5.11

of LocalDate 5.2.4

of Long 5.11

of Object 5.11, 9.7.6

of Objects 5.2.4, 5.11

of proxy classes 6.5.3

of records 4.7.1, 5.2.4

of Set 9.2

of Short 5.11

of String 9.3.3

HashMap class 9.4.1, 9.7.6

as a concrete collection type 9.3

Constructor 9.7.6

newHashMap method 9.7.6

HashSet class 9.3.3, 9.7.6

add, contains methods 9.3.3

as a concrete collection type 9.3

Constructor 9.7.6

iterating over 9.1.3

newHashSet method 9.7.6

Hashtable class 9.1, 9.7, 9.7.1, 10.6.8

as a concrete collection type 9.3

synchronized methods 9.7.1

hasMoreElements method 9.1.3, 9.7.2

of Enumeration 9.7.6

hasNext method

of Iterator 9.1.3, 9.7.6

of Scanner 3.10.8

hasNextDouble method

of Scanner 3.10.8

hasNextInt method

of Scanner 3.10.8

hasPrevious method 9.3.1

of ListIterator 9.7.6

headMap method

of NavigableMap 9.7.6

of SortedMap 9.5.3, 9.7.6

headSet method

of NavigableSet 9.5.3, 9.7.6

of SortedSet 9.5.3, 9.7.6

Heap 9.3.6

Helper methods 4.3.9, 6.1.4, 8.4.4

Hexadecimal numbers

formatting output for 3.7.2

prefix for 3.3.1

HexFormat class 3.7.2

higher method

of NavigableSet 9.7.6

Hoare, Tony 10.5.8

Hold count 10.5.3

HotJava browser 1.4

Hotspot just-in-time compiler 2.1.1, 9.7.6

HTML 1.4, 1.5

generating documentation in 11.5.3

in JavaDoc comments 4.10.6

I
Identifiers Appendix

Identity hash maps 9.4.7

identityHashCode method 9.4.7

of System 5.11, 9.7.6

IdentityHashMap class 9.4.7, 9.7.6

as a concrete collection type 9.3

Constructor 9.7.6

identityToString method

of Objects 5.11

IEEE 754 specification 3.3.2, 3.5.2

if keyword 3.8.2, Appendix

IllegalAccessException class 5.10.5

IllegalStateException class 9.1.3, 10.6.1

Immutable classes 4.3.10, 5.11

Implementations 9.1.1

implements keyword 6.1.1, Appendix

Implicit parameters 4.3.6

none, in static methods 4.4.3

state of 7.6

Implicitly declared class 4.4.5

import keyword 4.8.3, Appendix

no annotations for 11.1.4

InaccessibleObjectException class 5.10.5

increment method

of LongAdder 10.5.11

Increment operators 3.5.6

Incremental linking 1.2.8

incrementAndGet method 10.5.11

incrementExact method 3.5.2

Indentation, in text blocks 3.6.10

Index class 3.10.2

indexOf method

of List 9.7.6

of String 3.10.8

indexOfSubList method

of Collections 9.7.6

Inferred types 6.2.2

info method

of ProcessHandle 10.8.3

Information hiding. See Encapsulation

Inheritance 4.1.4, 5

design hints for 5.11

equality testing and 5.2.3

hierarchies of 5.1.4

multiple 5.1.4, 6.1.3

preventing 5.1.7

private fields and 5.1.1

vs. type parameters 8.1, 8.3

inheritIO method

of ProcessBuilder 10.8.3

initCause method

of Throwable 7.6

Initialization blocks 4.6.7

static 4.6.8

Inlining 1.2.9, 5.1.7

Inner classes 6.3

accessing object state with 6.3.1

anonymous 6.3.6

applicability of 6.3.3

defined 6.3

local 6.3.4

private 6.3.1

static 6.3, 6.3.7

syntax of 6.3.2

translated into regular classes 6.3.3

vs. lambda expressions 6.2.3

Input, reading 3.7.1

insert method

of StringBuilder 3.10.8

Instance field

declared with prefix 4.6.5

Instance fields 4.1.1

final 4.3.10

initializing 4.6.7, 4.11

explicit 4.6.4

names of 4.7.1

not present in interfaces 6.1.1, 6.1.2

private 4.3.2, 4.11

protected 5.11

shadowing 4.3.3, 4.6.5

values of 4.3.7

volatile 10.5.9

vs. local variables 4.3.3, 4.3.6, 4.6.2

Instance method 3.6.2

instanceof keyword 3.5.11, 5.1.8, 5.2.3, 6.1.2,

Appendix

annotating 11.1.4

pattern matching for 5.1.9

Instances 4.1.1

creating on the fly 5.10.1

Instrumentation API 11.6.2

int type 3.3.1, Appendix

converting to other numeric types 3.5.3

fixed size for 1.2.7

platform-independent 3.3.1

Integer class 5.11, 6.5.3, 9.7.6

compare method 6.2.3, 6.5.3

converting from int 5.4

getInteger method 9.7.6

hashCode method 5.11

intValue method 5.11

parseInt method 3.7.1, 5.4, 5.11

toString method 5.11

valueOf method 5.11

Integer types 3.3.1

arithmetic computations with 3.5.1

arrays of 5.2.5

computations of 3.5.2

converting from/to floating-point 5.1.8

formatting output for 3.7.2

no unsigned types in Java 3.3.1

Integrated Development Environment (IDE)

2.3

IntelliJ IDEA 2.3

@interface 11.2

interface keyword 6.1.1, Appendix

Interface types 9.1.1

Interface variables 6.1.2

Interfaces 6.1

abstract classes and 6.1.3

annotating 11.1.3, 11.1.4

binary- vs. source-compatible 6.1.5

callbacks and 6.1.7

constants in 6.1.2

declared inside a class 6.3.8

documentation comments for 4.10.1

evolution of 6.1.5

extending 6.1.2

for custom algorithms 9.6.7

functional 6.2.3, 11.3, 11.3.1

implementing 6.1.1, 6.1.2, 6.1.4

methods in

clashes between 6.1.6

nonabstract 6.2.3

private 6.1.4

static 6.1.4

no instance fields in 6.1.1, 6.1.2

properties of 6.1.2

public 4.10.1

sealed 6.1.2

tagging 6.1.9, 9.2

vs. implementations 9.1.1

Internal errors 7.1.1, 7.1.2, 7.4.3

Internationalization. See Localization

Internet Explorer 1.3

Interpreted languages 1.5

Interpreter 1.2.8

interrupt method

of Thread 10.3.2, 10.8.3

interrupted method

of Thread 10.3.2, 10.8.3

InterruptedException class 10.1, 10.3.2,

10.4.1

Intrinsic locks 10.5.6, 10.5.8, 10.5.9

Introduction to Algorithms (Cormen et al.)

9.3.4

intValue method

of Integer 5.11

Invocation handlers 6.5.1

InvocationHandler interface 6.5.1, 6.5.3

invoke method 6.5.3

invokeDefault method 6.5.3

InvocationTargetException class 5.10.1

invoke method

of InvocationHandler 6.5.1, 6.5.3

of Method 5.10.7, 5.11

invokeAll method

of ExecutorService 10.8.3

invokeAny method

of ExecutorService 10.8.3

invokeAny/All methods (ExecutorService)

10.4.3

invokeDefault method

of InvocationHandler 6.5.3

IO 3.1

print method 3.7.2

readln method 3.7.1

IO class 3.7.1, 3.10.8

print method 3.10.8

println method 3.10.8

readln method 3.10.8

IOException class 7.1.2, 7.1.3, 7.2.1, 7.2.5

isAbstract method

of Modifier 5.11

isAlive method 10.8.2

of Process 10.8.3

isAnnotationPresent method

of AnnotatedElement 11.6.2

isArray method

of Class 5.11

isBound method

of ScopedValue 10.8.3

isCancelled method

of Future 10.8.3

isCancelled, isDone methods

of Future 10.4.1

isCancelled, isDone methods (Future) 10.4.2

isDone method

of Future 10.8.3

isEmpty method

of Collection 6.1.5, 9.1.4, 9.7.6

of String 3.10.8

isEnum method

of Class 5.11

isFinal method 5.10.4

of Modifier 5.11

isInterface method

of Class 5.11

of Modifier 5.11

isInterrupted method 10.3.2

of Thread 10.8.3

isJavaIdentifierXxx methods

of Character 3.4.1

isLoggable method

of Filter 7.5.6, 7.6

of System.Logger 7.6

isNaN method 3.3.2

isNative method

of Modifier 5.11

isNativeMethod method

of StackTraceElement 7.6

of StackWalker.StackFrame 7.6

ISO 8601 format 11.3.1

ISO 8859-1 3.3.4, 9.7.3

isPrivate method

of Modifier 5.11

isPrivate, isProtected, isPublic methods

of Modifier 5.10.4

isProtected method

of Modifier 5.11

isProxyClass method 6.5.3

of Proxy 6.5.3

isPublic method

of Modifier 5.11

isRecord method

of Class 5.11

isStatic method

of Modifier 5.11

isStrict method

of Modifier 5.11

isSynchronized method

of Modifier 5.11

isVirtual method

of Thread 10.8.3

isVolatile method

of Modifier 5.11

Iterable interface 3.10.3

Iterator interface 9.1.3, 9.7.6

“for each” loop 9.1.3

forEachRemaining method 9.1.3, 9.7.6

generic 9.1.4

hasNext method 9.1.3, 9.7.6

next method 9.1.3, 9.7.6

remove method 9.1.3, 9.7.6

iterator method

of Collection 9.1.2, 9.7.6

of ServiceLoader 6.5.3

Iterators 9.1.3

being between elements 9.1.3

weakly consistent 10.6.2

IzPack 4.9.3

J
J#, J++ programming languages 1.2.11

Jar 4.9.1, 12.6

command-line options of 4.9.1, 4.9.3, 4.9.5

Jar Bundler 4.9.3

JAR files 4.8.9, 4.9

analyzing dependencies of 12.15

creating 4.9.1

executable 4.9.3

file resources in 12.7

in jre/lib/ext directory 4.8.10

manifest of 4.9.2, 12.8

META-INF/services directory 12.14

modular 12.6, 12.8

multi-release 4.9.4

resources and 5.10.3

scanning for deprecated elements 11.3.1

Java 2.2

--add-exports option 12.10

--add-opens option 12.10

--illegal-access option 12.10

--module, --module-path options 12.3

-javaagent option 11.6.2

architecture-neutral object file format of

1.2.6

as a programming platform 1.1

available under GPL 1.5

backward compatibility of 4.9.4, 5.1.9,

6.2.9, 8

basic syntax of 3.1, 4.3.1

case-sensitiveness of 3.1, 3.4.1, 9.7.1

command-line options of 4.9.5, 7.4.2

design of 1.2

documentation for 2.1.3

dynamic 1.2.11

history of 1.4

interpreter in 1.2.8

libraries in 1.2.1, 1.4, 1.5

installing 2.1.3

misconceptions about 1.5

networking capabilities of 1.2.3

no multiple inheritance in 6.1.3

no operator overloading in 3.9

no unsigned types in 3.3.1

reliability of 1.2.4

security of 1.2.5, 1.5

simplicity of 1.2.1, 6.2.1

strongly typed 3.3, 6.1.1

versions of 1.4

vs. C++ 1.2.1, 9.7.6

Java bug parade 3.1

Java Collections Framework 9

algorithms in 9.6.1

converting to/from arrays in 9.6.6

copies and views in 9.5

interfaces in 9.2

vs. implementations 9.1.1

legacy classes in 9.7

operations in

bulk 9.6.5

optional 9.5.8

vs. traditional collections libraries 9.1.3

Java Concurrency in Practice (Goetz) 10

Java Development Kit (JDK) 1.2.6, 2

documentation in 3.6.8

downloading 2.1.1

installation of 2.1

default 4.9.1

obsolete features in 12.1

setting up 2.1.2

Java Language Specification 3.1

Java Memory Model and Thread Specification

10.5.9

Java Persistence Architecture 11

Java Platform Module System 12, 12.15

migration to 12.8, 12.10

Java Runtime Environment (JRE) 2.1.1

Java Virtual Machine (JVM) 1.2.6

generics in 8.2, 8.6.3

launching 2.2

managing applications in 7.6

method tables in 5.1.6

thread priority levels in 10.3.6

watching class loading in 7.6

Java Virtual Machine Specification 3.1, 11.6

java.awt package 12.1

java.desktop module 12.11

java.lang.annotation package 11.3

java.lang.Object class 4.1.1

java.lang.reflect package 5.10.4, 5.10.6

java.logging module 12.11

java.se module 12.11

java.util.Collections class 9.6.2

java.util.concurrent package 10.5.3

efficient collections in 10.6.2

java.util.concurrent.atomic package 10.5.11

java.util.function package 6.2.4

java.util.logging package 7.5.1, 7.5.4

java.util.Timer class 6.1.7

Javac 2.2

-processor option 11.5.1

-XprintRounds option 11.5.3

current directory in 4.8.9

JavaDoc 4.10

command-line options of 4.10.10

comments in 4.10.1, 4.10.5

extracting 4.10.10

overview 4.10.10

redeclaring Object methods for 6.2.3

HTML markup in 4.10.6

including annotations in 11.3.2

links in 4.10.7

online documentation of 4.10.10

JavaFX 10.7.3

javafx.css.CssParser class 4.9.4

javan.log files 7.5.5

Javap 4.9.4, 6.3.3

JavaScript 1.5

for of loop in 3.8

javax.annotation package 11.3

javax.swing.Timer class 6.1.7

JAXB 12.7

JCommander 11

Jconsole 7.5.4, 7.6, 10.5.5

Jdeprscan 11.3.1

Jdeps 12.15

JEP 264 (platform logging API) 7.5.1

Jimage 12.15

Jlink 12.15

Jmod 12.15

JMOD files 12.15

Jmol applet 1.3

join method

of String 3.10.8

of Thread 10.2.3, 10.8.3

JOptionPane class 6.5.3

showMessageDialog method 6.5.3

JShell 1.2.8, 2.4

JShell, loading modules into 12.6

JSlider class

setLabelTable method 8.2.4

JSON 5.8

JSON-B 12.7

JUnit 11, 11.1

JUnit framework 7.6

Just-in-time compiler 1.2.6, 1.2.8, 1.5, 5.1.7,

9.7.6

JVM

specification for 11.6

K
Key/value pairs

in annotations 11.1.1, 11.2

keySet method

of ConcurrentHashMap 10.6.5

of Map 9.4.3, 9.7.6

Keywords Appendix

hyphenated 5.8

not used 3.4.3

redundant 6.1.2

reserved 3.4.1

restricted Appendix

Knuth, Donald 3.8.6

KOI-8 3.3.4

L

L, l suffixes (for long integers) 3.3.1

Lambda expressions 6.2

accessing variables in 6.2.7

annotating targets for 11.3.1

atomic updates with 10.5.11

capturing values by 6.2.7

for loggers 7.5.3

functional interfaces and 6.2.3

method references and 6.2.5

not for variables of type Object 6.2.3

parameter types of 6.2.2

processing 6.2.9

result type of 6.2.2

scope of 6.2.7

syntax of 6.2.2

this keyword in 6.2.8

vs. inner classes 6.2.3

vs. method references 6.2.5

Language model API 11.5.2

last method

of SortedSet 9.7.6

lastIndexOf method

of List 9.7.6

of String 3.10.8

lastIndexOfSubList method

of Collections 9.7.6

lastKey method

of SortedMap 9.7.6

Launch4J 4.9.3

Legacy classes 4.7.1

generics and 8.2.4

Legacy collections 9.7

bit sets 9.7.6

enumerations 9.7.2

hash tables 9.7.1

property maps 9.7.3

stacks 9.7.5

Length

of arrays 3.10.2

length method

of BitSet 9.7.6

of String 3.6.3, 3.6.6, 3.10.8

of StringBuilder 3.10.8

Line feed character

escape sequence for 3.3.3

in output 3.1, 3.6.10

in text blocks 3.6.10

Linked hash maps/sets 9.4.5

Linked lists 9.3.1

concurrent modifications of 9.3.1

doubly linked 9.3.1

printing 9.3.1

random access in 9.3.1, 9.6.1

removing elements from 9.3.1

LinkedBlockingDeque class 10.8.3

Constructor 10.8.3

LinkedBlockingQueue method 10.8.3

LinkedBlockingDeque method

of LinkedBlockingQueue 10.8.3

LinkedBlockingQueue class 10.6.1, 10.8.3

Constructor 10.8.3

LinkedBlockingDeque method 10.8.3

LinkedBlockingQueue method

of LinkedBlockingDeque 10.8.3

LinkedHashMap class 9.4.5, 9.7.6

access vs. insertion order in 9.4.5

as a concrete collection type 9.3

Constructor 9.7.6

removeEldestEntry method 9.4.5, 9.7.6

LinkedHashSet class 9.4.5, 9.7.6

as a concrete collection type 9.3

Constructor 9.7.6

LinkedList class 9.3.1, 9.3.5, 9.7.6

addFirst method 9.7.6

addLast method 9.7.6

as a concrete collection type 9.3

Constructor 9.7.6

get method 9.3.1

getFirst method 9.7.6

getLast method 9.7.6

listIterator method 9.3.1

next/previousIndex methods 9.3.1

removeAll method 9.3.1

removeFirst method 9.7.6

removeLast method 9.7.6

Linux

IDEs for 2.3

JDK in 2.1

no thread priorities in OpenJDK VM for

10.3.6

paths in 4.8.9, 4.8.10

troubleshooting Java programs in 2.2

List class 9.2

add method 9.2

copyOf method 9.5.2

get method 9.2

of method 9.5.1, 9.6.6

remove method 9.2

set method 9.2

subList method 9.5.3

List interface 9.7.6

add method 9.7.6

addAll method 9.7.6

copyOf method 9.7.6

get method 9.7.6

indexOf method 9.7.6

lastIndexOf method 9.7.6

listIterator method 9.7.6

of method 9.7.6

remove method 9.7.6

replaceAll method 9.7.6

set method 9.7.6

sort method 9.7.6

subList method 9.7.6

list method

of Collections 9.7.6

ListIterator interface 9.3.1, 9.7.6

add method 9.3.1, 9.7.6

hasPrevious method 9.3.1, 9.7.6

nextIndex method 9.7.6

previous method 9.3.1, 9.7.6

previousIndex method 9.7.6

remove method 9.3.1

set method 9.3.1, 9.7.6

listIterator method

of LinkedList 9.3.1

of List 9.7.6

Lists 9.2

modifiable/resizable 9.6.2

with given elements 9.5.1

load method

of Properties 9.7.3, 9.7.6

of ServiceLoader 6.5.3

Load time 11.6.2

Local inner classes 6.3.4

accessing variables from outer methods in

6.3.5

Local variables

annotating 8.2.4, 11.1.3

vs. instance fields 4.3.3, 4.3.6, 4.6.2

LocalDate class 4.2.2, 4.11

getDayOfMonth method 4.11

getDayOfWeek method 4.11

getMonthValue method 4.11

getYear method 4.11

hashCode method 5.2.4

minusDays method 4.11

now method 4.11

now, of methods 4.2.2

of method 4.11

plusDays method 4.2.2, 4.11

processing arrays of 8.4.2

Locales 3.7.2

Localization 4.2.1, 5.10.3

Lock interface 10.5.6, 10.8.3

await method 10.5.4

lock method 10.8.3

newCondition method 10.5.4, 10.8.3

signal method 10.5.4

signalAll method 10.5.4

tryLock method 10.2.3

unlock method 10.5.3, 10.8.3

vs. synchronization methods 10.5.6

lock method

of Lock 10.8.3

Locks 10.5.3

client-side 10.5.7

condition objects for 10.5.4

deadlocks 10.5.4, 10.5.5

fair 10.5.3

hold count for 10.5.3

in synchronized blocks 10.5.7

intrinsic 10.5.6, 10.5.8, 10.5.9

not with try-with-resources statement

10.5.3

not wrapper objects for 5.4

reentrant 10.5.3

Log file pattern variables 7.5.5

Log handlers 7.5.5

filtering/formatting 7.5.6

Log messages, adding to classes 11.6.1

log method

of System.Logger 7.6

log, log10 methods

of Math 3.5.2

Log4j 7.5.1

Logback 7.5.1

Logger class

getGlobal method 7.6

Loggers

filtering/formatting 7.5.6

hierarchy of 7.5.4

naming 7.5.2

Logging 7.5

configuring 7.5.4

including class names in 6.3.6

levels of 7.5.3, 7.5.4

messages for 5.2.5

recipe for 7.5.7

Logging proxy 7.6

Logical “and”, “or” 3.5.7

Logical conditions 3.3.5

LogRecord class 7.6

getInstant method 7.6

getLevel method 7.6

getLoggerName method 7.6

getLongThreadID method 7.6

getMessage method 7.6

getMillis method 7.6

getParameters method 7.6

getResourceBundle method 7.6

getResourceBundleName method 7.6

getSequenceNumber method 7.6

getSourceClassName method 7.6

getSourceMethodName method 7.6

getThrown method 7.6

Long class 5.11, 9.7.6

converting from long 5.4

getLong method 9.7.6

hashCode method 5.11

Long Term Support (LTS) 2.1.1

long type 3.3.1, Appendix

platform-independent 3.3.1

LongAccumulator class, methods of 10.5.11

LongAdder class 10.5.11, 10.6.3

add, increment, sum methods 10.5.11

Loops

“for each” 3.10.3

break statements in 3.8.6

continue statements in 3.8.6

determinate (for) 3.8.4

while 3.8.3

lower method

of NavigableSet 9.7.6

M
Mac OS X

executing JARs in 4.9.3

IDEs for 2.3

JDK in 2.1

main ,method

launching 3.1

main method 4.4.5

body of 3.1

not defined 4.6.8

separate for each class 7.6

String[] args parameter of 3.10.5

MANIFEST.MF 4.9.2

editing 4.9.2

newline characters in 4.9.3

Map interface 9.2, 9.7.6

compute method 9.7.6

computeIfAbsent method 9.7.6

computeIfPresent method 9.7.6

containsKey method 9.7.6

containsValue method 9.7.6

copyOf method 9.5.2, 9.7.6

entry method 9.5.1, 9.7.6

entrySet method 9.4.3, 9.7.6

forEach method 9.7.6

get method 9.2, 9.4.1, 9.7.6

getOrDefault method 9.7.6

keySet method 9.4.3, 9.7.6

merge method 9.7.6

of method 9.5.1, 9.7.6

ofEntries method 9.5.1, 9.7.6

put method 9.2, 9.4.1, 9.7.6

putAll method 9.7.6

putIfAbsent method 9.7.6

remove method 9.4.1

replaceAll method 9.7.6

values method 9.4.3, 9.7.6

Map.Entry interface 9.4.3, 9.7.6

copyOf method 9.7.6

getKey method 9.7.6

getValue method 9.7.6

setValue method 9.7.6

mappingCount method 10.6.2

Maps 9.4

adding/retrieving objects to/from 9.4.1

concurrent 10.6.2

garbage collecting 9.4.4

hash vs. tree 9.4.1

implementations for 9.4.1

keys for 9.4.1

enumerating 9.4.3

subranges of 9.5.3

with given key/value pairs 9.5.1

Marker interfaces 6.1.9

Math class 2.4, 3.5.2

E, PI static constants 3.5.2

floorMod method 3.5.1

log, log10 methods 3.5.2

pow method 3.5.2, 4.4.3

round method 3.5.4

sqrt method 3.5.2, 5.10.7

trigonometric functions 3.5.2

xxxExact methods 3.5.2

max method

of Collections 9.7.6

MAX_PRIORITY field

of Thread 10.8.3

Maximum value, computing 8.1.3

merge method

of ConcurrentHashMap 10.6.3

of Map 9.7.6

Merge sort algorithm 9.6.2

Meta-annotations 11.2, 11.3.2

META-INF 4.9.2

META-INF/versions directory 4.9.4

Method class 5.10.4, 5.11, 8.6.4

accessFlags method 5.11

getDeclaringClass method 5.11

getExceptionTypes method 5.11

getGenericParameterTypes method 8.6.4

getGenericReturnType method 8.6.4

getModifiers method 5.11

getModifiers, getName methods 5.10.4

getName method 5.11

getParameterTypes method 5.11

getReturnType method 5.11

getTypeParameters method 8.6.4

instance 3.6.2

invoke method 5.10.7, 5.11

static 3.6.2

toString method 5.10.4

Method parameters. See Parameters

Method pointers 5.10.7

Method references 6.2.5

annotating 11.1.4

this, super parameters in 6.2.5

vs. lambda expressions 6.2.5

Method tables 5.1.6

MethodHandles class 12.7

Methods 4.1.1

abstract 5.6

in functional interfaces 6.2.3

accessor 4.2.3, 4.3.7, 8.4.1

adding logging messages to 11.6.1

adding, in subclasses 5.1.2

annotating 11.1.3

applying to objects 4.2.1

asynchronous 10.4.1

body of 3.1

bridge 8.2.3, 8.5.10

calling by reference vs. by value 4.5

casting 5.1.8

chaining calls of 6.2.9

concrete 5.6

conflicts in 6.1.6

consistent 5.2.3

default 6.1.5

deprecated 4.2.2, 4.2.3, 11.3, 11.3.1

destructor 4.6.3

documentation comments for 4.10.1, 4.10.7

dynamic binding for 5.1.3, 5.1.6

error checking in 4.3.7

exception specification in 7.1.2

factory 4.4.4

final 5.1.6, 5.1.7, 5.10.4, 6.1.1

generic 8.1.4, 8.2.3, 9.1.4

getters/setters, generated automatically

11.5.3

helper 4.3.9, 8.4.4

inlining 1.2.9, 5.1.7

invoking 3.1, 5.10.7

mutator 4.2.3, 4.3.7, 8.4.1

names of 4.7.1, 4.11

overloading 4.6.1

overriding 5.1.2, 5.2.3, 5.11, 11.3, 11.3.1

exceptions and 7.1.2

return type and 8.2.3

package scope of 4.8.8

passing objects to 4.2.1

private 4.3.9, 5.1.6, 5.10.4, 6.1.4

protected 4.10.1, 5.1.10, 5.11, 6.1.9

public 4.10.1, 5.10.4, 6.1.1

reflexive 5.2.3

return type of 4.6.1, 5.1.6

signature of 4.6.1, 5.1.6

static 4.4.3, 4.8.5, 5.1.6, 8.5.8, 10.5.6

adding to interfaces 6.1.4

symmetric 5.2.3

tracing 6.5.2

transitive 5.2.3

used for serialization 11.3, 11.3.1

utility 6.1.4

varargs 5.5, 8.5.4

visibility of, in subclasses 5.1.6

Micro Edition 1.4

Microsoft

ActiveX 1.2.5

C# 1.2.11, 1.4, 5.1.7

Internet Explorer 1.3

J#, J++ 1.2.11

JDK in 2.1

.NET platform 1.2.6

Visual Basic 1.2.1, 4.2.1

Visual Studio 2.2

Microsoft Windows. See Windows operating

system

min method

of Collections 9.7.6

MIN_PRIORITY field

of Thread 10.8.3

Minimum value, computing 8.1.3

minusDays method

of LocalDate 4.11

mod method

of BigInteger 3.10.8

Modifier class 5.11

isAbstract method 5.11

isFinal method 5.11

isInterface method 5.11

isNative method 5.11

isPrivate method 5.11

isProtected method 5.11

isPublic method 5.11

isStatic method 5.11

isStrict method 5.11

isSynchronized method 5.11

isVolatile method 5.11

isXxx methods 5.10.4

toString method 5.11

Module class

getResourceAsStream method 12.7

module keyword 12.3, Appendix

Module path 4.8.10

Module-info.class 12.6, 12.8

Module-info.java 12.3, 12.8

Modules 1.4, 4.8.8, 12, 12.15

accessing 12.7, 12.10

automatic 12.8, 12.9

declaration of 12.3

explicit 12.9

exporting packages 12.5

loading into JShell 12.6

migration to 12.8, 12.10

naming 12.2, 12.8

not passing access rights 12.4

open 12.7

opening packages in 12.7

packages with the same names in 12.5

qualified exports of 12.13

reading other modules 12.4

requiring 12.4

service implementations and 12.14

tools for 12.15

unnamed 5.10.5, 12.9

versioning 12.1, 12.3

Modulus 3.5.1

Monitor concept 10.5.8

Mosaic 1.4

Multi-release JARs 4.9.4

Multidimensional arrays 3.10.7, 3.10.8

printing 5.2.5

ragged 3.10.8

Multiple inheritance 6.1.3

not supported in Java 5.1.4

Multiple selections 3.8.5

Multiplication 3.5.1

multiply method

of BigDecimal 3.10.8

of BigInteger 3.10.8

multiplyExact method 3.5.2

Multitasking 10

Multithreading 1.2.10, 10

deadlocks in 10.5.4, 10.5.5

deferred execution in 6.2.9

performance and 10.5.11, 10.6.1

synchronization in 10.5

using pools for 10.4.2

Mutator methods 4.2.3, 8.4.1

error checking in 4.3.7

N
n conversion character 3.7.2

Name

qualified 4.8.2, 4.8.3, 6.4

simple 4.8.3

of enumeration 5.7

name method

of Enum 5.11

of Thread.Builder 10.8.3

NaN 3.3.2

native keyword Appendix

naturalOrder method 6.2.10

Naughton, Patrick 1.4

NavigableMap interface 9.2, 9.7.6

headMap method 9.7.6

subMap method 9.7.6

tailMap method 9.7.6

NavigableSet interface 9.2, 9.3.4, 9.7.6

ceiling method 9.7.6

floor method 9.7.6

headSet method 9.7.6

headSet, subSet, tailSet methods 9.5.3

higher method 9.7.6

lower method 9.7.6

pollFirst method 9.7.6

pollLast method 9.7.6

subSet method 9.7.6

tailSet method 9.7.6

nCopies method 9.5.1

of Collections 9.7.6

negateExact method 3.5.2

Negation operator 3.5.7

Negative infinity 3.3.2

Nested classes

annotating 11.1.4

.NET platform 1.2.6

NetBeans 2.3, 7.6

Netscape 1.4

LiveScript/JavaScript 1.5

Navigator browser 1.3

Networking 1.2.3

new keyword 3.5.11, 4.2.1, 4.3.3, Appendix

in constructor references 6.2.6

not for interfaces 6.1.2

return value of 4.2.1

with arrays 3.10.1

with generic classes 5.3.1

with threads 10.2.1

newCachedThreadPool method 10.4.2

of Executors 10.8.3

newCondition method 10.5.4

of Lock 10.8.3

newFixedThreadPool method 10.4.2

of Executors 10.8.3

newHashMap method

of HashMap 9.7.6

newHashSet method

of HashSet 9.7.6

newInstance method

of Array 5.10.6, 5.11

of Class 5.10.1, 8.6.1

of Constructor 5.11

of ScopedValue 10.8.3

newKeySet method 10.6.5

Newline. See Line feed character

newProxyInstance method 6.5.2, 6.5.3

of Proxy 6.5.3

newSetFromMap method

of Collections 9.7.6

newSingleThreadExecutor method

of Executors 10.8.3

newSingleThreadXxx methods

of Executors 10.4.2

newThread method

of ThreadFactory 10.8.3

newThreadPerTaskExecutor method

of Executors 10.8.3

newVirtualThreadPerTaskExecutor method

of Executors 10.8.3

next method

of Iterator 9.1.3, 9.7.6

of Scanner 3.10.8

nextDouble method 3.7.1

of Scanner 3.10.8

nextElement method 9.1.3, 9.7.2

of Enumeration 9.7.6

nextIndex method

of LinkedList 9.3.1

of ListIterator 9.7.6

nextInt method

of RandomGenerator 4.6.8, 4.11

of Scanner 3.7.1, 3.10.8

nextLine method 3.7.1

of Scanner 3.10.8

No-argument constructors 4.6.3, 5.1.3, 6.4

non-sealed keyword 5.8, Appendix

noneOf method

of EnumSet 9.7.6

NORM_PRIORITY field

of Thread 10.8.3

NoSuchElementException class 9.1.3

Notepad 2.2

notify method

of Object 10.8.3

notify, notifyAll methods

of Object 10.5.6

notifyAll method

of Object 10.8.3

now method

of LocalDate 4.2.2, 4.11

null literal 4.2.1, Appendix

as a reference 4.3.5

equality testing to 5.2.3

nullFirst/Last methods

of Comparator 6.2.10

NullPointerException class 3.5.9, 4.3.5, 5.4,

6.2.5, 7.1.1, 7.3

Number class 5.4

NumberFormat class 5.11

factory methods 4.4.4

parse method 5.11

NumberFormatException class 7.3

Numbers

floating-point 3.3.2, 3.5.4, 3.7.2, 3.8.4,

5.1.8

Java Virtual Machine (JVM)truncating

computations in 3.5.1

generated random 10.5.14

hexadecimal 3.3.1, 3.7.2

octal 3.3.1, 3.7.2

prime 9.7.6

rounding 3.3.2, 3.5.4

unsigned 3.3.1

Numeric types

casting 3.5.4

comparing 3.5.7, 6.2.10

converting

to other numeric types 3.5.3, 5.1.8

to strings 5.4

default initialization of 4.6.2

fixed sizes for 1.2.7

precision of 3.7.2, 3.9

printing 3.7.2

O

o conversion character 3.7.2

Oak 1.4, 7.1.1

Object class 4.1.1, 5.2, 5.11, 9.7.6, 10.8.3

clone method 4.3.7, 6.1.9, 6.2.3

equals method 5.2.2, 5.11, 6.1.6, 9.5.2

getClass method 5.11

hashCode method 5.2.4, 5.11, 9.7.6

no redefining for methods of 6.1.6

notify method 10.8.3

notify, notifyAll methods 10.5.6

notifyAll method 10.8.3

toString method 5.2.5, 5.11, 6.1.6, 6.2.3

wait method 10.2.3, 10.5.6, 10.8.3

Object references

as method parameters 4.5

converting 5.1.8

default initialization of 4.6.2

modifying 4.5

Object traversal algorithms 9.4.7

Object variables 5.6

in predefined classes 4.2.1

initializing 4.2.1

setting to null 4.2.1

vs. C++ object pointers 4.2.1

vs. objects 4.2.1

Object-oriented programming (OOP) 1.2.2,

4.1, 5

passing objects in 6.1.7

time measurement in 4.2.2

vs. procedural 4.1

Object-relational mappers 12.7

Objects 4.1, 4.1.2

analyzing at runtime 5.10.5

applying methods to 4.2.1

behavior of 4.1.2

cloning 6.1.9

comparing 6.1.1

concatenating with strings 5.2.5

constructing 4.1.1, 4.6

default hash codes of 5.2.4

destruction of 4.6.3

equality testing for 5.2.2, 5.10.1

finalize method of 4.6.3

identity of 4.1.2

implementing an interface 6.1.2

in predefined classes 4.2.1

initializing 4.2.1

intrinsic locks of 10.5.6

passing to methods 4.2.1

references to 4.2.1

runtime type identification of 5.10.1

serializing 9.4.7

sorting 6.1.1

state of 4.1.1, 4.1.2, 6.3.1

vs. object variables 4.2.1

Objects class 4.11, 5.11

checkXxx methods 7.3

equals method 5.11

hash method 5.11

hash, hashCode methods 5.2.4

hashCode method 5.11

identityToString method 5.11

requireNonNull method 4.3.5, 4.11, 7.3

requireNonNullElse method 4.3.5, 4.11

requireNonNullElseGet method 4.11

Octal numbers

formatting output for 3.7.2

prefix for 3.3.1

of method

of EnumSet 9.7.6

of List 9.7.6

of List, Map, Set 9.5.1, 9.6.6

of LocalDate 4.2.2, 4.11

of Map 9.7.6

of Path 6.1.4

of ProcessHandle 10.8.3

of RandomGenerator 4.11

of Set 9.7.6

ofEntries method

of Map 9.5.1, 9.7.6

offer method

of BlockingQueue 10.6.1, 10.8.3

of Queue 9.7.6

offerFirst method

of BlockingDeque 10.8.3

of Deque 9.7.6

offerLast method

of BlockingDeque 10.8.3

of Deque 9.7.6

ofPlatform method

of Thread 10.8.3

ofVirtual method

of Thread 10.8.3

On-demand initialization 10.5.12

onExit method

of Process 10.8.3

Online documentation 3.6.7, 3.6.8, 4.10,

4.10.10

open keyword 12.7, Appendix

OpenJ9 just-in-time compiler 2.1.1

OpenJDK 2.1, 2.1.1

opens keyword 12.7, 12.13, Appendix

Operators

arithmetic 3.5.1

bitwise 3.5.10, 3.5.11

boolean 3.5.7

hierarchy of 3.5.11

increment/decrement 3.5.6

no overloading for 3.9

relational 3.5.7

Optional operations 9.5.8

or method

of BitSet 9.7.6

Oracle 1.4

Ordered collections 9.2, 9.3.1

ordinal method

of Enum 5.11

orElse method

of ScopedValue 10.8.3

org.omg.corba package 12.1

orTimeout method 10.7.2

OSGi platform 6.4

Out-of-bounds exceptions 7.3

Output

formatting 3.7.2

statements in 3.6.1

Overloading resolution 4.6.1, 5.1.6

overview.html file 4.10.10

P
p (hexadecimal floating-point literals) 3.3.2

package keyword 4.8.3, 4.8.6, Appendix

Package-info.java 4.10.5, 11.1.3

package.html file 4.10.5

Packages 4.8, 12.1

accessing 4.8.8

adding classes into 4.8.6

annotating 11.1.3

documentation comments for 4.10.1, 4.10.5

exporting 12.5

hidden 12.5

importing 4.8.3

names of 4.8.2, 5.10.1

opening 12.7

split 12.6

unnamed 4.8.6, 4.8.8, 4.10.10, 7.4.2

Parallelism threshold 10.6.4

parallelXxx methods

of Arrays 10.6.7

Parameter variables

annotating 11.1.3

Parameterized types. See Type parameters

ParameterizedType interface 8.6.3, 8.6.4

getActualTypeArguments method 8.6.4

getOwnerType method 8.6.4

getRawType method 8.6.4

Parameters 4.5

checking, with assertions 7.4.3

documentation comments for 4.10.3

explicit 4.3.6

implicit 4.3.6, 4.4.3, 7.6

modifying 4.5

names of 4.6.5

using collection interfaces in 9.6.7

variable number of

passing generic types to 8.5.4

Parent classes. See Superclasses

parse method

of NumberFormat 5.11

parseDouble method

of Double 3.7.1

parseInt method 5.4

of Integer 3.7.1, 5.11

Pascal 1.4

compiled code in 1.2.6

passing parameters in 4.5

Passwords

reading from console 3.7.1

Path interface, of method 6.1.4

Paths class, get method 6.1.4

Pattern matching 5.1.9

Payne, Jonathan 1.4

peek method

of BlockingQueue 10.6.1

of Queue 9.7.6

of Stack 9.7.6

peekFirst method

of Deque 9.7.6

peekLast method

of Deque 9.7.6

Performance 1.2.9

computations and 3.5.2

JAR files and 4.8.9

measuring 9.7.6

multithreading and 10.5.11, 10.6.1

of collections 9.2, 9.3.3, 10.6.2

of Java vs. C++ 9.7.6

of simple tests vs. catching exceptions 7.3

permits keyword 5.8, 6.1.2, Appendix

Physical limitations 7.1

PI

of Math 3.5.2, 4.4.2

Picocli 11

pid method

of ProcessHandle 10.8.3

Platform logging API 7.5.1, 7.5.4

plusDays method

of LocalDate 4.2.2, 4.11

Point class 4.7, 4.7.1

poll method

of BlockingQueue 10.6.1, 10.8.3

of ExecutorCompletionService 10.8.3

of Queue 9.7.6

pollFirst method

of BlockingDeque 10.8.3

of Deque 9.7.6

of NavigableSet 9.7.6

pollLast method

of BlockingDeque 10.8.3

of Deque 9.7.6

of NavigableSet 9.7.6

Polymorphism 5.1.3, 5.1.5, 5.8, 5.11

pop method

of Stack 9.7.6

Portability 1.2.7, 1.5, 3.5.1

Positive infinity 3.3.2

pow method

of BigInteger 3.10.8

of Math 3.5.2, 4.4.3

powExact method 3.5.2

Precision, of numbers 3.7.2

Preconditions 7.4.3

Predefined classes 4.2

mutator and accessor methods in 4.2.3

objects, object variables in 4.2.1

Predicate interface 6.2.4, 6.2.9

Prefix

of instance field name 4.6.5

premain method (Instrumentation API) 11.6.2

previous method

of ListIterator 9.3.1, 9.7.6

previousIndex method

of LinkedList 9.3.1

of ListIterator 9.7.6

Prime numbers 9.7.6

Primitive types 3.3

as method parameters 4.5

comparing 6.2.10

converting to objects 5.4

final fields of 4.3.10

not for type parameters 8.5.1

transforming hash map values to 10.6.4

values of, not object 5.2.1

Princeton University 1.2.5

print method

of IO 3.1, 3.7.2, 3.10.8

Print statements

for logging 7.5

Printf

arguments of 5.5

conversion characters for 3.7.2

flags for 3.7.2

println method

of IO 3.1, 3.10.8

printStackTrace method 7.2.6, 7.6

of Throwable 5.11

priority method

of Thread.Builder.OfPlatform 10.8.3

Priority queues 9.3.6

PriorityBlockingQueue class 10.6.1, 10.8.3

Constructor 10.8.3

PriorityQueue class 9.7.6

as a concrete collection type 9.3

Constructor 9.7.6

private keyword 4.3.2, 4.8.8, 6.3.1, Appendix

checking 5.10.4

for fields, in superclasses 5.1.2

for methods 4.3.9

Procedures 4.1

Process class 10.8, 10.8.3

destroy method 10.8.3

destroy, destroyForcibly methods 10.8.2

destroyForcibly method 10.8.3

exitValue method 10.8.2, 10.8.3

getErrorStream method 10.8.3

getInputStream method 10.8.3

getOutputStream method 10.8.3

getXxxStream methods 10.8.1

isAlive method 10.8.2, 10.8.3

onExit method 10.8.3

supportsNormalTermination method 10.8.3

toHandle method 10.8.3

waitFor method 10.8.2, 10.8.3

process method

of SwingWorker 10.7.3, 10.8.3

ProcessBuilder class 10.8, 10.8.3

Constructor 10.8.3

directory method 10.8.1, 10.8.3

environment method 10.8.3

inheritIO method 10.8.3

redirectError method 10.8.3

redirectErrorStream method 10.8.3

redirectInput method 10.8.3

redirectOutput method 10.8.3

redirectXxx methods 10.8.1

start method 10.8.2, 10.8.3

startPipeline method 10.8.1, 10.8.3

Processes 10.8

building 10.8.1

killing 10.8.2

running 10.8.2

ProcessHandle interface 10.8.3

allProcesses method 10.8.3

children method 10.8.3

children, descendants methods 10.8.3

current method 10.8.3

descendants method 10.8.3

info method 10.8.3

of method 10.8.3

pid method 10.8.3

ProcessHandle.Info interface 10.8.3

arguments method 10.8.3

command method 10.8.3

commandLine method 10.8.3

startInstant method 10.8.3

totalCpuDuration method 10.8.3

user method 10.8.3

Processor interface 11.5.1

Producer threads 10.6.1

Programs. See Applications

Prompt

readln method 3.7.1

Properties class 9.7, 9.7.6

Constructor 9.7.6

getProperty method 9.7.3, 9.7.6

load method 9.7.3, 9.7.6

setProperty method 9.7.6

store method 9.7.3, 9.7.6

stringPropertyNames method 9.7.6

Property files

generating 11.5.3

Property maps 9.7.3

reading/writing 9.7.3

protected keyword 5.1.10, 5.11, 6.1.9,

Appendix

provides keyword 12.14, Appendix

Proxies 6.5

properties of 6.5.3

purposes of 6.5.2

Proxy class 6.5.3

get/isProxyClass methods 6.5.3

getProxyClass method 6.5.3

isProxyClass method 6.5.3

newProxyInstance method 6.5.2, 6.5.3

public keyword 4.3.2, 4.8.8, 6.1.1, Appendix

checking 5.10.4

for fields in interfaces 6.1.2

for main method 3.1

not specified for interfaces 6.1.1

publish method

of Handler 7.6

of SwingWorker 10.7.3, 10.8.3

Pure virtual functions (C++) 5.6

push method

of Stack 9.7.6

put method

of BlockingQueue 10.6.1, 10.8.3

of ConcurrentHashMap 10.6.3

of Map 9.2, 9.4.1, 9.7.6

putAll method

of Map 9.7.6

putFirst method

of BlockingDeque 10.8.3

putIfAbsent method

of ConcurrentHashMap 10.6.3

of Map 9.7.6

putLast method

of BlockingDeque 10.8.3

Q

Qualified exports 12.13

Qualified name 4.8.2, 4.8.3, 6.4

Queue class 9.3.5

implementing 9.1.1

Queue interface 9.7.6

add method 9.7.6

element method 9.7.6

offer method 9.7.6

peek method 9.7.6

poll method 9.7.6

remove method 9.7.6

Queues 9.1.1, 9.3.5

blocking 10.6.1

concurrent 10.6.2

QuickSort algorithm 3.10.6, 9.6.2

R
Race conditions 10.5.1, 10.5.2

and atomic operations 10.5.11

Ragged arrays 3.10.8

Random class 4.11

from method 4.11

thread-safe 10.5.14

RandomAccess interface 9.2, 9.6.2

RandomGenerator interface 4.11

getDefault method 4.11

nextInt method 4.6.8, 4.11

of method 4.11

range method

of EnumSet 9.7.6

Raw types 8.2.1

converting type parameters to 8.3

type inquiring at runtime 8.5.2

readLine method

of Console 3.10.8

readln method

of IO 3.7.1, 3.10.8

readPassword method

of Console 3.10.8

Receiver parameter 11.1.5

record keyword Appendix

RecordComponent class 5.11

getAccessor method 5.11

getName method 5.11

getType method 5.11

Records 4.7, 5.1.1

adding methods to 4.7.1

always final 5.1.7

declared inside a class 6.3.8

equals method of 5.2.2

hashCode method of 5.2.4

implementing interfaces 6.1.2

instance fields of 4.7.1

toString method of 5.2.5

Rectangle class 9.3.4

Rectangles

comparing 9.3.4

Recursive computations 10.4.6

RecursiveAction, RecursiveTask classes

10.4.6

Red Hat 2.1

Red-black trees 9.3.4

redirectError method

of ProcessBuilder 10.8.3

redirectErrorStream method

of ProcessBuilder 10.8.3

redirectInput method

of ProcessBuilder 10.8.3

redirectOutput method

of ProcessBuilder 10.8.3

redirectXxx methods

of ProcessBuilder 10.8.1

reduce, reduceXxx methods

of ConcurrentHashMap 10.6.4

Reentrant locks 10.5.3

ReentrantLock class 10.5.3, 10.8.3

Constructor 10.8.3

Reflection 5.1, 5.10

accessing

private members 12.7, 12.10

analyzing

classes 5.10.4

objects, at runtime 5.10.5

generics and 5.10.6, 8.6

overusing 5.11

processing annotations with 11.4

Reinhold, Mark 1.4

Relational operators 3.5.7, 3.5.11

Relative resource names 5.10.3

remove method

of ArrayList 5.3.2, 5.11

of BlockingQueue 10.6.1

of Collection 9.1.4, 9.7.6

of Iterator 9.1.3, 9.7.6

of List 9.2, 9.7.6

of ListIterator 9.3.1

of Map 9.4.1

of Queue 9.7.6

of ThreadLocal 10.8.3

removeAll method

of Collection 9.1.4, 9.7.6

of LinkedList 9.3.1

removeEldestEntry method 9.4.5

of LinkedHashMap 9.7.6

removeFirst method

of LinkedList 9.7.6

of SequencedCollection 9.7.6

removeIf method

of ArrayList 6.2.4

of Collection 9.7.6

removeLast method

of LinkedList 9.7.6

of SequencedCollection 9.7.6

repeat method

of String 3.6.1, 3.10.8

of StringBuilder 3.10.8

REPL 2.4

replace method

of ConcurrentHashMap 10.6.3

of String 3.10.8

replaceAll method

of Collections 9.7.6

of List 9.7.6

of Map 9.7.6

requireNonNull method 4.3.5, 7.3

of Objects 4.11

requireNonNullElse method 4.3.5

of Objects 4.11

requireNonNullElseGet method

of Objects 4.11

requires keyword 12.4, 12.5, 12.8, 12.11

Reserved words. See Keywords

Resources 5.10.3

exhaustion of 7.1.1

in JAR files 12.7

localizing 5.10.3

names of 5.10.3

Restricted views 9.5.8

resultNow method

of Future 10.8.3

resume method

of Thread 10.8.3

retain method

of Collection 9.1.4

retainAll method

of Collection 9.7.6

return keyword Appendix

in finally blocks 7.2.4

in lambda expressions 6.2.2

not allowed in switch expressions 3.8.5

Return types 5.1.6

covariant 8.2.3

documentation comments for 4.10.3

for overridden methods 8.2.3

Return values 4.2.1

reverse method

of Collections 9.7.6

of StringBuilder 3.10.8

reversed method

of Comparator 9.7.6

of SequencedCollection 9.7.6

of SequencedMap 9.7.6

of SequencedSet 9.7.6

reversed, reverseOrder methods

of Comparator 9.6.2

reversed, reverseOrder methods

of Comparator 6.2.10

reverseOrder method

of Comparator 9.7.6

rotate method

of Collections 9.7.6

round method

of Math 3.5.4

RoundEnvironment interface 11.5.2

rt.jar file

no longer present 12.15

run method

of Runnable 10.8.3

of ScopedValue.Carrier 10.4.5

of Thread 10.1, 10.8.3

runAfterXxx methods

of CompletableFuture 10.7.2

Runnable interface 6.2.9, 10.1, 10.8.3

lambda expressions and 6.2.3

run method 6.2.9, 10.8.3

Runtime class

analyzing objects at 5.10.5

creating classes at 6.5.1

exec method 10.8

setting the size of an array at 5.3

type identification at 5.1.8, 5.10.1, 8.5.2

Runtime image file 12.15

RuntimeException class 7.1.1, 7.3, 7.6

Constructor 7.6

S
S, s conversion characters 3.7.2

Scala programming language 6.1.6

Scanner class 3.10.8

Constructor 3.10.8

hasNext method 3.10.8

hasNextDouble method 3.10.8

hasNextInt method 3.10.8

next method 3.10.8

nextDouble method 3.10.8

nextInt method 3.10.8

nextLine method 3.10.8

nextXxx methods 3.7.1

ScopedValue class 10.8.3

get method 10.8.3

isBound method 10.8.3

newInstance method 10.8.3

orElse method 10.8.3

where method 10.8.3

ScopedValue.Carrier class 10.4.5

ScopedValue.Carrier class, methods of 10.4.5

sealed keyword 5.8, 6.1.2, Appendix

search, searchXxx methods

of ConcurrentHashMap 10.6.4

Security class 1.2.5, 1.5

SequencedCollection interface 9.7.6

addFirst method 9.7.6

addLast method 9.7.6

getFirst method 9.7.6

getLast method 9.7.6

removeFirst method 9.7.6

removeLast method 9.7.6

reversed method 9.7.6

SequencedMap interface 9.7.6

reversed method 9.7.6

SequencedSet interface 9.7.6

reversed method 9.7.6

Serialization 9.4.7

Service loaders 6.4, 12.14

ServiceLoader class 6.4, 6.5.3, 12.14

findFirst method 6.5.3

iterator method 6.5.3

load method 6.5.3

stream method 6.4, 6.5.3

ServiceLoader.Provider interface 6.5.3

get method 6.5.3

type method 6.5.3

ServiceLoader.Provider interface, methods of

6.4

Services 6.4

ServletException 7.2.3

Servlets 7.2.3

Set interface 9.7.6

add, equals, hashCode, methods of 9.2

copyOf method 9.5.2, 9.7.6

of method 9.5.1, 9.7.6

set method

of Array 5.11

of ArrayList 5.3.2, 5.11

of BitSet 9.7.6

of Field 5.11

of List 9.2, 9.7.6

of ListIterator 9.3.1, 9.7.6

of ThreadLocal 10.8.3

of Vector 10.5.7

setAccessible method 5.10.5

of AccessibleObject 5.11

setClassAssertionStatus method

of ClassLoader 7.6

setDaemon method 10.3.3

of Thread 10.8.3

setDefaultAssertionStatus method

of ClassLoader 7.6

setDefaultUncaughtExceptionHandler method

7.6, 10.3.5

of Thread 10.8.3

setFilter method

of Handler 7.6

setFormatter method

of Handler 7.6

setLabelTable method 8.2.4

setLevel method

of Handler 7.6

setName method

of Thread 10.8.3

setOut method 4.4.2

setPackageAssertionStatus method

of ClassLoader 7.6

setPriority method

of Thread 10.8.3

setProperty method 7.5.4

of Properties 9.7.6

Sets 9.3.3

concurrent 10.6.2

intersecting 9.6.5

mutating elements of 9.3.3

subranges of 9.5.3

thread-safe 10.6.5

with given elements 9.5.1

setTime method 5.1.7

setUncaughtExceptionHandler method

of Thread 10.8.3

setValue method

of Map.Entry 9.7.6

setXxx method

of Array 5.11

Shallow copies 6.1.9

Shell

scripts for, generating 11.5.3

scripts in 4.8.10

Shift operators 3.5.10

Short class 5.11

converting from short 5.4

hashCode method 5.11

short type 3.3.1, Appendix

showMessageDialog method

of JOptionPane 6.5.3

shuffle method

of Collections 9.6.2, 9.7.6

Shuffling 9.6.2

shutdown method

of ExecutorService 10.4.2, 10.8.3

shutdownNow method 10.4.2

of ExecutorService 10.8.3

Sieve of Eratosthenes benchmark 9.7.6

signal method

of Condition 10.5.4, 10.5.5, 10.8.3

signalAll method 10.5.4, 10.5.5

of Condition 10.8.3

Signatures (of methods) 4.6.1, 5.1.6

Signatures. See Digital signatures

Simple name 4.8.3

of enumeration 5.7

sin method

of Math 3.5.2

singleton method

of Collections 9.7.6

singletonList method

of Collections 9.7.6

Size

of concurrent collections 10.6.2

size method

of ArrayList 5.3.1, 5.11

of BitSet 9.7.6

of Collection 9.1.4, 9.7.6

sleep method

of Thread 10.1, 10.3.2, 10.8.3

SLF4J 7.5.1

Smart cards 1.2.1

SOAP 12.1

SocketHandler class 7.5.5

sort method

of Arrays 3.10.6, 3.10.8, 6.1.1, 6.2.1, 6.2.3,

6.5.3

of Collections 9.6.2, 9.7.6

of List 9.7.6

SortedMap interface 9.2, 9.7.6

comparator method 9.7.6

firstKey method 9.7.6

headMap method 9.7.6

headMap, subMap, tailMap methods 9.5.3

lastKey method 9.7.6

subMap method 9.7.6

tailMap method 9.7.6

SortedSet interface 9.2, 9.7.6

comparator method 9.7.6

first method 9.7.6

headSet method 9.7.6

headSet, subSet, tailSet methods 9.5.3

last method 9.7.6

subSet method 9.7.6

tailSet method 9.7.6

Sorting

algorithms for 3.10.6, 9.6.2

arrays 3.10.6, 6.1.1

assertions for 7.4.3

order of 9.6.2

people, by name 6.2.10

strings by length 6.1.8, 6.2.1, 6.2.2

Source code, generating 11.3, 11.3.1, 11.5.3

Source file

compact 4.8.4

Source files 4.8.9

installing 2.1.3

running in Eclipse 2.3

Space. See Whitespace

Special characters 3.3.3

Split packages 12.6

sqrt method

of BigInteger 3.10.8

of Math 3.5.2, 5.10.7

src.zip file 2.1.3

Stack class 9.1, 9.7, 9.7.5, 9.7.6

peek method 9.7.6

pop method 9.7.6

push method 9.7.6

Stack trace 7.2.6, 10.5.5

no displaying to users 7.3

StackFrame

toString method 7.2.6

Stacks 9.7.5

stackSize method

of Thread.Builder.OfPlatform 10.8.3

StackTraceElement class 7.6

getClassName method 7.6

getFileName method 7.6

getLineNumber method 7.6

getMethodName method 7.6

isNativeMethod method 7.6

toString method 7.6

StackWalker class 7.2.6, 7.6

forEach method 7.6

getInstance method 7.2.6, 7.6

walk method 7.2.6, 7.6

StackWalker.StackFrame interface 7.6

getClassName method 7.6

getDeclaringClass method 7.6

getFileName method 7.6

getLineNumber method 7.6

getMethodName method 7.6

isNativeMethod method 7.6

toString method 7.6

Standard Edition 1.4, 2.1.1

Standard Java library

companion classes in 6.1.4

online API documentation for 3.6.7, 3.6.8,

4.10, 4.10.10

Standard Template Library (STL) 9.1, 9.1.3

start method

of ProcessBuilder 10.8.2, 10.8.3

of Thread 10.1, 10.2.2, 10.8.3

of Thread.Builder 10.8.3

of Timer 6.5.3

startInstant method

of ProcessHandle.Info 10.8.3

startPipeline method 10.8.1

of ProcessBuilder 10.8.3

startsWith method

of String 3.10.8

startVirtualThread method

of Thread 10.8.3

state method

of Future 10.8.3

Statements 3.1

conditional 3.8.2

in output 3.6.1

Static binding 5.1.6

Static constants 4.4.2

documentation comments for 4.10.4

Static fields 4.4.1

accessing, in static methods 4.4.3

importing 4.8.5

initializing 4.6.8

no type variables in 8.5.8

Static imports 4.8.5

static keyword 4.4, 12.11, Appendix

for fields in interfaces 6.1.2

Static method 3.6.2

Static methods 4.4.3

accessing static fields in 4.4.3

adding to interfaces 6.1.4

importing 4.8.5

no type variables in 8.5.8

Static nested classes 6.3, 6.3.7

Static variables 4.4.2

stop method

of Thread 10.3.2, 10.8.3

of Timer 6.5.3

store method

of Properties 9.7.3, 9.7.6

Stream interface, toArray method 6.2.6

stream method

of BitSet 9.7.6

of Collection 6.1.5

of ServiceLoader 6.4, 6.5.3

strictfp keyword Appendix

StrictMath class 3.5.2

String

formatted method 5.5

String class 3.6, 3.10.8

charAt method 3.6.3, 3.10.8

compareTo method 3.10.8

endsWith method 3.10.8

equals method 3.10.8

equals, equalsIgnoreCase methods 3.6.5

equalsIgnoreCase method 3.10.8

hashCode method 5.2.4, 9.3.3

immutability of 3.6.4, 4.3.10, 5.1.7

implementing CharSequence 6.1.3

indexOf method 3.10.8, 4.6.1

isEmpty method 3.10.8

join method 3.10.8

lastIndexOf method 3.10.8

length method 3.6.3, 3.6.6, 3.10.8

repeat method 3.6.1, 3.10.8

replace method 3.10.8

startsWith method 3.10.8

strip method 3.10.8

substring method 3.6.3, 3.10.8, 9.5.3

toLowerCase method 3.10.8

toUpperCase method 3.10.8

transform method 6.2.9

StringBuffer class 3.6.9

StringBuilder class 3.6.9, 3.10.8

append method 3.6.9, 3.10.8

appendCodePoint method 3.10.8

Constructor 3.10.8

delete method 3.10.8

implementing CharSequence 6.1.3

insert method 3.10.8

length method 3.10.8

repeat method 3.10.8

reverse method 3.10.8

toString method 3.6.9, 3.10.8

stringPropertyNames method

of Properties 9.7.6

Strings 3.6

building 3.6.9

code points/code units of 3.6.3

comparing 6.1.8

concatenating 3.6.1

with objects 5.2.5

converting to numbers 5.4

empty 3.6.6

equality of 3.6.5

formatting output for 3.7.2

immutability of 3.6.4

length of 3.6.3, 3.6.6

null 3.6.6

shared, in compiler 3.6.4, 3.6.5

sorting by length 6.1.8, 6.2.1, 6.2.2

spanning multiple lines 3.6.10

substrings of 3.6.3

using ". . ." for 3.1

strip method

of String 3.10.8

Strongly typed languages 3.3, 6.1.1

Subclasses 5.1

adding fields/methods to 5.1.2

anonymous 6.3.6

cloning 6.1.9

comparing objects from 6.1.1

constructors for 5.1.3

defining 5.1.1

forbidding 5.8

inheriting annotations 11.3

method visibility in 5.1.6

no access to private fields of superclass

5.1.10

non-sealed 5.8

overriding superclass methods in 5.1.2

subList method

of List 9.5.3, 9.7.6

subMap method

of NavigableMap 9.7.6

of SortedMap 9.5.3, 9.7.6

submit method

of ExecutorCompletionService 10.8.3

of ExecutorService 10.4.2, 10.8.3

Subranges 9.5.3

subSet method

of NavigableSet 9.5.3, 9.7.6

of SortedSet 9.5.3, 9.7.6

Substitution principle 5.1.5

substring method

of String 3.6.3, 3.10.8, 9.5.3

subtract method

of BigDecimal 3.10.8

of BigInteger 3.10.8

subtractExact method 3.5.2

Subtraction 3.5.1

sum method

of LongAdder 10.5.11

Sun Microsystems 1.1, 1.2.5, 1.4, 1.5

HotJava browser 1.4

super keyword 5.1.2, 8.4.2, Appendix

in method references 6.2.5

vs. this 5.1.2, 5.1.3

Superclass wins rule 6.1.6

Superclasses 5.1

accessing private fields of 5.1.2

annotating 11.1.4

common fields and methods in 5.6, 5.11

overriding methods of 5.2.3

throws specifiers in 7.1.2, 7.2.1

Supertype bounds 8.4.2

Supplier interface 6.2.9

supportsNormalTermination method

of Process 10.8.3

Surrogates area (Unicode) 3.3.4

suspend method

of Thread 10.8.3

swap method

of Collections 9.7.6

Swing 10.7.3

SwingWorker class 10.7.3, 10.8.3

doInBackground method 10.7.3, 10.8.3

execute method 10.7.3, 10.8.3

getState method 10.8.3

process method 10.8.3

process, publish methods 10.7.3

publish method 10.8.3

switch keyword 3.5.9, 3.8.5, Appendix

enumerated constants in 3.5.9

throwing exceptions in 3.8.5

value of 3.5.9

with fallthrough 3.8.5

with pattern matching 5.8

Synchronization 10.5

condition objects for 10.5.4

final fields and 10.5.10

in Vector 9.3.2

lock objects for 10.5.3

monitor concept for 10.5.8

race conditions in 10.5.1, 10.5.2, 10.5.11

volatile fields and 10.5.9

Synchronization wrappers 10.6.8

Synchronized blocks 10.5.7

synchronized keyword 10.5.3, 10.5.6, 10.5.8,

Appendix

Synchronized views 9.5.7

synchronizedCollection method

of Collections 9.7.6, 10.8.3

synchronizedCollection methods (Collections)

9.5.7

synchronizedList method

of Collections 9.7.6, 10.8.3

synchronizedMap method

of Collections 9.7.6, 10.8.3

synchronizedNavigableMap method

of Collections 9.7.6

synchronizedNavigableSet method

of Collections 9.7.6

synchronizedSet method

of Collections 9.7.6, 10.8.3

synchronizedSortedMap method

of Collections 9.7.6, 10.8.3

synchronizedSortedSet method

of Collections 9.7.6, 10.8.3

System class 3.10.8, 5.11, 9.7.6

console method 3.10.8

getLogger method 7.5.2, 7.5.3

getProperties method 9.7.4, 9.7.6

getProperty method 9.7.4, 9.7.6

identityHashCode method 5.11, 9.4.7, 9.7.6

setOut method 4.4.2

setProperty method 7.5.4

System.err 7.5.5, 7.6

System.in 3.7.1

System.Logger interface 7.5.2, 7.6

getName method 7.6

isLoggable method 7.6

log method 7.6

System.Logger.Level enumeration 7.5.3

System.Loggerlog method

log method

log methodof System.Logger 7.5.2

System.out 4.4.2

T
T, t conversion characters 3.7.2

Tab completion 2.4

Tabs, in text blocks 3.6.10

Tagging interfaces 6.1.9, 9.2

tailMap method

of NavigableMap 9.7.6

of SortedMap 9.5.3, 9.7.6

tailSet method

of NavigableSet 9.5.3, 9.7.6

of SortedSet 9.5.3, 9.7.6

take method

of BlockingQueue 10.6.1, 10.8.3

of ExecutorCompletionService 10.8.3

takeFirst method

of BlockingDeque 10.8.3

takeLast method

of BlockingDeque 10.8.3

tan method

of Math 3.5.2

tar command 4.9.1

Tasks

asynchronously running 10.4.1

controlling groups of 10.4.3

decoupling from mechanism of running

10.1

long-running 10.7.3

multiple 10

work stealing for 10.4.6

TAU

of Math 3.5.2

Terminal window 2.2

Text blocks 3.6.10

thenAccept, thenAcceptBoth, thenCombine

methods

of CompletableFuture 10.7.2

thenApply, thenApplyAsync methods

of CompletableFuture 10.7.2

thenComparing method 6.2.10

thenCompose method 10.7.2

thenRun method 10.7.2

this keyword 4.3.6, 4.6.5, Appendix

annotating 11.1.5

in body of constructor 4.6.6

in inner classes 6.3.2

in lambda expressions 6.2.8

in method references 6.2.5

vs. super 5.1.2, 5.1.3

Thread class 10.8.3

Constructor 10.8.3

currentThread method 10.3.2, 10.8.3

extending 10.1

getDefaultUncaughtExceptionHandler method

10.8.3

getName method 10.8.3

getState method 10.8.3

getUncaughtExceptionHandler method

10.8.3

interrupt method 10.8.3

interrupt, isInterrupted methods 10.3.2

interrupted method 10.3.2, 10.8.3

isInterrupted method 10.8.3

isVirtual method 10.8.3

join method 10.2.3, 10.8.3

MAX_PRIORITY field 10.8.3

methods with timeout 10.2.3

MIN_PRIORITY field 10.8.3

NORM_PRIORITY field 10.8.3

ofPlatform method 10.8.3

ofVirtual method 10.8.3

resume method 10.8.3

run method 10.1, 10.8.3

setDaemon method 10.3.3, 10.8.3

setDefaultUncaughtExceptionHandler method

7.6, 10.3.5, 10.8.3

setName method 10.8.3

setPriority method 10.8.3

setUncaughtExceptionHandler method

10.8.3

sleep method 10.1, 10.3.2, 10.8.3

start method 10.1, 10.2.2, 10.8.3

startVirtualThread method 10.3.1, 10.8.3

stop method 10.3.2, 10.8.3

suspend method 10.8.3

threadId method 10.8.3

yield method 10.8.3

Thread dump 10.5.5

Thread groups 10.3.5

Thread pools 10.4.2

Thread-safe collections 10.6

callables and futures 10.4.1

concurrent 10.6.2

copy on write arrays 10.6.6

synchronization wrappers 10.6.8

Thread.Builder interface 10.8.3

factory method 10.8.3

name method 10.8.3

start method 10.8.3

uncaughtExceptionHandler method 10.8.3

unstarted method 10.8.3

Thread.Builder.OfPlatform interface 10.8.3

daemon method 10.8.3

group method 10.8.3

priority method 10.8.3

stackSize method 10.8.3

Thread.UncaughtExceptionHandler interface

10.3.5, 10.8.3

uncaughtException method 10.8.3

ThreadFactory interface 10.8.3

newThread method 10.8.3

ThreadGroup class 10.8.3

uncaughtException method 10.8.3

threadId method

of Thread 10.8.3

ThreadLocal class 10.8.3

get method 10.8.3

remove method 10.8.3

set method 10.8.3

withInitial method 10.8.3

ThreadLocalRandom class 10.8.3

current method 10.8.3

ThreadPoolExecutor class 10.4.2

Threads

accessing collections from 9.5.7, 10.6

blocked 10.2.3, 10.3.2

condition objects for 10.5.4

daemon 10.3.3

executing code in 6.2.9

idle 10.4.6

interrupting 10.3.2

listing all 10.5.5

locking 10.5.7

new 10.2.1

priorities of 10.3.6

producer/customer 10.6.1

runnable 10.2.2

states of 10.2

synchronizing 10.5

terminated 10.1, 10.2.4, 10.3.2

thread-local variables in 10.5.14

timed waiting 10.2.3

unblocking 10.5.4

uncaught exceptions in 10.3.5

waiting 10.2.3, 10.5.4

work stealing for 10.4.6

worker 10.7.3

throw keyword 7.1.3, Appendix

Throwable class 5.11, 7.1.1, 7.3, 7.6

add/getSuppressed methods 7.2.5

addSuppressed method 7.6

Constructor 7.6

getCause method 7.6

getMessage method 7.6

getStackTrace method 7.2.6, 7.6

getSuppressed method 7.6

initCause method 7.6

printStackTrace method 5.11, 7.2.6, 7.6

toString method 7.1.4

throws keyword 5.10.2, 7.1.2, Appendix

Time measurement vs. calendars 4.2.2

Timed waiting threads 10.2.3

TimeoutException class 10.4.1, 10.7.2

Timer class 6.1.7, 6.2.1, 6.5.3

Constructor 6.5.3

start method 6.5.3

stop method 6.5.3

to keyword Appendix

toArray method

of ArrayList 8.5.7

of Collection 5.3.2, 9.1.4, 9.6.6, 9.7.6

of Stream 6.2.6

toHandle method 10.8.3

of Process 10.8.3

toLowerCase method

of String 3.10.8

Toolkit class 6.5.3

beep method 6.5.3

getDefaultToolkit method 6.5.3

toString method

adding to all classes 5.2.5

Formattable and 3.7.2

of Annotation 11.6.2

of Arrays 3.10.3, 3.10.8

of Date 4.2.1

of Enum 5.7

of Integer 5.11

of Modifier 5.10.4, 5.11

of Object 5.2.5, 5.11, 6.1.6

of proxy classes 6.5.3

of records 4.7.1, 5.2.5

of StackFrame 7.2.6

of StackTraceElement 7.6

of StackWalker.StackFrame 7.6

of StringBuilder 3.6.9, 3.10.8

of Throwable 7.1.4

redeclaring 6.2.3

working with any class 5.10.5

Total ordering 9.3.4

totalCpuDuration method

of ProcessHandle.Info 10.8.3

toUnsignedInt method 3.3.1

toUpperCase method

of String 3.10.8

TraceHandler 6.5.2

transfer method

of TransferQueue 10.8.3

TransferQueue interface 10.6.1, 10.8.3

transfer method 10.8.3

tryTransfer method 10.8.3

Transform 6.2.9

transform method

of String 6.2.9

transient keyword Appendix

transitive keyword 12.11, Appendix

Tree maps 9.4.1

Tree sets 9.3.4

red-black 9.3.4

total ordering of 9.3.4

vs. priority queues 9.3.6

TreeMap class 9.2, 9.4.1, 9.7.6

as a concrete collection type 9.3

Constructor 9.7.6

vs. HashMap 9.4.1

TreeSet class 9.2, 9.3.4, 9.7.6

as a concrete collection type 9.3

Constructor 9.7.6

Trigonometric functions 3.5.2

trimToSize method 5.3.1

of ArrayList 5.11

Troubleshooting. See Debugging

true literal Appendix

try keyword Appendix

try-with-resources statement 7.2.5

effectively final variables in 7.2.5

no locks with 10.5.3

try/catch 7.2.1, 7.2.3

generics and 8.1.6

wrapping entire task in try block 7.3

try/finally 7.2.4

tryLock method 10.2.3

trySetAccessible method

of AccessibleObject 5.11

tryTransfer method

of TransferQueue 10.8.3

Two-dimensional arrays 3.10.7, 3.10.8

Type bounds

annotating 11.1.4

Type erasure 8.2.1, 8.5.1

clashes after 8.5.10

Type interface 8.6.3

type method

of ServiceLoader.Provider 6.4, 6.5.3

Type parameters 5.3

annotating 11.1.3

converting to raw types 8.3

not for arrays 8.3, 8.5.3

not instantiated with primitive types 8.5.1

vs. inheritance 8.1

Type variables

bounds for 8.1.5

common names of 8.1.3

in exceptions 8.1.6

in static fields or methods 8.5.8

matching in generic methods 8.6.2

no instantiating for 8.5.6

replacing with bound types 8.2.1

TypeElement interface 11.5.2

Types. See Data types

TypeVariable interface 8.6.3, 8.6.4

getBounds method 8.6.4

getName method 8.6.4

U
UCSD Pascal system 1.2.6

UML (Unified Modeling Language) notation

4.1.4

UnaryOperator interface 6.2.9

uncaughtException method

of Thread.UncaughtExceptionHandler

10.8.3

of ThreadGroup 10.8.3

uncaughtExceptionHandler method

of Thread.Builder 10.8.3

Unchecked exceptions 5.10.2, 7.1.1, 7.1.2

applicability of 7.3

Unequality operator 3.5.7

Unicode 1.2.7, 3.3.3, 3.3.4, 3.6

Unit tests 11

University of Illinois 1.4

UNIX 4.8.9, 4.8.10

unlock method

of Lock 10.5.3, 10.8.3

Unmodifiable copies 9.5.2

Unmodifiable views 9.5.2

unmodifiableCollection method

of Collections 9.7.6

unmodifiableCollection methods (Collections)

9.5.2

unmodifiableList method

of Collections 9.7.6

unmodifiableMap method

of Collections 9.7.6

unmodifiableNavigableMap method

of Collections 9.7.6

unmodifiableNavigableSet method

of Collections 9.7.6

unmodifiableSequencedCollection method

of Collections 9.7.6

unmodifiableSequencedMap method

of Collections 9.7.6

unmodifiableSequencedSet method

of Collections 9.7.6

unmodifiableSet method

of Collections 9.7.6

unmodifiableSortedMap method

of Collections 9.7.6

unmodifiableSortedSet method

of Collections 9.7.6

Unnamed modules 5.10.5

Unnamed packages 4.8.6, 4.8.8, 4.10.10, 7.4.2

unstarted method

of Thread.Builder 10.8.3

UnsupportedOperationException class 9.4.3,

9.5.1, 9.5.2, 9.5.8

updateAndGet method

of AtomicXxx 10.5.11

User input 7.1

User Interface. See Graphical User Interface

user method

of ProcessHandle.Info 10.8.3

User-defined types 5.4

uses keyword 12.14, Appendix

UTC (Coordinated Universal Time) 4.2.2

Utility classes/methods 6.1.4, 6.1.5

V
V> method

of ConcurrentHashMap 10.8.3

of ConcurrentSkipListMap 10.8.3

valueOf method

of BigInteger 3.9, 3.10.8

of Enum 5.7, 5.11

of Integer 5.11

values method

of Map 9.4.3, 9.7.6

var keyword 4.3.4, 6.2.2, 6.3.6, Appendix

diamond syntax and 5.3.1

Varargs methods 5.5

passing generic types to 8.5.4

Varargs parameters

safety of 11.3, 11.3.1

VarHandle class 5.10.5, 12.7

Variable handles 5.10.5, 12.7

VariableElement interface 11.5.2

Variables 3.4.1

accessing

from outer methods 6.3.5

in lambda expressions 6.2.7

annotating 8.2.4

copying 6.1.9

declarations of 3.4.1, 5.1.9

deprecated 11.3, 11.3.1

effectively final 6.2.7, 7.2.5

initializing 3.4.2, 4.11

local 4.3.4, 5.1.9, 8.2.4

mutating in lambda expressions 6.2.7

names of 3.4.1

package scope of 4.8.8

printing/logging values of 7.6

static 4.4.2

thread-local 10.5.14

Vector class 9.1, 9.7, 9.7.2, 10.5.7, 10.6.8

for dynamic arrays 5.3.1

get, set methods 10.5.7

synchronization in 9.3.2

Views 9.5

bulk operations for 9.6.5

checked 9.5.6

restricted 9.5.8

subranges of 9.5.3

synchronized 9.5.7

unmodifiable 9.5.2

Visual Basic

built-in date type in 4.2.1

syntax of 1.2.1

Visual Studio 2.2

void keyword Appendix

Volatile fields 10.5.9

volatile keyword 10.5.9, 10.5.11, Appendix

Von der Ahé, Peter 8.1.4

W
wait method

of Object 10.2.3, 10.5.6, 10.8.3

Wait sets 10.5.4

waitFor method 10.8.2

of Process 10.8.3

walk method

of StackWalker 7.2.6, 7.6

Warning messages 11.3

Warning messages, suppressing 11.3.1

Warnings

fallthrough behavior and 3.8.5

generic 5.3.3, 8.2.4, 8.5.4, 8.5.9

suppressing 8.5.4, 8.5.9

Weak hash maps 9.4.4

Weak references 9.4.4

WeakHashMap class 9.4.4, 9.7.6

as a concrete collection type 9.3

Constructor 9.7.6

Weakly consistent iterators 10.6.2

WeakReference class 9.4.4

Web pages

dynamic 1.3

extracting links from 10.7.2

reading 10.7.3

whenComplete method

of CompletableFuture 10.7.2

where method

of ScopedValue 10.4.5, 10.8.3

while keyword 3.8.3, Appendix

Whitespace

escape sequence for 3.3.3, 3.6.10

in text blocks 3.6.10

irrelevant to compiler 3.1

leading/trailing 3.6.10

Wildcard types 8.1.2, 8.4

annotating 11.1.4

arrays of 8.5.3

capturing 8.4.4

supertype bounds for 8.4.2

unbounded 8.4.3

WildcardType interface 8.6.3, 8.6.4

getLowerBounds method 8.6.4

getUpperBounds method 8.6.4

Windows

changing warning string in 4.8.8

Windows operating system

executing JARs in 4.9.3

IDEs for 2.3

JDK in 2.1

paths in 4.8.9, 4.8.10

thread priority levels in 10.3.6

Wirth, Niklaus 1.2.6, 1.4, 4.1

with keyword Appendix

withInitial method

of ThreadLocal 10.8.3

Work stealing 10.4.6

Worker threads 10.7.3

Working directory, for a process 10.8.1

Wrappers 5.4

class constructors for 5.4

equality testing for 5.4

immutability of 5.4

locks and 5.4, 10.5.7

X
X, x conversion characters 3.7.2

XML 1.4, 1.5

XML descriptors, generating 11.5.3

XML/JSON binding 12.7

xor method

of BitSet 9.7.6

Y
Yasson 12.7

yield keyword 3.8.5, Appendix

yield method

of Thread 10.8.3

Z

ZIP archives

for JMOD files 12.15

ZIP format 4.8.9, 4.9

	Preface
	To the Reader
	A Tour of This Book
	Conventions
	Sample Code

	Acknowledgments
	1. An Introduction to Java
	1.1. Java as a Programming Platform
	1.2. The Java “White Paper” Buzzwords
	1.2.1. Simple
	1.2.2. Object-Oriented
	1.2.3. Distributed
	1.2.4. Robust
	1.2.5. Secure
	1.2.6. Architecture-Neutral
	1.2.7. Portable
	1.2.8. Interpreted
	1.2.9. High-Performance
	1.2.10. Multithreaded
	1.2.11. Dynamic

	1.3. Java Applets and the Internet
	1.4. A Short History of Java
	1.5. Common Misconceptions about Java

	2. The Java Programming Environment
	2.1. Installing the Java Development Kit
	2.1.1. Downloading the JDK
	2.1.2. Setting Up the JDK
	2.1.3. Source Files and Documentation

	2.2. Using the Command-Line Tools
	2.3. Using an Integrated Development Environment
	2.4. JShell

	3. Fundamental Programming Structures in Java
	3.1. A Simple Java Program
	3.2. Comments
	3.3. Data Types
	3.3.1. Integer Types
	3.3.2. Floating-Point Types
	3.3.3. The char Type
	3.3.4. Unicode and the char Type
	3.3.5. The boolean Type

	3.4. Variables and Constants
	3.4.1. Declaring Variables
	3.4.2. Initializing Variables
	3.4.3. Constants
	3.4.4. Enumerated Types

	3.5. Operators
	3.5.1. Arithmetic Operators
	3.5.2. Mathematical Functions and Constants
	3.5.3. Conversions between Numeric Types
	3.5.4. Casts
	3.5.5. Assignment
	3.5.6. Increment and Decrement Operators
	3.5.7. Relational and boolean Operators
	3.5.8. The Conditional Operator
	3.5.9. Switch Expressions
	3.5.10. Bitwise Operators
	3.5.11. Parentheses and Operator Hierarchy

	3.6. Strings
	3.6.1. Concatenation
	3.6.2. Static and Instance Methods
	3.6.3. Indexes and Substrings
	3.6.4. Strings Are Immutable
	3.6.5. Testing Strings for Equality
	3.6.6. Empty and Null Strings
	3.6.7. The String API
	3.6.8. Reading the Online API Documentation
	3.6.9. Building Strings
	3.6.10. Text Blocks

	3.7. Input and Output
	3.7.1. Reading Input
	3.7.2. Formatting Output

	3.8. Control Flow
	3.8.1. Block Scope
	3.8.2. Conditional Statements
	3.8.3. Loops
	3.8.4. Determinate Loops
	3.8.5. Multiple Selections with switch
	3.8.6. Statements That Break Control Flow

	3.9. Big Numbers
	3.10. Arrays
	3.10.1. Declaring Arrays
	3.10.2. Accessing Array Elements
	3.10.3. The “for each” Loop
	3.10.4. Array Copying
	3.10.5. Command-Line Arguments
	3.10.6. Array Sorting
	3.10.7. Multidimensional Arrays
	3.10.8. Ragged Arrays

	4. Objects and Classes
	4.1. Introduction to Object-Oriented Programming
	4.1.1. Classes
	4.1.2. Objects
	4.1.3. Identifying Classes
	4.1.4. Relationships between Classes

	4.2. Using Predefined Classes
	4.2.1. Objects and Object Variables
	4.2.2. The LocalDate Class of the Java Library
	4.2.3. Mutator and Accessor Methods

	4.3. Defining Your Own Classes
	4.3.1. An Employee Class
	4.3.2. Dissecting the Employee Class
	4.3.3. First Steps with Constructors
	4.3.4. Declaring Local Variables with var
	4.3.5. Working with null References
	4.3.6. Implicit and Explicit Parameters
	4.3.7. Benefits of Encapsulation
	4.3.8. Class-Based Access Privileges
	4.3.9. Private Methods
	4.3.10. Final Instance Fields

	4.4. Static Fields and Methods
	4.4.1. Static Fields
	4.4.2. Static Constants
	4.4.3. Static Methods
	4.4.4. Factory Methods
	4.4.5. The main Method

	4.5. Method Parameters
	4.6. Object Construction
	4.6.1. Overloading
	4.6.2. Default Field Initialization
	4.6.3. The Constructor with No Arguments
	4.6.4. Explicit Field Initialization
	4.6.5. Parameter Names
	4.6.6. Calling Another Constructor
	4.6.7. Initialization Blocks
	4.6.8. Static Initialization

	4.7. Records
	4.7.1. The Record Concept
	4.7.2. Constructors: Canonical, Compact, and Custom

	4.8. Packages
	4.8.1. Encapsulation
	4.8.2. Package Names
	4.8.3. Class Importation
	4.8.4. Module Imports
	4.8.5. Static Imports
	4.8.6. Addition of a Class into a Package
	4.8.7. Compiling with Packages
	4.8.8. Package Access
	4.8.9. The Class Path
	4.8.10. Setting the Class Path

	4.9. JAR Files
	4.9.1. Creating JAR files
	4.9.2. The Manifest
	4.9.3. Executable JAR Files
	4.9.4. Multi-Release JAR Files
	4.9.5. A Note about Command-Line Options

	4.10. Documentation Comments
	4.10.1. Comment Insertion
	4.10.2. Class Comments
	4.10.3. Method Comments
	4.10.4. Field Comments
	4.10.5. Package Comments
	4.10.6. HTML Markup
	4.10.7. Links
	4.10.8. General Comments
	4.10.9. Code Snippets
	4.10.10. Comment Extraction

	4.11. Class Design Hints

	5. Inheritance
	5.1. Classes, Superclasses, and Subclasses
	5.1.1. Defining Subclasses
	5.1.2. Overriding Methods
	5.1.3. Subclass Constructors
	5.1.4. Inheritance Hierarchies
	5.1.5. Polymorphism
	5.1.6. Understanding Method Calls
	5.1.7. Preventing Inheritance: Final Classes and Methods
	5.1.8. Casting
	5.1.9. Pattern Matching for instanceof
	5.1.10. Protected Access

	5.2. Object: The Cosmic Superclass
	5.2.1. Variables of Type Object
	5.2.2. The equals Method
	5.2.3. Equality Testing and Inheritance
	5.2.4. The hashCode Method
	5.2.5. The toString Method

	5.3. Generic Array Lists
	5.3.1. Declaring Array Lists
	5.3.2. Accessing Array List Elements
	5.3.3. Compatibility between Typed and Raw Array Lists

	5.4. Object Wrappers and Autoboxing
	5.5. Methods with a Variable Number of Arguments
	5.6. Abstract Classes
	5.7. Enumeration Classes
	5.8. Sealed Classes
	5.9. Pattern Matching
	5.9.1. Null Handling
	5.9.2. Guards
	5.9.3. Exhaustiveness
	5.9.4. Dominance
	5.9.5. Patterns and Constants
	5.9.6. Variable Scope and Fallthrough

	5.10. Reflection
	5.10.1. The Class Class
	5.10.2. A Primer on Declaring Exceptions
	5.10.3. Resources
	5.10.4. Using Reflection to Analyze the Capabilities of Classes
	5.10.5. Using Reflection to Analyze Objects at Runtime
	5.10.6. Using Reflection to Write Generic Array Code
	5.10.7. Invoking Arbitrary Methods and Constructors

	5.11. Design Hints for Inheritance

	6. Interfaces, Lambda Expressions, and Inner Classes
	6.1. Interfaces
	6.1.1. The Interface Concept
	6.1.2. Properties of Interfaces
	6.1.3. Interfaces and Abstract Classes
	6.1.4. Static and Private Methods
	6.1.5. Default Methods
	6.1.6. Resolving Default Method Conflicts
	6.1.7. Interfaces and Callbacks
	6.1.8. The Comparator Interface
	6.1.9. Object Cloning

	6.2. Lambda Expressions
	6.2.1. Why Lambdas?
	6.2.2. The Syntax of Lambda Expressions
	6.2.3. Functional Interfaces
	6.2.4. Function Types
	6.2.5. Method References
	6.2.6. Constructor References
	6.2.7. Variable Scope
	6.2.8. Lambda Expressions and this
	6.2.9. Processing Lambda Expressions
	6.2.10. Creating Comparators

	6.3. Inner Classes
	6.3.1. Use of an Inner Class to Access Object State
	6.3.2. Special Syntax Rules for Inner Classes
	6.3.3. Are Inner Classes Useful? Actually Necessary? Secure?
	6.3.4. Local Inner Classes
	6.3.5. Accessing Variables from Outer Methods
	6.3.6. Anonymous Inner Classes
	6.3.7. Static Classes
	6.3.8. Nested Records

	6.4. Service Loaders
	6.5. Proxies
	6.5.1. When to Use Proxies
	6.5.2. Creating Proxy Objects
	6.5.3. Properties of Proxy Classes

	7. Exceptions, Assertions, and Logging
	7.1. Dealing with Errors
	7.1.1. The Classification of Exceptions
	7.1.2. Declaring Checked Exceptions
	7.1.3. How to Throw an Exception
	7.1.4. Creating Exception Classes

	7.2. Catching Exceptions
	7.2.1. Catching an Exception
	7.2.2. Catching Multiple Exceptions
	7.2.3. Rethrowing and Chaining Exceptions
	7.2.4. The finally Clause
	7.2.5. The try-with-Resources Statement
	7.2.6. Analyzing Stack Trace Elements

	7.3. Tips for Using Exceptions
	7.4. Using Assertions
	7.4.1. The Assertion Concept
	7.4.2. Assertion Enabling and Disabling
	7.4.3. Using Assertions for Parameter Checking
	7.4.4. Using Assertions for Documenting Assumptions

	7.5. Logging
	7.5.1. Should You Use the Java Logging Framework?
	7.5.2. Logging 101
	7.5.3. The Platform Logging API
	7.5.4. Logging Configuration
	7.5.5. Log Handlers
	7.5.6. Filters and Formatters
	7.5.7. A Logging Recipe

	7.6. Debugging Tips

	8. Generic Programming
	8.1. Type Parameters
	8.1.1. The Advantage of Generic Programming
	8.1.2. Who Wants to Be a Generic Programmer?
	8.1.3. Defining a Simple Generic Class
	8.1.4. Generic Methods
	8.1.5. Bounds for Type Variables
	8.1.6. Generic Exceptions

	8.2. Generic Code and the Virtual Machine
	8.2.1. Type Erasure
	8.2.2. Translating Generic Expressions
	8.2.3. Translating Generic Methods
	8.2.4. Calling Legacy Code

	8.3. Inheritance Rules for Generic Types
	8.4. Wildcard Types
	8.4.1. The Wildcard Concept
	8.4.2. Supertype Bounds for Wildcards
	8.4.3. Unbounded Wildcards
	8.4.4. Wildcard Capture

	8.5. Restrictions and Limitations
	8.5.1. Type Parameters Cannot Be Instantiated with Primitive Types
	8.5.2. Casts Only Work with Raw Types
	8.5.3. You Cannot Create Arrays of Parameterized Types
	8.5.4. Varargs Warnings
	8.5.5. Generic Varargs Do Not Spread Primitive Arrays
	8.5.6. You Cannot Instantiate Type Variables
	8.5.7. You Cannot Construct a Generic Array
	8.5.8. Type Variables Are Not Valid in Static Contexts of Generic Classes
	8.5.9. You Can Defeat Checked Exception Checking
	8.5.10. Beware of Clashes after Erasure
	8.5.11. Type Inference in Generic Record Patterns is Limited

	8.6. Reflection and Generics
	8.6.1. The Generic Class Class
	8.6.2. Using Class<T> Parameters for Type Matching
	8.6.3. Generic Type Information in the Virtual Machine
	8.6.4. Type Literals

	9. Collections
	9.1. The Java Collections Framework
	9.1.1. Separating Collection Interfaces and Implementation
	9.1.2. The Collection Interface
	9.1.3. Iterators
	9.1.4. Generic Utility Methods

	9.2. Interfaces in the Collections Framework
	9.3. Concrete Collections
	9.3.1. Linked Lists
	9.3.2. Array Lists
	9.3.3. Hash Sets
	9.3.4. Tree Sets
	9.3.5. Queues and Deques
	9.3.6. Priority Queues

	9.4. Maps
	9.4.1. Basic Map Operations
	9.4.2. Updating Map Entries
	9.4.3. Map Views
	9.4.4. Weak Hash Maps
	9.4.5. Linked Hash Sets and Maps
	9.4.6. Enumeration Sets and Maps
	9.4.7. Identity Hash Maps

	9.5. Copies and Views
	9.5.1. Small Collections
	9.5.2. Unmodifiable Copies and Views
	9.5.3. Subranges
	9.5.4. Sets From Boolean-Valued Maps
	9.5.5. Reversed Views
	9.5.6. Checked Views
	9.5.7. Synchronized Views
	9.5.8. A Note on Optional Operations

	9.6. Algorithms
	9.6.1. Why Generic Algorithms?
	9.6.2. Sorting and Shuffling
	9.6.3. Binary Search
	9.6.4. Simple Algorithms
	9.6.5. Bulk Operations
	9.6.6. Converting between Collections and Arrays
	9.6.7. Writing Your Own Algorithms

	9.7. Legacy Collections
	9.7.1. The Hashtable Class
	9.7.2. Enumerations
	9.7.3. Property Maps
	9.7.4. System Properties
	9.7.5. Stacks
	9.7.6. Bit Sets

	10. Concurrency
	10.1. Running Threads
	10.2. Thread States
	10.2.1. New Threads
	10.2.2. Runnable Threads
	10.2.3. Blocked and Waiting Threads
	10.2.4. Terminated Threads

	10.3. Thread Properties
	10.3.1. Virtual Threads
	10.3.2. Thread Interruption
	10.3.3. Daemon Threads
	10.3.4. Thread Names and Ids
	10.3.5. Handlers for Uncaught Exceptions
	10.3.6. Thread Priorities
	10.3.7. Thread Factories and Builders

	10.4. Coordinating Tasks
	10.4.1. Callables and Futures
	10.4.2. Executor Services
	10.4.3. Invoking a Group of Tasks
	10.4.4. Thread-Local Variables
	10.4.5. Scoped Values
	10.4.6. The Fork-Join Framework

	10.5. Synchronization
	10.5.1. An Example of a Race Condition
	10.5.2. The Race Condition Explained
	10.5.3. Lock Objects
	10.5.4. Condition Objects
	10.5.5. Deadlocks
	10.5.6. The synchronized Keyword
	10.5.7. Synchronized Blocks
	10.5.8. The Monitor Concept
	10.5.9. Volatile Fields
	10.5.10. Final Fields
	10.5.11. Atomics
	10.5.12. On-Demand Initialization
	10.5.13. Safe Publication
	10.5.14. Sharing with Thread-Local Variables

	10.6. Thread-Safe Collections
	10.6.1. Blocking Queues
	10.6.2. Efficient Maps, Sets, and Queues
	10.6.3. Atomic Update of Map Entries
	10.6.4. Bulk Operations on Concurrent Hash Maps
	10.6.5. Concurrent Set Views
	10.6.6. Copy on Write Arrays
	10.6.7. Parallel Array Algorithms
	10.6.8. Older Thread-Safe Collections

	10.7. Asynchronous Computations
	10.7.1. Completable Futures
	10.7.2. Composing Completable Futures
	10.7.3. Long-Running Tasks in User Interface Callbacks

	10.8. Processes
	10.8.1. Building a Process
	10.8.2. Running a Process
	10.8.3. Process Handles

	11. Annotations
	11.1. Using Annotations
	11.1.1. Annotation Elements
	11.1.2. Multiple and Repeated Annotations
	11.1.3. Annotating Declarations
	11.1.4. Annotating Type Uses
	11.1.5. Receiver Parameters

	11.2. Defining Annotations
	11.3. Annotations in the Java API
	11.3.1. Annotations for Compilation
	11.3.2. Meta-Annotations

	11.4. Processing Annotations at Runtime
	11.5. Source-Level Annotation Processing
	11.5.1. Annotation Processors
	11.5.2. The Language Model API
	11.5.3. Using Annotations to Generate Source Code

	11.6. Bytecode Engineering
	11.6.1. Modifying Class Files
	11.6.2. Modifying Bytecodes at Load Time

	12. The Java Platform Module System
	12.1. The Module Concept
	12.2. Naming Modules
	12.3. The Modular “Hello, World!” Program
	12.4. Requiring Modules
	12.5. Exporting Packages
	12.6. Modular JARs
	12.7. Modules and Reflective Access
	12.8. Automatic Modules
	12.9. The Unnamed Module
	12.10. Command-Line Flags for Migration
	12.11. Transitive and Static Requirements
	12.12. Importing Modules
	12.13. Qualified Exporting and Opening
	12.14. Service Loading
	12.15. Tools for Working with Modules

	Appendix
	Index

