ORACLE
PRESS

CORE

JAVA

Volume |;: Fundamentals

FOURTEENTH EDITION

ORACLE Cay S. Horstmann

ORACLE
FRESS

CORE

JAVA

Volume |: Fundamentals

FOURTEENTH EDITION

ORACLE Cay S. Horstmann

Core Java

Volume I: Fundamentals

Fourteenth Edition

Cay S. Horstmann

Cover image: emotionPicture/stock.adobe.com

Figure 1.1: Sourceforge

Figures 2.2, 3.2-3.5,4.9, 5.4, 7.2, 10.5, 10.6, 11.1: Oracle Corporation
Figures 2.3-2.5, 12.2: Eclipse Foundation AISBL

Figure 4.2: Violet UML Editor

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

Please contact us with concerns about any potential bias at pearson.com/en-us/report-bias.html.
Author websites are not owned or managed by Pearson.

Visit us on the Web: informit.com

Library of Congress Control Number: 2025945021

Copyright © 2026 Pearson Education, Inc.
Hoboken, New Jersey

Portions copyright © 1996-2013 Oracle and/or its affiliates. All Rights Reserved.

Oracle America Inc. does not make any representations or warranties as to the accuracy, adequacy or
completeness of any information contained in this work, and is not responsible for any errors or
omissions.

The views expressed in this book are those of the author and do not necessarily reflect the views of
Oracle.

Microsoft and/or its respective suppliers make no representations about the suitability of the
information contained in the documents and related graphics published as part of the services for any
purpose. All such documents and related graphics are provided "as is" without warranty of any kind.
Microsoft and/or its respective suppliers hereby disclaim all warranties and conditions with regard to
this information, including all warranties and conditions of merchantability, whether express, implied
or statutory, fitness for a particular purpose, title and non-infringement. In no event shall Microsoft
and/or its respective suppliers be liable for any special, indirect or consequential damages or any
damages whatsoever resulting from loss of use, data or profits, whether in an action of contract,
negligence or other tortious action, arising out of or in connection with the use or performance of
information available from the services. The documents and related graphics contained herein could
include technical inaccuracies or typographical errors. Changes are periodically added to the
information herein. Microsoft and/or its respective suppliers may make improvements and/or changes
in the product(s) and/or the program(s) described herein at any time. Partial screen shots may be
viewed in full within the software version specified.

Microsoft® Windows®, and Microsoft Office® are registered trademarks of the Microsoft
Corporation in the U.S.A. and other countries. This book is not sponsored or endorsed by or affiliated
with the Microsoft Corporation.

All rights reserved. This publication is protected by copyright, and permission must be obtained from
the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in
any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, request forms and the appropriate contacts within the Pearson
Education Global Rights & Permissions Department, please visit pearson.com/en-us/global-
permission-granting.html.

ISBN-13: 978-0-13-555857-7
ISBN-10: 0-13-555857-3

Contents

Preface

Acknowledgments

1. An Introduction to Java

1.1. Java as a Programming Platform

1.2. The Java “White Paper” Buzzwords

1.2.1. Simple

1.2.2. Object-Oriented

1.2.3. Distributed

1.2.4. Robust

1.2.5. Secure

1.2.6. Architecture-Neutral

1.2.7. Portable

1.2.8. Interpreted

1.2.9. High-Performance

1.2.10. Multithreaded

1.2.11. Dynamic

1.3. Java Applets and the Internet

1.4. A Short History of Java

1.5. Common Misconceptions about Java

2. The Java Programming Environment

2.1. Installing the Java Development Kit

2.1.1. Downloading the JDK

2.1.2. Setting Up the JDK

2.1.3. Source Files and Documentation

2.2. Using the Command-Line Tools

2.3. Using an Integrated Development Environment

2.4. JShell

3. Fundamental Programming Structures in Java

3.1. A Simple Java Program

3.2. Comments

3.3. Data Types

3.3.1. Integer Types

3.3.2. Floating-Point Types

3.3.3. The char Type

3.3.4. Unicode and the char Type

3.3.5. The boolean Type

3.4. Variables and Constants

3.4.1. Declaring Variables

3.4.2. Initializing Variables

3.4.3. Constants

3.4.4. Enumerated Types

3.5. Operators

3.5.1. Arithmetic Operators

3.5.2. Mathematical Functions and Constants

3.5.3. Conversions between Numeric Types

3.5.4. Casts

3.5.5. Assignment

3.5.6. Increment and Decrement Operators

3.5.7. Relational and boolean Operators

3.5.8. The Conditional Operator

3.5.9. Switch Expressions

3.5.10. Bitwise Operators

3.5.11. Parentheses and Operator Hierarchy

3.6. Strings

3.6.1. Concatenation

3.6.2. Static and Instance Methods

3.6.3. Indexes and Substrings

3.6.4. Strings Are Immutable

3.6.5. Testing Strings for Equality

3.6.6. Empty and Null Strings

3.6.7. The String API

3.6.8. Reading the Online API Documentation

3.6.9. Building Strings

3.6.10. Text Blocks

3.7. Input and Output

3.7.1. Reading Input

3.7.2. Formatting Output

3.8. Control Flow

3.8.1. Block Scope

3.8.2. Conditional Statements

3.8.3. Loops

3.8.4. Determinate Loops

3.8.5. Multiple Selections with switch

3.8.6. Statements That Break Control Flow

3.9. Big Numbers

3.10. Arrays

3.10.1. Declaring Arrays

3.10.2. Accessing Array Elements

3.10.3. The “for each” Loop

3.10.4. Array Copying

3.10.5. Command-Line Arguments

3.10.6. Array Sorting

3.10.7. Multidimensional Arrays

3.10.8. Ragged Arrays

4. Objects and Classes

4.1. Introduction to Object-Oriented Programming

4.1.1. Classes

4.1.2. Objects

4.1.3. Identifying Classes

4.1.4. Relationships between Classes

4.2. Using Predefined Classes

4.2.1. Objects and Object Variables

4.2.2. The LocalDate Class of the Java Library

4.2.3. Mutator and Accessor Methods

4.3. Defining Your Own Classes

4.3.1. An Employee Class

4.3.2. Dissecting the Employee Class

4.3.3. First Steps with Constructors

4.3.4. Declaring Local Variables with var

4.3.5. Working with null References

4.3.6. Implicit and Explicit Parameters

4.3.7. Benefits of Encapsulation

4.3.8. Class-Based Access Privileges

4.3.9. Private Methods

4.3.10. Final Instance Fields

4.4. Static Fields and Methods

4.4.1. Static Fields

4.4.2. Static Constants

4.4.3. Static Methods

4.4.4. Factory Methods

4.4.5. The main Method

4.5. Method Parameters

4.6. Object Construction

4.6.1. Overloading

4.6.2. Default Field Initialization

4.6.3. The Constructor with No Arguments

4.6.4. Explicit Field Initialization

4.6.5. Parameter Names

4.6.6. Calling Another Constructor

4.6.7. Initialization Blocks

4.6.8. Static Initialization

4.7. Records

4.7.1. The Record Concept

4.7.2. Constructors: Canonical, Compact, and Custom

4.8. Packages

4.8.1. Encapsulation

4.8.2. Package Names

4.8.3. Class Importation

4.8.4. Module Imports

4.8.5. Static Imports

4.8.6. Addition of a Class into a Package

4.8.7. Compiling with Packages

4.8.8. Package Access

4.8.9. The Class Path

4.8.10. Setting the Class Path

4.9. JAR Files

4.9.1. Creating JAR files

4.9.2. The Manifest

4.9.3. Executable JAR Files

4.9.4. Multi-Release JAR Files

4.9.5. A Note about Command-Line Options

4.10. Documentation Comments

4.10.1. Comment Insertion

4.10.2. Class Comments

4.10.3. Method Comments

4.10.4. Field Comments

4.10.5. Package Comments

4.10.6. HTML Markup

4.10.7. Links

4.10.8. General Comments

4.10.9. Code Snippets

4.10.10. Comment Extraction

4.11. Class Design Hints

5. Inheritance

5.1. Classes, Superclasses, and Subclasses

5.1.1. Defining Subclasses

5.1.2. Overriding Methods

5.1.3. Subclass Constructors

5.1.4. Inheritance Hierarchies

5.1.5. Polymorphism

5.1.6. Understanding Method Calls

5.1.7. Preventing Inheritance: Final Classes and Methods

5.1.8. Casting

5.1.9. Pattern Matching for instanceof

5.1.10. Protected Access

5.2. Object: The Cosmic Superclass

5.2.1. Variables of Type Object

5.2.2. The equals Method

5.2.3. Equality Testing and Inheritance

5.2.4. The hashCode Method

5.2.5. The toString Method

5.3. Generic Array Lists

5.3.1. Declaring Array Lists

5.3.2. Accessing Array List Elements

5.3.3. Compatibility between Typed and Raw Array Lists

5.4. Object Wrappers and Autoboxing

5.5. Methods with a Variable Number of Arguments

5.6. Abstract Classes

5.7. Enumeration Classes

5.8. Sealed Classes

5.9. Pattern Matching

5.9.1. Null Handling

5.9.2. Guards

5.9.3. Exhaustiveness

5.9.4. Dominance

5.9.5. Patterns and Constants

5.9.6. Variable Scope and Fallthrough

5.10. Reflection

5.10.1. The Class Class

5.10.2. A Primer on Declaring Exceptions

5.10.3. Resources

5.10.4. Using Reflection to Analyze the Capabilities of Classes

5.10.5. Using Reflection to Analyze Objects at Runtime

5.10.6. Using Reflection to Write Generic Array Code

5.10.7. Invoking Arbitrary Methods and Constructors

5.11. Design Hints for Inheritance

6. Interfaces, Lambda Expressions, and Inner Classes

6.1. Interfaces

6.1.1.

6.1.2.

6.1.3.

6.1.4.

6.1.5.

6.1.6.

6.1.7.

6.1.8.

6.1.9.

The Interface Concept

Properties of Interfaces

Interfaces and Abstract Classes

Static and Private Methods

Default Methods

Resolving Default Method Conflicts

Interfaces and Callbacks

The Comparator Interface

Object Cloning

6.2. Lambda Expressions

6.2.1. Why Lambdas?

6.2.2. The Syntax of Lambda Expressions

6.2.3. Functional Interfaces

6.2.4. Function Types

6.2.5. Method References

6.2.6. Constructor References

6.2.7. Variable Scope

6.2.8. Lambda Expressions and this

6.2.9. Processing Lambda Expressions

6.2.10. Creating Comparators

6.3. Inner Classes

6.3.1. Use of an Inner Class to Access Object State

6.3.2. Special Syntax Rules for Inner Classes

6.3.3. Are Inner Classes Useful? Actually Necessary? Secure?

6.3.4. Local Inner Classes

6.3.5. Accessing Variables from Outer Methods

6.3.6. Anonymous Inner Classes

6.3.7. Static Classes

6.3.8. Nested Records

6.4. Service Loaders

6.5. Proxies

6.5.1. When to Use Proxies

6.5.2. Creating Proxy Objects

6.5.3. Properties of Proxy Classes

7. Exceptions, Assertions, and Logging

7.1. Dealing with Errors

7.1.1. The Classification of Exceptions

7.1.2. Declaring Checked Exceptions

7.1.3. How to Throw an Exception

7.1.4. Creating Exception Classes

7.2. Catching Exceptions

7.2.1. Catching an Exception

7.2.2. Catching Multiple Exceptions

7.2.3. Rethrowing and Chaining Exceptions

7.2.4. The finally Clause

7.2.5. The try-with-Resources Statement

7.2.6. Analyzing Stack Trace Elements

7.3. Tips for Using Exceptions

7.4. Using Assertions

7.4.1. The Assertion Concept

7.4.2. Assertion Enabling and Disabling

7.4.3. Using Assertions for Parameter Checking

7.4.4. Using Assertions for Documenting Assumptions

7.5. Logging

7.5.1. Should You Use the Java Logging Framework?

7.5.2. Logging 101

7.5.3. The Platform Logging API

7.5.4. Logging Configuration

7.5.5. Log Handlers

7.5.6. Filters and Formatters

7.5.7. A Logging Recipe

7.6. Debugging Tips

8. Generic Programming

8.1. Type Parameters

8.1.1. The Advantage of Generic Programming

8.1.2. Who Wants to Be a Generic Programmer?

8.1.3. Defining a Simple Generic Class

8.1.4. Generic Methods

8.1.5. Bounds for Type Variables

8.1.6. Generic Exceptions
8.2. Generic Code and the Virtual Machine
8.2.1. Type Erasure
8.2.2. Translating Generic Expressions
8.2.3. Translating Generic Methods
8.2.4. Calling Legacy Code
8.3. Inheritance Rules for Generic Types
8.4. Wildcard Types
8.4.1. The Wildcard Concept
8.4.2. Supertype Bounds for Wildcards
8.4.3. Unbounded Wildcards
8.4.4. Wildcard Capture
8.5. Restrictions and Limitations
8.5.1. Type Parameters Cannot Be Instantiated with Primitive

Types

8.5.2. Casts Only Work with Raw Types

8.5.3. You Cannot Create Arrays of Parameterized Types

8.5.4. Varargs Warnings

8.5.5. Generic Varargs Do Not Spread Primitive Arrays

8.5.6. You Cannot Instantiate Type Variables

8.5.7. You Cannot Construct a Generic Array

8.5.8. Type Variables Are Not Valid in Static Contexts of Generic

Classes

8.5.9. You Can Defeat Checked Exception Checking

8.5.10. Beware of Clashes after Erasure

8.5.11. Type Inference in Generic Record Patterns is Limited

8.6. Reflection and Generics

8.6.1. The Generic Class Class

8.6.2. Using Class<T> Parameters for Type Matching

8.6.3. Generic Type Information in the Virtual Machine

8.6.4. Type Literals

9. Collections

9.1. The Java Collections Framework

9.1.1. Separating Collection Interfaces and Implementation

9.1.2. The Collection Interface

9.1.3. Iterators

9.1.4. Generic Utility Methods

9.2. Interfaces 1n the Collections Framework

9.3. Concrete Collections

9.3.1. Linked Lists

9.3.2. Array Lists

9.3.3. Hash Sets

9.3.4. Tree Sets

9.3.5. Queues and Deques

9.3.6. Priority Queues

9.4. Maps

9.4.1. Basic Map Operations

9.4.2. Updating Map Entries

9.4.3. Map Views

9.4.4. Weak Hash Maps

9.4.5. Linked Hash Sets and Maps

9.4.6. Enumeration Sets and Maps

9.4.7. Identity Hash Maps

9.5. Copies and Views

9.5.1. Small Collections

9.5.2. Unmodifiable Copies and Views

9.5.3. Subranges

9.5.4. Sets From Boolean-Valued Maps

9.5.5. Reversed Views

9.5.6. Checked Views

9.5.7. Synchronized Views

9.5.8. A Note on Optional Operations

9.6. Algorithms

9.6.1. Why Generic Algorithms?

9.6.2. Sorting and Shuffling

9.6.3. Binary Search

9.6.4. Simple Algorithms

9.6.5. Bulk Operations

9.6.6. Converting between Collections and Arrays

9.6.7. Writing Your Own Algorithms

9.7. Legacy Collections

9.7.1. The Hashtable Class

9.7.2. Enumerations

9.7.3. Property Maps

9.7.4. System Properties

9.7.5. Stacks

9.7.6. Bit Sets

10. Concurrency

10.1. Running Threads

10.2. Thread States

10.2.1. New Threads

10.2.2. Runnable Threads

10.2.3. Blocked and Waiting Threads

10.2.4. Terminated Threads

10.3. Thread Properties

10.3.1. Virtual Threads

10.3.2. Thread Interruption

10.3.3. Daemon Threads

10.3.4. Thread Names and Ids

10.3.5. Handlers for Uncaught Exceptions

10.3.6. Thread Priorities

10.3.7. Thread Factories and Builders

10.4. Coordinating Tasks

10.4.1. Callables and Futures

10.4.2. Executor Services

10.4.3. Invoking a Group of Tasks

10.4.4. Thread-Local Variables

10.4.5. Scoped Values

10.4.6. The Fork-Join Framework

10.5. Synchronization

10.5.1. An Example of a Race Condition

10.5.2. The Race Condition Explained

10.5.3. Lock Objects

10.5.4. Condition Objects

10.5.5. Deadlocks

10.5.6. The synchronized Keyword

10.5.7. Synchronized Blocks

10.5.8. The Monitor Concept

10.5.9. Volatile Fields

10.5.10. Final Fields

10.5.11. Atomics

10.5.12. On-Demand Initialization

10.5.13. Safe Publication

10.5.14. Sharing with Thread-Local Variables

10.6. Thread-Safe Collections

10.6.1. Blocking Queues

10.6.2. Efficient Maps, Sets, and Queues

10.6.3. Atomic Update of Map Entries

10.6.4. Bulk Operations on Concurrent Hash Maps

10.6.5. Concurrent Set Views

10.6.6. Copy on Write Arrays

10.6.7. Parallel Array Algorithms

10.6.8. Older Thread-Safe Collections

10.7. Asynchronous Computations

10.7.1. Completable Futures

10.7.2. Composing Completable Futures

10.7.3. Long-Running Tasks in User Interface Callbacks

10.8. Processes

10.8.1. Building a Process

10.8.2. Running a Process

10.8.3. Process Handles

11. Annotations

11.1. Using Annotations

11.1.1. Annotation Elements

11.1.2. Multiple and Repeated Annotations

11.1.3. Annotating Declarations
11.1.4. Annotating Type Uses
11.1.5. Receiver Parameters
11.2. Defining Annotations
11.3. Annotations in the Java API
11.3.1. Annotations for Compilation
11.3.2. Meta-Annotations
11.4. Processing Annotations at Runtime
11.5. Source-Level Annotation Processing
11.5.1. Annotation Processors
11.5.2. The Language Model API
11.5.3. Using Annotations to Generate Source Code
11.6. Bytecode Engineering
11.6.1. Modifying Class Files

11.6.2. Modifying Bytecodes at Load Time

12. The Java Platform Module System

12.1. The Module Concept

12.2. Naming Modules

12.3. The Modular “Hello, World!”” Program

12.4. Requiring Modules

12.5. Exporting Packages

12.6. Modular JARs

12.7. Modules and Reflective Access

12.8. Automatic Modules

12.9. The Unnamed Module

12.10. Command-Line Flags for Migration

12.11. Transitive and Static Requirements

12.12. Importing Modules

12.13. Qualified Exporting and Opening

12.14. Service Loading

12.15. Tools for Working with Modules

Appendix

Index

Preface

To the Reader

In late 1995, the Java programming language burst onto the Internet scene
and gained instant celebrity status. The promise of Java technology was that
it would become the universal glue that connects users with information
wherever it comes from—web servers, databases, information providers, or
any other imaginable source. Indeed, Java is in a unique position to fulfill
this promise. It is an extremely solidly engineered language that has gained
wide acceptance. Its built-in security and safety features are reassuring both
to programmers and to the users of Java programs. Java has built-in support
for advanced programming tasks, such as network programming, database

connectivity, and concurrency.

Since 1995, over twenty revisions of the Java Development Kit have been

released. The Application Programming Interface (API) has grown from

about a hundred to over 4,000 classes. The API now spans such diverse

areas as concurrent programming, collections, user interface construction,

database management, internationalization, security, and XML processing.

The book that you are reading right now is the first volume of the

fourteenth edition of Core Java. Each edition closely followed a release of

the Java Development Kit, and each time, I rewrote the book to take

advantage of the newest Java features. This edition has been updated to

reflect the features of Java 25.

As with the previous editions, this book still targets serious programmers

who want to put Java to work on real projects. 1 think of you, the reader, as

a programmer with a solid background in a programming language other

than Java. I assume that you don’t like books filled with toy examples (such

as toasters, zoo animals, or “nervous text”). You won’t find any of these in

the book. My goal is to enable you to fully understand the Java language

and library, not to give you an illusion of understanding.

In this book, you will find lots of sample code demonstrating almost every
language and library feature. The sample programs are purposefully simple
to focus on the major points, but, for the most part, they aren’t fake and they
don’t cut corners. They should make good starting points for your own

code.

I assume you are willing, even eager, to learn about all the features that the
Java language puts at your disposal. In this volume, you will find a detailed

treatment of

B Object-oriented programming
B Reflection and proxies
B Interfaces and inner classes

B Exception handling

Generic programming

B The collections framework
B Concurrency

B Annotations

[

The Java platform module system

With the explosive growth of the Java class library, a one-volume treatment

of all the features of Java that serious programmers need to know is simply

not possible. Hence, the book is broken up into two volumes. This first

volume concentrates on the fundamental concepts of the Java language. The

second volume, Core Java, Volume II: Advanced Features, goes further into

the most important libraries.

For twelve editions, user interface programming was considered

fundamental, but the time has come to recognize that it is no more, and to

move it into the second volume. That volume includes detailed discussions

of these topics:

B The Stream API

B File processing and regular expressions

B Databases

B XML processing

B Scripting and Compiling APIs
B Internationalization

B Network programming

B Graphical user interface design
B Graphics programming

|

Foreign functions and memory

When writing a book, errors and inaccuracies are inevitable. I’d very much

like to know about them. But, of course, I’d prefer to learn about each of

them only once. You will find a list of frequently asked questions and bug

fixes at https://horstmann.com/corejava. Strategically placed at the end of

the errata page (to encourage you to read through it first) is a form you can

use to report bugs and suggest improvements. Please don’t be disappointed

if I don’t answer every query or don’t get back to you immediately. I do

read all e-mails and appreciate your input to make future editions of this

book clearer and more informative.

https://horstmann.com/corejava

A Tour of This Book

Chapter 1 gives an overview of the capabilities of Java that set it apart

from other programming languages. The chapter explains what the

designers of the language set out to do and to what extent they succeeded. A

short history of Java follows, detailing how Java came into being and how it

has evolved.

In Chapter 2, you will see how to download and install the JDK and the

program examples for this book. Then I’ll guide you through compiling and

running a console application and a graphical application. You will see how

to use the plain JDK, a Java IDE, and the JShell tool.

Chapter 3 starts the discussion of the Java language. In this chapter, I cover

the basics: variables, loops, and simple functions. If you are a C or C++

programmer, this is smooth sailing because the syntax for these language

features is essentially the same as in C. If you come from a non-C

background such as Visual Basic, you will want to read this chapter

carefully.

Object-oriented programming (OOP) is now in the mainstream of

programming practice, and Java is an object-oriented programming

language. Chapter 4 introduces encapsulation, the first of two fundamental

building blocks of object orientation, and the Java language mechanism to

implement it—that is, classes and methods. In addition to the rules of the

Java language, you will also find advice on sound OOP design. Finally, I

cover the marvelous javadoc tool that formats your code comments as a set

of hyperlinked web pages. If you are familiar with C++, you can browse

through this chapter quickly. Programmers coming from a non-object-

oriented background should expect to spend some time mastering the OOP

concepts before going further with Java.

Classes and encapsulation are only one part of the OOP story, and Chapter

5 introduces the other—namely, inheritance. Inheritance lets you take an

existing class and modify it according to your needs. This is a fundamental

technique for programming in Java. The inheritance mechanism in Java is

quite similar to that in C++. Once again, C++ programmers can focus on

the differences between the languages.

Chapter 6 shows you how to use Java’s notion of an interface. Interfaces

let you go beyond the simple inheritance model of Chapter 5. Mastering

interfaces allows you to have full access to the power of Java’s completely

object-oriented approach to programming. After covering interfaces, I move

on to lambda expressions, a concise way for expressing a block of code that

can be executed at a later point in time. I then explain a useful technical

feature of Java called inner classes.

Chapter 7 discusses exception handling—1Java’s robust mechanism to deal

with the fact that bad things can happen to good programs. Exceptions give

you an efficient way of separating the normal processing code from the

error handling. Of course, even after hardening your program by handling

all exceptional conditions, it still might fail to work as expected. Then the

chapter moves on to logging. In the final part of this chapter, I give you a

number of useful debugging tips.

Chapter 8 gives an overview of generic programming. Generic

programming makes your programs easier to read and safer. I show you

how to use strong typing and remove unsightly and unsafe casts, and how to

deal with the complexities that arise from the need to stay compatible with

older versions of Java.

The topic of Chapter 9 is the collections framework of the Java platform.

Whenever you want to collect multiple objects and retrieve them later, you

should use a collection that is best suited for your circumstances, instead of
just tossing the elements into an array. This chapter shows you how to take

advantage of the standard collections that are prebuilt for your use.

Chapter 10 covers concurrency, which enables you to program tasks to be

done in parallel. This is an important and exciting application of Java

technology in an era where processors have multiple cores that you want to

keep busy.

In Chapter 11, you will learn about annotations, which allow you to add

arbitrary information (sometimes called metadata) to a Java program. We

show you how annotation processors can harvest these annotations at the

source or class file level, and how annotations can be used to influence the

behavior of classes at runtime. Annotations are only useful with tools, and

we hope that our discussion will help you select useful annotation

processing tools for your needs.

In Chapter 12, you will learn about the Java Platform Module System that
facilitates an orderly evolution of the Java platform and core libraries. This
module system provides encapsulation for packages and a mechanism for
describing module requirements. You will learn the properties of modules
so that you can decide whether to use them in your own applications. Even
if you decide not to, you need to know the new rules so that you can interact

with the Java platform and other modularized libraries.

The Appendix lists the reserved words of the Java language.

Conventions

As 1s common in many computer books, I use monospace type to represent

computer code.

Note: Notes are tagged with “note” icons that look like this.

ﬂ Tip: Tips are tagged with “tip” icons that look like this.

0 Caution: When there 1s danger ahead, I warn you with a “caution”

icon.

Preview: Preview features that are slated to become a part of the

language or API in the future are labeled with this icon.

Java comes with a large programming library, or Application Programming

Interface (API). When using an API call for the first time, I add a short

summary description at the end of the section. These descriptions are a bit

more informal but, hopefully, also a little more informative than those in the

official online API documentation. The names of interfaces are 1n italics,

just like in the official documentation. The number after a class, interface,

or method name is the JDK version in which the feature was introduced, as

shown in the following example:

java.lang.1OQ 25

B Hrintln(Object obj)
Converts the object to a string and prints it on the console, followed

by a line separator.

Programs whose source code is on the book’s companion web site are

presented as listings, for instance:

Listing NotHelloWorld.java

void main() {

10.println("We will not use 'Hello, World!");

Sample Code

The web site for this book at https://horstmann.com/corejava contains all

sample code from the book. See Chapter 2 for more information on

installing the Java Development Kit and the sample code.

https://horstmann.com/corejava

Acknowledgments

Writing a book is always a monumental effort, and rewriting it doesn’t seem

to be much easier, especially with the continuous change in Java

technology. Making a book a reality takes many dedicated people, and it is

my great pleasure to acknowledge the contributions of the entire Core Java

team.

My thanks go to my editor, Harry Misthos, and to Julie Nahil from Pearson

for steering the book through the production process. I wrote the book using

HTML and CSS, and Prince (https://princexml.com) turned it into PDF—a

workflow that I highly recommend.

Thanks to the many readers of earlier editions who reported errors and

made lots of thoughtful suggestions for improvement. I am particularly

https://princexml.com/

grateful to the excellent reviewing team who went over the manuscript with

an amazing eye for detail and saved me from many embarrassing errors.

Reviewers of this and earlier editions include Chuck Allison (Utah Valley

University), Lance Andersen (Oracle), Gail Anderson (Anderson Software

Group), Paul Anderson (Anderson Software Group), Alan Bateman

(Oracle), Alec Beaton (IBM), Cliff Berg, Andrew Binstock (Oracle), Joshua

Bloch, David Brown, Brian Burkhalter (Oracle), Corky Cartwright, Hillmer

Chona, Frank Cohen (PushToTest), Chris Crane (devXsolution), Joe Darcy

(Oracle), Nicholas J. De Lillo (Manhattan College), Rakesh Dhoopar

(Oracle), Ahmad R. Elkomey, Hanno Embregts (Info Support), Robert

Evans (Senior Staff, The Johns Hopkins University Applied Physics Lab),

David Geary (Clarity Training), Jim Gish (Oracle), Brian Goetz (Oracle),

Angela Gordon, Dan Gordon (Electric Cloud), Rob Gordon, John Gray

(University of Hartford), Cameron Gregory (olabs.com), Andrzej Grzesik,

Marty Hall, Majid Hameed, Vincent Hardy (Adobe Systems), Dan Harkey

(San Jose State University), Steve Haines, William Higgins (IBM), Marc

Hoffmann (mtrail), Vladimir Ivanovic (PointBase), Jerry Jackson (CA

Technologies), Josh Juneau, Heinz Kabutz (The Java Specialists’

Newsletter, https://javaspecialists.eu), Stepan V. Kalinin (I-Teco/Servionica

LTD), Tim Kimmet (Walmart), John Kostaras, Jerzy Krolak, Chris Laffra,

Charlie Lai (Apple), Angelika Langer, Jeff Langr (Langr Software

Solutions), Doug Langston, Hang Lau (McGill University), Mark

Lawrence, Doug Lea (SUNY Oswego), Jason Lee (IBM), Gregory

Longshore, Bob Lynch (Lynch Associates), Michael McMahon (Oracle),

Rustam Mehmandarov, Philip Milne (consultant), Mark Morrissey (The

Oregon Graduate Institute), Maurice Naftalin, Mahesh Neelakanta (Florida

Atlantic University), José Paumard (Oracle), Hao Pham, Paul Philion,

Blake Ragsdell, Ylber Ramadani (Ryerson University), Stuart Reges

(University of Arizona), Simon Ritter (Azul Systems), Rich Rosen

https://javaspecialists.eu/

(Interactive Data Corporation), Peter Sanders (ESSI University, Nice,

France), Dr. Paul Sanghera (San Jose State University and Brooks College),

Naoto Sato (Oracle), Paul Sevinc (Teamup AG), Devang Shah (Sun

Microsystems), Yoshiki Shibata, Richard Slywczak (NASA/Glenn Research

Center), Bradley A. Smith, Steven Stelting (Oracle), Christopher Taylor,

Luke Taylor (Valtech), George Thiruvathukal, Kim Topley

(StreamingEdge), Janet Traub, Henri Tremblay, Paul Tyma (consultant),

Christian Ullenboom, Peter van der Linden, Joe Wang (Oracle), Sven

Woltmann, Burt Walsh, Dan Xu (Oracle), and John Zavgren (Oracle).

Finally, a warm thank you to my coauthor of earlier editions, Gary Cornell,

and to Greg Doench who was my editor for almost thirty years.

Cay Horstmann

Diisseldorf, Germany

September 2025

Chapter 1 = An Introduction to
Java

The first release of Java in 1996 generated an incredible amount of
excitement, not just in the computer press, but in mainstream media such as
The New York Times, The Washington Post, and BusinessWeek. Java has the
distinction of being the first and only programming language that had a ten-
minute story on National Public Radio. A $100,000,000 venture capital
fund was set up solely for products using a specific computer language. I

hope you will enjoy a brief history of Java that you will find in this chapter.

1.1. Java as a Programming Platform

In the first edition of this book, my coauthor Gary Cornell and I had this to

write about Java:

“As a computer language, Java’s hype is overdone: Java is certainly a good

programming language. There is no doubt that it is one of the better

languages available to serious programmers. We think it could potentially

have been a great programming language, but it is probably too late for that.

Once a language 1s out in the field, the ugly reality of compatibility with

existing code sets in.”

Our editor got a lot of flack for this paragraph from someone very high up

at Sun Microsystems, the company that originally developed Java. The Java

language has a lot of nice features that we will examine in detail later in this

chapter. It has its share of warts, and some of the newer additions to the

language are not as elegant as the original features because of compatibility

requirements.

But, as we already said in the first edition, Java was never just a language.

There are lots of programming languages out there, but few of them make

much of a splash. Java is a whole platform, with a huge library, containing
lots of reusable code, and an execution environment that provides services
such as security, portability across operating systems, and automatic

garbage collection.

As a programmer, you will want a language with a pleasant syntax and
comprehensible semantics (i.e., not C++). Java fits the bill, as do dozens of
other fine languages. Some languages give you portability, garbage
collection, and the like, but they don’t have much of a library, forcing you
to roll your own if you want fancy graphics or networking or database
access. Well, Java has everything—a good language, a high-quality
execution environment, and a vast library. That combination is what makes

Java an irresistible proposition to so many programmers.

1.2. The Java “White Paper” Buzzwords

The authors of Java wrote an influential white paper that explains their

design goals and accomplishments. They also published a shorter overview

that 1s organized along the following 11 buzzwords:

1. Simple

2. Object-Oriented

3. Distributed

4. Robust

5. Secure

6. Architecture-Neutral

7. Portable

8. Interpreted

9. High-Performance

10. Multithreaded

11. Dynamic

In the following subsections, you will find a summary, with excerpts from

the white paper, of what the Java designers say about each buzzword,

together with a commentary based on my experiences with the current

version of Java.

Note: The white paper can be found at

environment.html. You can retrieve the overview with the 11

buzzwords at https://horstmann.com/corejava/java-an-

overview/7Gosling.pdf.

1.2.1. Simple

We wanted to build a system that could be programmed easily without
a lot of esoteric training and which leveraged today s standard

practice. So even though we found that C++ was unsuitable, we

https://www.oracle.com/java/technologies/language-environment.html
https://horstmann.com/corejava/java-an-overview/7Gosling.pdf

designed Java as closely to C++ as possible in order to make the

system more comprehensible. Java omits many rarely used, poorly

understood, confusing features of C++ that, in our experience, bring

more grief than benefit.

The syntax for Java is, indeed, a cleaned-up version of C++ syntax. There is

no need for header files, pointer arithmetic (or even a pointer syntax),

unions, operator overloading, virtual base classes, and so on. The designers

did not, however, attempt to fix all of the clumsy features of C++. For

example, the syntax of the switch statement still exists in Java. If you know

C++, you will find the transition to the Java syntax easy.

At the time Java was released, C++ was actually not the most commonly

used programming language. Many developers used Visual Basic and its

drag-and-drop programming environment. These developers did not find

Java simple. It took several years for Java development environments to

catch up. Nowadays, Java development environments are far ahead of those

for most other programming languages.

Another aspect of being simple is being small. One of the goals of Java
is to enable the construction of software that can run stand-alone on
small machines. The size of the basic interpreter and class support is
about 40K; the basic standard libraries and thread support (essentially

a self-contained microkernel) add another 175K.

This was a great achievement at the time. Of course, the library has since
grown to huge proportions. There are now separate editions with a smaller

library, suitable for embedded devices and smart cards.

1.2.2. Object-Oriented

Simply stated, object-oriented design is a programming technique that
focuses on the data—objects—and on the interfaces to those objects.

1o make an analogy with carpentry, an “object-oriented’ carpenter

would be mostly concerned with the chair he is building, and
secondarily with the tools used to make it; a “non-object-oriented”
carpenter would think primarily of his tools. The object-oriented

facilities of Java are essentially those of C++.

Object orientation was pretty well established when Java was developed.
The object-oriented features of Java are comparable to those of C++. The
major difference between Java and C++ lies in multiple inheritance, which
Java has replaced with a simpler concept of interfaces. Java has a richer

capacity for runtime introspection (discussed in Chapter 5) than C++.

1.2.3. Distributed

Java has an extensive library of routines for coping with TCP/IP
protocols like HTTP and FTP. Java applications can open and access
objects across the Net via URLs with the same ease as when accessing

a local file system.

Nowadays, one takes this for granted—but in 1995, connecting to a web

server from a C++ or Visual Basic program was a major undertaking.

1.2.4. Robust

Java is intended for writing programs that must be reliable in a variety
of ways. Java puts a lot of emphasis on early checking for possible
problems, later dynamic (runtime) checking, and eliminating situations
that are error-prone. . . . The single biggest difference between Java
and C/C++ is that Java has a pointer model that eliminates the

possibility of overwriting memory and corrupting data.

The Java compiler detects many problems that in other languages would
show up only at runtime. As for the second point, anyone who has spent
hours chasing memory corruption caused by a pointer bug will be very

happy with this aspect of Java.

1.2.5. Secure

Java is intended to be used in networked/distributed environments.
Toward that end, a lot of emphasis has been placed on security. Java

enables the construction of virus-free, tamper-free systems.

From the beginning, Java was designed to make certain kinds of attacks

impossible, among them:

B Overrunning the runtime stack—a common attack of worms and
viruses
Corrupting memory outside its own process space

Reading or writing files without permission

Originally, the Java attitude towards downloaded code was “Bring it on!”

Untrusted code was executed in a sandbox environment where it could not
impact the host system. Users were assured that nothing bad could happen
because Java code, no matter where it came from, could never escape from

the sandbox.

However, the security model of Java is complex. Not long after the first

version of the Java Development Kit was shipped, a group of security

experts at Princeton University found subtle bugs that allowed untrusted

code to attack the host system.

Initially, security bugs were fixed quickly. Unfortunately, over time, hackers

got quite good at spotting subtle flaws in the implementation of the security

architecture. Sun, and then Oracle, had a tough time keeping up with bug

fixes.

After a number of high-profile attacks, browser vendors and Oracle became

increasingly cautious. For a time, remote code had to be digitally signed.

Nowadays, browsers no longer trust Java, and the secure delivery of Java

applications is a distant memory.

Note: Even though in hindsight, the Java security model was not as
successful as originally envisioned, Java was well ahead of its time.
A competing code delivery mechanism from Microsoft, called
ActiveX, relied on digital signatures alone for security. Clearly this
was not sufficient: As any user of Microsoft’s own products can
confirm, programs from well-known vendors do crash and create

damage.

1.2.6. Architecture-Neutral

The compiler generates an architecture-neutral object file format. The

compiled code is executable on many processors, given the presence of

the Java runtime system. The Java compiler does this by generating

bytecode instructions which have nothing to do with a particular

computer architecture. Rather, they are designed to be both easy to

interpret on any machine and easy to translate into native machine

code on the fly.

Generating code for a “virtual machine” was not a new idea at the time.

Programming languages such as Lisp, Smalltalk, and Pascal had employed

this technique for many years.

Of course, interpreting virtual machine instructions is slower than running

machine instructions at full speed. However, virtual machines have the

option of translating the most frequently executed bytecode sequences into

machine code—a process called just-in-time compilation.

Java’s virtual machine has another advantage. It increases security because

it can check the behavior of instruction sequences.

1.2.7. Portable

Unlike C and C++, there are no “implementation-dependent” aspects

of the specification. The sizes of the primitive data types are specified,

as is the behavior of arithmetic on them.

For example, an int in Java is always a 32-bit integer. In C/C++, int can

mean a 16-bit integer, a 32-bit integer, or any other size that the compiler

vendor likes. The only restriction is that the int type must have at least as

many bytes as a short int and cannot have more bytes than a long int.

Having a fixed size for number types eliminates a major porting headache.

Binary data is stored and transmitted in a fixed format, eliminating

confusion about byte ordering. Strings are saved in a standard Unicode

format.

The libraries that are a part of the system define portable interfaces.

For example, there is an abstract Window class and implementations

of it for UNIX, Windows, and the Macintosh.

The example of a Window class was perhaps poorly chosen. As anyone

who has ever tried knows, it is an effort of heroic proportions to implement

a user interface that looks good on Windows, the Macintosh, and ten flavors

of UNIX. Java 1.0 made the heroic effort, delivering a simple toolkit that

provided common user interface elements on a number of platforms.

Unfortunately, the result was a library that, with a lot of work, could give

barely acceptable results on different systems. That initial user interface

toolkit has since been replaced, and replaced again, and portability across

platforms remains an issue.

However, for everything that isn’t related to user interfaces, the Java

libraries do a great job of letting you work in a platform-independent

manner. You can work with files, regular expressions, XML, dates and

times, databases, network connections, threads, and so on, without worrying

about the underlying operating system. Not only are your programs

portable, but the Java APIs are often of higher quality than the native ones.

1.2.8. Interpreted

The Java interpreter can execute Java bytecodes directly on any
machine to which the interpreter has been ported. Since linking is a
more incremental and lightweight process, the development process

can be much more rapid and exploratory.

This was a real stretch. Anyone who has used Lisp, Smalltalk, Visual Basic,
Python, R, or Scala knows what a “rapid and exploratory” development
process 1s. You try out something, and you instantly see the result. For the
first 20 years of Java’s existence, development environments were not
focused on that experience. It wasn’t until Java 9 that the jshell tool

supported rapid and exploratory programming.

1.2.9. High-Performance

While the performance of interpreted bytecodes is usually more than
adequate, there are situations where higher performance is required.
The bytecodes can be translated on the fly (at runtime) into machine

code for the particular CPU the application is running on.

In the early years of Java, many users disagreed with the statement that the
performance was “more than adequate.” Today, however, the just-in-time
compilers have become so good that they are competitive with traditional
compilers and, in some cases, even outperform them because they have
more information available. For example, a just-in-time compiler can
monitor which code is executed frequently and optimize just that code for
speed. A more sophisticated optimization is the elimination (or “inlining”)
of function calls. The just-in-time compiler knows which classes have been

loaded. It can use inlining when, based upon the currently loaded collection

of classes, a particular function is never overridden, and it can undo that

optimization later if necessary.

1.2.10. Multithreaded

[The] benefits of multithreading are better interactive responsiveness

and real-time behavior.

Nowadays, we care about concurrency because Moore’s law has come to an
end. Instead of faster processors, we just get more of them, and we have to
keep them busy. Yet when you look at most programming languages, they

show a shocking disregard for this problem.

Java was well ahead of its time. It was the first mainstream language to
support concurrent programming. As you can see from the white paper, its
motivation was a little different. At the time, multicore processors were

exotic, but web programming had just started, and processors spent a lot of

time waiting for a response from the server. Concurrent programming was

needed to make sure the user interface didn’t freeze.

Concurrent programming is never easy, but Java has done a very good job

making it manageable.

1.2.11. Dynamic

In a number of ways, Java is a more dynamic language than C or
C++. It was designed to adapt to an evolving environment. Libraries
can freely add new methods and instance variables without any effect
on their clients. In Java, finding out runtime type information is

straightforward.

This is an important feature in situations where code needs to be added to a
running program. A prime example is code that is downloaded from the
Internet to run in a browser. In C or C++, this is indeed a major challenge,

but the Java designers were well aware of dynamic languages that made it

easy to evolve a running program. Their achievement was to bring this

feature to a mainstream programming language.

Note: Shortly after the initial success of Java, Microsoft released a
product called J++ with a programming language and virtual
machine that were almost identical to Java. This effort failed to gain
traction, and Microsoft followed through with another language
called C# that also has many similarities to Java but runs on a

different virtual machine. This book does not cover J++ or C#.

1.3. Java Applets and the Internet

The idea here is simple: Users will download Java bytecodes from the
Internet and run them on their own machines. Java programs that work on
web pages are called applets. To use an applet, you only need a Java-

enabled web browser, which will execute the bytecodes for you. You need

not install any software. You get the latest version of the program whenever
you visit the web page containing the applet. Most importantly, thanks to
the security of the virtual machine, you never need to worry about attacks

from hostile code.

Inserting an applet into a web page works much like embedding an image.
The applet becomes a part of the page, and the text flows around the space
used for the applet. The point is, this image is alive. It reacts to user
commands, changes its appearance, and exchanges data between the

computer presenting the applet and the computer serving it.

Figure 1.1 shows the Jmol applet that displays molecular structures. By
using the mouse, you can rotate and zoom each molecule to better
understand its structure. At the time that applets were invented, this kind of
direct manipulation was not achievable with web pages—there was only

rudimentary JavaScript and no HTML canvas.

File Edit View History Bookmarks Tools Help

@ - - \Lj' [httpyfimol sourceforge.netfdemojaminoacidsf v
x[ala— x|arg— xlasn— xlasp— F
alanine arginine asparagine aspartate
amino acids Xeys- xfgn- x|du- x|gly-
cystine glutamine glutamate glycine
x | his - x |lle - X |leu- x|lys-
histidine isoleucine leucine lysine
x |met - | phe - X |pro- _x|ser-
methioning phenylalanine proline serine

X |thr- x |trp- X |tyr- x|val-

threonine tryptophan tyrosine valine

select * I select mainchain | select sidechain I

wireframe on] wireframe 0.1 i wireframe 0.2 i

cpk off] cpk 20% [cpk on |

label %a | label%n | label off |

color label white i color label none i

color atoms epk I color atoms amino I

1]

Figure 1.1: The Jmol applet

When applets first appeared, they created a huge amount of excitement.
Many people believe that the lure of applets was responsible for the
astonishing popularity of Java. However, the initial excitement soon turned
into frustration. Various versions of the Netscape and Internet Explorer

browsers ran different versions of Java, some of which were seriously

outdated. This sorry situation made it increasingly difficult to develop
applets that took advantage of the most current Java version. Instead,
Adobe’s Flash technology became popular for achieving dynamic effects in
the browser. Later, when Java was dogged by serious security issues,
browsers dropped applet support altogether. Of course, Flash fared no

better.

1.4. A Short History of Java

This section gives a short history of Java’s evolution. It is based on various
published sources (most importantly an interview with Java’s creators in the

July 1995 issue of SunWorld’s online magazine).

Java goes back to 1991, when a group of Sun engineers, led by Patrick
Naughton and James Gosling (a Sun Fellow and an all-around computer
wizard), wanted to design a small computer language that could be used for

consumer devices like cable TV switchboxes. Since these devices do not

have a lot of power or memory, the language had to be small and generate
very tight code. Also, as different manufacturers may choose different
central processing units (CPUs), it was important that the language not be

tied to any single architecture. The project was code-named “Green.”

The requirements for small, tight, and platform-neutral code led the team to
design a portable language that generated intermediate code for a virtual

machine.

The Sun people came from a UNIX background, so they based their
language on C++ rather than Lisp, Smalltalk, or Pascal. But, as Gosling
says in the interview, “All along, the language was a tool, not the end.”
Gosling decided to call his language “Oak” (presumably because he liked
the look of an oak tree that was right outside his window at Sun). The

people at Sun later realized that Oak was the name of an existing computer

language, so they changed the name to Java. This turned out to be an

inspired choice.

In 1992, the Green project delivered its first product, called “*7.” It was an

extremely intelligent remote control. Unfortunately, no one was interested

in producing this at Sun, and the Green people had to find other ways to

market their technology. However, none of the standard consumer

electronics companies were interested either. The group then bid on a

project to design a cable TV box that could deal with emerging cable

services such as video-on-demand. They did not get the contract.

(Amusingly, the company that did was led by the same Jim Clark who

started Netscape—a company that did much to make Java successful.)

The Green project (with a new name of “First Person, Inc.”) spent all of

1993 and half of 1994 looking for people to buy its technology. No one was

found. (Patrick Naughton, one of the founders of the group and the person

who ended up doing most of the marketing, claims to have accumulated

300,000 air miles in trying to sell the technology.) First Person was

dissolved in 1994.

While all of this was going on at Sun, the World Wide Web part of the

Internet was growing bigger and bigger. The key to the World Wide Web

was the browser translating hypertext pages to the screen. In 1994, most

people were using Mosaic, a noncommercial web browser that came out of

the supercomputing center at the University of Illinois in 1993. (Mosaic

was partially written by Marc Andreessen as an undergraduate student on a

work-study project, for $6.85 an hour. He moved on to fame and fortune as

one of the cofounders and the chief of technology at Netscape.)

In the SunWorld interview, Gosling says that in mid-1994, the language

developers realized that “We could build a real cool browser. It was one of

the few things in the client/server mainstream that needed some of the

weird things we’d done: architecture-neutral, real-time, reliable, secure—

issues that weren’t terribly important in the workstation world. So we built

a browser.”

The actual browser was built by Patrick Naughton and Jonathan Payne and

evolved into the HotJava browser, which was designed to show off the

power of Java. The browser was capable of executing Java code inside web

pages. This “proof of technology” was shown at SunWorld *95 on May 23,

1995, and inspired the Java craze that continues today.

Sun released the first version of Java in early 1996. People quickly realized

that Java 1.0 was not going to cut it for serious application development.

Sure, you could use Java 1.0 to make a nervous text applet that moved text

randomly around in a canvas. But you couldn’t even print in Java 1.0. To be

blunt, Java 1.0 was not ready for prime time. Its successor, version 1.1,

filled in the most obvious gaps, greatly improved the reflection capability,

and added a new event model for GUI programming. It was still rather

limited, though.

The big news of the 1998 JavaOne conference was the upcoming release of

Java 1.2, which replaced the early toylike GUI and graphics toolkits with

sophisticated scalable versions. Three days (!) after its release in December

1998, Sun’s marketing department changed the name to the catchy Java 2

Standard Edition Software Development Kit Version 1.2.

Besides the Standard Edition, two other editions were introduced: the Micro

Edition for embedded devices such as cell phones, and the Enterprise

Edition for server-side processing. This book focuses on the Standard

Edition.

Versions 1.3 and 1.4 of the Standard Edition were incremental

improvements over the initial Java 2 release, with an ever-growing standard

library, increased performance, and, of course, quite a few bug fixes. During

this time, much of the initial hype about Java applets and client-side

applications abated, but Java became the platform of choice for server-side

applications.

Version 5.0 was the first release since version 1.1 that updated the Java

language in significant ways. (This version was originally numbered 1.5,

but the version number jumped to 5.0 at the 2004 JavaOne conference.)

After many years of research, generic types (roughly comparable to C++

templates) have been added—the challenge was to add this feature without

requiring changes in the virtual machine. Several other useful language

features were inspired by C#: a “for each” loop, autoboxing, and

annotations.

Version 6 (without the .0 suffix) was released at the end of 2006. Again,

there were no language changes but additional performance improvements

and library enhancements.

As datacenters increasingly relied on commodity hardware instead of

specialized servers, Sun Microsystems fell on hard times and was purchased

by Oracle in 2009. Development of Java stalled for a long time. In 2011,

Oracle released a new version, with simple enhancements, as Java 7.

In 2014, the release of Java 8 followed, with the most significant changes to

the Java language in almost two decades. Java 8 embraces a “functional”

style of programming that makes it easy to express computations that can

be executed concurrently. All programming languages must evolve to stay

relevant, and Java has shown a remarkable capacity to do so.

The main feature of Java 9 goes all the way back to 2008. At that time,

Mark Reinhold, the chief engineer of the Java platform, started an effort to

break up the huge, monolithic Java platform. This was to be achieved by

introducing modules, self-contained units of code that provide a specific

functionality. It took eleven years to design and implement a module system

that is a good fit for the Java platform, and it remains to be seen whether it

is also a good fit for Java applications and libraries.

Starting in 2018, Java versions are released every six months, to enable

faster introduction of preview features. New features may go through

several rounds of preview. For example, pattern matching for switch was

previewed four times, starting in Java 17, before it was finalized in Java 21.

Ever so often, a version is designated by Oracle and other vendors to have

long-term support (LTS), with bug fixes and security updates provided for

several years. When using Java in production, it is common to stick to a

LTS release and not use any preview features. So far, this has happened

with Java versions 11, 17, 21, and 25.

Table 1.1 shows the evolution of the Java language and library. As you can

see, the size of the application programming interface (API) has grown

tremendously.

Table 1.1: Evolution of the Java Language

Number
of Classes
Version | Year | New Language Features
and
Interfaces
1.0 1996 | The language itself 211
1.1 1997 | Inner classes 477
1.2 1998 | The strictfp modifier 1,524
1.3 2000 | None 1,840
1.4 2002 | Assertions 2,723

Generic classes, “for each”

loop, varargs, autoboxing,

5.0 2004 3,279
annotations, enumerations,
static import

6 2006 | None 3,793
Switch with strings, diamond
operator, binary literals,

7 2011 4,024
exception handling
enhancements
Lambda expressions, interfaces

8 2014 | with default methods, stream 4,240

and date/time libraries

2017

Modules, miscellaneous

language and library

enhancements

6,005

11

2018

Local variable type inference

(var), HTTP client, removal of

Java FX, JNLP, Java EE

overlap, and CORBA

4,410

17

2021

Switch expressions, text

blocks, instanceof pattern

matching, records, sealed

classes

4,396

21

2023

Virtual threads, pattern

matching

4,443

Compact compilation units,
25 2025 4,695

foreign functions

1.5. Common Misconceptions about Java

This chapter closes with a commented list of some common misconceptions

about Java.

Java is an extension of HTML.

Java is a programming language; HTML is a way to describe the structure
of a web page. They have nothing in common except that there once were

HTML extensions for placing Java applets on a web page.

[use XML, so I don t need Java.

Java is a programming language; XML is a way to describe data. You can

process XML data with any programming language, but the Java API

contains excellent support for XML processing. In addition, many

important XML tools are implemented in Java. See Volume II for more

information.

Java is an easy programming language to learn.

No programming language as powerful as Java is easy. You always have to

distinguish between how easy it is to write toy programs and how hard it is

to do serious work. Also, consider that only seven chapters in this book

discuss the Java language. The remaining chapters of both volumes show

how to put the language to work, using the Java libraries. The Java libraries

contain thousands of classes and interfaces and tens of thousands of

functions. Luckily, you do not need to know every one of them, but you do

need to know surprisingly many to use Java for anything realistic.

Java will become a universal programming language for all platforms.

This is possible in theory. But in practice, there are domains where other

languages are entrenched. Objective C and its successor, Swift, are not

going to be replaced on 10S devices. Anything that happens in a browser is

controlled by JavaScript. Windows programs are written in C++ or C#. Java

has the edge in server-side programming and in cross-platform client

applications.

Java is just another programming language.

Java is a nice programming language; most programmers prefer it to C,

C++, or C#. But there have been hundreds of nice programming languages

that never gained widespread popularity, whereas languages with obvious

flaws, such as C++ and Visual Basic, have been wildly successful.

Why? The success of a programming language is determined far more by

the utility of the support system surrounding it than by the elegance of its

syntax. Are there useful, convenient, and standard libraries for the features

that you need to implement? Are there tool vendors that build great

programming and debugging environments? Do the language and the

toolset integrate with the rest of the computing infrastructure? Java is

successful because its libraries let you easily do things such as networking,

web applications, and concurrency. The fact that Java reduces pointer errors

1s a bonus, so programmers seem to be more productive with Java—but

these factors are not the source of its success.

Java is proprietary, and should therefore be avoided.

When Java was first created, Sun Microsystems gave free licenses to

distributors and end users. Although Sun had ultimate control over Java, the

company involved many outside organizations and individuals in the

development of language revisions and the design of new libraries. Source

code for the virtual machine and the libraries has always been freely

available, but only for inspection, not for modification and redistribution.

Java was “closed source, but playing nice.”

This situation changed dramatically in 2007, when Sun announced that

future versions of Java would be available under the General Public License

(GPL), the same open-source license that is used by Linux. Oracle has

committed to keeping Java open source. There are now multiple providers

of open Java implementations, with various levels of commitment and

support.

Java is interpreted, so it is too slow for serious applications.

In the early days of Java, the language was interpreted. Nowadays, the Java

virtual machine uses a just-in-time compiler. The “hot spots” of your code

will run just as fast in Java as they would in C++, and in some cases even

faster.

All Java programs run inside a web page.

There was a time when Java applets ran inside a web browser. Nowadays,
Java programs are stand-alone applications that run outside of a web
browser. In fact, most Java programs run on servers, producing code for

web pages or computing business logic.

Java programs are a major security risk.

In the early days of Java, there were some well-publicized reports of
failures in the Java security system. Researchers viewed it as a challenge to
find chinks in the Java armor and to defy the strength and sophistication of
the applet security model. The technical failures that they found had been
quickly corrected. Later, there were more serious exploits, to which Sun,
and later Oracle, responded slowly. Browser manufacturers discontinued
support for Java applets. The security manager architecture that made

applets possible is now deprecated. These days, Java applications are no

less secure than other applications. Due to the protections of the virtual

machine, they are far more secure than applications written in C or C++.

JavaScript is a simpler version of Java.

JavaScript, a scripting language that can be used inside web pages, was

invented by Netscape and originally called LiveScript. JavaScript has a

syntax that is reminiscent of Java, and the languages’ names sound similar,

but otherwise they are unrelated. In particularly, Java is strongly typed—the

compiler catches many errors that arise from type misuse. In JavaScript,

such errors are only found when the program runs, which makes their

elimination far more laborious.

With Java, I can replace my desktop computer with a cheap “Internet

appliance.”

When Java was first released, some people bet big that this was going to

happen. Companies produced prototypes of Java-powered network

computers, but users were not ready to give up a powerful and convenient

desktop for a limited machine with no local storage. Nowadays, of course,

the world has changed, and for a large majority of end users, the platform

that matters is a mobile phone or tablet. The majority of these devices are

controlled by the Android platform which is based on Java. Learning Java

programming will help you with Android programming as well.

Chapter 2 = The Java
Programming Environment

In this chapter, you will learn how to install the Java Development Kit
(JDK) and how to compile and run Java programs. You can run the JDK
tools by typing commands in a terminal window. However, many
programmers prefer the comfort of an integrated development environment.
You will learn how to use a freely available development environment to
compile and run Java programs. Once you have mastered the techniques in
this chapter and picked your development tools, you are ready to move on

to Chapter 3, where you will begin exploring the Java programming

language.

2.1. Installing the Java Development Kit

In days past, the most complete and up-to-date version of the Java

Development Kit (JDK) was available from Oracle. Nowadays many

different companies and organizations, including Amazon, Azul, Microsoft,
and Red Hat, provide up-to-date OpenJDK builds. Each vendor has
different licensing conditions and support offerings. The Eclipse
Foundation provides free JDK builds for Linux, Mac OS, and Windows,

which work well for learning Java.

2.1.1. Downloading the JDK

You can download the Java Development Kit from the Eclipse Foundation

at https://adoptium.net, or from Oracle at

https://www.oracle.com/java/technologies/downloads, or from many other

providers.

Depending on the provider, the Java Development Kit may have a brand

name, such as Temurin (Eclipse Foundation), Corretto (Amazon), or Zulu

(Azul). The brand name is of no importance to Java programmers.

https://adoptium.net/
https://www.oracle.com/java/technologies/downloads

You should use the Java SE 25 (LTS) JDK. See Table 2.1 for a summary of

the acronyms and jargon that you may encounter on the download site.

Table 2.1: Java Jargon

Name Acronym | Explanation

Java
The software for programmers
Development | JDK
who want to write Java programs.

Kit

The software for running Java
Java

programs, without development
Runtime JRE

tools. Only supported until Java 8.
Environment

You do not want that.

Name Acronym | Explanation

The Java platform for use on
Standard

SE desktops and simple server

Edition

applications. You want that.

A free and open-source
OpenJDK —

implementation of Java SE.

The “just in time” compiler
Hotspot — developed by Oracle. If asked,

choose this one.

Another “just in time” compiler
OpenlJ9 .

developed by IBM.

Name Acronym | Explanation

An “ahead of time” compiler for

executables that start quickly, but
GraalVM —

don’t support all Java features.

You don’t want it for this book.

A release that is supported for

multiple years, unlike the six-
Long Term

LTS month releases that showcase new

Support

features. Choose the latest LTS

release.

A foundation that distributes
Eclipse —

open-source software.

Name Acronym | Explanation

The brand name for the OpenJDK

Temurin — version that the Eclipse

foundation distributes.

The project within the Eclipse

Foundation that provides an

Adoptium — OpenJDK version and

infrastructure support for its

distribution.

2.1.2. Setting Up the JDK

After downloading the JDK, you need to install it and figure out where it

was installed—you’ll need that information later.

If you run Windows or have a Mac, simply launch the setup program and

choose the default options.

On Linux, uncompress the .tar.gz file to a location of your choice, such as

your home directory or /opt. Then set the PATH to the bin subdirectory of

the directory into which the JDK was placed, such as /opt/jdk-25.0.4/bin.

This is usually achieved by adding a line such as the following to the end of

your ~/.bashrc or ~/.bash_profile file:

export PATH=/opt/jdk-25.0.4/bin:SPATH

Here 1s how you test whether you did it right. Start a terminal window. Type

the line

javac --version

and press the Enter key. You should get a display such as this one:

javac 25.0.4

If instead you get a message such as “javac: command not found” or “The

name specified is not recognized as an internal or external command,

operable program or batch file,” then you need to double-check your

installation.

It is often useful to know where the JDK is installed on your system—see

Table 2.2. In this book, the installation directory is denoted as

$JAVA HOME. For example, when referring to the $JAVA HOME/bin

directory, I mean the directory such as /opt/jdk-25.0.4/bin or C:\Program

Files\Java\jdk-25\bin. You may want to set the JAVA HOME environment

variable. Otherwise replace $JAVA HOME in any commands with the

installation directory on your system.

0 Caution: In the Windows terminal, use %JAVA HOME% instead
of $JAVA HOME to refer to the JAVA_ HOME environment

variable.

Table 2.2: The JDK Installation Directory

Platform Sample Directory
Windows C:\Program Files\Eclipse Adoptium\jdk-
(Adoptium) 25.0.4.11-hotspot
Windows
(Oracle C:\Program Files\Java\jdk-25
OpenJDK)

/Library/Java/JavaVirtualMachines/jdk-
Mac OS
25.0.4 11.;dk/Contents/Home

Where you uncompressed the .tar.gz file,
Linux
such as /opt/jdk-25.0.4

Note: On Windows, the Oracle JDK installer adds the directory
C:\Program Files\Common Files\Oracle\Java\javapath to the PATH
environment variable. That directory only contains the javac, javaw,
java, and jshell executables. (You will see how to use javac, java,
and jshell in this chapter. The javaw executable is a Windows-only
feature for launching a program without a console window.) The
other tools in the Java Development Kit can be found in the bin
subdirectory of the JDK installation directory. When invoking those
programs, either specify the complete path (such as C:\Program
Files\Java\jdk-25\bin\javadoc for the javadoc tool), or add the bin
subdirectory to the PATH environment variable. One way to achieve

this 1s with the setx command:
setx PATH "%PATH%;c:\Program Files\Java\jdk-25\bin"

Open another terminal window for the change to take effect.

The https://adoptium.net installer does not have this issue. It adds all

JDK tools to the PATH.

2.1.3. Source Files and Documentation

To effectively work with this book, you should install the Core Java

program examples. Download them from https://horstmann.com/corejava.

The programs are packaged into a zip file corejava.zip. Just unzip them into

any directory of your choice. The files are located in two subdirectories

corejava-bookcode and corejava-modulechapter. In the following examples,

they are placed into the home directory.

The library source files are delivered in the JDK as a compressed file

$JAVA HOME/lib/src.zip. If you are interested in learning how the Java

API is implemented, unzip that file to get access to the source code.

https://adoptium.net/
https://horstmann.com/corejava

ﬂ Tip: The src.zip file contains the source code for all public libraries.
To obtain even more source (for the compiler, the virtual machine,
the native methods, and the private helper classes), go to

https://openjdk.org.

You can read the JDK documentation at

https://docs.oracle.com/en/java/javase/25/docs/. If you have a nomadic

lifestyle and prefer an offline version, visit

https://www.oracle.com/java/technologies/downloads and look for a

“Documentation Download’ button or link.

6 Tip: With many browsers, you can define your own search engine.
It is very handy to set up search for the Java API. The search string

1s https://docs.oracle.com/en/java/javase/21/docs/api/search.html?

https://openjdk.org/
https://docs.oracle.com/en/java/javase/25/docs/
https://www.oracle.com/java/technologies/downloads

q=%s. If you associate this with a key such as @)}, then you can type

queries like @) println into your browser’s address bar.

2.2. Using the Command-Line Tools

If your programming experience comes from a development environment
such as Microsoft Visual Studio, you are accustomed to a system with a
built-in text editor, menus to compile and launch a program, and a
debugger. The JDK contains nothing even remotely similar. You do
everything by typing in commands in a terminal window. This may sound
cumbersome, but it is nevertheless an essential skill. When you first install
Java, you will want to troubleshoot your installation before you install a
development environment. Moreover, by executing the basic steps yourself,
you gain a better understanding of what a development environment does

behind your back.

However, after you have mastered the basic steps of compiling and running

Java programs, you will want to use a professional development

environment. You will see how to do that in the following section.

Let’s get started the hard way: launching a Java program from the command

line.

1. Open a terminal window.

2. Change to the corejava-bookcode directory (where you installed the

source code for the book examples, as explained in Section 2.1.3.)

3. Enter the following command:

java Welcome.java

In the terminal window, you should see the output shown in Figure 2.1.

» ~Icorejava-bookcode

~§ cd corejava-bookcode
/home/cay/corejava-bookcode
~/corejava-bookcode$ java Welcome, java
Welcome to Core Java!

~/corejava-bookcode$ ||

Figure 2.1: Running the Welcome.java program

Congratulations! You have just run your first Java program.

Note: In prior versions of Java, you had to use two steps:

javac Welcome.java

java Welcome

The javac program is the Java compiler. It compiles the file

Welcome.java into the file Welcome.class. The java program

launches the Java virtual machine. It executes the bytecodes that the

compiler placed in the class file. Note that here we launch the java

program with the name of the class, not a file name. Then the java

program simply loads the class file and runs it.

It is more efficient to compile a program once and then run it

whenever you need it, by calling javac and java separately. But for

simple demo programs, just run java followed by the file name, to

compile and run the program.

The Welcome program is extremely simple. It merely prints a message to
the terminal. You may enjoy looking inside the program, shown in Listing

2.1. You will see how it works in the next chapter.

Note: This program uses Java 25 features that were designed to
make simple programs shorter. If you use an older version of Java,

download the sample code of the preceding edition which is

Listing 2.1 Welcome.java

A

(\9]

* This program displays a greeting for the reader.

*/

(OS]

void main() {

5 String greeting = "Welcome to Core Java!";

https://horstmann.com/corejava/corejava13.zip

6 IO.println(greeting);

7 1O.println("=".repeat(greeting.length()));

In the age of integrated development environments, many programmers are
unfamiliar with running programs in a terminal window. Any number of

things can go wrong, leading to frustrating results.

Pay attention to the following points:

1. If you type in the program by hand, make sure you correctly enter the
uppercase and lowercase letters. For example, you must type main and

not Main or MAIN.

2. If you get a message such as “Bad command or file name” or “javac:
command not found,” go back and double-check your installation, in

particular the executable path setting.

3. If java or javac reports that it cannot find the file Welcome.java, you

should check whether that file is present in the directory.

Under Linux, check that you used the correct capitalization for

Welcome.java.

Some Windows text editors insist on adding an extension .txt to every

file’s name. Under the default settings, Windows Explorer hides the

.txt extension because it belongs to a “known file type.” Therefore, use

the dir console command, not the graphical Explorer tool, to check the

actual file name. Rename it if necessary.

The Welcome program was not terribly exciting. Next, try out a graphical

application. This program is a simple image file viewer that loads and

displays an image. As before, run the program from the command line.

1. Open a terminal window.

2. Change to the directory corejava-bookcode.

3. Enter the following:

java ImageViewer.java

A new program window pops up with the ImageViewer application. Now,

select File = Open and look for an image file to open. (There are sample

files in the images directory.) The image is displayed (see Figure 2.2). To

close the program, click on the Close box in the title bar or select File =

Exit from the menu.

M ImageViewer - O x
File

Figure 2.2: Running the ImageViewer application

Have a quick look at the source code (Listing 2.2). The program is

substantially longer than the first program, but it is not too complex if you
consider how much code it would take in C or C++ to write a similar

application. Of course, nowadays it is not common to write desktop

applications with graphical user interfaces, but if you are interested, you can

find more details in Chapter 10 of Volume II.

Listing 2.2 ImageViewer.java

I import module java.desktop;

/**

(98]

4 * A program for viewing images.

5 ¥

6 void main() {

7 EventQueue.invokeLater(() -> {
8 var frame = new ImageViewerFrame();
9 frame.setTitle("ImageViewer");
10 frame.setDefaultCloseOperation(JFrame.EXIT ON_ CLOSE);

11 frame.setVisible(true);

123

15 /e

30

32

34

W
()]

* A frame with a label to show an image.

*/

class ImageViewerFrame extends JFrame {

private static final int DEFAULT WIDTH = 300;

private static final int DEFAULT HEIGHT = 400;

public ImageViewerFrame() {

setSize(DEFAULT WIDTH, DEFAULT HEIGHT);

// use a label to display the images

var label = new JLabel();

add(label);

// set up the file chooser

var chooser = new JFileChooser();

chooser.setCurrentDirectory(new File("images"));

// set up the menu bar

var menuBar = new JMenuBar();

set)MenuBar(menuBar);

36

43

44

45

46

47

48

49

50

51

52

54

var menu = new JMenu("File");

menuBar.add(menu);

var openltem = new JMenultem("Open");

menu.add(openltem);

openltem.addActionListener(_ -> {

// show file chooser dialog

int result = chooser.showOpenDialog(null);

// if file selected, set it as icon of the label

if (result == JFileChooser. APPROVE_OPTION) {

String name = chooser.getSelectedFile().getPath();

label.setlcon(new Imagelcon(name));

s

var exitltem = new JMenultem("Exit");

menu.add(exitltem);

exitltem.addActionListener(_ -> System.exit(0));

2.3. Using an Integrated Development
Environment

In the preceding section, you saw how to compile and run a Java program
from the command line. That is a useful skill for troubleshooting, but for
most day-to-day work, you should use an integrated development
environment. These environments are so powerful and convenient that it
simply doesn’t make much sense to labor on without them. Excellent
choices are the freely available Eclipse, IntelliJ IDEA, NetBeans, and
Visual Studio Code. In this section, you will see how to get started with
Eclipse. Of course, if you prefer a different development environment, you

can certainly use it with this book.

Get started by downloading Eclipse from https://eclipse.org/downloads.
Versions exist for Linux, Mac OS X, and Windows. Run the installation
program and pick the installation set called “Eclipse IDE for Java

Developers.”

Here are the steps to load the sample code into Eclipse:

1. After starting Eclipse, select File = New — Project from the menu.

2. Select “Java Project” from the wizard dialog (see Figure 2.3).

https://eclipse.org/downloads

=New Project

Create a Java project

Wizards:

Select a wizard -

‘type filter text

T

v & General
v & Gradle
v = Java

& Java Project

Java Project from Existing Ant Buildfile

@ | | Next> H Cancel

Figure 2.3: The New Project dialog in Eclipse

3. Click the Next button. Uncheck the “Use default location” checkbox.

Click on Browse and navigate to the corejava-bookcode directory

(Figure 2.4).

Create a Java Project

Project name: | corejava-bookcode

_J Use default location

Create a Java project in the workspace or in an external location.

Location: /home/cay{booksfcﬂMcode{corejava-bookcode‘

0 JavaSE-25

25.ea.36-open

Working sets

[Add project to working sets

Module
I Create module-info.java file

Browse...

New...

® Next > Cancel Finish

Figure 2.4: Configuring a project in Eclipse

4. Uncheck the box labeled “Create modul-info.java file.” Click the
Finish button. The project is now created.

5. Click on the triangles in the left pane next to the project until you
locate the file Welcome.java inside the “default package”, and double-
click on it. You should now see a pane with the program code.

6. With the right mouse button, click on the file name (Welcome.java) in
the left pane. Select Run = Run As — Java Application. The program

output is displayed in the console pane (see Figure 2.5).

= workspace - corejava-bookcode/Welcome.java - Eclipse IDE

File Edit Source Refactor Navigate Search Project Run Window Help

vvvv#v(}v v

% Package Explore X = 3 1 Welcomejava X

v 5 > corejava-bookcode [
b 8 JRE System Library [Ja
v # > (default package) [¢]1

b 1) BiglntegerDemojave
» [CalendarDemo.java
» [Compoundlnterest e
» [ConstructorDemoja
b [} Employee.java

) & EmployeeDemojava
b [FirstSample.java

b I HelloWorld.java

b 1l ImageViewer java

[InputDemo.java

b [LotteryArray.java

b [} LotteryDrawing.java
b [LotteryOddsava

) [} PackageDemo.java

b [ParamDemo.java

b [} RecordDemo.java

b [} Retirement java

) [Retirement).java

b [} StaticDemo.java

b & Welcome.java

b & com.horstmann.coreja

vig vied

TTHEEEEEE

* This program displays a greeting for the reader.
)
“void main() {
String greeting = "Welcome to Core Java!';
10.printin{greeting),

I10.printin("=".repeat(qgreeting.length()));

}

I
2 Problems @ Javadoc & Declaration & Console X - 0

X% & ﬂlﬂm s nl
<terminated> Welcome [Java Application] /home/cay.sdkman/candidates/java/25.ea.36-open/bin;
Welcome to Core Java!

qutenberg

b B images v
B "
Writable Smart [nsert Bl :

Figure 2.5: Running a source file with Eclipse

2.4. JShell

The JShell program provides a “read-evaluate-print loop,” or REPL. You
type a Java expression; JShell evaluates your input, prints the result, and
waits for your next input. This is an excellent way to experiment—much
faster than writing a complete program in an integrated development

environment.

To start JShell, simply type jshell in a terminal window (see Figure 2.6).

. jshell
~$ jshell

| Welcome to JShell -- Version 25-ea
| For an introduction type: /help intro

jshell> "Core Java".length()

$1 ==% 9

jshell> 5 # §1 - 3
§2 ==> 42

jshell> var answer = 6 * 7

answer ==> 42

jshell> Math.

<press tab again to see all possible completions; total possible completions: 110>

jshell> Math.
E
TAU

acos(

atan(

ceil(

cellMod(
copySign(
decrementExact (
expml (
floorDivExact(
getExponent (
Tog(

max (
multiplyFull(
nextAfter(

pow (

rint(

signum(

sqr(

tanh(

toRadians(
mmeimadiin] tinTvHiah(

IEEEremainder(
abs(
addExact (
atan2(
ceilDiv(
clamp(

cos(
divideExact(
floor(
floorMod(
hypot (

log16(

min(
multiplyHigh(
nextDown(
powExact (
round(

sin(
subtractExact(
toDegrees(
ulp(

1imeimedPnwFvact(

PI

absExact(
asin(

chrt(
ceilDivExact(
class

cosh(

exp(

floorDiv(

fma(
incrementExact (
loglp(
multiplyExact(
negateExact (
nextUp(
random()
scalb(

sinh(

tan(
toIntExact(
unsignedvultiplyExact(

e L el et by CLRY R L

jshell> Math.

Figure 2.6: Running JShell

JShell starts with a greeting, followed by a prompt:

| Welcome to JShell -- Version 25.0.4

| For an introduction type: /help intro

jshell>

Now type an expression, such as

"Core Java".length()

JShell responds with the result—in this case, the number of characters in

the string “Core Java”.

$1==>9

Note that you do not type 10.println. JShell automatically prints the value

of every expression that you enter.

The $1 in the output indicates that the result is available in further

calculations. For example, if you type

5%81-3

the response is

$2 ==> 42

If you need a variable many times, you can give it a more memorable name.

For example,

jshell> var answer = 6 * 7

answer ==> 42

Another useful feature is tab completion. Type

Math.

followed by the Tab key. Because there are so many completions, you are

prompted to hit the Tab key again. You get a list of all methods that you can

invoke with the Math class:

jshell> Math.

E IEEEremainder(PI

TAU abs(absExact(
acos(addExact(asin(

atan(atan2(cbrt(

ceil(ceilDiv(ceilDivExact(
ceilMod(clamp(class
copySign(cos(cosh(
decrementExact(divideExact(exp(

expm]1(floor(floorDiv(

floorDivExact(floorMod(fma(

getExponent(hypot(incrementExact(
log(log10(loglp(

max(min(multiplyExact(
multiplyFull(multiplyHigh(negateExact(
nextA fter(nextDown(nextUp(

pow(random() rint(

round(scalb(signum(

sin(sinh(sqrt(

subtractExact(tan(tanh(

toDegrees(toIntExact(toRadians(
ulp(unsignedMultiplyHigh(

Now type | and hit the Tab key again. The method name is completed to

log, and you get a shorter list:

jshell> Math.log

log(loglO(loglp(

Now you can fill in the rest by hand:

jshell> Math.log10(0.001)

$4 ==>-3.0

To repeat a command, hit the T key until you see the line that you want to
reissue or edit. You can move the cursor in the line with the <= and — keys,
and add or delete characters. Hit Enter when you are done. For example, hit

the T key and replace 0.001 with 1000, then hit Enter:

jshell> Math.log10(1000)

$5==>3.0

You exit JShell with the command

/exit

JShell makes it easy and fun to learn the Java language and library without

having to launch a heavy-duty development environment and without

fussing with a program and a main method.

In this chapter, you learned about the mechanics of compiling and running

Java programs. You are now ready to move on to Chapter 3 where you will

start learning the Java language.

Chapter 3 = Fundamental
Programming Structures in Java

At this point, you should have successfully installed the JDK and executed
the sample programs from Chapter 2. It’s time to start programming. This
chapter shows you how the basic programming concepts such as data types,

branches, and loops are implemented in Java.

3.1. A Simple Java Program

Let’s look more closely at one of the simplest Java programs you can have

—one that merely prints a message to console:

void main() {

[O.println("We will not use 'Hello, World!"");

First and foremost, Java is case sensitive. If you made any mistakes in

capitalization (such as typing Main instead of main), the program will not

The program declares a method called main. The term “method” is Java-

speak for a function—a block of code that carries out a specific task. You

must have a main method in every program. You can, of course, add your

own methods and call them from the main method.

Notice the braces { } in the source code. In Java, as in C/C++, braces are

used to form a group of statements (called a block). In Java, the code for

any method must be started by an opening brace { and ended by a closing

brace }.

Brace styles have inspired an inordinate amount of useless controversy.

This book follows a compact style that is common among Java

programmers, sometimes called the “Kernighan and Ritche” style. In other

styles, matching braces line up. As whitespace is irrelevant to the Java

compiler, you can use whatever brace style you like.

The main method calls another method, called println, defined in the 10

class. You will learn a lot more about classes in the next chapter. For now,

think of a class as a container for the program logic that defines the

behavior of an application. Classes are the building blocks with which all

Java applications are built.

In fact, everything in a Java program lives inside a class, even our main

method. It is placed inside a class whose name is the name of the file,

without the extension. If we place the code in a file named

FirstSample.java, main is a method of a class FirstSample.

The standard naming convention (used in the name FirstSample) is that

class names are nouns that start with an uppercase letter. If a name consists

of multiple words, use an initial uppercase letter in each of the words. This

use of uppercase letters in the middle of a name is sometimes called “camel

case” or, self-referentially, “CamelCase.”

Note: Prior to Java 25, you had to explicitly declare the class

containing the main method. This is no longer necessary.
It used to be a requirement to declare the main method as
public static void main(String[] args)

You will learn in Chapter 4 what the keywords public and static

mean. The String[] args parameter holds command line arguments—

see Section 3.10.5.

Moreover, Java 25 introduced the IO class to simplify console input

and output. Previously, you had to use the special System.out object,

which was yet another concept that was confusing to beginners.

To run any of the programs in this chapter with an older version of

Java, do the following:

1. Place all code inside a class whose name equals the file name,

without the extension.

2. Declare main in the old style.

3. Replace 10.println with System.out.println

For example:

public class FirstSample {

public static void main(String|[] args) {

System.out.println("We will not use 'Hello, World!"");

Note: Version 1.0 of the Java Language Specification decreed that
the main method must be declared public, static, and void. (The Java
Language Specification is the official document that describes the
Java language. You can view or download it from

https://docs.oracle.com/javase/specs.)

However, early versions of the Java launcher were willing to

execute Java programs even when the main method was not public.

A programmer filed a bug report. To see it, visit

was marked as “closed, will not be fixed.” An engineer added an

explanation that the Java Virtual Machine Specification does not

mandate that main is public and that “fixing it will cause potential

troubles.” In the end, sanity prevailed. As of Java 1.4, the Java

launcher enforces that the main method is public, as intended in the

https://docs.oracle.com/javase/specs
https://bugs.openjdk.org/browse/JDK-4252539

language specification. That behavior was in place until Java 25,

which allows other forms of the main method.

It is remarkable that the bug reports and their resolutions have been

available for anyone to scrutinize for as long as Java existed, even

before it became open source.

Now turn your attention to the contents inside the braces of the main

method,

[0.printin("We will not use 'Hello, World!"");

This 1s the body of the method. The body of most methods contains

multiple statements, but here we have just one. As with most programming

languages, you can think of Java statements as sentences of the language. In

Java, every statement must end with a semicolon. In particular, carriage

returns do not mark the end of a statement, so statements can span multiple

lines if need be.

Here, we are calling the println method that is declared in a class called 1O.

Notice the period that separates the name of the 10O class and the println

method.

The println method receives a string argument. The method displays the

string argument on the console. It then terminates the output line, so that

each call to println displays its output on a new line. Notice that Java, like

C/C++, uses double quotes to delimit strings. (You can find more

information about strings later in this chapter.)

Methods in Java, like functions in any programming language, can use zero,

one, or more arguments, which are enclosed in parentheses. Even if a

method has no arguments, you must still use empty parentheses. For

example, a variant of the println method with no arguments just prints a

blank line. You invoke it with the call

[O.println();

Note: The IO class also has a print method that doesn’t add a
newline character to the output. For example, 1O.print("Hello")
prints Hello without a newline. The next output appears

immediately after the letter o.

You compile the file with the command

You run the sample program with this command:

java FirstSample.java

When the program executes, it simply displays the string We will not use

'Hello, World!" on the console.

If you intend to run a program multiple times, it is more efficient to compile

1t first:

javac FirstSample.java

You end up with a file containing the byfecodes for this class. These are

instructions for the Java virtual machine. The Java compiler names the

bytecode file FirstSample.class and stores it in the same directory as the

source file. Whenever you want to launch the program, issue the following

command:

java FirstSample

Remember to leave off the .class extension.

When you use

java ClassName

to run a compiled program, the Java virtual machine is launched, and

execution starts with the code in the main method of the class you indicate.

3.2. Comments

Comments in Java, as in most programming languages, do not show up in
the executable program. Thus, you can add as many comments as needed
without fear of bloating the code. Java has three ways of marking
comments. The most common form is a //. Use this for a comment that runs

from the // to the end of the line.

[O.println("We will not use 'Hello, World!""); // is this too cute?

When longer comments are needed, you can mark each line with a //, or you
can use the /* and */ comment delimiters that let you block off a longer

comment.

Finally, a third kind of comment 1s used to generate documentation
automatically. This comment uses a /** to start and a */ to end. You can see

this type of comment in Listing 3.1. For more on this type of comment and

on automatic documentation generation, see Chapter 4.

Listing 3.1 FirstSample.java

/**

* This is the first sample program in Core Java Chapter 3

*/

void main() {

10.println("We will not use 'Hello, World!");

0 Caution: /* */ comments do not nest in Java. That is, you might not
be able to deactivate code simply by surrounding it with /* and */
because the code you want to deactivate might itself contain a */

delimiter.

3.3. Data Types

Java is a strongly typed language. This means that every variable must have
a declared type. There are eight primitive types in Java. Four of them are
integer types; two are floating-point number types; one is the character type
char, used for UTF-16 code units in the Unicode encoding scheme (see

Section 3.3.3); and one 1s a boolean type for truth values.

Note: Java has an arbitrary-precision arithmetic package. However,
“big numbers,” as they are called, are Java objects and not a
primitive Java type. You will see how to use them later in this

chapter.

3.3.1. Integer Types

The integer types are for numbers without fractional parts. Negative values

are allowed. Java provides the four integer types shown in Table 3.1.

Table 3.1: Java Integer Types

Storage
Type Range (Inclusive)
Requirement
byte | 1 byte —128 to 127
short | 2 bytes —32,768 to 32,767
—2,147,483,648 to 2,147,483,647 (just
int 4 bytes

over 2 billion)

—9,223,372,036,854,775,808 to
long | 8 bytes
9,223,372,036,854,775,807

In most situations, the int type is the most practical. If you want to represent

the number of inhabitants of our planet, you’ll need to resort to a long. The

byte and short types are mainly intended for specialized applications, such

as low-level file handling, or for large arrays when storage space is at a

premium.

Under Java, the ranges of the integer types do not depend on the machine

on which you will be running the Java code. This alleviates a major pain for

the programmer who wants to move software from one platform to another,

or even between operating systems on the same platform. In contrast, C and

C++ programs use the most efficient integer type for each processor. As a

result, a C program that runs well on a 32-bit processor may exhibit integer

overflow on a 16-bit system. Since Java programs must run with the same

results on all machines, the ranges for the various types are fixed.

Long integer numbers have a suffix L or 1 (for example, 4000000000L).

Hexadecimal numbers have a prefix 0x or 0X (for example, 0OxCAFE).

Octal numbers have a prefix 0 (for example, 010 is 8)—naturally, this can

be confusing, and few programmers use octal constants.

You can write numbers in binary, with a prefix 0Ob or 0B. For example,

0b1001 is 9. You can add underscores to number literals, such as

1 000 000 (or Ob1111_0100 0010 0100 _0000) to denote one million. The

underscores are for human eyes only. The Java compiler simply removes

them.

Note: In C and C++, the sizes of types such as int and long depend
on the target platform. On a 32-bit processor, integers have 4 bytes,
but on a 64-bit processor they may have 4 bytes or 8 bytes. These
differences make it challenging to write cross-platform programs. In

Java, the sizes of all numeric types are platform-independent.

Note that Java does not have any unsigned versions of the int, long,

short, or byte types.

Note: If you work with integer values that can never be negative
and you really need an additional bit, you can, with some care,
interpret signed integer values as unsigned. For example, instead of
having a byte value b represent the range from —128 to 127, you
may want a range from 0 to 255. You can store it in a byte. Due to
the nature of binary arithmetic, addition, subtraction, and
multiplication will work provided they don’t overflow. For other
operations, call Byte.toUnsignedInt(b) to get an int value between 0
and 255, then process the integer value and cast back to byte. The
Integer and Long classes have methods for unsigned division and

remainder.

3.3.2. Floating-Point Types

The floating-point types denote numbers with fractional parts. The two

floating-point types are shown in Table 3.2.

Table 3.2: Floating-Point Types

Storage
Type Range
Requirement

Approximately +£3.40282347x103%
float 4 bytes
(6—7 significant decimal digits)

Approximately
double | 8 bytes +1.79769313486231570x103%8 (15

significant decimal digits)

The name double refers to the fact that these numbers have twice the
precision of the float type. (Some people call these double-precision
numbers.) The limited precision of float (6-7 significant digits) is simply

not sufficient for many situations. Use float values only when you work

with a library that requires them, or when you need to store a very large

number of them.

Java 20 adds a couple of methods (Float.floatToFloat16 and

Float.float16toFloat) for storing “half-precision” 16-bit floating-point

numbers in short values. These are used for implementating neural

networks.

Numbers of type float have a suffix F or f (for example, 3.14F). Floating-

point numbers without an F suffix (such as 3.14) are always considered to

be of type double. You can optionally supply the D or d suffix (for example,

3.14D).

An E or e denotes a decimal exponent. For example, 1.729E3 is the same as

1729.

Note: You can specify floating-point literals in hexadecimal. For
example, 0.125 = 273 can be written as 0x1.0p-3. In hexadecimal
notation, you use a p, not an e, to denote the exponent. (An e is a
hexadecimal digit.) Note that the mantissa is written in hexadecimal

and the exponent in decimal. The base of the exponent is 2, not 10.

All floating-point computations follow the IEEE 754 specification. In
particular, there are three special floating-point values to denote overflows

and errors:

B positive infinity
B Negative infinity

B NaN (not a number)

For example, the result of dividing a positive floating-point number by 0 is

positive infinity. Dividing 0.0 by 0 or the square root of a negative number

yields NaN.

Note: The constants Double.POSITIVE INFINITY,
Double. NEGATIVE_INFINITY, and Double.NaN (as well as
corresponding Float constants) represent these special values, but

they are rarely used in practice. In particular, you cannot test
if (x == Double.NaN) // is never true

to check whether a particular result equals Double.NaN. All “not a
number” values are considered distinct. However, you can use the

Double.isNaN method:

if (Double.isNaN(x)) // check whether x is "not a number"

Note: There are both positive and negative floating-point zeroes, 0.0

and -0.0, but you can’t tell them apart with ==. To check whether a

value 1s negative zero, use this test:

if (Double.compare(x, -0.0) == 0)

0 Caution: Floating-point numbers are not suitable for financial
calculations in which roundoff errors cannot be tolerated. For
example, the command IO.printin(2.0 - 1.1) prints
0.8999999999999999, not 0.9 as you would expect. Such roundoff
errors are caused by the fact that floating-point numbers are
represented in the binary number system. There is no precise binary
representation of the fraction 9/10, just as there is no accurate
representation of the fraction 1/3 in the decimal system. If you need
precise numerical computations without roundoff errors, use the

BigDecimal class, which is introduced later in this chapter.

3.3.3. The char Type

The char type was originally intended to describe individual characters.

However, this is no longer the case. Nowadays, some Unicode characters

can be described with one char value, and other Unicode characters require

two char values. Read the next section for the gory details.

Literal values of type char are enclosed in single quotes. For example, 'A' is

a character constant with value 65. It is different from "A", a string

containing a single character. Values of type char can be expressed as

hexadecimal values that run from \u0000 to \uFFFF.

Besides the \u escape sequences, there are several escape sequences for

special characters, as shown in Table 3.3. You can use these escape

sequences inside quoted character literals and strings, such as "u005B' or

"Hello\n". The \u escape sequence (but none of the other escape sequences)

can even be used outside quoted character constants and strings. For

example,

void main()\u007BIO.println("Hello, World!");\u007D

is perfectly legal—\u007B and \u007D are the encodings for { and }.

Table 3.3: Escape Sequences for Special Characters

Escape Unicode
Name

Sequence Value

\b Backspace \u0008
\t Tab \u0009
\n Line feed \u000a
\r Carriage return \u000d
\f Form feed \u000c¢
\" Double quote \u0022

Escape Unicode

Name
Sequence Value
\' Single quote \u0027
\\ Backslash \u005¢

Space. Used in text blocks to retain
\s \u0020

trailing whitespace.

In text blocks only: Join this line
\newline —

with the next

0 Caution: Unicode escape sequences are processed before the code
is parsed. For example, "\u0022-+\u0022" is not a string consisting

of a plus sign surrounded by quotation marks (U+0022). Instead, the

\u0022 are converted into " before parsing, yielding ""+"", or an

empty string.

Even more insidiously, you must beware of \u inside comments. The

comment

// \u0O00A 1s a newline

yields a syntax error since \uOOOA is replaced with a newline when

the program is read. Similarly, a comment

// 1ook inside c:\users

yields a syntax error because the \u is not followed by four hex

digits.

Note: You can have any number of u in a Unicode escape sequence:

\WWO0OE9 and \uuuOOE9 both denote the character €. There is a reason

for this oddity. Consider a programmer happily coding in Unicode

who is forced, for some archaic reason, to check in code as ASCII

only. A conversion tool can turn any character > U+007F into a

Unicode escape and add a u to every existing Unicode escape. That

makes the conversion reversible. For example, \uD800 ¢ is turned

into \uuD&00 \uOOEY9 and can be converted back to \uD800 é.

3.3.4. Unicode and the char Type

To fully understand the char type, you have to know about the Unicode
encoding scheme. Before Unicode, there were many different character
encoding standards: ASCII in the United States, ISO 8859-1 for Western
European languages, KOI-8 for Russian, GB18030 and BIG-5 for Chinese,
and so on. This caused two problems. First, a particular code value
corresponds to different letters in the different encoding schemes. Second,

the encodings for languages with large character sets have variable length:

Some common characters are encoded as single bytes, others require two or

more bytes.

Unicode was designed to solve both problems. When the unification effort

started in the 1980s, a fixed 2-byte code was more than sufficient to encode

all characters used in all languages in the world, with room to spare for

future expansion—or so everyone thought at the time. In 1991, Unicode 1.0

was released, using slightly less than half of the available 65,536 code

values. Java was designed from the ground up to use 16-bit Unicode

characters, which was a major advance over other programming languages

that used 8-bit characters.

Unfortunately, over time, the inevitable happened. Unicode grew beyond

65,536 characters, primarily due to the addition of a very large set of

ideographs used for Chinese, Japanese, and Korean. Now, the 16-bit char

type is insufficient to describe all Unicode characters.

We need a bit of terminology to explain how this problem is resolved in

Java. A code point is an integer value associated with a character in an

encoding scheme. In the Unicode standard, code points are written in

hexadecimal and prefixed with U+, such as U+0041 for the code point of

the Latin letter A. Unicode has code points that are grouped into 17 code

planes, each holding 65536 characters. The first code plane, called the basic

multilingual plane, consists of the “classic” Unicode characters with code

points U+0000 to U+FFFF. Sixteen additional planes, with code points

U+10000 to U+10FFFF, hold many more characters called supplementary

characters.

How a Unicode code point (that is, an integer ranging from 0 to

hexadecimal 10FFFF) is represented in bits depends on the character

encoding. You could encode each character as a sequence of 21 bits, but

that is impractical for computer hardware. The UTF-32 encoding simply

places each code point into 32 bits, where the top 11 bits are zero. That is
rather wasteful. The most common encoding on the Internet is UTF-8, using

between one and four bytes per character. See Chapter 2 of Volume II for

details of that encoding.

Java strings use the UTF-16 encoding. It encodes all Unicode code points in
a variable-length code of 16-bit units, called code units. The characters in
the basic multilingual plane are encoded as a single code unit. All other
characters are encoded as consecutive pairs of code units. Each of the code
units in such an encoding pair falls into a range of 2048 unused values of
the basic multilingual plane, called the surrogates area ("\uD800' to
"uDBFF' for the first code unit, "\uDCO00' to "uDFFF' for the second code
unit). This is rather clever, because you can immediately tell whether a code
unit encodes a single character or it is the first or second part of a

supplementary character. For example, the beer mug emoji & has code

point U+1F37A and is encoded by the two code units "uD83C' and

"uDF7A'. (See https://tools.ietf.org/html/rfc2781 for a description of the

encoding algorithm.) Each code unit is stored as a char value. The details
are not important. All you need to know is that a single Unicode character

may require one or two char values.

You cannot ignore characters with code units above U+FFFF. Your
customers may well write in a language where these characters are needed,

or they may be fond of putting emojis such as @ into their messages.

Nowadays, Unicode has become so complex that even code points no
longer correspond to what a human viewer would perceive as a single
character or symbol. This happens with languages whose characters are
made from smaller building blocks, with emojis that can have modifiers for
gender and skin tone, and with an ever-growing number of other

compositions.

https://tools.ietf.org/html/rfc2781

Consider the pirate flag [$2. You perceive a single symbol: the flag.
However, this symbol is composed of four Unicode code points: U+1F3F4
(waving black flag), U+200D (zero width joiner), U+2620 (skull and
crossbones), and U+FEOF (variation selector-16). In Java, you need five
char values to represent the flag: two char for the first code point, and one

each for the other three.

In summary, a visible character or symbol is encoded as a sequence of some
number of char values, and there is almost never a need to look at the
individual values. Always work with strings (see Section 3.6) and don’t

worry about their representation as char sequences.

3.3.5. The boolean Type

The boolean type has two values, false and true. It is used for evaluating
logical conditions. You cannot convert between integers and boolean

values.

Note: In languages such as C++ and JavaScript, other values, such
as numbers and even strings, can be used in place of boolean values.
The value 0 is equivalent to the bool value false, and a nonzero
value is equivalent to true. This is not the case in Java. Thus, Java

programmers are shielded from accidents such as
if (x =0) // oops... meant x ==

In C++ and JavaScript, this test compiles and runs, always
evaluating to false. In Java, the test does not compile because the

integer expression X = 0 cannot be converted to a boolean value.

3.4. Variables and Constants

As in every programming language, variables are used to store values.
Constants are variables whose values don’t change. In the following

sections, you will learn how to declare variables and constants.

3.4.1. Declaring Variables

In Java, every variable has a #fype. You declare a variable by placing the

type first, followed by the name of the variable. Here are some examples:

double salary;
int vacationDays;
long earthPopulation;

boolean done;

Notice the semicolon at the end of each declaration. The semicolon 1s
necessary because a declaration is a complete Java statement, which must

end in a semicolon.

The identifier for a variable name (as well as for other names) is made up of
letters, digits, currency symbols, and “punctuation connectors.” The first

character cannot be a digit.

Symbols like '+' or '©' cannot be used inside variable names, nor can
spaces. Letter case is significant: main and Main are distinct identifiers. The

length of an identifier is essentially unlimited.

The terms “letter,” “digit,” and “currency symbol” are much broader in Java
than in most languages. A letter is any Unicode character that denotes a
letter in a language. For example, German users can use umlauts such as &
in variable names; Greek speakers could use a w. Similarly, digits are 0-9
and any Unicode characters that denote a digit. Currency symbols are $, €,
¥, and so on. Punctuation connectors include the underscore character , a
“wavy low line” ___, and a few others. In practice, most programmers stick

to A-Z, a-z, 0-9, and the underscore .

a Tip: If you are really curious as to what Unicode characters can be
used in identifiers, you can use the isJavaldentifierStart and

1sJavaldentifierPart methods in the Character class to check.

d Tip: Even though § is a valid character in an identifier, you should
not use it in your own code. It is intended for names that are

generated by the Java compiler and other tools.

You also cannot use a Java keyword such as class as a variable name.

Underscores can be parts of identifiers. This is common for constant names,

such as Double.POSITIVE INFINITY. However, a single underscore _is a

keyword.

Note: As of Java 21, a single underscore _ denotes a variable that is
syntactially required but never used. You will see examples in

Chapters 6 and 7.

You can declare multiple variables on a single line:

int 1, j; // both are integers

I don’t recommend this style. If you declare each variable separately, your

programs are easier to read.

Note: As you saw, names are case sensitive, for example, hireday
and hireDay are two separate names. In general, you should not
have two names that only differ in their letter case. However,
sometimes it is difficult to come up with a good name for a variable.
Many programmers then give the variable the same name as the

type, for example
Box box; // "Box" is the type and "box" is the variable name
Other programmers prefer to use an “a” prefix for the variable:

Box aBox;

3.4.2. Initializing Variables

After you declare a variable, you must explicitly initialize it by means of an
assignment statement—you can never use the value of an uninitialized
variable. For example, the Java compiler flags the following sequence of

statements as an error:

int vacationDays;

[O.println(vacationDays); // ERROR--variable not initialized

You assign to a previously declared variable by using the variable name on
the left, an equal sign (=), and then some Java expression with an

appropriate value on the right.

int vacationDays;

vacationDays = 12;

You can both declare and initialize a variable on the same line. For

example:

int vacationDays = 12;

Finally, in Java you can put declarations anywhere in your code. For

example, the following is valid code in Java:

double salary = 65000.0;

[0.printin(salary);

int vacationDays = 12; // OK to declare a variable here

In Java, it 1s considered good style to declare variables as closely as

possible to the point where they are first used.

Note: You do not need to declare the types of local variables if they
can be inferred from the initial value. Simply use the keyword var

instead of the type:

var vacationDays = 12; // vacationDays is an int

var greeting = "Hello"; // greeting is a String

This is not too important for number and string types, but, as you

will see in the next chapter, this feature can make the declaration of

objects less verbose.

3.4.3. Constants

In Java, you use the keyword final to denote a constant. For example:

void main() {

final double CM_PER INCH = 2.54;

double paperWidth = 8.5;

double paperHeight = 11;

[O.println("Paper size in centimeters: "

+ paperWidth * CM_PER INCH + " by " + paperHeight *

CM_PER_INCH);

The keyword final indicates that you can assign to the variable once, and

then its value is set once and for all. It is customary to name constants in all

uppercase.

It is probably more common in Java to create a constant so it’s available to

all methods of a class:

final double CM_PER INCH = 2.54;

void main() {

double paperWidth = 8.5;

double paperHeight = 11;

[O.println("Paper size in centimeters: "

+ paperWidth * CM_PER INCH + " by " + paperHeight *

CM_PER_INCH);

// CM_PER INCH also accessible in other methods

You will see in Chapter 4 how a class can declare constants that are usable

in other classes. For example, the Math class declares a constant PI that you

can use as Math.PI.

0 Caution: Some coding style guides state that uppercase letters
should only be used for class constants, not local ones. If you need
to follow such a style guide, and you have a local constant, decide
what is more important to you—the fact that it is local (and

lowercase), or that it is visibly a constant (in uppercase).

Note: const 1s a Java keyword, but it is not currently used for

anything. You must use final for a constant.

3.4.4. Enumerated Types

Sometimes, a variable should only hold a restricted set of values. For
example, you may sell clothes or pizza in four sizes: small, medium, large,
and extra large. Of course, you could encode these sizes as integers 1, 2, 3,
4 or characters S, M, L, and X. But that is an error-prone setup. It is too

easy for a variable to hold a wrong value (such as 0 or m).

You can define your own enumerated type whenever such a situation arises.

An enumerated type has a finite number of named values. For example,

enum Size { SMALL, MEDIUM, LARGE, EXTRA LARGE };

Now you can declare variables of this type:

Size s = Size. MEDIUM,;

A variable of type Size can hold only one of the values listed in the type

declaration, or the special value null that indicates that the variable is not

set to any value at all. (See Chapter 4 for more information about null.)

Enumerated types are discussed in greater detail in Chapter 5.

3.5. Operators

Operators are used to combine values. As you will see in the following
sections, Java has a rich set of arithmetic and logical operators and

mathematical functions.

3.5.1. Arithmetic Operators

The usual arithmetic operators +, -, *, and / are used in Java for addition,

subtraction, multiplication, and division.

The / operator denotes integer division if both operands are integers, and

floating-point division otherwise. Integer division by 0 raises an exception,

whereas floating-point division by 0 yields an infinite or NaN result.

Integer remainder (sometimes called modulus) is denoted by %. For

example, 15/21s7,15% 2 1s 1,and 15.0/21s 7.5.

0 Caution: When one of the operands of % is negative, so is the
result. For example, n % 2 1s 0 if n is even, 1 if n is odd and
positive, and -1 if n is odd and negative. Why? When the first
computers were built, someone had to make rules for how integer
remainder should work for negative operands. Mathematicians had
known the optimal (or “Euclidean”) rule for a few hundred years:
always leave the remainder > 0. But, rather than open a math
textbook, those pioneers came up with rules that seemed reasonable

but are actually inconvenient.

Consider this problem. You compute the position of the hour hand

of a clock. An adjustment is applied, and you want to normalize to a

number between 0 and 11. That is easy: (position + adjustment) %

12. But what if the adjustment is negative? Then you might get a

negative number. So you have to introduce a branch, or use

((position + adjustment) % 12 + 12) % 12. Either way, it is a hassle.

A better remedy is to use the floorMod method:

Math.floorMod(position + adjustment, 12) always yields a value

between 0 and 11. Unfortunately, floorMod still gives negative

remainders for negative divisors, but that situation doesn’t often

occur in practice.

Note: One of the stated goals of the Java programming language is

portability. A computation should yield the same results no matter

which virtual machine executes it. For that reason, the Java 1.0
language specification requires adherence to the IEEE 754 standard
for 32- and 64-bit floating-point numbers. However, for many years,
Intel processors used “extended” 80-bit floating-point registers for
64-bit floating-point operations, occasionally yielding more accurate

but non-standard results.

3.5.2. Mathematical Functions and Constants

The Math class contains an assortment of mathematical functions that you

may occasionally need, depending on the kind of programming that you do.

To take the square root of a number, use the sqrt method:

double x = 4;
double y = Math.sqrt(x);

[O.println(y); // prints 2.0

The Java programming language has no operator for raising a quantity to a

power: You must use the pow method in the Math class. The statement

double y = Math.pow(x, a);

sets y to be x raised to the power a (x*). The pow method’s arguments are

both of type double, and it returns a double as well.

The Math class supplies the usual trigonometric functions:

Math.sin

Math.cos

Math.tan

Math.atan

Math.atan2

and the exponential function with its inverse, the natural logarithm, as well

as the decimal logarithm:

Math.exp

Math.log

Math.log10

Java 21 adds a method Math.clamp that forces a number to fit within given

bounds. For example:

Math.clamp(-1, 0, 10) // too small, yields lower bound 0

Math.clamp(11, 0, 10) // too large, yields upper bound 10

Math.clamp(3, 0, 10) // within bounds, yields value 3

Finally, three constants denote the closest possible approximations to the

mathematical constants 7, 7 = 2z, and e:

Math.PI

Math. TAU

Math.E

ﬂ Tip: You can avoid the Math prefix for the mathematical methods
and constants by adding the following line to the top of your source

file:
import static java.lang.Math.*;
For example:
[O.printIn("The square root of m 1s " + sqrt(PI));

Static imports are covered in Chapter 4.

Note: The methods in the Math class use the routines in the
computer’s floating-point unit for fastest performance. If completely
predictable results are more important than performance, use the
StrictMath class instead. It implements the algorithms from the

“Freely Distributable Math Library”

(https://www.netlib.org/fdlibm), guaranteeing identical results on all

platforms.

Note: The Math class provides several methods to make integer

arithmetic safer. The mathematical operators quietly return wrong

results when a computation overflows. For example, one billion

times three (1000000000 * 3) evaluates to -1294967296 because the

largest int value is just over two billion. If you call

Math.multiplyExact(1000000000, 3) instead, an exception is

generated. You can catch that exception or let the program terminate

rather than quietly continue with a wrong result. There are

additional methods, including addExact, subtractExact,

incrementExact, decrementExact, negateExact, absExact, powExact,

all with arguments of type int and long.

https://www.netlib.org/fdlibm

3.5.3. Conversions between Numeric Types

It is often necessary to convert from one numeric type to another. Figure 3.1

shows the legal conversions.

Figure 3.1: Legal conversions between numeric types

The six solid arrows in Figure 3.1 denote conversions without information
loss. The three dotted arrows denote conversions that may lose precision.
For example, a large integer such as 123456789 has more digits than the
float type can represent. When the integer is converted to a float, the

resulting value has the correct magnitude but loses some precision.

intn = 1234567809;

float f=n;// f1s 1.23456792E8

When two values are combined with a binary operator (such as n + f where
n is an integer and f'is a floating-point value), both operands are converted

to a common type before the operation is carried out.

B 1feither of the operands is of type double, the other one will be
converted to a double.

B Otherwise, if either of the operands is of type float, the other one will
be converted to a float.

B Otherwise, if either of the operands is of type long, the other one will
be converted to a long.

B Otherwise, both operands will be converted to an int.

3.5.4. Casts

In the preceding section, you saw that int values are automatically
converted to double values when necessary. On the other hand, there are

obviously times when you want to consider a double as an integer. Numeric

conversions are possible in Java, but of course information may be lost.
Conversions in which loss of information is possible are done by means of
casts. The syntax for casting is to give the target type in parentheses,

followed by the variable name. For example:

double x =9.997;

int nx = (int) x;

Now, the variable nx has the value 9 because casting a floating-point value

to an integer discards the fractional part.

If you want to round a floating-point number to the nearest integer (which

in most cases is a more useful operation), use the Math.round method:

double x =9.997;

int nx = (int) Math.round(x);

Now the variable nx has the value 10. You still need to use the cast (int)
when you call round. The reason is that the return value of the round
method is a long, and a long can only be assigned to an int with an explicit

cast because there is the possibility of information loss.

0 Caution: If you try to cast a number of one type to another that is
out of range for the target type, the result will be a truncated number

that has a different value. For example, (byte) 300 is actually 44.

Preview: Safe casts are a preview feature of Java 25. The syntax is

as follows:

if (n instanceof byte b) . . .

If n fits into a byte without loss, then b is set to (byte) n.

3.5.5. Assignment

There is a convenient shortcut for using binary operators in an assignment.

For example, the compound assignment operator

X +=4;

is equivalent to

x=x+4;

(In general, place the operator to the left of the = sign, such as *= or %=.)

0 Caution: If a compound assignment operator yields a value whose
type is different from that of the left-hand side, then it is coerced to

fit. For example, if x is an int, then the statement
x +=3.5;

1s valid. It sets x to (int)(x + 3.5), that 1s, x + 3, with no warning!

As of Java 20, you get a warning if you compile with the -

Xlint:lossy-conversions command line option, like this:

javac -Xlint:lossy-conversions MyProg.java

Note that in Java, an assignment is an expression. That is, it has a value—
namely, the value that is being assigned. You can use that value—for

example, to assign it to another variable. Consider these statements:

mntx=1;

mty=x+=4;

The value of x += 4 is 5, since that’s the value that is being assigned to x.

Next, that value is assigned to y.

Many programmers find such nested assignments confusing and prefer to

write them more clearly, like this:

ntx=1;
X +=4;
inty =x;
3.5.6. Increment and Decrement Operators

Programmers, of course, know that one of the most common operations
with a numeric variable is to add or subtract 1. Java, following in the
footsteps of C and C++, has both increment and decrement operators: n++
adds 1 to the current value of the variable n, and n-- subtracts 1 from it. For

example, the code

intn=12;

n++;

b

changes n to 13. Since these operators change the value of a variable, they
cannot be applied to numbers themselves. For example, 4++ is not a legal

statement.

There are two forms of these operators; you’ve just seen the postfix form of

the operator that is placed after the operand. There is also a prefix form,

++n. Both change the value of the variable by 1. The difference between the

two appears only when they are used inside expressions. The prefix form

does the addition first; the postfix form evaluates to the old value of the

variable.
intm=7;
intn=7;

inta=2*++m;//nowais 16, mis 8

mtb=2*nt++;/nowbis 14, n1s 8

Many programmers find this behavior confusing. In Java, using ++ inside

expressions is uncommon.

3.5.7. Relational and boolean Operators

Java has the full complement of relational operators. To test for equality,

use a double equal sign, ==. For example, the value of

3::

1s false.

Use a != for inequality. For example, the value of

1S true.

Finally, you have the usual < (less than), > (greater than), <= (less than or

equal), and >= (greater than or equal) operators.

Java, following C++, uses && for the logical “and” operator and || for the

logical “or” operator. As you can easily remember from the != operator, the

exclamation point ! is the logical negation operator. The && and || operators

are evaluated in “short-circuit” fashion: The second operand is not
evaluated if the first operand already determines the value. If you combine

two expressions with the && operator,

expression, & & expression
1 2

and the truth value of the first expression has been determined to be false,
then it is impossible for the result to be true. Thus, the value for the second
expression is not calculated. This behavior can be exploited to avoid errors.

For example, in the expression

x!=0&& 1/x>x+y//no division by 0

the second operand is never evaluated if x equals zero. Thus, 1 / x is not

computed if x is zero, and no divide-by-zero error can occur.

Similarly, the value of expression, || expression, is automatically true if the

first expression is true, without evaluating the second expression.

3.5.8. The Conditional Operator

Java provides the conditional ?: operator that selects a value, depending on

a Boolean expression. The expression

condition ? expression, : expression,

evaluates to the first expression if the condition is true, and to the second

expression otherwise. For example,

x<y?x:y

gives the smaller of x and y.

3.5.9. Switch Expressions

If you need to choose among more than two values, then you can use a

switch expression, which was introduced in Java 14. It looks like this:

String seasonName = switch (seasonCode) {

case 0 -> "Spring";

case 1 -=> "Summer";

case 2 -> "Fall";

case 3 -> "Winter";

default -> "???";

The expression following the switch keyword is called the selector

expression, and its value is the selector. For now, we only consider selectors

and case labels that are numbers, strings, or constants of an enumerated

type. In Chapter 5, you will see how to use switch expressions with other

types for pattern matching.

Note: The switch expression, like every expression, has a value.

Note the -> arrow preceding the value in each branch.

Note: As of Java 14, there are four forms of switch. This section

focuses on the most useful one. See Section 3.8.5 for a thorough

discussion of all forms of switch expressions and statements.

Preview: As a preview feature since Java 23, the switch selector can

have type float, double, long, or boolean. These selector types were

previously invalid.

A case label must be a compile-time constant whose type matches the

selector type. You can provide multiple labels for each case, separated by

commas:

int numLetters = switch (seasonName) {

case "Spring", "Summer", "Winter" -> 6;

case "Fall" -> 4;

default -> -1;

When you use the switch expression with enumerated constants, you need

not supply the name of the enumeration in each label—it is deduced from

the switch value. For example:

enum Size { SMALL, MEDIUM, LARGE, EXTRA LARGE };

Size itemSize = . . .;

String label = switch (itemSize) {

case SMALL ->"S"; // no need to use Size. SMALL

case MEDIUM ->"M";

case LARGE ->"L";

case EXTRA LARGE ->"XL";

In the example, it was legal to omit the default since there was a case for

each possible value.

0 Caution: When the selector is an enum, and you don’t have cases
for all constants, you need a default. A switch expression with a

numeric or String selector must always have a default.

0 Caution: If the selector is null, a NullPointerException is thrown. If

you want to avoid this possibility, add a case null, like this:

String label = switch (itemSize) {

case null -> "??79";

This 1s a feature of Java 21. Note that default does not match null!

3.5.10. Bitwise Operators

For any of the integer types, you have operators that can work directly with
the bits that make up the integers. This means that you can use masking

techniques to get at individual bits in a number. The bitwise operators are

& (Handﬂ) | (!'Or") A (HXOI.") ~ (Hnot")

These operators work on bit patterns. For example, if n is an integer

variable, then

int fourthBitFromRight = (n & 0b1000) / 0b1000;

gives you a 1 if the fourth bit from the right in the binary representation of n
is 1, and 0 otherwise. Using & with the appropriate power of 2 lets you

mask out all but a single bit.

Note: When applied to boolean values, the & and | operators yield a

boolean value. These operators are similar to the && and ||

operators, except that the & and | operators are not evaluated in

“short-circuit” fashion—that is, both operands are evaluated before

the result is computed.

There are also >> and << operators which shift a bit pattern right or left.

These operators are convenient when you need to build up bit patterns to do

bit masking:

int fourthBitFromRight = (n & (1 << 3)) >> 3;

Finally, a >>> operator fills the top bits with zero, unlike >> which extends

the sign bit into the top bits. There is no <<< operator.

0 Caution: The right-hand operand of the shift operators is reduced

modulo 32 (unless the left-hand operand is a long, in which case the

right-hand operand is reduced modulo 64). For example, the value

of 1 << 35 1s the same as 1 << 3 or &.

Note: In C and C++, there is no guarantee as to whether >>

performs an arithmetic shift (extending the sign bit) or a logical shift

(filling in with zeroes). Implementors are free to choose whichever

1s more efficient. That means the >> operator may yield

implementation-dependent results for negative numbers. Java

removes that uncertainty.

Note: The Integer class has a number of methods for bit-level

operations. For example, Integer.bitCount(n) yields the number of

bits that are 1 in the binary representation of n, and

Integer.reverse(n) yields the number obtained by reversing the bits

of n. Not many programmers need bit-level operations, but if you

do, have a look at the Integer class to see whether there is a method

for the task that you need to accomplish.

3.5.11. Parentheses and Operator Hierarchy

Table 3.4 shows the precedence of operators. If no parentheses are used,
operations are performed in the hierarchical order indicated. Operators on
the same level are processed from left to right, except for those that are
right-associative, as indicated in the table. For example, && has a higher

precedence than ||, so the expression

a&&b|c

means

(a && b) || c

Since += associates right to left, the expression

at=b+=c

means

at=(b+=c¢)

That is, the value of b += ¢ (which is the value of b after the addition) is

added to a.

Table 3.4: Operator Precedence

Operators Associativity

[1. () (method call) Left to right

! ~++ -- + (unary) - (unary) () (cast) new Right to left

*/ % Left to right

+ - Left to right

Operators Associativity
<< >> >>> Left to right
< <= > >= instanceof Left to right
— |= Left to right
& Left to right
A Left to right
Left to right
&& Left to right
| Left to right
?: Right to left
= 4= = *= /= Y= &= |= "= <<= >>=>>>= | Right to left

Note: Some programming languages (such as C++ and JavaScript)
have a comma operator that evaluates one expression (only for its
side effect), then another. Java does not have such an operator.
However, you can use a comma-separated list of expressions in the

first and third slot of a for statement (see Section 3.8.4).

3.6. Strings

Conceptually, Java strings are sequences of Unicode characters. As you

have seen in Section 3.3.4, the concept of what exactly a character is has

become complicated. And the encoding of the characters into char values

has also become complicated.

However, most of the time, you don’t care. You get strings from string

literals or from methods, and you operate on them with methods of the

String class. The following sections cover the details.

Note: You have already seen string literals such as "Hello, World!",

which are instances of the String class.

To include “complicated” characters in string literals, be sure that
you use the UTF-8 encoding for source files (which is the default
for most IDEs). Then you can just paste them from web pages, and

produce string literals such as "Ahoy R &2".

In the past, programmers were more concerned that their
collaborators might use a different file encoding, and instead
provided escape sequences for the UTF-16 encoding: "Ahoy

\uD83C\uDFF4\u200D\u2620\uFEOF".

3.6.1. Concatenation

Java, like most programming languages, allows you to use + to join

(concatenate) two strings.

String expletive = "Expletive";

String PG13 = "deleted";

String message = expletive + PG13;

The preceding code sets the variable message to the string

"Expletivedeleted". (Note the lack of a space between the words: The +

operator joins two strings in the order received, exactly as they are given.)

When you concatenate a string with a value that is not a string, the latter is

converted to a string. For example,

int age = 13;

String rating = "PG" + age;

sets rating to the string "PG13".

This feature i1s commonly used in output statements. For example,

[O.printin("The answer 1s " + answer);

is perfectly acceptable and prints what you would expect (and with correct

spacing because of the space after the word is).

0 Caution: Beware of string concatenations with expressions that

have a + operator, such as:

int age = 42;

String output = "Next year, you'll be " +age + 1 +"."; / ERROR

Because the + operators are evaluated from left to right, the result is

"Next year, you'll be 421.". The remedy is to use parentheses:

String output = "Next year, you'll be " + (age + 1) +"."; // OK

0 Caution: Concatenation only works with strings, not char literals.
For example, the expression ":' + 8080 is not a string, but the integer

8138. (The colon character has Unicode value 58.)

If you need to put multiple strings together, separated by a delimiter, use the

join method:

String all = String.join(" /", "S", "M", "L", "XL");

// all is the string "S /M /L / XL"

The repeat method produces a string that repeats a given string a number of

times:

String repeated = "Java".repeat(3); // repeated is "JavaJavaJava"

3.6.2. Static and Instance Methods

At the end of the preceding section, you saw two methods of the String

class, join and repeat. There 1s a crucial difference between these two

methods. When you call

String all = String.join(" /", "S", "M", "L", "XL");

you provide all arguments that the method needs inside the parentheses.

Contrast this with the call

String repeated = "Java'' .repeat(3);

To compute the repetition of a string, two pieces of information are

required: the string itself, and the number of times that it should be

repeated.

Note that the string 1s written before the name of the method, with a dot (.)

separating the two. The repeat method is an example of an instance method.

As you will see in Chapter 4, an instance method has one special argument;

in this case, a string. That value precedes the method name. Supplementary

arguments are provided after the method name in parentheses.

The String.join method, on the other hand, is a static method. It doesn’t

have a special argument. The dot serves a different function, separating the

name of the class in which the method is declared from the method name.

To tell the two apart, locate the dot. Is it preceded by a value (such as the

string "Java")? Then you are looking at the call to an instance method. Or is

it preceded by the name of a class (such as String)? Then it is a static

method.

Many of the methods that you have seen so far, including 10.println,

Integer.parselnt, and Math.sqrt, are static methods. However, as you learn

more about Java, you will mostly use instance methods.

Note: The choice between static and instance methods may feel
arbitrary at times. For example, why do we call
Integer.parselnt("42") and not "42".parselnt()? The designers of the

Java API had to decide. They preferred that the conversion of

strings to integers should the responsibility of the Integer class, and

not the String class.

3.6.3. Indexes and Substrings

Java strings are sequences of char values. As you saw in Section 3.3.4, the
char data type is used for representing Unicode code points in the UTF-16
encoding. Some characters can be represented with a single char value, but

many characters and symbols require more than one char value.

Note: The virtual machine is not required to store strings as
sequences of char values. For efficiency, strings that hold only
single-byte code units store byte sequences, and all others char
sequences. This is an implementation detail that has changed in the

past and may again change in the future.

The length instance method yields the number of char values required for a

given string. For example:

String greeting = "Ahoy [2"

int n = greeting.length(); // is 10

The call s.charAt(n) returns the char value at position n, where n is between
0 and s.length() — 1. (Like C and C++, Java counts positions in a string

starting with 0.) For example:

char first = greeting.charAt(0); // first is 65 or 'A’

char last = greeting.charAt(9); // last 1s 65039

However, these calls are not very useful. The last char value is just a part of

the flag symbol, and you won’t generally care what these values are.

Still, you sometimes need to know where a substring is located in a string.

Use the indexOf method:

—nmn,

String sub ;

int start = greeting.indexOf(sub); // 4

As it happens, the position or index of the space is 4, but the exact value

doesn’t matter. It depends on the characters preceding the substring, and the

number of char values needed to encode each of them. Always treat an

index as an opaque number, not the count of perceived characters preceding

it.

You can compute where the next character starts:

int nextStart = start + sub.length(); // 5

The string " " has length 1, but do not hard-code the length of a string.

Always use the length method instead.

You can extract a substring from a larger string with the substring method

of the String class. For example,

String greeting = "Hello, World!";
int a = greeting.indexOf(",") + 2; // 7
int b = greeting.indexOf("!""); // 12

String s = greeting.substring(a, b);

creates a string consisting of the characters "World".

The second argument of substring is the first position that you do not want
to copy. In our case, we copy everything from the beginning up to, but not

including, the comma.

Note that the string s.substring(a, b) always has length b — a. For example,

the substring "World" has length 12 — 7 =5.

3.6.4. Strings Are Immutable

The String class gives no methods that let you change a character in an

existing string. If you want to turn greeting into "Help!", you cannot

directly change the last positions of greeting into 'p' and '!". If you are a C
programmer, this can make you feel pretty helpless. How are we going to
modify the string? In Java, it is quite easy: Concatenate the substring that

you want to keep with the characters that you want to replace.

String greeting = "Hello";
int n = greeting.indexOf("lo");

greeting = greeting.substring(0, n) + "p!";

This declaration changes the current value of the greeting variable to

"Help!".

Since you cannot change the individual characters in a Java string, the
documentation refers to the objects of the String class as immutable. Just as
the number 3 is always 3, the string "Hello" will always contain the code-
unit sequence for the characters H, e, I, 1, 0. You cannot change these

values. Yet you can, as you just saw, change the contents of the string

variable greeting and make it refer to a different string, just as you can

make a numeric variable currently holding the value 3 hold the value 4.

Isn’t that a lot less efficient? It would seem simpler to change the characters

than to build up a whole new string from scratch. Well, yes and no. Indeed,

it 1s some amount of work to generate a new string that holds the

concatenation of "Hel" and "p!". But immutable strings have one great

advantage: The compiler can arrange that strings are shared.

To understand how this works, think of the various strings as sitting in a

common pool. String variables then point to locations in the pool. If you

copy a string variable, both the original and the copy share the same

characters.

Overall, the designers of Java decided that the efficiency of sharing

outweighs the inefficiency of string creation. Look at your own programs;

most of the time, you probably don’t change strings—you just compare

them. (There is one common exception—assembling strings from
individual characters or from shorter strings that come from the keyboard or

a file. For these situations, Java provides a separate class—see Section

3.6.9.)

3.6.5. Testing Strings for Equality

To test whether two strings are equal, use the equals method. The

expression

s.equals(t)

returns true if the strings s and t are equal, false otherwise. Note that s and t

can be string variables or string literals. For example, the expression

"Hello".equals(greeting)

is perfectly legal. To test whether two strings are identical except for the

upper/lowercase letter distinction, use the equalslignoreCase method.

"Hello".equalsIgnoreCase("hello")

Do not use the == operator to test whether two strings are equal! It only
determines whether or not the strings are stored in the same location. Sure,
if strings are in the same location, they must be equal. But it is entirely

possible to store multiple copies of identical strings in different places.

String greeting = "Hello"; // initialize greeting to a string
greeting == "Hello" // true
greeting.substring(0, greeting.indexOf("1")) == "He" // false

greeting.substring(0, greeting.indexOf("1")).equals("He") // true

If the virtual machine always arranges for equal strings to be shared, then
you could use the == operator for testing equality. But only string literals
are shared, not strings that are computed at runtime. Therefore, never use

== to compare strings. Always use equals instead.

0 Caution: In most programming languages, such as Python,
JavaScript, or C++, the == operator compares strings by their
content. If you come from one of those languages, be particularly

careful about string comparisons.

3.6.6. Empty and Null Strings

nn

The empty string "" is a string of length 0. You can test whether a string is

empty by calling

if (str.length() == 0)

or

if (str.equals(""))

or , for optimum efficiency

if (str.isEmpty())

An empty string 1s a Java object which holds the string length (namely, 0)

and an empty contents. However, a String variable can also hold a special

value, called null, that indicates that no object is currently associated with

the variable. To test whether a string 1s null, use

if (str == null)

Sometimes, you need to test that a string is neither null nor empty. Then use

if (str !=null && str.length() != 0)

You need to test that str is not null first. As you will see in Chapter 4, it is

an error to invoke a method on a null value.

3.6.7. The String API

The String class in Java contains close to 100 methods. The following API

note summarizes the most useful ones.

These API notes, found throughout the book, will help you understand the

Java Application Programming Interface (API). Each API note starts with

the name of a class, such as java.lang.String. (The significance of the so-

called package name java.lang is explained in Chapter 4.) The class name is

followed by the names, explanations, and parameter descriptions of one or

more methods. A parameter variable of a method is the variable that

receives a method argument. For example, as you will see in the first API

note below, the charAt method has a parameter called index of type int. If

you call the method, you supply an argument of that type, such as

str.charAt(0).

The API notes do not list all methods of a particular class but present the

most commonly used ones in a concise form. For a full listing, consult the

online documentation (see Section 3.6.8).

The number following the class name is the JDK version number in which
it was introduced. If a method has been added later, it has a separate version

number.

java.lang.String 1.0

B char charAt(int index)
returns the code unit at the specified location. You probably don’t
want to call this method unless you are interested in low-level code
units.

B int length()
returns the number of code units of the string.

B poolean equals(Object other)
returns true if the string equals other.

B pboolean equalsIgnoreCase(String other)

returns true if the string equals other, except for upper/lowercase

distinction.

int compareTo(String other)

returns a negative value if the string comes before other in dictionary

order, a positive value if the string comes after other in dictionary

order, or 0 if the strings are equal.

boolean isEmpty() 6

boolean isBlank() 11

return true if the string is empty or consists of whitespace.

boolean startsWith(String prefix)

boolean endsWith(String suffix)

return true if the string starts with prefix or ends with suffix.

int indexOf(String str)

int indexOf(String str, int fromIndex)

int indexOf(String str, int fromIndex, int tolndex) 21

return the start of the first substring equal to the string str, starting at

index 0 or at fromIndex, and ending at the end of the string or at

tolndex. Return -1 if str does not occur in this string or the specified

substring.

int lastindexOf(String str)

int lastIndexOf{(String str, int fromIndex)

return the start of the last substring equal to the string str, starting at

the end of the string or at fromIndex, or -1 if str does not occur.

String replace(CharSequence oldString, CharSequence newString)

returns a new string that is obtained by replacing all substrings

matching oldString in the string with the string newString. You can

supply String or StringBuilder arguments for the CharSequence

parameters.

String substring(int beginlndex)

String substring(int beginlndex, int endIndex)

return a new string consisting of all code units from beginIndex until

the end of the string or until endIndex— 1.

String toLowerCase()

String toUpperCase()

return a new string containing all characters in the original string, with

uppercase characters converted to lowercase, or lowercase characters

converted to uppercase.

String strip() 11

String stripLeading() 11

String stripTrailing() 11

return a new string by eliminating leading and trailing, or just leading

or trailing whitespace in the original string. Use these methods instead

of the archaic trim method that eliminates characters < U+0020.

String join(CharSequence delimiter, CharSequence... elements) 8

returns a new string joining all elements with the given delimiter.

B String repeat(int count) 11

returns a string that repeats this string count times.

Note: In the API notes, there are a few parameters of type
CharSequence. This is an inferface type to which all strings belong.
You will learn about interface types in Chapter 6. For now, you just
need to know that you can pass arguments of type String whenever

you see a CharSequence parameter.

3.6.8. Reading the Online API Documentation

As you just saw, the String class has lots of methods. Furthermore, there are
thousands of classes in the standard libraries, with many more methods. It is
plainly impossible to remember all useful classes and methods. Therefore, it
is essential that you become familiar with the online API documentation

that lets you look up all classes and methods in the standard library. You can

download the API documentation from Oracle and save it locally, or you

can point your browser to

https://docs.oracle.com/en/java/javase/25/docs/api.

The API documentation has a search box (see Figure 3.2). Older versions

have frames with lists of packages and classes. You can still get those lists

by clicking on the Frames menu item. For example, to get more information

on the methods of the String class, type “String” into the search box and

select the type java.lang.String, or locate the link in the frame with class

names and click it. You get the class description, as shown in Figure 3.3.

https://docs.oracle.com/en/java/javase/25/docs/api

Overview (java SE 25 & |DK 25) — Mozilla Firefox

Q B docs.oracle.com/enfjavaljavase/25/docsfapil

(SR TREE PREVIEW NEW DEPRECATED INDEX SEARCH HELP

Java® Platform, Standard Edition & Java Development Kit
Version 25 API Specification

This document is divided into two sections:

Java SE

The Java Platform, Standard Edition (Java SE) APIs define the core Java platform for general-purpose computing. These
APIs are in modules whose names start with java.

DK

The Java Development Kit (JDK) APIs are specific to the JDK and will not necessarily be available in all implementations
of the Java SE Platform. These APIs are in modules whose names start with jdk.

] [3

Module Description

java.base Defines the foundational APIs of the Java SE Platform.

java.compiler Defines the Language Model, Annotation Processing, and Java Compiler APIs.
java.datatransfer Defines the API for transferring data between and within applications.

java.desktop Defines the AWT and Swing user interface toolkits, plus APIs for accessibility, audio, imaging,

printing, and JavaBeans.

javaiinstrument Defines services that allow agents o instrument programs running on the JVM.

Figure 3.2: The Java API documentation

#) String (Java SE 25 & DK 25) — Mozilla Firefox

€30 O B docs.oracle.com/en/javalavase25/docsfapijavabaseljavallang/String html B &

OVERVIEW 1 USE TREE PREVIEW NEW DEPRECATED INDEX SEARCH HELP

java.base) java.lang » String

Contents |4 Filier contents

Description 4
Field Summary I
Constructor Summary
Method Summary
Field Details
CASE INSENSITIVE ORD...
Constructor Details
String()
String(String)
String(char(])
String(char(], int, int)
String(int{], int, int)
String(byte[], int, int, int)

String(byte(], int)

Class String

java.lang.Object
java.lang.String

All Implemented Interfaces:

Serializable, CharSequence, Comparable<Strings, Constable, ConstantDesc

public final class String
extends Object
implements Serializable, Comparable<Strings, CharSequence, Constable, ConstantDesc

The String class represents character strings. All string literals in Java programs, such as "abc", are
implemented as instances of this class.

Strings are constant; their values cannot be changed after they are created. String buffers support
mutable strings. Because String objects are immutable they can be shared. For example:

String str = "abc";

is equivalent to:

char data[] = {'a', 'b', 'c'};
String str = new String(data);

Here are some more examples of how strings can be used:

Figure 3.3: Class description for the String class

When you scroll down, you reach a summary of all methods, sorted in

alphabetical order (see Figure 3.4). Click on any method name for a
detailed description of that method (see Figure 3.5). For example, if you
click on the compareTolgnoreCase link, you’ll get the description of the

compareTolgnoreCase method.

¥ tring (Java SE 25 & |0K 25) = Mozilla Firefo

€5 C QO 8 docs oracle.com/enfavaljavase/25/docsfapiljava baseffavallang/String bt B &)

OVERVIEW E TREE PREVIEW NEW DEPRECATED INDEX SEARCH HELP Java SE 25 & DK 25

Java.base » Java.ang » String Q
Method Summary

Description A Static Methods || Instance Methods J Concrete Methods J Deprecated Methods
Field Summary Modifier and Type Method Description
Constructor Summary char charAt(int index) Returns the char value at the specified index.
Method Summary IntStrean chars() Returns a stream of int zero-extending the
Field Detals char valugs from this sequence.

CASE INSENSITIVE ORDER int codePointAt(int index) Returns the character (Unicode code point) at

. the specified index.
Constructor Details
int todePointBefore(int index) Returns the character (Unicode code point)

String() i
before the specified index.

String(String)

. int todePointCount(int beginIndex, Returns the number of Unicode code points in
Sring(char] int endInde) the specified text range of this String.
String(charf],int, nt) ; ‘

g, i IntStrean codePoints() Returns a stream of code point values from
Stringint], int, int) this sequence.
String(byte(], int, nt, int) int conpareTo(String anotherString) Compares two strings lexicographically.
String(byte[], int) int compareTolgnoreCase(String str) Compares two strings lexicographically,
String(bytel], int, int, String) iqnoring case differences.
String(byte[],int, int, Charset) String concat(String str) Concatenates the specified string to the end
String(byte[], String) RN S
Strinalbvtel] Charcet) v boolean contains(CharSequence §) Returns true if and only if this string contains

(the specified sequence of char values,

Figure 3.4: Method summary of the String class

d) String (Java SE 25 & |DK 25) — Mozilla Firefox

] O B docs oracle.comen/javaljavase/25/docsfapijava baseljavallang/Strng htmlcompareTolgnoreCaseljavaler @ f¢ &

OVERVIEW E TREE PREVIEW NEW DEPRECATED INDEX SEARCH HELP Java SE 25 & |DK 25

java.base » javalang » String

Contents |4 Fter contents |

QetBytes(int, int, byte(], int)
getBytes(String)
QetBytes(Charset)

etBytes()

equals(Object)
contentEquals(StringBuffer)
contentEquals(CharSequence)
equalsignoreCase(String)
compareTo(String)
compareTolgnoreCase(St...

regionMatchesint, String, int,
int)

regionMatches(boolean, int,
String, int, int)

A

compareTolgnoreCase

public int compareTolgnoreCase(String str)

Compares two sirings lexicographically, ignoring case differences. This method refurns an integer whose sign is
that of calling compareTo with case folded versions of the strings where case differences have been eliminated by
calling Character. toLowerCase Character. toUpperCase(int)) on each Unicode code point.

Note that this method does not take locale into account, and will result in an unsatisfactory ordering for certain
locales. The ColLator class provides locale-sensitive comparison.
Parameters:
str-the String to be compared.
Returns:

a negative integer, zero, or positive integer as the specified String is greater than, equal to, or less than this
String, ignoring case considerations,

Since:
11

Sea Also:

Collator, codePoints()

regionMatches

Figure 3.5: Detailed description of a String method

ﬂ Tip: If you have not already done so, download the JDK

documentation, as described in Chapter 2. Bookmark the index.html

page of the documentation in your browser right now!

You can also add a new search engine to your browser with the

query string

https://docs.oracle.com/en/java/javase/25/docs/api/search.html?

q=%s

3.6.9. Building Strings

Occasionally, you need to build up strings from shorter strings, such as
keystrokes or words from a file. It would be inefficient to use string
concatenation for this purpose. Every time you concatenate strings, a new
String object is constructed. This is time consuming and wastes memory.

Using the StringBuilder class avoids this problem.

Follow these steps if you need to build a string from many small pieces.

First, construct an empty string builder:

StringBuilder builder = new StringBuilder();

You can also provide initial content:

StringBuilder builder = new StringBuilder("INVOICE\n");

Each time you need to add another part, call the append method.

builder.append(str); // appends a string

builder.appendCodePoint(cp); // appends a single code point

The latter method is occasionally useful when you need to compute a code

point. Here 1s an example. Flag emojis are made up of two code points,

each in the range between 127462 (regional indicator symbol letter A) to

127487 (regional indicator symbol letter Z). Now suppose you have a

country string such as "IT". Then you can compute the code points as

follows:

final int REGIONAL INDICATOR SYMBOL LETTER A =127462;
String country =. . ;

builder.appendCodePoint(country.charAt(0) - 'A' +

REGIONAL INDICATOR SYMBOL LETTER A);
builder.appendCodePoint(country.charAt(1) - 'A"' +

REGIONAL INDICATOR SYMBOL LETTER A);

When you are done building the string, call the toString method. You will

get a String object with the character sequence contained in the builder.

String completedString = builder.toString();

Cleverly, the StringBuilder methods return the builder object, so that you

can chain multiple method calls:

String completedString = new StringBuilder()
.append(str)
.appendCodePoint(cp)

.toString();

The String class doesn’t have a method to reverse the Unicode characters of

a string, but StringBuilder does. To reverse a string, use this code snippet:

String reversed = new StringBuilder(original).reverse().toString();

0 Caution: Reversing works correctly for characters that are encoded
with two char values, but it fails when a symbol is composed of
multiple code points. For example, reversing a string containing the

pirate flag described in Section 3.3.4 does not preserve the flag.

Note: The legacy StringBuffer class is less efficient than
StringBuilder, but it allows multiple threads to add or remove
characters. If all string editing happens in a single thread (which is
usually the case), you should use StringBuilder. The APIs of both

classes are identical.

The following API notes contain the most important methods for the

StringBuilder class.

java.lang.StringBuilder 5.0

B StringBuilder()

= StringBuilder(CharSequence seq)
constructs an empty string builder, or one with the given initial
content.

B int length()

returns the number of code units of the builder or buffer.

StringBuilder append(String str)

appends a string and returns the string builder.

StringBuilder appendCodePoint(int cp)

appends a code point, converting it into one or two code units, and

returns this.

StringBuilder insert(int offset, String str)

inserts a string at position offset and returns the string builder.

StringBuilder delete(int startIndex, int endIndex)

deletes the code units with offsets startindex to endIndex— 1 and

returns the string builder.

StringBuilder repeat(CharSequence cs, int count) 21

Appends count copies of cs and returns the string builder.

StringBuilder reverse()

Reverses the code points in this string builder and returns the builder.

B String toString()

returns a string with the same data as the builder or buffer contents.

3.6.10. Text Blocks

The text block feature, added in Java 15, makes it easy to provide string
literals that span multiple lines. A text block starts with """, followed by a

line feed. The block ends with another """:

String greeting = """
Hello

World

non,
5

A text block is easier to read and write than the equivalent string literal:

"Hello\nWorld\n"

This string contains two \n: one after Hello and one after World. The

nmn

newline after the opening """ is not included in the string literal.

nmnn

If you don’t want a newline after the last line, put the closing

immediately after the last character:

nmn

String prompt =
Hello, my name is Hal.

non,

Please enter your name:""";

Text blocks are particularly suited for including code in some other

language, such as SQL or HTML. You can just paste it between the triple

quotes:

="

String htm

<div class="Warning">

Beware of those who say "Hello" to the world

</div>

non,
5

All escape sequences from regular strings work the same way in text

blocks.

Note that you don’t have to use escape sequences with the quotation marks
around Hello. There are just two situations where you need to use the \"

escape sequence in a text block:

B |f the text block ends in a quotation mark

B If the text block contains a sequence of three or more quotation marks

Unfortunately, you still need the escape sequence \\ to denote a backslash in

a text block.

There is one escape sequence that only works in text blocks. A \ directly

before the end of a line joins this line and the next. For example,

nan

Hello, my name is Hal. \

non,

Please enter your name:""";

1s the same as

"Hello, my name is Hal. Please enter your name:"

Line endings are normalized by removing trailing whitespace and changing
any Windows line endings (\r\n) to simple newlines (\n). If you need to
preserve trailing spaces, turn the last one into a \s escape. In fact, that’s
what you probably want for prompt strings. The following string ends in a

space:

nan

Hello, my name is Hal. \

nmn

Please enter your name:\s""";

The story is more complex for leading whitespace. Consider a typical

variable declaration that is indented from the left margin. You can indent

the text block as well:

String html ="""

<div class="Warning">

Beware of those who say "Hello" to the world

</div>

nmn,
9

The indentation that is common to all lines in the text block is subtracted.

The actual string is

"<div class=\"Warning\">\n Beware of those who say \"Hello\" to the

world\n</div>\n"

Note that there are no indentations in the first and third lines.

You can always avoid this indentation stripping by having no whitespace in

the last line, before the closing """. But many programmers seem to find

that it looks neater when text blocks are indented. Your IDE may cheerfully

offer to indent all text blocks, using tabs or spaces.

Java wisely does not prescribe the width of a tab. The whitespace prefix has

to match exactly for all lines in the text block.

Entirely blank lines are not considered when stripping common indentation.

nmn

However, the whitespace before the closing """ is significant. Be sure to

indent to the end of the whitespace that you want to have stripped.

0 Caution: Be careful about mixed tabs and spaces in indentations.

An overlooked space can easily yield a wrongly indented string.

ﬂ Tip: If a text block contains code that isn’t Java, you may actually
prefer to place it at the left margin. It stands out from the Java code,

and you have more room for long lines.

3.7. Input and Output

To make our example programs more interesting, we want to accept input
and properly format the program output. Of course, modern programs use a
GUI for collecting user input. However, programming such an interface
requires more tools and techniques than we have at our disposal at this time.
Our first order of business is to become more familiar with the Java

programming language, so we use the humble console for input and output.

3.7.1. Reading Input

You saw that it is easy to print output to the console window just by calling

[O.println. Reading from the console is just as simple.

The readln method reads one line of input and returns it as a string value.

You can optionally pass a prompt string as an argument.

String name = [O.readIn("What is your name? ");

To read an integer, use the Integer.parselnt method to convert the entered

string into an integer.

int age = Integer.parselnt(I0.readIln("How old are you? "));

Similarly, the parseDouble method converts a string to a floating-point

number.

double rate = Double.parseDouble(10.readIn("Interest rate: "));

The program in Listing 3.2 asks for the user’s name and age and then prints

a message like

Hello, Cay. Next year, you'll be 65.

Listing 3.2 InputDemo.java

/**

* This program demonstrates console input.

*/

void main() {

/1 get first input

String name = 10.readIn("What is your name? ");

// get second input

int age = Integer.parselnt(IO.readIn("How old are you? "));

// display output on console

10.println("Hello, " + name + ". Next year, you'll be " + (age + 1) + ".");

0 Caution: If you run this program from a Windows terminal, special
characters in your name may not show up correctly. By default,

Windows terminals use an archaic character encoding. To fix this,

switch the terminal to the UTF-8 encoding, by issuing the following

command prior to running the program:

chcp 65001

Then, if you use Java 18 or above, all will be well. With older

versions of Java, run the program as:

java -Dfile.encoding=utf-8 InputDemo

If you use a development environment, you should not have to

worry about this issue.

Note: Prior to Java 25, reading console input was not so easy. To

use an older version of Java, make these adaptations:

First first construct a Scanner object that is attached to System.in:

Scanner in = new Scanner(System.in);

(Objects, constructors, and the new operator are discussed in detail

in Chapter 4.)

The nextLine method reads a line of input.

System.out.print("What is your name? ");

String name = in.nextLine();

To read an integer, use the nextInt method.

System.out.print("How old are you? ");

int age = in.nextInt();

Similarly, the nextDouble method reads the next floating-point

number.

Finally, include the line

import java.util.Scanner;

at the beginning of the program, to tell the compiler that the Scanner

class is defined in the java.util package. Packages and import

directives are covered in more detail in Chapter 4.

Caution: The parselnt and parseDouble methods are not intended

for parsing user input, and 1O.println is not intended for presenting

numbers to a general audience. They use the number format for

decimal Java literals. That’s ok for sample programs in a

programming book. However, most users expect to see the decimal

digits and separators to which they are accustomed.

To parse human input, use the nextInt and nextDouble methods of

the Scanner class. For output, use the formatted method that you

will see in Section 3.7.2. These methods use the number format of

the host system.

Note: The 10.readLine method is not suitable for reading a
password from a console since the input is plainly visible to anyone.
Use the readPassword method of the Console class to read a

password while hiding the user input:

String username = System.console().readLine("User name: ");

char[] passwd = System.console().readPassword("Password: ");

Arrays.fill(passwd, '*');

For security reasons, the password is returned in an array of
characters rather than a string. After you are done processing the
password, you should immediately overwrite the array elements

with a filler value.

java.lang.1O 25

B Hrintln(Object obj)
Converts the object to a string and prints it on the console, followed
by a line separator.
B Hrint(Object ob)
Converts the object to a string and prints it on the console without a
line separator.
printin()
Prints a line separator.
String readln(String prompt)
Prints a prompt on the console and returns one line of user input.
String readln()

Returns one line of user input without printing a prompt.

java.util.Scanner 5.0

Scanner(InputStream in)

constructs a Scanner object from the given input stream.

String nextLine()

reads the next line of input.

String next()

reads the next word of input (delimited by whitespace).

int nextInt()

double nextDouble()

read and convert the next character sequence that represents an integer

or floating-point number.

boolean hasNext()

tests whether there 1s another word in the input.

boolean hasNextInt()

boolean hasNextDouble()

test whether the next character sequence represents an integer or

floating-point number.

java.lang.System 1.0

B static Console console() 6
returns a Console object for interacting with the user through a
console window if such interaction is possible, null otherwise. A
Console object is available for any program that is launched in a

console window. Otherwise, the availability is system-dependent.

java.io.Console 6

B char[] readPassword(String prompt, Object... args)

B String readLine(String prompt, Object... args)

display the prompt and read the user input until the end of the input
line. The optional args parameters are used to supply formatting

arguments, as described in the next section.

3.7.2. Formatting Output

You can print a number x to the console with the statement 10.print(x). That
command will print x with the maximum number of nonzero digits for that

type. For example,

double x = 10000.0 / 3.0;

[0.print(x);

prints

3333.3333333333335

That is a problem if you want to display, for example, dollars and cents.

The remedy is the formatted method, which follows the venerable

conventions from the C library. For example, the call

[O.print("%8.2f".formatted(x));

prints x with a field width of 8 characters and a precision of 2 characters.

That is, the printout contains a leading space and the seven characters

3333.33

You can supply multiple arguments to formatted. For example:

[0.print("Hello, %s. Next year, you'll be %d.".formatted(name, age + 1));

Each of the format specifiers that start with a % character is replaced with

the corresponding argument. The conversion character that ends a format

specifier indicates the type of the value to be formatted: f is a floating-point

number, s a string, and d a decimal integer. Table 3.5 shows all conversion

characters.

The uppercase variants produce uppercase letters. For example, "%8.2E"

formats 3333.33 as 3.33E+03, with an uppercase E.

Table 3.5: Conversions for formatted

Conversion

Type Example
Character
d Decimal integer 159

Hexadecimal integer. For more
control over hexadecimal
x or X of

formatting, use the HexFormat

class.

0 Octal integer 237

forF Fixed-point floating-point 15.9

Conversion

Type Example
Character
eorE Exponential floating-point 1.59e+01
General floating-point (the shorter
gor G _
of e and f)
aor A Hexadecimal floating-point Ox1.fccdp3
sorS String Hello
corC Character H
borB boolean true
hor H Hash code 42628b2

Conversion
Type Example
Character
Legacy date and time formatting.
tx or Tx Use the java.time classes instead —
—see Chapter 6 of Volume II.
% The percent symbol %
The platform-dependent line
n R
separator

Note: You can use the s conversion to format arbitrary objects. If an
arbitrary object implements the Formattable interface, the object’s

formatTo method is invoked. Otherwise, the toString method is

invoked to turn the object into a string. The toString method is

discussed in Chapter 5 and interfaces in Chapter 6.

In addition, you can specify flags that control the appearance of the

formatted output. Table 3.6 shows all flags. For example, the comma flag

adds group separators. That is,

[0.printIn("%,.2f".formatted(10000.0 / 3.0));

prints

3,333.33

You can use multiple flags, for example "%,(.2f" to use group separators

and enclose negative numbers in parentheses.

Table 3.6: Flags for printf

Flag Purpose Example

Flag Purpose Example
Prints sign for positive and negative

+ +3333.33
numbers.

space Adds a space before positive numbers. | | 3333.33]

0 Adds leading zeroes. 003333.33

- Left-justifies field. 3333.33 |
Encloses negative numbers in

((3333.33)
parentheses.

, Adds group separators. 3,333.33

(for f
Always includes a decimal point. 3,333.

format)

Flag Purpose Example
(for x
or o Adds 0x or 0 prefix. Oxcafe
format)
Specifies the index of the argument to
be formatted. For example, %1$d %1$x
$ 159 9F
prints the first argument in decimal and
hexadecimal.
Formats the same value as the previous
specification. For example, %d %<x
< 159 9F
prints the same number in decimal and
hexadecimal.

Figure 3.6 shows a syntax diagram for format specifiers.

Figure 3.6: Format specifier syntax

Note: Formatting is locale-specific. For example, in Germany, the
group separator is a period, not a comma. On a computer with a

German locale, the call

double x = 10000.0 / 3.0;

[0.print("%8.2f".formatted(x));
yields the output
3333,33

This locale-specific behavior is normally what you want when you
communicate with users. However, if you produce a file that is later

consumed by a computer program, you may need to choose a fixed

locale for the output. Specify the locale as the first argument to the

static format method of the String class:

[0.print(String.format(Locale.US, "%38.2f", x));

3.8. Control Flow

Java, like any programming language, supports both conditional statements
and loops to determine control flow. I will start with the conditional
statements, then move on to loops, to end with a thorough discussion of the

four forms of switch.

Note: The Java control flow constructs are similar to those in C,
C++, or JavaScript. There is no goto, but there is a “labeled” version
of break that you can use to break out of a nested loop (where, in C,

you perhaps would have used a goto). Finally, there is a variant of

the for loop that is similar to the range-based for loop in C++ and

the for of loop in JavaScript.

3.8.1. Block Scope

Before learning about control structures, you need to know more about

blocks.

A block, or compound statement, consists of a number of Java statements,
surrounded by a pair of braces. Blocks define the scope of your variables. A
block can be nested inside another block. Here 1s a block that is nested

inside the block of the main method:

void main() {

int n;

int k;

} // k 1s only defined up to here

You may not declare identically named local variables in two nested blocks.

For example, the following is an error and will not compile:

void main() {

int n;

int k;

int n; / ERROR--can't redeclare n in inner block

Note: In many programming languages, it is possible to redefine a
variable inside a nested block. The inner definition then shadows the
outer one. This can be a source of programming errors; hence, Java

does not allow it.

3.8.2. Conditional Statements

The conditional statement in Java has the form

if (condition) statement

The condition must be surrounded by parentheses.

In Java, as in most programming languages, you will often want to execute

multiple statements when a single condition is true. In this case, use a block

statement that takes the form

Statement

Statement ,

For example:

if (yourSales >= target) {

performance = "Satisfactory";

bonus = 100;

In this code all the statements surrounded by the braces will be executed

when yourSales is greater than or equal to target (see Figure 3.7).

Figure 3.7: Flowchart for the if statement

Note: A block (sometimes called a compound statement) enables
you to have more than one (simple) statement in any Java
programming structure that otherwise allows for a single (simple)

statement.

The more general conditional in Java looks like this (see Figure 3.8):

if (condition) statement,; else statement,

Figure 3.8: Flowchart for the if/else statement

For example:

if (yourSales >= target) {

performance = "Satisfactory";

bonus = 100 + 0.01 * (yourSales - target);

else {

performance = "Unsatisfactory";

bonus = 0;

The else part is always optional. An else groups with the closest if. Thus, in

the statement

if (x <=0) if (x == 0) sign = 0; else sign = -1;

the else belongs to the second if. Of course, it is a good idea to use braces to

clarify this code:

if (x <=0) { if (x ==0) sign = 0; else sign =-1; }

Repeated if . . . else if . . . alternatives are common (see Figure 3.9). For

example:

if (yourSales >= 2 * target) {
performance = "Excellent";

bonus = 1000;

else if (yourSales >= 1.5 * target) {
performance = "Fine",;

bonus = 500;

else if (yourSales >= target) {
performance = "Satisfactory";

bonus = 100;

else {

[O.println("You're fired");

Figure 3.9: Flowchart for the if/else if (multiple branches)

3.8.3. Loops

The while loop executes a statement (which may be a block statement)

while a condition is true. The general form is

while (condition) statement

The while loop will never execute if the condition is false at the outset (see

Figure 3.10).

Figure 3.10: Flowchart for the while statement

The program in Listing 3.3 determines how long it will take to save a

specific amount of money for your well-earned retirement, assuming you

deposit the same amount of money per year and the money earns a specified

Interest rate.

In the example, we are incrementing a counter and updating the amount

currently accumulated in the body of the loop until the total exceeds the

targeted amount.

while (balance < goal) {
balance += payment;
double interest = balance * interestRate / 100;
balance += interest;

years++;

[O.println(years + " years.");

(Don’t rely on this program to plan for your retirement. It lacks a few

niceties such as inflation and your life expectancy.)

A while loop tests at the top. Therefore, the code in the block might never
be executed. If you want to make sure a block is executed at least once, you
need to move the test to the bottom, using the do/while loop. Its syntax

looks like this:

do statement while (condition);

This loop executes the statement (which is typically a block) and only then
tests the condition. If it’s true, it repeats the statement and retests the
condition, and so on. The code in Listing 3.4 computes the new balance in

your retirement account and then asks if you are ready to retire:

do {
balance += payment;
double interest = balance * interestRate / 100;
balance += interest;
yearst+;

// print current balance

// ask if ready to retire and get input

+ while (input.equals("N"));

As long as the user answers "N", the loop is repeated (see Figure 3.11). This
program is a good example of a loop that needs to be entered at least once,
because the user needs to see the balance before deciding whether it is

sufficient for retirement.

Figure 3.11: Flowchart for the do/while statement

Listing 3.3 Retirement.java

] /**

\S]

* This program demonstrates a <code>while</code> loop.

*/

W

void main() {

()]

// read inputs

6 double goal = Double.parseDouble(10.readln("How much money do you need to retire?

")

7 double payment

8 = Double.parseDouble(IO.readIn("How much money will you contribute every year?

");

9 double interestRate = Double.parseDouble(IO.readIn("Interest rate in %: "));

11 double balance = 0;

12 int years = 0;

14 // update account balance while goal isn't reached

15 while (balance < goal) {

16 // add this year's payment and interest

17

18 balance += payment;

19 double interest = balance * interestRate / 100;
20 balance += interest;

21 years++;

22 }

23

24 [0.println("You can retire in " + years + " years.");

[\
(V)]
-

Listing 3.4 Retirement2.java

1 /**

\O]

* This program demonstrates a <code>do/while</code> loop.

3 ¥

4 void main() {

5 double payment = Double.parseDouble(

6 [0.readIn("How much money will you contribute every year? "));

7 double interestRate = Double.parseDouble(IO.readIn("Interest rate in %: "));

9 double balance = 0;

10 int year = 0;

12 String input;

14 // update account balance while user isn't ready to retire
15 do {

16 // add this year's payment and interest

17 balance += payment;

18 double interest = balance * interestRate / 100;

19 balance += interest;

20

21 year++;

22

23 // print current balance

24 10O.println("After year %d, your balance is %,.2f".formatted(year,
25 balance));

26

27 // ask if ready to retire and get input

28 input = IO.readIn("Ready to retire? (Y/N) ");

29 }

30 while (input.equals("N"));

3.8.4. Determinate Loops

The for loop is a general construct to support iteration controlled by a
counter or similar variable that is updated after every iteration. As Figure
3.12 shows, the following loop prints the numbers from 1 to 10 on the

Screen:

for (int1=1;1<=10; 1++)

[O.println(1);

The first slot of the for statement usually holds the counter initialization.
The second slot gives the condition that will be tested before each new pass

through the loop, and the third slot specifies how to update the counter.

Figure 3.12: Flowchart for the for statement

Although Java, like C++, allows almost any expression in the various slots
of a for loop, it 1s an unwritten rule of good taste that the three slots should
only initialize, test, and update the same counter variable. One can write

very obscure loops by disregarding this rule.

Even within the bounds of good taste, much is possible. For example, you

can have loops that count down:

for (int1=10;1> 0; i--)

[0.printin("Counting down . . . " +1);

[O.printIn("Blastoff!");

0 Caution: Be careful with testing for equality of floating-point

numbers in loops. A for loop like this one
for (double x=0; x 1=10; x +=0.1) . ..

might never end. Because of roundoff errors, the final value might
not be reached exactly. In this example, x jumps from

9.99999999999998 to 10.09999999999998 because there is no exact

binary representation for 0.1.

When you declare a variable in the first slot of the for statement, the scope

of that variable extends until the end of the body of the for loop.

for (inti=1;1<=10; 1++) {

//'1 no longer defined here

In particular, if you define a variable inside a for statement, you cannot use
its value outside the loop. Therefore, if you wish to use the final value of a
loop counter outside the for loop, be sure to declare it outside the loop

header.

nt 1;

for(1=1;1<=10; 1++) {

// 1 1s still defined here

On the other hand, you can define variables with the same name in separate

for loops:

for (inti=1;1<=10; 1++) {

for (int1=11; 1 <= 20; i++) { // OK to define another variable named 1

A for loop is merely a convenient shortcut for a while loop. For example,

for 1=10;1> 0;1--)

[O.println("Counting down . . . " + 1);

can be rewritten as follows:

1=10;

while (i > 0) {

[O.println("Counting down . . . " +1);

i--;

The first slot of a for loop can declare multiple variables, provided they are

of the same type. And the third slot can contain multiple comma-separated

expressions:

for(inti=1,7=10;1<=10;i++,j--) { ...}

While technically legal, this stretches the intuitive meaning of the for loop,

and you should consider a while loop instead.

Listing 3.5 shows a typical example of a for loop.

The program computes the odds of winning a lottery. For example, if you
must pick six numbers from the numbers 1 to 50 to win, then there are (50 x
49 x 48 x 47 x 46 x 45)/(1 x 2 x 3 x 4 x 5 X 6) possible outcomes, so your

chance 1s 1 in 15,890,700. Good luck!

In general, if you pick £ numbers out of n, there are

nx(n—-1)xn—-2)x---x(n—Fk+1)
1x2x3x4x.---%Xk

possible outcomes. The following for loop computes this value:

int lotteryOdds = 1;

for (inti=1; 1 <=k; i++)

lotteryOdds = lotteryOdds * (n-1+1)/1;

Note: Section 3.10.3 describes the “generalized for loop™ (also

called “for each” loop) that makes it convenient to visit all elements

of an array or collection.

Listing 3.5 LotteryOdds.java

1 /**

(\9]

* This program demonstrates a <code>for</code> loop.

*/

(OS]

4 void main() {

()]

int k = Integer.parselnt(10.readln("How many numbers do you need to draw? "));

6 int n = Integer.parselnt(I0.readln("What is the highest number you can draw? "));

8 // Binomial coefficient n*(n-1)*(n-2)*...*(n-k+1)/(1*2%3*.. *k)
9

10 int lotteryOdds = 1;

11 for (inti=1;1<=k; i++)

12 lotteryOdds = lotteryOdds * (n-i+ 1)/ i;

14 1O.println("Your odds are 1 in " + lotteryOdds + ". Good luck!");

3.8.5. Multiple Selections with switch

The if/else construct can be cumbersome when you have to deal with
multiple alternatives for the same expression. The switch statement makes

this easier, particularly with the form that has been introduced in Java 14.

For example, if you set up a menu system with four alternatives like that in

Figure 3.13, you could use code that looks like this:

int choice = Integer.parselnt(10.readIn("Select an option (1, 2, 3,4) "));
switch (choice) {

case 1 ->

case 2 ->

case 3 ->

case 4 ->

default ->

[O.printIn("Bad input");

Figure 3.13: Flowchart for the switch statement

Note the similarity to the switch expressions that you saw in Section 3.5.9.

Unlike a switch expression, a switch statement has no value. Each case

carries out an action.

The “classic” form of the switch statement, which dates all the way back to

the C language, has been supported since Java 1.0. It has the form:

int choice = . . .;

switch (choice) {

case 1:

break;

case 2:

break;

case 3:

break;

case 4:

break;

default:

[O.printIn("Bad input");

Execution starts at the case label that matches the value on which the

selection is performed and continues until the next break or the end of the

switch. If none of the case labels match, then the default clause 1s executed,

if it 1s present.

0 Caution: It is possible for multiple alternatives to be triggered. If
you forget to add a break at the end of an alternative, execution falls
through to the next alternative! This behavior is plainly dangerous

and a common cause for errors.

To detect such problems, compile your code with the -

Xlint:fallthrough option. Then the compiler will issue a warning

whenever an alternative does not end with a break statement.

If you actually want to use the fallthrough behavior, tag the

surrounding method with the annotation

@SuppressWarnings("fallthrough"). Then no warnings will be

generated for that method. (An annotation is a mechanism for

supplying information to the compiler or a tool that processes Java

source or class files. Volume II has an in-depth coverage of

annotations.)

For symmetry, Java 14 also introduced a switch expression with

fallthrough, for a total of four forms of switch. Table 3.7 shows them all.

Table 3.7: The four forms of switch

Expression Statement
No int numLetters = switch switch
Fallthrough | (seasonName) { (seasonName) {

case "Spring" -> {

[O.printIn("spring

time!");

yield 6;

case "Summer",

"Winter" -> 6;

case "Fall" -> 4;

default > -1;

case "Spring" ->

[O.println("spring

time!");

numLetters =

case "Summer",

"Winter" ->

numLetters =

Expression

Statement

6;

case "Fall" ->

numLetters =

4

default ->

numLetters =

Fallthrough

int numLetters = switch

(seasonName) {

case "Spring":

[O.println("spring

time!");

switch

(seasonName) {

case "Spring":

[O.println("spring

case/'Summer"

Expression Statement
"Winter":
time!");
yield 6;
case "Summer",
case "Fall":
"Winter":
yield 4;
numLetters =
default:
6,
yield -1;
break;
55
case "Fall":
numLetters =
4,
break;

default:

Expression Statement

numLetters =

In the fallthrough variants, each case ends with a colon. If the cases end

with arrows ->, then there is no fallthrough. You can’t mix colons and

arrows in a single switch statement.

Each branch of a switch expression must yield a value. Most commonly,

each value follows an -> arrow:

case "Summer", "Winter" -> 6;

If you cannot compute the result in a single expression, use braces and a

yield statement. Like break, it terminates execution. Unlike break, it also

yields a value—the value of the expression:

case "Spring" -> {

10.println("spring time!");

yield 6;

Note: It is legal to throw an exception in a branch of a switch

expression. For example:

default -> throw new Illegal ArgumentException("Not a valid

season");

Exceptions are covered in detail in Chapter 7.

0 Caution: The point of a switch expression is to produce a value (or

to fail with an exception). You are not allowed to "jump out":

default -> { return -1; } // ERROR

Specifically, you cannot use return, break, or continue statements in

a switch expression. (See Section 3.8.6 for the latter two.)

With so many variations of switch, which one should you choose?

1. Avoid the fallthrough forms. It is very uncommon to need fallthrough.

2. Prefer switch expressions over statements.

For example, consider:

switch (seasonName) {

case "Spring", "Summer", "Winter":

numULetters = 6;

break;

case "Fall":

numLetters = 4;

break;

default:

numlLetters = -1;

Since every case ends with a break, there is no need to use the fallthrough

form. The following is an improvement:

switch (seasonName) {

case "Spring", "Summer", "Winter" ->

numLetters = 6;

case "Fall" ->

numlLetters = 4;

default ->

numLetters = -1;

Now note that each branch assigns a value to the same variable. It is much

more elegant to use a switch expression here:

numlLetters = switch (seasonName) {

case "Spring", "Summer", "Winter" -> 6

case "Fall" -> 4

default -> -1

|5

3.8.6. Statements That Break Control Flow

Although the designers of Java kept goto as a keyword, they decided not to

include it in the language. In general, goto statements are considered poor

style. Some programmers feel the anti-goto forces have gone too far (see,

for example, the famous article of Donald Knuth called “Structured

Programming with goto statements”). They argue that unrestricted use of

goto is error-prone but that an occasional jump out of a loop is beneficial.

The Java designers agreed and even added a new statement, the labeled

break, to support this programming style.

Let us first look at the unlabeled break statement. The same break statement
that you use to exit a switch statement can also be used to break out of a

loop. For example:

while (years <= 100) {
balance += payment;
double interest = balance * interestRate / 100;
balance += interest;
if (balance >= goal) break;

years++;

Now the loop is exited if either years > 100 occurs at the top of the loop or

balance >= goal occurs in the middle of the loop. Of course, you could have

computed the same value for years without a break, like this:

while (years <= 100 && balance < goal) {
balance += payment;
double interest = balance * interestRate / 100;

balance += interest;

if (balance < goal) years++;

But note that the test balance < goal is repeated twice in this version. To

avoid this repeated test, some programmers prefer the break statement.

The labeled break statement lets you break out of multiple nested loops.
Occasionally something weird happens inside a deeply nested loop. In that

case, you may want to break completely out of all the nested loops. It is

inconvenient to program that simply by adding extra conditions to the

various loop tests.

Here’s an example that shows the labeled break statement at work. Notice
that the label must precede the outermost loop out of which you want to

break. It also must be followed by a colon.

Int n;
read_data:

while (. . .) { // this loop statement is tagged with the label

for (. ..) {// this inner loop is not labeled
[0.print();
n = Integer.parselnt(IO.readln("Enter a number >= 0: "));
if (n <0) { // should never happen—can't go on

break read_data; // break out of read data loop

// this statement is executed immediately after the labeled break

if (n <0) { // check for bad situation

// deal with bad situation

else {

// carry out normal processing

If there is a bad input, the labeled break moves past the end of the labeled

block. As with any use of the break statement, you then need to test whether

the loop exited normally or as a result of a break.

Note: Curiously, you can apply a label to any statement, even an if

statement or a block statement, like this:

label: {

if (condition) break label; // exits block

// jumps here when the break statement executes

Thus, if you are lusting after a goto and you can place a block that
ends just before the place to which you want to jump, you can use a
break statement! Naturally, I don’t recommend this approach. Note,

however, that you can only jump out of a block, never info a block.

Finally, there is a continue statement that, like the break statement, breaks

the regular flow of control. The continue statement transfers control to the

header of the innermost enclosing loop. Here is an example:

while (sum < goal) {

n = Integer.parselnt(I0.readIn("Enter a number: "));

if (n < 0) continue;

sum += n; // not executed if n <0

If n <0, then the continue statement jumps immediately to the loop header,

skipping the remainder of the current iteration.

If the continue statement is used in a for loop, it jumps to the “update” part

of the for loop. For example:

for (count = 1; count <= 100; count++) {

n = Integer.parselnt(IO.readln("Enter a number, -1 to quit: "));

if (n < 0) continue;

sum += n; // not executed if n <0

If n <0, then the continue statement jumps to the count++ statement.

There is also a labeled form of the continue statement that jumps to the

header of the loop with the matching label.

d Tip: Many programmers find the break and continue statements
confusing. These statements are entirely optional—you can always
express the same logic without them. None of the programs in this

book use break or continue.

3.9. Big Numbers

If the precision of the basic integer and floating-point types is not sufficient,

you can turn to a couple of handy classes in the java.math package:

Biglnteger and BigDecimal. These are classes for manipulating numbers

with an arbitrarily long sequence of digits. The Biglnteger class implements

arbitrary-precision integer arithmetic, and BigDecimal does the same for

floating-point numbers.

Use the static valueOf method to turn an ordinary number into a big

number:

Biglnteger a = Biglnteger.valueOf(100);

For longer numbers, use a constructor with a string argument:

Biglnteger reallyBig

= new

Biglnteger("2222322446294204455297398934619099672066669390964

99764990979600");

There are also constants Biglnteger.ZERO, Biglnteger.ONE,

Biglnteger. TWO, and BigInteger. TEN.

0 Caution: Always construct BigDecimal objects from integers or
strings. Avoid the constructor BigDecimal(double) that is inherently

prone to roundoff. For example, new BigDecimal(0.1) has digits

0.100000000000000005551115123125782702118158340454101

5625

Unfortunately, you cannot use the familiar mathematical operators such as +

and * to combine big numbers. Instead, you must use methods such as add

and multiply in the big number classes.

Biglnteger ¢ = a.add(b); /c=a+b

Biglnteger d = c.multiply(b.add(Biglnteger.valueOf(2))); // d=c * (b +

2)

Note: Java has no programmable operator overloading. There was

no way for the programmers of the Biglnteger class to redefine the +

and * operators to give the add and multiply operations of the

Biglnteger classes. The language designers did overload the +

operator to denote concatenation of strings. They chose not to

overload other operators, and they did not give Java programmers

the opportunity to overload operators in their own classes.

Note: In Java 19, the Biglnteger class provides a parallelMultiply

method that yields the same result as multiply but can potentially

compute the result faster by using multiple processor cores. Use this

method if you have to do a lot of multiplications and you know that
your application does not need the CPU resources for other

computations.

Listing 3.6 shows a modification of the lottery odds program of Listing 3.5,
updated to work with big numbers. For example, if you are invited to
participate in a lottery in which you need to pick 60 numbers out of a
possible 490 numbers, you can use this program to tell you your odds of
winning. They are 1 in
7163958434619955574151162225400929334117176127892634934933510

13459481104668848. Good luck!

The program in Listing 3.5 computed the statement

lotteryOdds = lotteryOdds * (n-1+ 1)/ 1;

When big integers are used for lotteryOdds and n, the equivalent statement

becomes

lotteryOdds = lotteryOdds

.multiply(n.subtract(BigInteger.valueOf(i - 1)))

.divide(BigInteger.valueOf(i));

Note: To run this program with a version prior to Java 25, add the

line
import java.math.Biglnteger;

to the top of the program, in addition to the general modifications

described in the notes in Section 3.1 and Section 3.7.1.

Listing 3.6 BigIntegerDemo.java

(\O]

W

6

9

10

11

/**

* This program uses big numbers to compute the odds of winning the grand prize

* in a lottery.

*/

void main() {

[0O.print("How many numbers do you need to draw? ");

int k = Integer.parselnt(10.readIn());

[O.print("What is the highest number you can draw? ");

Biglnteger n = new Biglnteger(I0.readln());

// Binomial coefficient n*(n-1)*(n-2)*...*(n-k+1)/(1*2*3*...*k)

Biglnteger lotteryOdds = BigInteger. ONE;

for (inti=1; i <=k; i++)

lotteryOdds = lotteryOdds

.multiply(n.subtract(BigInteger.valueOf{(i - 1)))

.divide(Biglnteger.valueOf{1));

21 10.println("Your odds are 1 in " + lotteryOdds + " Good luck!");

java.math.BigInteger 1.1

Biglnteger add(Biglnteger other)

B Biglnteger subtract(BigInteger other)

B BijgInteger multiply(Biglnteger other)

B Biglnteger divide(BigInteger other)

B BigInteger mod(BigInteger other)

Biglnteger pow(int exponent)

return the sum, difference, product, quotient, remainder, and power of
this big integer and other.

Biglnteger sqrt() 9

yields the square root of this Biglnteger.

int compareTo(Biglnteger other)

returns 0 if this big integer equals other, a negative result if this big
integer is less than other, and a positive result otherwise.
static Biglnteger valueOf(long x)

returns a big integer whose value equals x.

java.math.BigDecimal 1.1

BigDecimal(String digits)

constructs a big decimal with the given digits.
B BigDecimal add(BigDecimal other)
BigDecimal subtract(BigDecimal other)
BigDecimal multiply(BigDecimal other)

B BigDecimal divide(BigDecimal other) 5.0

BigDecimal divide(BigDecimal other, RoundingMode mode) 5.0

return the sum, difference, product, or quotient of this big decimal and
other. The first divide method throws an exception if the quotient does
not have a finite decimal expansion. To obtain a rounded result, use
the second method. The mode RoundingMode.HALF UP is the
rounding mode that you learned in school: round down the digits 0 to
4, round up the digits 5 to 9. It is appropriate for routine calculations.
See the API documentation for other rounding modes.

int compareTo(BigDecimal other)

returns 0 if this big decimal equals other, a negative result if this big

decimal is less than other, and a positive result otherwise.

3.10. Arrays

Arrays hold sequences of values of the same type. In the following sections,

you will see how to work with arrays in Java.

3.10.1. Declaring Arrays

Declare an array variable by specifying the array type—which is the

element type followed by []—and the array variable name. For example,

here is the declaration of an array a of integers:

int[] a;

However, this statement only declares the variable a. It does not yet

initialize a with an actual array. Use the new operator to create the array.

int[] a = new int[100]; // or var a = new int[100];

This statement declares and initializes an array of 100 integers.

The array length need not be a constant: new int[n] creates an array of

length n.

Once you create an array, you cannot change its length (although you can,

of course, change an individual array element). If you frequently need to

expand the length of arrays while your program is running, you should use

array lists, which are covered in Chapter 3.

The type of an array variable does not include the length. For example, the

variable a in the preceding example has type int[] and can be set to an int

array of any length.

Note: You can define an array variable either as
int[] a;
or as
int a[];

Most Java programmers prefer the former style because it neatly

separates the type int[] (integer array) from the variable name.

Java has a shortcut for creating an array object and supplying initial values:

int[] smallPrimes = { 2, 3, 5,7, 11, 13 };

Notice that you do not use new with this syntax, and you don’t specify the

length.

A comma after the last value is allowed, which can be convenient for an

array to which you keep adding values over time:

String[] authors = {

"James Gosling",

"Bill Joy",

"Guy Steele",

// 'add more names here and put a comma after each name

You can declare an anonymous array:

new int[] { 17, 19, 23, 29, 31, 37 }

This expression allocates a new array and fills it with the values inside the

braces. It counts the number of initial values and sets the array length

accordingly. You can use this syntax to reinitialize an array without creating

a new variable. For example,

smallPrimes =new int[] { 17, 19, 23, 29, 31, 37 };

1s shorthand for

int[] anonymous = { 17, 19, 23, 29, 31, 37 };

smallPrimes = anonymous;

Note: It is legal to have arrays of length 0. Such an array can be
useful if you write a method that computes an array result and the

result happens to be empty. Construct an array of length 0 as

new elementType[0]

or

new elementType[] {}

Note that an array of length 0 is not the same as null.

3.10.2. Accessing Array Elements

You access each individual element of an array through an integer index,
using the bracket operator. For example, if a 1s an array of integers, then a[i]

is the element with index i in the array.

The array elements are numbered starting from (. The last valid index is
one less than the length. In the example below, the index values range from
0 to 99. Once the array is created, you can fill the elements in an array, for

example, by using a loop:

int[] a=new int[100];

for (int1=0; 1< 100; 1++)

a[i] = 1; // fills the array with numbers 0 to 99

When you create an array of numbers, all elements are initialized with zero.

Arrays of boolean are initialized with false. Arrays of objects are initialized

with the special value null, which indicates that they do not (yet) hold any

objects. This can be surprising for beginners. For example,

String[] names = new String[10];

creates an array of ten strings, all of which are null. If you want the array to

hold empty strings, you must supply them:

for (inti = 0; i < 10; i++) names[i] ="";

0 Caution: If you construct an array with 100 elements and then try to

access the element a[100] (or any other index outside the range from

0 to 99), an “array index out of bounds™ exception will occur.

To find the number of elements of an array, use array.length. For example:

for (int i = 0; i < a.length; i++)

10.printIn(a[i]);

3.10.3. The “for each” Loop

Java has a powerful looping construct that allows you to loop through each
element in an array (or any other collection of elements) without having to

fuss with index values.

The enhanced for loop

for (variable : collection) statement

sets the given variable to each element of the collection and then executes

the statement (which, of course, may be a block). The collection expression

must be an array or an object of a class that implements the Iterable
interface, such as ArrayList. Array lists are covered in Chapter 5 and the

Iterable interface in Chapter 9.

For example,

for (int element : a)

IO.println(element);

prints each element of the array a on a separate line.

You should read this loop as “for each element in a.” The designers of the
Java language considered using keywords, such as foreach and in. But this
loop was a late addition to the Java language, and in the end nobody wanted
to break the old code that already contained methods or variables with these

names (such as System.in).

Of course, you could achieve the same effect with a traditional for loop:

for (int i = 0; i < a.length; i++)

10.printIn(a[i]);

However, the “for each” loop is more concise and less error-prone, as you

don’t have to worry about those pesky start and end index values.

Note: The loop variable of the “for each” loop traverses the

elements of the array, not the index values.

The “for each” loop is a pleasant improvement over the traditional loop if

you need to process all elements in a collection. However, there are still

plenty of opportunities to use the traditional for loop. For example, you

might not want to traverse the entire collection, or you may need the index

value inside the loop.

ﬂ Tip: There is an even easier way to print all values of an array,
using the toString method of the Arrays class. The call
Arrays.toString(a) returns a string containing the array elements,
enclosed in brackets and separated by commas, such as "[2, 3, 5, 7,

11, 13]". To print the array, simply call

[O.println(Arrays.toString(a));

3.10.4. Array Copying

You can copy one array variable into another, but then both variables refer

to the same array:

int[] luckyNumbers = smallPrimes;

luckyNumbers[5] = 12; // now smallPrimes[5] is also 12

Figure 3.14 shows the result.

Figure 3.14: Copying an array variable

If you actually want to copy all values of one array into a new array, use the

copyOf method in the Arrays class:

int[] copiedLuckyNumbers = Arrays.copyOf(luckyNumbers,

luckyNumbers.length);

The second argument is the length of the new array. A common use of this

method is to increase the length of an array:

luckyNumbers = Arrays.copyOf(luckyNumbers, 2 *

luckyNumbers.length);

The additional elements are filled with 0 if the array contains numbers, false

if the array contains boolean values. Conversely, if the length is less than

the length of the original array, only the initial values are copied.

Note: As in Python and JavaScript, Java arrays are allocated on the
heap. This 1s quite different from a C array or C++ vector on the
stack. If you come from C or C++, you should think of a Java arrays

as a pointer to an array allocated on the heap. That is,
int[] a =new int[100]; // Java

1s not the same as
int a[100]; // C++

but rather

int* a =new int[100]; / C++

3.10.5. Command-Line Arguments

If you want to process arguments that a user of your program specified on
the command line, your main method needs a parameter that is an array of

strings.

For example, consider this program in a file Message.java:

void main(String|[] args) {
[O.print(switch (args[0])) {
case "-a" -> "[F ﬁ";
case "-b" > "{P";
case "-h" -> "Hello,";

default -> args[0];

10.print(" " + args[1]);

[O.println("!");

If the program is called as

java Message.java -h World

or

javac Message.java

java Message -h World

then args[0] is the string "-h", and args[1] 1s "World".

Note: Unlike in Python or C, the name of the program is not stored
in the array of command-line arguments. When you start up a

program as
java Message.java -h World

from the command line, then the args array does not contain java or

"Message.java".

3.10.6. Array Sorting

To sort an array of numbers, you can use one of the sort methods in the

Arrays class:

int[] a = new int[10000];

Arrays.sort(a)

This method uses a tuned version of the QuickSort algorithm that is claimed
to be very efficient on most data sets. The Arrays class provides several
other convenience methods for arrays that are included in the API notes at

the end of this section.

The program in Listing 3.7 puts arrays to work. This program draws a
random combination of numbers for a lottery game. For example, if you

play a “choose 6 numbers from 49 lottery, the program might print this:

Bet the following combination. It'll make you rich!

19
30

44

To select such a random set of numbers, first fill an array numbers with the

values 1,2, ..., n:

int[] numbers = new int[n];
for (int 1 = 0; 1 < numbers.length; 1++)

numbers[i] =1+ 1;

A second array holds the numbers to be drawn:

int[] result = new int[k];

Now draw k numbers. The Math.random method returns a random floating-

point number that is between 0 (inclusive) and 1 (exclusive). Multiplying

the result with n yields a random number between 0 and n — 1.

int r = (int) (Math.random() * n);

Set the ith result to be the number at that index. Initially, that is justr + 1,

but as you’ll see presently, the contents of the numbers array are changed

after each draw.

result[i] = numbers[r];

Now, you must be sure never to draw that number again—all lottery

numbers must be distinct. Therefore, overwrite numbers[r] with the last

number in the array and reduce n by 1.

numbers[r] = numbers[n - 1];

n--;

The point is that in each draw we pick an index, not the actual value. The
index points into an array that contains the values that have not yet been

drawn.

After drawing k lottery numbers, sort the result array for a more pleasing

output:

Arrays.sort(result);
for (int r : result)

[O.printIn(r);

Listing 3.7 LotteryDrawing.java

1 /**

(\O]

* This program demonstrates array manipulation.

*/

(9%

N

()]

6

21

N
[\

\S]
(98]

void main() {

int k = Integer.parselnt(10.readln("How many numbers do you need to draw? "));

int n = Integer.parselnt(10.readIn("What is the highest number you can draw? "));

// fill an array with numbers 1 23 ...n

int[] numbers = new int[n];

for (int i = 0; i < numbers.length; i++)

numbers[i] =1+ 1;

// draw k numbers and put them into a second array

int[] result = new int[k];

for (int i = 0; i <result.length; i++) {

// make a random index between 0 and n - 1

int r = (int) (Math.random() * n);

// pick the element at the random location

result[i] = numbers|[r];

// move the last element into the random location

numbers[r] = numbers[n - 1];

27 // print the sorted array

28 Arrays.sort(result);

29 [0.println("Bet the following combination. It'll make you rich!");

30 for (int r : result)
31 [O.println(r);
32 %

java.util. Arrays 1.2

B static String toString(7]] a) 5.0
returns a string with the elements of a, enclosed in brackets and
delimited by commas. In this and the following methods, the
component type 7 of the array can be int, long, short, char, byte,
boolean, float, or double.

B static 7T] copyOf(1T] a, int end) 6

B static 7T] copyOfRange(T] a, int start, int end) 6
return an array of the same type as a, of length either end or end—start,
filled with the values of a. If end is larger than a.length, the result is
padded with O or false values.

B static void sort(7T] a)
sorts the array, using a tuned QuickSort algorithm.

B tatic void fill(7]] a, T'v)
sets all elements of the array to v.

B static boolean equals(7]] a, 7] b)
returns true if the arrays have the same length and if the elements at

corresponding indexes match.

3.10.7. Multidimensional Arrays

Multidimensional arrays use more than one index to access array elements.

They are used for tables and other more complex arrangements. You can

safely skip this section until you have a need for this storage mechanism.

Suppose you want to make a table of numbers that shows how much an
investment of $10,000 will grow under different interest rate scenarios in

which interest is paid annually and reinvested.

5% 6% 7% 8% 9% 10%
10000.00 10000.00 10000.00 10000.00 10000.00 10000.00
10500.00 10600.00 10700.00 10800.00 10900.00 11000.00
11025.00 11236.00 11449.00 11664.00 11881.00 12100.00
11576.25 11910.16 12250.43 12597.12 12950.29 13310.00
12155.06 12624.77 13107.96 13604.89 14115.82 14641.00
12762.82 13382.26 14025.52 14693.28 15386.24 16105.10

13400.96 14185.19 15007.30 15868.74 16771.00 17715.61

14071.00 15036.30 16057.81 17138.24 18280.39 19487.17

14774.55 15938.48 17181.86 18509.30 19925.63 21435.89

15513.28 16894.79 18384.59 19990.05 21718.93 23579.48

You can store this information in a two-dimensional array named balances.

Declaring a two-dimensional array in Java is simple enough. For example:

double[][] balances;

You cannot use the array until you initialize it. In this case, you can do the

initialization as follows:

balances = new double[NYEARS][NRATES];

In other cases, if you know the array elements, you can use a shorthand

notation for initializing a multidimensional array without a call to new. For

example:

int[][] magicSquare = {

{16,3,2,13},

£5,10, 11, 8 },

{9,6,7,12 },

{4,15,14,1}

Once the array is initialized, you can access individual elements by

supplying two pairs of brackets—for example, balances|[1i][j].

The example program stores a one-dimensional array interestRates of

interest rates and a two-dimensional array balances of account balances, one

for each year and interest rate. Initialize the first row of the array with the

initial balance:

for (int j = 0; j < balances[0].length; j++)

balances[0][j] = 10000;

Then compute the other rows, as follows:

for (int 1 = 1; 1 < balances.length; i++) {
for (int j = 0; j < balances[i].length; j++) {
double oldBalance = balances|[i - 1][j];
double interest =. . .;

balances|[i][j] = oldBalance + interest;

Listing 3.8 shows the full program. In this program, you can see how to use
multiple methods. The main method calls a printTable method that prints

the table of balances.

Note: A “for each” loop does not automatically loop through all

elements in a two-dimensional array. Instead, it loops through the

rows, which are themselves one-dimensional arrays. To visit all

elements of a two-dimensional array a, nest two loops, like this:

for (double[] row : values)

for (double value : row)

do something with value

ﬂ Tip: To print out a quick-and-dirty list of the elements of a two-

dimensional array, call
[0.println(Arrays.deepToString(a));
The output is formatted like this:

[[16,3, 2, 13], [5, 10, 11, 8], [9, 6, 7, 121, [4, 15, 14, 1]]

Listing 3.8 CompoundInterest.java

[\

o

6

/**

* This program shows how to store tabular data in a 2D array.

*/

void main() {

final double STARTRATE = 5;

final int NRATES = 6;

final int NYEARS = 10;

// set interest ratesto 5. .. 10%

double[] interestRates = new double[NRATES];

for (int j = 0; j < interestRates.length; j++)

interestRates[j] = (STARTRATE +j) / 100.0;

double[][] balances = new double[NYEARS][NRATES];

// set initial balances to 10000

for (int j = 0; j < balances[0].length; j++)

balances[0][j] = 10000;

// compute interest for future years

for (int i = 1; i < balances.length; i++) {

for (int j = 0; j < balances[i].length; j++) {

// get last year's balances from previous row

double oldBalance = balances][i - 1][j];

// compute interest

double interest = oldBalance * interestRates[j];

// compute this year's balances

balances[i][j] = oldBalance + interest;

printTable(interestRates, balances);

void printTable(double[] headers, double[][] values) {

for (double header : headers) {

10.print("%10.2f".formatted(header));

41 [0O.printIn();
42 10.println("-".repeat(10 * headers.length));
43 // print balance table

44 for (double[] row : values) {

45 // print table row
46 for (double value : row)
47 10.print("%10.2f".formatted(value));
48
49 10.printIn();
50 }
51}
3.10.8. Ragged Arrays

So far, what you have seen is not too different from other programming
languages. But there is actually something subtle going on behind the
scenes that you can sometimes turn to your advantage: Java has no
multidimensional arrays at all, only one-dimensional arrays.

Multidimensional arrays are faked as “arrays of arrays.”

For example, the balances array in the preceding example is actually an
array that contains ten elements, each of which is an array of six floating-

point numbers (Figure 3.15).

Figure 3.15: A two-dimensional array

The expression balances[i] refers to the ith subarray—that is, the ith row of
the table. It 1s itself an array, and balances[1][j] refers to the jth element of

that array.

Since rows of arrays are individually accessible, you can actually swap

them!

double[] temp = balances][i];
balances[i] = balances[1 + 1];

balances[i + 1] = temp;

Note that the number of rows and columns is not a part of the type of an
array variable. The variable balances has type double[][]: an array of double

arrays.

Therefore, you can make “ragged” arrays—that is, arrays in which different
rows have different lengths. Here is the standard example. Let us make an
array in which the element at row 1 and column j equals the number of

possible outcomes of a “choose j numbers from i numbers” lottery.

11
121

1331

14641
1 51010 51

1 615201561

As j can never be larger than 1, the matrix is triangular. The ith row has 1+ 1
elements. (It is OK to choose 0 elements; there is one way to make such a

choice.) To build this ragged array, first allocate the array holding the rows:

final int NMAX = 10;

int[][] odds = new intfNMAX + 1][];

Next, allocate the rows:

for (int n = 0; n <= NMAX; nt++)

odds[n] = new int[n + 1];

Now that the array is allocated, you can access the elements in the normal

way, provided you do not overstep the bounds:

for (int n = 0; n < odds.length; n++) {

for (int k = 0; k < odds[n].length; k++) {

// compute lotteryOdds

odds[n][k] = lotteryOdds;

Listing 3.9 gives the complete program.

Note: Just as with one-dimensional arrays, it is legal to construct

multi-dimensional arrays where a dimension is zero. For example,
new int[3][0]

has three rows, each of which happen to have length zero. In

contrast,

new int[0][3]

has no rows. The row length is immaterial, since no rows are

actually allocated. In other words, new int[0][3], new int[0][4], and

new int[0][] are all the same.

Note: The Java declaration

double[][] balances = new double[10][6]; // Java

1s very different from declaring a two-dimensional array in C or

CH++.

double balances[10][6]; // C/C++

The latter declares a contiguous block of 60 floating-point numbers

on the stack. In Java, each row is stored separately on the heap, as

you have seen in Figure 3.15.

Listing 3.9 LotteryArray.java

1 /**

[\

* This program demonstrates a triangular array.

3%

4 void main() {

()]

final int NMAX = 10;

6

7 // allocate triangular array

8 int[][] odds = new intfNMAX + 1][];

9 for (int n = 0; n <= NMAX; n++)

10 odds[n] = new int[n + 1];

11

12 // fill triangular array

13 for (int n = 0; n < odds.length; n++)

14 for (int k = 0; k < odds[n].length; k++) {

15 /*

16 * compute binomial coefficient

17 *n*(n-1)*(n-2)*...*(n-k+1)/(1*2%3* .. *k)

18 */

19 int lotteryOdds = 1;

20 for (inti=1; 1 <=k; i++)

21 lotteryOdds = lotteryOdds * (n-i+ 1)/ 1i;
22

23 odds[n][k] = lotteryOdds;

24 }

25

26 // print triangular array

27 for (int[] row : odds) {

28 for (int odd : row)

29 I10.print("%4d".formatted(odd));
30 10O.printIn();

31 }

32}

You have now seen the fundamental programming structures of the Java

language. The next chapter covers object-oriented programming in Java.

Chapter 4 = Objects and Classes

In this chapter, |

B Introduce you to object-oriented programming;
B Show you how you can create objects that belong to classes from the standard Java library; and

® Show you how to write your own classes.

If you do not have a background in object-oriented programming, you will want to read this chapter
carefully. Object-oriented programming requires a different way of thinking than procedural
languages. The transition is not always easy, but you do need some familiarity with object concepts to

go further with Java.

For experienced C++ programmers, this chapter, like the previous chapter, presents familiar
information; however, there are enough differences between the two languages that you should read

the later sections of this chapter carefully. You’ll find the C++ notes helpful for making the transition.

4.1. Introduction to Object-Oriented Programming

Object-oriented programming, or OOP for short, is the dominant programming paradigm these days,
having replaced the “structured” or procedural programming techniques that were developed in the
1970s. Since Java is object-oriented, you have to be familiar with OOP to become productive with

Java.

An object-oriented program is made of objects. Each object has a specific functionality, exposed to its
users, and a hidden implementation. Many objects in your programs will be taken “off the shelf” from
a library; others will be custom-designed. Whether you build an object or use a pre-built one might
depend on your budget or time. But, basically, as long as an object satisfies your specifications, you

don’t care how the functionality is implemented.

Traditional structured programming consists of designing a set of procedures (or algorithms) to solve a
problem. Once the procedures are determined, the traditional next step was to find appropriate ways to
store the data. This is why the designer of the Pascal language, Niklaus Wirth, called his famous book
on programming Algorithms + Data Structures = Programs (Prentice Hall, 1976). Notice that in
Wirth’s title, algorithms come first, and data structures second. This reflects the way programmers
worked at that time. First, they decided on the procedures for manipulating the data; then, they decided
what structure to impose on the data to make the manipulations easier. OOP reverses the order: puts

the data first, then looks at the algorithms to operate on the data.

For small problems, the breakdown into procedures works very well. But objects are more appropriate
for larger problems. Consider a simple web browser. It might require 2,000 procedures for its
implementation, all of which manipulate a set of global data. In the object-oriented style, there might
be 100 classes with an average of 20 methods per class (see Figure 4.1). This structure is much easier

for a programmer to grasp. It is also much easier to find bugs in. Suppose the data of a particular object

is in an incorrect state. It is far easier to search for the culprit among the 20 methods that had access to

that data item than among 2,000 procedures.

Figure 4.1: Procedural vs. OO programming

4.1.1. Classes

A class specifies how objects are made. Think of classes as cookie cutters; objects are the cookies

themselves. When you construct an object from a class, you are said to have created an instance of the

class.

As you have seen, all code that you write in Java is inside a class. The standard Java library supplies

several thousand classes for such diverse purposes as user interface design, dates and calendars, and

network programming. Nonetheless, in Java you still have to create your own classes to describe the

objects of your application’s problem domain.

Encapsulation (sometimes called information hiding) is a key concept in working with objects.
Formally, encapsulation is simply combining data and behavior in one package and hiding the
implementation details from the users of the object. The bits of data in an object are called its instance
fields, and the procedures that operate on the data are called its methods. A specific object that is an
instance of a class will have specific values of its instance fields. The set of those values is the current

state of the object. Whenever you invoke a method on an object, its state may change.

The key to making encapsulation work is to have methods never directly access instance fields in a

class other than their own. Programs should interact with object data only through the object’s

methods. Encapsulation is the way to give an object its “black box” behavior, which is the key to reuse

and reliability. This means a class may totally change how it stores its data, but as long as it continues

to use the same methods to manipulate the data, no other object will know or care.

When you start writing your own classes in Java, another tenet of OOP will make this easier: Classes

can be built by extending other classes. Java, in fact, comes with a “cosmic superclass” called Object.

All other classes extend this class. You will learn more about the Object class in Chapter 5.

When you extend an existing class, the new class has all the properties and methods of the class that

you extend. You then supply new methods and instance fields that apply to your new class only. The

concept of extending a class to obtain another class is called inkeritance. See Chapter 5 for more on

inheritance.

4.1.2. Objects

To work with OOP, you should be able to identify three key characteristics of objects:

The object’s behavior—what can you do with this object, or what methods can you apply to it?
The object’s state—how does the object react when you invoke those methods?
B The object’s identity—how is the object distinguished from others that may have the same

behavior and state?

All objects that are instances of the same class share a family resemblance by supporting the same

behavior. The behavior of an object is defined by the methods that you can call.

Next, each object stores information about what it currently looks like. This is the object’s state. An
object’s state may change over time, but not spontaneously. A change in the state of an object must be
a consequence of method calls. (If an object’s state changed without a method call on that object,

someone broke encapsulation.)

However, the state of an object does not completely describe it, because each object has a distinct
identity. For example, in an order processing system, two orders are distinct even if they request
identical items. Notice that the individual objects that are instances of a class a/ways differ in their

identity and usually differ in their state.

These key characteristics can influence each other. For example, the state of an object can influence its
behavior. (If an order is “shipped” or “paid,” it may reject a method call that asks it to add or remove
items. Conversely, if an order is “empty”—that is, no items have yet been ordered—it should not allow

itself to be shipped.)

4.1.3. Identifying Classes

In a traditional procedural program, you start the process at the top, with the main function. When
designing an object-oriented system, there is no “top,” and newcomers to OOP often wonder where to

begin. The answer is: Identify your classes and then add methods to each class.

A simple rule of thumb in identifying classes is to look for nouns in the problem analysis. Methods, on

the other hand, correspond to verbs.

For example, in an order-processing system, some of the nouns are

B |iem
B Order
B Shipping address

Payment

Account

These nouns may lead to the classes Item, Order, and so on.

Next, look for verbs. Items are added to orders. Orders are shipped or canceled. Payments are applied

29 ¢c

to orders. With each verb, such as “add,” “ship,” “cancel,” or “apply,” you identify the object that has
the major responsibility for carrying it out. For example, when a new item is added to an order, the

order object should be the one in charge because it knows how it stores and sorts items. That is, add

should be a method of the Order class that has an Item object as a parameter.

Of course, the “noun and verb” is but a rule of thumb; only experience can help you decide which

nouns and verbs are the important ones when building your classes.

4.1.4. Relationships between Classes

The most common relationships between classes are

B Dependence (“uses—a”
B Jggregation (“has—a”)

B Inheritance (“is—a”)

The dependence, or “uses—a” relationship, is the most obvious and also the most general. For example,
the Order class uses the Account class because Order objects need to access Account objects to check
for credit status. But the Item class does not depend on the Account class, because Item objects never
need to worry about customer accounts. Thus, a class depends on another class if its methods use or

manipulate objects of that class.

Try to minimize the number of classes that depend on each other. The point is, if a class A is unaware
of the existence of a class B, it is also unconcerned about any changes to B. (And this means that
changes to B do not introduce bugs into A.) In software engineering terminology, you want to

minimize the coupling between classes.

The aggregation, or “has—a” relationship, is easy to understand because it is concrete; for example, an
Order object contains Item objects. Containment means that objects of class A contain objects of class

B.

Note: Some methodologists view the concept of aggregation with disdain and prefer to use a
more general “association” relationship. From the point of view of modeling, that is

understandable. But for programmers, the “has—a” relationship makes a lot of sense. I like to

use aggregation for another reason as well: The standard notation for associations is less clear.

See Table 4.1.

The inheritance, or “is—a” relationship, expresses a relationship between a more special and a more
general class. For example, a RushOrder class inherits from an Order class. The specialized RushOrder
class has special methods for priority handling and a different method for computing shipping charges,
but its other methods, such as adding items and billing, are inherited from the Order class. In general,
if class D extends class C, class D inherits methods from class C but has more capabilities. (See

Chapter 5 which discusses this important notion at some length.)

Many programmers use the UML (Unified Modeling Language) notation to draw class diagrams that

describe the relationships between classes. You can see an example of such a diagram in Figure 4.2.

You draw classes as rectangles, and relationships as arrows with various adornments. Table 4.1 shows

the UML arrow styles that this book uses.

[¢[Violet UML Editor

File Edit View Help

orders.violet ‘

A= R

The account
RushOrder to which
the order a aoclect
is charged B class
i B Interface
3 Package
O Note

0T Linked diagram
Order ——----------—--—--Zx Account 1 Depends on
\— A Inherits from
4 Implements interface
" Is associated with
W Is an aggregate of

W, |5 composed of
Item . Note connector

[Mote €3 showyHide side bar

Figure 4.2: A class diagram

Table 4.1: UML Notation for Class Relationships

Relationship UML Connector

Inheritance

Interface

implementation

Dependency

Relationship UML Connector

Aggregation

4.2. Using Predefined Classes

You can’t do anything in Java without classes, and you have already seen several classes at work.
However, not all of these show off the typical features of object orientation. Take, for example, the
Math class. You have seen that you can use methods of the Math class, such as Math.random, without
needing to know how they are implemented—all you need to know is the name and parameter types (if
any). That’s the point of encapsulation, and it will certainly be true of all classes. But the Math class
only encapsulates functionality; it neither needs nor hides data. Since there is no data, you do not need

to worry about making objects and initializing their instance fields—there aren’t any!

In the next section, we will look at a more typical class, the Date class. You will see how to construct

objects and call methods of this class.
4.2.1. Objects and Object Variables

To work with objects, you first construct them and specify their initial state. Then you apply methods

to the objects.

In the Java programming language, you use constructors to construct new instances. A constructor is a

special method whose purpose is to construct and initialize objects. Let us look at an example. The

standard Java library contains a Date class. Its objects describe points in time, such as December 31,

1999, 23:59:59 GMT.

Note: You may be wondering: Why use a class to represent dates rather than (as in some
languages) a built-in type? For example, Visual Basic has a built-in date type, and programmers
can specify dates in the format #12/31/1999#. On the surface, this sounds convenient—
programmers can simply use the built-in date type without worrying about classes. But
actually, how suitable is the Visual Basic design? In some locales, dates are specified as
month/day/year, in others as day/month/year. Are the language designers really equipped to
foresee these kinds of issues? If they do a poor job, the language becomes an unpleasant
muddle, but unhappy programmers are powerless to do anything about it. With classes, the
design task is offloaded to a library designer. If the class is not perfect, other programmers can
easily write their own classes to enhance or replace the system classes. (To prove the point: The

Java date library started out a bit muddled, and it has been redesigned twice.)

Constructors always have the same name as the class name. Thus, the constructor for the Date class is

called Date. To construct a Date object, combine the constructor with the new operator, as follows:

new Date()

This expression constructs a new object. The object is initialized to the current date and time.

If you like, you can pass the object to a method:

10.printin(new Date());

Alternatively, you can apply a method to the object that you just constructed. One of the methods of
the Date class is the toString method. That method yields a string representation of the date. Here is

how you would apply the toString method to a newly constructed Date object:

String s = new Date().toString();

In these two examples, the constructed object is used only once. Usually, you will want to hang on to

the objects that you construct so that you can keep using them. Simply store the object in a variable:

Date rightNow = new Date();

Figure 4.3 shows the object variable rightNow that refers to the newly constructed object.

Figure 4.3: Creating a new object

There is an important difference between objects and object variables. For example, the statement

Date startTime; // startTime doesn't refer to any object

defines an object variable, startTime, that can refer to objects of type Date. It is important to realize

that the variable startTime is not an object and, in fact, does not even refer to an object yet. You cannot

use any Date methods on this variable at this time. The statement

s = startTime.toString(); // not yet

would cause a compile-time error.

You must first initialize the startTime variable. You have two choices. Of course, you can initialize the

variable so that it refers to a newly constructed object:

startTime = new Date();

Or you can set the variable to refer to an existing object:

startTime = rightNow;

Now both variables refer to the same object (see Figure 4.4).

Figure 4.4: Object variables that refer to the same object

It is important to realize that an object variable doesn’t actually contain an object. It only refers to an

object.

In Java, the value of any object variable is a reference to an object that is stored elsewhere. The return

value of the new operator is also a reference. A statement such as

Date startTime = new Date();

has two parts. The expression new Date() makes an object of type Date, and its value is a reference to

that newly created object. That reference is then stored in the startTime variable.

You can explicitly set an object variable to null to indicate that it currently refers to no object.

startTime = null;

if (startTime != null)

1O.printIn(startTime);

I discuss null in more detail in Section 4.3.5.

Note: If you are a C++ programmer, do not confuse C++ reference variables with Java
references. In C++ there are no null references, and references cannot be assigned. You should

think of Java object variables as analogous to object pointers in C++. For example,
Date rightNow; // Java

is equivalent to
Date* rightNow; // C++ pointer

and not

Date& rightNow; // C++ reference

In C++, pointers make you nervous because they are so error-prone. It is easy to create bad
pointers or to mess up memory management. In Java, these problems simply go away. If you
use an uninitialized pointer, the runtime system will reliably generate a runtime error instead of
producing random results. You don’t have to worry about memory management, because the

garbage collector takes care of it.

4.2.2. The LocalDate Class of the Java Library

In the preceding examples, we used the Date class that is a part of the standard Java library. An

instance of the Date class has a state—namely, a particular point in time.

Although you don’t need to know this when you use the Date class, the time is represented by the
number of milliseconds (positive or negative) from a fixed point, the so-called epoch, which is
00:00:00 UTC, January 1, 1970. UTC is the Coordinated Universal Time, the scientific time standard

which is, for practical purposes, the same as the more familiar GMT, or Greenwich Mean Time.

But as it turns out, the Date class is not very useful for manipulating the kind of calendar information
that humans use for dates, such as “December 31, 1999.” This particular description of a day follows
the Gregorian calendar, which is the calendar used in most countries of the world. The same point in
time would be described quite differently in the Chinese or Hebrew lunar calendars, not to mention the

calendar used by your customers from Mars.

Note: Throughout human history, civilizations grappled with the design of calendars to attach
names to dates and bring order to the solar and Iunar cycles. For a fascinating explanation of
calendars around the world, from the French Revolutionary calendar to the Mayan long count,
see Calendrical Calculations by Nachum Dershowitz and Edward M. Reingold (Cambridge

University Press, 4th ed., 2018).

The library designers decided to separate the concerns of keeping time and attaching names to points
in time. Therefore, the standard Java library contains two separate classes: the Date class, which
represents a point in time, and the LocalDate class, which expresses days in the familiar calendar
notation. Nowadays there is a much more robust set of classes for manipulating various aspects of date

and time—see Chapter 6 of Volume II.

Separating time measurement from calendars is good object-oriented design. In general, it is a good

idea to use different classes to express different concepts.

You do not use a constructor to construct objects of the LocalDate class. Instead, use static factory

methods that call constructors on your behalf. The expression

LocalDate.now()

constructs a new object that represents the date at which the object was constructed.

You can construct an object for a specific date by supplying year, month, and day:

LocalDate.of(1999, 12, 31)

Of course, you will usually want to store the constructed object in an object variable:

LocalDate newYearsEve = LocalDate.of(1999, 12, 31);

Once you have a LocalDate object, you can find out the year, month, and day with the methods

getYear, getMonthValue, and getDayOfMonth:

int year = new YearsEve.getYear(); // 1999
int month = newYearsEve.getMonthValue(); // 12

int day = new YearsEve.getDayOfMonth(); // 31

This may seem pointless because they are the very same values that you just used to construct the
object. But sometimes, you have a date that has been computed, and then you will want to invoke
those methods to find out more about it. For example, the plusDays method yields a new LocalDate

that is a given number of days away from the object to which you apply it:

LocalDate aThousandDaysLater = newYearsEve.plusDays(1000);
year = aThousandDaysLater.getYear(); // 2002
month = aThousandDaysLater.getMonthValue(); // 09

day = aThousandDaysLater.getDayOfMonth(); // 26

The LocalDate class has encapsulated instance fields to maintain the date to which it is set. Without

looking at the source code, it is impossible to know the representation that the class uses internally.

But, of course, the point of encapsulation is that this doesn’t matter. What matters are the methods that

a class exposes.

Note: Actually, the Date class also has methods to get the day, month, and year, called getDay,
getMonth, and getYear, but these methods are deprecated. A method is deprecated when a

library designer realizes that the method should have never been introduced in the first place.

These methods were a part of the Date class before the library designers realized that it makes
more sense to supply separate classes to deal with calendars. When an earlier set of calendar
classes was introduced in Java 1.1, the Date methods were tagged as deprecated. You can still
use them in your programs, but you will get unsightly compiler warnings if you do. It is a good
idea to stay away from using deprecated methods because they may be removed in a future

version of the library.

6 Tip: The JDK provides the jdeprscan tool for checking whether your code uses deprecated

features of the Java API. See

4.2.3. Mutator and Accessor Methods

https://docs.oracle.com/en/java/javase/25/docs/specs/man/jdeprscan.html

Have another look at the plusDays method call that you saw in the preceding section:

LocalDate aThousandDaysLater = new YearsEve.plusDays(1000);

What happens to newYearsEve after the call? Has it been changed to be a thousand days later? As it

turns out, it has not. The plusDays method yields a new LocalDate object, which is then assigned to

the aThousandDaysLater variable. The original object remains unchanged. We say that the plusDays

method does not mutate the object on which it is invoked. (This is similar to the toUpperCase method

of the String class that you saw in Chapter 3. When you call toUpperCase on a string, that string stays

the same, and a new string with uppercase characters is returned.)

An earlier version of the Java library had a different class for dealing with calendars, called

GregorianCalendar. This code snippet adds a thousand days to a date represented by that class:

GregorianCalendar someDay = new GregorianCalendar(1999, 11, 31);

// odd feature of that class: month numbers go from 0 to 11

someDay.add(Calendar. DAY OF MONTH, 1000);

Unlike the LocalDate.plusDays method, the GregorianCalendar.add method is a mutator method. After

invoking it, the state of the someDay object has changed. Here is how you can find out the new state:

year = someDay.get(Calendar. YEAR); // 2002

month = someDay.get(Calendar MONTH) + 1; // 09

day = someDay.get(Calendar. DAY OF MONTH); // 26

That’s why the variable is called someDay and not new YearsEve—it is no longer new year’s eve after

calling the mutator method.

In contrast, methods that only access objects without modifying them are sometimes called accessor

methods. For example, LocalDate.getYear and GregorianCalendar.get are accessor methods.

Note: In some object-oriented languages, you can explicitly declare accessor or mutator
methods. For example, in C++, the const suffix denotes accessor methods. However, in the

Java programming language, no special syntax distinguishes accessors from mutators.

I finish this section with a program that puts the LocalDate class to work. The program displays a

calendar for the current month, like this:

Mon Tue Wed Thu Fri Sat Sun

2345678

9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26*27 28 29

30

The current day is marked with an asterisk (*). As you can see, the program needs to know how to

compute the length of a month and the weekday of a given day.

Let us go through the key steps of the program. First, we construct an object that is initialized with the

current date.

LocalDate date = LocalDate.now();

We capture the current month and day.

int month = date.getMonthValue();

int today = date.getDayOfMonth();

Then we set date to the first of the month and get the weekday of that date.

date = date.minusDays(today - 1); // set to start of month
DayOfWeek weekday = date.getDayOfWeek();

int value = weekday.getValue(); // 1 = Monday, . . ., 7= Sunday

The variable weekday is set to an object of type DayOfWeek. We call the getValue method of that
object to get a numerical value for the weekday. This yields an integer that follows the international
convention where the weekend comes at the end of the week, returning 1 for Monday, 2 for Tuesday,

and so on. Sunday has the value 7.

Note that the first line of the calendar is indented, so that the first day of the month falls on the

appropriate weekday. Here is the code to print the header and the indentation for the first line:

[0.println("Mon Tue Wed Thu Fri Sat Sun");
for (inti= 1; i < value; i++) {

[O.print(" ");

Now, we are ready to print the body of the calendar. We enter a loop in which date traverses the days

of the month.

In each iteration, we print the date value. If date is today, the date is marked with an *. Then, we

advance date to the next day. When we reach the beginning of each new week, we print a new line:

while (date.getMonthValue() == month) {
[0.print("%3d".formatted(date.getDayOfMonth()));
if (date.getDayOfMonth() == today) {

10.print("*");

else {

[0.print(" ");

date = date.plusDays(1);

if (date.getDayOfWeek().getValue() == 1) {

10.println();

When do we stop? We don’t know whether the month has 31, 30, 29, or 28 days. Instead, we keep

iterating while date is still in the current month.

isting 4.1 shows the complete program.

As you can see, the LocalDate class makes it possible to write a calendar program that takes care of
complexities such as weekdays and the varying month lengths. You don’t need to know sow the
LocalDate class computes months and weekdays. You just use the interface of the class—the methods

such as plusDays and getDayOfWeek.

The point of this example program is to show you how you can use the interface of a class to carry out

fairly sophisticated tasks without having to know the implementation details.

Listing 4.1 CalendarDemo.java

1 Jx*

* This program prints a calendar for the current month.

300%

~

void main() {

5 LocalDate date = LocalDate.now();

6

18

[\
w

29

30

int month = date.getMonthValue();

int today = date.getDayOfMonth();

date = date.minusDays(today - 1); // set to start of month

DayOfWeek weekday = date.getDayOfWeek();

int value = weekday.getValue(); // 1 = Monday, . . ., 7= Sunday

10.printIn("Mon Tue Wed Thu Fri Sat Sun");

for (int i = 1; i < value; i++) {

10.print(" ");

while (date.getMonthValue() == month) {

10.print("%3d".formatted(date.getDayOfMonth()));

if (date.getDayOfMonth() == today) {

1O.print("*");

else {

10.print(" ");

date = date.plusDays(1);

if (date.getDayOfWeek().getValue() == 1) {

10.println();

if (date.getDayOfWeek().getValue() !=1) {

31 10.println();

java.time.LocalDate 8

B gtatic LocalDate now()
constructs an object that represents the current date.
static LocalDate of(int year, int month, int day)
constructs an object that represents the given date.
int getYear()
B int getMonthValue()
B int getDayOfMonth()
get the year, month, and day of this date.
B DayOfWeek getDayOfWeek()
gets the weekday of this date as an instance of the DayOfWeek class. Call getValue on the
DayOfWeek instance to get a weekday between 1 (Monday) and 7 (Sunday).
LocalDate plusDays(int n)
B [ocalDate minusDays(int n)

yield the date that is n days after or before this date.

4.3. Defining Your Own Classes

In Chapter 3, you started writing simple programs with compact source files, each with a main method.

Now the time has come to show you how to write the kind of “workhorse classes” that are needed for
more sophisticated applications. These classes typically do not have a main method. Instead, they have
their own instance fields and methods. To build a complete program, you combine several source files,

one of which has a main method.

4.3.1. An Employee Class

The simplest form for a class definition in Java is

class ClassName {

field,

ﬁeld2

constructor;

constructor,

method,;

method,

Consider the following, very simplified, version of an Employee class that might be used by a business

in writing a payroll system:

class Employee {
// instance fields
private String name;
private double salary;

private LocalDate hireDay;

// constructor

Employee(String n, double s, int year, int month, int day) {

name = n;

salary =s;

hireDay = LocalDate.of(year, month, day);

// a method
String getName() {

return name;

// more methods

We break down the implementation of this class, in some detail, in the sections that follow. First,

though, the main method in Listing 4.2 shows the Employee class in action.

In the program, we construct an Employee array and fill it with three Employee objects. Next, we use
the raiseSalary method of the Employee class to raise each employee’s salary by 5%. Finally, we print

out information about each employee, by calling the getName, getSalary, and getHireDay methods.

for (Employee e : staff) {
10.println("name=" + e.getName()
+ ",salary=" + e.getSalary()

+ " hireDay=" + e.getHireDay());

b

Listing 4.2 EmployeeDemo.java

L /e

2 * This program tests the Employee class.

*/

w

EN

void main() {
5 // fill the staff array with three Employee objects

6 Employee[] staff = new Employee[3];

staff{0] = new Employee("Carl Cracker", 75000, 1987, 12, 15);

staff[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);

staff[2] = new Employee("Tony Tester", 40000, 1990, 3, 15);

// raise everyone's salary by 5%

for (Employee e : staff) {

e.raiseSalary(5);

// print out information about all Employee objects

for (Employee e : staff) {

10.println("name="+ e.getName() + ",salary=" + e.getSalary()

+ "hireDay=" + e.getHireDay());

Vaakal

* Variations of this class will be used throughout the book.

*/

class Employee {

private String name;

private double salary;

private LocalDate hireDay;

Employee(String n, double s, int year, int month, int day) {

name = n;

34 salary =s;

35 hireDay = LocalDate.of(year, month, day);

38 String getName() {

39 return name;

42 double getSalary() {

43 return salary;

46 LocalDate getHireDay() {

47 return hireDay;

48 }

49

50 void raiseSalary(double byPercent) {

51 double raise = salary * byPercent / 100;
52 salary += raise;

53 }

54 1}

4.3.2. Dissecting the Employee Class

In the sections that follow, we will dissect the Employee class. Let’s start with the methods in this

class. As you can see by examining the source code, this class has one constructor and four methods:

Employee(String n, double s, int year, int month, int day)
String getName()

double getSalary()

LocalDate getHireDay()

void raiseSalary(double byPercent)

In many ways, this is a great example of a class. It describes an entity of a business domain. There is
state: the name and salary. The state can change, on the happy occasion of a raise. There are different
kinds of employees: managers, executives, and so on, which can be modeled as a hierarchy of related

classes.

But the example is not perfect. Should the name be a string, or should there be a separate Name class,
so one can properly deal with the finer points of names, such as first and last names and middle
initials? Is double the right type for a salary? Why pass year, month, and day separately to the
constructor instead of a LocalDate object? Would it be better to have immutable state? And is it really

a good idea to use separate classes for managers and executives, as we will do in the next chapter?

These are valid concerns, but I decided to stick with this Employee class. It models a familiar context,

and it is convenient for exploring Java features by considering various implementations.

Note: It is common to declare classes and methods as public. We discuss access levels later in

this chapter. For our first programs, the default access rules are sufficient.

Notice the three instance fields that will hold the data manipulated inside an instance of the Employee

class.

private String name;
private double salary;

private LocalDate hireDay;

The private keyword makes sure that the only methods that can access these instance fields are the

methods of the Employee class itself. No outside method can read or write to these fields.

Note: You could omit the private keyword with your instance fields, but it would be a very bad
idea. Having non-private instance fields would allow other parts of the program to read and
modify the instance fields, completely ruining encapsulation. If it is possible to modify fields,
in my experience, some code will take advantage of that access privilege when you least expect

it. It is best to make all your instance fields private.

Finally, note that two of the instance fields are themselves objects: The name and hireDay fields are
references to String and LocalDate objects. This is quite usual: Classes will often contain instance

fields of class type.

4.3.3. First Steps with Constructors

Let’s look at the constructor listed in our Employee class.

Employee(String n, double s, int year, int month, int day) {

name = n;

salary ='s;

hireDay = LocalDate.of(year, month, day);

As you can see, the name of the constructor is the same as the name of the class. This constructor runs

when you construct objects of the Employee class—giving the instance fields the initial state you want

them to have.

For example, when you create an instance of the Employee class with code like this:

new Employee("James Bond", 100000, 1950, 1, 1)

you have set the instance fields as follows:

name = "James Bond";

salary = 100000;

hireDay = LocalDate.of(1950, 1, 1); // January 1, 1950

There is an important difference between constructors and other methods. A constructor can only be

called in conjunction with the new operator. You can’t apply a constructor to an existing object to reset

the instance fields. For example,

james.Employee("James Bond", 250000, 1950, 1, 1) // ERROR

is a compile-time error.

We will have more to say about constructors later in this chapter. For now, keep the following in mind:

A constructor has the same name as the class.

A class can have more than one constructor.

A constructor can have zero, one, or more parameters.

A constructor has no return value.

A constructor is always called with the new operator.

Note: In Python, you don’t use the new operator with constructors. Still, all Python objects are

allocated on the heap. In C++, you can construct objects on the stack (without new) or on the

heap (with new).

Employee number007("James Bond", 100000, 1950, 1, 1); // C++, on stack

Employee* mata_hari = new Employee("Mata Hari", 100000, 1876, 8, 7); // C++, on heap

0 Caution: Be careful not to introduce local variables with the same names as the instance fields.

For example, the following constructor will not set the name or salary instance fields:

Employee(String n, double s, . . .) {
String name = n; // ERROR

double salary =s; // ERROR

The constructor declares /ocal variables name and salary. These variables are only accessible
inside the constructor. They shadow the instance fields with the same name. Some
programmers accidentally write this kind of code when they type faster than they think,
because their fingers are used to adding the data type. This is a nasty error that can be hard to
track down. You just have to be careful in all of your methods to not use variable names that

equal the names of instance fields.

4.3.4. Declaring Local Variables with var

You can declare local variables with the var keyword instead of specifying their type, provided their

type can be inferred from the initial value. For example, instead of declaring

Employee harry = new Employee("Harry Hacker", 50000, 1989, 10, 1);

you simply write

var harry = new Employee("Harry Hacker", 50000, 1989, 10, 1);

This is nice since it avoids the repetition of the type name Employee.

From now on, I will use the var notation in those cases where the type is obvious from the right-hand

side without any knowledge of the Java API. But I won’t use var with numeric types such as int, long,

or double so that you don’t have to look out for the difference between 0, OL, and 0.0. Once you are

more experienced with the Java API, you may want to use the var keyword more frequently.

Note that the var keyword can only be used with local variables inside methods. You must always

declare the types of parameters and fields.

Note: Many programmers use the var keyword quite liberally, whenever they think that the
variable type is obvious or obviously uninteresting. A good set of guidelines is at

https://openjdk.org/projects/amber/guides/Ivti-style-guide.

4.3.5. Working with null References

In Section 4.2.1, you saw that an object variable holds a reference to an object, or the special value null

to indicate the absence of an object.

This sounds like a convenient mechanism for dealing with special situations, such as an unknown

name or hire date. But you need to be very careful with null values.

If you apply a method to a null value, a NullPointerException occurs.

LocalDate rightNow = null;

String s = rightNow.toString(); // NullPointerException

https://openjdk.org/projects/amber/guides/lvti-style-guide

This is a serious error, similar to an “index out of bounds” exception. If your program does not “catch”

an exception, it is terminated. Normally, programs don’t catch these kinds of exceptions but rely on

programmers not to cause them in the first place.

6 Tip: When your program is terminated with a NullPointerException, the stack trace shows you
in which line of your code the problem occurred. Since Java 14, the error message includes the

name of the variable or method with the null value. For example, in a call
String s = e.getHireDay().toString();

the error message tells you whether e was null or getHireDay returned null.

When you define a class, it is a good idea to be clear about which fields can be null. In our example,

we don’t want the name or hireDay field to be null. (We don’t have to worry about the salary field. It

has primitive type and can never be null.)

The hireDay field is guaranteed to be non-null because it is initialized with a new LocalDate object.

But name will be null if the constructor is called with a null argument for n.

There are two solutions. The “permissive” approach is to turn a null argument into an appropriate non-

null value:

if (n == null) name = "unknown"; else name = n;

The Objects class has a convenience method for this purpose:

Employee(String n, double s, int year, int month, int day) {

name = Objects.requireNonNullElse(n, "unknown");

The “tough love” approach is to reject a null argument:

Employee(String n, double s, int year, int month, int day) {

name = Objects.requireNonNull(n, "The name cannot be null");

If someone constructs an Employee object with a null name, then a NullPointerException occurs. At

first glance, that may not seem a useful remedy. But there are two advantages:

1. The exception report has a description of the problem.

2. The exception report pinpoints the location of the problem. Otherwise, a NullPointerException

would have occurred elsewhere, with no easy way of tracing it back to the faulty constructor

argument.

Note: Whenever a parameter is an object reference, ask yourself whether you really intend to
model values that can be present or absent. If not, the “tough love” approach of throwing an

exception is preferred.

4.3.6. Implicit and Explicit Parameters

Methods operate on objects and access their instance fields. For example, the method

void raiseSalary(double byPercent) {
double raise = salary * byPercent / 100;

salary += raise;

sets a new value for the salary instance field in the object on which this method is invoked. Consider

the call

number007.raiseSalary(5);

The effect is to increase the value of the number007.salary field by 5%. More specifically, the call

executes the following instructions:

double raise = number007.salary * 5/ 100;

number(007.salary += raise;

The raiseSalary method is called with two arguments. The first argument, called the implicit argument,

is the object of type Employee that appears before the method name. The second argument, the number

inside the parentheses after the method name, is an explicit argument.

The method declaration has a parameter variable for the explicit argument, namely double byPercent.

However, no parameter variable is declared for the implicit argument.

Every method has an implicit parameter, whose name is the keyword this, which is initialized with the

implicit argument. If you like, you can write the raiseSalary method as follows:

void raiseSalary(double byPercent) {
double raise = this.salary * byPercent / 100;

this.salary += raise;

Some programmers prefer that style because it clearly distinguishes between instance fields and local

variables.

Note: I find the “implicit/explicit” terminology useful for describing the behavior of a method,
but it is not an official part of Java. The Java Language Specification simply talks about “the

object for which the method was invoked.”

When object-oriented programming was first invented, objects were said to communicate by
sending messages to each other. In that terminology, the object to which the message is sent is
called the receiver. In Java, sending a message to a receiver is the same as invoking a method

on an object.

4.3.7. Benefits of Encapsulation

Finally, let’s look more closely at the rather simple getName, getSalary, and getHireDay methods.

String getName() {

return name;

double getSalary() {

return salary;

LocalDate getHireDay/() {

return hireDay;

These are obvious examples of accessor methods. As they simply return the values of instance fields,

they are sometimes called field accessors.

Wouldn’t it be easier to make the name, salary, and hireDay fields directly accessible, instead of

having separate accessor methods?

Using methods gives you more control and safety. Consider the salary field which is only changed by
the raiseSalary method. Should the value ever turn out wrong, only that method needs to be debugged.
Had the salary field been directly accessible, the culprit for messing up the value could have been

anywhere.

Sometimes, it happens that you want to get and set the value of an instance field. Then you need to

supply three items:

B A private instance field;
B A field accessor method; and

B A field mutator method.

This is a lot more tedious than making the instance field directly accessible, but there are considerable

benefits.

First, you can change the internal implementation without affecting any code other than the methods of

the class. For example, if the storage of the name is changed to

private String firstName;

private String lastName;

then the getName method can be changed to return

firstName + " " + lastName

This change is completely invisible to the remainder of the program.

Of course, the accessor and mutator methods may need to do a lot of work to convert between the old
and the new data representation. That leads us to our second benefit: Mutator methods can perform
error checking, whereas code that simply assigns to a field may not go into the trouble. For example, a

setSalary method might check that the salary is never less than 0.

0 Caution: Be careful not to write accessor methods that return references to mutable objects. In
a previous edition of this book, I violated that rule in the Employee class in which the

getHireDay method returned an object of class Date:

class Employee {

private Date hireDay;

Date getHireDay() {

return hireDay; // BAD

Unlike the LocalDate class, which has no mutator methods, the Date class has a mutator

method, setTime, where you can set the number of milliseconds.

The fact that Date objects are mutable breaks encapsulation! Consider the following rogue

code:

Employee harry =. . .;

Date d = harry.getHireDay();

double tenYearsInMilliseconds = 10 * 365.25 * 24 * 60 * 60 * 1000;
d.setTime(d.getTime() - (long) tenYearsInMilliseconds);

//'let's give Harry ten years of added seniority

The reason is subtle. Both d and harry.hireDay refer to the same object (see Figure 4.5).

Applying mutator methods to d automatically changes the private state of the Employee object!

Figure 4.5: Returning a reference to a mutable instance field

You will see in Chapter 6 how to solve this problem by cloning the mutable object before

returning it.

A better remedy is to use immutable objects when possible, such as LocalDate instead of the

legacy Date class.

4.3.8. Class-Based Access Privileges

You know that a method can access the private data of the object on which it is invoked. What people
often find surprising is that a method can access the private data of all objects of its class. For

example, consider a method equals that compares two employees.

class Employee {

public boolean equals(Employee other) {

return id == other.id;

A typical call is

if (harry.equals(boss)) . . .

This method accesses the private fields of harry, which is not surprising. It also accesses the private
fields of boss. This is legal because boss is an object of type Employee, and a method of the Employee

class is permitted to access the private fields of any object of type Employee.

4.3.9. Private Methods

When implementing a class, we make all instance fields private because public data are dangerous. But

what about the methods? Sometimes, you may wish to break up the code for a computation into

separate helper methods. Typically, these helper methods should not be part of the public interface—
they may be too close to the current implementation or require a special protocol or calling order. Such

methods are best implemented as private.

To implement a private method in Java, simply add the private modifier.

By making a method private, you are under no obligation to keep it available if you change your
implementation. The method may well be harder to implement or unnecessary if the data
representation changes; this is irrelevant. The point is that as long as the method is private, the
designers of the class can be assured that it is never used elsewhere, so they can simply drop it. Ifa

method is not private, you cannot simply drop it because other code might rely on it.

4.3.10. Final Instance Fields

You can define an instance field as final. Such a field must be initialized when the object is
constructed. That is, you must guarantee that the field value has been set after the end of every
constructor. Afterwards, the field may not be modified again. For example, the name field of the
Employee class may be declared as final because it never changes after the object is constructed—

there is no setName method.

class Employee {

private final String name;

The final modifier is particularly useful for fields whose type is primitive or an immutable class. (A
class is immutable if none of its methods ever mutate its objects. For example, the String class is

immutable.)

For mutable classes, the final modifier can be confusing. For example, consider a field

private final StringBuilder evaluations;

that is initialized in the Employee constructor as

evaluations = new StringBuilder();

The final keyword merely means that the object reference stored in the evaluations variable will never

again refer to a different StringBuilder object. But the object can be mutated:

void giveGoldStar() {

evaluations.append(LocalDate.now() + ": Gold star!\n");

Note: A final field can be null:

name = n != null && n.length() == 0 ? null : n;

Of course, it can then never be changed to a non-null value.

4.4. Static Fields and Methods

When you declare a class, you specify the data that each object stores, and the methods that work with
the data. Sometimes, a class wants to specify data outside of objects, or methods that are not invoked

on objects. These features are the topics of the following subsections.

4.4.1. Static Fields

If you define a field as static, then the field is not present in the objects of the class. There is only a
single copy of each static field. You can think of static fields as belonging to the class, not to the
individual objects. For example, let’s suppose we want to assign a unique identification number to

each employee. We add an instance field id and a static field nextld to the Employee class:

class Employee {

private static int nextld = 1;

private int id;

Every Employee object now has its own id field, but there is only one nextld field that is shared among
all instances of the class. Let’s put it another way. If there are 1,000 objects of the Employee class,
then there are 1,000 instance fields id, one for each object. But there is a single static field nextId.
Even if there are no Employee objects, the static field nextld is present. It belongs to the class, not to

any individual object.

In the constructor, we assign the next available ID to the new Employee object and then increment it:

id = nextld;

nextld++;

Suppose we construct the object harry. Then the id field of harry is set to the current value of the static

field nextld, and the value of the static field is incremented:

harry.id = Employee.nextld;

Employee.nextld++;

0 Caution: If you accidentally declare what you want to be an instance field as static, the

compiler won’t help you find your mistake.

Conceptually, a static field (such as nextld in the preceding example) belongs to the class, not
to any object. Nevertheless, in Java, you can refer to the field as Employee.nextld, or e.nextld,
where e is any Employee object. And inside the methods of the Employee class, you can use

nextld, this.nextld, or Employee.nextld.

Therefore, it is a good idea to pay attention to any static declarations in a class. Static variables
are uncommon and deserve close scrutiny. Static constants, discussed in the following section,

stand out because their names are typically in all caps.

4.4.2. Static Constants

Static variables are quite rare. However, static constants are more common. For example, the Math

class defines a static constant:

public class Math {

public static final double PI = 3.14159265358979323846;

You can access this constant in your programs as Math.PI.

If the keyword static had been omitted, then PI would have been an instance field of the Math class.
That is, you would need an object of this class to access PI, and every Math object would have its own

copy of PL.

The static constant System.out is declared in the System class as follows:

public class System {

public static final PrintStream out =. . .;

As mentioned several times, fields should be private, because otherwise other code can modify them.

However, public constants (that is, final fields) are fine. Since out has been declared as final, you

cannot reassign another print stream to it:

System.out = new PrintStream(. . .); // ERROR--out is final

Note: If you look at the System class, you will notice a method setOut that sets System.out to a
different stream. You may wonder how that method can change the value of a final variable.
However, the setOut method is a native method, not implemented in the Java programming
language. Native methods can bypass the access control mechanisms of the Java language. This

is a very unusual workaround that you should not emulate in your programs.

Note: For thirty years, invoking the println method on System.out was the preferred way to

produce console output.

However, it is not easy to explain System.out to beginners. Why a public field? Why not
uppercase OUT like all other public final fields in the Java API? Why native methods for

changing it?

For ease of learning, Java 25 introduced the 1O.println method instead.

4.4.3. Static Methods

Static methods are methods that do not operate on objects. For example, the pow method of the Math

class is a static method. The expression

Math.pow(x, a)

computes the power x2. It does not use any Math object to carry out its task. In other words, it has no

implicit parameter.

You can think of static methods as methods that don’t have a this parameter. (In a nonstatic method,

the this parameter refers to the implicit parameter of the method—see Section 4.3.6.)

A static method of the Employee class cannot access the id instance field because it does not operate
on an object. However, a static method can access a static field. Here is an example of such a static

method:

static int advanceld() {
int r = nextld; // obtain next available id
nextld++;

return t;

To call this method, you supply the name of the class:

int n = Employee.advanceld();

Could you have omitted the keyword static for this method? Yes, but then you would need to have an

object reference of type Employee to invoke the method.

Note: It is legal to use an object to call a static method. For example, if harry is an Employee
object, then you can call harry.advanceld() instead of Employee.advanceld(). However, I find
that notation confusing. The advanceld method doesn’t look at harry at all to compute the
result. I recommend that you use class names, not objects, to invoke static methods. (Your IDE

will probably suggest a refactoring otherwise.)

Use static methods in two situations:

® When a method doesn’t need to access the object state because all needed parameters are supplied
as explicit parameters (example: Math.pow)

B When a method only needs to access static fields of the class (example: Employee.advanceld)

Note: In some object-oriented programming languages, static fields and methods are called

class fields and class methods.

The term “static” has a curious history. At first, the keyword static was introduced in C to
denote local variables that don’t go away when a block is exited. In that context, the term
“static” makes sense: The variable stays around and is still there when the block is entered

again. Then static got a second meaning in C, to denote global variables and functions that

cannot be accessed from other files. The keyword static was simply reused to avoid introducing
a new keyword. Finally, C++ reused the keyword for a third, unrelated, interpretation—to
denote variables and functions that belong to a class but not to any particular object of the

class. That is the same meaning the keyword has in Java.

4.4.4. Factory Methods

Here is another common use for static methods. Classes such as LocalDate and NumberFormat use
static factory methods that construct objects. You have already seen the factory methods

LocalDate.now and LocalDate.of. Here is how to obtain formatter objects for various styles:

NumberFormat currencyFormatter = NumberFormat.getCurrencylnstance();
NumberFormat percentFormatter = NumberFormat.getPercentInstance();
double x =0.1;

10.printIn(currencyFormatter.format(x)); // prints $0.10

10.println(percentFormatter.format(x)); // prints 10%

Why doesn’t the NumberFormat class use a constructor instead? There are three reasons to prefer a

factory method over a constructor:

B You can’t give names to constructors. The constructor name is always the same as the class name.

But we want two different names to get the currency instance and the percent instance.

® When you use a constructor, you can’t vary the type of the constructed object. But the factory
methods actually return objects of the class DecimalFormat, a more specialized class that inherits

from NumberFormat. (See Chapter S for more on inheritance.)

B A constructor always constructs a new object. You may want to share instances. For example, the

call Set.of() yields the same instance of an empty set when you call it twice.
4.4.5. The main Method

Note that you can call static methods without having any objects. For example, you never construct

any objects of the Math class to call Math.pow.

For the same reason, the main method was traditionally a static method.

class Application {
public static void main(String[] args) {

// construct objects here

The static main method does not operate on any objects. After all, when a program starts, there aren’t

any objects yet. The main method executes and constructs the objects that the program needs.

As of Java 25, the main method no longer needs to be public or static, and it need not have a parameter

of type String[] args. Here are the complete rules for main methods:

If there is more than one main method, static main methods are preferred over instance methods

Methods with a String[] parameter are preferred over those with no parameters.

Private main methods are not considered.

If main is not static, the class must have a non-private no-argument constructor (see Section

4.6.3). Then the launcher constructs an instance of the class and invokes the main method on it.

Also as of Java 25, a main method no longer needs to be declared inside a class. A source file with

method declarations outside a class is a compact compilation unit. It implicitly declares a class whose

name is derived from the source file. For example, consider a source file with this content:

void main() { // top level method

int counter = 0; // instance field

void work() { // another method

counter++;

Technically, the choice of class name can depend on the host system. It will usually be the file name

with the extension removed. If the file name is Application.java, the result is most likely a class with

name Application. Top-level variables and methods become instance fields and methods of that class.

Note: You cannot declare a constructor for an implicitly declared class. After all, you can’t

completely rely on the name of the class, which is also the name of any constructor.

For the same reason, it doesn’t make sense to implicitly declare classes that you want to use in

other classes. You need a reliable name to use the class.

The practical use for a compact compilation unit is a class with a main method, which you

launch as a source file.

Now let us turn to the next example program. The Employee class in Listing 4.4 has a static field

nextld and a static method advanceld. In the sample program (Listing 4.3), we fill an array with three

Employee objects and then print the employee information. Finally, we print the next available

identification number, to demonstrate the static method.

Note: In the code for this section, the Employee class was declared in a separate file
Employee.java. In contrast, the compact compilation unit in the EmployeeDemo.javafile of the

preceding section contained both the main method of the program and the Employee class.

Technically, in that situation, the Employee class is an inner class of the implicit
EmployeeDemo class. By using inner classes, we can present different variations of the

Employee class in our sample programs. You will learn more about inner classes in Chapter 6.

ﬂ Tip: Every class can have a main method. That can be handy for adding demonstration code to

a class. For example, you can add a main method to the Employee class:

class Employee {
Employee(String n, double s) {
name = n;

salary = s;

static void main() { // runs demo
var ¢ = new Employee("Harry", 50000);

10.println(e.getName() + " " + e.getSalary());

Note that in this example, main must be static since the Employee class doesn’t have a no-

argument constructor.
To see the demo of the Employee class, simply execute

java Employee.java

If the Employee class is a part of another program, its main method is not executed (unless, of

course, it is explicitly called.)

Listing 4.3 StaticDemo.java

1 ik

2 * This program demonstrates static methods.

*/

w2

4 void main(String[] args) {

W

// fill the staff array with three Employee objects

6 var staff = new Employee[3];

8 staff[0] = new Employee("Tom", 40000);

9 staff[1] = new Employee("Dick", 60000);

10 staff[2] = new Employee("Harry", 65000);

12 // print out information about all Employee objects

13 for (Employee e : staff) {

14 10.println("name="+ e.getName() + ",id=" + e.getld()

. + " salary=" + e.getSalary());

18 int n = Employee.advanceld(); // calls static method

19 1O.println("Next issued id=" + n);

Listing 4.4 Employee.java

[\e]

w

W

16

18

19

N
N

[\]
w

[\

[\
(2]

ikl

* A simplified employee class to demonstrate static fields and methods.

* This class is used in StaticDemo.java and ParamDemo.java

*/

class Employee {

private static int nextld = 1;

private String name;

private double salary;

private int id;

Employee(String n, double s) {

name = n;

salary =s;

id = advanceld();

String getName() {

return name;

double getSalary() {

return salary;

int getld() {

return id;

30 void raiseSalary(double byPercent) {

31 double raise = salary * byPercent / 100;
32 salary += raise;

3303

34

35 static int advanceld() {

36 int r = nextld; // obtain next available id
37 nextld++;

38 return r;

39 3

40

41 static void main() { // runs demo

42 var ¢ = new Employee("Harry", 50000);
43 10.println(e.getName() + " " + e.getSalary());
44 | 1}

45 |}

java.util.Objects 7

B static <T> void requireNonNull(T obj)
B static <T> void requireNonNull(T obj, String message)
B static <T> void requireNonNull(T obj, Supplier<String> messageSupplier) 8
If obj is null, these methods throw a NullPointerException with no message or the given

message. (Chapter 6 explains how to obtain a value lazily with a supplier. Chapter 8 explains the

<T> syntax.)
B static <T> T requireNonNullElse(T obj, T defaultObj) 9
B static <T> T requireNonNullElseGet(T obj, Supplier<T> defaultSupplier) 9

return obj if it is not null, or the default object if obj is null.

4.5. Method Parameters

Let us review the computer science terms that describe how parameters can be passed to a method (or
a function) in a programming language. The term call by value means that the method gets just the
value that the caller provides. In contrast, call by reference means that the method gets the location of
the variable that the caller provides. Thus, a method can modify the value stored in a variable passed by
reference but not in one passed by value. These “call by . . .” terms are standard computer science
terminology describing the behavior of method parameters in various programming languages, not just
Java. (There is also a call by name that is mainly of historical interest, being employed in the Algol

programming language, one of the oldest high-level languages.)

The Java programming language al/ways uses call by value. That means that the method gets a copy of

all arguments. In particular, the method cannot modify the contents of any variables in the method call.

For example, consider the following call:

double percent = 10;

harry.raiseSalary(percent);

No matter how the method is implemented, we know that after the method call, the value of percent is

still 10.

Let us look a little more closely at this situation. Suppose a method tried to triple the value of a method

parameter:

void tripleValue(double x) { // doesn't work

x=3*x;

Let’s call this method:

double percent = 10;

triple Value(percent);

However, this does not work. After the method call, the value of percent is still 10. Here is what

happens:

1. x is initialized with a copy of the value of percent (that is, 10).

2. x is tripled—it is now 30. But percent is still 10 (see Figure 4.6).

Figure 4.6: Modifying a parameter variable has no lasting effect.

3. The method ends, and the parameter variable x is no longer in use.

There are, however, two kinds of method parameters:

B primitive types (number types, char, boolean)

B Object references

You have seen that it is impossible for a method to change a primitive type parameter. The situation is
different for object parameters. You can easily implement a method that triples the salary of an

employee:

void tripleSalary(Employee x) { // works

x.raiseSalary(200);

When you call

harry = new Employee(. . .);

tripleSalary(harry);

then the following happens:

1. x is initialized with a copy of the value of harry—that is, an object reference.
2. The raiseSalary method is applied to that object reference. The Employee object to which both x

and harry refer gets its salary raised by 200 percent.

3. The method ends, and the parameter variable x is no longer in use. Of course, the object variable

harry continues to refer to the object whose salary was tripled (see Figure 4.7).

Figure 4.7: Modifying an object referenced by a parameter has a lasting effect.

As you have seen, it is easily possible—and in fact very common—to implement methods that change
the state of an object parameter. The reason is simple. The method gets a copy of the object reference,

and both the original and the copy refer to the same object.

Many programming languages (in particular, C++ and Pascal) have two mechanisms for parameter
passing: call by value and call by reference. Some programmers (and unfortunately even some book
authors) claim that Java uses call by reference for objects. That is false. As this is such a common

misunderstanding, it is worth examining a counterexample in detail.

Let’s try to write a method that swaps two Employee objects:

void swap(Employee x, Employee y) { // doesn't work

Employee temp = x;

If Java used call by reference for objects, this method would work:

var a =new Employee("Alice", . . .);

var b = new Employee("Bob", . . .);

swap(a, b);

// does a now refer to Bob, b to Alice?

However, the method does not actually change the object references that are stored in the variables a

and b. The x and y parameters of the swap method are initialized with copies of these references. The

method then proceeds to swap these copies.

// x refers to Alice, y to Bob

Employee temp = x;

X=;

y = temp;

// now x refers to Bob, y to Alice

But ultimately, this is a wasted effort. When the method ends, the parameter variables x and y are

abandoned. The original variables a and b still refer to the same objects as they did before the method

call (see Figure 4.8).

Figure 4.8: Swapping parameter variables has no lasting effect.

This demonstrates that the Java programming language does not use call by reference for objects.

Instead, object references are passed by value.

Here is a summary of what you can and cannot do with method parameters in Java:

B A method cannot modify a parameter of a primitive type (that is, number types, char, or boolean).
B A method can change the state of an object parameter.

B A method cannot make an object parameter refer to a new object.

The program in Listing 4.5 demonstrates these facts. The program first tries to triple the value of a

number parameter and does not succeed:

Testing tripleValue:

Before: percent=10.0

End of method: x=30.0

After: percent=10.0

It then successfully triples the salary of an employee:

Testing tripleSalary:

Before: salary=50000.0

End of method: salary=150000.0

After: salary=150000.0

After the method, the state of the object to which harry refers has changed. This is possible because the

method modified the state through a copy of the object reference.

Finally, the program demonstrates the failure of the swap method:

Testing swap:

Before: a=Alice

Before: b=Bob

End of method: x=Bob
End of method: y=Alice
After: a=Alice

After: b=Bob

As you can see, the parameter variables x and y are swapped, but the variables a and b are not affected.

Note: Some programming languages have both call by value and call by reference. In C++, you
tag reference parameters with &. For example, you can easily implement methods void
triple Value(double& x) or void swap(Employee& x, Employee& y) that modify their reference

parameters.

In C#, reference parameters are declared as ref (bidirectional), in, or out.

Listing 4.5 ParamDemo.java

[\e]

w

~

w

Vaakal

* This program demonstrates parameter passing in Java.

*/

void main() {

/*

* Test 1: Methods can't modify numeric parameters

*/

10.printIn("Testing tripleValue:");

double percent = 10;

10.printIn("Before: percent="+ percent);

tripleValue(percent);

I10.printIn(" After: percent=" + percent);

/*

* Test 2: Methods can change the state of object parameters

*/

10.println("\nTesting tripleSalary:");

var harry = new Employee("Harry", 50000);

10.printIn("Before: salary=" + harry.getSalary());

tripleSalary(harry);

10.printIn("After: salary="+ harry.getSalary());

/%

* Test 3: Methods can't attach new objects to object parameters

*/

10.println("\nTesting swap:");

var a = new Employee("Alice", 70000);

28 var b =new Employee("Bob", 60000);
29 10.printIn("Before: a=" + a.getName());
30 10.println("Before: b=" + b.getName());
31 swap(a, b);

32 10.printIn("After: a=" + a.getName());

33 1O.println("After: b=" + b.getName());

36 void tripleValue(double x) { // doesn't work
37 x=3*x;

38 1O.println("End of method: x=" + x);

41 void tripleSalary(Employee x) { // works
42 x.raiseSalary(200);

43 10.printIn("End of method: salary="+ x.getSalary());

46 void swap(Employee x, Employee y) {

47 Employee temp = x;

48 X=Yy;

49 y = temp;

50 1O.println("End of method: x=" + x.getName());

51 10.println("End of method: y=" + y.getName());

4.6. Object Construction

You have seen how to write simple constructors that define the initial state of your objects. However,
since object construction is so important, Java offers quite a variety of mechanisms for writing

constructors. We go over these mechanisms in the sections that follow.

4.6.1. Overloading

Some classes have more than one constructor. For example, you can construct an empty StringBuilder

object as

var messages = new StringBuilder();

Alternatively, you can specify an initial string:

var todoList = new StringBuilder("To do:\n");

This capability is called overloading. Overloading occurs if several methods have the same name (in
this case, the StringBuilder constructor method) but different parameters. The compiler must sort out
which method to call. It picks the correct method by matching the parameter types in the declarations
of the various methods with the types of the arguments used in the specific method call. A compile-
time error occurs if the compiler cannot match the parameters, either because there is no match at all or
because there is not one that is better than all others. (The process of finding a match is called

overloading resolution.)

Note: Java allows you to overload any method—not just constructor methods. Thus, to
completely describe a method, you need to specify its name together with its parameter types.
This is called the signature of the method. For example, the String class has six public methods

called indexOf. They have signatures

indexOf{(int)
indexOf{(int, int)
indexOf{(int, int, int)
indexOf(String)
indexOf(String, int)

indexOf{(String, int, int)

The return type is not part of the method signature. That is, you cannot have two methods with

the same names and parameter types but different return types.

0 Caution: The statement
StringBuilder builder = new StringBuilder("\n'); // ERROR

does not produce a StringBuilder containing a newline. There is a constructor with an int

parameter, which yields a StringBuilder with a preallocated capacity. The char literal "\n' can be

converted to an int but not to a String. The result is a builder with no contents and capacity 10,

the integer value of "\n'.

In general, be careful with overloading when the argument types do not match the parameter

types exactly.

4.6.2. Default Field Initialization

If you don’t set a field explicitly in a constructor, it is automatically set to a default value: numbers to

0, boolean values to false, and object references to null. Some people consider it poor programming

practice to rely on the defaults. Certainly, it makes it harder for someone to understand your code if

fields are being initialized invisibly.

Note: This is an important difference between fields and local variables. You must always
explicitly initialize local variables in a method. But in a class, if you don’t initialize a field, it is

automatically initialized to a default (0, false, or null).

For example, consider the Employee class. Suppose you don’t specify how to initialize some of the

fields in a constructor. By default, the salary field would be initialized with 0 and the name and

hireDay fields would be initialized with null.

However, that would not be a good idea. If anyone called the getName or getHireDay method, they

would get a null reference that they probably don’t expect:

LocalDate h = harry.getHireDay();

int year = h.getYear(); // throws exception if h is null

4.6.3. The Constructor with No Arguments

Many classes contain a constructor with no arguments that creates an object whose state is set to an

appropriate default. For example, here is a no-argument constructor for the Employee class:

Employee() {
name ="";
salary = 0;

hireDay = LocalDate.now();

If you write a class with no constructors whatsoever, then a no-argument constructor is provided for
you. This constructor sets a/l the instance fields to their default values. So, all numeric data contained
in the instance fields would be 0, all boolean values would be false, and all object variables would be

null.

If a class supplies at least one constructor but does not supply a no-argument constructor, it is illegal to
construct objects without supplying arguments. For example, our original Employee class in Listing

4.2 provided a single constructor:

Employee(String n, double s, int year, int month, int day)

With that class, it was not legal to construct default employees. That is, the call

¢ = new Employee();

would have been an error.

0 Caution: Please keep in mind that you get a free no-argument constructor only when your class
has no other constructors. If you write your class with even a single constructor of your own

and you want the users of your class to have the ability to create an instance by a call to
new ClassName()

then you must provide a no-argument constructor. Of course, if you are happy with the default

values for all fields, you can simply supply a constructor with an empty body:

ClassName() { }

Note: Some object-oriented programming languages, notably C++, have explicit destructor
methods for any cleanup code that may be needed when an object is no longer used. The most
common activity in a destructor is reclaiming the memory set aside for objects. Since Java does
automatic garbage collection, manual memory reclamation is not needed, so Java does not

support destructors.

Of course, some objects utilize a resource other than memory, such as a file or a handle to

another object that uses system resources. In this case, it is important that the resource be

reclaimed and recycled when it is no longer needed.

The Object class has a finalize method that classes can override for cleanup. That method was

intended to be called before the garbage collector sweeps away an object. However, you simply

cannot know when this method will be called, and it is now deprecated for removal.

If a resource needs to be closed as soon as you have finished using it, supply a close method
that does the necessary cleanup. You can call the close method when you are done with the

object. In Chapter 7, you will see how you can ensure that this method is called automatically.

4.6.4. Explicit Field Initialization

By overloading the constructor methods in a class, you can build many ways to set the initial state of
the instance fields of your classes. It is always a good idea to make sure that, regardless of the

constructor call, every instance field is set to something meaningful.

You can simply assign a value to any field in the class definition. For example:

class Employee {

nn,

private String name ="";

This assignment is carried out before the constructor executes. This syntax is particularly useful if all

constructors of a class need to set a particular instance field to the same value.

The initialization value doesn’t have to be a constant value. Here is an example in which a field is

initialized with a method call. Consider the Employee class where each employee has an id field. You

can Initialize it as follows:

class Employee {

private static int nextld;

private int id = advanceld();

private static int advanceld() {

int r = nextld;

nextld++;

return t;

4.6.5. Parameter Names

When you write very trivial constructors (and you’ll write a lot of them), it can be somewhat

frustrating to come up with parameter names.

We have generally opted for single-letter parameter names:

Employee(String n, double s) {

name = n;

salary =s;

However, the drawback is that you need to read the code to tell what the n and s parameters mean.

Some programmers prefix each parameter with an “a”:

Employee(String aName, double aSalary) {

name = aName;

salary = aSalary;

That is better. Any reader can immediately figure out the meaning of the parameters.

Another commonly used trick relies on the fact that parameter variables shadow instance fields with

the same name. For example, if you call a parameter salary, then salary refers to the parameter, not the

instance field. But you can still access the instance field as this.salary. Recall that this denotes the

implicit parameter—that is, the object being constructed. Here is an example:

Employee(String name, double salary) {

this.name = name;

this.salary = salary;

Note: Some programmers like to prefix instance fields with an underscore or a fixed letter.
(The letters m and x are common choices.) For example, the salary field might be called

_salary, mSalary, or xSalary. However, this style is not common in Java.

4.6.6. Calling Another Constructor

The keyword this refers to the implicit parameter of a method. However, this keyword has a second

meaning.

A constructor can call another constructor of the same class. Here is a typical example:

Employee(double s) {
// calls Employee(String, double)
this("Employee #" + nextld, s);

nextld++;

When you call new Employee(60000), the Employee(double) constructor calls the Employee(String,

double) constructor.

By having one constructor call another, you can often eliminate duplicate construction code.

Before Java 25, the call to the other constructor had to be the first statement of the constructor body.

This restriction has now been removed.

However there are some restrictions on what can happen between the start of a constructor and the call

of another constructor. This phase is called the early construction context.

In the early construction context, you may not:

Read any instance variable
Write any instance variable that has an explicit initialization
B Invoke any methods on this

Pass this to any other methods

Due to these restrictions, no code can observe a partially constructed object in the early construction

context.

One useful action in the early construction context is to validate or normalize construction parameters:

Employee(double s) {
if (s <0) s = 0; // Cannot have negative salary
this("Employee #" + nextld, s);

nextld++;

4.6.7. Initialization Blocks

You have already seen two ways to initialize an instance field:

B By setting a value in a constructor

B By assigning a value in the declaration

There is a third mechanism in Java, called an initialization block. Class declarations can contain
arbitrary blocks of code. These blocks are executed whenever an object of that class is constructed. For

example:

class Employee {

private static int nextld;

private int id;
private String name;

private double salary;

// object initialization block

id = nextld;

nextld++;

Employee(String n, double s) {
name = n;

salary =s;

Employee() {
name ="";

salary = 0;

In this example, the id field is initialized in the object initialization block, no matter which constructor
is used to construct an object. The initialization block runs first, and then the body of the constructor is

executed.

This mechanism is never necessary and is not common. It is usually more straightforward to place the

initialization code inside a constructor.

Note: It is legal to set fields in initialization blocks even if they are only defined later in the
class. However, to avoid circular definitions, it is not legal to read from fields that are only
initialized later. The exact rules are spelled out in Section 8.3.3 of the Java Language

Specification (https://docs.oracle.com/javase/specs). The rules are complex enough to baffle

the compiler implementors—early versions of Java implemented them with subtle errors.

Therefore, you should always place initialization blocks after the field definitions.

To summarize, here is what happens in detail when a constructor is called:

1. All instance fields are initialized to their default values (0, false, or null).

2. All field initializers and initialization blocks are executed, in the order in which they occur in the

class declaration.

3. The body of the constructor is executed.

4. If the constructor invokes another constructor, the body of that constructor executes as well.

4.6.8. Static Initialization

To initialize a static field, either supply an initial value or use a static initialization block. You have

already seen the first mechanism:

https://docs.oracle.com/javase/specs

private static int nextld = 1;

If the static fields of your class require complex initialization code, use a static initialization block.

Place the code inside a block and tag it with the keyword static. Here is an example. We want the

employee ID numbers to start at a random integer less than 10,000.

private static RandomGenerator generator = RandomGenerator.getDefault();
// static initialization block
static {

nextld = generator.nextInt(10000);

Static initialization occurs when the class is first loaded. Like instance fields, static fields are 0, false,
or null unless you explicitly set them to another value. All static field initializers and static

initialization blocks are executed in the order in which they occur in the class declaration.

Note: Amazingly enough, up to Java 6, it was possible to write a “Hello, World” program in

Java without ever writing a main method.

public class Hello {
static {

System.out.println("Hello, World");

When you invoked the class with java Hello, the class was loaded, the static initialization block
printed “Hello, World”, and only then was a message displayed that main is not defined. Since

Java 7, the java program first checks that there is a main method.

0 Caution: It is possible to have cycles in static initialization. Consider these classes:

class Config {
static final Config DEFAULT = new Config();

String get(String key) { ...}

class Logger {
static final Logger DEFAULT
=new Logger(Config. DEFAULT.get("logger.default.file"));

void log(String message) { ...}

Now suppose the Config constructor adds a logging message:

Config() {
// read configuration

Logger. DEFAULT.log("Config read successfully");

The first time you use a Logger, the static initializization of the Config class invokes the

Config constructor. It calls the log method on the Logger. DEFAULT variable, which has not

yet been set. A NullPointerException occurs, which causes a fatal ExceptionInlnitializerError.

Such errors are not common, but when they occur, they can be challenging to debug.

The program in Listing 4.6 shows many of the features discussed in this section:

Overloaded constructors

B A call to another constructor with this(. . .)
A no-argument constructor

B An object initialization block

B A static initialization block

B An instance field initialization

The example uses a RandomGenerator instance for generating random numbers. Since JDK 17, the

java.util.random package provides implementations of strong algorithms with various tradeoffs. There

is a default that works well for most purposes, but if you are interested in alternatives, read through the

API documentation of the java.util.random package for advice on which algorithm to choose.

Generate random numbers by calling generator.nextInt(n) or other RandomGenerator methods.

(Technically, RandomGenerator is an interface, a concept introduced in Chapter 6. You don’t need to

worry about that when you invoke methods on a RandomGenerator instance.)

6 Tip: The RandomGenerator interface improves upon the Random class from Java 1.0, which
has a fairly short period of 2*8, after which the internal state repeats. As a rule of thumb, to
generate n random numbers, the period should be at least 2. By that rule, the classic Random

224

generator is unsuitable if # exceeds 2-%, which is not that large—about 17 million. These days,

much better algorithms are known, and it is a good idea to move away from the Random class.

Listing 4.6 ConstructorDemo.java

1 ikl

2 * This program demonstrates object construction.

300%

~

void main() {

5 // fill the staff array with three Employee objects

6 var staff = new Employee[3];

8 staff{0] = new Employee("Harry", 40000);

9 staff[1] = new Employee(60000);

[\o)
w

[\
N

[\
(9]

w
[N}

(98]
w

34

%)
W

staff[2] = new Employee();

// print out information about all Employee objects

for (Employee e : staff) {

1O.println("name="+ e.getName() + ",id=" + e.getld()

+ ",salary=" + e.getSalary());

ik

* This version of the Employee class demonstrates overloaded constructors

* and initialization blocks.

*/

class Employee {

private static int nextld;

private int id;
private String name =""; // instance field initialization

private double salary;

private static RandomGenerator generator = RandomGenerator.getDefault();

// static initialization block

static {

// set nextld to a random number between 0 and 9999

nextld = generator.nextInt(10000);

38

39

40

41

47

48

49

(9]

N
[\

W
W

60

61

62

// object initialization block

id = nextld;

nextld++;

// three overloaded constructors

public Employee(String n, double s) {

name = n;

salary = s;

public Employee(double s) {

// calls the Employee(String, double) constructor

this("Employee #" + nextld, s);

// the no-argument constructor
public Employee() {

"

// name initialized to ""--see above
// salary not explicitly set--initialized to 0

// id initialized in initialization block

public String getName() {

return name;

64

65

66

public double getSalary() {

return salary;

public int getld() {

return id;

java.util.random.RandomGenerator 17

int nextInt(int n)

returns a random integer between 0 and n— 1.

static RandomGenerator of(String name)

yields a random generator for the given algorithm name. The algorithm named
"L64X128MixRandom" is suitable for most applications.

static RandomGenerator getDefault()

yields a strong random generator with 64 or more state bits.

java.utiLRandom 1.0

static from(RandomGenerator generator) 19

returns a Random instance whose methods delegate to the given RandomGenerator. This allows

legacy code to use strong random number generators.

4.7. Records

Sometimes, data is just data, and the data hiding that object-oriented programming provides gets in the

way. Consider a class Point that describes a point in the plane, with x- and y-coordinates.

Sure, you can create a class:

class Point {
private final double x;

private final double y;

Point(double x, double y) { this.x = x; this.y = y; }
double getX() { return x; }
double getY() { return y; }

// More methods . . .

But does it really buy us anything to hide x and y, and then make the values available through the

getter methods?

Would we ever want to change the implementation of a Point? Sure, there are polar coordinates, but
you would not use them with a graphics API. In practice, a point in the plane is completely described

by its x- and y-coordinates.

To define such classes more concisely, JDK 14 introduced “records” as a preview feature. The final

version was delivered in JDK 16.

4.7.1. The Record Concept

A record is a special form of a class whose state is immutable and readable by the public. To declare a
record, provide the name and the instance fields that hold the object state. Here is how you define

Point as a record:

record Point(double x, double y) { }

The result 1s a class with instance fields:

private final double x;

private final double y;

In the Java language specification, the instance fields of a record are called its components.

The class has a constructor

Point(double x, double y)

and public accessor methods

double x()

double y()

Note that the accessors are called x and y, not getX and getY. (It is legal in Java to have an instance

field and a method with the same name.)

var p = new Point(3, 4);

10.printIn(p.x() + " " + p.y());

Note: Records don’t follow the get convention because it is a bit messy. For boolean fields, it is
common to use is instead of get. And the capitalization of the first letter can be problematic.
What should happen if a class has fields x and X? Some programmers are unhappy because
their legacy classes cannot trivially become records. But in practice, many of those legacy

classes are mutable and therefore not candidates for conversion to records.

In addition to the field accessor methods, every record has three methods defined automatically:

toString, equals, and hashCode. You will learn more about these methods in Chapter 5.

You can add your own methods to a record:

record Point(double x, double y) {

double distanceFromOrigin() { return Math.hypot(x, y); }

0 Caution: You can define your own versions of the automatically provided methods, as long as

they have the same parameter and return types. For example, this definition is legal:

record Point(double x, double y) {

public double x() { return 2 * x; } // BAD

But it is surely not a good idea.

You cannot add additional instance fields to a record.

record Point(double x, double y) {

private double z; // ERROR

0 Caution: Instance fields of a record are automatically final. However, they may be references

to mutable objects:
record PointInTime(double x, double y, Date when) { }

Then record instances are mutable:

var pt = new PointInTime(0, 0, new Date());

pt.when().setTime(0);

If you intend record instances to be immutable, don’t use mutable types for fields.

Note: As you will see in detail in Chapter 6, you can declare a record inside another class.
Then the enclosing class has access to the fields. For example, enclosing class code can refer to

p-x instead of p.x(), where p is a variable of a nested record Point.

Note that this applies to any record in a compact compilation unit, since it is nested inside the

implicitly declared class.

A record, like any class, can have static fields and methods:

record Point(double x, double y) {
static Point ORIGIN = new Point(0, 0);
static double distance(Point p, Point q) {

return Math.hypot(p.x - q.x, p.y - q.y);

d Tip: Use a record instead of a class for immutable data that is completely represented by a set
of variables. Use a class if the data is mutable, or if the representation may evolve over time.

Records are easier to read, more efficient, and safer in concurrent programs.

4.7.2. Constructors: Canonical, Compact, and Custom

The automatically defined constructor that sets all instance fields is called the canonical constructor.

To validate or normalize the parameters for the canonical constructor, use a compact form. Don’t

specify the parameter list:

record Range(int from, int to) {
Range { // Compact form, validating parameters

if (from > to) throw new Illegal ArgumentException();

or

record Range(int from, int to) {
Range { // Compact form, normalizing parameters
if (from > to) { // Swap the bounds

int temp = from;

from = to;

to = temp;,

The body of the compact form is the “prelude” to the canonical constructor. It merely modifies the
parameter variables from and to before they are assigned to the instance fields this.from and this.to.

You cannot read or modify the instance fields in the body of the compact constructor.

You can define additional custom constructors. A custom constructor must call another constructor, so

that ultimately the canonical constructor is invoked. Here is an example:

record Point(double x, double y) {

Point() { this(0, 0); }

This record has two constructors: the canonical constructor and a no-argument constructor yielding the

origin.

Note: Before Java 25, the call to the other constructor had to be the first statement. Nowadays,
you can have code in the early execution context, before the call to the other constructor.

Section 4.6.6 describes what you can do in that context.

If the canonical constructor needs to do additional work, you can provide your own implementation.
But this is very uncommon. For example, the following implementation is valid, but, as you have seen,

the same effect is easier to achieve with a compact constructor.

record Range(int from, int to) {
Range(int from, int to) { // legal, but more work than a compact constructor
if (from <= to) {
this.from = from;

this.to = to;

else {
this.from = to;

this.to = from;

Listing 4.7 RecordDemo.java

1 Jx*

* This program demonstrates records.

300%

W

6

void main(String[] args) {

var p = new Point(3, 4);

10.println("Coordinates of p: " + p.x() + " " + p.y());

10.printIn("Distance from origin: " + p.distanceFromOrigin());

// Same computation with static field and method

1O.println("Distance from origin: " + Point.distance(Point. ORIGIN, p));

// Invoking a compact constructor

var r = new Range(4, 3);

10.printIn("r: " + 1);

// A mutable record

var pt = new PointInTime(3, 4, new Date());

10.printIn("Before: " + pt);

pt.when().setTime(0);

10.printIn("After: " + pt);

record Point(double x, double y) {

/I A custom constructor

Point() {

this(0, 0);

/I A method

double distanceFromOrigin() {

return Math.hypot(x, y);

8]
[\e]

w

/I A static field and method

W

34 static Point ORIGIN = new Point();

36 static double distance(Point p, Point q) {

37 return Math.hypot(p.x - q.x, p.y - q.y);

41 record Range(int from, int to) {

42 /I A compact constructor

43 Range {

44 if (from > to) { // Swap the bounds
45 int temp = from;

46 from = to;

47 to = temp;

48 }

49 }

50 |}

52 record PointInTime(double x, double y, Date when) { }

4.8. Packages

Java allows you to group classes in a collection called a package. Packages are convenient for

organizing your work and for separating your work from code libraries provided by others. In the

following sections, you will learn how to use and create packages.

4.8.1. Encapsulation

You already know how classes can hide implementation details, by declaring fields and methods as
private. Packages provide a similar mechanism, but encapsulation is the default. Only classes that are
declared as public can be used in other packages, and only methods that are declared as public can be

called by other packages.

A class or method that is not declared public can only be accessed by code from the same package.

If we want to make our Employee class and its methods available to other packages, we should declare

it as follows:

public class Employee {
private String name;
private double salary;

private LocalDate hireDay;

public Employee(String name, double salary, int year, int month, int day) {

public String getName() {

4.8.2. Package Names

One reason for using packages is to guarantee the uniqueness of class names. Suppose two
programmers come up with the bright idea of supplying an Employee class. As long as both of them
place their class into different packages, there is no conflict. In fact, to absolutely guarantee a unique
package name, use an Internet domain name (which is known to be unique) written in reverse. You
then use subpackages for different projects. For example, consider the domain horstmann.com. When
written in reverse order, it turns into the package name com.horstmann. You can then append a project
name, such as com.horstmann.corejava. If you then place the Employee class into that package, the

qualified name becomes com.horstmann.corejava. Employee.

Note: From the point of view of the compiler, there is absolutely no relationship between
nested packages. For example, the packages java.util and java.util.random have nothing to do

with each other. Each is its own independent collection of classes.

4.8.3. Class Importation

A class can use all classes from its own package and all classes declared as public from other

packages.

You can access the public classes in another package in two ways. The first is simply to use the

qualified name; that is, the package name followed by the class name. For example:

java.time.LocalDate today = java.time.LocalDate.now();

That is obviously tedious. A simpler, and more common, approach is to use the import statement. The

point of the import statement is to give you a shorthand to refer to the classes in the package. Once you

add an import, you no longer have to give the classes their full names.

You can import a specific class or the whole package. You place import statements at the top of your
source files (but below any package statements). For example, you can import all classes in the

java.time package with the statement

import java.time.*;

Then you can use

LocalDate today = LocalDate.now();

without a package prefix. You can also import a specific class inside a package:

import java.time.LocalDate;

The java.time.* syntax is less tedious. It has no negative effect on code size. However, if you import

classes explicitly, the reader of your code knows exactly which classes you use.

However, note that you can only use the * notation to import a single package. You cannot use import

java.* or import java.*.* to import all packages with the java prefix.

Note: You never need to import classes from the java.lang package.

d Tip: Integrated development environments have commands to organize imports. Package
statements such as import java.util.*; are automatically expanded into a list of specific imports

such as

import java.util. ArrayList;

import java.util.Date;

Unused import statements are removed. This is an extremely convenient feature, and it is a

good idea to find out how to accomplish it with your IDE.

Most of the time, you just import the packages that you need, without worrying too much about them.

The only time that you need to pay attention to packages is when you have a name conflict. For

example, both the java.util and java.sql packages have a Date class. Suppose you write a program that

imports both packages.

import java.util. *;

import java.sql.*;

If you now use the Date class, you get a compile-time error:

Date today; / ERROR--java.util.Date or java.sql.Date?

The compiler cannot figure out which Date class you want. You can solve this problem by adding a

specific import statement:

import java.util.*;

import java.sql.*;

import java.util.Date;

What if you really need both Date classes? Then use the full package name with every class name:

var startTime = new java.util.Date();

var today = new java.sql.Date(. . .);

Locating classes in packages is an activity of the compiler. The bytecodes in class files always use full

package names to refer to other classes.

Note: It bears repeating that the only benefit of the import statement is convenience. Imports
allow you to use a simple name such as LocalDate instead of the qualified name

java.time.LocalDate.

Note: C and C++ programmers sometimes confuse import with #include. The two have
nothing in common. In C/C++, you must use #include to include the declarations of external
features because the compiler does not look inside any source files except the one that it is

compiling. The Java compiler will happily consult other source or class files.

In C++, the construction analogous to the package mechanism is the namespace feature. Think
of the package and import statements in Java as the analogs of the namespace and using

directives in C++.

4.8.4. Module Imports

As you will see in Chapter 12, Java packages can be organized into modules. As of Java 25, you can

import all packages in a module with a directive such as the following:

import module java.xml;

The java.xml module is specialized for processing XML files. With the module import, you can enjoy

the convenience of importing all of the packages used for that purpose.

For general programming tasks, the most interesting module is java.base, which includes the packages

java.lang, java.util, java.io, and over thirty others.

You can import it with the directive:

import module java.base;

Since the java.base module includes the java.time and java.util packages, you can use unqualified

names for classes in those packages, such as LocalDate and Date.

In a compact source file, the java.base module is imported automatically. If you only use the packages

in that module, you don’t need any import statements.

0 Caution: When you import a module, it is possible that two or more packages have a class
with the same name. For example, the java.base module has classes java.net.Proxy and
java.lang.reflect.Proxy. If you need one of those classes, you can import it, or use the qualified

name.

4.8.5. Static Imports

A form of the import statement permits the importing of static methods and fields, not just classes.

For example, if you add the directive

import static java.lang.System.*;

to the top of your source file, then you can use the static methods and fields of the System class

without the class name prefix:

err.println("Goodbye, World!"); // i.e., System.err

exit(0); // i.e., System.exit

You can also import a specific method or field:

import static java.lang.System.exit;

In practice, it seems doubtful that many programmers will want to abbreviate System.err or

System.exit. The resulting code seems less clear. On the other hand,

sqrt(pow(x, 2) + pow(y, 2))

seems much clearer than

Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2))

You can import enumerated constants:

import java.time.DayOfWeek;
import static java.time.DayOfWeek.*;

DayOfWeek w = FRIDAY; // Same as DayOfWeek . FRIDAY

4.8.6. Addition of a Class into a Package

To place classes inside a package, put the name of the package at the top of your source file, before the

code that defines the classes in the package. For example, the file Employee.java in Listing 4.9 starts

out like this:

package com.horstmann.corejava;

public class Employee {

If you don’t put a package statement in the source file, then the classes in that source file belong to the
unnamed package. The unnamed package has no package name. Up to now, all our example classes

have been located in the unnamed package.

Note: The implicitly declared class of a compact compilation unit (with methods declared

outside a class) is always in the unnamed package.

When using named packages, place source files into a subdirectory that matches the full package
name. For example, all source files in the com.horstmann.corejava package should be in a subdirectory

com/horstmann/corejava (com\horstmann\corejava on Windows).

Here is a sample program that is distributed over two packages: The PackageDemo class belongs to the
unnamed package—see Listing 4.8. The Employee class, shown in Listing 4.9, belongs to the
com.horstmann.corejava package. Therefore, the Employee.java file must be in a subdirectory

com/horstmann/corejava. In other words, the directory structure is as follows:

. (base directory)
|— PackageDemo.java
L— comy/
L— horstmann/
L— corejava/

L— Employee java

To run this program, simply change to the base directory and run the command

java PackageDemo.java

The compiler automatically finds the file com/horstmann/corejava/Employee.java and compiles it.

Listing 4.8 PackageDemo.java

| import com.horstmann.corejava.Employee;

[\S]

// the Employee class is defined in that package

W

4 e

w

* This program demonstrates the use of packages.

6 *

7 void main() {

8 // because of the import statement, we don't have to use
9 // com.horstmann.corejava.Employee here

10 var harry = new Employee("Harry Hacker", 50000, 1989, 10, 1);

w

16

harry.raiseSalary(5);

// because of the static import statement, we don't have to use 10.println here

10.printIn("name=" + harry.getName() + ",salary=" + harry.getSalary());

Listing 4.9 com/horstmann/corejava/Employee.java

[N}

w

W

16

package com.horstmann.corejava;

// the classes in this file are part of this package

import module java.base;

// import statements come after the package statement

Vaakal

* This class is almost identical to the initial Employee class, but it is inside

* a package. Note that the class and its methods are public.

*/

public class Employee {

private String name;

private double salary;

private LocalDate hireDay;

public Employee(String name, double salary, int year, int month, int day) {

this.name = name;

this.salary = salary;

hireDay = LocalDate.of(year, month, day);

22 public String getName() {

23 return name;

26 public double getSalary() {

27 return salary;

28 }

29

30 public LocalDate getHireDay() {
31 return hireDay;

32 }

34 public void raiseSalary(double byPercent) {

35 double raise = salary * byPercent / 100;
36 salary += raise;

37 }

38 1}

4.8.7. Compiling with Packages

Except for demonstration programs, it is not common to use the unnamed package. Instead, classes

would be distributed over several packages, such as com.horstmann.corejava and com.mycompany.

. (base directory)
L— com/
|— horstmann/
| L— corejava/
| L— Employee.java
L— mycompany/

L— MyProgram.java

You start the program from the base directory—that is, the directory containing the com directory:

java com/mycompany/MyProgram.java

So far, we have launched source files without compiling them. That is fine for simple demos, but for
larger programs, it is better to compile the code first. The compiler produces a class file for each class,

containing the virtual machine code of its methods. For example, after you call

javac com/mycompany/MyProgram.java

the subdirectories contain the class files:

. (base directory)
L— comy/
|— horstmann/

| L— corejava/

| |— Employee.java
| L— Employee.class
L— mycompany/

|— MyProgram.java

L MyProgram.class

Note: When you use an IDE or a build tool, the class files are typically placed in a separate

directory tree.

To run the compiled program, you call

java com.mycompany.MyProgram

Note that the javac compiler operates on files (with file separators and an extension .java), whereas the

Java virtual machine loads a class (with dot separators).

0 Caution: The compiler does not check the directory structure when it compiles source files.

For example, suppose you have a source file that starts with the directive
package com.mycompany;

You can compile the file even if it is not contained in a subdirectory com/mycompany. The

source file will compile without errors if it doesn t depend on other packages. However, the

resulting program will not run unless you first move all class files to the right place. The virtual

machine won’t find the classes if the packages don’t match the directories.

4.8.8. Package Access

You have already encountered the access modifiers public and private. Features tagged as public can
be used by any class. Private features can be used only by the class that defines them. If you don’t
specify either public or private, the feature (that is, the class, method, or variable) can be accessed by

all methods in the same package.

Consider the program in Listing 4.2. The Employee class was not defined as a public class. Therefore,

only the other classes (such as EmployeeDemo) in the same package—the unnamed package in this

case—can access it. For classes, this is a reasonable default. However, for variables, this was an

unfortunate choice. Variables must explicitly be marked private, or they will default to having package

access. This, of course, breaks encapsulation. The problem is that it is awfully easy to forget to type

the private keyword. Here is an example from the Window class in the java.awt package, which is part

of the source code supplied with the JDK:

public class Window extends Container {

String warningString;

Note that the warningString variable is not private! That means the methods of all classes in the
java.awt package can access this variable and set it to whatever they like (such as "Trust me!").
Actually, the only methods that access this variable are in the Window class, so it would have been
entirely appropriate to make the variable private. Perhaps the programmer typed the code in a hurry
and simply forgot the private modifier? Perhaps nobody cared? After more than twenty years, that
variable is still not private. Not only that—new fields have been added to the class over time, and

about half of them aren’t private either.

This can be a problem. By default, packages are not closed entities. That is, anyone can add more
classes to a package. Of course, hostile or clueless programmers can then add code that modifies
variables with package access. For example, in early versions of Java, it was an easy matter to smuggle

another class into the java.awt package. Simply start out the class with

package java.awt;

Then, place the resulting class file inside a subdirectory java/awt, and you have gained access to the
internals of the java.awt package. Through this subterfuge, it was possible to modify warning strings

(see Figure 4.9).

I
BEN £
£ 15 | B | T
alal|+] -
Tl %] =
iTruat me!

Figure 4.9: Changing the warning string in a window

Starting with version 1.2, the JDK implementors rigged the class loader to explicitly disallow loading
of user-defined classes whose package name starts with "java.". Of course, your own classes don’t
benefit from that protection. Another mechanism, now obsolete, lets a JAR file declare packages as
sealed, preventing third parties from augmenting them. Nowadays, you should use modules to

encapsulate packages. Modules are discussed in detail in Chapter 12.

4.8.9. The Class Path

As you have seen, classes are stored in subdirectories of the file system. The path to the class must

match the package name.

Class files can also be stored in a JAR (Java archive) file. A JAR file contains multiple class files and

subdirectories in a compressed format, saving space and improving performance. When you use a

third-party library in your programs, you will usually be given one or more JAR files to include. You

will see in Section 4.9.1 how to create your own JAR files.

d Tip: JAR files use the ZIP format to organize files and subdirectories. You can use any ZIP

utility to peek inside JAR files.

To share classes among programs, you need to do the following:

1. Place your class files inside a directory—for example, /home/user/classdir. Note that this
directory is the base directory for the package tree. If you add the class
com.horstmann.corejava. Employee, then the Employee.class file must be located in the
subdirectory /home/user/classdir/com/horstmann/corejava.

2. Place any JAR files inside a directory—for example, /home/user/archives.

3. Set the class path. The class path is the collection of all locations that can contain class files.

In UNIX, the elements on the class path are separated by colons:

/home/user/classdir:.:/home/user/archives/archive.jar

In Windows, they are separated by semicolons:

c:\classdir;.;c:\archives\archive.jar

In both cases, the period denotes the current directory.

This class path contains

B The base directory /home/user/classdir or c:\classdir;
® The current directory (.); and

B The JAR file /home/user/archives/archive jar or c:\archives\archive.jar.

You can specify a wildcard for a JAR file directory, like this:

/home/user/classdir:.:/home/user/archives/'*'

or

c¢:\classdir;.;c:\archives*

In UNIX, the * must be escaped to prevent shell expansion.

All JAR files (but not .class files) in the archives directory are included in this class path.

The Java API is always searched for classes; don’t include it explicitly in the class path.

0 Caution: The javac compiler always looks for files in the current directory, but the java virtual
machine launcher only looks into the current directory if the ““.” directory is on the class path. If
you have no class path set, it’s not a problem—the default class path consists of the “.”

directory. But if you have set the class path and forgot to include the “.” directory, your

programs will compile without error, but they won’t run.

The class path lists all directories and archive files that are starting points for locating classes. Let’s

consider our sample class path:

/home/user/classdir:.:/home/user/archives/archive.jar

Suppose the virtual machine searches for the class file of the com.horstmann.corejava.Employee class.
It first looks in the Java API classes. It won’t find the class file there, so it turns to the class path. It

then looks for the following files:

B /home/user/classdir/com/horstmann/corejava/Employee.class
B com/horstmann/corejava/Employee.class starting from the current directory

B com/horstmann/corejava/Employee.class inside /home/user/archives/archive jar

The compiler has a harder time locating files than does the virtual machine. If you refer to a class
without specifying its package, the compiler first needs to find out the package that contains the class.
It consults all import directives as possible sources for the class. For example, suppose the source file

contains directives

import java.util.*;

import com.horstmann.corejava.*;

and the source code refers to a class Employee. The compiler then tries to find java.lang. Employee
(because the java.lang package is always imported by default), java.util. Employee,

com.horstmann.corejava.Employee, and Employee in the current package. It searches for each of these

classes in all of the locations of the class path. It is a compile-time error if more than one class is

found. (Qualified names must be unique, so the order of the import statements doesn’t matter.)

The compiler goes one step further. It looks at the source files to see if the source is newer than the
class file. If so, the source file is recompiled automatically. Recall that you can import only public
classes from other packages. A source file can only contain one public class, and the names of the file
and the public class must match. Therefore, the compiler can easily locate source files for public
classes. However, you can import nonpublic classes from the current package. These classes may be
defined in source files with different names. If you import a class from the current package, the

compiler searches a// source files of the current package to see which one defines the class.

4.8.10. Setting the Class Path

IDEs and build tools have their own mechanisms for managing the class path. But it is a good idea to

know how to set it by hand so you can troubleshoot any configuration issues.

It is best to specify the class path with the option -classpath (or -cp or the more modern variant, --class-

path):

java -classpath /home/user/classdir:.:/home/user/archives/archive.jar MyProg

or

java -classpath c:\classdir;.;c:\archives\archive.jar MyProg

The entire command must be typed onto a single line. It is a good idea to place such a long command

line into a shell script or a batch file.

Using the -classpath option is the preferred approach for setting the class path. An alternate approach
is the CLASSPATH environment variable. The details depend on your shell. With the Bourne Again

shell (bash), use the command

export CLASSPATH=/home/user/classdir:.:/home/user/archives/archive.jar

With the Windows shell, use

set CLASSPATH=c:\classdir;.;c:\archives\archive.jar

The class path is set until the shell exits.

Note: When using a JAR in jshell, launch it with
CLASSPATH=archive.jar jshell
The seemingly equivalent
jshell --class-path=archive.jar

doesn’t give you autocomplete for the classes in the JAR file (see

https://bugs.openjdk.org/browse/JDK-8177650).

o

Caution: Some people recommend to set the CLASSPATH environment variable permanently.

This is generally a bad idea. People forget the global setting and are surprised when their

classes are not loaded properly. A particularly reprehensible example was Apple’s QuickTime

installer in Windows. For several years, it globally set CLASSPATH to point to a JAR file it

needed, but did not include the current directory in the classpath. As a result, countless Java

programmers were driven to distraction when their programs compiled but failed to run.

Caution: In the past, some people recommended to bypass the class path altogether, by

dropping all JAR files into the jre/lib/ext directory. That mechanism is obsolete with Java 9, but

it was always bad advice. It was easy to get confused when long-forgotten classes were loaded

from the extension directory.

Note: Classes can also be loaded from the module path. Modules and the module path are

discussed in Chapter 12.

4.9. JAR Files

When you package your application, you want to give your users a single file, not a directory structure

filled with class files. Java Archive (JAR) files were designed for this purpose. A JAR file can contain

both class files and other file types such as image and sound files. Moreover, JAR files are

compressed, using the familiar ZIP compression format.

4.9.1. Creating JAR files

Use the jar tool to make JAR files. (In the default JDK installation, it’s in the $JAVA HOME/bin

directory.) The most common command to make a new JAR file uses the following syntax:

jar cvf jarFileName file, file, . . .

For example:

jar cvf CalculatorClasses.jar *.class icon.png

In general, the jar command has the following format:

jar options file, file, . . .

Table 4.2 lists all the options for the jar program. They are similar to the options of the UNIX tar

command.

Table 4.2: jar Program Options

Option | Description

Creates a new or empty archive and adds files to it. If any of the specified file

names are directories, the jar program processes them recursively.

Option

Description

Temporarily changes the directory. For example,

C jar cvf jarFileName.jar -C classes *.class
changes to the classes subdirectory to add class files.
e Creates an entry point in the manifest (see Section 4.9.3).
Specifies the JAR file name as the second command-line argument. If this
argument is missing, jar will write the result to standard output (when creating a
f
JAR file) or read it from standard input (when extracting or tabulating a JAR
file).
i Creates an index file (for speeding up lookups in a large archive).
Adds a manifest to the JAR file. A manifest is a description of the archive
m contents and origin. Every archive has a default manifest, but you can supply
your own if you want to authenticate the contents of the archive.
M Does not create a manifest file for the entries.
t Displays the table of contents.
u Updates an existing JAR file.

Option | Description

A% Generates verbose output.

Extracts files. If you supply one or more file names, only those files are

extracted. Otherwise, all files are extracted.

0 Stores without ZIP compression.

You can package application programs and code libraries into JAR files. For example, if you want to

send mail in a Java program, you use a library that is packaged in a file javax.mail.jar.

4.9.2. The Manifest

In addition to class files, images, and other resources, each JAR file contains a manifest file that

describes special features of the archive.

The manifest file is called MANIFEST.MF and is located in a special META-INF subdirectory of the

JAR file. The minimum legal manifest is quite boring—just

Manifest-Version: 1.0

Complex manifests can have many more entries. The manifest entries are grouped into sections. The
first section in the manifest is called the main section. It applies to the whole JAR file. Subsequent
entries can specify properties of named entities such as individual files, packages, or URLs. Those

entries must begin with a Name entry. Sections are separated by blank lines. For example:

Manifest-Version: 1.0

lines describing this archive

Name: Woozle.class

lines describing this file

Name: com/mycompany/mypkg/

lines describing this package

To edit the manifest, place the lines that you want to add to the manifest into a text file. Then run

jar cfm jarFileName manifestFileName . . .

For example, to make a new JAR file with a manifest, run

jar cfm MyArchive.jar manifest.mf com/mycompany/mypkg/*.class

To update the manifest of an existing JAR file, place the additions into a text file and use a command

such as

jar ufm MyArchive.jar manifest-additions.mf

Note: See https://docs.oracle.com/en/java/javase/25/docs/specs/jar/jar.html for more

information on the JAR and manifest file formats.

4.9.3. Executable JAR Files

https://docs.oracle.com/en/java/javase/25/docs/specs/jar/jar.html

You can use the e option of the jar command to specify the entry point of your program—the class that

you would normally specify when invoking the java program launcher:

jar cvfe MyProgram.jar com.mycompany.mypkg.MainAppClass files to add

Alternatively, you can specify the main class of your program in the manifest, including a statement of

the form

Main-Class: com.mycompany.mypkg.MainAppClass

Do not add a .class extension to the main class name.

0 Caution: The last line in the manifest must end with a newline character. Otherwise, the
manifest will not be read correctly. It is a common error to produce a text file containing just

the Main-Class line without a line terminator.

With either method, users can simply start the program as

java -jar MyProgram.jar

Depending on the operating system configuration, users may even be able to launch the application by

double-clicking the JAR file icon. Here are behaviors for various operating systems:

B On Windows, the Java runtime installer creates a file association for the “ jar” extension that

launches the file with the javaw -jar command. (Unlike the java command, the javaw command

doesn’t open a shell window.)
B On Mac OS X, the operating system recognizes the “.jar” file extension and executes the Java

program when you double-click a JAR file.

However, a Java program in a JAR file does not have the same feel as a native application. On
Windows, you can use third-party wrapper utilities that turn JAR files into Windows executables. A
wrapper is a Windows program with the familiar .exe extension that locates and launches the Java
virtual machine (JVM) or tells the user what to do when no JVM is found. There are a number of

commercial and open-source products, such as Launch4] (https://launch4j.sourceforge.net) and IzPack

4.9.4. Multi-Release JAR Files

With the introduction of modules and strong encapsulation of packages, some previously accessible
internal APIs are no longer available. This may require library providers to distribute different code for

different Java versions. Multi-release JARs take care of this use case.

For backward compatibility, version-specific class files are placed in the META-INF/versions

directory:

Application.class
BuildingBlocks.class
Util.class

META-INF

https://launch4j.sourceforge.net/
https://github.com/izpack/izpack

|— MANIFEST.MF (with line Multi-Release: true)

L— versions

o9
| |—— Application.class

| L BuildingBlocks.class

L—10

L— BuildingBlocks.class

Suppose the Application class makes use of the CssParser class. Then the legacy Application.class file
can be compiled to use com.sun.javafx.css.CssParser, while the Java 9 version uses

javafx.css.CssParser.

Java 8 knows nothing about the META-INF/versions directory and will simply load the legacy classes.

When the JAR file is read by Java 9, the new version is used instead.

To add versioned class files, use the --release flag:

jar uf MyProgram.jar --release 9 Application.class

To build a multi-release JAR file from scratch, use the -C option and switch to a different class file

directory for each version:

jar cf MyProgram.jar -C bin/8 . --release 9 -C bin/9 Application.class

When compiling for different releases, use the --release flag and the -d flag to specify the output

directory:

javac -d bin/8 --release 8 . . .

The -d option creates the directory if it doesn’t exist.

The JDK ships with symbol files for two prior versions of the API. In Java 21, you can compile with --

release set to 21, 20, or 19.

Multi-release JARs are not intended for different versions of a program or library. The public API of

all classes should be the same for both releases. The sole purpose of multi-release JARs is to enable a

particular version of your program or library to work with multiple JDK releases. If you add

functionality or change an API, you should provide a new version of the JAR instead.

Note: Tools such as javap are not retrofitted to handle multi-release JAR files. If you call
javap -classpath MyProgram.jar Application.class

you get the base version of the class (which, after all, is supposed to have the same public API

as the newer version). If you must look at the newer version, call

javap -classpath MyProgram.jar\!l/META-INF/versions/9/Application.class

4.9.5. A Note about Command-Line Options

The options of commands in the Java Development Kit have traditionally used single dashes followed

by multiletter option names, such as

java-jar. ..

javac -Xlint:fallthrough -classpath . . .

The exception was the jar command, which followed the classic option format of the tar command

without dashes:

jarcvf. ..

JEP 293 (https://openjdk.org/jeps/293) provides guidelines for moving toward a more common option

format, starting with Java 9. With most Linux tools, multiletter option names are preceded by double

dashes, with single-letter shortcuts for common options. For example, the Linux Is command can be

called with a “human-readable” option as

Is --human-readable

or

Is -h

With javac and java, you can now use --version instead of -version and --class-path instead of -

classpath. As you will see in Chapter 12, the --module-path option has a shortcut -p.

Arguments of options with -- and multiple letters are separated by whitespace or an = sign:

https://openjdk.org/jeps/293

java --class-path /home/user/classdir . . .

or

java --class-path=/home/user/classdir . . .

The = form is useful when an option needs to be passed through to another tool, where the passthrough

mechanism cannot handle white space.

6 Tip: You can use the JDK _JAVA OPTIONS environment variable to pass command-line

options to the java launcher:

export JDK _JAVA OPTIONS='--class-path /home/user/classdir -enableassertions'

0 Caution: According to JEP 293, single-letter options without arguments can be grouped

together:

jar -¢ -v -f myapp.jar -m MANIFEST.MF *.class
can be simplified to

jar -cv -f myapp.jar -m MANIFEST.MF * class
But that does not currently work. Strangely,

jar -cvfm myapp.jar MANIFEST.MF * class

works even though it should not. Until this is sorted out, it seems best to stick with the classic

tar-style options for the jar command.

0 Caution: According to JEP 293, arguments of single-letter options can be separated by

whitespace or directly follow the option:
javac -d outputdir . . .

or
javac -doutputdir . . .

The latter doesn’t currently work. It also seems like a bad idea since it would invite conflicts
with legacy options. For example, what should happen if the output directory happens to be

named eprecation?

4.10. Documentation Comments

The JDK contains a very useful tool, called javadoc, that generates HTML documentation from your

source files. In fact, the online API documentation described in Chapter 3 is simply the result of

running javadoc on the source code of the standard Java library.

If you add comments that start with the special delimiter /** to your source code, you too can easily

produce professional-looking documentation. This is a very nice approach because it lets you keep

your code and documentation in one place. If you put your documentation into a separate file, then, as
you probably know, the code and comments tend to diverge over time. When documentation
comments are in the same file as the source code, it is an easy matter to update both and run javadoc
again.

4.10.1. Comment Insertion

The javadoc utility extracts information for the following items:

B Modules

Packages

Public classes and interfaces
B public and protected fields

Public and protected constructors and methods

Protected members are introduced in Chapter 5, interfaces in Chapter 6, and modules in Chapter 12.

You can (and should) supply a comment for each of these members. Each comment is placed

immediately above the member it describes. A comment starts with a /** and ends with a */.

Each /** ... */ documentation comment contains free-form text followed by tags. A tag starts with an

@, such as @since or @param.

The first sentence of the free-form text should be a summary statement. The javadoc utility

automatically generates summary pages that extract these sentences.

The most common javadoc tags are block tags. They must appear at the beginning of a line and start

with @, optionally preceded by whitespace, the comment delimiter /**, or leading * which are often

used for multiline comments. In contrast, inline tags are enclosed in braces: {@tagname contents}.

The contents may contain braces, but they must be balanced. Examples are the @code and @link tags.

JavaDoc text can contain HTML tags such as or ul. They are passed through to the generated

HTML pages.

Note: Starting with Java 23, you can author JavaDoc comments in Markdown instead of plain
text and HTML. This can be easier to read and write, particularly with complex mixtures of

text and code.

Markdown comments are delimited with /// in front of each line, instead of /** and */. This

makes it easy to include code with comments.

JavaDoc follows the CommonMarc specification, and in addition supports the Github Flavored

Markdown extension for tables.

At this point, JavaDoc Markdown comments are not yet commonly used. You can find the

details at https://openjdk.org/jeps/467.

4.10.2. Class Comments

The class comment must be placed affer any import statements, directly before the class definition.

https://openjdk.org/jeps/467

Here is an example of a class comment:

/**

* A {@code Card} object represents a playing card, such

* as "Queen of Hearts". A card has a suit (Diamond, Heart,

* Spade or Club) and a value (1 = Ace, 2 ... 10, 11 = Jack,

* 12 = Queen, 13 = King).

*/

public class Card {

Note: There is no need to add an * in front of every line. For example, the following comment

is equally valid:

/**

A <code>Card</code> object represents a playing card, such
as "Queen of Hearts". A card has a suit (Diamond, Heart,
Spade or Club) and a value (1 = Ace, 2... 10, 11 = Jack,

12 = Queen, 13 = King).

*/

However, most IDEs supply the asterisks automatically and rearrange them when the line

breaks change.

4.10.3. Method Comments

Each method comment must immediately precede the method that it describes. In addition to the

general-purpose tags, you can use the following tags:

B @param variable description

This tag adds an entry to the “parameters” section of the current method. The description can span
multiple lines and can use HTML tags. All @param tags for one method must be kept together.
@return description

This tag adds a “returns” section to the current method. The description can span multiple lines
and can use HTML tags.

(@throws class description

This tag adds a note that this method may throw an exception. Exceptions are the topic of Chapter

1.

Here is an example of a method comment:

/**

* Raises the salary of an employee.

* @param byPercent the percentage by which to raise the salary (e.g., 10 means 10%)

* @return the amount of the raise

*/

public double raiseSalary(double byPercent) {

double raise = salary * byPercent / 100;

salary += raise;

return raise;

ﬂ Tip: It can be tedious to write comments for methods whose description and return value are

identical, such as:

/**

* Returns the name of the employee.
* @return the name of the employee

*/
In such cases, consider the inline form of @return introduced in Java 16:

/**

* {(@return the name of the employee}

*/

The description section becomes “Returns the name of the employee.”, and a “Returns” section

with the same contents is added.

Note: Methods can also have a @throws tag to document the exceptions that a method throws.

Exceptions are covered in Chapter 7.

Note: If you add {@inheritDoc} into a method description or the @param, @return, or
@throws tag bodies, then the documentation from the method in a superclass or interface is

copied verbatim. (See Chapter S and Chapter 6 for superclasses and interfaces.)

4.10.4. Field Comments

You only need to document public fields—generally that means static constants. For example:

/**

* The "Hearts" card suit

*/

public static final int HEARTS = 1;

4.10.5. Package Comments

Place the class, method, and variable comments directly into the Java source files, delimited by /** . . .
*/ documentation comments. However, to generate package comments, you need to add a separate file

in each package directory. You have two choices:

1. Supply a Java file named package-info.java. The file must contain an initial documentation
comment, delimited with /** and */, followed by a package statement. It should contain no further
code or comments.

2. Supply an HTML file named package.html. All text between the tags <body>. . .</body> is

extracted.

4.10.6. HTML Markup

In the free-form text, you can use HTML modifiers such as . . . for emphasis, . . .

 for strong emphasis, / for bulleted lists, and to include an image.

To type monospaced code, use {@code . . . } instead of <code>. . .</code>—then you don’t have to
worry about escaping < and & characters inside the code. If you want to write unescaped < or & in the

plain font, use the @literal{ . . .} tag.

For multiline code displays in an HTML pre tag, you can use:

/**

* <pre>{(@code

* 1</pre>

*/

or, since Java 18:

/**

* {@snippet :

5

*/

Either way, you don’t have to escape < or & characters in the code. However, braces have to match,

and you cannot have /* . . . */ comments.

4.10.7. Links

You can use hyperlinks to other relevant parts of the javadoc documentation, or to external documents,

with the @see and @link tags.

The tag @see reference adds a hyperlink in the “see also” section. It can be used with both classes and

methods. Here, reference can be one of the following:

package.classtmember label

label

"text"

The first case is the most useful. You supply the name of a class, method, or variable, and javadoc

inserts a hyperlink to the documentation. For example,

@see com.horstmann.corejava.Employee#raiseSalary(double)

makes a link to the raiseSalary(double) method in the com.horstmann.corejava.Employee class. You

can omit the name of the package, or both the package and class names. Then, the member will be

located in the current package or class.

Note that you must use a #, not a period, to separate the class from the method or variable name. The

Java compiler itself is highly skilled in determining the various meanings of the period character as

separator between packages, subpackages, classes, inner classes, and methods and variables. But the

javadoc utility isn’t quite as clever, so you have to help it along.

Constructors have the special name <init>, not the name of the class, such as

@see com.horstmann.corejava.Employee#<init>()

You can specify an optional label after the member that will appear as the link anchor. If you omit the

label, the user will see the member name.

If the @see tag is followed by a < character, then you need to specify a hyperlink. You can link to any

URL you like. For example:

@see The Core Java home page

If the @see tag is followed by a " character, then the text is displayed in the “see also” section. For

example:

@see "Core Java Volume 2"

You can add multiple @see tags for one member, but you must keep them all together.

If you like, you can place hyperlinks to other classes or methods anywhere in any of your

documentation comments. Insert a tag of the form

{@link package.class#tmember}

anywhere in a comment. The member reference follows the same rules as for the @see tag.

In a code snippet, place the @link tag in the comment, so that it doesn’t interfere with the code:

{@snippet

10.println(); // @link substring=println target=java.lang.IO#println()

Since Java 20, ids are automatically generated for level 2 and level 3 headings. For example,

<h2>General Principles</h2>

gets an id general-principles-heading, which you can refer from @see and @link tags. You need two #

symbols to link to an id:

{@link com.horstmann.corejava.Employee##general-principles-heading}

Use @linkplain instead of @link if a link should be displayed in the plain font instead of the code font.

Note: If your comments contain links to other files, such as images (for example, diagrams or
images of user interface components), place those files into a subdirectory, named doc-files, of
the directory containing the source file. The javadoc utility will copy the doc-files directories
and their contents from the source directory to the documentation directory. You need to use the
doc-files directory in your link, for example <img src="doc-files/uml.png" alt="UML

diagram"/>.

4.10.8. General Comments

The tag @since text makes a “since” entry. The fext can be any description of the version that

introduced this feature. For example, @since 1.7.1.

The following tags can be used in class documentation comments:

B @author name
This tag makes an “author” entry. You can have multiple @author tags, one for each author. Don’t
feel compelled to use this tag—your version control system does a more thorough job tracking
authorship.

B @version rext

This tag makes a “version” entry. The text can be any description of the current version.

The {@value optionalFormat constantFieldReference} inline tag inserts the value of a constant field,
with an optional printf-style formatter since Java 20. For example, {@value %X

Integert¥MAX VALUE} yields 7FFFFFFF.

The @deprecated tag is used together with the @Deprecated annotation. It is followed by text that tells

the user when and why the deprecation occurred, and to describe alternatives.

Finally, you can use the {@index entry} tag to add an entry to the generated index.

4.10.9. Code Snippets

The purpose of this feature is to allow you to import (presumably well-tested and up-to-date) code
from external files. This minimizes the risk of incorrect or stale documentation. Code snippets were

introduced in Java 18.

You can import an entire file with these tags:

{@snippet file=EmployeeDemo.java}

{@snippet class=com.horstmann.corejava.EmployeeDemo.java}

Files should be placed in the snippet-files subdirectory of the current package.

More commonly, you want to copy a region from a file. In the source file, you specify the name and

extent of a region as follows:

public class EmployeeDemo {

/I @start region=default-employee

var ¢ = new Employee();

String name = e.getName(); // name is null

/I @end

To highlight a part of the snippet, use a comment:

var ¢ = new Employee(); // @hightlight substring=new

String name = e.getName(); / @highlight regex=get[A-Z][a-z]+

Inside a region, you can replace a part with another string, for example to make the documentation

more general:

"

var ¢ = new Employee("Fred", 100000); // @replace regex=([")]+) replacement="(..., ...)

Then the documentation contains:

var e = new Employee(..., ...);

To add a link, use:

var ¢ = new Card(); // @link substring=Card target=com.horstmann.games#Card.<init>()

These decorations and transformations are specified as comments, so that your source file compiles

and runs.

4.10.10. Comment Extraction

Here, docDirectory is the name of the directory where you want the HTML files to go. Follow these

steps:

1. Change to the directory that contains the source files you want to document. If you have nested
packages to document, such as com.horstmann.corejava, you must be working in the directory
that contains the subdirectory com. (This is the directory that contains the overview.html file, if
you supplied one.)

2. Run the command

javadoc -d docDirectory nameOfPackage

for a single package. Or, run

javadoc -d docDirectory nameOfPackage; nameOfPackage,. . .

to document multiple packages. If your files are in the unnamed package, run instead

javadoc -d docDirectory * java

If you omit the -d docDirectory option, the HTML files are extracted to the current directory. That can

get messy, and [don’t recommend it.

The javadoc program can be fine-tuned by numerous command-line options. For example, you can use
the -author and -version options to include the @author and @version tags in the documentation. (By
default, they are omitted.) Another useful option is -link, to include hyperlinks to standard classes. For

example, if you use the command

javadoc -link https://docs.oracle.com/en/java/javase/25/docs/api *.java

all standard library classes are automatically linked to the documentation on the Oracle web site.

If you use the -linksource option, each source file is converted to HTML (without color coding, but

with line numbers), and each class and method name turns into a hyperlink to the source.

You can also supply an overview comment for all source files. Place it in a file such as overview.html
and run the javadoc tool with the command line option -overview filename. All text between the tags
<body>. . .</body> is extracted. The content is displayed when the user selects “Overview” from the

navigation bar.

For additional options, refer to the online documentation of the javadoc utility at

4.11. Class Design Hints

https://docs.oracle.com/en/java/javase/25/javadoc/index.html

Without trying to be comprehensive or tedious, I want to end this chapter with some hints that will

make your classes more acceptable in well-mannered OOP circles.

1. Always keep data private.
This is first and foremost; doing anything else violates encapsulation. You may need to write an
accessor or mutator method occasionally, but you are still better off keeping the instance fields
private. Bitter experience shows that the data representation may change, but how these data are
used will change much less frequently. When data are kept private, changes in their representation

will not affect the users of the class, and bugs are easier to detect.

2. Always initialize data.
Java won’t initialize local variables for you, but it will initialize instance fields of objects. Don’t
rely on the defaults, but initialize all variables explicitly, either by supplying a default or by

setting defaults in all constructors.

3. Don t use too many basic types in a class.
The idea is to replace multiple related uses of basic types with other classes. This keeps your
classes easier to understand and to change. For example, replace the following instance fields in a

Customer class:

private String street;
private String city;

private String state;

private int zip;

with a new class called Address. This way, you can easily cope with changes to addresses, such as

the need to deal with international addresses.

4. Not all fields need individual field accessors and mutators.
You may need to get and set an employee’s salary. You certainly won’t need to change the hiring
date once the object is constructed. And, quite often, objects have instance fields that you don’t

want others to get or set, such as an array of state abbreviations in an Address class.

5. Break up classes that have too many responsibilities.
This hint is, of course, vague: “too many” is obviously in the eye of the beholder. However, if
there is an obvious way to break one complicated class into two classes that are conceptually
simpler, seize the opportunity. (On the other hand, don’t go overboard; ten classes, each with only
one method, are usually an overkill.)

Here is an example of a bad design:

public class CardDeck { // bad design
private int[] value;

private int[] suit;

public CardDeck() { ...}

public void shuffle() { ...}

public int getTopValue() { ... }
public int getTopSuit() { ...}

public void draw() { ...}

This class really implements two separate concepts: a deck of cards, with its shuffle and draw
methods, and a card, with the methods to inspect its value and suit. It makes sense to introduce a
Card class that represents an individual card. Now you have two classes, each with its own
responsibilities. Since the Card class is so simple, it can be implemented as a record. Also, instead

of using integer values for the suits, an enumeration is a better choice:

public class CardDeck {

private Card|[] cards;

public CardDeck() { ...}
public void shuffle() { ...}
public Card getTop() { ...}

public void draw() { ...}

public enum Suit { DIAMONDS, HEARTS, SPADES, CLUBS }

public record Card(int value, Suit suit) { }

6. Make the names of your classes and methods reflect their responsibilities.
Just as variables should have meaningful names that reflect what they represent, so should
classes. (The standard library certainly contains some dubious examples, such as the Date class
that describes time.)
A good convention is that a class name should be a noun (Order), or a noun preceded by an
adjective (RushOrder) or a gerund (an “-ing” word, as in BillingAddress). As for methods, follow
the standard convention that accessor methods begin with a lowercase get (getSalary) and mutator

methods use a lowercase set (setSalary).

7. Prefer immutable classes.
The LocalDate class, and other classes from the java.time package, are immutable—no method
can modify the state of an object. Instead of mutating objects, methods such as plusDays return
new objects with the modified state.
The problem with mutation is that it can happen concurrently when multiple threads try to update
an object at the same time. The results are unpredictable. When classes are immutable, it is safe to

share their objects among multiple threads.

Therefore, it is a good idea to make classes immutable when you can. This is particularly easy
with classes that represent values, such as a string or a point in time. Computations can simply
yield new values instead of updating existing ones.

Of course, not all classes should be immutable. It would be strange to have the raiseSalary

method return a new Employee object when an employee gets a raise.

In this chapter, we covered the fundamentals of objects and classes that make Java an “object-based”
language. In order to be truly object-oriented, a programming language must also support inheritance

and polymorphism. The Java support for these features is the topic of the next chapter.

Chapter 5 * Inheritance

Chapter 4 introduced you to classes and objects. In this chapter, you will
learn about inheritance, another fundamental concept of object-oriented
programming. The idea behind inheritance is that you can create new
classes that are built on existing classes. When you inherit from an existing
class, you reuse (or inherit) its methods, and you can add new methods and
fields to adapt your new class to new situations. This technique is essential

in Java programming.

This chapter also covers reflection, the ability to find out more about classes
and their properties in a running program. Reflection is a powerful feature,
but it is undeniably complex. Since reflection is of greater interest to tool
builders than to application programmers, you can probably glance over

that part of the chapter upon first reading and come back to it later.

5.1. Classes, Superclasses, and Subclasses

Let’s return to the Employee class discussed in the previous chapter.

Suppose (alas) you work for a company where managers are treated

differently from other employees. Managers are, of course, just like

employees in many respects. Both employees and managers are paid a

salary. However, while employees are expected to complete their assigned

tasks in return for receiving their salary, managers get bonuses if they

actually achieve what they are supposed to do. This is the kind of situation

that cries out for inheritance. Why? Well, you need to define a new class,

Manager, and add functionality. But you can retain some of what you have

already programmed in the Employee class, and a// the fields of the original

class can be preserved. More abstractly, there is an obvious “is—a”

relationship between Manager and Employee. Every manager is an

employee: This “is—a” relationship is the hallmark of inheritance.

Note: In this chapter, I use the classic example of employees and
managers, but I must ask you to take this example with a grain of
salt. In the real world, an employee can become a manager, so you
would want to model being a manager as a role of an employee, not
a subclass. In this chapter, however, I assume the corporate world is
populated by two kinds of people: those who are forever employees,

and those who have always been managers.

More generally, inheritance may not be as common as was
envisioned when object-oriented programming first became popular.
Nevertheless, it is a powerful and indispensable notion in many

programming situations.

5.1.1. Defining Subclasses

Here is how you define a Manager class that inherits from the Employee

class. Use the Java keyword extends to denote inheritance.

public class Manager extends Employee {

added methods and fields

Note: Some programming languages use a more cryptic syntax for
inheritance than Java. In Python, you declare class
Manager(Employee), and in C++, you write class Manager : public
Employee. All inheritance in Java is public inheritance; there is no

analog to the C++ features of private and protected inheritance.

The keyword extends indicates that you are making a new class that derives

from an existing class. The existing class is called the superclass, base

class, or parent class. The new class is called the subclass, derived class, or

child class. The terms superclass and subclass are those most commonly
used by Java programmers, although some programmers prefer the

parent/child analogy, which also ties in nicely with the “inheritance” theme.

The Employee class is a superclass, but not because it is superior to its
subclass or contains more functionality. In fact, the opposite is true:
Subclasses have more functionality than their superclasses. For example, as
you will see when we go over the rest of the Manager class code, the
Manager class encapsulates more data and has more functionality than its

superclass Employee.

Note: The prefixes super and sub come from the language of sets
used in theoretical computer science and mathematics. The set of all
employees contains the set of all managers, and thus is said to be a
superset of the set of managers. Or, to put it another way, the set of

all managers is a subset of the set of all employees.

Our Manager class has a new field to store the bonus, and a new method to

set it:

public class Manager extends Employee {

private double bonus;

public void setBonus(double bonus) {

this.bonus = bonus;

There 1s nothing special about these methods and fields. If you have a

Manager object, you can simply apply the setBonus method.

Manager boss =. . .;

boss.setBonus(5000);

Of course, if you have an Employee object, you cannot apply the setBonus

method—it is not among the methods defined in the Employee class.

However, you can use methods such as getName and getHireDay with

Manager objects. Even though these methods are not explicitly defined in

the Manager class, they are automatically inherited from the Employee

superclass.

Every Manager object has four fields: name, salary, hireDay, and bonus.

The fields name, salary, and hireDay are taken from the superclass.

Note: The Java language specification states: “Members of a class
that are declared private are not inherited by subclasses of that
class.” This has confused my readers over the years. The
specification uses the word “inherits” narrowly. It considers the

private fields non-inherited because the Manager class cannot access

them directly. Thus, every Manager object has three fields from the

superclass, but the Manager class does not “inherit” them.

When defining a subclass by extending its superclass, you only need to

indicate the differences between the subclass and the superclass. When

designing classes, you place the most general methods in the superclass and

more specialized methods in its subclasses. Factoring out common

functionality by moving it to a superclass is routine in object-oriented

programming.

Note: In Chapter 4, you learned about records: classes whose state
1s entirely defined by the constructor parameters. You cannot extend

a record, and a record cannot extend another class.

5.1.2. Overriding Methods

Some of the superclass methods are not appropriate for the Manager
subclass. In particular, the getSalary method should return the sum of the
base salary and the bonus. You need to supply a new method to override the

superclass method:

public class Manager extends Employee {

public double getSalary() {

How can you implement this method? At first glance, it appears to be

simple—just return the sum of the salary and bonus fields:

public double getSalary() {

return salary + bonus; // won't work

However, that won’t work. Recall that only the Employee methods have

direct access to the private fields of the Employee class. This means that the

getSalary method of the Manager class cannot directly access the salary

field. If the Manager methods want to access those private fields, they have

to do what every other method does—use the public interface, in this case

the public getSalary method of the Employee class.

So, let’s try again. You need to call getSalary instead of simply accessing

the salary field:

public double getSalary() {
double baseSalary = getSalary(); // still won't work

return baseSalary + bonus;

Now, the problem is that the call to getSalary simply calls itself, because the
Manager class has a getSalary method (namely, the method we are trying to
implement). The consequence is an infinite chain of calls to the same

method, leading to a program crash.

We need to indicate that we want to call the getSalary method of the
Employee superclass, not the current class. Use the special keyword super

for this purpose. The call

super.getSalary()

calls the getSalary method of the Employee class. Here is the correct

version of the getSalary method for the Manager class:

public double getSalary() {

double baseSalary = super.getSalary();

return baseSalary + bonus;

Note: Some people think of super as being analogous to the this
reference. However, that analogy is not quite accurate: super is not a
reference to an object. For example, you cannot assign the value
super to another object variable. Instead, super is a special keyword

that directs the compiler to invoke the superclass method.

As you saw, a subclass can add fields, and it can add methods or override

the methods of the superclass. However, inheritance can never take away

any fields or methods.

5.1.3. Subclass Constructors

To complete our example, let us supply a constructor.

public Manager(String name, double salary, int year, int month, int day) {

super(name, salary, year, month, day);

bonus = 0;

Here, the keyword super has a different meaning. The instruction

super(name, salary, year, month, day);

is shorthand for “call the constructor of the Employee superclass with

name, salary, year, month, and day as arguments.”

Since the Manager constructor cannot access the private fields of the

Employee class, it must initialize them through a constructor. The

constructor is invoked with the special super syntax.

Before Java 25, the call to super had to be the first statement in the

constructor for the subclass. Now, the code between the start of the

constructor and the call to super is an early execution context. As you have

already seen in Chapter 4, only limited actions are permitted in this context.

Except for assignment to uninitialized fields, you cannot access the object

under construction in any way.

When a subclass object is constructed without an explicit invocation of a

superclass constructor, the superclass must have a no-argument constructor.

That constructor is invoked prior to the subclass construction.

Note: Recall that the this keyword has two meanings: to denote a
reference to the implicit parameter and to call another constructor of
the same class. Likewise, the super keyword has two meanings: to
invoke a superclass method and to invoke a superclass constructor.

When used to invoke constructors, the this and super keywords are

closely related. The constructor parameters are either passed to

another constructor of the same class (this) or a constructor of the

superclass (super).

After you redefine the getSalary method for Manager objects, managers

will automatically have the bonus added to their salaries.

Here’s an example of this at work. We make a new manager and set the

manager’s bonus:

Manager boss = new Manager("Carl Cracker", 80000, 1987, 12, 15);

boss.setBonus(5000);

We make an array of three employees:

var staff = new Employee[3];

We populate the array with a mix of managers and employees:

staff[0] = boss;

staff[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);

staff[2] = new Employee("Tony Tester", 40000, 1990, 3, 15);

We print out everyone’s salary:

for (Employee ¢ : staff)

[O.println(e.getName() + " " + e.getSalary());

This loop prints the following data:

Carl Cracker 85000.0

Harry Hacker 50000.0

Tommy Tester 40000.0

Now staff] 1] and staff[2] each print their base salary because they are

Employee objects. However, staff[0] is a Manager object whose getSalary

method adds the bonus to the base salary.

What is remarkable is that the call

e.getSalary()

picks out the correct getSalary method. Note that the declared type of e is

Employee, but the actual type of the object to which e refers can be either

Employee or Manager.

When e refers to an Employee object, the call e.getSalary() calls the

getSalary method of the Employee class. However, when e refers to a

Manager object, then the getSalary method of the Manager class is called

instead. The virtual machine knows about the actual type of the object to

which e refers, and therefore can invoke the correct method.

The fact that an object variable (such as the variable e) can refer to multiple

actual types is called polymorphism. Automatically selecting the

appropriate method at runtime is called dynamic binding. 1 discuss both

topics in more detail in this chapter.

Note: In C++ and C#, you need to declare a method as virtual if you
want dynamic binding. In Java, dynamic binding is the default
behavior; if you do not want a method to be virtual, you tag it as

final. (I discuss the final keyword later in this chapter.)

Listing 5.1 contains a program that shows how the salary computation

differs for Employee and Manager objects. The Employee class is the final

version of the preceding chapter, and the Manager class is shown in Listing

S5.2.

Starting with this chapter, classes are in packages and have (mostly) public

methods, which is the form that you normally see them in production code.

However, the class with the main method is kept as simple as possible.

You can launch the program in this section as

java InheritanceDemo.java

Listing 5.1 vich0S/InheritanceDemo.java

I package v1chO05;

(\O]

import com.horstmann.corejava.*;

(O8]

/**

()]

6 * This program demonstrates inheritance.

7%

8 class InheritanceDemo {

9 void main() {
10 // construct a Manager object
11 var boss = new Manager("Carl Cracker", 80000, 1987, 12, 15);
12 boss.setBonus(5000);
13

14 var staff = new Employee[3];

16 /1 fill the staff array with Manager and Employee objects

17

18 staff[0] = boss;

19 staff] 1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);
20 staff[2] = new Employee("Tommy Tester", 40000, 1990, 3, 15);
21

22 // print out information about all Employee objects

\S]
(U]

for (Employee e : staff)

24 [O.println("name=" + e.getName() + ",salary=" + e.getSalary());

Listing 5.2 com/horstmann/corejava/Manager.java

I package com.horstmann.corejava;

2

3 public class Manager extends Employee {
4 private double bonus;

5

6 public Manager(String name, double salary, int year, int month, int day) {

7 super(name, salary, year, month, day);

8 bonus = 0;

11 public double getSalary() {

12 double baseSalary = super.getSalary();
13 return baseSalary + bonus;
14 }

16 public void setBonus(double b) {

17 bonus = b;

5.1.4. Inheritance Hierarchies

Inheritance need not stop at deriving one layer of classes. We could have an

Executive class that extends Manager, for example. The collection of all

classes extending a common superclass is called an inheritance hierarchy,

as shown in Figure 5.1. The path from a particular class to its ancestors in

the inheritance hierarchy is its inheritance chain.

Figure 5.1: Employee inheritance hierarchy

There is usually more than one chain of descent from a distant ancestor
class. You could form subclasses Programmer or Secretary that extend
Employee, and they would have nothing to do with the Manager class (or

with each other). This process can continue as long as is necessary.

Note: In Python and C++, a class can have multiple superclasses.
Java does not support multiple inheritance. For ways to recover

much of the functionality of multiple inheritance, see Chapter 6.

5.1.5. Polymorphism

A simple rule can help you decide whether or not inheritance is the right

design for your data. The “is—a” rule states that every object of the subclass

is an object of the superclass. For example, every manager is an employee.

Thus, it makes sense for the Manager class to be a subclass of the Employee

class. Naturally, the opposite is not true—not every employee is a manager.

Another way of formulating the “is—a” rule is the substitution principle.

That principle states that you can use a subclass object whenever the

program expects a superclass object.

For example, you can assign a subclass object to a superclass variable.

Employee e¢;
e =new Employee(. . .); / Employee object expected

e =new Manager(. . .); // OK, Manager can be used as well

In the Java programming language, object variables are polymorphic. A

variable of type Employee can refer to an object of type Employee or to an

object of any subclass of the Employee class (such as Manager, Executive,

Secretary, and so on).

We took advantage of this principle in Listing 5.1:

Manager boss = new Manager(. . .);

Employee[] staff = new Employee[3];

staff[0] = boss;

In this case, the variables staff[0] and boss refer to the same object.

However, staff[0] is considered to be only an Employee object by the

compiler.

That means you can call

boss.setBonus(5000); // OK

but you can’t call

staff[0].setBonus(5000); // ERROR

The declared type of staff[0] is Employee, and the setBonus method is not a

method of the Employee class.

However, you cannot assign a superclass reference to a subclass variable.

For example, it is not legal to make the assignment

Manager m = stafi[i]; / ERROR

The reason is clear: Not all employees are managers. If this assignment

were to succeed and m were to refer to an Employee object that is not a

manager, then it would later be possible to call m.setBonus(. . .) and a

runtime error would occur.

0 Caution: In Java, arrays of subclass references can be converted to
arrays of superclass references without a cast. For example, consider

this array of managers:
Manager[] managers = new Manager[10];

It is legal to convert this array to an Employee[] array:
Employee[] staff = managers; / OK

Sure, why not, you may think. After all, if managers[i] is a Manager,
it 1s also an Employee. But actually, something surprising is going
on. Keep in mind that managers and staff are references to the same

array. Now consider the statement

staff[0] = new Employee("Harry Hacker", . . .);

The compiler will cheerfully allow this assignment. But staff[0] and

managers[0] are the same reference, so it looks as if we managed to

smuggle a mere employee into the management ranks. That would

be very bad—calling managers[0].setBonus(1000) would try to

access a nonexistent instance field and would corrupt neighboring

memory.

To make sure no such corruption can occur, all arrays remember the

element type with which they were created, and they monitor that

only compatible references are stored into them. For example, the

array created as new Manager[10] remembers that it is an array of

managers. Attempting to store an Employee reference causes an

ArrayStoreException.

5.1.6. Understanding Method Calls

It is important to understand exactly how a method call is applied to an

object. Let’s say we call x.f(args), and the implicit argument x is declared to

be an object of class C. Here is what happens:

1. The compiler looks at the declared type of the object and the method

name. Note that there may be multiple methods, all with the same

name, f, but with different parameter types. For example, there may be

a method f(int) and a method {(String). The compiler enumerates all

methods called f in the class C and all accessible methods called f in

the superclasses of C. (Private methods of the superclass are not

accessible.)

Now the compiler knows all possible candidates for the method to be

called.

2. Next, the compiler determines the types of the arguments supplied in

the method call. If among all the methods called f there is a unique

method whose parameter types are a best match for the supplied

arguments, that method is chosen to be called. This process is called

overloading resolution. For example, in a call x.f("Hello"), the

compiler picks f(String) and not f(int). The situation can get complex

because of type conversions (int to double, Manager to Employee, and

so on). If the compiler cannot find any method with matching

parameter types or if multiple methods all match after applying

conversions, the compiler reports an error.

Now the compiler knows the name and parameter types of the method

that needs to be called.

Note: Recall that the name and parameter type list for a method
are called the method’s signature. For example, f(int) and
f(String) are two methods with the same name but different

signatures. If you define a method in a subclass that has the

same signature as a superclass method, you override the

superclass method.

The return type is not part of the signature. However, when you

override a method, you need to keep the return type

compatible. A subclass may change the return type to a subtype

of the original type. For example, suppose the Employee class

has a method

public Employee getBuddy() { ...}

A manager would never want to have a lowly employee as a

buddy. To reflect that fact, the Manager subclass can override

this method as

public Manager getBuddy() { ...} // OK to change return

type

We say that the two getBuddy methods have covariant return

types.

3. If the method is private, static, final, or a constructor, then the compiler

knows exactly which method to call. (The final modifier is explained

in the next section.) This is called static binding. Otherwise, the

method to be called depends on the actual type of the implicit

argument, and dynamic binding must be used at runtime. In our

example, the compiler would generate an instruction to call {f(String)

with dynamic binding.

4. When the program runs and uses dynamic binding to call a method, the

virtual machine must call the version of the method that 1s appropriate

for the actual type of the object to which x refers. Let’s say the actual

type is D, a subclass of C. If the class D defines a method f(String),

that method is called. If not, D’s superclass is searched for a method

f(String), and so on.

It would be time-consuming to carry out this search every time a

method is called. Instead, the virtual machine precomputes a method

table for each class. The method table lists all method signatures and

the actual methods to be called.

The virtual machine can build the method table after loading a class,

by combining the methods that it finds in the class file with the method

table of the superclass.

When a method is actually called, the virtual machine simply makes a

table lookup. In our example, the virtual machine consults the method

table for the class D and looks up the method to call for f(String). That

method may be D.f(String) or X.f(String), where X is some superclass

of D. There is one twist to this scenario. If the call is super.f(param),

then the virtual machine consults the method table of the superclass.

Let’s look at this process in detail in the call e.getSalary() in Listing 5.1.

The declared type of e is Employee. The Employee class has a single

method, called getSalary, with no method parameters. Therefore, in this

case, we don’t worry about overloading resolution.

The getSalary method is not private, static, or final, so it is dynamically

bound. The virtual machine produces method tables for the Employee and

Manager classes. The Employee table shows that all methods are defined in

the Employee class itself:

Employee:

getName() -> Employee.getName()

getSalary() -> Employee.getSalary()

getHireDay() -> Employee.getHireDay()

raiseSalary(double) -> Employee.raiseSalary(double)

Actually, that 1sn’t the whole story—as you will see later in this chapter, the
Employee class has a superclass Object from which it inherits a number of

methods. I ignore the Object methods for now.

The Manager method table is slightly different. Three methods are

inherited, one method is redefined, and one method is added.

Manager:
getName() -> Employee.getName()
getSalary() -> Manager.getSalary()
getHireDay() -> Employee.getHireDay()
raiseSalary(double) -> Employee.raiseSalary(double)

setBonus(double) -> Manager.setBonus(double)

At runtime, the call e.getSalary() is resolved as follows:

1. First, the virtual machine fetches the method table for the actual type

of e. That may be the table for Employee, Manager, or another

subclass of Employee.

2. Then, the virtual machine looks up the defining class for the

getSalary() signature. Now it knows which method to call.

3. Finally, the virtual machine calls the method.

Dynamic binding has a very important property: It makes programs

extensible without the need for modifying existing code. Suppose a new

class Executive 1s added and there is the possibility that the variable e refers

to an object of that class. The code containing the call e.getSalary() need

not be recompiled. The Executive.getSalary() method is called

automatically if e happens to refer to an object of type Executive.

0 Caution: When you override a method, the subclass method must

be at least as visible as the superclass method. In particular, if the

superclass method is public, the subclass method must also be

declared public. It is a common error to accidentally omit the public

specifier for the subclass method. The compiler then complains that

you try to supply a more restrictive access privilege.

5.1.7. Preventing Inheritance: Final Classes and Methods

Occasionally, you want to prevent someone from forming a subclass of one
of your classes. Classes that cannot be extended are called final classes, and
you use the final modifier in the definition of the class to indicate this. For
example, suppose we want to prevent others from subclassing the Executive

class. Simply declare the class using the final modifier, as follows:

public final class Executive extends Manager {

You can also make a specific method in a class final. If you do this, then no
subclass can override that method. (All methods in a final class are

automatically final.) For example:

public class Employee {

public final String getName() {

return name;

Note: Recall that fields can also be declared as final. A final field
cannot be changed after the object has been constructed. However, if
a class is declared final, only the methods, not the fields, are

automatically final.

There 1s only one good reason to make a method or class final: to make sure

its semantics cannot be changed in a subclass. For example, the getTime

and setTime methods of the Calendar class are final. This indicates that the

designers of the Calendar class have taken over responsibility for the

conversion between the Date class and the calendar state. No subclass

should be allowed to mess up this arrangement. Similarly, the String class is

a final class. That means nobody can define a subclass of String. In other

words, if you have a String reference, you know it refers to a String and

nothing but a String.

If you call a method in a constructor, you should declare it as final.

Otherwise, it can be overridden in a subclass, and it can access a partially

constructed subclass instance. Here 1s an example. For debugging purposes,

the Employee constructor displays a description of the constructed object.

public class Employee {

public Employee(String name, double salary, int year, int month, int

day) {

this.name = name;

this.salary = salary;

hireDay = LocalDate.of(year, month, day);

[O.println("Constructed " + description());

public String description() {

return "An employee with a salary of " + salary;

Now a new class is added to the hierarchy of employee classes—executives

with titles:

public class Executive extends Manager {

private String title;

public Executive(String name, String title, double salary,
int year, int month, int day) {
super(name, salary, year, month, day);

this.title = title;;

public String getTitle() {

return title;

public String description() {
if (title.length() >= 20)
return "An executive with an impressive title";
else

return "An executive with a title of " + title;

When an Executive is constructed, its constructor first calls the Manager
constructor, which calls the Employee constructor, which calls the
description method. Because of polymorphism, that is the description
method in the Executive class! Unfortunately, the Executive constructor
hasn’t finished yet. The title instance field is still null, causing a

NullPointerException.

0 Caution: Calling a method in a constructor is inherently dangerous.
The constructor must have done enough work for the method to
function correctly. If the method can be overridden, this becomes
very difficult to ensure. Therefore, it is best to call only final or

private methods in a constructor.

Some languages handle this differently. In C++, method calls in a
constructor are not polymorphic. For example, if you call
getDescription in an Employee constructor, it always invokes

Employee::getDescription.

g Tip: Since Java 21, if you compile with the -Xlint:this-escape
option, the compiler issues a warning when the constructor of a

public class calls a method that 1s not final or private.

The name of the flag is a bit unfortunate since there are other

situations where the this reference can “escape” from a constructor

that the compiler does not currently detect.

Some programmers believe that you should declare all methods as final
unless you have a good reason to want polymorphism. In fact, in C++ and
C#, methods do not use polymorphism unless you specifically request it.
That may be a bit extreme, but I agree that it is a good idea to think
carefully about final methods and classes when you design a class

hierarchy.

In the early days of Java, some programmers used the final keyword hoping
to avoid the overhead of dynamic binding. If a method is not overridden,
and it is short, then a compiler can optimize the method call away—a
process called in/ining. For example, inlining the call e.getName() replaces

it with the field access e.name. This is a worthwhile improvement—CPUs

hate branching because it interferes with their strategy of prefetching

instructions while processing the current one. However, if getName can be

overridden in another class, then the compiler cannot inline it because it has

no way of knowing what the overriding code may do.

Fortunately, the just-in-time compiler in the virtual machine can do a better

job than a traditional compiler. It knows exactly which classes extend a

given class, and it can check whether any class actually overrides a given

method. If a method is short, frequently called, and not actually overridden,

the just-in-time compiler can inline it. What happens if the virtual machine

loads another subclass that overrides an inlined method? Then the optimizer

must undo the inlining. That takes time, but it happens rarely.

Note: Enumerations and records are always final—you cannot

extend them.

5.1.8. Casting

Recall from Chapter 3 that the process of forcing a conversion from one
type to another is called casting. The Java programming language has a

special notation for casts. For example,

double x = 3.405;

int nx = (int) x;

converts the value of the expression x into an integer, discarding the

fractional part.

Just as you occasionally need to convert a floating-point number to an
integer, you may need to convert an object reference from one class to
another. Let’s again use the example of an array containing a mix of

Employee and Manager objects:

var staff = new Employee[3];

staff[0] = new Manager("Carl Cracker", 80000, 1987, 12, 15);

staff[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);

staff[2] = new Employee("Tony Tester", 40000, 1990, 3, 15);

To actually make a cast of an object reference, use a syntax similar to what

you use for casting numeric expressions. Surround the target class name

with parentheses and place it before the object reference you want to cast.

For example:

Manager boss = (Manager) staff[0];

There is only one reason why you would want to make a cast—to use an

object in its full capacity after its actual type has been temporarily

forgotten. For example, in the ManagerDemo class, the staff array had to be

an array of Employee objects because some of its elements were regular

employees. We would need to cast the managerial elements of the array

back to Manager to access any of its new variables. (Note that in the sample
code for the first section, [made a special effort to avoid the cast. I
initialized the boss variable with a Manager object before storing it in the

array. I needed the correct type to set the bonus of the manager.)

As you know, in Java every variable has a type. The type describes the kind
of object the variable refers to and what it can do. For example, staff]i]

refers to an Employee object (so it can also refer to a Manager object).

The compiler checks that you do not promise too much when you store a
value in a variable. If you assign a subclass reference to a superclass
variable, you are promising less, and the compiler will simply let you do it.
If you assign a superclass reference to a subclass variable, you are
promising more. Then you must use a cast so that your promise can be

checked at runtime.

What happens if you try to cast down an inheritance chain and are “lying”

about what an object contains?

Manager boss = (Manager) staff[1]; / ERROR

When the program runs, the Java runtime system notices the broken

promise and generates a ClassCastException. If you do not catch the

exception, your program terminates. Thus, it is good programming practice

to find out whether a cast will succeed before attempting it. Simply use the

instanceof operator. For example:

if (staff]1] instanceof Manager) {

boss = (Manager) staff]1];

Finally, the compiler will not let you make a cast if there is no chance for

the cast to succeed. For example, the cast

String ¢ = (String) staff]1];

is a compile-time error because String is not a subclass of Employee.

To sum up:

B You can cast only within an inheritance hierarchy.

B Use instanceof to check before casting from a superclass to a subclass.

Note: The test

X instanceof C

does not generate an exception if x 1s null. It simply returns false.
That makes sense: null refers to no object, so it certainly doesn’t

refer to an object of type C.

Actually, converting the type of an object by a cast is not usually a good

idea. In our example, you do not need to cast an Employee object to a

Manager object for most purposes. The getSalary method will work

correctly on both objects of both classes. The dynamic binding that makes

polymorphism work locates the correct method automatically.

The only reason to make the cast is to use a method that is unique to

managers, such as setBonus. If for some reason you find yourself wanting

to call setBonus on Employee objects, ask yourself whether this is an

indication of a design flaw in the superclass. It may make sense to redesign

the superclass and add a setBonus method. Remember, it takes only one

uncaught ClassCastException to terminate your program. In general, it is

best to minimize the use of casts and the instanceof operator.

Note: Java uses the cast syntax from the “bad old days” of C, but it

works like the safe dynamic_cast operation of C++. For example,

Employee[] staff = . . .;

Manager boss = (Manager) staft[1]; // Java
1s equivalent to

Employee* staff[] =. . .;

Manager* boss = dynamic cast<Manager*>(staff]1]); // C++

There is one notable difference. If the dynamic_cast fails, it yields a

null pointer instead of throwing an exception.

5.1.9. Pattern Matching for instanceof

The code

if (staff]1] instanceof Manager) {
Manager boss = (Manager) staff]i];

boss.setBonus(5000);

is rather verbose. Do we really need to mention the subclass Manager three

times?

As of Java 16, there is an easier way. You can declare the subclass variable

right in the instanceof test:

if (staff1] instanceof Manager boss) {

boss.setBonus(5000);

If staff]i] is an instance of the Manager class, then the variable boss is set to

staff]1], and you can use it as a Manager. You skip the cast.

If staff]i] doesn’t refer to a Manager, boss is not set, and the instanceof

operator yields the value false. The body of the if statement is skipped.

6 Tip: In most situations in which you use instanceof, you need to
apply a subclass method. Then use this “pattern-matching” form of

instanceof instead of a cast.

A useless instanceof pattern is a compile-time error:

Manager boss =. . .;

if (boss instanceof Employee e) . . . // ERROR: Of course it's an

Employee

Note: The equally useless

if (boss instanceof Employee) . . .

1s allowed, for backward compatibility with Java 1.0.

When an instanceof pattern introduces a variable, you can use it right away,

in the same expression:

Employeee=.. ;

if (e instanceof Executive exec && exec.getTitle().getLength() >= 20) . .

This works because the right-hand side of an && expression is only

evaluated if the left-hand side is true. If the right-hand side is evaluated,

exec must have been bound to an Executive instance.

However, the following is a compile-time error:

if (e instanceof Manager exec || exec.getTitle().getLength() >=20)...//

ERROR

The right-hand side of || 1s executed when the left-hand side is false, and

then nothing is bound to the variable exec.

Here is another example with the conditional operator:

nn,

String title = e instanceof Executive exec ? exec.getTitle() : "";

The variable exec is defined in the subexpression after the ?, but not in the

subexpression after the :.

Note: The variable-declaring instanceof forms are called “pattern-
matching” because they are similar to type patterns in switch, which

are covered in detail in Section 5.9.

0 Caution: As any local variable, the local variable defined by a

pattern can shadow a field. For example:

class Value {

private double v;

public boolean equals(Object other) {

if (other instanceof LabeledValue v)

// v 1s the same as other

else

// v denotes the field

The preceding example showed a type pattern. If the type matches, the

object is bound to a variable of that type. When the type is a record, you

can, as of Java 21, do better and declare variables that are bound to the

components. This is called a record pattern:

record Point(double x, double y) {}

Pointp=.. ;

if (p instanceof Point(var a, var b)) distance = Math.hypot(a, b);

Now a and b are bound to the x and y components of p. Of course, you

could also invoke p.x() and p.y(), but a record pattern can be more concise.

For added clarity, you can also specify explicit types for the introduced

variables:

if (p instanceof Point(double a, double b)) . . .;

Record patterns can be nested:

record Circle(Point center, double radius) {}
Circlec=.. ;

if (c instanceof Circle(Point(var a, var b), varr)) . . .;

Since Java 22, you can denote unmatched parts in a record pattern with an

underscore:

if (p instanceof Point(var a,)) distance = Math.abs(a);

5.1.10. Protected Access

As you know, fields in a class are best tagged as private, and methods are

usually tagged as public. Any features declared private won’t be accessible

in other classes. As explained at the beginning of this chapter, this is also

true for subclasses: A subclass cannot access the private fields of its

superclass.

There are times, however, when you want to restrict a method to subclasses

only or, less commonly, to allow subclass methods to access a superclass

field. In that case, you declare a class feature as protected. For example, if

the superclass Employee declares the hireDay field as protected instead of

private, then the Manager methods can access it directly.

In Java, a protected field is accessible by any class in the same package.

Now consider an Administrator subclass in a different package. The

methods of the Administrator class can peek inside the hireDay field of

Administrator objects only, not of other Employee objects. This restriction

1s made so that you can’t abuse the protected mechanism by forming

subclasses just to gain access to the protected fields.

In practice, use protected fields with caution. Suppose your class is used by

other programmers and you designed it with protected fields. Unknown to

you, other programmers may inherit classes from your class and start

accessing your protected fields. In this case, you can no longer change the

implementation of your class without upsetting those programmers. That is

against the spirit of OOP, which encourages data encapsulation.

Protected methods make more sense. A class may declare a method as

protected if it is tricky to use. This indicates that the subclasses (which,

presumably, know their ancestor well) can be trusted to use the method

correctly, but other classes cannot.

A good example of this kind of method is the clone method of the Object

class—see Chapter 6 for more details.

Note: As already mentioned, protected features in Java are
accessible to all subclasses as well as to all other classes in the same
package. This is slightly different from the C++ meaning of
protected, and it makes the notion of protected in Java even less safe

than in C++.

Here is a summary of the four access control modifiers in Java:

1. Accessible in the class only (private).

2. Accessible by the world (public).

3. Accessible in the package and all subclasses (protected).
4. Accessible in the package—the (unfortunate) default. No modifiers are

needed.

5.2. Object: The Cosmic Superclass

The Object class is the ultimate ancestor—every class in Java extends

Object. However, you never have to write

public class Employee extends Object

The ultimate superclass Object is taken for granted if no superclass is
explicitly mentioned. Since every class in Java extends Object, it is
important to be familiar with the services provided by the Object class. I go
over the basic ones in this chapter; consult the later chapters or view the
online documentation for what is not covered here. (Several methods of

Object come up only when dealing with concurrency—see Chapter 10.)

5.2.1. Variables of Type Object

You can use a variable of type Object to refer to objects of any type:

Object obj = new Employee("Harry Hacker", 35000);

Of course, a variable of type Object is only useful as a generic holder for
arbitrary values. To do anything specific with the value, you need to have

some knowledge about the original type and apply a