
When Docker 
Meets Java

A Practical Guide to Docker for Java  
and Spring Boot Applications
—
Ashish Choudhary



When Docker  
Meets Java

A Practical Guide to Docker 
for Java and Spring Boot 

Applications

Ashish Choudhary



When Docker Meets Java: A Practical Guide to Docker for Java and Spring 

Boot Applications

ISBN-13 (pbk): 979-8-8688-1299-6		  ISBN-13 (electronic): 979-8-8688-1300-9
https://doi.org/10.1007/979-8-8688-1300-9

Copyright © 2025 by Ashish Choudhary

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or 
part of the material is concerned, specifically the rights of translation, reprinting, reuse of 
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, 
and transmission or information storage and retrieval, electronic adaptation, computer software, 
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark 
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, 
and images only in an editorial fashion and to the benefit of the trademark owner, with no 
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if 
they are not identified as such, is not to be taken as an expression of opinion as to whether or not 
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of 
publication, neither the authors nor the editors nor the publisher can accept any legal responsi-
bility for any errors or omissions that may be made. The publisher makes no warranty, express or 
implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Melissa Duffy
Development Editor: Laura Berendson
Editorial Assistant: Gryffin Winkler

Cover designed by eStudioCalamar

Cover image by Markus Kammermann from Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 
New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, 
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media 
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, 
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook 
versions and licenses are also available for most titles. For more information, reference our Print 
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is 
available to readers on GitHub. For more detailed information, please visit https://www.apress.
com/gp/services/source-code.

If disposing of this product, please recycle the paper

Ashish Choudhary
Pune, Maharashtra, India

https://doi.org/10.1007/979-8-8688-1300-9


To my daughter Viya and son Ayansh, who fill my world 
with joy and wonder.

To my wife Shefali, my unwavering partner and  
source of strength.

To my parents, for their endless love and guidance.

This book is for you.



v

Table of Contents

About the Author��������������������������������������������������������������������������������xiii

About the Technical Reviewer�������������������������������������������������������������xv

Chapter 1: ��Overview of Containers��������������������������������������������������������1

A Bit of History�������������������������������������������������������������������������������������������������������2

Definition of Containers�����������������������������������������������������������������������������������������3

Docker’s Definition�������������������������������������������������������������������������������������������3

Understanding Containers��������������������������������������������������������������������������������4

The Significance of Containers������������������������������������������������������������������������������6

Key Advantages of Containers��������������������������������������������������������������������������7

Container vs. Virtual Machine���������������������������������������������������������������������������9

Rise of Docker������������������������������������������������������������������������������������������������11

Summary�������������������������������������������������������������������������������������������������������������15

Chapter 2: ��Docker High-Level Overview����������������������������������������������17

Docker’s Basic Principle��������������������������������������������������������������������������������������17

Docker Is Not!!!�����������������������������������������������������������������������������������������������18

How Does Docker Work?��������������������������������������������������������������������������������20

Understanding Docker Desktop����������������������������������������������������������������������24

Docker Desktop Features�������������������������������������������������������������������������������26

Docker Desktop in Action�������������������������������������������������������������������������������26

Key Docker Concepts��������������������������������������������������������������������������������������32

Summary��������������������������������������������������������������������������������������������������������36



vi

Chapter 3: ��Up and Running with Docker����������������������������������������������39

Creating a Dockerfile�������������������������������������������������������������������������������������������39

Dockerfile Commands and Their Usage����������������������������������������������������������42

Exploring Facts About Dockerfiles������������������������������������������������������������������43

Building and Tagging a Docker Image������������������������������������������������������������46

Tagging a Docker Image���������������������������������������������������������������������������������49

Pushing and Running a Docker Image�����������������������������������������������������������53

Running a Docker Image��������������������������������������������������������������������������������56

Common Pitfalls���������������������������������������������������������������������������������������������57

Inspecting and Managing a Docker Image�����������������������������������������������������59

Managing a Docker Image������������������������������������������������������������������������������62

Summary��������������������������������������������������������������������������������������������������������63

Chapter 4: ��Learning Advanced Docker Concepts���������������������������������65

Exploring Docker’s Networking����������������������������������������������������������������������������65

Docker’s Networking vs. VM Networking�������������������������������������������������������65

Types of Docker Network Drivers�������������������������������������������������������������������������66

Bridge Driver��������������������������������������������������������������������������������������������������67

Host Driver������������������������������������������������������������������������������������������������������69

None Driver�����������������������������������������������������������������������������������������������������70

Overlay and macvlan Drivers��������������������������������������������������������������������������70

Basic Docker Networking Commands������������������������������������������������������������������71

Docker Volumes���������������������������������������������������������������������������������������������������71

Getting Started with Docker Volumes������������������������������������������������������������������72

Creating Docker Volumes�������������������������������������������������������������������������������73

Listing Available Volumes�������������������������������������������������������������������������������73

Volume Inspection������������������������������������������������������������������������������������������74

Mounting Data Volumes����������������������������������������������������������������������������������74

Table of Contents



vii

Copy Containers Data�������������������������������������������������������������������������������������74

Host Directories As Data Volumes������������������������������������������������������������������74

Ownership and Permissions of Volumes��������������������������������������������������������75

Deleting Docker Volumes��������������������������������������������������������������������������������75

Bulk Volume Deletion��������������������������������������������������������������������������������������75

Docker Compose��������������������������������������������������������������������������������������������������77

Understanding Docker Compose��������������������������������������������������������������������77

Setting Up Docker Compose��������������������������������������������������������������������������������79

Docker Compose in Action�����������������������������������������������������������������������������������80

Docker Compose Support in Spring Boot�������������������������������������������������������������83

Summary�������������������������������������������������������������������������������������������������������������85

Chapter 5: ��Containerizing Java Applications with Dockerfile�������������87

Understanding Base Images��������������������������������������������������������������������������������87

Choosing JDK vs. JRE As the Base Image������������������������������������������������������������88

Official OpenJDK Images�������������������������������������������������������������������������������������89

Eclipse Temurin Images���������������������������������������������������������������������������������������90

Alpine Linux Images���������������������������������������������������������������������������������������������90

Distroless Base Images����������������������������������������������������������������������������������������90

Building Custom Base Images�����������������������������������������������������������������������������91

Multi-stage Builds for Optimization���������������������������������������������������������������������91

Security Considerations���������������������������������������������������������������������������������������92

Containerizing and Running a Spring Boot Application����������������������������������������93

Dockerizing a Spring Boot Application�����������������������������������������������������������93

Building a Simple Spring Boot Application�����������������������������������������������������94

Containerizing Spring Boot Application with Buildpack���������������������������������96

Summary�������������������������������������������������������������������������������������������������������������97

Table of Contents



viii

Chapter 6: Working with Container Builder Tools for Java 
Applications�����������������������������������������������������������������������������������������99

Building Container Images with the Google Jib���������������������������������������������������99

Understanding Jib������������������������������������������������������������������������������������������99

Building with Jib�������������������������������������������������������������������������������������������101

Understanding Jib Image Layering���������������������������������������������������������������102

Building Container Images with Fabric8 Docker Maven Plugin�������������������������104

Understanding Fabric8 Docker Maven Plugin����������������������������������������������105

Benefits of Fabric8 Docker Maven Plugin����������������������������������������������������������105

Setting Up Fabric8 Docker Maven Plugin�����������������������������������������������������106

Building Container Images with Spotify’s Docker-Maven-Plugin�����������������������110

Understanding Spotify’s Docker-Maven-Plugin��������������������������������������������110

Getting Started���������������������������������������������������������������������������������������������112

Building Container Images with Cloud-Native Buildpacks���������������������������115

Understanding Buildpacks����������������������������������������������������������������������������115

Cloud-Native Buildpacks Features���������������������������������������������������������������116

Configuring Buildpack����������������������������������������������������������������������������������118

Summary�����������������������������������������������������������������������������������������������������������121

Chapter 7: ��Deploying Docker Containers Using GitHub Actions��������123

Understanding Github Actions����������������������������������������������������������������������������123

GitHub Action Components��������������������������������������������������������������������������������125

Understanding Workflow Yaml File���������������������������������������������������������������126

Building Java Application Using Github Actions�������������������������������������������������128

Setting Up a Java Project�����������������������������������������������������������������������������128

Containerizing Java Application Using Docker GitHub Action����������������������������132

Understanding the Process��������������������������������������������������������������������������132

Writing a Dockerfile��������������������������������������������������������������������������������������132

Setting Up Github Actions�����������������������������������������������������������������������������133

Table of Contents



ix

Deploying Java Application to GCP Using GitHub Action������������������������������������135

Understanding the Workflow������������������������������������������������������������������������136

Setting Up the Workflow�������������������������������������������������������������������������������138

GitHub Actions Best Practices for CI/CD with Docker����������������������������������������143

Keep Workflows DRY (Don’t Repeat Yourself)�����������������������������������������������143

Use Secrets for Sensitive Information����������������������������������������������������������145

Leverage Caching to Reduce Build Times����������������������������������������������������145

Run Security and Performance Tests As Part of the CI Process�������������������146

Summary�����������������������������������������������������������������������������������������������������������146

Chapter 8: ��Exploring Docker Alternatives�����������������������������������������147

Podman��������������������������������������������������������������������������������������������������������������147

Setting Up Podman��������������������������������������������������������������������������������������������148

Using the .dmg File���������������������������������������������������������������������������������������149

Developing a Simple Spring Boot Application����������������������������������������������������156

Containerizing the Spring Boot Application��������������������������������������������������������158

Building Container Image with Podman�������������������������������������������������������������158

Running Containerized Application��������������������������������������������������������������������159

Buildah���������������������������������������������������������������������������������������������������������������161

Buildah Features������������������������������������������������������������������������������������������162

Podman and Buildah Comparison����������������������������������������������������������������������163

Building Images with Buildah����������������������������������������������������������������������������164

Kaniko����������������������������������������������������������������������������������������������������������������166

Need for Kaniko��������������������������������������������������������������������������������������������166

Features of Kaniko���������������������������������������������������������������������������������������������166

Understanding Kaniko����������������������������������������������������������������������������������167

Using Kaniko to Build and Push Docker Images�������������������������������������������167

Table of Contents



x

Img���������������������������������������������������������������������������������������������������������������������169

Why img?������������������������������������������������������������������������������������������������������169

Features of img��������������������������������������������������������������������������������������������170

Using img to Build and Push Docker Images������������������������������������������������170

Summary�����������������������������������������������������������������������������������������������������������171

Chapter 9: ��Building Native Images with GraalVM������������������������������173

Demystifying Native Image and GraalVM�����������������������������������������������������������174

Native Image Explained�������������������������������������������������������������������������������������174

Native Image Benefits����������������������������������������������������������������������������������������175

Native Image Drawbacks�����������������������������������������������������������������������������������175

Differences Between Docker and Native Image������������������������������������������������176

Understanding GraalVM�������������������������������������������������������������������������������������176

JIT vs. AOT Compiler������������������������������������������������������������������������������������������177

JVM vs. GraalVM������������������������������������������������������������������������������������������������178

Spring Boot 3 and GraalVM��������������������������������������������������������������������������������179

Building Native Images with Spring Boot�����������������������������������������������������������180

Testing GraalVM Native Image for Spring Boot Application�������������������������������182

Understanding Quarkus a Kubernetes Native Java Framework������������������������184

Knowing Quarkus�����������������������������������������������������������������������������������������������184

Key Features of Quarkus������������������������������������������������������������������������������184

Need for Quarkus with Kubernetes��������������������������������������������������������������������185

Getting Started with Quarkus�����������������������������������������������������������������������������185

Building and Deploying Quarkus Application on Kubernetes�����������������������������188

Up and Running with Quarkus���������������������������������������������������������������������������188

Summary�����������������������������������������������������������������������������������������������������������191

Table of Contents



xi

Chapter 10: ��Testing Java Applications Using Testcontainers������������193

Introduction to Testcontainers���������������������������������������������������������������������������194

Need for Testcontainers�������������������������������������������������������������������������������������194

Testcontainers Features�������������������������������������������������������������������������������������196

Testing Spring Boot Applications�����������������������������������������������������������������������197

Unit Testing of Spring Boot Application��������������������������������������������������������������198

Integration Testing of Spring Boot Application���������������������������������������������������201

Spring Boot and Testcontainers�������������������������������������������������������������������������202

Dependencies Setup�������������������������������������������������������������������������������������203

Annotate Test Classes�����������������������������������������������������������������������������������204

Container Initialization���������������������������������������������������������������������������������������205

Summary�����������������������������������������������������������������������������������������������������������208

Chapter 11: ��Docker Best Practices for Java Developers�������������������209

Implementing Multistage Builds������������������������������������������������������������������������210

Understanding Multistage Builds�����������������������������������������������������������������210

Creating a Basic Multistage Build Dockerfile�����������������������������������������������211

Best Practices�����������������������������������������������������������������������������������������������211

Example��������������������������������������������������������������������������������������������������������211

Creating Slimmer Container Images with Java Jlink�����������������������������������������212

Key Features and Benefits of jlink����������������������������������������������������������������213

Knowing jlink������������������������������������������������������������������������������������������������213

Use Cases for jlink����������������������������������������������������������������������������������������217

Step-by-Step Guide��������������������������������������������������������������������������������������218

Best Practices�����������������������������������������������������������������������������������������������218

Example��������������������������������������������������������������������������������������������������������219

Table of Contents



xii

Using Distroless Base Images����������������������������������������������������������������������������220

Understanding Distroless Images�����������������������������������������������������������������220

Creating Distroless Java Image��������������������������������������������������������������������220

Benefits of Distroless Images�����������������������������������������������������������������������221

Best Practices�����������������������������������������������������������������������������������������������222

Applying JVM Arguments and Resource Limits to Docker Containers���������222

Importance of jvm Arguments and Resource Limits�������������������������������������223

Passing jvm Arguments in Docker����������������������������������������������������������������223

Balancing Resources for Optimal Performance��������������������������������������������224

Configuring Java Applications for Efficiency������������������������������������������������������224

Securing Docker Images������������������������������������������������������������������������������������225

Common Security Vulnerabilities������������������������������������������������������������������225

Scanning for Vulnerabilities��������������������������������������������������������������������������226

Best Practices�����������������������������������������������������������������������������������������������226

Choosing Maven vs. JDK vs. JRE Base Image���������������������������������������������������227

Pros and Cons����������������������������������������������������������������������������������������������������228

Best Practices�����������������������������������������������������������������������������������������������229

Example��������������������������������������������������������������������������������������������������������229

Summary�����������������������������������������������������������������������������������������������������������231

Index��������������������������������������������������������������������������������������������������233

Table of Contents



xiii

Ashish Choudhary is a senior software 

engineer and published author. He has over 

14 years of experience in the IT industry. He 

has experience in designing, developing, and 

deploying web applications. His technical 

expertise includes Java, Spring Boot, Docker, 

Kubernetes, IMDG, Distributed Systems, 

Microservices, DevOps, and the Cloud. He is 

an active blogger and technical writer. He has 

delivered talks at renowned conferences like GitHub Satellite India and 

Fosdem. He is a strong advocate of open source technologies. He has been 

contributing to various open source projects for quite some time. Ashish 

believes in continuous learning and knowledge sharing.   

About the Author



xv

Anant Chowdhary is a software engineer 

working on bringing AI-based dubbing to 

videos. Having completed a master’s in 

Computer Science with a focus on Machine 

Learning and Distributed Systems, Anant 

is a technology professional with extensive 

experience in designing and optimizing 

complex systems. He is deeply interested 

in the transformative potential of emerging 

technologies, particularly AI and automation, and how these innovations 

are reshaping industries, society, and the way we interact with the world.

Passionate about exploring the intersection of technology and human 

behavior, he is committed to understanding the broader implications of 

digital advancements on both individuals and communities. Working on 

planet scale systems, he has a wealth of experience in Distributed Systems 

and Applied Machine Learning. 

About the Technical Reviewer



1© Ashish Choudhary 2025 
A. Choudhary, When Docker Meets Java, https://doi.org/10.1007/979-8-8688-1300-9_1

CHAPTER 1

Overview of Containers
As a child, I spent so much time using Lego to build things, all the while 

thinking that there was no way these stupidly simple and standardized 2x4 

bricks could be the origin of all the awesome possibilities. Little did I know 

that those colorful blocks were instilling in me the fundamental principle 

of modern software development. Just as Lego reinvented play, containers 

have fundamentally changed how we develop, package, and deploy 

applications. Now imagine your software as if it were a Lego construction. 

Containers are individual building blocks, standardized and endlessly 

combinable, each one representing a containerized component.

Just like the toy bricks, containers provide a standard way to bundle 

applications for portability across any compatible system where they run. 

Need to scale up? Simple: add more “bricks.” Want to update a feature? 

Pop out one container and snap in another, without toppling the whole 

tower. Lego is magical in its modularity and flexibility: easily built, broken 

apart, and rebuilt. In software development, containers bring the same 

agility to software development. They isolate applications and their 

dependencies, just like individual Lego bricks are self-contained units. 

Such isolation ensures that just like a red 2×4 brick makes no difference 

whether it is in a castle or a spaceship, your application will be running 

identically whether it is on your laptop or inside a cloud data center.

In this chapter, we put the pieces of container technology together and 

explore how those digital building blocks have constructed a new era in 

computing. At the end of this, you’re going to see how containers are the 

doors to innovation: making developers able to build, share, and deploy 

their digital creations with unimaginable ease and creativity.

https://doi.org/10.1007/979-8-8688-1300-9_1#DOI


2

�A Bit of History
In 2010, a small startup called dotCloud was struggling in the competitive 

Platform-as-a-Service market. What they didn’t know was that they were 

actually about to change the tech world.

Headed by Solomon Hykes, the dotCloud team developed an in-house 

tool for managing Linux containers that were meant to improve their 

system but soon became so much more.

Linux Containers are a kind of operating system-level virtualization, 

running multiple independent Linux environments on one machine. 

LXC shares the host machine’s kernel with each one, which gives a leaner 

alternative to a virtual machine, yet maintains process, file system, and 

network space isolation.

LXC utilizes cgroups (control groups) and namespaces to manage and 

limit resources, producing a virtualization experience similar to running 

natively on an underlying system without the overhead of a full hypervisor.

Hykes introduced Docker at PyCon in March 2013. He received an 

immediate and enthusiastic response from the developers because 

Docker suggested a solution for how to more easily create, deploy, and run 

applications consistently in any environment.

A key innovation in Docker was its capability to bundle an application 

and its dependencies in a standardized unit, that is, containing libraries, 

dependencies, configuration files, and runtime environment—in a 

consistent format, which is also called a container. This alone solved the 

age-old developer headache: “It works on my machine!”

As Docker became popular, dotCloud shifted direction. They renamed 

it to Docker, Inc., and now focused exclusively on creating the Docker 

ecosystem. The project gained momentum very quickly:

Docker Hub was launched in 2014, providing a central location for 

images of containers.

In 2015, Docker Swarm followed with the native orchestration of 

containers.

Chapter 1  Overview of Containers



3

Docker Enterprise Edition was released in 2017 to suit the needs of 

businesses.

Docker was a total shift in software development. It made 

containerization and microservices architecture more popular and 

drastically changed how companies develop and deploy applications.

It was not always smooth. Docker, Inc. had financial difficulties that 

forced it to sell its Enterprise business in 2019, although the core Docker 

technology remained very influential.

Today, Docker is at the heart of many development workflows. This story 

exemplifies how an internal tool can become an industry-shaping technology 

through the uptake and contribution of an open source community.

As we explore containers throughout this book, we’ll learn about the 

story of Docker in the background. It’s a reminder that radical solutions 

have humble beginnings, and when the timing is right, they have the 

power to transform whole industries.

�Definition of Containers
Let’s begin by exploring a formal definition of containers before 

going deeper.

�Docker’s Definition
Docker defines container as follows:

A container is a standard unit of software that packages up code and 

all its dependencies, so the application runs quickly and reliably from 

one computing environment to another. A Docker container image is a 

lightweight, standalone, executable package of software that includes 

everything needed to run an application: code, runtime, system tools, system 

libraries, and settings.

Chapter 1  Overview of Containers



4

�Understanding Containers
This definition provides a more comprehensive and easily understandable 

explanation. For a Java application, the container will encompass the 

base image, JRE (Java Runtime Environment), application code, and other 

necessary dependencies for its execution.

Let’s further illustrate this concept with an additional example. In Java, 

a Class serves as a blueprint or template defining the state and behavior 

of objects. By utilizing this template, we can create multiple instances of 

the class. Similarly, a container image is a template from which numerous 

container instances can be generated.

Containers can be compared to black boxes without their internal 

details being visible. Each container possesses its own IP address, 

hostname, and disk. While we will explore the benefits of containers in 

future lessons, isolation is one of their notable advantages. Consider 

running two applications requiring distinct versions of Java or incompatible 

tools and libraries. Achieving this on virtual machines (VMs) would be 

challenging, resulting in resource wastage. However, such isolation is 

inherent with containers, and running multiple applications with different 

requirements becomes feasible.

Figure 1-1.  Container

Chapter 1  Overview of Containers



5

As illustrated in Figure 1-2, the accompanying image, the underlying 

infrastructure, represented at the bottom, can be a physical machine or 

a VM. On top of it lies the operating system layer. The container engine is 

responsible for running containers on the host machine. At the top of the 

image, we observe two separate applications running inside individual 

containers, each wholly isolated.

Figure 1-2.  Visual representation of containers

Let’s understand more about containers with an analogy.

•	 Imagine Java containers similar to JAR (Java Archive) 

files. In Java programming, a JAR file encapsulates 

Java classes and resources into a single file, making it 

convenient to distribute and run applications.

Chapter 1  Overview of Containers



6

•	 Now, picture containers as a broader concept that 

operates similarly. Like JAR files, containers package 

an application with its required dependencies and 

configuration files. This encapsulation ensures 

the application runs consistently across various 

environments, from development to production.

•	 It’s similar to placing our Java program and all its 

dependencies inside a single, self-sufficient container, 

ensuring seamless functionality no matter where 

we put it. In this analogy, just as a JAR file contains 

compiled Java code and resources, a container houses 

an entire application with everything it needs to 

operate successfully.

Containers encapsulate required dependencies, functioning as self- 

contained entities with IP addresses, hostnames, and disk configurations. 

The container engine executes them on the host machine. These 

containers package an application with essential dependencies and 

configuration files, ensuring consistent functionality across various 

environments, much like JAR files.

�The Significance of Containers
According to the 2023 DZone Containers Trend Report, containerization 

continues to mature and usher. Moreover, container adoption is 

increasing, particularly in large businesses, as most large organizations 

are going through digital transformation to enhance their IT and 

business capabilities. The point is there are some apparent benefits of 

containerizing our workloads.

So, what’s this fuss about containers, and why should we adopt 

containers in our organization?

Chapter 1  Overview of Containers



7

�Key Advantages of Containers
Containers offer several key advantages that make them a popular choice 

in software development and deployment.

�Portability

Portability in computing refers to the capability of executing a computer 

program or software on an operating system different from the one it was 

initially designed for. Due to their inherent portability, containers can 

be utilized across various platforms. They are compatible with Linux, 

Windows, macOS, and numerous other widely used operating systems, 

ensuring consistent behavior on virtual machines, physical servers, and 

personal laptops.

�Resource Utilization

Containers can be launched without booting an entire operating system, 

thus reducing resource consumption. We can operate efficiently using 

fewer resources and minimize our expenditure associated with cloud 

services or data center operations.

�Isolation

By running containers on a single server, each container is isolated from all 

others thereby ensuring any issue in one specific container does not affect 

any other container with the same application being run in it.

�Agility

Starts, stops, removals—everything happens swiftly because containers 

are lightweight and self-contained. Due to their quick startup and 

shutdown times, they are suitable for continuous integration and 

Chapter 1  Overview of Containers



8

deployment (CI/CD) pipelines. Fast startup and shutdown times of 

the containers as compared to virtual machines contribute to faster 

development and deployment workflows that are more streamlined.

�Easy to Scale

Horizontal scaling of containers becomes much easier by running multiple 

identical application instances. For instance, Kubernetes is a container 

orchestration tool that can automatically scale containers offering an 

advanced approach to containerized applications.

�Improved Productivity

Often developers say “It works on my machine” meaning their code 

runs well without any issues in their setup. However, it often fails to 

work properly in the production environment as per the expectations. 

Containers solve this problem by providing predictable environments for 

them, so there is no need to bother about such compatibility problems.

�Cloud Support

Major cloud platforms such as Amazon Web Services, Azure, and 

Google Cloud Platform have embraced containers. In other words, these 

platforms have adopted container-based services. This is made possible 

by containers being packaged in a standard format such as the Open 

Container Initiative (OCI) that enables them to run without any deviation 

on several cloud platforms. Hence, we can be assured that our application 

will run in the same way regardless of which cloud environment it runs on.

The following diagram demonstrates some important aspects of 

containers like their isolation, self-containment, and lightweight design. It 

also emphasizes its portability meaning that your app could function with 

flexibility over different clouds.

Chapter 1  Overview of Containers



9

Figure 1-3.  Illustrating essential container attributes

�Container vs. Virtual Machine
You might be wondering whether we should consider containerizing our 

applications given the fact that VMs are considered the foundation of 

cloud computing. Some top cloud providers still have services that let you 

run your application on VMs. Before cloud computing was born, VMs were 

used for enterprise organizations’ mission-critical workloads, and they 

remain cost-effective and time-saving for business applications.

Furthermore, containers and VMs help efficiently use computer 

resources but differ in some respects. Let’s take a moment to compare the 

differences between containers and virtual machines.

Chapter 1  Overview of Containers



10

Table 1-1.  Containers vs. virtual machines

Criteria Container Virtual Machine

Definition Containers encapsulate an 

application, its dependencies, 

libraries, binaries, and 

configuration files into a single 

package.

A virtual machine emulates 

a guest OS and abstracts the 

physical host machine it is 

running on.

OS 

Architecture

Containers do not run full-blown 

operation systems but share an 

operating system kernel.

VMs allow us to run multiple 

full-blown guest operating 

systems on a host server and 

improve resource utilization.

Size Containers are lightweight, 

containing only the required 

dependencies to run our 

applications.

VMs contain an entire guest 

operating system, so their size is 

typically large(i.e., in a few GB).

Startup Time Containers startup time is less 

(i.e., typically in milliseconds).

VM’s startup time is generally 

in minutes because of its large 

size.

Runtime 

Environment

Containers provide a predictable 

runtime environment.

With VMs, we must spend 

time and effort to ensure that 

environments are consistent.

Maintenance Easy to maintain and upgrade. We 

can throw away the old container 

and spin up a new one.

Maintaining and upgrading VMs 

is cumbersome.

To sum up, containers are maturing and gaining popularity, offering 

advantages like portability, better resource utilization, isolation, agility, 

easy scalability, improved productivity, and cloud support. They are 

suitable for CI/CD pipelines and compatible with multiple operating 

Chapter 1  Overview of Containers



11

systems. Comparatively, VMs are efficient for business applications but 

are larger, take more time to start up, and require more effort to ensure 

compatibility.

�Rise of Docker
Since its introduction in March 2013, Docker has emerged as the 

undeniable standard for containerizing application workloads. According 

to the 2024 Stack Overflow developer survey, Docker continues to be at 

the top of the list among professional developers in the most popular tool 

category.

Now, let’s delve into the factors that have captivated developers and 

contributed to their fondness for Docker.

�Key Reasons for Docker’s Popularity

Docker has gained popularity due to several key features and benefits:

•	 Cost savings: Docker is the best choice because it 

allows us to exploit our existing infrastructure to the 

fullest. On account of this, Docker containers utilize 

fewer hardware resources compared to VMs; hence, 

it becomes a very economical solution. By deploying 

Docker containers, we can achieve great ROI due to 

efficient resource utilization.

•	 Security: Applications are well segregated and 

isolated with Docker which makes it an excellent 

choice for enterprise settings. It is within this context 

that Docker’s ability to do so has made it the most 

suitable for use in an enterprise setup. For example, 

there is a tool called Docker Scout from Docker that 

inspects image contents and provides a detailed report 

Chapter 1  Overview of Containers



12

highlighting packages and vulnerabilities identified. 

Another thing is that it gives recommendations on how 

to solve issues detected during image analysis.

•	 Easier development: With the use of Docker, the “It 

works on my machine” problem can be eliminated 

since it ensures a consistent environment during all 

stages of the software development life cycle from local 

setups right through to production environments. This 

consistent environment helps developers significantly 

increase productivity by allowing them not to worry 

about infrastructure compatibility when writing codes. 

Furthermore, Docker images are versioned, so it is 

easy to roll back on previous image versions in case of 

problems, therefore adding an extra layer of flexibility 

and stability to the development process.

•	 Integration with existing tools: Docker comes with 

direct support in several IDEs that are very widely used. 

This eases container-based application development 

and management in the inner development loop of the 

application. Docker’s inherent features and support 

from orchestration tools like Kubernetes make them 

efficient and resilient in production environments. 

Besides, Docker easily integrates into GitHub Actions—

the widely used CI/CD platform—so that you can 

automate your pipeline for building, testing, and 

deploying container applications. Docker has many 

GitHub Actions available in the market—official, 

user-contributed—that provide building, annotating, 

and pushing of images with easy-to-use, reusable 

components from within our workflows.

Chapter 1  Overview of Containers



13

•	 Microservices architecture: The rise of microservices 

architecture demanded a solution to manage 

the complexity of deploying and scaling multiple 

services independently. Docker’s lightweight and 

modular nature makes it an excellent candidate 

for decomposing monolithic applications into 

microservices. Running stateless Microservices as 

containers is thus a logical choice. Thus, with this 

approach, deployments are simple, and scaling is 

facilitated, by exploiting existing hardware resources 

optimally. Each microservice can be put inside its 

container that could be developed, scaled up or 

down, and deployed autonomously. Airbnb, Netflix, 

and Paypal have all adopted Docker as a technology 

for building scalable fault-tolerant architectures of 

microservices.

•	 Hybrid and multi-cloud deployments: More 

enterprises are embracing multi-cloud environments to 

avoid vendor lock-ins and global outages by depending 

on a single cloud provider. Having said that, each 

cloud provider comes with different configurations, 

policies, and tools for management, which makes 

the deployment of applications complex. Docker’s 

portability allows organizations to deploy applications 

in a consistent way for both hybrid and multi-cloud 

setups. We can build applications once and run 

anywhere using Docker containers, allowing seamless 

migration and deployment across diverse cloud 

providers or on-premises infrastructure. For example, 

a running container in AWS EC2 can easily be moved 

Chapter 1  Overview of Containers



14

to an environment within the Google Cloud Platform 

without change or loss of anything. This is the flexibility 

that can lower the risk of vendor lock-in and allows 

businesses to choose the infrastructure that businesses 

would prefer to use most.

•	 Versatility for various scenarios: Docker is extremely 

flexible and can be used in a multitude of use cases. 

In an enterprise setting, when multiple tools and 

technologies are in use across the team, creating 

a consistent development environment becomes 

challenging. This is achievable with Docker, which 

gives the ability to standardize environments and set 

them up consistently. We can define infrastructure 

specifications within a Dockerfile and commit to a code 

repository. Developers can then effortlessly create their 

development environments using these specifications. 

We often rely on third-party tools like PostgreSQL 

or Nginx in application development. Leveraging 

container images of these third-party applications 

simplifies their execution, as all the necessary 

dependencies are encapsulated within the container. 

That means minimal manual configuration is required 

and that one does not have to be wasting a lot of time 

looking through documentation. This time- 

saving convenience applies to various tools, including 

databases and web servers, as container images are 

frequently available.

Chapter 1  Overview of Containers



15

�Summary
In conclusion, Docker has become the standard for containerizing 

application workloads due to its efficient utilization of resources, 

provides segregation and isolation for enterprise environments, ensures a 

consistent development environment, integrates with numerous developer 

tools, facilitates deployment of microservices-based architectures, and can 

be deployed consistently across hybrid and multi-cloud environments.

Chapter 1  Overview of Containers



17© Ashish Choudhary 2025 
A. Choudhary, When Docker Meets Java, https://doi.org/10.1007/979-8-8688-1300-9_2

CHAPTER 2

Docker High-Level 
Overview
Learn about docker, its architecture, its limitations,  
and how docker works.

Docker is an open source container management tool, developed by 

Solomon Hykes, and it has grown to become the most used standard in 

containerizing application workloads within the last decade since its 

inception in March 2013. Indeed, Docker changed how we package and 

deploy applications at scale according to its “build once, run anywhere” 

principle.

Docker provides a platform for effectively developing, distributing, and 

running applications as containers. It falls under the category of Platform 

as a Service within cloud computing.

�Docker’s Basic Principle
Java popularized the slogan “Write Once, Run Anywhere(WORA)” in 

software development. That means once written, Java applications can 

run on any device or platform with a compatible JVM. Docker has taken 

this one step further: ensuring that the application and all its runtime 

environment are packaged, distributed, and run uniformly.

https://doi.org/10.1007/979-8-8688-1300-9_2#DOI


18

Let us now talk about the underlying principle behind how Docker 

works: Build Once, Run Anywhere(BORA). Consider this: two developers 

are working on the same application, and they want to run the application 

on their local machines to speed up the development process. Developer 

A finally got the application running on their workstation and shared the 

steps they took with Developer B. When Developer B followed these steps, 

they couldn’t get the application up and running easily.

Why did developer B encounter difficulties when trying to run the 

application?

Well, there could be multiple answers to this but it could be possible 

that Developer A unintentionally omitted crucial instructions, such as 

environment variables to run the application.

Remember: This issue is all too common among developers, leading 

to frustrating situations where some may assert that “it works on my 

machine.” At the same time, it fails to function on other setups.

This is precisely where Docker shines, assuring that if an application 

is built using Docker, it will exhibit consistent behavior regardless of the 

environment—whether it be development, staging, or production. Docker 

eliminates the discrepancies caused by environment-specific variations, 

offering a reliable and consistent application execution experience.

�Docker Is Not!!!
We know about the features offered by Docker, but it’s essential to 

understand its limitations.

•	 Docker is not a virtualization technology: 
Virtualization technology, like VMware or Hyper-V, 

creates entire virtual machines with their operating 

systems, simulating hardware resources. On the other 

hand, Docker leverages the underlying host’s OS and 

uses containerization, a form of OS-level virtualization. 

Docker containers share the same OS kernel and isolate 

Chapter 2  Docker High-Level Overview



19

the application processes from each other. It does not 

emulate hardware or run full-blown guest operating 

systems.

•	 Docker is not a container orchestrator: Docker, in 

its core form, is a platform to develop, ship, and run 

applications inside containers. While Docker provides 

a simple orchestration solution called Docker Swarm, 

Docker is not an orchestrator. Tools like Kubernetes, 

Amazon ECS, or Apache Mesos are dedicated container 

orchestrators designed to manage, scale, and maintain 

containerized applications across multiple machines.

•	 Docker is not a virtual machine (VM) or a 
“lightweight VM”: As mentioned earlier, virtual 

machines emulate hardware resources and run whole 

operating systems. VMs have their kernel, binaries, 

and libraries. On the other hand, Docker containers 

share the host’s kernel and encapsulate only the 

application and its direct dependencies. Containers are 

significantly more lightweight than VMs, but it would 

be a misnomer to call them “lightweight VMs” as they 

operate at a different layer of abstraction.

•	 Docker is not the exclusive method for 
containerizing applications: While Docker 

popularized container technology and made it more 

accessible, it’s not the sole method for containerization. 

Other tools and platforms, like Podman, containerd, 

and rkt (Rocket), also provide ways to create and 

manage containers. These might have specific features 

or design philosophies that distinguish them from 

Docker, but they serve the same fundamental purpose 

of containerizing applications.

Chapter 2  Docker High-Level Overview



20

•	 Docker is not a container as a service (CaaS) 
platform: CaaS platforms provide container 

orchestration, management, scaling, and operational 

features as a service, often in cloud environments. 

Examples include Google Kubernetes Engine (GKE), 

Amazon ECS, and Azure Kubernetes Service (AKS). At 

its core, Docker is a tool designed for the creation and 

execution of containers. While Docker, Inc. has offered 

products and services around Docker (e.g., Docker 

Hub, Docker Enterprise), Docker itself, as a technology, 

isn’t a CaaS solution. It can be part of a CaaS offering 

but isn’t one by itself.

�How Does Docker Work?
Docker operates on a client/server architecture, with Docker Engine as 

the system’s central component. Docker Engine consists of the Docker 

daemon, a REST API, and a command-line interface (CLI). The Docker 

CLI communicates with the REST API exposed by the Docker daemon. 

When Docker commands are issued from the CLI, they are received by the 

Docker daemon, which then executes those commands.

Docker’s client-server architecture relies on a main component known 

as Docker Engine. Docker Engine comprises the Docker daemon, a REST 

API, and a CLI. The Docker CLI communicates with the REST API exposed 

by the Docker Daemon. So, when Docker commands are issued from the 

CLI, they are received by the Docker Daemon, which then executes those 

commands.

Chapter 2  Docker High-Level Overview



21

�Key Docker Commands

To illustrate, here are the commands in the sequence typically used to 

create an image:

	 1.	 docker build: Docker daemon is responsible for 

building our image.

	 2.	 docker tag: The image is tagged to a specific 

version.

	 3.	 docker push: Finally, the image is pushed to a 

remote Docker Hub registry.

Another application might want to use our image to run the 

following commands. Here, all the action is done by the Docker daemon 

process itself.

	 1.	 docker pull: Docker first needs the image locally to 

run our containers. If the image is not found locally, 

it will get it from the image registry.

	 2.	 docker run: Once the image is available, we can 

use this command to start and run the application 

inside a container.

The Docker CLI executes all the commands we discussed, while the 

Docker daemon performs the corresponding actions.

The following diagram visually represents the interaction between the 

Docker CLI, Docker Daemon, Docker REST API, Docker Image Registry, 

and Docker Containers, providing an overview of the Docker client/

server architecture and the flow of commands and data between the 

components.

Chapter 2  Docker High-Level Overview



22

Figure 2-1.  Docker architecture

Here’s what each part represents:

•	 Docker engine: This is the core part of Docker, 

including the runtime and daemon process. It’s the 

layer on which Docker runs and manages various 

Docker components.

•	 Docker daemon (Dockerd): This is a persistent 

background service that manages Docker images, 

containers, networks, and volumes. It’s the part that 

does the heavy lifting in the Docker architecture.

•	 Docker REST api: The Docker daemon exposes a REST 

API used by the Docker Client to communicate with 

the daemon. It allows users or other tools to interact 

programmatically with the Docker daemon.

•	 Docker cli: This command-line interface allows users 

to interact with Docker using commands. When we 

type a command into the Docker CLI, it sends these 

commands to the Docker daemon via the Docker 

REST API.

Chapter 2  Docker High-Level Overview



23

•	 Docker images: These are read-only templates with 

instructions for creating Docker containers. Images 

define the container environment and the application 

running within the container.

•	 Docker containers: Containers are instances of 

Docker images executed by the Docker daemon. They 

isolate applications from the underlying system and 

each other.

•	 Docker registry: This storage and content delivery 

system holds named Docker images in different tagged 

versions. Users interact with a registry by using Docker 

push and pull commands. Docker Hub is a public 

instance of a Docker registry that Docker, Inc. operates.

Here’s the interaction flow in the Docker architecture as per the 

diagram:

	 1.	 The Docker CLI sends a command to the Docker 
daemon via the Docker REST API.

	 2.	 The Docker daemon then communicates with 

the Docker Registry to pull or push images as 

requested or manages Docker Images and Docker 
Containers locally.

	 3.	 All these operations are under the umbrella of the 

Docker Engine, which facilitates these components 

working together seamlessly.

Chapter 2  Docker High-Level Overview



24

�Understanding Docker Desktop
Docker Desktop for macOS and Windows is the fastest, no-clutter way to 

containerize applications. When Docker came initially, it was targeted for 

Linux, and there was no official support for other systems like Windows 

and macOS. After realizing this limitation and huge drawback in their 

design, the Docker Team decided in something great—the official port to 

these systems—called Docker Desktop.

According to the official documentation:

Docker Desktop is an application for macOS and Windows 
machines that is used to build and share containerized appli-
cations and microservices.

When drawing analogies, one might think of Docker Desktop as an 

IDE for containers. Since Windows and macOS do not natively support 

containers, Docker Desktop compensates by using its light VM. On 

Windows, it uses Hyper-V or WSL2 (since the former is preferred), and on 

macOS, it uses Hyperkit. Docker Desktop has a helpful GUI that controls 

these VM resources.

The advantage of Docker Desktop lies in its streamlined installation 

process, as it offers a single package for Mac and Windows users. This 

package includes essential components to utilize Docker effectively.

A typical Docker Desktop installation encompasses the following 

components:

•	 Docker Engine

•	 Docker CLI

•	 Docker Compose

•	 Kubernetes

•	 Content Trust

•	 Credential Helper

Chapter 2  Docker High-Level Overview



25

Here’s a simplified diagram illustrating the components of Docker 

Desktop:

The following diagram provides a high-level overview 

of how the different components of a Docker 

Desktop environment work together to enable 

containerization and management of applications.

Figure 2-2.  Docker Desktop components

•	 The central part of the diagram is Docker Desktop itself, 

which works directly as the user interface. Users can 

interact with the Docker Desktop through Kubernetes 

manifests, Docker Compose files, commands, and scripts.

•	 Then, the Docker Desktop interacts with the Host that 

holds the containers and images, which the Docker 

Engine is responsible for. The core element of Docker is 

the Docker Engine, which is responsible for orchestrating 

the containers and providing the necessary resources.

•	 This diagram further shows several Development Tools 

that are part of Docker Desktop, including Kubernetes, 

DockerCompose, and DockerCLI. These tools blend in 

with the Docker Desktop for additional functionalities 

and abilities.

Now, let’s explore some of the critical features Docker Desktop provides.

Chapter 2  Docker High-Level Overview



26

�Docker Desktop Features
Here are some key features of Docker Desktop:

•	 Simplified containerization and sharing of applications

•	 Ability to scan images for potential vulnerabilities

•	 User-friendly interface for managing Docker 

components

•	 Docker Desktop supports multiple system 

architectures, including Apple M1, ARM, and Windows

•	 Introduction of Dev Environments for creating 

consistent and reproducible development 

environments

•	 Built-in support for Kubernetes, enabling the creation 

of functional single-node Kubernetes clusters using 

Docker Desktop

•	 Extensibility through third-party tools powered by 

Docker extensions 

•	 Native support for running Linux on Windows 

using WSL2

�Docker Desktop in Action
Docker Desktop enhances the functionality of the underlying open source 

Docker components by offering user-friendly maintenance, monitoring, 

and upgrade features. It delivers a uniform user experience across 

various operating systems. With Docker Desktop, team collaboration 

is streamlined through Docker Dev Environments, enabling one-click 

sharing via Git or Docker Hub. It boasts a straightforward graphical 

interface for common tasks such as:

Chapter 2  Docker High-Level Overview

https://www.docker.com/blog/tech-preview-docker-dev-environments/
https://www.docker.com/blog/docker-extensions-discover-build-integrate-new-tools-into-docker-desktop/


27

•	 Initiating a container

You can start a new container with Docker Desktop 

that is based on a Docker image of your choice.

You can choose the image and then optionally set 

settings for port mapping, environment variables, 

and volumes. It then launches the container in 

one click.

This simplifies the process of spinning up new 

containerized applications, so users new to Docker 

can start easily.

•	 Pausing and restarting a container

Docker Desktop offers a graphical user interface to 

pause and resume running containers.

Pausing a container suspends its execution, allowing 

you to temporarily stop the container’s activity 

without losing its state.

Restarting the paused container resumes its 

operation from the point where it was paused.

This feature is useful for temporarily suspending 

a container’s activities, for example, during 

maintenance or debugging.

•	 Stopping a container

The Docker Desktop interface allows you to easily 

stop running containers.

It stops a container gently and closes the application 

or process running inside the container.

This is useful if you have to stop a container and 

release the resources that container was using.

Chapter 2  Docker High-Level Overview



28

•	 Configuring a local Kubernetes cluster

Docker Desktop provides built-in functionality 

to create and manage a local Kubernetes cluster. 

The user can enable and configure a single-node 

Kubernetes cluster directly from the Docker Desktop 

interface.

This helps developers test and develop applications 

using Kubernetes without an additional separate 

Kubernetes setup.

•	 Managing volumes

Docker desktop allows a developer to manage the 

volumes by creating, inspecting, and mounting a 

volume right from the UI of the Docker desktop.

This therefore simplifies the process of managing persistent storage for 

your containerized applications and will thus ensure that no data is lost 

when the containers are stopped or removed.

To show the capabilities of the docker desktop, let’s try to run a  

pre-built image from Dockerhub.

•	 Look for the Docker Desktop icon on our Desktop. 

Double-click the Docker Desktop icon to launch the 

application.

•	 To locate images, click the search bar at the top or use 

the shortcut ⌘ + K. To find the specific image used in 

this guide, search for “welcome-to-docker”.

Chapter 2  Docker High-Level Overview



29

 

•	 Choose Run.

 

•	 Upon the display of Optional settings, enter the Host 

port number 8090, and then click Run. This will map 

the internal port of the container to the host port 

specified and allow access to the application running in 

the container from the host machine.

Chapter 2  Docker High-Level Overview



30

 

Chapter 2  Docker High-Level Overview



31

•	 Go to the Containers tab in Docker Desktop to view the 

container.

 

•	 Click the link given under Port(s).

 

•	 We should see the following output.

 

Chapter 2  Docker High-Level Overview



32

•	 We also have the option to stop the container.

 

•	 We have multiple options to manage containers, that is, 

restart/pause.

 

To conclude, Docker Desktop simplifies containerizing applications 

and microservices for macOS and Windows users. It provides a graphical 

interface for managing VM resources and offers streamlined installation. 

Features include simplified containerization and sharing, image scanning, 

support for multiple system architectures, Dev Environments, and built-in 

support for Kubernetes.

�Key Docker Concepts
Let’s understand Docker by drawing parallels with familiar Java principles. 

In the next sections, let’s look at constituents and associated terminologies 

by relating them to the already familiar landscape of Java development.

Chapter 2  Docker High-Level Overview



33

�Dockerfile

Docker relies on a text document named Dockerfile when constructing 

a container image. This file encompasses a series of instructions that 

define the construction of the Docker image. In Java terms, we can say that 

Dockerfile is akin to a Java class definition. It contains instructions on how 

to build a Docker image. Just as a Java class specifies how to create objects, 

a Dockerfile outlines the steps to construct a Docker image.

For a basic Java/Spring Boot application, the Dockerfile typically 

includes the following set of instructions.

FROM openjdk:17
COPY target/*.jar app.jar
ENTRYPOINT ["java","-jar","/app.jar"]

The FROM instruction specifies the base image that serves as the 

foundation for our application.

The COPY instruction copies the locally built .jar file generated by the 

chosen build tool, such as Maven, Ant, or Gradle, into our container image.

As for the ENTRYPOINT instruction, it designates the default executable 

command for our container upon startup. In this example, we aim to run 

the .jar file using the java -jar command.

�Docker Image

Similar to how a JAR file packages a Java application and its dependencies, 

a Docker image encapsulates an application, including its runtime, 

libraries, and dependencies. Both serve as self-contained units ready for 

deployment. Also, just as JAR files can be distributed and shared easily, 

Docker images can be effortlessly distributed and shared, allowing users to 

push and pull from Docker registries like Docker Hub and facilitating the 

seamless sharing and distribution of applications.

Chapter 2  Docker High-Level Overview



34

�Docker CLI

The Docker CLI (Command-Line Interface) is the primary means of 

interacting with Docker. Commands issued from the CLI are transmitted to 

the Docker daemon using these communication channels. In Java, JShell 

allows developers to enter and execute Java code snippets interactively, 

and the Docker CLI enables developers to execute commands for 

managing Docker components.

�Docker Container

A Docker container is like an instance of a Java class. It’s a runnable 

environment created from a Docker image, similar to how objects are 

created from a class in Java. Each container is isolated and runs its 

application or service.

�Docker Daemon

Docker daemon acts as the Docker core component, like the central 

nervous system. It runs as a background service in the host system and 

is responsible for executing the commands—like docker build, docker 
pull, and docker run—issued through the Docker CLI. It’s comparable 

to a JVM running in the background. It is responsible for running and 

managing Docker containers, similar to the way in which the JVM manages 

the execution of Java applications.

�Docker Hub

Docker Hub is the image repository where we can store, share, and 

manage container images. Think of a Docker Hub as a central repository 

for storing Docker images, similar to how Maven Central Repository stores 

Java libraries. Docker Hub, for example, is like a Maven repository for 

Docker images.

Chapter 2  Docker High-Level Overview



35

�Docker Compose

As application developers, in most cases we would be dealing with 

applications comprising several components, such as a front-end API 

and a back-end API. Say, for example, that the application requires extra 

features such as an Nginx web server and a database that the back-end 

API uses to serve data back to the front-end API. Running and managing 

these varied components as separate containers can get very tricky, with 

several Docker commands needed to assure the running of the entire 

application cohesively. To solve this problem, in comes Docker Compose. 

Docker Compose is a tool for running multiple containers, so they all work 

together in harmony. This is done through the definition of services using 

a docker-compose.yml file, outlining the configuration and dependencies 

of various containers needed for an application. It will be possible to 

efficiently streamline running and management of the whole application 

stack using Docker Compose.

It’s much more of a Java build tool, such as Maven or Gradle. In Maven, 

for example, a configuration file named pom.xml holds the configuration 

of a project and its dependencies; similarly to Docker, in Docker, there 

is also one configuration file, usually docker-compose.yml, that defines 

multicontainer Docker applications.

A Sample docker-compose.yml file.

version: '3'
services:
  app:
    build: .
    image: my-java-app
    ports:
      - "8080:8080"
    environment:
      - SPRING_PROFILES_ACTIVE=prod

Chapter 2  Docker High-Level Overview



36

Here is an image illustrating Docker concepts.

Figure 2-3.  Docker concepts and their relationships

In other words, what Docker knowledge for Java developers can be 

easier if one finds a way to compare it to the most familiar principles 

of Java. So, Dockerfile is much like a definition of a Java class with 

instructions regarding how to build a Docker image. A Docker image 

does for an application, runtime libraries, and dependencies what a 

JAR file does. The Docker CLI is the primary interface to interact with 

Docker, and Docker daemon acts as its central nervous system. Docker 

Hub is for image storage, sharing, and management. Docker Compose 

enables orchestrating several containers working together seamlessly, like 

Java build tools, for configuration and dependency management across 

projects.

�Summary
The chapter introduces Docker as an open source container management 

tool that has revolutionized the way applications are packaged and 

deployed. It explains Docker’s core principle of “Build Once, Run 

Anywhere” (BORA), which ensures consistent application behavior 

across different environments, in contrast to the common “It works on my 

machine” problem.

Chapter 2  Docker High-Level Overview



37

Then the chapter clarifies what Docker is not—a virtualization 

technology, or a container orchestrator, or a virtual machine, or the 

only method for containerizing applications. These descriptions help 

differentiate Docker from related but quite different concepts.

Then, it goes into how Docker works with its client-server architecture 

around the Docker Engine. It explains how the Docker CLI communicates 

with the Docker daemon to run commands like build, tag, push, pull, 

and run.

In the section about Docker Desktop, it explains how GUI application 

meant to make life easier using Docker on macOS and Windows: 

simplified containerization, scanning images, multicontainer support 

for numerous system architectures, and integration into tools such as 

Kubernetes.

The last part of the chapter introduces key Docker concepts and 

draws comparisons with well-known Java development principles. It 

explains how a Docker file is similar to the definition of a Java class, an 

image in Docker is akin to a JAR file, the CLI in Docker is similar to JShell, 

a container in Docker is similar to a Java object, a daemon in Docker 

is equivalent to a JVM, a Docker Hub is similar to Maven Central, and 

Compose in Docker is like the build tools in Java, for instance, Maven 

or Gradle.

Chapter 2  Docker High-Level Overview



39© Ashish Choudhary 2025 
A. Choudhary, When Docker Meets Java, https://doi.org/10.1007/979-8-8688-1300-9_3

CHAPTER 3

Up and Running 
with Docker
Among the many tools available for application packaging and 

deployment, Docker is one of the most important in containerization. One 

of the key elements in this process is the Dockerfile, which represents a 

blueprint of the configuration, dependencies, and steps followed to build 

a Docker image. It consists of several instructions that allow us to build 

containers using the docker build command.

�Creating a Dockerfile
To commence, let’s start by creating an empty Dockerfile. Remember to 

name it with a capital “D,” that is, Dockerfile, without any file extension. 

By default, the docker build command looks for a file named “Dockerfile” 

(with a capital “D”) in the specified context.

If we name it dockerfile or anything else, we will need to specify the 

Docker build file using the -f or --file flag during the build process.

Step 1: Create a new directory on the terminal by running the 

command mkdir docker. Navigate to the directory using the command 

cd docker.

Step 2: Now run touch Dockerfile, creating an empty 

Dockerfile for us.

https://doi.org/10.1007/979-8-8688-1300-9_3#DOI


40

Step 3: Run the vi Dockerfile command and paste the following 

content. To save the change, press Esc to exit insert mode, then type :wq, 

and press Enter.

FROM alpine:latest
RUN apk --no-cache add git
CMD git --version

•	 We use the alpine base OS image in the FROM 

command. It is a minimal, simple, secure image based 

on Alpine Linux. It is only 5 MB in size.

•	 In the RUN command, we use the apk; the package 

manager will install Git inside the container image. 

This command is only executed when we build the 

container image.

•	 In the CMD command, we use the git --version 

command executed when we run the container image.

Step 4: Build the image by executing the docker build . command 

with the Dockerfile.

The . (dot) represents the build context. By using . (dot) as the build 

context, we are instructing Docker to look for the Dockerfile and associated 

files in the current directory and use them to build the Docker image.

Step 5: Run the docker image ls(to list down images) command 

and note down IMAGE ID of the container image.

Step 6: Execute the docker run --rm -it IMAGE ID command. 

Ensure that we paste the previously noted IMAGE ID. This command will 

display the git version as the output when we run the container image.

The -it flags ensure an interactive session with the container, 

allowing us to see and interact with the output if necessary. The –rm flag 

automatically removes the container when it exits. This helps clean the 

system after the container is executed.

Chapter 3  Up and Running with Docker



41

The image below demonstrates the process by which a Dockerfile 

generates a container.

Figure 3-1.  Docker image creation flow

To summarize, we will have a handwritten Dockerfile, which we will 

use to build the Docker Image. Later on, we will use that image to run a 

container.

Let’s talk about commands that we can use while writing a Dockerfile.

Chapter 3  Up and Running with Docker



42

�Dockerfile Commands and Their Usage
Table 3-1.  Common Dockerfile commands

Command Usage Example

ENV Sets environment variables inside the 

image

ENV APP_HOME=/usr/
src/app

Label Use to specify metadata for image, i.e., 

email id of the maintainer, etc.

LABEL maintainer= 
"your-email@example.
com"

EXPOSE Port through which we can access our 

application

EXPOSE 8080

CMD Use to pass arguments to ENTRYPOINT. 

If ENTRYPOINT is not set, then the 

command in CMD gets executed

CMD ["app.jar"]

ENTRYPOINT Specify commands that get executed 

when we start the container

ENTRYPOINT ["java", 
"-jar"]

WORKDIR Current working directory WORKDIR $APP_HOME

RUN To install packages required for our 

application

RUN apt-get update 
&& apt-get install  
 -y openjdk-11-jre

ADD Same as COPY but can also download 

and copy files from remote URLs. It can 

also decompress compressed files to 

the destination

ADD https://example.
com/external-app.jar 

$APP_HOME/app.jar

COPY As the name suggests, it copies over 

files and directories from a source to a 

destination location

COPY ./local-app- 
config $APP_HOME/
config

FROM Foundation layer upon which all other 

layers are built

FROM ubuntu:latest

Chapter 3  Up and Running with Docker



43

�Exploring Facts About Dockerfiles
Dockerfiles are not executable code: A Dockerfile represents commands 

for image execution at build time. This isn’t directly executable like it was a 

program.

# Dockerfile
FROM openjdk:17-jdk
WORKDIR /app
COPY target/myapp.jar /app
CMD ["java", "-jar", "myapp.jar"]

Build and run:

docker build -t my-java-app .
docker run my-java-app

Layer caching: Docker uses a layered file system for its images, where 

instructions in a Dockerfile are cached as layers to be used in accelerating 

subsequent builds.

FROM openjdk:17-jdk
WORKDIR /app
COPY pom.xml /app  # Cached if pom.xml doesn't change
RUN mvn dependency:go-offline  # Dependencies are cached
COPY src /app/src
RUN mvn package  # Rebuilds only if src changes

Order matters: Since the layers are cached, the order in which you 

have the instructions in a Dockerfile is significant. If you change an 

instruction, all future layers become invalid and need to be rebuilt.

# Inefficient
FROM openjdk:17-jdk
WORKDIR /app

Chapter 3  Up and Running with Docker



44

COPY src /app/src
COPY pom.xml /app
RUN mvn package  # Rebuilds everything if pom.xml changes
# Efficient
FROM openjdk:17-jdk
WORKDIR /app
COPY pom.xml /app
RUN mvn dependency:go-offline  # Cache dependencies
COPY src /app/src
RUN mvn package

Multiple base images: Even though one can use only the FROM 

instruction with a Dockerfile, we can do that by using multi-stage builds, 

making it possible to bring artifacts from different bases into one image.

# Stage 1: Build
FROM maven:3.8-openjdk-17 as builder
WORKDIR /app
COPY . .
RUN mvn clean package -DskipTests
# Stage 2: Minimal runtime
FROM openjdk:17-jre
WORKDIR /app
COPY --from=builder /app/target/myapp.jar /app
CMD ["java", "-jar", "myapp.jar"]

Dangling images: Images created with a tag that is later replaced by 

another image become “dangling images,” consuming space until they 

are pruned.

$docker image prune  # Remove dangling images

Chapter 3  Up and Running with Docker



45

Image labeling: With Docker, it is possible to add metadata to images 

using labels, and the kind of information that one can provide includes 

version, maintainer, or arbitrary information.

FROM openjdk:17-jdk
LABEL maintainer="you@example.com"
LABEL version="1.0.0"
LABEL description="Java Spring Boot application"

Escape characters: Dockerfile supports backslashes (\) for escaping, 

but beware of inconsistencies with Windows paths; prefer double 

backslashes (\\) or forward slashes.

# Use forward slashes or double backslashes for Windows
COPY config/app-config.json /app/config/

Size optimization: Be wary of your use of the instruction COPY, as it 

may inflate your images. Minimize this by using wildcards, so you only 

copy necessary files.

# Avoid copying unnecessary files
COPY target/*.jar /app/

Security concerns: Don’t hardcode secrets in the Dockerfile. Pass 

sensitive data securely through the build arguments or environment 

variables.

FROM openjdk:17-jdk
ARG API_KEY
ENV API_KEY=${API_KEY}
CMD ["java", "-jar", "myapp.jar"]

Pass secrets securely during build:

docker build --build-arg API_KEY=mysecretkey -t my-java-app .

Chapter 3  Up and Running with Docker



46

�Building and Tagging a Docker Image
In this section, you will learn how to build an image using Dockerfile. 

Explore different strategies to tag an image.

The docker build command allows us to construct an image using 

the Dockerfile and a context. The context denotes a collection of files 

accessible via a specific path or URL. It’s important to note that the build 

context operates recursively, meaning files in subdirectories are also 

included in the process. Consequently, we should execute the docker build 

command from a directory containing only the Dockerfile.

Alternatively, we can employ a .dockerignore file to specify which 

files we want to exclude from the docker build process.

The docker build command supports various flags, offering 

additional options and functionalities during the image construction.

�Example

Let’s follow a step-by-step coding example to demonstrate building, tagging, 

and pushing a Docker image for a simple Java application to DockerHub.

Step 1. Directory setup: Assume we have a basic Java application with 

the following file structure:

my-java-app/
   ├── src/
   │   └── Main.java
   └── Dockerfile

Step 2. Create the java application: Let’s create a simple Java 

application in the Main.java file:

public class Main {
    public static void main(String[] args) {
        System.out.println("Hello,Docker!");
    }
}

Chapter 3  Up and Running with Docker



47

Step 3. Create the dockerfile: Next, we need to create a Dockerfile to 

define the Docker image:

FROM eclipse-temurin:17-jdk-jammy
COPY ./src /app
WORKDIR /app
RUN javac Main.java
CMD ["java","Main"]

This Dockerfile uses the official OpenJDK 17 image as the base, copies 

the Main.java file into the image, compiles it, and finally sets the command 

to run the compiled Java application.

Step 4. Build the docker image: Open the terminal or command 

prompt, and ensure we are inside the directory having Dockerfile on the 

terminal and type the following command.

$ docker build -t my-java-app:1.0 .

This command will build the Docker image with the tag (by using 

the -t flag) my-java-app:1.0 as the build context. Setting the image name 

and tag while building our image is good practice. The . (dot) at the end 

of the command indicates to Docker that Dockerfile is present in the 

current working directory.

Step 5. Verify the built docker image: To verify that the Docker image 

was built successfully, run the following command:

$ docker images

We should see the my-java-app image with the 1.0 tag listed among our 

local Docker images.

Step 6. Tag the docker image for dockerhub: Now, we’ll tag the 

Docker image to prepare it for pushing to DockerHub:

$ docker tag my-java-app:1.0 our-dockerhub-username/ 
my-java-app:1.0

Chapter 3  Up and Running with Docker



48

Note R eplace our-dockerhub-username with our actual DockerHub 
username.

Here’s a simplified diagram that outlines the Docker image build process:

Figure 3-2.  Building and tagging a Docker image

Chapter 3  Up and Running with Docker



49

In this flow:

•	 The process starts with our source code and a 

Dockerfile.

•	 The docker build command initiates the build 

process.

•	 The build context, which includes our source code 

and any other files in the directory or specified in the 

Dockerfile, is sent to the Docker daemon.

•	 Docker then assembles the image in layers, utilizing the 

cache to speed up the build process.

•	 New layers are created as needed based on instructions 

in the Dockerfile.

•	 The assembled image is then optionally tagged 

with a name.

•	 The final image is stored in our local image repository.

•	 We can then push the image to a remote registry if 

desired.

�Tagging a Docker Image
Tagging a Docker image is a best practice that brings numerous benefits 

throughout the software development and deployment life cycle. Image 

tagging is the process of assigning a meaningful label to an image, which 

can be used to differentiate its version, purpose, or environment. And 

here’s why it’s so important:

Chapter 3  Up and Running with Docker



50

�Benefits of Image Tagging

	 1.	 Versioning and history: Tagging can also be 

used to differentiate the various versions we 

have of our images. For instance, while updating 

our application, we can tag images with version 

numbers like v1.0 and v2.0, or the dates on which 

they were taken such as 2023-07-17. This helps to 

maintain a history of changes and provides a way 

back if needed.

	 2.	 Deployment and rollbacks: If you are deploying 

an application into various environments—

development, testing, and production—you can use 

tags to ensure that the appropriate image version 

is used in each environment. If a problem shows 

up in production, we’re able to easily roll back to a 

previous state with the tagged image.

	 3.	 Collaboration: Tagging offers one of the most 

exact reference points for collaboration among 

developers. It allows team members to use the same 

tagged image, thereby ensuring consistency across 

development and testing environments.

	 4.	 Tagging: Use tagging to promote images across 

the various stages of the development pipeline. At 

each stage of the pipeline, from local development, 

through testing, to production, we can tag an image 

as it passes, thus keeping a reliable version at 

each step.

Chapter 3  Up and Running with Docker



51

	 5.	 Microservices/distributed systems: There are 

times when services could rely on specific versions 

of other services inside the space of a microservice 

or distributed system. Tagging, in this regard, 

becomes really relevant to making sure that services 

can be found and used at compatible versions of 

their dependents.

	 6.	 Continuous integration/continuous deployment 
(CI/CD): This automates the pipeline, image 

creation, and deployment. Tags enable these 

pipelines to have a way of finding an exact version 

of an image and then tracking it at every stage 

throughout the pipeline.

	 7.	 Rollback and recovery: In case a problem arises 

after deploying a new application version, with 

tagged images, we can quickly roll back to the 

previous version, thus reducing downtime and 

possible impacts.

	 8.	 Documentation: Tagging is a way of documenting. 

An image tag is supposed to present useful 

information on the purpose and use of the image, 

the version, or any other important thing.

	 9.	 Testing and quality assurance: Tagged images 

ensure that the tested version remains consistent 

with what will be deployed.

	 10.	 Image pruning: As we build and tag new iterations 

of our images, we can delete the older images with 

out-of-date tags to save on storage space.

Chapter 3  Up and Running with Docker



52

�Image Tagging Strategies

Let’s understand some advanced image tagging strategies past just 

version numbers, so they offer clarity, traceability, and most importantly, 

consistency. It is by having consistent and meaningful tag methods that 

Docker images become easily managed—hence making it easy for you to 

identify and deploy the preferred image versions with ease.

	 1.	 Semantic versioning: Tagging with semantic 

versioning is a common strategy to indicate the 

significance of an image. For example, if this image 

is meant for a specific release of our application:

$ docker build -t my-java-app:1.0.0 .

	 2.	 Using the git commit hash: Tag images based on 

respective git commit hash, so they can be traced 

back to specific versions of code. This is very 

useful in:

$ docker build -t my-java-app .

	 3.	 Environment-specific tags: In case we are building 

images for various environments, for example, 

development, testing, and production, we can use 

environment-specific tags as follows:

$ docker build -t my-java-app .
$ docker build -t my-java-app .
$ docker build -t my-java-app .

	 4.	 Date-based tags: Tagging the build date of an image 

helps to trace the creation date of an image:

$ docker build -t my-java-app:2023-08-17 .

Chapter 3  Up and Running with Docker



53

	 5.	 Latest tag: Using the latest tag for the latest build 

is a convenience, but not the best practice in a 

production environment due to the ambiguity it has:

$ docker build -t my-java-app .

In conclusion, we can build a Docker image by using the docker build 

command to a Dockerfile and a context. The context is all the files in a 

certain path or URL. In this case, the docker build command will have 

numerous flags available to offer extra options. This is crucial in tagging for 

version control, history tracking, practices in deployment, collaboration, 

and the ability to promote images between different stages of the 

development pipeline.

�Pushing and Running a Docker Image
In this section, we will learn about container management and discover 

the art of efficiently pushing Docker images to registries like DockerHub 

and seamlessly deploying them.

In the world of containerization for deployment, Docker images are 

pushed to remote container registries. The concept of pushing a Docker 

image is that we want to upload our locally built Docker image to a remote 

image registry, that is, Docker Hub or private registry.

The following are some of the highlights of pushing an image to 

registries like DockerHub with the help of docker push command:

	 1.	 Image distribution: It allows us to push our images 

to distribute the Docker images in a remote location. 

They have shared that making images available for 

others’ use, developers, and systems is crucial for 

collaboration and deployment on heterogeneous 

environments.

Chapter 3  Up and Running with Docker



54

	 2.	 Centralized image storage: The Docker registries 

form centralized repositories for the storage and 

management of Docker images. When we push our 

images to a registry, there is one source of truth 

for the images that several teams and projects 

can access.

	 3.	 Consistent deployments: Pushing images to 

a registry will ensure that the same image is 

present throughout development environments, 

through testing, and up to production. This greatly 

minimizes risks that come from a lack of consistency 

between different versions of the same image.

	 4.	 Share with others: Should we decide to share our 

application with colleagues, clients, or the open 

source community, pushing images to a public 

registry—such as Docker Hub—allows other people 

to pull and run our application quickly, without 

building it on their machine.

	 5.	 Private registries: Organizations often use private 

registries for the storage of proprietary or sensitive 

images. By pushing images to a private registry, 

access is restricted only to authorized users.

	 6.	 CI/CD pipelines: Whenever a new image is built, 

it needs to be pushed to the container registry 

using the CI/CD. Then the following stages of the 

pipeline—testing or deployment—will be done 

using that image.

Chapter 3  Up and Running with Docker



55

	 7.	 Version control: We store a history of versions 

by pushing different versions of our images with 

unique tags to the registry. This would enable rolling 

back to a former version if necessary.

	 8.	 Scalability: For applications deployed on many 

nodes, servers, or clusters, putting images into a 

registry ensures all the instances have the same 

image, resulting in better consistency of scaling and 

efficiency.

	 9.	 Saves on deployment time: If we need to have more 

than one instance of an application, we can save a 

lot of time and resources just by pulling the image 

from the registry instead of having to build them on 

each instance.

	 10.	 Disaster recovery: In the case of data loss or 

system failure, the application images will have 

been pushed to a registry and can be restored in a 

short time.

Now, we’ll use the docker push command to push Docker image to 

DockerHub:

$ docker push our-dockerhub-username/my-java-app:1.0

Here is an image illustrating the sequence of Docker commands.

Chapter 3  Up and Running with Docker



56

Figure 3-3.  Pushing a Docker image

�Running a Docker Image
Running a Docker image is a straightforward process that allows 

developers to execute their containerized applications quickly. So we just 

finished our previous coding example for a simple Java application, by 

successfully building the image, tagging it, and pushing the Docker image 

to DockerHub. Now, let’s see how we can run that Docker image in the 

form of a Docker container.

Open your terminal or command prompt and enter the following 

command to download the Docker image from DockerHub:

$ docker pull our-dockerhub-username/my-java-app:1.0

Note R eplace our-dockerhub-username with our actual 
DockerHub username.

Chapter 3  Up and Running with Docker



57

With the image successfully pulled, we can now run it as a Docker 

container:

$ docker run our-dockerhub-username/my-java-app:1.0

Instantly, we will see the containerized Java application in action, 

with the console output displaying “Hello, Docker!” as it runs the Java 

code from within the container. This way, everything related to the 

application will be isolated from the host system so that dependencies or 

configurations described by the Docker image are self-sufficient.

Running a Docker image allows developers to quickly test their 

applications within a controlled environment, without fear of conflicting 

dependencies or system-specific issues. This all means that development 

and deployment are simplified with the guarantee of consistent behavior 

across diverse platforms and environments.

�Common Pitfalls
There are several things to watch out for, or common pitfalls when 

developers are running a Docker image to achieve a smooth and trouble- 

free experience.

•	 Port mapping: Make sure your port mapping is 

accurate so we do not run into any inaccessible 

applications.

•	 Volume mounting: Never forget to mount the volumes 

that are required to prevent loss of data or unexpected 

behaviors.

•	 Resource constraints: Define resource constraints, 

such as for CPU and memory, for prevention from 

performance erosion or resource contention.

Chapter 3  Up and Running with Docker



58

•	 Environment variables: Verify all relevant 

environment variables to ensure they are appropriately 

configured and would not cause any errors or 

unexpected behavior.

•	 Sensitive information: Do not disclose sensitive data, 

such as passwords or API keys.

•	 Host system interference: Manages the interaction 

between applications running in containers and on 

hosts to ensure no unintentional tampering or security 

weaknesses.

•	 Image versioning: Always use a specific version of a 

Docker image.

•	 Clean Up: Clean up stopped containers and unused 

images regularly to free up disk space.

•	 Entrypoint and Cmd: Understand the difference 

between ENTRYPOINT and CMD in a Dockerfile.

•	 Networking: Make sure the containers that need to talk 

to each other are networked under the same network.

By going through the Docker documentation, confirming the 

configuration, and proper testing of the container, one can ensure 

a reliable and efficient deployment of an application. A correctly 

configured and thoroughly tested application goes a long way in ensuring 

that potential issues do not jeopardize the reliability and efficiency of 

containerized application deployment.

In simple words, to push a Docker image, developers have to use the 

docker push command to transfer the locally built image to a remote 

container registry. With only one command, docker run, one can easily 

run a Docker image. It is easy to run a Docker image, but common pitfalls 

should be taken care of, like incorrect port mapping or missing volume 

mounting.

Chapter 3  Up and Running with Docker



59

�Inspecting and Managing a Docker Image
In this section, you will learn how to debug an issue with a Docker 

container. Explore different ways to manage a Docker image.

While Docker simplifies the creation and distribution of applications, 

they have their own set of issues. Therefore, you need to inspect and manage 

Docker images to ensure that applications are fit, secure, and reliable—just 

like in traditional software development, due diligence is required. It acts 

as a safety net against issues possibly escalating to the end users. Ensuring 

Docker images are free from issues or probable problems is important.

Consider a real-world scenario: A company deployed a containerized 

web application, but was unknown to them that the base image had a 

known vulnerability. Attackers can exploit this to their advantage, and 

this could result in a data breach or service disruption. If appropriate 

inspection and analysis of the image have been done before deployment, 

then these risks would be reduced.

Now, let us see how to inspect a Docker image for any underlying 

issues using a simple Java application.

Step 1. Pull the docker image: The first step is to ensure we have the 

latest version of the Docker image by pulling it from DockerHub:

$ docker pull our-dockerhub-username/my-java-app:1.0

Replace our-dockerhub-username with our actual DockerHub 

username and 1.0 with the appropriate version tag.

Step 2. Run the docker container: Run the Docker container from the 

pulled image to test its functionality:

$ docker run our-dockerhub-username/my-java-app:1.0

Check the container’s console output for any errors or unexpected 

behavior. If the Java application prints “Hello, Docker!” as expected, it’s a 

positive indication of a functioning image. However, issues may still exist, 

especially when running more complex applications.

Chapter 3  Up and Running with Docker



60

Step 3. Inspect the container's filesystem: To investigate the 

container’s filesystem, we can use Docker’s interactive mode:

$ docker run -it our-dockerhub-username/my-java-app:1.0 /
bin/bash

This command drops us into the container’s shell, allowing us to explore 

its contents interactively. Here, we can verify the presence of all necessary 

files, libraries, and configurations expected in our Java application.

Step 4. Check for environmental variables: If our Java application 

relies on environment variables, ensure they are correctly set when 

running the container. Use the following command to inspect the 

environment variables:

$ docker inspect our-container-id | grep "Environment"

Replace our-container-id with the container’s ID or name. Verify that 

all required environment variables are present and correctly defined.

Step 5. Verify networking and ports: If our Java application 

communicates with other services or requires network access, ensure that 

the necessary ports are correctly mapped:

$ docker ps

This command will display the ports the container exposes to the host 

system. Verify that the required ports are correctly mapped and accessible.

Step 6. Analyze docker logs: Review the container’s logs to identify 

any errors or issues:

$ docker logs our-container-id

Replace our-container-id with the container’s ID or name. Check for 

any error messages or stack traces indicating underlying problems.

Chapter 3  Up and Running with Docker



61

Docker initiates a process within the container and gathers the output 

streams from this process as logs. By default, Docker uses the json-file 

driver, which writes these logs in JSON format to a file.

Here is an image illustrating the interaction between the application, 

the output streams, and Docker.

Figure 3-4.  Docker logging flow

Checking a Docker image for any issues is essential for smooth 

deployments and reliable applications. Following these steps and using 

Docker’s many tools for inspection, we can reliably identify and fix 

potential problems in our Dockerized Java application. In this way, the 

proactive approach of image inspection is going to spare our time and 

effort in delivering high-quality, containerized applications that work 

everywhere as expected. Happy Dockerizing!

Chapter 3  Up and Running with Docker



62

�Managing a Docker Image
Management of Docker images comprises several activities that one needs 

to do to handle the images efficiently in our containerized applications. 

Here are a few ways that we can manage Docker images:

•	 Search image: The command docker search followed 

by a keyword shall show the available images in any 

registry.

•	 Delete images: This is done via the docker rmi 
image_name:tag command. We cannot delete an image 

if there are running containers based on this image.  

The -f flag forces removal.

•	 Cleanup unused images: Unused images can 

accumulate over time. All dangling, or unused, images 

are removed via docker image prune.

•	 Image history: See what makes up an image, that is, 

layers, and see the commands used to build a given 

image via docker history image_name.

•	 Image pruning: The docker system prune removes all 

unused images, containers, and networks. Note that it 

removes all unused data.

•	 Image scanning: Docker security scanning is a feature 

of Docker that enables us to discover vulnerabilities in 

the components—software packages, libraries, etc.—of 

our Docker images.

There are several operations that we can perform on Docker images to 

manage them efficiently. These include searching for available images in 

a registry by using the docker search command, deleting images by using 

the docker rmi command, removing unused images with docker image 

Chapter 3  Up and Running with Docker



63

prune, checking an image’s history with the docker history command, 

and lastly, docker system prune to remove all unused images, containers, 

and networks. These are tasks that can help manage Docker images 

effectively and aid the smooth functioning of containerized applications.

�Summary
This chapter gives a comprehensive guide to understanding and working 

with Docker, focusing on Dockerfiles and container management. It 

introduces Dockerfiles as blueprints for building container images, 

detailing key commands like FROM, RUN, CMD, COPY, and EXPOSE. Best 

practices include optimizing image size, managing secrets, and using 

multi-stage builds.

The chapter explains the image-building process, tagging strategies, 

and steps for pushing, pulling, and running images. It talks about 

debugging, image management, and commands to inspect and clean up 

resources.

The chapter also highlights common mistakes such as wrong port 

mapping, resource mismanagement, and security oversights and focuses 

on scanning images and protection of sensitive data.

In the end, the chapter summarizes the benefits of using Docker, such 

as having consistent environments, simplified distribution, scalability, and 

resource usage.

Chapter 3  Up and Running with Docker



65© Ashish Choudhary 2025 
A. Choudhary, When Docker Meets Java, https://doi.org/10.1007/979-8-8688-1300-9_4

CHAPTER 4

Learning Advanced 
Docker Concepts
Discover how Docker containers communicate and explore various 

Docker networking drivers. Learn how to enable data persistence with 

containers using docker volumes. Know how to create, configure, and 

manage multicontainer applications with Docker.

�Exploring Docker’s Networking
Networking is about communication between processes, and Docker’s 

networking functions similarly. Docker networking mainly involves 

facilitating interaction between Docker containers and the external world 

through the host machine on which the Docker daemon operates.

Docker supports diverse network types, each tailored for specific usage 

scenarios. We’ll delve into Docker’s supported network drivers in general, 

accompanied by code examples.

�Docker’s Networking vs. VM Networking
Docker’s networking diverges from networking in virtual machines (VMs) 

or physical machines in several ways:

https://doi.org/10.1007/979-8-8688-1300-9_4#DOI


66

Here’s the information presented in a tabular format.

Feature VMs Docker

Networking 
Configurations

Supports flexible 

configurations like NAT and 

host networking.

Primarily uses a bridge network; 

host networking is mostly 

supported on Linux.

Network 
Isolation

Separate networking stack for 

each VM.

Achieved via a network 

namespace.

Scale of 
Networking

Hosts fewer processes per 

VM, simplifying networking 

requirements.

Handles numerous containers 

on a single host, requiring robust 

networking support.

�Types of Docker Network Drivers
Docker simplifies container communication by creating a default bridge 

network, sparing users from grappling with networking intricacies and 

allowing them to concentrate on container creation and operation. While 

this default bridge network suffices in most cases, alternatives exist.

Docker presents three primary network drivers out of the box:

•	 bridge

•	 host

•	 none

However, since these might only suit some context, we’ll also delve into 

user-defined networks like overlay and macvlan. Let’s examine each in 

more detail.

Chapter 4  Learning Advanced Docker Concepts



67

�Bridge Driver
This serves as the default driver. When we initiate Docker, a bridge network 

is established, and all newly launched containers will automatically 

connect to this default bridge network.

We can employ this when we want isolated containers to communicate 

internally. Given the segregation of containers, the bridge network 

effectively resolves port conflicts. It resolves port conflicts by providing 

each container with its internal IP address within the bridge network’s 

subnet. Containers within the same bridge network can interact, while 

Docker utilizes iptables on the host machine to restrict access beyond 

the bridge.

Following is an example describing how the bridge network driver 

operates:

•	 Check available networks using the docker network 
ls command.

•	 Launch two detached busybox (BusyBox a lightweight 

container provides a single executable file that contains 

many common Unix utilities, such as ls, cat, and 

echo, making it ideal for environments where storage 

and resources are limited) containers, naming them 

container1 and container2, using the docker  
run -dit command.

	 Here, in -dit flag d is for detached mode, and it 

ensures that bash or sh can be allocated to a pseudo- 

terminal.

docker run -dit --name container1 busybox /bin/sh
docker run -dit --name container2 busybox /bin/sh

Chapter 4  Learning Advanced Docker Concepts



68

•	 Verify that the containers are up and running using the 

docker ps.

$ docker ps
CONTAINER ID   IMAGE     COMMAND     CREATED          
STATUS          PORTS     NAMES
8a6464e82c4u   busybox   "/bin/sh"   6 seconds ago    
Up 6 seconds              container2
9bea14032749   busybox   "/bin/sh"   28 seconds 
ago   Up 28 seconds             container1

	 In Docker, the PORTS section in the output of docker ps 

is empty when the containers are started with  

the -d (detached) option and do not explicitly expose 

or publish any ports.

•	 Confirm that the containers are connected to the 

bridge network with the docker network inspect 
bridge. Note down the IP addresses of both containers.

•	 Attach to container1 using docker attach command 

and attempt to ping the container2 using its IP 

address.

$ docker attach container1
/ # whoami
root
/ # hostname -i
182.18.0.2
/ # ping 182.18.0.3
PING 182.18.0.3 (182.18.0.3): 56 data bytes
64 bytes from 182.18.0.3: seq=0 ttl=64 time=2.083 ms
64 bytes from 182.18.0.3: seq=1 ttl=64 time=0.144 ms

Chapter 4  Learning Advanced Docker Concepts



69

•	 Please remember that we don’t recommend using 

the bridge driver for production scenarios. It is ideal 

for single-host setups where all containers run on the 

same Docker host.

•	 Communication between containers relies on IP 

addresses rather than automatic service discovery for 

translating IP addresses to container names.

•	 The bridge driver can also permit unrelated containers 

to communicate, potentially posing a security hazard.

�Host Driver
As the name implies, the host driver leverages the host machine’s 

networking. This removes network isolation between the container and 

the host machine where Docker operates.

$docker run --rm -d --network host --name my_nginx nginx

--network host: Uses the host network, meaning the container shares 

the host’s network namespace. The container will directly bind to the 

host’s ports without Docker’s network isolation.

For example, the official Nginx image listens on port 80 by default; 

when a container bound to port 80 employs host networking, the 

container’s application is accessible on port 80 via the host’s IP address. 

So in this case, If the host machine’s port 80 is not already in use, you can 

access Nginx at http://localhost:80/.

This driver is Linux-specific and isn’t available on Docker desktop 

installations. We can leverage it if we want to depend on the host 

machine’s networking rather than Docker’s.

Chapter 4  Learning Advanced Docker Concepts



70

�None Driver
This driver avoids attaching containers to any network. Containers 

remain cut off from the external network and communication with other 

containers.

This driver is helpful when we need to deactivate networking on a 

container.

�Overlay and macvlan Drivers
The overlay driver supports multi-host communication, often used in 

environments like Docker Swarm or Kubernetes. It allows containers 

across hosts to interact without intricate setups. It’s like a virtualized 

distributed network superimposed on an existing computer network.

The macvlan driver connects Docker containers directly to the 

host machine’s physical network. It assigns a unique MAC address to a 

container, rendering it a virtual physical device on the network. This driver 

is ideal for modernizing legacy apps requiring direct physical network 

connection.

Here’s a simple image that provides an overview of Docker’s network 

drivers and their primary purposes.

Figure 4-1.  Overview of docker network drivers

Chapter 4  Learning Advanced Docker Concepts



71

�Basic Docker Networking Commands
Docker offers various commands for managing networks. We can list, 

create, connect, disconnect, inspect, and remove Docker networks using 

these commands.

Table 4-1.  Docker networking commands

Command Description

docker network connect Connects a container to a network

docker network create Creates a new network

docker network disconnect Disconnects a container from a network

docker network inspect Displays detailed network information

To sum up, Docker’s three primary network drivers are bridge, host, 

and none. The host driver leverages the host machine’s networking, while 

the none driver cuts off containers from the external network. Then there 

are user-defined networks like overlay and macvlan, which support multi- 

host communication and are often used in environments like Docker 

Swarm or Kubernetes.

�Docker Volumes
Docker volumes play a pivotal role in efficiently managing data within 

containers. First of all, let us understand what Docker volume is. A Docker 

volume is just a directory that lives outside of a container’s file system, 

yet it is available to the container. It allows data to persist even when 

the container is halted or deleted. They enable persistent and shareable 

data among containers, effectively separating application data from the 

Chapter 4  Learning Advanced Docker Concepts



72

underlying infrastructure. Volumes provide a bridge through which data 

can exist and survive independently of the containers using them. This 

fundamental distinction offers several advantages:

•	 Persistence across container restarts: Containers are 

temporary, with their data typically lost upon restart. 

Docker Volumes address this challenge by persisting 

data even as containers come and go.

•	 Isolation and portability: Volumes decouple data 

from containers, enhancing isolation and simplifying 

the sharing and transporting of data between different 

environments.

•	 Data sharing: Containers can share data through 

volumes, allowing multiple containers to access the 

same dataset concurrently. It enables microservices 

architectures and other scenarios where data must be 

shared between containers.

�Getting Started with Docker Volumes
Volumes are stored in a part of the host filesystem managed by Docker  

(/var/lib/docker/volumes/ on Linux by default).

Figure 4-2.  Docker volume flow

Chapter 4  Learning Advanced Docker Concepts



73

In this diagram:

•	 The Docker Engine runs on the Docker Host and 

manages containers and volumes.

•	 Containers A and B represent Docker containers 

running on the same Docker host.

•	 Docker Volume A and Docker Volume B are volumes 

created by the Docker Engine.

•	 These volumes persist data on the Host File System, 

independent of the life cycle of the containers.

•	 The containers read from and write data to these 

volumes, ensuring data persistence and consistency.

�Creating Docker Volumes
Creating Docker volumes is easy. Use the docker volume create command 

followed by your desired volume name. For example, running docker 
volume create mydata produces a volume named “mydata.” Volumes 

may also be created at container-creation time using the -v flag.

�Listing Available Volumes
Run the command docker volume ls to see all volumes available on our 

system. This will provide much-needed information about each volume 

including its name, unique ID, and the driver used for management.

Chapter 4  Learning Advanced Docker Concepts



74

�Volume Inspection
To fully understand a Docker volume, explore its details with the docker 
volume inspect command and append the name of your volume. It shows 

comprehensive details about the configuration and how the volume is 

stored in our host system.

�Mounting Data Volumes
One of the most distinguishing features of Docker volumes is their ability 

to be mounted in containers. This smooth interaction allows data to easily 

pass between containers. When starting up a container, one ensures that 

all the stored data in the volume is easily accessed.

$ docker run -d -v mydata:/app/data myapp

This command mounts the “mydata” volume to the “/app/data” 

directory within the container named “myapp.”

�Copy Containers Data
Docker volumes facilitate the easy transfer of files and directories between 

containers. Utilize the docker cp command to copy data from one 

container to another without complications. It is very useful when one 

wants to transfer specific data without exposing the entire volume.

�Host Directories As Data Volumes
Besides creating and managing internal Docker volumes, we can also 

include the host directories as volumes within the containers. This way 

presents a convenient means to work on data that resides on the host 

system while capitalizing on the containerized environment.

Chapter 4  Learning Advanced Docker Concepts



75

�Ownership and Permissions of Volumes
Understanding volume permissions and ownership plays a crucial role in 

managing the data within containers. By default, data within a container 

remains with the permissions it has in the volume directory. We can also 

include user and group IDs with this to control the owner within the 

container.

�Deleting Docker Volumes
When volumes are no longer in use, docker volume rm and the name 

of the volume make their deletion easier. However, this also includes 

the deletion of the data stored in the volumes and should be exercised 

with care.

�Bulk Volume Deletion
In cases where more than one volume needs to be removed, the command 

docker volume prune steps in. This command deletes all volumes that are 

unlinked from running and stopped containers.

The following diagram visually represents creating a Docker volume, 

mounting it within a container, and using it to store and access data. 

Following is the explanation in detail:

	 1.	 Create volume: A Docker volume is created on 

the host system using the docker volume create 

command or during container creation using  

the -v flag.

	 2.	 Mount in container: The created Docker volume 

is mounted within a container during its launch, 

ensuring data sharing.

Chapter 4  Learning Advanced Docker Concepts



76

	 3.	 Access and store data: The container can access 

and store data within the mounted Docker volume. 

Multiple containers can share the same volume.

Figure 4-3.  Docker volumes in action

In a nutshell, Docker volumes provide an effective means of managing 

container data. It empowers the persistence of data, facilitates sharing, 

and ensures effective communication between containers and the host 

system. Equipped with the knowledge of creating, managing, and utilizing 

volumes efficiently, we can amplify the versatility and efficiency of our 

containerized applications.

Chapter 4  Learning Advanced Docker Concepts



77

�Docker Compose
�Understanding Docker Compose
Docker Compose simplifies the management of multicontainer 

applications, making it an excellent tool for Java developers. We can 

seamlessly orchestrate complex setups by defining services, networks, and 

volumes in a single file. Whether working on a Spring Boot application or 

any Java project, Docker Compose enhances our development workflow. 

With Docker Compose, Java developers can efficiently create, configure, 

and manage multicontainer applications.

Docker Compose simplifies the management of multicontainer 

applications by defining them in a single docker-compose.yml file. This file 

can include services, networks, and volumes, making it a convenient tool 

for orchestrating complex setups. Like the Dockerfile, this file should also 

be placed at the root of our project repository.

Here’s a simple diagram illustrating the basic structure of a Docker 

Compose file.

Chapter 4  Learning Advanced Docker Concepts



78

Figure 4-4.  Docker compose file components

Docker Compose File Components

In this diagram, each component is represented separately, showing its 

relationship to the Docker Compose configuration:

•	 Services are the fundamental building blocks defining 

the containers, their configurations, and their 

interaction. A service is a definition for a containerized 

application or a microservice within a Docker Compose 

configuration.

•	 Docker Compose configuration file, that is, docker- 
compose.yaml, connects three different components: 

“Containers,” “Networks,” and “Volumes.” It serves 

as a central configuration file that outlines how these 

components are defined and how they interact.

Chapter 4  Learning Advanced Docker Concepts



79

�Setting Up Docker Compose
Obtaining Docker Compose in the most straightforward and advisable 

manner involves installing Docker Desktop, a complete package 

containing Docker Compose, Docker Engine, and Docker CLI—essential 

components for Compose.

Docker Desktop is available on Linux, Mac, and Windows. If Docker 

Desktop is already installed, finding the installed version of Compose can 

be found by selecting “About Docker Desktop” from the whale icon on the 

Docker menu.

Figure 4-5.  Verifying docker compose installation

We can also verify the installation by running the following command.

$ docker-compose --version

Chapter 4  Learning Advanced Docker Concepts



80

�Docker Compose in Action
Let’s understand how docker compose works.

•	 Defining services with docker compose: Services 

in Docker Compose are equivalent to individual 

containers. Define services in the docker-compose.yml 

file under the services section. For a Java application, 

we might define a service for the application and 

another for the database.

	 Example of defining a Java application service:

version: '3'
services:
  app:
    build: .
    ports:
      - "8080:8080"
    environment:
      SPRING_DATASOURCE_URL: jdbc:mysql://db:3306/mydb
      SPRING_DATASOURCE_USERNAME: user
      SPRING_DATASOURCE_PASSWORD: password
    depends_on:
      - db
  db:
    image: mysql:5.7
    environment:
      MYSQL_ROOT_PASSWORD: root
      MYSQL_DATABASE: mydb
      MYSQL_USER: user
      MYSQL_PASSWORD: password

Chapter 4  Learning Advanced Docker Concepts



81

	 Service for Java Application

•	 Networking in docker compose: Docker Compose 

automatically creates a network for our services, 

allowing them to communicate using service names 

as hostnames. This simplifies networking for Java 

applications that need to connect to databases or other 

services.

•	 Managing dependencies and startup order: The 

depends_on directive ensures that services start in the 

correct order, helping Java applications that rely on 

databases or other services.

•	 Environment variables and secrets: Environment 

variables can be set in the docker-compose.yml 

file or separate .env files. This is useful for passing 

configurations to Java applications without modifying 

the source code.

	 Here in the following code under environment tag, 

we have declared env variables for the Spring Boot 

application:

version: '3'
services:
  app:
    build: .
    ports:
      - "8080:8080"
    environment:
      SPRING_DATASOURCE_URL: jdbc:mysql://db:3306/mydb
      SPRING_DATASOURCE_USERNAME: user
      SPRING_DATASOURCE_PASSWORD: password

Chapter 4  Learning Advanced Docker Concepts



82

Envrionment variables

•	 Scaling services: Scaling services is very easy with 

Docker Compose. Define the desired scale for a service, 

and Docker Compose will create and manage multiple 

instances.

	 We can use the --scale flag to specify the number of 

instances you want for a service:

$docker-compose up --scale web=3

If you are using Docker Swarm, the deploy.
replicas directive will specify the desired number 

of instances, or replicas, for a service.

version: '3'
services:
  app:
    image: openjdk:17
    # ...
    deploy:
      replicas: 3

Scaling Services using Docker Swarm

When using docker stack deploy and deploying a stack in Swarm 

mode, Docker will create the number of replicas of the specified service.

$docker stack deploy -c docker-compose.yml mystack

This command uses the deploy.replicas setting to manage the scale 

of the service.

Chapter 4  Learning Advanced Docker Concepts



83

�Docker Compose Support in Spring Boot
Spring Boot 3.1 has introduced an exciting feature: built-in support for 

Docker Compose. This addition significantly simplifies the development 

process for Spring Boot applications that rely on Docker for environment 

setup. Before Spring Boot 3.1, using Docker Compose involved manually 

running docker compose up to start services, followed by docker compose 
down to stop them. This required developers to manage Docker Compose 

separately and ensure their Spring Boot application’s configuration aligned 

with the dynamically assigned ports and service settings.

With Spring Boot 3.1, this process is streamlined. Spring Boot can now 

automatically detect a docker-compose.yaml file and manage the life cycle 

of Docker Compose services directly. This means:

•	 Spring Boot runs docker compose up automatically 

before connecting to services.

•	 If the services are already running, Spring Boot uses 

them as they are.

•	 Upon shutting down, the application docker compose 
stop is executed, preventing lingering Docker 

containers.

The integration builds on the ConnectionDetails abstraction. Spring 

Boot automatically detects images started by Docker Compose and creates 

ConnectionDetails beans pointing to these services. This eliminates the 

need for manual configuration in many cases.

Moreover, support for Docker Compose has been integrated into 

start.spring.io, accelerating your project setup process!

Chapter 4  Learning Advanced Docker Concepts

https://start.spring.io


84

•	 We can create a new project with the “Docker Compose 

support” option.

Figure 4-6.  Add Docker Compose support dependency

•	 And including dependencies like the “PostgreSQL 

driver,” you automatically receive a well-configured 

compose.yaml file at no extra cost.

Figure 4-7.  Preconfigured compose.yaml

How amazing is that!

Integrating Docker Compose into Spring Boot is a significant step 

in simplifying Spring Boot application development workflow. It allows 

developers to focus more on building their applications and less on 

configuring their development environment.

Chapter 4  Learning Advanced Docker Concepts

https://spring.io/blog/2023/06/21/docker-compose-support-in-spring-boot-3-1


85

�Summary
This chapter has covered advanced Docker concepts: networking, 

volumes, and compose. We have examined network drivers like bridge, 

host, none, and user-defined networks and also learned about basic 

networking commands.

For Docker volumes, we learned how they can be used for persistence 

and sharing between containers. This chapter showed how to create, 

list, and inspect volumes, mount them, and manage permissions and 

ownership; how to delete volumes was also shown.

We then covered Docker Compose, which manages multicontainer 

applications. We also explained the structure of docker-compose.yml files 

and topics such as defining services, networking, managing dependencies, 

and scaling. The chapter concluded by providing an overview of Docker 

Compose support in Spring Boot 3.1, which improves integration and 

development workflows. Knowing these features will help in development 

and deploying containerized applications.

In the next chapter, we will learn about various base images we can use 

for containerizing Java applications.

Chapter 4  Learning Advanced Docker Concepts



87© Ashish Choudhary 2025 
A. Choudhary, When Docker Meets Java, https://doi.org/10.1007/979-8-8688-1300-9_5

CHAPTER 5

Containerizing 
Java Applications 
with Dockerfile
This chapter will take a much deeper look at containerizing Java 

applications with Docker with a specific focus on Spring Boot. The key 

topics will include selection of base image for a Dockerfile and brief intro 

to buildpack for containerizing Spring Boot applications.

�Understanding Base Images
A proper base image is crucial while working with Docker for Java 

applications. A base image is referred to as the foundation on which 

your application will be built. The base image holds the essential OS and 

runtime environment that your application needs to run. Therefore, the 

choice of a base image has a severe impact on many aspects, including 

size, compatibility, security, and performance.

There are several essential considerations when selecting a base image 

for your Java application. Let’s consider those and the options you have 

when determining a good base image.

https://doi.org/10.1007/979-8-8688-1300-9_5#DOI


88

Figure 5-1.  Java inside a docker container

�Choosing JDK vs. JRE As the Base Image
When choosing a base image for your Java application, you can select 

either JDK or JRE as your base image. Let’s explore the differences between 

the two:

Chapter 5  Containerizing Java Applications with Dockerfile



89

Aspect JDK Base Image JRE Base Image

Includes Full Java development 

environment, including 

compiler and tools required for 

development.

Only the runtime environment 

is required to execute Java 

applications.

Use Case Suitable for building and 

compiling Java applications 

within the Docker image.

Suitable for deploying 

Java applications without 

development tools.

Development  

vs. Production

Chosen during development 

or when code compilation is 

required within the container.

Preferred for production 

deployments due to reduced 

attack surface and smaller 

image size.

�Official OpenJDK Images
Images of official OpenJDK versions are also available from the likes of 

Oracle. They can be good, safe, and well-maintained choices. Different 

images exist in various versions and tags; you’ll get to use the exact Java 

version and JVM implementation your application requires.

For instance, if you’re developing a Java 17 application, you can use the 

following Dockerfile snippet: Images.

FROM openjdk:17-jdk

This line in the Dockerfile says it uses OpenJDK image as a base. 

OpenJDK is an open source implementation of the Java Platform.

17-jdk indicates Java version 17, which is an LTS or a Long-Term 

Support version for Java, and the image contains the complete Java 

Development Kit, ready for compiling and building Java applications.

Chapter 5  Containerizing Java Applications with Dockerfile



90

�Eclipse Temurin Images
The Eclipse Temurin project provides a range of Docker images for 

different Java versions and JVM implementations. These images are 

community-supported and can be a good choice if you need specific 

features or optimizations. For example, you can use AdoptOpenJDK’s 

images with Java 17:

FROM eclipse-temurin:17-jdk

Specifies the Eclipse Temurin project image as the base. Eclipse 

Temurin provides high-quality, vendor-neutral builds of OpenJDK.

�Alpine Linux Images
Alpine Linux is a slim distro mainly used to create small Docker images. If 

you use Alpine Linux as your base image, your image size will significantly 

reduce, making your application download and deploy much faster.

Here’s an example of using Alpine Linux with OpenJDK 17:

FROM eclipse-temurin:17-alpine

Eclipse Temurin provides builds of the OpenJDK. Here Alpine refers 

to the Alpine Linux variant of the image. It is a lightweight distribution, 

making the image smaller and more secure.

�Distroless Base Images
Distroless is a Google project that creates minimal base images that favors 

security and simplicity. The images don’t include the package managers 

or shells that are traditionally part of a Linux distribution; therefore, they 

are smaller and more secure. These images reduce the attack surface for 

the applications. These images are even smaller than alpine linux images. 

Chapter 5  Containerizing Java Applications with Dockerfile



91

The idea here is that you keep only the stuff relevant to your applications 

and get rid of the bloat. Since they are small in size, it makes perfect sense 

to use them for cloud use cases because in the cloud you are being charged 

heavily for the computing resources.

Consider the following Distroless example for your Java application:

FROM gcr.io/distroless/java:17

�Building Custom Base Images
Sometimes, you might need to create a custom base image tailored to your 

application’s requirements. This can include adding specific libraries, 

tools, or configurations your application depends on.

Here’s a simplified example of creating a custom base image with 

additional dependencies:

FROM eclipse-temurin:17-jdk AS base
# Add any common dependencies
FROM base AS build
COPY . /app
WORKDIR /app
RUN ./gradlew build
FROM base AS final
COPY --from=build /app/build/libs/my-app.jar /app.jar
CMD ["java", "-jar", "/app.jar"]

�Multi-stage Builds for Optimization
Multi-stage builds help optimize your final image size by separating the 

build and runtime environments. This reduces unnecessary dependencies 

in the final image. Multi-stage Docker builds are ideal for creating smaller, 

more secure images. This approach enhances reproducibility and reduces 

image size.

Chapter 5  Containerizing Java Applications with Dockerfile



92

Here, the idea is that we build application-specific artifacts in the first 

stage of the build and then insert them into our final runtime image.

Here’s an example of a multi-stage Dockerfile for containerizing Spring 

Boot applications:

FROM maven:3.9.4-eclipse-temurin-17 AS build
COPY . /app
WORKDIR /app
RUN mvn clean package
FROM eclipse-temurin:17-jre
COPY --from=build /app/target/my-app.jar /app.jar
CMD ["java", "-jar", "/app.jar"]

�Security Considerations
Choose a base image as close as possible to the officially maintained 

repositories, and keep updated as often as necessary in your CI/CD 

pipeline so you will receive security patches and fixes. Explore scanning 

your Docker images for vulnerabilities through tools like Clair or Trivy.

Clair is an open source static analysis tool for container images 

that can parse image contents and report vulnerabilities affecting the 

container images.

Trivy is another open source security scanner tool that can find 

vulnerabilities and misconfigurations across:

•	 Code repositories

•	 Binary artifacts

•	 Container images

•	 Kubernetes clusters

Chapter 5  Containerizing Java Applications with Dockerfile



93

The correct choice of a base image is important while Dockerizing your 

Java applications. Compatibility, size of the image, and security play a key 

role in deciding a base image. With a clear understanding of base images 

and alternatives such as Distroless, developers get well prepared to build 

and deploy Java applications using Docker more effectively.

�Containerizing and Running a Spring 
Boot Application
�Dockerizing a Spring Boot Application
There are many advantages of running your Spring Boot application in a 

Docker container.

•	 First of all, developing in Docker is easy because it has 

a user-friendly CLI-based workflow that lets anyone 

develop, share, and run their containerized Spring 

applications flawlessly.

•	 Second, Docker streamlines installation; developers 

can use one package to deploy an application quickly.

•	 Last but not least, Docker ensures consistency between 

the development and production environments; 

developers can code and test locally.

Containerizing a Spring Boot application is straightforward. You 

can achieve this by placing the .jar or .war file directly into a JDK base 

image and then package it into a Docker image. While numerous online 

resources are available to guide you through this process, many crucial 

aspects, such as Docker image security, image size optimization, proper 

tagging, and efficient build performance, often go unaddressed. This 

lesson will address these common concerns and provide nine valuable tips 

for containerizing your Spring Boot application.

Chapter 5  Containerizing Java Applications with Dockerfile



94

�Building a Simple Spring Boot Application
To illustrate the importance of addressing these concerns, let’s start by 

building a basic “Hello World” Spring Boot application. To create this 

application, we will begin by downloading a pre-initialized project using 

Spring Initializr, generating a ZIP file, and following a few simple steps to 

run the application.

Under the directory src/main/java/com/helloworld/, you can 

modify the HelloWorldApplication.java file. This file will contain the 

following code:

package com.example.helloworld;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.
SpringBootApplication;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
@RestController
@SpringBootApplication
public class HelloWorldApplication {
    @RequestMapping("/")
    public String home() {
        return "Hello World!";
    }
    public static void main(String[] args) {
        �SpringApplication.run(HelloWorldApplication.

class, args);
    }
}

Chapter 5  Containerizing Java Applications with Dockerfile

https://start.spring.io/


95

To package your compiled code into a distributable format, such as a 

JAR, use the following commands:

$ ./mvnw package
$ java -jar target/*.jar

You should now be able to access the “Hello World” application at 

http://localhost:8080 through your web browser or via curl.

$ curl localhost:8080
Hello World!

To Dockerize this application, you’ll need a Dockerfile. A Dockerfile is 

a text document that contains instructions for assembling a Docker image. 

Each instruction corresponds to a layer in the Docker image. Typically, 

developers use the following Dockerfile template:

FROM eclipse-temurin:17-jdk
ARG JAR_FILE=target/*.jar
COPY ${JAR_FILE} app.jar
EXPOSE 8080
ENTRYPOINT ["java", "-jar", "/app.jar"]

•	 The first line defines the base image.

•	 The ARG instruction specifies variables available to the 

COPY instruction.

•	 The COPY instruction copies the JAR file from the target/ 

folder to the root of your Docker image.

•	 The EXPOSE instruction informs Docker about the 

container’s network port.

•	 Finally, the ENTRYPOINT command configures the 

container to run as an executable, equivalent to 

running the java -jar target/*.jar command.

Chapter 5  Containerizing Java Applications with Dockerfile



96

Build the Docker image using the following command:

$ docker build -t spring-boot-helloworld .

Finally, run the container with docker run command.

$ docker run -p 8080:8080 -t spring-boot-helloworld

However, a limitation of this approach is that you must create a JAR 

file on the host system using the ./mvnw package command, which 

necessitates manual Java installation, configuration of the JAVA_HOME 

environment variable, and Maven installation. The JDK must reside 

outside the Docker container, adding complexity to the build environment.

We can automate the JAR file creation during the image’s build to 

resolve this.

FROM eclipse-temurin:jdk-17
WORKDIR /app
COPY .mvn/ .mvn
COPY mvnw pom.xml ./
RUN ./mvnw dependency:go-offline

COPY src ./src
CMD ["./mvnw", "spring-boot:run"]

�Containerizing Spring Boot Application 
with Buildpack
Spring Boot 2.3 has come with an exciting new feature: buildpack support, 

where we can use an effortlessly created Docker image instead of having 

to craft our own Dockerfile and execute complex commands using docker 

build from the command line. All that will now be required is a simple 

command:

$ mvn spring-boot:build-image

Chapter 5  Containerizing Java Applications with Dockerfile



97

Likewise, for Gradle enthusiasts:

$ ./gradlew bootBuildImage

It is important to note that these commands can only be executed 

correctly when Docker is installed and running on our system. The build-

image goal greatly simplifies the process by completely automating the 

creation and the rapid deployment of Docker images, so developers no 

longer need to manually craft a Dockerfile or deal with especially complex 

build commands. This process abstracts away a number of the underlying 

complexities. It provides a cloud-like deployment experience comparable 

to a few platforms such as Heroku or Cloud Foundry.

This approach further revolutionizes how to construct Docker images. 

Rather than having to make the same change in multiple Dockerfiles 

across different projects, we can craft or customize the image builder of 

buildpacks for our use cases.

Apart from the obvious simplicity and improved developer experience, 

buildpacks can significantly enhance efficiency. For instance, the 

buildpacks approach naturally results in a layered Docker image, and it 

takes advantage of the exploded version of the JAR file.

�Summary
This chapter focuses on containerizing Spring Boot Java applications 

using Docker. It starts by exploring base images, from which all Docker 

containers begin: options are diverse, from an official OpenJDK image 

down to very lightweight Alpine Linux versions.

Next, we learned about Dockerizing a simple “Hello World” Spring 

Boot application: steps to wrap the application in a Docker container. You 

also developed some understanding of advanced topics like multi- 

stage builds and security recommendations for your Docker images using 

Distroless images.

Chapter 5  Containerizing Java Applications with Dockerfile



98

One very notable feature is buildpacks, which Spring Boot 2.3 now 

offers. This will allow you to use Docker images without writing a single 

Dockerfile: with just a simple command, you are good to go. That makes 

the containerization process much easier.

Chapter 5  Containerizing Java Applications with Dockerfile



99© Ashish Choudhary 2025 
A. Choudhary, When Docker Meets Java, https://doi.org/10.1007/979-8-8688-1300-9_6

CHAPTER 6

Working with 
Container Builder 
Tools for Java 
Applications
This chapter will take a much deeper look at four main tools: Google Jib, 

Fabric8 Docker Maven Plugin, Spotify’s Docker-Maven-Plugin, and Cloud- 

Native Buildpacks. Each tool approaches Java application containerization 

differently, from streamlining Docker image creation to integrating 

seamlessly with Maven build processes.

�Building Container Images 
with the Google Jib
�Understanding Jib
Google Jib is the Java containerizer developed by Google, and it’s actually 

tailor-made for Java developers. What distinguishes Jib from others is 

its simplicity. Google Jib simplifies creating a container image for Java 

https://doi.org/10.1007/979-8-8688-1300-9_6#DOI


100

developers: abstracting away the complexities of Docker so that developers 

can focus on their artifacts. Jib’s intelligent layering and use of distroless 

images make the containerization process efficient and secure.

Following are some of the key features of Jib:

•	 Jib eliminates the need for developers to know about 

Docker installation.

•	 Jib operates without a daemon.

•	 Jib doesn’t require a Dockerfile.

•	 Jib doesn’t engage with Docker’s complexities, such as 

the docker build, tag, and push processes.

•	 With Jib to containerize your Java application, a Java 

developer can add a Jib plugin to their chosen build 

tool (Maven or Gradle), and that’s all that’s required.

•	 Jib intelligently divides your application into multiple 

layers. When code changes occur, only the affected 

layers are rebuilt, significantly reducing build times.

Jib accepts your application’s source code as input and generates a 

container image for your application as output.

Figure 6-1.  Jib in action

Chapter 6  Working with Container Builder Tools for Java Applications



101

�Building with Jib
A Java application image is normally represented by one layer containing 

the application JAR. However, Jib uses a special build approach, breaking 

an application into multiple layers. This kind of splitting allows for 

even more finely grained incremental builds. Thus, changing some 

code rebuilds only those parts you have changed and does not involve 

other parts of the application. These layers are placed, by default, over 

an OpenJDK base image; otherwise, you can also configure a custom 

base image.

In your pom.xmlfile, you can configure the Maven Jib plugin for Spring 

Boot projects. Below is a sample configuration:

<project>
  ...
  <build>
    <plugins>
      ...
      <plugin>
        <groupId>com.google.cloud.tools</groupId>
        <artifactId>jib-maven-plugin</artifactId>
        <version>3.3.2</version>
        <configuration>
          <to>
            
          </to>
        </configuration>
      </plugin>
      ...
    </plugins>
  </build>
  ...
</project>

Chapter 6  Working with Container Builder Tools for Java Applications



102

With the Maven Jib plugin configured, building the container image is 

as simple as running a Maven command:

mvn compile jib:build

This command compiles your project, constructs the Docker image, 

and pushes it to the specified container registry.

For Gradle-based projects, you include the Jib Gradle plugin in your 

build.gradle:

plugins {
  id 'com.google.cloud.tools.jib' version '2.7.1'
}
jib.to.image = 'my-docker-id/my-app'

Use the following command to create and push an image with Gradle.

./gradlew jib

�Understanding Jib Image Layering
Jib’s image layering strategy allows for fine-grained control over the 

container image’s composition, promoting incremental builds and 

efficient resource utilization during containerization.

Here’s a breakdown of the layers created by Jib:

	 1.	 Dependencies layer: This layer includes the 

external modules and libraries used by the 

application. This ensures that dependencies are 

independent and cacheable separately and that 

reusability in builds is enhanced.

Chapter 6  Working with Container Builder Tools for Java Applications



103

	 2.	 Resources layer: In the resources layer, Jib includes 

application resources like configuration files, 

templates, and static assets. These resources can be 

cached separately at the same time, thus reducing 

redundancy while building.

	 3.	 Classes layer: This class layer has the actual 

compiled classes of the application in Java. With 

each change in the code, only this layer needs to be 

rebuilt, which makes building a lot faster.

	 4.	 Snapshot dependencies layer: Jib dedicates an 

exact layer for all those dependencies that are 

occasionally changing or are the snapshots.

	 5.	 Custom layers: Additional directories, if any that are 

provided by the developer, usually through config 

may be turned into their layers.

This distinct layer separation helps Jib to optimize the build process 

by breaking down the application into these distinct layers. With changes, 

only the layers affected need to be rebuilt and pushed to the registry; other 

layers are not affected, making quicker and more efficient container image 

updates.

That helps to speed up the builds as well as how the resources get 

used. It just makes sure that only the necessary parts are rebuilt and 

pushed, which then keeps the size of container images themselves 

minimal.

Chapter 6  Working with Container Builder Tools for Java Applications



104

Figure 6-2.  Jib image layers

�Building Container Images with Fabric8 
Docker Maven Plugin
Containers have now become the critical technology in modern software 

development and deployment; they ensure consistency, portability, 

and scalability for different applications across different environments. 

Again as we know Docker is the de facto standard in containerization and 

together with Maven provides a very smooth development workflow. This 

section will explore how to work with the Fabric8 Docker Maven Plugin; a 

solid tool invented for easy building and management of Docker images 

with our Maven projects.

Chapter 6  Working with Container Builder Tools for Java Applications



105

The Fabric8 Docker Maven plugin is an open source Maven plugin 

to tightly integrate Docker image creation within our own Maven build 

process. It falls under a variety of tools by Fabric8, aimed at making 

Kubernetes and OpenShift easy to use by developers.

�Understanding Fabric8 Docker Maven Plugin
This plugin enables developers to specify Docker image configurations 

directly within the Maven POM, or Project Object Model file for their 

project, and further build the Docker image easily.

Figure 6-3.  Image build process with fabric8 docker maven plugin

�Benefits of Fabric8 Docker Maven Plugin

•	 Easy setup: The plugin allows us to maintain the 

Docker image configurations within our pom.xml 

rather than maintaining it separately in a Docker file.

•	 Seamless integration: It integrates Docker image 

creation into the Maven build process and so 

containerization becomes a smooth part of our 

development workflow.

•	 Consistent builds: With Maven, we ensure that the 

Docker images are created and versioned consistently 

with the Java applications.

Chapter 6  Working with Container Builder Tools for Java Applications



106

•	 Efficient development: The plugin efficiently 

streamlines building and managing Docker images 

with huge savings of time and development efforts.

•	 Docker registry support: We can easily push our 

images to Docker registries for distribution and 

deployment.

•	 Community support: Being part of the Fabric8 

ecosystem, we can get active community support in the 

form of continuous updates and support.

�Setting Up Fabric8 Docker Maven Plugin
To get started with the Fabric8 Docker Maven Plugin, we need to include it 

in our project’s pom.xml file. Here’s how we can do it:

<plugin>
    <groupId>io.fabric8</groupId>
    <artifactId>docker-maven-plugin</artifactId>
    <version>[LATEST_VERSION]</version>
    <configuration>
        <!-- Plugin configuration goes here -->
    </configuration>
</plugin>

In this example, we’ve added the Fabric8 Docker Maven Plugin to the 

build section of the pom.xml file. It specifies the plugin’s group ID, artifact 

ID, and version, which should match the latest version available during 

our project setup.

Defining Docker image configuration: The Fabric8 Docker Maven 

Plugin allows us to define Docker image configurations directly in our pom.
xml. We can specify the base image, exposed ports, environment variables, 

etc. Below is a simplified example:

Chapter 6  Working with Container Builder Tools for Java Applications



107

<configuration>
   <images>
      
   </images>
</configuration>

In this configuration, we define an image with the alias my-app-image 

and the name my-app. The base image is set to openjdk:11-jre-slim, 

representing a minimalistic Java 11 runtime environment. We expose port 

8080 to allow incoming connections. An environment variable SPRING_
PROFILES_ACTIVE is set to production.

Chapter 6  Working with Container Builder Tools for Java Applications



108

Building docker image: With the Fabric8 Docker Maven Plugin 

configured, we can now build Docker images as part of our Maven build 

process. Run the following command:

mvn package docker:build

This command triggers the docker-maven-plugin during the install 

phase of our project’s build life cycle. The plugin reads our defined 

configuration pom.xml and builds the specified Docker image accordingly.

Pushing docker image: The Fabric8 Docker Maven Plugin offers 

advanced features like tagging and pushing images to a registry, 

among others.

•	 To push the image to a Docker registry, specify the 

registry details. The registry element can be omitted if 

you’re pushing to Docker Hub. For a custom registry, 

define its URL. It’s recommended to define your 

registry credentials in the Maven settings.xml file 

rather than in pom.xml for security reasons.

	 For example, pom.xml is typically part of the source 

code, and there is a risk of committing it to the version 

control system, making it difficult to remove from the 

commit history. This is a classic case of credential 

leakage.

	 In your settings.xml:

<servers>
    <server>
        �<id>your.registry.com</id> <!-- Use Docker Hub 

ID or your custom registry's ID -->
        <username>yourusername</username>
        <password>yourpassword</password>
    </server>
</servers>

Chapter 6  Working with Container Builder Tools for Java Applications



109

•	 Then, in your pom.xmlReference the server ID:

<push>
    <registry>your.registry.com</registry>
    �<serverId>your.registry.com</serverId>  

<!-- Matches the ID in settings.xml -->
</push>

•	 Here’s an example of how to tag and push an image:

<configuration>
    <images>
        
    </images>
</configuration>

•	 To define our image with the desired tag, we can 

use Maven properties like ${project.version} for 

dynamic tagging based on our project’s version. This 

allows us to tag our image with a particular version or 

label and push it to a Docker registry for distribution.

•	 To push the image, we can use mvn docker:push 

maven command.

Chapter 6  Working with Container Builder Tools for Java Applications



110

The Fabric8 Docker Maven Plugin simplifies Docker image creation 

and management in Maven projects. With this integration and easy-to- 

configure options, it empowers developers to adopt containerization 

without all the complexity involved with Dockerfiles. So this plugin gets 

incorporated into our process to make efficient building and management 

of Docker images possible, and our applications would always be 

consistent and portable on containerized environments.

�Building Container Images with Spotify’s 
Docker-Maven-Plugin
While Docker provides a powerful set of commands and features for 

creating and managing containers, it can be challenging to integrate these 

tasks seamlessly into the software development process. This is where 

tools like Spotify’s Docker-Maven-Plugin come into play, as it simplifies 

the build process of Java applications. This plugin seamlessly integrates 

Docker into your Maven build process, making it easier than ever to 

package your Java applications into Docker containers.

This lesson will explore the Dockerfile-Maven plugin and demonstrate 

how it can streamline your Java application builds.

�Understanding Spotify’s Docker-Maven-Plugin
The Docker-Maven-Plugin for Spotify is an open source tool aimed 

to simplify the process of containerizing the Java application for you, 

particularly when you have the build automation tool Apache Maven. The 

Dockerfile-Maven plugin packs the Java application into the container 

easily and simply by integrating Docker directly into the Maven build 

process so that building and maintaining containers becomes easier, 

particularly based on a manually created Dockerfile.

Chapter 6  Working with Container Builder Tools for Java Applications



111

Key advantages of the Dockerfile-Maven plugin:

•	 Streamlined containerization: The Dockerfile-Maven 

plugin seamlessly integrates Docker into the Maven 

build process, simplifying the process of creating 

Docker containers for your Java applications.

•	 Manual Dockerfile utilization: While it doesn’t 

generate Dockerfiles, the plugin allows you to use your 

manually created Dockerfile, giving you full control 

over container configuration and dependencies.

•	 Efficient Docker image builds: With a simple 

Maven command, you can efficiently build Docker 

images, ensuring consistency and reliability in your 

containerization process.

•	 Saves development time: By automating Docker image 

creation within your build process, the plugin reduces 

the need for manual intervention, saving development 

time and effort.

•	 Integration with Maven ecosystem: Dockerfile-Maven 

seamlessly integrates with the Maven ecosystem, 

making it a natural choice for Java developers already 

using Maven for their projects.

mvn package  # Builds Docker image
mvn deploy   # Pushes the Docker image

•	 Customizable configuration: You have the flexibility to 

customize the Docker image configuration within your 

project’s pom.xml to match your specific application 

requirements.

Chapter 6  Working with Container Builder Tools for Java Applications



112

�Getting Started
Using Spotify’s Docker-Maven-Plugin is straightforward:

	 1.	 Add the plugin: In your project’s pom.xml, add 

the Docker-Maven-Plugin as a build plugin. 

Specify the image name and any other necessary 

configurations.

<plugin>
  <groupId>com.spotify</groupId>
  <artifactId>dockerfile-maven-plugin</artifactId>
  <version>${dockerfile-maven-version}</version>
  <executions>
    <execution>
      <id>default</id>
      <goals>
        <goal>build</goal>
        <goal>push</goal>
      </goals>
    </execution>
  </executions>
  <configuration>
    <repository>spotify/foobar</repository>
    <tag>${project.version}</tag>
    <buildArgs>
      �<JAR_FILE>${project.build.finalName}.jar 

</JAR_FILE>
    </buildArgs>
  </configuration>
</plugin>

Chapter 6  Working with Container Builder Tools for Java Applications



113

Let’s break down the important part of this code 

snippet:

•	 <executions>: This block defines a list of 

executions for the plugin. In this case, there is one 

execution defined.

•	 <execution>: Specifies an execution within the 

plugin. It can have an <id> and a list of <goals>.

•	 <id>: An optional identifier for the execution. In 

this case, it’s named default.

•	 <goals>: Lists the goals that will be executed within 

this execution. Here, two goals build and push are 

specified.

•	 <configuration>: This block contains 

configuration settings specific to the 

dockerfile-maven- 
plugin.<repository>: Specifies the name of the 

Docker image repository. In this example, it’s set to 

spotify/foobarthe repository’s name where the 

Docker image will be stored.

•	 <tag>: Sets the tag for the Docker image. It uses the 

Maven variable ${project.version} to set the tag 

to the project’s version dynamically.

•	 <buildArgs>: Allows you to specify build 

arguments for the Docker image. In this case, it sets 

the JAR_FILE build argument to ${project.build.
finalName}.jar, which likely represents the name 

of the JAR file to include in the image.

Chapter 6  Working with Container Builder Tools for Java Applications



114

Overall, this configuration instructs the dockerfile-maven- 
plugin to build a Docker image using the specified Dockerfile, 

tag it with the project’s version, and push it to the spotify/
foobar Docker image repository.

	 2.	 Build the image: Run a Maven build command, 

such as mvn package. The plugin will automatically 

create a Docker image of your application during 

the build process.

	 3.	 Push to registry: Using the mvn deploy command, 

you can push the generated Docker image to a 

container registry like Docker Hub or Google 

Container Registry. This is typically done as part of a 

CI/CD pipeline for production deployment.

Figure 6-4.  Image build process with Spotify docker maven plugin

Chapter 6  Working with Container Builder Tools for Java Applications



115

�Building Container Images 
with Cloud-Native Buildpacks

�Understanding Buildpacks
Autoconfiguration revolutionized Spring. We’ve relied on Spring Boot’s 

defaults to simplify configuration and boost productivity. Spring Boot 

autoconfiguration is a feature that facilitates the configuration of Spring 

applications. It’s designed to minimize the manual configuration required 

by automatically configuring beans, settings, and components based on 

the dependencies in our project.

Figure 6-5.  Spring Boot autoconfiguration

For example, when you add a dependency such as spring-boot- 

starter-data-jpa to your Spring Boot project, the framework recognizes 

the existence of classes related to JPA in the classpath and enables the 

relevant autoconfiguration classes like JpaRepositoriesAutoConfiguration 

and DataSourceAutoConfiguration. These classes automatically 

configure some beans like DataSource, EntityManagerFactory, and 

TransactionManager if they are not defined elsewhere. This process is 

controlled by external configuration properties, for example, spring.

datasource.url, which developers can use to customize the setup. This 

flow streamlines the setup of complex components by applying sensible 

defaults but leaving room for customization.

Although these defaults usually function effectively, many view 

them as magical. Once we’ve developed our application, what about 

containerization? Crafting a Dockerfile that adheres to best practices 

for optimal containers (minimizing layers, leveraging build caches) can 

Chapter 6  Working with Container Builder Tools for Java Applications



116

consume significant time, which may not be ideal for developers. Enter 

Cloud-Native Buildpack. CNB, like Spring’s autoconfiguration, simplifies 

container management to mirror the simplicity Spring Boot brings to our 

application.

Figure 6-6.  Spring Boot buildpack

The primary role of a buildpack is to collect all the essential 

components required for building and running our application. They 

usually operate in the background and convert our source code into a 

runnable application image without using Dockerfile.

Starting with Spring Boot 2.3, it uses buildpacks to generate top-tier 

OCI containers with effortless configuration hassle. There is no need to 

fret about layers, security, JVM memory calculations, or more. Create our 

containerized application with a single command.

�Cloud-Native Buildpacks Features
Cloud-Native Buildpacks (CNBs) offer several features and capabilities for 

building and packaging containerized applications. Here are some of the 

key features supported by Cloud Native Buildpacks:

Dependency management: CNBs can 

automatically detect and manage application 

dependencies, such as language runtimes, libraries, 

and packages. They ensure that the required 

dependencies are included in the application 

container.

Chapter 6  Working with Container Builder Tools for Java Applications



117

Layered build: CNBs follow a layered approach to 

build containers. This means they create separate 

layers for different application parts, allowing for 

efficient caching and reusability during the build 

process.

Reproducible builds: CNBs focus on hermetic 

reproducible builds. This ensures that the same 

source code and same dependencies lead to 

identical container images, which is highly critical in 

reliability and security purposes.

Build cache: CNBs utilize a build cache in which 

layers that are built can be cached. This allows a 

cached layer to be reused as much as possible so 

that the build is not rebuilding everything.

Customizable builders: CNBs provide the flexibility 

to create custom builders tailored to specific 

application types or organization requirements. 

Custom builders can include additional buildpacks 

and configurations.

Life Cycle phases: The CNB build process consists 

of different life cycle phases, which include 

detection, analysis, build, and export. All these 

life cycle phases can be extended or customized 

depending on the use case.

Security scanning: CNBs often integrate with 

security scanning tools to identify and address 

vulnerabilities in application dependencies, 

enhancing the security of the resulting 

container images.

Chapter 6  Working with Container Builder Tools for Java Applications



118

Environment variable injection: CNBs can 

inject environment variables into the application 

container, making it easy to configure runtime 

settings or connect to external services.

Multi-platform support: CNBs support building 

container images for multiple platforms and 

architectures, making it easier to create images 

that can run on different cloud providers and 

device types.

Compatibility: CNBs are compatible with various 

container runtimes and orchestrators, such as 

Docker, Kubernetes, and Cloud Foundry, making 

them versatile for different deployment scenarios.

Continuous integration (CI): CNBs can be 

integrated into CI/CD pipelines to automate 

containerization, ensuring that applications are 

consistently built and packaged. For example, 

buildpacks project offers a collection of GitHub 

actions for different buildpack-related activities. 

One of these actions allows us to configure a job 

prepared with the pack CLI. It’s a straightforward 

process, and we can use this action with ease:

uses: buildpacks/github-actions/setup-pack@v4.1.0

�Configuring Buildpack
Spring Boot 2.3.0.M1 introduces native buildpack support for both Maven 

and Gradle. This simplifies the process of generating a Docker image for 

our application.

Chapter 6  Working with Container Builder Tools for Java Applications

https://github.com/buildpacks/github-actions
https://github.com/buildpacks/github-actions


119

•	 First, ensure we have a local Docker installed and 

running. Spring Boot buildpack integration needs a 

running Docker daemon. Otherwise, we get an error:

Failed to execute goal org.springframework.boot: 
spring-boot-maven-plugin:2.4.2:build-image (default-
cli) on project imagebuilder: Execution default- 
cli of goal org.springframework.boot:spring-boot-
maven-plugin:2.4.2:build-image failed: Connection to 
the Docker daemon at 'localhost' failed with error 
"[61] Connection refused"; ensure the Docker daemon is 
running and accessible

	 It differs from Jib in this aspect, where we don’t need a 

docker daemon for building container images.

•	 Next, create a new Spring Boot project using  start.

spring.io.

•	 For Maven, we can use the command, and for Gradle, 

it’s gradle bootBuildImage. We can swiftly create a 

well-configured image and store it in our local Docker 

daemon with a single command. It will take a little time 

to run the first time around, but subsequent calls will 

be quicker. We should see something like this in the 

build log:

[INFO] Successfully built image 'docker.io/library/
buildpack:0.0.1-SNAPSHOT'
[INFO]
[INFO] ------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------
[INFO] Total time:  01:49 min
[INFO] Finished at: 2021-02-20T01:07:08+05:30

Chapter 6  Working with Container Builder Tools for Java Applications

http://start.spring.io
http://start.spring.io


120

•	 We now have an OCI-compliant container image of our 

application that:

1.	 Includes necessary middleware like the JRE.

2.	 Has specific customizations based on our 

application framework (Spring Boot).

3.	 It was created in a disposable build container, 

provided only with the application source code.

4.	 It is secure by default, running as a non-root 

user with minimal packages installed.

5.	 It will be named after our application and tagged 

with its version.

•	 Finally, run:

docker run --rm -p 8080:8080 imageName

	 And check the output using http://localhost:8080/.

•	 By default, Buildpacks store the image on the local 

Docker daemon when used with Spring Boot. 

Nevertheless, we can also push our images to a 

remote container registry. We will need to make 

specific adjustments in our Maven file to enable this 

functionality.

<project>
   <build>
       <plugins>
           <plugin>
               �<groupId>org.springframework.boot 

</groupId>
               �<artifactId>spring-boot-maven-plugin 

</artifactId>

Chapter 6  Working with Container Builder Tools for Java Applications



121

               <configuration>
                   
                   <docker>
                       <publishRegistry>
                           <username>user</username>
                           <password>secret</password>
                           �<url>https://docker.example.

com/v1/</url>
                           �<email>user@example.

com</email>
                       </publishRegistry>
                   </docker>
               </configuration>
           </plugin>
       </plugins>
   </build>
</project>

�Summary
This chapter explores container builder tools for Java applications, 

focusing on Spring Boot. It covers Google Jib, Fabric8 Docker Maven 

Plugin, Spotify’s Docker-Maven-Plugin, and Cloud-Native Buildpacks. All 

of these tools provide different means through which Java applications 

are containerized, ranging from creating a Docker image without 

Chapter 6  Working with Container Builder Tools for Java Applications



122

Dockerfile using Jib and buildpack and integrating Docker image build 

into the Maven build process. The chapter provides practical examples, 

configuration details, and insights into the benefits of each tool. It aims to 

help developers choose the right containerization method for their Java 

projects.

Chapter 6  Working with Container Builder Tools for Java Applications



123© Ashish Choudhary 2025 
A. Choudhary, When Docker Meets Java, https://doi.org/10.1007/979-8-8688-1300-9_7

CHAPTER 7

Deploying Docker 
Containers Using 
GitHub Actions
Containerization is now a cornerstone in application deployment 

strategies to run the software in light, consistent, and scalable ways. 

Docker for Java applications makes it possible for them to run anywhere, 

irrespective of differences between the underlying systems. With GitHub 

Actions, developers can automate the building, testing, and deployment of 

containers.

�Understanding Github Actions
GitHub Actions is an automation tool that allows us to run workflows 

based on events such as a push to a repository. GitHub Actions changed 

the face of CI/CD. It makes CI/CD easier for a Java developer by allowing 

automation right from their GitHub repositories: it builds, tests, and 

deploys automatically without human intervention. GitHub Actions can 

automate any type of software workflow. This simply runs a sequence 

of commands following particular events on a GitHub repository: push, 

creating a pull request, or similar actions.

https://doi.org/10.1007/979-8-8688-1300-9_7#DOI


124

Here are some key features of GitHub Actions:

•	 Workflow automation: We can automate our build, 

test, and deploy workflows using actions defined in 

YAML files within our repository.

•	 Events trigger: Workflows can be triggered by GitHub 

events such as push and pull requests, issues created, 

releases, or any other event in the GitHub webhooks 

payload.

•	 Reusable components: Actions can be created and 

shared as individual tasks, which others can use in their 

workflows.

•	 Marketplace: GitHub Marketplace provides a 

community of shared actions that can be used to 

automate all sorts of processes.

•	 Language and platform support: Actions support 

various programming languages and platforms, making 

them versatile for different projects.

•	 Hosted runners: GitHub provides hosted runners 

for Linux, Windows, and macOS, allowing you to run 

workflows on fresh virtual machines.

•	 Self-hosted runners: For custom environments or 

specific hardware requirements, we can also host our 

runners.

•	 Matrix builds: We can test across multiple operating 

systems, versions, or environments by defining a matrix 

of different configurations.

•	 Secrets management: We can store and use secrets, 

like API keys or credentials, securely in our workflows.

Chapter 7  Deploying Docker Containers Using GitHub Actions



125

•	 Artifacts and raches: We can upload artifacts from our 

workflows or cache dependencies to speed up the build 

process.

Figure 7-1.  GitHub Actions

�GitHub Action Components
Let’s break down the critical elements of GitHub Actions:

•	 Workflow: It’s a set of instructions to compile, test, 

package, or deploy code on GitHub. Defined in a 

YAML file within the .github/workflows folder of our 

repository, a workflow activates through specific events 

and comprises jobs.

•	 Events: These are the triggers for workflows. Any 

activity, like a push to a branch or a new pull request, 

can initiate the workflow.

•	 Jobs: A job is a sequence of steps that run in a virtual 

environment called a runner. Jobs organize the 

sequence of actions and can operate simultaneously or 

one after the other.

•	 Steps: Each step in a job corresponds to a single 

action, such as retrieving the code or executing a shell 

command.

Chapter 7  Deploying Docker Containers Using GitHub Actions



126

•	 Actions: Actions are predefined commands you can 

run during steps, like pulling your code repository or 

setting up a Java Development Kit.

•	 Runners: These are servers where we run workflows. 

GitHub provides these runners, or we can set up our 

own. They carry out the jobs and report the outcomes 

to your GitHub repository. GitHub’s runners are 

compatible with Ubuntu Linux, Windows, and macOS.

�Understanding Workflow Yaml File
The diagram below outlines the relationship between a GitHub repository, 

workflows, and GitHub Actions.

Figure 7-2.  GitHub yaml workflow

Chapter 7  Deploying Docker Containers Using GitHub Actions



127

Here’s a step-by-step explanation:

GitHub repository:[Git Push Event]: This is the 

starting point of the workflow. A Git push event occurs 

when someone pushes commits to a repository on 

GitHub. This event can trigger a workflow.

Workflow:[Workflow YAML File]: This file, typically 

named main.yml or ci.yml, is located in the .github/
workflows directory of your repository. It defines 

the workflow to be executed when the Git push 

event occurs.

GitHub actions:[Workflow]: This is the overall 

automated process defined by the workflow YAML file. 

It contains one or more jobs.

[Job 1] and [Job 2]: These are individual jobs within 

the workflow. Jobs are steps that execute on the same 

runner, which can run in parallel or sequentially as 

defined by the workflow.

[Step 1.1] and [Step 1.2]: These are steps within 

Job 1. Steps are individual tasks that can run 

commands or actions.

[Step 2.1]: This is a step within Job 2. Like the steps 

in Job 1, it can run commands or actions.

[actions]: This represents actions used in steps. 

GitHub Actions can use pre-built actions created by the 

community or custom ones defined in your repository.

Chapter 7  Deploying Docker Containers Using GitHub Actions



128

The diagram’s arrows show the direction of the workflow:

|Triggers|: The Git push event triggers the workflow 

defined in the workflow YAML file.

|Defines|: The workflow YAML file represents the 

actual workflow process.

|Contains|: The workflow contains Job 1 and Job 2.

|Consists of|: Job 1 consists of Step 1.1 and 

Step 1.2.

|Uses |: Step 2.1 It uses one or more actions to 

perform its tasks.

The above diagram shows how a Git push event triggers a defined 

workflow in the repository, which then controls the execution of jobs and 

steps through actions within the GitHub Actions environment.

�Building Java Application Using 
Github Actions
�Setting Up a Java Project
Let’s discuss how to create a Java application build pipeline using GitHub 

Actions. Before we begin with GitHub Actions, make sure you have a Java 

project on GitHub. For this example, we will use a simple Java application 

built with Maven.

First, you need to define the workflow. Workflows are custom 

automated processes we set up in your repository to build, test, package, or 

deploy any code project on GitHub.

	 1.	 In our GitHub repository, navigate to the Actions 

tab. Click Java with Maven template or set up a 

workflow yourself.

Chapter 7  Deploying Docker Containers Using GitHub Actions



129

Figure 7-3.  Setting up actions

	 2.	 This opens the workflow editor. Here, we write our 

build steps.

# This workflow will build a Java project with Maven, 
and cache/restore any dependencies to improve the 
workflow execution time
name: Java CI with Maven
on:
  push:
    branches: [ "main" ]
  pull_request:
    branches: [ "main" ]
jobs:
  build:
    runs-on: ubuntu-latest
    steps:
    - uses: actions/checkout@v3
    - name: Set up JDK 17
      uses: actions/setup-java@v3

Chapter 7  Deploying Docker Containers Using GitHub Actions



130

      with:
        java-version: '17'
        distribution: 'temurin'
        cache: maven
    - name: Build with Maven
      run: mvn -B package --file pom.xml

Workflow file

	 3.	 Testing is a crucial aspect of the CI process. We 

should incorporate tests in our workflow to ensure 

code quality:

    - name: Test with Maven
      run: mvn test

This step runs after the build and executes all unit 

tests in the project.

	 4.	 Building and testing can be time-consuming, 

primarily due to dependencies. To speed up the 

process, cache the dependencies:

    - name: Cache Maven packages
      uses: actions/cache@v2
      with:
        path: ~/.m2
        �key: ${{ runner.os }}-m2-${{ hashFiles 

('**/pom.xml') }}
        restore-keys: ${{ runner.os }}-m2

This caches the Maven packages, reducing the need 

to fetch them for every build.

Chapter 7  Deploying Docker Containers Using GitHub Actions



131

	 5.	 Commit changes. This will trigger the workflow.

Figure 7-4.  Committing changes

	 6.	 Workflow completed.

Figure 7-5.  Workflow completion

Remember, although the guide describes a minimal Java application 

with Maven, there is still a lot of flexibility within GitHub Actions. Tailor 

the instructions to the requirements of different build tools or deployment 

targets. Then take full advantage of the power of automation for your Java 

projects.

Chapter 7  Deploying Docker Containers Using GitHub Actions



132

�Containerizing Java Application Using 
Docker GitHub Action
Let us go through the steps to containerize a Java application using GitHub 

Actions and Docker.

�Understanding the Process
This process starts with a Dockerfile for the Java application, defining the 

environment and instructions to build a container image. Lastly, GitHub 

Actions workflows are defined to automate the execution of this process 

every time any change is pushed to the repository.

Figure 7-6.  GitHub Action docker flow

�Writing a Dockerfile
A Dockerfile is a script with various commands to create a Docker image. 

For a Java application, a typical Dockerfile might look something like this:

# Use a base JDK image from Docker Hub
FROM openjdk:17-jdk
# Set the working directory inside the container
WORKDIR /app
# Copy the Maven build file and source code
COPY pom.xml .
COPY src /app/src
# Build the application
RUN mvn clean package
# Expose the port the application runs on

Chapter 7  Deploying Docker Containers Using GitHub Actions



133

EXPOSE 8080
# Run the jar file
CMD ["java", "-jar", "target/myapp-1.0-SNAPSHOT.jar"]

�Setting Up Github Actions
GitHub Actions is an automation tool that allows us to run workflows 

based on events such as a push to a repository. Adding GitHub Actions to 

our Java application requires creating the directory .github/workflows in 

our repository and placing within it a YAML file describing our workflow:

name: Java CI with Docker
on:
  push:
    branches: [ main ]
jobs:
  build:
    runs-on: ubuntu-latest
    steps:
    - uses: actions/checkout@v2
    - name: Set up JDK 17
      uses: actions/setup-java@v2
      with:
        java-version: '17'
        distribution: 'adopt'

    - name: Build with Maven
      run: mvn clean install

    - name: Build Docker Image
      run: docker build -t my-java-app .

Chapter 7  Deploying Docker Containers Using GitHub Actions



134

    - name: Push Docker Image to Registry
      run: |
        �echo ${{ secrets.DOCKER_HUB_PASSWORD }} | docker login  

 -u ${{ secrets.DOCKER_HUB_USERNAME }} --password-stdin
        �docker tag my-java-app ${{ secrets.DOCKER_HUB_USERNAME 

}}/my-java-app:latest

GitHub action docker workflow yaml file

This workflow does the following:

Checkout code: Grabs the latest code from the main branch.

    - uses: actions/checkout@v2

Set up jdk: Configures the JDK for the runner environment.

    - name: Set up JDK 17
      uses: actions/setup-java@v2
      with:
        java-version: '17'
        distribution: 'adopt'

Build with maven: Compiles the Java application and runs any tests.

    - name: Build with Maven
      run: mvn clean install

Build docker image: Constructs the Docker image using the 

Dockerfile.

    - name: Build Docker Image
      run: docker build -t my-java-app .

Push to docker registry: After the image is successfully created, it’s 

tagged and then pushed to Docker Hub.

Chapter 7  Deploying Docker Containers Using GitHub Actions



135

    - name: Push Docker Image to Registry
      run: |
        �echo ${{ secrets.DOCKER_HUB_PASSWORD }} | docker login  

 -u ${{ secrets.DOCKER_HUB_USERNAME }} --password-stdin
        �docker tag my-java-app ${{ secrets.DOCKER_HUB_USERNAME 

}}/my-java-app:latest
        �docker push ${{ secrets.DOCKER_HUB_USERNAME }}/my-java- 

app:latest

The ${{ secrets.DOCKER_HUB_USERNAME }} and ${{ secrets.
DOCKER_HUB_PASSWORD }} are GitHub secrets that you set in your 

repository settings for secure authentication to the Docker registry.

By containerizing your Java application using GitHub Actions and 

Docker, you automate your build and deployment process, which 

enhances productivity and reduces the chance of human error. This CI/

CD approach ensures our development team can focus on what they do 

best—writing code not worrying about deployment intricacies. Moreover, 

the portability of Docker ensures that the Java application can be run on 

any machine without the “it works on my machine” syndrome.

�Deploying Java Application to GCP Using 
GitHub Action
In simple terms, CI/CD automation essentially bridges your code 

repository to a live production environment. For Java developers, 

application deployment to Google Cloud Platform (GCP) just got easier 

using GitHub Actions and Docker. Prior knowledge of GCP is required to 

proceed further.

Chapter 7  Deploying Docker Containers Using GitHub Actions



136

�Understanding the Workflow
Before we dive into the deployment process, let’s understand the workflow:

•	 Code commit: Developers push code to a GitHub 

repository.

•	 GitHub Actions trigger: A push event triggers the 

GitHub Actions workflow.

•	 Build: GitHub Actions executes a workflow that builds 

a Docker image.

•	 Push to container registry: The Docker image is 

pushed to the Google Container Registry (GCR).

•	 Deploy to GCP: The image in GCR is then deployed to 

a GCP service like Google Kubernetes Engine (GKE) or 

Google Cloud run.

Here is a diagram representing CI/CD flow with Docker, GitHub 

Actions, and GCP.

Chapter 7  Deploying Docker Containers Using GitHub Actions



137

Figure 7-7.  GitHub Actions with GCP

Chapter 7  Deploying Docker Containers Using GitHub Actions



138

�Setting Up the Workflow
To configure this workflow:

	 1.	 To deploy a Docker image to Google Cloud Platform 

(GCP) using GitHub Actions, you’ll need to enable 

specific GCP APIs to facilitate the integration. 

Navigate to GCP Console and ensure that the 

following required Google Cloud APIs are enabled:

•	 Cloud Run run.googleapis.com

•	 Artifact Registry artifactregistry.googleapis.com

	 2.	 Create and configure Workload Identity Federation 

for GitHub (https://github.com/google-github-
actions/auth#setting-up-workload-identity-
federation).

	 3.	 Ensure the required IAM permissions are granted:

Cloud Run

•	 roles/run.admin

•	 roles/iam.serviceAccountUser (to act as the 

Cloud Run runtime service account)

Artifact Registry

•	 roles/artifactregistry.admin (project or 

repository level)

Note Y ou should always follow the principle of least privilege when 
assigning IAM roles.

Chapter 7  Deploying Docker Containers Using GitHub Actions

https://github.com/google-github-actions/auth#setting-up-workload-identity-federation
https://github.com/google-github-actions/auth#setting-up-workload-identity-federation
https://github.com/google-github-actions/auth#setting-up-workload-identity-federation


139

	 4.	 Create GitHub secrets for WIF_PROVIDER and WIF_
SERVICE_ACCOUNT.

	 5.	 Change the values for the GAR_LOCATION, SERVICE, 

and REGION environment variables.

Let’s begin.

Step 1: Firstly, our Java application needs to be ready for deployment. 

This typically involves:

•	 Ensuring your application is thoroughly tested 

and stable

•	 Configuring your pom.xml or build.gradle file for a 

successful build

Step 2: For deploying a Java application, you may need to set up 

various GCP resources such as a Compute Engine instance, App Engine, 

or Kubernetes Engine. The choice depends on your application’s 

requirements.

•	 Compute engine: Ideal for applications requiring 

custom virtual machines.

•	 App engine: Suitable for applications that scale 

automatically.

•	 Kubernetes engine: Best for containerized 

applications.

•	 Cloud run: It is a managed platform that enables you 

to run stateless containers that are invocable via web 

requests or Pub/Sub events.

Step 3: Finally, we need to set up GitHub Actions so that we automate 

our deployment workflow. Here’s how we can set it up:

Chapter 7  Deploying Docker Containers Using GitHub Actions



140

•	 In your GitHub repository, create a .github/workflows 

directory.

•	 Add a workflow file (e.g., deploy.yml) in this directory.

  - name: Google Auth
jobs:
  deploy:
    �# Add 'id-token' with the intended permissions for 

workload identity federation
    permissions:
      contents: 'read'
      id-token: 'write'
    runs-on: ubuntu-latest
    steps:
      - name: Checkout
        uses: actions/checkout@v2
      - name: Set up JDK
        uses: actions/setup-java@v2
        with:
          java-version: '17'
env:
  �PROJECT_ID: YOUR_PROJECT_ID # TODO: update Google 
Cloud project id

  �GAR_LOCATION: YOUR_GAR_LOCATION # TODO: update 
Artifact Registry location

  �SERVICE: YOUR_SERVICE_NAME # TODO: update Cloud Run 
service name

  �REGION: YOUR_SERVICE_REGION # TODO: update Cloud Run 
service region

on:
  push:
    branches: [ "main" ]
name: Build and Deploy to GCP Cloud Run

Chapter 7  Deploying Docker Containers Using GitHub Actions



141

This workflow does the following:

•	 Triggers on a push to the main branch.

•	 Sets up Java environment.

•	 Authenticates with GCP using secrets.

•	 Builds a Docker image and pushes it to the Google 

artifact repository.

•	 Deploys the image to Cloud Run using a GitHub Action 

specifically for Cloud Run deployment.

Figure 7-8.  GCP workflow

Chapter 7  Deploying Docker Containers Using GitHub Actions



142

Step 4: For security, store sensitive information like GCP credentials as 

encrypted secrets in your GitHub repository:

•	 Go to your repository’s settings.

•	 Click on “Secrets”.

Figure 7-9.  Setting up secret

•	 Add your GCP service account key and project ID as 

secrets.

Figure 7-10.  Creating a secret

Chapter 7  Deploying Docker Containers Using GitHub Actions



143

Step 5: Once the workflow is configured, any push to the main branch 

will trigger the deployment process. You can monitor the progress and 

check logs in the “Actions” tab of your repository. Remember to regularly 

update your workflow configurations to align with the evolving needs of 

your application and team.

�GitHub Actions Best Practices for CI/CD 
with Docker
�Keep Workflows DRY (Don’t Repeat Yourself)
Avoid duplicated code in your GitHub Actions workflows. Reuse actions 

and shared logic by breaking your workflow into modular pieces. You can 

have reusable workflows referenced by several projects, thus reducing 

maintenance overhead and uniformly aligning CI/CD pipelines across 

the board.

Suppose you have a Java project and always run the following steps to 

set up a Java, build with maven, and run across different workflows. You 

should instead create a composite action so that you don’t have to repeat 

these several times again for each one of your workflows.

Step 1: Create the composite action.

In your repository, create a folder structure for the composite action, 

like this:

.github/actions/java-maven-build
  ├── action.yml

Inside action.yml, define the steps you want to reuse:

# .github/actions/java-maven-build/action.yml
name: 'Java Maven Build'

Chapter 7  Deploying Docker Containers Using GitHub Actions



144

description: 'Set up Java, build with Maven, and run tests'
runs:
  using: 'composite'
  steps:
    - name: Set up JDK 17
      uses: actions/setup-java@v3
      with:
        java-version: '17'
        distribution: 'temurin'
        cache: maven

    - name: Build with Maven
      run: mvn clean package --file pom.xml

    - name: Run Tests with Maven
      run: mvn test

Step 2: Reuse the composite action in your workflows.

Now that the composite action is defined, you can reuse it in multiple 

workflows. For instance, in your .github/workflows/main.yml:

name: Java CI

on:
  push:
    branches: [ main ]
  pull_request:
    branches: [ main ]

jobs:
  build:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v3

Chapter 7  Deploying Docker Containers Using GitHub Actions



145

      # Use the composite action
      - uses: ./.github/actions/java-maven-build

This approach keeps your workflows DRY by consolidating repeated 

steps into a single composite action, making it easier to manage and 

update across multiple pipelines.

�Use Secrets for Sensitive Information
Store sensitive data like API keys, credentials, and tokens securely in 

GitHub’s Secrets management system. This keeps sensitive information 

out of your codebase and workflow files. Refer to these secrets in the 

workflow using ${{ secrets.YOUR_SECRET_NAME }}, ensuring that 

sensitive data is not exposed during the CI/CD process.

Example:

- name: Login to Docker
  �run: echo ${{ secrets.DOCKER_PASSWORD }} | docker  
login -u ${{ secrets.DOCKER_USERNAME }} --password-stdin

�Leverage Caching to Reduce Build Times
Dependencies, for example, Maven or npm packages, can significantly 

accelerate build times in CI workflows. The GitHub Actions cache 

mechanism allows you to skip re-downloading dependencies with each 

job run. It will be faster and more efficient, especially for big projects.

Example:

- name: Cache Maven dependencies
  uses: actions/cache@v3
  with:
    path: ~/.m2
    key: ${{ runner.os }}-maven-${{ hashFiles('**/pom.xml') }}
    restore-keys: ${{ runner.os }}-maven

Chapter 7  Deploying Docker Containers Using GitHub Actions



146

�Run Security and Performance Tests As Part 
of the CI Process
Security scanning and performance testing should be part of the CI/CD  

pipeline to catch issues early. Tools such as Trivy for container 

vulnerabilities or JMeter for load testing keep your deployments secure 

and reliable. Automating these tests ensures you don’t ship potentially 

vulnerable or underperforming code.

Example:

- name: Run Security Scan
  uses: aquasecurity/trivy-action@v0.2.1
  with:
    image-ref: 'my-java-app'

�Summary
This chapter covers automating Java application deployment using 

Docker and GitHub Actions. It begins with an overview of GitHub Actions, 

explaining how workflows triggered by events like code pushes can 

automate tasks such as building, testing, and deploying code. The chapter 

then shows how to set up a CI pipeline for Java using Maven, including 

caching to speed up builds.

It also explains how to containerize a Java app using Docker and 

automate this process with GitHub Actions. Best practices include reusing 

workflows, securing sensitive data, optimizing Docker images with multi- 

stage builds, and running security tests. These steps streamline and secure 

the CI/CD process. This chapter also covers how we can deploy Docker 

images to GCP using GitHub Actions as the CI/CD process.

Chapter 7  Deploying Docker Containers Using GitHub Actions



147© Ashish Choudhary 2025 
A. Choudhary, When Docker Meets Java, https://doi.org/10.1007/979-8-8688-1300-9_8

CHAPTER 8

Exploring Docker 
Alternatives
​​While Docker has been the go-to solution for containerization, the 

container ecosystem has evolved much, introducing a few powerful 

alternatives that address some of the pain points in modern development 

environments. This chapter goes through four of the most popular Docker 

alternatives, Podman, Buildah, Kaniko, and img, each of which offers 

unique advantages in different containerization needs. From Podman’s 

daemonless architecture and improvements in security compared to 

Docker through Buildah-specific image building capability, to a CI/CD- 

optimized setup by Kaniko, and through img’s easier container image 

construction, these applications represent the emerging wave of container 

solutions. Whether it’s security, efficiency, or requirements of specific use 

cases, all these Docker alternatives are necessary for understanding how 

one should proceed during the journey toward containerization.

�Podman
Podman is an open source software under which containers could be 

created, managed, and run on any Linux operating system, originally 

developed and maintained by Red Hat with functionality quite like Docker.

https://doi.org/10.1007/979-8-8688-1300-9_8#DOI


148

It has some distinct features:

•	 Daemonless: It is daemonless because it does not 

require having a central daemon as does Docker. 

A daemonless architecture enhances security and 

reduces overhead since every container will run 

separately under the identity of the user.

•	 Rootless: Podman runs containers without requiring 

root privileges, which is a huge security advantage over 

Docker. This reduces the likelihood of a security breach 

through the method of container escape (i.e., refers to a 

form of vulnerability by which the attacker breaks free 

from the container boundaries to gain access to the 

potential underlying operating system of the host).

•	 Docker compatibility: Podman is designed to be 

compatible with the CLI interface of Docker. Therefore, 

most of the Docker commands can be replaced by the 

podman command.

•	 Pod concept: Kubernetes introduced the concept of 

pods (i.e., groups of containers that can be treated 

collectively as a single unit). Podman uses similar 

concept, but it is suitable for single-node use cases and 

lacks the orchestration capabilities of Kubernetes.

These features make Podman a good alternative to Docker, especially 

when security and resource efficiency are considered.

�Setting Up Podman
To install Podman Desktop on a Mac, you have two main methods: using 

the .dmg file or Homebrew. Here are the detailed steps for both methods:

Chapter 8  Exploring Docker Alternatives



149

Using homebrew: If you haven’t already installed Homebrew (a 

package manager for macOS), you can install it by running the following 

command in your terminal:

$ /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/
Homebrew/install/HEAD/install.sh)"

•	 Once Homebrew is installed, you can install Podman 

by running the following command in your terminal:

$ brew install podman

•	 After installing Podman, you need to initialize a 

virtual machine (VM) which Podman will use to run 

containers. Do this by running:

$ podman machine init

•	 To start the Podman VM, run:

$ podman machine start

•	 Finally, you can verify that Podman is installed 

correctly by running:

$ podman version

This command should display the installed version of Podman.

�Using the .dmg File

•	 Go to the Podman Desktop website and download 

the .dmg file from the Downloads section. Choose the 

“universal” binary file or the one appropriate for your 

Mac’s hardware architecture (Intel or Apple M1).

Chapter 8  Exploring Docker Alternatives



150

Figure 8-1.  Podman binary downloading

•	 Locate the downloaded .dmg file, typically in the 

Downloads folder, and double-click to open it. Drag the 

Podman Desktop icon to the Applications folder.

Figure 8-2.  Podman installation

Chapter 8  Exploring Docker Alternatives



151

•	 Open Podman Desktop from the Launchpad or the 

Applications directory on your Mac.

Figure 8-3.  Podman Desktop

•	 When you open Podman Desktop for the first time, 

you’ll be prompted to install it if Podman CLI/Engine 

is not found in the PATH. Click the “View detection 

checks” button and then the “Install” button to 

proceed.

Chapter 8  Exploring Docker Alternatives



152

Figure 8-4.  Podman dashboard

•	 You will be redirected to the Podman Installer. Follow 

the on-screen instructions.

Chapter 8  Exploring Docker Alternatives



153

Figure 8-5.  Podman setup

Chapter 8  Exploring Docker Alternatives



154

•	 Create podman machine.

Figure 8-6.  Creating Podman machine

•	 Set up required resources. Default options are 

good enough.

Chapter 8  Exploring Docker Alternatives



155

Figure 8-7.  Setting up resources

•	 After installation, close the installation program.

Figure 8-8.  Setup completed

Chapter 8  Exploring Docker Alternatives



156

•	 The Podman Engine will be installed, and you are ready 

to use Podman Desktop.

Figure 8-9.  Podman engine starting

These steps will get Podman up and running on your Mac. Refer to 

the official Podman documentation or Mac-specific installation guides for 

detailed instructions or troubleshooting.

�Developing a Simple Spring 
Boot Application
Visit Spring Initializr: Go to start.spring.io.

Project configuration: Select your project settings:

•	 Choose either Maven Project or Gradle Project.

•	 Select your preferred language (Java, Kotlin, or Groovy).

Chapter 8  Exploring Docker Alternatives

https://start.spring.io/


157

•	 Choose a Spring Boot version (usually, the default 

version is fine).

•	 Fill in the project metadata, like Group and Artifact.

Dependencies: Add the “Spring Web” dependency, which is essential 

for creating web applications.

Generate project: Click “Generate” to download your project zip file.

Open and run the project:

•	 Extract the downloaded zip file and open it in your 

favorite IDE (like IntelliJ IDEA, Eclipse, or VS Code).

•	 Find the DemoApplication.java file in the src/main/
java directory under the package you specified.

•	 Write a simple REST controller or modify the existing 

DemoApplication.java to return a “Hello World” 

message upon visiting a specific URL.

Run the application:

•	 Execute the main method in the DemoApplication.
java file to start the application.

•	 Once running, you can access the “Hello World” 

message by navigating to localhost:8080 of your web 

browser.

This process creates a basic Spring Boot application that can be further 

developed or containerized.

Chapter 8  Exploring Docker Alternatives



158

�Containerizing the Spring Boot Application
Now, containerize your application. Create a Dockerfile (or 

Containerfile) in the project root. This file instructs how to build your 

application’s image. Include the base Java image, add your application’s jar 

file, and specify the entry point. Here’s a basic example:

# Use an official Java runtime as a parent image
FROM eclipse-temurin:17-jdk-jammy
# Set the working directory in the container
WORKDIR /app
# Copy the jar file into the container at /app
COPY target/demo-0.0.1-SNAPSHOT.jar /app/hello-world.jar
# Make port 8080 available to the world outside this container
EXPOSE 8080
# Run the jar file
ENTRYPOINT ["java","-jar","/app/hello-world.jar"]

�Building Container Image with Podman
To create a container image using Podman Desktop, start by navigating to 

the Images section within Podman Desktop and then click the Build an 
Image button at the top-right corner, as shown in the following image.

Figure 8-10.  Building an image

This action opens a menu where we can choose our location for 

Containerfile, typically found in the root directory of the demo folder. 

Once the Containerfile is selected, you can assign a name to the 

container image, such as “my-custom-image.”

Chapter 8  Exploring Docker Alternatives



159

Next, click Build to observe the creation of each image layer.

Figure 8-11.  Configuring containerfile

You can find the image in your local image registry.

Figure 8-12.  Image in local registry

�Running Containerized Application
Great! Now, head back to the Images section to view the containerized 

Spring Boot application, which has been successfully built and tagged as 

an image. To run this image as a container on our system, click the Run 

icon to the right of our container image, as shown in the following image.

Chapter 8  Exploring Docker Alternatives



160

Figure 8-13.  Run the image

In the Port Mapping section, ensure that port 8080 of the container 

is mapped to port 8080 of the host. You can leave all other settings 

unchanged. Then, click Start Container to initiate the containerized 

version of your Spring Boot application, as illustrated in the 

following image.

Figure 8-14.  Port mapping

Now, the container is up and running.

Chapter 8  Exploring Docker Alternatives



161

Figure 8-15.  Container up and running

We have now successfully built and containerized a Spring Boot 

application using Podman. This approach simplifies development and 

ensures our application is ready for deployment in any environment that 

supports containers.

�Buildah
Buildah is an open source tool that provides a command-line interface 

for creating and managing OCI (Open Container Initiative) compliant 

container images. As an alternative to Docker, Buildah is part of the suite 

of tools provided by Red Hat, along with Podman and Skopeo, to work with 

containers.

Chapter 8  Exploring Docker Alternatives



162

Buildah is specialized in building container images. It doesn’t manage 

container life cycle operations like starting, stopping, or orchestrating 

containers. Buildah does not include a container runtime; it creates and 

prepares images.

�Buildah Features
Here are some critical aspects of Buildah:

Feature Description

Rootless Container 
Image Building

Buildah can create container images without requiring any 

access privileges, reducing the risk of privilege escalation 

attacks.

Daemonless 
Architecture

Buildah operates without a central daemon, minimizing 

system resource usage and simplifying architecture by 

treating each operation as a separate process.

Compatibility with 
Dockerfiles

Buildah can build images from existing Dockerfiles, easing 

the transition for users familiar with Docker.

Flexibility in Image 
Building

Users can build images from scratch or using existing 

images, allowing for greater customization compared to 

Docker.

Integration with  
Other Tools

Buildah integrates well with other tools like Podman 

for running containers and Skopeo for transferring and 

inspecting images.

Fully Scriptable CLI Buildah’s CLI is fully scriptable, making it suitable for use in 

build and deployment pipelines.

OCI Images Support Buildah generates images that are fully compatible with 

OCI-compliant tools and systems.

Chapter 8  Exploring Docker Alternatives



163

�Podman and Buildah Comparison
Let’s do a feature comparison between Podman and Buildah.

Feature Buildah Podman

Project Type Open source Open source

Platform Available on Linux Available on Linux

Primary 
Function

Building OCI images 

quickly, either with or 

without a Dockerfile

Managing OCI images and containers, 

including pulling, tagging, creating, 

and running containers

Dockerfile 
Support

Can build images from a 

Dockerfile or without one

Supports Docker commands, designed 

as a drop-in replacement for Docker

Daemon 
Dependency

Does not run as a daemon Does not run as a daemon

Root 
Privileges

Operates without root 

privileges

Operates without root privileges

Container 
Lifecycle

Typically short-lived 

containers for building 

images

Supports long-lived traditional 

containers

Storage 
Systems

Uses a different storage 

system from Podman

Uses a different storage system from 

Buildah

Integration Complements Podman in 

building images

Complements Buildah by managing 

containers

Chapter 8  Exploring Docker Alternatives



164

Figure 8-16.  Podman and Buildah match made in heaven

�Building Images with Buildah
To start with Buildah, you can install it on any Linux distribution 

supporting OCI. Here’s a quick guide:

Installation
On Fedora/Linux/CentOS, you can install Buildah with sudo dnf 

install buildah.

On Ubuntu, first, add the Kubic project’s repository with sudo add- 
apt-repository ppa:projectatomic/ppa followed by sudo apt-get 
update and then sudo apt-get install buildah.

Building an image: To create a new image, you can start with a base 

image or from scratch, then use the Buildah commands to modify the 

filesystem, set up the environment variables, expose ports, and define 

entry points.

Chapter 8  Exploring Docker Alternatives



165

Committing your work: Once done with the changes, you can commit 

the working container to an image using buildah commit.

Pushing to a registry: Finally, you can push your image to a container 

registry with buildah push.

Let’s say you want to create a simple container image with a 

web server:

# Create a new container from scratch
new_container=$(buildah from scratch)
# Mount the container filesystem
mountpoint=$(buildah mount $new_container)
# Install a web server, for example, nginx
dnf install --installroot $mountpoint --releasever  
30 nginx --setopt install_weak_deps=false -y
# Set up some configurations and static HTML files
echo 'Hello from Buildah!' > $mountpoint/usr/share/nginx/html/
index.html
# Commit the changes to create a new image
buildah commit $new_container my-webserver
# Push the image to a registry
buildah push my-webserver docker://myregistry/my- 
webserver:latest

Buildah focuses on building container images, whereas Docker 

provides a broader range of features, including orchestration and 

networking. For users primarily focused on building and managing 

container images, especially in a more scriptable and flexible manner, 

Buildah offers a robust alternative to Docker’s image-building capabilities.

Chapter 8  Exploring Docker Alternatives



166

�Kaniko
Docker has become synonymous with creating and managing containers 

in containerization. However, building Docker images typically requires 

a Docker daemon, which poses challenges in environments where 

running a daemon isn’t feasible or secure. This is where Kaniko enters the 

picture, offering a solution to build container images in environments like 

continuous integration (CI) pipelines without needing a Docker daemon.

�Need for Kaniko
Kaniko was developed by Google to address specific challenges in building 

Docker images:

•	 Security concerns: Running a Docker daemon 

typically requires elevated privileges, which can pose 

security risks, especially in shared CI environments.

•	 Environment limitations: Running a Docker daemon 

isn’t practical in specific environments, like Kubernetes 

clusters.

•	 Efficiency in ci/cd pipelines: Kaniko optimizes building 

images directly within a CI/CD pipeline without relying 

on a separate environment to run Docker.

�Features of Kaniko
Kaniko boasts several features that make it advantageous for building 

Docker images:

•	 No daemon required: Kaniko doesn’t need a Docker 

daemon to build an image, reducing the attack surface 

and making it safer in shared environments.

Chapter 8  Exploring Docker Alternatives



167

•	 Works in userspace: It executes each command in a 

Dockerfile entirely in userspace, making it compatible 

with various environments.

•	 Caching mechanisms: Kaniko provides caching 

options to speed up consecutive builds.

•	 Supports standard dockerfile directives: You can use 

the same Dockerfile you would with Docker, making it 

easy to integrate into existing workflows.

�Understanding Kaniko
The Kaniko executor image (i.e., gcr.io/kaniko-project/executor:latest) 

builds an image from a Dockerfile and pushes it to a registry. It begins 

by extracting the filesystem from the base image specified by the FROM 

command in the Dockerfile. The executor then runs the Dockerfile 

commands, taking a snapshot of the filesystem in userspace after each 

execution. If any changes occur, it appends a new layer of these files to the 

base image and updates the image metadata accordingly.

�Using Kaniko to Build and Push Docker Images

•	 Step 1: Preparing your Dockerfile and context: 
First, prepare your Dockerfile as usual. Ensure all files 

referenced in the Dockerfile are available in the build 

context.

•	 Step 2: Setting up Docker Registry credentials: 
Kaniko needs access to your registry to push the built 

image. You’ll need to create a JSON file with your 

credentials. This file typically looks like this:

Chapter 8  Exploring Docker Alternatives

https://gcr.io/kaniko-project/executor:latest


168

{
  "auths": {
    "https://index.docker.io/v1/": {
      "username": "yourusername",
      "password": "yourpassword"
    }
  }
}

•	 Step 3: Running Kaniko in Docker: You don’t need 

Kubernetes to run Kaniko. It can be executed as a 

Docker container. Here’s how:

1.	 Mount your context and credential: Use 

Docker to run Kaniko, mounting the build 

context directory and the directory containing 

your Docker registry credentials.

docker run --rm \
  -v $(pwd):/workspace \
  -v /path/to/kaniko/.docker/:/kaniko/.docker/ \
  gcr.io/kaniko-project/executor:latest \
  --dockerfile /workspace/Dockerfile \
  --context dir:///workspace/ \
  --destination yourdockerhubusername/your-image-
name:your-tag

2.	 Build and push: Kaniko will build the image 

using the provided Dockerfile and context and 

then push it to the specified destination in your 

Docker registry.

•	 Step 4: Verifying the image: After the build process, 

verify the image in your Docker registry to ensure it’s 

been correctly pushed.

Chapter 8  Exploring Docker Alternatives



169

Kaniko is mainly for rootless, daemonless, and secure image building 

in environments that might not be suitable for Docker, such as in CI/CD 

or Kubernetes environments. With Kaniko, developers and DevOps teams 

can securely and efficiently streamline their CI/CD workflows.

�Img
In the evolving landscape of containerization, the need for versatile, 

secure, and easy-to-use tools for building container images has never been 

greater. This is where img comes into play, offering a fresh approach to 

image creation in Docker and container technology.

�Why img?
img was developed to address several challenges and limitations posed by 

traditional Docker image building methods:

Daemonless operation: The build process of a 

Docker image requires the daemon. This may pose a 

security problem—mainly in shared or multitenant 

environments, CI systems.

Root privileges: Docker requires root privilege to 

create the images, which is a great concern in terms 

of security, of course. img does not require any 

root access.

Simplicity and portability: img is a tool which 

supports building, pushing, and pulling images 

easily, and, therefore, becomes rather attractive to 

developers and pipelines for CI/CD.

Chapter 8  Exploring Docker Alternatives



170

�Features of img
img stands out with its distinct features:

Unprivileged and daemonless: img runs totally 

in userspace and does not require any daemon, so 

it enhances security as well as reduces the attack 

surface.

Compatibility with Docker and OCI images: It 

can build images from Dockerfiles compatible with 

Docker and other OCI image formats.

Efficient caching: Thanks to its efficient caching 

mechanism, all repeated builds are faster via img.

Easy integration into CI/CD pipelines: It is 

very simple and does not require privileged 

requirements, so it quite easily fits into automated 

workflows.

�Using img to Build and Push Docker Images
Step 1. Installing img: First, install img on your system. It’s available for 

various platforms and can be downloaded from its GitHub repository.

Step 2. Preparing your Dockerfile: Ensure your Dockerfile is ready 

with all necessary instructions for building your image.

Step 3. Building the image with img: Navigate to the directory 

containing your Dockerfile and run:

$ img build -t yourusername/yourimagename:tag .

Chapter 8  Exploring Docker Alternatives



171

Replace yourusername/yourimagename:tag with your Docker Hub 

username, image name, and tag. img will build the image based on your 

Dockerfile.

Step 4. Pushing the image to a registry: Before pushing the image, 

authenticate with your Docker registry:

$ img login -u yourusername -p yourpassword

Then, push the image to Docker Hub or another registry:

$ img push yourusername/yourimagename:tag

Step 5. Verifying the image: After pushing, check your Docker registry 

to ensure the image has been uploaded successfully.

img emerges as a very powerful tool for building Docker and OCI 

images, especially suited for environments where security, simplicity, 

and integration with the existing pipelines are paramount. This allows 

unprivileged, daemonless image creation, which solves key challenges in 

the container ecosystem. It is a valuable asset for developers and DevOps 

professionals because its adoption can streamline workflows, enhance 

security, and efficiently manage container images.

�Summary
This chapter presents four alternatives of Docker and points out what each 

is useful for in the container ecosystems:

Podman is a standalone alternative for Docker. It supports daemonless 

architecture combined with rootless container management. Podman 

supports all native Docker commands but adds another feature: pod 

management. This chapter deals with the installation of Podman in Mac 

systems and then demonstrates it in practice by containerizing a Spring 

Boot application.

Chapter 8  Exploring Docker Alternatives



172

Buildah is focused on creating container images, giving developers 

more flexibility and control of the image-building process. It does not 

require any root privileges and integrates well with other container 

tools. This chapter explores some of the features of Buildah and provides 

practical examples of building container images from scratch.

Kaniko solves the problem of constructing Docker images in restricted 

environments where it is not feasible, especially within CI/CD pipeline 

runs. It operates completely without a Docker daemon. It is designed 

to run inside a container. Furthermore, the entire build process occurs 

entirely in user space, which makes it perfectly legal to use when an 

image has to be built in extremely constrained environments. It has been 

specifically optimized for Kubernetes and cloud-native workflows.

img is a contemporary approach to creating container images, which is 

based on simplicity and security. It runs in userspace and does not require 

root privilege or daemon, so it is really very well suited for the CI/CD 

environment. The chapter ends with practical advice on using img to build 

and manage your container images.

Together, these tools demonstrate the diverse approaches available for 

container management beyond Docker, each offering unique advantages 

for specific use cases and environments. Understanding these alternatives 

helps developers and organizations choose the most appropriate tools for 

their containerization needs.

Chapter 8  Exploring Docker Alternatives



173© Ashish Choudhary 2025 
A. Choudhary, When Docker Meets Java, https://doi.org/10.1007/979-8-8688-1300-9_9

CHAPTER 9

Building Native 
Images with GraalVM
Learn about building lightning-fast cloud Java 
applications with GraalVM and Quarkus.

In a cloud-native world, the facility to convert Java applications into 

efficient, lightweight executables has gained much importance. Docker 

containers revolutionized application packaging and deployment but still 

carry the overhead of running a full JVM inside each container, increasing 

memory usage and slowing down startups. This is where GraalVM 

shines as it overcomes these limitations by converting Java bytecode into 

standalone native executables that start almost instantly and consume 

significantly less memory—features especially valuable in microservices 

architectures and serverless environments.

Furthermore, you will learn about: GraalVM Native Images, GraalVM 

native image support in Spring Boot 3, and the Quarkus framework—all 

unique in their approach to optimizing Java applications for modern 

deployment environments.

https://doi.org/10.1007/979-8-8688-1300-9_9#DOI


174

�Demystifying Native Image and GraalVM
GraalVM is an Oracle Labs-developed, high-performance, polyglot 

virtual machine designed to enable multiple programming languages to 

be executed on a single runtime. It was made to make improvements in 

performance while reducing the overhead of conventional JVM-based 

execution.

A native image in the context of Java and GraalVM refers to a 

standalone executable file created from Java bytecode. Before we go 

deeper, let's understand this with a restaurant and kitchen analogy:

•	 Traditional JVM: A fully equipped kitchen with various 

appliances and tools. It can cook any dish but takes 

time to prepare and clean.

•	 Native image: A food truck tailored to a specific cuisine 

type. It's smaller, starts cooking faster, and is more 

efficient, but can’t change its menu easily.

�Native Image Explained

•	 Conversion: Transforms Java bytecode into a platform- 

specific executable.

•	 Components: Includes the application classes, 

dependencies, and statically linked native code 

from JDK.

•	 No JVM required: The JVM is packaged into the 

executable, eliminating the need for a Java Runtime 

Environment on the target system.

Chapter 9  Building Native Images with GraalVM



175

Figure 9-1.  Native image creation steps

�Native Image Benefits

Benefit Description

Instant Startup Native images start faster than traditional JVM-based 

applications.

Reduced Memory 
Footprint

Consumes less memory, enhancing performance, especially 

in constrained environments like containers or serverless.

Lightweight 
Deployment

Ideal for cloud-native applications due to smaller size and 

compatibility with containerization.

�Native Image Drawbacks

Drawback Description

Platform 
Dependency

Each native image is specific to a platform, requiring multiple 

builds for cross-platform compatibility.

Limited Java 
Features

Some dynamic features of Java, like reflection, may not be fully 

supported or require additional configuration.

Complex 
Debugging

Debugging native images can be more challenging than traditional 

Java applications.

Chapter 9  Building Native Images with GraalVM



176

�Differences Between Docker 
and Native Image
Native images and Docker images serve different purposes and operate at 

different levels in the software deployment process:

Term Scope Purpose Use Case

Native 
Image

Specific to a compiled 

executable from Java code 

using tools like GraalVM.

Create a platform- 

specific, standalone 

executable with 

necessary Java classes 

and a reduced JVM.

Optimizes Java 

applications for 

faster startup and 

lower memory 

footprint.

Docker 
Image

A lightweight, standalone, 

executable package 

that includes everything 

needed to run software, 

including code, runtime, 

system tools, libraries, and 

settings.

Ensures consistent 

environments and 

portability across 

different systems.

Used for 

containerizing 

applications to run 

them in isolated 

environments.

A native image focuses on optimizing a specific Java application, while 

a Docker image is about packaging and running software consistently 

in various environments. A native image can be part of a Docker image, 

but they are fundamentally different in their core functionalities and 

objectives.

�Understanding GraalVM
GraalVM is a high-performance polyglot virtual machine developed by Oracle. 

It enhances the capabilities of the standard Java Virtual Machine (JVM) by 

offering the following features:

Chapter 9  Building Native Images with GraalVM



177

	 1.	 Support for multiple languages: Apart from Java, 

it can run applications written in JavaScript, Ruby, 

Python, and other JVM languages.

	 2.	 Just-in-time compiler (JIT): Improves the 

performance of Java applications by compiling 

bytecode to machine code at runtime.

	 3.	 Ahead-of-time compiler (AOT): Through 

the Native Image technology, it compiles Java 

applications into standalone executables, which 

start faster and require less memory.

	 4.	 Interoperability: Enables seamless integration 

between different programming languages.

	 5.	 Extension and customization: Developers 

can extend and customize the VM for specific 

requirements.

�JIT vs. AOT Compiler

Feature JIT AOT

Timing Compiles code during runtime. Compiles code before runtime, 

during the build process.

Operation Translates bytecode into 

machine code when a program 

is running.

Produces a binary executable 

specific to a platform.

Performance Optimizes code based on 

runtime data, potentially 

achieving high performance.

Faster startup times as code is 

pre-compiled, but lacks runtime 

optimization.

(continued)

Chapter 9  Building Native Images with GraalVM



178

(continued)

Feature JIT AOT

Flexibility More adaptable since it 

compiles code as needed.

Less flexible, as it's compiled 

for specific architectures or 

platforms.

Memory 
usage

Can increase memory usage 

and startup time due to runtime 

compilation.

Generally has a smaller memory 

footprint and reduces runtime 

overhead.

�JVM vs. GraalVM

Feature JVM GraalVM

Language 
support

Primarily supports Java and 

JVM-based languages like 

Scala or Kotlin.

Supports additional languages 

like JavaScript, Ruby, Python, and 

R, making it a polyglot VM.

Performance 
optimization

Uses just-in-time (JIT) 

compilation to optimize 

bytecode at runtime.

Includes an advanced JIT 

compiler (Graal Compiler) for 

more efficient performance 

optimizations.

Ahead-Of-Time 
compilation

Doesn't natively support AOT 

compilation.

Offers Native Image technology 

for AOT compilation, creating 

standalone executables from 

Java applications.

Interoperability Limited to JVM-based 

language interoperability.

Enhanced interoperability 

features, allowing for mixed- 

language applications.

Chapter 9  Building Native Images with GraalVM



179

Feature JVM GraalVM

Code 
elimination

No exclusion of unreachable 

code from final executable.

Unreachable code at the time of 

native image creation is excluded 

from the final executable.

Immutable 
classpath

In traditional JVM 

applications, the classpath 

can be modified dynamically, 

allowing the addition or 

modification of where the 

JVM searches for classes and 

resources.

The classpath is fixed at the time 

of building and cannot be altered.

Dynamic code 
awareness

JVM has ability to adapt 

to dynamic code changes, 

including loading classes 

that were unknown at 

compile time, is one of its 

core strengths, allowing for 

flexible and dynamic Java 

applications.

GraalVM requires explicit 

instructions about dynamic 

code aspects such as reflection, 

resources, serialization, and 

dynamic proxies.

GraalVM's ability to support multiple languages and improve 

application performance makes it a versatile tool for modern software 

development.

�Spring Boot 3 and GraalVM
GraalVM is a version of OpenJDK enhanced with additional features, 

including the “native-image” utility. This utility performs ahead-of-time (AOT) 

compilation, efficiently processing your code to eliminate unneeded parts 

Chapter 9  Building Native Images with GraalVM



180

and then converting the remainder into highly optimized, system-specific 

native code. The performance improvements are remarkable, akin to those 

seen in C or Go applications. It results in binaries that start almost instantly 

and require significantly less RAM. With this technology, deploying a 

Spring Boot application can consume tens of megabytes of RAM and start 

in just a few hundred milliseconds.

To leverage this, use ./gradlew nativeCompile or ./mvnw -Pnative 
native:compile. Both commands are used when creating native images in 

the context of GraalVM—a virtual machine that enables just-in-time (JIT) 

compilation of Java applications to platform-dependent executables, thus 

reducing startup time and memory usage.

Spring Boot has officially supported this feature for production use 

since the release of Spring Boot 3.0 in November 2022.

�Building Native Images with Spring Boot
To initiate a new native Spring Boot project with ease, navigate to  start.

spring.io , select the GraalVM Native Support dependency, and proceed 

to generate your project.

Figure 9-2.  Adding GraalVM dependency

There are two main ways to build a Spring Boot native image 

application, and they are:

Using Spring Boot support for cloud-native buildpacks: This method 

generates a lightweight container containing a native executable.

Chapter 9  Building Native Images with GraalVM

https://start.spring.io
https://start.spring.io


181

This method is the most straightforward starting point for those 

familiar with Spring Boot's container image support.

Note D ocker installation on the target machine is required.

With Maven to create the image, run the following goal:

$ mvn -Pnative spring-boot:build-image

With Gradle to create the image, run the following goal:

$ gradle bootBuildImage

Then, you can run the app like any other container:

$ docker run --rm demo:0.0.1-SNAPSHOT

Using GraalVM native build tools: This approach generates a native 

executable directly. Opt for this choice if you're interested in broader 

capabilities, such as conducting tests within a native image environment. 

It's essential to have the GraalVM native-image compiler installed and 

ready on your system for this option.

Note G raalVM 22.3+ is required.

With Maven to create the executable, run the following goal:

$ mvn -Pnative native:compile

With Gradle to create the executable, run the following goal:

$ gradle nativeCompile

For executing a Maven-built native image, use this command:

$ target/demo

Chapter 9  Building Native Images with GraalVM



182

For executing a Gradle-built native image, use this command:

$ build/native/nativeCompile/myproject

These methods offer different advantages and can be chosen based on 

the specific needs and environment of the application.

Here is a diagram explaining the build process using both methods for 

building native images with Spring Boot.

Figure 9-3.  Spring Boot GraalVM build process

�Testing GraalVM Native Image for Spring 
Boot Application
In the realm of GraalVM native image applications, it's recommended 

to run most unit and integration tests on the JVM for efficiency and 

seamless IDE integration. Testing focuses on ensuring the Spring AOT 

engine processes the application correctly and GraalVM can produce a 

valid native image. Developers can test AOT processing using the JVM by 

enabling the spring.aot.enabled property.

$ java -Dspring.aot.enabled=true -jar myapplication.jar

Chapter 9  Building Native Images with GraalVM



183

Additionally, Spring Framework supports running tests in a native 

image environment, a feature particularly useful in CI pipelines. This 

approach requires setting up specific Maven or Gradle configurations and 

using relevant build tools.

When setting up Maven for running native tests, make sure your pom.
xml file is configured with spring-boot-starter-parent as the parent. 

This requires including a <parent> section in your pom.xml that aligns with 

this specification.

<parent>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-parent</artifactId>
    <version>3.2.0</version>
</parent>

You can also run your existing test suite in a native image. This is an 

efficient way to validate the compatibility of your application.

To run your existing tests in a native image, run the following goal:

$ mvn test -PnativeTest

When using the Spring Boot Gradle plugin along with the GraalVM 

Native Image plugin, AOT test tasks are set up automatically. It's important 

to ensure your Gradle build script includes a plugins block that contains 

org.graalvm.buildtools.native.

For executing native tests using Gradle, you should utilize the 

nativeTest task.

$ gradle nativeTest

Chapter 9  Building Native Images with GraalVM



184

�Understanding Quarkus a Kubernetes 
Native Java Framework
In the ever-evolving world of software development, efficiency and 

speed are paramount. Quarkus, a Kubernetes-native Java framework, is 

revolutionizing the way Java applications are developed and deployed 

in cloud environments. This section will introduce you to the basics of 

Quarkus and why it's becoming a game-changer for Java developers.

�Knowing Quarkus
Quarkus is an open source Java framework designed for Kubernetes, the 

widely used container orchestration platform. It optimizes Java specifically 

for containers, enabling it to become an effective platform for serverless, 

cloud, and Kubernetes environments.

�Key Features of Quarkus

•	 Container first: Quarkus is built with container-based 

environments in mind, ensuring low memory footprint 

and fast startup times.

•	 Imperative and reactive: It seamlessly supports both 

imperative and reactive programming models, catering 

to a wide range of application architectures.

•	 Microservices ready: With built-in support for 

microservices patterns, Quarkus is ideal for building 

scalable and maintainable applications.

•	 Developer joy: Offers live coding, unified 

configuration, and streamlined code for both 

imperative and reactive coding.

Chapter 9  Building Native Images with GraalVM



185

�Need for Quarkus with Kubernetes

•	 Fast startup and low memory footprint: Quarkus 

applications start in milliseconds and consume a 

fraction of the memory compared to traditional Java 

applications. This is crucial for Kubernetes, where 

resources are scaled up and down frequently.

•	 Developer productivity: Quarkus enhances developer 

productivity with hot-reload capabilities, meaning you 

can see changes in real time without restarting your 

application.

•	 Native compilation with GraalVM: Quarkus 

can be compiled into a native executable using 

GraalVM, further reducing the memory footprint and 

startup time.

•	 Cloud-native ecosystem integration: It integrates 

smoothly with Kubernetes, Docker, and cloud-native 

databases and messaging systems.

�Getting Started with Quarkus
The easiest way to get started with Quarkus is to use code.quarkus.
io which is an online platform provided by the Quarkus team that 

significantly simplifies the process of creating a new Quarkus project. It's 

designed to be user-friendly and efficient, especially helpful for beginners 

or those looking to quickly bootstrap a new Quarkus-based application.

Here's an overview of what code.quarkus.io offers:

•	 User-friendly interface: The website has an intuitive 

interface that makes it easy to create and configure a 

Quarkus project without writing any boilerplate code.

Chapter 9  Building Native Images with GraalVM



186

•	 Customizable project setup: You can customize 

various aspects of your project, such as the Maven 

Group, Artifact, and Version. You can also choose the 

build tool (Maven or Gradle).

•	 Extensions selection: One of the most powerful 

features code.quarkus.io offered is the ability to 

browse and select from a wide range of Quarkus 

extensions. Extensions are add-ons or libraries 

that integrate with Quarkus to provide additional 

functionality, like database connectivity, security, 

messaging, and more.

•	 Streamlined dependencies management: It 

automatically manages dependencies for the selected 

extensions, ensuring compatibility and reducing the 

hassle of manual dependency management.

•	 Download or share your project: After configuring 

your project, you can either download it as a ZIP file or 

share it with others using a generated URL. This feature 

is particularly useful for collaboration or for saving 

project configurations for future use.

•	 Code generation: The platform generates some basic 

code and configuration files based on your selections, 

helping you jump-start development.

Steps to create your first project.

•	 Access the platform: Visit code.quarkus.io in your 

web browser.

•	 Configure your project: Input your project's groupId, 

artifactId, and version. Select your preferred build tool.

Chapter 9  Building Native Images with GraalVM



187

•	 Select extensions: Browse through the list of available 

extensions. You can search for specific extensions or 

filter them by category.

•	 Generate your project: Once you've made your 

selections, click on the "Generate your application" 

button. This will create a customized Quarkus project.

•	 Download/share: You can then download the 

generated project as a ZIP file or copy the URL to share 

with others.

•	 Start coding: Unzip the downloaded file and open it in 

your favorite IDE or editor to start coding.

Figure 9-4.  Quarkus project onboarding

Quarkus marks a significant shift in the Java ecosystem, bringing Java 

squarely into the modern cloud-native era. It's not just about running Java 

in Kubernetes; it's about making Java a first-class citizen in this landscape. 

With its unparalleled efficiency and developer-focused design, Quarkus is 

undoubtedly a framework worth exploring for any Java developer looking 

to step into the world of Kubernetes and cloud-native development.

Chapter 9  Building Native Images with GraalVM



188

�Building and Deploying Quarkus Application 
on Kubernetes
In the world of cloud-native development, Kubernetes has emerged as the 

de facto standard for orchestrating containerized applications. Quarkus, 

known as "Supersonic Subatomic Java," is a Kubernetes-native Java 

framework tailored for GraalVM and HotSpot. This section will guide you 

through the process of building and deploying a Quarkus application on 

Kubernetes.

�Up and Running with Quarkus
Step 1: We can start by generating a new Quarkus project. We can use 

code.quarkus.io to set up the project with the desired extensions, or use 

Maven/Gradle directly:

mvn io.quarkus.platform:quarkus-maven-plugin:3.6.4:create \
    -DprojectGroupId=org.acme \
    -DprojectArtifactId=kubernetes-quickstart \
    -Dextensions='resteasy-reactive,kubernetes,jib'
cd kubernetes-quickstart

This will create a new project containing the Kubernetes and Jib 

extensions. Furthermore, the following dependencies are added to our 

pom.xml file.

<dependency>
    <groupId>io.quarkus</groupId>
    <artifactId>quarkus-resteasy-reactive</artifactId>
</dependency>

Chapter 9  Building Native Images with GraalVM



189

<dependency>
    <groupId>io.quarkus</groupId>
    <artifactId>quarkus-kubernetes</artifactId>
</dependency>
<dependency>
    <groupId>io.quarkus</groupId>
    <artifactId>quarkus-container-image-jib</artifactId>
</dependency>

By incorporating these dependencies, we facilitate the automatic 

creation of Kubernetes manifests with each build and simultaneously 

enable container image building using Jib. For instance, after executing the 

following:

./mvnw install

Among the various generated files, we will observe two specific 

files—kubernetes.json and kubernetes.yml—located in the target/
kubernetes/ directory. When examining either of these files, it becomes 

apparent that they include definitions for a Kubernetes Deployment as well 

as a Service.

Chapter 9  Building Native Images with GraalVM



190

Figure 9-5.  Quarkus application deployment flow

Chapter 9  Building Native Images with GraalVM



191

Just to reiterate, Quarkus offers the ability to automatically generate 

Kubernetes resources based on sane defaults and user-supplied 

configuration using  dekorate .

Furthermore, Quarkus can deploy the application to a target 

Kubernetes cluster by applying the generated manifests to the target 

cluster’s API Server.

kubectl apply -f target/kubernetes/kubernetes.json

Finally, when either one of the container image extensions is present, 

Quarkus can create a container image and push it to a registry before 

deploying the application to the target platform.

�Summary
The chapter gave a detailed overview of how to build native images with 

GraalVM and integrate them with popular frameworks like Spring Boot. 

Although GraalVM native images have significant advantages, such as 

faster startup times and lower memory footprint, some limitations limit 

support of Java's dynamic features such as reflection.

Then, the discussion moves on to Spring Boot 3 native support which 

offers two main ways of building native images: Cloud Native Buildpacks 

and GraalVM Native Build Tools.

Last but not least, it covers Quarkus, a Kubernetes-native Java 

framework built from the ground up for container environments, focusing 

on its features like live coding and support for imperative and reactive 

programming. Throughout the chapter, the focus remains on how these 

technologies are transforming Java applications to meet the demands 

of modern cloud-native architectures, particularly in containerized and 

Kubernetes.

Chapter 9  Building Native Images with GraalVM

https://dekorate.io/


193© Ashish Choudhary 2025 
A. Choudhary, When Docker Meets Java, https://doi.org/10.1007/979-8-8688-1300-9_10

CHAPTER 10

Testing Java 
Applications Using 
Testcontainers
Explore the practical approach to building production- 
like test environments for Dockerized applications using 
Testcontainers

In a moving landscape of software development, comprehensive testing is 

very critical to the reliability and robustness of any application. While unit 

testing gives insight into individual components, integration testing poses 

some unique challenges, especially when it comes to dependencies such 

as databases and services.

Testcontainers is a strong solution to these challenges, offering a Java 

library that leverages Docker containers to create lightweight, disposable 

instances of databases, web browsers, and other services essential for 

integration testing. This chapter shows how Testcontainers simplifies the 

testing process—specifically, Spring Boot applications—by providing a 

consistent, isolated testing environment that closely mimics production 

scenarios.

https://doi.org/10.1007/979-8-8688-1300-9_10#DOI


194

�Introduction to Testcontainers
In software development, integration testing is crucial in ensuring that 

different parts of an application work together seamlessly. This is where 

Testcontainers, a Java library, steps in. Testcontainers provides lightweight, 

throwaway instances of common databases, Selenium web browsers, or 

anything else that can run in a Docker container.

The library is designed to support our automated integration tests, 

providing a higher level of confidence before moving to production. Using 

Docker containers, Testcontainers ensure that the application behaves as 

expected in an environment that closely mimics production.

�Need for Testcontainers
Testcontainers is an open source framework for providing throwaway, 

lightweight instances of databases, message brokers, web browsers, or 

anything that can run in a Docker container.

Think of Testcontainers as a toy box for our computer programs. 

When we are playing with toy blocks, we might want to see how they all 

fit together to create a toy bridge. But we can’t complete our toy bridge 

without missing blocks. Testcontainers allow our program to borrow 

any blocks we might be missing, like a unique block, so we can see if our 

creation works with those pieces too. Like we would test if our toy bridge 

holds up when cars drive over it, Testcontainers lets our program check 

if it works well with real pieces, not just pretend ones. And for programs 

written with Spring Boot, it’s like getting the best toy blocks that fit 

perfectly right out of the box.

With Testcontainers, integration testing becomes more realistic. It 

allows us to conduct tests using the real versions of our application’s 

databases and services, following the true behaviors our code is supposed 

to perform, instead of using stand-ins that might oversimplify or skip over 

important details.

Chapter 10  Testing Java Applications Using Testcontainers



195

Figure 10-1.  Testcontainers logo

Testcontainers are needed for several reasons in the context of 

integration testing:

•	 Environment parity: It provides a way to run tests 

against real services and databases, ensuring that the 

test environment closely mirrors production.

•	 Ease of use: Testcontainers manage the life cycle of 

containers used in testing, simplifying the setup and 

teardown process.

•	 Portability: Tests using Testcontainers can be run 

on any system where Docker is available without 

additional service configuration.

•	 Continuous integration (CI) friendly: Testcontainers 

are ideal for CI pipelines as they allow tests to run in 

isolation and in a repeatable manner.

•	 Flexibility: Developers can quickly test against 

different database and service versions by changing 

container versions.

•	 Resource efficiency: Containers can be started and 

stopped quickly on-demand, which is more efficient 

than managing dedicated test databases and services.

Chapter 10  Testing Java Applications Using Testcontainers



196

�Testcontainers Features
These features make Testcontainers a powerful ally for developers looking 

to ensure their applications will work as expected when deployed in a real- 

world environment​:

•	 Diverse container support: Offers lightweight, 

throwaway instances for various services, including 

databases, web browsers, and message brokers.

•	 JUnit integration: Seamlessly integrates with JUnit 

test cases.

•	 Singleton containers: Supports singleton containers 

that can be shared across multiple test classes.

•	 Custom containers: Allows the use of custom 

Docker images.

•	 Database integration: Direct support for popular 

databases with preconfigured JDBC URLs.

•	 Mocking external services: Facilitates testing 

applications that interact with third-party services by 

mocking those services in Docker containers.

•	 Environment replication: Provides a consistent 

environment replicating production settings, reducing 

"works on my machine" problems.

•	 Resource management: Handles the starting and 

stopping of containers, ensuring no wasted resources.

•	 Service health checking: Waits for containers to 

become healthy before proceeding with the tests.

•	 Reusable containers: Optimizes test runs by reusing 

containers between test runs when possible.

Chapter 10  Testing Java Applications Using Testcontainers



197

•	 Log collection: Allows collection and observation of 

container logs, which is helpful for debugging.

•	 Life cycle control: Gives developers control over 

container life cycle events within the test code.

�Testing Spring Boot Applications
Unit and integration testing in Spring Boot applications guarantee the 

quality and reliability of the software. Focusing on individual components, 

unit testing enables early bug detection, which makes a huge difference 

in reducing rectification costs and complexity during later development 

stages. Such tests also act as documentation, showing how to use the code. 

This will even provide a safety net during refactoring, guaranteeing that 

updates or changes don’t break existing functionality.

Integration testing, on the other hand, is necessary for ensuring that 

different components interact perfectly, thereby guaranteeing a cohesive 

working system. This also includes simulating the different environments, 

such as databases and web servers, to ensure the application performs well 

in real-world conditions. Unit and integration testing thus go a long way in 

ensuring the maintainability, robustness, and general reliability of Spring 

Boot applications.

Testing Spring Boot applications typically involves several layers of 

testing:

•	 Unit testing: Testing individual components in 

isolation using frameworks like JUnit and Mockito. 

Spring Boot’s @SpringBootTest annotation can be 

used for more integration-style unit tests where Spring 

context is loaded.

Chapter 10  Testing Java Applications Using Testcontainers



198

•	 Integration testing: Testing the interaction between 

different layers of the application. This can involve 

using @DataJpaTest for repository layers,  

@WebMvcTest for controllers, and @SpringBootTest with 

TestRestTemplate or MockMvc for full context loading.

•	 End-to-end testing: Testing the entire application, 

often with @SpringBootTest to run the application and 

tools like Selenium for web UI testing.

•	 Testcontainers: For integration tests that require 

real services like databases or message brokers, 

Testcontainers provide a way to run these services in 

Docker containers during testing.

Each testing layer serves a different purpose, from quick unit tests to 

thorough end-to-end tests, ensuring that your Spring Boot application is 

robust and ready for production.

�Unit Testing of Spring Boot Application
Let’s say we have a simple EmployeeService class that we want to test:

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
@Service
public class EmployeeService {
    private final EmployeeRepository employeeRepository;
    @Autowired
    �public EmployeeService(EmployeeRepository 

employeeRepository) {
        this.employeeRepository = employeeRepository;
    }

Chapter 10  Testing Java Applications Using Testcontainers



199

    public Employee addEmployee(Employee employee) {
        return employeeRepository.save(employee);
    }
}

The addEmployee method is a simple example that adds a new 

employee to the repository. We can expand this class with additional 

methods to handle other CRUD operations.

This EmployeeService class relies on EmployeeRepository to handle 

data operations.

import org.springframework.data.repository.CrudRepository;
import org.springframework.stereotype.Repository;
@Repository
public interface EmployeeRepository extends 
CrudRepository<Employee, Long> {
}

This repository interface provides basic CRUD operations for your 

Employee entity. You can extend it with custom query methods as needed.

In the following example, Employee is your entity class, and Long is the 

type of the entity’s primary key. Here @RedisHash("Employee") annotation 

indicates that instances of Employee entity will be stored in Redis. The @Id 

annotation marks the field to be used as the identifier in Redis. The name 

and position fields are simple properties of the Employee entity.

import org.springframework.data.annotation.Id;
import org.springframework.data.redis.core.RedisHash;
@RedisHash("Employee")
public record Employee(@Id Long id, String name, String 
position) {}

Chapter 10  Testing Java Applications Using Testcontainers



200

Java records automatically generate getters, equals(), hashCode(), 

and toString() methods, making them a perfect fit for simple data carrier 

classes like entities. Note that records are immutable, so every field is final.

In the following unit test, we are trying to mock the interaction 

with EmployeeRepository. Here’s how you might write a unit test for 

EmployeeService using JUnit and Mockito:

Mockito is a popular Java testing framework that allows the creation of 

mock objects, simulating and verifying method invocations in unit tests.

public class EmployeeServiceTest {
    private EmployeeService employeeService;
    private EmployeeRepository mockRepository;
    @BeforeEach
    void setUp() {
        �mockRepository = Mockito.

mock(EmployeeRepository.class);
        employeeService = new EmployeeService(mockRepository);
    }
    @Test
    void testAddEmployee() {
        �Employee employee = new Employee("John Doe", 

"Developer");
        �Mockito.when(mockRepository.save(employee)).

thenReturn(employee);
        �Employee result = employeeService.

addEmployee(employee);
        assertEquals(employee.getName(), result.getName());
    }
}

Chapter 10  Testing Java Applications Using Testcontainers



201

�Integration Testing of Spring 
Boot Application
Now, let’s consider a scenario where we want to test an 

EmployeeRepository that interacts with a Redis database, but without 

using Testcontainers. This typically involves more manual setup and can 

be complex.

First, you’ll need a running instance of Redis. This could be on your 

local machine, a Docker container started manually, or a managed service. 

Assuming we have a Redis instance running on localhost at the default 

port 6379, here’s how the test might look:

@SpringBootTest
public class EmployeeRepositoryIntegrationTest {
    @Autowired
    private EmployeeRepository employeeRepository;
    @Test
    public void testEmployeeRepository() {
        �Employee employee = new Employee("John Doe", 

"Developer");
        employeeRepository.save(employee);
        �Optional<Employee> employee = employeeRepository.

findById(employee.getId());
        assertTrue(employee.isPresent());
        �assertEquals(employee.getName(), employee.get().

getName());
    }
}
application-test.properties:
spring.redis.host=localhost
spring.redis.port=6379

Chapter 10  Testing Java Applications Using Testcontainers



202

The application-test.properties file in a Spring Boot application is 

used to define properties specifically for testing environments. When you 

run tests, Spring Boot can be configured to use these properties instead 

of the regular application.properties or application.yml. This allows 

for setting up different configurations for testing, such as connecting to a 

different database or using different application settings.

Adopting this manual approach to integration testing will introduce 

several complexities:

•	 This integration test assumes Redis is already running 

and accessible.

•	 We need to manually ensure that Redis is in a clean 

state before and after tests.

•	 Handling different environments (CI server, 

local development) can be challenging without 

Testcontainers.

•	 This approach lacks the isolation and environment 

parity provided by Testcontainers, potentially leading 

to flaky tests.

This example illustrates the additional complexity and manual 

intervention required when not using a tool like Testcontainers, which 

automates these aspects.

�Spring Boot and Testcontainers
The integration of Testcontainers with Spring Boot is quite a potent way 

to facilitate comprehensive application testing, mainly when it comes to 

interactions with external systems or databases. This integration allows 

creating and managing containers dynamically during your tests while 

providing an isolated environment similar to your production setup.

Chapter 10  Testing Java Applications Using Testcontainers



203

Testcontainers integrates with JUnit, allowing us to define a test class 

that will start a container before the execution of any test. It is easy to use 

for integration tests communicating with backend services like MySQL, 

MongoDB, Redis, and so on.

Figure 10-2.  Testcontainers integration test

Here’s how we can utilize Testcontainers in a Spring Boot test.

�Dependencies Setup
First, make sure the required dependencies are included in our Maven or 

Gradle setup is crucial:

For Maven:

<dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-testcontainers</artifactId>
            <scope>test</scope>

Chapter 10  Testing Java Applications Using Testcontainers



204

        </dependency>
        <dependency>
            <groupId>org.testcontainers</groupId>
            <artifactId>junit-jupiter</artifactId>
            <scope>test</scope>
</dependency>

For Gradle:

dependencies {
    �testImplementation 'org.springframework.boot:spring-boot- 

starter-test'
    �testImplementation 'org.springframework.boot:spring-boot- 

testcontainers'
    testImplementation 'org.testcontainers:junit-jupiter'
}

Alternatively, we can add dependencies using start.spring.io.

Figure 10-3.  Adding Testcontainers dependency

�Annotate Test Classes
Annotate your test classes with @SpringBootTest to enable Spring Boot 

context loading for tests and @Testcontainers to activate Testcontainers 

support.

Chapter 10  Testing Java Applications Using Testcontainers

https://start.spring.io


205

@Testcontainers
@SpringBootTest
class DemoApplicationTests {
}

�Container Initialization
Create container instances in your test classes using Testcontainers’ 

utilities. For example, if you want to spin up an in-memory Redis cache 

instance:

@Testcontainers
@SpringBootTest
class DemoApplicationTests {
    @Container
    @ServiceConnection
    �static RedisContainer container = new 

RedisContainer(RedisContainer.DEFAULT_IMAGE_NAME);
    @Test
    void myTest() {
        System.out.println(container.isRunning());
        System.out.println(container.getRedisURI());
    }
}

This code snippet demonstrates the integration of Testcontainers with 

Spring Boot, showcasing how to use a Redis container in a test scenario. 

Here’s a breakdown of what each part of the code does:

•	 @Testcontainers: This annotation indicates that this 

test class will utilize Testcontainers. It allows us to 

manage the lifecycle of containers used within the 

test class.

Chapter 10  Testing Java Applications Using Testcontainers



206

•	 @SpringBootTest: Indicates that this is a Spring Boot 

test. It loads the complete application context and 

allows integration testing with Spring components.

•	 @Container: This annotation marks a field as 

a container Testcontainers manages. In this 

case, it declares a static field container of type 

RedisContainer. The RedisContainer is instantiated 

with the default Redis image name (RedisContainer.
DEFAULT_IMAGE_NAME), which is pulled from the 

DockerHub Registry.

•	 @ServiceConncetion: Facilitates SpringBoot’s 

autoconfiguration to dynamically enlist all the required 

properties. In the background, this annotation 

identifies the necessary properties from the container 

class or the Docker image name.

•	 myTest(): This is a test method annotated with @Test. 

Inside this method:

•	 container.isRunning() Prints whether the Redis 

container is running or not.

•	 container.getRedisURI() Retrieves and prints the 

URI of the running Redis container.

This code sets up a test class that utilizes Testcontainers to manage a 

Redis container. It demonstrates basic functionalities like checking if the 

container is running and retrieving its URI. This allows for integration 

testing, ensuring the application works correctly with a Redis instance 

managed by Testcontainers.

Here’s how we can modify our previous example where we created a 

Redis cluster manually to use RedisContainer—a specialized container 

class for Redis (from testcontainers-java library).

Chapter 10  Testing Java Applications Using Testcontainers



207

@SpringBootTest
@Testcontainers
public class EmployeeRepositoryIntegrationTest {
    @Container
    @ServiceConnection
    �static RedisContainer redis = new 

RedisContainer(DockerImageName.parse("redis:latest"));
    @Autowired
    private EmployeeRepository employeeRepository;
    @Test
    public void testEmployeeRepository() {
        �Employee employee = new Employee(1L, "John Doe", 

"Developer");
        employeeRepository.save(employee);
        �Optional<Employee> foundEmployee = employeeRepository.

findById(employee.getId());
        �assertTrue(foundEmployee.isPresent(), "Employee should 

be found");
        �assertEquals(employee.getName(), foundEmployee.get().

getName(), "Employee names should match");
    }
}

This approach has several advantages:

•	 Testcontainers will automatically start a Redis 

container.

•	 No need for application-test.properties for 

containerized Redis instance.

•	 There is no need for a local Redis installation.

•	 You get a consistent and isolated test environment.

Chapter 10  Testing Java Applications Using Testcontainers



208

•	 Testcontainers automatically cleanups resources.

•	 Test suite works the same way in any environment 

(local, CI).

�Summary
This chapter covers the basics of Testcontainers and using it with Java, with 

the focus on Spring Boot integration testing. It first explains what are the 

core concepts behind Testcontainers, its necessity, and its major features: 

support for diverse containers, integration with JUnit, and automatic 

resource management. Then, it goes into the implementation details, 

focusing on testing strategies for Spring Boot applications at unit and 

integration levels.

This chapter provides practical examples of setting up and using 

Testcontainers and demonstrates integration with Redis containers by 

detailing the required configuration steps. The main emphasis throughout 

the chapter is on the advantages of the Testcontainers way of doing 

things compared to traditional ways of testing—namely, in obtaining 

environment parity, portability, and efficient resource utilization. Practical 

implementation guidelines are also covered, such as dependency setup 

and proper annotation usage, to provide a complete understanding for 

developers on how to harness Testcontainers to have more reliable and 

maintainable integration tests.

Chapter 10  Testing Java Applications Using Testcontainers



209© Ashish Choudhary 2025 
A. Choudhary, When Docker Meets Java, https://doi.org/10.1007/979-8-8688-1300-9_11

CHAPTER 11

Docker Best Practices 
for Java Developers
Mastering Docker best practices and strategies for Java 
applications

Docker has become integral to modern Java development, providing 

consistent, portable, and efficient ways to package and deploy 

applications. Mastering the best practices involved in Docker is important 

for creating optimized, secure, and production-ready containerized 

applications for Java developers. This chapter shows how to use Docker 

effectively with Java applications, detailing techniques and strategies 

in important areas impacting container performance, security, and 

efficiency.

The practices discussed in this chapter address the common 

challenges that Java developers face when containerizing their 

applications, from managing build processes and runtime environments 

to optimizing resource usage and ensuring security. Best practices brought 

out from real-world experience and industry standards provide a strong 

foundation for the development of containerized Java applications that are 

both robust and maintainable.

https://doi.org/10.1007/979-8-8688-1300-9_11#DOI


210

�Implementing Multistage Builds
Multistage build in Docker is a powerful technique that allows developers 

to create lean and secure images using multiple stages in one Dockerfile, 

each with its base image. We can significantly reduce the size of the final 

image and minimize its attack surface, making it more secure.

�Understanding Multistage Builds
Separate build stages: A multistage Dockerfile is divided into multiple 

sections, each beginning with a FROM statement. These sections are called 

stages. We can have as many stages as we need, and each stage can use a 

different base image.

Building in layers: Each stage is built upon the layers from the 

previous stages. It means we can compile or build our application in an 

earlier stage using a base image that includes all our build dependencies 

and then copy only the artifacts we need into a later stage with a slimmer 

base image.

Artifact transfer between stages: We can copy artifacts from one stage 

to another using the COPY --from=<stage> command. It is typically used 

to move the compiled application from a build stage to a smaller run- 

time stage.

Discarding intermediate layers: Once the final image is built, all 

the intermediate layers created in the previous stages are discarded. This 

results in a much smaller final image containing what’s needed to run the 

application.

Reducing image size and security footprint: Compiling and building 

the application in an initial stage and copying only the necessary artifacts 

to the final stage minimizes the size of the final image. Smaller images 

contain fewer components, translating to fewer potential vulnerabilities 

and a smaller attack surface.

Chapter 11  Docker Best Practices for Java Developers



211

�Creating a Basic Multistage Build Dockerfile
Start with a build stage: Use a base image maven:3.6.3-jdk-11 or another 

that suits our Java project. Add source code and any required build tools.

Compile the java code: Execute the build commands (mvn clean 
package, for instance) to compile the Java application.

Setup the runtime stage: Use a lighter base image openjdk:11- 
jre-slim for the runtime. Copy the compiled JAR or classes from the 

build stage.

Copying the compiled code to the runtime stage: Use the  

COPY --from=build_stage /path/to/compiled/artifact /path/in/
runtime/image command to copy the necessary files.

�Best Practices
Tips on organizing stages: Name each stage for clarity (e.g., FROM 
maven:3.6.3-jdk-11 as builder). Keep the build stage clean and focus 

only on what’s necessary to compile the code.

Minimizing layers and cache usage: Minimize the number of layers 

by combining commands where possible. Leverage Docker’s build cache 

by organizing commands of least to most likely to change.

�Example
Stage 1. Build: Using Maven image, add source code, and run mvn 
package.

Stage 2. Runtime: Using the JRE image, copy the JAR file from the 

build stage.

Chapter 11  Docker Best Practices for Java Developers



212

Dockerfile structure:

# Build stage
FROM maven:3.6.3-jdk-11 as builder
WORKDIR /app
COPY . .
RUN mvn clean package
# Runtime stage
FROM openjdk:11-jre-slim
COPY --from=builder /app/target/myapp.jar /usr/local/lib/
myapp.jar
ENTRYPOINT ["java","-jar","/usr/local/lib/myapp.jar"]

Multistage builds are crucial for building light and secure Docker 

images for Java applications. Separation of the build and runtime 

environments can greatly reduce the size of the final image and minimize 

the security vulnerabilities that come with large and bloated images. 

That is a technique any serious Java developer should find invaluable in 

using Docker.

�Creating Slimmer Container Images 
with Java Jlink
jlink, which was introduced in Java 9 as part of the Java Platform Module 

System, is a tool that allows users to create a custom Java runtime image 

containing only modules relevant to a particular application. Tailoring the 

runtime environment allows users to realize various important benefits, 

especially in terms of deployment in constrained environments, such as in 

containers.

Chapter 11  Docker Best Practices for Java Developers



213

�Key Features and Benefits of jlink

•	 Custom runtime images: You can build a smaller, 

optimized Java runtime specifically to your application, 

including just the modules necessary and reducing 

runtime size as opposed to that of a normal Java 

Runtime Environment.

•	 Performance optimization: Application startup can be 

faster and reduce the number of system resources used; 

this is valuable in a cloud and microservices setup.

•	 Enhanced security: You reduce the surface area for 

security vulnerabilities by including only the modules 

that are required. Fewer modules mean fewer potential 

points of attack.

•	 Modularization: jlink works with the module system 

introduced in Java 9. This system allows for better 

encapsulation and more organized dependency 

management in Java applications.

�Knowing jlink

•	 Modules identification: jlink works in terms of 

modules. Identify which modules are needed for your 

application. Analyze dependencies using tools such 

as jdeps.

Chapter 11  Docker Best Practices for Java Developers



214

•	 Custom runtime creation: Now, once you have 

identified which modules are needed, you create a 

runtime image by including those modules using the 

jlink command. That’s a self-contained environment 

for running your application; no other installation of 

Java is needed to run it.

•	 Command line usage: jlink is used via the command 

line, where you specify the modules to include and 

other options, such as compression level or the output 

directory.

The following command creates a custom Java runtime image that 

includes only the specified Java platform modules and our modules, which 

is ideal for making small and efficient runtime environments for our Java 

applications.

jlink --module-path $JAVA_HOME/jmods:path/to/your/modules  
--add-modules com.example.yourmodule --output path/to/output/
directory

In this command:

•	 --module-path: This option specifies the module 

path. The module path is a list of directories that jlink 

searches for module definitions. In this command, 

$JAVA_HOME/jmods the path to the jmods directory is in 

the Java home directory. The jmods directory contains 

Chapter 11  Docker Best Practices for Java Developers



215

definitions for the Java platform modules. And path/
to/your/modules path would replace this with the 

path to any additional modules we want to include in 

our runtime image that isn’t part of the standard Java 

distribution.

•	 --add-modules: This option specifies the modules to 

add to the custom runtime image. In this case, com.
example.yourmodule is the module name we want to 

include. We would replace com.example.yourmodule it 

with the actual name of the modules we have.

•	 --output: This specifies the path to the directory 

where the custom runtime image will be created. We 

would replace path/to/output/directory with the 

path where we want the runtime image to be saved.

The following diagram shows the critical steps involved in the jlink 

process.

Chapter 11  Docker Best Practices for Java Developers



216

Figure 11-1.  jlink Java runtime image creation flow

Chapter 11  Docker Best Practices for Java Developers



217

�Use Cases for jlink

•	 Containerized applications: Especially designed for 

Docker and other container platforms where image 

size affects performance considerably as well as 

resource usage.

•	 Creating minimal runtime environments: 

Applications that only require a subset of the Java 

platform modules can create a runtime much smaller 

than the standard runtime. This is very helpful 

for microservices, serverless functions, or for any 

application where a small footprint is desirable.

•	 IoT and embedded systems: Useful in environments 

with limited resources, such as IoT devices or 

embedded systems.

•	 Security: Only necessary modules included, jlink 

reduces the surface area of security vulnerabilities. 

Applications are less prone to exploits that target 

modules that they do not even have.

•	 Faster startup time: A smaller runtime can contribute 

to faster application startup times, which is particularly 

advantageous for desktop applications and tools that 

benefit from quick launch times.

Chapter 11  Docker Best Practices for Java Developers



218

�Step-by-Step Guide
Using Jlink in Dockerfile

•	 Identify necessary modules: Determine your 

application’s required modules.

•	 Create a Jlink Script: Incorporate a script in your 

Dockerfile to execute Jlink with the identified modules.

•	 Assemble the runtime image: Use Jlink to create the 

custom runtime.

Selecting necessary Java modules

•	 Use tools like jdeps to analyze your application’s 

module dependencies.

•	 Include these modules in your Jlink command in the 

runtime image.

�Best Practices

•	 Minimal module set: Only include the necessary 

modules.

•	 Compress the image: Use Jlink’s compression options 

to reduce the size further.

•	 Layered Docker images: Structure your Dockerfile to 

leverage Docker layer caching effectively.

Chapter 11  Docker Best Practices for Java Developers



219

�Example

•	 Scenario: A simple Java application that uses HTTP 

and JSON processing.

•	 Dockerfile setup:

•	 Start with a JDK image to compile the application 

and run Jlink.

•	 Use Jlink to create a custom runtime including only 

the required modules (java.base, java.net.http, 

java.json).

•	 Construct the final image using a minimal base, 

copying the custom runtime and application JAR.

•	 Sample Dockerfile:

# Compile Stage
FROM openjdk:11 as build
WORKDIR /app
COPY . .
RUN javac -d out --module-path lib --module-source-path 
src $(find src -name "*.java")
RUN jlink --add-modules java.base,java.net.http, 
java.json --output jre
# Final Stage
FROM alpine:latest
COPY --from=build /app/jre /opt/jre
COPY --from=build /app/out /app
ENTRYPOINT ["/opt/jre/bin/java", "-m", "com.myapp/com.
myapp.Main"]

Chapter 11  Docker Best Practices for Java Developers



220

Jlink significantly changes the way one dockerizes Java applications, 

enabling the creation of slimmer, more efficient container images. It 

is a powerful tool for Java developers, particularly in the context of 

Docker, where image size and security are paramount. Mastering Jlink 

enables developers to optimize their Java applications for modern cloud 

environments.

�Using Distroless Base Images
The base image is very significant in defining the security, efficiency, 

and size of containerized applications. Distroless images have emerged 

with much popularity from Google. In particular, Java developers widely 

adopt it.

�Understanding Distroless Images
Distroless images are minimalistic container images containing only the 

application and its runtime dependencies. They do not include package 

managers, shells, or other binaries typically found in a standard operating 

system distribution. For Java applications, a distroless image would 

typically include a JVM and the application’s JAR file, nothing more.

�Creating Distroless Java Image
Write a Dockerfile: Start with a base image that contains only a Java 

Runtime Environment (JRE).

FROM gcr.io/distroless/java17-debian12
COPY target/myapp.jar /app.jar
CMD ["app.jar"]

Chapter 11  Docker Best Practices for Java Developers



221

Build the image: Use Docker to build your image.

$ docker build -t my-java-app .

Run your container: Deploy your application.

$ docker run -d my-java-app

�Benefits of Distroless Images

•	 Enhanced security: By removing unnecessary 

operating system components, the attack surface of the 

container is significantly reduced. Fewer components 

in the image mean fewer potential vulnerabilities.

•	 Smaller image size: Distroless images are minimalistic, 

making them smaller in size; they take less time to 

be pulled and pushed in the CI/CD pipeline. They 

use lesser storage spaces compared to other images. 

Smaller images accelerate the deployment time in 

orchestration systems such as Kubernetes.

•	 Simplicity and maintenance: With fewer components 

in the image, there’s less need for patching and 

updates. Provides a clean and minimal environment for 

your application, ensuring consistency across different 

deployment environments.

Chapter 11  Docker Best Practices for Java Developers



222

�Best Practices

•	 Understand your application’s dependencies: Ensure 

all runtime dependencies are included in your image.

•	 Debugging challenges: With a shell or debugging 

tools, troubleshooting running containers can be more 

accessible. Consider using a debug version during the 

development phase.

•	 Keep up with updates: Regularly update the base 

image to ensure you have the latest security patches for 

the Java runtime.

Distroless images have a compelling approach in terms of deploying 

Java applications inside containers, balancing security, efficiency, and 

simplicity. Embracing distroless images means that developers and 

organizations reduce the risks of running large, complex container images 

in production while enjoying streamlined and efficient deployment 

processes. In the future, the industry will be more prone to distroless 

images with its trend towards minimalism in containerization.

�Applying JVM Arguments and Resource Limits 
to Docker Containers
It is very important to optimize the JVM settings and container resource 

limits when running Java applications in Docker containers. Optimized 

configuration will ensure effective usage of resources, and consequently, 

application performance will increase without common issues like out-of- 

memory errors.

Chapter 11  Docker Best Practices for Java Developers



223

�Importance of jvm Arguments 
and Resource Limits
JVM arguments: Customize the behavior of the JVM to suit specific needs, 

like garbage collection strategy, heap size, and other performance-related 

settings.

Resource limits in Docker: Define the maximum amount of CPU and 

memory resources a container can use, preventing any application from 

exhausting the host system’s resources.

Setting memory limits: Use Docker’s -m or --memory flag to set a 

memory limit.

Example: docker run -m 512m my-java-app caps the container at 

512 MB of memory.

Setting cpu limits: Use --cpus to limit the number of CPU cores the 

container can use.

Example: docker run --cpus=2 my-java-app limits the application to 

2 CPU cores.

�Passing jvm Arguments in Docker
Use the JAVA_OPTS environment variable or pass arguments directly in the 

CMD or ENTRYPOINT in the Dockerfile.

docker run -e "JAVA_OPTS=-Xmx256m -Xms256m" my-java-app

Or we can include it in the Dockerfile.

ENTRYPOINT ["java", "-Xmx256m", "-Xms256m", "-jar", 
"myapp.jar"]

Chapter 11  Docker Best Practices for Java Developers



224

�Balancing Resources for Optimal Performance

•	 Understand application needs: Profile your 

application to understand its resource usage patterns.

•	 Avoid over-allocation: Don’t allocate more resources 

than necessary, as it could starve other containers or 

processes.

•	 Monitor and adjust: Continuously monitor 

performance and adjust settings as needed.

�Configuring Java Applications for Efficiency
Consider a scenario with a Java web application running in a Docker 

container. What do we need to take care of to get optimal performance 

from our web application? Per the current application load, we only need 

700 MB of memory and one CPU core.

Inside the Dockerfile, we can set the memory limit to 1 GB and the 

CPU limit to 1 core. Even though the application needs ~700 MB of 

memory, we should keep some buffer in case there are spikes in the usage.

We should also configure JVM arguments for garbage collection and 

heap settings.

$docker build -t my-java-app .
$docker run -m 1g --cpus=1 -e "JAVA_OPTS=-Xmx700m -Xms700m -XX: 
+UseG1GC" my-java-app

Tuning JVM settings and setting resource limits in Docker is essential 

for running Java applications efficiently and reliably in containerized 

environments. These configurations help manage application 

performance, ensure optimal use of resources, and maintain the stability 

Chapter 11  Docker Best Practices for Java Developers



225

of both the application and the host system. Regular monitoring and 

adjustments based on the application’s behavior are essential to optimal 

performance.

�Securing Docker Images
In containerization, Docker image security is paramount. With the 

widespread adoption of Docker in deploying applications, ensuring the 

security of Docker images is essential to protect against vulnerabilities that 

attackers could exploit.

�Common Security Vulnerabilities
Although versatile, Docker is also vulnerable if not managed appropriately. 

This may offer attackers or hackers an entry point.

Common vulnerabilities include:

•	 Outdated software and libraries: Images containing 

outdated operating systems, libraries, or frameworks 

are vulnerable to known vulnerabilities.

•	 Insecure configuration: A misconfigured Dockerfile or 

container setting might expose the container to risk.

•	 Embedded secrets: Secrets hardcoded into images 

may cause unauthorized access.

•	 Unnecessary packages: The addition of unused 

software in images raises the attack surface.

Chapter 11  Docker Best Practices for Java Developers



226

�Scanning for Vulnerabilities

•	 Choose a scanning tool: Tools like Clair, Trivy, Synk, or 

Docker’s scanning feature can be used.

•	 Integrate scanning into ci/cd pipeline: Automate the 

scanning process during image build or deployment.

•	 Review and address findings: Analyze the 

report generated by the scanner and address the 

vulnerabilities identified.

�Best Practices

•	 Continuous monitoring: Regularly scan images for 

vulnerabilities, even after deployment.

•	 Dependency management: Keep track of the 

dependencies used in your Docker images and update 

them regularly.

•	 Minimize attack surface: Use minimal base images 

and avoid installing unnecessary packages.

•	 Non-root user: Run your container as a non-root user 

to reduce the risk of a container breakout attack.

•	 .dockerignore file: Use a .dockerignore file to 

exclude unnecessary files and directories from your 

build context to prevent potential leaks of sensitive 

information.

•	 Private registries and signed images: Store images in 

trusted, private container registries with strong access 

controls. Use features like Docker Content Trust to sign 

images and verify their integrity and origin.

Chapter 11  Docker Best Practices for Java Developers



227

•	 Implement the least privilege principle: Ensure that 

files and executables within the Docker image have the 

least privileges necessary to run the application. Where 

possible, use read-only filesystems in your containers 

to prevent unwanted changes.

•	 Securing application secrets: Never hardcode 

sensitive information like passwords or API keys in 

Docker images. To manage sensitive information, 

use secret management tools like Docker Secrets, 

HashiCorp Vault, or environment variables injected at 

runtime.

•	 Keeping host system secure: Ensure the Docker 

daemon is securely configured. Keep the host system 

secure, as vulnerabilities in the host can affect all 

containers.

Securing of Docker images is an ongoing process that demands 

constant maintenance, vigilance, and best practices. By keeping up 

with vulnerabilities, maintaining the latest images, and minimizing 

attack surfaces, you can enhance your Docker deployments’ security 

dramatically. The integration of security practices into the development 

and deployment pipeline is the way to ensure robust and secure 

containerized applications.

�Choosing Maven vs. JDK vs. JRE 
Base Image
In the Docker ecosystem, choosing a base image is critical for building 

effective and efficient Java applications. Maven, JDK, and JRE images each 

serve different purposes. Understanding their differences and use cases is 

essential for optimal Docker image construction.

Chapter 11  Docker Best Practices for Java Developers



228

Differences between Maven, JDK, and JRE Images

•	 Maven image: Includes the Maven build tool and 

typically a JDK. Best for building Java applications 

from source.

•	 JDK (Java Development Kit) image: Contains the Java 

Runtime Environment (JRE), compilers, and tools to 

build Java-based applications. Required for compiling 

Java code.

•	 JRE (Java Runtime Environment) image: The runtime 

needed to execute a Java application. It does not 

contain the tools and compilers found in the JDK.

�Pros and Cons

 Image 
Type

Pros Cons Use Case

Maven 

Image

Convenient for building 

applications where 

Maven is the build 

tool<br>- Often 

includes the JDK

Larger than JDK or 

JRE images, as it 

includes additional 

build tools

Building Java 

applications during 

development or in CI/CD 

pipelines

JDK 

Image

Essential for compiling 

Java code and includes 

necessary tools for 

development

Larger size compared 

to JRE images

Application development 

and any situation where 

Java code needs to be 

compiled
(continued)

Chapter 11  Docker Best Practices for Java Developers



229

 Image 
Type

Pros Cons Use Case

JRE 

Image

Smaller size, focused 

on runtime only, and 

ideal for running Java 

applications

Cannot be used for 

compiling Java code 

or any development- 

related tasks

Running Java 

applications in 

production or any 

environment where 

code compilation is not 

required

�Best Practices

•	 Analyze your requirements: Determine whether 

your application needs to be compiled or if it’s only 

being run.

•	 Consider the environment: Use JDK images for 

development, CI/CD pipelines, and JRE images for 

production.

•	 Size vs. functionality: Balance the need for a smaller 

image size with the functionality required.

�Example

•	 Maven image:

•	 Scenario: Building a Spring Boot application 

using Maven.

Chapter 11  Docker Best Practices for Java Developers



230

•	 Dockerfile example:

FROM maven:3.6-jdk-11 AS build
COPY src /usr/src/app/src
COPY pom.xml /usr/src/app
RUN mvn -f /usr/src/app/pom.xml clean package

•	 JDK image:

•	 Scenario: Compiling a Java application.

•	 Dockerfile example:

FROM openjdk:11-jdk
COPY . /usr/src/myapp
WORKDIR /usr/src/myapp
RUN javac Main.java

•	 JRE image:

•	 Scenario: Running a pre-compiled Java application.

•	 Dockerfile example:

FROM openjdk:11-jre-slim
COPY --from=build /usr/src/app/target/app.jar /usr/app/
ENTRYPOINT ["java", "-jar", "/usr/app/app.jar"]

It depends on the needs of your Java application in Docker. Maven 

images are most suitable for building scenarios that involve Maven, JDK 

images are best suited for development and compilation tasks, and JRE 

images are best optimized for running Java applications. Understanding 

and aligning these choices with your application requirements ensures 

efficiency, performance, and a streamlined development process.

Chapter 11  Docker Best Practices for Java Developers



231

�Summary
This chapter is a comprehensive review of Docker best practices that 

are vital for Java developers in today’s containerized environments. The 

chapter starts with multistage builds, which are advanced techniques for 

creating lean and secure Docker images. Isolating the build environment 

from the runtime environment greatly reduces the size of the final image 

but still keeps all the functionality needed; it shows how to structure 

Dockerfiles and handle artifacts between stages.

The discussion then moves on to Java runtime optimization using jlink, 

a powerful tool introduced in Java 9. This section shows developers how to 

create custom runtime images containing only the modules necessary for 

their applications. Not only does this targeted approach reduce container 

size, but it also improves security by minimizing the potential attack 

surface; it provides practical examples and best practices for module 

selection in real-world scenarios.

Moving on, the chapter on distroless base images covers the minimal 

container image containing just the application and its dependencies 

required at runtime. This proves to be very valuable for improving security 

and efficiency in removing unnecessary components, which results in a 

smaller, more secure, and easier-to-maintain and deploy container.

The chapter then goes into detail on JVM arguments and resource 

management, providing deep insight into the optimization of memory 

usage, CPU allocation, and garbage collection settings. The extensive 

coverage helps developers realize how resource allocation can be 

balanced for optimal performance and common pitfalls in containerized 

Java applications. The guidance provided ensures that applications run 

efficiently within their containerized environments while maintaining 

stability and reliability.

Chapter 11  Docker Best Practices for Java Developers



232

Finally, the chapter will summarize security considerations by offering 

a comprehensive examination of Docker image security best practices, 

including vulnerability scanning and secure configuration management, 

implementing principles of least privilege, continuous monitoring, and 

regular updating of containerized environments over the application 

life cycle. Combined, these practices deliver a complete approach to 

containerizing Java applications, enabling development teams to create 

solutions that are efficient, secure, and maintainable, without falling into 

common pitfalls in the implementation of Docker.

Chapter 11  Docker Best Practices for Java Developers



233© Ashish Choudhary 2025 
A. Choudhary, When Docker Meets Java, https://doi.org/10.1007/979-8-8688-1300-9

Index

A
Abstraction, 19, 83
addEmployee method, 199
add-modules, 215
Agility, 1, 7–8, 10
Ahead-of-time (AOT), 177–179
Alpine Linux image, 90
Amazon ECS, 19, 20
application-test.properties file, 202
Autoconfiguration, 115, 116, 206
Azure Kubernetes Service (AKS), 20

B
Bridge driver, 67–69
Buildah, 161, 162

building images, 164, 165
features, 162, 163
Podman and, 163, 164

Build Once, Run Anywhere 
(BORA), 17, 18, 36

C
Centralized repositories, 54
Clair, 92, 226
Clean up containers, 58
Client-server architecture, 20, 37

Cloud computing, 9, 17, 97
Cloud-native buildpacks 

(CNBs), 180
autoconfiguration, 115, 116
configuration, 118–121
features, 116–118
spring-boot-starter- 

data-jpa, 115
top-tier OCI, 116

Collaboration, 26, 50, 53, 186
Command-line interface (CLI), 20, 

22, 34, 161
Communication, 34, 65, 66, 

69–71, 76
Constraints, 57
Containerization, 39, 53, 99, 100, 

104, 110, 111, 115, 122, 123, 
158, 175

Containerizing, 6, 11, 32, 96, 97, 
132, 158, 209, 232

Containers, 1, 22–24, 27, 35, 40, 65, 
104, 110, 117, 139, 147, 
149, 162

agility, 7
analogy, 5, 6
black boxes, 4
cloud platforms, 8
communication, 66

https://doi.org/10.1007/979-8-8688-1300-9#DOI


234

copy data, 74
digital building blocks, 1
Docker, 83
Docker definition, 3
Docker’s interactive mode, 60
history, 2–4
initialization, 205–208
isolation, 7
Java, 4
management, 53
operating system, 5
physical machine, 5
portability, 7
resource utilization, 7
rm flag, 40
scaling, 8
setups, 70
visual representation, 5
VMs, 9, 10

Continuous integration (CI), 118, 
166, 195

Continuous integration/
continuous deployment 
(CI/CD), 51, 118, 143–145

Cost savings, 11
Custom base images, 91, 101

D
Daemon process, 21, 22
Dangling images, 44
Data sharing, 72, 75
DataSourceAutoConfiguration, 115

Date-based tags, 52
Debugging, 27, 63, 175, 197, 222
Deployment, 50, 54, 123, 131, 135, 

139, 143
Deployment time, 55, 221
Disaster recovery, 55
Distroless base images, 90–91, 

220, 231
Distroless images, 220

benefits, 221
best practices, 222
creation, 220

Docker, 2, 3, 11
architecture, 23
bridge driver, 67–69
commands, 21–23, 148
container orchestrator, 19
definition, 3
environment-specific 

variations, 18
exclusive method, 19
host driver, 69
Java applications, 209
Java developers (see Java 

developers)
multistage builds, 210–212
networking commands, 71
networking functions, 65, 66
none driver, 70
popularity, 11–14
virtualization technology, 18

Docker build command, 39, 
46, 49, 53

Docker CLI, 20–25, 34, 37, 79

Containers (cont.)

INDEX



235

Docker Compose, 25, 35–37
action, 80–82
components, 79
configuration, 78
installation, 79
Java application, 80
management, 77
multi-container applications, 77
Spring Boot, 83–85

Docker container, 34, 56, 59, 97, 
110, 173, 193, 194, 201

GitHub Actions (see GitHub 
Actions)

Spring Boot application, 93
Docker daemon, 20–23, 34, 49, 65, 

119, 120
Docker Desktop, 69, 79

applications, 24
components, 25
documentation, 24
features, 26
graphical interface, 26–32
Hyper-V, 24
installation, 24
pre-built image, 28–32

Docker Engine, 20, 22–25, 37, 73, 79
Dockerfile, 33, 39, 58, 63, 77, 100, 

110, 111, 115, 116, 122, 210
Alpine Linux, 90
associated files, 40
base images, 87, 88
building and tagging, 46–49
build process, 39–41
commands, 41, 42

creation flow, 41
custom base images, 91
distroless base images, 90
Eclipse Temurin, 90
facts exploring, 43–45
Java application, 132
JDK vs. JRE, 88, 89
multi-stage builds, 91, 92
official OpenJDK versions, 89
Security, 92, 93
source code, 49
Spring Boot application, 93–97
tagging, 49–53
writing, 132, 133

Dockerfile-Maven plugin, 110
addition, 112
building, 114
pushing to registry, 114
Spotify, 110, 111

Docker Hub, 26, 28–32, 34, 46–49, 
53, 108, 114

Docker image, 46–49, 58, 99, 104, 
105, 108, 111, 114, 132, 138

best practices, 226
common pitfalls, 57, 58
Common vulnerabilities, 225
inspection, 59–61
Kaniko, 167–169
management, 62, 63
Maven, 227
pushing and running, 53–56
running, 56, 57
scanning vulnerabilities, 226

Docker Scout, 11

INDEX



236

Docker Swarm, 2, 19, 70, 71, 82
Docker Volumes, 71, 72

bulk volume deletion, 75, 76
copy containers, 74
creation, 73
deletion, 75
diagram, 73
host directories, 74
host filesystem, 72
inspection, 74
lists, 73
mounting, 74
ownership, 75

Documentation, 14, 24, 51, 58, 
156, 197

dotCloud, 2

E
Eclipse Temurin, 90
EmployeeService class, 198–200
End-to-end testing, 198
Environment-specific tags, 52
Environment variables, 18, 27, 45, 

58, 81, 118, 139

F
Fabric8 Docker Maven plugin, 

104, 105
benefits, 105, 106
image build process, 105
setting up, 106–110

FROM command, 40, 167

G
Git commit hash, 52
GitHub Actions, 12, 118

automation tool, 123
cache mechanism,  

145, 146
CI/CD, 143–145
Dockerfile, 132, 133
elements, 125, 126
features, 124, 125
GCP (see Google Cloud 

Platform (GCP))
Java Project, 128–131
security and performance 

tests, 146
Setting up, 133–135
workflow Yaml file, 126–128

Google Cloud Platform  
(GCP), 135

APIs, 138
applications, 139
GitHub secrets, 139
IAM permissions, 138
secret, 143
workflow, 136, 141
Workload Identity 

Federation, 138
Google Container Registry (GCR), 

114, 136
Google Jib

building, 101, 102
description, 100, 101
features, 100
image layers, 102–104

INDEX



237

Google Kubernetes Engine 
(GKE), 20, 136

GraalVM, 173
build tools, 181–183
diagram, 182
Native Image, 174–176
Spring Boot 3, 180

H
Host driver, 69, 71
Host network, 69
Host system, 34, 58, 60,  

74–76, 225
Hykes, 2, 17
Hyperkit, 24
Hyper-V, 18, 24

I
IMAGE ID command, 40
Image labeling, 45
Image tagging, 49

benefits, 50, 51
strategies, 52, 53

Img, 169
build and push, 170, 171
Docker image, 169
features, 170, 171

Integration testing,  
182, 193–195, 198,  
201, 202, 206

Interoperability, 177, 178
Isolation, 7, 72, 195, 197, 202

J
JAR file packages, 33
Java developers, 36, 77, 100, 111, 

123, 184, 209, 212, 231
Java Development Kit (JDK), 228–230
Java Platform Module System, 212
Java Runtime Environment (JRE), 

4, 174, 213, 220, 228–230
Java Virtual Machine (JVM), 17, 34, 

37, 90, 116, 174–179, 220, 222
Java web application, 224, 225
Jib, see Google Jib
Jlink, 212

best practices, 218
command, 215
command line usage, 214
dockerizes, 220
example, 219, 220
features, 213
identification, 213
Java runtime image, 216
runtime creation, 214
step-by-step guide, 218
use cases, 217, 218

JpaRepositoriesAuto 
Configuration, 115

Just-in-time compiler (JIT), 177, 
178, 180

JVM Arguments, 222
in Docker, 223, 224
memory limits, 223
optimal performance, 224
resource limits, 223

INDEX



238

K
Kaniko, 166

build and push, 167–169
challenges, 166
executor image, 167
features, 166, 167

Kubernetes, 12, 19, 25, 26, 28, 32, 
37, 70, 71, 93, 105, 118,  
139, 166, 168, 172, 185, 
186, 188

L
Latest tags, 53
Layer caching, 43, 218
Lego, 1
Linux Containers, 2

M
Macvlan driver, 70
Maven, 33–35, 96, 99, 110, 130, 

183, 227–229
Maven image, 221, 228–230
Maven Jib plugin, 101, 102
Microservices, 3, 13, 24, 32, 51, 72, 

78, 173, 184, 217
module-path, 214
Mounting, 28, 57, 58, 74,  

75, 168
Multi-cloud deployments, 13
Multi-host communication, 71
Multiple base images, 44
Multiple languages, 177, 179

Multistage builds, 91, 92
artifact, 210
best practices, 211
Dockerfile, 210, 211
image size, 210
JRE image, 211
in layers, 210
Maven image, 211
security footprint, 210
security vulnerabilities, 212

N
Native Image

benefits, 175
Docker and, 176
drawbacks, 175
explanation, 174, 175
Java and, 174
JIT vs. AOT compiler, 177, 178
JVM vs. GraalVM, 178, 179

Networking, 58, 60, 65, 66, 
69–71, 81, 165

Nginx, 14, 35, 69

O
Open Container Initiative (OCI),  

8, 116, 120, 161–164, 171
Orchestration, 2, 8, 12, 19, 148, 

165, 184
Order matters, 43, 44
Out-of-date tags, 51
Overlay driver, 70

INDEX



239

P
Persistence, 65, 72, 73, 76
Platform-as-a-Service market, 2
Pod concept, 148
Podman, 19

binary downloading, 150
dashboard, 152
Desktop, 151
.dmg file, 149–156
Engine, 156
features, 148
installation, 151
machine, 154
open-source software, 147
setting up, 148, 149
setup, 154

Portability, 7, 72, 104, 135, 169, 
195, 208

Port mapping, 27, 57, 58, 160
PostgreSQL, 14, 84
Private registries, 53, 54, 226

Q
Quality assurance, 51
Quarkus, 184

code generation, 186
container image, 191
deployment flow, 190
downloading, 186
extension, 186
features, 184
Java framework, 184
with Kubernetes, 185, 186

Maven/Gradle, 188
project onboarding, 187
project setup, 186
streamlined dependencies, 186
user-friendly, 185

R
REST API, 20–23
Rollbacks, 50

S
Scalability, 10, 55, 63, 104
Scaling, 8, 20, 55, 82, 85
Secrets, 45, 81, 124, 139, 145, 

225, 227
Security, 11, 69, 108, 117, 147, 148, 

166, 170, 171, 217
Dockerfile, 92, 93
vulnerabilities, 225

Security concerns, 45, 166
Self-contained entities, 6
Self-containment, 8
Semantic versioning, 52
Size optimization, 45, 93
Solomon Hykes, 2, 17
Spotify, 99, 110, 111, 114, 121
Spring Boot, 83–85, 194

annotation, 204
dependencies setup, 203, 204
systems, 202
Testcontainers, 203

Spring Boot 3, 180, 181

INDEX



240

Spring Boot application, 197, 198
building, 94–96
container image, 158, 159
containerization, 158
containerized 

application, 159–161
containerizing, 96, 97
Docker container, 93
efficiency, 182
GraaIVM, 182, 183
Maven Project, 156
Native Image, 180–182
running the project, 157

Spring Boot buildpack, 116, 119
Start Container, 160
System-specific native code, 180

T
Tagging, 46, 50–53, 93, 108, 163
Testcontainers, 193

features, 196, 197
integration testing, 195,  

201, 202
library, 194
logo, 194
services, 198
software development, 194
Spring Boot, 197, 198, 202–205

testing, 193
toy box, 194
unit testing, 198–200

Trivy, 92, 146, 226

U
Unit testing, 193, 197–200
User-defined networks, 66, 71, 85

V
Versatility, 14, 76
Versioning, 50, 52, 58
Versions, 4, 12, 55, 106, 114, 195
Virtualization technology, 18
Virtual machines (VMs), 19, 37, 

139, 149
vs. containers, 9, 10
vs. Docker’snetworking, 65, 66
operating systems, 18
process, 2

VMware, 18

W, X, Y, Z
Workflow Yaml file, 126–128, 134
Write Once, Run Anywhere 

(WORA), 17

INDEX


	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Overview of Containers
	A Bit of History
	Definition of Containers
	Docker’s Definition
	Understanding Containers

	The Significance of Containers
	Key Advantages of Containers
	Portability
	Resource Utilization
	Isolation
	Agility
	Easy to Scale
	Improved Productivity
	Cloud Support

	Container vs. Virtual Machine
	Rise of Docker
	Key Reasons for Docker’s Popularity


	Summary

	Chapter 2: Docker High-Level Overview
	Docker’s Basic Principle
	Docker Is Not!!!
	How Does Docker Work?
	Key Docker Commands

	Understanding Docker Desktop
	Docker Desktop Features
	Docker Desktop in Action
	Key Docker Concepts
	Dockerfile
	Docker Image
	Docker CLI
	Docker Container
	Docker Daemon
	Docker Hub
	Docker Compose

	Summary


	Chapter 3: Up and Running with Docker
	Creating a Dockerfile
	Dockerfile Commands and Their Usage
	Exploring Facts About Dockerfiles
	Building and Tagging a Docker Image
	Example

	Tagging a Docker Image
	Benefits of Image Tagging
	Image Tagging Strategies

	Pushing and Running a Docker Image
	Running a Docker Image
	Common Pitfalls
	Inspecting and Managing a Docker Image
	Managing a Docker Image
	Summary


	Chapter 4: Learning Advanced Docker Concepts
	Exploring Docker’s Networking
	Docker’s Networking vs. VM Networking

	Types of Docker Network Drivers
	Bridge Driver
	Host Driver
	None Driver
	Overlay and macvlan Drivers

	Basic Docker Networking Commands
	Docker Volumes
	Getting Started with Docker Volumes
	Creating Docker Volumes
	Listing Available Volumes
	Volume Inspection
	Mounting Data Volumes
	Copy Containers Data
	Host Directories As Data Volumes
	Ownership and Permissions of Volumes
	Deleting Docker Volumes
	Bulk Volume Deletion

	Docker Compose
	Understanding Docker Compose
	Docker Compose File Components


	Setting Up Docker Compose
	Docker Compose in Action
	Docker Compose Support in Spring Boot
	Summary

	Chapter 5: Containerizing Java Applications with Dockerfile
	Understanding Base Images
	Choosing JDK vs. JRE As the Base Image
	Official OpenJDK Images
	Eclipse Temurin Images
	Alpine Linux Images
	Distroless Base Images
	Building Custom Base Images
	Multi-stage Builds for Optimization
	Security Considerations
	Containerizing and Running a Spring Boot Application
	Dockerizing a Spring Boot Application
	Building a Simple Spring Boot Application
	Containerizing Spring Boot Application with Buildpack

	Summary

	Chapter 6: Working with Container Builder Tools for Java Applications
	Building Container Images with the Google Jib
	Understanding Jib
	Building with Jib
	Understanding Jib Image Layering

	Building Container Images with Fabric8 Docker Maven Plugin
	Understanding Fabric8 Docker Maven Plugin

	Benefits of Fabric8 Docker Maven Plugin
	Setting Up Fabric8 Docker Maven Plugin

	Building Container Images with Spotify’s Docker-Maven-Plugin
	Understanding Spotify’s Docker-Maven-Plugin
	Getting Started
	Building Container Images with Cloud-Native Buildpacks
	Understanding Buildpacks
	Cloud-Native Buildpacks Features
	Configuring Buildpack

	Summary

	Chapter 7: Deploying Docker Containers Using GitHub Actions
	Understanding Github Actions
	GitHub Action Components
	Understanding Workflow Yaml File

	Building Java Application Using Github Actions
	Setting Up a Java Project

	Containerizing Java Application Using Docker GitHub Action
	Understanding the Process
	Writing a Dockerfile
	Setting Up Github Actions

	Deploying Java Application to GCP Using GitHub Action
	Understanding the Workflow
	Setting Up the Workflow

	GitHub Actions Best Practices for CI/CD with Docker
	Keep Workflows DRY (Don’t Repeat Yourself)
	Use Secrets for Sensitive Information
	Leverage Caching to Reduce Build Times
	Run Security and Performance Tests As Part of the CI Process

	Summary

	Chapter 8: Exploring Docker Alternatives
	Podman
	Setting Up Podman
	Using the .dmg File

	Developing a Simple Spring Boot Application
	Containerizing the Spring Boot Application
	Building Container Image with Podman
	Running Containerized Application
	Buildah
	Buildah Features

	Podman and Buildah Comparison
	Building Images with Buildah
	Kaniko
	Need for Kaniko

	Features of Kaniko
	Understanding Kaniko
	Using Kaniko to Build and Push Docker Images

	Img
	Why img?
	Features of img
	Using img to Build and Push Docker Images

	Summary

	Chapter 9: Building Native Images with GraalVM
	Demystifying Native Image and GraalVM
	Native Image Explained
	Native Image Benefits
	Native Image Drawbacks
	Differences Between Docker and Native Image
	Understanding GraalVM
	JIT vs. AOT Compiler
	JVM vs. GraalVM
	Spring Boot 3 and GraalVM
	Building Native Images with Spring Boot
	Testing GraalVM Native Image for Spring Boot Application
	Understanding Quarkus a Kubernetes Native Java Framework
	Knowing Quarkus
	Key Features of Quarkus

	Need for Quarkus with Kubernetes
	Getting Started with Quarkus
	Building and Deploying Quarkus Application on Kubernetes
	Up and Running with Quarkus
	Summary

	Chapter 10: Testing Java Applications Using Testcontainers
	Introduction to Testcontainers
	Need for Testcontainers
	Testcontainers Features
	Testing Spring Boot Applications
	Unit Testing of Spring Boot Application
	Integration Testing of Spring Boot Application
	Spring Boot and Testcontainers
	Dependencies Setup
	Annotate Test Classes

	Container Initialization
	Summary

	Chapter 11: Docker Best Practices for Java Developers
	Implementing Multistage Builds
	Understanding Multistage Builds
	Creating a Basic Multistage Build Dockerfile
	Best Practices
	Example

	Creating Slimmer Container Images with Java Jlink
	Key Features and Benefits of jlink
	Knowing jlink
	Use Cases for jlink
	Step-by-Step Guide
	Best Practices
	Example

	Using Distroless Base Images
	Understanding Distroless Images
	Creating Distroless Java Image
	Benefits of Distroless Images
	Best Practices
	Applying JVM Arguments and Resource Limits to Docker Containers
	Importance of jvm Arguments and Resource Limits
	Passing jvm Arguments in Docker
	Balancing Resources for Optimal Performance

	Configuring Java Applications for Efficiency
	Securing Docker Images
	Common Security Vulnerabilities
	Scanning for Vulnerabilities
	Best Practices

	Choosing Maven vs. JDK vs. JRE Base Image
	Pros and Cons
	Best Practices
	Example

	Summary

	Index

