


Spring System Design in Practice

Build scalable web applications using microservices and  
design patterns in Spring and Spring Boot

Rodrigo Santiago



Spring System Design in Practice
Copyright © 2025 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted 
in any form or by any means, without the prior written permission of the publisher, except in the case 
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information 
presented. However, the information contained in this book is sold without warranty, either express 
or implied. Neither the author nor Packt Publishing or its dealers and distributors will be held liable 
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and 
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot 
guarantee the accuracy of this information.

Portfolio Director: Ashwin Nair
Relationship Lead: Aaron Lazar
Content Engineer: Kinnari Chohan
Project Manager: Ruvika Rao
Technical Editor: Aniket Shetty
Copy Editor: Safis Editing
Proofreader: Kinnari Chohan
Indexer: Rekha Nair
Production Designer: Vijay Kamble
Growth Lead: Anamika Singh

First published: April 2025

Production reference: 2280425

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK

ISBN 978-1-80324-901-8

www.packtpub.com

http://www.packtpub.com


To my wife, Flavia, who made my world perfectly organized and beautiful, allowing me to focus on 
writing this book—even as I kept going to bed between 3 and 5 a.m. Thank you for your love, patience, 

and support. We made it!

To my mother, Valéria, whose unwavering care for people and things has been my lifelong example. 
To my father, João, who taught me to be relentless and to keep going, no matter what.

And to my children—Valentina, Lavínia, Theo, and Aurora—may this book be a reminder to always 
dream big, create with passion, and bring great things into the world for great people.

– Rodrigo Santiago



Foreword

In my 20 years of corporate world experience, I’ve read countless technical books – some inspiring, 
many forgettable. But few, if any, have captured the raw reality of software engineering within large, 
complex organizations quite like this one. Spring System Design in Practice doesn’t just talk about 
system design – it lives in it, surprisingly.

As I turned each page, I went back to my own early years – navigating ambiguity while dealing with the 
complexity of the systems. It reminded me of the long nights spent trying to piece together scattered 
concepts and wondering how to bridge the gap between the development team and the business. If 
only I had a book like this 10 to 15 years ago… Alas, we can’t go back in time – not yet, at least.

Rodrigo Santiago has created something truly special. His writing flows with the ease of a mentor 
explaining things across a whiteboard – grounded, clear, and refreshingly pragmatic. This book isn’t 
a dry reference manual. It’s a well-lit path through the chaos, guiding you through the architectural 
terrain of real-world systems with patience and precision.

What struck me most is how deeply relatable the scenarios are. Whether it’s the trade-offs of microservice 
communication, the hidden costs of premature optimization, or the art of aligning development with 
actual business needs, every topic is framed through lessons that feel earned, not just researched.

For developers who feel overwhelmed by the jargon of modern system design, this book offers a sense 
of clarity. For seasoned engineers looking to sharpen their architectural lens, it serves as a reality check. 
And for aspiring architects, it’s a roadmap and a reference rolled into one, full of hard-won insights 
and battle-tested patterns.

It also reminds us of something we often forget in fast-paced environments: good system design isn’t 
about clever solutions, but clear thinking. It’s about understanding before implementing – the “why” 
before the “how.”

Spring System Design in Practice doesn’t just show you what’s possible with Spring – it shows you how 
to think holistically, build with confidence, and lead with insight.

Read it. Reflect on it. Then, go and build better systems – not just technically, but thoughtfully.

Shalini Goyal

Global Technology Leader, Ex-Amazon



Contributors

About the author
Rodrigo Santiago is a software developer with years of experience streamlining systems and improving 
products and processes. He has led projects that turned chaotic challenges into high-performance 
solutions, focusing on areas where small changes had a big impact. Known for his calm and positive 
approach under pressure, Rodrigo has successfully guided cross-functional teams to deliver results.

Rodrigo has worked in diverse industries, from legal tech to fintech, tackling system architecture 
and team dynamics. His expertise in system design, microservices, and event-driven architecture has 
enabled scalable solutions that meet both technical and business needs.



About the reviewer
Ibidapo Abdulazeez is a software engineer with over two years of experience building scalable 
solutions, particularly in the fintech and real estate sectors. Holding a master’s degree in Computer 
Science, Abdulazeez is passionate about leveraging technology to address critical challenges in 
underdeveloped sectors.

With expertise in cloud computing, machine learning, and backend development using Spring, 
Abdulazeez has worked on projects such as credit card fraud detection systems and student loan 
accessibility APIs. Aspiring to pursue a PhD in Computer Science, Abdulazeez is committed to driving 
technological advancements and innovation in the field.



Preface ix

Part 1: Foundations for System Design

1
What are the Product Requirements?� 3

Unlocking your finances with the 
Spring Framework� 4
How is this book structured 
to help you succeed?� 5
Why do we need to understand 
business requirements?� 7
Perfecting business requirements� 7
What are business requirements?� 8

Crystal-clear needs – ensuring 
businesses get requirements right� 9
Visualizing timelines for problem-solving� 9
Crafting business requirements� 11

The pitfalls of product requirements� 14

Are mock designs business requirements?� 14
Requirements should not express  
technology choices� 15
Does a customer know the problems  
they are experiencing?� 15
Are solutions the final step?� 15
Breaking the curse of technical debt� 16
Dense documentation� 17
Vague documentation� 18
Looking beyond the happy path� 18
Disregarding other business  
areas and processes� 19
Assuming too much about other areas� 19

Summary 20

2
Sorting Complex Requirements into Features, Use Cases, 
and Stories� 21

Naming the distinct features 
of your product� 22

Identifying actors, events, life cycles, 
stages, types, levels, and loops� 22

Table of Contents



Table of Contentsviii

Who will perform actions in your system?� 22
Defining critical events for each actor� 23
Listing the main features of the system� 27
Extracting a feature’s events timeline� 28
Simplifying requirements� 32
Understanding stages, levels,  
types, life cycles, and loops� 33

Creating user journeys, stories,  
and use cases� 37
User journeys� 38

User stories� 41
Use cases descriptions� 44

Structuring the final business 
requirements document� 47
Which of these artifacts  
should come first?� 50
Scaling results with long-term 
business requirements� 51
Exercises� 53
Summary� 55

3
Defining Domains for Your Application� 57

Technical requirements� 58
Determining which features  
to deliver first� 58
Criteria for prioritizing  
a business requirement� 59
Sorting priorities� 66

Defining domains and boundaries 
for your application� 67
What are product domains and  
why are they important?� 68
Detecting common concepts and  
eliminating redundancy across use cases� 68
Setting up and defining domains  
for your product� 70

Setting up domain composition,  
boundaries, and limits� 70

Defining the right services  
for your domains� 72
What are services and why should  
we think about them?� 72
How to model and document domain  
services correctly� 73

Crafting your domain diagram� 75
Sequencing the activity across services� 76
The Rental Proposal sequence diagram� 76
Introduction to PlantUML as a tool  
for building sequence diagrams� 78

Summary� 79

4
Defining Services for Your Domains � 81

Understanding non-functional 
requirements� 82
Handling user requirements� 83

I/O and data maintenance 
requirements� 84
Exploring sizing requirements� 87



Table of Contents ix

Storage types� 87

Requirements for data processing� 90
Testing requirements� 92
AI, data engineering, and  
analytics requirements� 92

Disaster recovery capabilities� 93
Choosing protocols� 94
Summary� 95

Part 2: Designing Great Spring Services

5
Writing Your Services – Introducing REST APIs with  
the Spring Framework� 99

Technical requirements� 100
Moving from domain design to 
programming� 100
Microservice communication� 104
Introducing the HTTP protocol� 105
What are the main HTTP verbs?� 107
What are the main HTTP response codes?� 108

Writing your first Spring app� 108
Using SDKMAN to manage your tool versions� 109
Using Spring Initializr� 112
Opening your Spring project� 114
Building your application using Gradle� 115
Implementing your first Spring  
Controller class� 117
Running your Spring Application� 118

Designing your API services� 120
What are APIs?� 120
Why do we need RESTful standards?� 121
Dissecting a RESTful resource address� 122

Adding parameters to your API endpoints� 123
Using payloads in RESTful services� 124
Using UUIDs to uniquely identify objects� 126
Using HTTP request headers� 127

How Spring apps run internally� 128
Introducing the Spring Framework 
component lifecycle� 130
What are Spring beans and  
why are they important?� 131
Introducing the Spring Boot project� 132
Understanding the Spring Framework 
component scan� 133
Where are Spring beans stored at runtime?� 133
How to easily access a Spring bean� 133
Spring container and inversion of control� 135

Creating RESTful APIs in Spring� 136
Writing a rental property REST API  
with Spring Web� 136
Spring Web cheat sheet� 156

Summary� 158



Table of Contentsx

6
Translating Business Requirements into Well-Designed  
Spring APIs� 159

Technical requirements� 160
Mastering the blueprint for  
any Spring microservice� 160
Exploring the vertical layers� 161
Understanding the horizontal layers� 162

Rental proposal service design� 164
Error handling in REST APIs� 165
Implementing business services  
in Spring� 168
Declaring service interfaces in Spring� 168
Writing the implementation class  
for your service� 169
Organizing your Spring classes� 172

Writing automated tests for  
your Spring apps� 173

Understanding the basic test pattern� 174
Creating integrated tests with Spring Test� 174
Testing Beans in isolation� 180
Other testing options� 182
Coming up with a test case list� 183
Perfecting the application tests over time� 184
Running your tests in the console� 184

Tuning Spring Web for peak 
performance� 186
Making your API design  
a lot better for clients� 188
Richardson Maturity Model for  
creating/documenting REST APIs� 189

Summary� 205

7
Handling Data and Evolving Your Microservice� 207

Technical requirements� 208
Data persistence in applications  
with Spring� 208
Reactive versus non-reactive  
data handling� 210
Non-reactive data handling� 211
Reactive data handling� 211

SQL versus NoSQL data storage� 211
SQL databases� 211
NoSQL databases� 212

Microservices versus monolith 
application data design� 214
Data complexity and granularity level� 214
Organizing databases� 215

Implementing non-reactive SQL 
database persistence� 216
Adding support to a dev database� 216
Defining entities to be persisted� 220
ORM versus raw SQL in Spring Data� 228

JpaRepository – your go-to SQL 
interface in Spring Data� 229



Table of Contents xi

Using JpaRepository as an  
ORM-enabled repository� 229
Using Lombok to translate DTO to entity 
classes and vice versa� 231
JpaRepository class hierarchy made simple� 234
Customizing database queries  
using JpaRepository� 235
Using JPQL to create custom queries� 236
Understanding other limitations of 
JpaRepository� 237
Dealing with a very high volume  
of data and requests� 238
Retrieving paged results in Spring 
JpaRepository� 239
Using multiple service implementations  
on your application� 241
Using @Qualifier to inject multiple bean 
implementations for the same service� 243

How does EntityManager work?� 246

Working with transactions in  
Spring Data� 247
Using the @Transactional annotation  
in a method� 247
Managing transactions by using  
the EntityManager bean� 248

Using NamedParameterJdbc 
Template to run raw SQL queries� 250
Referencing all the implementations  
we have done so far� 252
Testing your applications with  
data integration� 255

Summary� 257

Part 3: Security, Performance, and Scalability

8
Securing Services with Spring Security and OAuth 2.0� 261

Understanding the security  
areas in your application� 262
What is OAuth 2.0 and why use it?� 263
Use case 1 – system A accesses system 
B-owned resources� 264
Use case 2 – system A accesses its own 
resources� 265
Basic service types in OAuth 2.0� 266
Industry-grade authorization providers� 267

Understanding how JWTs work� 267
The JWT header� 268

The JWT payload� 268
The JWT signature� 269

Different architectures for  
validating tokens� 270
Implementing HomeIt security� 272
Creating your project� 273
Creating your security configuration class� 274
Adding Spring Security to  
the Rental Properties service� 291
Implementing and using refresh tokens� 298

Summary� 299



Table of Contentsxii

9
High-Performance Secure Communication Between  
Spring Services� 301

Technical requirements� 302
Service communication made easy� 302
Adding more security to  
HomeIt authentication� 302
What is RestAssured?� 303

Writing a high-performance  
service with WebFlux� 304
Looking at the Revoke Token Service  
folder structure� 305
Writing the Revoke Token Service  
properties file� 306
Writing the database schema file� 307
Writing the Revoke Token Service  
persistence layer� 307
Reactive versus blocking services� 308
Writing the Revoke Token service class� 309
Writing a reactive endpoint Handler class� 310

Writing the RouterConfig and  
resource addresses� 311
Writing a customized Basic  
authorization filter� 312

Connecting services with  
API requests� 314
Adding security filters to your  
authentication flow� 316

Writing API integration tests  
with RestAssured� 318
Creating the project structure� 319
Declaring dependencies� 319
Writing the actual tests� 320
Making the actual requests  
using RestAssured� 322

Summary� 325

10
Building Asynchronous, Event-Driven Systems With  
NoSQL Databases� 327

Technical requirements� 328
A maintainability issue with  
RESTful APIs� 328
What is heavy coupling?� 328
How service coupling makes code  
harder to maintain� 329

Introducing event-driven 
architectures� 333
What is the difference between a queue  
and a topic?� 334

How should your notification messages look?� 335

Using Kafka in event-driven services� 341
Kafka main concepts� 341
Installing Kafka on a Linux machine� 342

Using MongoDB for  
NoSQL persistency� 343
Our event-driven sample in HomeIt� 345
Building our rental proposal  
service publishers� 347



Table of Contents xiii

Combining WebFlux, MongoDB, and  
Kafka in Spring Services� 347
Streaming object collections with WebFlux� 352

Building our rental properties  
service consumers� 353
Extending our end-to-end tests� 355
Summary� 356

Part 4: Orchestrating Resilient Services

11
Launching Your Self-Organizing Microservice Cloud� 359

Technical requirements� 359
How to produce your service logs� 360
What are the existing log levels?� 360
How to write logs in Spring� 361
Understanding your log output� 363

How to organize your property files� 364
Writing your properties files� 364
Overriding a property file when starting  
the packaged application� 366
Setting property values using  
environment variables� 367
Creating property files per  
deployment environment� 368

Injecting properties in your services� 370

Setting up your services using  
Spring Cloud� 370
Understanding the Spring Cloud topology� 371
Launching the Discovery service� 372
Launching the Config service� 375
Setting up your property files on a Git 
repository� 379
Integrating your services with Spring Cloud� 380
Launching the API Gateway service� 383
Hitting the API gateway with our  
integration tests� 389

Summary� 391

12
Optimizing Your Services� 393

Technical requirements� 393
Setting the right performance 
expectations for your project� 394
Failures are unavoidable� 394
Launch early, optimize later� 394
Key bottlenecks that can slow things down� 395
Eliminate single points of failure� 396
Distributed transactions going wrong� 396
Prepare your services for concurrent requests� 397

Using caching to speed up  
access to critical data� 397
Recovering from failures  
with dead letter queues� 399
Real-time service monitoring  
with Spring Actuator� 399
Handling faulty services  
with Resilience4j� 401



Table of Contentsxiv

Using the Circuit Breaker pattern� 402
Using the Rate Limiting pattern� 404
Using Retry in Resilience4J� 405
Using the Bulkhead pattern� 405

Preventing race conditions  
with a SQL trick� 406
Why microservice-level solutions won’t work� 406

A simple and effective solution –  
database locks� 407

Recovering from failures by  
using an audit job� 408
Dealing with a surge of requests by 
using throttling� 409
Summary� 410
Epilogue� 411

Index� 413

Other Books You May Enjoy� 426



Preface

Welcome to this journey into the heart of Spring! If you’ve ever stared at a blank IDE, wondering 
where to even begin when building a robust, scalable service, you’re not alone. The world of software 
development is full of grand ideas and ambitious goals, but turning those into well-structured, 
maintainable applications? That’s both an art and a science. This book is here to help you bridge that gap.

We will start with the foundations because great software is built on clarity. We’ll walk through dissecting 
requirements, distinguishing between functional and non-functional needs, and transforming them 
into domain objects and solid API contracts. It’s like laying down the blueprint before building a 
skyscraper—you wouldn’t want your application to topple at the first gust of real-world complexity.

Then, we’ll roll up our sleeves and get into the real magic: building services with Spring. How should 
interfaces interact with implementations? What’s a clean way to design services that will grow gracefully 
over time? We’ll answer these questions and propose a practical blueprint for creating new APIs and 
communicating seamlessly with other systems. And since security is a non-negotiable in today’s world, 
we’ll dive into user authentication, token creation, and validation using asymmetric keys.

Of course, no journey is complete without a few obstacles. We’ll face them head-on with testing—
unit tests, integration tests, and end-to-end tests—ensuring that what we build is not just functional, 
but reliable. We’ll also explore event-driven architectures, discuss best practices for handling data 
integrations with SQL and NoSQL databases, and even build a fully-fledged Spring Cloud application.

But what happens when things go wrong? Because, let’s face it, they will. Services fail, networks break, 
and race conditions lurk in the shadows. That’s why we’ll also talk about designing for resilience: 
structuring configurations effectively, handling failures gracefully, and resolving concurrency issues 
like a seasoned architect.

Throughout this book, we’ll keep things practical. This isn’t an abstract tour of Spring 6’s features; it’s a 
hands-on guide to building applications that work in the real world—applications that scale, recover from 
failures, and integrate cleanly with the systems around them. We will work from a sample application 
that we call the HomeIt app, which connects landlords with tenants interested in renting properties.

So, grab your favorite beverage (coffee, tea, or whatever fuels your coding sessions), fire up your IDE, 
and let’s build something great together. Welcome to the world of Spring!



Prefacexvi

Note on Spring Framework Updates
At the time of writing, milestone releases for Spring Framework 7 have begun rolling out, with 
the official release expected in November 2025. While Spring 7 introduces enhancements and 
changes, particularly around HTTP client interfaces, this book focuses primarily on software 
architecture and system design concepts that are largely framework-agnostic.

The examples and practices discussed do not rely on specific features of Spring’s HTTP client 
tooling (such as OpenFeign), and as such, remain valid and applicable despite the updates in 
Spring 7.

We are committed to maintaining the accuracy and relevance of our content, and will continue 
to monitor major updates to ensure that readers are well informed.

Who this book is for
Whether you’re taking your first steps into the world of Spring or you’re an experienced system 
architect looking to refine your approach to scalable web services, this book has something for you.

If you’re new to Spring, you might feel overwhelmed by its vast ecosystem. Where do you start? How 
do you structure your application? How do all these components fit together? We’ve been there. That’s 
why this book walks you through the fundamentals—from dissecting requirements to designing APIs, 
writing services, integrating databases, and handling security. By the time you finish, you’ll have built 
a fully functional, production-ready Spring application with confidence.

For system architects and experienced developers, this book provides a structured approach to 
designing scalable, resilient services. We’ll cover best practices for API design, authentication with 
asymmetric keys, event-driven architectures, and fault tolerance. If you want to ensure your Spring 
applications can handle real-world complexity while staying maintainable and performant, this book 
will help you get there.

This book assumes you have some prior experience with an object-oriented programming language 
and a basic understanding of how to write Java code. You don’t need to be an expert in software 
development processes—our goal is to provide a clear framework that will help you take high-level 
requirements and break them down into a resilient family of services that scale effectively.

So, whether you’re just starting out or refining your craft, let’s dive in and build great things together!

What this book covers
Chapter 1, What Are the Product Requirements?, explores how to capture product requirements in a 
structured, precise way that sets the foundation for well-defined problems and solutions. Every great 
system starts with a well-defined purpose. You’ll learn how to identify key business needs and translate 
them into technical goals that guide development from the very beginning.



Preface xvii

Chapter 2, Sorting Complex Requirements into Features, Use Cases, and Stories, untangles the complexity 
of software projects often starting as a tangled web of expectations by breaking down requirements 
into clear features, use cases, and user stories. This structured approach ensures that we capture what 
truly matters while keeping the development process manageable and focused.

Chapter 3, LayinDefining Domains for Your Application, explains how, before we write a single line 
of code, we need to understand the business domain. In this chapter, we’ll use a key domain-driven 
design (DDD) technique to create visual representations of our system’s core concepts, ensuring that 
our models align with real-world business logic.

Chapter 4, Defining Services for Your Domains, explains how functional requirements tell us what 
the system must do, but technical requirements define how it should operate. We’ll cover the crucial 
technical constraints and expectations on the technical side, ensuring that our services are built for 
real-world demands with the right tools in place.

Chapter 5, Writing Your Services – Introducing REST APIs with the Spring Framework, introduces the 
core principles of RESTful APIs and walks you through creating your first Spring-powered service, 
complete with controllers, request handling, and responses. Now that we have a strong foundation 
from the previous chapters, it’s time to start building!

Chapter 6, Translating Business Requirements into Well-Designed Spring APIs, teaches you how to build 
adaptable Spring services by defining clear interfaces, decoupling implementations, and seamlessly 
integrating different services with each other. We’ll also cover key concepts of how Spring provides 
interfaces and implementations for connecting to external systems very efficiently.

Chapter 7, Handling Data and Evolving Your Microservice, explains how data is the lifeblood of any 
system, and how we handle it determines the flexibility of our services. In this chapter, we’ll explore 
how to work with relational databases in Spring, how to prototype your service very quickly, and what 
the different approaches for creating custom queries versus out-of-the-box data connections are that 
make it easier to retrieve or save data.

Chapter 8, Securing Services with Spring Security and OAuth 2.0, provides a hands-on guide to 
implementing authentication and authorization using Spring Security and OAuth 2.0, ensuring that 
our services protect sensitive data while providing seamless user access. Security is non-negotiable 
in modern applications.

Chapter 9, High-Performance and Secure Communication Between Spring Services, explains why when 
multiple services need to communicate, performance and security become critical concerns. We’ll 
dive into strategies for making inter-service communication efficient, secure, and scalable, covering 
how to create asynchronous services with WebFlux.

Chapter 10, Building Asynchronous, Event-Driven Systems with NoSQL Databases, introduces event-
driven architectures, showing how to decouple services using messaging systems and NoSQL databases 
to build scalable, reactive applications, as not all interactions need to happen in real time.



Prefacexviii

Chapter 11, Launching Your Self-Organizing Microservice Cloud, explores how to launch a cloud-native 
Spring application, leveraging service discovery, API gateways, remote configurations, and other 
critical features that make your services connect to each other smoothly.

Chapter 12, Optimizing Your Services, focuses on critical performance tuning, caching, handling failures 
gracefully, and improving resilience. From circuit breakers to concurrency solutions and distributed 
transaction consistency checks, we’ll ensure our services thrive under real-world conditions.

To get the most out of this book

Software/hardware covered in the book Operating system requirements

Java (22 minimum, 25+ recommended) Windows, Ubuntu

Spring 6+

Gradle

Intellij Community Edition (optional)

If you are using the digital version of this book, we advise you to type the code yourself or access 
the code from the book’s GitHub repository (a link is available in the next section). Doing so will 
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Spring-System-Design-in-Practice. If there’s an update to the 
code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file 
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Mount 
the downloaded WebStorm-10*.dmg disk image file as another disk in your system.”

A block of code is set as follows:

html, body, #map {
 height: 100%;
 margin: 0;

https://github.com/PacktPublishing/Spring-System-Design-in-Practice
https://github.com/PacktPublishing/Spring-System-Design-in-Practice
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/


Preface xix

 padding: 0
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or items 
are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

$ mkdir css
$ cd css

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, 
words in menus or dialog boxes appear in bold. Here is an example: “Select System info from the 
Administration panel.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you have found a mistake in this book, we would be grateful if you would report this to us. Please 
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 
be grateful if you would provide us with the location address or website name. Please contact us at 
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com


Prefacexx

Share your thoughts
Once you’ve read Spring System Design in Practice, we’d love to hear your thoughts! Please click here 
to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

https://packt.link/r/1803249013
https://packt.link/r/1803249013


Preface xxi

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical 
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content 
in your inbox daily.

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781803249018

2.	 Submit your proof of purchase.

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781803249018




Before writing a single line of code, we need to understand what we’re building. This part focuses on 
dissecting product requirements, organizing them into actionable development tasks, and structuring 
domain models that will form the backbone of our system. By the end of this part, you’ll have a clear 
path from abstract business needs to a concrete technical vision.

This part includes the following chapters:

•	 Chapter 1, What are Product Requirements?

•	 Chapter 2, Sorting Complex Requirements into Features, Use Cases, and Stories

•	 Chapter 3, Defining Domains for Your Application

•	 Chapter 4, Defining Services for Your Domains

Part 1:  
Foundations for  

System Design





1
What are the Product 

Requirements?

Welcome to a fascinating journey through the Spring Framework!

In this chapter, we will cover the world of the so-called “business” or “product” requirements that can 
be used across any kind of development work, regardless of the tech stack. These are the system’s heart 
and soul, the first thing we need to know about our apps. Requirements are what make a product tick. 
After all, if we’re creating software, we need to have a reason why. It’s important to understand that 
best practices for software development are not just required in the middle or end of development, 
but instead, they begin right as we start conceptualizing the project.

That being said, in this chapter, we’re first going to figure out the problems that we’re solving and then 
we’ll begin to clearly articulate the solutions to those problems.

Here’s what we’ll unpack:

•	 Unlocking your finances with the Spring Framework

•	 How is this book structured to help you succeed?

•	 Why do we need to understand business requirements?

•	 Crystal-clear needs – ensuring businesses get requirements right

•	 The pitfalls of product requirements

The world of business requirements is packed with insights waiting to be uncovered. As I dove deeper, 
I was very surprised by the treasures I could mine from past experiences. Missing out on these could 
mean wasted time, money, and effort. Imagine you’re building your dream house without a blueprint. 
Sounds risky, right? That’s exactly how vital our software’s blueprint—the requirements—is.



What are the Product Requirements?4

Unlocking your finances with the Spring Framework
Understanding the significance of the Spring Framework in today’s backend development landscape 
is crucial. It stands as one of the most valuable tools out there. Period.

Much of its prestige is due to its foundation on the Java Virtual Machine (JVM), a cornerstone of 
technology that’s over 30 years old and boasts extensive market maturity.

The JVM, along with the Java programming language, creates a formidable platform for software 
development, thanks to its standout features:

•	 The universal compatibility of its compiled packages across operating systems

•	 JVM bytecode’s ability to run on nearly any hardware

•	 The Java JIT compiler’s optimization of bytecode into native code at runtime, offering high 
performance close to that of C-language programs without the complexity of memory management

•	 A vast global developer community

•	 Ongoing support and yearly improvements

•	 Access to top-tier IDEs, enhancing the development experience for all programmers

These are just a few of the reasons Java and JVM together form such a powerful platform. And that’s 
only one reason for the Spring Framework’s acclaim.

Spring Framework experts are highly sought after, and will be into the future.

Moreover, the Spring ecosystem has secured its status as the most beneficial, quickest to implement, 
and simplest Java programming framework to understand. This distinction is due to the Spring 
Framework’s adoption of superior design principles among all frameworks available on the market.

Created in 2003, the Spring Framework boasts over two decades of refinement. With each release, 
the Spring community has diligently preserved the best patterns and standards, discarding what no 
longer serves its purpose. Can you envision accessing such an extensive collection of tried-and-tested 
concepts and ideas for your benefit, free of charge?

By specializing in Spring, you gain expertise in the top framework built upon the best programming 
platform for the most demanding use case: enterprise applications. The Spring Framework is particularly 
crucial for developing backend microservice architectures, currently the foundation of the world’s 
largest companies.

Backend microservices in enterprise companies constitute a multi-billion-dollar industry, with Java 
playing a leading role. Thus, by mastering the Spring Framework, you become an exceptionally 
valuable professional in the industry, globally. You elevate yourself to a world-class, highly esteemed 
professional status.



How is this book structured to help you succeed? 5

While many excellent frameworks and languages are used in enterprise backend systems, none other 
offers a framework for enterprise backend scenarios with such a large, active community, numerous job 
opportunities, and a combination of a well-structured language with an equally structured framework. 
The Spring ecosystem is unmatched in the market.

“But the Spring Framework is such a complex beast!” This is a common sentiment? The vast landscape 
of Spring projects can seem overwhelming at first glance.

Diving into the Spring ecosystem might feel like exploring a labyrinth of endless possibilities. For 
many, sifting through the Spring documentation can seem like a daunting endeavor.

Even the most seasoned developers, including tech leads and staff engineers, often admit to lacking 
a clear overview of the entire Spring project.

Whether you’re a seasoned programmer in other languages or frameworks or just dipping your toes 
into Spring, you’ll likely encounter essential questions:

•	 What are my options for building systems with the Spring Framework?

•	 What are the key components for system development in Spring?

•	 When should I prefer one component over another?

•	 How do Spring components and projects work together?

•	 What’s the primary use of each Spring project?

By the end of this book, you’ll find yourself able to confidently answer these questions, equipped with 
a solid understanding of how Spring’s diverse components address real-world development challenges. 
While no system is without its flaws (yes, bugs are part of the journey), you’re now on the path to 
learning the Spring ecosystem. Ready to embark on this adventure?

While others may feel uncertain of how to choose Spring components for their specific implementation 
and business needs, this book offers a clear roadmap. It guides you from understanding the initial 
business requirements to confidently programming software with the right approach, simplifying 
what can often seem like a daunting process.

How is this book structured to help you succeed?
By diving into this book, you’ll learn how to decipher even the most challenging business needs. You’ll 
learn how to transform these needs into clear, actionable use cases, akin to drawing a detailed map 
that guides how a system should come to life.

Starting with the map (use cases), you will move on to designing a vibrant city (domains, services, and 
sequence diagrams), and, finally, to constructing the buildings (coding) that stand tall in production. 
Along the way, we’ll embrace automated tests like a trusted compass, ensuring our development process 
is not only swift but also efficient and fail-safe.



What are the Product Requirements?6

In this section, we’re tackling the “software developer dilemma” head-on.

In the world of big enterprise companies, software engineers often find themselves at a crossroads—
deciding whether to become visionary architects or coding wizards:

•	 Architects spend considerable time in discussions with product teams, working out how to 
decompose business needs into large work units: services, APIs, and interfaces. They are the 
professionals skilled in creating high-level designs and distributing well-defined tasks across 
teams and individual members. Many of them may not have written a line of code in some 
time, yet their expertise in design and planning remains critical.

•	 On the other hand, most programmers prefer working with the well-defined tasks that architects 
and technical leaders prepare. They enjoy coding independently, often seeking quiet away 
from business discussions, which they might find less engaging. Programmers typically focus 
more on the technical aspects of development, rather than directly extracting services from 
business-centric conversations.

This book is crafted to merge the two worlds of high-level design and detailed programming. It is 
structured as follows:

•	 Initially, you’ll learn how to discern requirements and translate them into high-level service 
designs in the first three chapters.

•	 Subsequently, Chapters 4 to 10 guide you through addressing technical and non-functional 
requirements to implement straightforward services with Spring. This includes writing 
APIs, managing data, ensuring security, and more sophisticated tasks like working with 
events-based architectures.

•	 Advancing further, Chapters 11 and 12 elevate your understanding to construct a complete 
microservice cloud using Spring, featuring self-recovery, alongside with principles and tips to 
optimize your service performance.

This book encapsulates this entire journey. I’m excited for you to uncover the full potential of the 
Spring Framework for both the industry and your career.

I have just one request as you embark on this journey:

Always carry a big smile, especially through the challenges.

Persist in your learning journey; it’s the essence of a fulfilling career in IT and software development. 
We navigate complex topics with countless variables. Remember, you’re only human, and perfection 
in software is an evolving target. Your initial code might need refinement, and that’s perfectly normal. 
Next week, you might spot opportunities for improvement—this cycle is almost inevitable.

Embrace the occasional mistake and address bugs promptly; this mindset will reward you immensely 
in your career.



Why do we need to understand business requirements? 7

Are you ready to adopt this approach and become a leading Spring expert in your organization? Do 
you aspire to be the top Spring Framework architect where you work?

Let’s dive in without delay!

Why do we need to understand business requirements?
Let’s dive into coding already...

Not so fast! A lack of understanding of business requirements will lead to a lot of misuse of the 
Spring Framework.

I recognize your eagerness to delve into creating Spring services using the best and most reliable 
design patterns available in our industry.

I could start by showcasing services built on Spring right at this moment. However, the challenge lies 
not in the absence of willingness but in the foundational knowledge of where to initiate. The Spring 
ecosystem is pretty broad, catering to a myriad of use cases, which begs the following questions: What 
are the pivotal elements? What defines the “beginning” and the “end”?

Indeed, there is no clear “beginning” or “end” within the Spring ecosystem; each component is 
designed to complement the others. Therefore, the key lies in understanding the specific needs that 
drive the selection of each component or Spring project. A common hurdle is that many lack insight 
on which Spring project to choose for their software solutions. More crucially, there’s a widespread 
challenge in translating real-world demands into effective Spring Framework architecture and 
implementation strategies.

This gap in the industry stems from developers struggling to grasp customer perspectives, rooted in 
years of technology-focused discussions and coding, with minimal emphasis on customer engagement 
or adopting alternative viewpoints. Many software developers find themselves ensnared within their 
technological paradigms, unable to easily step beyond their confines. Grasping business requirements 
emerges as a fundamental skill for programmers aspiring to enhance their development capabilities 
and architectural acumen. It is precisely this skill that we aim to develop through this book.

Perfecting business requirements

This principle will help you avoid very big losses in your Spring implementation, because business 
requirements are the highest leverage point for steering you and your team toward success—or, 
conversely, toward failure.

The nuances and variables at play are numerous. A thoroughly crafted requirements document can 
instill a sense of clarity within the team, making the necessary steps forward appear intuitive. On the 
other hand, gaps in these requirements can lead to confusion, delays, and, often, unwelcome surprises 
in daily operations.



What are the Product Requirements?8

I have witnessed numerous adverse outcomes resulting from poorly outlined requirements:

•	 Teams might find themselves discarding months of development work

•	 Systems could be launched with missing functionalities, impacting user experience

•	 Integration issues may only come to light at advanced stages of the project

•	 Project timelines could be repeatedly pushed back, disrupting planned launch dates

•	 The quality assurance team might struggle with what and how to test, leading to potential oversights

•	 Poor architectural decisions are more likely to be made, impacting the project’s 
long-term sustainability

•	 Short-sighted choices could incur significant future costs

•	 Additional hours may become necessary to meet deadlines, impacting team morale and 
project budgets

And so it goes. If you breeze past these initial chapters, heed this playful prophecy: thou shall not 
know peace in thy projects. Mornings will dawn with the suspense of what fresh chaos awaits in your 
Slack chats. But fear not! Be the guardian of ensuring all requirements align with these best practices. 
Do this, and thou art destined for a far more delightful existence as a Spring developer.

What are business requirements?

Business requirements, product requirements, and functional requirements are terms companies use to 
encapsulate the solutions their systems will provide to customer issues.

Understanding business requirements first requires a grasp of what constitutes a customer’s problem.

So, what exactly is a problem?

Can you succinctly define a customer’s issue? Many have an intuitive sense of problems but struggle to 
articulate them clearly. It’s a common oversight but many are unaware of their own gaps in specifying 
or handling business requirements.

This gap in understanding can significantly impact the quality of architectural decisions.

I’ve seen numerous instances where teams went in circles, attempting to pinpoint a product’s purpose. 
However, with the simple concepts, definitions, and tools I’m about to introduce, organizing and 
clarifying business needs becomes straightforward. Imagine converting weeks of circular discussions 
into a productive one-hour session. It’s both powerful and straightforward.

Let’s demystify business requirements with this simple yet profound definition of a “customer problem”:

A customer problem arises from an undesirable situation.



Crystal-clear needs – ensuring businesses get requirements right 9

This succinct phrase carries immense weight. It implies that software development should always 
aim to transition customers from undesirable states to solutions—desired states. Thus, your software 
should act as a gateway, guiding the customer away from their issue toward a resolution.

Now, getting back to what a business requirement is.

If we understand a problem as an undesirable situation, and the solution as the future, sought-after 
state, then the business requirement is essentially a compilation of precise statements detailing the 
actions your software must take to transition the customer from their current predicament to the 
desired resolution.

Let’s delve deeper into this concept.

Crystal-clear needs – ensuring businesses get 
requirements right
The methodology that we’ll discuss in this section helps to bring structure and clarity to the conversation 
about requirements. I have developed it using core concepts I learned in the neuro-linguistic 
programming field. While we don’t need to get into the technicalities of NLP here, I think learning 
this way of structuring business requirements will be beneficial in helping you understand the very 
nature of business requirements.

Business people will usually freely write about the characteristics of the solutions they want to create. 
But, in fact, there are a few hidden variables at play in that usual, free-text form. When you really 
understand them, you will be able to spot gaps and missing pieces in any business requirements.

Visualizing timelines for problem-solving

Utilizing a visual timeline simplifies the definition of a business requirement by focusing on two critical 
junctures: the present and future states. The present state details the customer’s current challenges, 
while the future state envisions their circumstances after implementing your solution.

Visuals are super important, as we have discovered from brain science. When we use pictures or 
diagrams, our brain just “lights up” in more places. By using more of our neurons, we understand 
things better. Our brain is really good at seeing and making sense of pictures. For example, think 
about how we understand time like it’s a straight line in our heads. That’s us using a picture to grasp 
a tricky concept. So, when we use visuals to explain systems, it taps into our brain’s strong suit of 
working with images, making it easier for us to get the hang of things, including very complex business 
requirements. In short, using pictures isn’t just helpful; it’s a smart and necessary way to make the 
most of how our brains like to learn and solve things.



What are the Product Requirements?10

The following figure offers a clear framework for understanding the transformative journey your 
software facilitates for its users:

Figure 1.1 – From problem to solution by using software

For a comprehensive and effective business requirement document, it’s essential to compile statements 
that vividly illustrate the contrast between the current and future states of the customer. Visualize 
this document as a two-column layout: the left side details the customer’s present, undesirable 
situation, while the right side outlines the desirable future state after using your software. Importantly, 
the document must also specify how the software will facilitate the customer’s transition from the 
undesirable present to the desirable future.

This structure not only clarifies the purpose and function of the software but also ensures that all 
stakeholders have a shared understanding of the objectives and the transformative potential of the project.

Taking the example of what problem social media platforms solve, we could put the elements in a 
basic timeline:

Figure 1.2 – What problem does social media solve?

In the chart, we observe two contrasting phases that delineate life before and after the advent of social 
media platforms.

On the left side, the scenario depicts a time when customers faced challenges in swiftly and effortlessly 
staying updated with their friends’ lives on a daily basis. The right side, conversely, portrays the 
transformative impact of adopting social media, where customers enjoy the convenience of easily 
and instantly connecting with friends, marking a significant shift toward enhanced communication 
and social interaction.

This stark contrast highlights the role of social media platforms in bridging communication gaps and 
fostering connections among users. Of course, there are more problems solved by social media. This 
is just an example for illustration purposes.



Crystal-clear needs – ensuring businesses get requirements right 11

Crafting business requirements

Now that we’ve delineated “problems” and “solutions” within our timeline model, the next crucial 
step is a comprehensive description of your product. Essentially, your product acts as the conduit 
transporting customers from their current predicaments to the envisioned solutions.

To ensure your product delivers on its promise, it’s vital to define the attributes and qualities required 
for it to effectively transition customers from their “problem” state to the “solution” state. This is where 
the terms business requirements, product requirements, or simply requirements come into play, often 
used interchangeably across different organizations.

Crafting a complete set of business requirements typically involves a four-step process:

1.	 Identify all the problems faced by your customers that your product aims to solve.

2.	 Define the solutions to clearly articulate how your product should transform the user experience.

3.	 Outline the high-level requirements for each problem-solution pair, detailing what is necessary 
to achieve the desired outcome.

Turn the high-level requirements into refined requirements for specific use cases, business rules, and 
processes that will guide the development and implementation of solutions.

For a more visual representation of these steps, take a look at this figure:

Figure 1.3 – From problems to refined requirements

In the upcoming sections, we’ll dive deeper into each of these steps, providing a clear framework for 
translating customer needs into actionable product features and functionalities.



What are the Product Requirements?12

Identifying customer’s key problems

Imagine you have recently joined a start-up called HomeIt—a company specializing in helping tenants 
find the perfect apartment that fits their lifestyle needs.

What could be the problems faced by tenants?

Here are some possible problems we can list. Remember, a “problem” is a description of a present 
issue, or an undesirable situation faced by your target users:

•	 Not all realtors are trustworthy

•	 Rental property ads sometimes hide existing problems

•	 Relationships with landlords and realtors can be difficult to manage

•	 There are a limited number of payment options available

•	 Contracts take a long time to be finalized

•	 There is a lack of good insurance options

What other problems can you imagine that tenants face during the experience of renting a home? 
Take some time to think about it before moving on to the next section.

Creating a matrix of problem-solution statements

Now that we have created a list of current problems tenants face, let’s create a list of possible solutions 
to each problem. There could be more than one solution to each problem:

•	 Not all realtors are trustworthy:

	� Provide a list of trustworthy realtors

•	 Rental property ads sometimes hide existing problems:

	� Allow tenants to report issues not mentioned in the property ads that they might find when 
moving into a rental property

	� Compensate tenants when they find unreported issues in rental properties

•	 A limited number of payment options are available:

	� Offer different types of payment options

	� Make payments easy and fast for all parties—realtors, landlords, and tenants

	� Provide financial guarantees for landlords, in case tenants cannot pay their rent in a 
specific month

	� Provide a financial guarantee for tenants, in case they cannot pay their rent in a specific month



Crystal-clear needs – ensuring businesses get requirements right 13

I’m not considering that some of these solutions might not be commercially viable. The examples 
offered here are for illustration purposes only.

Now that I have provided some solution samples, you can continue the exercise and provide new 
samples for the other problems mentioned in the earlier section. You can also use the problem samples 
you came up with to create new solutions.

Take some time to carry out this exercise before moving on to the next section.

Describing the high-level requirements for a solution

Now that we’ve pinpointed the issues our customers face and the solutions they need, let’s outline the 
kind of software necessary to transition them from facing problems to embracing solutions.

Consider this scenario for HomeIt:

Figure 1.4 – HomeIt problem and solution sample

What are the required features that the HomeIt system should provide in this case?

Let’s work with some simple paragraphs that illustrate the product’s value, as an example:

Our system will equip every realtor with a business quality score, a 1- to 5-star 
rating derived from feedback given by tenants and landlords after successful 
dealings. This feature will act like a trust meter, helping users make informed 

decisions by choosing to partner with highly rated professionals.

Moreover, the HomeIt platform will include a mediation feature, enabling tenants, 
realtors, and landlords to address and resolve conflicts directly within our system. 

This ensures that any bumps along the road can be smoothed out efficiently, 
fostering a trusting and supportive community.

Additionally, HomeIt will offer insurance options for both tenants and landlords to 
safeguard against unexpected incidents potentially caused by other parties.

This trio of features—reliable realtor ratings, straightforward conflict resolution, 
and comprehensive insurance—lays the groundwork for a trusted environment 

where everyone can conduct business with peace of mind.



What are the Product Requirements?14

This sample provides a broad overview, focusing on the general actions a system should undertake 
to transition users from facing problems to enjoying solutions in the future.

At this stage, detailed specifics, business rules, or processes are less critical. Think of this high-level 
requirement as the initial brainstorming phase, which will be refined later. While we could delve into 
some rules and details, the main objective now is to lay out ideas openly, without too much concern 
for precision.

These overarching product requirements outline the vision of our solution.

Adopting this structured approach simplifies identifying customer problems, envisioning goals that 
resolve these issues, and defining requirements to guide customers toward our envisioned system.

Now it’s your turn. Reflect on the problems and solutions we’ve discussed and outline some high-level 
requirements for the HomeIt start-up.

In upcoming chapters, we’ll delve into the “Refine” phase, discussing use cases, sequence diagrams, 
domains, and so on.

In the next section of this chapter, we’ll examine potential pitfalls in defining business requirements. 
Those principles will save you a ton of time.

The pitfalls of product requirements
The following guidelines were learned through personal experience throughout the years of working 
on different projects. Even multi-million-dollar monthly revenue products could bear such mistakes. 
Letting these things happen can cost the company a lot of extra time and money, and can lead to 
technical debt, bad architecture design, delivery delays, and so on. Learn from my experience; you 
don’t want to let these mistakes happen to you as well.

Are mock designs business requirements?

Though visual mockups and Figma designs are integral to software development today, they are 
essentially interpretations of well-defined business requirements.

This is important to note, as sometimes you may question whether a mock user journey for a feature 
will actually and fully deliver the requirements. As a software engineer and analyst, it is also your 
responsibility to double-check whether the suggested visuals will lead to issues during development, 
in the user journey, or in performance—or even if the visuals identify business rules that were not 
made explicit in the business requirements and use cases (more about use cases in the next chapter).

In instances where visual representations are provided without explicit business requirements, 
development risks become pronounced. Clear, written statements defining the product team’s 
expectations are indispensable for a smooth development process.



The pitfalls of product requirements 15

Requirements should not express technology choices

It’s common in our field to encounter business requirements that prescribe technical methods for 
implementing a feature. However, it’s crucial to understand that technical suggestions should not be 
confused with what defines a “business requirement.”

Falling into the habit of treating technology directives within requirements as non-negotiable can 
trap you into limited choices, closing off the possibility of discovering better solutions. This practice 
can create significant blind spots for businesses.

Another downside of incorporating technology choices into business requirements is it can limit the 
product team to the capabilities of the chosen technologies. The development team, with its deep 
understanding of various technologies and their trade-offs, is better positioned to determine the most 
suitable technology for meeting the requirements.

Pointing out that business requirements should avoid containing technical instructions opens up 
opportunities for the product team to define features more broadly, with more freedom of thinking. 
This approach allows for more innovation, giving the development team the freedom to select the 
optimal implementation methods.

Does a customer know the problems they are experiencing?

It’s quite fascinating that some problems are invisible to customers until solutions are presented. 
Often, innovative companies are the ones that shed light on these hidden issues, offering solutions 
to problems customers didn’t even know they had. Indeed, customers might be in less-than-ideal 
situations without realizing there’s an alternative.

Consider the invention of social media platforms. They introduced a new way for people to quickly 
share and receive updates from friends. Initially, this service was catered to tech-savvy individuals 
while others were hesitant or unaware of its benefits. I remember trying to get my friends on board, 
but they were largely indifferent.

Over time, however, social media has become a universal tool, with even tech-averse grandparents 
finding value in staying connected. Today, it’s hard to find someone who doesn’t use at least one social 
media platform. My grandmother, for instance, is now more active on Instagram than I am, and she 
thoroughly enjoys it.

This shift highlights how social media addressed a need that was once unrecognized. Initially seen as 
unnecessary by many, it has now become integral to our daily communication.

Are solutions the final step?

Of course, every situation can represent a problem. In such a way, moving the customer to a solution 
state might actually reveal new situations that could represent problems.



What are the Product Requirements?16

Take our social media scenario as an example. People flock to these platforms for the chance to stay 
connected with a wide circle of friends and influencers across various life stages. It’s a modern marvel 
of connectivity.

Yet, here’s the twist: becoming an avid social media user can lead to spending excessive hours scrolling, 
a potential drain on one’s time, and a source of envy and psychological strain from constant comparison. 
Not to mention the encouragement to overshare, risking privacy for a moment of online validation. 
It’s a paradox, right? This incredible solution to foster connections simultaneously breeds a host of 
new challenges.

This cycle is the heartbeat of innovation. Every solution we devise sheds light on new areas for 
improvement, signaling endless opportunities for refining and evolving our products. Developing 
software, much like navigating the waters of social media, is an ongoing cycle of release, feedback, 
and iteration.

Breaking the curse of technical debt

A technical debt is akin to a financial debt in the realm of software development. It represents coding 
choices that, while expedient, may lead to complications down the line:

•	 Code lacking automated tests is more susceptible to disruptions from changes

•	 Poorly designed software can compromise system stability in live environments

•	 An inefficient delivery pipeline might result in downtime during updates

In my experience across various companies, balancing technical debt repayment with feature development 
isn’t always straightforward. Many teams prioritize new features over addressing underlying issues. 
Here’s how we can shift that mindset.

Incorporating technical debt solutions into feature delivery

Make it a standard practice to include refactoring efforts with feature updates. This approach ensures 
that with most new deliveries, we’re also enhancing the system’s architecture and engineering quality.

Actively seek opportunities to integrate refactoring into your technical solutions for product 
implementations. It’s part of our responsibility to preempt potential issues by improving the 
system proactively.

A very simple example here would be to mandate the creation of automated tests with every release. 
This should not only cover new features but also extend testing coverage to existing functionalities 
that might be under-tested. This strategy gradually increases our system’s reliability, instilling greater 
confidence in its performance in live settings.

By treating technical debt with the seriousness it deserves, we can ensure a more stable, efficient, and 
future-proof software ecosystem.



The pitfalls of product requirements 17

Clarifying how technical debts are letting users down

By examining technical debt and tracing its effects on the user journey, we can identify and measure 
the problems it causes within the system. Here’s how technical debt might be letting your users down:

•	 Performance issues: Similar to being stuck in a traffic jam, technical debt can slow down 
processes to the point of user abandonment

•	 Data inconsistencies: Users may lose or see their critical data messed up, leading to frustration 
and trust issues

•	 Poor usability: Complex, unintuitive, or flat-out non-working interfaces can confuse users, 
making them disappointed or irritated

•	 Deployment delays: Slower updates mean users wait longer for improvements and the company’s 
time to market can be very badly affected

To truly understand the impact, take the time to quantify how many users are affected by specific 
instances of technical debt and the severity of these impacts.

When you can directly link poor design decisions to user dissatisfaction, quantifying the wasted time, 
money, and effort and convincing your product team to prioritize resolving technical debt become 
significantly easier. Making these connections clear is crucial to advocating for the necessary changes 
to improve your users’ experience.

If you put a dollar sign to the issues created by technical debt and prove there is a lot of money waste 
going on, it is basically impossible for the high managers not to prioritize those changes.

Both strategies—making tech debt payment a part of the current release development tasks and 
measuring the direct user impact—are quite good for gradually allowing the system’s improvements 
to come about more easily.

Dense documentation

In the realm of bad agile practices, it’s not uncommon to stumble upon requirements documents that 
are so dense with information that they become indecipherable. This method harks back to the early 
2000s when software was delivered on installation CDs, and development cycles could stretch from 
six months to several years to roll out a bundled update of features.

Fast forward to today, where applications often consist of a network of microservices, occasionally 
accompanied by legacy monolithic systems. This shift means updates are handled feature by feature, 
or even partial updates are released daily in production, until a whole feature is ready to be enabled 
with a feature flag. Realistically, a feature’s description shouldn’t sprawl across more than 1,000 lines, 
let alone span hundreds of pages.



What are the Product Requirements?18

If you find yourself navigating a sea of details for upcoming feature releases, expected to launch 
everything simultaneously... it’s time to voice your concerns. Launching a product this way severely 
deviates from agile principles, which in general are great for implementing smooth transitions and 
improvements on user journeys. Being off-track from those good agile practices significantly increases 
the risk of things going awry. Let’s not forget that in the digital age, agility and clarity aren’t just nice 
to have; they’re essential to success.

Vague documentation

On the flip side, encountering requirements documents that offer nothing more than high-level 
business goals raises a significant red flag. This lack of detail brings developers to a standstill, unable 
to initiate coding due to missing processes and business rules.

Developers, while adept at translating complex user needs into functional code, aren’t typically versed 
in the intricacies of business operations. They’re tech enthusiasts, focused on the latest and greatest in 
technology, not the minute details of a specific market or the legal nuances of a product. Their strength 
lies in building, not in divining the unspoken needs of the business or its customers.

In today’s fast-evolving tech landscape, finding talented developers who also grasp user needs is 
increasingly feasible. These developers, akin to explorers in the vast universe of technology, are 
always on the lookout for the next ground-breaking tech. Their journey, however, often takes them 
far from the realms of market specifics and legal intricacies surrounding a product. Unlike product 
and support teams, who interact closely with customers, developers might not have the same depth 
of understanding of customer needs or the legal frameworks that shape product development.

If you’re handed requirements that feel more like a teaser than a script, it’s crucial to push back. Request 
the full story—complete flows and business rules—from the product team. Diving into project planning 
without this information forces a shift away from your technological expertise and into a realm where, 
despite your best efforts, the results may not align with the project’s needs. Remember, your primary 
role is to bring technical solutions to life, not to guess the missing pieces of the business puzzle.

Looking beyond the happy path

In the world of product development, requirement documents often paint a picture where everything 
runs smoothly, a scenario we fondly refer to as the happy path. It’s like envisioning a road trip with 
perfect weather and no traffic jams; however, reality begs for a plan B.

Effective requirement documents delve into the realm of “what ifs” to ensure robustness:

•	 What if users stray from the intended use of the product?

•	 What if there’s a hiccup in the system’s performance?

•	 What if our third-party services temporarily go down?



The pitfalls of product requirements 19

Good requirements anticipate and plan for any less-than-ideal situation. Ensuring that the requirements 
document is equipped to navigate the “bad days” is essential. By planning for exceptions and bad 
scenarios, we equip ourselves to face challenges head-on, and the system will be much more prepared 
from the start.

Disregarding other business areas and processes

Occasionally, a product manager will provide requirements that do not account for what should 
happen in other company areas. In product development, ensuring every department is ready to play 
their part is key to launching a successful service.

Let’s say your company tasks you with developing a groundbreaking new service for the website. You 
and your team deliver this service to production at an astonishing pace, passing every quality and 
user acceptance test with flying colors. The launch is a success, customers are thrilled, and purchases 
are through the roof. But then, a curveball: the department responsible for delivering this service 
was out of the loop during development. Suddenly, there’s a bottleneck—they’re unprepared for the 
unique requirements of this new offering.

No matter the size of your organization, it’s vital to ensure no department is left in the dark; to ensure 
that, you can do the following:

•	 Engage all relevant departments from the start.

•	 Ask probing questions to understand how this service integrates into the broader 
company ecosystem.

•	 Ensure the business requirements document reflects the roles and needs of every sector.

•	 Have documents signed off by all possible departments, even from the ones not impacted by 
the changes. It is always good to demonstrate which teams are not involved as well.

By adopting a holistic approach to project planning, you not only prevent last-minute hurdles but 
also foster a culture of collaboration and innovation.

Assuming too much about other areas

It’s not rare to see product folks bring requirements that might not fully grasp how different parts of 
the company interact.

For instance, consider you’re working on the product mentioned earlier, and you need to forward 
a request to the shipping department. It’s crucial not to proceed, even during testing, without first 
syncing up with the development team in that area.

This advice ties back to a key point: has the requirements document been approved by all crucial 
stakeholders across the company? It’s essential for this document to be vetted by those who understand 
the intricacies of our various systems and departments.



What are the Product Requirements?20

Imagine you’re about to embark on a journey. You wouldn’t start without a map that everyone agrees 
on, right? Jumping into coding based on an unchecked document is like navigating with a misleading 
map. You risk following the wrong path, built on assumptions that might not stand.

Summary
That’s a wrap on this chapter. We’ve delved into the dos and don’ts of crafting business requirements 
that pave the way for successful software development.

Here’s the key takeaway: impeccable, well-organized requirements don’t just support good architecture—
they’re the foundation. A great system design stems from clearly articulated business needs. Remember, 
you’re setting the stage for success right from the start.

It’s your turn now: set aside some time to think about some existing problem that would be interesting 
to solve. Do not take this exercise too seriously. Just be playful and pretend you’re able to solve any 
problem with software. You can work a bit more with the HomeIt scenario. From the start-up problems 
we laid out, consider the following:

•	 Expand to other existing problems in the rental properties sector.

•	 Create a vision that could represent the solutions to the problems you have imagined.

•	 Write some high-level requirements to deliver the solutions you defined. Remember, it is 
possible to imagine several different requirements and features to strengthen a desired solution.

In the next chapter, we will talk about how to organize requirements into use cases, stories, and 
everything related to adding details, cycles, flows, and business rules to your requirements. We will 
bring life and joy to the visions we created with the high-level requirements you learned in this chapter.



2
Sorting Complex Requirements 

into Features, Use Cases,  
and Stories

In this chapter, we will continue our conversation about how to structure strong requirements. In 
the previous chapter, we created high-level requirements. Although useful for setting the direction of 
the products we are going to create, they are vague. In other words, they do not tell the whole story. 
They lack details that would allow us to start writing our software. If you have too many details at 
that phase, you have done it wrong.

In this chapter, we will look at the following topics:

•	 Naming the distinct features of your product

•	 Identifying actors, events, life cycles, stages, types, levels, and loops

•	 Creating user journeys, use cases, and stories

•	 Structuring the final business requirements document

•	 Which of these artifacts should come first?

•	 Scaling results with long-term business requirements

If high-level requirements are the “bones” of a system development process, this chapter revolves 
around the “muscles,” “skin,” and “organs.”

We are going to ground the visions and dreams of high-level business requirements by distinguishing 
specific features, life cycles, use cases, and roles. These elements allow us to start projecting domains, 
which will eventually become well-designed Spring services. Let’s now get started.



Sorting Complex Requirements into Features, Use Cases, and Stories22

Naming the distinct features of your product
In this section, we will go back to our HomeIt startup example. But before that, it is important to 
clarify something.

The previous chapter was all about expanding our ideas. We were in brainstorming mode. During a 
brainstorming process, we don’t care too much about structure or specifics. Brainstorming is meant 
to be an exercise in free thinking and creativity. We don’t want to constrain ourselves too much with 
the how but are instead interested in the what.

This awareness is profoundly critical in software development. You don’t want to limit your thinking 
by asking, “Is this solution even possible? How is this supposed to work? Who is going to build this? 
Which technology are we using to create this service?” Those reality-inquiring questions should come 
later in the process, and understanding this is key.

Now, after a blatant exercise in mind expansion in Chapter 1, we will add more structure to our product 
requirements. To do that, recap the high-level product requirements we imagined in Chapter 1 for 
the HomeIt startup system.

To maintain clarity at this stage, we should identify and name the different solution requirements. By 
naming them, they will be easier to refer to. Here are the features of our HomeIt system:

•	 Realtor quality score

•	 Mediation

•	 Insurance

Now, let’s proceed to the next step: identifying the structure of the system we want to create.

Identifying actors, events, life cycles, stages, types, levels, 
and loops
By understanding the conflicts and different features of our system, we know where our customers are 
and where we want to lead them. The next step is to ensure we understand the real structure of our 
system. In other words, what are the key elements that will enable the journey to the future solution 
we want to provide?

The following sections are crucial for understanding how to dissect your product requirements and 
uncovering many of the hidden features you could offer users.

Who will perform actions in your system?

Returning to our HomeIt startup idea, we have a variety of actors within our system. Each of these actors 
will be allowed to perform a well-defined set of actions. We can also refer to actors as roles in our system.



Identifying actors, events, life cycles, stages, types, levels, and loops 23

Let’s take a quick look at some of the actors:

•	 Tenants: Users who will join the website to search for rental properties.

•	 Landlords: Users who will make their rental properties available to tenants.

•	 Realtors: Users who will facilitate the rental agreement. They are the people who connect 
tenants to landlords.

•	 Admins: Users who have extremely high administrative privileges in the system. These admin 
tasks include, for instance, blocking users who have attempted to commit fraud.

As illustrated with the admins, a system doesn’t just comprise the end users on the website; it also 
includes several different flows and possibilities, incorporating internal users to whom we need to 
provide special permissions to assist in operating the system.

Here are other examples of internal users:

•	 Legal: Users who can edit contract models that landlords could use.

•	 Finance operators: Users responsible for ensuring the payment systems are functioning 
correctly, performing tasks such as authorizing refunds from insurance policies on the website.

•	 Mediators: Users responsible for conducting conflict resolution between two roles on the website. 
The goal of the mediator is to ensure different users can get along and reach an agreement in 
the case of disputes.

Imagine some other actors for our HomeIt system, but be aware of the challenges that might come 
with them.

Identifying key roles in a system
Just as with our HomeIt system, in every system analysis you conduct with your product team, 
you will have to go through the process of identifying the key roles/actors. Some product teams 
will have those roles very well defined. However, in some cases, some roles are not very well 
distinguished in the product requirements. If you can spot the missing roles, you will provide a lot 
of value to the company. This will also facilitate system development and architecture decisions.

Now that we understand the basics about who is going to take action in our system, the next step is 
to reveal the system flows. Let’s take the first step to make that happen.

Defining critical events for each actor

Once we identify the key roles in your system, it’s time to understand the power they will have. In 
this context, we will refer to these powers or actions as critical events. In other words, what are the 
possible behaviors we want to allow for each role?



Sorting Complex Requirements into Features, Use Cases, and Stories24

In the case of the HomeIt system, we know we are providing tenants with a more trustworthy experience 
in choosing the right rental properties. You probably noticed that we are also allowing landlords to 
partner with realtors, which can bring benefits to both.

Let’s go through some exercises for critical events, so you have a better understanding of how these 
can be identified. In this case, we will start from ground zero, but in the market, it is much more 
common to have many of these already defined by the product team. You will need to be aware that 
many critical events could be missing. Try to identify those missing events as early as possible. This 
is important to help you plan the right architecture and the best services.

Critical events for tenants

The critical events we see in this section are the actions our tenants will be able to perform in the system.

Let’s start with an exercise. Think of all the functionalities a tenant will need. This can be anything 
from registering themselves as a tenant to searching for properties to making an offer. But one thing 
to bear in mind is that, when conducting this exercise, you may identify events that are not related to 
the key features we distinguished in the previous sections (such as mediation, insurance, and realtor 
quality score). These new events will then belong to new features that we must identify.

The way we organize it works as follows: after listing all possible events we want to implement in the 
system, we will assign each event to the features we want those critical events to be part of. These 
features could be anything from signing up to searching for a property.

The following list essentially attributes each event to one of the features:

•	 Sign up: Register a tenant account on the website

•	 Property search:

	� Search for rental properties

	� View rental property details

•	 People search:

	� Search for realtors

	� View a realtor profile page

•	 Property rental:

	� Schedule a visit to a property

	� Make a rental offer

	� Sign a rental contract

•	 Payment: Pay for a rental contract



Identifying actors, events, life cycles, stages, types, levels, and loops 25

•	 Messaging:

	� Send messages to a realtor

	� Send messages to a landlord

•	 Notification: View the latest updates – new messages, contract updates, etc.

•	 Cancellation: Cancel a rental contract

•	 People search: Search for a landlord

•	 Realtor quality score: Give a rating to a realtor

These actions, or critical events, represent what we might allow our users to perform in this system.

One key characteristic of critical events is that even though they might not have a clear and complete 
description of what it takes to perform each event, they do provide a much more comprehensive list 
of possible actions compared to the high-level requirements.

Let’s now proceed to examine the next set of roles and their respective critical events.

Critical events for landlords

Of course, creating our HomeIt system involves more than just enabling tenants to act on the website 
or mobile app. We also need to allow realtors and landlords to interact, so that these three roles can 
bring value to the market.

In this step, we delve deeper into the world of landlords. What kind of critical events will we allow 
them to perform? Here are some examples, along with the features we expect to assign those events to:

•	 Sign up:

	� Register as a landlord

	� Fill in their personal details

•	 Rental property registration:

	� Register a new rental property

	� Set available dates for accepting visitors to their property

	� Enable/disable a property for renting

•	 Realtor partnership: Approve/reject a realtor in a property

•	 People search:

	� View a realtor’s profile details

	� View a tenant’s profile details



Sorting Complex Requirements into Features, Use Cases, and Stories26

•	 Property rental: Approve a rental offer

•	 Account:

	� View the rental account balance

	� Withdraw funds from the rental account

Another interesting aspect of writing critical events is that you should be able to almost visualize 
the user taking the action. You might not be able to picture every visual detail of the system, but 
with critical events, you will always have a sense of an action taking place. This perspective helps in 
grounding abstract ideas into tangible functionalities that contribute significantly to the UX and the 
overall system design.

Critical events involve individuals taking steps to achieve their goals within the system. These steps 
should guide them toward the solution envisioned in the high-level requirements.

Some systems will always have standard features, such as the signup process and the ability to view 
another user’s profile, among others. It’s essential to always remember these core features; otherwise, 
you might leave open gaps and missing pieces, making it difficult to fully describe your system in a 
consistent and realistic manner.

Now, over to you: What other critical events would you assign to landlords in this system? Remember, 
we have some named features that have not been touched upon at this point. For example, we have not 
assigned any critical events that would represent the mediation or insurance features we discussed earlier.

Compile a list of critical events for the mediation or insurance features for landlords. After completing 
this exercise, you can move on to explore some examples of critical events for realtors.

Critical events for realtors

The same as the last two sections, we will create a sample of the critical events for realtors. Let’s take 
a look at them here:

•	 Property search:

	� Search for rental properties

	� View a rental property’s details page

•	 Realtor partnership:

	� Send a partnership proposal for a property

	� Cancel a partnership proposal

	� Set available dates for accepting visitors to a property

•	 Messaging: Read messages related to a rental property



Identifying actors, events, life cycles, stages, types, levels, and loops 27

•	 Account:

	� View the account balance

	� Withdraw the account balance

•	 Mediation: Open a dispute with a realtor/tenant

Now it’s your turn: What else do you think realtors could be doing in the system? What other critical 
events could occur that would provide value for both tenants and landlords?

Before moving on to the next step, take some time to think about critical events for realtors. Also, 
consider the other roles in our system. What could mediators, finance operations, legal, and admins 
be doing to provide value and facilitate interactions among our three key external roles (tenants, 
realtors, and landlords)?

As you can see, planning the vision for a system from scratch is a considerable task. It all starts with 
understanding the key problems, brainstorming solutions, creating high-level requirements, and then 
expanding these requirements into a list of roles and critical events.

Now, let us lay down the key features of our system. This is a pre-condition for something even more 
important, which is organizing the events timeline.

Listing the main features of the system

So far, we have explored and identified some interesting new features in this exercise, and I hope you 
have also identified some new ones through your free-thinking exercises.

Here are the current features we have found:

•	 Property search: The ability for users to search for rental properties and view their details

•	 Realtor partnership: The ability for realtors to partner with landlords and present their 
properties to new tenants

•	 Messaging: The ability for users to exchange messages

•	 Account: The ability for users to manage their account balances in the system

•	 Mediation: The ability for users to have conflicts resolved within the platform

•	 Rental property registration: The ability for landlords to manage their properties in the system

•	 Payment: The ability for tenants to pay for their rent

•	 People search: The ability for users to search for other users in the system

•	 Realtor quality score: The reputation system for realtors

•	 Cancellation: The ability for tenants to cancel their rental contracts



Sorting Complex Requirements into Features, Use Cases, and Stories28

What other features have you discovered during your system exploration? Now, let’s move to the next 
step in our system analysis: creating a feature timeline.

Extracting a feature’s events timeline

Now that we have brainstormed several events for each role and identified many new key features, we 
need to explore how to detail a single feature and place it on a timeline. This means describing each 
feature through an ordered sequence of critical events.

Additionally, we aim to create this feature timeline in such a way that we can also map the dependencies 
of a given feature. In other words, what is the proper order of events over time, and what conditions 
must be met by the user in order to utilize that feature?

In this section, we will not delve into every feature we’ve discovered so far. That would require a lot 
of pages and time, and this book is about creating systems with the Spring Framework. We will run 
through a few key examples, and it is up to you to apply your feature thinking by following the same 
process for other features we have discovered.

Should we fully replace UX/UI work with the techniques in this chapter?
You might look at the following pages and wonder: Is the author proposing that we replace 
the standard practices of UX/UI research with the tools laid out here? My answer is, “No!” We 
should never consider these pages as replacements for proper market research and specialized 
UX/UI methodologies. The pages here are meant to complement the work of great professionals 
in their UX research. This is simply a way to write event sequences in a very “dry,” straight-
to-the-point manner. This will aid engineers in making more sense of the systems they are 
building. However, occasionally, you might find that there are many gaps in how even UX 
work is being conducted in a specific project. In such instances, you might resort to crafting 
timelines to help refine product and business requirements.

Let’s take a first shot at creating timelines for some of the most important features in the HomeIt system.

Organizing the sign-up feature on a timeline

There are no prerequisites for performing this task, since this is step 1 of using Homelt. You can follow 
these steps to organize the sign-up feature:

1.	 The user lands on the initial website page.

2.	 The system validates the provided information.

3.	 If necessary, the user can correct any invalid or missing information.

4.	 The user submits the information.

5.	 The account is successfully created, and the user is now logged in.



Identifying actors, events, life cycles, stages, types, levels, and loops 29

Notice that we are ordering the events, but we are not assuming too much about the specific information 
needed at this point. We are drilling down enough to understand, at a high level, how the events 
should be organized in the feature.

Now, let’s move on to the next feature.

Organizing the rental property registration on a timeline

To organize the rental property registration on a timeline, there must be a registered landlord who is 
in the main logged-in area. Then, the following steps are carried out:

1.	 The landlord chooses the option to add a new rental property.

2.	 The landlord provides the required information to register the rental property.

3.	 The system validates the information sent.

4.	 The landlord corrects the rental property information if needed.

5.	 The landlord finishes submitting all the information (description, address, price, etc.).

6.	 The landlord lands on the new property page, which now has an inactive status.

7.	 The system presents an option for the landlord to upload media files (pictures or videos).

8.	 The landlord chooses the option to upload the media files.

9.	 The landlord provides the required media files to register the rental property.

10.	 The rental property moves to the processing media files status.

11.	 The system starts to process the provided media materials (results to be defined).

12.	 When the media process is finished, the rental property moves to the ready status.

13.	 The landlord is presented with the option to publish the rental property and make it available 
to tenants and realtors.

14.	 The landlord selects the option to publish the rental property.

15.	 The rental property is now in the published status, available when using the property search feature.

As you can see, this specific feature outlines what we call an object life cycle. The rental property 
begins in an “inactive” state, then progresses through the statuses of “processing media files,” “ready,” 
and finally “published” as the landlord advances through the various steps of the feature.

We will delve deeper into life cycles in the subsequent sections and chapters of the book. However, 
it is evident that identifying life cycles is only possible when we carefully lay out a feature through 
critical events on a timeline.



Sorting Complex Requirements into Features, Use Cases, and Stories30

Organizing the property search feature on a timeline

To organize the property search feature, it is required that there be a registered landlord who has 
registered a rental property. The rental property is in the “published” state. An optional requirement 
is a registered tenant. The following steps are carried out:

1.	 The user lands on the first page of the HomeIt website.

2.	 An unregistered/registered user types in the desired rental property location in the search bar 
of the first page (ZIP code, street name, state, city, etc.).

3.	 The user can provide a filter for ordering (by price, ascending or descending; by street name; 
by proximity; etc.).

4.	 The system provides a list of the listed properties found and their respective pictures.

5.	 The user can view the pictures for each property in the list.

6.	 The user can click to see the details page for the listed property and view all the information 
the landlord has provided.

As you can notice, this feature has many requirements or prerequisites. This means that other features 
should be present before we are able to use this one. This starts to give us some clues about which 
features should be developed first. But there is much more to consider, which we will explore by the 
end of this chapter. Now, let’s move on to another interesting feature.

Organizing the realtor partnership on a timeline

The prerequisites for organizing the realtor partnership are a registered realtor, a registered landlord, 
a registered rental property, and the property search functionality implemented. It is also required 
that the realtor and landlord are logged in. The following steps are carried out:

1.	 The realtor is logged in and, after searching for a property, lands on a property details page.

2.	 The realtor selects the Partner with the Landlord option.

3.	 The realtor informs which days of the week they are available to receive tenants in the property.

4.	 The realtor specifies the time of day they are available on each day of the week to receive visitors.

5.	 The realtor indicates the percentage of the rent they want to receive as a partner.

6.	 The realtor finishes submitting the partnership proposal.

7.	 The partnership proposal is now in the pending partnership approval state.

8.	 The landlord views a list of their current partnership proposals.

9.	 The landlord visits one of the partnership proposals.

10.	 The landlord can view the realtor’s information on the proposal page (user details, address, 
quality score, available days and hours to receive visitors, etc.).

11.	 The landlord chooses to accept the partnership proposal.



Identifying actors, events, life cycles, stages, types, levels, and loops 31

12.	 The partnership moves to approved status.

13.	 The realtor can see the approved partnership in the partnerships list.

14.	 The realtor’s contact information is now shown on the rental property page.

In this feature, several important aspects need to be noted. The first is that this feature depends on a 
lot of prerequisites and involves interaction between two different users. Just like in the rental property 
object case, there is now a life cycle defined for the partnership object. These objects move from the 
pending partnership approval to approved status. We have also referred to a “list of partnerships” in 
the description, but we have not defined that feature anywhere so far. That is, we need to be aware that 
when writing a feature in a clear timeline, we will often reveal the need for other essential features. 
This new list feature should now be included in the prerequisites section as well.

This feature description only refers to the “happy path” – when a successful partnership is celebrated. 
Remember what we discussed in Chapter 1, when we talked about mapping possible errors and mistakes 
the users could make. We should also address questions such as what happens if the landlord rejects 
or never responds to the partnership proposal.

As you can see, things can become quite complicated over time when it comes to complex features. 
Now, let’s move on to the last two features we want to outline here.

Organizing the property rental feature on a timeline

For this section, it is required that there is a registered landlord, a registered rental property, the 
property search functionality, and a registered tenant who is logged In. Along with that, we also need 
payment methods and HomeIt’s finance details.

Here are the steps:

1.	 The tenant visits a property page.

2.	 The tenant selects the option to send a rental proposal to the landlord.

3.	 The tenant reviews a rental agreement contract and signs it in the system.

4.	 After the signing, a rental proposal is created in the pending approval status.

5.	 The landlord reviews the rental proposal and visualizes the relevant tenant information (to 
be defined).

6.	 The landlord chooses the option to accept the rental proposal.

7.	 A rental agreement document is produced with both electronic signatures.

8.	 The rental proposal moves to the accepted status.

9.	 The tenant is informed that the rental proposal was approved.

10.	 The tenant chooses the option to select a payment method.

11.	 The tenant sends the payment information.



Sorting Complex Requirements into Features, Use Cases, and Stories32

12.	 The payment is carried out successfully.

13.	 HomeIt gets its share of the payment in the company account.

14.	 The realtor, if there is one, gets their share of the payment directly in their account.

15.	 The landlord gets the outstanding amount in their account

16.	 Every month, the payment happens again, and all parties receive their share of the amount

This is a very complex feature we have outlined, and the following observations need to be added here:

•	 There are possibly three users interacting in this flow: tenants, realtors, and landlords.

•	 The HomeIt finance workflow needs to be in place so that the company can receive its share 
of the payments.

•	 There is a recurring loop in this flow, which is the monthly payments that need to occur.

•	 This feature must also be expanded to accommodate exceptional use cases, such as the following:

	� What if the payment does not go through in a month due to a system failure?

	� What if the user (tenant) does not have the balance to pay for the rent in a given month?

	� When distributing the payment share to each party, what if one of the transfers fails?

What other exceptional behavior can you find here?

•	 We have several possible payment methods available. In fact, depending on the countries where 
HomeIt will operate, there could be dozens of different payment methods available:

	� Different payment methods operate in different ways. Therefore, a critical question here is: 
How can we prepare this system to receive payments in the most flexible manner, making 
it easy to quickly integrate payments from different countries as soon as possible?

This type of analysis summarizes some of the critical steps we need to take in order to create the 
proper requirements for a system. It can become complicated over time. However, that is what software 
engineering is all about: ensuring that we can lay out the requirements as clearly as possible so that 
our architecture choices are made easier in the future.

Simplifying requirements

From all these exercises, you might think that implementing these requirements will take a lot of time, 
and you are right. Demanding that the development team implements every feature perfectly before 
publishing a website will make it very complicated and costly. That is not typically what we do in the 
world of software development. Perfect requirements are not always possible to implement. So, how 
do we proceed with a more practical approach in light of such complexity?



Identifying actors, events, life cycles, stages, types, levels, and loops 33

In cases where the requirements become too complex, costly, and time-consuming to develop, one 
critical approach is to reduce the scope of the work. To establish our online presence with minimal 
cost, we can reimagine the HomeIt system to achieve similar results with simpler features.

This is what we refer to as scope reduction. By omitting certain features, we can achieve a successful 
release within a shorter timeframe.

A simple example of simplifying complex requirements in the context of the HomeIt system study 
could be as follows:

•	 We can begin by developing a basic website that enables landlords to register their accounts 
and list their rental properties. We will exclude registration features for other user types.

•	 HomeIt will initially not process monthly rent payments.

By omitting many other features, we ensure the website launches with the essential components to 
establish an online presence. Additional features can then be incorporated over time. This approach 
is known as a roadmap.

Now, let’s delve deeper into the stages and loops within our system.

Understanding stages, levels, types, life cycles, and loops

Every system will be built using a combination of stages, levels, types, life cycles, and loops. Let’s define 
them now for our understanding.

Stages

This means a series of “phases” or “statuses” an entity will go through across time as the user progresses 
in their journey. In the HomeIt system, so far, we have stages for the following objects:

•	 Rental property: Inactive, processing media files, and published

•	 Partnership proposal: Pending partnership approval, accepted, and rejected

•	 Rental proposal: Pending approval, accepted, and rejected

Think of stages as the maturity steps an object could be represented within your system. It is common 
to have stages represented by a “status” attribute in the object, meaning we could monitor an object 
at different developmental steps over time.

Levels

A “level” is a set of distinctive features or qualities that you might want your entities to acquire in a system 
that makes it stand out from other objects on other levels. One key aspect of creating levels for an object 
is that any object could potentially navigate through the levels and be enriched in its life cycle. As the 
object evolves in your system, it achieves different levels and gathers more value and some privileges.



Sorting Complex Requirements into Features, Use Cases, and Stories34

In other words, during the evolution of an object in the system, different levels could be attributed to 
it, each bringing special properties to the object. In our HomeIt startup, so far, we have not found any 
different levels in the requirements. However, we could design some, such as the following:

•	 Realtors: To provide incentives for our realtors, we could implement a tiered system based on 
reputation score. Newly registered realtors could be designated as Bronze Realtors, limited to 
partnering with no more than four rental properties. Upon achieving a reputation score of 3 
stars, they would become Gold realtors, with the ability to partner with up to 10 rental properties. 
Realtors with a reputation score of five stars would be designated as Diamond Realtors, with 
no limit on the number of rental properties they can partner with.

•	 Landlords: Incentives for landlords could involve reducing fees based on the number of active 
rental agreements. For example, having five simultaneous agreements could result in a 10 
percent fee discount.

•	 Tenants: To incentivize tenants and landlords, discounts on insurance prices could be offered 
based on the rental property’s history. Properties rented without any incidents for a certain 
number of months would qualify for lower insurance prices. This creates a quality tier system, 
where higher-quality properties result in lower insurance prices, making them more appealing 
to tenants and encouraging landlords to maintain their properties well.

You can think of levels as “ascending layers” for objects in the system. They serve as a way to distinguish 
valuable behaviors in our systems and grant more rights, permissions, power, bonuses, or privileges 
to the best users.

Types

An object could have different types within a system. A clear example in our HomeIt startup is the 
various roles we have identified. While all actors are “users” on the website, they possess different 
characteristics because they aim to accomplish different tasks within the system.

We could design other types, such as the following:

•	 Property types: By distinguishing between houses and apartments in the HomeIt system, we 
can implement more effective filters to better serve our customers in the property search feature

•	 Rental agreement types: Offering a variety of agreements can be useful to represent different 
types of insurance with varying coverages and clauses

Think of types as a means to distinguish between completely different packages of attributes and 
behaviors that an object could possess in the system. We are not necessarily suggesting that one type 
is superior to another; rather, they are simply distinct and serve different purposes.



Identifying actors, events, life cycles, stages, types, levels, and loops 35

Life cycles and loops

You can think of a life cycle as the progression of an object across different levels or stages over time. 
It is crucial to distinguish and represent life cycles visually to better understand and communicate all 
the possibilities in the system.

By allowing life cycles to emerge, we can create state diagrams, which become key artifacts for developers. 
With these state diagrams, we can map test cases with a high degree of accuracy.

In our HomeIt startup case study, we can visualize life cycles for several objects. Let’s go through some 
examples. The first one is the rental property life cycle:

Figure 2.1: Rental property life cycle

As you can see in Figure 2.1, visually representing stages of the rental property life cycle – in this case, 
moving from inactive to processing media files to published – makes it easier to understand the entire 
history of an object in the system. Additionally, when transitioning to different stages, we can visually 
identify the triggers that cause the transition to occur.

Next, let’s visualize the life cycle of realtor levels:



Sorting Complex Requirements into Features, Use Cases, and Stories36

Figure 2.2: Realtor levels life cycle

As you can see in Figure 2.2, the reputation levels we created for the system allow a realtor to move from 
lower levels to upper levels, then to lower levels again. Sometimes an object’s life cycle will become a 
loop. In fact, we can consider that our users will always go through a loop in our system, since they 
can start as newly registered users from the “outside world,” become customers, then go inactive for 
a while, and eventually reactivate their account.

Understanding the user’s life cycle as an overarching loop is important because we want to develop 
retention strategies in our systems. See the last diagram in this example:

Figure 2.3 – Tenant’s website loop



Creating user journeys, stories, and use cases 37

Finally, as in Figure 2.3, we have a more general description of the conditions that create a life cycle 
loop – in this case, a user moves from an unregistered to a registered tenant, then moves to a tenant 
with an active rental agreement, and so on. We don’t necessarily need to have a specific “status” 
attribute in an object to design a systemic loop or a life cycle. It’s essential to be aware of the existing, 
implicit loops in our systems. This awareness allows us to identify leverage points to ensure we can 
consistently provide more value as time passes.

It’s very important to note here that failing to recognize loops and life cycles risks overlooking valuable 
insights and strategies. Creating visual representations of these structures is one of the most important 
tasks in requirements analysis.

Warning
I’ve encountered countless projects where the life cycles and loops in the systems were not 
documented at all. Statuses and levels would be defined in software, only to become loosely 
designed entities and features. Providing clear diagrams with all existing statuses and situations, 
along with the transition triggers, can offer a powerful and straightforward way to help your 
product team gain more insights that will enrich your UX.

In many cases, while documenting and visually representing levels, stages, loops, and life cycles, 
you may discover that not all transition triggers are clear or even present in the software or the 
business requirements. There are often hidden opportunities in these seemingly simple visual 
diagrams. In fact, much of the best feedback I’ve received in my career was due to my habit 
of creating these visuals whenever possible. I recommend practicing creating these diagrams, 
even when working on a project with others.

The value of projecting requirements in this step-by-step manner is that we have a very good amount 
of freedom to imagine whatever we want for our system. It also helps that this is a very powerful 
brainstorming method. We don’t start by trying to define a specific feature. Instead, we begin by 
expanding the possibilities we can envision for the system we’re building.

If you are a developer, understanding these “dimensions” of software requirements (problem, solution, 
high-level requirements, roles, critical events, levels, stages, life cycles, and loops) will be really helpful, 
as you will be able to dissect the requirement documents that usually come with a lot of assumptions 
and vague information. These are tools for ensuring that the specific business requirements clearly 
express a consistent journey for the users in your system.

Creating user journeys, stories, and use cases
In this section, we will produce three key artifacts that will integrate all the business requirement 
elements we have seen until now in a way that makes sense from a business requirements perspective.

We will first explore how to assemble separate features into higher-level user journeys that better 
illustrate the strategy we want to accomplish with our software.



Sorting Complex Requirements into Features, Use Cases, and Stories38

We will learn how to write user stories that summarize and articulate our features from a 
business perspective.

We will also write use cases that allow us to clearly communicate the value creation process that we 
aim to provide, expressing our business requirements with a high level of clarity and consistency.

Attention
The requirements building blocks we have seen up to this point function like LEGO blocks 
that can be used to explain things at different levels of detail. It’s essential to recognize that 
different blocks are used to communicate with different levels in the company, enabling us to 
understand which people will be more interested in which kind of artifact. We will revisit this 
concept in a later section of this chapter.

Let’s define and illustrate each of these artifacts and examine the relationship between all of them and 
other models we have seen so far.

User journeys

User journeys can provide a very high-level overview of how users will navigate through the experience 
of using your software, although they are not as vague as the high-level business requirements we 
saw in Chapter 1.

User journeys allow us to visualize user behavior over a long timeframe. In a sense, the user journey 
can be considered a specific way of making the entire user life cycle more explicit regarding the actions 
the user will take in your system.

A user journey can also be used to express the relationship between different users in the system over 
an extended period. While the critical events we have assembled in a feature will describe a finer level 
of detail, the user journey will illustrate larger chunks of the user actions in a few blocks.

Creating user journeys for one user at a time

Let’s get back to our HomeIt startup. Look at this user journey:



Creating user journeys, stories, and use cases 39

Figure 2.4: Tenant user journey

In this first example, as seen in Figure 2.4, we can communicate the entire tenant journey on the HomeIt 
website by summarizing their actions one block at a time. Each block represents a whole feature that 
can, in turn, be decomposed in different ways.

Let’s take a look at the landlord user journey now:

Figure 2.5: Landlord user journey



Sorting Complex Requirements into Features, Use Cases, and Stories40

As you can see from the example in Figure 2.5, it is possible to concisely summarize the entire landlord 
journey on the website.

This method of using user journeys focuses on one user. In both examples, we are omitting some 
actual features, such as mediation and the insurance feature. Of course, if you have practiced creating 
requirements on your own, we are also leaving out the features you have discovered. However, you 
can get the idea. A user journey is capable of conveying a lot in just a small visual space.

Let’s explore another way of creating user journeys.

User journeys with multiple users

In this case, we are involving multiple users in the same user journey. Take a look at Figure 2.6:

Figure 2.6: Multiple users in the same user journey



Creating user journeys, stories, and use cases 41

Due to space constraints, I have included just a section of the entire user journey that involves four 
actors: a tenant, a realtor, a landlord, and HomeIt. The user journey is divided into horizontal lanes, 
with each lane representing a user. The actions in a lane are displayed on the left side, and the boxes 
follow the order in which those actions occur over time.

It is quite easy to follow the actions of each user and the sequence in which they occur. In the real world, 
you can create extensive user journeys that span several departments and involve various types of users.

This type of user journey, involving several different users, can be created for very high-level processes 
or very specific detailed processes as well. It all depends on your needs.

As an exercise, create a user journey for the mediation flow. Take some time to think it through and 
create the lanes and all the different users involved, along with the actions that should take place over 
time for each user.

User stories

Because team members often get deeply engrossed in the technical details of a project, it can be 
challenging to encourage them to think from the end user’s perspective. When we fail to adopt our 
users’ viewpoint, we risk creating products or features that don’t align with their needs. Unfortunately, 
this is a common occurrence in the market.

This is where user stories prove to be invaluable. These artifacts are designed to convey requirements 
from the user’s perspective, making them particularly effective for helping team members empathize 
with users. User stories enable colleagues within a project to “wear the user’s hat,” so to speak. They 
aim to shift everyone’s focus toward understanding and prioritizing the user’s needs over the intricacies 
of the software.

The user story template

A user story is essentially a brief description that follows a specific template to convey a requirement 
from the user’s perspective. The most common format for a user story is as follows:

Title: Realtor Sends a Partnership Proposal for a Rental Property

As a realtor, I want to send a partnership proposal for a rental property so that I can assist landlords in 
finding great tenants. This will not only help me increase my monthly income but also generate income 
for the landlord. Moreover, the partnership proposal will aid tenants in finding their desired home.

Acceptance Criteria:

The realtor can send a partnership proposal for a rental property.

The partnership proposal becomes available for the landlord to review.



Sorting Complex Requirements into Features, Use Cases, and Stories42

As you can see, the user story is a focused part of the action. The ability to create a visual in the reader’s 
mind is a very important goal to work toward. User stories should be all about describing events that 
are easy to visualize in a summarized manner.

It’s clear that a user story can be combined with a list of critical events that should occur, allowing us 
to communicate the step-by-step value creation process we aim to implement in software effectively.

What questions does a user story answer?

User stories play a crucial role in the software development process by providing answers to key 
questions, such as the following:

•	 Who is attempting to accomplish what?

•	 What action is the user supposed to take in this story?

•	 Why is it important for the user to be allowed to perform that action?

•	 Which other users are affected?

•	 Why is the action in this story also important to these other users?

In many cases, the user story initially may not encompass numerous business rules. I prefer to view 
them as tools to illustrate actions, the relationships between users within the system, and the value 
created through those actions.

When writing user stories, it’s generally advisable not to describe too many actions at once. If your 
story is too lengthy, it could indicate that it should be divided into multiple stories.

Learning to think outside the technology box
As mentioned earlier, an effective user story does not delve into the technical specifics of what 
is being developed. It is crafted specifically to help people focus on users, relationships, human 
actions, and the motivations of all involved parties. If you find yourself mentioning the latest 
JSON format or which HTTP method should be used, you’re missing the mark. User stories 
are about understanding the “why” behind the feature, not the “how.”

Crafting a great title for a user story

The best way to introduce a user story is with a title that is simply a brief description of the action the 
user needs to perform in the system. How would you describe the user action in a concise sentence 
without including any software-specific details? In other words, how would you explain what the user 
should do with the system without mentioning the system itself?

User stories are essentially an explanation of the process. Yes, you can include important business rules 
if necessary, but there’s no need to focus too much on them. My preferred approach is for business 
rules to be more thoroughly addressed in use case documents, which I will explain later.



Creating user journeys, stories, and use cases 43

For many, avoiding discussions of software and technology is not an easy task! We must describe what 
the users should be able to do without referring to screens, buttons, data formats, network protocols, 
design patterns, and so on. We should remove all technical terminology from user stories, both in 
their titles and descriptions.

What are the acceptance criteria?

A crucial component of every user story is the acceptance criteria section. It ensures that we have 
completed the story’s implementation in the software. An excellent acceptance criteria section provides 
a comprehensive list of business tests that can be conducted to determine whether the development 
is fully complete.

The acceptance criteria play a key role in creating our tests, marking the point where we begin to delve 
into software analysis. A well-crafted acceptance criteria section in user stories will guide the creation 
of a detailed, concise list of automated tests to be conducted in the software. With clear acceptance 
criteria, there will be no dispute about whether the software is ready for release. The acceptance criteria 
section acts as the gatekeeper for deploying our product in production.

Now is a great time to pause your reading and practice crafting some outstanding user stories for our 
HomeIt system. You can follow this template:

Title: <<User X performs an action described in a brief sentence.>>

Description:

As a <<add role here>>, I want to be able to <<add the action here>> so that I will be able to <<add 
the desired result here>>.

Doing that will allow me to <<consequence 1, consequence 2, consequence 3>>.

This will also allow me to avoid <<negative consequence 1, negative consequence 2>>.

This will also impact <<other users or roles>> in the following ways: <<add a list of consequences here>>.

Business Rules:

<<You might want to add business rules here, never talking about technical details, buttons, screens, etc.>>

Acceptance Criteria:

•	 <<The action we need to verify that is happening correctly in the system>>

•	 <<Other actions or consequences for which correctness can be verified after the software is done>>

If you search for user stories online, you’ll encounter various templates. I prefer this custom-made 
one, allowing for a deeper exploration of relationships and benefits beyond what other common 
templates might permit.

After practicing writing some user journeys, move on to the next section.



Sorting Complex Requirements into Features, Use Cases, and Stories44

Use cases descriptions

So far, we have explored various tools that assist in articulating our business requirements. If you were 
a painter, these requirement tools could be likened to the distinct colors that enable you to paint the 
portrait of your software.

The use case description is another crucial tool I prefer for ensuring developers understand what 
needs to be built. Its purpose is akin to that of user stories: with a use case description, we can depict 
a process that the user will undertake to interact with our system.

Beware
Before we delve into use case descriptions, I’d like to clarify a potential source of confusion. 
In the realm of software engineering, there exists a widely recognized tool known as the use 
case diagram. When I refer to use case descriptions, I am not talking about use case diagrams. 
Given their popularity, I won’t be discussing use case diagrams in this context. Additionally, I 
prefer using user journey diagrams over use case diagrams for explaining user actions from a 
very high-level perspective.

Comparing user stories to use case descriptions

Returning to our main topic: if use case descriptions are similar to user stories, what differentiates the 
two? Here’s my perspective: user stories are intentionally kept brief to avoid excessive detail about the 
process being described. The process is intended to be illustrated by another tool. In contrast, use case 
descriptions are where we aim to provide more detail – indeed, significantly more.

Here’s how it works: while user stories are meant to avoid delving deeply into the system’s specifics, 
use case descriptions allow for a combination of the user story with other artifacts we’ve discussed.

For instance, a use case description might begin with the text of a user story and then detail the sequence 
of critical events that make up the process we need to program. It might also include relevant diagrams 
within a use case description to give developers a clearer understanding of how the system operates.

The use case description acts as comprehensive documentation of a use case. Starting with the user 
story enables people to grasp the action, motivations, and relationships behind it. Progressing to a 
sequence of critical actions lays the groundwork for developing the process in software. Adding object 
stages or a life cycle diagram enhances the visualization of transformations over time.

In use case descriptions, the combination of visuals, the accompanying user story, and critical events 
forms a potent tool for conveying your software’s objectives. Incorporating additional diagrams, such 
as one explaining various system levels, further enhances clarity.

A final thought on use case descriptions is that they should be viewed as the canvas on which you add 
the colors and sketches to express what the software is intended to do.



Creating user journeys, stories, and use cases 45

Triggers

Another crucial element to incorporate into use case descriptions is triggers, which I consider the 
context enabling the user to initiate the action proposed by the story. Indeed, there can be multiple 
avenues through which a user may begin to engage with a user story. For example, in our HomeIt 
system, when a tenant is searching for a rental property, we could consider the following triggers:

•	 Direct property search: The tenant initiates a search through the app’s search feature to find 
available properties matching their criteria.

•	 From a mobile phone: The user is starting to search for a rental property from a mobile phone. 
In that case, starting from their mobile might change the process significantly. What could we 
have work differently in that case? Maybe we can use the mobile phone localization features 
to find properties that are geographically close to the user. In that case, it may be interesting 
to add a feature where the user chooses the distance from their location to find properties 
while searching.

•	 From a personal computer: If the user is starting their search from a computer, we can consider 
providing a very different layout that would take advantage of the larger screen space. Using a 
grid with high-resolution images might help captivate the user a bit more. Perhaps we could 
have a feature for comparing images from different homes on the same screen. Who knows?

•	 Recommendation system: The tenant receives personalized property recommendations based 
on their search history and preferences.

•	 Notification alerts: The tenant signs up for notifications and receives alerts when new properties 
that meet their criteria become available.

•	 Agent contact: The tenant contacts a realtor through the app for assistance in finding a property.

This simple example illustrates that although we have just one use case (in this example, the rental 
property search), the way that feature could work will be context-dependent. We use the term “trigger” 
to refer to each different context from which the user could start their user story.

Attention
It’s very important to keep this clear in your mind: we could have a different set of critical events 
for different triggers within the same use case.

Now, let’s see a useful template for creating our use case description. You are free to use it for any use 
case description:

Use Case Name: Follow the same rules as for user story titles.

User Story: Introduces the action that will take place, along with the motivations and relationships in 
the system. It includes the acceptance criteria used to assert that we have finished developing our story.



Sorting Complex Requirements into Features, Use Cases, and Stories46

Trigger #1 – Title of the trigger: Identifies the unique context from which the user will perform their action:

•	 Trigger Description

•	 Critical Events Timeline for the Trigger

•	 Stage, Levels, Types, Life Cycles, Loops (or any other relevant diagrams that will aid in understanding 
the system)

Finally, let’s take a look at a sample use case description, where a landlord publishes a new rental property.

Use case sample

Title: Landlord Publishes a New Rental Property

Description:

As a landlord, I want to be able to publish a new rental property in the system so that I can make my 
property available for rent. Doing so will allow me to attract prospective tenants, select the best tenant, 
create a new income stream when the property is rented, and attract a new realtor as a partner to reach even 
more tenants. This will also help me avoid having my property remain empty and without a new income 
stream. Additionally, this will impact realtors by providing them with an additional property to show their 
prospects and enabling them to gain a new income stream as they assist me in managing the property.

Business Rules:

Properties will be fully available for rental and partnership proposals only after all media is provided.

Landlords must always provide the full address of the property, the price of rent, and the conditions 
and features of the property, besides the media files.

Acceptance Criteria:

A landlord user is able to publish a new rental property in the system, with photos and videos attached 
to it.

Trigger #1: The rental property is published on the website.

Critical Events Timeline:

1.	 On the website, the landlord selects the option to add a new rental property.

2.	 The landlord provides the required information to register the rental property.

3.	 The system validates the information sent.

4.	 The landlord corrects the rental property information if needed.

5.	 The landlord completes the submission of all information (description, address, price, etc.).

6.	 The landlord is directed to the new property page, now in the inactive status.

7.	 The system offers an option for the landlord to upload media files (pictures or videos).



Structuring the final business requirements document 47

8.	 The landlord chooses to upload the media files.

9.	 The landlord uploads the necessary media files for the rental property registration.

10.	 The rental property status changes to processing media files.

11.	 The system begins processing the uploaded media materials (specific results to be defined).

12.	 Upon completion of media processing, the rental property status updates to ready.

13.	 The landlord is given the option to publish the rental property, making it available to tenants 
and realtors.

14.	 The landlord selects to publish the rental property.

15.	 The rental property is now in the published status and appears in the property search feature.

In short, this use case is about the landlord adding all the required info to register a rental property, 
so that it is available in the search feature.

Let’s visualize the property life cycle again:

Figure 2.7 – Rental property registration life cycle

This is a very effective way of structuring a single use case within a complete business requirements document.

Let’s now examine how a final business requirements document is created.

Structuring the final business requirements document
This section discusses the features of a great business requirements document. Remember to check 
whether these aspects are covered when creating or reviewing your own documents. This will put you 
in a good place for almost any project.



Sorting Complex Requirements into Features, Use Cases, and Stories48

A single concept/feature with a well-defined scope

A business requirements document should focus on the delivery of just “one concept.” What exactly 
does that mean? It means the document often includes a set of use cases, but they all contribute to a 
single “piece of value” that your software aims to provide. This piece of value is self-contained, not reliant 
on anything else to enhance user value. The flow is constructed in a complete way, from start to finish.

For instance, we discussed earlier the idea of launching a first simplified version of the HomeIt website 
that would only allow landlord registrations. Everyone else would be visitors who could obtain the 
landlords’ phone numbers from the published properties. This means that a business requirements 
document created for the first release (let’s refer to it as the landlord flow release) would contain 
essentially the following use cases:

1.	 A landlord registers on the website

2.	 The landlord publishes a new rental property

3.	 An unregistered visitor searches for a rental property

4.	 The unregistered visitor visits a rental property page

As you can notice, it is possible to create value in the market for all parties by providing only four use 
cases. This approach helps in going to market much faster than trying to implement all the use cases/
features that we have uncovered so far.

But what do you do when there are other systems in place already?

You will often join companies that already have numerous systems in place. In such cases, the 
requirements documents typically focus on a new feature that adds value to existing flows. Suppose 
you join HomeIt as a programmer right after the initial landlords flow release. A logical next step 
might be to deliver the tenants flow, which could include these features:

1.	 A tenant registers on the website

2.	 The tenant sends a rental proposal for New York properties

3.	 A landlord accepts a rental proposal

4.	 The tenant sends the payment information

5.	 The payment is processed every month

In this case, for a second release, we are adding five new use cases to our system that will enable us to 
manage payments. Even so, we are limiting this feature to properties in New York only. This approach 
could be useful if, for instance, the finance team is still quite small and the HomeIt startup wishes to 
start in a reduced geographic area to focus its efforts more efficiently.



Structuring the final business requirements document 49

Clear inputs and outputs

We will delve much deeper into inputs and outputs in the upcoming chapters. But essentially, this means 
that the use cases should describe the processes’ inputs and outputs as accurately as possible. For instance, 
here are some important questions to consider when dealing with inputs for rental property registration:

•	 What are the exact attributes we expect to register for a rental property in the HomeIt system?

•	 What kind of media files do we expect to support?

•	 What is the maximum acceptable length for rental property descriptions?

Here are some questions we expect to answer to clarify the outputs:

•	 What types of media files do we expect to produce after processing the media files?

•	 What is the acceptable resolution we expect the videos to have after we process them?

If we do not know what inputs and outputs are expected in our requirements, this could block 
programmers later down the road.

Exceptional use cases made explicit

When accepting and reviewing the business requirements documents from the product team or area, 
make sure to take these actions:

•	 The user alternative behavior question: First, after reading the descriptions and critical events, 
make sure to identify where in the system flow users could diverge from the expected path. 
For each of these junctures in the user journey, it’s crucial to ask: “What if the user behaves 
differently from what is expected at point X? How should our system respond to that?”

You’ll often find that the product team has not thoroughly considered alternative behaviors. The 
issue is that, in systems experiencing high volumes of requests, users will engage in many new 
and creative actions. It’s vital that programmers understand how to handle these alternative flows.

•	 System errors and failures: Second, when reviewing the documented features and requirements, 
you should also mark every step where a system failure could occur. While a business requirements 
document is not the precise place to start discussing technical issues, it may reveal important 
points for consideration.

For instance, if you know that a requirement relies on a specific partner system that could go 
offline, you need to highlight this concern. How does the product team intend to handle a 
failure in that system? Do they aim for seamless recovery without the customer being aware 
of the failure? Or does the business plan to redirect customers to a customer support team? 
These questions are equally important.

Looking at how things could be misused or go wrong is a very important step in planning your 
development. Next, let’s see how to guarantee that you can get the most eyes and fresh perspectives 
and ideas in the process you are documenting.



Sorting Complex Requirements into Features, Use Cases, and Stories50

Complete signed-off flow with all impacted areas

In a product requirements document, you might want the product team to provide a process map of 
the end-to-end flow that spans across all different areas impacted by the release, detailing which users 
are taking actions throughout the process until the flow ends.

As stated in the previous chapter, having everyone in all areas aware of a new release is key to the 
success of new software. This is why you should, as a programmer, require these flows to be signed 
off by the different teams. If we get a well-detailed user journey that shows what should be done in 
different areas, and management in each area is signing off on that document, it is much safer to 
assume that the flow is correct.

Avoiding blocks when writing the documents

In some cases, when writing or reading requirements documents as well as other documents, there 
will be many open, undefined points. What do you do then? Should you start guessing what should 
happen? Should you wait for the next team meeting to report that you are blocked?

Such situations occur frequently. We, as programmers, are often faced with requirements that are not 
as detailed as they should be, and many details will be missing. As a general good practice for moving 
forward in these times, I would recommend creating an open questions section in the document. You 
can continue writing the document, adding everything you are confident about and then setting aside 
the questions you want to be answered by someone else.

Which of these artifacts should come first?
As we reach the end of Chapter 2, you’ve seen there are many effective tools to use when writing 
detailed business requirements. A key question then arises: with so many starting points available, 
which artifacts should you create first?

The answer is straightforward: it depends on the current state of the software development life cycle. 
Here are some excellent starting points:

•	 If you’re refining well-defined requirements: Perhaps the processes are clearly laid out, and 
all that’s missing are the input/output formats

•	 If you’re defining how a system flow should work: The requirements might be vague, but 
if you have a general understanding of the entire user journey, it’s likely time to focus on the 
critical events

•	 If identifying the biggest knowledge gaps in the team: The requirements might be too specific, 
and if it’s unclear how they fit within a larger scope user journey, designing the entire user 
journey from a high-level standpoint may be necessary



Scaling results with long-term business requirements 51

To determine the best requirements documents to produce, start by addressing these questions. Also, 
be mindful of the following:

•	 The size of the company: In organizations with many different areas, a general user journey 
map for each user type can greatly facilitate cross-company communication.

•	 The maturity of current systems: If adding features to existing systems, review current 
documentation to identify gaps.

•	 Practices in small companies: Programmers might rush into implementation with minimal 
documentation, which is a critical mistake. Future team members will need to understand 
what was implemented, and relying solely on code or programmers for this information is 
unsustainable and non-scalable.

Documentation is crucial for scaling processes and communication. Avoid letting your project suffer 
from a lack of documentation, or you risk becoming the go-to person for basic questions, creating 
bottlenecks and consuming valuable time. With a robust set of clear documentation, you free up time 
for higher-value activities, which can lead to greater future compensation.

Scaling results with long-term business requirements
This section is designed to assist you in a critical mission: uncovering and addressing short-term 
constraints in business requirements. Doing so can lead to significant cost savings in your engineering 
efforts and facilitate the effective scaling of engineering results over the long term.

This pro tip is something many developers overlook due to a habit of succumbing to short-term thinking. 
If you yield to the pressure from business areas for faster releases to generate new revenue streams in 
the near future, you are likely to incur exponentially higher engineering costs in the following year.

Let’s begin by understanding this: when we develop software with only the next week or month’s 
release in mind, we often overlook the multitude of similar tasks we’ll need to undertake in the future 
for the company’s product.

That is not a position you will want to find yourself in.

For instance, in our HomeIt system, we could begin by implementing just one payment system for 
tenants – credit cards in the US, for example. If we task a team of engineers with deploying credit 
card payments by next month, what comes after? Well, tenants in the US might also wish to pay their 
rent via wire transfers. This would necessitate additional engineering work, correct? And it would 
be a task similar to the first. Suppose we then spend another month introducing wire transfers, and 
subsequently, the product team requests the ACH payment method for the following month.

This scenario could be satisfactory for US-based operations, presuming we aim to offer only three 
payment methods. Nevertheless, we might encounter variations in process flows across different US 
states – for instance, the need for distinct tax handling per state. If we decide to automate tax payments 
as well, this could imply the necessity to engage engineers for each unique scenario.



Sorting Complex Requirements into Features, Use Cases, and Stories52

You’re probably getting the picture. Many companies overlook long-term thinking, and as a result, 
their architectures will require engineers to step in and create code for more similar use cases. This is 
sometimes discovered only after the first year of development – perhaps after the fourth similar use 
case has been released into production.

Well, in the case of our HomeIt system, let’s say the product team wants to scale the company to be 
present in 30+ countries. If they are asking for new payment systems on a monthly basis without 
explicitly stating their intention to introduce 200+ payment methods for all countries in the next 5 
to 10 years, several constraints will emerge:

•	 Perhaps it will be impossible to have many teams working in parallel since the services might be 
designed in a way that makes it difficult to orchestrate multiple teams working simultaneously 
without creating conflicts

•	 Maybe we will have to spend hundreds of hours on each new payment system, which will start 
making developers feel like they are doing the same work repeatedly

•	 It’s possible that scaling to over 30 countries in 5 to 10 years will be impossible because the 
architecture was not created to accelerate the development of every use case

You get the idea, right? When we only focus on short-term thinking, we cannot anticipate good design 
decisions that will allow for faster scaling.

The long-term business requirement corollary
Indeed, this approach appears to contradict the You Aren’t Gonna Need It (YAGNI) principle. 
However, by understanding and aligning with the long-term goals of the product team, you 
can build your code to scale appropriately from the beginning, thus avoiding the need for 
extensive rework or redevelopment in the future. This proactive approach ultimately leads to 
a more efficient and profitable software development process.

Now, how can you spot areas in which you could write scalable code?

Here are some questions you could ask your product team in order to determine how your software 
should be prepared to accommodate long-term goals (5 to 10 years):

•	 What new types will we create in this system in the next 5 to 10 years?

•	 What new levels will we create in the next 5 to 10 years?

•	 What new products will we release in the next 5 to 10 years?

•	 How much do we want to increase our sales in the next 5 to 10 years?

•	 In which new geographies are we planning to release our software in the next 5 to 10 years?

•	 How many more use cases are we planning to develop in the next 5 to 10 years?



Exercises 53

Once you have answers to these questions, consider the following:

•	 Does my architecture provide a general approach for facilitating the addition of new use cases, 
levels, and types?

•	 Will the engineering team spend a significant amount of development time adding each new 
milestone, level, or use case?

•	 Can we effectively coordinate additional engineers to develop more use cases if needed?

•	 Is our development cost increasing linearly or exponentially as we add more use cases?

•	 Will the current architecture create unmanageable complexity after a certain number of new 
use cases are released?

•	 What changes to the architecture are necessary to enable the rapid delivery of multiple use 
cases with the same engineering effort?

•	 How can we reduce the number of lines of code needed to deliver a use case and scale our 
software more efficiently?

Asking these questions will help you design software that delivers exponentially more value over time 
and unlocks significant potential for your company.

Exercises
Well, there are many more important aspects to discuss regarding how to craft great business 
requirements that truly make a difference and add significant value to companies. We will revisit 
those additional principles later.

For now, the tools I have introduced here will be the ones I use to drill down into the more specific 
details having understood the general, high-level business requirements in Chapter 1.

This section will help remind you of what we learned in this chapter. Feel free to go back to the 
respective sections for the fine-grained details:

•	 Naming features will help you set aside the right chunks of your application.

Take a look at the previously discussed high-level business requirements in Chapter 1 to find 
some new features that you would like to expand in our HomeIt startup. What features would 
you be interested in drilling into?

•	 Critical events will help brainstorm the most important events that we need to ensure are 
happening in the system.

For the features you have come up with, which critical events can you come up with? What 
should you not forget to add to a feature in your product?



Sorting Complex Requirements into Features, Use Cases, and Stories54

•	 The events timeline will help to thoroughly understand how a feature should work on a 
step-by-step basis.

For each feature in this exercise, how would you arrange the events timeline?

•	 Stages, levels, types, life cycles, and loops will help understand the value streams over time in 
your system and how to distinguish users and objects in special ways.

Which of these five elements would you like to use in the features you’re ideating?

•	 The user journey will help you understand the life cycle of your users across the system, that is, 
where they start, where they finish interacting, and how you keep them active.

As you consider the whole journey across the HomeIt systems, where do your use cases fit? What 
user journeys are affected (if more than one) and how would you draw the end-to-end experience?

•	 User journeys with multiple users will help you understand visually how users should interact 
with each other.

When you think about a feature that affects more than one user, how would you build the 
multiple user journeys across different lanes?

•	 User stories help you understand the key actions performed by users, their motivations, the 
value involved, and the relationship and impact on other users. They also help to strip away 
technical details, in order to keep people thinking about users and the business, instead of 
thinking about code.

How would you state the user stories of the features you want to exercise? What relationships 
would you foresee, and which acceptance criteria would you use to make sure the features 
are prepared?

•	 Use case descriptions help combine the previous tools to provide a clear perspective of how a 
feature should work. They provide triggers from which we can differentiate different contexts 
in which a use case could be started from, which may help identify differences in business 
rules and flows.

As an exercise, I would recommend that you write at least one full use case description. You 
can reuse the template suggested to fully explain what should be accomplished there.

•	 Exceptional use cases help identify how users could behave in unplanned ways and what to do 
in case of failures across the system.

As you think about your use case description, which exceptional use cases would you find there? 
At which moments could users do something unexpected, and at which moments would you 
consider taking extra care in order to prevent a system failure?



Summary 55

•	 Clear inputs and outputs help identify the specific data the business is expecting to work with. 
What are we expecting to collect at the beginning of the process, and what data are we expecting 
to produce at the end of the process?

As you consider your use case and the different processes contained in it, which inputs and 
outputs would you need to make it work?

•	 Long-term business requirements help you understand the hidden costs of your current architecture 
and what to do to help deliver more features with less code and less engineering effort.

As you think about this system five years from now, which new use cases do you think will be 
important to handle? What restrictions do these suggest you should deal with?

Summary
There were a lot of useful things covered in this chapter. I have not taken these points from other 
books but from my own day-to-day experience as a software developer, tech lead, and manager, as I 
have taken on all these positions in the past.

These business requirement practices and thinking have rewarded me with very good financial return, 
great feedback, and greater professional development opportunities. I have not started talking about 
code yet, but about the things that make writing code exponentially easier.

Of course, I would also encourage you to immediately apply all of these tools to the software you are 
working on right now.

In the next chapter, we will begin to consider a system that would fulfill your business requirements 
in a modular, scalable manner. We will discuss how to prioritize deliveries, identify domains and 
services, and sequence activities across these components. From there, we will be able to write our 
software using the great Spring Framework tools.





3
Defining Domains  

for Your Application

In this chapter, we will begin by identifying the most valuable features of our system. Given that the 
product team often has an extensive list of requests to be implemented, our primary concern is to start 
by delivering the highest-value features. Next, we will move on to discover the domains we will need 
to work with, which will inform the APIs we need to develop. Finally, we will conclude by outlining 
the information flow across these domains over time, creating a clear map for implementing our use 
cases in your project.

We will cover the following topics:

•	 Determining which features to deliver first

•	 Defining domains and boundaries for your application

•	 Defining the right services for your domain

•	 Crafting your domain diagram

•	 Sequencing activities across services

This chapter serves as the critical link between robust requirements and your code. Here, we begin to 
model your system. We will teach you how to extract key system components from the requirements, 
which we will refer to as domains, and how to create diagrams that simplify discussions about system 
programming with non-programmers. The content covered will enable you to involve cross-disciplinary 
teams in discussions about the architecture you are designing to articulate the requirements.

Understanding the tools and skills presented here will provide significant leverage in your journey to 
becoming a respected architect—capable of translating business requirements into simple, comprehensive 
system designs. If you master this, you are well on your way to a successful leadership career.

Are you excited about it? I know I am. So, let’s get started!



Defining Domains for Your Application58

Technical requirements
In this chapter, you will need to use two simple tools to accomplish the proposed analysis laid out in 
the sections:

•	 draw.io, an online diagramming tool

•	 PlantUML, a tool that helps in drawing sequence diagrams, which we’ll see in one of the 
last sections

You can access all of the chapter’s code at this GitHub repository:

https://github.com/PacktPublishing/Spring-System-Design-in-Practice/
tree/main/chapter-03

Determining which features to deliver first
If you’ve worked with any company—be it start-ups or big tech—you’ll find this situation familiar: 
backlogs are endless. There are no limits to the number of features a product team can dream up. If 
you haven’t worked at a large company yet, a backlog is essentially a list of features and ideas waiting 
to be assessed, refined, and developed by the development team.

Why do backlogs always become so large? Firstly, being a creative human means that, given enough 
time, you will continuously be able to answer these three questions about your customers’ different 
life situations:

•	 Is this situation a problem?

•	 What if we did X in this situation?

•	 What else could we do in this situation?

This ongoing creativity ensures that we can always identify new problems to solve, and new use cases 
and scenarios where it might be beneficial to add new features to support our customers. As backlogs 
grow larger, the critical question naturally becomes how to select the best features to deliver first.

https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-03
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-03


Determining which features to deliver first 59

A big warning about useless features
Many companies struggle with choosing the most valuable features to work on. As the number 
of potential features increases, the likelihood of selecting the most useful feature for customers 
is directly proportional to how skillfully a product team can assess and compare the value of 
different feature ideas.

With the widespread adoption of Agile methodologies, I’ve noticed a “new features syndrome” 
emerging in product areas. This syndrome arises because agile methodologies emphasize 
releasing new things quickly, which incentivizes teams to constantly create new features, 
sometimes “just because.” In other words, because teams are embedded in a process that 
prioritizes frequent releases, they continue to produce new features—even when those features 
may not be particularly useful.

This often happens because many teams lack the skills to think critically about the value that 
different features will bring to the market. As a result, many irrelevant features are added to 
products across various markets on a daily basis.

Now that we have looked at some of the important questions, let’s answer another important one: 
which business requirement should we prioritize?

Criteria for prioritizing a business requirement

As a developer working with product teams, I constantly discuss the relevance of the features I am 
asked to work on. I employ several critical criteria and questions to assess how valuable a release will 
be to the market. I have observed many instances where, simply by raising these questions during 
product meetings, the product team is prompted to revisit the viability and priority of the features 
they plan to release. These discussions are essential for ensuring that each feature adds real value and 
aligns with market needs.

Vision alignment

As a developer, you need to be able to understand what the company’s vision is. What is the company 
trying to bring to the world? What difference does your company want to make in the market? With 
that in mind, does the feature you are being requested to work on deliver on that promise? Or is this 
new feature just irrelevant to our customers?



Defining Domains for Your Application60

I have observed many companies doing one of the following:

•	 Changing product strategies frequently, often in the short term, due to key directors and managers 
leaving or joining the company with different ideas.

•	 Delivering projects hastily because there is a need to use up a budget. This scenario typically 
arises from the fear of facing negative consequences for a business unit if funds are left unspent.

•	 Chasing market trends without a clear strategy. It’s common for companies to develop features 
or products simply because they’re currently popular in the market. Industries such as crypto 
and artificial intelligence often see a surge of interest based on market buzz, leading companies 
to jump on the bandwagon without a well-considered plan.

These behaviors can divert resources from truly innovative or necessary projects and result in the 
development of features that may not provide genuine value to the company or its customers.

When developing a new feature for your customers, the most relevant factor to consider is the specific 
problem it will address, making it crucial to engage your product team with tough questions. If the 
proposed feature doesn’t solve a clear problem or isn’t aligned with the company’s long-term vision, it’s 
essential to escalate this concern. Make it known that the feature may be inappropriate for release—or 
at least that it requires refinement until it clearly aligns with the long-term goals of the company. This 
approach ensures that every development effort contributes meaningfully to the company’s objectives 
and truly addresses customer needs.

Market size

When evaluating a potential feature, it’s crucial to assess the size of the market that the feature will 
reach or attract. Even if the problem you’re addressing is highly relevant and aligns with the company’s 
vision, the impact on the customer base is a significant consideration.

Features that solve widespread problems will naturally appeal to a larger audience. Consider whether 
your product team is planning to develop a use case that may not be universally needed or wanted by 
your user base. How significant would its contribution be to the overall market?

If you recognize that the feature you’re working on may not interest the larger user base, it’s vital to 
voice this concern, given that software development is a costly endeavor.

Another key aspect to consider is whether the feature can be adjusted to appeal to a wider audience. 
If there’s a way to modify the feature so that it becomes relevant to more people, pursuing such 
adaptations is highly advisable. This approach not only maximizes the feature’s market potential but 
also enhances its value to the company.

There is an important exception to the criterion of targeting a large user base: if the company recognizes 
that addressing a smaller, more specialized segment can still generate substantial revenue, then the 
overall market size becomes less critical. This approach allows the company to carve out a niche in 
the market, which can be strategically advantageous. By focusing on niche markets, companies often 



Determining which features to deliver first 61

find opportunities to establish strong positioning and potentially gain a loyal customer base, even 
if the number of users is relatively small. This targeted strategy can lead to significant returns and a 
unique product identity in the market.

Problem frequency

Here’s another essential criterion for deciding whether to develop and release a new feature: consider 
the frequency with which your customer encounters the problem that the feature aims to solve. 
Analyze how often this issue arises—daily, weekly, monthly, or yearly—and determine whether your 
customer will have enough opportunities to use your product regularly, or whether it will merely 
serve as a one-time solution.

It’s crucial that your product can be integrated into your users’ daily activities more frequently. If 
you can influence some of your customers’ frequent behaviors in a way that leads them to use your 
products more often, then the feature is a strong candidate for release.

Problem intensity

When assessing a new feature’s potential, it’s important to consider the intensity of the problem it 
aims to solve. Ask yourself the following questions: Is the problem significant enough that it motivates 
users to seek out your feature? Is the issue so pressing that the mere existence of your solution could 
drive users to your product?

The marketplace is saturated with features that do not address particularly intense problems; while this 
may be acceptable in some cases, it is crucial to discern which features are truly beneficial in solving 
significant issues for your customers. Remember, a problem that causes high levels of discomfort or 
acute pain is more likely to motivate users to take action. Features that effectively alleviate such problems 
can greatly enhance user reliance on your product, bolstering customer satisfaction and loyalty.

Market purchase power

Evaluating whether your target customer can afford your product is a crucial aspect of software 
development. Many companies, particularly start-ups, develop products for customer segments that 
are unlikely to spend substantial money with them. There is a common belief among start-ups that 
building a large user base will eventually translate into significant business returns. This target market 
is often addressed with a freemium model.

Willingness to pay for a solution

This point ties closely to the earlier discussion about ensuring your target customer is financially able 
and willing to purchase your product. In some instances, customers may recognize they have a problem 
but are not willing to pay for a solution. Think about when you wanted to buy something interesting, 
for instance, but then you did not find it worth the price. You had the money, but the price charged 
for it made you give up spending money on it.



Defining Domains for Your Application62

In such scenarios, it is vital to ask yourself several key questions:

•	 Are our customers already spending money to address the problem that our feature aims to solve?

•	 Are they actively seeking solutions to this problem?

•	 Is there evidence that the customer is prepared to invest financially to resolve this issue?

These questions are essential for determining whether there is a viable market for your feature. They 
help in understanding whether your potential customers not only need but are also willing to pay 
for the solution you offer. This assessment can guide your development efforts and ensure they are 
directed towards features that are both needed and financially sustainable.

Estimated cost of delivery

The cost of developing a solution—whether in terms of time, money, or other resources—plays a 
crucial role in determining its viability. Reflecting on my experience since 2000 in the industry, where 
a concept akin to a social network seemed impossible due to resource constraints, highlights how 
feasibility can change over time. Today, social networks are ubiquitous, but at that time, the resource 
demands made such a project impractical.

When considering a new development, it is essential to assess the costs associated with delivering the 
solution your product team envisions. Questions to consider include the following:

•	 What are the costs of development?

•	 Are there ways to reduce these costs?

•	 Does your team possess the necessary time, skills, technology, and personnel to execute the project?

If the costs are prohibitive to the extent that they could jeopardize the company’s stability, it may be 
prudent to reconsider or delay the development effort.

Estimated return on investment

When considering the development of a new feature, it is essential to evaluate whether the potential 
revenue justifies the effort and aligns with the company’s scale. Revenue projections for new features 
must be significant enough to merit the resources dedicated to them, especially in larger companies.

For instance, if a company generates $40+ million annually, introducing a feature projected to bring in 
only $100,000 in the first years might not make financial sense. Such a discrepancy was highlighted by a 
CEO I worked with in my career, who rejected a product team’s proposal due to its minimal impact on 
overall revenue, demanding a more substantial contribution to justify the use of development resources.



Determining which features to deliver first 63

This scenario serves as a critical reminder for product teams to do the following:

•	 Evaluate the financial impact: Ensure that the projected revenue from a feature aligns with 
the company’s financial goals and the cost of development.

•	 Assess contribution to growth: Consider whether the feature will significantly contribute to 
the business’s growth. It should not only pay for itself but also bring additional value.

•	 Justify development efforts: The cost of development, including time and resources, must be 
balanced by the feature’s potential revenue.

When planning new features, it’s crucial for product teams to create well-founded revenue projections 
that reflect the feature’s true value to the company. This ensures that development efforts are both 
economically viable and strategically beneficial.

Cost of acquisition

The scalability of a product often hinges not just on its quality but also on the cost-effectiveness of its 
marketing strategy. This is a critical point, especially in the context of the widespread layoffs across 
the tech industry in recent years, where hundreds of thousands of developers have seen firsthand the 
consequences of unsustainable business models.

Many companies have been forced to conduct layoffs primarily because they could not afford the high 
marketing costs needed to acquire customers and maintain net positive results. Even if the products 
were well-designed and functional, prohibitive customer acquisition costs can drain resources, leading 
to a situation where businesses burn through investor capital without generating sufficient revenue. 
This issue has led to the downsizing or shutdown of operations in many firms.

Considering the financial strain associated with customer acquisition, it is essential for product teams 
to evaluate several key questions when planning a new feature:

•	 What will be the cost of acquiring a customer for this feature? It is crucial to understand whether 
the marketing spend to attract each customer is justified by the revenue they will generate.

•	 Does this feature increase the likelihood that customers will want the product? Features that 
significantly enhance product appeal or meet a critical customer need can justify higher initial 
costs because they contribute to longer-term customer retention and satisfaction.

•	 Can this feature improve purchase conversions and help reduce acquisition costs? If a new 
feature can increase the conversion rate of prospects to paying customers, it may offset higher 
initial marketing expenses and prove financially beneficial in the long run.

Addressing these 0questions can help ensure that new developments are grounded in financial reality 
and align with broader business objectives. This approach encourages product teams to maintain a 
pragmatic perspective, balancing innovation with cost-effectiveness to support sustainable growth.



Defining Domains for Your Application64

Impact of delivery

When developing a product, it’s crucial to evaluate not just the frequency and intensity of the customer’s 
problem but also the actual impact of your solution. Ask yourself the following questions: What 
significant difference will your feature make for the customer? Will the impact of your feature be 
substantial? Will it completely eliminate the problem or only alleviate it partially? And for how long 
will the solution be effective? While it is valuable to address frequent problems, ensuring that your 
product has a significant, positive impact is equally important—even if it means completely resolving 
the customer’s issues for a long time to come.

Mapping dependencies

Assessing whether it is the right time to develop a feature involves considering whether your software 
currently possesses the necessary foundation for users to easily benefit from this new addition. Mapping 
dependencies is crucial to ensure that the introduction of a new feature is timely and impactful. Is it 
the right time to deliver this feature?

I have seen instances where products were not performing well or scalable, yet product teams were 
keen on rolling out the next killer feature. This approach often led to issues such as slow API responses, 
reliance on customer support teams for manual interventions, and challenges in onboarding new 
customers. Despite these hurdles, the focus remained on introducing another significant feature.

This tendency among product teams to chase the next appealing feature, even when the basic 
infrastructure is not robust enough to support it, is common. As a developer, it is important to challenge 
these assumptions. By examining the prerequisites for a feature’s successful integration, you can help 
the product team realize that certain foundational improvements are required first. This groundwork 
ensures that when the next shiny feature is introduced, it will truly be effective and appreciated by users.

Invisible problems

This is a fascinating aspect of market dynamics that can be noticed in sectors such as mental health 
and professional development, where potential users may not readily acknowledge the problems 
they face. This lack of awareness can significantly impact the adoption and effectiveness of solutions 
designed to address these issues.

When tasked with developing a new feature, it is crucial to probe deeper with questions that assess 
market awareness and receptivity:

•	 How many of our prospects are aware that they have the problem our software aims to solve?

•	 How easily can we demonstrate the necessity of our solution to potential users?

•	 What strategies could we employ to help them recognize the problem that our solution addresses?



Determining which features to deliver first 65

By answering these questions, you can better evaluate the potential impact and relevance of the proposed 
feature. This approach not only aids in developing features that are more likely to be accepted and 
used by your target audience but also enhances the overall value proposition of your product. Being 
proactive in understanding and addressing user awareness can significantly influence the success of 
your development efforts.

UX impact

In the world of top-selling products, the introduction of too many features can sometimes lead to a 
degraded customer experience. It is essential to ensure that new features are simple to understand 
and seamlessly integrated into the existing product to maintain and enhance the value offered to 
customers. Moreover, it is crucial to ensure that these features do not confuse users or detract from 
the overall user experience.

To determine the validity of a new feature request, consider asking the following questions:

•	 Will the overall customer experience/user journey be improved by adding this feature?

•	 Will customers be aware that the new feature exists? Is it well integrated with the other features 
and the user journey?

•	 Could this new feature potentially confuse the customer in any way?

•	 Will this feature conflict with any existing features?

These questions are vital in understanding whether the new feature will be usable and beneficial to 
the customer.

Additionally, it is important to gather good metrics. Ideally, your product should have mechanisms 
in place to collect usage data. This data can help ensure that the user experience is not compromised 
over time as more features are added.

Uniqueness

The approach of looking at competitors’ features and attempting to mimic their successes is indeed 
a common strategy in product development. It often starts with analyzing what already exists in the 
industry to try to improve upon it or gain an edge. However, this can lead to a cycle where competitors 
increasingly resemble each other as they continually adopt similar features, stifling true innovation and 
uniqueness in your product. This also leads to the market becoming saturated with similar offerings, 
eventually diminishing the distinct value of each product.

Additionally, it is important to ensure that your features are not easily replicable or replaceable by free 
tools available in the market. This can involve offering superior functionality, a better user experience, 
or unique services that free tools do not provide.



Defining Domains for Your Application66

Sorting priorities

What we discussed in the previous section are the most effective criteria I have used in the past to help 
teams prioritize product requirements. It is wonderful for me to see them all laid out in an easy-to-
remember format so that you can take advantage of it. It took me years of experience to know these 
are really important questions to address when choosing which feature to develop.

But how should you apply these criteria? There is not a one-size-fits-all approach to this. Each project 
may present different challenges, and certain criteria might be more relevant than others, depending 
on the situation. However, a general method to help you identify the best features to develop is to 
ensure that the product scores as highly as possible on each of the criteria.

If you’re faced with a long list of potential features to implement, try rating each one against every 
criterion on our list. Then, organize the list from the highest-rated feature to the lowest. This will give 
you a rough estimate of what is most important to your customers.

Comparing and prioritizing HomeIt features

Now, we will go over some of the main features of our HomeIt start-up to understand how to better 
score the features against each other. You might be confused here as to what the “score” is, but do 
not worry; you will understand as we go ahead. We will be using the criteria laid out in the previous 
sections. Bear in mind that these explanations are subjective and open to debate. This is just a sample 
of the type of reasoning behind scoring features:

•	 Property search:

	� For property search, my scores are Vision: 10, Market Size: 10, Problem Frequency: 10, 
Market Purchase Power: 10, Willingness: 10, Estimated Cost: 10, Estimated ROI: 10, Cost 
of Acquisition: 10, Impact of Delivery: 10, Mapping Dependencies: 10, Invisible Problems: 
10, UX Impact: 10, Uniqueness: 1, and the total score is 121.

	� Notice that the property search is central to our system because every tenant will have to use 
it. They are “searching” for a new property anyway. The only criterion this feature is scoring 
low is “uniqueness.” Even so, we could imagine ways in which the property search works in 
unique ways, so as to outpace our competition.

•	 Realtor partnership:

	� For realtor partnership, my scores are Vision: 10, Market Size: 10, Problem Frequency: 3, 
Market Purchase Power: 10, Willingness: 5, Estimated Cost: 5, Estimated ROI: 8, Cost of 
Acquisition: 10, Impact of Delivery: 6, Mapping Dependencies: 4, Invisible Problems: 4, UX 
Impact: 6, Uniqueness: 10. The total score is 91.

	� For realtor partnerships, we get a lower general score. Many tenants and landlords actually 
do not care about having a realtor, in case they can easily talk to each other (makes “problem 
frequency” score low). Also, there are many people who do not want to deal with realtors, 



Defining domains and boundaries for your application 67

bringing “willingness” down. We expect that the introduction of realtors can help the 
system to be more scalable (sometimes, landlords are not available for visits as realtors can), 
bringing “ROI” up to 8. Many people do not see how a realtor can help, bringing the “invisible 
problems” score down to 4. I am considering the “dependencies” criterion down to 4 since 
many things need to be in place already for us to be able to introduce realtors to the system.

•	 Messaging:

	� For messaging, my scores are Vision: 10, Market Size: 10, Problem Frequency: 10, Market 
Purchase Power: 10, Willingness: 10, Estimated Cost: 10, Estimated ROI: 10, Cost of 
Acquisition: 10, Impact of Delivery: 10, Mapping Dependencies: 7, Invisible Problems: 10, 
UX Impact: 10, Uniqueness: 1. The total score is 118.

	� Of course, everybody needs to communicate, so messaging gets higher scores in almost 
everything, except for “uniqueness” and “dependencies.” Even so, we could think in what 
ways messaging could happen in unique ways in our HomeIt system.

By looking at these sample scores, we have the following roadmap, sorted by the highest-rated features:

1.	 Property search: 121

2.	 Messaging: 118

3.	 Realtor partnership: 91

It is clear that we need the search feature before everything else, as all features depend on it. Taking 
this approach ensures that we can even let features out of scope. Seeing the scores, answer this question 
for yourself: Does HomeIt even really need a mediation feature?

By using these feature lists, sorted by their ratings, the team can now make projections for the coming 
months or even years. A good practice is selecting features to develop quarterly. Planning quarterly 
milestones makes it easier to communicate the product’s direction to all stakeholders.

With the features prioritized and a milestones roadmap in place, we can now focus on modeling 
our software. At this point, we are officially done with handling, composing, massaging, exercising, 
exploring, and expanding business requirements. You now have the best tools I like to use to assist 
product teams in deciding which features should be developed and how to describe those features in 
a way that simplifies the job for software developers.

Let’s now move on to the world of software modeling. I hope you are excited about what comes next!

Defining domains and boundaries for your application
Once you have decided which feature to develop next, it is time to identify the building blocks that 
will make up your actual system. This is where we begin to uncover the crucial components of the 
software modeling process.



Defining Domains for Your Application68

In this section, I will demonstrate how to identify the key objects you need to code and how to 
determine the various services you will implement.

What are product domains and why are they important?

A domain can be considered the specialized business knowledge that you need to express in your 
software. In other words, whatever you build using Spring or any other tools or tech stack you choose, 
you should do it to best represent the expertise of the top specialists you can access. These are people 
who truly excel in your product-specific area within the market.

In your software, a well-expressed domain should include two indispensable features:

•	 Well-designed entities: These are a carefully refined set of objects that accurately reflect the 
concepts or things that exist in the business and the real world

•	 Well-designed services: These entail a thorough process through which the entities can be 
processed—created, moved through different lifecycle stages, and everything else that fulfills 
the business requirements you aim to deliver

Note
The foundation for delivering good software begins with excellently modeled entities and services. 
The prerequisite for achieving this is having well-written business requirements. This highlights 
the critical need for all the tools and techniques discussed in the first two chapters. Remember, 
even the best companies in the market may have significant gaps in the requirements they 
expect you to implement. You need the right tools to thoroughly analyze these requirements, 
ensuring they can be articulated in the best way possible, thereby simplifying the extraction 
of your entities and services.

This section summarizes the most important steps for engaging with domain modeling. However, 
as you might expect, there are comprehensive books dedicated to this subject. A foundational text I 
recommend is Domain-Driven Design – Tackling Complexity in The Heart of Software by Eric Evans.

Now, let’s move on to the steps you need to follow to identify and implement the necessary entities 
and services.

Detecting common concepts and eliminating redundancy across 
use cases

During your domain modeling process, the first step is to identify the nouns or substantive terms 
that frequently appear across various use cases. These key terms will form the core vocabulary used 
to build your software.



Defining domains and boundaries for your application 69

For example, in our HomeIt system, some of the critical concepts we need to express through domain 
modeling include the following:

•	 Users, tenants, landlords, and realtors

•	 Rental properties, rental proposal, rental agreements, and partnership proposal

•	 Payments

•	 Reputation

An effective method to gauge the significance of a concept in your software is to observe how often that 
specific term is mentioned across different feature requests. This frequency indicates its importance 
and centrality to the functionality of your system.

During the domain modeling process, you may encounter instances where different terms are used 
interchangeably to describe the same concept in the requirements document. For example, in our 
HomeIt system, terms such as landowners, real estate owners, and proprietors might all be used to refer 
to what we simply mean by landlords.

As a developer, your role includes identifying these synonymous terms and working with the product 
team to standardize the terminology. For instance, you might agree to use landlords consistently across 
all documents. Consequently, whenever terms such as proprietors appear, they would be corrected to 
landlords to maintain consistency in terminology.

Conversely, there may be cases where a single noun is used to refer to two or more different concepts 
within the requirements documents. In our HomeIt example, the term user might be used across 
various use cases and feature requests but refer to different roles such as landlords, realtors, or tenants.

When you encounter an ambiguity such as the latter you would need to review your documentation 
to determine the specific context in which users are mentioned and then specify more precise terms 
for each case. This approach helps eliminate confusion and ensures that each term accurately reflects 
its intended meaning within the system.

For example, in a recent project I was involved with, one term was used to represent three vastly 
different things. It referred to a CMS platform, an important virtual server, and a third item I cannot 
quite remember. When I joined the project, discussions about that term were confusing to me 
because it was applied inconsistently. My confusion initially made me feel out of place, but upon 
further questioning, I realized that different people were using the same name for completely different 
elements. The issue was not with my understanding; it was with how the term was being misapplied. 
As someone new to the team, or even as an existing member, you will greatly benefit the project by 
clarifying and unifying the terminology used. This will help everyone communicate more effectively 
and avoid misunderstandings.



Defining Domains for Your Application70

Setting up and defining domains for your product

If you effectively eliminate ambiguity and redundancy from the requirements documentation, identifying 
the actual domains needed for your software becomes a straightforward process. Essentially, you just 
need to list the most frequently mentioned nouns in your product requirements.

At this point, I want you to think about domains in an incredibly simple manner. Consider each 
noun, or concept, as a separate domain. For HomeIt, each of the keywords we mentioned earlier 
will represent a different domain. Therefore, we will have domains such as the Tenants domain, the 
Landlords domain, and the Rental Proposal domain. This approach simplifies the initial steps of domain 
modeling and sets a clear foundation for further development.

Setting up domain composition, boundaries, and limits

Now that we have identified the various domains, it is crucial to consider the boundaries and composition 
of each domain. This phase is more philosophical than technical and can lead to extensive discussions, 
as different team members may have diverse perspectives on how these models should be structured.

Using your critical thinking skills, you will need to define the actual responsibilities of each domain. 
These responsibilities should be based on the language used by the product team and how they 
describe their use cases.

In the previous chapter, we utilized tools to drill down into the requirements, designing inputs and 
outputs for processes. These inputs and outputs, along with the relationships described between 
concepts, will inform us about the composition of each domain. This step is essential for establishing 
clear domain boundaries and ensuring that each domain fulfills its role effectively within the system.

For instance, in HomeIt, we have discovered that a rental property contains essential information 
such as media (pictures, videos), address, number of rooms, and size in square meters. Additionally, 
tenants may have one or more Payment Information objects, assuming someone could use various 
ways to pay for the rental services.

Understanding how the domains are composed will lead us to the exact place we need to be. Here are 
four key sets of questions for you to answer when drilling down on domain boundaries:

•	 What domain/concept am I defining? What is this domain, and what purpose does it serve?

•	 What is this domain comprised of? What set of information makes up this domain?

•	 What does this domain not account for? What should be excluded from this domain, either because 
it belongs to another domain or because we want to establish certain limits to its definition?

•	 What other domains is this domain related to? Which other domains interact with this one, 
and how can these relationships be expressed or explained?



Defining domains and boundaries for your application 71

To effectively answer these questions for the Realtors domain in the HomeIt system, we can walk 
through each question systematically:

•	 What domain/concept am I defining? What is that domain? What is it used for?

The domain being defined is Realtors. Realtors are users who facilitate the rental of properties 
in exchange for a commission. This domain is used to manage interactions related to property 
rentals and to bridge communications between tenants and landlords.

•	 What is a realtor comprised of?

A realtor should have personal contact information to facilitate communication and a list of 
current rental proposals they are managing. A realtor should also have separate communication 
channels with each user (tenant, landlord) to maintain clarity and privacy in communications.

•	 What is this domain not accounting for? What should we leave out of this domain, either 
because it belongs to another domain or because we want to just establish some limits to the 
domain definition?

A realtor will not directly own an availability calendar since that calendar is specifically tied to 
each rental agreement. However, because the realtor manages their rental agreements, they can 
access all related calendars by reviewing each agreement. We can also extract a consolidated 
calendar by looping through the agreements. This delineation prevents clutter in the Realtors 
domain and keeps the focus on their primary responsibilities.

•	 What other domains is this domain related to? What other domains will show up as a relationship 
to this one, and how can that relationship be expressed or explained?

Realtors are essentially related to the domains of tenants, landlords, partnership agreements, 
and rental properties:

	� They have a communication channel with tenants for discussing rental opportunities and 
resolving issues

	� They enter into partnership agreements with landlords, which authorize them to manage 
properties and interact on the landlord’s behalf

	� The relationship with rental properties is through the management of rental proposals and 
agreements pertaining to those properties

This discussion provides a glimpse into how we can propose and refine domains, which often form a 
significant part of conversations with your colleagues. As these discussions progress, clarity is enhanced, 
allowing the team to confidently document the domains and their interrelationships.

As a result of your domain modeling, some domains might be expressed as their own microservices, 
while others may be grouped together in the same microservice. Additionally, some domains may 
simply act as properties of other domains. This structuring brings us closer to actually starting the 
coding process.



Defining Domains for Your Application72

Before moving on to the next section, I invite you to think about the domains we have in our HomeIt 
system. Besides the ones I listed, what other three domains would you add? How would you answer 
the key questions about these new domains? Consider these questions, and after you have formulated 
your thoughts, you can proceed to the next section where we will refine the services that belong to each 
domain. This exercise will help deepen your understanding of the domain-driven design fundamentals 
and prepare you for the practical steps ahead.

Defining the right services for your domains
Great! We have now mastered how to identify key domains within our system. The basic approach 
involves scrutinizing the nouns in requirement descriptions and understanding the relationships 
between these identified nouns.

It is advisable to do real-world system analysis by playing Sherlock Holmes with a team. The goal is 
to comb through the requirement documents to distill them down to the essential set of words that 
represent the entire system effectively.

Once you have identified the different domains, the next step is to understand how these domains 
behave. This involves identifying the verbs or actions that the domains perform. This is a crucial phase 
where we start to discover the operations or functionalities—essentially, the key services—associated 
with each domain. Understanding these services is the focus of this section, as they are integral to 
how the system will function and interact.

What are services and why should we think about them?

In this chapter, we define a service as any operation or action that can be performed within a specific 
domain. For example, in the HomeIt system, Partnership Proposal is considered a domain. Within this 
domain, various operations can occur, such as creating, sending, rejecting, or accepting a proposal. 
Each of these operations is viewed as a service within the Partnership Proposal domain.

Understanding these services is crucial. Neglecting to account for these specific domain operations can 
lead to significant blind spots and gaps for developers. A wise colleague and friend of mine often said, 
“Everything is possible through the miracles of programming.” However, I argue that these programming 
miracles become less miraculous if we are unclear about the operations our domains should support.

Since the introduction of the RESTful API standard, many developers have aimed to design the perfect 
API. The specifics of crafting well-structured APIs will be discussed in later sections. However, it’s 
important to recognize that many developers fall into the trap of merely representing basic objects and 
resources in their APIs. Here, “basic” refers to the most tangible objects, such as products, customers, 
shopping carts, and so on. They often focus on mapping key domain resources in their URLs because 
they are fixated on this approach. By not adequately representing operations and actions in the APIs, 
they inadvertently create a lot of confusing code, as those operations will have to be supported by 
extra logic added to the basic resources. It becomes a mess over time.



Defining the right services for your domains 73

Such APIs that lack expressiveness often fail to adequately represent the actions of the system over 
time, which can lead to muddled code, parameter overload, bulky classes, and too few endpoints 
handling too many responsibilities.

Neglecting the design of services frequently results in what is known as spaghetti code. Consider 
trying to eat spaghetti: even with a fork, it is difficult to control and manipulate your food. Similarly, 
spaghetti code is challenging to manage due to its tangled lines, where numerous responsibilities are 
crammed into a few endpoints and methods. This complexity makes it nearly impossible to clearly 
understand and maintain your own code over time.

On the other hand, by carefully identifying and listing the key operations and actions your domain 
should express, you can more easily segregate these actions into distinct parts of your code. This 
separation allows for better isolation, making your code easier to manage. The advantages of modeling 
key actions for each domain will become evident as we begin writing our services in subsequent 
chapters. For now, in this chapter, our focus will be on understanding how to effectively document 
different services.

How to model and document domain services correctly

When it comes to doing excellent service modeling work on your domains within your software, the 
following four steps are essential:

•	 Basic actions: Define the fundamental actions that your domain will support. These are 
commonly known as CRUD (which stands for Create, Read, Update, and Delete) operations. 
These operations form the backbone of interaction within the domain.

•	 Special actions: Identify and document any special actions that your domain should support 
beyond the basic CRUD operations. These could include actions that are specific to the business 
logic or unique functionalities of the domain.

•	 Actions to new domains: Assess whether any of the actions currently within your domain 
could be better served as new, separate domains. This step involves evaluating the potential to 
modularize your architecture further, enhancing scalability and maintainability.

•	 Inputs, processes, business rules, and output descriptions: For each service, provide detailed 
descriptions of the inputs required, the processes involved, the business rules that apply, and 
the outputs expected. This documentation is crucial for ensuring clarity and consistency in 
service implementation and integration.

In the next section, we will go over the exercise of exploring and modeling a feature of the HomeIt 
system: the Partnership Proposal service.



Defining Domains for Your Application74

Partnership Proposal service modeling

To effectively model the services within the Partnership Proposal domain of the HomeIt system, 
here’s how you would apply each of the steps we previously outlined:

•	 Basic actions:

	� Create: To create a partnership proposal, inputs include the rental property ID, the realtor 
ID, and an introductory letter written by the realtor. Since a rental property has an owner 
(landlord), the owner can be identified using the rental property ID. The output of this action 
is the identification of the newly created Partnership Proposal domain object.

	� Delete: Instead of supporting hard deletion, which permanently removes records, the system 
will implement soft deletion. This action marks the proposal as deleted in the database, making 
it invisible on customer-facing interfaces but retaining the data for consistency purposes. 
Input required is the partnership proposal ID.

	� Read: This action retrieves a partnership proposal object using its ID, returning all relevant 
details associated with that ID.

	� Update: The update service allows changes to the partnership proposal’s status only, such 
as updating from open to accepted or rejected. The input for this action is the new status and 
the partnership ID.

•	 Special actions:

	� Sending a partnership proposal: It is assumed that a partnership proposal is automatically 
sent when it is created in the system, making this one of the basic operations integrated 
during the creation process.

	� Messaging service: If there is a requirement for a chat feature that allows realtors and landlords 
to communicate directly within the context of a partnership proposal, a messaging service 
needs to be implemented. This service would handle the exchange of messages specifically 
tied to a partnership proposal.

•	 From actions to new domains:

	� Messaging as a new domain: Implementing the messaging service might necessitate treating 
messages as a new domain object within the partnership proposal. This implies that each 
message is part of a list of messages associated with a particular proposal. By defining 
messages as a new domain object, basic operations (CRUD) can be applied directly to each 
message, reflecting the dynamic interaction between the parties involved. Messages would 
be stored as child objects within the partnership proposal domain.



Crafting your domain diagram 75

This approach ensures that the Partnership Proposal domain is robust, with clear responsibilities for 
each service and consideration for potential expansions such as messaging. This methodical breakdown 
not only simplifies system maintenance but also enhances functionality and user experience.

This section is an example of how to find key services for your domains and how to model them 
properly. This structured approach to defining actions and considering new domains helps ensure that 
the system’s architecture remains robust, scalable, and easy to manage, providing clear pathways for 
future enhancements and maintenance. It follows the basic premise of domain-driven design, which 
prioritizes reflecting real-world business objects in your model.

Now, let’s start to lay out the system domain components and the interaction of the different domains 
over time.

Crafting your domain diagram
So, here is the thing: if you are working with several domains and find that you have many of them 
and tracking starts to become difficult, you will probably find it much easier to map them visually. For 
the same reasons we discussed in the first chapter, a visual representation will accelerate everyone’s 
understanding of your domain.

The process for crafting a domain diagram is quite simple. You will draw simple boxes where one 
domain points to another domain with which it has some relationship. There are several ways to craft 
this visual, so I will just provide an example of many of the HomeIt domains we have discussed so far. 
The diagram in Figure 3.1 was created using the same free draw.io app I have recommended before.

Figure 3.1: HomeIt domain diagram sample



Defining Domains for Your Application76

As you can see, I have added verbs to the arrows, indicating that every domain acts in relation to 
another domain. This domain diagram helps us identify key flows in the system we are building and 
provides a more global view of what we want to build. And, as you can clearly notice, we are making 
it much easier to conceptualize the entire system on just a single page.

From this domain design, we can extract microservices, API contracts, classes, attributes, flows, and 
many other components that our Spring Framework will help deliver.

Note: the dotted arrow I drew in this diagram is to make it easier to follow the relationship between 
a rental proposal and a rental property.

I want you to notice another thing here: the Counteroffer domain was extracted from exploring the 
possibilities of allowing tenants and landlords to negotiate the price of a rental property during the 
Rental Proposal flow. This domain literally represents an important service we can provide to facilitate 
price negotiation, which is a key part of conducting business in the real world. Additionally, this price 
negotiation feature helps track the amount we will see in the payments after the contract is finalized.

In this sample of the HomeIt domain diagram, I have omitted several domains and use cases that we 
discussed in previous chapters—for instance, the Mediation feature. I did this to simplify the diagram 
so that we have a simpler sample to look at and leave some space for you to practice your own skills, 
in order to improve your understanding.

Before moving to the next chapter, I want to challenge you to represent other domains that I have 
intentionally left out. How would you design the domain diagram for these additional features?

After you have considered your own domain diagram for HomeIt or any other system you are interested 
in, we will proceed to learn how to sequence activities across domains and services over time, using 
sequence diagrams.

Sequencing the activity across services
Having drilled down into the requirements, we now understand how our system looks. The domain 
diagram we just constructed can serve as the basis for modeling our microservices. However, a crucial, 
timely question remains.

How do the domains interact with each other over time? Moreover, how can we express these 
interactions over time in the simplest possible manner, so that all teams understand what to build?

The Rental Proposal sequence diagram

To address these questions, we turn to the sequence diagram. During my experiences across various 
programming roles, I have found that this type of diagram is exceptionally effective in explaining 
how system flows work—specifically, how information is passed from one service to another—and 
in getting teams to collaborate effectively.



Sequencing the activity across services 77

To explain it, see Figure 3.2:

Figure 3.2: Complete rental flow sequence diagram

This sequence diagram illustrates how the core system of HomeIt operates. Importantly, we have 
different actors represented on both sides of the diagram: a tenant on the left, and both a landlord 
and a realtor on the right side.

Notice that the interactions between these actors do not involve direct communication from one 
person to another. Instead, the arrows point only to the domains, demonstrating that interactions occur 
through the system’s structured domains. This design ensures that the domains facilitate and reflect 
real-world scenarios. For example, it is a natural process for a tenant to search for a property, negotiate 
an offer with the landlord, and handle payments using their bank accounts. This system setup enables 
clear and structured interactions that mirror the practical steps involved in real estate transactions.



Defining Domains for Your Application78

In this diagram, I have highlighted three key domains: Rental Properties, Rental Proposal, and Payments. 
These domains effectively illustrate the search, negotiation, and payment flow within the system.

Every sequence diagram is structured to clearly show the order in which actions take place, with time 
progressing from top to bottom, following the arrows. This setup makes it very easy to understand 
how services exchange messages. Arrows in the diagram always point from the system sending the 
request to the system receiving the request, clarifying the direction of communication.

While we could discuss the creation of these domains and the specific order of components within 
the diagram, it is important to note that different developers might choose to create the diagram with 
layouts that best suit their own visualization of the flow. This flexibility is fine and expected, as it allows 
developers to adapt the diagram to their individual needs and understanding.

In this example, I have implicitly indicated that notifications are exchanged back and forth within the 
system, reaching all users. Observing the structure of this sequence diagram reveals that a notification 
service is crucial and utilized across different systems. In light of this, it would be reasonable to consider 
adding Notification as a new domain. Introducing this domain would necessitate some revisions to 
the domain and sequence diagrams. However, for the sake of time, and since the sequence diagram 
would be too confusing for a book page, I will invite you to make that change. Could you redesign 
these diagrams to include the notification service?

In this sample diagram, numerous details have been omitted. For example, the payment system’s 
rationale for determining the amount, or how the payment system interfaces with the banks to execute 
the transactions is omitted. This raises an important question: how much detail should be included in 
a sequence diagram? The answer is as much as necessary to effectively communicate with stakeholders 
who will look at that specific sequence diagram. The level of detail will depend on the specific feature 
you are working on and to who you will address that diagram.

Now that we understand what a sequence diagram is, let’s learn how to actually create one of them 
very easily, in the next section.

Introduction to PlantUML as a tool for building sequence 
diagrams

Using PlantUML to create sequence diagrams is a powerful way to visualize interactions within 
your system. PlantUML has been a significant tool in the market for many years, appreciated for its 
simplicity and effectiveness in diagramming complex systems.

To build similar diagrams, you can use the free online application available at plantuml.com. This 
tool allows you to quickly generate sequence diagrams (and other types of diagrams) by writing simple 
scripts. To get started, you can take as an example the script I used to render the sequence diagram 
we have discussed. You can find the script here: https://github.com/PacktPublishing/
Spring-System-Design-in-Practice/blob/main/chapter-03/sequence-
diagram-sample.txt.

http://plantuml.com
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/blob/main/chapter-03/sequence-diagram-sample.txt
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/blob/main/chapter-03/sequence-diagram-sample.txt
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/blob/main/chapter-03/sequence-diagram-sample.txt


Summary 79

To recreate the sequence diagram we discussed earlier, you can simply copy and paste the provided 
code into the text area on plantuml.com. This online tool will render the sequence diagram based 
on the script you input.

PlantUML is also capable of drawing other kinds of diagrams. But I just use it today for drawing 
sequence diagrams. There are plenty of tutorials on the internet that will teach you how to explore 
more features of this amazing and free tool.

Summary
In this chapter, we have covered how to prioritize features effectively to craft a roadmap, and how to 
identify and articulate the domains necessary for expressing the essence of our software. Understanding 
and defining these domains is crucial, acting as a bridge between robust requirements and the successful 
development of great software. An insightful engineer once emphasized to me the importance of 
taking considerable time to discuss naming conventions within software development, as these names 
fundamentally shape the outcome of our features and systems. The right names can significantly 
facilitate successful software construction.

Additionally, we have tackled a critical step in sequencing activities across domains to establish a 
complete flow for our use cases. This sequencing reveals more clearly which systems and services 
need implementation, enhancing our understanding and planning processes.

Before progressing to the next chapter, I encourage you to practice the concepts discussed. You might 
choose to apply these strategies to some use cases from our HomeIt system example, or perhaps 
explore feature prioritization, domain identification, and sequence diagramming for the systems you 
are currently working on.

Having thoroughly addressed business requirements, I hope you are excited to move on to the next 
chapter where I will introduce a holistic approach to selecting technologies and Spring projects for 
building our software, tailored to meet our specified requirements. This will involve diving into the 
world of Non-Functional Requirements (NFRs) and exploring how they influence the choice of 
technology and the architecture of our systems.

http://plantuml.com




4
Defining Services  
for Your Domains 

I am very excited about this chapter. Here, you will be introduced to the world of technical requirements, 
or, to be more precise, non-functional requirements. We will go through a deep analysis of the system’s 
technical qualities that you want to implement. This is crucial for ensuring your application will 
survive and stay online.

This chapter is an introduction to the world of thinking through the tech aspects of your system. We 
will explore this subject in more in future chapters, as we write the code for different services. Here 
is what we will cover in this chapter:

•	 What are non-functional requirements?

•	 Why do we need non-functional requirements?

•	 User handling

•	 Basic I/O and data maintenance questions

•	 Processing

•	 Testing

•	 AI, data engineering, and analytics

•	 Disaster recovery

•	 Protocols

Non-functional requirements, as we will see, are the best friends of business requirements. They are 
the backbone of the functions and processes we need to implement for the systems we are developing. 
Without non-functional requirements, the outcome and performance of a system are mostly unpredictable.



Defining Services for Your Domains 82

Understanding non-functional requirements
So far, everything we have discussed in the world of business requirements is considered functional 
requirements – that is, a business function represented in code. Such business functions are specific 
day-to-day processes your company needs to perform. In the HomeIt example, functional requirements 
are related to property searches, collecting payment information, and allowing proposals to be sent 
between parties. That is all just everyday business stuff.

Conversely, there are non-functional requirements. That is, the features you need to incorporate in 
your software such that the functional or business requirements are sustained over time and all users 
can benefit from your software.

Think about it this way: one requirement is the choice to support Visa credit cards on your payments. 
Another requirement is making sure your software can support up to one thousand credit card 
payments per minute. Those are requirements from different levels.

Supporting credit card payments is a functional piece of your software. Making sure you can process 
a lot of payments at the same time is a non-functional or supporting aspect of your software.

Now, you might ask yourself this: Why do we need non-functional requirements? Many big businesses 
do not actually think too much, or too thoroughly, about non-functional requirements. That is, they 
are too focused on the business process but not on ensuring the systems can support a wide range of 
challenging situations. Things such as a big spike in the number of users on a website can make it stop 
working completely. You want to make sure your systems can work under heavy loads. Your software 
cannot fail. Or, if it fails, you will want to ensure it can recover without making data inconsistent.

In the next sections, we will talk about the various aspects of non-functional requirements. I will 
equip you with loads of great questions to ask when designing software. This is my personal treasure 
chest of great questions I have collected through years of software development. I go back to it from 
time to time to ensure the systems I am working on have the right support for the situations we need 
to go through.

Bear in mind that many of those questions are half explained in this chapter. These are questions we 
will get back to exploring throughout the rest of the book. This chapter will become your go-to place 
for finding a very rich set of questions at once. However, the practical details will be explored in all 
future chapters. There is a lot to talk about, so let’s start.



Handling user requirements 83

Handling user requirements
When we start building a system or a feature in a system, it is important to think about how to handle 
our users. Many of these questions, such as the type of users that will exist in the system, were already 
tackled in the previous chapters. Here are some other questions for user handling:

•	 What is the perfect user journey like?

•	 Are there user “levels,” “types,” or both?

•	 Do we have human users in our system?

•	 Do we have other systems as clients/users?

•	 How will each user onboarding be done?

•	 How will other systems be authorized to access the different system functions?

•	 How will authentication and authorization be handled by human users?

•	 What kind of devices will the users have, and how will they restrict/enable the user experience?

•	 What are the data formats each user can handle properly? What are the data formats we need 
to show to these users?

•	 Which important user actions need to be fed into BI systems (such as conversion data), and 
why? How will you anonymize user data so you can achieve data compliance standards such 
as GDPR, which requires user personal information to be fully protected? If your system 
requires personal information, how will users consent to use such data? How will you avoid 
the misuse of personal user information by any agent in your organization (from development 
to operations, marketing, etc.)?

•	 How will the frontend be best served to users? Through browsers, clients, or mobile apps?

•	 Is there any need to keep real-time, live connections among users or users and systems?

Let’s explore and try to answer these questions using the HomeIt project. After reading these questions, 
we can sense that it could be a good opportunity to think about a mobile experience in which the user 
could search for nearby properties by using GPS. Maybe it is a clever idea to serve search results in CVS 
format if the user is in a desktop environment and prefers using Excel and other similar software for 
triaging properties. It is probably a good idea to use the OAuth 2.0 protocol to give access/permission 
for different users. Maybe we want to enable API access for other developers to be able to fetch data 
from our website. We probably want to track and log payment actions in such a way that it is easier 
to find out whether or not there are fraud attempts.

There are countless other things we could think of by thinking through those questions. What are 
other non-functional aspects you could think of?

Now, let’s talk about how to handle data.



Defining Services for Your Domains 84

I/O and data maintenance requirements
This is where we think about how to handle data in our system. So, depending on the feature you are 
building, you will want to go through each of these questions in order to better think about which 
technology problems we’re facing and how to solve them in our software. Here are the key questions 
you should address:

•	 What are the inputs and outputs expected? For instance, in HomeIt, what images do we need 
as input for a rental property registration, and what is the output format when we finish 
processing the media files?

•	 Which data types will be used? Are we expecting to receive PNG, JPG, or videos? What kind 
of data do we expect to receive in each important process in our system?

•	 Does data need to be geo-referenced?

•	 How many different entities or business objects do you have?

•	 What is the data structure used? For example, in our rental property search feature, what 
data should we return from the backend to the frontend? A list, a map? What is the best data 
structure given the requirements for the search feature?

•	 Are we generating combinations or permutations in an automated way? For instance, if we 
generate IDs for rental properties in an automated way, are we generating that data properly? 
Or does our algorithm fail at creating unique IDs for each property registered by landlords?

•	 What is the universe size of data, or how much space will it occupy? Are we able to generate 
as many combinations as we need for our use case? Is our data space too restricted or too big? 
For example, for identifying rental properties, how are we creating IDs for each one of them? 
Does our ID system allow us to generate as many IDs as our system needs in the long term? 
Or, are we constrained by the size of the data type chosen?

•	 What level of precision do we need to have in our data?

•	 Do we have an acceptable error tolerance margin?

•	 Is it transactional data that is important to keep?

•	 Does the data need to be 100% consistent right away? Or, are we OK with creating inconsistent 
data that can be sorted later by other processes, and consistency might be resolved later 
downstream in the process?

•	 What kinds of I/O channels should be used? Will your function require network access? Do 
you need to load or store data in a database or a hard drive? Do you have a memory-intense 
application or use case?

•	 Will we persist data? Which kind of persistence storage will be used?

•	 What is the required input-output per second (IOPS), storage volume, durability, and latency 
(how much time can we afford to wait for the system’s response)?



I/O and data maintenance requirements 85

•	 Will the persisted data use filesystems or databases? In the case of filesystems, which kind of 
persistent storage should we choose?

	� Should we pick an instance store? This is the hard drive of the server you will host your 
application on; this option is usually limited to a maximum size (it’s considered a temporary 
storage type, but it’s fast).

	� Should it be block storage? That is a persistent hard drive in the network, which is fast but 
dedicated to just one computer, some network filesystem (which you do not need to care that 
much about maximum size, it is not as fast but it can be attached on multiple computers)

	� Or, should it be object storage, such as Amazon S3 and other similar offerings from cloud 
vendors, which is extremely scalable?

•	 Will there be concurrent access or writes to the files?

•	 Which kind of protocols will be used to transmit/receive data? Will you need Transmission 
Control Protocol (TCP), User Datagram Protocol (UDP), FTP, HTTP, or GraphQL?

•	 Is a full text search needed?

•	 Which kind of sorting/querying patterns exist in the system? For example, in HomeIt, optimizing 
for queries around ZIP code or street names is expected. Sorting the system rental properties 
geographically (by ZIP code) might be interesting, depending on the expected user behavior.

•	 Which data representations will be used? Will it be XML, JSON, Avro, Protocol Buffers 
(Protobuf), binary, tables, or files?

•	 Which protocols can support the data size and communication requirements?

•	 Is any optimization needed to store or transfer information? Do we need to work with different 
file resolutions, file types, and so on?

•	 Is there a pruning, time-to-live (TTL), or data cleaning needed?

•	 Does data need to be encrypted in transit or at rest?

•	 Is data sharding needed? For your reference, see the following:

	� Vertical sharding is different tables on different servers.

	� Horizontal sharding is the same table spread across different servers, separated by attribute values

•	 Is the data accessed too frequently or infrequently, or is it archived data that is mostly not 
accessed? How fast should we be able to access the data if it is archived?

•	 How long does the data need to be kept? Are there different data categories with different time 
persistence requirements?

•	 Does data need to be masked? Do we have personally identifiable information (PII) that 
needs to be hidden from some users?



Defining Services for Your Domains 86

•	 Can async processing help speed things up?

•	 Is data pagination required for this service?

•	 Can some packages be lost in traffic (by using UDP, which is more appropriate when you are 
doing live streams, and you could have some packages lost without meaningful quality reduction 
in video, audio, etc.) or is there the need for high consistency (that is the case for TCP/HTTP, 
in which you cannot lose any bytes while transmitting information)?

•	 Are there any compliance restrictions regarding how, where, when, and for how long data 
should be stored? Which regulations are at play and need to be observed?

•	 What are the costs associated with data storage?

Again, there are a lot of questions here. Let us answer a few of the questions that pertain to our 
Homelt example’s context. Let’s consider that we are doing an analysis of the property search feature. 
In that case, we will certainly need pagination capabilities, and yes, we do have PII information that 
identifies the landlord. Perhaps we want to hide the landlord information from random, unregistered 
users? That is a possibility. The search feature needs to return exact data, so we will use TCP as the 
data transfer protocol. We also need to provide sorting capabilities for our searches. If we find out 
that our database has a lot of data, we need to work on the search feature in such a way that the time 
for the answer is short. We want a fast search implementation.

In the property registration, we are sending both text data and images. We must think about how to 
pay for image storage. We could assume we will resort to an S3 bucket to store all images since this 
cloud resource is great for dealing with such data. However, we would have to do a thorough study 
of how much data we will be storing and how much that will cost over time.

Considering that each rental property will take a fair amount of data storage space, due to the media 
resources we’re allowing the users to upload, what could be the best way to pay for that? Should we 
assume that every user will be able to upload as many images as they want, and we can cover that 
cost from our service fees when we are helping landlords rent their properties? If yes, then the media 
storage space is an important part of our infrastructure cost.

As you go through the data storage questions, there are a lot of great insights you can study with the 
product team to make your service better suited for your current use case. What are other non-functional 
aspects you can think of when considering data handling needs?

After talking about data, let’s have a quick look at other aspects of storing the data.



I/O and data maintenance requirements 87

Exploring sizing requirements

Given the data structures and types you will be using, what is the size in bytes of the data created? 
How many bytes does a single object occupy in memory? How many bytes would a big list of those 
objects require? Those are important things to assess.

•	 How many objects will exist over time, and what is the growth plan of that object number?

•	 How much disk space is needed over time to account for storing those objects?

•	 How much RAM is needed to manage queries and the different data handling capabilities you 
will need to implement?

Depending on your use case, different algorithms will be recommended due to the size in bytes of 
your information. For instance, if you implement a feature that requires a query for a set of rental 
properties, you need to assess how many objects you will be able to load in memory at the same time. 
Ideally, if you need to load thousands or even hundreds of thousands of objects from a database, you 
will want to manage these objects using streams instead of whole collections, given collections load 
all objects simultaneously in memory, while streams are just like cycling through objects, loading and 
discarding one by one, as you operate through them.

Storage types

Here are some aspects of dealing with different kinds of data that you will want to consider:

•	 SQL Databases (Live Transaction Data): First, if you are dealing with important live transaction 
data in such a way that you need it to be fully consistent, you will want to use SQL databases 
(Oracle, SQL Server, Postgres, MySQL etc.). For example, you should use SQL databases if 
you are programming a feature that deals with money, such as payment systems and money 
exchanges of any sort, or if you need to keep a record of some product inventory. Perhaps you 
just want to get a safe and consistent place to store user data. All these are great use cases for 
SQL databases because they enforce data and transaction consistency when done right.

•	 NoSQL Databases: If you are dealing with unstructured data (a classic example of this is 
the product information in an e-commerce catalog), or if you are dealing with just text data 
that forms entities that do not have a totally enforced format, then NoSQL databases, such as 
MongoDB, will be great. NoSQL databases will usually have fewer restrictions to data access, 
which basically means that they can be faster than SQL databases (that is not true in all cases, 
though). Other NoSQL examples are Couchbase, Cassandra, DynamoDB, and so on.

•	 Binary Files: When dealing with files themselves, it would be good to use Amazon-S3-like 
services, which allow you to store and retrieve individual files using HTTP requests. For blob data, 
static files, and media (images, video), you might also think about using Secure File Transfer 
Protocol (SFTP) or Network File System (NFS); when files are extremely large, you do not 
need to expose them directly in websites but you need access to them as if you were accessing 



Defining Services for Your Domains 88

a regular filesystem. Do you need to make heavy files available for a partner? Maybe an SFTP 
is good enough, which allows encrypted access to a directory that can be mapped remotely and 
behaves like a local hard drive directory. Do you just need your services to have access to some 
heavy files and do you want a specific filesystem in place to manage the large objects as if they 
were local directories to your services? Then, maybe you need a shared filesystem using NFS.

•	 Content Delivery Network (CDN): When dealing with static files, if you need to deliver them 
to your users in a very low-latency mode – in other words, if you need a blazing fast retrieval 
time for your users, especially when they are using a browser or a mobile app – you should 
consider using a CDN. It will keep a cached version of your system’s static files geographically 
closer to your user. CDNs are typically used for accelerating the retrieval of website resources, 
such as images, videos, fonts, static HTML pages, and so on.

•	 Text Search: If you need to provide specific search capabilities to your website, then you cannot 
go wrong with Elasticsearch. Bear in mind that Postgres also has great search capabilities 
(actually, Postgres has a lot of use cases for data storage and management, in a brilliant way).

•	 Fast and Highly Available Data: If you need a large set of data that should be very fast to 
consume and you have simple tables with simple queries to access, maybe you will want to use 
Cassandra as your database. It also has incredibly special capabilities for making data highly 
available. I have seen Cassandra used very effectively to store user cookies and credential 
hashes, in such a way that retrieving that data for validating user actions was an extremely 
fast operation. Another option for bringing the same fast-retrieval qualities for simpler data 
structures is using DynamoDB, a cloud-native service from AWS.

•	 Events Hub: If you need to choose a storage system for your events, there are great alternatives: 
either you will choose Apache Kafka (the obvious choice for the market) or a cloud-native 
service, such as Kinesis, from AWS. Although they have different properties and serve different 
purposes, they are both used to provide real-time processing capabilities for your systems.

•	 Mobile data storage: If you need data storage for mobile devices, you can consider choosing 
SQLite or Realm as great solutions. They have excellent features that work on devices with 
restricted hardware.

•	 Analytics: When you think about analytics data storage, you will need to think a bit about 
your use case. If you have very large sets of data that you want to batch process in parallel ways, 
you can choose Hadoop. If what you truly want is a very fast processing time of data streams, 
you will need Apache Spark. If you just want a data warehouse that can store very large sets of 
data for your reports, you will want to use something like Snowflake. As you can tell, there are 
other very good options in this area, but they are mostly fine-tuned to specific usage scenarios.

•	 Geospatial Databases: If what you want is to store geographic data in your application, that 
means your database needs to support special geographic data types. Most big SQL vendors 
already support them. Oracle, MS SQL Server, and even Postgres bring support to those special 
data types.



I/O and data maintenance requirements 89

•	 Graph databases: Suppose you want to represent your data as a network, or a graph. A classic 
example of this would be a social network, in which people follow other people. To represent 
that kind of data in storage, you can use special graph databases. Two examples are Neptune 
and Neo4J. Graph databases make it much faster to operate searches and navigate through 
relationships since the relationships themselves are represented in storage. In comparison, 
SQL databases will usually be slower, since the relationships are represented with foreign keys, 
and they need to be calculated during the query. Graph databases maintain the relationship 
representation in primitive database structures.

•	 Caching: If you need to store and access simple data structures with extremely fast retrieval 
time and you don’t care too much about the actual persistence of that data, you can go with 
in-memory databases, such as Redis and Memcache. Although having different features (Redis 
offers data persistence and supports more complex data structures), they serve the same purpose. 
Usually, both databases are used in front of persistent storage to speed up data retrieval by 
creating temporary data caching.

•	 Time Series Data: When your information is time-sensitive – in other words, if optimized 
time-ordered data will make a difference in your use case – you can choose what we call a time 
series database. InfluxDB is an example of this use case. It makes it much faster to retrieve data 
ordered by time, and it makes it faster to also slice your data in a time-sensitive manner. Time 
series databases are also optimized for writing and their data ingestion is much faster. It does 
not seem too much, but think about use cases for reporting, for example. If you want to plot 
charts in real time and you are showing events on a chart, time series databases will be the best 
choice for that. Another great technology for handling time series data is Prometheus. The twist 
in this case is that this database can pull data from sources over time and helps create alerts for 
metrics. This makes Prometheus a great choice for monitoring systems.

•	 Aggregated Logging: A special case for search-capable databases is log aggregators. In the past, 
when monolithic applications were the norm, it was a common situation to just have a single, 
huge log file for our applications and triaging issues was nothing but a matter of logging in a 
server and filtering files for exceptions. Those were the days of monolithic architecture. Today, 
microservices are very common; we have dozens of containers with lots of smaller applications. 
What do you in that case? How can we troubleshoot our apps? Enter log aggregators. Technologies 
such as Sumo Logic, Datadog, and Splunk are special databases used for, among other things, 
aggregating and indexing logs from diverse services and their respective pods/containers. They 
make it quite easy to query logs across dozens of microservice instances.

Now that we have talked a lot about data storage, let’s study how we process our data.



Defining Services for Your Domains 90

Requirements for data processing
Besides users and data handling, we also need to think about how we are processing the data we 
are storing and representing. These are the questions I have used repeatedly to think through data 
processing matters when dealing with systems design and programming:

•	 What algorithms can be used to solve the problem quickly?

•	 What latency or time response is needed by your remote client systems?

•	 Is geographic proximity relevant?

•	 What are the data states?

•	 What is its life cycle? How is an object created? How does it live through time? How does it die?

•	 Is lagging in information allowed?

•	 Is high availability necessary?

•	 What kind of scalability do you need? Which of the following should it be?

	� Horizontal: Should multiple servers handle your requests?

	� Vertical: Should you upgrade your server hardware to deal with heavier workloads?

•	 How about resiliency? Do you need your services to be able to keep serving requests when a failure 
happens at some point in your architecture? Do you need to implement fault tolerance, such as 
making your application capable of recovering from failure without losing meaningful data?

•	 What is your expected throughput (TP)? How many requests per second do you expect to 
handle? How many read and write attempts will you need to deal with? How much input or 
output in bytes per second? Do these TPs change during the day/weeks/months/years, meaning 
do you have more operations happening at a specific time?

•	 Is there any single point of failure?

•	 How many concurrent users are there at a time?

•	 What are the possible bottlenecks, and how do you solve them?

•	 Is there any delayed operation allowed or needed?

•	 Is any recurring operation needed on your system? Do you need batch jobs to consolidate data 
once a day? Do you need to regularly export data to other systems on a regular schedule? Do 
you need to transform data and send it to other systems, such as data warehouses?

•	 Is there any bulk data operation necessary? Do you need any system that will process a lot of 
data at once? For instance, suppose that in HomeIt, you add all media for different properties 
to a queue, then at an hourly basis, a single process moves through the entire queue and works 
the entire media batch at once, producing optimized images of different sizes for different parts 
of your website.



Requirements for data processing 91

•	 Is streaming data needed?

•	 Will data need to be treated with buffering?

•	 Can the processing be done in parallel?

•	 For the data amount projected, is there any need for high-performance computing?

•	 Do you have concurrency happening on your system, with different requests trying to access 
the same resources? Do you face race conditions, in which two requests try to change the same 
resource simultaneously?

•	 Is there any need for adjusting algorithms or data formats at runtime, depending on devices?

•	 Does the system support offline usage?

•	 Is caching needed for processing stuff or consulting external systems?

•	 Is clustering needed?

•	 How much will the data amount handled vary at runtime?

•	 What is the maximum time tolerated for spinning up a service?

•	 Is real-time computation a critical feature?

•	 Which events need to be published, regular states or errors, and why?

•	 Which other systems need to be notified by this system?

•	 Which kinds of failures are possible?

•	 What kind of errors will the system return in case of failure?

•	 How will the system try to recover from errors?

•	 What error alarms will be available?

By using these processing questions to think about our HomeIt system, we can think of a few interesting 
points. For instance, when we are considering the rental property media, it seems likely that we will need 
to provide fast computation time to create thumbnails from the original user images. We also need to 
make sure that we can recover from image processing failures. When considering the times at which 
the system has a heavier load, we could think that between 9 a.m. to 5 p.m. are the busiest hours. In that 
case, we should probably have some infrastructure in place that is capable of scaling up and down to deal 
with heavier or lighter loads, depending on the time of the day. We want a cluster capable of doing image 
processing for multiple users at the same time. But how many users do we want to simultaneously serve? 
We certainly do not want the image processing service to become a bottleneck. Otherwise, we will face a 
lot of delays and errors when multiple landlords are trying to register their rental properties concurrently.

Which other aspects of the HomeIt system call your attention when you go over the different questions 
in this section?

In the next section, we will look at a few important testing questions.



Defining Services for Your Domains 92

Testing requirements
We will look at testing across the book. However, for starters, let’s consider the following questions, 
which will help us understand how we will design a test approach for our applications. Here are 
the questions:

•	 How will your features be tested?

•	 Are there different kinds of testing required for different parts of your system?

•	 How much unit testing do we want to do?

•	 How much integrated testing do we want to have?

•	 Will we have behavior or UI testing?

•	 What are the collateral effects of this design choice? Are there unintended consequences for 
choosing the program structure in the way we did? If there are collateral effects, are they 
desirable or completely undesirable?

Just to explore it a bit with a good scenario, we could assume that the HomeIt systems will have both 
unit tests and integration tests. UI tests are not a subject for this book, since we are mainly talking 
about backend software development using Spring 6.

AI, data engineering, and analytics requirements
I have a few critical questions for data analysis. They help guide the main concerns regarding data. 
This book will have some chapters devoted to data analysis techniques using Spring 6, but you should 
look for more references if you genuinely want to get a deeper understanding of how to work with 
data. Here are the main questions:

•	 Which kinds of reports and analyses will be needed in these systems?

•	 What are the key business performance indicators we need to track?

•	 Are we able to extract those key performance indicators (KPIs) from the current data?

•	 Are we able to project those KPIs from the current data design?

•	 Will any ETL be needed? How would we build the extraction, transformations, and data loading?

•	 Is machine learning needed in this product? Do we need any data tagging/categorization systems?

•	 Do we need to use any regression techniques?

•	 Do we need to use generative AI somewhere?



Disaster recovery capabilities 93

Data analytics is a very crucial topic for businesses for multiple reasons. If we think about the HomeIt 
startup, we could project dashboards to show revenue on a daily basis. We could also report the number 
of proposals that were closed/rejected. We could show the number of counteroffers that were created 
in a proposal, on average. Additionally, we could report the number of users registering on the website 
(even by separating the users of different types in the analytics dashboard).

On another note, we could automatically create easy-to-use tags for filtering properties, depending 
on the content of the property descriptions. We could also help landlords improve their descriptions 
using generative AI to correct texts, create more enticing descriptions, and things like that. Of course, 
to build dashboards, we will need to think about the kind of technologies we need to have in place to 
allow superior performance on ETL systems. We could also have a real-time fraud detection system 
by using machine learning to react to important user attempts.

The possibilities are endless regarding reporting and data analytics.

Disaster recovery capabilities
Another key system aspect to think about – and this is a very important one that many companies 
will overlook – is thinking about disaster recovery capabilities. Suppose your company building is 
set on fire by accident. Will you be able to keep all key systems operational? If a hacker manages to 
invade your servers, how will you be able to shut down their access and get the systems to operate 
normally again? How fast will you be able to do such things? Here are some more questions to help 
your assessment:

•	 What is the frequency of the needed backup?

•	 How much time can be tolerated from data loss to the last backup point?

•	 How many backup events will be kept?

•	 How is the backup data stored?

•	 Will there be any redundancy of backups?

•	 Who will have access to the backups?

•	 What is the target recovery time from disasters?

•	 How much downtime is tolerated?

•	 How will the restoration process be done? What will trigger it?

•	 What geographic regions will be used to prevent disasters?

•	 Which strategy will be used? Would it be backup/restore, pilot light, or hotsite/multisite?



Defining Services for Your Domains 94

In our home IT system, there are simple things that can be done, such as choosing policies for a daily 
backup of the database. In fact, there are cloud providers that have those capabilities out of the box. 
The retention window is also another important thing to consider. For example, we could define that 
a database snapshot can be done every day. Also, the retention window could be a whole week. In 
that way, we always have the last seven snapshots.

Depending on the size of the damage and recovery capabilities you want to account for, we could 
set different policies for allowing faster or slower recovery. For instance, if you want to have a fully 
operational database replica ready for your application to connect to, in case of a failure of the primary 
database instance, then you will need to pay for that additional instance and set up your system in a 
way that you get all write operations immediately applied to the disaster recovery database, as they 
are happening in real time. That is, there are a lot of different and possible configurations and designs 
you can use to make sure the system will be able to come back online if some outage happens.

In the next section, we will discuss the different protocols used to implement communication on 
your applications.

Choosing protocols
In the last few sections, we talked about storage, processing, data formats, how users are onboarded, 
kinds of users, and so on. Now, we need to be mindful about how to transfer objects. Which protocols 
will we choose in order to exchange data between services?

•	 RESTful APIs: We choose simple Representational State Transfer (REST) designs when we 
want to allow our service to be accessible in a straightforward, standard way, using the basic 
HTTP protocol methods. As the most used data transfer pattern today, you can safely make 
your services available using this standard. There are a few drawbacks to REST services, though. 
The biggest one is that the JSON object representation is considered to consume too much 
bandwidth, compared to newer protocols, such as Google’s Remote Procedure Calls (gRPC). 
Rest services make it very simple for users to read and understand the data being exchanged 
and represented. All in all, it is pretty easy to go with this option when implementing services 
since there are a lot of people who know how RESTful services work.

•	 gRPC: If you’re seeking a less verbose protocol with higher TP than REST, gRPC is a strong 
alternative. It uses HTTP/2 for transport and Protobuf for efficient data serialization, offering 
low latency and bidirectional streaming. gRPC is suitable for resilient, high-performance 
applications, especially in event-driven architectures.

•	 WebSockets / WebRTC: WebSockets provide a full-duplex communication channel over a 
single TCP connection, allowing real-time data transfer between clients and servers. They 
enable efficient, persistent connections, which are ideal for chat applications, live data feeds, 
and collaborative tools.



Summary 95

•	 Web Real-Time Communication (WebRTC): This is a protocol suite enabling peer-to-peer 
audio, video, and data sharing directly between web browsers or apps. It powers application 
features such as video conferencing and file sharing, offering low-latency communication 
without intermediaries.

•	 GraphQL: GraphQL is a query language and runtime for APIs developed by Facebook that 
provides a flexible, efficient approach to data retrieval. GraphQL allows clients to request 
exactly the data they need, reducing over-fetching and under-fetching. It organizes data in a 
schema-based, strongly typed structure, enabling clients to query multiple resources in a single 
request. It also supports real-time data with subscriptions and allows developers to shape their 
API responses precisely to match frontend requirements.

As you can see, there are very different approaches to enabling data exchange between your 
different services.

Summary
In this chapter, we had an overview of the different technical aspects you need to think about when 
designing your application. This chapter is not supposed to be the only resource you will use to 
dive into the technical requirements. It usually takes a whole team with different specialists to make 
such decisions.

When you are in a big company, many of those decisions will already be made for you. However, it 
is important to know how to raise the discussions and understand what assumptions are currently 
made, and how they affect the overall application performance. With this guide, you will probably 
be much more effective at raising good questions and exposing risks and weak spots in the systems 
you are working with.

There are other aspects of software development you will need to think through to deliver great systems. 
For now, this is a great starting point. The following is a checklist I often go back to, and it helped me 
to assess many applications and find opportunities for improvement.

When thinking about your systems, you should consider these questions:

•	 How will you handle your users?

•	 How will you represent the application data?

•	 How will you process the application data?

•	 How will you store your data?

•	 How will you transfer your data?

With these aspects and analysis in mind, we can finally start to understand how Spring can help you 
in building such systems. In the next chapter, we will dive into Spring Framework coding. Let’s talk 
about service design and programming.





With a solid foundation in place, it’s time to start coding. This part covers the process of translating 
requirements into well-structured APIs and services using the Spring Framework. We’ll define REST 
APIs, implement service layers, manage dependencies, and ensure that our services communicate 
effectively with databases and external systems.

This part has the following chapters:

•	 Chapter 5, Writing Your Services – Introducing REST APIs with the Spring Framework

•	 Chapter 6, Translating Business Requirements into Well-Designed Spring APIs

•	 Chapter 7, Handling Data and Evolving Your Microservice

Part 2:  
Designing Great  
Spring Services





5
Writing Your Services – 

Introducing REST APIs with  
the Spring Framework

We are finally ready to start coding! This chapter provides the link between all the product and system 
analyses we have done in previous chapters and what it takes to get those ideas to solid Spring services.

These are the topics we are going to cover in this chapter:

•	 Moving from domain design to programming

•	 Introducing the HTTP protocol

•	 Writing your first Spring app

•	 Designing your API services

•	 How Spring apps run internally

•	 Creating RESTful APIs in Spring

Some sections will feel a bit like a review for more experienced developers. If you prefer, you can skip 
the sections in which we go back to some HTTP fundamentals.

After reviewing the important HTTP knowledge needed to understand how the protocol works, we 
will introduce you to the inner world of Spring beans and how the framework handles key objects 
for you. Then, we will move on to how to write good controllers using the Spring Web project, which 
enables your API to properly handle HTTP requests. Also, we will have plenty of examples of how to 
add validation to our input data.

Alright, enough of introductions. Let’s start our journey!



Writing Your Services – Introducing REST APIs with the Spring Framework100

Technical requirements
You will need the following tools installed:

•	 Java 21 SDK: The standard Java Software Development Kit, version 21

•	 Gradle: An industry-standard built tool

•	 IntelliJ Community edition: The free version of one of the lead integrated development 
environments (IDEs) for the Java language

•	 SDKMAN: A package manager software we use to install Java and Gradle

Moving from domain design to programming
Let’s recap what you have learned so far. By going through our HomeIt example across the first chapters, 
if you followed all the proposed exercises, we did a series of business requirements analyses for your 
product. We delved into the details of how a feature should work. We studied lifecycles, inputs, outputs, 
users, and so on. We ended up with user stories and use case descriptions for different features. We then 
defined domains and services for our application and created great domain and sequence diagrams. 
After all this, we studied how to think about non-functional requirements – that is, how to think 
about our system constraints so that we can choose the right technologies to implement our services.

This chapter is the first one in which we will write our first services using the Spring Framework. Are 
you excited? By learning the first lessons in this book, we have been equipped with great tools that 
turn us into true system analysts. Next time you get a ticket to implement something, you can now go 
back to the foundations of those tickets and user stories and dive deep into a series of critical reasoning 
processes that will help you lead a boatload of great conversations with your team.

For instance, how do we go from our domain and sequence diagrams to effectively writing our software?

The first thing we will want to discover is how many actual “programs” we will need in our system. 
Back in the old days of the internet, we used to have just one backend service for a whole website. 
The code we had written would basically implement all domains and services in a single code base 
and would be compiled in just one binary – or in the case of PHP, the pages would be “packaged” into 
one directory that would be served by a single HTTP server (Apache, for the vast majority). Then 
there were server replicas: the same program was run across multiple computers so that we could 
serve more users. That was it.

The old days were simpler, and these were called monoliths. But that design carried many issues. The 
main one was that monolithic programs would grow into an enormous amount of code that would 
become unmaintainable. Another huge problem was that big monolithic services would require an 
enormous amount of system resources – CPU, memory, and so on. Developers started to realize that, 
to avoid those big constraints (and many others), services could be broken down into different smaller 
and simpler programs. Today, there are companies with dozens or even hundreds of those different 
programs. These are called the microservice architectures.



Moving from domain design to programming 101

The idea in the microservice architectures was that your domains and services would be split across a 
certain number of programs so that they could talk to each other. The promise in the land of microservices 
was that programming would become simpler, by allowing us to maintain smaller services separated 
from each other. Each service would use fewer resources, the code base would be smaller, and a team 
could be specialized into just a few domains, instead of carrying the responsibility of maintaining a 
whole monolith with many business areas implemented in the same code base.

However, the microservice hype did not live up to its promise. Microservice architectures can become 
very complex. For example, when we have a transaction going, how do we guarantee that different 
programs maintain 100% consistency across the sequence diagram flow? If one of the systems fails 
during an update, how can we guarantee that other services do not keep the wrong object states if 
they are using different databases? That is just for starting the conversation. There are many other 
drawbacks to choosing to write microservices.

Well, today, monoliths and microservices will co-exist. It is up to you to understand when you should 
write one or more programs to reflect your domain diagram. This figure illustrates what usually 
happens between both extremes of monolith and microservices architectures:

Figure 5.1: Company size versus number of server applications



Writing Your Services – Introducing REST APIs with the Spring Framework102

By looking at the different quadrants in the figure, you can see the relationship between the number 
of servers and the number of domains in each server.

What should drive your decision when implementing a new feature? Should you just add that feature 
to an existing code base or should you just start a new service from scratch on a brand-new Spring 
project? Here is a good set of steps to help you decide:

1.	 If you are dealing with legacy code, you will face a few servers with a lot of code in each one, 
reflecting an enormous number of domains in each (quadrant a). If that is the case and your 
product team decides to release something new, avoid changing the legacy server. Otherwise, 
you will deal with things such as not being able to even run the server on your machine (that 
is a common problem with legacy servers). To help you implement microservices on top of 
legacy services, go for what we call the “strangler pattern” – that is, implement a new program 
that will override and replace the services implemented inside the old legacy service. There 
is a whole book to learn about all kinds of strategies for implementing the strangler pattern 
and its variations called Monolith to Microservices: Evolutionary Patterns to Transform Your 
Monolith, by Sam Newman.

2.	 If you are working for a start-up (quadrant b), you might do well by starting with a monolith, 
as start-ups usually choose speed over optimization. Writing a monolith will help you release 
things faster in the beginning. Also, since start-up services will not have too much request volume 
at first, you should be able to move things to production and iterate faster by just having one 
system to take care of, even if it is not fully optimized. When the user volume starts to scale up 
and the most successful services start to show up, you can think about moving them to their 
own microservices, optimizing them for performance, scalability, and maintainability. This 
monolith-to-microservice bootstrap process will help you avoid spending too much money 
and time on configuring a microservice cloud in the beginning, which can be detrimental to 
the speed a start-up needs to be successful.

3.	 If you work for a company that has some maturity, a lot of microservices, and a strong budget 
for software development, you will probably work with dev teams for different systems and 
areas (quadrant c). In that situation, you can evaluate the need for creating new microservices 
when adding features to your software. Unless there is already a service to take care of a 
specific domain you were asked to develop, you will be fine by creating a brand-new program/
microservice for tackling some new requirements.



Moving from domain design to programming 103

4.	 If you work for a company with too many systems that have a lot of code and domains inside, 
feeling like a multi-monolith architecture (quadrant d), that will mean you got the worst of both 
worlds: bloated code that is difficult to understand, manage, and develop and a lot of servers 
requiring heavy resources. This is what I call the red zone; you should avoid that scenario 
at all costs. If you find yourself in that environment, you should evaluate the possibility of 
refactoring your services, moving them to more general approaches that can reduce the lines 
of code required to release something new. The key is to find similar domains, use cases, and 
objects that could be collapsed into a single service. That service should implement different use 
cases by using configuration objects and files, instead of relying on new code for new releases. 
Moving the differences between similar objects to configuration files will be key to allowing 
for more manageability, speed of implementation, and time to market.

Preparing the right way for the upcoming features
The scenarios under each quadrant are pretty easy to understand, but I would like to expand 
a bit on quadrant d by circling back to something we talked about in Chapter 2, which is 
thinking in the long term. Suppose the HomeIt company wants to operate in 10 countries and 
already has a different code base for 4 payment methods in the country they operate in today. 
That amounts to lots of different implementations of the same thing (a payment method) for 
the new countries they will enter in the next years. You will want to provide a faster way of 
implementing the different payment methods in the future. In that case, you can look at what 
is common across the different payment method services and create just one service to support 
all future payments. The idea is that you should be able to configure new payment methods, 
instead of having to write them in code.

So, let us wrap this up by doing some more HomeIt examples. Let’s start by considering these different 
microservices to be programmed:

•	 User service, which allows registering, storing, and retrieving user data for tenants, landlords, 
and realtors

•	 Rental property service, which helps register new properties and retrieve data through high-
performance search capabilities

•	 Partnership proposal service, which helps register and manage rental proposals

•	 Payment service, which allows both storing user payment data and processing the user payment

These are some examples of the actual programs and microservices that could help us develop the 
HomeIt startup sample project. What other services or programs do you think would be interesting 
to have on this list?



Writing Your Services – Introducing REST APIs with the Spring Framework104

Microservice communication
Okay, so we have given some thought to whether or not we should add new microservices to our 
architectures. Now, since this book is mostly about microservices, we need to understand how they 
actually communicate with each other. In order to learn that, I would like you to look at this next diagram:

Figure 5.2: The OSI model

This model is what we call the Open System Interconnection (OSI) model. This is a conceptual 
model designed by the International Organization for Standardization (ISO). It makes it easy to 
understand our regular network stack and identify exactly how internet applications are developed, 
from wiring technology up to your application.

There are many great articles about the OSI model on the internet, and since it is not the main topic 
of the book, we will not explore it further. I just wanted to call your attention to it so you have a 
clearer perspective on what your application is sitting on top of. From the base physical layer up to 
the data link, network, transport, session, and presentation layers, our application will generally use 
the protocols in layer 7, the application layer.

In the next section, we will dissect the different pieces of the HTTP protocol – the main one we will 
be using to create our services.



Introducing the HTTP protocol 105

Introducing the HTTP protocol
Sitting on layer 7 of the OSI model, the Hyper-Text Transfer Protocol (HTTP) is the railroad through 
which our applications will send and receive data over the network. It was created originally by Tim 
Berners-Lee to transfer HTML pages between browsers.

Your browser works on top of HTTP
This section introduces the exact way in which your browser connects to websites. There might 
be some differences, which we will highlight in the next chapters. But the essence of browsing 
the internet is the explanation we will go over here.

The beauty of HTTP is that the protocol is readable by humans. By using simple commands, it is 
possible to actually understand what data the client and servers are exchanging.

We can get a glimpse of the exact power of the HTTP protocol by using the curl command. This 
terminal command is available in all major operating systems, including Windows 10+.

For example, this is the output of a curl -vvvvv httpbin.org/ip command in my machine 
on Ubuntu Linux. It is querying for a service that will inform my own computer IP (http://bin.
org/ip). The –vvvvv parameter will take the curl execution to its maximum verbosity level. In 
other words, it will throw in the console output all the actual exchanges between client and server:

Figure 5.3: The raw request and response to/from an HTTP server using curl



Writing Your Services – Introducing REST APIs with the Spring Framework106

You can test this same command on your machine. After you do this, we can dissect this output:

•	 The first and second lines show the IP (3.233.6.75) and port (80) of the target server. The 
IP was found under the hood by using the DNS protocol, which maps readable addresses to 
structured numbers that identify where to find the servers on the internet. The IP is a part of 
layer 3 in the OSI model. The port is a part of layer 4. The string saying we are connected to the 
server is a part of layer 5, the session layer. The second line also shows the connection number 
(#0). A complex HTTP exchange with multiple requests can lead to multiple connections to 
the same server/port.

•	 The third line onward starts with two characters: > or <. The right arrow represents the data 
we are sending to the server. The left arrow represents the data we received from the server.

•	 In the data we send to the server, we can see the following:

	� GET /ip HTTP/1.1: GET is the command we are executing in the target server. In this 
case, we are asking the service to retrieve a resource, which is the /ip directory. In this case, 
we are using the HTTP 1.1 version. The GET command is also referred to as an HTTP verb. 
We will dive into the main verbs available shortly.

	� Host, User-Agent, and Accept: These are called the headers in the HTTP request. 
They help structure the request in all kinds of ways. The headers in this example are used to 
identify the target domain and the curl version used to execute the request and to set the 
type of data our command accepts back (in this case, we accept any format). We will dive 
deeper into the role of important headers in the future.

•	 This execution does not support multi-use. This means a new connection must be established 
if we need to execute other HTTP commands.

•	 In the data we receive from the server, we can see the following:

	� HTTP/1.1 200 OK: The 200 number tells our curl client that the request was successful 
(OK). It is also called the return code. There are a lot of important return codes for HTTP 
requests, and we will learn about the main ones in the next sections.

	� We then have a series of headers: Date, Content-Type, Content-Length, and so 
on. They tell us the date of the execution, the return content type (JSON, which we will look 
further into), the length of the data in bytes, and the actual server and version that is being 
run (in this case, gunicorn, which is a Python-based HTTP server).

•	 Finally, we can see the actual IP result, which is called the payload. In this case, it contains the 
IP address of my own computer (the origin of the request). The JSON content type is key to 
developing microservices, as it is 100% readable by humans.



Introducing the HTTP protocol 107

I love using curl when troubleshooting systems. For general development efforts, there are great 
alternatives such as Postman, Insomnia, and Bruno. They all allow creating request collections so that 
we can easily test various aspects of our services.

Of course, your browser can be used as a tool to access websites using HTTP as well. In the real world, 
the browser acts as the client (curl), and the website is served by a web server. Your browser will 
generally either fetch HTML pages issuing GET commands or fire HTTP requests to the backend 
services, which allows using other HTTP commands, which you will learn about shortly.

Most backend services that are exposed on the internet today will be built on top of the HTTP protocol. 
That means, when building a new service, we will always have a request to a service and a response 
back to the original client that fired the request. All requests will have key parts, such as the HTTP 
verb that defines the action, the response code that summarizes the result, the HTTP headers, and 
the payloads.

Let’s see some of these aspects of HTTP closely.

What are the main HTTP verbs?

In our previous example, we saw the GET HTTP verb in action. Let us look at all the main verbs now:

•	 GET allows fetching a resource. It can be used for retrieving web pages or some domain 
representations (we will look at that shortly). It could be used to fetch a list of the rental 
properties found during a search on the HomeIt website, for instance.

•	 DELETE allows issuing a command for the service to remove some object from their domain. 
It could be used to delete some pictures of a rental property in the HomeIt system.

•	 POST allows sending a new resource to a backend service so that it can be persisted and accessed 
later using GET requests. It could be used when landlords are submitting new rental properties 
that would later be found during searches.

•	 PUT is used when we need to fully update an existing resource. It could be used for uploading 
a profile picture, for instance, or a simple object such as the user details.

•	 PATCH allows updating some fields of a resource, without touching other fields. It could be 
used to update just some fields of a rental property, such as the description, for example.

There are other important HTTP verbs, but these are the main ones we need to study. Let’s stick with 
them for now. By implementing these five verbs for a domain, we have fully implemented the CRUD 
operations – create (POST), read (GET), update (POST, PUT), and delete (DELETE). These are the 
main operations in basically every software.

Let’s now go over the main return codes.



Writing Your Services – Introducing REST APIs with the Spring Framework108

What are the main HTTP response codes?

As you saw in our curl example, when you send an HTTP request to a server, it will always respond 
with some code. These are the main response codes we will use in most systems:

•	 200 OK: The request has succeeded. For instance, when you issue a GET request, receiving 
back a 200 code means the resource has been fetched and is transmitted in the message body.

•	 201 Created: The request has been fulfilled and resulted in a new resource being created. 
It is usually a response to a POST request.

•	 202 Accepted: The request has been accepted for processing, but the processing has not 
been completed.

•	 204 No Content: The server successfully processed the request but is not returning 
any content.

•	 301 Moved Permanently: The address of the requested resource has been changed 
permanently. The new address is usually provided in the response.

•	 400 Bad Request: The server cannot or will not process the request due to some client 
error, usually a malformed message.

•	 401 Unauthorized: Although the HTTP standard specifies Unauthorized, semantically, 
this response means unauthenticated. That is, the client must authenticate themselves to get 
the requested response.

•	 403 Forbidden: Although the client is authenticated, its credentials are not enough to 
access the specified resource.

•	 404 Not Found: The server cannot find the requested resource.

•	 500 Internal Server Error: A server error, meaning some unrecoverable error happened.

•	 502 Bad Gateway: The server, while acting as a gateway or proxy, received an invalid 
response from the upstream server.

•	 504 Gateway Timeout: The server, while acting as a gateway or proxy, did not get a 
response in time from the upstream server.

Again, there are other possible HTTP codes that you might want to use in your implementation. 
These are some ideas of the ones people use the most. You can find other HTTP return codes in a 
lot of places online, such as http://http.cat – a funny website that mixes HTTP return codes 
with cat pictures.

Writing your first Spring app
How about we rewrite this IP service using Spring Boot (which is the main Spring Framework project 
we will talk about in a bit), just so that we can have our very first app running and you can get a feel of 
how Spring works? We can start with this very quick practice, and then we can get back to explaining 
the Spring Framework.

http://http.cat


Writing your first Spring app 109

Using SDKMAN to manage your tool versions

To install all the needed programs, we can use a smart tool called SDKMAN. It is software capable of 
maintaining different versions of your Java SDKs in the same computer environment. With SDKMAN, 
you will be able to work with different versions on demand. Let’s say you need Java 8 today, you can 
just install it and instruct SDKMan to let Java 8 be your default tooling in your terminal. If you want 
to change your current SDK version to Java 17, you can do this as well. You can even set a directory 
with a default Java version of your choice so that when you are running Java commands inside that 
directory, your preferred Java version will be used. This is useful when you are working with different 
projects that require different Java versions.

SDKMAN works with both Linux (including macOS and Windows WSL) and Windows. You can 
install it on your machine by following the instructions here: https://sdkman.io/install.

Beware that SDKMAN is capable of also managing other tools, including Maven and Gradle. In our 
case, we will work with Gradle in this book.

The SDKMAN website contains a very easy-to-follow manual page so that you can learn about the 
main commands and how to use them: https://sdkman.io/usage.

For this book, it is enough to run just a few commands to have the right tooling installed. First, you 
can list the available versions of Java with this command:

> sdk list java

The result will show you several Java versions that you can install:

Figure 5.4: SDKMAN listing Java versions

https://sdkman.io/install
https://sdkman.io/usage


Writing Your Services – Introducing REST APIs with the Spring Framework110

When installing the Java 21 SDK, you will need to choose whatever version you prefer. For this book, 
I will generally use the Java 21 version. Just as an example, this is the command you need to run if 
you are working with the Amazon Corretto package:

> sdk install java 21.0.3-amzn

As you can see, the last part of the command is the same as in the Identifier column in Figure 5.4. 
Choosing the right Java SDK package is a matter of little concern, but for our code samples, we will 
use the Temurin SDK, which we see in the next section.

Installing the Java SDK

There are several Java SDK distributions available for you to choose from. For example, the following 
figure shows you the output of the command for installing a different version from the amzn one, 
called Temurin. This is the SDK I am using throughout the book:

Figure 5.5: SDKMAN installing a new Java version



Writing your first Spring app 111

As you can see, I have actually chosen to set the Temurin version as my default one, by answering Y 
to the question. In regards to why I am using Temurin, there is not really a strong case for it. Different 
Java SDK providers will generally build their tools following Java specifications, so there is no strong 
advocacy about which one to choose. But as a general rule, if you are using Amazon Web Services 
(AWS), you might prefer to use Corretto as your preferred Java SDK. Since Amazon built it, it has 
supposedly been battle-tested to use in conjunction with AWS.

Installing Gradle

Now, we are going to install Gradle 8.7, which is the latest stable version:

Figure 5.6: SDKMAN installing Gradle

Since I do not have any Gradle version installed yet, SDKMAN decided to make 8.7 my default version.

Alright, we have now installed Java and Gradle, which is enough to run future Java projects. You can 
make sure they are correctly installed by running these two commands:

> java --version
> gradle -version



Writing Your Services – Introducing REST APIs with the Spring Framework112

This is what I get when I run both commands. You should get a similar output:

Figure 5.7: Checking the newly installed software versions

Easy-peasy, isn’t it?

SDKMAN is my go-to package installer for all things related to the Java ecosystem.

Now, let’s actually write some Spring code. I will be occasionally adding screenshots from my code, 
but I’ll add a link to the complete source code in the sections.

Using Spring Initializr

There is a very important tool for kickstarting Spring projects. It is called Spring Initializr, and it can 
be accessed at this address: https://start.spring.io/.

When you visit the website, you will see two panels side by side. The left one requires a general setup 
for the versions used and the names of the applications, packages, and so on. I have set these values, 
and you can do the same to follow along this process:

https://start.spring.io/


Writing your first Spring app 113

Figure 5.8: Creating an app with Spring Initializr

The right panel is where you choose which Spring projects will be used in your service; these are 
actually the Java dependencies you will need. In this very first sample project, we will need nothing 
besides the Spring Web project. This is how you should parameterize your Spring starter:

Figure 5.9: Choosing dependencies in Spring Initializr



Writing Your Services – Introducing REST APIs with the Spring Framework114

To select the Spring Web dependency, just make sure to click on ADD DEPENDENCIES and you 
will be presented with an intimidating list of components. Just forget about the substantial number 
of options; I will show you all these components one by one throughout the chapters.

With the Spring Web project enabled as a dependency, we can click on Generate in the page footer. 
The website will create a package containing a ready-to-implement basic Spring project. Download 
it and open it in your favorite IDE. If you still do not have a preference, I recommend downloading 
the IntelliJ Community edition, which is free. If you are a student, you can even have access to the 
paid version. It is by far the best IDE for Java-related projects.

Opening your Spring project

After you unpack your first server, you will be presented with the following directory structure:

Figure 5.10: Spring Initializr basic app structure



Writing your first Spring app 115

This is a basic structure for a Spring project. I will dive into more background explanations in a bit. 
For now, let’s understand the different parts:

•	 The /gradle directory actually contains a whole version of the Gradle software, our package 
builder. It is there in case you don´t have Gradle installed on your machine.

•	 The file called MyFirstSpringbootServerApplication.java is the main application 
class of your server. This is the class that can run an entire set of Spring services.

•	 The /test directory contains an initial test class, which we are going to be using to speed up 
our application development.

•	 There are other Gradle config files that we are going to deal with in the next sections. For 
now, it is important to state that gradlew and gradlew.bat are actually executable files 
from which you can run a Gradle build in this project, even if you do not have Gradle installed 
on your machine.

•	 The file named build.gradle is where we declare the Java library dependencies (the .jar 
files containing the Spring classes you will use in your project).

Next, we will learn how to compile and build our package.

Building your application using Gradle

In order to build your Spring application, you need to switch to your directory and run either one of 
these commands on a terminal window:

> gradle jar
> ./gradlew jar

The first command will execute a build using the default Gradle version that you installed on your 
machine using SDKMAN. The second command will use the built-in Gradle version that comes with 
the Spring project you generated using Spring Initializr.

Let us check the output of the build command:

Figure 5.11: Gradle build command output



Writing Your Services – Introducing REST APIs with the Spring Framework116

When you run your application, Gradle will compile it and build it automatically and the following 
things will happen:

•	 Your Java dependencies will be downloaded to a local cache directory directly from the Maven 
Central website by default, but it is fully customizable. In some companies, severe network 
restrictions might have been applied, meaning that you will not be able to download your 
dependencies from Maven Central. In that case, it is possible to configure your build to get 
dependencies from the company’s own repositories.

•	 The Java compiler will compile all your classes and package your Spring application.

•	 The project’s test suite will be run, making sure all the tests you wrote pass.

•	 Your Spring application .jar file will be created.

After you run the gradle jar command, this is where you will find your created .jar file:

Figure 5.12: The application .jar file created by the build process

The build directory is where all compiled classes and resources generated during the build process 
will go. Now, let’s implement the actual IP extractor.



Writing your first Spring app 117

Implementing your first Spring Controller class

A Controller class is a Spring class capable of handling HTTP requests. In order to implement your 
IP extractor class, you will need to add a new IpController class in this directory:

Figure 5.13: Creating a new Controller class

Generally speaking, every new Spring component needs to be included in a child directory from your 
main application class (in our case, MyFirstSpringbootServerApplication). That will 
help Spring automatically find your classes and make them available at runtime.

The body of your class should look like the following:

@RestController
public class IpController {
    public IpController() {}

    @GetMapping("/get-ip")
    public String getIP() {
        ServletRequestAttributes requestAttributes =
            (ServletRequestAttributes) RequestContextHolder
                .getRequestAttributes();

        if (requestAttributes != null) {
            return "Your IP Address is: " +
                requestAttributes
                    .getRequest()
                    .getRemoteAddr();
        }
        return "Error while trying to get your IP.";
    }
}



Writing Your Services – Introducing REST APIs with the Spring Framework118

As you can see, the implementation is pretty simple, but let me break down the different parts for 
you to understand:

•	 The package and import statements inform where this class belongs in the project, and 
which Spring classes will we use to implement our service

•	 The @RestController annotation tells Spring that this class will implement API endpoints 
that will handle HTTP requests from remote servers

•	 The @GetMapping annotation tells Spring that the getIp() annotated method will handle 
HTTP GET requests in the /get-ip Unique Resource Identifier (URI) – we will explain 
this in a bit

•	 The method implementation basically uses the getRequestAttributes() static method 
from the RequestContextHolder class, which makes the current request available to 
our method

•	 Finally, we recover the IP address that is stored in the HTTPServletRequest object and 
return to the remote client that issued the HTTP request

Now, let’s learn how to run our Spring application.

Running your Spring Application

In order to see your application at work, just run the following command from the root of your 
Spring project:

> gradle bootRun

You will see your application going online. The actual screenshot will be unreadable, but you can look 
at the details in your own console:

Figure 5.14: Spring application console logs



Writing your first Spring app 119

There are two lines at the end that will help you to know whether your application is online:

Tomcat started on port 8080 (http) with context path ''
Started MyFirstSpringbootServerApplication in 1.615 seconds (process 
running for 1.924)

This means you are exposing your server in port 8080 of your computer, which is the default Tomcat 
web server port. It is important to notice this because Spring uses Tomcat behind the scenes. You can 
also change Tomcat to Jetty, Undertow, and other containers, depending on your needs.

Finally, you can test your own application with the curl command on a different terminal. Just use 
the following command:

> curl –vvvvv localhost:8080/get-ip

Just for the record, localhost means you are calling a service that is on your own machine. This 
is the execution result:

Figure 5.15: Calling our new IP service

And that’s it! You have your first Spring service up and running. The IP address 127.0.0.1 means 
your Spring application knows that you are calling from the device that is running the application 
itself. In this case, we have implemented the application in a way that returns a basic text string. We 
will improve on that later; this was just for getting you a first experience with running Spring services.



Writing Your Services – Introducing REST APIs with the Spring Framework120

After this lab, we have some interesting questions to discuss, such as the following:

•	 How does the Spring Framework know which classes to run?

•	 What are the most important annotations?

•	 What are the best actual conventions for organizing Spring services?

Let’s discuss those in the next sections.

Designing your API services
Now that you have seen a bit of how Spring applications work, it is important to know how they are 
actually organized. There are some key terms for you to learn here.

In general, professional teams will look to create APIs with RESTful standards, documented with the 
OpenAPI specification.

What are all these buzzwords, and why they are important? That is a long story that we will uncover 
in the next sections and the next chapter.

What are APIs?

When you write a service that other people can use by means of other programs, we say you are 
creating an API, which stands for application programming interface. It means you can give other 
developers special documentation and credentials so that they can call your program in different ways. 
In this book, we are working with the Spring API in order to create our own APIs for other systems 
to use. In other words, we are using the Spring Framework API so that we can provide our own API 
to other developers. One API is leveraging another.

Think about that for a second. In the software world, it is APIs all the way down. The Spring Framework 
leverages the Java programming language API as well, and Java leverages the operating system’s APIs. 
It is one API on top of the next one, in layers.



Designing your API services 121

APIs facilitate the work of other developers. Let’s look at this diagram, which illustrates that organization:

Figure 5.16: The OS-Spring application stack

As you can see, developers are building APIs on top of other developers’ APIs.

In our example, as we want to provide a nice backend interface for our HomeIt systems, we will need to 
build our API on top of the HTTP protocol, and that is exactly one of Spring Framework’s specialties. 
Great APIs will always accelerate the next level of development.

To provide great APIs on top of the HTTP protocol, we need to understand the RESTful standard.

Why do we need RESTful standards?

As we saw before, the HTTP protocol allows for several different actions, which are represented by 
the verbs we saw beforehand. The most important ones are GET, POST, PUT, PATCH, and DELETE. 
If those are the actions available, what are we acting on? And how should we organize those actions?

Enter the RESTful standard. It was created in 2000 by Roy Fielding. The name stands for Representational 
State Transfer. It proposes that an application should be exposed over HTTP as a set of URIs, which 
are actually a part of the browser URL. The URIs would represent the application objects’ directories 
and instances (our domain objects, basically). Each URI was subject to actions fired by users by 
basically sending HTTP requests to those URIs.



Writing Your Services – Introducing REST APIs with the Spring Framework122

For example, in our HomeIt exercise, RESTful applications would make URIs available for the main 
domain directories:

/users
/rental-properties
/rental-proposals
/partnership-proposals

And so on, and so forth. These URIs will allow sending HTTP requests using different verbs. These 
are some examples:

•	 A GET request to /users/{id} would return the details of a single user

•	 A GET request to /users would return a list of users registered on the website

•	 A POST request to /rental-properties would allow registering a new property in 
the system

•	 A GET request on /rental-proposals/{id} would retrieve the information for the 
rental proposal ID provided in the request

You get the point, right? A RESTful API will allow you to act on all available domain objects by basically 
sending HTTP requests with the right verbs.

Circling back to Chapter 3, when we were extracting our services from the actual business requirements, 
the RESTful APIs are powerful ways to design those services.

Another critical point is that RESTful APIs will always be stateless services. That means the program 
should not keep any user session state between requests. Every request is treated as an entirely new 
interaction. The only persisted state is applied to the resources we are acting on. For example, when 
we create a rental property through a POST request, the data is saved in a database and made available 
for future requests. But there is no other user data kept between requests (such as a login context, for 
example). That design guarantees that we can fire requests to any server replica that might exist. This 
facilitates scalability, making sure that whenever we need to serve more users, we just need to spin 
up more servers and distribute requests across the server instances equally.

Dissecting a RESTful resource address

Just to restate an important concept: a resource, in a RESTful service, is an address that refers to 
an object from a particular domain. All resources are represented as URIs, and URIs are contained 
within URLs, which are basically the browser addresses. This schema will help you understand the 
structure of a RESTful address:

{protocol}://{base-addr}:{port}/{api-name}/{version}/{URI}



Designing your API services 123

For example, these are URLs that contain a URI:

http://homeit.com/api/v1/rental-properties
http://homeit.com/api/v1/rental-properties/123
http://homeit.com/api/v1/rental-proposal/345

Let’s break down the different parts of a URL:

•	 protocol: The network protocol used to access the resource. It will usually be HTTP or 
HTTPS (which we will talk about later).

•	 base-addr: The base address, or the root domain of your URL.

•	 api-name: A directory that you can use to segregate a series of resources as suffixes.

•	 version: A way for you to be able to update your APIs without losing backward compatibility. 
That means you can upgrade an API and still leave the old version online so that other developers 
can still do their requests and have their own client systems working before they can update 
the APIs to the new version.

•	 URI: The general identification of a resource. You can use a resource address to access both a 
set of resources or individual resources.

And here is the kicker: a resource URI is commonly referred to as an endpoint. Endpoints are 
represented as the resource locations in RESTful APIs.

Adding parameters to your API endpoints

Besides exposing resource locators, the RESTful API endpoints will also provide ways in which you 
can filter your request. For example, let’s say you have 10,000 users in the HomeIt system. If you fire a 
GET request to the /users endpoint, you do not want your server loading every user in memory, as 
that might break the system, especially if many users are requesting data like that. So, we need a way 
to tell our system that we need to get just a limited list of users. We usually do that with pagination 
parameters that are made available in the URL for other programmers to use.

There are two common ways to add parameters to a RESTful endpoint: path parameters and 
query parameters.

Path parameters are part of the URI directory path and are used to uniquely identify a specific resource 
or to affect the resource’s representation returned by the API. Here is an example of how that could 
work for our HomeIt system:

http://homeit.com/api/v1/rental-properties/123/EUR

In this case, 123 is a path parameter that identifies the specific object instance you want to retrieve 
from the database. You could add the /EUR path parameter if you want the rental price of the 123 
ID property to be retrieved in Euros instead of US dollars.



Writing Your Services – Introducing REST APIs with the Spring Framework124

Then there are query parameters, which you can add after the URI directories. These are generally 
written by appending a question mark after the URI, and then appending pairs of parameter names 
and values we want to expose, as in this example:

http://homeit.com/api/v1/rental-properties/123/EUR?page=3&size=10

As you can see, there are two parameters after the question mark, page and size, which represent 
the page number you want to access and the size of each page, respectively. You can add several query 
parameters to your request.

We can design query parameters for whatever we need our service to perform. Path parameters and 
query parameters will be useful when we do not want to design really straightforward parameters 
that can be added to the URL itself.

Then, there are payloads, which represent a block of content we can send in our request. Let’s look 
at these in the next section.

Using payloads in RESTful services

In RESTful services, a payload is a block of data that might be present in HTTP exchanges. When 
firing a request to a REST endpoint, you can either send a payload with whatever data the servers 
require or you can receive a payload as a response from the server after your request is handled.

Requests and response payloads could contain any type of data: PDF, XML, CVS, and image formats. 
But in our case, when dealing with REST endpoints, we are mostly interested in JSON payloads. JSON 
is a standard for data representation that makes it very easy for humans to read.

Here is an example of a JSON response using curl. Simply type this command in your terminal:

> curl ip-api.com

Here is the output I got by executing this command in my terminal. This time, I got my API and a 
lot more information. This data is represented in JSON format. Bear in mind that I am not using the 
-vvvvv flag this time, as I have already presented you with what happens “behind the scenes” during a 
request. Here, we are basically seeing a very simple request from our curl client and a JSON response 
from the server. You can apply the -vvvvv flag to your own execution if you want so that you get a 
full scoop of what happened in this HTTP exchange. Here’s the command execution:



Designing your API services 125

Figure 5.17: Calling ip-api.com using the curl command

As you can see, a JSON payload is pretty easy to read. Without the verbose flags on curl, we will 
not see the HTTP method (GET), the headers, and the whole conversation that happens underneath.

If you want to send a JSON payload on your curl requests, just use the following command:

> curl -X POST \
  -H "Content-Type: application/json" \
  -d '{"key": "value", "id": 123}' \
  http://example.com/api/resource



Writing Your Services – Introducing REST APIs with the Spring Framework126

Let`s break down each line:

•	 In the first line, we are specifying that the curl command should use the POST HTTP method 
in a request to a remote server.

•	 In the second line, we are specifying in the HTTP header the kind of payload we are sending. 
In this case, application/json is the right string for specifying the JSON format.

•	 In the third line, we are specifying the actual payload in JSON format.

•	 In the last line, we type the URL of the endpoint that will receive the request with our payload.

•	 The backslash is basically a way for complex commands to be issued using more than one line 
in a Linux terminal. If you are using Windows, the character will be different.

As stated at the beginning of this section, sending or receiving payloads will be key to be able to offer 
inputs and receive well-structured responses from our services. In RESTful services, a well-designed 
JSON request or response will typically represent an entire domain object or its partial representation 
(this is especially important for PATCH requests, which will update just a portion of your domain object).

As an example, when sending a POST request to our rental-properties endpoint, we could 
make it so that a curl request would look like this:

curl -X POST \
  -H "Content-Type: application/json" \
  -d '{"address": "the address st, 32", "rooms": 3}' \
  http://homeit.com/api/v1/rental-properties

Since the POST request is used conventionally to create an object, our API service could send back a 
JSON payload as a response to our client, with the actual full JSON representation of the new rental 
property. That would include an ID among other fields. The ID would be used to uniquely represent 
and refer to the rental property across all HomeIt services. Speaking of IDs, let’s talk about them next.

Using UUIDs to uniquely identify objects

When creating objects in our systems, we need to make sure that we can identify them by a strong 
ID system. Many systems in the past would create IDs for objects by starting to assign 0 (zero) as the 
first object’s ID, and incrementing the IDs one by one as more objects are created. That, unfortunately, 
leads to a very insecure system, in which an attacker can derive valid IDs very easily. If they know 
an endpoint and have a valid credential, retrieving valid and sensitive data is just a matter of testing 
natural numbers as IDs. This brute force could easily lead to personal data leakage.

In contrast, modern systems will use the UUID system.



Designing your API services 127

A Universally Unique Identifier (UUID) is a 128-bit number that is generated randomly, bit by bit. 
There are 2128 possible UUIDs to be created. That amount is so big that a single software system can 
generate UUIDs randomly for thousands of years, and the likelihood that the same UUID will be 
generated twice is ridiculously small. Most programming languages have the proper implementation 
of a UUID generator, as designed by the Internet Engineering Task Force (IETF), in RFC 4122. The 
IETF is an open society of IT professionals that provides open standards for different subjects related 
to computer sciences.

Here is an example of a UUID. It was generated using the uuidgen command on Linux:

This string sequence is the randomly generated 128-bit number, represented with alpha-numeric 
characters. This is the standard I would recommend you use when creating IDs for your domain 
objects. The main goal of the UUID standard is to make it possible to generate IDs without having 
to use central authorities, which makes it the perfect case for distributed microservice applications. 
With UUIDs, you don’t need counters, iterators, or any repository to ensure you are not generating 
duplicates of the same UUID. Whatever UUID you generate means you have a unique number in 
your hand if the algorithm is properly implemented.

We will see an implementation of UUID generation shortly in another Spring service. Before that, we 
still need to learn about the last piece of REST requests: headers.

Using HTTP request headers

If payloads are the actual content of a request or response between HTTP server and client exchanges, 
headers offer a place to add additional content about that request.

Payloads will always refer to your application domain. In the HomeIt system, payloads will always 
contain specialized knowledge from the business itself (landlords, rental properties, rental proposals, 
partnership proposals, etc.). Headers, on the other hand, always contain data that is used to facilitate 
handling the requests themselves. You will add the data about your data to headers. Hence, we say 
that an HTTP header contains metadata (data about other data).

Let’s learn about some common headers used in HTTP requests today:

•	 Host: Indicates the host and port number of the server to which the request is being sent. Essential 
in determining the destination of the request, especially on servers hosting multiple domains.

•	 User-Agent: Provides information about the software used to make the request (browser or 
otherwise), allowing the server to tailor responses suitable for the client’s software capabilities.



Writing Your Services – Introducing REST APIs with the Spring Framework128

•	 Accept: Specifies which media types, expressed as MIME types, the client understands, and 
their preferences. This allows the server to select appropriate content or encoding methods. 
We have been talking about the JSON format, but it can really be any format.

•	 Authorization: Contains credentials for authenticating the client to the server, which 
is essential for areas requiring user verification (we will dive into authorization methods in 
future chapters).

•	 Cookie: Sends stored cookies from the client to the server, allowing the server to recreate 
the state of a client’s session, thus maintaining stateful interaction. This will not be used in 
stateless REST services.

These are commonly used HTTP response headers:

•	 Set-Cookie: Instructs the client to store a cookie and send it in subsequent requests to 
the server, essential for session management and maintaining user state. Not used in stateless 
REST services.

•	 Content-Type: Indicates the media type of the resource, telling the client what the content 
is and how it should be processed (e.g., text/html or application/json).

•	 Content-Length: Specifies the size of the response body in bytes, which is critical for the 
client to know how much data it is expected to receive.

•	 Cache-Control: Specifies directives for caching mechanisms in both requests and responses. 
It controls resources’ cache behavior to reduce bandwidth and improve performance (e.g., 
no-cache or max-age).

•	 Location: Used in redirections (3xx response codes) and when a new resource has been created. 
This header informs the client of the exact URL to redirect to or the new resource’s location.

Now we have seen the basic elements of an HTTP request, let’s see in practice how to create HTTP 
request handlers in Spring.

How Spring apps run internally
In the first Spring app, which we created a few sections ago, something might have caught your 
attention. Let’s take a look at the MyFirstSpringbootServerApplication.java class:

@SpringBootApplication
public class MyFirstSpringbootServerApplication {
    public static void main(String[] args) {
       SpringApplication.run(
          MyFirstSpringbootServerApplication.class,
          args);
    }
}



How Spring apps run internally 129

As a Java developer, you know that the main() method is the one that Java uses to start any application. 
Isn’t it intriguing that we were able to download a sample project and write a new class from scratch 
without referencing it in this MyFirstSpringbootServerApplication class?

Since the getIp() method in the IpController class is not a static method but an instance method, 
the only way for the Spring framework to use it in Java was to have an instance of the IpController 
class somewhere. How did the Spring Framework know how to instantiate that class and bring our first 
HTTP handler online, making the getIp() method available for our curl HTTP GET requests?

We know that it is impossible for a Java application to instantiate a class without having it configured 
somewhere. In the Spring Framework, there are several ways to configure a class to be instantiated, 
such as the IPController class we wrote:

•	 XML configuration

•	 Annotation-based configuration

•	 Java-based configuration

•	 Groovy-based configuration

•	 Property files

•	 YAML files

•	 Environment variables

•	 Command-line arguments

•	 Profiles

We will explore some of those different configuration types throughout the book. For now, we just want 
to answer our question: with so many possible ways for configuring our classes, how did the Spring 
Framework know how to instantiate the IpController class? And another important aspect: why, 
as Java developers, did we not have to write the methods for instantiating the IpController class?

This is a major source of confusion in the minds of Spring Framework beginners. If classes can be 
instantiated by the Spring Framework alone and developers do not need to write that code for providing 
the class instances, it feels like magic that an object is “just there,” completely ready for use, after the 
application starts.

I know, right?! That was the way I felt when I first saw this. And the piece of the puzzle responsible 
for answering this mind-boggling question is the Spring Framework component lifecycle.



Writing Your Services – Introducing REST APIs with the Spring Framework130

Introducing the Spring Framework component lifecycle

The short answer to this mystery is that once the key classes in a system are configured by the developers, 
the Spring Framework is capable of detecting those classes and instantiating them automatically for 
the users during startup time. Unless stated otherwise, the Spring Framework will provide just one 
instance of each configured class, which will be made available during execution time. When shutting 
down the whole application, the Spring Framework will destroy those instances. We call this the 
Singleton pattern: guaranteeing just one instance for each important class during execution time.

Alright, let’s unpack this a bit more: what do we mean by a key class, and why can (and should) the 
IpController class have just one instance available during the execution time?

If you remember, when writing the IpController class, we added the @RestController 
annotation to the IpController class and the @GetMapping annotation to the getIp() method. 
When our Spring application starts, what these annotations do in the background (among many other 
things) is to create a network listener on port 8080 by default, using our operating system’s native 
API. And that listener will know how to call the getIp() method once it receives an HTTP GET 
request that targets the /get-ip URI. In other words, the Spring Framework somehow knows how 
to orchestrate all the OSI model layers for you, so that you focus solely on your Java methods (more on 
that later). When you do a curl localhost:8080/get-ip on a terminal, the Spring Framework 
is there to take that request and deliver it right to your IpController.getIp() method.

Also, because a single network listener can handle multiple HTTP requests separately from each 
other, it makes sense to have just one Java class instance to handle as many GET requests as possible 
for the same URI (/get-ip). Each remote HTTP client request will be delivered to a single call to 
the getIp() method. Hence, IpController is a key class that we can declare as a singleton (we 
just need one instance of that class).

Finally, since the Spring Framework is using Tomcat, Jetty, or Undertow behind the scenes, they are 
able to handle different HTTP requests in separate threads, making it reasonable that your getIp() 
method from a single IpController class instance will even be called in parallel by different 
processors on your machine if you have a multi-core CPU. In other words, you can use just one class 
instance to serve as many parallel requests as needed. This parallel processing and thread management 
is automatically handled by the Java virtual machine (JVM), and Spring does not even need to be 
aware of it.



How Spring apps run internally 131

Here is a visual that illustrates that concept:

Figure 5.18: How Spring deals with a network request

Okay, so now you know how the Spring Framework works conceptually and architecturally. This 
prepares the background story for understanding an important keyword in the Spring Framework 
world: Spring beans.

What are Spring beans and why are they important?

The idea that the Spring Framework application will have some core services implemented in singleton 
classes is not new: the J2EE architecture also works from that assumption. These reusable singleton Java 
classes implementing core services of your software are what people refer to as Java Beans. Conversely, 
in the world of the Spring Framework, we just call these core singleton classes the Spring beans.



Writing Your Services – Introducing REST APIs with the Spring Framework132

I think it is very important to fully explain this term here. I was personally very confused about this 
mysterious word beans for a long time. Many books will use this term without proper explanation, 
which makes things very confusing for many beginners.

The word bean was chosen for those reusable classes as a metaphor that matches the Java programming 
language name. Java refers to a type of coffee that was originally grown on the island of Java in Indonesia. 
The coffee metaphor was used because, back in the early days of Java, the programmers felt excited 
and energized by the possibilities of the language. Many programmers love coffee for the energy it 
brings to their day-to-day work, so this is where they took the inspiration from: that programming 
language was as good as their beloved coffee.

The word bean is an allusion to coffee beans. The Spring application will need several beans to execute 
its logic. A bean is a singleton class that can be used in conjunction with other beans to make your 
app work properly and serve a business function.

Alright, that should be enough to dismiss any confusion about the use of the word bean that you will 
find in many places. And that makes our IpController class a Spring bean in our first sample 
application. You now understand a lot about the architecture background, but we are still following 
the breadcrumbs to completely and unquestionably answer these questions: How did our Spring app 
know how to instantiate our IpController bean? And even before that, how does the JVM even 
know that our application is built with the Spring Framework and will follow its processes?

Introducing the Spring Boot project

If you take a closer look at our main application class, you are going to notice that the 
MyFirstSpringbootServerApplication class is tagged with the @SpringBootApplication 
annotation. That is one of the key components of the Spring Boot project. That annotation alone will 
configure an entire Spring app with default options that make the app run basically out of the box. 
The main method has nothing but a call to SpringApplication.run(), which takes the main 
project class itself as a parameter.

That is the power of the Spring Boot project: it provides key components to make your application 
configuration very easy. With the @SpringBootApplication annotation alone, your app 
becomes a full Spring app, and it will know how to look for the classes that should be instantiated as 
Spring beans. You do not need to write anything else in your main class. It just knows! This feels like 
pure magic for beginners.

We will explore a lot of other interesting things in the Spring Boot project in the next sections and 
chapters. But first, we still need to follow the track we are on: now that we know how the Spring app came 
into existence, how exactly does it know which classes are to be treated as Spring beans or singletons?



How Spring apps run internally 133

Understanding the Spring Framework component scan

When starting an application, the Spring Framework will scan for all classes that are tagged with 
some special annotations. Those annotations tell Spring that the tagged classes should be managed 
as Spring beans. In other words, the Spring Framework will automatically create a single instance for 
those annotated classes.

The main annotation that marks a class as a Spring bean is the @Component annotation. Other annotations 
are themselves tagged with the @Component annotation. Guess what? The @RestController 
annotation, used in our IpController class, indirectly inherits the @Component annotation as 
well. Here is the annotation chain:

Figure 5.19: The RestController annotation class hierarchy

And voilá! There are a series of annotations that inherit from @Component and there are other ways 
to create Spring beans. We will have plenty of pages devoted to teaching you how they work.

Where are Spring beans stored at runtime?

The memory area reserved for storing and managing Spring beans is called the application context. 
In fact, that is itself a Spring bean, whose class is called ApplicationContext. This bean allows 
you to have access to all the Spring beans instantiated in your application.

We will generally not access this bean, but it is nice to know about it so that we have a clear picture of 
how Spring applications will organize things in memory. Knowing these details basically reveals the 
mystery behind the Spring Framework magic.

How to easily access a Spring bean

As you know, in our first application, the IpController.getIp() method will be called 
automatically by Spring whenever a new HTTP request is fired to the /get-ip URI. In that example, 
we do not need to directly access the IpController class from any other classes, since the Spring 
Framework will do all the work for you out of the box.



Writing Your Services – Introducing REST APIs with the Spring Framework134

But what if you have two Spring beans with important services in your application, and they need to 
access each other? That is actually a very common scenario, in which we have one bean depending 
on another. So, in the Spring Framework, instead of you having to manually instantiate the beans 
with factories and setting the reference in another bean programmatically, you can instruct the Spring 
Framework to “inject” a bean reference into another. That is called dependency injection, and it is 
also one of the core Spring Framework features.

The best way for you to inject a Spring bean into another bean you are writing is by doing something 
like this:

@Component
public class DependencyInjectionSample {
    private final ApplicationContext applicationContext;

    public DependencyInjectionSample(
        ApplicationContext applicationContext) {
        this.applicationContext = applicationContext;
    }

    @PostConstruct
    public void init() {
        System.out.println("Initializing MyComponent");
        for (String beanDefinitionName :
            applicationContext
                .getBeanDefinitionNames()) {

            System.out.println("Bean Name: "
                    + beanDefinitionName);
        }
    }
}

As you can see, we have declared the DependencyInjectionSample class with the @Component 
annotation. That tells Spring to create a single instance of this class at runtime, after the component 
scan phase. Also, we have a constructor that takes the ApplicationContext bean as a parameter 
and sets it in a private class attribute. During startup time, the Spring Framework will check for the 
bean dependencies and create the beans in the right order, so that a bean will only be built when its 
dependencies are already finished building. This ensures that all beans can receive their dependencies 
as arguments when the application is starting. Plus, if you have a circular dependency (bean A depends 
on bean B and bean B depends on bean A), Spring will throw an explicit exception, since circular 
dependencies are not possible to solve during build time (and frankly, it is just bad design).



How Spring apps run internally 135

You may have noticed the init() method in line 18, which is tagged with the @PostConstruct 
annotation. That tells the Spring Framework that this method should be executed right after the bean’s 
instantiation. This is a part of the Spring Framework component lifecycle, and it makes it easy to take 
initial actions in each bean when your application is starting. This init() method will basically 
access and print all existing bean names in the console output, whenever your application is starting. 
There are dozens of Spring beans created automatically by the Spring Framework itself, but your own 
beans will be present in that output as well. Here is just a slice of the output I get when executing this 
app in my console:

Figure 5.20: Listing the available Spring beans at application start

As you can see, all our classes in this first project are considered beans by the Spring 
Framework: the ipController, dependencyInjectionSample, and 
myFirstSpringbootServerApplication classes.

Now, let’s understand what inversion of control is and how it facilitates Spring application and 
services management.

Spring container and inversion of control

This all gives you a great deal of understanding of what the Spring Framework is and how it operates 
its magic behind the scenes. If you understand these concepts, you are off to a great start, because 
most developers have a hard time grasping what happens automatically in Spring.

This way of letting the framework control the creation of your beans is called inversion of control 
(IoC). Instead of you, the developer, having to program the factories for instantiating the main services, 
you can leave it for the core Spring Framework to do. The Spring ApplicationContext class is 
also referred to as the Spring IoC container – in other words, the class that contains the Spring beans. 
You just need to declare where you want them passed as constructor arguments. The framework takes 
care of the rest.

There are other aspects of the Spring Framework and the Spring Boot project that we will learn about 
throughout the book. For now, you just need to have a good grasp of the following:

•	 The Spring Framework contains a set of core features such as the Spring IoC container and 
several projects – Spring Boot being one of the projects

•	 You need to understand the purpose of each project in order to know when to use them



Writing Your Services – Introducing REST APIs with the Spring Framework136

•	 The Spring Boot project helps you quickly pull out an application by using a set of 
easy-to-use annotations

•	 All Spring Framework projects provide really helpful annotations and great patterns to speed 
up your work as a developer

With that, let us now implement our first REST API for our HomeIt service.

Creating RESTful APIs in Spring
So far, we have used just two annotations for declaring REST services in Spring – @RestController 
and @GetMapping. These represent only a tiny fraction of the possibilities we have using this 
framework for writing web services. There are two main ways to write REST applications in Spring:

•	 The Spring Web project, which these annotations came from. This implements a 
thread-blocking model.

•	 The Spring WebFlux project, which brings a non-blocking, reactive model.

We will check a sample implementation of both models in the next pages of this book. We will first get 
you to understand how to implement the REST interfaces. This section will not have too much business 
code or persistence layer implementation. We want to keep things simple so that you understand 
exactly what these two projects – Spring Web and Spring WebFlux – are used for.

Writing a rental property REST API with Spring Web

The Spring Web project used to be the right choice whenever you had APIs that you wanted to quickly 
pull out and you did not have thousands of concurring requests to handle. But nowadays, with a few 
tweaks from Java 17+ and the virtual threads implementation, you can make Spring Web very close 
to Web Flow’s performance for high-volume, concurrent request processing.

That is, if you need a servlet-based framework for writing REST APIs, you can go the very safe route 
with Spring Web. It can be very fast and has low latency, but if you do not use virtual threads, it will 
block one thread per request, which could be an issue, especially when doing I/O operations, such as 
database access, requests for other remote services, and so on.

If you need to handle thousands of concurring requests, if you have too many I/O operations on your 
endpoints, or if your app needs to wait for long I/O operations that take a lot of time to complete, and 
you want to have an edge, you could consider using WebFlux. WebFlux does not block your threads 
while waiting for these operations to complete (more on that later). But again, with the virtual threads 
tweak I will show you here, Spring Web is probably best for all use cases, due to its easier-to-understand 
programming patterns.



Creating RESTful APIs in Spring 137

We have a full Spring Web REST API implementation example for you here: https://github.
com/PacktPublishing/Spring-System-Design-in-Practice/blob/main/
chapter-05/My-first-Springboot-server/src/main/java/com/ip/server/
My/first/Springboot/server/controller/RentalPropertyController.java. 
All the explanations in the next pages come from the code at the provided link.

Let us break down this code example for you.

In this exercise, we are going to implement an API example for the rental property microservice for 
our HomeIt startup. In general, a Spring Web API will look like this:

•	 A REST API should be able to deal with HTTP requests, generally handling JSON payloads.

•	 Each domain in a REST API will be implemented as a single Controller class. The domain 
class implements the Controller layer in the traditional Model-View-Controller (MVC) design. 
So, in the HomeIt startup example, we should have at least one class for each domain (Rental 
Properties, Users, Partnership Proposals, etc.).

•	 The Model and View layers will not be covered in this book, since we are all about microservices 
and the other layers are more used for rendering HTML pages. If you want to know more about 
Spring MVC, there are plenty of resources available on the internet.

Alright, let’s start our REST API example.

Declaring the dependencies

First, let’s look at our Gradle dependencies. The full Gradle build file we are using can be accessed 
at https://github.com/PacktPublishing/Spring-System-Design-in-Practice/
blob/main/chapter-05/My-first-Springboot-server/build.gradle.

Here is where we start the build.gradle file, which instructs Gradle on how to build the application:

plugins {
    id 'java'
    id 'org.springframework.boot' version '3.2.5'
    id 'io.spring.dependency-management' version '1.1.4'
}

group = 'com.ip.server'
version = '0.0.1-SNAPSHOT'

java {
    sourceCompatibility = '21'
}
repositories {
    mavenCentral()
}

https://github.com/PacktPublishing/Spring-System-Design-in-Practice/blob/main/chapter-05/My-first-Springboot-server/src/main/java/com/ip/server/My/first/Springboot/server/controller/RentalPropertyController.java
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/blob/main/chapter-05/My-first-Springboot-server/src/main/java/com/ip/server/My/first/Springboot/server/controller/RentalPropertyController.java
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/blob/main/chapter-05/My-first-Springboot-server/src/main/java/com/ip/server/My/first/Springboot/server/controller/RentalPropertyController.java
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/blob/main/chapter-05/My-first-Springboot-server/src/main/java/com/ip/server/My/first/Springboot/server/controller/RentalPropertyController.java
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/blob/main/chapter-05/My-first-Springboot-server/build.gradle
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/blob/main/chapter-05/My-first-Springboot-server/build.gradle


Writing Your Services – Introducing REST APIs with the Spring Framework138

All these lines come by default from the Spring Initializr website we used to create the sample application. 
Here are some important explanations:

•	 We see the block with the list of plugins used to build and run this application. We have added 
Java and Spring Boot to the plugins section, which allows us to easily configure our Spring 
apps, and the Spring Dependency Management plugin, which manages Spring Boot dependencies 
for us so that we do not need to keep track of every dependency version.

•	 Since we will need virtual threads, it is important to set the Java sourceCompatibility 
at a minimum of 17, which is the minimum recommended Java version for Spring 6. In our 
case, I am setting it to 21, just to get the virtual threads feature, which we will explore in future 
chapters to make our API more performant.

•	 Maven Central comes configured automatically as well from the Spring Initializr website.

Now, let’s look at the rest of this file. Here is an important section that declares the Spring Web dependency:

dependencies {
    implementation 'org.springframework.boot:spring-boot-starter-web'
    testImplementation 'org.springframework.boot:spring-boot-starter-
test'
    implementation 'org.springframework.boot:spring-boot-starter-
validation'
    testRuntimeOnly 'org.junit.platform:junit-platform-launcher'
}

tasks.named('test') {
    useJUnitPlatform()
}

As you can see, we have included other important dependencies here:

•	 Spring Web dependency is declared, which allows writing a REST API

•	 The Spring Test dependency is declared, which allows us to write automated tests for our API

•	 We will also need the Spring Validation dependency to ensure our REST requests will only be 
processed if they are correct

•	 Finally, we define that we want to run the test classes with JUnit

In the next section, we will jump to the code lines for the RentalPropertyController class 
itself. It will clearly illustrate how to write a Controller class using Spring Web.



Creating RESTful APIs in Spring 139

Writing the RentalPropertyController class

Look at this class definition:

@RestController
@RequestMapping("/api/v1/rental-properties")
@Validated
public class RentalPropertyController {

    private final RentalPropertyService
        rentalPropertyService;

    public RentalPropertyController(
            RentalPropertyService rentalPropertyService) {
        this.rentalPropertyService = rentalPropertyService;
    }
    // ... the rest goes here
}

These are the important points for this beginning:

•	 We are declaring that this class will be a RestController class. Since this annotation 
inherits from the @Controller annotation, which inherits from @Component, Spring 
will treat this class as a Spring bean and will instantiate it for you during the application start.

•	 The @RequestMapping annotation is used to define the actual API root directory. Since 
updating endpoints can break clients, the best pattern for maintenance is to add a version to 
the root API directory. When you need to release new versions of the same API, it is advisable 
to create the other versions on separate classes, with an updated version number.

•	 We declare that this class will have method parameters validated by Spring at execution time. 
We will see how that is done in a few sections.

•	 Another interesting thing we can see is that this Spring bean depends on 
RentalPropertyService. We will talk about service classes in the future, but in essence, 
these are the classes that should segregate our business rules. For now, it is enough to say 
that this is the same syntax used previously for dependency injection. These lines declare for 
the Spring Framework that it needs to provide an instance of the service class whenever it is 
instantiating the Controller class during the API boot time. Spring will find and instantiate 
the service class.



Writing Your Services – Introducing REST APIs with the Spring Framework140

Let’s now jump to the actual endpoint declarations, starting from the GET request to retrieve a rental 
property from a property ID:

@GetMapping(
    value = "/{id}",
    produces = "application/json")
public ResponseEntity<RentalPropertyDTO> getPropertyById(
    @PathVariable UUID id) {
    return rentalPropertyService.get(id)
        .map(ResponseEntity::ok)
        .orElse(ResponseEntity.status(HttpStatus.NOT_FOUND)
            .body(null));
}

This shows how to implement the GET HTTP endpoint using Spring Web:

•	 We see how to use the @GetMapping annotation. This is the one that makes Spring forward 
the GET requests it receives from the network straight to your annotated method. The full 
endpoint address will then include the value we added to the @RequestMapping annotation 
at the top of the RentalPropertyController class. The whole address for this GET 
endpoint will be /api/v1/rental-properties/{your rental property id}.

•	 We define what format the application will produce. In this case, whatever object we return 
inside ResponseEntity will actually be automatically turned into a JSON string by the 
Spring Framework.

•	 We define that the method should return ResponseEntity, and this is a standard return type 
for HTTP requests in Spring. The return is actually typed with the RentalPropertyDTO class, 
which is our data transfer object (DTO) class. In other words, the RentalPropertyDTO 
class is the Java POJO that carries the properties of a rental property over the network. We will 
look at it in just a second.

•	 We declare a variable in the endpoint address – the {id} part, which we call a path parameter. 
We also declare that part of the request address will be extracted to a variable. To extract a 
path parameter from the request URI, we need to use the @PathVariable annotation, and 
the name of the method parameter should match the path parameter declared in the value 
attribute of the @GetMapping annotation.

•	 We have declared the code with a functional pipeline, from which we retrieve the rental property 
from the service class, and then we map it to a ResponseEntity object if the rental property 
object is found. The ok method in this line will set the rental property DTO as the response 
payload and the HTTP response code as 200. We also implement a fallback so that we return a 
404 status code (NOT FOUND) in case the GET request is fired with an invalid rental property 
ID. This pipeline was built using the Java Optional object, which helps avoid if sentences and 
null pointer exceptions in Java. The code feels more fluid and readable, but it can be a challenge 



Creating RESTful APIs in Spring 141

to read if you are dealing with functional code for the first time. I felt confused the first time I 
read code like this, but eventually, I got used to it.

Now, let’s jump to the POST request implementation:

@PostMapping(
    consumes = "application/json",
    produces = "application/json")
public ResponseEntity<RentalPropertyDTO> createProperty(
    @Valid @RequestBody RentalPropertyDTO property) {

    RentalPropertyDTO createdRentalProperty
            = rentalPropertyService.create(property);

    return ResponseEntity.status(HttpStatus.CREATED)
        .body(createdRentalProperty);
}

These are the highlights from this code. I will not repeat the explanations that I gave for the GET endpoint:

•	 As with the @GetMapping annotation we just saw, we are using @PostMapping now to 
declare an HTTP POST endpoint implementation.

•	 We declared that this endpoint would accept JSON payloads from the clients. This means that 
the only way to send new information for creating a rental property is by sending a JSON 
payload in our request to the API (we will look at a request execution sample in a minute).

•	 We are declaring the property parameter in the method, of the RentalPropertyDTO 
type since this is the class we use to transfer rental property information over the network. We 
tagged this parameter with two annotations: @Valid, so that Spring needs to check for some 
rules before accepting the request and executing our method, and @RequestBody, which 
means Spring will parse your POST request payload into a RentalPropertyDTO object. 
This is basically how we can parse payloads to method parameters using Spring Web.

•	 We ask our service class to create the property and return it to a variable.

•	 Finally, we illustrate how to create the default ResponseEntity object used as a standard 
return type for the Spring Web implementations. The HTTP status of CREATED is the one 
numbered 201. The payload of the return, of course, is the newly created rental property, set 
as the body.

Let’s now jump to the PUT mapping to see what we’ve got:

@PutMapping(
    value = "/{id}",
    consumes = "application/json",



Writing Your Services – Introducing REST APIs with the Spring Framework142

    produces = "application/json")
public ResponseEntity<RentalPropertyDTO> updateProperty(
    @PathVariable UUID id,
    @Valid @RequestBody RentalPropertyDTO updatedProperty) {

    return rentalPropertyService
        .update(id, updatedProperty)
        .map(ResponseEntity::ok)
        .orElse(ResponseEntity.status(HttpStatus.NOT_FOUND)
            .body(null));
}

Here:

•	 We have used the @PutMapping annotation, which tells Spring to create a PUT endpoint 
from our method. This is the same as the other annotations but for a different HTTP method.

•	 The PUT request needs both a payload and a path parameter since we are sending updated 
information to an existing rental property object. The payload is, of course, declared with the 
@RequestBody annotation, and the path parameter is declared with the @PathVariable 
annotation, just like in previous examples.

•	 We show a similar functional pipeline as we had in the GET implementation. However, this 
time, we are first calling the update method of our service class.

The PATCH implementation looks just like the PUT implementation:

@PatchMapping(
    value = "/{id}",
    consumes = "application/json",
    produces = "application/json")
public ResponseEntity<RentalPropertyDTO> patchProperty(
    @PathVariable UUID id,
    @RequestBody RentalPropertyDTO partialUpdate) {

    return rentalPropertyService
        .updateSomeFields(id, partialUpdate)
        .map(ResponseEntity::ok)
        .orElse(ResponseEntity.status(HttpStatus.NOT_FOUND)
        .body(null));
}

•	 We have a proper @PatchMapping annotation, of course

•	 We also need a request body for handling partial updates

•	 We have the functional pipeline in the method implementation



Creating RESTful APIs in Spring 143

The DELETE implementation changes things a bit:

@DeleteMapping("/{id}")
public ResponseEntity<Void> deleteProperty(@PathVariable UUID id) {
    return rentalPropertyService
        .delete(id)
        .map(opt ->
            ResponseEntity.noContent()
                .<Void>build())
        .orElse(ResponseEntity
            .status(HttpStatus.NOT_FOUND).build());
}

•	 Of course, we have the @DeleteMapping annotation, which will tell Spring that the method 
is implementing the DELETE HTTP method endpoint.

•	 When deleting an object successfully, the standard return code we should use is 204 (success, 
no content). However, some developers will also use 200.

•	 Since we are not returning a payload in our request, we need to make it explicit, with the 
<Void> declaration.

Now, let’s go to the /search endpoint:

@GetMapping(
    value = "/search",
    produces = "application/json")
public ResponseEntity<List<RentalPropertyDTO>> searchProperties(
    @RequestParam(required = false) String name,
    @RequestParam(required = false) String address,
    @RequestParam(required = false) String city,
    @RequestParam(required = false) String country,
    @RequestParam(required = false) String zipCode) {

    return ResponseEntity.ok(rentalPropertyService.search(
        name, address, city,country,zipCode));
}

•	 This is just another use case of the @GetMapping annotation, which declares a GET HTTP 
endpoint. This time, our full endpoint address will be /api/vi/rental-properties/
search.

•	 Instead of a path parameter, this time, we are using a series of request parameters through the 
use of the @RequestParam annotation. None of the request parameters are required since 
we will usually look for properties using just a few criteria.



Writing Your Services – Introducing REST APIs with the Spring Framework144

•	 Since the return of the service class is a list of properties found, we do not have to add the 
optional implementation. If we do not have a property, we can return an empty list.

Okay, this covers a lot of cases and almost all of the essential Spring Web annotations for declaring 
REST endpoints, which is amazing, but what if we need to extract a header from our HTTP request? 
Let’s take a look at the next code sample:

@GetMapping(
    value = "/headers",
    produces = "application/json")
public ResponseEntity<String> getHeaderInfo(
        @RequestHeader("User-Agent") String userAgent) {
    return ResponseEntity.ok("User-Agent: " + userAgent);
}

In this implementation, these are the important things to consider: this implementation is not quite 
related to our rental property. I added it to our sample code just to show you how to extract the User-
Agent header from the request. This is done by declaring the @RequestHeader annotation, in 
which you add the name of the header you would like to extract.

Let’s now take a quick look at RentalPropertyDTO, which is the basic Java object that we used 
to implement the payload:

public record RentalPropertyDTO(
        UUID id,

        @NotNull(message = "Landlord id is required")
        UUID landlordID,

        @NotEmpty(message = "Name is required")
        String name,

        @NotEmpty(message = "Address is required")
        String address,

        @NotEmpty(message = "City is required")
        String city,

        @NotEmpty(message = "Country is required")
        String country,

        @NotEmpty(message = "Zip code is required")
        String zipCode,

        @NotNull(message = "Rent is required")
        Double rent
) { }



Creating RESTful APIs in Spring 145

As you can tell, the @NotEmpty and @NotNull directives come from the Spring validation project. 
It makes it easy to define what is acceptable in our HTTP requests.

And that’s it for the essential Spring Web implementation. There are a lot of interesting advanced 
parameters you can explore in the Spring Web documentation, but with these foundational annotations, 
you are fully equipped to write a very comprehensive set of endpoints for your API.

Let’s see our API in action, and then I will leave you with a nice cheat sheet of the essential annotations 
of the Spring Web project.

Using the Rental Properties API

Let’s execute a request to all these endpoints using curl so that you know exactly how they behave.

Remember, we can run your Spring application with this command in the terminal:

> gradle bootRun

Let’s see the result. This is the start of the execution. Since the logs are massive, I’m only adding some 
slices of the output here:

Figure 5.21: Spring application console output



Writing Your Services – Introducing REST APIs with the Spring Framework146

This is the very beginning of the execution. As you can see, the Spring Boot ASCII header is the first 
thing that is logged in the terminal.

Now, let’s guarantee that our beans for this chapter are all online:

Figure 5.22: Listing the available Spring beans

As you can see, because we created dependencyInjectionSample in our project, we can now 
see the rentalPropertyController bean instantiated:

Figure 5.23: Checking how long the application is alive

And by the end of the boot log, we can see the success message. In this case, the app is running for 
24 minutes.

You can also run this app by finding the .jar file in the build/libs/My-first-Springboot-
server-0.0.1-SNAPSHOT.jar location:



Creating RESTful APIs in Spring 147

Figure 5.24: Running a Spring application .jar file

As you can see, the command for you to run your application is this one:

> java -jar <path of your spring app jar>

This is the command through which you want your application to run in production. It is as simple as 
that. The fact that your application .jar file is named with the SNAPSHOT suffix will be explained 
in future chapters. This is due to deployment and versioning strategies. Let’s forget about this for now.

Creating a rental property

Now that we have confirmed that our application is running correctly, let’s create a rental property. 
Use the following curl command for that:

> curl -X POST "http://localhost:8080/api/v1/rental-properties" \
    -H "Content-Type: application/json" \
    -d '{
        "address": "456 New St",
        "landlordID": "80b0da3f-0568-4eff-b665-26372b853242",
        "city": "New City",



Writing Your Services – Introducing REST APIs with the Spring Framework148

        "country": "New Country",
        "zipCode": "67890",
        "rent": 1500.0,
        "name": "rental property sample"
    }' -vvvvv

I created the landlordID value using the uuidgen command in Ubuntu, just as I explained earlier.

The execution goes as follows in my terminal:

Figure 5.25: Getting a response from the server

As you can see, we are correctly receiving the JSON with the result of the API request.



Creating RESTful APIs in Spring 149

Retrieving the created rental property

Let’s fire a request for retrieving this property. It is as easy as appending the declared API URI to our 
base URL (localhost, port 8080) and adding the resource (rental-properties), and the ID 
generated in the previous POST request goes as the path parameter. We are also sending the accept 
header in order to notify our API that we can receive JSON as a response:

Figure 5.26: Retrieving an existing rental property

Next, we will update our new property.

Updating the rental property

With the following command, we are updating the entire object. Note that we are appending both the 
path parameter in the URL and the payload with the updated fields:



Writing Your Services – Introducing REST APIs with the Spring Framework150

Figure 5.27: Updating the rental property

As expected, this request returns 200 as the update was successful, and the new fields are also returned 
by the API.



Creating RESTful APIs in Spring 151

Sending missing data when a field is required

Note that if we skip sending some fields, the Spring validation feature will act on it and we will be 
able to see some interesting feedback. This is the request that should fail. I am skipping sending the 
landlordID attribute, which is declared as @NotNull in RentalPropertyDTO:

Figure 5.28: Sending missing data on purpose in a request



Writing Your Services – Introducing REST APIs with the Spring Framework152

As you can see, the return code is now 400, meaning that the request was malformed. The payload 
returned reflects this. In this case, the client will not receive too much information about what is 
missing, but we can still see it in the server console logs:

Figure 5.29: Getting a specific error from the Spring validation dependency

As you can see, the very last line of this log refers to the fact that the landlord ID is required, which 
was exactly what we wrote in the RentalPropertyDTO validation rules.

There are ways to improve the message for the customer. If you look closely, you will find that this 400 
request didn’t even call our Java method – the one that is marked with the @PostMapping annotation. 
That is because Spring validation works prior to the request reaching RentalPropertyController. 
Spring takes care of notifying our clients that the request is malformed, and we do not need to worry 
at all about it in our code.

Partially updating the rental property

This is the curl test for demonstrating how to update only one of the fields of our rental property 
object. The rental property ID is from an already existing property:



Creating RESTful APIs in Spring 153

Figure 5.30: Updating just a portion of a property

As you can see, this request only sends a partial JSON representation of the rental property object. 
We are sending only the name of the object. The returned JSON contains the updated name of the 
rental property.



Writing Your Services – Introducing REST APIs with the Spring Framework154

Deleting the rental property

Here is an example of how you can send a DELETE request to an existing rental property:

Figure 5.31: Deleting a property

As you can see, the HTTP return code is 204, as we have programmed it in the former pages. 204 stands 
for no content; saying that, after an HTTP DELETE request, we should not find the entity anymore.

Making sure the rental property was deleted

If we try to fetch the deleted property, we get a 404 code, which means not found in the HTTP protocol:

Figure 5.32: Trying to fetch a deleted property



Creating RESTful APIs in Spring 155

Let’s now search for a rental property.

Searching for a rental property

This is probably the key functionality we were expecting to see. In this case, we are arguing that the 
endpoint for searching for a rental property can support different query parameters. This is not supposed 
to be “the final right answer” since there are a lot of ways to implement a /search endpoint. But 
since this is an exercise to show how a Spring Web REST API should work, I am showing you one of 
the many possible ways to do this:

Figure 5.33: Searching for a rental property

Also, I think you noticed that the -H flag is used to specify a new header to be sent on your request. 
We have used it in every request to specify that we can accept JSON payloads in the response.



Writing Your Services – Introducing REST APIs with the Spring Framework156

Warning
Bear in mind that you need to program your endpoints to return whatever you want them 
to return. Those return codes are nothing but a convention for the HTTP protocol that you 
need to be keen on. The Spring Web project will not force you to use the right codes – you, as 
a developer, need to choose them wisely. Otherwise, you will risk programming your API to 
do weird things.

I used quite a few APIs that would return 200 for whatever requests I would make, even if 
the request found an error. Those APIs will return a JSON with some error attribute in it, 
or success=false in the JSON. This is just wrong from an API standpoint. Your return 
code should inform the API user whether the API request was successful or not. You can even 
include some special response payload to explain the error, but the HTTP error code should be 
chosen according to the conventions. When you are in doubt, just use the HTTP Cats website 
(https://http.cat/), which is both informative and fun!

Spring Web cheat sheet

Here is a useful list for you to quickly refer to whenever you need to remind yourself of which Spring 
Web annotations should be used and where:

•	 @RestController: This should be added to the class definition. It tells Spring that your 
class will handle HTTP requests.

•	 @RequestMapping("api/v1/your-resources"): This should be added to the 
class level as well. It tells Spring the resource address of your REST API. A resource address 
is a directory in the API in which you can find the domain and domain objects. It is a good 
convention to use the resource name in the plural (rental-properties, landlords, 
payments, and so on).

•	 @GetMapping, @PatchMapping, @PostMapping, @PutMapping, and @
DeleteMapping: These should be used at the method level. They define which HTTP verb 
will be handled by your class method. You should define the path parameters in them if you 
are to take the domain object ID as a part of the URL. You also need to define here what you 
accept and produce in the request and response payloads.

•	 @PathVariable: This should be added before a method parameter. It helps extract a path 
parameter out of the URL directly to your method parameter. It only works if the method 
parameter name is the same as the path parameter defined in the URL mapping annotations 
(please refer to the examples we have shown in previous sections).

•	 @RequestParam: This should be added to a method parameter. It helps extract query 
parameters from the URL.

https://http.cat/


Creating RESTful APIs in Spring 157

•	 Validation-specific annotations at the class level are as follows:

	� @Validated: This should be added at the class level. It helps inform that the Spring 
validation feature will be used in some method parameters.

	� @Valid: This should be added to a parameter in a method. It helps automatically validate 
input rules from the parameter class types.

•	 Validation-specific annotations at the field level are as follows:

	� @NotNull: This ensures that the annotated field is not null. Use this for mandatory fields.

	� @NotEmpty: This ensures that the annotated collection, map, or string is not null and not 
empty. Use this for non-null, non-empty strings or collections.

	� @NotBlank: This ensures that the annotated string is not null and not empty after trimming. 
It is suitable for mandatory, non-whitespace strings.

	� @Size: This validates the size of collections, maps, arrays, or the length of strings. It specifies 
the min and/or max attributes to set boundaries.

	� @Min: This ensures that the annotated numeric value is not less than the specified minimum. 
Use this for setting lower bounds on numbers.

	� @Max: This ensures that the annotated numeric value is not greater than the specified 
maximum. Use this for setting upper bounds on numbers.

	� @DecimalMin: This ensures that the annotated decimal value is not less than the specified 
minimum. It supports strings for large numbers or floating-point precision.

	� @DecimalMax: This ensures that the annotated decimal value is not greater than the 
specified maximum. It supports strings for large numbers or floating-point precision.

	� @Positive: This ensures that the annotated numeric value is greater than 0. Use this for 
validating positive numbers.

	� @PositiveOrZero: This ensures that the annotated numeric value is 0 or greater. Use 
this for validating non-negative numbers.

	� @Negative: This ensures that the annotated numeric value is less than 0. Use this for 
validating negative numbers.

	� @NegativeOrZero: This ensures that the annotated numeric value is 0 or less. Use this 
for validating non-positive numbers.

	� @Digits: This ensures that the annotated numeric value has an exact number of integer 
and fractional digits and specifies integer and fraction attributes.

	� @Pattern: This validates that the annotated string matches the specified regular expression. 
Use this for custom string formats.



Writing Your Services – Introducing REST APIs with the Spring Framework158

	� @Email: This validates that the annotated string is a valid email address and ensures the 
proper format of email addresses.

	� @Past: This ensures that the annotated date or time is in the past. Use this for historical dates.

	� @PastOrPresent: This ensures that the annotated date or time is in the past or present. 
It is suitable for historical or current dates.

	� @Future: This ensures that the annotated date or time is in the future. Use this for dates 
that must occur later.

	� @FutureOrPresent: This ensures that the annotated date or time is in the future or 
present. It is suitable for future or current dates.

	� @AssertTrue: This ensures that the annotated Boolean field is true. Use this for Boolean 
conditions that must be true.

	� @AssertFalse: This ensures that the annotated Boolean field is false. Use this for 
Boolean conditions that must be false.

	� @CreditCardNumber: This ensures that the annotated string is a valid credit card number 
(Luhn algorithm) and validates credit card numbers.

	� @URL: This ensures that the annotated string is a valid URL and validates the proper format 
of URLs.

Summary
We covered a lot of ground in this chapter. We went through a full revision of how network requests 
happen and the HTTP protocol and its main parts, and learned how the Spring Framework works 
internally and manages Spring beans for you. Then, we wrote our first Spring Web REST API.

In the next chapter, we will cover great topics and patterns that complement this one, such as learning 
how to test our APIs; how to use localization patterns so that we can have our API working with 
multiple currencies, measurements, and languages; how to write WebFlux apps; and learning about 
saga patterns, logging patterns, and other important additions that you will find important in many 
projects you will face.



6
Translating Business 

Requirements into 
 Well-Designed Spring APIs

Welcome to Chapter 6! In this chapter, we will talk about how to develop your core business logic 
using Spring Framework conventions. Also, we will talk about many things related to improving our 
API design’s clarity. Another important aspect we will dive into in this chapter is how to create the 
tests we need to ensure our APIs are working as expected.

We will turn our requirements into test cases and guarantee that our APIs are working according to 
what the product team wants. These are the topics we are going to cover:

•	 Mastering the blueprint for any Spring microservice

•	 Error handling in REST APIs

•	 Implementing business services in Spring

•	 Writing automated tests for your Spring applications

•	 Tuning Spring Web for peak performance

•	 Making your API design a lot better

This will be an exciting journey that focuses on translating the product desire into actual models that 
provide the right logic for delivering business value. You will start by learning about the only template 
you will ever need to write a Spring microservice. How about that? Let’s get into it!



Translating Business Requirements into Well-Designed Spring APIs160

Technical requirements
All the code in this chapter is in this GitHub repository URL: https://github.com/
PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-
06/rental-property-microservice.

Mastering the blueprint for any Spring microservice
Now that we know exactly how to produce a good HTTP interface for our remote clients with Spring 
Web, let’s look at the critical pieces of a server. Most Spring-based servers that can serve remote client 
requests will follow the pattern shown in Figure 6.1:

Figure 6.1: Spring services master blueprint

https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-06/rental-property-microservice
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-06/rental-property-microservice
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-06/rental-property-microservice


Mastering the blueprint for any Spring microservice 161

As you can see, there are three vertical layers and four horizontal layers in this diagram. We will 
conceptually explain the vertical and horizontal layers, and we will go over each of these aspects in 
future sections and chapters.

Exploring the vertical layers

The three vertical layers you can see in Figure 6.1 will help you to organize your source code in such a 
way that you can isolate three special categories, client interface code, internal services, and the data 
persistence layer, so that your app can maintain a long-term state if you need it. They are not strictly 
required every time, but they are truly useful for organizing your mind. In the sub-sections that follow 
is a more thorough explanation of each layer.

Remote interface

This left vertical layer contains the set of classes that will be concerned solely with interfaces for serving 
remote clients. This is the client’s entry point. In the example in the previous chapter, using Spring 
Web, we learned how to implement HTTP and REST APIs. But this remote interface layer can be 
implemented in diverse ways, depending on our use cases (we will see this throughout the book). You 
should avoid at all costs adding business rules to this set of classes since, in this remote interface layer, 
your code is required to only capture the client requests and delegate them to business services in the 
central vertical layer. This approach is similar to the one we wrote in our past chapter example, when we 
injected the RentalPropertyService Spring Bean into our RentalPropertyController 
class. This layer is also responsible for formatting data to be transmitted over the network. In REST 
APIs, that means we can accept JSON objects, for instance.

Business

This central vertical layer represents the set of classes where you should code your domain business 
rules. Whatever specialized knowledge you have about the product should be represented and 
implemented in this layer, and nowhere else. The typical class that performs a business action and 
enforces its specific rules is called a service, and it will accept and return Data-Transfer Objects 
(DTOs), which are basic Java classes representing structured business objects. These service classes 
also interact with remote services (other microservices that we need to call from within the service 
we are writing) and repositories (the data sources we need to use in order to store long-term data) to 
save data and delegate calls to other servers in the network.

Persistence

This is the right vertical layer and is responsible for making sure we can store and retrieve structured 
data from a data store. It usually implements connections to databases of distinct types, or some sort 
of blob storage mechanism, or whatever interfaces we need to store and retrieve data to (it could be 
a remote filesystem, such as FTP, NFS, or even a Google Sheet in the cloud).

These three vertical layers will be made clearer as we proceed.



Translating Business Requirements into Well-Designed Spring APIs162

Understanding the horizontal layers

The horizontal layers will separate each vertical layer into some common areas. They will give you 
four distinctions: the top one consists of the objects that you will use to handle data in your system 
(hence, each vertical layer has its own data object format). The middle layer consists of interfaces 
(literally Java interfaces that you will use to define system functions – what input they need and what 
output they return). The third layer is the Java code that will drive the implementation of the service 
interface you have defined. And the fourth layer describes a remote system that you are relating with 
(it could be a customer, another microservice, or a database, for instance). Let’s have a more thorough 
description of our horizontal layers.

Objects

The top horizontal layer contains the actual data structures we will work with. There is a special need to 
separate implementations for the network objects, the service objects, and the storage objects because 
these data structures, although representing the same business concepts, will have different needs. The 
network data representations could be JSON objects in REST APIs. The DTOs are plain Java objects 
with raw attributes and very simple methods for handling whatever business rules we need to enforce. 
They are usually the input and output parameters of our service classes. Entities, on the other hand, 
are classes representing whatever requirements for data persistence we need to enforce. We will often 
see service classes translating DTOs to entities and vice versa, with a 1-1 mapping, especially when 
they are too similar. Spring Web is capable of automatically turning JSON objects into DTOs. On 
several occasions, a single call to a service class with quite a simple DTO could result in many entity 
objects being created and persisted in a repository. Because of those different factors, we will usually 
have these three core types of data:

•	 Network data representations

•	 DTOs

•	 Entities

Interfaces

This middle horizontal layer represents the methods that are available throughout the whole application, 
stripped of their implementations. For Java programmers, that means we should only add interface 
classes in this layer, or very thin implementations (for instance, our RentalPropertyController 
contains very few lines of code in each method). This layer will help you to keep your abstractions as 
clean and organized as possible so that you can think in business terms without concerning yourself 
too much about how to implement those methods, or which technologies you are interfacing with. 
This is great for expressing the concepts and philosophies of your servers in an isolated manner. On 
the left side of the interfaces layer, we will have all interfaces that handle remote communication. In 
the center, we will have business interfaces. On the right side, we will have persistence interfaces.



Mastering the blueprint for any Spring microservice 163

Implementations

This third horizontal layer, from top to bottom, is where you create classes to implement the interfaces 
from the interfaces layer (the second layer, from top to bottom). As a rule of thumb, on the left side, 
the implementations for REST controllers are provided by the Spring Web dependency and the 
annotations we have learned about. You can use other Spring Web annotations to enrich your HTTP 
protocol handling, such as @RestControllerAdvice, to map how Java exceptions will lead to 
proper HTTP responses (we will look at that in this chapter).

Throughout the entire layer, you will be using whatever annotations are available in Spring Projects 
to implement specific behaviors for your application (you will also use Spring AOP for this, which 
will be presented later in the book).

In the central part of the implementations layer, a service implementation can be of two types: either 
you are implementing a call to another remote service (remote service calls), and that implementation 
will encapsulate whatever boilerplate code is required, or you are implementing business rules (service 
implementations), which means you can handle DTOs and entity objects, and injecting other services 
interfaces in that implementation. You should never let an implementation class inject another 
implementation class directly because when a service needs to call another service, if you inject the 
implementation classes directly, that will expose your specific implementation detail to the rest of 
your code, and this will risk making your code harder to maintain in the long term. Instead, you 
should just inject the service interface into whatever class needs it to keep your abstractions clean and 
the implementations isolated from each other. Spring Framework knows how to provide the proper 
implementation classes for your services; we will see some examples of that.

On the right side of this layer, we can find the implementation for storing and retrieving objects from 
different databases and other kinds of persistence mechanisms. These are usually given by annotations 
that you will take from the right Spring dependency. There are different Spring Projects that you can 
include in your server that will allow you to connect to whatever databases you want, for example.

Remote access

Finally, the lower horizontal layer is there to make you aware of the external connections your Spring 
server is maintaining. On the left side, for REST APIs, we are talking about your remote clients’ HTTP 
connections. In the center, it lets you know that your service could execute requests to other remote 
servers. On the right side, the remote access is, of course, your database of choice. With this single 
diagram, you can understand the entire philosophy of how to create any microservices with Spring 
Framework. This is truly all you need to see how a Spring server should be implemented. It might take 
a bit to really understand this, but once you re-read these sections a couple of times and go through 
our upcoming examples, you should have a better understanding.

Remember that, in general, each Spring microservice will serve just one or a few very closely related 
domains or concepts in your application.

Here is an example, based on our HomeIt start-up.



Translating Business Requirements into Well-Designed Spring APIs164

Rental proposal service design
We can think of a rental proposal service that will use Spring Web as the left vertical layer (remote 
interface – a REST API), will implement a few services in the middle vertical layer (business) to 
translate a DTO to a rental proposal entity, and will save the rental proposals as documents in a 
MongoDB database in the right vertical layer (persistence). Turn the book to the right so that you 
can see the whole image properly.

Figure 6.2: Rental properties service Spring layout

To implement this service, we should do the following:

1.	 Create the RentalProposalController remote interface, defining the API and the 
HTTP methods using Spring Web.

2.	 Create the RentalProposalDTO class, which contains the rental proposal fields. The JSON 
structure should come out of the box, as Spring Web automatically translates DTOs to JSON 
and vice versa.

3.	 Create a RentalProposalService Java interface with all the operations we need for 
creating/storing rental proposals.

4.	 Create a RentalProposalServiceImpl, which will implement the methods in the interface.

5.	 Create a MessageService interface, which encapsulates the messages we are sending to 
users when a rental proposal is created or changed.

6.	 Create a MessageService implementation, using the Spring Feign client to fire HTTP 
requests to our message service (we will look at how the Feign client works in a future chapter).



Error handling in REST APIs 165

7.	 Create a RentalProposalEntity class that will be used to store and retrieve our rental 
proposal objects from MongoDB.

8.	 Create a RentalProposalRepository interface that will declare all possible operations 
over our repository.

9.	 The implementation for accessing MongoDB will be provided by the Spring Data MongoDB 
instance (we will look at that during Chapter 10, when we will show you how to work with 
NoSQL databases).

10.	 We will need to implement automated tests to make sure all these classes are working properly.

We will see that implementation in upcoming sections. For now, this step-by-step plan is basically to 
show you a different service in our HomeIt startup.

In the next section, we will discuss and practice an important but often overlooked aspect of Spring 
software development: how to deal with exceptions and errors in a very structured, clear way.

Error handling in REST APIs
Since we were talking about REST services in the prior chapter’s examples, let’s extend this a bit to 
solve a critical problem in Spring REST APIs.

Suppose there is a specific exception that is issued by various endpoints in your application. How could 
you implement the proper error handling and return meaningful responses to your remote clients 
without replicating code with the same try/catch statements all over the place?

A useful example would be the 500 error code in HTTP. How many times you have seen unexpected 
server errors that are fully unformatted and irrelevant, or just empty? It is basically impossible to 
anticipate every situation in which your code can break in production. So, it is at least advisable to have 
something in place that can catch all the unexpected exceptions thrown in your code and just handle 
it in such a way that your remote clients will receive a standard, well-formatted message in every case.

In these annoying situations, we can standardize our responses using the @ControllerAdvice and 
@ExceptionHandler Spring Web annotations, and the ProblemDetail class as a standardized 
return object.

Let’s see how it works. First, we will create this sample defective endpoint in our current 
RentalPropertyController class that will purposefully throw a RuntimeException:

@GetMapping(value = "/error")
public ResponseEntity<List<RentalPropertyDTO>> 
runtimeExceptionSample() {
    throw new RuntimeException
        ("This was a sample unhandled runtime exception");
}



Translating Business Requirements into Well-Designed Spring APIs166

This exception is just to symbolize a runtime error that could happen anywhere in your application.

Next, let’s use curl to fire a request to this endpoint:

Figure 6.3: A sample request to an endpoint that always triggers an exception

As you can notice, we get an internal server error that does not give any useful data from the exception 
we originally fired.

Now, let’s create this simple class to handle all uncaught runtime exceptions that happen throughout 
our code:

@RestControllerAdvice
public class SampleExceptionHandler {

    @ExceptionHandler(RuntimeException.class)
    public ResponseEntity<ProblemDetail>
        handleGenericException(RuntimeException ex) {
            ProblemDetail problemDetail =
                ProblemDetail.forStatus(
                    HttpStatus.INTERNAL_SERVER_ERROR);

            problemDetail.setTitle(
                "Customized Internal Server Error");
            problemDetail.setDetail(
                "An unexpected error occurred: "
                    + ex.getMessage());
            problemDetail.setInstance(
                URI.create(
                    "/api/v1/rental-properties/error"));
            problemDetail.setProperty("timestamp",
                LocalDateTime.now().toString());

            return new ResponseEntity<>(problemDetail,
                HttpStatus.INTERNAL_SERVER_ERROR);
    }
}



Error handling in REST APIs 167

Here are some highlights:

•	 I am annotating the class with the @RestControllerAdvice Spring Web annotation, 
which lets Spring know this is a bean that’s used to handle whatever exceptions are declared in 
the methods. We can have as many @RestControllerAdvice classes as we want in our 
code, but many projects will only maintain one of them. Unless you have very complicated 
exception handling and need to isolate them in other classes for clarity, having just one @
RestControllerAdvice tagged class will be OK.

•	 We are tagging a single method with the @ExceptionHandler annotation, which lets us 
specify which exception should be handled in this method. In our case, we just want a method 
that can capture all runtime exceptions so that we can better format 500 error messages to 
our HTTP clients.

•	 We are creating an instance of the ProblemDetail class, which has very useful fields for 
informing remote clients about our errors.

•	 If you have several different exceptions that you want to handle in your code using the 
RestControllerAdvice mechanism, you can create different methods for handling each 
one of the exceptions you want to address.

Now, let’s see it in action. Once you have written a RestControllerAdvice class, Spring just 
knows how to forward errors to an instance of this class by using the Spring Beans management 
mechanism we talked about in the previous chapter.

The @RestControllerAdvice annotation will signal Spring Framework to create a Spring Bean 
out of it, and to keep that instance throughout the whole application lifecycle.

Here is an attempt to fire the same GET request, but this time the response is customized by our @
RestControllerAdvice bean:

Figure 6.4: A customized response returned by the RestControllerAdvice class

As you can see, our original exception message is now being carried over the remote client. Notice 
that this can help with troubleshooting important error messages, but it can also lead to security 
breaches if you don’t handle the error messages properly. Letting error messages flow to your remote 
HTTP clients can leak important security details about your architecture. You need to be very careful 
about these error messages.



Translating Business Requirements into Well-Designed Spring APIs168

Implementing business services in Spring
Now, let’s answer another very important question about the Spring Frameworks’ magic and how it 
fits in the generic design diagram we showed you at the beginning of this chapter.

When implementing a Spring Server application and writing the business vertical layer, how should 
we declare our service interfaces and implementations?

Declaring service interfaces in Spring

The answer is rather simple, and we can illustrate it with our RentalPropertyController 
service classes in a few minutes. First, Spring will basically require you to follow these four steps:

1.	 For every special domain in your server, you can have one or more service interface classes that 
represent the special operations you can perform over your domain objects.

2.	 For each service interface you have declared, you need to have an equivalent service implementation 
class that will extend your service interfaces and add code to its methods. We usually name 
these classes YourServiceNameImpl as a convention.

3.	 You should always tag those service implementation classes with the @Service annotation. 
That is all Spring needs to know in order to transform your service interface into a Spring 
Bean during runtime.

4.	 You can inject your services into other Beans by using the interface name only. Spring knows 
how to search for the right implementation class for that interface at startup time.

Let’s see how it happens in our RentalPropertyService class. This is our service interface:

public interface RentalPropertyService {
    List<RentalPropertyDTO> getAllProperties();

    Optional<RentalPropertyDTO> get(UUID id);

    RentalPropertyDTO create(RentalPropertyDTO property);

    Optional<RentalPropertyDTO>
        update(UUID id, RentalPropertyDTO updatedProperty);

    Optional<RentalPropertyDTO>
        updateSomeFields(UUID id,
            RentalPropertyDTO partialUpdate);

    Optional<RentalPropertyDTO> delete(UUID id);



Implementing business services in Spring 169

    List<RentalPropertyDTO> search(String name,
       String address, String city, String country,
       String zipCode);
}

As you can see, the RentalPropertyService interface maintains all possible operations 
pertaining to a rental property object. We can either get a rental property by its UUID, create a new 
rental property, update the whole object, update some fields, delete, or search for a rental property.

Writing the implementation class for your service

Now, for this interface object, we need to add an equivalent implementation class. Let’s go over some 
important parts:

@Service
public class RentalPropertyServiceImpl
        implements RentalPropertyService {

    private final Map<UUID, RentalPropertyDTO>
            rentalProperties = new HashMap<>();

    @Override
    public List<RentalPropertyDTO> getAllProperties() {
        return List.copyOf(rentalProperties.values());
    }

    @Override
    public Optional<RentalPropertyDTO> get(UUID id) {
        return Optional.ofNullable(
            rentalProperties.get(id));
    }

    // ... the other methods go here
}

The following points are important here:

•	 We can see the @Service annotation, signaling to Spring Framework that this is a Spring 
Bean. So, by default, any time we try to inject the RentalPropertyService interface, 
Spring will take this class as the Bean that implements it. Magic!

•	 You can see that this class implements the RentalPropertyService interface, which is 
the domain we decided to represent in this microservice.



Translating Business Requirements into Well-Designed Spring APIs170

•	 You can see that I have used the naming convention. This is the RentalPropertyServiceImpl 
class. In other words, an implementation of the RentalPropertyService class.

•	 We can see that I have used a simple HashMap instance to store our rentalProperties. 
We are currently not persisting our domain objects in a database yet; this will be a topic for 
the next chapter.

•	 You can see two of the several method implementations of the 
RentalPropertyService interface.

Now, this illustrates basically every Spring Service implementation you will find in any company. This 
is the standard way to organize your code, and every time I see code written with different conventions, 
it carries quite a bit of technical debt and it is hard to maintain.

There are some advantages to this approach:

•	 By setting aside service interfaces and implementation classes, it becomes extremely easy to 
create functional prototypes by providing very basic implementation classes and prove that 
your interfaces are working properly in the general context.

•	 You can switch implementations as you need to. Once we get to implementing the database 
interfaces, we can add a new implementation class that injects the database interface and uses 
it, instead of the in-memory HashMaps.

Now, let’s revisit how our RentalPropertyController is injecting the RentalPropertyService 
and using the implementation class. This is how we declared the controller class:

@RestController
@RequestMapping("/api/v1/rental-properties")
@Validated
public class RentalPropertyController {

    private final RentalPropertyService rentalPropertyService;

    public RentalPropertyController(
            RentalPropertyService rentalPropertyService) {
        this.rentalPropertyService = rentalPropertyService;
    }

    // ... the rest of the controller class goes here
}



Implementing business services in Spring 171

Again, to use a service class in one of your Beans, you just need to declare a private reference to your 
desired service interface and add that interface as a property to your constructor. Spring will know how 
to instantiate the required implementation service class if you tag it with the @Service annotation.

Now, let’s look at how this Rental Property API is structured in our general template:

Figure 6.5: Rental property service class layout

In this sample, we have worked with an extremely poor persistence layer, just because we wanted to 
focus on how to declare Spring Web REST APIs.

I hope this visual representation helps you make sense of how people in general structure their Spring 
applications. The next chapter will be dedicated to talking about the data and persistence layers in 
Spring applications.



Translating Business Requirements into Well-Designed Spring APIs172

Organizing your Spring classes

This screenshot illustrates how to organize your different classes in a Spring application:

Figure 6.6: Rental property packages organization

As you can see, there are three main packages so far: service, dto, and controller. The service 
interface and respective implementation class reside in the same service folder. Similarly, the controllers 
and exception handlers reside in the same folder as well. There are some variations of this structure, 
but this is enough of a convention for you to start.

In this example, we created a series of methods in the same service interface. That was just a convention 
we followed because the methods implemented were pretty thin. If your service implementations are 
huge and take a lot of code, you can break your service interfaces into more files.

An alternative route that you can take in your project is segregating each individual service method 
into a separate interface, then creating an implementation class for each interface with just one method 
in each. That is a decision you and your team will have to make.

When you and your team are deciding about how to organize interfaces and implementations (and 
even the controllers, for that matter), ask these important questions:

•	 Is the number of files in your project manageable? Is it possible to easily look at the project 
structure and navigate the different interface/class files?

•	 Is the number of packages and the directory structure also manageable and easy to navigate? 
Does the name of the packages make sense in the context of your product? Can the developers 
find the interfaces and implementation classes they want by intuitively navigating the package 
folder structure?



Writing automated tests for your Spring apps 173

•	 Are the interfaces and implementation classes easy to read? Is it possible to read, learn, and 
maintain the service implementation methods?

If you find yourself having a tough time understanding a service implementation class, it is most 
probably time to do some refactoring. You can break interfaces into smaller interfaces and make them 
more specialized. You can refactor big service classes by extracting new classes and utility methods 
to other files and packages. You can do all sorts of re-organization in your code.

Now, over to you. Before going to the next section, take some time to plan and maybe even implement a 
Spring Web REST application. Maybe you want to take one of our microservices in the HomeIt system? 
Or would you like to create a RESTful microservice for another enterprise? It is up to you. Just do not 
let that change of practicing escape from your hands. It is pretty easy to create nice APIs using Spring, 
since most complicated implementations are provided by the Spring project dependencies, such as 
Spring Web. You might have noticed that your only work when using Spring Framework is twofold:

•	 Knowing what Spring Project you will use to provide implementations for your technology 
choices for storage and remote connections

•	 Knowing a lot about your product domain so that you can create the best interfaces for your 
key services

Are you up to the challenge of learning by doing? I will wait for you in the next section.

Writing automated tests for your Spring apps
Now that we have gone through how Spring applications are structured, let’s take a look at how to 
write automated tests for your apps. When writing software, you should never leave tests outside of 
your plans because you do not want to spend your time manually testing everything important every 
time you release a new feature. Or even worse, you do not want to release new versions without testing 
everything you can. That will lead to a very bad result in production, with a lot of bugs and incidents.

An automated test suite will guarantee your software is always compliant with the requirements. 
A good set of automated tests is actually a guarantee that the business will be working fine. Also, 
automated tests make your development much faster and easier, as we will see. Once you have a great 
test automation suite, you will feel very confident whenever you release new software.



Translating Business Requirements into Well-Designed Spring APIs174

Understanding the basic test pattern

So, let’s learn how to write automated tests. First, you need to understand the basic automated test 
pattern, also called a test case. Every automated test case – even the manual ones – is created from 
the same pattern, as shown in Figure 6.6:

Figure 6.7: The test pattern

This three-step process, which you follow from left to right to create a test case, means this:

1.	 Given – Input: This is a set of background objects from which you want to start your test. It 
means the test setup. This is also called the test scenario. In this phase, you are simulating, 
replicating the scene from which you want to start your test.

2.	 When – Operation Is Tested: This is where you use the prepared setup (the input, or test 
scenario) to fire the actions you want to test. It means simulating the behavior that your user 
will have when the app is running in production.

3.	 Verify – Desired Output: This phase means that your operation will generate an output, which 
you can now compare with the desired output. If the tested operation output equals the output 
you expect, your test was successful. If not, some error happened in the app, and you need to 
fix your code.

This test case pattern is pretty easy to understand. When designing a test, you should always know which 
output you are expecting to receive from the test scenario. Otherwise, why bother testing something?

Creating integrated tests with Spring Test

OK, enough of theory. In our code base, we have provided an example implementation of a test suite 
for the RentalPropertyController class. It is located in the chapter’s repository. We are going 
to look at this first sample, then step back to explore different test approaches using Spring.

First, let’s start by looking at the test class location. This is the same place you will find test classes in 
typical Spring projects everywhere:



Writing automated tests for your Spring apps 175

Figure 6.8: The test class location

The test file is usually named after the original class you are targeting. In our case, we are going to test 
RentalPropertyController, which is the origin of the RentalPropertyControllerTest 
class. All test classes are stored in the test directory and should reflect the tested class’ package structure.

This test class contains different test cases, which we call a test suite. A test suite contains a set of test 
cases that follow the same pattern we talked about earlier.

Another important thing to understand is that tests in Spring are driven by a specific project, Spring 
Tests, which we need to include in our project build file:

dependencies {
    implementation 'org.springframework.boot:spring-boot-starter-web'
    testImplementation 'org.springframework.boot:spring-boot-starter-
test'
    implementation 'org.springframework.boot:spring-boot-starter-
validation'



Translating Business Requirements into Well-Designed Spring APIs176

    testRuntimeOnly 'org.junit.platform:junit-platform-launcher'
}

Since Spring Test is integrated with JUnit out of the box, these are the two directives we need to include 
in our build.gradle file. These dependencies are automatically included in the Spring Initializr 
website generated project.

Now, let’s head to our RentalPropertyControllerTest class declaration:

@SpringBootTest
public class RentalPropertyControllerTest {

    private final WebApplicationContext context;
    private final ObjectMapper objectMapper;

    @Autowired
    RentalPropertyControllerTest(
            WebApplicationContext context,
            ObjectMapper objectMapper){
        this.context = context;
        this.objectMapper = objectMapper;
    }

    // ... the rest of the test goes here
}

These are the important highlights from this code:

•	 We are including the @SpringBootTest annotation. That means that once Spring starts 
to run your tests, it will actually create an entire Spring ApplicationContext for you. In other 
words, your entire Spring application will run while the test is running. And yes, that includes 
your database connections if you do not mock some services (we will see later how this works).

•	 We are declaring a reference to the web application context. We will need it in order to be able 
to target our application with our test cases.

•	 We are declaring a JSON parser. The ObjectMapper class will help extract the DTOs from 
our API responses.

•	 We are declaring the test class constructor. We are asking Spring Boot to inject the ObjectMapper 
and WebApplicationContext Beans. Remember that Spring Framework will automatically 
create and manage a singleton of each class for us.



Writing automated tests for your Spring apps 177

•	 We are required to add the @Autowire annotation to the constructor so that Spring can inject 
the Beans in the test environment. This annotation is only strictly required when running test 
classes, but you can also use it in your application code as well. There are several ways to use 
the @Autowire annotation in Spring, but since the constructor injection is a better way to 
get references for other Beans, we will not cover @Autowire in this book.

This summarizes how to declare your test class. Now, let’s see the following parts:

private RentalPropertyDTO createdProperty;
private MockMvc mockMvc;

@BeforeEach
void setUp() throws Exception {
    mockMvc = MockMvcBuilders
        .webAppContextSetup(context).build();
    createdProperty = createProperty();
}

private RentalPropertyDTO createdProperty;
private MockMvc mockMvc;

@BeforeEach
void setUp() throws Exception {
    mockMvc = MockMvcBuilders
        .webAppContextSetup(context).build();
    createdProperty = createProperty();
}

The following observations are important:

•	 We are declaring the MockMvc class reference, which is the class we use to fire HTTP requests 
to your endpoints.

•	 We are declaring a setUp method that needs to be run before every test method is called. The 
@BeforeEach annotation means exactly that. Use it to tag a method that you need Spring 
to run in order to prepare a clean context for a test case. This preparation method is a part of 
the Given – Input step in our test case pattern.

•	 We are defining that Spring will create a new instance of MockMvc, a class used to fire the 
HTTP requests, as we stated earlier.

•	 We are declaring an instance attribute of type RentalPropertyDTO called 
createdProperty. That object will be re-created every time a test case is run, providing 
a clean setup for every test case to run.



Translating Business Requirements into Well-Designed Spring APIs178

•	 We can see the call to the createProperty() method, which is firing a real HTTP request 
to our API and inserting a fresh instance of the rental property in the API repository.

Alright, now that we have learned how to prepare your test case context, let’s see how a new rental 
property is created before every test case:

private RentalPropertyDTO createProperty() throws Exception {
    RentalPropertyDTO property = new RentalPropertyDTO(
    null, UUID.randomUUID(),"Test Property",
    "123 Test St","Test City",
    "Test Country", "12345",1200.0);

    // Simulate creating a property
    String responseBody = mockMvc.perform(
            post("/api/v1/rental-properties")
            .contentType("application/json")
            .content(objectMapper.writeValueAsString(property)))
        .andExpect(status().isCreated())
        .andReturn().getResponse().getContentAsString();

    return objectMapper
        .readValue(responseBody, RentalPropertyDTO.class);
}

In this code, we have the following:

•	 We create a sample of the new rental property object to be sent in our API request as a 
JSON payload

•	 We perform a POST request to our API to create the rental property

•	 We specify the POST address

•	 We specify the content type of the request

•	 We parse the RentalPropertyDTO to a JSON string, included as the content (payload) 
of the request

•	 We verify that the HTTP return is 201 (created), which is what we expect from our API when 
a new property is successfully created

•	 We extract the response content to a string called responseBody

•	 We use the objectMapper object to parse our JSON string to a new RentalPropertyDTO 
instance, then return it



Writing automated tests for your Spring apps 179

This is nice, isn’t it? We are actually verifying the results as we are setting up the other tests. That 
means if something goes wrong while creating the new properties for the test cases, Spring Test will 
notify us that something went wrong.

Let’s see now an example of an actual test case implementation:

@Test
void testGetPropertyById() throws Exception {
    mockMvc.perform(
            get("/api/v1/rental-properties/{id}",
                createdProperty.id())
            .contentType("application/json"))
        .andExpect(status().isOk())
        .andExpect(jsonPath("$.name")
            .value("Test Property"));
}

The following considerations apply:

•	 We are naming a method with the test case we want (testGetPropertyById). In this case, 
the method should test whether the GET property request will work in our application. Every 
test method should clearly be named as the test case we want to execute.

•	 We are indicating with the @Test annotation that Spring should automatically run this method 
when automated tests are run so that every time we run our automated test suite, this method 
will be executed by Spring Test and the designed test case will be executed and verified.

•	 Remember that this method will be called only after Spring Test calls the setUp() method 
because we declared it with the @BeforeEach annotation. That means a brand-new rental 
property instance will be available for this test case to use.

•	 We are using mockMvc to perform an action.

•	 The performed action is the GET call to the /api/v1/rental-properties/{id} 
endpoint. The {id} path parameter will be replaced by the new rental property ID. This is 
the When – Operation Is tested step in our basic test case pattern.

•	 The GET request is also added with the contentType header.

•	 The final piece is the Verify – Desired Output step in our test case pattern:

	� We make sure that the HTTP return code is 200 (OK)

	� We use a JSON path query to make sure our response payload attribute name in the root 
of the object contains the string Test Property, which is the name of the property we 
created before this test was run.



Translating Business Requirements into Well-Designed Spring APIs180

This summarizes how Spring Tests are created, concisely. You can look at other test cases by reading 
the whole example test class in this chapter’s repository.

Testing Beans in isolation

Although remarkably effective, this model I just showed you, in fact, will test the entire Spring 
application, with all original Spring Beans created for you. That means your entire application will 
behave in the way it was originally intended to.

This should be enough for you to do an integrated test, which is great. But sometimes, you will want 
to test nothing but a single Spring Bean, or an extremely specific scenario, which might be difficult to 
set up using this automated test model. The complex test scenarios here are examples in which you 
want to have more control over the application context:

•	 If your test case will cause your application to fire requests to other remote apps or try to connect 
to external services, such as databases, you might find it difficult to run integrated tests in your 
local machine because your environment may not have access to an instance of the external app.

•	 If a determined test case requires your external apps to return specific results to your tested 
app, even if your Spring app can connect to other apps, it might be impossible to make them 
return what you want.

•	 If you have an overly complicated service class implementation that has a lot of complex business 
rules and references to other injected Spring Beans, it might be impossible to make other Beans 
behave exactly how you want in an integrated test model.

For all these complicated scenarios, wouldn’t it be useful for Spring Test to inject fake Beans for you 
as you see fit? Imagine you can provide a new implementation of any Spring Bean method during test 
time and get that Bean to respond in the exact way you want during a test case.

That is possible using the @MockBean annotation.

Let’s see a test class that illustrates this. Do you remember when we briefly talked about how to set 
up a default exception handler for your Spring app? Let’s force the services to throw exceptions using 
the @MockBean annotation, then we can make sure that the RestControllerAdvice class is 
working properly. How about that?

The complete code for the exception handler test class can be found in this chapter’s repository:

@SpringBootTest
public class SampleExceptionHandlerTest {

    private final WebApplicationContext context;

    @MockBean



Writing automated tests for your Spring apps 181

    private RentalPropertyService rentalPropertyServiceMock;

    private final ObjectMapper objectMapper;

    @Autowired
    SampleExceptionHandlerTest(
            WebApplicationContext context,
            ObjectMapper objectMapper){
        this.context = context;
        this.objectMapper = objectMapper;
    }

    private MockMvc mockMvc;
    // ... the rest goes here
}

Most of this code is familiar to you, except the part in which we declare that we want to take control of 
the RentalPropertyService Spring Bean. The @MockBean annotation will create a wrapper 
around the original RentalPropertyService bean, and we will be able to override any behavior 
of that bean during our test cases.

This is how it works:

@Test
void testGetPropertyById() throws Exception {
    Mockito.when(rentalPropertyServiceMock.get(any()))
        .thenThrow(new RuntimeException(
            "an unexpected 500 error"));
    mockMvc.perform(
            get("/api/v1/rental-properties/{id}",
                UUID.randomUUID())
            .contentType("application/json"))
        .andExpect(status().is5xxServerError())
        .andExpect(jsonPath("$.title")
            .value("Customized Internal Server Error"));
    Mockito.verify(rentalPropertyServiceMock,
            times(1)).get(any());
}

This is a test case in which we are forcing our RentalPropertyService Spring Bean to throw 
a runtime exception when its get() method is called with any value by any class in our Spring app.



Translating Business Requirements into Well-Designed Spring APIs182

You could even customize the parameter to suit your needs in case you are expecting an exact match 
in your test case. You can see that we are using the Mockito.when() method for that. Any time 
our conditions are met, the mocked response will be activated with the thenThrow() method. We 
are basically passing a new instance of a runtime exception there so that it can be thrown by Mockito 
when it is the right time.

By the way, you may have noticed that Mockito is a transient dependency of the Spring Test project. 
This means you do not need to manually include this library in your app dependencies because Spring 
Test already imports it.

Here are some useful Mockito methods for you to use during your test cases:

•	 thenReturn(T value): Specifies the value to be returned when the method is called

•	 thenThrow(Throwable... throwables): Specifies the exception(s) to be thrown 
when the method is called

•	 thenReturn(T value, T... values): Specifies multiple values to be returned 
sequentially each time the method is called

•	 thenDoNothing(): Specifies that nothing should be done when the method is called, 
typically used for void methods

How amazing is it? Now we test any aspect of our Spring app during test time. We can manipulate 
responses as we see fit. During the test verification step (the third step of our test case pattern), we 
can also verify that a specific method was called and how.

Other testing options

On some occasions, you will not want to run an entire Spring ApplicationContext during your tests, 
since it could take a lot of time on your build pipeline. In that case, you can resort to regular unit 
tests. Here is an example:

public class SampleExceptionHandlerUnitTest {
    private final SampleExceptionHandler handler
        = new SampleExceptionHandler();

    @Test
    public void testHandler() {
        ResponseEntity<ProblemDetail> mySampleException
            = handler.handleGenericException(
                new RuntimeException(
                    "my sample exception"));
        ProblemDetail problemDetail =
            mySampleException.getBody();



Writing automated tests for your Spring apps 183

        assert problemDetail != null;
        String detail = problemDetail.getDetail();
        Assertions.assertEquals(
        "An unexpected error occurred: my sample exception"
        , detail);
    }
}

In this case, we are testing the SampleExceptionHandler class, which is called by our Spring 
app whenever it finds an unhandled runtime exception. In the testHandler method, we are just 
testing that the ProblemDetail class comes as the content of the ResponseEntity object 
returned by the handleGenericException() method. It is as simple as that if do not want to 
add this test case to your entire integrated Spring application test environment.

You can find the full code for this unit test in our chapter repository.

We will not extend ourselves too much with regular unit tests, since this is beyond the scope of Spring 
Framework. But we will go back to writing other test cases in the future. I hope this was enough 
to give you some clarity about how to start writing your Spring application tests using the Spring 
Test dependency.

Coming up with a test case list

Just as a last reminder, since writing an app will always combine thousands of variables, it is imperative 
that you write tests that tap into the key combinations and hottest spots of your application. You need 
to come up with a strong list of test cases that combines positive and negative scenarios:

•	 Positive test cases are the ones that assert your application is working properly if the right 
information is passed during the test scenario. For instance, in our API, a positive test case 
would be the one in which the API is creating objects when we pass the right parameters.

•	 Negative test cases are the ones in which the application reacts correctly to incorrect data. In 
other words, you want to make sure that your application is emitting the right errors when the 
wrong data is passed in the operation tests.

We have seen plenty of positive test cases for RentalPropertyController and a negative test 
case for the runtime exception. Now, let’s see another negative test case. We will send the wrong data in 
our request when creating a rental property. We expect the Spring Validation dependency to do its job:

@Test
void testCreatePropertyErrorNullAddress() throws Exception {
    RentalPropertyDTO newProperty = new RentalPropertyDTO(
            UUID.randomUUID(), UUID.randomUUID(),
            "New Property", null,



Translating Business Requirements into Well-Designed Spring APIs184

            "New City", "New Country",
            "67890",1500.0);

    mockMvc.perform(
        post("/api/v1/rental-properties")
        .contentType("application/json")
        .content(objectMapper.writeValueAsString(
           newProperty)))
        .andExpect(status().isBadRequest());
}

As you can see, this test case method’s name states the exact scenario we want to test: a client sends a 
null address, and an error is expected. The null address is inserted on purpose. We verify that our app 
has returned 400, the bad request HTTP code, in the very last line. A bad request will be returned 
by default any time the Spring Validation dependency finds a data violation in the data sent by the 
customer. Of course, we could implement a new RestControllerAdvice bean so that we can 
return a clearer answer to our users as to which fields are invalid in the request.

The code for this test case can be found in this chapter’s repository.

Perfecting the application tests over time

OK, now you can write your own test suite. When creating your test cases, you must be thorough 
to ensure the tests guarantee the application’s robustness. But remember, you can never be perfect.

It does not matter how much you try to create test cases for every combination of variables, you 
will always miss some interesting combinations in your test suite. This is what defines a bug. More 
important than trying to be the perfect software developer is being a developer who can react quickly 
and find great solutions when problems and missed test cases are found. And oh, boy, you will find a 
lot of problems, because that is the nature of software.

As soon as someone on your team reports a bug, make sure to fix the code and do your best to include 
new test cases in your suite to cover that scenario. If you do that over the years, your application will 
achieve a remarkably elevated level of maturity.

Running your tests in the console

In order to run your tests, we need to instruct Gradle to make its results very clear in the console. You will 
have to add the testLogging{} directive to your build.gradle file, inside the tests section:

tasks.named('test') {
    useJUnitPlatform()

    testLogging {
       events "passed", "skipped", "failed"



Writing automated tests for your Spring apps 185

    }
}

Then, you will be able to run the following command in your console, in your project’s root folder:

> gradle clean test

The clean directive gets Gradle to empty its build cache and re-run all its build tasks. If you do not 
add it, Gradle might store the build and test results in its cache and will not run the tests again unless 
you change some code. You can remove the clean directive once you are used to how it works and 
just run this command:

> gradle test

This is the output I get when doing it on my computer:

Figure 6.9: The Gradle output with the test results



Translating Business Requirements into Well-Designed Spring APIs186

As you can see, each test class and test method is transparently run, and you can see which ones passed 
and which ones did not pass. Every IDE has a special feature for running tests as well so that you can 
see the logs for everything you are doing.

We will talk about logs and transparency a lot more in Chapter 11, when we will show you how to 
prepare your service for production. That’s it for testing in this chapter. Now, it is time to enhance 
your Spring Web app’s performance.

Tuning Spring Web for peak performance
As we mentioned when we introduced the Spring Web project, in the past, Spring Web was not highly 
recommended for handling a large number of parallel client requests (in the order of thousands of 
simultaneous calls) or for addressing many I/O operations in the same call, such as connections to 
databases, transactions, and requests to other microservices.

I/O operations can add significant latency to APIs because accessing networks and even local hard 
drives is much slower than processing in-memory data. Before Spring 6 and Java 19, Spring Web relied 
solely on thread pools to handle these parallel requests. These thread pools were managed by the OS, 
and once your API initiated an I/O operation, the entire OS thread would be stalled, waiting for the 
operation’s result. Managing a large number of threads was impractical because each thread consumed 
substantial CPU and memory resources, making it less feasible to run APIs under heavy server load.

With the introduction of Java 19, we saw the arrival of the Loom project, which introduced virtual 
threads—a feature that reduces the cost of suspending thread execution by using internal JVM 
mechanisms. Virtual threads are much lighter than traditional OS threads, enabling the handling of 
many more concurrent tasks with less resource overhead. Spring 6 now offers a way to enable virtual 
threads in your API.

The effect of enabling virtual threads is significant, making it very efficient to process parallel requests 
and I/O-bound operations. This enhancement brings Spring Web performance much closer to that 
of Spring WebFlux, which is a hyper-performant architecture for microservices that we will learn 
about in the future. Generally, Spring Web is more readable and easier to understand and debug 
than WebFlux, so enabling virtual threads is a genuinely beneficial feature that substantially reduces 
development costs.

Let’s see how to enable virtual threads for your Spring Web API. We will look at how to configure your 
application in the future by using property files, environment variables, and so on. This will be important 
when we are discussing deployment strategies and configurability with Spring. For now, let’s keep 
things as plain and simple as possible by just changing our RentalPropertiesApplication 
class. It will be rewritten like this:

@SpringBootApplication
public class RentalPropertyApplication {
    public static void main(String[] args) {
       SpringApplication app =



Tuning Spring Web for peak performance 187

          new SpringApplication(RentalPropertyApplication.class);

       app.setDefaultProperties(
          Map.of("spring.threads.virtual.enabled", "true"));

       app.run(args);
    }
}

As you can see, we are setting a default property value for the spring.threads.virtual.
enabled key. This is pretty much all you need if you are using Java 21 and Spring 6. You can make 
sure you are using Java 21 by looking at your build.gradle file. If you have instructed Spring 
Initializr to create your app with the latest Java version, this is what you will see there:

java {
    sourceCompatibility = '21'
}

To make sure we are really using virtual threads, I have added a utility endpoint in our 
RentalPropertyController class:

@GetMapping("/thread-model")
public String getThreadName() {
    return Thread.currentThread().toString();
}

All this code does is access the current thread and call its toString() method. You will be able to 
see the name of the class used to create the thread. This is what we get when firing a curl request 
to this endpoint:

Figure 6.10 : Firing a curl request

As you can see, the class used to create the thread for responding to your request is the VirtualThread 
class. If we set the spring.threads.virtual.enabled property to false instead, this is 
what we get:

Figure 6.11: Knowing if your system is using virtual threads or threads



Translating Business Requirements into Well-Designed Spring APIs188

As you can see, by setting the virtual threads property to false, you will get your curl calls running 
over a common Thread class.

The performance assessment and comparison is beyond the scope of this book, but there are numerous 
studies on the internet that compare threads, virtual threads, and async processing with Webflux 
performance. In general, there will be a lot of improvement of thread vs virtual thread use, and virtual 
threads are a lot closer to Webflux performance. Still Webflux should be your option of choice when 
dealing when very high throughput is needed on your application.

Next, we will see how to write API endpoints with a great structure.

Making your API design a lot better for clients
Now, let’s jump to another important subject. Suppose we have published our Rental Property API to 
the HomeIt website. Take this endpoint URL as an example:

https://homeit.com/api/v1/rental-properties/c2d538fa

Let’s review the anatomy of this address:

•	 https: This is the protocol of the request. In this case, we are dealing with a secure HTTP 
connection, which we will discuss when addressing API security.

•	 homeit.com: This is what we call the base URL. It represents the domain in which your 
API is published.

•	 /api: This is the root API directory where all APIs from HomeIt are published.

•	 v1: This is the version of your API.

•	 rental-properties: This is the name of your API, which corresponds to the name of 
your domain or resource.

•	 /c2d538fa: This is the ID of your domain object.

•	 rental-properties/c2d538fa: This is what we call a Unique Resource Identifier 
(URI). It tells you the exact HTTP address where you can find this specific rental property object.

It is important to review these elements because now, we are going to talk about API maturity levels. 
In other words, we want to answer the following question: How do we know our REST API is well 
structured and properly documented? The best answer for that lies in a special model we will learn 
about now.



Making your API design a lot better for clients 189

Richardson Maturity Model for creating/documenting REST APIs

Leonard Richardson is an influential writer who noticed that some REST APIs are better than others 
in providing an intuitive design and, more importantly, adherence to the original REST standards 
proposed by Roy Fielding. The REST standard is like an ideal implementation of a service, and Leonard’s 
design provides information about how far a real implementation is from the state of the art.

In the next few subsections, we are going to review the four levels of maturity, which are: Remote 
Procedures (level 0), Resources (level 1), HTTP Verbs (level 2), and Hypermedia Controls (level 3).

Exploring remote procedures at level 0

Many HTTP API designers will follow the strategy of creating arbitrary URLs that reflect the name 
of the operation they are with to provide to remote clients. If our Rental Property API was done that 
way, at level 0 of maturity, we would have something like the following examples:

•	 POST https://homeit.com/api/createRentalProperty

•	 POST https://homeit.com/api/deleteRentalProperty

•	 POST https://homeit.com/api/updateRentalProperty

•	 POST https://homeit.com/api/sendRentalProposal

•	 POST https://homeit.com/api/acceptRentalProposal

As you can see, the URLs all make the operation to be done explicit, which means clients need to 
understand and memorize a series of specific addresses for each possible operation. This leads to a 
very unstructured set of URLs that could lead to totally unexpected designs in the future as the API 
grows to support more functions and features. This is confusing for users, who have no idea how many 
domains and entities they need to deal with, let alone what is possible to do with the API.

This is what we consider the level 0 API maturity level. The URLs and the HTTP protocol are used 
without any commitment to the original design standards and intentions. Verbs are chosen from the 
developers’ gut feelings. The URLs are truly a horror show and resemble the names of the functions 
in code.

If you have spent at least a couple of years in the industry, you certainly will have stumbled on such 
APIs. If you have designed something like that (I know I have), you need to step up to the next level.



Translating Business Requirements into Well-Designed Spring APIs190

Creating directories at level 1

At the second level, the API is considered to have entered the realm of REST. Here, the APIs will 
consistently use URL patterns for creating directories for the objects you are going to manipulate. 
Those directories will also allow you to address the objects directly by just appending the object IDs 
as the path parameters. Here are some examples:

•	 POST https://homeit.com/api/rental-properties

•	 GET https://homeit.com/api/rental-properties/123

•	 POST https://homeit.com/api/rental-properties/123/delete

•	 GET https://homeit.com/api/rental-proposals/456

•	 GET https://homeit.com/api/rental-proposals

As you can see, in the first, second, and third examples, we are able to address a single object, the ID 
of which is 123, to fire different operations over it. But this time, we can use different verbs in the 
same URL, which will lead to different results. As we saw before, this unique address that refers to the 
same object instance is called a URI. That means your objects now have their own unique addresses 
in an API, and you can fire different operations to manipulate that object from that URL.

The root directory of an object is a resource. In these examples, we have two represented resource 
types: rental properties and rental proposals. Every resource type address should be named in plural.

OK, we have now got some consistency in creating specific URL addresses for our resource instances. 
But in our examples, we can see that there is no consistency in using the right HTTP verbs. We can 
see that there is a POST request pointing to a /delete URL, which is nonsense, since the POST 
verb in HTTP was originally designed to create a new resource. Level 2 fixes that.

Using HT TP verbs in level 2

At level 2, we now are consistently using HTTP verbs and the right response codes when handling 
client requests. That will guarantee that the original intent of the HTTP protocol is satisfied in your 
API. Achieving this level of maturity means that you are providing a highly structured and intuitive 
API for your clients. See the following examples:

•	 POST https://homeit.com/api/v1/rental-properties

•	 GET https://homeit.com/api/v1/rental-properties/123

•	 DELETE https://homeit.com/api/v1/rental-properties/123

•	 POST https://homeit.com/api/v2/rental-properties

•	 GET https://homeit.com/api/v2/rental-properties/123

•	 DELETE https://homeit.com/api/v2/rental-properties/123



Making your API design a lot better for clients 191

By versioning your API, you will also guarantee that any changes can be published with new versions 
using new URLs. That will make you confident that you are not breaking the code of the clients that use 
old versions. The API users can then start to use more recent versions of the same URIs as they see fit.

At level 2, as I said before, you are also required to respond to requests with the right HTTP response 
codes. That means answering with 201 when a POST request to create a rental property is successful, 
answering with 400 when required data is not present in the request, or answering with 409 when the 
input data format is correct but there is some other conflict (such as trying to create a rental property 
with an ID for a landlord that does not exist).

The key point of Level 2 is evening out differences, making all resources behave basically in the same 
standard way. As we said a couple of chapters earlier, by understanding the basic operations an object 
should have, we are able to design the API and discover new resources that should exist in the API.

Level 3 – Hypermedia Controls

At this level, your API will not only provide standard operations and responses using the right HTTP 
verbs, but will also provide responses that inform the clients about the available operations for a 
given object. This means that once a client performs a GET request over a specific resource instance, 
they will not only receive the object representation but will also receive a structure that lists the next 
possible URIs that clients can use with new HTTP requests to perform other operations on that object.

Since this is our ideal level of maturity, let’s see how it works.

Spring Web will allow you to create whatever URLs and URIs you want, so it is up to you to follow 
good practices, such as the ones I have just shared with you. But there is a tool called Spring HATEOAS 
that will help you to create level 3 APIs.

HATEOAS stands for Hypermedia as the Engine of Application State. That is a term coined by 
Roy Fielding, one of the key designers of the open HTTP protocol, which proposes that HTTP client 
applications should be able to guide themselves based on options returned by the HTTP-based 
applications. In other words, the idea is that every mature application that uses HTTP should return 
not only the result of the operation requested by the client but also a list of control options that could 
enable the application to expose those actions to the user automatically.

The ultimate result of HATEOAS – client applications that just know how to guide themselves based 
on hypermedia controls – is pretty hard to achieve since developers will need documentation to fire 
HTTP requests to a service. But it might be very useful for our clients if you make the extra actions 
available in the responses.



Translating Business Requirements into Well-Designed Spring APIs192

Differentiating DTOs from descriptors

So, we know that in order to have level 3 APIs, we need to offer new URIs in our HTTP responses 
so that the remote clients can discover further actions linked to the objects they are retrieving from 
our endpoints.

The way we will do this here is through DTO descriptors. A descriptor is basically an object wrapped 
around a DTO. This approach provides a container for your DTOs, and that container can also include 
the links that represent actions about the business object we’re retrieving. See the following diagram:

Figure 6.12: Home IT HATEOAS implementation example

Now, before looking at the code, let’s see what our clients will get when retrieving the objects with 
their URIs.

First, when we run the API, we can create an example RentalProperty using our old v1 
POST method:



Making your API design a lot better for clients 193

Figure 6.13: A POST request for creating a rental property using curl

This time, we have used the --silent flag in the curl command, which will simplify the request 
and response. We are also using the jq command to better format the API response. The jq command 
can be installed on Windows, Mac, and Linux. It is open source and can be found here: https://
jqlang.github.io/jq/.

https://jqlang.github.io/jq/
https://jqlang.github.io/jq/


Translating Business Requirements into Well-Designed Spring APIs194

OK, now we have created our new rental property. This is what we will get when retrieving a single 
RentalPropertyDTO class with hypermedia controls using Spring HATEOAS:

Figure 6.14: A GET request to retrieve a Rental Property

As you can see at the top of the screenshot, we are now using the v2 API URL. And the return contains 
an encapsulated rentalProperty class, as well as the URI for that rental property.



Making your API design a lot better for clients 195

Let’s see how we can retrieve a collection of rental properties using Spring HATEOAS:

Figure 6.15: A GET request to retrieve a list of properties



Translating Business Requirements into Well-Designed Spring APIs196

As you can see, each rental property comes with its own URI, and the whole collection comes with 
the URI for getting all the rental properties.

This is the kind of result we will learn to implement now, with Spring HATEOAS.

Let’s now, with the following diagram, quickly look at the classes we used in our solution, which you 
can check out in our GitHub repository:

Figure 6.16: HATEOAS class structure

These are the classes used in this example:

•	 RentalPropertyControllerV2: Adds two new endpoints for retrieving one or a 
collection of rental properties, with the hypermedia controls (URIs) included

•	 RentalProperty and RentalPropertyDTO: The two classes that have existed in our 
system since our V1 controller

•	 RentalPropertyHyperMediaUtils: A helper bean that will create the hypermedia 
descriptors for us



Making your API design a lot better for clients 197

•	 RentalPropertyDescriptor: Encapsulates a rental property and includes the URI for 
that rental property

•	 PropertiesCollectionDescriptor: Encapsulates a collection of 
RentalPropertyDescriptor objects and includes a URI for getting all properties 
at once

Alright, with that introduction out of the way, let’s go to our implementation details.

Adding HATEOAS as a dependency

The first thing we should do here is to use HATEOAS as a Spring dependency. These are the changes 
we will make to our build.gradle file:

dependencies {
    implementation 'org.springframework.boot:spring-boot-starter-web'
    implementation 'org.springframework.boot:spring-boot-starter-
validation'
    implementation 'org.springframework.boot:spring-boot-starter-
hateoas'

    compileOnly 'org.projectlombok:lombok:1.18.32'
    annotationProcessor 'org.projectlombok:lombok:1.18.32'

    testCompileOnly 'org.projectlombok:lombok:1.18.32'
    testAnnotationProcessor 'org.projectlombok:lombok:1.18.32'

    testImplementation 'org.springframework.boot:spring-boot-starter-
test'
    testRuntimeOnly 'org.junit.platform:junit-platform-launcher'
}

The following observations are important:

•	 Spring HATEOAS is included as a dependency in the build.gradle file. It contains all the 
tools we need to create a level 3 hypermedia-based API.

•	 We will also include Lombok as a dependency of the build.gradle file so it is easier to write 
our descriptors. Lombok provides a series of annotations that simplify a lot of the usual Java 
verbosity. This dependency must be included in the compile and test phases of the build process.

With these new directives in the build.gradle file, we can move on to implementing the actual classes.



Translating Business Requirements into Well-Designed Spring APIs198

Writing RentalPropertyControllerV2 class

The next thing we will see is the new Spring controller class. We will write it as a new version of the 
API. This way, the old clients that still work with v1 will not be affected, since we are not editing 
old endpoints.

This is how we declare the new controller class (the entire controller code can be found in this 
chapter’s repository):

@RestController
@RequestMapping("/api/v2/rental-properties")
@Validated
public class RentalPropertyControllerV2 {

    private final RentalPropertyService rentalPropertyService;
    private final RentalPropertyHyperMediaUtils 
rentalPropertyHyperMediaUtils;

    public RentalPropertyControllerV2(
            RentalPropertyService rentalPropertyService,
            RentalPropertyHyperMediaUtils
                rentalPropertyHyperMediaUtils) {

        this.rentalPropertyService = rentalPropertyService;
        this.rentalPropertyHyperMediaUtils =
            rentalPropertyHyperMediaUtils;
    }
    // ... the rest goes here
}

You will recognize most patterns in this class, except for the following:

•	 We are now declaring that this URI will be nested inside the V2 version, so that we keep the 
old API with no changes

•	 We now have injected a rentalPropertyHyperMediaUtils Bean, that will help us 
render the URLs for our level 3 API.

Let’s now look at how we will be retrieving a single rental property that will come with hypermedia 
controls (in other words, useful endpoint links that clients can use to perform actions related to the 
object we are retrieving):

@GetMapping(
    value = "/{id}",
    produces = "application/json")
public ResponseEntity<RentalPropertyDescriptor>



Making your API design a lot better for clients 199

    getPropertyById(@PathVariable UUID id) {
    return rentalPropertyService.get(id)
        .map(rentalPropertyHyperMediaUtils::
            describeRentalProperty)
        .map(ResponseEntity::ok)
        .orElse(ResponseEntity.status(
            HttpStatus.NOT_FOUND)
                .body(null));
}

Let’s analyze the current code:

•	 We declare that the method will return RentalPropertyDescriptor instead of the old 
DTO class

•	 We retrieve the usual RentalPropertyDTO from the RentalPropertyService

•	 We use the rentalPropertyHyperMediaUtils component to encapsulate our 
RentalPropertyDTO with a RentalPropertyDescriber (we will see how that 
works in a few minutes)

•	 Then, we proceed with the current algorithm that will return the found response, or 404 - 
NOT_FOUND if there is no object for the ID we are looking for

Now, let’s look at the method for retrieving all available rental properties, but now the entire collection 
will be encapsulated in a CollectionDescriptor:

@GetMapping(produces = "application/json")
public ResponseEntity<PropertiesCollectionDescriptor> 
getAllProperties() {
    return Optional.ofNullable(
        rentalPropertyHyperMediaUtils
            .describeRentalPropertyCollection(
                rentalPropertyService
                    .getAllProperties()))
        .map( describedCollection ->
            ResponseEntity.ok().body(describedCollection))
        .orElse(ResponseEntity.noContent().build());
}

You can see the following:

•	 We are using the rentalPropertyService.getAllProperties() method to bring 
all the DTOs we have; then, we are using the rentalPropertyHyperMediaUtils 
component to encapsulate the DTO collection in a hypermedia descriptor for the entire 
collection. We will see how that is implemented in a few minutes.



Translating Business Requirements into Well-Designed Spring APIs200

•	 We state that the return of the collection descriptor can be null (in case no DTOs exist), 
which means the clients will receive no content in the payload. When a request has been 
successful but there is no payload to be received in the response, it is good practice to set the 
HTTP return code 204.

As you can see, both methods are simple enough in the controller, which keeps things isolated and 
easy to read and understand. Let’s now look at our descriptors, so that you know what we are returning 
when a client fires an HTTP request to any of the endpoints.

Writing the rental property hypermedia descriptors

This is how we implement the RentalPropertyDescriptor class, which is a container for the 
RentalPropertyDTO class:

@EqualsAndHashCode(callSuper = true)
@Data
public class RentalPropertyDescriptor
        extends RepresentationModel<RentalPropertyDescriptor> {
    private RentalPropertyDTO rentalProperty;
}

Easy enough, right? Let’s break down this code (the entire class can be found in the chapter’s repository):

•	 The class is tagged with Lombok annotations that reduce our boilerplate (@EqualsAndHashCode 
and @Data).

•	 @Data defines that this class should have getters and setters for all attributes, and Lombok 
will generate the bytecode automatically during compilation time.

•	 @EqualsAndHashCode annotation gives Lombok the directive to auto-generate both 
methods – equals() and hashcode().

•	 We define that the descriptor should encapsulate the RentalPropertyDTO class, which 
keeps the DTO isolated from the relative links.

•	 We define that the descriptor class extends the RepresentationModel, which is a Spring 
HATEOAS class that adds support for the hypermedia links. This means our descriptor has a 
series of attributes and helper methods to add those links to our responses.

OK, that was simple and full of info. Let’s now see how to create a descriptor for RentalPropertyDTO 
collection (this class can be seen in the chapter’s repository):

@EqualsAndHashCode(callSuper = true)
@Data
public class PropertiesCollectionDescriptor
    extends RepresentationModel<PropertiesCollectionDescriptor> {
    private Collection<RentalPropertyDescriptor> 



Making your API design a lot better for clients 201

describedRentalProperties;
}

This class is very simple as well, with the following highlights:

•	 It is built as an extension of the RepresentationModel class, which adds attributes to 
store the hypermedia links

•	 This class maintains a collection of RentalPropertyDescriptors because we want to 
return descriptors for the individual DTOs and a descriptor for the entire collection

That’s it for our descriptors. Let’s go to the last piece in this solution.

Writing the RentalPropertyHyperMediaUtils Spring Bean

We can look now at the main piece of code in our chapter repository, which we decided to call 
RentalPropertyHyperMediaUtils. This creates the responses with the links. Let’s first look 
at how we declare this class:

@Component
public class RentalPropertyHyperMediaUtils {
    // ... class body
}

The @Component annotation comes from the core of Spring Framework. That tells Spring that this 
class should be treated as a Spring Bean – the framework will create a singleton of this class and make 
it available for other Beans to inject. This is an annotation that you can use for services that are not 
business related but still provide some important functionality. In fact, the @Component annotation 
is the root annotation for creating Spring Beans. The @Controller and @Service annotations 
are two annotations that extend @Component. This is why Spring Framework knows to create Beans 
out of controllers and services as well.

Now, let’s look at how we create RentalPropertyDescriptor:

public RentalPropertyDescriptor describeRentalProperty(
        RentalPropertyDTO rentalPropertyDTO) {

    return Stream.of(new RentalPropertyDescriptor())
        .peek( desc ->
            desc.setRentalProperty(rentalPropertyDTO))
        .peek( desc -> desc.add(
            WebMvcLinkBuilder.linkTo(
                RentalPropertyControllerV2.class)
        .slash(rentalPropertyDTO.id()).withSelfRel())

        // add as many links as you want for this entity



Translating Business Requirements into Well-Designed Spring APIs202

        // WebMvcLinkBuilder.linkTo(WebMvcLinkBuilder
        // .methodOn(RentalPropertyControllerV2.class)
        //    .getPropertyById(rentalPropertyDTO.id()))
        //    .withRel("anotherFunction");
        // WebMvcLinkBuilder.linkTo(
        //    RentalPropertyControllerV2.class)
        //.slash(rentalPropertyDTO.id())
        //   .withRel("anotherFunction"))

        .findFirst().get();
}

Let’s look at some important notes here:

•	 This class receives rentalPropertyDTO as input and returns its equivalent descriptor, 
which basically encapsulates the original DTO.

•	 We are creating a stream so that we can use the functional style, which is more concise and 
compact. The peek() method means we take the previous object, do some operations with 
it, and then move to the next functional operation, passing on the same object reference. It is 
different from map(), which will deliver the output object of the current operation to the next 
function. peek() preserves the original object in the functional pipeline, while map() uses 
functions to transform the input object into a different output object.

•	 Once we have created a RentalPropertyDescriptor, we add the rentalPropertyDTO 
to it, and then we add the links to the descriptor.

•	 The add() method comes from the Spring HATEOAS RepresentationModel class. We 
inherited it automatically.

•	 WebMvcLinkBuilder is the key utility class for building the URIs. I have added some 
examples here in some comments. It is possible to add as many URIs as you want to an object. 
It is up to you how many controls you add to your class.

•	 You can see that the link builder works by finding the address for the controller class of your 
choice and then adding the ID of the rental property to create a URI for the rental property 
we are retrieving.

Alright! You can go back a few pages to review the output and look at the URIs mapped in the API’s 
JSON response if you want. Let’s keep looking at our hypermedia util class. The next method returns 
the descriptor for a set of property descriptors:

public PropertiesCollectionDescriptor
    describeRentalPropertyCollection(
        List<RentalPropertyDTO> allProperties) {



Making your API design a lot better for clients 203

    if(allProperties.isEmpty())
        return null;

    List<RentalPropertyDescriptor> parsedProperties =
        parseProperties(allProperties);

    return Stream.of(new PropertiesCollectionDescriptor())
        .peek( cDes ->
            cDes.setDescribedRentalProperties(
                parsedProperties))
        .peek(this::addAllPropertiesLink)
        .findFirst().get();
}

This method is quite interesting. Let’s review it:

•	 We receive a regular list of rental properties to be encapsulated in descriptors.

•	 We define that this method should return null if the list is empty.

•	 We have a utility method for parsing our list of RentalPropertyDTOs  to 
RentalPropertyDescriptors, and now we have a full list of descriptors, each one 
with URIs and hypermedia controls.

•	 Now, we create a root descriptor that will encapsulate our list of RentalPropertyDescriptors. 
We insert the list of RentalPropertyDescriptors to it and we add the GET /properties 
hypermedia link.

•	 Then we return the first result we find, which is actually the root collection descriptor we 
created before.

The describeRentalPropertyCollection() method is the most complex one, as it delegates 
some calls to other util functions. Let’s look at these lasting utility functions now:

private List<RentalPropertyDescriptor>
    parseProperties(
    List<RentalPropertyDTO> allProperties) {

    return allProperties.stream()
        .map(this::describeRentalProperty).toList();
}

public void addAllPropertiesLink(
        PropertiesCollectionDescriptor collectionDescriptorDTO) {
    collectionDescriptorDTO.add(
        WebMvcLinkBuilder.linkTo(



Translating Business Requirements into Well-Designed Spring APIs204

            RentalPropertyControllerV2.class)
                .withRel("allProperties")
    );
}

We can see the method to parse rentalPropertyDTOs to their respective descriptors. This actually 
uses the function we have just seen, describeRentalProperty(). We create a stream() 
from the input list, and for each object, we use map() to transform the rentalPropertyDTO 
element into the RentalPropertyDescription object. That line contains special syntax for 
Java functional programming, which is beyond the scope of this book.

We have a simple utility method to add the G E T  / p r o p e r t i e s  URI to the 
RentalPropertyCollectionDescriptor. You can use this method as a reference to add 
any link to any of your own descriptors in the future.

Now, let’s finally check how the class and package structure was laid out.

This is what we got as a result of the Spring HATEOAS implementation of a level 3 REST API with 
hypermedia controls:

Figure 6.17: Class and package structure for a level 3 REST API

As you can see, a lot of work and thought has happened here, just to have the hypermedia links in 
your response objects.



Summary 205

Are level 3 REST APIs worth the effort?

Although HATEOAS is a useful tool, and the promised land of level 3 REST APIs creates the vision of 
objects that will help HTTP clients to discover functionality by themselves, the reality is that our API 
users will still need thorough documentation to know how to consume our APIs. As such, HATEOAS 
is not a bullet-proof strategy for creating great APIs. It can help our clients in some ways, but maybe 
it is not as good as people promise.

I have seen a great implementation of hypermedia controls, though. Maybe there is a special operation 
that you want your user to know about when they are getting the response of an HTTP call. An example 
is as follows: when a user is creating a security token that has an expiration time, you might want to 
consider adding the hypermedia URI to the response so that your user can see the token refresh the 
URL right there in the response. Critical operations such as that may be important to implement in 
your APIs. But do not bother to spend all your time adding all possible URIs to your responses. If 
you do that, your response object will become very confusing to developers.

The best way to make your API usable is to have the best possible documentation. We will see how to 
do that in a future chapter, when we are focusing on getting our services to talk to each other.

Summary
In this chapter, we covered a lot of ground to make your APIs well designed, well tested, and well 
structured internally, and we also talked about the Spring conventions to make sure your code is 
cleaner and more flexible. These were critical subjects to help you speed up your development process 
and lead you to think like a Spring Framework seasoned developer.

We have also learned how to create business interfaces that isolate implementation details from the 
definition of business processes. In the final sections, we dealt with improving your Spring Web API’s 
performance, as well as how to make sure your API adheres to the HTTP standards. The Richardson 
Maturity Model is a great template that you can follow to make the lives of your API users much easier, 
and we have also seen how to create level 3 APIs by using Spring HATEOAS.

The last two chapters represent a critical step into microservice thinking from a business perspective. 
The next chapters will cover a lot of ground in the technical details that come from this core software 
development. We will now deal with non-functional requirements such as persistence, communication, 
security, deployment, and everything “techy” using Spring Framework. See you in the next chapter!





7
Handling Data and Evolving 

Your Microservice

Welcome to Chapter 7! In this chapter, we will explore several topics regarding how to create the data 
persistence layer of your services. The topics here will be implemented using a SQL database, but we 
will dive into the architecture, which will help you understand how you should approach data modeling 
and persistence for any database type.

We will cover the following topics in this chapter:

•	 Data persistence in applications with Spring

•	 Reactive versus non-reactive data handling

•	 SQL versus NoSQL data storage

•	 Microservice versus monolithic applications data design

•	 Implementing a non-reactive, SQL database persistence layer

•	 JpaRepository: your go-to SQL interface in Spring Data

•	 Working with transactions in Spring Data

•	 Using NamedParameterJdbcTemplate to run raw SQL queries

The chapter starts with a general explanation of how to take architecture decisions on data modeling 
and the cost of each kind of approach. Then, we will move to the implementation, where we will show 
you the different levels of database interactions using Spring Data.



Handling Data and Evolving Your Microservice208

This chapter will also give you an understanding of how to evolve your service over time as we discuss 
each topic. You will often work with microservices that need some kind of reengineering. We will show 
you how to do that in Spring with the use of multiple implementations for the same service interfaces. 
In the end, we want to have a clear separation of concerns between the business interfaces we need 
and how we actually implement those interfaces. This is going to be a wild ride; let’s go!

Technical requirements
Here is the full code for the classes and services we have created in this chapter: https://github.
com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/
chapter-07/rental-property-microservice

Data persistence in applications with Spring
So far, we have focused on how to enable Spring Web APIs without caring too much about data 
persistence. In our RentalProperty API, the service layer implementation is currently just using a 
simple map to collect the rental property objects in run time. Of course, that is not enough to bring 
about a whole REST API. Obviously, objects need to be persisted correctly.

The fact is that adding support to a real database can be a really tiresome task if you are an application 
developer. When writing a Spring application, most developers just want to jump in and start coding, 
without caring too much about database infrastructure details. In fact, even choosing the database 
technology and how to connect to it will vary from company to company, and from cloud to cloud. 

Here are some circumstances that might affect the choice of database technology:

•	 Your company might already have a favorite database instance for your app to connect to

•	 Big companies might use on-premises appliances, such as Oracle’s Exadata server

•	 You could have a managed database in the cloud to connect to, such as Amazon Aurora

•	 The company might have a database pod deployed in a Kubernetes cluster using something 
like Postgres, for example

The options for database connections can vary a lot, so we will start by giving you a very flexible way 
to start coding your service. To understand what we are going to do, let’s recap our universal Spring 
app anatomy diagram:

https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-07/rental-property-microservice
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-07/rental-property-microservice
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-07/rental-property-microservice


Data persistence in applications with Spring 209

Figure 7.1: Spring application anatomy

When we look at this chart, we can see that the Interfaces and Implementations horizontal layers are 
built apart from each other. If you look at how they impact the Persistence vertical layer, this means 
that Spring was designed in such a way that you are geared toward writing persistence repository 
interfaces that are fully separate from the code that specifies the actual databases you will use.

In other words, the same code you will write to manage your data can be used without any changes 
with any database instance you like, given that the database is of the same type (we will work with SQL 
databases in this chapter). You can get a recap of the database types we have by reviewing Chapter 4. To 
change your database instance, just give Spring a few configuration options and some dependencies, 
and voilà: you can connect to a different database instance and even different database vendors. Spring 
will provide the infrastructure you need to connect to a different database.



Handling Data and Evolving Your Microservice210

Being able to point to different database types at any time by just changing your configuration files 
and dependencies is extremely helpful in the following circumstances:

•	 You are at the very beginning of writing your application, and the dev team still does not know 
exactly what database instance to connect to, so you can start with an in-memory database and 
be unblocked for doing the rest of the development.

•	 Your company is migrating to another database architecture, and you need to reconfigure your 
connection without impacting your implementation, for example, moving from on-premises 
to a cloud-managed database.

•	 You are deploying the same application in different environments, each one with a different 
database instance to connect to (dev, stg, prod, and so on). This is useful for running quality 
assurance processes before going to production (we will see how that is done in the next chapters).

•	 You are running integration tests and need to provide a test database without changing your code.

•	 Your company is moving to another database (such as moving from Oracle to Postgres) and 
you need to change your configuration and make very minor changes to your code.

There are other scenarios in which decoupling the data repository implementation from the database 
connection comes in handy. In this chapter, we will connect to in-memory databases so that we can 
free you from thinking about infrastructure for now and focus on understanding how data is stored, 
changed, and retrieved in a typical Spring application.

In the next section, let’s talk about how to make your app faster by understanding reactive and 
non-reactive programming.

Reactive versus non-reactive data handling
Another key factor when thinking about data handling is that we have two basic options: reactive 
and non-reactive data handling.

Non-reactive data handling means this: every time your code tries to run a database query, the current 
thread will be stalled as it waits for the database result. A reactive query, on the other hand, will free 
your current thread as long as there are no results from the database. Also, if you are streaming data 
from the database, you will be able to return objects as they are returned from the database operation.

Let’s talk briefly about both options in this section.



SQL versus NoSQL data storage 211

Non-reactive data handling

In non-reactive data handling, we write data persistence code that will block a single thread when 
doing database I/O operations. As you saw in the earlier chapters, thread-blocking operations can 
make your applications a lot slower when you have too many concurrent client requests. You can still 
enable virtual threads on your Spring app so that the application becomes a lot faster.

Non-reactive data handling is suitable for Spring Web apps, or for any apps that you can think of that 
do not have strict requirements for dealing with an exceedingly high volume of concurrent requests 
(in the order of thousands per second).

Reactive data handling

On the other hand, reactive data handling code will work without blocking a thread. Any time 
your app starts an I/O operation, that code will be put in waiting mode. When the requested data is 
available, Spring will run the rest of the code again in such a way that threads can be shared around 
thousands of requests.

In this chapter, we will concentrate on implementing non-reactive data handling. In the future, we 
will come back to reactive servers; then, we will be able to look at how different it is to write very 
high-performance servers.

Now, let’s talk briefly about the two paradigms for organizing data.

SQL versus NoSQL data storage
Today, every developer with some experience knows that applications can have a wide variety of 
databases. We have plenty of ways that we can store our data. But all types can be separated into two 
major categories: SQL or NoSQL. Let’s have see why using either of them would be a good choice.

SQL databases

Structured Query Language (SQL) databases are data storage mechanisms that help you keep the 
integrity of your data. They have several features:

•	 Fixed table column format: Your tables will enforce a regular format for your data, meaning 
all rows will have the same number of attributes (columns) and all attributes will have the same 
type. This means you have a very strong guarantee that all your data will be highly standardized.

•	 Constraints: You can set restrictions on how your data is created in relation to other data in 
different tables. In our HomeIt example, we could say that a rental property cannot be created 
unless it has a landlord. Those restrictions can add a lot of safety to your application.



Handling Data and Evolving Your Microservice212

•	 ACID guarantees: When using a SQL database, you can make it so that your transactions 
can handle a lot of data in different tables, and the transaction will be successful only if every 
single operation inside a transaction is successful. That means that if one of the operations 
fails, every other operation is rolled back to its previous state and the database is left with full 
data integrity. Also, concurrent transactions do not affect each other. ACID stands for Atomic  
(all operations in a single request should work as if they were just one), Consistent (constraints 
are used to guarantee data integrity), Isolated (one transaction cannot be interfered with by 
another concurrent transaction), and Durable (data will keep its state unless a transaction 
that changes it is successful).

Using SQL databases has two remarkably interesting implications. First, you will not be able to 
have as much flexibility on how your objects are created. Second, every object should have the same 
attributes and types.

Constraints are processed in the database, which means a data model with many constraints will be 
slower than data models with few constraints.

You will most probably want to use SQL databases when dealing with data that requires a lot of integrity. 
The most common application is, of course, registering financial transactions. Also, medical records, 
compliance requirements, and everything that smells like high-risk data should be a candidate for 
SQL databases.

NoSQL databases

When data integrity among different tables is not a particularly high-priority requirement, you can 
resort to other kinds of databases. All of them fall in the category of Non-Structured Query Language 
(NoSQL) databases. These databases will help in various kinds of use cases, depending on how they 
are structured. The most famous one is MongoDB, which is a document database.

MongoDB can be used to store unstructured data. This means that if your data is in some way 
unpredictable and you have high variability in its format, then MongoDB can be used to store 
that data successfully. For HomeIt, we could store rental property data as a NoSQL document and 
allow landlords to add as many description sections as they want to their registered rental property. 
Thousands of different documents representing different properties would be stored in a single 
MongoDB collection. Each section would be a different field of the document so that landlords can 
get more creative in their descriptions.

There are other great NoSQL databases that you can use in your Spring application:

•	 Cassandra: Implemented as a wide-column store, optimized for high availability and scalability, 
suitable for Internet of Things (IoT) data, time-series data, and real-time analytics

•	 Redis: Key-value store offering fast, in-memory data access, perfect for caching, session 
management, real-time analytics, and message brokering



SQL versus NoSQL data storage 213

•	 Neo4j: Graph database designed for handling highly connected data, useful for social networks, 
recommendation engines, and network analysis

•	 Couchbase: Document store with integrated caching and full-text search capabilities, suitable 
for interactive web and mobile applications

•	 Elasticsearch: Search engine optimized for full-text search, analytics, and complex search 
queries, useful for log and event data analysis

As you can see, there are a lot of use cases for NoSQL databases. Spring contains drivers and dependencies 
for using all of them.

Other important characteristics of NoSQL databases are the following:

•	 Because devs usually won’t put a lot of constraints on NoSQL data design, that usually means 
faster processing times. But you can have almost the same effect by getting rid of constraints 
in SQL databases.

•	 If you have a lot of constraints that need to be applied to NoSQL data, that means you will have 
to implement them in your application. That means you can face a lot of complications if you 
have concurrent transactions accessing the same documents.

•	 Moving constraints outside the database means a lot more read/write performance for less 
money, but you are generally giving up the ACID guarantees. There is always a cost associated 
with architectural decisions.

As you can see, using a NoSQL database should be done with caution. You need to make sure that 
you do not need features such as ACID transactions.

Note
Since this chapter is mostly about how to manage your data in Spring applications, I need to 
acknowledge and warn you that there are entire books about how to properly deal with data. If 
you want to dive really deep into this subject, I recommend the book Designing Data-Intensive 
Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems by Martin 
Kleppmann as a great starting point. It will perfectly complement this chapter, making you a 
much better data architect.

Now, we need to discuss what level of complexity is required for you to implement data structures 
and persistence in your application.



Handling Data and Evolving Your Microservice214

Microservices versus monolith application data design
In the early days of the internet, data design was heavily focused on ensuring data integrity. Since 
most applications were monolithic, the database schemas would host all entities and objects from an 
application in one place.

This centralized approach was beneficial because it allowed the use of constraints to enforce various 
business rules effectively. Additionally, databases offered PL/SQL (Procedural Language extensions), 
which are essentially programs within the database for various purposes.

However, in modern times, extensive use of PL/SQL and large database schemas are often considered 
anti-patterns, as different domains are mixed in the same code base and database, making them 
harder to maintain.

With the advent of microservice architectures, the general rule is that each service should contain its 
own database. But as all dreams come to an end, microservice architectures also have their drawbacks. 
Over time, the limitations of the original microservice recommendations have become apparent. The 
primary issue with having a separate database for each microservice is the complexity that arises when 
trying to perform transactions that impact multiple services. For example, in our start-up, HomeIt, 
when a tenant pays for an approved rental proposal, the transaction must ensure consistency between 
the payment service and the rental proposal service. You do not want to accept the tenant’s payment 
unless the rental proposal has been finalized, allowing the tenant to move in.

To ensure a distributed transaction such as this works properly, you need to design your services so 
that if one service fails, the state of the other services must also be updated accordingly. This example 
involves only two services, and the complexity can increase exponentially as you add more services to 
the transaction requirements. For instance, if you add a rule stating that a property should not appear 
in search results if it is currently rented, you must coordinate three services in the same transaction.

As you can see, microservice architecture is not without its challenges. Moving away from large, 
centralized schemas comes with significant costs. Running the same transaction on a single database is 
much simpler because you can ensure that updates to multiple tables occur within a single transaction. 
The database takes care of the ACID guarantees.

Overall, microservice architectures are here to stay, so you must design your services with a conscious 
trade-off. There are some key decisions that you will have to make. Let’s see them in this section.

Data complexity and granularity level

When you are designing a service entity, such as our RentalProperty object, you will need to assess 
how much of a complex object you want. Do you want RentalProperty to just be a flat Java object 
with as few attributes as possible, or do you want to inflate it, with a lot of nested objects?



Microservices versus monolith application data design 215

If you go for a more complete and more complex object with a lot of nested objects inside, your API 
will return a lot of data in a single call, which makes the object heavier to move around the network. 
Also, update operations might take longer because you might be changing a lot of nested data, which 
will potentially trigger a lot of foreign key constraints. The memory footprint of your microservices 
will also need to be bigger, especially if your application should be able to deal with a big list of objects.

It is not rare to find APIs that will allow a developer to retrieve a list of hundreds of very inflated 
objects, with lots of nested objects in each one of them (think about fetching a list of landlords with 
all their rental properties as attributes of the landlord). These operations are very expensive for your 
service’s RAM, the network, and the database. You should use them with caution.

On the other hand, having thin objects on your endpoints could mean you need to fetch data multiple 
times from different services, putting a burden on the network with multiple requests. Imagine you 
need to fetch a list of landlords from one service, then fetch a list of their rental properties from another 
microservice. That could become intolerable, depending on how it is used on your application.

Let’s look at another key driver of your decision.

Organizing databases

Another important decision is on how to organize your databases. Of course, if you have a lot of 
different database types, you can only store information in different instances. Suppose you have a 
NoSQL database for storing property attributes and maybe a SQL database for storing user info, and 
maybe a graph database for storing the connections between users and contracts... that means you 
can only host data in different places.

But if you are using just a single database type – let’s say Postgres – you may be able to store schemas 
for different services in the same database instance. It would be possible to isolate each microservice in 
a different schema, which can become an advantage since you just have one instance to do backups and 
maintenance, but it can become a burden as well since all microservice instances would put a pressure 
in the same database instance. It is up to you and the architecture team to decide how to organize 
databases. The decision should take into account both functional and non-functional requirements. 
That means going back to the first chapters to understand things such as the following:

•	 Which users should be able to access this data, and when they are doing it?

•	 How many times will an operation be used every day?

•	 Can the user take a long time to wait for the result, or should the application return the result 
in a very low latency time?

•	 How many users will be accessing the same service at the same time?

Investigating how the application is being used, both from a product perspective and also from a 
frequency and situational perspective, is key to doing your best design.



Handling Data and Evolving Your Microservice216

This is a key question I like to ask the teams I am working with, whenever we have trade-offs such as 
these: what problems do we want to have?

Because problems will happen. As soon as you make an architectural decision, you will eventually face 
the burden of that choice. This means that if a system can fail, it will surely fail, eventually.

We will talk a bit more about performance, resilience, and resource constraints in future chapters. For 
now, without further ado, let’s jump to coding our rental service with various kinds of data handling 
strategies that Spring makes available to us developers.

Implementing non-reactive SQL database persistence
SQL databases are, still to this day, the most important storage type for any kind of API. Since 
non-reactive implementations are so commonly used across the industry, let’s start with this option 
to help you understand the various ways to implement persistence layers in Spring.

The Spring project that provides excellent features for whatever data architecture you would like to 
implement is Spring Data. Let’s see how it works for non-reactive, SQL database persistence.

Adding support to a dev database

This chapter code will also be done on top of the RentalProperty Spring application. The full code can 
be found at https://github.com/PacktPublishing/Spring-System-Design-in-
Practice/tree/main/chapter-07.

Because we are interested in enabling our application as fast as we can for coding our data persistence 
repositories, we will enable in-memory databases as a starting point for our development. The first 
step is to add the right dependencies. You can add this code to the build.gradle file, in the 
dependencies section:

implementation 'org.springframework.boot:spring-boot-starter-data-jpa'
// in memory database, for testing only
implementation 'com.h2database:h2'

With these lines, you will have all the dependencies you will need.

Now that we have the right dependencies, let’s configure our in-memory database. You will have to 
set some properties on your rental property application. This is a handy method through which you 
can set up all the properties you need to run your persistence layer:

private static void databaseProperties
    (SpringApplication app) {
    // # H2 Database configuration in PostgreSQL mode
    app.setDefaultProperties(
       Map.of(

https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-07
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-07


Implementing non-reactive SQL database persistence 217

       "spring.datasource.url",
    "jdbc:h2:mem:testdb;DB_CLOSE_DELAY=-1;MODE=PostgreSQL",
       "spring.datasource.driverClassName",
          "org.h2.Driver",
       "spring.datasource.username",
          "sampleuser",
       "spring.datasource.password",
          "samplepass",
       "spring.jpa.database-platform",
          "org.hibernate.dialect.H2Dialect",
       "spring.h2.console.enabled",
          "true",
       "spring.h2.console.path",
          "/h2-console",
       "spring.jpa.hibernate.ddl-auto",
          "create",
       "spring.jpa.show-sql",
          "true"));
}

Spring allows you to set up all kinds of database connections with similar properties. In our case, 
we are signaling that this should be an in-memory database with support for Postgres syntax. This 
method should be called in your main class like this:

public static void main(String[] args) {
    SpringApplication app =
        new SpringApplication(
            RentalPropertyApplication.class);

    virtualThreads(app);
    databaseProperties(app);

    app.run(args);
}

Notice that I also extracted the virtualThreads method in order to add support for virtual threads.

After you add these directives to your application, your app will not only have access to an in-memory 
database, but you will also have access to a full SQL terminal when running your app. That is what 
the spring.h2.console.enabled property is about. In that way, you will be able to connect 
to the in-memory H2 database and run whatever SQL queries you want. That makes it easier to check 
the state of your persistence layer. H2 is a very lightweight, open source database written in Java. It is 
very useful for quickly adding SQL capabilities to your app, especially during prototyping.



Handling Data and Evolving Your Microservice218

When starting your Spring app, you should see this line in the console log:

o.s.b.a.h2.H2ConsoleAutoConfiguration    : H2 console available at '/
h2-console'. Database available at 'jdbc:h2:mem:testdb'

That means you will be able to connect to your in-memory SQL dev database instance by visiting this 
URL in your browser: http://localhost:8080/h2-console.

When visiting this URL, you will see the following page:

Figure 7.2: H2 database SQL login screen

As you can see from the log message, you will be able to connect to this database when you change 
JDBC URL to jdbc:h2:mem:testdb. Then, add sampleuser to the User Name field and 
samplepass to the Password field. Once you have set those fields and clicked on Connect, this is 
what you will see:



Implementing non-reactive SQL database persistence 219

Figure 7.3: H2 SQL console

This is a full-fledged SQL console, connected to our in-memory H2 database instance provided by 
Spring Data, which aids with development and fast prototyping. But we do not have any application 
tables since there is no code written on your persistence layer.

Two other interesting properties that we have set on our application properties are spring.jpa.
hibernate.ddl-auto and spring.jpa.show-sql. The way we set the values of those 
properties tells Spring to create the database schema if it has not been created already, and to show 
the SQL commands executed in the console output when starting the application. It will be possible 
to see that output after declaring our entities in code.

We will connect to our database instance again in a few moments. Let’s first add some more code to 
our server.



Handling Data and Evolving Your Microservice220

Defining entities to be persisted

Spring Data offers a variety of ways for you to program your database access and data handling. We 
will look at the most important ones and why we should use each. But before choosing what tool to use 
in order to save or retrieve data from your tables, you will need to define the objects to be persisted. 
This is the most important part of any Spring API persistence layer implementation. Those objects 
are called entities.

An entity is the actual representation of your domain object in the database. Usually, an entity will 
represent a row in one of your tables (or collections/documents if you are dealing with NoSQL databases).

For this chapter, as you already know, we will delve into several ways to implement the persistence 
layer for the RentalProperties service. In our example, we will have a one-to-one mapping from our 
RentalPropertyDTO class to a RentalPropertyEntity class. This means that whenever 
we are calling one of our API endpoints, we just want to translate DTOs to entities as simply as we 
can so you can understand how persistence layers work in Spring Data.

Let’s start. The following code is an example of how to implement the RentalPropertyEntity 
class. This is how we declare the class:

@Entity
@Table(name = "rental_properties")
@Data
public class RentalProperty {

    @Id
    @Column(updatable = false, nullable = false)
    private UUID id;

    @NotNull(message = "Landlord id is required")
    @Column(nullable = false)
    private UUID landlordID;

    @NotEmpty(message = "Name is required")
    @Column(nullable = false)
    private String name;

    @NotEmpty(message = "Address is required")
    @Column(nullable = false)
    private String address;

    @NotEmpty(message = "City is required")
    @Column(nullable = false)
    private String city;



Implementing non-reactive SQL database persistence 221

    @NotEmpty(message = "Country is required")
    @Column(nullable = false)
    private String country;

    @NotEmpty(message = "Zip code is required")
    @Column(nullable = false)
    private String zipCode;

    @NotNull(message = "Rent is required")
    @Column(nullable = false)
    private Double rent;

    @PrePersist
    protected void onCreate() {
        if (id == null) {
            id = UUID.randomUUID();
        }
    }
}

The following observations are important here:

•	 The @Entity annotation tells Spring that this class is going to be used as a representation 
of a table row.

•	 The @Table annotation helps you name your table. You can set any names you see fit. If you 
miss this annotation, Spring will use the name of your entity as the name of the corresponding 
table in the database. It is also possible to specify the schema in which the table resides. But 
H2 does not support that, so we will implement our rental property persistence layer in the 
default schema.

•	 The @Data annotation comes from Lombok. That prevents us from having to write getter and 
setter methods for each entity attribute.

•	 The @Id annotation defines the id attribute as the primary key in our table.

•	 Notice that we are using a series of Spring Validation annotations, such as @NotEmpty and 
@NotNull to make sure our entity objects will follow these directives.

•	 There is a specific Spring Data @Column annotation used to ensure our database columns 
restrictions are respected. With this annotation, it is also possible to configure the name of the 
column in the database by using the name attribute. Whatever value you add to that will make 
Spring Data match the name you have chosen with the column name in the database. That is 
useful in order to follow the column name conventions in your company. If you do not use it, 
Spring Data will consider the column name to be the same as your entity attribute.



Handling Data and Evolving Your Microservice222

•	 Another key thing in this code is the use of the @PrePersist annotation. It ensures the 
method is called before Spring Data saves the entity. In this case, we are guaranteeing that the 
entity will be given a new random UUID, in case it is a new one. This is a simple way to create 
a generator without having to inject more dependencies into this project.

This is where I have added this entity to the project:

Figure 7.4: RentalProperty entity

Now that we have declared this entity inside our project, if we re-run the Spring application, new logs 
will appear, demonstrating that Spring Data is capable of creating the database columns that match 
your entities. This is the output we get:

Hibernate: drop table if exists rental_properties cascade
Hibernate: create table rental_properties (rent float(53) not null, 
id uuid not null, landlordid uuid not null, address varchar(255) not 



Implementing non-reactive SQL database persistence 223

null, city varchar(255) not null, country varchar(255) not null, name 
varchar(255) not null, zip_code varchar(255) not null, primary key 
(id))

As you can see, in this development setup, Spring will always recreate all the tables in our H2 in-memory 
database. It makes a very fast and valuable local development environment. But, later, when you are 
connecting to a remote database instance, you will probably want to use a different property value 
for spring.jpa.hibernate.ddl-auto, which is validate. The validate directive tells 
Spring to check whether the tables exist and whether the columns are of the same type as the ones 
you have declared on your entity classes. It makes it very useful for making sure your application is 
compatible with the database instance you are using.

Now that we know how to declare an entity, let’s start writing the code that will persist or retrieve the 
rows of your database tables. There are different ways to do this, which we will explore now.

The following annotations are also useful for representing data in your columns:

•	 @Lob: Specifies that a persistent property should be stored as a large object

•	 @Enumerated: Specifies that a persistent property should be stored as an enum

•	 @Temporal: Specifies the date/time precision for persistent properties

•	 @Transient: Marks a field to be ignored by JPA and not persisted in the database

Next, we will talk a bit about creating relationships between different entities.

Declaring relationships between entities

These are useful entity annotations if you want to declare relationships between entities in code. I 
would not advise you to declare classes with these annotations unless you want to make the entity 
constraints explicit on your API, which is not always advisable:

•	 @OneToOne: Defines a one-to-one relationship between two entities

•	 @OneToMany: Defines a one-to-many relationship between two entities

•	 @ManyToOne: Defines a many-to-one relationship between two entities

•	 @ManyToMany: Defines a many-to-many relationship between two entities

•	 @JoinColumn: Specifies the foreign key column for associations

•	 @JoinTable: Defines a join table for many-to-many relationships

These annotations are a part of the javax.persistence package in the Java Persistence API. 
You can see clear examples of each annotation in the javax.persistence javadocs: https://
docs.oracle.com/javaee%2F6%2Fapi%2F%2F/index.html?javax/persistence/
JoinColumn.html.

https://docs.oracle.com/javaee%2F6%2Fapi%2F%2F/index.html?javax/persistence/JoinColumn.html
https://docs.oracle.com/javaee%2F6%2Fapi%2F%2F/index.html?javax/persistence/JoinColumn.html
https://docs.oracle.com/javaee%2F6%2Fapi%2F%2F/index.html?javax/persistence/JoinColumn.html


Handling Data and Evolving Your Microservice224

Using these annotations makes your application a lot more complicated to write and a lot more complex 
to maintain due to the fact that several different tables are involved in the declarations. Also, your 
code will not be very easy to read.

Since the pure microservices approach requires the existence of simple APIs to express very simple 
domain objects, you should not have a lot of entities declared on your microservices, and you also 
should not have a lot of relationships declared in code. Whenever you need another entity reference 
in one of your entities, just add the UUID id attribute there and make sure your services know how 
to validate that information. The simpler you get, the faster you can define your APIs and move things 
to production.

The heavy use of these relationship annotations reveals that your application is becoming a monolith, 
with a lot of relationships inside a single service, which becomes an anti-pattern. Make sure your 
services are as simple as possible. IDs are all you will usually need to make sure you can retrieve 
objects from other systems.

An interesting fact: if your product team adds a lot of features and you find yourself adding a lot 
of new entities or columns to your database every time you need to release something new, that is 
probably time for you to jump one abstraction level up and do some refactoring. These are some ideas 
for you to think about:

•	 Is it time for you to spin a microservices out from your current one?

•	 Is it time for you to create a higher abstraction domain object that is capable of storing data for 
all those use cases without requiring you to change your database that much?

As an example, suppose you are working on a company with a system that has a car service and the 
product team starts to come up with requirements for supporting other kinds of vehicles, and you 
are forcing your car service to support those use cases as well, and new attributes are added to the 
service. You will face a lot of constraints during development time. Maybe it is time for you and your 
team to do either of the following:

•	 Spin off a more general vehicle service that is capable of hosting cars and whatever vehicles 
you have so that your database now has more general tables and column names

•	 Create other services for dealing with the other vehicle types

Those two ideas are in line with the idea that you should future-proof your architecture once you fully 
understand the 5-year roadmap that the product team wants to deliver.



Implementing non-reactive SQL database persistence 225

Writing aggregated objects as JSON in your columns

If you need nested objects in your entities but you do not feel they deserve their own tables, you can 
write them as JSON objects in a single column of your table. This is how you should define an entity 
attribute if you want to send this attribute to your database as JSON in a single column:

@Lob
@Convert(converter = JsonAttributeConverter.class) @
Column(columnDefinition = "TEXT")
private Address address;

This states that an attribute called address will exist as a child object of our entity. But any time 
we need to write that object to our table or read it from our table, Spring Data will call the converter 
class and read/write the converted value to the attribute’s column.

This is how we write a converter class that takes the Address class, serializes it to JSON, and stores 
it in a column. Then, the converter class can parse the JSON back to an Address class when we 
ask Spring Data to read that class from the table. This is an example of the Address object we have 
just mentioned:

public record Address (
    String streetAddress,
    String city,
    String zip,
    String country
){}

As you can see, we are using the record type since this is a simple class for holding data.

As you can see in the code, the Address record is an object that aggregates address data. We will 
need an AddressConverter class that helps Spring Data to read/write this object to the database. 
This is how it works:

@Converter
public class AddressConverter
   implements AttributeConverter<Address, String> {

    private final ObjectMapper objectMapper =
       new ObjectMapper();

    @Override
    public String convertToDatabaseColumn(Address address){
        try {
            return objectMapper
                .writeValueAsString(address);
        } catch (JsonProcessingException e) {



Handling Data and Evolving Your Microservice226

            throw new IllegalArgumentException
                ("Error converting Address to JSON string",
                 e);
        }
    }

@Override
    public Address convertToEntityAttribute(String dbData){
        try {
            return objectMapper
                .readValue(dbData, Address.class);
        } catch (IOException e) {
            throw new IllegalArgumentException
                ("Error converting JSON string to Address",
                 e);
        }
    }
}

The Address class will then help us to simplify our RentalProperty class:

@Entity
@Table(name = "rental_properties")
@Data
public class RentalProperty {

    @Id
    @Column(updatable = false, nullable = false)
    private UUID id;

    @NotNull(message = "Landlord id is required")
    @Column(nullable = false)
    private UUID landlordID;

    @NotEmpty(message = "Name is required")
    @Column(nullable = false)
    private String name;

    @Lob
    @Convert(converter = AddressConverter.class)
    @Column(columnDefinition = "TEXT")



Implementing non-reactive SQL database persistence 227

    private Address address;

    @NotNull(message = "Rent is required")
    @Column(nullable = false)
    private Double rent;

    @PrePersist
    protected void onCreate() {
        if (id == null) {
            id = UUID.randomUUID();
        }
    }
}

When we add Address as a child object of the RentalProperty class, we can remove other primitive 
attributes that might even make the original entity a bit dirtier. Now, we have isolated the address 
data in a single column by making it JSON when saving that data to the RentalProperty table.

Notice that, in this last example, we could have tweaked the Address columnDefinition value 
to jsonb instead of TEXT. There is a good reason for this, as we will see in the next sections.

Other entity lifecycle annotations

Here are other interesting annotations that you can use to trigger methods during your entity’s lifecycle. 
These are important, especially if you have business rules or security systems that should be called if 
your entities are passing from one stage to the next, or even if you want to troubleshoot your system 
with some extra logs:

•	 @PrePersist: Invoked before an entity is persisted (inserted into the database) for the first time

•	 @PostPersist: Invoked after an entity has been persisted (inserted into the database)

•	 @PreUpdate: Invoked before an entity is updated in the database

•	 @PostUpdate: Invoked after an entity has been updated in the database

•	 @PreRemove: Invoked before an entity is removed (deleted from the database)

•	 @PostRemove: Invoked after an entity has been removed (deleted from the database)

•	 @PostLoad: Invoked after an entity has been loaded from the database.Jsonb type columns

Postgres is a very interesting database. Although it is traditionally a full-fledged SQL database, it has 
many great features. One of them is the capacity to support JSON objects as a primitive type in a 
table column. That allows Postgres to provide special JSON queries, which can make a big difference 
to your data modeling efforts.



Handling Data and Evolving Your Microservice228

In this last example, setting the Address field as a jsonb column in your table allows you to run 
queries as if your Address field was a document. In fact, whatever JSON object you store in that 
Address column, you will be able to do special JSON searches in that object. You can add as many 
new attributes as possible to that object. No problemo. The column will know how to store it if you 
update your converter class.

The most relevant SQL databases support similar features. Oracle, SQL Server, and MySQL all provide 
ways for you to store JSON data and query for that data as if that column was a NoSQL document.

Storing child objects as JSON in your entities can greatly reduce the amount of boilerplate code and 
tables in your application. The decision point is: if the child object can only be accessed from the 
parent entity, it is then a good candidate for being stored as a JSON column in its parent entity table. 
This can affect your SQL database choice. Now you have a clean way to make your entities a lot more 
flexible in your database without making it hard on your SQL scripts, or without needing to write a 
lot of different tables to store new data.

If you re-run your Spring application with that special JSON twist, this is the SQL output you get 
when Spring is creating the table:

Hibernate: drop table if exists rental_properties cascade
Hibernate: create table rental_properties (rent float(53) not null, id 
uuid not null, landlordid uuid not null, name varchar(255) not null, 
address jsonb, primary key (id))

As you can see, the address attribute is now being declared as a jsonb column, even in the H2 
in-memory database. How awesome is that for allowing you to do fast prototyping?

There is just one problem with this approach right now: while using H2 databases, we cannot use the 
special native JSON search queries. So, we will just use the text type for now. Bear in mind that you 
can move to special column types when connecting to your real databases.

There is a lot to think about when you model your entities. Let’s now go to the code that allows us to 
retrieve and store those entities.

ORM versus raw SQL in Spring Data

When it comes to writing code to interact with databases, Spring offers two extremes: you can either 
have fine-grained control over the exact SQL statements being executed for accessing and storing your 
data or you can let the framework determine the appropriate SQL statements to execute.

The framework that allows Spring to map classes to database queries is called object-relational mapping 
(ORM). This means that certain packages in Spring can inspect your entity classes and decide how 
to query them in the configured database. This is also how Spring Data can automatically create your 
tables if configured to do so.



JpaRepository – your go-to SQL interface in Spring Data 229

You might have noticed the word Hibernate in the SQL logs. Hibernate is a special package included in 
Spring Data as a transient dependency. It implements a Java specification called JPA that was designed 
as a standard for mapping objects to relational databases through a single interface.

Hibernate is an implementation of ORM and can be used to query and store data in our in-memory 
H2 database.

In the following sections, we will explore various methods to handle data from the entity we have 
defined. These methods will cover both extremes: manipulating raw SQL queries in Spring Data and 
using user-friendly Spring Data interfaces that simplify querying and storing data.

Generally, there is a principle to guide your decisions when implementing data access: the easier it 
is to fetch and store data in Spring Data, the higher the computational cost. This means that if you 
prioritize speed and high performance, you should opt for raw SQL implementations. If speed is not 
a major concern, then using the clean and easy-to-use APIs will suffice.

As a rule of thumb, I advise starting with the easiest approach. If you need to fine-tune your application, 
you can then add implementations that leverage raw SQL queries.

OK. We will start with the easiest repositories to use first (ORM oriented) and then move to the 
high-performance ones.

JpaRepository – your go-to SQL interface in Spring Data
In the next sections, we will dive into the most important and easy-to-use SQL interfaces in Spring. 
We will explore their strengths and weaknesses and implement most of our rental property service.

Using JpaRepository as an ORM-enabled repository

The easiest way by far to retrieve and save data from your database SQL tables is by extending the 
JpaRepository interface in Spring. You do not need to even write any methods if you do not 
want to. That is the power of Spring Data.

Take a look at this example:

public interface RentalPropertyJpaRepository
   extends JpaRepository<RentalProperty, UUID> {
}

This interface does a lot. Let’s see how it works by creating a new implementation for our 
RentalPropertyService interface. If you remember, our first implementation class, 
RentalPropertyServiceImpl, was coded using a simple internal HashMap, which worked 
as a very rudimentary persistence layer.



Handling Data and Evolving Your Microservice230

Let’s now create a class called RentalPropertyServiceJpaImpl, which now injects the 
repository we have just created. The class declaration goes as follows:

@Service
public class RentalPropertyServiceJpaImpl implements 
RentalPropertyService{

    private RentalPropertyJpaRepository jpaRepository;

    public RentalPropertyServiceJpaImpl
        (RentalPropertyJpaRepository jpaRepository) {
        this.jpaRepository = jpaRepository;
    }

    // ... RentalPropertyService method implementation
    // goes here
}

Interesting, right? The class should be tagged with the @Service annotation, which tells Spring 
to inject this impl class as a Spring Bean whenever another Spring Bean tries to inject the 
RentalPropertyService interface.

Wait, we have already written the first RentalPropertyServiceImpl class. Now Spring will 
have two options to choose from, and my RentalPropertyController class will receive just 
one of them.

How does Spring know which implementation class to inject in the RentalPropertyController class?

Well... it does not know. You must tell Spring which implementation class to inject. Before doing this, 
let’s implement the rest of the RentalPropertyServiceJpaImpl class so that you understand 
how to use JpaRepository.

Take a look at the method signatures that we need to fully implement from the 
RentalPropertyService interface:

public interface RentalPropertyService {
List<RentalPropertyDTO> getAllProperties();

Optional<RentalPropertyDTO> get(UUID id);

RentalPropertyDTO create(RentalPropertyDTO property);



JpaRepository – your go-to SQL interface in Spring Data 231

Optional<RentalPropertyDTO>
    update(UUID id, RentalPropertyDTO updatedProperty);

Optional<RentalPropertyDTO>
    updateSomeFields(UUID id,
    RentalPropertyDTO partialUpdate);

Optional<RentalPropertyDTO> delete(UUID id);

List<RentalPropertyDTO> search(String name,
   String address, String city,
   String country, String zipCode);
}

As you can see, all these methods of the RentalPropertyService class are returning or receiving 
the RentalPropertyDTO class. But the repository will work with the RentalProperty class 
we have just created, which received the @Entity annotation.

Using Lombok to translate DTO to entity classes and vice versa

As we saw in our universal Spring implementation diagram (Figure 7.1), the Persistence vertical layer 
works with entity classes, while the Remote Access layer works with Data Transfer Object (DTO) 
classes. That means all service classes should translate entities to DTOs when retrieving information 
from the database and translate DTOs to entity classes when saving data to our database.

Because of that, we need to prepare at least two utility methods. There are other ways to map from DTOs 
to entities and vice versa, but I like not having to include another dependency in our project. Having 
more dependencies means that your service could face vulnerabilities and become obsolete faster.

By using the Lombok dependency, it is possible to reduce a bit of the code needed to build those translators. 
First, let’s add the @Builder annotation to RentalPropertyDTO class, the RentalProperty 
entity class, and the Address class since it is a child attribute of the RentalProperty entity class. 
This is how the RentalProperty entity class will be annotated:

@Entity
@Table(name = "rental_properties")
@Data
@Builder // This is our lombok Builder annotation
@NoArgsConstructor
@AllArgsConstructor
public class RentalProperty { ... }



Handling Data and Evolving Your Microservice232

And because of the @Builder annotation and the JpaRepository we will use, we also need to include 
a default constructor and an all-arguments constructor. This is why we added @NoArgsConstructor 
and @AllArgsConstructor to the class as well.

And this is how the Address class will be declared. Just add the @Builder annotation to the 
record class:

@Builder
public record Address ( /* our attributes are here*/ )

Finally, let’s add the same @Builder annotation to our RentalPropertyDTO record class:

@Builder
public record RentalPropertyDTO( ... ){}

With those two classes tagged with @Builder, let’s now create a RentalPropertyUtil 
class to convert from one class to another. We will go in a very simple way, by declaring a 
RentalPropertyConverter class with two methods. The first one will convert a DTO object 
to an entity object:

public static RentalProperty toEntity(RentalPropertyDTO dto) {
    return RentalProperty.builder()
        .rent(dto.rent())
        .id(dto.id())
        .name(dto.name())
        .landlordID(dto.landlordID())
        .address(Address.builder()
            .zip(dto.zipCode())
            .city(dto.city())
            .streetAddress(dto.address())
            .country(dto.country())
            .build())
        .build();
}

The second one will convert an entity object to a DTO object:

public static RentalPropertyDTO toDTO(RentalProperty entity) {
    return RentalPropertyDTO.builder()
        .address(entity.getAddress().streetAddress())
        .name(entity.getName())
        .rent(entity.getRent())
        .city(entity.getAddress().city())



JpaRepository – your go-to SQL interface in Spring Data 233

        .landlordID(entity.getLandlordID())
        .id(entity.getId())
        .country(entity.getAddress().country())
        .zipCode(entity.getAddress().zip())
        .build();
}

As you can see, both static methods can be freely imported into any RentalPropertyService 
implementation class. Let’s use it in our RentalPRopertyServiceJpaImpl class.

This is how we return a rental property from an ID:

@Override
public Optional<RentalPropertyDTO> get(UUID id) {
    return jpaRepository.findById(id)
        .map(RentalPropertyConverter::toDTO);
}

This is how we create a property:

@Override
public RentalPropertyDTO create(RentalPropertyDTO property) {
    return RentalPropertyConverter.toDTO(
        jpaRepository.save(
            RentalPropertyConverter.toEntity(property)));
}

You can see how the full RentalPropertyServiceJpaImpl is created by visiting the class 
in the book’s GitHub repository (https://github.com/PacktPublishing/Spring-
System-Design-in-Practice/blob/main/chapter-07/rental-property-
microservice/src/main/java/com/homeit/rental/property/service/
RentalPropertyServiceJpaImpl.java).

As you can see, all these methods in our RentalPropertyJpaRepository class come for free. 
These and several other resources are available for you when using JpaRepository.

https://github.com/PacktPublishing/Spring-System-Design-in-Practice/blob/main/chapter-07/rental-property-microservice/src/main/java/com/homeit/rental/property/service/RentalPropertyServiceJpaImpl.java
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/blob/main/chapter-07/rental-property-microservice/src/main/java/com/homeit/rental/property/service/RentalPropertyServiceJpaImpl.java
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/blob/main/chapter-07/rental-property-microservice/src/main/java/com/homeit/rental/property/service/RentalPropertyServiceJpaImpl.java
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/blob/main/chapter-07/rental-property-microservice/src/main/java/com/homeit/rental/property/service/RentalPropertyServiceJpaImpl.java


Handling Data and Evolving Your Microservice234

JpaRepository class hierarchy made simple

JpaRepository is a powerful interface because it extends some other important Spring Data 
repositories. Here is the inheritance hierarchy:

Figure 7.5: JpaRepository class hierarchy

These three interfaces are so rich. Here is a list of the methods you get when using JpaRepository. 
The following ones belong to the CrudRepository interface:

•	 save(T entity): Save an entity

•	 saveAll(Iterable<T> entities): Save multiple entities

•	 findById(ID id): Find an entity by its ID

•	 existsById(ID id): Check whether an entity exists by its ID

•	 findAll(): Find all entities

•	 findAllById(Iterable<ID> ids): Find all entities by their IDs

•	 count(): Count all entities

•	 deleteById(ID id): Delete an entity by its ID

•	 delete(T entity): Delete an entity

•	 deleteAll(Iterable<? extends T> entities): Delete multiple entities

•	 deleteAll(): Delete all entities



JpaRepository – your go-to SQL interface in Spring Data 235

You get some very useful methods from the PagingAndSortingRepository interface. These 
are methods that help you to retrieve subsets of your data – for example, when trying to list all 
resources from your endpoint (in other words, when firing a GET HTTP request to the /rental-
properties URI).

If you have to retrieve thousands of objects from your database, you should use these methods from 
your JpaRepository services when listing all resources. Otherwise, you will risk using all of 
your microservice’s available memory, which can crash your service, due to the excessive amount of 
objects. Here are the methods I am talking about (we will look at an example of how to use them in 
a few moments:

•	 findAll(Sort sort): Find all entities with sorting

•	 findAll(Pageable pageable): Find all entities with pagination

The methods we will see next are useful if you want to operate on lots of objects at once:

•	 saveAndFlush(T entity): Save an object and immediately commit the change to 
a database.

•	 SaveAllAndFlush(Iterable<T> entities): Same as before, but sends all entities 
before commiting the data to your database.

•	 DeleteAllInBatch(...): Delete all objects by firing delete requests with lots of IDs at 
once. This makes the deletion of lots of objects much faster since they run in a single operation 
in the database.

•	 findAll(Example<S> example): Find objects in the database by looking at a sample 
object. All objects that match the non-null example’s attributes will be returned.

But what if we want to create very specific queries with special conditions? In the next section, we 
will learn how to create that by declaring new methods to your JpaRepository interface extension.

Customizing database queries using JpaRepository

Another interesting thing you can do with JpaRepository is add methods on your JPA interface 
extension for creating custom SQL queries. These methods are written using a special syntax that 
Spring knows how to find in execution time and will provide the proper implementation for you.

Here are some examples I have added to our RentalPropertyJpaRepository interface so 
that you can understand how it works:

public interface RentalPropertyJpaRepository
    extends JpaRepository<RentalProperty, UUID> {

    // Find all properties by landlord ID
    List<RentalProperty> findByLandlordID(



Handling Data and Evolving Your Microservice236

        UUID landlordID);

    // Find properties by rent less than a specified amount
    List<RentalProperty> findByRentLessThan(
        Double maxRent);
    // Find properties by landlord ID, city, and rent range
    List<RentalProperty> findByLandlordIDAndAddress_
CityAndRentBetween(
        UUID landlordID, String city,
        Double minRent, Double maxRent);
}

As you can see, there are a lot of possibilities. Even the Address object attributes can be used to 
create your custom queries on top of the JpaRepository. That opens a lot of choices for you to 
make the best out of using your Spring JpaRepository interface.

Here is a quick fact: the best IDEs, such as IntelliJ, will help you to write those custom 
queries by providing code completion tools. When I am writing a new custom method in my 
RentalPropertyJpaRepository, this is what I see in IntelliJ as I type:

Figure 7.6: IntelliJ JpaRepository code completion feature

This makes writing new custom queries a breeze.

Using JPQL to create custom queries

These are some other examples of custom queries you can create on top of Spring JpaRepository by 
using the @Query annotation, which gives you access to the JPQL declarative language:

// Custom query to find properties by rent range
@Query("SELECT rp FROM RentalProperty rp WHERE rp.rent BETWEEN 
:minRent AND :maxRent")
List<RentalProperty> findByRentRange(@Param("minRent") Double minRent, 
@Param("maxRent") Double maxRent);

// Custom query to find properties by name
// and sort by rent ascending



JpaRepository – your go-to SQL interface in Spring Data 237

@Query("SELECT rp FROM RentalProperty rp WHERE rp.name LIKE 
%:namePart% ORDER BY rp.rent ASC")
List<RentalProperty> findByNameAndSortByRent(@Param("namePart") String 
namePart);

As you can see, Spring supports a declarative language that is similar to SQL but deals with objects 
directly. You can use it if you feel that creating a clearer SQL-type syntax is your way of doing things. 
I won’t spend a lot of time discussing JPQL due to space constraints. This subject deserves a lot of 
chapters to be covered comprehensively. If you want to go deep into this subject, start with the official 
documentation: https://docs.oracle.com/cd/E29542_01/apirefs.1111/e13946/
ejb3_langref.html.

A note about the performance and scope of your microservices
When using custom queries in Spring Data JPA, remember that they are not infallible. Complex 
queries can challenge your database, especially if they involve large tables with non-indexed 
columns, resulting in long query execution times. It is crucial to consider how your database 
is structured, including its size, indexes, column types, necessary operations, and relationships 
between tables.

For example, if your RentalProperty entity has a relationship with the Landlord 
entity (using the @ManyToOne annotation), you could create a custom query that performs 
a join operation between the RentalProperty and Landlord tables. However, such 
relationships can complicate your microservices architecture. It might be undesirable for a 
RentalProperties microservice to have access to all landlord data. If Landlord is stored 
together with other users in the system, giving the RentalProperties microservice access 
to the entire user set can lead to unnecessary exposure of data.

It’s essential to avoid overcomplicating your data model with these features. Just because Spring 
Data JPA makes it easy to create custom queries doesn’t mean you should always use them. 
The key is two-fold: avoid the temptation and understand the non-functional and functional 
requirements of your application. Analyze how your data is organized, determine the best flow for 
the user experience, and tune your database to handle low-performance queries more efficiently.

Understanding other limitations of JpaRepository

Please also note that in the RentalServiceJpaImpl class, we do not support searches since this 
interface is not optimal for creating search queries. This is the implementation of the search method. 
We are basically throwing an UnsupportedOperationException:

@Override
public List<RentalPropertyDTO> search(
        String name, String address,
       String city, String country, String zipCode) {
    throw new UnsupportedOperationException(

https://docs.oracle.com/cd/E29542_01/apirefs.1111/e13946/ejb3_langref.html
https://docs.oracle.com/cd/E29542_01/apirefs.1111/e13946/ejb3_langref.html


Handling Data and Evolving Your Microservice238

        "This service implementation does not support searches." +
        " Please, use another service implementation instead.");
}

We will create a service for implementing the search feature in a bit.

Dealing with a very high volume of data and requests

Another critical part of developing APIs with Spring or any other systems, as we saw a couple of 
sections ago, is to use paging mechanisms when you know the resource you are querying for has a 
very high volume of objects.

Imagine a user visits our start-up HomeIt website and decides to list all properties in an entire US 
state, such as California. When the website audience starts to grow, with potentially millions of search 
requests each day, how would we make sure the GET request does not entirely blow up our server?

You want your services to be successful and scalable, right? When you have millions of users doing a 
lot of expensive things on your website, knowing what to do to guarantee access to the information 
as quickly as possible will be key to keeping your users.

Here are a few optimizations you can do to make sure your website queries will scale:

•	 Indexing: Ensure that key search queries are running on indexed fields in your database. 
Properly declared column indexes will maximize the efficiency of your searches.

•	 Caching: Create a cache for the most frequently run queries to store the results in memory, 
enabling fast query responses. For example, when querying for all California rental properties, 
cache the results of the first 20 pages. Since most users will not go beyond even 10 pages, this 
approach will serve the majority of users quickly.

•	 Database sharding: Consider creating a separate RentalProperty database for each US state 
to distribute the load. Keeping your microservices data model simple allows greater flexibility 
in optimizing non-functional requirements. You could have one service implementation per 
state, for example, and your microservice could store data based on the state being saved.

•	 Load balancing: Even with sharding, some states may still experience heavy load. In such cases, 
create read replicas of your database to distribute the query load across multiple database instances.

•	 Further query optimizations: Collaborate with a skilled DBA to find ways to optimize database 
queries. A professional DBA can provide valuable insights and techniques for query optimization.

•	 Removing abstraction levels: JpaRepository may not be suitable for performance-critical 
queries due to the overhead of ORM mapping. Instead, use JdbcTemplate repositories to 
execute raw SQL commands directly, bypassing ORM mapping costs.



JpaRepository – your go-to SQL interface in Spring Data 239

•	 Asynchronous processing: Utilize reactive processing to handle multiple concurrent tasks 
efficiently. Asynchronous processing will be introduced in future chapters.

•	 Denormalization: Optimizing your tables by replicating some relationship data in a single 
table, rather than running joins across multiple tables, can significantly reduce computational 
costs and speed up queries.

•	 Materialized views: Pre-compute and store results of high-volume queries in temporary tables that 
can be refreshed periodically. While this approach may not provide the most up-to-date results, 
the recency gap can be acceptable depending on your use case and non-functional requirements.

•	 Radically remove constraints: You might want to relieve your database tables from constraints 
such as foreign keys or data format validations, such as nullable versus non-nullable columns. 
Some of these constraints can be added to your microservice as new code so that it only gets 
activated under certain conditions.

•	 Move totally or partially to NoSQL databases: Moving to other kinds of databases on your 
service implementations can also speed up your queries a lot. There are all sorts of optimized 
databases that you can tap into, depending on your use case. I have seen implementations 
with Cassandra that supported more than 15,000 data retrieval requests per second. That is a 
lot of data retrieval! Another great example is Neo4J, which speeds up any search on a graph 
(compared to traditional SQL databases) since the relationships are not computed during 
runtime for join commands. If you need to provide graph searches, this is probably the kind 
of optimization you want.

On top of this, Spring Data provides pageable queries in the JpaRepository interface. Let’s see 
how it works to optimize our searches.

Retrieving paged results in Spring JpaRepository

Now that we have talked about ways to improve database query performance, let’s create a way to 
reduce the pressure of your API on your database.

Traditionally, when firing a GET request to our /rental-properties resource, we should return 
the list of all objects that are contained in your microservice. Well, the general idea simply does not 
work that well if we have thousands of properties to retrieve at the same time, for multiple reasons. 
One of them is, of course, it will kill your microservice resources (RAM memory, for example) if you 
have a high volume of objects. But even if you had the hardware resources, it would not be practical 
from the user’s perspective, since it is unable to handle so many objects at the same time. From a 
usability standpoint, your system becomes useless if your user cannot deal in a very practical way 
with the data you are presenting.

This is where we can implement a solution that will seek to create a GET /rental-properties 
endpoint that can return result pages instead of just a whole bunch of unmanageable objects.



Handling Data and Evolving Your Microservice240

First, we need to make a small adjustment to our RentalPropertyService interface. We will 
add the following method to retrieve a page of properties:

Page<RentalPropertyDTO> getPagedProperties(
    int page, int size);

As you can see, it is possible to tell which page should be returned and the size of that page. Now, 
in the RentalPropertyServiceJpaImpl class, let’s add a meaningful implementation of a 
method that can retrieve rental properties with pagination features:

@Override
public Page<RentalPropertyDTO> getPagedProperties(
    int page, int size) {

    final PageRequest pageable =
        PageRequest.of(page, size);

    return PageableExecutionUtils.getPage(jpaRepository
        .findAll(pageable)
        .getContent().stream()
        .map(RentalPropertyConverter::toDTO)
        .toList(), pageable, jpaRepository::count);
}

As you can see, this implementation makes use of the findAll() method from the JpaRepository 
interface. That will fetch a list of the RentalProperty entities we have in the database, all contained 
in a Page object. We then transform that result page into a page that contains the DTOs. This is all 
we need from JpaRepository in Spring Data to make sure we are returning data in chunks for 
our API users.

Because this method is declared at the RentalService interface level, we will also have to implement 
a non-supported exception in the RentalServiceImpl class:

@Override
public Page<RentalPropertyDTO> getPagedProperties(
    int page, int size) {
    throw new UnsupportedOperationException(
        "cannot retrieve a paged result " +
        "with this implementation");
}



JpaRepository – your go-to SQL interface in Spring Data 241

This is just to ensure our project is correctly compiled. I do not want to use the implementation in the 
RentalPropertyServiceImpl class, only the one in RentalPropertyServiceJpaImpl.

In our RentalPropertyController class, we need to implement a call to our 
RentalPropertyService interface:

@GetMapping(produces = "application/json")
public ResponseEntity<Page<RentalPropertyDTO>>
    getAllProperties(
        @RequestParam(defaultValue = "0") int page,
        @RequestParam(defaultValue = "10") int size
) {
    return ResponseEntity.ok()
        .body(rentalPropertyService
          .getPagedProperties(page, size));
}

As you can see, it is fairly simple to add a paginated endpoint. You can then fire GET requests to 
http://localhost:8080/api/v1/rental-properties and specify how many elements 
should be included in the page, and which page should be retrieved. We will look at that shortly, as 
we still have one simple thing to fix in our sample project.

Using multiple service implementations on your application

Now that we have properly coded the RentalPropertyServiceJpaImpl class, which is a service 
that implements RentalPropertyService and uses JpaRepository behind the scenes to connect 
to your database, let’s use this new implementation class on our RentalPropertyController class.

Remember: in Spring’s framework philosophy, a service implementation should always inject another 
interface, and Spring should look for the implementation classes automatically.

Here is a fact that demonstrates this. In our code, RentalPropertyServiceJpaImpl injects 
RentalPropertyJpaRepository, which is just an interface that extends JpaRepository. 
Spring is able to provide the JpaRepository implementation for you at runtime. In fact, the class 
that implements JpaRepository is called SimpleJpaRepository. It is totally possible to 
find that class source and learn how Spring Data works behind the scenes. This is all done for you by 
using the Spring Beans management we talked about in the previous chapters.



Handling Data and Evolving Your Microservice242

Now, we have the following situation. RentalPropertyService has two 
implementation classes:

Figure 7.7: A service interface with two implementations

Our RentalPropertyController class, on the other hand, injected a reference for the 
RentalPropertyService interface, remember? Here is a recap. This is the code of the V1 API:

public class RentalPropertyController {

    private final RentalPropertyService
        rentalPropertyService;
// ... other existing code
}

And this is the code of the V2 API:

public class RentalPropertyControllerV2 {

    private final RentalPropertyService
        rentalPropertyService;
    private final RentalPropertyHyperMediaUtils
        rentalPropertyHyperMediaUtils;
// ... other existing code
}

As we stated before, Spring will try to find the implementation class for that interface. What will 
happen when we run this code?



JpaRepository – your go-to SQL interface in Spring Data 243

The answer is: we cannot run this code since we have not made it clear to Spring which implementation 
should be used as a bean for the RentalPropertiesService interface references in both classes. 
Since we have now made our bean injection ambiguous, we need to use some special syntax to specify 
which implementations Spring should use, and where.

Here is the output of the error we get if we try to run the RentalProperties API without changing the 
way we declare our beans:

Parameter 0 of constructor in [...].controller.
RentalPropertyController required a single bean, but 2 were found:
- rentalPropertyServiceImpl: defined in file [.../
RentalPropertyServiceImpl.class]
- rentalPropertyServiceJpaImpl: defined in file [.../
RentalPropertyServiceJpaImpl.class]
This may be due to missing parameter name information

Now, this project is just composed of some classes with different approaches for the Service layer. We 
could just delete the RentalPropertyServiceImpl class, right? After all, this is an implementation 
that uses an in-memory HashMap. All should be good once we delete it.

But what if we need multiple beans that implement the same service interface in different ways? That 
will make sense in the following sections, as we implement other ways to access our database (and 
we will implement the search feature).

Using @Qualifier to inject multiple bean implementations for the 
same service

It is not uncommon to need two implementations of the same service interfaces in big Spring projects, 
especially if you are optimizing your implementation or changing how things work behind the scenes. 
Here, we will inject two references for the same RentalPropertyService interface, but one of the 
implementations is the old one, the one that uses the hashmap as a repository. The other implementation 
will use the SQL database as a repository. We will create other implementations in a few minutes.

The key to injecting different implementations for the same service lies in the @Qualifier annotation, 
which goes in a few places:

•	 In the service implementation classes themselves so that we give a name to our Spring bean

•	 In the constructor of the class that will inject the beans

This is how we declare the @Qualifier annotation on top of our RentalProperty 
implementation classes:

@Service
@Qualifier("hashMapRentalPropertyService")
public class RentalPropertyServiceImpl



Handling Data and Evolving Your Microservice244

        implements RentalPropertyService {
// ... other service code
}
@Service
@Qualifier("jpaRentalPropertyService")
public class RentalPropertyServiceJpaImpl implements 
RentalPropertyService{
// ... other service code
}

As you can see, now we have added two names or aliases for the conflicting service implementation classes.

The next step is to declare those beans with their respective qualifiers in the constructor of the class 
you want to use your beans:

@RestController
@RequestMapping("/api/v1/rental-properties")
@Validated
public class RentalPropertyController {

    private final RentalPropertyService
        mapRentalPropertyService;

    private final RentalPropertyService
        jpaRentalPropertyService;

    public RentalPropertyController(
        @Qualifier("hashMapRentalPropertyService")
            RentalPropertyService mapRentalPropertyService,
        @Qualifier("jpaRentalPropertyService")
            RentalPropertyService jpaRentalPropertyService)
{
        this.mapRentalPropertyService =
            mapRentalPropertyService;
        this.jpaRentalPropertyService =
            jpaRentalPropertyService;
}
// ... other code
}

And this is the V2 implementation:

@RestController
@RequestMapping("/api/v2/rental-properties")



JpaRepository – your go-to SQL interface in Spring Data 245

@Validated
public class RentalPropertyControllerV2 {

    private final RentalPropertyHyperMediaUtils
        rentalPropertyHyperMediaUtils;
    private final RentalPropertyService
        mapRentalPropertyService;
    private final RentalPropertyService
        jpaRentalPropertyService;

    public RentalPropertyControllerV2(
        @Qualifier("hashMapRentalPropertyService")
            RentalPropertyService mapRentalPropertyService,
        @Qualifier("jpaRentalPropertyService")
            RentalPropertyService jpaRentalPropertyService,
        RentalPropertyHyperMediaUtils
            rentalPropertyHyperMediaUtils)
{
        this.rentalPropertyHyperMediaUtils =
            rentalPropertyHyperMediaUtils;
        this.mapRentalPropertyService =
            mapRentalPropertyService;
        this.jpaRentalPropertyService =
            jpaRentalPropertyService;
}

With those changes, it is now possible to reference the services you want on both controllers. I basically 
switched my implementation in both controllers to use jpaRentalPropertyService from now 
on. You can see the fully implemented classes in the GitHub repository.

Now, the question that I would like to invite you to think about is: how does the JpaRepository 
interface do its magic? What other services does its implementation rely on?

JpaRepository is implemented by a class called SimpleJpaRepository, which in turn injects 
a bean named EntityManager, which is a low-level interface that allows you to have fine-grained 
control over your objects. You can just see the code for all those classes using your favorite IDE (I 
recommend IntelliJ for navigating Spring code with ease).

If JpaRepository is too high level, what about the underlying EntityManager interface? Let’s 
see how it works.



Handling Data and Evolving Your Microservice246

How does EntityManager work?

EntityManager is a core interface in JPA that manages the lifecycle of entities within a persistence 
context. It provides an abstraction for performing Create, Read, Update, and Delete (CRUD) operations 
and facilitates the interaction between the application and the database.

EntityManager is responsible for ensuring that the state of entities is synchronized with the 
underlying database. It provides fine-grained control over transactions, caching, and query execution, 
making it essential for advanced data access operations in JPA-based applications.

Here is a list of important methods implemented by the EntityManager bean, which you can 
inject wherever you want in your applications:

•	 persist(Object entity): Persists a new entity instance into the database

•	 merge(Object entity): Updates an existing object in the database

•	 remove(Object entity): Removes an entity instance from the database

•	 find(Class<T> entityClass, Object primaryKey): Finds an entity by its 
primary key

•	 createQuery(String qlString): Creates a JPQL query to retrieve entities based on 
specified criteria

•	 createNamedQuery(String name): Creates a named query defined in the entity class

•	 createNativeQuery(String sqlString): Creates a native SQL query for 
database-specific operations

•	 getTransaction(): Retrieves the EntityTransaction object to manage 
transactions manually

•	 flush(): Forces pushing all persistence changes to the underlying database

•	 clear(): Clears the persistence context, detaching all managed entities.

•	 detach(Object entity): Detaches an entity from the persistence context

•	 refresh(Object entity): Refreshes the state of the entity from the database

•	 getCriteriaBuilder(): Obtains an instance of CriteriaBuilder for creating 
criteria queries

The EntityManager service has an important feature that tracks the changes you make to your 
object and synchronizes them automatically in the database. That happens if you change your objects 
inside the context of a transaction, which we are going to see in the next section.



Working with transactions in Spring Data 247

Working with transactions in Spring Data
A transaction, as you probably know, is the context in which a sequence of changes to a database 
counts as just one atomic operation, meaning they cannot be sent separately to your database and 
cannot be interrupted by concurrent operations, in general. They are executed in one batch, and only 
after the final result is calculated are they all considered executed and the results available for other 
concurrent queries.

There are two main ways to manage a transaction using Spring Data.

Using the @Transactional annotation in a method

You can declare whatever methods you want in your classes to be considered transactions. Basically, 
tag the desired method with the @Transactional annotation, and everything that is enclosed by 
the method will be considered a part of a transactional context.

Here is a simple example. This makes the update method of RentalServiceJpaImpl a 
full transaction:

@Override
@Transactional
public Optional<RentalPropertyDTO> update(UUID id,
    RentalPropertyDTO updatedProperty) {

    if(jpaRepository.existsById(id)) {
        return Optional.ofNullable(
            RentalPropertyConverter.toDTO(
                jpaRepository.save(RentalPropertyConverter
                    .toEntity(updatedProperty))));
    }

    return Optional.empty();
}

Again, if you have several updates to execute on your database and you want to guarantee that all of 
those operations are executed in the same step for data consistency reasons, you probably want all of 
those operations to be transactional. Just move all of them to a single service method and declare the 
method to be @Transactional.

There are several important parameters for the @Transactional annotation that allow you to 
explore the nuances of transaction management. You can look in the Spring docs to see the variants. 
Let’s see the other way of declaring a transaction in Spring Data.



Handling Data and Evolving Your Microservice248

Managing transactions by using the EntityManager bean

Since the EntityManager bean is one of the core beans for managing database connections and queries 
at a low level, you can inject it into any service by using the @PersistenceContext annotation 
on your beans, and if you use that annotation, it is possible to use the @Transactional annotation 
on your methods as well to define which ones should be considered a part of a single transaction.

You can also manually manage a transaction using the EntityManager bean. Just use the 
following resources:

•	 Inject the EntityManagerFactory class into your service

•	 Create the EntityManager reference using the factory, whenever you need a transaction 
to start

The following methods are a part of the EntityManager interface:

•	 getTransaction().begin(): Starts a transaction

•	 getTransaction().commit(): Commits a transaction to the database, finalizing it

•	 getTransaction().rollback(): Rolls back the transaction (great to use if you find 
an error during the execution of the instructions, such as an exception or some business logic 
that tells you the transaction should be aborted)

It is as simple as that. Let’s see how that is done. Remember, we need to use @Qualifier here as 
well to identify this implementation:

@Service
@Qualifier("entityManagerRentalPropertyService")
public class RentalPropertyServiceEntityManagerImpl
    implements RentalPropertyService{

    private EntityManagerFactory entityManagerFactory;

    public RentalPropertyServiceEntityManagerImpl
        (EntityManagerFactory entityManagerFactory) {
        this.entityManagerFactory = entityManagerFactory;
    }
// ... other methods
}

This is how we inject the EntityManagerFactory into your bean when manually 
managing transactions.



Working with transactions in Spring Data 249

This is a method by which we use manual transaction handling with an EntityManager bean:

@Override
public Optional<RentalPropertyDTO> delete(UUID id) {
    EntityManager entityManager =
        entityManagerFactory
            .createEntityManager();
    EntityTransaction transaction =
        entityManager.getTransaction();

    RentalPropertyDTO dto;
    try {
        transaction.begin();

        RentalProperty property =
            entityManager.find(RentalProperty.class, id);

        dto = RentalPropertyConverter.toDTO(property);
        entityManager.remove(property);
        transaction.commit();

    } catch (Exception e) {
        if (transaction.isActive()) {
            transaction.rollback();
        }
        throw e;
    } finally {
        entityManager.close();
    }

    return Optional.ofNullable(dto);
}

The important highlights are as follows:

•	 We are creating a new EntityManager reference using the factory

•	 Then, we create the transaction and commit it or roll it back, depending on the results we get 
from the database operation

•	 Finally, we need to close the entityManager instance



Handling Data and Evolving Your Microservice250

This is how you can easily move down to a finer-grained control of your transactions. I have used 
this very successfully to make the speed of a legacy batch processor 100 times faster (no kidding) just 
because other developers did not do a proper job of analyzing how the batch service was recording data, 
managing the connections, and tracking the commit times. I also implemented an ACID transaction 
in place, which guaranteed the data integrity.

Now, let’s go over another important subject. What if you need to run raw SQL queries on your 
database? When high performance is a must, you can use the JdbcTemplate repository, which 
we’ll see in the next section.

Using NamedParameterJdbcTemplate to run raw SQL 
queries
JdbcTemplate is a core component of the Spring Framework’s JDBC module that is designed to 
simplify database interactions by providing a high-level abstraction over the standard JDBC API. 
This feature eliminates much of the boilerplate code required for managing connections, executing 
queries, and handling exceptions.

It provides convenient methods for common database operations such as querying, updating, and 
batch processing, which allows you to focus on business logic rather than the intricacies of JDBC.

Although allowing very low-level control over your SQL queries, it imposes a high risk to your service 
if you do not use it wisely: it can actually create a window for SQL injection, which is a security flaw 
in which an attacker does not send the data you expect, but instead sends whatever SQL commands 
they want so that your queries will just run arbitrary code.

Because JdbcTemplate is so risky to use, I recommend using the NamedParameterJdbcTemplate 
bean instead. The only meaningful change from JdbcTemplate is that Spring will take care of 
guaranteeing that the query input is regular data, not a random SQL-injected query.

NamedParameterJdbcTemplate and JdbcTemplate should both be used when you need a 
straightforward, efficient, and lightweight solution for interacting with relational databases in a Spring 
application. Both are particularly useful in scenarios where JPA/Hibernate might be overkill, such as 
simple CRUD operations, batch processing, or when working with legacy databases.

JdbcTemplate is ideal for applications that require precise control over SQL queries and transactions 
without the overhead of an ORM framework. It provides flexibility, performance, and simplicity, 
making it the preferred choice for developers who need to execute custom SQL and manage database 
interactions programmatically.

As an example, I have created another implementation for RentalPropertyService, which now 
uses NamedParameterJdbcTemplate as a repository. This time, the only method I will implement 
is the search() method. All the other ones will throw an UnsupportedOperationException 
because they are all implemented in the RentalPropertyServiceJpaImpl bean.



Using NamedParameterJdbcTemplate to run raw SQL queries 251

Here is an example of the search method in RentalPropertyServiceJdbcImpl. This is how 
I inject the NamedParameterJdbcTemplate repository (I am also using @Qualifier to 
identify this implementation):

@Service
@Qualifier("jdbcRentalPropertyService")
public class RentalPropertyServiceJdbcImpl implements 
RentalPropertyService{

    private final NamedParameterJdbcTemplate jdbcTemplate;

    public RentalPropertyServiceJdbcImpl(
        NamedParameterJdbcTemplate jdbcTemplate) {
            this.jdbcTemplate = jdbcTemplate;
    }
    // .... other methods
}

This is the search method implementation:

@Override
public List<RentalPropertyDTO> search(String name, String address, 
String city, String country, String zipCode) {
    StringBuilder sql = new StringBuilder("SELECT * FROM rental_
properties WHERE 1=1");
    MapSqlParameterSource params =
        new MapSqlParameterSource();

    if (StringUtils.hasText(name)) {
        sql.append(" AND name LIKE :name");
        params.addValue("name", "%" + name + "%");
    }
    if (StringUtils.hasText(address)) {
        sql.append(" AND address LIKE :address");
        params.addValue("address", "%" + address + "%");
    }
    if (StringUtils.hasText(city)) {
        sql.append(" AND address LIKE :city");
        params.addValue("city", "%" + city + "%");
    }
    if (StringUtils.hasText(country)) {
        sql.append(" AND address LIKE :country");
        params.addValue("country", "%" + country + "%");
    }



Handling Data and Evolving Your Microservice252

    if (StringUtils.hasText(zipCode)) {
        sql.append(" AND address LIKE :zipCode");
        params.addValue("zipCode", "%" + zipCode + "%");
    }

    return jdbcTemplate.query(
        sql.toString(), params, rentalPropertyRowMapper);
}

As you can see, I am using a simple LIKE operator to find out parts of the actual text in my Address 
column. That is because the H2 implementation does not support native Postgres jsonb fields. When 
you move to a real database, you can use the ->> operator or whatever other JSON-specific search 
operators your database supports. JdbcTemplate and NamedParameterJdbcTemplate are 
both classes that help you to go native when interfacing with your database. But, again, this should 
be used with caution, since it removes the possibility of a transparent, painless database migration in 
the future. It is up to you, your team, and the company to decide how native or low-level you should 
go. If you really need to optimize your code, do that only in the methods that need to be improved.

Here’s some background info: the text search features in Postgres make high-performance queries, 
queries that are almost as performant as the Elasticsearch database queries. But you could really 
drive home your design if you wanted to keep two different microservices, one of them for allowing 
full-text search, using Elasticsearch. You could set your system design in such a way that whatever 
changes happen on your microservice that keeps the registration of the rental properties, the search 
microservice would be notified and then would update its own version of that rental property data. 
We will see some of that when we talk about event-driven architecture.

Referencing all the implementations we have done so far

Now, let’s use all these implementations in our V1 RentalPropertyController:

@RestController
@RequestMapping("/api/v1/rental-properties")
@Validated
public class RentalPropertyController {

    private final RentalPropertyService
        jpaRentalPropertyService;

    private final RentalPropertyService
        jdbcRentalPropertyService;

    private final RentalPropertyService
        entityManagerRentalPropertyService;



Using NamedParameterJdbcTemplate to run raw SQL queries 253

    public RentalPropertyController(
        @Qualifier("jpaRentalPropertyService")
            RentalPropertyService jpaRentalPropertyService,

        @Qualifier("jdbcRentalPropertyService")
            RentalPropertyService
                jdbcRentalPropertyService,

        @Qualifier("entityManagerRentalPropertyService")
            RentalPropertyService
                entityManagerRentalPropertyService) {

        this.jpaRentalPropertyService =
            jpaRentalPropertyService;

        this.jdbcRentalPropertyService =
            jdbcRentalPropertyService;

        this.entityManagerRentalPropertyService =
            entityManagerRentalPropertyService;
    }

// ... other code
}

This is where we used the EntityManager implementation:

@DeleteMapping("/{id}")
public ResponseEntity<Void> deleteProperty(@PathVariable UUID id) {
    return entityManagerRentalPropertyService
        .delete(id)
        .map(opt ->
            ResponseEntity.noContent()
                .<Void>build())
        .orElse(ResponseEntity
            .status(HttpStatus.NOT_FOUND).build());
}

This is where we used the JDBC implementation:

@GetMapping(
    value = "/search",
    produces = "application/json")
public ResponseEntity<List<RentalPropertyDTO>> searchProperties(



Handling Data and Evolving Your Microservice254

    @RequestParam(required = false) String name,
    @RequestParam(required = false) String address,
    @RequestParam(required = false) String city,
    @RequestParam(required = false) String country,
    @RequestParam(required = false) String zipCode) {

    return ResponseEntity.ok(
        jdbcRentalPropertyService.search(
            name, address, city,country,zipCode));
}

After all this refactoring, there are a few interesting things we can extract from creating interface 
implementations in Spring:

•	 First, we can mix and match different implementations for the same interface in the 
same microservice.

•	 By mixing and matching implementations, you can optimize your microservices as you go. 
Start small, in an unoptimized way, then improve your application by including optimized 
implementations for your service interfaces. That works for data, but it also works in other 
contexts. For example, if you feel your microservice is becoming a lot bigger than it should, 
you can export the implementation of some services to another microservice. Then, include 
a new implementation for that service interface in the old microservice, which delegates a 
remote call to the new microservice.

•	 With the use of the @Qualifier annotation, it is possible to never touch the implementation 
classes directly when using them – you just deal with the service interface, whatever implementation 
you are injecting. That means your code will always comply with your original service interfaces. 
This is an awesome way of guaranteeing your contracts. Plus, if your service interface changes, 
the Java compiler will require you to update all the implementation classes, which makes things 
much more consistent.

•	 Your interface implementations do not need to support all the methods from the service 
interfaces. It is OK to leave some methods unsupported so that you can just deliver the methods 
you want to optimize in the new implementations.

•	 We have just seen a way to support all kinds of connectivity types to your database in the same 
application. And you do not even need to care about the real database connection. How cool 
is that?

•	 When it is time to deploy your application to real environments, we will just add configuration 
files so that they override our default options and new connections are made to other database 
instances without you having to touch the code. We will see how that is done as we proceed 
in the next chapters.



Using NamedParameterJdbcTemplate to run raw SQL queries 255

•	 For the most part, your class can connect to any SQL database. If you move from Postgres to 
Oracle, you only need to rewrite the /search endpoint implementation, since it’s the only 
one in which you want to use specific, optimized, database-native syntax. Think about how 
great this is for upgrading your infrastructure in the future.

•	 Some developers will ask “why are you leaving blunt OperationNotSupported exceptions 
on your service implementations? You can use a fallback strategy that proxies the calls to other 
implementations, right?” That is possible, but if you do that, you might confuse other developers. 
It won’t be as apparent when your implementation does not support a method. I’d rather have 
an outright exception being thrown so the lack of support is clear to everyone.

OK, now that we have seen a lot of flexible ways to deal with your SQL data, let’s test it all, shall we?

Testing your applications with data integration

This is where having a clear integrated test suite will help you a lot. The automated tests we have 
written in previous chapters will not change too much. We basically need to add a properties file to 
our test folder so that it follows the same H2 strategy and creates an in-memory database for you 
to query against:

Figure 7.8: Location of the application.properties config file

Here is the content of the application.properties file:

## H2 Database configuration in PostgreSQL mode
spring.datasource.url=jdbc:h2:mem:testdb;DB_CLOSE_DELAY=-
1;MODE=PostgreSQL
spring.datasource.driverClassName=org.h2.Driver
spring.datasource.username=sampleuser
spring.datasource.password=samplepass
spring.jpa.database-platform=org.hibernate.dialect.H2Dialect
spring.h2.console.enabled=true



Handling Data and Evolving Your Microservice256

spring.h2.console.path=/h2-console
spring.jpa.hibernate.ddl-auto=create
spring.jpa.show-sql=true

Here is the code that changed in the RentalPropertyControllerTest class (https://
github.com/PacktPublishing/Spring-System-Design-in-Practice/blob/
main/chapter-07/rental-property-microservice/src/test/java/com/
homeit/rental/property/controller/RentalPropertyControllerTest.java):

@Test
void testGetAllProperties() throws Exception {
    mockMvc.perform(
        get("/api/v1/rental-properties?page=1&size=2")
        .contentType("application/json"))
        .andExpect(status().isOk())
        .andExpect(jsonPath("$.pageable.pageNumber").value(1))
        .andExpect(jsonPath("$.content[*].name").exists())
        .andExpect(jsonPath("$.pageable.pageSize").value(2))
    ;
}

The testGetAllProperties() method will now look for pages, one at a time. The JSON returned 
is actually a bit more complex as it fetches page metadata as well, not just the original object. You 
might consider making the paged endpoint a part of another version of your API since this change 
could break HTTP clients that expect the older format.

You just need to run the gradle test command to make sure your microservice is correctly 
communicating with your database. You can see the final implementation of our test classes on 
GitHub (https://github.com/PacktPublishing/Spring-System-Design-in-
Practice/tree/main/chapter-07/rental-property-microservice/src/test/
java/com/homeit/rental/property/controller).

And, of course, we can also test the H2 database. If we run our service with the gradle bootRun 
command, you will be able to connect to your H2 database and see the exact tables and types that have 
been created. You will have a full SQL console, connected to your H2 in-memory database. That helps 
with a lot of triaging issues. This is what happens when you connect to http://localhost:8080/
h2-console with sampleuser/samplepass:

https://github.com/PacktPublishing/Spring-System-Design-in-Practice/blob/main/chapter-07/rental-property-microservice/src/test/java/com/homeit/rental/property/controller/RentalPropertyControllerTest.java
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/blob/main/chapter-07/rental-property-microservice/src/test/java/com/homeit/rental/property/controller/RentalPropertyControllerTest.java
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/blob/main/chapter-07/rental-property-microservice/src/test/java/com/homeit/rental/property/controller/RentalPropertyControllerTest.java
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/blob/main/chapter-07/rental-property-microservice/src/test/java/com/homeit/rental/property/controller/RentalPropertyControllerTest.java
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-07/rental-property-microservice/src/test/java/com/homeit/rental/property/controller
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-07/rental-property-microservice/src/test/java/com/homeit/rental/property/controller
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-07/rental-property-microservice/src/test/java/com/homeit/rental/property/controller


Summary 257

Figure 7.9: Running an H2 SQL query

There are also great ways to test pre-made datasets. We will see that in future chapters, as we proceed 
with more sophisticated use cases and interactions between microservices.

Summary
In this chapter, we have seen the way to handle data on your services. Although the examples here 
were all tied to SQL databases, Spring Data provides similar approaches for all major databases. We 
will look at non-SQL implementations as well throughout the book. But, in essence, the basic template 
will be found in the extensions for other databases: you need to add the dependency for supporting 
the other database, then look for which repository types you have available. Some repositories will 
be more high-level, providing a lot of stuff out-of-the-box for you to use (just as JpaRepository 
did). Other repositories will provide more low-level options for you to have finer control over the 
way you interact with your database.

In the next chapter, we will switch gears to talk more about security issues and how to properly 
implement access control to your application. That is it for this chapter. See you in Chapter 8!





Building a service is just the beginning. This part explores how to secure applications using Spring 
Security and OAuth 2.0, optimize communication between microservices, and ensure high performance 
at scale. We’ll also introduce event-driven architectures and NoSQL databases to help services react 
asynchronously to changing data.

This part has the following chapters:

•	 Chapter 8, Securing Services with Spring Security and OAuth 2.0

•	 Chapter 9, High-Performance and Secure Communication Between Spring Services

•	 Chapter 10, Building Asynchronous, Event-Driven Systems with NoSQL Databases

Part 3:  
Security, Performance,  

and Scalability





8
Securing Services with Spring 

Security and OAuth 2.0

Welcome to Chapter 8! In this chapter, we will discuss important aspects of user authentication and 
authorization. There is a world of things we could do in Spring to secure our services, but we will take 
just a key approach here that is widely used today: the combination of OAuth 2.0 and JWT tokens.

Here are the topics we’ll cover:

•	 Understanding the security areas in your application

•	 What is OAuth 2.0 and why use it?

•	 Understanding how JWT tokens work

•	 Different architectures for validating tokens

•	 Implementing HomeIt security

We will start by taking a strategic view of the possible vulnerabilities a typical microservice architecture 
brings. Then, we will proceed by discussing OAuth 2.0 and different ways of providing authentication 
and authorization. We will also dive deep into the structure of JWTs and how signatures are made. 
Finally, we will implement these concepts by writing a sample authorization server and adding features 
to our Rental Properties service for validating JWT tokens in an interesting way.

Are you ready? Let’s go!



Securing Services with Spring Security and OAuth 2.0262

Understanding the security areas in your application
The first thing we need to do to create secure services is to understand the big picture and the main 
vulnerability spots. Since this book is mostly about creating microservice architectures, let’s first 
understand the microservice landscape itself. The following diagram illustrates it:

Figure 8.1: Microservice architecture

This diagram simplifies most of the microservice architectures today. The numbers in the diagram 
represent the following:

1.	 The user will almost always interact with a client app (it could be through a mobile app or a 
browser), and the app, in turn, will interact with what we call an API gateway. The API gateway 
is the entry point for interacting with other microservices.

2.	 The client app will start the app session by authenticating the user through a service called the 
authentication provider (auth provider). There are numerous ways of implementing an auth 
provider, which we will see shortly. A successful authentication process will produce a string 
that we call the JWT security token, which we will see in detail shortly.



What is OAuth 2.0 and why use it? 263

3.	 Once the user is authenticated, every request to one of the microservices will be secured by the 
JWT token. In other words, every time the client app needs to use some of the app microservices, 
it needs to send the security token in an HTTP header, along with the request data (payload, 
headers, URLs, etc.). The API gateway will also forward the token to the microservices.

4.	 Upon receiving a request, all microservices must receive a token and be able to go back to the 
auth provider to ask whether the security token is still valid. That will make sure the user is 
authenticated. Also, the microservice needs to assert that the user is authorized to perform the 
current request. A regular user (let’s say a tenant, in the HomeIt system) might try to perform 
an admin-level operation, for example, trying to delete a landlord user, which should not be 
allowed, even if the user is correctly authenticated. The security token can also inform the 
microservices about the user access levels.

5.	 An eventual attacker could try to spy on the user’s connection. To prevent such attacks, we 
need to make sure every connection from an app to the API gateway is performed through an 
HTTPS tunnel. That means all data will be encrypted, and only the client app and the servers 
will be able to unencrypt it.

6.	 The attacker could try to perform requests to the API gateway on behalf of the user, which 
means the system needs to be prepared to filter out such requests, by using Cross-Site Request 
Forgery (CSRF) and Cross-Origin Resource Sharing (CORS) configurations that mitigate 
those attempts.

7.	 The attacker might try to access the data stored in the service itself, such as local filesystems and 
databases. In that case, it is important to implement encryption for data at rest, so that if the 
attacker can access the server by a terminal, for example, it is still not possible to understand 
the data, due to strong encryption mechanisms.

Next, let’s discover how to secure our application with the use of the OAuth 2.0 standard.

What is OAuth 2.0 and why use it?
You might have heard of OAuth 2.0 before, and there is a lot of material available online about it, but 
it can be cumbersome and confusing to developers, so I will explain it in very simple terms here. In 
essence, this is a powerful standard for user authentication and authorization on your applications. 
OAuth stands for Open Authorization. It is an authorization architecture and standard fully defined in 
the RFC-6749 of the Internet Engineering Task Force (IETF) organization. The RFCs are documents 
specifying how different internet standards should work; IETF is the community in charge of maintaining 
those documents today. Our example will be compliant with version 2.0 of the OAuth specification.



Securing Services with Spring Security and OAuth 2.0264

The OAuth 2.0 specification is especially important for allowing one system to access resources in 
another system. The following scenarios are good examples of OAuth 2.0-enabled applications.

Use case 1 – system A accesses system B-owned resources

Imagine you create an app that can access documents hosted on a user’s own Google Drive, on the 
user’s behalf. That requires your app to forward the user to a special Google URL where they will be 
able to log in to their Google account and give the app permission to access their documents. Then, 
the user will be sent back to your app, which can now access the user’s personal documents stored in 
a Google Drive folder.

The following diagram illustrates this scenario. The numbers dictate the order of the flows:

Figure 8.2 – OAuth 2.0 cross-domain authentication



What is OAuth 2.0 and why use it? 265

The way it works is Google authorizes your application through the app’s own credentials (which we 
call the client ID and client secret credentials), then authorizes the user login and forwards a special 
token to your application that your app can use in every request to retrieve data from Google Docs itself.

This is a powerful pattern that leads to a lot of interesting use cases. One of them is to allow registering 
a new user in system A by having the user authorize themself on system B. In other words, we could 
register a new user in our HomeIt system by basically requiring the user to authenticate themself on 
Google’s website.

The second case for OAuth 2.0 is simpler.

Use case 2 – system A accesses its own resources

Take a look at the following systems flow diagram. This adds more detail on how the tokens and 
authorizations flow from one service to the other:

Figure 8.3 – OAuth authentication



Securing Services with Spring Security and OAuth 2.0266

It is good to highlight that in OAuth 2.0, both your client application and your users will have to 
properly validate their own credentials. In total, we might have two sets of tokens. Existing systems 
today implement this pattern with some slight variations, such as the following:

•	 Discarding the need for a client application token, but still requiring the client ID and secret, 
along with the user credentials (username and password). That combination will collapse the 
client authorization service and the user authorization service together, which is not always 
a good idea since the client ID and secret validation should not be coupled with the user’s 
own credentials.

•	 Entirely discarding the client ID and secret, and just using the user/password credentials to 
generate the user token to access your application resources.

Although I was able to find a lot of applications by different companies that are not in line with OAuth 
2.0 standards (you would be surprised by how many can be found), it is not advisable to omit steps 
in your application, for various security reasons.

On another note, in our first example including Google authorization (Figure 8.2), the user and client 
authorization services are omitted from our diagram. But they are still present in our Google system 
implementation. You will always need to provide your app ID and secret to interact with Google 
authentication. I removed them from the first diagram so that it would be easier to grasp the flow.

Let’s now discover what types of services OAuth 2.0 proposes in an authentication/authorization system.

Basic service types in OAuth 2.0

According to the OAuth 2.0 specification, there are some critical system functions that need to be 
in place for us to have enough security in an authentication system. Without these, some important 
functions could be missed and your application will be more vulnerable to malicious attacks.

The OAuth specification proposes the following service types:

•	 Resource owner: The system that has ownership of the resources you need to access. In the 
first example, Google is the owner of the documents you need to access. The end user is also 
considered a resource owner, as they are the sole proprietor and have the right to say when the 
document can be accessed (this is why they usually hold a user credential, such as a password 
or an authorization token). In the second example, your application is the resource owner.

•	 Authorization servers: These services are responsible for issuing access tokens that tell your 
application that your user has successfully authenticated themselves.

•	 Client application: This is the application used to allow users to log in and interact with your 
resource services. It is important to distinguish your clients because OAuth 2.0 will only permit 
login attempts from authorized client applications.



Understanding how JWTs work 267

•	 Resource providers: These are one or more services that provide important business domain 
objects to your customers. In other words, any API that implements critical product requirements 
is considered a resource provider. For instance, think about our Rental Property API. This is 
a valuable resource that should only be accessible through the proper security filters (a valid 
client token and a user token).

Now, many of these providers are offered in enterprise vendors and open source projects. Let’s see 
how they fit into our overall picture.

Industry-grade authorization providers

There are quite a few offerings in the industry that will allow you to integrate ready-to-use identity 
providers with your Spring application and microservices. Some of these are Keycloak, Auth0, Okta, 
Amazon Cognito, and Google Identity Platform. They come with a lot of strengths and weaknesses.

In this chapter, though, we will implement a sample authorization mechanism by solely using Spring 
Security. You can replace the authorization provider here with whatever other providers you might 
want in the future. Remember, the key to Spring services is to design interfaces in such a way that 
you can just replace the implementations with whatever new services and infrastructure you want.

Understanding how JWTs work
The OAuth 2.0 standard does not enforce any kind of security token implementation. Because of that, 
it is up to you, as an architect, to choose how to create and validate tokens.

There are many ways of implementing security tokens, such as JWT, PASETO, macaroons, CBOR 
Web Tokens, and Hawk. Because JWT is the most used, we will use it in this chapter. But bear in mind 
that you can find other token specifications on the web, should you desire to switch from JWT (you 
can google the ones I just mentioned).

The other token specifications have different ways of implementing flows, which we won’t be able to 
cover here. But in general, they try to address the authorization challenges with different assumptions. 
In this chapter, we will cover most of the criticisms of JWT as well, so don’t worry, we will be able to 
see how to use JWT properly. Since this is a well-established standard and the Spring implementation 
is exceptionally reliable and battle-tested, let’s follow the JWT token specs in this chapter.

JWT refers to a token created out of a JSON structure that reveals specific data about authenticated 
users. This standard was defined by the RFC-7519 of the IETF organization. You can read the full 
specification here: https://datatracker.ietf.org/doc/html/rfc7519.

https://datatracker.ietf.org/doc/html/rfc7519


Securing Services with Spring Security and OAuth 2.0268

A JWT token is essentially a string containing three parts separated by a dot, like this:

Figure 8.4 – JWT token structure

The first thing you should know is that each part is a Base64-encoded JSON string. Next, let’s see an 
explanation of each section of the token.

The JWT header

The first section of a JWT token is the header, which contains the type of token and the encryption 
signing algorithm that was used. Here is an example:

{
  "alg": "HS256",
  "typ": "JWT"
}

To create the first part of the token, we apply Base64 encoding, which turns this sample header into 
the following string:

eyAiYWxnIjogIkhTMjU2IiwgInR5cCI6ICJKV1QiIH0g

The JWT payload

The second section of a JWT token is what we call the payload, or the additional application data. 
The data is usually about the user and the token generation itself. It is also called a claim, referring to 
some permission this token claims the user has.

Here is an example of a JWT payload:

{
  "iss": https://auth.homeit.com, // who generated the jwt
  "sub": "user123",               // the user id
  "exp": 1716242622,              // token expiration
  "iat": 1616239022,              // token generation time
  "name": "John Doe",             // user name
  "email": john.doe@example.com,  // user email
  "groups": [                     // groups user belongs to
    "tenant"
  ],
  "permissions": {                // set of permissions



Understanding how JWTs work 269

    "rental_search": [                   // service name
      "read"                             // access level
    ],
    "user_info": [
      "read",
      "write"
    ]
}

This payload converted to Base64 will look as follows:

eyAKCiAgImlzcyI6IGh0dHBzOi8vYXV0aC5ob21laXQuY29tLCAvLyB0aGUgaXNzdWVyIA
oKICAic3ViIjogInVzZXIxMjMiLCAgICAgICAgICAgICAgIC8vIHRoZSB1c2VyIGlkIAo
KICAiZXhwIjogMTcxNjI0MjYyMiwgICAgICAgICAgICAgIC8vIHRva2VuIGV4cGlyYXRpb
24gCgogICJpYXQiOiAxNjE2MjM5MDIyLCAgICAgICAgICAgICAgLy8gdG9rZW4gZ2VuZX
JhdGlvbiB0aW1lIAoKICAibmFtZSI6ICJKb2huIERvZSIsICAgICAgICAgICAgIC8vIHVz
ZXIgbmFtZSAKCiAgImVtYWlsIjogam9obi5kb2VAZXhhbXBsZS5jb20sICAvLyB1c2Vy
IGVtYWlsIAoKICAiZ3JvdXBzIjogWyAgICAgICAgICAgICAgICAgICAgIC8vIGdyb3Vwcy
B1c2VyIGJlbG9uZ3MgdG8gCgogICAgInRlbmFudCIgCgogIF0sIAoKICAicGVybWlzc2l
vbnMiOiB7ICAgICAgICAgICAgICAgIC8vIHNldCBvZiBwZXJtaXNzaW9ucyAKCiAgICA
icmVudGFsX3NlYXJjaCI6IFsgICAgICAgICAgICAgICAgICAgLy8gc2VydmljZSBuYW1l
IAoKICAgICAgInJlYWQiICAgICAgICAgICAgICAgICAgICAgICAgICAgICAvLyBhY2Nlc3
MgbGV2ZWwgCgogICAgXSwgCgogICAgInVzZXJfaW5mbyI6IFsgCgogICAgICAicmVhZCIs
IAoKICAgICAgIndyaXRlIiAKCiAgICBdIAoKfSA=

The JWT signature

The third section of a JWT token ensures the integrity and authenticity of the token. It is created 
by signing the Base64-encoded header and payload with a secret key, using a strong cryptographic 
algorithm such as HS256 or RSA.

The signature allows your authorization service to verify that the token has not been tampered with 
and that it was issued by a trusted source. The algorithm and secret key (or private key) are crucial 
for the security of the JWT, as they guarantee that only the issuer (your authorization service) can 
generate a valid signature.

This process is essential for your authorization server to confirm that a given JWT was securely 
generated and is still valid.

There are a few different types of secure algorithms you can use. Here are some options:

•	 HS256, HS384, or HS512: These three algorithms are similar. They use a secret key that is used 
for both signing and verifying the signature. HS512 provides the highest security level. The 
number specifies the size of the signature, in bytes. The bigger the number, the more secure the 
signature is. This can be used when your authorization service generates and verifies tokens.



Securing Services with Spring Security and OAuth 2.0270

•	 RS256, RS384, and RS512: These three algorithms use a private key for signing signatures 
and a public key for verifying signatures. They can be used when you need different services 
to verify your JWT signatures, and you do not want to export the secret key to other servers. 
Again, RS512 provides the highest security level.

•	 ES256, ES384, and ES512: This is similar to RS256, which requires private and public keys 
to sign and verify your token, respectively. It is generally more secure than the RS algorithms, 
and the signature size is considerably smaller.

To sign your JWT, you will need to do the following operation:

Signature = SignAlgo(
              Base64(HEADER).
              Base64(PAYLOAD),
              Secret/PrivateKey)

This means you need to convert both your header and the payload to Base64 encoding. They are 
appended with a dot, and that string is passed through your chosen signature algorithm, by adding 
the secret or private key as the input.

Here is the final result of a JWT signature section:

t5fW4uC-g_0j8smuCV9WbdHZZmDWdaaj7Mu9WqmxNqEOOdDUSuGTo8U8S5t8fZCHtvMR5C
NZXj5-VxW_q5ueAw

This is the end result of this JWT:

eyJhbGciOiJIUzUxMiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJodHRwczovL2F1dGguaG9t
ZWl0LmNvbSIsInN1YiI6InVzZXIxMjMiLCJleHAiOjE3MTYyNDI2MjIsImlhdCI6MTYx
NjIzOTAyMiwibmFtZSI6IkpvaG4gRG9lIiwiZW1haWwiOiJqb2huLmRvZUBleGFtcGxl
LmNvbSIsImdyb3VwcyI6WyJ0ZW5hbnQiXSwicGVybWlzc2lvbnMiOnsicmVudGFsX3Nl
YXJjaCI6WyJyZWFkIl0sInVzZXJfaW5mbyI6WyJyZWFkIiwid3JpdGUiXX19.t5fW4uC-
g_0j8smuCV9WbdHZZmDWdaaj7Mu9WqmxNqEOOdDUSuGTo8U8S5t8fZCHtvMR5CNZXj5-
VxW_q5ueAw

The dots separate the three sections: header, payload, and signature.

There are some different approaches you can use to validate your tokens. Let’s see some variations now.

Different architectures for validating tokens
When thinking about how to validate your tokens, you need to take into consideration performance 
factors versus security guarantees. There is not a 100% secure system, so you need to understand 
where the flaws are in your architecture and plan to remediate them, in case an attacker is able to get 
unauthorized access.



Different architectures for validating tokens 271

These are some of the possibilities for creating and validating your tokens:

•	 Centralized authorization service creates tokens: All other services consult back to check 
token validity with the authorization service itself. This creates an overhead for validating the 
tokens, since an extra network request is made every time a microservice is called. Those extra 
network calls mean your authorization service has to deal with a very high number of requests, 
which puts a lot of load pressure on it. Higher security is enforced every step of the way, though.

•	 Centralized authorization service creates token: Verification happens only once per user 
request, upon receiving the request in the API gateway, regardless of the number of microservices 
reached. This reduces the load over the authorization service, since other microservices won’t 
need to call the authorization service again. But it also leaves the door open to an attacker, 
where they can fire a forged request to a service that is not verifying the token, only trusting 
the result of the verification made somewhere else.

•	 Centralized authorization service creates a token with private keys: Other services validate 
requests with a public key. This takes the burden off the authorization service and allows other 
services to validate the tokens themselves. But now you need to deal with a distributed set of 
public keys.

•	 Client asks for a new token on every request: This also puts a lot of load pressure on your 
authorization service, but the added benefit is that a token has a shorter life, meaning an attacker 
that steals the token will not be able to reuse it.

This is just a head start so that you can produce your own token generation/validation ideas.

The following drawbacks apply in general to using JWTs:

•	 If an attacker manages to get access to your keys, you need a solid strategy for quickly revoking the 
keys in all involved services. That basically means every customer will be forced to log in again.

•	 If a token gets compromised, you should have a way of revoking that token. If your authorization 
service puts the valid tokens in a database, that means you can mark the token as invalid. But 
bear in mind that you do not need to store valid tokens in a database. The signing process (only 
your authorization service is supposedly able to create the token) and the token expiration time 
guarantee that the token is valid. If you are not storing the valid tokens, you should at least 
have a blacklisted tokens database. Make sure your verification process checks that database 
in case you want to revoke a token.

•	 The longer your clients can use the token, the more it will be vulnerable to attacks. Make sure 
your expiration is not so long that you could have an attacker using stolen tokens for days. It all 
depends on your use case (GitHub allows creating tokens that last forever). Just bear in mind 
the security risk involved and choose your expiration dates wisely.

OK, that is all we need to cover to understand JWT and all its trade-offs. Let’s now move on to 
implementing OAuth 2.0 authentication with JWTs in Spring.



Securing Services with Spring Security and OAuth 2.0272

Implementing HomeIt security
When dealing with security requirements at an application level, you should probably use the Spring 
Security dependency to fill all the requirements we just discussed. This project has a lot of important 
configurations that help create a more secure set of microservices.

Although there are several ways to use Spring Security on your application, I will show you here a 
common system design pattern for creating services that allow you to do the following:

•	 Create user login data and store user passwords securely

•	 Store additional personal information, such as first/last name and birth date

•	 Authenticate users so that they can use your services

•	 Make sure users are assigned to roles that are used as filters to authorize actions on your system

•	 Validate and authorize each request that reaches every microservice

Are you ready?

This is a sample use case we could have in our system. See the sequence diagram here:

Figure 8.5 – HomeIt sample login implementation



Implementing HomeIt security 273

We will work with the following assumptions:

•	 The system will validate token signatures using an asymmetric key. A private key will be used 
to create tokens, and a public key will be used to validate the token signatures.

•	 The authorization service will store user login credentials and create tokens using the private key.

•	 The other services (User Info and Rental Properties) will validate tokens locally.

•	 The client ID and secret will be validated every time a new user is created or an access token 
is generated.

With this design comes the following weak spots and vulnerabilities:

•	 Once a resource service (User Info or Rental Properties) receives a JWT token, it will not 
validate the actual existence of a user on a database. The resource services will trust that the 
user credentials (login and password) were actually validated by the authorization service.

•	 If a hacker gets your private key in the authorization server, they will be able to just recreate JWTs 
with whatever credentials they want. They will be able to access whatever other microservices you 
have. That brings a lot of potential risks, so if you get attacked, you need to manually rotate your 
public and private keys and restart all services – every user will have their tokens unauthorized.

•	 One more vulnerability will be introduced in the resource server implementation, to illustrate 
how authorization systems can be tricky to implement.

We will not be able to implement the User Info service in this chapter, but you will be able to implement 
it by yourself, once you see how the Rental Properties service is changed to validate a token. OK, 
now it’s time to jump into the code.

At the beginning of the chapter, I showed you a design that uses an API gateway as the entry point. 
API gateways will be explored in future chapters. We will keep things simple, where possible, so that 
we can see a thorough example of a login system using Spring Security with the OAuth 2.0 model 
and JWT tokens.

The first thing to do is to implement the authorization server.

Creating your project

So, we start by generating the app using the Spring Initializr website. As seen in Chapter 5 (in the Using 
Spring Initializr section), once you generate your app using Spring Initializr and choose Springboot 
3.3.1, your build.gradle file will start with this:

plugins {
    id 'java'
    id 'org.springframework.boot' version '3.3.1'
    id 'io.spring.dependency-management' version '1.1.5'
}



Securing Services with Spring Security and OAuth 2.0274

This is the list of dependencies we will use:

dependencies {
    implementation 'org.springframework.boot:spring-boot-starter'
    implementation 'org.springframework.boot:spring-boot-starter-web'
    implementation 'org.springframework.boot:spring-boot-starter-data-
jpa'
    implementation 'com.h2database:h2'
    implementation 'org.springframework.boot:spring-boot-starter-
security'
    implementation 'org.springframework.security:spring-security-
oauth2-authorization-server'

    compileOnly 'org.projectlombok:lombok:1.18.32'
    annotationProcessor 'org.projectlombok:lombok:1.18.32'

    testImplementation 'org.springframework.boot:spring-boot-starter-
test'
    testCompileOnly 'org.projectlombok:lombok:1.18.32'
    testAnnotationProcessor 'org.projectlombok:lombok:1.18.32'
    testRuntimeOnly 'org.junit.platform:junit-platform-launcher'
}

Notice that we are using many of the dependencies we have been using in the Rental Property 
microservice. We are also using an H2 dependency, to facilitate an in-memory database connection.

The new dependencies are the following:

•	 Spring-boot-starter-security, which provides the basic filters infrastructure

•	 The Spring Security OAuth 2.0 authorization server

The full build.gradle file can be found here: https://github.com/PacktPublishing/
Spring-System-Design-in-Practice/blob/main/chapter-08/authprovider/
build.gradle.

Creating your security configuration class

For Spring, we need to set our security configuration class as well. Here is how it is written:

@Configuration
public class SecurityConfiguration {

    @Bean
    public PasswordEncoder passwordEncoder() {

https://github.com/PacktPublishing/Spring-System-Design-in-Practice/blob/main/chapter-08/authprovider/build.gradle
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/blob/main/chapter-08/authprovider/build.gradle
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/blob/main/chapter-08/authprovider/build.gradle


Implementing HomeIt security 275

        return new BCryptPasswordEncoder();
    }

    @Bean
    protected DefaultSecurityFilterChain
        configure(HttpSecurity http) throws Exception {
        return http
            .csrf(AbstractHttpConfigurer::disable)
            .cors(AbstractHttpConfigurer::disable)
            .authorizeHttpRequests(auth ->
                auth.requestMatchers(
                    "/users/register",
                    "/users/token").permitAll()
                    .anyRequest().authenticated()
            )
            .sessionManagement(sess -> sess.
sessionCreationPolicy(SessionCreationPolicy.STATELESS))
            .build();
    }
}

@Configuration is an important Spring annotation that tells Spring to create a bean out of 
the annotated class. The config beans exist to help you configure your application in numerous 
ways. In Spring Security, there is usually one security configuration bean whose purpose is to set the 
security filters.

Spring Security offers an incredible number of ways in which you can configure security in your 
application. In essence, you are able to choose how to authenticate a user (by looking at any existing 
database or remote services, for example), and also how to enforce authorization on any method.

In our case, since we are basically interested in creating users and issuing tokens, we are just interested 
in implementing two methods: passwordEncoder() and configure(). Both methods are 
tagged with @Bean, which tells Spring that these are factory methods for creating Spring beans. In 
other words, when instantiating the SecurityConfig bean, Spring will also call the two methods 
in this class, to create a PasswordEncoder (returned by passwordEncoder() method) and a 
DefaultSecurityFilterChain (returned by the configure() endpoint).

The PasswordEncoder returned is a class of type BCryptPasswordEncoder, which is considered 
a very customizable encoder with high security standards. In essence, whatever passwords we receive 
will be hashed by this object, to make sure we are not storing raw-text passwords in our database.



Securing Services with Spring Security and OAuth 2.0276

The filter chain returned by the configure() method will basically tell Spring how to enforce 
security across your client call life cycle and which endpoints to make public, as well as which to 
make private. If you do not explicitly configure access controls for an endpoint in your Spring Security 
configuration class, Spring will make it inaccessible to clients, no matter which credentials they use. In 
this case, Spring will pass an HTTPSecurity bean created behind the curtains to the configure() 
method. Then, we first disable CSRF and CORS filters (we allow any website and domain to use our 
services), and during the authorizeHttpRequests() method call, we are saying that the /
users/register and /users/token endpoints can be called by anyone (permitAll()), 
while any other endpoint should be used by authenticated users only (since we do not have any other 
endpoints in this service, it does not really matter).

Last but not least, we set this service to be STATELESS. This means it does not persist session objects 
to track user state while the user is logged in. In this design, you will only use your JWT tokens to 
identify your users across services. Having STATELESS services means that every microservice is 
responsible for handling its own objects and user states instead of relying on the user login objects. 
Let’s add a few words about what a session cookie is and why we are not using it in our design.

Session cookies are, in essence, a way to track the user state across the use of your website. They work 
like this:

1.	 The cookie itself, which is a string that your microservice creates and returns in the header of 
your HTTP response. You can create this string in any way you want – for instance, as a UUID 
or even a JWT token.

2.	 To set a new session, once the user is authenticated, you can return your cookie in the headers 
of your HTTP response using the set-cookie header.

3.	 Once the browser receives the set-cookie header, it is already programmed to store that 
cookie and hand it back in all future requests to your service, by adding it to the cookie header.

4.	 Your service can validate cookies by extracting them from the cookie header, in the request.

5.	 Once you have a session cookie going, you can use it to correlate the cookie session with an object 
that you persist on the server side, while the session is valid. For example, in an e-commerce site, 
you can store the cart items in your user session object. That is a common use case for cookies.

6.	 If you are using cookies, and you have a microservice architecture, you will need to evaluate 
which services should have access to the cookie session, and how you will provide access to it. 
Some common architectures will basically make session cookies available through the use of 
in-memory object databases, such as Memcached or Redis. You can also use other services, such 
as DynamoDB, Cassandra, or any fast database from which you can retrieve the session object.



Implementing HomeIt security 277

7.	 Accessing a user session object from different services is quite an expensive task and requires 
special consideration and care, due to race conditions and simultaneous access from different 
services. As microservices have their own databases and entities, nowadays session objects are 
used less and less. We usually work with stateless sessions and the bearer token. That means each 
microservice only knows about its own state and can access some other remote microservices. 
Still, you need to invest some thought in avoiding race conditions, due to the distributed nature 
of microservice architectures.

So, in a nutshell, we are not using session cookies here because, in our architecture, different microservices 
are not sharing critical data with other microservices. So, we can rely on stateless services and the 
JWT token alone. Also, we do not want to create unnecessary race conditions that might end up 
producing bugs in our app.

These are the most important things you should know about session cookies. Now, let’s understand 
the role of the authorization provider in your architecture.

Implementing the authorization provider domain

In this sample implementation, the authorization provider’s responsibility is to keep a database of valid 
user credentials that allow for creating users, validating their existence, checking their password, and 
generating a valid JWT token, once the user authenticates themself.

Because of that, we need the following essential classes and services:

•	 UserRepository, for storing users

•	 UserEntity, for representing user credentials that will be persisted

•	 UserService, a JWT service that creates the tokens

•	 ClientService, which validates our client app ID and app secret (remember, your app 
should validate its own credentials)

•	 ScopeService, which produces the access scope from a user type

•	 UserController, which provides a REST interface with two endpoints: /users/
register and /users/token, for creating a user and creating a token from the user 
credentials, respectively

Let’s take a look at those classes in detail. The compiled code in this section can be found here: https://
github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/
main/chapter-08/authprovider/src/main/java/com/homeit/authprovider.

https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-08/authprovider/src/main/java/com/homeit/authprovider
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-08/authprovider/src/main/java/com/homeit/authprovider
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-08/authprovider/src/main/java/com/homeit/authprovider


Securing Services with Spring Security and OAuth 2.0278

The UserEntity and UserRepository classes

Let’s start by finding out how users are created and stored in our database. Here is the UserEntity 
for representing user credentials that will be persisted:

@Entity
@Table(name = "users", uniqueConstraints = @
UniqueConstraint(columnNames = "email"))
@Data
@NoArgsConstructor
@AllArgsConstructor
public class UserEntity {

    @Id
    private UUID id;

    @Column(unique = true, nullable = false)
    private String email;
    private String password;
    private String userType;
}

Our UserEntity contains an email address (the login), an ID (which is the actual primary key 
that we will use to correlate the user in other services), the password, and the user type (tenant or 
landlord, in our example).

When you are writing such a service, avoid the temptation to use the user email as the user ID across 
your microservices. That will create a mess in your services if your users decide to change their emails. 
Believe it or not, I have seen big companies face huge challenges in their authentication systems due 
to the fact that the user email was chosen as the user ID in their systems. Do not repeat this mistake!

As you will notice, I have suggested an architecture in which we have another UserInfo microservice. 
The User Info service would be responsible for persisting other important user data (address, birth date, 
ID, etc.). That keeps the critical login information isolated from what we call Personally Identifiable 
Information (PII), which helps to identify the user. PII deserves a different treatment altogether 
(privacy is a very critical non-functional requirement in any system nowadays, with so many heavy 
regulations about how companies are allowed to use or expose user data).

Here is the UserRepository class:

public interface UserRepository extends
    JpaRepository<UserEntity, UUID> {

    Optional<UserEntity> findByEmail(String email);
}



Implementing HomeIt security 279

The user service

In our authorization provider, we have a UserService interface, responsible for creating user logins 
and checking for their existence. Here’s the interface and its methods:

public interface UserService {
    Optional<UserDTO> createUser(
        String email, String password, String userType);
    Optional<UserDTO> findByEmail(String email);
    boolean validateUser(String email, String password);
}

Of course, we have also included the UserInterfaceImpl class, which implements our interface. It 
injects two important beans: UserRepository and PasswordEncoder. Here is the declaration:

@Service
public class UserServiceImpl implements UserService {

    private final UserRepository userRepository;
    private final PasswordEncoder passwordEncoder;

    public UserServiceImpl(UserRepository userRepository,
        PasswordEncoder passwordEncoder) {
        this.userRepository = userRepository;
        this.passwordEncoder = passwordEncoder;
    }

As you may remember, PasswordEncoder is a bean created in our SecurityConfiguration 
class, with a @Bean annotated method. Before instantiating UserServiceImpl, the Spring Framework 
will instantiate PasswordEncoder by calling that method from our SecurityConfiguration 
bean, then inject it here.

Here is how we create a user in this service implementation:

@Override
public Optional<UserDTO> createUser(String email,
    String password, String userType) {

    if(!userRepository.findByEmail(email).isEmpty()) {
        return Optional.empty(); // email already used
    }

    return Optional.of(userRepository.save(



Securing Services with Spring Security and OAuth 2.0280

        new UserEntity(UUID.randomUUID(),
            email, passwordEncoder.encode(password),
                userType)))
        .map(UserConverter::fromUserEntity);
}

This method will reject the user creation if the user password is already in use. Returning an empty 
Optional in case the password is already used is not quite the best option because it is unclear what 
happened during the user creation. But that is not a big problem in this implementation.

Also, it is important to notice the use of the passwordEncoder service. We provide a raw password, 
and the encoder will create a hash string that will be stored in the database, using bcrypt. That increases 
security by not exposing all user passwords as raw text in the database.

Here is how we validate the existing user:

@Override
public boolean validateUser(String email, String password) {
    return userRepository.findByEmail(email)
        .map(user ->
            passwordEncoder
                .matches(password,user.getPassword()))
        .orElse(false);
}

Easy enough, right? We provide the email and password, then we find the user by email and create 
the hash from the raw password, comparing it with the hash we stored in the database. If both hashes 
are equal, that means the user provided the right password.

Finally, here is how we find a user by email:

public Optional<UserDTO> findByEmail(String email) {
    return userRepository.findByEmail(email)
       .map(UserConverter::fromUserEntity);
}

The client service

We also provide a client service, which is a very simple implementation in our example. Here is 
the interface:

public interface ClientService {
    boolean validateClient(String clientId,
        String clientSecret);
}



Implementing HomeIt security 281

Here is the implementation class:

@Service
public class ClientServiceImpl implements ClientService{

    private final String clientId =
        "4ca8f880-0bee-4c24-88ce-3402fe7e37f0";

    private final String clientSecret =
        "b08cee2b-e79f-472b-a0b9-b210465c8bf3";

    @Override
    public boolean validateClient(String clientId,
        String clientSecret) {
        return this.clientId.equals(clientId)
            && this.clientSecret.equals(clientSecret);
    }
}

Since the focus in this chapter is on creating and validating JWTs in a distributed way, I have basically 
provided a hardcoded implementation for the client ID and secret validation. There are numerous 
ways to improve this implementation. I have seen big companies implementing client validation in 
the following ways:

•	 Adding valid client app IDs and secrets to external configuration files and loading them in a 
map, using a @Configuration annotated bean class. That bean will provide a map of client 
IDs to client secrets, allowing us to compare the strings.

•	 Creating API gateway apps in the cloud, then attributing client IDs and secrets to those API 
gateways. The API gateways themselves have out-of-the-box features to even generate client tokens.

•	 API products, such as Twilio, Google Maps, Facebook, and PayPal, will offer you a service in 
which you can create a set of credentials for the application you want to integrate with their 
services. Of course, those API products provide an implementation in which the client ID and 
secret are generated on demand and persisted on a database.

Here are other ways to do client validation:

•	 You could extend this service to also create a client token before trying to create the user token. 
The authorization service would be able to create the user only if a valid client token were used. 
The other services should also be able to validate the client token.

•	 You can use other ready-to-go services, such as Keycloak, to create client IDs and secrets.

There are countless other ways; these are just some options to get you started.



Securing Services with Spring Security and OAuth 2.0282

The scope service

As previously mentioned, the scope service will provide the JWT scope tokens from the user type. 
Here is the sample interface:

public interface ScopeService {
    String findScope(String userType);
}

Here is the sample implementation:

@Service
public class ScopeServiceImpl implements ScopeService{
    @Override
    public String findScope(String userType) {
        if("tenant".equals(userType)) {
            return "rental_properties:read";
        }

        if("landlord".equals(userType)) {
        return
          "rental_properties:read rental_properties:write";
        }

        return null;
    }
}

As you can notice, this is also a hardcoded implementation just to get you started. Essentially, if the user 
is of the tenant type, they get access to the Rental Properties service. They have read permission 
to this service. If the user is a landlord, they will have both read and write permissions. This means 
that landlords are able to add their own properties, whereas tenants can only search for properties 
and read property details.

Here are some ways to improve this implementation:

•	 You could change the implementation of the scope service and have it configured on an external 
configuration file, which allows you to have different access scopes configured in each deployment 
environment (we will see how to use external config files in the future).

•	 You could change the implementation of the scope service and add a scope entity and scope 
repository, as well as endpoints to the auth provider. That would allow you to use an API 
endpoint to set which access scope strings should be mapped for each user type.



Implementing HomeIt security 283

•	 You could create a remote scope microservice that, given a user type, will return the access 
scope string. In that microservice, you are able to configure different user types and their scope 
access strings as you see fit, by persisting your configurations on a separate config file or even 
on a database.

•	 There could be a way of overriding the default return of the scope service and assigning the 
scopes directly to the user. So, when generating a token, instead of trying to extract the access 
scope directly from the user types, the scopes would be extracting the user ID itself. This 
could be implemented in very different ways, such as in the scope service itself or in another 
microservice. I would not recommend adding this feature to the user entity in the auth provider, 
because it adds too much responsibility to this service.

•	 The scope could not only create service access permissions but also generate user roles in the 
system, so that you could add restrictions based on roles, not just on service operation permissions.

With these key services defined, let’s understand the role of the JWT service itself, which actually 
creates tokens.

The JWT service

Finally, let’s check how we create the tokens. Here is the JWT service interface:

public interface JWTService {
    TokenResponse getJWTToken(
        TokenRequest tokenRequest,
        String scope, String userId);
}

First, I want to show you a method for generating an asymmetric key pair:

private static KeyPair generateRsaKey() {
    try {
        KeyPairGenerator keyPairGenerator =
            KeyPairGenerator.getInstance("RSA");
        keyPairGenerator.initialize(2048);

        KeyPair keyPair =
            keyPairGenerator.generateKeyPair();

        // Encode the keys to Base64 strings
        String privateKeyString =
            Base64.getEncoder().encodeToString(
                keyPair.getPrivate().getEncoded());

        String publicKeyString =



Securing Services with Spring Security and OAuth 2.0284

            Base64.getEncoder().encodeToString(
                keyPair.getPublic().getEncoded());

        // Print the keys
        System.out.println("Private Key: " +
            privateKeyString);

        System.out.println("Public Key: " +
            publicKeyString);

        return keyPair;

    } catch (Exception ex) {
        throw new IllegalStateException(ex);
    }
}

I have used this method as a source for creating the pair I use in this implementation, but you can 
also use any online generator of your choice. The advantage of knowing how to generate this pair in 
JavaScript is that you could create a separate microservice just for creating an asymmetric pair for each 
token request. That would make your services much more secure, since every token request would be 
backed up by a new set of public and private keys at runtime. But that also adds some more latency, 
due to the fact that all microservices would need to retrieve the public key from the key microservice. 
As always, it is all about trade-offs.

This is how you load a pair of static keys:

private static KeyPair loadRsaKey() {

    // Decode the Base64 encoded strings
    byte[] privateKeyBytes = Base64.getDecoder()
        .decode("your base 64 encoded private key here");

    byte[] publicKeyBytes = Base64.getDecoder()
        .decode("your base 64 encoded public key here");

    // Generate PrivateKey from decoded bytes
    PKCS8EncodedKeySpec privateKeySpec =
        new PKCS8EncodedKeySpec(privateKeyBytes);

    KeyFactory keyFactory = null;

    try {
        keyFactory = KeyFactory.getInstance("RSA");



Implementing HomeIt security 285

    } catch (NoSuchAlgorithmException e) {
        throw new RuntimeException(e);
    }

    PrivateKey privateKey = null;
    try {
        privateKey =
            keyFactory.generatePrivate(privateKeySpec);
    } catch (InvalidKeySpecException e) {
        throw new RuntimeException(e);
    }

    // Generate PublicKey from decoded bytes
    X509EncodedKeySpec publicKeySpec =
        new X509EncodedKeySpec(publicKeyBytes);

    PublicKey publicKey = null;
    try {
        publicKey =
            keyFactory.generatePublic(publicKeySpec);
    } catch (InvalidKeySpecException e) {
        throw new RuntimeException(e);
    }

    // Create and return the KeyPair
    return new KeyPair(publicKey, privateKey);
}

In this code, I hardcoded the public and private keys, but you could add them to an external config 
file as well, or even to a database.

Lastly, this is how we generate the JWT token:

@Override
public TokenResponse getJWTToken(TokenRequest tokenRequest,
    String scope, String userId) {

    try {
        KeyPair keyPair = loadRsaKey();
        RSAPublicKey publicKey = (RSAPublicKey)
             keyPair.getPublic();
        PrivateKey privateKey = keyPair.getPrivate();

        Date issueTime = new Date();



Securing Services with Spring Security and OAuth 2.0286

        Date expiry = new Date(
            System.currentTimeMillis() + 3600000);

        JWTClaimsSet claimsSet = new JWTClaimsSet.Builder()
                .subject(userId)
                .issueTime(issueTime)
                .claim("scope", scope)
                .expirationTime(expiry) // 1 hour
                .build();

        String keyId =
            "fab38aa6-d05b-4ab8-b045-8362b90acfdf";

        SignedJWT signedJWT = new SignedJWT(
            new JWSHeader.Builder(JWSAlgorithm.RS256)
                .keyID(keyId).build(),claimsSet);

        signedJWT.sign(new RSASSASigner(privateKey));

        String jwtToken = signedJWT.serialize();
        return new TokenResponse(
            jwtToken, "Bearer", "3600", scope );

    } catch (Exception e) {
        throw new RuntimeException(
            "Error creating token",e);
    }
}

This method expects a TokenRequest, which is implemented as follows:

public record TokenRequest (String grant_type,
                            String username,
                            String password,
                            String client_id,
                            String client_secret){}

As you can notice, the getJWTToken() method also expects the user ID.

You can see in this code that the expiration date is calculated in 3,600,000 milliseconds after the 
current time, which translates to 60 minutes. As mentioned before, depending on your use case, you 
can set the duration in any way you want. It could be for an entire year if you want. There are some 
cases in which an entire year for token expiration could make sense, such as read-only tokens for 
low-value information.



Implementing HomeIt security 287

The key ID is another interesting thing. In this implementation, I just added a static ID, but if you 
had an external microservice just for generating keys, you would be able to return the key ID here. 
Hence, when a microservice receives your JWT token, you would be able to retrieve the key ID and 
request the public key from your keys microservice.

TokenResponse is actually an implementation from the authorization service code. Here it is:

public record TokenResponse(
        String access_token,
        String token_type,
        String expires_in,
        String scope
){}

That is all there is to JWT generation.

The UserController class

In order to create our UserController class – the entry point for both registering a user and 
creating a valid, signed token – this is the opening:

@RestController
@RequestMapping("/users")
public class UserController {

    private final UserService userService;
    private final ClientService clientService;
    private final JWTService jwtService;
    private final ScopeService scopeService;

    public UserController(UserService userService,
        ClientService clientService, JWTService jwtService,
        ScopeService scopeService) {
        this.userService = userService;
        this.clientService = clientService;
        this.jwtService = jwtService;
        this.scopeService = scopeService;
    }

In other words, we inject four services: UserService, ClientService, JWTService, 
and ScopeService.



Securing Services with Spring Security and OAuth 2.0288

Next, let’s check how to register a user:

@PostMapping("/register")
public ResponseEntity<UserDTO> registerUser(
    @RequestBody UserDTO userDto) {

    return userService.createUser(
        userDto.email(), userDto.password(),
        userDto.user_type())
    .map(ResponseEntity::ok)
    .orElse(ResponseEntity.badRequest().build());
}

Creating a user is a very simple task. If the creation is not successful, we return 400 – bad request. 
That means something was not correct in the user creation. In this implementation, I do not want to 
add too much information to the clients, since this could lead to potential vulnerabilities. Considering 
security, if you return too many details, hackers can make use of them.

This is how I have implemented the endpoint for creating a signed JWT token:

@PostMapping(
        value = "/token",
        produces = "application/json",
        consumes = "application/json")
public ResponseEntity<TokenResponse>
    createToken(@RequestBody TokenRequest tokenRequest) {

    if(!"password".equals(tokenRequest.grant_type())) {
        return
            ResponseEntity.status(
                HttpStatus.UNAUTHORIZED).build();
    }

    if(!clientService.validateClient(
        tokenRequest.client_id(),
        tokenRequest.client_secret())) {

        return ResponseEntity.status(
            HttpStatus.UNAUTHORIZED).build();
    }

    if(!userService.validateUser(
        tokenRequest.username(),



Implementing HomeIt security 289

        tokenRequest.password())) {

        return ResponseEntity.status(
            HttpStatus.UNAUTHORIZED).build();
    }

    UserDTO foundUser =
        userService.findByEmail(
            tokenRequest.username()).get();

    return ResponseEntity.ok(
        jwtService.getJWTToken(tokenRequest,
            scopeService.findScope(
                foundUser.user_type()),
                foundUser.id()));
}

As you can see, I wrote four different security tests and all of them should return an UNAUTHORIZED 
HTTP status code (401) if something goes wrong. Again, we do not want to give too much detail, as 
hackers could use those details to guide themselves while trying to exploit your service.

The configuration file

Last but not least, I have added an external configuration file to this implementation, which is located 
in the resources folder and is named application.yml – Spring just “knows” how to read 
the file from that place and set as config variables in your application:

spring:
  application:
    name:authprovider
  datasource:
    url: jdbc:h2:mem:testdb
    driverClassName: org.h2.Driver
    username: sa
    password: password
  h2:
    console: true
    enabled: true
  jpa:
    hibernate:
      ddl-auto: update
    show-sql: true



Securing Services with Spring Security and OAuth 2.0290

server:
  port: 8081

I set the server port as 8081, to not clash with the RentalProperties service, which already 
uses port 8080.

Using the service

When running this Spring application on my local machine, these are two requests I can make:

•	 Creating a user: By using curl, I can send the following request:

curl --request POST \
  --url http://localhost:8081/users/register \
  -H 'Content-Type: application/json' \
  --data '{
    "email": user@example.com,
    "password": "userpass",
    "user_type": "tenant"
}' -vvvvv

This is the response I get:
{
    "id": "10a66b7f-134f-437f-a58f-ad15447c05a0",
    "email": user@example.com,
    "password": null,
    "user_type": "tenant"
}

The password will be null, of course, since it would be unsafe to send the password once more 
through the network.

•	 Creating a JWT token: This is the body of the request. We basically state that we are authenticating 
the user through the password grant type, and provide the username, password, client ID, 
and secret:

{
    "grant_type": "password",
    "username": user@example.com,
    "password": "userpass",
    "client_id": "4ca8f880-0bee-4c24-88ce-3402fe7e37f0",
    "client_secret": "b08cee2b-e79f-472b-a0b9-b210465c8bf3"
}



Implementing HomeIt security 291

This is the answer we get back from our server:
{
  "access_token": 
"eyJraWQiOiJmYWIzOGFhNi1kMDViLTRhYjgtYjA0NS04MzYyYjkwYWNmZGYiLCJ
hbGciOiJSUzI1NiJ9.
eyJzdWIiOiIxMGE2NmI3Zi0xMzRmLTQzN2YtYTU4Zi1hZDE1NDQ3YzA1YTAiLCJ
leHAiOjE3MjA1OTAzODcsImlhdCI6MTcyMDU4Njc4Nywic2NvcGUiOiJyZW50YW
xfcHJvcGVydGllczpyZWFkIn0.CTWh7bG9WZaXRxOj0hQ-
lRzLi6nCXpGPBBPD8ipXnaUOKBCqYMGK_
iImj5zjr3epM68wfu3bzVYwTF_TMPcRktGS3n1e7iJOsrDePO_
eanQo7ZEzGHpOPjGHq9TnRsSZiyNYT9OJXtTrzKBYrXwhn5t2Idd6VcQJJp9ti
TUIPxQePgEt1yI8LVl3puNFnjP_DJi7n33x9ZR3E1tqfgiDISGo-mGjXnwy_r_
GwUZOoMsWGIjMGT6v42XqhvxywaMZv1rf4iWFDGOb-2Q_lSQ-GUm_
XM3Yn2uKd76DtGoMpUlPQmjNT9ZZiro9Aiq2psPr6NpYCkgQZ9fOMGvD7QYaHg",
  "token_type": "Bearer",
  "expires_in": "3600",
  "scope": "rental_properties:read"
}

OK, this is it for the authorization service. Let’s jump now to the changes added to the Rental Properties 
service, so it can validate our JWTs.

Adding Spring Security to the Rental Properties service

In order to add security configurations to the Rental Properties service, these are the steps we need 
to go through:

1.	 Add the Spring Security dependencies.

2.	 Set the configuration files.

3.	 Set the security configuration class.

4.	 Add annotations to protected endpoints.

Let’s go over each of these in detail in the next few subsections.

Adding the Spring Security dependencies

In the dependencies section of the build.gradle file, add these libraries:

implementation 'org.springframework.boot:spring-boot-starter-security'
implementation 'org.springframework.boot:spring-boot-starter-oauth2-
resource-server'

As you know, the starter-security dependency provides the basic security filter infrastructure, 
and the OAuth 2.0 resource server dependency will help us secure our endpoints with the right 
JWT validation.



Securing Services with Spring Security and OAuth 2.0292

Setting the configuration files

To use the resource server built-in JWT validation feature from the OAuth 2.0 resource server 
dependency, we need to create an application.properties file in our rental properties resource 
folder and add the following entries:

spring.application.name=Rental-Property-App
spring.security.oauth2.resourceserver.jwt.public-key-
location=classpath:public.key

You may remember that both auth providers used a YAML file instead of the .properties we are 
using here. Spring supports both file types for externalizing configurations.

As you can see, the OAuth 2.0 resource server dependency provides a default configuration for 
acquiring the public key. Since we are using the classpath, we just need to add the public key as a file 
inside the resource folder as well, with our Base64-encoded public key in it. This is the location of 
both the application.properties and public.key files:

Figure 8.6: Configuration files location

Now, let’s implement the security configuration object, which is an important Spring bean on your 
authorization service.

Setting the security configuration class

This is how we configure Spring Security in the Rental Properties service. Here’s the class declaration:

@Configuration
@EnableWebSecurity



Implementing HomeIt security 293

@EnableMethodSecurity
public class SecurityConfig {

    protected DefaultSecurityFilterChain
        configure(HttpSecurity http) throws Exception {

        http.csrf(AbstractHttpConfigurer::disable)
        .sessionManagement(
            httpSecuritySessionManagementConfigurer ->
                httpSecuritySessionManagementConfigurer
                    .sessionCreationPolicy(
                        SessionCreationPolicy.STATELESS));

        http.authorizeHttpRequests(
        authorizeRequests ->
            authorizeRequests.anyRequest()
                .authenticated())
    .oauth2ResourceServer(oauth2ResourceServer ->
        oauth2ResourceServer.jwt(jwt ->
            jwt.jwtAuthenticationConverter(new
                JwtAuthenticationConverter())));
        return http.build();
    }
}

By declaring the annotations at the class level, we are saying Spring Security should provide method-
level and Spring Web security features. This config class should be annotated with @Configuration, 
so that Spring knows that this is a bean class and should be instantiated in the application start.

Next, we disable CSRF security, agreeing to let any domain call our API. We also set this service as a 
stateless microservice. Finally, we declare that any request should be authenticated. Through the OAuth 
2.0 resource server dependency, we are also saying that the JWTs sent through the bearer token will 
be converted to an Authentication object.

As Spring Security provides many different ways of authenticating a user, you need to provide information 
on your security config class as to how the users should be authenticated. In our case, we are just 
declaring that JWTs should be considered proof of authentication. The magic with this dependency 
is that, since we have already provided the public key in our configuration files, the dependency will 
use that to validate our token signature. This is all provided out of the box.

Now, this alone will make Spring validate the signatures of the JWT tokens in your resource servers. 
Now, if you are generating different key pairs for each token (this is not a common scenario, since 
the computational cost is pretty high to do it), you can provide a new JWTDecoder implementation 
class that would retrieve the key from the key ID contained in the JWT token.



Securing Services with Spring Security and OAuth 2.0294

Another interesting thing: if you want to see how the OAuth 2.0 resource server dependency works 
under the hood, you can look at the source code of the NimbusJWTDecoder class. The decode() 
method is the one that provides that implementation. If you are using IntelliJ or another good IDE, 
you can even download the source code and documentation, then add a breakpoint to the decode() 
method and see the JWT decoder working in real time. It is possible to inspect all variables and methods.

Adding annotations to protected endpoints

Now that we have validated our JWT, we need to make sure the user is authorized to use the endpoints. 
Remember, if the user is a landlord, we want them to be able to access all rental property edition 
endpoints, as well as endpoints that just read properties. If the user is a tenant, they should be able to 
just retrieve rental properties, and not edit them.

The main change I added to our RentalProperties service is in the RentalPropertyController 
class. Here, are two examples of the changes made:

@PostMapping(
    consumes = "application/json",
    produces = "application/json")
@PreAuthorize(
    "hasAuthority('SCOPE_rental_properties:write')")
public ResponseEntity<RentalPropertyDTO> createProperty(
    @Valid @RequestBody RentalPropertyDTO property) {

    RentalPropertyDTO createdRentalProperty
            = jpaRentalPropertyService.create(property);

    return ResponseEntity.status(HttpStatus.CREATED)
        .body(createdRentalProperty);
}

In this endpoint, we basically added a @PreAuthorize annotation with the use of the Spring 
Expression Language (SpEL). In this case, we are requiring that the user has the power to write a 
rental property.

This other endpoint is the one that allows us to retrieve a property:

@GetMapping(
    value = "/{id}",
    produces = "application/json")
@PreAuthorize("hasAuthority('SCOPE_rental_properties:read')")
public ResponseEntity<RentalPropertyDTO> getPropertyById(
    @PathVariable UUID id) {
    return jpaRentalPropertyService.get(id)
        .map(ResponseEntity::ok)



Implementing HomeIt security 295

        .orElse(ResponseEntity.status(HttpStatus.NOT_FOUND)
            .body(null));
}

In this case, we have used the same PreAuthorize annotation to make sure the user has the 
read property.

Bear in mind that the scopes created in our authorization server should match the ones we are requiring 
here. The format is <service>:<accesslevel>. The SCOPE_ prefix is a default string that the 
OAuth 2.0 dependency adds to your parsed JWT.

Also, you are able to use @PreAuthorize in any method from any service – not just on endpoints. 
This can bring great security customization to your resource servers.

Here are two other formats, among many, that you can use on your method-level validations:

•	 @PreAuthorize("hasRole('ROLE_ADMIN')")

•	 @PreAuthorize("hasRole('ROLE_ADMIN') and hasAuthority('SCOPE_
write:rental-properties')")

If you are interested in method-level permissions like that, Spring Security has a lot of options, including 
custom permissions you can create yourself.

Also, these other annotations can be used in case you want more flexibility on how to leverage these 
security restrictions:

•	 @Secured: Simpler role-based access control

•	 @RolesAllowed: Another annotation for role-based access control

•	 @PostAuthorize: Post-execution authorization checks

•	 @PreFilter and @PostFilter: Allow you to filter any object collections based on a 
security directive (for instance, only return rental properties that belong to a user)

Now, let’s implement a very important aspect of your system’s security, which is to restrict the access 
rights to the owners of the objects only.

Adding ownership security restrictions

Imagine a hacker acquires a token by registering as a landlord on your website, then decides to forge a 
request to delete a rental property added by another landlord. With the current implementation, your 
rental service will validate the JWT and the delete endpoint will allow the request to be processed, 
right? After all, the JWT is legit, and landlords have the ability to delete a rental property. With the 
current implementation, we could even have a landlord trying to create a rental property on another 
landlord’s account. You must be very careful about this kind of stuff. For instance, we could have a 
landlord trying to reconfigure another landlord’s bank account so that they can receive payment from 
contracts that do not belong to them.



Securing Services with Spring Security and OAuth 2.0296

These sample implementations do not enforce ownership. So, for example, to ensure a landlord is 
only allowed to delete their own rental properties, you can basically inject a special Spring Security 
bean called an Authentication object in the controller endpoint you want to enforce this restriction 
for. Take this example:

@DeleteMapping("/{id}")
@PreAuthorize(
    "hasAuthority('SCOPE_rental_properties:write')")
public ResponseEntity<Void> deleteProperty(
    @PathVariable UUID id, Authentication authentication)
        throws ParseException {

    Jwt jwt = (Jwt) authentication.getPrincipal();
    String userId = jwt.getClaim("sub");
    return entityManagerRentalPropertyService
        .delete(id,userId)
        .map(opt ->
            ResponseEntity.noContent()
                .<Void>build())
        .orElse(ResponseEntity
            .status(HttpStatus.NOT_FOUND).build());
}

But where does this Authentication object come from? In Spring Security, all authorized requests will 
produce an Authentication object behind the curtains, after the security filters approve the request. 
This interface is built out from whatever authentication mechanism you used, and it’s basically an 
object representing the authenticated user, with whatever important data is available. Another example 
is this: you can configure Spring Security to provide a login form and look for your user details in 
your company’s existing database. Once the user is authenticated with those special providers, an 
Authentication object is instantiated and attached to a session cookie, and it is provided on each 
request; you can just inject it. But that is a completely different Spring Security configuration that is 
beyond the scope of this scope.

As you can notice, the Authentication object in our implementation will basically be an instance of 
a JWT token object, which was the authentication mechanism used, and we can retrieve the user ID 
from the Subject claim. Remember how we set the user ID as the token subject in our authorization 
service? Here is why.



Implementing HomeIt security 297

I have also changed the RentalPropertyService interface to support a userId argument 
as the granted user in the delete() method. Also, I added a change to the implementation of 
entityManagerRentalPropertyService. See the following lines, in which we ensure the 
deletion is only processed if the owner of the rental property is requesting it:

@Override
public Optional<RentalPropertyDTO>
    delete(UUID id, String userId) {

    EntityManager entityManager =
        entityManagerFactory.createEntityManager();
    EntityTransaction transaction =
        entityManager.getTransaction();

    RentalPropertyDTO dto;
    try {
        transaction.begin();
        RentalProperty property = entityManager
            .find(RentalProperty.class, id);

        if(!property.getLandlordID()
            .toString().equals(userId)) {
            transaction.rollback();
            return Optional.empty();
        }

        dto = RentalPropertyConverter.toDTO(property);
        entityManager.remove(property);
        transaction.commit();
    } catch (Exception e) {
        if (transaction.isActive()) {
            transaction.rollback();
        }
        throw e;
    } finally {
        entityManager.close();
    }

    return Optional.ofNullable(dto);
}



Securing Services with Spring Security and OAuth 2.0298

Essentially, if the property does not belong to the authenticated user, it will be impossible to delete it. 
Also, the system will consider the property to be “not found.”

OK, this last topic took us further into securing our apps using Spring Security.

Implementing and using refresh tokens

Another important aspect of OAuth 2.0 authentication is what we call refresh tokens. A refresh token 
is a second token used to re-generate the user token, in case the first token expires. There are some 
considerations required when using refresh tokens.

First, the refresh token is especially important if you do not want your user to input their username 
and password again once the main token expires – which might be valid if your user token has an 
especially short duration. But that bears a controversial question: why should a user token be short-lived?

Let’s say we are working on a banking mobile app. You do not want the JWT token to live for more 
than two minutes under user inactivity, right? In that case, it might make sense to create a very short-
lived token (let’s say, an expiry time of one minute) and a refresh token (it could have an eight-hour 
expiry time). If your user has used the app in the last 60 seconds, you can use the refresh token to 
renew the main token. If the user spends more than one minute without using it, your app can revoke 
both tokens and the app will sign the user out. That is probably a good way of renewing the access 
and keeping security constraints very tight.

The problem with very long-lived refresh tokens is that they could be used by an attacker to get access 
to a valid user token without the need for the user credentials (login and password).

In most cases, you just need a regular user token. Let’s say that, in HomeIt, we set our expiry date 
to one entire week. The user could just stay logged in and would occasionally be required to sign in 
again. In this case, you can also use refresh tokens to avoid a jarring user experience. The token might 
expire right when the user is doing an important operation, for example, and they’re required to log 
in again. You need to evaluate the volume of events where that happens to users, in order to decide 
whether you need a refresh token or not. Again, this just means balancing trade-offs.

Consider another important aspect of refresh tokens. You might make refresh tokens JWT tokens as 
well, with a different scope. Since the refresh token is only used to renew the user token, the scope 
does not need to include other operations in the system, only the access to a specific endpoint that 
allows generating a user token out from a refresh token. And the only place that validates the refresh 
token, of course, is the authorization server itself.



Summary 299

When programming the refresh token, you will want to receive the same request payload as you sent 
with the creation of the original token for the first time, but this time the grant type is refresh_
token. Take this example:

{
    "grant_type":"refresh_token",
    "refresh_token":"YOUR_REFRESH_TOKEN",
    "client_id":"YOUR_CLIENT_ID",
    "client_secret":"YOUR_CLIENT_SECRET"
}

Whenever you generate a new user token, you can also re-generate the refresh token. This is a sample 
payload you can use in all your token creation response payloads:

{
    "access_token":"NEW_ACCESS_TOKEN",
    "token_type":"Bearer",
    "expires_in":3600,
    "refresh_token":"NEW_REFRESH_TOKEN"
}

That’s all! Let’s go ahead and wrap this chapter up now.

Summary
In this chapter, we discussed many important security aspects of a Spring application, and more 
specifically, diverse ways in which you can write OAuth 2.0-enabled implementations. We learned 
how JWT tokens work, and how tokens can be signed and verified in a very secure way without the 
need for multiple applications to connect over and over again to the authorization services. As you 
can imagine, there are a multitude of ways to implement OAuth 2.0 flows, and it all comes back to 
how your company is doing it. When joining a new Spring project, make sure to ask how the tokens 
are generated and validated. You now have a lot of conceptual and practical understanding to consider 
which security trade-offs your architecture is taking. You will also be able to ask powerful questions 
such as the following:

•	 If an attacker manages to find our signature keys and secrets, how can we rotate with 
minimum effort?

•	 Why do we use the current token with the current expiry date?

•	 Do we need refresh tokens? Why?

And that’s it! In the next chapter, we will investigate how to make communication happen between 
services. We will also explore how to test our apps now that we want different services to work well 
together. See you there!





9
High-Performance Secure 
Communication Between 

Spring Services

Welcome to Chapter 9! This is quite an intense chapter in which we are going to delve into three key 
topics for creating your Spring microservice architecture.

In this chapter, we will expand on how to implement Spring APIs, but this time with very high 
performance, using Spring WebFlux. We will also talk about how to have your services communicate 
with each other, and make it happen in a more secure way. Here’s a breakdown of our topics:

•	 Service communication made easy

•	 Adding more security to HomeIt authentication

•	 Writing a high-performance service with Spring WebFlux

•	 Connecting services with API requests

•	 Writing API integration tests with RestAssured

Since we are connecting services in an intricate way now, it is imperative that we go beyond just unit 
tests and isolated API tests. In this chapter, you will learn how to use a powerful tool called RestAssured 
that will run requests through your whole set of services, to make sure they can work together. Are 
you excited? I know I am. Let’s go!



High-Performance Secure Communication Between Spring Services302

Technical requirements
For this chapter, you will be required to refer to the code in our Git repository. All the code for 
Chapter 9 is here: https://github.com/PacktPublishing/Spring-System-Design-
in-Practice/tree/main/chapter-09.

Service communication made easy
If we are developing microservices, it is a given fact that each service will need to communicate with 
other services. If we are developing RESTful services, that means one service should be able to send 
api http requests to other services.

In Spring, there are three main ways to communicate through REST APIs:

•	 RestTemplate: This is the basic HTTP client used by many applications. It makes it quite easy to 
fire any HTTP request and convert the JSON response back to Data Transfer Objects (DTOs).

•	 Feign client: This is a client that allows us to declare HTTP requests with annotations in Java 
interfaces directly. This allows seamless integration with Spring Cloud, which makes service 
discovery easier.

•	 WebClient: This is a non-blocking HTTP client, and it is a part of WebFlux dependency. If 
you need very high throughput, you should use this one.

Next, let’s look at examples of how services can communicate with each other. We will be using the 
HomeIt project as the playground to build that inter-service communication. In this chapter, we 
will show you how to use RestTemplate to fire the API requests. The use of the Feign client and 
WebClient will come in Chapter 12 when we talk about adding optimizations to our code.

Adding more security to HomeIt authentication
Suppose you want to protect your application from a token breach. That is a case where a malicious 
user interacts with your app with a valid token, to exploit some vulnerability in your system. It could 
be a stolen token, a client app takeover, or any other way in which tokens could be used to give hackers 
access to a forbidden set of functions in your system.

In such circumstances, it is always great to have a way to revoke a token. In our HomeIt system, we 
will develop what we call the Revoke Token Service. That service will possess just two endpoints: one 
will be a POST request for revoking a token, and the other endpoint will implement a GET method, 
so we know if any given token is revoked.

https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-09
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-09


Adding more security to HomeIt authentication 303

The Revoke Token service will be consumed in our app by the Rental Property Service, during Spring 
Security token validation. In that way, it will be possible for your microservices to always check 
whether a token is in good condition, or whether it was manually revoked by you or automatically 
revoked by other microservices.

The following diagram explains what we will implement here:

Figure 9.1: The HomeIt authentication flow

To make sure all services can work in sync, we will create a test suite that simulates our users and their 
client applications, allowing us to run end-to-end tests that fully cover a portion of our user journey. 
This includes interactions between a landlord and a tenant with our backend system. To achieve this, 
we will use a tool called RestAssured.

What is RestAssured?

RestAssured is not actually a part of the Spring ecosystem, but it is very useful. It makes it extremely 
easy to write REST API calls, which we can then check to ensure they work correctly.

Because all services should work together and communicate with each other seamlessly, we call this 
testing suite an integrated test. That contrasts with unit tests, in which we test single classes in an 
isolated manner using mock objects. It is also different from testing a single microservice in isolation 
with the @SpringBootTest annotation. And because we are trying to simulate entire system use, 
we can also call it an end-to-end test.



High-Performance Secure Communication Between Spring Services304

The client application will be used by landlords and tenants to generate their user credentials and access 
tokens, so they can create and retrieve rental properties in our system. Across this path, we will ensure 
the responses are good enough and allow us to fully implement the conversation between services.

It is especially important to mention that we will add some functionality to the Rental Property Service, 
in such a way that every time one of its endpoints is called, instead of just verifying the JWT signature, 
it can also fire an API request to the Revoke Token Service to verify that the token is not revoked. 
That is important since the Rental Property Service cannot by itself decide/distinguish whether the 
user token was or should be revoked or not.

Another important thing to consider for a microservice such as Revoke Token is this: when your 
application has a security filter for revoking access tokens in real time, every microservice should 
call the Revoke Token Service to make sure the token is still valid. Because of that, the Revoke Token 
Service might suffer from a heavy load and will receive thousands of simultaneous requests if you have 
too many services. To make sure the Revoke Token service can handle the requests more appropriately, 
we will write this service with Spring WebFlux – so that you understand how to create non-blocking 
services that can scale much better than Spring Web.

Okay, let’s get down to business.

Writing a high-performance service with WebFlux
The first thing we need to do to write a Spring Web Flux microservice is, of course, to generate the 
app using the Spring Initializr website (https://start.spring.io/). In this example, I am 
generating a barebones application with the following options:

Figure 9.2: Creating the Revoke token with Spring Initializr

https://start.spring.io/


Writing a high-performance service with WebFlux 305

You do not need to select a dependency on this screen. Once you click on Generate and download your 
app, just add the following dependencies to the build.gradle file in the dependencies section:

dependencies {
    implementation 'org.springframework.boot:spring-boot-starter-
webflux'
    implementation 'org.springframework.boot:spring-boot-starter-data-
r2dbc'
    implementation 'io.r2dbc:r2dbc-h2'
    implementation 'org.springframework.boot:spring-boot-starter-
security'
    implementation 'org.springframework.security:spring-security-
config'
    implementation 'org.springframework.security:spring-security-web'
}

The starter-webflux dependency will guarantee that the service is blazing fast compared to 
serving requests with Spring Web.

The starter-data-r2dbc dependency will guarantee that your database connection also supports 
non-blocking operations.

To recap, a non-blocking operation (also called a reactive operation) allows your Java thread to remain 
free while an I/O task (such as a database query, network request, or file access) is in progress. When 
such a task is initiated, the thread doesn’t wait idly; instead, it becomes available to handle other tasks. 
Once the I/O operation completes, the original task is resumed, assigned to a thread, and continues 
processing as usual.

On top of the WebFlux and R2DBC dependencies, we are adding Spring Security dependencies, so 
that our Revoke Token Service can deal with authentication, as usual. You do not want this service to 
be accessible without proper credentials.

Looking at the Revoke Token Service folder structure

The Revoke Token Service is very simple, as it just supports two endpoints: one for revoking the token 
and another for checking whether a given token is revoked.

The whole microservice can be seen in our project repository, here: https://github.com/
PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-
09/revoke-token-service

https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-09/revoke-token-service
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-09/revoke-token-service
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-09/revoke-token-service


High-Performance Secure Communication Between Spring Services306

Now, please take a few seconds to look at the project structure:

Figure 9.3: The Revoke Token Service properties file location

The first thing we are going to do is to set the properties file in the next subsection.

Writing the Revoke Token Service properties file

We will create a file called application.properties, in the resources folder, as you saw 
in Figure 9.3.

The following lines should be added to the properties file:

spring.application.name=revoke-token-service
spring.r2dbc.url=r2dbc:h2:mem:///revokedtokendb
spring.r2dbc.username = sa
spring.r2dbc.password = password
spring.h2.console.enabled = true
spring.sql.init.mode = always
logging.level.org.springframework.data.r2dbc.core=DEBUG
logging.level.io.r2dbc.h2=DEBUG
server.port=8082



Writing a high-performance service with WebFlux 307

These lines will ensure the following:

•	 The in-memory database connection is created

•	 You can see every SQL query that is happening in the service at runtime

•	 The server is instantiated at port 8082, since the other services are already being exposed at 
ports 8080 and 8081

Writing the database schema file

The R2DBC dependency does not work like Spring Data, in the sense that you need to create the 
database schema in a different way. In this case, we are adding a schema file in the resources folder, 
such that Spring can take that schema file to write the database tables if they do not exist. Here it is:

CREATE TABLE revoked_tokens (
    REVOKED VARCHAR(1024) PRIMARY KEY
);

The Revoke Token Service database is simple: we just need one table and one column to store the 
revoked tokens.

Writing the Revoke Token Service persistence layer

Please look at how simple it is to write an Entity class to store our revoked tokens:

@Table("revoked_tokens")
public class RevokedToken {

    private String revoked;

    public RevokedToken(String revoked) {
        this.revoked = revoked;
    }

    public String getRevoked() {
        return revoked;
    }

    public void setRevoked(String token) {
        this.revoked = token;
    }
}



High-Performance Secure Communication Between Spring Services308

As you can see, the RevokedToken class is a very simple entity class that has just one attribute, 
called revoked, which represents our revoked token.

The @Table annotation defines the name of the table itself, the schema for which was defined in 
the schema file.

Next, take a quick look at our repository interface:

public interface RevokedTokenRepository extends
     ReactiveCrudRepository<RevokedToken, String> {
         Mono<RevokedToken> getByRevoked(String token);
}

As you can see, we just need a custom method for querying the revoked token from the database. Since 
the schema defines the revoked column as the primary key, that query will result in a very fast search.

Bear in mind, for a second, that this repository class extends the ReactiveCrudRepository 
interface. What that does is give you access to a different return type for your queries. This is key to 
understanding reactive versus blocking services.

Reactive versus blocking services

When you write blocking services, you always call functions that return the actual object you are 
expecting to handle. So far, every time you do a database call using Spring Data, what you get back 
from the method call is the actual database Entity object. That means the code needs to wait for 
the entire database I/O operation to give you that object. In Java terms, that normally means your 
thread is basically stalled, waiting for your return type. That is what gives you a lot less performance, 
even if you use the virtual threads feature. It will be faster than the standard thread handling but less 
performative than reactive operations, which are non-blocking—in other words, it does not occupy 
your thread indefinitely.

When dealing with reactive programming, you will find two types of return objects that you have to 
carry across your execution stack:

•	 Mono<T>: This means your return type will be delivered in the future, whenever the I/O 
operations are resolved. When working with a Mono object, your return type (i.e., your database 
object) is encapsulated inside the Mono interface.

•	 Flux<T>: This means your return type is a series of objects of type T that will be delivered 
in the future when the I/O operations are resolved. Think about this as a stream of objects.

In both cases, when working with Mono<T> of Flux<T> interfaces, you will be able to handle the 
return objects by working with a functional programming style. What does that mean? It basically 
means you will use the type of syntax that resembles the Java Stream API. We will see some examples 
of that and we will explain more about what it implies for your API runtime execution.



Writing a high-performance service with WebFlux 309

Writing the Revoke Token service class

The Service class now can be written, and it will access the repository both to save and to query 
for the revoked token:

@Service
public class RevokeTokenService {

    private final RevokedTokenRepository repository;

    public RevokeTokenService(
        RevokedTokenRepository repository) {
        this.repository = repository;
    }
    public Mono<RevokedToken> revokeToken(String token) {
        return repository.save(new RevokedToken(token));
    }

    public Mono<RevokedToken>
        getRevokedToken(String token){
        return repository.getByRevoked(token);
    }
}

As you can see, both methods just deal with a Mono<RevokedToken> object, meaning you will 
be able to return a Mono – a function that will return the RevokedToken object, whenever the 
database can retrieve it for you.

Notice that you need to avoid resolving the Mono<T> or Flux<T> anywhere in your entire application. 
Your work is basically to chain methods in a functional way, and return those execution pipelines in 
your controllers, so that the Spring WebFlux dependency itself can resolve and schedule the pipelines, 
and also pause them, as the I/O operations start and return data. By returning those pipelines to your 
controller, you ensure that your code is non-blocking and reactive.

You have methods for extracting objects from the Mono and Flux interfaces immediately. But that 
means you risk your code becoming more complex and even blocking at some points.

Spring WebFlux is the type of dependency that deserves a whole book since it is a very important 
project that allows you to write high-performing services. In this chapter, we will basically show you 
a very quick intro, so that you can understand the concept.

Let’s write the controller now. In the WebFlux language, we say we will write the Handler class.



High-Performance Secure Communication Between Spring Services310

Writing a reactive endpoint Handler class

This is how you write a Handler class that can deal with your requests and call your service class:

@Component
public class RevokeTokenHandler {

    private final RevokeTokenService revokeTokenService;

    public RevokeTokenHandler(
        RevokeTokenService revokeTokenService) {
        this.revokeTokenService = revokeTokenService;
    }

    public Mono<ServerResponse> revokeToken(
        ServerRequest request) {

        String token = request
            .queryParam("token").orElse("");

        return revokeTokenService
            .revokeToken(token)
            .flatMap(revokedToken ->
                ServerResponse.status(201)
                    .contentType(
                        MediaType.APPLICATION_JSON)
                    .bodyValue(revokedToken))
            .switchIfEmpty(
                ServerResponse.badRequest().build())
            .onErrorResume(error ->
                ServerResponse.badRequest().build());
    }

    public Mono<ServerResponse> isTokenRevoked(
        ServerRequest request) {

        String token = request
            .queryParam("token").orElse("");

        return revokeTokenService.getRevokedToken(token)
            .flatMap(revokedToken ->
                ServerResponse.ok()
                    .contentType(
                        MediaType.APPLICATION_JSON)



Writing a high-performance service with WebFlux 311

                    .bodyValue(
                        revokedToken.getRevoked()))
            .switchIfEmpty(
                ServerResponse.noContent().build());
    }
}

This is an example in which you can see the entire WebFlux writing style. In the revokeToken() 
method, you would extract the token parameter from the request object your HTTP client has sent you. 
You would then call the revokeToken service, which would return a Mono<RevokedToken> object. 
From that object, you would write a reactive pipeline, which matches the functional programming style 
as we write it in the Java Streams API way. The flatMap() method would extract the RevokedToken 
object from your Mono interface and then turn it into a ServerResponse.io() object. We are 
saying we want to return our RevokedToken object as JSON.

You might have noticed that, so far, I have not included a translation from our RevokedToken entity 
object to any DTOs. That is because the Revoke Token Service is fairly simple, so we can make it even 
simpler by breaking a rule here. If this service becomes more complex and with fairly complicated 
business rules, you should definitely refactor it to include DTOs and translation processes, so that you 
can isolate your database object implementation from your network JSON object implementation.

Still in the revokeToken() method, if any error occurs – for example, if we try to revoke the same 
token twice, we will simply return bad request HTTP code, with no details. You might want to extend 
this service to match some other particular use case. I am just giving you a barebones implementation 
so that you can understand the WebFlux implementation concept itself.

The isTokenRevoked() method is very similar to revokeToken(). But instead of trying to 
revoke a token, you are basically asking the service to return the token if it is revoked. If the token 
is not present in the database, you will get an empty Mono, which will then return a 204 – no 
content HTTP return code. That means your token is not revoked.

Next, we will show you how to assign the URI endpoints.

Writing the RouterConfig and resource addresses

This is how you finally use your handlers to create endpoints in Spring WebFlux – see the following code:

@Configuration
public class RouterConfig {

    @Bean
    public RouterFunction<ServerResponse>
        route(RevokeTokenHandler handler) {

        return RouterFunctions



High-Performance Secure Communication Between Spring Services312

            .route(RequestPredicates.POST(
                "/api/revoke-tokens"),
                handler::revokeToken)
            .andRoute(RequestPredicates.GET(
                "/api/revoke-tokens"),
                handler::isTokenRevoked);
    }
}

As you will notice, the RouterConfig class is the equivalent of the controller class in a Spring 
Web project. But instead of writing several methods, one for each URL and endpoint, you will write a 
route() method that injects your handler class instance as a Spring bean. You will annotate this 
route() method with the @Bean annotation, meaning Spring Boot will call this method at the 
beginning of the application lifecycle, in order to instantiate the RouterFunctions Spring bean.

The RouterFunctions implementation you see in the route() method is what actually defines 
your endpoints. You can pass the method references from your handler class to the route() and 
addRoute() methods so that you can define which URLs should be handled by which handler methods.

Last but not least, we need to write the security config file, so that requests to your Revoke Token 
Service are secured by a specific application ID and secret you can configure.

Writing a customized Basic authorization filter

Here’s an example of how we should write the Spring Security filter in a way that includes App ID 
and secret validation for every endpoint in a single place. That is in contrast to what we did in the 
RentalProperty service, in which the controller methods validated the ID and secret directly:

@Configuration
@EnableWebFluxSecurity
public class SecurityConfig {

    private static final String APP_ID = "myAppId";
    private static final String APP_SECRET = "mySecret";

    @Bean
    public SecurityWebFilterChain
        securityWebFilterChain(ServerHttpSecurity http) {
        return http
            .authorizeExchange(spec ->
                spec.anyExchange().authenticated())
            .httpBasic(authConfigurer ->



Writing a high-performance service with WebFlux 313

                authConfigurer.authenticationManager(
                    authentication -> {
                        String principal =
                            authentication.getName();
                        String credentials = authentication
                            .getCredentials().toString();
                        if (APP_ID.equals(principal) &&
                            APP_SECRET.equals(
                                credentials)){

                            Authentication auth = new
                    UsernamePasswordAuthenticationToken(
                                principal, credentials,
                                Collections.emptyList());

                            return Mono.just(auth);
                        } else {
                            return Mono.empty();
                            // Returning an empty Mono
                            // if authentication fails
                        }
                    }))
                .csrf(ServerHttpSecurity.CsrfSpec::disable)
                    .build();
    }
}

To consume the methods in the Revoke Token Service, you should fire a request with a basic auth 
header. That means concatenating the app ID and secret as the user and password, in base 64 encoding.

Now, your Revoke Token microservice is entirely ready to go, built on top of Spring WebFlux. If you are 
interested in writing very high-performing services, you can see more about WebFlux in the Hands-On 
Reactive Programming in Spring 5 book, from Packt Publishing: https://www.packtpub.com/
en-us/product/hands-on-reactive-programming-in-spring-5-9781787284951.

We can now make some changes to the rental properties service, so that each time you fire a request 
to it, the Rental Properties service will also query the Revoke Token Service to check whether the 
token is still valid – that is in addition to validating the JWT token signature itself.

Let’s see that in action next.

https://www.packtpub.com/en-us/product/hands-on-reactive-programming-in-spring-5-9781787284951
https://www.packtpub.com/en-us/product/hands-on-reactive-programming-in-spring-5-9781787284951


High-Performance Secure Communication Between Spring Services314

Connecting services with API requests
We will now move on to implement a simple security filter in the Rental Properties service that will 
send an HTTP request to our new Revoke Token Service. For that, we will use the RestTemplate 
Spring bean, which is included as a dependency from the Rental Properties service:

@Service
public class RestTemplateRevokedTokenService {

    private final RestTemplate restTemplate;

    public RestTemplateRevokeTokenService(
        RestTemplate restTemplate) {
        this.restTemplate = restTemplate;
    }

    public boolean isTokenRevoked(String token) {
      String url =
        "http: //localhost:8082/api/revoke-tokens?token="
            + token;

        // Create headers and add them to the request
        HttpHeaders headers = new HttpHeaders();
        headers.set("Authorization",
            "Basic bXlBcHBJZDpteVNlY3JldA==");
            // this is a base64 encoded version
            // of the string "myAppId:mySecret",
            // which is the id and secret expected
            // by the Revoke Token Service

        HttpEntity<String> entity =
            new HttpEntity<>(headers);

        // Use exchange to send the request with headers
        ResponseEntity<String> response =
            restTemplate.exchange(url,
                HttpMethod.GET, entity, String.class);

        if(response.getStatusCode().value() == 204) {
            return false;
        }

        if(response.getStatusCode().value() == 200) {



Connecting services with API requests 315

            return
                Objects.requireNonNull(response.getBody())
                .contains(token);
        }

        return true;
    }
}

As you can see, this class is a Spring bean that expects to have the RestTemplate interface injected. 
That means we have to provide an @Bean annotated factory method, which is provided by a new 
RestTemplateConfiguration class you can see here:

@Configuration
public class RestTemplateConfiguration {
    @Bean
    public RestTemplate restTemplate() {
        return new RestTemplate();
    }
}

Once created by Spring, the RestTemplate bean will be used across the entire application. It is 
designed to be thread-safe, which means different calls to the same bean do not share data or HTTP 
connections. RestTemplate will manage a pool of connections for you, which means you can do 
concurrent calls with no risks of overriding memory areas from other calls.

Coming back to the RestTemplateTokenService class, as you can see, we have created a single 
method, isTokenRevoked(), which fires a request to RevokedTokenService. It includes an 
authorization header with a basic credential encoded in base 64. That is our application ID and secret. 
This is just to illustrate another way to authenticate your calls in other services.

We are also parsing the response object to a string, but we could parse it to whatever objects you want, 
given that you can map the JSON object to that other class. You can write your DTOs and parse the 
response objects to DTOs directly.

Plus, we are doing a very simple test. If our response is 204, that means the token is not revoked. If 
the response is 200, we test to see whether the token we sent is included in the response. That is the 
final test that asserts that our token is actually revoked.

That is, in essence, how you write an HTTP request to another service. That’s very easy, right? Let’s now 
include this service in the RentalPropertyService token validation flow, using Spring Security.



High-Performance Secure Communication Between Spring Services316

Adding security filters to your authentication flow

Spring Security has a concept that we call the Security Filter Chain. That means you can write as 
many security filters as you want for your application, and you can chain them using the HTTP 
security config class.

First, we will write a simple security filter that will be called once per request:

public class TokenRevocationFilter
    extends OncePerRequestFilter {

    private final RestTemplateRevokedTokenService
        revokeTokenService;

    public TokenRevocationFilter(
        RestTemplateRevokedTokenService
            revokeTokenService) {
        this.revokeTokenService = revokeTokenService;
    }

    @Override
    protected void doFilterInternal(
        HttpServletRequest request,
        HttpServletResponse response,
        FilterChain filterChain)
            throws ServletException, IOException {

        // Extract token from the Authorization header
        String authorizationHeader = request
            .getHeader("Authorization");

        if (authorizationHeader != null &&
            authorizationHeader.startsWith("Bearer ")) {

            String token =
                authorizationHeader.substring(7);

            // Validate the token against
            // the revocation service

            if (revokeTokenService.isTokenRevoked(token)) {
                // If the token is revoked, return 403
                // Forbidden



Connecting services with API requests 317

                response.sendError(
                    HttpServletResponse.SC_FORBIDDEN,
                    "Token is revoked");
                return;
            }
        }
        // Continue the filter chain
        filterChain.doFilter(request, response);
}}

As you can see, this service injects the RestTemplateRevokedTokenService Spring bean, so that 
it can fire the request to the remote server. Another important thing is the TokenRevocationFilter 
class extends OncePerRequestFilter – as the name suggests, it will be activated exactly one time 
for each HTTP client request. Your customized filter will be called every time there is an incoming 
request. The doFilterInternal() method is what we need to implement for the filter to allow 
or forbid a request. If you forget that, your request will not be processed by the rest of the filter chain.

A customized filter brings you the responsibility for some critical things, such as the need to manually 
continue the filter chain execution after applying your tests. Within the filter, you are free to play with 
the request and the response object. We basically extracted the authorization header and found the 
actual JWT token to send to the Revoke Token Service. Finally, if the filter detects that the request 
should not be allowed (in this example, by detecting that the token is revoked), you can set the error 
in the response object, just like we did in the sample code.

Now, let’s see how we need to change the SecurityConfig class to add this custom filter:

@Configuration
@EnableWebSecurity
@EnableMethodSecurity
public class SecurityConfig {

    private final RestTemplateRevokedTokenService
        restTemplateRevokedTokenService;

    public SecurityConfig(
        RestTemplateRevokedTokenService
            revokeTokenService){

        this.restTemplateRevokedTokenService =
            revokeTokenService;
    }

    @Bean



High-Performance Secure Communication Between Spring Services318

    protected DefaultSecurityFilterChain
        configure(HttpSecurity http) throws Exception {

        return http.csrf(AbstractHttpConfigurer::disable)
        .sessionManagement(session ->
            session.sessionCreationPolicy(
            SessionCreationPolicy.STATELESS))
        .authorizeHttpRequests(auth ->
            auth.anyRequest().authenticated())
        .oauth2ResourceServer(oauth2 -> oauth2
            .jwt(jwt -> jwt.jwtAuthenticationConverter(
                new JwtAuthenticationConverter())))
        .addFilterBefore(
            new TokenRevocationFilter(
                restTemplateRevokedTokenService),

                BearerTokenAuthenticationFilter.class )
        .build();
    }
}

You can see that this is our filter chain, and we basically added the custom filter after adding the 
jwtAuthenticationConverter filter. This will now ensure that we call the Token Revoke 
service every time a user request arrives. Having a stronger verification like that can be very useful, 
but it costs a lot of extra requests to the Revoke Token service. Since the Revoke Token Service is a 
reactive service made with WebFlux, it can handle more requests than a simple Spring Web service. 
We can also improve performance here by caching the responses from the Revoke Token Service so 
that subsequent calls in a short period of time do not need to fire requests to the Revoke Token Service. 
We will see that in Chapter 12 when we will see how to optimize your architecture.

Okay, so everything is in place and RentalPropertiesService can communicate with 
RevokeTokenService. Next, let’s create a test suite that is able to verify that the entire user flow 
is working between services.

Writing API integration tests with RestAssured
The Rest Assured project is not actually a part of the Spring ecosystem, but it makes it very easy to 
write API tests that verify that different services can work together. In this chapter, we will create a 
new project in our repo that runs a test case in which a landlord creates a rental property and a tenant 
looks at the rental property details.



Writing API integration tests with RestAssured 319

Creating the project structure

To create the project structure, you can use the Spring Initializr website and download a default project 
with no extra dependencies. Then, you can delete all classes from the Java src folder. Your resulting 
directory structure will be this one:

Figure 9.4: The integration test project structure

This is really all you need to create your integration tests. Next, let’s declare some dependencies.

Declaring dependencies

Let’s now look at the build.gradle file, in which we declare the important dependencies:

plugins {
    id 'java'
}

group = 'com.homeit'
version = '0.0.1-SNAPSHOT'

java {
    toolchain {



High-Performance Secure Communication Between Spring Services320

       languageVersion = JavaLanguageVersion.of(21)
    }
}

repositories {
    mavenCentral()
}

dependencies {
    testImplementation 'com.fasterxml.jackson.core:jackson-
databind:2.17.2'
    testImplementation 'io.rest-assured:rest-assured:5.3.0'
    testImplementation 'org.junit.jupiter:junit-jupiter:5.8.2'
}

tasks.named('test') {
    useJUnitPlatform()
}

As you will notice, the only dependencies we are using here are jackson-databind, rest-
assured, and junit-jupiter. Those three dependencies will help us to fire our requests to our 
services, parse the answers, and verify them to make sure they are the expected ones.

With that, let’s now see the actual test class.

Writing the actual tests

The only test method we have here is the one called endToEndFlow(). That is because this method 
will contain the whole process in which the following occurs:

•	 Two users are created: a landlord and a tenant

•	 Both users have their access tokens created

•	 The landlord creates a sample property

•	 The tenant is able to retrieve the sample property

•	 The tenant tries to create a property but fails

•	 We verify that the landlord token is not revoked in the Revoke Token Service

•	 We then revoke the landlord token

•	 The landlord tries to create a property but fails because their token is now revoked



Writing API integration tests with RestAssured 321

Here is the full implementation. The first method is basically a sequence of calls to test methods in the 
right order. These methods will fire requests and verify the responses using RestAssured classes:

@Test
void endToEndFlow() {
    CreatedUser createdLandlord =
        createUserAndToken("landlord");

    CreatedUser createdTenant =
        createUserAndToken("tenant");

    CreatedProperty createdProperty =
        landlordCreatesProperty(createdLandlord);

    tenantRetrievesProperty(
        createdProperty.createdPropertyResponse(),
        createdTenant.userTokenResponse());

    tenantFailsAtCreatingProperty(createdTenant);

    verifyLandlordTokenIsNotRevoked(
        createdLandlord.userAccessToken());

    revokeLandlordToken(createdLandlord.userAccessToken());

    landlordFailsAtCreatingProperty(
        createdLandlord.userId(),
        createdLandlord.userAccessToken());
}

Okay, this is the way I like to organize end-to-end tests. Since they are very dense, with a lot of test 
cases whose results depend on each other in just one test flow, it is just good practice to separate test 
cases into different methods. This makes the class easier to read and understand.

Now, let’s see how we create a landlord user – the first method in our end-to-end test:

private CreatedUser createUserAndToken(String userType) {
    // First request to localhost:8081
    RestAssured.baseURI = "http: //localhost/users";
    RestAssured.port = 8081;
    System.out.println("===== CREATES USER OF TYPE: "
        + userType);

    ExtractableResponse<Response> createdUserResponse =



High-Performance Secure Communication Between Spring Services322

        createUser(userType);

    ExtractableResponse<Response> userTokenResponse =
        createToken(createdUserResponse.path("email"));

    return new CreatedUser(createdUserResponse,
        userTokenResponse);
}

Here is where we start to see RestAssured in action. We use baseURI and the port to specify the 
target address for our first request. The ExtractableResponse class helps to handle the server 
response by using JSON path queries – we can identify the fields in our request by using the path() 
method. We created the CreatedUser record class just to store the values we will use later.

The createUser() and createToken() methods are used in sequence to create the landlord 
user and a valid JWT access token so that the landlord can query the Rental Properties service later.

The CreatedUser record is fairly simple:

private record CreatedUser(
    ExtractableResponse<Response> userIdResponse,
    ExtractableResponse<Response> userTokenResponse) {

    String userAccessToken() {
       return userTokenResponse.path("access_token");
    }
    String userId() {
       return userIdResponse.path("id");
    }
}

The userAccessToken() and userId() utility methods were made to facilitate extracting the 
values from the JSON response we receive from the authorization service.

Making the actual requests using RestAssured

Now, let’s see how the actual requests are made using RestAssured. Here is the createUser() 
method implementation:

private ExtractableResponse<Response> createUser(
    String userType) {

    return given()
          .contentType("application/json")
          .body(userPayload(userType)).



Writing API integration tests with RestAssured 323

       when()
          .log().all()
          .post("/register").
       then()
          .log().all()
          .body("id", notNullValue())
          .body("email", endsWith("user@example.com"))
          .body("user_type", equalTo(userType))
          .extract();
}

This is a brief sample of how we create a request and validate its return using RestAssured. It 
follows the same structure for test cases we learned about in Chapter 6: given, when, then. In 
this implementation, we are saying that we want to fire a request with a contentType header 
of the "application/json" value, and we set the body to be the content returned from the 
userPayload() method – we will look at that in a bit.

We then proceed to the when() directive, in which we set RestAssured to log all relevant 
information and execute a POST HTTP method request to the "/register" endpoint. Remember, 
we set the target URI and the port in the method that called the createUser() method.

After firing the request, we proceed with verifying that the response contains the content we expect. 
In this case, we are also logging the response, and we make sure that the body contains the ID of the 
user (a non-null value), the email ends with a specific suffix, and the user type is the same one we 
provided to this method. Finally, we return the value extracted from the response.

Let’s look at the userPayload() method implementation now:

private static Map<String, String> userPayload(
    String userType) {

    return Map.of("email",
        new Date().getTime() + "_user@example.com",
       "password", "userpass",
       "user_type", userType);
}

The userPayload() method basically creates a map of keys/values. That map is transparently 
used by RestAssured to create the payload. Because we will create different users, it is good to 
dynamically generate the email in this utility method.



High-Performance Secure Communication Between Spring Services324

The createsLandlord() method also contains another utility method called createToken(). 
Let’s see how it is implemented:

private ExtractableResponse<Response> createToken(
    String email) {

    return given()
          .contentType("application/json")
          .body(tokenPayload(email, "userpass")).
          when()
          .log().all()
          .post("/token").
          then()
          .log().all()
          .body("access_token", notNullValue())
          .body("token_type", equalTo("Bearer"))
          .body("expires_in", equalTo("3600"))
          .extract();
}

As you can see, this is just another RestAssured request with the given-when-then structure. 
This time, we are setting the POST URI to "/token", as this is the token controller address in our 
authorization service. In the then() section, we are verifying that the "access_token" field is 
being returned in the response with a non-null value as well as "token_type" and the expiration 
date for the token.

Similarly, the rest of our end-to-end test flow is composed of several RestAssured calls to other 
services and subsequent verification of the results. Here is the code for the revokeToken() method, 
used to revoke the landlord token and make sure they cannot register new properties:

private ExtractableResponse<Response> revokeToken(
    String token) {

    return given()
        .header("Authorization",
            "Basic bXlBcHBJZDpteVNlY3JldA==")
        .when()
            .log().all()
            .post("/api/revoke-tokens?token="+token).
        then()
            .log().all()
            .body("revoked", equalTo(token))
            .extract();
}



Summary 325

In this method, we are sending an Authorization header, which basically comprises the 
"myAppId:mySecret" string, parsed with Base64 encoding. This implementation calls the 
Revoke Token Service using the "/API/revoke-tokens" URI, parsing the token as a query 
parameter. Also, we verify that the response contains the "revoked" attribute, and it contains the 
original token we revoked.

This is the essence of how you write an end-to-end API integration test. Of course, to have it working, 
we need to make sure all services are running. Then, it is possible to execute this test suite by running 
the following command:

> gradle test

That will trigger the end-to-end flow up to its completion. If you want to look at the entire code of 
our end-to-end test flow, it is in the Chapter 9 code in the GitHub repo, as stated in the Technical 
requirements section at the beginning of this chapter.

Summary
In this chapter, we have learned many interesting things about the following:

•	 How to create a high-performance Spring WebFlux service that is capable of handling a lot of 
parallel requests

•	 How to create extra security filters in Spring Security configurations and how to chain them 
to harden your application security

•	 How to get your services communicating with each other, through the use of a RestTemplate 
Spring bean

•	 How to implement full end-to-end microservice integration tests that verify a specific set of 
services that depend on each other are working properly together

In the next chapter, we will continue looking at inter-service communication. But this time, we will 
learn how to implement it in an event-driven way. See you there!





10
Building Asynchronous,  

Event-Driven Systems With 
NoSQL Databases

Welcome to Chapter 10! I feel really excited about this chapter, as we are jumping to completely 
different topics using Spring Framework.

In this chapter, we will start by exposing some critical issues with RESTful APIs and how integrating 
different systems could lead to a massive amount of code that is hard to maintain. Then, we will present 
the alternative of event-driven architectures to de-couple services.

Here are the main topics covered in this chapter:

•	 A maintainability issue with RESTful APIs

•	 Introducing event-driven architectures

•	 Using Kafka in event-driven services

•	 Using MongoDB for NoSQL persistency

•	 Our event-driven HomeIt

•	 Building our rental proposal service publishers

•	 Building our rental properties service subscribers

•	 Extending our end-to-end tests

Alongside the main topic, which is event-driven architecture, we will also explore some more nuances 
of writing asynchronous systems using WebFlux, as well as how to incorporate MongoDB, the most 
widely used NoSQL database. I hope this chapter really opens your eyes to the power of event-driven 
systems. Let’s go!



Building Asynchronous, Event-Driven Systems With NoSQL Databases328

Technical requirements
The entire code base for this chapter can be found at https://github.com/PacktPublishing/
Spring-System-Design-in-Practice/tree/main/chapter-10.

A maintainability issue with RESTful APIs
The REST standard is generally a great tool for developing software. It offers a concise way for 
mapping your entities in endpoints, and to standardize essential operations, such as listing, creating, 
updating, and deleting objects. It’s no wonder it took the world by storm as the default method for 
building web services.

Although powerful, there is still a very critical pain point in this great standard. That is the problem 
of strongly/heavily coupled services.

What is heavy coupling?

To understand what I mean by strongly coupled services, consider the following scenario: suppose that 
in our HomeIt startup, we had a rental proposal service, the role of which is to make sure that the 
rental transaction occurs smoothly between tenants and landlords.

Suppose the rental proposal service only holds information about the state of a current rental negotiation 
and this service needs to communicate with other services while the negotiation happens.

Suppose we also have other services that depend on the rental proposal service, such as the following:

•	 Rental properties service: This service, the code samples for which are already provided at 
https://github.com/PacktPublishing/Spring-System-Design-in-
Practice/tree/main/chapter-10/rental-property-microservice, needs 
to know the current state of the negotiation so that it can track whether a property is available 
for rentals or not.

•	 Messaging service: This service will fire messages to the related users if the state of a rental 
proposal changes. When someone makes an offer or counteroffer, or approves or rejects an offer, 
the messaging service is the one that will send the actual message to the landlord or tenant.

•	 Payment service: This service will track whether it is time to charge the customer or not. That 
is, once an offer has been accepted by the landlord or the tenant, this service starts the process 
of requesting the actual payment from the tenant.

Now, let’s try to coordinate the three services by only using RESTful API endpoints, all from the rental 
proposal service API. That is, once a rental negotiation changes its state, that service will have to fire 
API requests to the three other services. This is illustrated in Figure 10.1:

https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-10
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-10
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-10/rental-property-microservice
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-10/rental-property-microservice


A maintainability issue with RESTful APIs 329

Figure 10.1 – An example of RESTful API communication

Now, based on Figure 10.1 we can conclude that every time a negotiation state changes, we need to 
check whether the API calls are being correctly fired to the other APIs. What this means is that every 
time we add new negotiation states or new API services, we need to evaluate whether we are going 
to write or change every single API call in the rental proposal service.

That is interesting, as it makes the rental proposal service the single service responsible for orchestrating 
every other service. That might be OK for orchestrating three or four services but once the service 
number in your microservice cloud grows, this might make things a lot more complicated to manage 
and maintain.

As more services are integrated with each other over time, the amount of code can grow exponentially 
if we are exclusively using REST APIs to express the connection between services. Also, when we use 
only RESTful APIs to connect services, that means every service needs to have knowledge about other 
service domains. That is what we mean by heavy coupling. If you add four more services to the right 
side of Figure 10.1, that means your rental proposal service is forced to have some code referring to 
the other new services.

Now, let’s explore the implications of the topology proposed here and how different programming 
decisions could create unmaintainable software.

How service coupling makes code harder to maintain

Heavy coupling goes as follows: as the number of connected services grows, the harder it is to make 
those services work separately and independently. In our example, by always using RESTful APIs, 
since the rental proposal service would contain explicit code that fires requests to the rental property 
service, messaging service, payment Service, and others, it is just a lot more code to read and edit 
when making changes.



Building Asynchronous, Event-Driven Systems With NoSQL Databases330

Among the most critical decisions you will have to make in your life as a software architect is choosing 
how to connect systems.

Knowing how to model system integrations is a complex matter, so I will list some key variables and 
questions at play when designing them:

•	 How many system integrations will there be in your microservice architecture? The more 
systems are connected, the bigger the amount of code you must deal with, and the harder it 
will be to maintain when you change something.

•	 Which systems provide the more stable interfaces compared with others? Suppose that the 
messaging service APIs keep changing from month to month, so every service that uses the 
messaging service must be kept up to date with the changes. You will require new code in other 
services very often as the messaging service evolves.

•	 Do your services depend on the response from other services to continue their operations? For 
instance, if you write the rental proposal service such that it must use the messaging service 
response to decide how to continue its operation, that makes the rental proposal service more 
complex to write. It also makes it harder to recover from failures in the messaging service. 
Believe me, every service will fail at some point.

Due to those three key points, here is some critical guidance when writing systems.

Create well-established domain boundaries

Avoid having specific knowledge from one service written in another service. That keeps your code 
cleaner, in the sense that different services will have well-isolated domains.

For instance, ideally, the messaging service should not know anything about rental properties or rental 
proposal objects. It should just know about messages.

Write stable interfaces

As much as you are able to, design your services in a way that will not require changes to their interface 
(endpoints) in the future. Releasing the flavor of the month endpoint throughout the entire year will 
require adding new code to other services in the future just because you changed your original service. 
You should instead create a few endpoints that represent the essence of the domain your service is 
dealing with and stop changing them after they are released.

For example, in the messaging service, instead of writing endpoints for SMS, email, WhatsApp channels, 
and so on, write a single endpoint that is abstract enough to be used to implement communication 
with whatever platforms your company uses. The way you implement that endpoint will allow your 
product team to decide where the messages should be sent. That prevents a lot of headaches and saves 
development time and company money in the future.



A maintainability issue with RESTful APIs 331

Develop response independency

Make your services work independently from the other services you need communication with. 
Doing this shows that you know how to isolate matters and facilitates consistency throughout your 
microservice cloud. This also makes it easier to recover from failure as well.

Here is another example: it might be enticing to write the rental proposal service in a way that it waits 
for the result of an API call to the payment service so that you can define the status of a proposal. 
However, doing that will create a data consistency risk because if your rental proposal API is unable 
to call the payments service, or if the payments service processing breaks during a call, you will have 
a big problem at hand! It will be impossible to determine the status of a rental proposal, and that will 
leave you with eventual financial losses – especially when you achieve high business volume.

Know your highest-order business service

This is an especially important consideration that can save millions in development efforts for the 
company you are working with, and we do not see this advice in a lot of places. When writing your 
microservices, evaluate whether you really need business-related rules in each one of them.

In our case, a messaging service should not know anything about the state of the proposals. The payment 
service should also not know about rental properties. Rental properties should also not know about 
the proposals. Cross-domain knowledge should not matter on a service.

Plus, this is a special case of the domain boundary principle: you need to determine which service 
should contain the core of your business rules. You should design or identify which service represents 
the highest-order business rules. In other words, although every service participates in your system 
and helps to drive revenue, which service(s) will be responsible for containing the business rules that 
really drive the core value you are providing to your customers?

Let me explain it through our example: in the HomeIt system, we are all about renting properties, so 
the critical service for driving the rental relationships is the rental proposal service. That means your 
highest-level business rules must be contained in the rental proposal service, and this service is the 
highest-value service in your architecture. Since the rental proposal service represents the thing of 
the highest value to your company (the rentals themselves), you should never ever spread logic that 
should be in the highest value service in other services.

In the HomeIt example, failing to identify the highest-order business service usually involves writing 
a lot of if-else statements for rental property statuses in a lot of different services. If you find 
that the messaging service, the payment service, and the rental properties service are all trying to 
implement logic based on the current status of a proposal, that means we have failed at isolating the 
logic of higher value in just one or a few services.

Why is this important? It’s because if you get rental proposal logic spread over different services, every 
time the business wants to add new logic, use cases, products, and flows, you will have to change a 
lot of services and add new if-else statements everywhere. Your code will not scale, and you 



Building Asynchronous, Event-Driven Systems With NoSQL Databases332

will impose a cost of millions to change and adapt to the market on your company. Your code will 
become non-scalable, slow, and very costly to maintain. Developers will not be happy about it; you 
will increase turnover. Usually, companies take a long time to discover that this is an architecture 
issue – if they ever do.

Therefore, make sure you have just one or a few services that hold critical business rules.

Identify the services orchestrator

If you write your services in a way that the endpoints are general and flexible enough, that means you 
will have the opportunity to orchestrate them the way you want. You could define when messages 
will be sent via WhatsApp, email, or anything else. You will be able to define whether the charge is 
supposed to be done on a credit card or bank transfer more easily. If you write your services endpoint 
such that the parameters describe the behavior you want, instead of writing one endpoint for each 
kind of behavior, it will be possible to create configuration objects that will define the way your system 
flow will work. You will have a lot more power to scale and speed up your development.

Think about this: depending on the status of a rental proposal, the other services will behave in diverse 
ways. Now, let’s suppose you have more than one type of rental proposal flow. Suppose that for different 
countries, you have some special states that should be represented in the rental proposal objects. You 
might think about ways in which your proposal service – or a helper service – acts as an orchestrator 
for how other services should behave.

How would that work in real life? If you know that you should have different flows for the rental 
proposal that change behavior in other services, that means creating a new proposal in your API 
might take some parameters to inform how other systems should behave.

Maybe you want a specific rental proposal flow that only works with credit cards, or through WhatsApp 
communication? That might require you to add some special parameters to drive that behavior, when 
creating your new Rental Proposal object.

As you can see, this principle is a violation of the Domain Boundary I stated earlier. It adds to one of 
the services some cross-domain information to inform other systems how to behave. It turns out that 
this exception to the Domain Boundary rule works beautifully if you want to make your service more 
flexible. By implementing cross-domain parameters in one of your higher order business services, 
you will be able to twist the system flows in any ways you want. This could drive a lot of speed on 
your development.

De-Coupling Calls

By looking at our first picture, you will certainly deduce that, if we are using REST API calls only, 
the Proposal Service will have one extra call to each service that it communicates to. That means 10 
services require 10 API calls and so on.



Introducing event-driven architectures 333

De-coupling calls means we should strive to reduce the number of calls we make for other services, 
and this is where the event-driven architecture shines. By using what we call topics or queues, with 
the response-independency principle, we can have the rental proposal service basically connected to 
an intermediary service that has the responsibility of forwarding messages to other services that are 
interested in knowing about updates in the rental proposal service.

We will explore how it works in the next section.

Introducing event-driven architectures
Now you know: if we only have REST APIs, that means each service we need to connect to represents a 
new call we need to write, specifically to that service. In contrast, when using the event-driven approach, 
we eliminate the need to write specific API calls to each service our microservice communicates to.

How does that work? Instead of allowing services to communicate directly with each other through 
the API calls, we will add an intermediary service that represents a queue of messages. That service 
receives update notifications from the service that originates the call and forwards the notifications 
to every other service interested in those notifications.

Let’s look at the following figure:

Figure 10.2 – An example of event-driven communication

In this model, we have included an intermediary service that tracks every update event that happens 
in the rental proposal service. Once the rental proposal state changes, a single notification is fired from 
the rental proposal service to the topic or queue, as we call it. Then, other systems can subscribe to 
those notifications. Whenever a new message is fired, every service that subscribes to the notifications 
receives a copy of the notification.



Building Asynchronous, Event-Driven Systems With NoSQL Databases334

This means that the rental proposal service does not know which services are being triggered once 
the proposal state changes at all. It just knows how to tell the microservice cloud a single thing: Hey, 
I have updated myself. Please tell everybody who is interested.

Hence, every service that should react to those changes should be a subscriber of the topic itself. This 
bears several advantages:

•	 You can include new services in your architecture without requiring changes to the proposal service.

•	 The amount of code in the proposal service is greatly reduced, as you never need to write 
specific calls to every service.

•	 Given that your system can send the messages to the messages topic/queue, it does not need to 
wait for the other services to respond. This means that the systems will work asynchronously, 
which has the potential to bring a lot of speed to your system.

•	 With topics, by adding as many subscribers as you want, you have a mechanism that helps to 
decouple your services, making the domains potentially more isolated from each other (this 
will be discussed from the next section onward).

•	 You can choose the policy you want to implement for publishing and consuming messages. Do 
you want to mark messages as read as soon as the subscribers pull them, or do you want the 
subscribers to mark the messages as read only after they finish processing them?

Now, with this system design, let’s discuss how to design the messages themselves. However, first, let’s 
talk a bit more about the difference between queues and topics.

What is the difference between a queue and a topic?

A queue is a messaging model wherein messages are sent to a specific destination and consumed 
by a single consumer. In a queue, messages are typically processed in the order in which they 
arrive (first-in, first-out), and each message is removed from the queue once consumed. This setup 
ensures that each message is handled by only one receiver, making it ideal for tasks that require 
point-to-point communication.

A topic, on the other hand, is mostly like a queue, except that it can be subscribed to by different groups. 
With a queue, you will usually have just one consumer. On a topic, though, you might have multiple 
systems consuming it. So, we can safely say that a queue is a single destination channel, whereas a 
topic is possibly a multiple-destination channel.

Now, let’s discuss why we use one over the other. Choosing between a queue and a topic depends on 
your application’s communication needs:

•	 Use a queue when you want each message to be processed by only one consumer. This is suitable 
for load balancing tasks, work distribution, throttling requests (to deal with peak request 
volumes), or when tasks should not be duplicated across multiple consumers.



Introducing event-driven architectures 335

•	 Use a topic when you need publish-subscribe functionality, whereby messages are broadcasted 
to multiple subscribers, which handles the messages differently between each other. This is 
ideal for event notifications, updates, or any scenario wherein multiple systems need to react 
differently to the same message, and each subscriber tracks the message’s consumption from 
the other subscribers.

Now that we know the key difference between queues and topics, let’s discuss different ways in which 
you could decide to structure your messages. There’s a lot to discuss here, so you will be surprised as 
to how the message design itself can be flexible and different among systems and companies.

How should your notification messages look?

When deciding what information should be contained in your notification messages, there are a few 
structure types to consider. Let’s take a look.

The message format

You can really format your messages with any format you want. For starters, I would advise you to 
just choose the JSON format, since it is already familiar. You can also choose the Protocol Buffers 
or Avro formats, both of which are geared toward higher performance, but are less readable. Neither 
one will be covered in this book.

Thin versus fat messages

When thinking about how much data you should provide in your messages, it is important to consider 
how big the message will be – in other words, how fat or thin your messages should be. There is no right 
or wrong answer; however, you should definitely think about the implications so you can understand 
what the best approach would be for your use case and company.

Thin messages

One of the ways you can build your notification system is by providing messages that hold very little 
information. For example, we could create a message that contains the object ID and the status that 
you moved your object to. You can even program only the ID of the object and a second attribute 
saying whether the message was created, updated, or deleted. Although thin events are very simple 
to implement and will usually move faster in the queues and topics, the subscriber systems will have 
to query the original object from your API to check its content and decide what to do. This also has 
the advantage of allowing the subscriber API to check the current status of the object.

An example in HomeIt would be to send a message to the subscriber systems that just states the ID 
of the proposal and its current status, such as the following:

{
     "proposal_id": "74cfd995-358e-4854",
     "status": "ACCEPTED"
}



Building Asynchronous, Event-Driven Systems With NoSQL Databases336

Fat messages

You might want to provide more data on your notification messages. That is, instead of just sending 
two attributes with the modified object ID and maybe a changed status, you might want to provide 
more information, or even the entire object in the queue or topic. That means the subscriber systems 
will not have to query the original object as much.

We are going to see a fat messaging approach for our rental proposal service in a few pages. Here is a 
quick example of adding more data to your notification:

{
     "proposal_id": "74cfd995-358e-4854",
     "status": "REJECTED",
     "message": "Sorry, I cannot accept this deal",
     "landlord_id": "2d913fd0-431a-4ee5-9d27",
     "tenant_id": "b33b250e-9208-4ad9-8c78",
     "author_id": "2d913fd0-431a-4ee5-9d27"
}

As you can see, in the preceding example, we added the tenant ID, the landlord ID, a message, the 
proposal ID, and the status to which the proposal was moved. That means subscriber systems have 
less necessity of pulling the original object from the API, which can help reduce the load in the 
proposal service.

Given the circumstances, you should define whether you would prefer a heavier load on your message 
topics or on your original API. Bear in mind that if you need your subscribers to fetch data from the 
original API, that means writing an HTTP GET call to your subscriber services, which increases the 
coupling and makes it more difficult to update the publisher service in the future.

Beware of higher-order domain spilling

In a sense, both approaches – fat and thin messages – mean that your subscriber systems need to 
know your publisher domain even a tiny bit. Since it relies on the updated object from the publisher 
system to decide what to do, it means subscribers need to implement logic that is attached to the 
modified object domain. I call that domain spilling. Similar to how spilling some coffee on your shirt 
is undesirable, you do not want a stain from a domain in a service that does not deal with that domain.

For instance, in HomeIt, upon receiving a notification that the rental proposal status has changed, your 
payments service will have to reason around the rental proposal status to define what its next step is. 
That means the developer in the payment service needs to know the rental proposal domain, even 
at a superficial level. Doing that means you are moving business rules from a higher-order domain 
(the rental proposal domain, which is at the core value from HomeIt, as we explained before) to a 
lower-order domain (the payment system is critical for receiving money, but it is not a core service 
that allows orchestrating actions from tenants and landlords while negotiating the rental proposal). 
The payment system enables the exchange of money, which is a critical function. However, it is not a 



Introducing event-driven architectures 337

core system to the HomeIt business, which means it should bear as little logic about the higher-order 
rental proposal domain as possible.

Moving the cross-domain knowledge to the publisher system

As I said, domain spilling is generally undesirable when your lower-order domain services have 
business rules that are related to higher-order domains. So, if you do not want the subscriber systems 
to depend on business rules from higher-order domain services, you can move a bit of the logic from 
the lower-order domains to the higher-order ones.

Think about it this way: as we have established, the most important business function you have is 
sequencing and orchestrating the interaction between tenants and landlords. It means that, depending 
on the result of that interaction, you want that service to inform other services about how they 
should behave.

From the proposal service, you want to specify what messages should go to your participants and how 
they should be delivered. You will also want to inform the payment service about how much money is 
to be collected and how. You will also want to inform the rental property service if a specific property 
number is unavailable, such that your proposal service can tolerate some more knowledge about 
other services. That is, the service that orchestrates your business can offer some known parameters 
for other services.

How would that be done? Well, there are two options. One is to add some configuration attributes to 
your core proposal service so that, depending on how you want other services to behave, the proposal 
object can hold some different parameters for the other services such that when those services are 
activated, they might receive their well-known parameters directly instead of trying to derive their 
own behavior based on the proposal states. That has the drawback of using your rental proposal object 
to store data from other domains, which might still not be too desirable.

Another way of configuring how other services should behave is creating a separate configuration 
service. That is, any time a rental proposal is created, a configuration object is created and stored in that 
configuration service. The rental proposal flow will update the configuration object to orchestrate the 
other systems depending on your user input. This means that when other systems receive notifications 
about the original rental proposal, they can query the configuration service and extract their known 
parameters in order to discover how they should behave. Alternatively, we could configure your queues 
and topics in other ways, as we are going to see next.

Business versus entity-driven events

When creating a queue or topic for sending notifications, you should decide whether you want the 
events on that topic to be defined around your entities, general user journeys, or business events. 
When discussing thin versus fat messages, the examples we gave were centered on creating our events 
based on the status of the rental proposal object. That means that the event is designed to reflect the 
current status of an entity.



Building Asynchronous, Event-Driven Systems With NoSQL Databases338

In contrast, you could define events based on your user journey. We could name the events based 
on some action that just happened. For instance, we could create the following event names: 
RENTAL_PROPOSAL_OPENED, OFFER_SENT, OFFER_REJECTED, OFFER_CANCELLED, and 
OFFER_APPROVED. When you create your events around the business story, it might make more 
sense for the consumers. You know exactly where the users are in their journey.

Destination versus source topics

Another crucial decision you should make is whether the topic you are creating refers to the objects 
in the service that is emitting the events, or the object in a specific service that is receiving that event. 
This might be especially useful in cases where a topic is connected to a subscriber service, and that 
service is interested in its own events. You might want to create this topic just because you can afford 
to have asynchronous operations, and that might be more productive. The publisher service does not 
depend on the subscriber service results, so you might just prepare a topic that allows the publisher 
to send messages that refer entirely to the destination service (the subscriber).

Of course, in our HomeIt example, the topic we designed is a source topic, since the topic was created 
just to publish changes in the rental proposal objects themselves. The publisher is notifying the 
subscribers about the changes in the publisher domain.

A good example of a destination topic is this: suppose you have a reporting service that expects to 
receive some very specific events that only the reporting service itself understands. Those events help 
the reporting service to track rental proposals in general, ultimately to create business reports. The 
rental proposal service publisher could produce events exclusively for the reporting service, tailored 
to the input the reporting service needs. Then, the rental proposal service would be able to notify the 
reporting service when a rental proposal was created or accepted or a proposal was paid. Telling the 
story of the proposal itself (created, accepted, paid) puts more focus on the business side, so we say 
those events are business-driven. That is, when sending an event, we will be focused on what happened 
to the business itself, not on sharing everything about the rental proposal entity object, which is more 
of a technical aspect of our API. It is important for reporting services to understand the user journey, as 
well as the business side itself. It is not as important to know the state of the rental proposal data object 
over time. There is a slight but serious difference between both options, and understanding whether 
you need to focus on a data object or a business use case might help a lot to facilitate the development.

Shared versus non-shared topics

When considering new topics and queues on your architecture, you should define whether you want 
to use a single topic to be used by many different systems, just a few systems, or just one system. In 
our HomeIt example, we created one topic that supports events just for the rental proposal service. 
However, maybe we want to use that same topic to support events for other services as well. Suppose 
we want the payment service to publish the results of the financial transactions in that topic. We 
would have the same topic flowing events from two different systems. If you want to keep things more 
separate, you can create a different topic just to flow notifications about payments.



Introducing event-driven architectures 339

Of course, there are pros and cons to each choice. If you decide to have multiple topics, each of which 
works just for a single service, prepare to be able to manage a lot of different topics if your architecture 
grows a lot. On the other hand, when you have a single topic that can receive events from multiple 
services, you will require all subscribers to just ignore messages from systems if they are not interested.

Single versus multi-tenant topics

A tenant, in this context, does not refer to the person locating the rental property, but to a company that 
might use your entire service to host their own business. Take HubSpot and Salesforce, for instance. 
Their systems are used by different companies to host their own operations. Each company will create 
accounts for every one of their users. We say that HubSpot and Salesforce are multi-tenant. They are 
able to host the operations from multiple companies.

So, when designing your topics, you need to decide important things in regard to being single-tenant 
or multi-tenant. First, does your company work like HomeIt, in that we are a single company that 
allows landlords and home tenants to do business with each other? Or does your system operate more 
like HubSpot, allowing different companies to implement their operations on your website?

If your architecture is single-tenant, every topic you have will be single-tenant, but one topic will flow 
data from different users. If your architecture is multi-tenant, you might choose to create topics for 
each one of your tenants – so that one company does not see events from any others. You can also go 
multi-tenant with topics that flow events from multiple companies.

When you allow your topics to flow data from multiple users or companies, you need to make sure that 
they cannot see events and notifications from other services. Even UUIDs from an entity ID cannot 
be seen by some actor that does not own that object. Leaking object IDs to someone who does not 
own the topic opens an attack window, and you don’t want that.

Input versus output topics

When your topic is used to carry over the result of an operation, we say it is an output topic. When 
the topic is used to carry the input to another service, we say it is an input topic.

You might want to create services that have their own input and output topics. For instance, if you 
have a service that takes a long time to do some processing – let’s say three hours – you cannot support 
that with a RESTful API. You will need to make that operation asynchronous. So, create your service 
with two topics: an input topic and an output topic. Any time you want to trigger the service, just 
publish an input message in the input topic. Then, once that service finishes its process, it publishes 
the result as an event in the output topic. Interested services can fetch that resulting notification to 
continue their operations.

In HomeIt, we could create a media processor service that handles movie files and pictures. We could 
set up two topics for that service: one that informs the files to be processed, where they are stored, and 
how they should be processed, and another that returns the resulting media and where it is stored.



Building Asynchronous, Event-Driven Systems With NoSQL Databases340

Unidirectional versus bidirectional topics

Another option for designing our topics is determining whether they are used to flow messages in 
just one direction or in two directions.

We have set up our HomeIt rental proposal topic in a unidirectional way. That means every event flows 
from the rental proposal service to the subscriber services. It flows in one direction only. In contrast, 
if we allow the payments service to publish messages to the same topic and the rental proposal service 
now has a subscriber just to listen to that message specifically, then we would have made this topic a 
multi-directional topic because the messages will flow from and to the rental proposal service as well.

Multi-directional topics are generally a bad pattern since different systems would have to know which 
messages to discard and which ones to handle. That might lead to a lot of useless processing and could 
even break systems with unsupported messages. However, it might be useful when you are doing quick 
proofs of concept, for example. If you just want to see things happening, then speed is important.

Dead letter topics

What will you do when your services fail to process a message? This is what we use dead letter topics 
for. These are specialized topics that handle messages that cannot be delivered or processed successfully 
after multiple attempts.

When a message continually fails due to issues like processing errors, invalid data formats, or exceeding 
its time-to-live (TTL), it is redirected from its original topic to the dead letter topic. This mechanism 
isolates problematic messages from the main flow, preventing them from causing repeated processing 
failures or clogging the system.

By segregating these undeliverable messages, you can analyze and address the underlying issues 
without disrupting the overall messaging infrastructure.

Dead letter topics enhance system reliability and maintainability by allowing for the separate handling 
of faulty messages, facilitating debugging and compliance auditing, and ensuring that the messaging 
system continues to operate smoothly despite individual message failures.

These are the main variables you can use to design your queues/topics. Topic or queue management 
is an essential part of the work you should do when designing your system. It is very important to 
account for failures in such systems as well.

Now, let’s learn how to use one of the most widely used systems for building event-driven architectures: 
Apache Kafka.



Using Kafka in event-driven services 341

Using Kafka in event-driven services
Kafka is an open source distributed event streaming platform used for building real-time data pipelines 
and applications. It efficiently handles large volumes of data by publishing and subscribing to streams 
of records in a fault-tolerant manner. Kafka was originally developed by engineers at LinkedIn to 
address the company’s need for processing massive real-time data feeds. It was open sourced in 2011 
and later became an Apache Software Foundation project.

In this book, we will not be able to explore how to maintain a Kafka cluster in production – that is a 
matter for entire books. Instead, we will present you with a quick setup so that you can connect your 
Spring services.

Not, let’s start by learning about some core concepts related to Kafka. They are key in every company 
you will work on.

Kafka main concepts

To use Kafka, we will need to understand the following concepts: topics, subscribers/consumers, 
consumer groups, and partitions. When you understand these core concepts, you will easily know 
how to do basic system designs using this powerful system:

•	 Topics in Kafka form a database whose sole purpose is to allow streaming messages from 
producers to consumers.

•	 Subscribers (or consumers) are applications that read and process messages from Kafka topics. 
They subscribe to specific topics based on their data requirements. Consumers can work 
individually or as part of a consumer group.

•	 Consumer groups are collections of consumers that coordinate to read messages from topics 
collectively. They are crucial because they enable scalability and fault tolerance in message 
consumption. By distributing the workload among multiple consumers in a group, Kafka 
ensures that each message is processed by only one consumer within the group, preventing 
duplicate processing and allowing for efficient load balancing.

•	 Partitions are a fundamental component of Kafka topics. Each topic is divided into multiple 
partitions, which are ordered sequences of messages. Partitions allow Kafka to scale horizontally 
by distributing data across different brokers (servers) in a cluster. This distribution enables the 
parallel processing of messages and improves the system’s throughput. Importantly, within each 
partition, messages are stored and consumed in the exact order they were produced, preserving 
message order on a per-partition basis. However, Kafka does not guarantee ordering across 
different partitions within the same topic.



Building Asynchronous, Event-Driven Systems With NoSQL Databases342

Look at Figure 10.3 to understand how these elements work together:

Figure 10.3 – Kafka topology: publishers, partitions, consumer groups, and consumers

From the diagram, you can see the difference between partitions inside a topic, consumers (also called 
subscribers), and publishers and producers.

Now, let’s learn to run a Kafka topic in the simplest way so you can move to implementing a POC for 
this chapter. Companies in general will usually have topics already available for you to work with.

Installing Kafka on a Linux machine

The services we will implement in this chapter use Kafka as the event infrastructure. To use it, you 
need to set up a dev instance with the following steps:

1.	 Download Kafka at https://kafka.apache.org/downloads.

You can use the latest version. Just download the binary package and extract it to a separate 
home directory, such as /kafka.

2.	 Run the dev instance.

To run your kafka dev instance, you will need to run these two commands:

	� Here’s the ZooKeeper command:

cd ~/kafka/<your-kafka-extracted-directory>
./bin/zookeeper-server-start.sh config/zookeeper.properties`

https://kafka.apache.org/downloads


Using MongoDB for NoSQL persistency 343

Here’s the Kafka command:
cd ~/kafka/<your-kafka-extracted-directory>
./bin/kafka-server-start.sh config/server.properties

Running these two commands will get you a kafka dev instance online, which is enough for 
this Spring service to connect and create the topic.

3.	 Connect a console consumer group so that you can see the produced events.

Run the following command in order to create a separate consumer in your terminal:
cd ~/kafka/<your-kafka-extracted-directory>
./bin/kafka-console-consumer.sh --bootstrap-server 
localhost:9092 --topic proposal-topic --group console-consumer-
group --from-beginning

This will ensure that every event published to proposal-topic can be subscribed to in the 
console. It makes it easier for you to see the events being produced in real time.

These instructions will get you an independent Kafka instance that you should manually start – consider 
it a dev environment that you can quickly put online to do your development. So, it does not prepare 
your Kafka instance to serve streams in production.

OK, so that completes the basics of Kafka. Since Kafka is also considered a specialized NoSQL database, 
let’s also learn how to run and use a MongoDB instance in this chapter, so we can store our API entities 
in it and have a feel of different NoSQL applications.

Using MongoDB for NoSQL persistency
To build our rental proposal service and make it event-driven, we are also choosing the MongoDB 
NoSQL database as our persistence layer. Kafka is also a kind of NoSQL database with the purpose of 
streaming events between services. So, let’s make this chapter all about the NoSQL persistence layers.

Here is how you can set up a development environment MongoDB instance that will allow you to 
quickly connect our rental proposal service.

Important note
These instructions work on Ubuntu Linux. We will not have too much time to explore the 
Windows configuration here. However, it is the same approach in general, with the exception 
that running the tools will require you to use different executable files. Or, you might want to 
use Windows WSL, which creates a full-fledged Ubuntu environment. Then you will be able 
to run these commands as they are.



Building Asynchronous, Event-Driven Systems With NoSQL Databases344

Let’s start:

1.	 Download the MongoDB binary from the MongoDB download page:

https://www.mongodb.com/try/download/community

If you want to keep it simple, download the tarball and extract it in a local directory.

If you intend to create a test database for development purposes, feel free to use your own home 
directory. For instance, you can download your tarball straight to your ~/mongodb database.

2.	 Extract the latest version of mongodb to your test directory, then create another directory 
for your actual database files. For instance, I created the following directory to host any test 
databases I might need:

 ~/mongodb/mongodbs

3.	 Inside the mongodbs database, create one directory for hosting the proposal service database, 
which I called proposaldb:

 ~/mongodb/mongodbs/proposaldb

4.	 Inside this database, create the following directories:

 cd ~/mondodb/mongodbs/proposaldb
mkdir -p data/db
mkdir log

With those two directories, it is possible to start your mongodb  instance with the 
following command:

cd ~/mongodb
./mongodb-linux-x86_64-ubuntu2204-7.0.14/bin/mongod --dbpath 
mongodbs/proposaldb/data/db --logpath mongodbs/proposaldb/log/
mongodb.log --fork

That command will work as long as you have downloaded and extracted mongodb to your 
home directory.

5.	 This command runs mongod, which is the Mongo server daemon. To make sure it is running, 
just use the following command now:

 ps aux | grep mongod

If you get an output such as the following, it means your instance is running correctly:
rodrigo@rodrigo-desktop:~/mongodb$ ps aux | grep mongod
rodrigo    15992  0.6  0.7 559832 126904 
?       Sl   20:30   0:11 mongodb-linux-x86_64-
ubuntu2204-7.0.14/bin/mongod --dbpath mongodbs/proposaldb/data/
db --logpath mongodbs/proposaldb/log/mongodb.log --fork

https://www.mongodb.com/try/download/community


Our event-driven sample in HomeIt 345

6.	 Now, you need a client app to connect to mongodb. Make sure to download Mongodb Shell 
from the official MongoDB website:

7.	 https://www.mongodb.com/try/download/shell

Once you download and extract it to a separate directory on your home dir, you will be able 
to use it with the following command:

cd ~/mongodb
./mongosh-2.3.1-linux-x64/bin/mongosh

This command will automatically connect mongo shell to your local Mongo daemon.

8.	 Here are some important and essential commands for you to know how to navigate your database:

show dbs # show your databases
use <dbname> # use or create a new database
show collections # show your document collections inside a 
database (your tables, basically)
db.myCollection.find() # show all documents in a collection 
named myCollection

9.	 To shut down your mongodb server, try the following commands:

use admin # this will use your admin database
db.shutdownServer() # this will kill your mongodb process

If you manually shut down your mongodb server and restart it with the same command line stated 
before, the same database will be used again, thus keeping your saved data intact.

That is how you can set up your MongoDB instance. Now, let’s see some details for our rental 
proposal service.

Our event-driven sample in HomeIt
Just to illustrate how to connect publishers and subscribers using Spring Framework, imagine this: we 
will create the rental proposal service, which registers the interaction between landlords and tenants 
while negotiating the rental agreements.

Every rental proposal is an object that keeps the landlord ID, rental property ID, and tenant ID, as 
well as a collection of rounds, which keep the prices each party is trying to negotiate.

The way we will use event-driven implementation here is as follows: we want the rental properties 
service to inform the tenants if a property has received many proposals recently. We created a points 
system that we called the score. The more proposals a property receives, the higher the score is. So, every 
time a landlord or a tenant communicates by means of a rental property round – to make an offer or 
a counteroffer or to reject or approve a proposal – we will increase that rental property score by one.

https://www.mongodb.com/try/download/shell


Building Asynchronous, Event-Driven Systems With NoSQL Databases346

In essence, every time there is a new negotiation round happening, the rental proposal service will 
store the rental proposal data in our MongoDB database. Then, it will fire an event to a Kafka topic. 
Plus, in the rental property service, we will implement a very simple Kafka subscriber that can be 
notified about a rental proposal round. When a round occurs and the notification arrives, there will 
be a service in charge of updating the score of the property that received the proposal round.

Here is how we are modeling the RentalProposal entity in the rental proposal service:

@Document
public record RentalProposal(
    @Id
    String id,
    String tenantId,
    String landlordId,
    String propertyId,
    List<Round> rounds,
    String status // OPEN, NEGOTIATING, ACCEPTED,
                  // REJECTED, CANCELLED
    ){

    public RentalProposalDTO toDTO() {
        return new RentalProposalDTO(
            this.id, this.tenantId, this.landlordId,
            this.propertyId, this.rounds(), this.status );
    }
}

As you can see, creating an entity to be saved in MongoDB basically requires you to use the @
Document annotation, from the MongoDB dependency (we will see which dependency to declare 
in a few minutes).

Also, here is how we are defining the Round entity:

public record Round (
    String roundId,
    String status, // OPEN, OFFER, COUNTER_OFFER, APPROVED,
                   // REJECTED, CANCELLED
    String authorId,
    Double value,
    String message) {

    // Getters and Setters
}



Building our rental proposal service publishers 347

That means that a RentalProperty object can hold as many rounds as is required to make the 
entire negotiation happen.

Also, here are the RentalProposalStates and RoundStates enum classes, which help us to 
maintain the actual stage in which we are in a negotiation:

public enum RentalProposalStates {
    OPEN,
    NEGOTIATING,
    ACCEPTED,
    REJECTED,
    CANCELLED
}
public enum RoundStates {
    OPEN,
    OFFER,
    COUNTER_OFFER,
    APPROVAL,
    REJECTION,
    CANCELLATION
}

So, once the Round move from one state to the next one, the RentalProposal objects also resolve 
to new, more general statuses.

Now, let’s see how the rest of the service is created.

Building our rental proposal service publishers
As I have stated before, the rental proposal service is very important: it will be used in HomeIT to register 
the interaction between a tenant and a landlord while negotiating the terms of the rental agreement.

We will not have the time to explore it entirely, so I will add some key data about this service. You can 
take your time to read about the entire service at https://github.com/PacktPublishing/
Spring-System-Design-in-Practice/tree/main/chapter-10/rental-proposal-
service.

Combining WebFlux, MongoDB, and Kafka in Spring Services

Since we want to make this service asynchronous and robust, we will create it using WebFlux. Plus, 
we will use a bit of the Spring Web style while declaring the controller interfaces.



Building Asynchronous, Event-Driven Systems With NoSQL Databases348

So, here is how we have declared our dependencies – mixing Spring Web, Kafka, MongoDB, and 
WebFlux dependencies. This is present in the dependencies section of our build.gradle file:

implementation 'org.springframework.boot:spring-boot-starter-webflux'
implementation 'org.springframework.boot:spring-boot-starter-data-
mongodb-reactive'
implementation 'org.springframework.kafka:spring-kafka'
implementation 'com.fasterxml.jackson.core:jackson-databind'

Since we will be using JSON objects to send and receive notifications from our Kafka topics, we also 
had to include the jackson-databind dependency.

Now, let’s see a quick example of how to write the actual endpoints in our controllers. Here is how we 
create a new RentalProposal and add a Round to a Proposal. They are both declared in the 
RentalProposalController class:

@PostMapping()
public Mono<RentalProposalDTO> createProposal(
    @RequestBody RentalProposalDTO rentalProposalDTO) {
    return service.createProposal(rentalProposalDTO);
}

@PostMapping("/{proposalId}/rounds")
public Mono<ResponseEntity<RentalProposalDTO>> addRound(
    @PathVariable String proposalId,
    @RequestBody Round round) {

    return service.addRound(proposalId, round)
        .map(ResponseEntity::ok)
        .switchIfEmpty(
            Mono.just(ResponseEntity.notFound().build()));
}

We can see that this time, we are mixing the Spring Web endpoint declaration with WebFlux. They can 
work together in a seamless way. For the addRound() method, if we provide the ID of a proposal 
that does not exist, we just return a 404 (NOT_FOUND) HTTP code.

Let’s take a quick look at how to save the rental proposal entity data to the database, in the Service 
layer. Here’s how we have defined our Service interface:

@Service
public interface RentalProposalService {
    Mono<RentalProposalDTO> createProposal(RentalProposalDTO 
newRentalProposal);



Building our rental proposal service publishers 349

    Mono<RentalProposalDTO> addRound(String proposalId, Round round);

    Flux<RentalProposalDTO> getProposals();

    Mono<RentalProposalDTO> deleteProposal(String proposalId);

    Mono<RentalProposalDTO> getProposal(String proposalId);
}

Here is how we declare the service implementation (the RentalProposalServiceImpl class):

@Service
public class RentalProposalServiceImpl implements 
RentalProposalService {

    private final RentalProposalRepository repository;
    private final KafkaTemplate<String,
        RentalProposalEvent> kafkaTemplate;

    public RentalProposalServiceImpl(
        RentalProposalRepository repository,
        KafkaTemplate<String, RentalProposalEvent>
            kafkaTemplate) {
        this.repository = repository;
        this.kafkaTemplate = kafkaTemplate;
}

As you can see, we are injecting two important Spring Beans here: RentalProposalRepository 
and the KafkaTemplate interface.

RentalProposalRepository is a basic Mongo Repository extension, which we can see here:

public interface RentalProposalRepository extends
    ReactiveMongoRepository<RentalProposal, String> {}

It is important to note that, since we are using Spring WebFlux here, we need to use 
ReactiveMongoRepository. It means that our operations in MongoDB will be processed 
asynchronously. That makes the entire WebFlux async pipeline work correctly.

Since we do not need any custom methods (as we saw in Chapter 7), we can just leave this interface 
as is. We are saving RentalProposal objects using MongoDB, the ID is a string, and that’s it.

In RentalProposalServiceImpl, we can also see that we are injecting the KafkaTemplate 
interface, which comes directly from the Kafka dependency itself. It allows us to publish our events to 
Kafka topics. To use that interface, we need to specify the key type (a string; it serves when we want to 



Building Asynchronous, Event-Driven Systems With NoSQL Databases350

order the messages and distribute them among partitions) and the object that will flow through that 
topic. In our case, we have chosen to publish RentalProposalEvent, which we can see here:

public record RentalProposalEvent(
        String proposalId,
        String roundId,
        String propertyId,
        String roundType) {
}

As we can see, when saving a new Proposal or Round, we will publish RentalProposalEvent 
so that the RentalProperties service can subscribe to the notifications and update the score in 
RentalProperty that lives in the RentalProperties database. In that way, other customers 
will see whether a property has a high score – meaning that there are a lot of people trying to negotiate 
for that property. RentalProposalEvent contains the proposal ID, the ID of the round that 
was published inside the rental proposal, the property ID that is referenced in the proposal, and the 
roundType attribute, indicating whether it was an offer, a counteroffer, an approval, a rejection, 
and so on.

Here is how we create a proposal and how we emit the Round at the Service layer:

public Mono<RentalProposalDTO> createProposal(
    RentalProposalDTO newRentalProposal) {

    Round firstRound = new Round(UUID.randomUUID().toString(),
        RoundStates.OPEN.toString(),
        newRentalProposal.tenantId(),
        null,
        null);
    List<Round> rounds = List.of(firstRound);

    return repository.save(new RentalProposal(
        UUID.randomUUID().toString(),
        newRentalProposal.tenantId(),
        newRentalProposal.landlordId(),
        newRentalProposal.propertyId(),
        rounds,
        RentalProposalStates.OPEN.toString()))
        .flatMap( proposal ->
            Mono.fromFuture(
                kafkaTemplate.send("proposal-topic",
                    new RentalProposalEvent(
                        proposal.id(),
                        firstRound.roundId(),



Building our rental proposal service publishers 351

                        proposal.propertyId(),
                        firstRound.status()))
                .thenApply(result -> proposal)))
        .map(RentalProposal::toDTO);
}

As you can see, when creating a new RentalProposal, we create a new Round with the OPEN 
state and add it to the new RentalProposal, then save it in the mongodb repository.

When we receive the result from the repository.save() operation, it is time to finally publish 
our event. This is how we tell other systems about the newly created RentalProposal object. As 
you can see, we need to name the topic, then create the event we are sending. Finally, we map the 
result to a DTO that we will return in our controller method.

Similarly, this is how we save a new Round to the RentalProposal object:

public Mono<RentalProposalDTO> addRound(
    String proposalId, Round round) {

    return repository.findById(proposalId)
        .flatMap(proposal -> {
            RentalProposal p = new RentalProposal(
                    proposal.id(),
                    proposal.tenantId(),
                    proposal.landlordId(),
                    proposal.propertyId(),
                    allRounds(round, proposal),
                    newProposalStatusFromRound(round)
            );
            return repository.save(p);
        })
        .flatMap(proposal ->
            Mono.fromFuture(
                kafkaTemplate.send("proposal-topic",
                new RentalProposalEvent(
                    proposalId,
                    round.roundId(),
                    proposal.propertyId(),
                    round.status()))
            .thenApply(result -> proposal)))
        .map(RentalProposal::toDTO);
}



Building Asynchronous, Event-Driven Systems With NoSQL Databases352

This is also very easy to understand. We provide the proposal ID, referencing the proposal to which 
we want to add the new negotiation round, and the actual Round object, which we saw earlier.

After saving the new Round object, we can also publish the update to our Kafka proposal topic, then 
parse the original RentalProposal object to a DTO that we will return in our controller class.

That is basically it for the publisher class. There are two moments in which we will notify other 
systems that something has changed here.

Now, in order to allow this system to connect to our Kafka topic, we need to see how the actual 
application.properties file is built:

spring.application.name=rental-proposal-service
server.port=8084
spring.kafka.bootstrap-servers=localhost:9092
spring.kafka.producer.key-serializer=org.apache.kafka.common.
serialization.StringSerializer
spring.kafka.producer.value-serializer=org.springframework.kafka.
support.serializer.JsonSerializer

As you can see, we are defining port 8084 for this service, then we define localhost:9092 as the 
default Kafka server port, and finally, we indicate which classes we will use to serialize our messages 
and keys.

Streaming object collections with WebFlux

Another thing important to notice is that, when using WebFlux, we can rely on streaming objects 
from your server to your client. Instead of using pagination, we can use Flux objects to stream objects 
without needing the whole collection to be available in memory.

This is very interesting, as it gives us the power for our HTTP clients to consume these objects little 
by little. Here is an example of how we can stream data using the Flux interface:

@GetMapping
public Mono<ResponseEntity<Flux<RentalProposalDTO>>>
    getProposals() {

    return Mono.just(ResponseEntity.ok(
        service.getProposals()))
        .switchIfEmpty(
            Mono.just(ResponseEntity.notFound().build()));
}

This is probably confusing but let me break it down for you. The service.getProposals() 
method will basically query the database and return a stream of objects that will be available little by 
little, as our client HTTP browser requests them.



Building our rental properties service consumers 353

In this implementation, we are wrapping our Flux stream of RentalProposalDTO with a 
ResponseEntity object. However, since we cannot resolve ResponseObject immediately, 
we wrap it around a Mono object.

So, in the return of the controller, we provide a Mono object that will return a ResponseEntity 
object. ResponseEntity, which is a single object containing the HTTP return status code, will 
in turn contain a Flux that allows our client requests to stream objects, little by little, directly from 
the database.

Interesting, isn’t it? You will be able to see the entire flow by visiting the code from our application.

Bear in mind, however, that your HTTP client should support at least version 1.1 to be able to stream 
objects, and HTTP 2.0 if you need optimized streaming with multiple channels. Other than that, you 
can control how you are retrieving data in your client app. The best way to use it would be twofold:

•	 If your client application is a backend system, you should use WebFlux and other async processing 
tools so it can stream the objects with an asynchronous pipeline, just as we are doing in the 
rental proposal service.

•	 If your client application is a frontend app, you can fetch new objects as your customer requests 
more objects. You can build effects that are similar to the Facebook message stream, which 
fetches a few new objects as the user scrolls down, for example.

That’s all. There is a lot to say about streaming architectures as well, and I have tried to provide you 
with some very simple and powerful examples here. Now, let’s see the other side of the equation in 
our microservice architecture: the changes we will make in the RentalProperties service to 
subscribe to the rental proposal updates.

Building our rental properties service consumers
As we stated before, the rental properties service is interested in whatever negotiations are happening 
in our rental proposal service. That way, every time a new offer is made on a rental property, the rental 
properties service will be able to increase that property’s score.

The change is pretty easy. Here is how we define a consumer service that listens to the message updates:

@Service
public class ProposalConsumerService {
    private final ScoreService scoreService;
    private final ObjectMapper objectMapper
        = new ObjectMapper();

    public ProposalConsumerService(
        @Qualifier("jdbcRentalPropertyService")
        ScoreService scoreService) {



Building Asynchronous, Event-Driven Systems With NoSQL Databases354

        this.scoreService = scoreService;
    }

    @KafkaListener(topics = "proposal-topic",
        groupId = "rental-properties-proposal-group")
    public void consume(String message)
        throws JsonProcessingException {

        RentalProposalEvent event = objectMapper.readValue(
            message, RentalProposalEvent.class);

        scoreService.addScore(
            UUID.fromString(event.propertyId()));

        System.out.println("Consumed message: " + event);
    }
}

As you can see, to reach the messages, we need to convert the RentalProposalEvent JSON 
back from a string by using the ObjectMapper class. It is pretty easy, we just declare the @
KafkaListener annotation. Its parameters are the topic name and the consumer group the listener 
belongs to. The consumer group is especially important when you want to stream events to different 
services. Each service should have its own consumer group. Also, when you are scaling your services 
– let’s say, adding more copies of the rental properties service in the runtime – the Kafka topic will 
detect that there are multiple consumers inside the same consumer group and the messages will be 
distributed evenly among them.

Well, once you receive your message as a string and de-serialize it back to RentalProposalEvent, 
we call the score service addScore() method. The implementation is as follows:

@Override
public void addScore(UUID propertyId) {
    StringBuilder sql = new StringBuilder("UPDATE rental_properties 
SET score = score + 1 WHERE id=:propertyId");

    MapSqlParameterSource params = new MapSqlParameterSource();
    params.addValue("propertyId", propertyId);

    int rowsAffected = jdbcTemplate.update(
        sql.toString(), params);

    if (rowsAffected > 0) {
        System.out.println(
        "Score updated successfully for property: " +



Extending our end-to-end tests 355

            propertyId);
    } else {
        System.out.println(
        "No property found with ID: " + propertyId);
    }
}

That’s all. We are basically using a JDBC Template to run a customized SQL query and update a single 
property score. Of course, we had to add the score attribute to our RentalProperty class so 
that it is possible to use the update query. We have also adjusted the DTO classes and the endpoints 
so that the score attribute is present whenever we fetch RentalProperty data in our rental 
properties service.

That’s all! You can see the entire resulting implementation of our rental properties service at https://
github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/
main/chapter-10/rental-property-microservice.

Extending our end-to-end tests
Of course, now that we have the new rental proposal service, we want to know whether it is working 
properly. The best way we could do that is to add new calls to our end-to-end or integration tests project.

Due to page constraints, we will not be able to show every single new line of code in our integration 
tests. However, here is just a small sample of the new lines we added to our integration tests project:

scoreIs(0, createdProperty, createdTenant);

CreatedProposal proposal =
    tenantCreatesProposal(createdTenant,
        createdLandlord, createdProperty);

tenantMakesFirstOffer(createdProperty, createdTenant, proposal);

tenantRetrievesProperty(
    createdProperty.createdPropertyResponse(),
    createdTenant.userTokenResponse());

scoreIs(2, createdProperty, createdTenant);

landlordRejectsOffer(createdProperty,
    createdLandlord, proposal);

tenantMakesCounterOffer(createdTenant,
    createdProperty, proposal);



Building Asynchronous, Event-Driven Systems With NoSQL Databases356

landlordMakesCounterOffer(createdLandlord,
    createdProperty, proposal);

scoreIs(5, createdProperty, createdTenant);

tenantAcceptsOffer(createdTenant, createdProperty, proposal);
scoreIs(6, createdProperty, createdTenant);

As you can see, I have provided a method for testing the score of a RentalProperty – it fetches 
the rental property from our properties service and makes sure the expected score is found. We also 
have new methods to simulate the negotiation. Our tenant will make the first offer, then the landlord 
rejects it, then the tenant proceeds with a counteroffer, and the landlord does another counteroffer... 
Finally, the tenant accepts the offer. Every time along the way, we test the rental property score to make 
sure the RentalProperty service is updating the score according to the last negotiation rounds.

You can see and run the entire end-to-end tests at https://github.com/PacktPublishing/
Spring-System-Design-in-Practice/tree/main/chapter-10/integration-
tests.

Summary
In this chapter, we discussed a lot of great things about event-driven architecture. We learned how to 
design topics and service topologies, and a series of variables you can choose from in order to make 
your topics well-organized according to your company and product requirements.

We also included a few pages demonstrating how to create a service using Spring Web, Spring 
WebFlux, and MongoDB as a NoSQL persistence layer. I hope this can spark some creativity in your 
service designs.

This has been a fun chapter! I hope you had a great learning experience here. In the next chapter, we 
will organize our services in a better way so we can learn how to prepare it in a self-organizing cloud 
architecture using Spring Cloud.

https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-10/integration-tests
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-10/integration-tests
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-10/integration-tests


Now, we’ll take everything we’ve built and prepare it for real-world deployment. This part covers 
launching microservices in a cloud environment, optimizing them for resilience, and structuring 
configurations to handle failures gracefully. We’ll also dive into advanced techniques for making 
microservices fault-tolerant and self-healing.

This part has the following chapters:

•	 Chapter 11, Launching Your Self-Organizing Microservice Cloud

•	 Chapter 12, Optimizing Your Services

Part 4:  
Orchestrating  

Resilient Services





11
Launching Your Self-Organizing 

Microservice Cloud

Welcome to Chapter 11! So far, we have created services with a prototypical approach. We have 
not cared too much about how they are instantiated or how they find each other. We also have not 
bothered about how they are producing logs. That was because we wanted to provide the most fun 
and important parts first.

Now, you have the key tools and techniques to develop systems with Spring. You know how Spring 
beans work and how to write APIs using Spring Web and WebFlux. We have seen examples of how to 
manage data with SQL and NoSQL examples. We have also learned how to test our systems in several 
ways and how to write event-driven systems.

That was a lot! Now, let’s prepare our architecture to be released in production. To deploy your system, 
we need to deal with other important things, such as the following subjects that we are going to cover 
in this chapter:

•	 How to better structure your service logs

•	 How to organize your property files for different environments

•	 Setting up your services using Spring Cloud infrastructure

These three key points will set you up for success in orchestrating your cloud infrastructure using native 
Spring tools. It will become fairly easy to manage your cloud configurations, for your microservices 
to find each other, and to expose a unified API to your clients. Plus, you will also be able to hide the 
endpoints you don’t want to go public. Are you ready? Let’s go!

Technical requirements
You can use the reference code for Chapter 11 contained in our GitHub repository: https://
github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/
main/chapter-11.

https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-11
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-11
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-11


Launching Your Self-Organizing Microservice Cloud360

How to produce your service logs
To write your service prototypes quickly to begin with, it is OK to write logs by using the simple 
System.out.println() method. But to make sure your services can report operations in a more 
clear and structured way in production and other test environments, you will need to write your logs 
in a distinct way that allows you to choose how much detail will be exposed in each environment.

It is really important to write your logs properly. Forgetting this crucial step is something that even 
seasoned developers do regularly, and it creates difficulties in troubleshooting. Great logs will make 
it quite easy to find the root cause of systemic problems. If you want to make your life a lot easier as a 
developer, make sure you implement the logging standards we will see in the next sections.

What are the existing log levels?

In general, when writing logs using tools such as Log4J or Logback (both of which are supported by 
Spring), you will be able to declare log levels – that is, your messages will have a specific meaning.

These levels categorize the purpose and severity of each log entry, making it easier to interpret and 
prioritize them during analysis.

These are the common log levels we regularly use, regardless of the tool we use to create the logs:

•	 TRACE: This is the finest-grained information, typically used for diagnosing specific issues by 
tracing program execution at a very detailed level. It is rarely enabled in production due to the 
high volume of output. I like to use it during development when I am testing my apps locally, 
as it sometimes helps me to not use debug features in my IDE.

•	 DEBUG: This is detailed information on the flow through the system. It is also used for debugging 
purposes during development and test validation. Sometimes, we will want to enable it during 
troubleshooting in production to understand the application’s behavior. Beware that debug and 
trace logs can be very verbose, which can cause problems in triaging logs in production, when 
you have a high volume. It could also create a lot of unnecessary storage costs.

•	 INFO: This highlights the progress of the application at a high level. It is generally enabled in 
production to log significant events such as startup, shutdown, or configuration changes. Avoid 
using info logs for high-volume operations, since most successful operations will produce the 
same logs and will become meaningless.

•	 WARN: These are potentially harmful or unexpected situations that are not necessarily errors but 
may require attention. It indicates issues that do not prevent the application from functioning 
but might need investigation. I like to use warn logs when dealing with operations that happen 
in high volume. By omitting info logs and only issuing warn logs in high-volume operations, 
we can just see the logs when things get odd or unexpected. Then it becomes meaningful 
for troubleshooting.



How to produce your service logs 361

•	 ERROR: This informs about events that might still allow the application to continue running 
but indicate a failure in a specific operation. It is used to log exceptions or errors that are 
handled but signify a problem. It is good to highlight the difference between error and warn 
logs. A warn log means you do not have an error but only an unexpected situation, such as 
a client sending a request in the wrong way and your application answering with a 400 (bad 
request) response. A bad request response is not an error per se, but since your application is 
not supposed to receive malformed requests in a well-configured environment, it is good to 
look at warn messages to check that your system is behaving the way it should.

•	 FATAL: These are severe error events that will make the application abort. It indicates critical 
failures that require immediate attention, such as system outages or data corruption.

With these log levels, you will be able to tell the severity of the output in your console. Now, let’s learn 
how to actually write the logs using Spring’s natively supported tools.

How to write logs in Spring

The two Java log tools/frameworks I like to use the most in Spring services are Log4J and Logback. 
They contain similar features and allow logs to be formatted in interesting ways, so we will pick the 
most common way to use Log4J here (Logback is an alternative framework, but we don’t have enough 
space in the book to show you how to use it). We can create a log service instance for any class by 
annotating the class with @Slf4j. That will use Log4J framework to create a log object that can be 
referenced from anywhere in that class instance. Here’s an example:

@RestControllerAdvice
@Slf4j
public class SampleExceptionHandler {

    @ExceptionHandler(RuntimeException.class)
    public ResponseEntity<ProblemDetail>
        handleGenericException(RuntimeException ex) {

        log.error("exception: ", ex);

        ProblemDetail problemDetail =
            ProblemDetail.forStatus(
                HttpStatus.INTERNAL_SERVER_ERROR);

        problemDetail.setTitle(
            "Customized Internal Server Error");
        problemDetail.setDetail(
            "An unexpected error occurred: "
                    + ex.getMessage());
        problemDetail.setInstance(



Launching Your Self-Organizing Microservice Cloud362

            URI.create(
                "/api/v1/rental-properties/error"));
        problemDetail.setProperty("timestamp",
            LocalDateTime.now().toString());

        log.debug("The resulting error object: {}",
            problemDetail);

        return new ResponseEntity<>(problemDetail,
            HttpStatus.INTERNAL_SERVER_ERROR);
    }
    // ... the rest of the code goes here
}

In this class, we are saying that the first issued log is at the ERROR level and the second one is at the 
DEBUG level. These are two different detail levels that you will want to be mindful of when running 
your application. Debug logs are normally used when you need to know the key variable values and 
the flow details from the logs so that you know your program is running correctly. Error logs are used 
when you do not need details about the program’s normal execution, just the exception details – in 
essence, instructions that did not behave as expected, which means your software is broken at some level.

Now, you need to specify which log level you want to be active when you are running an application. 
You can specify that in the properties file. Here are three examples from our rental properties 
microservice properties file:

# Enable INFO logs for your entire application
logging.level.root=INFO

#Enable DEBUG logs for one of your classes
logging.level.com.homeit.rental.property.controller.
SampleExceptionHandler=DEBUG

# Enable DEBUG logs for Spring Web packages logging.level.org.
springframework.web=DEBUG logging.level.org.springframework.web.
servlet=DEBUG

In the first example, we are saying that we just want logs starting from the INFO level (the root log). 
That means that when you are running the service, the application will not produce logs from levels 
below INFO (DEBUG and TRACE), but it will still produce logs for levels higher than INFO (WARN, 
ERROR, and FATAL).

As you can see, it is very important to choose the level at which you want your application to produce 
logs, so always keep a log level hierarchy in mind.



How to produce your service logs 363

In the second example, we can see that we have set up the logs for a specific class 
(SampleExceptionHandler). This means, only for the SampleExceptionHandler class, 
that your application will produce logs from the DEBUG level and below (which includes INFO, 
WARN, ERROR, and FATAL).

Specifying which log levels to produce for specific classes allows you to focus on the details of the 
parts of your application you want to investigate or monitor more closely. If you set your log level to 
DEBUG for your whole application, it might become impossible to monitor all messages.

It is also possible to turn on more detailed logs for Spring-specific packages. That is what we did in 
the third example. Since the root logger configuration targets only your application classes, you will 
have to explicitly turn on DEBUG or TRACE logs for Spring-specific classes and packages when you 
want to understand what is happening inside the Spring Framework. It is quite useful to turn on 
logs for Spring classes sometimes, and you will be able to see how the Spring native classes behave 
over time. One example is that you might find it useful to turn on TRACE or DEBUG logs for your 
RestTemplate beans. Then, you will be able to look at the HTTP requests logs in much finer detail.

Understanding your log output

Once you have set up your logs, you will get different output in your application console. As you run and 
test your application, you might find it useful to play with different levels a bit so that you understand 
which ones you will need in different environments. Here is an example of a log we get in the console:

2024-10-07T09:26:25.749-03:00 ERROR 464821 --- [rental-property-
microservice] [nio-9601-exec-1] c.h.r.p.c.SampleExceptionHandler: 
exception:
java.lang.RuntimeException: This was a sample 
unhandled runtime exception at com.homeit.rental.
property.controller.RentalPropertyController.
runtimeExceptionSample(RentalPropertyController.java:150)
...

As you can see, the log you produce will have a default date format and severity level (ERROR, TRACE, 
DEBUG, INFO, etc). It will also emit the class name, as well as any text we have added. Of course, your 
personalized text should match the log level you desire. An INFO log will usually produce success 
messages in the console, just to let the team know that the execution is going on as expected. A DEBUG 
log will have variable details to make it easier to assert that the code is running as expected and the 
key variables hold the expected data. An ERROR log should come with the stack trace and key variable 
values to make it easier to identify where the error occurred and why.

Compared to the first log example, logs produced at the DEBUG level will come out a bit differently, 
as in the following:

2024-10-07T09:26:25.752-03:00 DEBUG 464821 --- [rental-property-
microservice] [nio-9601-exec-1] c.h.r.p.c.SampleExceptionHandler: 
The resulting error object: ProblemDetail[type='about:blank', 



Launching Your Self-Organizing Microservice Cloud364

title='Customized Internal Server Error', status=500, detail='An 
unexpected error occurred: This was a sample unhandled runtime 
exception', instance='/api/v1/rental-properties/error', 
properties='{timestamp=2024-10-07T09:26:25.752887017}']

As you can see, the main difference between both logs is the level, as mentioned above. As we change 
from the log.error() method to the log.info() method, we can see the levels printed when 
you’re running the application. Again, in this case, when you set your log levels to INFO and don’t 
define DEBUG logs for your classes, that means every log.debug() call will produce no output 
in your console.

That is pretty much it for an introduction on how to better structure your logs. Now, let’s talk about 
how to structure your application properties.

How to organize your property files
Besides organizing our logs, we also need to correctly inform our services about the important values 
we want them to use during runtime. For instance, in our HomeIt example, at the startup time of 
the RentalProperties service, we probably want to tell it the name of the topic we want it to 
read events from, or the address and port of important services the RentalProperties service 
is connecting to, such as the database address and credentials.

These are called service properties, and there are two types of properties:

•	 The ones that are required by Spring dependencies to define their behavior

•	 The ones that you will require in your application to define the behavior of your code

There are two important reasons why you would want to set some variables using service properties:

•	 Because you want to make it easier to change those values when you launch the same service 
in different environments.

•	 Because you want to hide values that should be secret, such as credentials. You don’t want to 
have passwords hardcoded in your services.

There is not too much to say about what a service property is. Its basic function is to inform your 
service about important configuration values that should be used at execution time.

Now that we have explained the what, we will show some examples of how you can inject property 
values into your application. But first, let’s learn the different ways to declare properties in Spring.

Writing your properties files

In general, your file should always be created inside your project folder, in the src/main/resources 
folder. Depending on the format chosen to write your properties, the file name will be different. 



How to organize your property files 365

Let’s start by looking at the regular application.properties format, and then we’ll look at 
YAML format.

Writing an application.properties file

An application.properties file is in a simple format in which you can set one application 
property per line, and the name of the property is separated by a dot. The property value is separated 
from the property name by an equals sign. Here is an example, showing a slice of the properties we 
are using in our RentalProperties service:

spring.application.name=rental-property-microservice
server.port=8085
spring.kafka.bootstrap-servers=localhost:9092
spring.kafka.consumer.group-id=proposal-group
spring.kafka.consumer.auto-offset-reset=earliest

As you can see, the properties are organized in a hierarchy. Every Spring Kafka dependency property 
will have the prefix spring.kafka, which makes it easier to see which dependencies are using 
each property you declare.

You can see the entire file here: https://github.com/PacktPublishing/Spring-System-
Design-in-Practice/blob/main/chapter-11/rental-property-microservice/
src/main/resources/application.properties.

YAML properties file

A YAML property file has a different format:

•	 First, the file should always be named with the .yml extension, by convention – therefore, it 
should be named application.yml

•	 Second, the properties prefixes all have their own lines, and the child values are nested with 
two spaces indentations

Here is an example from the AuthorizationProvider service. Just like the application.
properties file in the RentalProperties service, the application.yml property is also 
located in the src/main/resources folder of your project:

spring:
  application:
    name: authprovider
  datasource:
    url: jdbc:h2:mem:testdb
    driverClassName: org.h2.Driver
    username: sa
    password: password



Launching Your Self-Organizing Microservice Cloud366

Again, this example is just a slice of the complete set of properties used in the Authorization 
service. You can see the entire properties file here: https://github.com/PacktPublishing/
Spring-System-Design-in-Practice/blob/main/chapter-11/authprovider/
src/main/resources/application.yml.

Overriding a property file when starting the packaged 
application

After you package your application in a JAR file, there are a number of ways to override your properties 
file so that you do not need to edit the JAR file itself. These methods are useful when you are packaging 
your app with some development properties file, then you want to override these environment properties 
with properties from the actual environment you will work with (in production, for example).

Let’s look at five methods in the following subsections.

Adding a new properties file in the same directory from your application

Place an application.properties or application.yml file in the same directory where 
your JAR file is located:

rental-properties-microservice.jar
application.properties

When the application starts, Spring Boot looks for external configuration files outside the JAR file 
first. By adding a properties file in the same directory, you can override the properties packaged 
within the JAR file.

Adding the properties file to the /config directory

Create a config directory in the same location as your JAR file and place your application.
properties or application.yml file inside this directory:

yourapp.jar
config/
    application.properties

Spring Boot automatically checks the /config subdirectory for configuration files. Properties defined 
here will override those inside the JAR file.

Overriding a property value using the command line

Pass properties directly as command-line arguments when running your application:

java -jar yourapp.jar --server.port=8081

https://github.com/PacktPublishing/Spring-System-Design-in-Practice/blob/main/chapter-11/authprovider/src/main/resources/application.yml
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/blob/main/chapter-11/authprovider/src/main/resources/application.yml
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/blob/main/chapter-11/authprovider/src/main/resources/application.yml


How to organize your property files 367

Command-line arguments have the highest precedence in Spring Boot’s property hierarchy. This 
means they will override properties set in both external files and those packaged within the JAR.

If you declare your property using -D, that means you will inject the property into the JVM environment:

java -Dserver.port=8082 -jar yourapp.jar

In this example, you are just overriding one property, the server port.

Defining a new properties file at the command line

Create a new application.properties or application.yml file with the configurations 
you want and place it in a directory of your choice. Then you can use the --spring.config.
location option to specify the path to your custom properties file when running your JAR:

java -jar yourapp.jar --spring.config.location=file:/path/to/your/
custom.properties

Hardcoding your properties

Another way to set properties in your Spring application is to write them in your code. 
In our RentalProperties  service, we already did this. We wrote properties in our 
RentalPropertiesApplication class like so:

private static void virtualThreads(SpringApplication app){
    app.setDefaultProperties(
        Map.of("spring.threads.virtual.enabled", "true"));
}

Now that you know a few essential ways to declare your service properties, let’s move to some other 
tactics you can use to set properties on your Spring services.

Setting property values using environment variables

In Spring Boot applications, you can also set property values using your operational system environment 
variables. Let’s see two ways to define property values using environment variables.

Overriding properties with environment variables

Environment variables can override properties defined in your application’s configuration files. 
When your application starts, Spring Boot checks for environment variables that match property 
names and uses their values to override the properties you have defined within property files or from 
hardcoded properties in your Spring service (the ones you saw in the previous examples). To declare 
your properties with operating system environment variables, you will replace the dot that separates 
the properties words with an underscore.



Launching Your Self-Organizing Microservice Cloud368

Here is an example of defining the server port in a Linux environment. You should remember that, 
originally, declaring a server port in a properties file requires you to write server.port. Now, we 
just replace the dot with an underscore. This command can be used on your Linux console to declare 
your server property using a system variable:

export SERVER_PORT=8081

Here is an example of defining the server port in a Windows environment:

set SERVER_PORT=8081

With that, whenever you start any Spring application, because Spring Web will, by default, try to 
read the server.port property from your configuration, it will read the server port from the 
environment variable and override property files.

Property values order of precedence

When you combine different ways of declaring property values, some will override the others. Here 
is the order of precedence– that is, which property value sources will override the others:

•	 Command-line arguments override all other property sources

•	 Java system properties come next in precedence

•	 Environment variables override properties in files

•	 External configuration files override packaged ones

•	 Packaged configuration files are used if no external properties are provided

•	 Default properties are the last resort (including properties declared directly in your code)

This is how you can organize your way into declaring property values. But wait, there’s more. In the 
next section, let’s see how to pre-package different property files for different environments. This is 
what we call the Spring profiles.

Creating property files per deployment environment

Suppose your application needs to be deployed in a development environment, then deployed into 
a staging environment for final tests and quality assurance, before being moved to production. That 
is a very common scenario in the industry. In that case, wouldn’t it be nice to have a different set of 
property values already defined for each one of those environments? By using Spring Profiles, you 
can prepare one .property or .yml file for each environment.



How to organize your property files 369

Let’s say you want your application to run on different server ports depending on the environment:

•	 Development (dev): Run on port 8081

•	 Staging (stg): Run on port 8082

•	 Production (prod): Run on port 8080

Here’s how you can set this up using Spring Profiles. First, create profile-specific property files. In your 
src/main/resources directory, create separate property files for each environment:

•	 application-dev.properties

•	 application-stg.properties

•	 application-prod.properties

In each property file, declare your server.port with different values. When you run your application, 
you can specify which profile to activate, and Spring Boot will automatically load the corresponding 
properties file. For example, this is how you load the dev property file:

java -jar yourapp.jar --spring.profiles.active=dev

That means your service will load application-dev.properties along with the default 
application.properties file. The dev environment file will override the default property file 
with whatever properties you have declared in it. By declaring an active profile, Spring will try to load 
the file named application-{profile}.properties on top of your default properties file.

Reading properties from environment variables

Your property values can also reference environment variables. For example, when declaring the 
server.port property for your Spring application, you are allowed to use the following syntax so 
that you can extract the value of the environment variable to your property file:

server.port=${RENTAL_PROPERTIES_SERVER_PORT}

This means your server.port value will be the same value as the RENTAL_PROPERTIES_
SERVER_PORT environment variable.

Injecting environment variables is very important when you want to hide secrets, such as passwords 
for important services. Storing those values in environment variables means you do not need to write 
them directly in your properties files. And because they are not in the properties files, you can safely 
guard those files using Git.

OK, this explains everything you need to know to declare properties in your services. Now, how can 
you actually inject one of those properties into your Spring applications? That’s what we will learn in 
the next section.



Launching Your Self-Organizing Microservice Cloud370

Injecting properties in your services

If you need to inject an environment variable into your Spring application, just use the following 
syntax on your services. In this example, we are changing the Proposal service in the 
RentalProposalServiceImpl class so that we can declare the name of the kafka topic in 
our property file:

@Value("${rental.proposal.topic.name:sample-name}")
private String topicName;

This is how we can declare the property in the application.properties file:

rental.proposal.topic.name=proposal-topic

This wraps up how you can structure your application property values. To summarize, you can do 
the following:

•	 Write separate property files in different formats (properties or .yml files)

•	 Write specific property files for different execution profiles (useful for providing value to 
different environments)

•	 Set the property files to be used when starting the application

•	 Set the property values in the command line for starting your Spring application

•	 Set the property files directly in your code

•	 Use your operating system to store property file values that Spring will detect at startup time

•	 Inject your own property files in your Spring services

With that, we can go to the next topic, where we see how we can use Spring Cloud to launch services 
in a self-organizing way.

Setting up your services using Spring Cloud
Spring Cloud is a set of tools in Spring that helps you launch your services with a series of features 
that allow you to simplify your connections. By using Spring Cloud, you are able to do things such 
as the following:

•	 Create a configuration service that will host the config files for all your microservices

•	 Create a discovery service that will help your services to connect to one another automatically, 
regardless of the IP and ports used by each service

•	 Scale your microservices to multiple copies and have them working behind load 
balancers automatically



Setting up your services using Spring Cloud 371

•	 Map all your services in a single API gateway in such a way that your clients can reach any of 
your microservices by just hitting one IP and one port

Let’s see how this works by first looking at the Spring Cloud topology. We will use our HomeIt example 
to illustrate how the Spring Cloud topology is built.

Understanding the Spring Cloud topology

The following diagram lays out how the Spring Cloud components fit into the architecture we have 
built so far for HomeIt:

Figure 11.1: HomeIt Spring Cloud topology

The following observations apply:

•	 First, the API gateway is a special Spring Cloud service we are going to write that will allow 
our clients to consume just one IP and port in order to reach any service in your cloud. That 
will mean you don’t have to force your clients to have addresses for every service copy. Also, 
the API gateway will automatically load-balance the calls to your services if you create several 
copies for each one. That helps to scale your app horizontally (when you need to create multiple 
copies of the same service to handle more throughput).



Launching Your Self-Organizing Microservice Cloud372

•	 Second, the Config service is a special Spring Cloud service that allows you to expose a config 
repository so that any of your services will be able to load configurations from the Config service 
directly. The Config service enables retrieving property files from different mediums. In our 
example, we will expose the configuration files using GitHub as a central repository, which is 
ideal when we want to version our property files. When starting up, the Config service will 
basically clone your Git configuration repository and make the files available to other services.

•	 Third, the Discovery service (also called the Eureka service) allows every service on your cloud 
to find every other service. It serves the following purposes:

	� It allows all the services in your architecture to publish their own instances and say which 
IP they are running on and which HTTP port they are listening to.

	� As the Discovery service will know every other service on your cloud, as well as its IP and 
port, it can inform every other service where to find any available service. That means all 
your services will be able to find each other automatically when you use the special Spring 
Cloud configurations that we will see in the next sections.

	� Because every service will read its own configurations from your Spring Cloud Config 
service, you will have a much easier time setting specific configurations for your services in 
different environments that you might have to use.

As you can see, your Spring Cloud environment will take care of connecting all the services to each 
other in whatever environment you need to launch your services in.

In the next sections, we will learn how to write these special services and how to change our current 
services to enjoy the benefits of a self-configuring cloud environment.

Launching the Discovery service

The Discovery service, also known as the Eureka service, is a very simple microservice that helps you 
to map every other service in your cloud. It was originally created by Netflix for their own use, but 
later, the company decided to make it open source. Due to its obvious benefits, it was incorporated 
into the Spring Cloud set of services.

There is no need to configure extra dependencies to create your Discovery service. You just create a 
sample service using the Spring Initializr. Then, extract the project content to your hard drive and set 
your build.gradle file to the following:

plugins {
   id 'java'
   id 'org.springframework.boot' version '3.3.4'
   id 'io.spring.dependency-management' version '1.1.6'
}

group = 'com.homeit'



Setting up your services using Spring Cloud 373

version = '0.0.1-SNAPSHOT'

java {
   toolchain {
      languageVersion = JavaLanguageVersion.of(21)
   }
}

dependencyManagement {
   imports {
      mavenBom "org.springframework.cloud:spring-cloud-
dependencies:2023.0.3"
   }
}

repositories {
   mavenCentral()
}

dependencies {
   implementation 'org.springframework.boot:spring-boot-starter'
   implementation 'org.springframework.cloud:spring-cloud-starter-
netflix-eureka-server'
   implementation 'org.springframework.boot:spring-boot-starter-
actuator'

   testImplementation 'org.springframework.boot:spring-boot-starter-
test'
   testRuntimeOnly 'org.junit.platform:junit-platform-launcher'
}

tasks.named('test') {
   useJUnitPlatform()
}

In the code block, the dependencyManagement section downloads the correct version of any Spring 
Cloud dependencies you might have so that you don’t need to set the version in every dependency.

The key dependency here is netflix-eureka. This is the one that automatically adds some REST 
endpoints to your service that allow the Discovery service to receive registration requests from other 
services, and that allows other services to discover registered services. The registered services are kept 
in an in-memory database by default. 



Launching Your Self-Organizing Microservice Cloud374

These are the key properties of the Eureka service in the HomeIt architecture:

spring.application.name=eureka-server

server.port=8761
eureka.client.register-with-eureka=false
eureka.client.fetch-registry=false

As you can see, we are setting the name of the service and the default port, and finally, we have two key 
options: register-with-eureka, which tells the service to not try to register itself in another 
Eureka service, and fetch-registry, which is currently setting the Eureka service to not fetch 
registry data from other Eureka services. These options are useful when doing standalone Eureka 
service configurations.

Also, in order to have your application running the Eureka services, you will need to add a special 
annotation to your main application class. Here’s an example:

@SpringBootApplication
@EnableEurekaServer
public class EurekaServerApplication {

 public static void main(String[] args) {
  SpringApplication.run(EurekaServerApplication.class, args);
 }
}

By doing that, you will be able to run the Eureka service. It runs on standalone mode, which means 
you will have just one Eureka service instance available for your cloud. The downside is that if your 
Eureka service stops, all the other services won’t be kept up to date with their peer service addresses. If 
any of your services change, Eureka will not be there to update your cloud services about that change.

Standalone mode can be a bit risky, so we need to add multiple instances of the Eureka service. If you 
want to have high availability with multiple Eureka service instances, you need to define what other 
Eureka service instances are available in all your service instances. You will list all the Eureka service 
instances that are available by using the defaultZone configuration on your service properties 
(including all Eureka instances). Also, you will have to set the fetch-registry and register-
with-eureka options to true in your Eureka services as well.

Here is an example of how one Eureka service can query other services:

eureka.client.register-with-eureka=false
eureka.client.fetch-registry=false
eureka.client.service-url.defaultZone=http: //localhost:8761/
eureka/,http://localhost:8762/eureka/



Setting up your services using Spring Cloud 375

And that’s it for our Discovery service. You can see the full implementation of an Eureka service here: 
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/
tree/main/chapter-11/eureka-server. Next, let’s see how to run the Config service, 
which allows your microservices to download property files from a central place.

Launching the Config service

The Config service allows you to have a centralized location from which your microservices can 
download their property files. We have seen that managing your property files is a very important part 
of making your microservices work in many different environments. So, instead of having distributed 
property files and deciding how each service should discover them on a case-by-case basis, why not 
have a single location from which all your services can just query their properties at startup time?

Making this design uniform all across your microservices is the purpose of a Config service. This is 
how to build one.

Building a Spring Cloud Config service

To create a Spring Cloud Config service, Go to the Spring Initializr website and create a basic Spring 
application. You can add whatever application and package name you want. Then, this is what your 
build.gradle file should look like:

plugins {
   id 'java'
   id 'org.springframework.boot' version '3.3.4'
   id 'io.spring.dependency-management' version '1.1.6'
}

group = 'com.homeit'
version = '0.0.1-SNAPSHOT'

java {
   toolchain {
      languageVersion = JavaLanguageVersion.of(21)
   }
}

dependencyManagement {
   imports {
      mavenBom "org.springframework.cloud:spring-cloud-
dependencies:2023.0.3"
   }

https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-11/eureka-server
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-11/eureka-server


Launching Your Self-Organizing Microservice Cloud376

}

repositories {
   mavenCentral()
}

dependencies {
   implementation 'org.springframework.boot:spring-boot-starter'
   implementation 'org.springframework.cloud:spring-cloud-config-
server'
   implementation 'org.springframework.cloud:spring-cloud-starter-
netflix-eureka-client'

   testImplementation 'org.springframework.boot:spring-boot-starter-
test'
   testRuntimeOnly 'org.junit.platform:junit-platform-launcher'
}

tasks.named('test') {
   useJUnitPlatform()
}

In the plugins section, I have set the version and dependency management to a specific version number.

In the dependencyManagement section, I have set the imports directive, in which we specify 
what BOM file to use. Those directives help with writing the dependencies section, as you won’t 
need to write the version number for your Spring dependencies. If you don’t have those dependency 
management guides in your build file, you will need to know exactly which version you should use 
for each Spring dependency.

In the dependencies section, we have these important dependencies:

•	 The Spring Cloud Config Server dependency, which adds everything you need in this microservice 
to serve configuration files effortlessly.

•	 The Spring Cloud Starter Netflix Eureka Client, which gets your Config Server to automatically 
register itself in the Eureka service. This allows your microservices to automatically know where 
to find the Config service.

Now that we have added the dependencies to our Config service, let’s learn how to set its properties, 
which is a critical step to make it work.



Setting up your services using Spring Cloud 377

Setting the Spring Config Server properties

Because there are quite a few important properties that should go on a Spring Config server, let’s break 
down the properties file and add a few different sections in order to make it easier to understand.

Setting basic application properties and GitHub access

Just like in the Eureka service, a full Config Server is actually pretty simple to write, as you do not 
need to add extra classes and services to your code. Once you have set up the dependencies in your 
build.gradle file, this is the default property file we are going to use for the HomeIt Config Server:

spring.application.name=config-server
server.port=8888
spring.cloud.config.server.git.uri=https: //github.com/rsantiago/
professional-spring-system-design-patterns.git
spring.cloud.config.server.git.username=${GIT_USER}
spring.cloud.config.server.git.password=${GIT_KEY}
spring.cloud.config.server.git.searchPaths=config-repo/

As you can see, I am setting the port to 8888, then setting up the Git repository where I want to get 
the configuration files from. I am also setting the username and password to two environment variables 
(I am using the GitHub developer token as the password). Plus I am telling Spring that, once it clones 
the repository, the configuration files lie in the config-repo/ directory.

Those were all the property values we needed for setting up the Git configuration and the basic service 
properties, such as the application name and the server port. Let’s now look at the properties used by 
the Eureka clients so that your Config Server knows how to publish itself to your Eureka service, and 
also so that it knows how to get other service addresses from the Eureka registry.

Setting the Eureka properties

The following properties are related to the Eureka service. It will help your Config Service to connect 
to your Spring Cloud environment:

eureka.client.service-url.defaultZone=http: //localhost:8761/eureka/
eureka.client.register-with-eureka=true
eureka.client.fetch-registry=true
eureka.instance.prefer-ip-address=true

Here, I am telling my Config Server that the Eureka service can be found at port 8761 and that this 
config server should register itself in Eureka. This server will fetch the registered servers from Eureka 
and will prefer to use the IP addresses to reach other servers.



Launching Your Self-Organizing Microservice Cloud378

Setting the right log levels for transparency

Knowing what is happening with your Config service is crucial for troubleshooting your Spring Cloud 
environment. So, let’s see some other important options in the properties file for our HomeIt Config 
Server that will produce logs that say what is happening in your Config Server:

logging.level.org.springframework.cloud.config.server.
environment=DEBUG
logging.level.org.eclipse.jgit=DEBUG
logging.level.org.springframework.web=DEBUG
logging.level.org.springframework.cloud.config.server=DEBUG

After setting up the Eureka properties, in this section, I am setting the log levels I want for the Config 
service so that I know what is happening when the server is running.

As you can see, I am first setting the logs to the DEBUG level in the following parts:

•	 The JGit dependency, which deals with connecting to the configured GitHub repository (the 
JGit dependency is automatically and implicitly imported when you use the Spring Cloud 
Config Server dependency).

•	 The Spring Web dependency and the Cloud Config server dependency as well. This allows me 
to understand what is happening under the hood when my config server starts and when other 
microservices try to download their property files, respectively.

And this is pretty much it for your Config service. Let’s see the last step, which is to create your main 
application class that will run the Configuration service.

Writing the application class

In order for the Config Service to work properly, you need a simple application class that goes 
something like this:

@SpringBootApplication
@EnableConfigServer
@EnableDiscoveryClient
public class ConfigServerApplication {
 public static void main(String[] args) {
  SpringApplication.run(ConfigServerApplication.class, args);
 }
}

You need just two extra annotations:

•	 @EnableConfigServer will ensure that Spring injects everything you need for your Config 
Server to run properly, allowing other services to query for their own configuration files.



Setting up your services using Spring Cloud 379

•	 @EnableDiscoveryClient will ensure this Config Server registers itself in the Eureka 
service. Remember, Eureka needs to know where the services are so that they can connect to 
each other effortlessly. We will see how that happens in the Integrating your services with Spring 
Cloud section.

If you want to see the full code for this config service, just follow this link: https://github.com/
PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-
11/config-server.

Next, let’s see an example of how you can structure your property files in your Git repository.

Setting up your property files on a Git repository

To make sure your applications can download property files from different environments, let’s use the 
Spring Profiles feature. I have created four different property files for each service: a default property 
file and three different files for hypothetical environments: dev, stg, and prod.

Here’s a list of the files I created. As you can see, there are four files prefixed with the rental-
property-microservice string. That means these are the four property files for the rental 
property microservice we wrote in our HomeIt project – one for each environment (the default file, 
then dev, stg, and prod):

authprovider-dev.properties
authprovider-prod.properties
authprovider.properties
authprovider-stg.properties
rental-property-microservice-dev.properties
rental-property-microservice-prod.properties
rental-property-microservice.properties
rental-property-microservice-stg.properties
rental-proposal-service-dev.properties
rental-proposal-service-prod.properties
rental-proposal-service.properties
rental-proposal-service-stg.properties
revoke-token-service-dev.properties
revoke-token-service-prod.properties
revoke-token-service.properties
revoke-token-service-stg.properties

All these files can be seen in the repository for the project https://github.com/
PacktPublishing/Spring-System-Design-in-Practice/tree/main/config-repo.

https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-11/config-server
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-11/config-server
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-11/config-server
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/config-repo
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/config-repo


Launching Your Self-Organizing Microservice Cloud380

Also, I have created the files in a very simple way, just to illustrate how to change properties from one 
environment to another. Here is an example for the rental properties microservice in prod:

server.port=9801

As you can see, I am only changing the port number in each property file. In the real world, the Rental 
Property service property file would have a lot of different properties in each environment, depending 
on external services you would like to use, for example. In general, dev, stg, and prod would provide 
the same external services but in different URLs (think about database connections, for instance).

Your property filename in the Config Server repository must start with the server name you set in the 
default property file of your project. In the case of the Rental property service, we have set this value 
in the application.properties file:

spring.application.name=rental-property-microservice

This means that whatever profile I run the Rental Property service with, once I configure this service to 
integrate with my Spring Cloud environment, it will try to fetch property files starting with the rental-
properties-microservice prefix. That is crucial for ensuring you get the right configuration.

Next, let’s see how we should program our own services for them to integrate automatically with 
Spring Cloud.

Integrating your services with Spring Cloud

To fully integrate your services with Spring Cloud, there are three requirements:

•	 Prepare your server to register itself to a Eureka service

•	 Prepare your server to fetch property files from a Spring Cloud Config Server

•	 Get your server to discover other services automatically

To implement those three requirements, we will go through five steps in total. In the following sections, 
these are the steps we will follow. Let’s adapt the Rental Properties service adapted to this environment. 
You can adapt these steps to integrate other services into a Spring Cloud environment.

Adding necessary Spring Cloud dependencies

First, add these dependencies to your build.gradle file:

implementation 'org.springframework.cloud:spring-cloud-starter-
netflix-eureka-client'
implementation 'org.springframework.cloud:spring-cloud-starter-config'

The first dependency will ensure your service connects to a Eureka service, while the second will 
ensure your service downloads the config files from a Config Server.



Setting up your services using Spring Cloud 381

Setting your service properties

In order to force your microservice to download configurations from a Config Service and to connect 
to Eureka, the following properties need to be added to your default properties file:

eureka.client.service-url.defaultZone=http: //localhost:8761/eureka/
spring.config.import=configserver:

Remember that our Eureka service is set up to work on port 8761 and that the spring.config.
import option is telling your microservice to look for a config server in Eureka. Because we have 
added the started config dependency, Spring will do all it needs to download the configuration from 
the Config Server – this all comes out of the box with Spring Cloud architecture.

Configuring your application class

To make sure your microservice integrates with the Eureka service, you will need to add the following 
annotation to your application class:

@SpringBootApplication
@EnableDiscoveryClient
public class RentalPropertyApplication {
    // the rest of the code goes here...
}

With the properties and annotations set in this section and in the last two sections, your microapp 
will register itself with your Eureka service. Then, it will try to fetch the configuration file from the 
Config server. Remember, your config server is also configured to register itself with the Eureka service.

@EnableDiscoveryClient will set your application to connect to your Eureka service, but it 
can only know how to connect to it because you have set up the dependencies and the properties in 
the right way.

Choosing what property file your microservice will use

OK, but how can we set up our Rental Properties application class to download the prod properties 
file, for example? That’s easy: just make sure you are setting the right Spring Profile at startup time. 
Then, get your microservice JAR file and run the following command:

java -jar rental-property-microservice.jar --spring.profiles.
active=prod

This command will make our Rental Properties microservice look for the rental-property-
microservice-prod.properties file in the Config Server.



Launching Your Self-Organizing Microservice Cloud382

Calling other services with self-discovery

What about connecting to other services? When you integrate your application into a Spring Cloud 
architecture, it is possible to connect to another service using RestTemplate by doing two things.

First, declare your RestTemplate bean factory with a special annotation:

@Configuration
public class RestTemplateConfiguration {
    @Bean
    @LoadBalanced
    public RestTemplate restTemplate() {
        return new RestTemplate();
    }
}

By using the @LoadBalanced annotation, Spring Cloud will ensure two things:

•	 First, that your application uses the registry that Eureka provides. That means your application 
will be able to know the IP and port of your other microservices by just using the names of the 
other microservices declared in their own properties file.

•	 Second, Spring Cloud will ensure that if you have multiple copies of the same services running 
on your Spring Cloud environment, the calling service alternates between different target 
service instances when calling another microservice. This is what we call load balancing. In 
other words, the service starting the HTTP calls will distribute the calls, or the load, between 
different copies of the same destination services.

This is an important aspect of the discovery service in Spring Cloud. If you run multiple copies of the 
same services and they are configured to use the Eureka service, Eureka will keep a list of all existing 
instances in different IPs and ports. In other words, if you run the Proposal service multiple times 
from different IPs and ports, your Eureka service will know every instance. And every time a service 
tries to call the Rental Property service, the load-balanced RestTemplate will receive a list of those 
different instances and will distribute the calls evenly. Keep this in mind when you’re thinking about 
scaling your services to deal with more traffic.

Here is the second thing to do to allow your Spring services to automatically discover other services 
in your cloud environment. Let’s see how the Rental Property service is able to call another server. 
We need to declare the url parameter using just the name of the destination service. Plus, since we 
have programmed the Rental Properties service to query the Revoke Token service to discover if the 
token is still valid, we set the call to automatically discover the address of the Revoke Token service. 
This is what the code will look like:

public boolean isTokenRevoked(String token) {
    String url = "http:/ /revoke-token-service/api/revoke-



Setting up your services using Spring Cloud 383

tokens?token=" + token;

    // the rest of the code goes here
}

Remember, this is the code in the RestTemplateRevokedTokenService class. Before the 
Spring Cloud configuration, we needed to set the location and port of the destination service. But 
since we are now using Eureka as a discovery service, by just referring to your destination service using 
the name of your target server set in the properties file, Spring Cloud will make sure Eureka informs 
your calling server where the destination service will be located. This is incredible and useful! That 
makes your cloud self-configuring in every environment that you launch it.

These are the most important things you need to do in every one of your services. If you want to see 
how this is set up for all the services we have built so far, the final code for our servers is here:

•	 Eureka: https://github.com/PacktPublishing/Spring-System-Design-
in-Practice/tree/main/chapter-11/eureka-server

•	 Config Server: https://github.com/PacktPublishing/Spring-System-
Design-in-Practice/tree/main/chapter-11/config-server

•	 Rental Properties service: https://github.com/PacktPublishing/Spring-
System-Design-in-Practice/tree/main/chapter-11/rental-property-
microservice

•	 Rental Proposal service: https://github.com/PacktPublishing/Spring-System-
Design-in-Practice/tree/main/chapter-11/rental-proposal-service

•	 Authorization provider: https://github.com/PacktPublishing/Spring-System-
Design-in-Practice/tree/main/chapter-11/authprovider

We have gone very far! At this point, your microservice cloud is able to serve configuration files 
remotely and discover other services automatically. Now, let’s discuss how to serve all your service 
requests from a single location: a Spring API gateway.

Launching the API Gateway service

If you have done everything we’ve discussed so far, the following situation is true: your services are 
launching and discovering each other automatically, and your configuration files are all centralized 
in one place. That’s cool, but there is one problem still to be solved: if an external HTTP client were 
supposed to consume these services, they would have to either find out the microservice IPs and 
ports by querying the Eureka service or we would need another way to make the external client know 
where to find your servers.

https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-11/eureka-server
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-11/eureka-server
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-11/config-server
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-11/config-server
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-11/rental-property-microservice
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-11/rental-property-microservice
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-11/rental-property-microservice
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-11/rental-proposal-service
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-11/rental-proposal-service
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-11/authprovider
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-11/authprovider


Launching Your Self-Organizing Microservice Cloud384

Enter the Spring Cloud Gateway. Instead of forcing your external clients to know how to query the 
Eureka server, the Spring Cloud Gateway allows you to centralize all your endpoints in a single service 
by setting up a façade server. In our HomeIt cloud, this means our frontend would be able to create 
users and tokens, create and query properties, and create and query proposals using a single IP and 
port, with different endpoints.

The way to configure the Spring Cloud Gateway is to follow these steps:

1.	 Create a simple Spring application in Spring Initializr.

2.	 Add the dependencies needed by the gateway.

3.	 Configure the endpoints using the properties file.

Let’s see how that happens with our HomeIt example.

Create a simple Spring application in Spring Initializr with the right 
dependencies

By now, you know how to create a simple app with Spring Initializr. So, go there and create one without 
any special dependencies.

Next, set your build.gradle file to the following:

plugins {
   id 'java'
   id 'org.springframework.boot' version '3.3.4'
   id 'io.spring.dependency-management' version '1.1.6'
}

group = 'com.homeit'
version = '0.0.1-SNAPSHOT'

java {
   toolchain {
      languageVersion = JavaLanguageVersion.of(21)
   }
}

dependencyManagement {
   imports {
      mavenBom "org.springframework.cloud:spring-cloud-
dependencies:2023.0.3"
   }
}



Setting up your services using Spring Cloud 385

repositories {
   mavenCentral()
}

dependencies {
   implementation 'org.springframework.boot:spring-boot-starter'
   implementation 'org.springframework.cloud:spring-cloud-starter-
gateway'
   implementation 'org.springframework.cloud:spring-cloud-starter-
netflix-eureka-client'
   testImplementation 'org.springframework.boot:spring-boot-starter-
test'
   testRuntimeOnly 'org.junit.platform:junit-platform-launcher'
}

tasks.named('test') {
   useJUnitPlatform()
}

By setting the Eureka client dependency, your API gateway will connect to your Eureka service, and 
every service you run will be made available to your API gateway.

Next, let’s set the application class to enable the discovery client services by adding the @
EnableDiscoveryClient annotation:

@SpringBootApplication
@EnableDiscoveryClient
public class ApiGatewayApplication {

 public static void main(String[] args) {
  SpringApplication.run(ApiGatewayApplication.class, args);
 }
}

Easy enough, right? Setting up the application is quite simple. Now, we need to configure the API gateway.

Configure the endpoints using the API gateway service properties file

In order to create our API gateway endpoints, we need to declare them in our .yml property file. 
There is no need to write a lot of code. This is the start of the application.yml file:

spring:
  application:
    name: api-gateway
  cloud:
    gateway:



Launching Your Self-Organizing Microservice Cloud386

      discovery:
        locator:
          enabled: true
          lower-case-service-id: true

This informs Spring Cloud that this application is called api-gateway, that the gateway service 
will be activated to discover the other services in the cloud, and that every service query should be 
handled by parsing service names to lowercase.

Now, this is what we need to declare the endpoints we want in this API gateway. It is all done within 
the configuration file. Notice the spaces, which have been left intentionally, as all these routes are 
children of the spring.cloud.gateway property in the properties hierarchy:

      routes:
        - id: authprovider
          uri: lb://authprovider
          predicates:
            - Path=/auth/**
          filters:
            - StripPrefix=1
        - id: revoketoken
          uri: lb://revoke-token-service
          predicates:
            - Path=/revoke/**
          filters:
            - StripPrefix=1
        - id: rentalproposal
          uri: lb://rental-proposal-service
          predicates:
            - Path=/proposals/**
        - id: rentalproperties
          uri: lb://rental-property-microservice
          predicates:
            - Path=/properties/**
          filters:
            - StripPrefix=1

These configurations create API gateway endpoints for all the important services we have so far. Let’s 
take just one of the defined paths to understand its pieces:

        - id: rentalproperties
          uri: lb://rental-property-microservice
          predicates:
            - Path=/properties/**



Setting up your services using Spring Cloud 387

          filters:
            - StripPrefix=1

Now, let’s see what each attribute means.

Spring API gateway configuration attributes

The id attribute helps to create a name for an API gateway endpoint. It generally means we are setting 
an endpoint for one of our services. In the HomeIt context, we are talking about creating an API 
gateway endpoint for providing external clients access to the Rental Properties service.

The uri attribute means the service location inside the Eureka registry. Here, we are declaring that we 
want load-balanced access to the service named rental-property-microservice (remember, 
this is the name of the service we have set up in the default application.properties file in 
the Rental Properties service).

Note that by load balanced, we mean that every call to our API gateway that is destined to the Rental 
Properties service will be distributed across every running instance of the Rental Properties service that 
registers itself in our Eureka service. That is a lot to take, so read it again to make sure you understand 
what it means. Spring Cloud is an architecture that makes a lot of things automatically!

The predicates section tells us that whenever a request comes to the API gateway and the URI 
has the /properties/ prefix, the API gateway will forward that request to the Rental Properties 
service that was discovered in the Eureka registry.

The filters section tells us that when we forward a request to the Rental Properties service, we will 
strip away the /properties/ prefix by using the StripPrefix=1 directive. In other words, we 
strip away one level of the root URL in every request before forwarding it to the destination service.

That means, in practice, that other applications will have to call the API gateway in http://
{api-gateway:port}/properties/api/v1/rental-properties so that the gateway 
can strip away the properties portion of the URI and forward the request to http://{rental-
properties-microservice:port}/api/v1/rental-properties.

That was rentalproperties, but as you can see in this collection of endpoints, we have also 
declared endpoints for all important services in our HomeIt architecture, including authprovider, 
revokentoken, and rentalproposal too. How interesting is that?

Now, let’s see the other parts of our application.yml file:

logging:
  level:
    com.homeit.logs.GlobalFilterLogs: DEBUG
    org.springframework.cloud.gateway: DEBUG
    org.springframework.http.server.reactive: DEBUG
    reactor.netty.http.server: DEBUG



Launching Your Self-Organizing Microservice Cloud388

We have set these log levels to make sure we can see everything that is happening when the API gateway 
receives a call and forwards it to other servers. It will produce debug logs for our GlobalFilter logs 
(we will see these in a bit), and it will also produce debug logs for the API Gateway dependency, the 
Reactive Server dependency, and the HTTP server dependency as well.

Let’s look at the last properties:

server:
  port: 8080

eureka:
  client:
    service-url:
      defaultZone: http: //localhost:8761/eureka/

As you can see, we are setting our API gateway to serve requests at port 8080, and the service URL for 
eureka to port 8761 in localhost. This means that whatever requests at http://localhost:8080/
{whatever-uri} hit our API gateway configurations, if the prefixes match any of the filters we 
created, the API gateway will know how to forward that request to one of our services.

With that, you have set up your API gateway. Now, we need to improve the transparency of our logs, 
so we will add a global filter class that will let you know everything important about every request 
your API gateway receives.

Setting transparent logs in your Spring API gateway

Because we need more transparency to check whether our API gateway works properly, I have created 
a class called GlobalFilterLogs. It means that all the calls the API gateway receives will produce 
logs with every bit of information in that HTTP request. Let’s look at the implementation:

@Component
public class GlobalFilterLogs
    implements GlobalFilter, Ordered {

    private static final Logger logger = LoggerFactory
        .getLogger(GlobalFilterLogs.class);

    @Override
    public Mono<Void> filter(ServerWebExchange exchange,
org.springframework.cloud.gateway.filter.GatewayFilterChain  chain) {

    // Log the request path and headers
    logger.info("Incoming request: {} {}",
        exchange.getRequest().getMethod(),
        exchange.getRequest().getURI());

    exchange.getRequest().getHeaders()



Setting up your services using Spring Cloud 389

        .forEach((name, values) -> {
            values.forEach(value -> logger.debug(
                "Request Header: {}={}", name, value));
        });

    return chain.filter(exchange)
        .then(Mono.fromRunnable(() -> {

        // Log the response status code and headers
        logger.info("Outgoing response: {}",
            exchange.getResponse().getStatusCode());

        exchange.getResponse().getHeaders()
            .forEach((name, values) -> {
                values.forEach(value -> logger.debug(
                "Response Header: {}={}", name, value));
            });
        }));
    }

    @Override
    public int getOrder() {
      return -1; // Ensure this filter is applied first
    }
}

This neat code piece will inject a class in our API gateway cycle that will log all handled request and 
response objects to our console at the debug level. This makes it transparent that we are making 
requests in the right way to our destination services.

This is what we needed to set up our API gateway properly. Let’s test the entire Spring Cloud environment.

Hitting the API gateway with our integration tests

Now that we have configured our Spring Cloud environment, how do we test it completely?

First, we need to know how to make it all available for our external clients. To make sure all the servers 
are connecting with each other in the right way, this is the order in which you need to run your services:

1.	 The Eureka service needs to be started before everything else.

2.	 The Config service needs to be started next.

3.	 Then your API gateway can be started.

4.	 Finally, you can start your own services.



Launching Your Self-Organizing Microservice Cloud390

Your services will then register and query the Eureka service registry, and hence they will be able 
to fetch the config files from the Config Server. Also, the API gateway will discover your services 
automatically since the Eureka service updates the other clients.

Understanding these steps and the order in which you should start them is crucial for making your 
Spring Cloud work. Here are a few other interesting facts about Spring Cloud that you must have 
in mind:

•	 If one of your service instances is down, Eureka will update its own registry automatically in 
just a few seconds, and all Eureka clients will know that a service instance is down.

•	 When a new service instance is up, its Eureka clients will inform the Eureka service, which will 
in turn inform all other servers that a new instance of a service is online.

These two first bullets mean that you can spin new service instances up or kill instances, and 
all your other services will know about it. They will figure out on their own which instances 
are alive over time.

•	 If your Eureka service is down, the other services will try to connect to one another by using 
the last information they have about their peer services.

•	 Once your Eureka service is up again, it will automatically gather information about other 
services and refresh itself.

•	 The API gateway will be updated over time as new instances are down or up, and because it also 
uses load balancers, it can distribute calls to servers dynamically as the IPs and ports change 
over time for different servers.

These features make Spring Cloud very powerful and resilient. We are going to explore other important 
Spring Cloud features in the next chapter.

Now, we still need to make some adjustments in our integration tests, to make sure they are calling 
our HomeIt service by using the API gateway we have set up. Since I wanted our integration tests to 
hit the API gateway directly, I have made the following changes to our code:

•	 Every request address was changed to localhost:8080 because I am running these services 
on my local computer, but it could be in any IP in which you will run your API gateway.

•	 All requests were changed to add the prefix we created in our API gateway. Before the change, 
we were calling our individual services directly, so the URL of the service was a bit different. 
For instance, for the Rental Properties service, we would have the URL /api/v1/rental-
properties, and in the API gateway, we expect to receive the prefix /properties/ in 
the URL. If we try to call our services without fixing the prefix to the one accepted by our API 
gateway, you will get a series of 404 responses.



Summary 391

You can see the full implementation of our integration tests here (insert the repository’s URL here). 
This version of the integration tests will create users, tokens, properties, and proposals by directly 
accessing our API gateway without knowing where the other services lie behind the curtains. It is simply 
superb that we can hide those details from our clients and make our cloud services much simpler.

And that is how we create a full Spring Cloud architecture, allowing your services to be self-configurable 
and discoverable.

Summary
In this chapter, we have discussed how to organize our services to properly run in different environments. 
We started by looking at how to structure our logs and how to activate/deactivate log levels. We have 
also learned how to organize our properties with very different strategies that allow us to adapt to 
different environments, purposes, and circumstances. Finally, we have set up our services by using the 
Spring Cloud framework, which provides very high configurability, load balancing, discoverability, and 
resilience to our microservice cloud. We have learned that by using an API gateway, we can simplify 
external access to different services in whatever IPs and ports are available. Plus, we have updated 
our integration tests to ensure we can do end-to-end tests directly by connecting to the API gateway.

In the next chapters, we will learn how to optimize this architecture further so that we can have faster 
services that can recover from failure. I hope to see you there!





12
Optimizing Your Services

Welcome to our last chapter! This book was a wild ride going through several different Spring Framework 
patterns. In this chapter, we will look at what could go wrong with services—because it is not always 
a happy world, right? Dealing with systems means we will see many severe issues—including in 
production. This chapter is meant to soften the blow. That is, it is meant to help you to prepare your 
system to be more resilient, fault-tolerant, and optimized.

We will cover the following topics in this chapter:

•	 Setting the right performance expectations for your projects

•	 Using caching to speed up access to critical data

•	 Recovering from failures with dead letter queues

•	 Real-time service monitoring with Spring Actuator

•	 Handling faulty services with Resilience4j

•	 Preventing race conditions with a SQL trick

•	 Recovering from failures using an audit job

•	 Dealing with a surge of requests by using throttling

In this chapter, you will be presented with a series of strategies for handling pitfalls in your systems. 
OK, let’s get down to it!

Technical requirements
In order to go through these examples, you will need access to the chapter-12 folder of our sample 
code repository: https://github.com/PacktPublishing/Spring-System-Design-
in-Practice/tree/main/chapter-12.

https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-12
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-12


Optimizing Your Services394

More specifically, you can find the new code sample in the implementation of the Rental Properties 
service: https://github.com/PacktPublishing/Spring-System-Design-in-
Practice/tree/main/chapter-12/rental-property-microservice.

Setting the right performance expectations for your 
project
When you write software, you pour a part of your heart into the code. You spend a lot of time imagining 
great ideas to write. It turns out that a lot of our best ideas are faulty and buggy, which could be hard 
to accept. Because of that, software is also an emotional rollercoaster of sorts. The following principles 
may help you to deal with those emotions and expectations.

Failures are unavoidable

Bugs, errors, malfunctioning, outages, network errors, hardware failures—these are all expected in 
software architecture and completely unavoidable in anyone’s microservices. It is simply impossible 
for developers to deal with so many variables. I often say to my teams that the internet is a complete 
miracle. Can you imagine how many data structures and systems need to be perfectly aligned—in 
software and hardware—so that this incredible environment can freely distribute information 
throughout the world? Dealing with systems is a nightmare sometimes, so we need to just be at peace 
with the fact that software is risky. When you build something, it does not matter how much attention 
and quality assurance you bring to the table—something is going to break; something is going to be 
offline unexpectedly.

When your system grows, the chance of something going wrong grows more and more. So, the first 
thing you should keep in mind about performance improvement and troubleshooting is this: you will 
need to do it at some point.

Launch early, optimize later

The second thing I like to think about software optimization is this: since there are countless ways to 
improve your engineering, do not try to launch the perfect system from scratch—else, you will never 
launch it and will spend a lot of money on optimizations that never see production.

Optimizations take time and eat up your company’s money, so you should only optimize against clear 
issues you are likely to face in production. If you know that your system will need to serve 20,000 
requests per second, then create your system to handle that from the very first version. But if you know 
the first version of your system will be released to barely 1,000 users in the first month, just launch it 
without support for thousands of requests per second. Having that mindset will allow you to apply 
your company resources with efficacy. Being able to ship things, instead of delaying deliveries for a 
utopian perfection, will make you stand out among developers.

https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-12/rental-property-microservice
https://github.com/PacktPublishing/Spring-System-Design-in-Practice/tree/main/chapter-12/rental-property-microservice


Setting the right performance expectations for your project 395

Key bottlenecks that can slow things down

Performance bottlenecks in software can occur in various key areas. Take Figure 12.1 as an example. 
That is a very simplified version of our current architecture. Each component represents something 
that can break. Let’s take a look:

Figure 12.1 – A sample internet architecture

In the browser, rendering heavy pages or inefficient scripts can slow down interactions or break 
network calls. A CDN might introduce latency if improperly configured. An API gateway can become 
a bottleneck if overloaded. Object storage access may be slow due to network or even local hardware 
constraints. A poorly optimized microservice can consume excessive CPU or memory. Network 
issues can affect data flow between services, especially in containers. Slow hard disks and network 
filesystems can delay data retrieval. Inefficient databases can lead to sluggish queries, impacting overall 
performance. Finally, if you design your software in the wrong way—which we usually discover once 
our systems are being used in the real world—you will learn that your system is using its resources 
in a suboptimal manner.



Optimizing Your Services396

The best way to figure out issues in your system is to break your architecture down into its components 
and overall network topology and then test each component separately. For example, if your users 
are experiencing a long latency time for a request, you need to check that each hop in this network is 
working adequately until you find the step that is taking a long time to finish. Maybe it is the database 
query or your microservice algorithm. You will have to figure it out by investigating each small step.

Eliminate single points of failure

Another thing to take into account when optimizing systems is this: as much as possible, you should 
eliminate what we call “single points of failure”—which means any individual component, service, 
or dependency that, if it fails, would cause the entire system or a critical part of it to stop working.

That usually means you should have service copies running in parallel. If one of the copies fails, the 
others can take over and continue the work.

This is a critical step in software engineering. Make sure you do not have systems running in 
standalone mode.

Distributed transactions going wrong

Monolithic architecture has a clear advantage in transactions, compared to microservices. Since the 
entire system is connected to just one database, any new transaction you create with several changes 
in different tables can be wrapped inside a single database transaction. The database infrastructure 
guarantees that, if a single operation fails in the transaction, every other operation will be rolled back, 
and your system data will be left untouched and consistent.

With microservices, you need to think differently. Since a single-user operation can span across 
different servers, if something goes wrong in one of the services affected, other services can be left 
in the wrong state. That requires a special way of thinking. In general, each of your services needs to 
have very clear states and messaging systems. So, if something goes wrong in one service, you can 
recover messages from other services and roll back the transactions that took place in other systems.

There are countless ways of solving distributed transaction errors; since we are approaching the end 
of the book, we don’t have enough space to discuss and demonstrate them here. But bear in mind that 
if one of the services fails in the chain of the execution of a distributed transaction, it must provide 
events so that other servers can roll back their part of the transaction.



Using caching to speed up access to critical data 397

Prepare your services for concurrent requests

Another critical aspect of service optimization is the good old concurrency issue. In our HomeIt 
system, for instance, we have not created any safeguards to prevent the same landlord from accepting 
two or more proposals from different people. That will lead to a very basic concurrency issue. I left that 
hole open so we could discuss it further. Even if we have created a service to mark which properties 
are already rented, a landlord with bad intentions could try to accept two contracts at the same time.

It is key to put features in place to prevent people from using resources concurrently in a way that 
they should not be allowed to.

These topics introduce and summarize the kinds of issues we deal with when thinking about optimization, 
performance, and failures. We will spend the rest of the chapter looking at several strategies to prevent 
failures and optimize our strategy.

Using caching to speed up access to critical data
Caching is an interesting topic that is easy to explain but sometimes hard to get right in practice. 
Suppose that on HomeIt, you start to see a lot of users looking for properties, and then you decide 
that you do not want the database to be engaged every time the endpoint for retrieving the property 
by ID is used. After all, firing a request to the database is a costly I/O operation, and properties do 
not change too much over time anyway after the owner registers its basic data.

In that case, you might decide that, when receiving a call to get properties by ID, your Rental Properties 
service should query a caching system before reaching for the database—that usually means putting 
an in-memory database, such as Redis or Memcached, before the database operation.

We are not going to cover how to install or configure a different Redis instance here, as this is a topic for 
an entire book itself. You can use this official how-to page to learn how to install Redis on your machine:

https://redis.io/docs/latest/operate/oss_and_stack/install/install-
redis/

Let’s just look at how to configure Redis inside Spring Boot. You will need an already-running 
Redis instance:

1.	 First, we are going to add these two dependencies to the build.gradle file:

implementation 'org.springframework.boot:spring-boot-starter-
cache'
implementation 'org.springframework.boot:spring-boot-starter-
data-redis'

https://redis.io/docs/latest/operate/oss_and_stack/install/install-redis/
https://redis.io/docs/latest/operate/oss_and_stack/install/install-redis/


Optimizing Your Services398

2.	 Then, we create a Configuration class that will tell the Spring Framework to start the 
caching service:

@Configuration
@EnableCaching
public class CacheConfig {
}

If you are using an external Redis server, just add these properties to your project. In our 
sample code, I just added it but commented, so you can just use it if you want on your project:

spring.cache.type=redis
spring.data.redis.host=localhost
spring.data.redis.port=6379

Now that we have the dependency, the configuration bean class, and the properties included in our 
project, we can just add the caching declaration to the service classes we want. In this case, I will add 
a cache to the RentalPropertiesServiceImpl class, as I want the getter by ID to return 
properties from the cache. Here is the code:

@Override
@Cacheable(value = "properties", key = "#id")
public Optional<RentalPropertyDTO> get(UUID id) {
    return Optional.ofNullable(rentalProperties.get(id));
}

What does this @Cacheable annotation do? It creates an in-memory collection of properties. When 
we first hit the rental properties GET endpoint with the id A, for instance, the caching system won’t 
find the property inside its collection. Therefore, it will query the database and, besides returning the 
property, it will cache it so the next call will not require a query to a database, but just an in-memory 
scan of the cached properties.

Here’s an interesting language point: when our cache is able to return an object we are requesting, we 
say we have a “cache hit.” When our object is not yet cached and we need to go to the database, we 
say we have a “cache miss.” These are universal terms that you will hear people use.

Now, here is an important thing. When you have a cached object, you need to make sure it gets renewed 
if that object gets updated in the database. In other words, you need to “evict” the object from the 
cache, whenever that object is being updated in your system. This is how we do it:

@Override
@CacheEvict(value = "properties", key = "#id")
public Optional<RentalPropertyDTO> update(
        UUID id,
        RentalPropertyDTO updatedProperty) {



Recovering from failures with dead letter queues 399

    // implementation goes here
}

By adding the @CacheEvict annotation to your code, it is possible to instruct the caching system 
to always remove the property with the ID you are currently updating in the database. In that way, 
the next time someone tries to get the property using the same ID, you will have a cache miss and the 
new version will be cached again.

Simple enough, right? Now, let’s move on to the next topic: dead letter queues.

Recovering from failures with dead letter queues
In our HomeIt system, we created a very simple messaging system, such that our Rental Properties 
service can update a property that has ongoing negotiations. That is a very simple service that just 
updates the service with a new number, and the message itself is pretty simple. So, no room for 
mistakes, right? Right?!

Well, what happens if, for some reason, someone changes the rental proposal code and introduces a 
different message structure by accident? Or what if you have a service that has a complex notification 
object, and it gets changed in some way, such as by an error coming from a system it depends on? That 
would mean the consumers of that malformed message might face an issue while parsing the data.

To handle malformed messages in your system, you can create one or more dead letter queues. That 
means you can create one or more topics that will serve as alarm queues—once you try to parse the 
notification from other systems, any error in handling the notification can be forwarded to a dead 
letter topic.

You can pretty much have a system to consume dead letter messages, or you can set up some alarm 
systems to trigger email messages if your dead letter topic grows to a certain point. Dead letter queues 
help you to have visibility of malformed messages on your architecture.

Since you already know how to create topics, I am going to just leave this idea here without a code 
sample, so that we can cover more optimization ideas in this chapter.

Real-time service monitoring with Spring Actuator
As you may have noticed, we added the Spring Actuator dependency to some of our services in this 
book project, but we didn’t get a chance to really explain what it was about.

OK, here is the kicker: Spring Actuator is a dependency that provides some important infrastructure 
functions to make it easier for you to monitor your services. These endpoints can be leveraged by 
other systems to create dashboards and monitor the readiness and aliveness of your services.



Optimizing Your Services400

For example, if you are using Kubernetes to deploy your applications, you can use the health endpoint 
to check whether your service instances are still online. Once the health endpoint stops responding, 
Kubernetes will remove that instance and spin up a new one to replace the failing service.

Here is a list of useful endpoints from Spring Actuator:

•	 Health monitoring: Check whether the app is running (/actuator/health)

•	 Performance metrics: View CPU, memory, and request stats (/actuator/metrics)

•	 Environment inspection: See config properties and system variables (/actuator/env)

•	 Logging management: Change log levels at runtime (/actuator/loggers)

•	 Endpoint mapping: List all API routes (/actuator/mappings)

•	 Thread and memory analysis: Get thread and heap dumps (/actuator/threaddump 
and /actuator/heapdump)

•	 Security auditing: Track login events (/actuator/auditevents)

•	 Scheduled task monitoring: View active scheduled tasks (/actuator/scheduledtasks)

If we spin up our API gateway server, here is where you will find these endpoints:

http://localhost:8080/actuator/health

You will be able to enable the actuator endpoints by adding the dependency to your services, just as 
we did with the API gateway. Just go to your build.gradle file and add the following line to your 
dependencies section:

implementation 'org.springframework.boot:spring-boot-starter-actuator'

With this, any service you run will have the same set of endpoints. Here’s an interesting thing: as I 
am using the IntelliJ IDE to write these services, I can use its native integration with the Actuator 
endpoints. Here is a screenshot of what you will get by accessing this feature:



Handling faulty services with Resilience4j 401

Figure 12.2 – IntelliJ Actuator interface

Other IDEs will provide you with similar other useful features and integrations. In this screenshot, 
you can see every bean on your running service. You are also able to just navigate through a lot of 
other vital information at runtime.

All right, Actuator makes it a lot easier to understand what is happening with your service. Let’s now 
see how we can integrate logs from different services, using the Circuit Breaker pattern.

Handling faulty services with Resilience4j
If one of your services stops responding to another service, you can implement policies to determine 
what the caller will do. You can use Resilience4j in Spring to define those policies.

Resilience4j helps you to define a different behavior for your application in the face of or to avoid making 
your services faulty—you can choose alternate behavior when a call fails, or maximum thresholds for 
receiving calls from other services. You can instruct your service to automatically retry a failed call. 
There are a lot of interesting things you can do to get systems back to normal.

The first thing we will look at is how to use Resilience4j to switch a service behavior in the face of a 
failure in another service. We call this pattern the Circuit Breaker.



Optimizing Your Services402

Using the Circuit Breaker pattern

Let’s think about the HomeIt company. You know that the Rental Properties service now depends 
on the Revoke Token service, to discover if a token was made invalid by an admin. But what if the 
Revoke Token service is down? How is our application supposed to behave in that case? By now, if 
the Rental Properties service is unable to call the Revoke Token service, it will basically be unable 
to validate a token.

So, in order to make our architecture a bit more resilient, let’s suppose we want to adopt the following 
policy: if the Revoke Token service is down, we will just consider all tokens valid. This policy is 
important so that we don’t completely remove the user’s ability to use the website.

OK, here is how to do it. First, we need to add the following dependency to our Rental Properties 
service, in the dependencies section:

implementation 'io.github.resilience4j:resilience4j-spring-boot3'
implementation 'org.springframework.boot:spring-boot-starter-aop'

Once your dependency is added, you can configure the Circuit Breaker with the following directives.

First, for HomeIt’s Rental Properties service, we will add the following annotation to the 
RestTemplateRevokeTokenService.isTokenRevoked() method:

@CircuitBreaker(name = "revokeTokenCircuitBreaker", fallbackMethod = 
"revokeTokenServiceOutage")
//@Cacheable(value = "token", key = "#token")
public boolean isTokenRevoked(String token) {
    // the rest of the code does not change
}

As you may notice, we need to set a name for our Circuit Breaker, and also the name of the fallback 
method, in case the Revoke Token service is unavailable. Here is the implementation of the fallback 
method. I implemented it right in the RestTemplateRevokeTokenService class itself:

private boolean revokeTokenServiceOutage(Exception ex) {
    log.error("Revoke Token service is out! " +
           "All tokens are considered not revoked until " +
           "revoke service is back", ex);
    return false;
    // no tokens are considered revoked
    // while revoke service is down
}



Handling faulty services with Resilience4j 403

Also, you will need to add the following configs to your application.properties:

# circuit breaker configs
resilience4j.circuitbreaker.instances.revokeTokenCircuitBreaker.
failureRateThreshold=50
resilience4j.circuitbreaker.instances.revokeTokenCircuitBreaker.slow-
call-rate-threshold=50
resilience4j.circuitbreaker.instances.revokeTokenCircuitBreaker.slow-
call-duration-threshold=2s

resilience4j.circuitbreaker.instances.revokeTokenCircuitBreaker.wait-
duration-in-open-state=5s
resilience4j.circuitbreaker.instances.revokeTokenCircuitBreaker.
permittedNumberOfCallsInHalfOpenState=3
resilience4j.circuitbreaker.instances.revokeTokenCircuitBreaker.
slidingWindowSize=10
resilience4j.circuitbreaker.instances.revokeTokenCircuitBreaker.
minimumNumberOfCalls=5

Here is a quick explanation of the configurations:

•	 FailureRateThreshold: The percentage of failures through which the system will recognize 
that there is an ongoing failure. In this case, if 50% of our calls to the Revoke Token service fail, 
the circuit opens and the fallback method will be used to replace the default implementation 
that tries to reach the remote server. The fallback methods are those that will implement the 
policy you want to have in the absence of a remote server. In our case, we will consider the 
token to be valid by default if the remote Revoke Token service is down.

•	 slow-call-rate-threshold: The circuit opens if more than 50% of the calls are 
considered slow

•	 slow-call-duration-threshold: What should be considered a “slow call”—in this 
case, a two-second call to another server will be considered a slow call

•	 wait-duration-in-open-state: When the circuit opens, this is the time it takes to 
operate with the fallback before triggering another request to test the faulty service again

•	 permittedNumberOfCallsInHalfOpenState: The number of calls that will be fired 
when the Circuit Breaker is half open and tries again to reach for the remote, faulty service

•	 SlidingWindowSize: The number of last X calls the Circuit Breaker will monitor to measure 
whether the circuit is open or closed

•	 MinimumNumberOfCalls: The minimum number of calls that need to happen before the 
Circuit Breaker starts to really measure efficiency



Optimizing Your Services404

With that, any time the Revoke Token service goes offline, the Circuit Breaker will open and a default 
implementation of the isTokenRevoked() method will be fired. All tokens will be considered valid.

OK, this summarizes the main points of the Circuit Breaker pattern. Let’s see the next pattern, 
Rate Limiting.

Using the Rate Limiting pattern

Rate limiting a service means making other services unable to call your service more than X times in 
a given period. That is important to protect your service from excessive calls, which could lead to it 
completely breaking down and going offline.

To use rate limiting in Resilience4j, use the following annotation as an example:

@RateLimiter(name = "revokeTokenServiceRateLimiter", fallbackMethod = 
"rateLimitFallback")
public boolean isTokenRevoked(String token) {
     // your service implementation goes here
}

In this case, you also need to set the fallback method, which goes pretty much however you want—
you could just return a default answer (making the token valid, in our HomeIt example), or return a 
default error to the caller (that could be a troubling idea for our example, if you think that an excessive 
number of real users would be stopped from successfully accessing your website).

As you did with the Circuit Breaker usage, you will also need to parameterize how you want the rate 
limiter to play on your application. See the HomeIt example here:

# rate limiting
resilience4j.ratelimiter.instances.revokeTokenServiceRateLimiter.
limit-for-period=100
resilience4j.ratelimiter.instances.revokeTokenServiceRateLimiter.
limit-refresh-period=1s

In this case, we are taking only two parameters: the number of calls we want our application to support 
and the time we want to refresh the counter. In this example, we say that our service should not run 
more than 100 times per second.

Note that we always give a name while declaring the annotation. That name is then written in the 
configuration file. Every time we use one of the Resilience4j annotations, we call it an “instance” of 
Resilience4Jj Therefore, we can declare different policies for every service you want to protect with 
Resilience4j. This allows us to get pretty flexible and specific, and we can tailor our resilience strategies 
for each different situation.

Another important Resilience4j strategy is Retry. Let’s see it in detail.



Handling faulty services with Resilience4j 405

Using Retry in Resilience4J

Sometimes, services fail due to transient circumstances. Maybe a momentary network issue happened 
and your call to another service was lost. Or maybe some overload made your service stop responding 
for a few seconds. In busy, high-volume architectures, that might happen occasionally. Now, since 
this did not make your service go entirely offline, it basically means the next time you call it, it will be 
able to respond. What we should do then is be able to retry the request. That is easy with Resilience4J. 
Just use the @Retry annotation. And, of course, you need to set a name for that specific instance. 
See the following:

@Retry(name = "revokeTokenServiceRetry")
public boolean isTokenRevoked(String token) {
     // your service implementation goes here
}

A key difference between the @Retry annotation and others from Resilience4j is that you don’t 
need to declare a fallback method. After all, you are just asking the system to retry the same method 
if something goes wrong.

In order to set the actual policy for this @Retry instance, we can use the following declaration on 
our application.properties:

# retry config
resilience4j.retry.instances.revokeTokenServiceRetry.max-attempts=3
resilience4j.retry.instances.revokeTokenServiceRetry.wait-duration=2s

In this case, we say that Resilience4j should run the same method up to three times, waiting two 
seconds between each retry. That might not be a useful setting for your own application; it is just 
an example. You should always think about your use case. For example, if you think your app could 
answer in half a second again, or even less, you should just set the time in ms—500 ms, for example.

OK, let’s see the Bulkhead pattern now.

Using the Bulkhead pattern

This one seems a bit similar to the Rate Limiting pattern. But instead of setting how many requests 
you can take per period of time, you will choose how many parallel requests you can serve at the same 
time in your application. This is particularly useful to prevent actual memory crashes if you notice that 
on some occasions, your server gets heavily loaded because of multiple threads being opened to serve 
requests in parallel. If you do not have access to more memory in your service instance, implementing 
Bulkhead will prevent your service from completely crashing.



Optimizing Your Services406

Here is how you use the @Bulkhead annotation:

@Bulkhead(name = "revokeTokenBulkhead", fallbackMethod = 
"bulkheadFallback")
public boolean isTokenRevoked(String token) {
     // your service implementation goes here
}

As you can see, you will set a name to this Bulkhead instance, and you should also define a method 
that will be executed in case you don’t have more threads to open.

Here is an example of how to parameterize the Bulkhead on your application.properties file:

# bulk head
resilience4j.bulkhead.instances.revokeTokenBulkhead.max-concurrent-
calls=50
resilience4j.bulkhead.instances.revokeTokenBulkhead.max-wait-
duration=50s

The max-concurrent-calls parameter defines the maximum number of threads you want the 
application to use. max-wait-duration means the maximum amount of time calls will wait for 
their turn. In this example, we are saying we will serve up to 50 calls at a time, and the maximum wait 
duration will be 3 seconds. So, if more than 50 calls happen at the same time, the excessive ones will 
wait up to three seconds to be processed. If more than three seconds pass, the Bulkhead will throw 
an exception for each request that is waiting in the queue.

OK, this summarizes a handful of useful annotations for Resilience4j. Be aware if you use more than 
one at the same time in the same method, you will want to test it thoroughly to see whether it works.

Now, let’s talk a bit about concurrency.

Preventing race conditions with a SQL trick
In our HomeIt system, imagine a scenario where two tenants attempt to accept a rental proposal for 
the same property at the exact same time. How can we prevent both agreements from being finalized 
simultaneously? And how do we decide which tenant actually secures the rental?

Why microservice-level solutions won’t work

You might consider handling this at the microservice level using synchronized blocks, semaphores, 
or distributed locks. However, if your system runs multiple instances of the same service, they won’t 
always be aware of each other. This means that two users could still accept the rental proposal at the 
same time—leading to a classic race condition.



Preventing race conditions with a SQL trick 407

The problem worsens if accepting an agreement involves multiple services (e.g., payments, contract 
signing, or notifications). Now, you’re dealing with a distributed transaction, where concurrent requests 
could trigger inconsistent states across services.

Some argue that you should create a dedicated locking microservice to control access. The first user to 
acquire the lock in that service would proceed with the rental process. But what happens when your 
system scales? If you horizontally scale your lock service, you may introduce new synchronization 
issues across multiple instances.

A simple and effective solution – database locks

Instead of relying on microservices, you can let your database handle concurrency. With a simple 
atomic SQL update, you can ensure that only one user successfully locks the rental. This approach is 
safe and scalable and does not depend on distributed services.

SQL query – acquiring a lock for a rental property

This query updates the rental status only if the home is not already rented:

UPDATE rental_properties
SET rented = TRUE, tenant_id = <tenant_id>
WHERE property_id = <property_id> AND rented = FALSE
RETURNING *;

You can basically see the entire updated row with the RETURNING directive. If you have a row, that 
means the user succeeded in acquiring the property rental. With that, you are able to safely move on 
with further steps without the risk of other users closing the same deal concurrently.

Some developers might suggest using a stored procedure to enforce this logic. However, stored 
procedures are database-dependent, making it harder to switch between databases in the future. They 
also add complexity to your system by introducing logic at the database level, making debugging and 
maintaining business rules more difficult. By using a simple atomic SQL statement, you keep the logic 
at the application level, making your system more flexible and easier to scale.

OK, that prevents us from a lot of concurrency trouble in a simple and effective way. Now, let’s talk 
about how to recover from some failures.



Optimizing Your Services408

Recovering from failures by using an audit job
In our HomeIt system, processing a rental contract involves sending requests to multiple systems—
making it a distributed transaction. But what happens if an error occurs partway through? How do we 
ensure the system can recover automatically, without requiring manual intervention or troubleshooting?

One of the most effective solutions I’ve seen is implementing what I call an audit job. The idea is 
simple yet powerful.

Whenever a user accepts a rental proposal, we record the exact time of acceptance. This timestamp is 
stored as part of the proposal data. Additionally, we register the rental proposal ID as a foreign key in 
all downstream services. In other words, a rental proposal is considered fully processed only when all 
required services have recorded data referencing the original agreement. To facilitate tracking, this 
proposal ID should be indexed in every relevant table.

With this setup, we can now implement an audit job that runs at regular intervals—say, once per hour 
for a full day. The job scans rental agreements accepted in the past 24 hours and verifies that every 
downstream service has the necessary records. If it detects missing or incomplete data, it automatically 
retries the process for that specific service, ensuring that the operation is eventually completed as expected.

Over 24 hours, each agreement undergoes 24 automated verifications, significantly reducing the 
likelihood of unnoticed failures. If you want even stricter consistency, you can extend the audit period 
to a week or even a month, depending on system requirements and performance constraints.

By leveraging an audit job, we create a self-healing mechanism that continuously monitors, detects, 
and corrects inconsistencies—without requiring manual debugging or intervention.

Here’s a quick way to implement an audit job in Spring Boot using the @Scheduled annotation:

@Component
public class RentalAgreementAuditJob {
    @Scheduled(fixedRate = 3600000) // Runs every hour
    public void auditRentalAgreements() {
        // Logic to verify if downstream services have
        // the expected data
        // If missing data is detected,
        // retry processing the rental agreement
    }
}

You can use the audit job to produce logs that can be scanned by observability systems so that you 
can get an immediate grasp of systems that have inconsistent states.



Dealing with a surge of requests by using throttling 409

Dealing with a surge of requests by using throttling
There may be situations where your application experiences a sudden surge of requests. Imagine 
that, in HomeIt, we launch a special campaign offering discounted rates for landlords who register 
their rental properties on a specific date. The campaign has become so successful that thousands of 
landlords attempt to register their properties at the exact same time.

How do we prevent our system from becoming overloaded and going offline?

A powerful solution is to use the Throttling pattern, which essentially decouples the time a user 
sends a request from when the system processes and completes it. Instead of handling all incoming 
requests immediately, you process them asynchronously, allowing your system to absorb the traffic 
in a controlled manner.

A simple way to implement this is by placing a Kafka topic (or another message queue system) between 
the user and the service that handles registrations. The process works as follows:

1.	 When a landlord submits their registration request, the system immediately acknowledges it 
and places the request in a Kafka topic. The user receives a quick Request received response, 
preventing slowdowns or failures due to system overload.

2.	 A separate background worker consumes requests from the topic at a controlled rate, ensuring 
the registration service processes them without overwhelming the system.

3.	 As each request is processed, the user receives updates, such as an email or a notification on 
the website, informing them that their property has been successfully registered.

By using this pattern, the peak load is spread over time, preventing sudden spikes from overwhelming 
your servers while maintaining a smooth experience for users.

Additionally, you can enhance the user experience by providing status updates. Instead of making 
users wonder whether their registration was successful, your system can do the following:

•	 Show a progress indicator on the website

•	 Send an email or push notification once processing is complete

•	 Allow users to check their request status via a dashboard

This ensures that even though their request wasn’t processed instantly, they always know what’s 
happening, improving trust in your system. This brings us to the end of the chapter. I hope this has 
been an interesting way of thinking about common issues with your application.



Optimizing Your Services410

Summary
In this chapter, we provided some critical tips for making your services hit performance, resiliency, 
and fault tolerance targets, as well as just some good spice on dealing with concurrency.

We started our journey with some principles for you to manage expectations and performance in your 
services. We then talked about how to use caching to speed up access to data and how to recover from 
failures in very different ways: by working with dead letter queues, using Spring Actuator to monitor 
your services, using the amazing Resilience4j to implement retries, Circuit Breaker, and some other 
great tools for dealing with errors in your services.

We talked about how to handle concurrency by using very simple SQL tricks instead of having distributed 
services all over the place. We also talked about how to implement audit jobs to verify your system 
is behaving in a consistent manner when you use distributed transactions, as well as how to prevent 
your services from just blowing off your memory with the use of an interesting throttling strategy.

I hope this has been helpful. There are countless other ways to make your architecture better, but these 
tips are very important and ones I wish I had known about when I was starting out.

This concludes the book. I hope to see you on our next journey. Cheers!



Epilogue 411

Epilogue
This book has been a true marathon. It was written over a period of a year. During this time, I faced 
a lot of hard changes in my own life. As a software engineering manager, I had releases to work on 
with my team. We also carried out a huge re-architecture at my current company. Also, I bought a 
new house and sold my previous one. My wife went through a major surgery that took her weeks to 
recover. I spent a month visiting my family in Rio de Janeiro and had some family members come 
to live with us.

Can you imagine writing an entire 500-page book under those circumstances? It was quite a marathon! 
But here we are, and this chapter was all about adversities in systems and several strategies to deal 
with them. Talking about difficulties!

I truly hope you have enjoyed reading this book as much as I have enjoyed writing it. It was also a 
self-discovery process. With this last chapter, I hope you are now able to realize your vision as a great 
Spring Framework architect. May your systems recover easily from failures!





Index

Symbols
@Qualifier

using  243-245
@Transactional annotation

using, in method  247

A
aggregated logging  89
AI requirements  92, 93
Amazon Web Services (AWS)  111
analytics 

data storage  88
requirements  92, 93

API design
features, enhancing  188

API gateway service properties file
used, for configuring endpoints  385-387

API integration tests
actual tests, making with 

RestAssured  322-325
actual tests, writing  320-322
dependencies, declaring  319, 320
project structure, creating  319
writing, with RestAssured  318

API services
designing  120
HTTP request headers, using  127, 128
parameters, adding to endpoints  123
payloads, using  124-126
RESTful resource address, dissecting  122
RESTful standards, need for  121, 122
UUIDs, used to uniquely 

identify objects  126
application context  133
application programming 

interface (API)  120, 121
application.properties file

writing  365
Atomic, Consistent, Isolated, 

Durable (ACID)  212
audit job  408

used, for recovering from failures  408
authentication provider (auth provider)  262

reference link  383
automated tests

application tests, enhancing  184
basic test pattern  174
Beans, testing in isolation  180-182
case list  183, 184
integrated tests, creating with 

Spring Test  174-180



Index414

negative test cases  183
positive test cases  183
running, in console  184-186
testing options  182, 183
writing  173

B
base URL  188
bidirectional topics

versus unidirectional topics  340
Binary Files  87
business event

versus entity-driven event  337
business requirement criteria, 

for prioritizing  59
cost of acquisition  63
dependencies mapping  64
estimated cost of delivery  62
estimated return on investment  62, 63
impact of delivery  64
invisible problems  64, 65
market purchase power  61
market size  60, 61
problem frequency  61
problem intensity  61
uniqueness  65
UX impact  65
vision alignment  59, 60
willingness to pay for solution  61, 62

business requirements
crafting  11
customer key problems, identifying  12
high-level requirements for solution  13, 14
matrix of problem-solution 

statements, creating  12, 13
timelines, visualizing for 

problem-solving  9, 10

business requirements document
blocks, avoiding  50
clear inputs and outputs  49
complete signed-off flow  50
concept/feature  48
exceptional use cases  49
structuring  47

business services
implementation class, writing  169-171
Spring classes, organizing  172, 173

business services implementation  168
service interfaces, declaring  168, 169

C
caching  89, 397

for speeding up access, to 
critical data  397-399

Cassandra  212
command line

properties file, defining at  367
used, for overriding property value  366

config directory
properties file, adding to  366

Config Server
reference link  383

Config service
launching  375

Content Delivery Network (CDN)  88
Controller class

creating  117, 118
implementing  117

Couchbase  213
Create, Read, Update, and Delete 

(CRUD)  73, 246



Index 415

critical events, HomeIt system
for landlords  25, 26
for realtors  26, 27
for tenants  24, 25

cross-domain knowledge  337
Cross-Origin Resource Sharing (CORS)  263
Cross-Site Request Forgery (CSRF)  263

D
database queries

customizing, with JpaRepository  235, 236
data engineering requirements  92, 93
data persistence

in applications  208-210
data processing

requirements  90, 91
Data Transfer Object  

(DTO)  140, 161, 231, 302
versus descriptors  192-196

dead letter queues
used, for recovering from failures  399

dead letter topics  340
DEBUG  360
dependency injection  134
descriptors

versus DTOs  192-196
destination topics

versus source topics  338
disaster recovery

capabilities  93, 94
Discovery service

launching  372-375
distributed transaction  408
domain  57, 68

boundaries  70, 71
composition  70, 71
defining, for product  70

limits  70, 71
services, defining  72
setting up, for product  70
well-designed entities  68
well-designed services  68

domain design
moving, to programming  100

domain diagram
crafting  75, 76

domain modeling process
concepts, detecting  68, 69
redundancy, eliminating across 

use cases  68, 69
domain services

documenting  73
modeling  73

domain spilling  336

E
Elasticsearch  213
end-to-end tests  355, 356
entity  220
entity-driven event

versus business event  337
EntityManager

working  246
environment variables

overriding, with properties files  367, 368
properties files, reading from  369
used, for setting properties files  367

ERROR  361
Eureka

reference link  383
Eureka properties

setting  377



Index416

event-driven architectures  333, 334
notification messages  335
queue, versus topic  334

event-driven services
Kafka, using  341

Events Hub  88

F
Fast and Highly Available Data  88
FATAL  361
fat message  336

versus thin message  335
faulty services, handling with Resilience4j

Bulkhead pattern, using  405, 406
Circuit Breaker pattern, using  402-404
Rate Limiting pattern, using  404
Retry, using  405

features
determining, to deliver  58

feature timeline, HomeIt system
property rental feature, organizing  31, 32
property search feature, organizing  30
realtor partnership, organizing  30, 31
rental property registration, organizing  29
sign-up, organizing  28, 29

Feign client  302

G
Geospatial Databases  88
Git repository

properties files, setting up on  379, 380
Google’s Remote Procedure Calls (gRPC)  94
Gradle

installing  111, 112
graph databases  89
GraphQL  95

H
heavy coupling  328, 329
Hibernate  229
HomeIt features

comparing  66, 67
messaging  67
prioritizing  66, 67
property search  66
realtor partnership  66

HomeIt security
implementing  272, 273
project, creating  273, 274
security configuration class, 

creating  274-276
Spring Security, adding to Rental 

Properties service  291
HomeIt system

actors  22, 23
authentication flow  303
building  33
critical events, defining  23, 24
features  27
feature timeline, extracting  28
key artifacts, creating  37, 50, 51
levels  33, 34
life cycles  35-37
long-term business requirements 

result scaling  51-53
loops  35-37
requirements  32, 33
security, adding to authentication  302, 303
stages  33
structure, identifying  22
types  34

horizontal layers, Spring microservice  162
implementations  163
interfaces  162



Index 417

objects  162
remote access  163

HTTP Cats website
URL  156

HTTP protocol  105-107
main response codes  108
main verbs  107

HTTP request headers  127
HTTP response headers  128
Hypermedia as the Engine of Application 

State (HATEOAS)  191
adding, as dependency  197

hypermedia controls  191

I
INFO  360
input-output per second (IOPS)  84
input topics

versus output topics  339
integrated tests  303

creating, with Spring Test  174-179
integration tests

used, hitting API gateway  389-391
International Organization for 

Standardization (ISO)  104
Internet Engineering Task Force 

(IETF)  127, 263
Internet of Things (IoT)  212
inversion of control (IoC)  135
I/O and data maintenance 

requirements  84-86
sizing requirements, exploring  87
storage types   87-89

J
Java Beans  131
Java SDK

installing  110, 111
Java Virtual Machine (JVM)  4, 130
JpaRepository  229

@Qualifier, using to inject multiple 
bean implementations  243-245

class hierarchy  234, 235
EntityManager, working  246
JPQL, using to create custom 

queries  236, 237
limitations  237
Lombok, using for DTO translation 

to entity class  231-233
multiple service implementations, 

using  241, 243
paged results, retrieving  239-241
used, for customizing database 

queries  235, 236
using, as ORM-enabled repository  229-231
volume of data and requests, 

dealing with  238, 239
JPQL

using, to create custom queries  236, 237
JWT header  268
JWT payload  268, 269
JWT security token  262
JWT signature  269, 270
JWT tokens

JWT header  268
JWT payload  268, 269
JWT signature  269, 270
working  267



Index418

K
Kafka

concepts  341, 342
installing, on Linux machine  342, 343
reference link  342
using, in event-driven services  341

key artifacts, HomeIt system
use case description  44
user journeys  38
user stories  41

key performance indicators (KPIs)  92

L
Linux machine

used, for installing Kafka  342, 343
load balancing  382
log levels  360, 361

DEBUG  360
ERROR  361
FATAL  361
INFO  360
setting, for transparency  378
TRACE  360
WARN  360

log output  363, 364
logs

writing, in Spring  361-363
Lombok

using, for translation of DTO 
to entity class  231-233

M
messaging service  328
microservice architectures  100

program examples   103

microservice communication  104
microservice, versus monolith 

application data design
databases organizing  215, 216
data complexity  215
granularity level  215

mobile data storage  88
Model-View-Controller (MVC) design  137
MongoDB binary

reference link  344
MongoDB NoSQL database

using  343-345
Mongodb Shell

reference link  345
monolith application data design

versus microservice  214
monoliths  100
multi-tenant topics

versus single topics  339

N
NamedParameterJdbcTemplate

applications, testing with data 
integration  255-257

implementation, referencing  252-255
using, to run raw SQL queries  250-252

Neo4j  213
non-functional requirements  82
non-reactive data handling  211
non-reactive SQL database persistence

aggregated objects, writing as JSON  225-227
entities, defining  220-223
entity lifecycle annotations  227, 228
implementing  216
ORM versus raw SQL  228, 229



Index 419

relationships between entities, 
declaring  223, 224

support, adding to dev database  216-219
non-shared topics

versus shared topics  338, 339
Non-Structured Query Language 

(NoSQL) databases  87, 212, 213
Cassandra  212
characteristics  213
Couchbase  213
Elasticsearch  213
Neo4j  213
Redis  212
versus SQL databases  211

notification messages  335
business event, versus  

entity-driven event  337
cross-domain knowledge  337
dead letter topics  340
destination topics, versus source topics  338
domain spilling  336
input topics, versus output topics  339
message format  335
shared topics, versus non-shared topics 

and multi-tenant topics  338, 339
thin message, versus fat message  335
unidirectional topics, versus 

bidirectional topics  340

O
OAuth 2.0  263

industry-grade authorization providers  267
need for  263
service types  266
use case  264, 265, 266

OAuth specification
authorization servers  266
client application  266
resource owner  266
resource providers  267

object life cycle  29
object-relational mapping (ORM)  228
Open Authorization (OAuth)  263
Open System Interconnection 

(OSI) model  104
optimizations, for scaling website queries

abstraction levels, removing  238
asynchronous processing  239
caching  238
constraints, removing  239
database sharding  238
denormalization  239
indexing  238
load balancing  238
materialized views  239
partially, moving to NoSQL database  239
query optimizations  238

output topics
versus input topics  339

P
Partnership Proposal service 

modeling  72, 74
actions, to new domains  74
basic actions  74
special actions  74

path parameters  123, 140
payload  124
payment service  328
performance expectations

setting, for project  394-397



Index420

Personally Identifiable Information 
(PII)  85, 278

PlantUML  78
sequence diagrams, building  79
URL  78

priorities
sorting  66

product domains  68
defining  70
setting up  70

product requirements
pitfalls  14,-19

properties files
adding, in same directory from 

application  366
adding, to /config directory  366
application.properties file, writing  365
creating, per deployment 

environment  368, 369
defining, at command line  367
hardcoding   367
injecting, in services  370
order of precedence  368
organizing  364
overriding, when starting 

packaged application  366
overriding, with environment 

variables  367, 368
reading, from environment variables  369
setting up, on Git repository  379, 380
setting, with environment variables  367
value, overriding with command line  366
writing  364
YAML properties file  365, 366

Protocol Buffers (Protobuf)  85
protocols

selecting  94, 95

Q
query parameters  124
queue  334

versus topic  334

R
reactive data handling  210, 211
Redis  212
rental properties service  328

annotations, adding to protected 
endpoints  294, 295

configuration files, setting  292
connecting, with API requests  314, 315
ownership security restrictions, 

adding  295, 297
reference link  383
refresh tokens, implementing  298, 299
refresh tokens, using  298, 299
security configuration class, setting  292, 293
Spring Security, adding to  291
Spring Security dependencies, adding  291

rental properties service consumers
building  353-355

rental property REST API, with Spring Web
creating  147, 148
deleting  154
deletion, verifying  154, 155
dependencies, declaring  137, 138
missing data, sending  151, 152
partially updating  152, 153
Rental Properties API, using  145-147
RentalPropertyController class, 

writing  139-145
retrieving  149
searching  155
writing  136



Index 421

Rental Property Service  303
Rental Proposal sequence diagram  76-78
rental proposal service

creating  345-347
design  164, 165
reference link  383

rental proposal service publishers
building  347
object collections, streaming 

with WebFlux  352, 353
with Kafka  347-352
with MongoDB  347-352
with WebFlux  347-352

Representational State Transfer (REST)  94
Resilience4j  401

faulty services, handling with  401
REST APIs

creating, with Richardson 
Maturity Model   189

error handling  165-167
RestAssured  303
RESTful APIs  94

creating, in Spring  136
heavy coupling  328, 329
maintainability issue  328
service coupling  329, 330

RESTful endpoint  123
RESTful resource  122
RESTful standard  121
REST standard  328
RestTemplate  302
Revoke Token Service  302

folder structure  305, 306
persistence layer, writing  307, 308
properties file, writing  306
Service class, writing  309

Richardson, Leonard  189

Richardson Maturity Model
directories, creating at level 1  190
DTOs, versus descriptors  192-197
HATEOAS, adding as dependency  197
HTTP verbs, using in level 2  190, 191
hypermedia controls  191
level 3 REST APIs  205
remote procedures, exploring at level 0  189
RentalPropertyControllerV2 

class, writing  198-200
rental property hypermedia 

descriptors, writing  200, 201
RentalPropertyHyperMediaUtils 

Spring Bean, writing  201-204
used, for creating REST APIs  189

roadmap approach  33

S
scope reduction  33
SDKMAN  109

URL  109
secure algorithms

types  269
security areas  262, 263
security configuration class

authorization provider domain, 
implementing  277

client service  280, 281
configuration file  289, 290
creating  274-277
JWT service  283-286
scope service  282
service, using  290, 291
UserController class  287-289
UserEntity classes  278
UserRepository classes  278
user service  279, 280



Index422

Security Filter Chain  316
security filters

adding, to authentication flow  316-318
service  161
service communication  302
service coupling  329, 330

de-coupling calls  332
domain boundaries, creating  330
highest-order business service  331
response independency, developing  331
services orchestrator, identifying  332
stable interfaces, writing  330

service.getProposals() method  352
service logs

log levels  360, 361
producing  360

service properties  364
services  72
shared topics

versus non-shared topics  338, 339
Singleton pattern  130
single topics

versus multi-tenant topics  339
sizing requirements 

exploring  87
spaghetti code  73
Spring

logs, writing considerations  361-363
Spring Actuator  399

endpoints  400
real-time service monitoring with  399, 400

Spring API gateway
hitting, with integration tests  389-391
transparent logs, setting  388, 389

Spring app
building, with Gradle  115, 116
creating, in Spring Initializr with 

right dependencies  384, 385

opening  114, 115
running  118, 119
running internally  128, 129
SDKMAN, for managing tool 

versions  109, 110
Spring Controller class, 

implementing  117, 118
Spring Initializr, using  112, 114
writing  108

Spring Beans
accessing  133-135
testing, in isolation  180
storage location  133

Spring Boot  132
audit job, implementing  408

Spring Cloud 
application class, configuring  381
dependencies, adding  380
property file, selecting for microservice  381
service properties, setting  381
services, calling with self-discovery  382, 383
services, integrating with  380
topology  371, 372
used, for setting up services  370, 371

Spring Cloud Config service
building  375, 376

Spring Cloud Gateway
configuring, steps  384-389
launching  383, 384

Spring Config Server properties
application class, writing  378, 379
basic application properties, setting  377
Eureka properties, setting  377
GitHub access, setting  377
log levels, setting for transparency  378
setting  377



Index 423

Spring container
inversion of control  135, 136

Spring Expression Language (SpEL)  294
Spring Framework

business requirements  7-9
component lifecycle  130, 131
component scan  133
finances  4, 5

Spring Initializr
URL  304

Spring IoC container  135
Spring microservice

blueprint  160, 161
horizontal layers  162
vertical layers  161

Spring Security
adding, to Rental Properties service  291

Spring Security token validation  303
Spring Test

integrated tests, creating with  174-179
Spring Web

tuning, for peak performance  186, 187
Spring Web annotations  156

validation-specific annotations  157, 158
Spring Web cheat sheet  156-158
Spring Web Flux microservice

customized Basic authorization 
filter, writing  312, 313

database schema file, writing  307
reactive endpoint Handler class, 

writing  310, 311
reactive, versus blocking services  308
Revoke Token service class, writing  309
Revoke Token Service folder 

structure  305, 306
Revoke Token Service persistence 

layer, writing  307, 308

Revoke Token Service properties 
file, writing  306, 307

RouterConfig and resource 
addresses, writing  311, 312

writing  304, 305
Spring Web project  136
SQL databases  87, 211, 212

versus NoSQL databases  211
SQL trick  406

race conditions, preventing with  406, 407
stateless services  122
storage types   87-89
Structured Query Language (SQL)  211

T
technical debt  16
Temurin  110
test case  174
testing requirements  92
test scenario  174
test suite  175
Text Search  88
thin message  335

versus fat message  335
Throttling pattern  409

used, for dealing with surge of requests  409
throughput (TP)  90
time series data  89
time-to-live (TTL)  85, 340
token validation architecture  270, 271
topic  334

versus queue  334
TRACE  360
transaction  247

managing, with EntityManager 
bean  248, 249

Transmission Control Protocol (TCP)  85



Index424

U
unidirectional topics

versus bidirectional topics  340
Unique Resource Identifier (URI)  118, 188
Universally Unique Identifier (UUID)  127
use case description  44

sample  46, 47
triggers  45
versus user stories  44

User Datagram Protocol (UDP)  85
user journeys  38

creating, for one user  38-40
with multiple users  40, 41

user requirements
handling  83

user stories  41
acceptance criteria  43
question and answer  42
template  41
title, crafting  42

V
vertical layers, Spring microservice  161

business  161
persistence  161
remote interface  161

virtual threads  186

W
WARN  360
WebClient  302
WebFlux  302
Web Real-Time Communication 

(WebRTC)  94, 95

Y
YAML properties file  365, 366
You Aren’t Gonna Need It (YAGNI)  52



packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as 
industry leading tools to help you plan your personal development and advance your career. For more 
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over 

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range 
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packtpub.com
http://www.packtpub.com


Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

React Key Concepts, Second Edition

Maximilian Schwarzmüller

ISBN: 978-1-83620-227-1

•	 Build modern, user-friendly, and reactive web apps

•	 Create components and utilize props to pass data between them

•	 Handle events, perform state updates, and manage conditional content

•	 Add styles dynamically and conditionally for modern user interfaces

•	 Use advanced state management techniques such as React’s Context API

•	 Utilize React Router to render different pages for different URLs

•	 Understand key best practices and optimization opportunities

•	 Learn about React Server Components and Server Actions

https://www.packtpub.com/en-us/product/react-key-concepts-9781836202264


427Other Books You May Enjoy

Microservices with Spring Boot 3 and Spring Cloud, Third Edition

Magnus Larsson

ISBN: 978-1-80512-869-4

•	 Build reactive microservices using Spring Boot

•	 Develop resilient and scalable microservices using Spring Cloud

•	 Use OAuth 2.1/OIDC and Spring Security to protect public APIs

•	 Implement Docker to bridge the gap between development, testing, and production

•	 Deploy and manage microservices with Kubernetes

•	 Apply Istio for improved security, observability, and traffic management

•	 Write and run automated microservice tests with JUnit, test containers, Gradle, and bash

•	 Use Spring AOT and GraalVM to native compile the microservices

•	 Use Micrometer Tracing for distributed tracing

https://www.packtpub.com/en-us/product/microservices-with-spring-boot-3-and-spring-cloud-third-edition-9781805125556


428

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and 
apply today. We have worked with thousands of developers and tech professionals, just like you, to 
help them share their insight with the global tech community. You can make a general application, 
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished Spring System Design in Practice, we’d love to hear your thoughts! If you purchased 
the book from Amazon, please click here to go straight to the Amazon review page for this book and 
share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1803249013
https://packt.link/r/1803249013


429

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical 
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content 
in your inbox daily.

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781803249018

2.	 Submit your proof of purchase.

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781803249018

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Foreword
	Contributors
	Table of Contents
	Preface
	Part 1: 
Foundations for 
System Design
	Chapter 1: What are the Product Requirements?
	Unlocking your finances with the Spring Framework
	How is this book structured to help you succeed?
	Why do we need to understand business requirements?
	Perfecting business requirements
	What are business requirements?

	Crystal-clear needs – ensuring businesses get requirements right
	Visualizing timelines for problem-solving
	Crafting business requirements

	The pitfalls of product requirements
	Are mock designs business requirements?
	Requirements should not express technology choices
	Does a customer know the problems they are experiencing?
	Are solutions the final step?
	Breaking the curse of technical debt
	Dense documentation
	Vague documentation
	Looking beyond the happy path
	Disregarding other business areas and processes
	Assuming too much about other areas

	Summary

	Chapter 2: Sorting Complex Requirements into Features, Use Cases, 
and Stories
	Naming the distinct features of your product
	Identifying actors, events, life cycles, stages, types, levels, and loops
	Who will perform actions in your system?
	Defining critical events for each actor
	Listing the main features of the system
	Extracting a feature’s events timeline
	Simplifying requirements
	Understanding stages, levels, types, life cycles, and loops

	Creating user journeys, stories, and use cases
	User journeys
	User stories
	Use cases descriptions

	Structuring the final business requirements document
	Which of these artifacts should come first?
	Scaling results with long-term business requirements
	Exercises
	Summary

	Chapter 3: Defining Domains 
for Your Application
	Technical requirements
	Determining which features to deliver first
	Criteria for prioritizing a business requirement
	Sorting priorities

	Defining domains and boundaries for your application
	What are product domains and why are they important?
	Detecting common concepts and eliminating redundancy across use cases
	Setting up and defining domains for your product
	Setting up domain composition, boundaries, and limits

	Defining the right services for your domains
	What are services and why should we think about them?
	How to model and document domain services correctly

	Crafting your domain diagram
	Sequencing the activity across services
	The Rental Proposal sequence diagram
	Introduction to PlantUML as a tool for building sequence diagrams

	Summary

	Chapter 4: Defining Services 
for Your Domains 
	Understanding non-functional requirements
	Handling user requirements
	I/O and data maintenance requirements
	Exploring sizing requirements
	Storage types

	Requirements for data processing
	Testing requirements
	AI, data engineering, and analytics requirements
	Disaster recovery capabilities
	Choosing protocols
	Summary

	Part 2: 
Designing Great 
Spring Services
	Chapter 5: Writing Your Services – Introducing REST APIs with 
the Spring Framework
	Technical requirements
	Moving from domain design to programming
	Microservice communication
	Introducing the HTTP protocol
	What are the main HTTP verbs?
	What are the main HTTP response codes?

	Writing your first Spring app
	Using SDKMAN to manage your tool versions
	Using Spring Initializr
	Opening your Spring project
	Building your application using Gradle
	Implementing your first Spring Controller class
	Running your Spring Application

	Designing your API services
	What are APIs?
	Why do we need RESTful standards?
	Dissecting a RESTful resource address
	Adding parameters to your API endpoints
	Using payloads in RESTful services
	Using UUIDs to uniquely identify objects
	Using HTTP request headers

	How Spring apps run internally
	Introducing the Spring Framework component lifecycle
	What are Spring beans and why are they important?
	Introducing the Spring Boot project
	Understanding the Spring Framework component scan
	Where are Spring beans stored at runtime?
	How to easily access a Spring bean
	Spring container and inversion of control

	Creating RESTful APIs in Spring
	Writing a rental property REST API with Spring Web
	Spring Web cheat sheet

	Summary

	Chapter 6: Translating Business Requirements into
 Well-Designed Spring APIs
	Technical requirements
	Mastering the blueprint for any Spring microservice
	Exploring the vertical layers
	Understanding the horizontal layers

	Rental proposal service design
	Error handling in REST APIs
	Implementing business services in Spring
	Declaring service interfaces in Spring
	Writing the implementation class for your service
	Organizing your Spring classes

	Writing automated tests for your Spring apps
	Understanding the basic test pattern
	Creating integrated tests with Spring Test
	Testing Beans in isolation
	Other testing options
	Coming up with a test case list
	Perfecting the application tests over time
	Running your tests in the console

	Tuning Spring Web for peak performance
	Making your API design a lot better for clients
	Richardson Maturity Model for creating/documenting REST APIs

	Summary

	Chapter 7: Handling Data and Evolving Your Microservice
	Technical requirements
	Data persistence in applications with Spring
	Reactive versus non-reactive data handling
	Non-reactive data handling
	Reactive data handling

	SQL versus NoSQL data storage
	SQL databases
	NoSQL databases

	Microservices versus monolith application data design
	Data complexity and granularity level
	Organizing databases

	Implementing non-reactive SQL database persistence
	Adding support to a dev database
	Defining entities to be persisted
	ORM versus raw SQL in Spring Data

	JpaRepository – your go-to SQL interface in Spring Data
	Using JpaRepository as an ORM-enabled repository
	Using Lombok to translate DTO to entity classes and vice versa
	JpaRepository class hierarchy made simple
	Customizing database queries using JpaRepository
	Using JPQL to create custom queries
	Understanding other limitations of JpaRepository
	Dealing with a very high volume of data and requests
	Retrieving paged results in Spring JpaRepository
	Using multiple service implementations on your application
	Using @Qualifier to inject multiple bean implementations for the same service
	How does EntityManager work?

	Working with transactions in Spring Data
	Using the @Transactional annotation in a method
	Managing transactions by using the EntityManager bean

	Using NamedParameterJdbcTemplate to run raw SQL queries
	Referencing all the implementations we have done so far
	Testing your applications with data integration

	Summary

	Part 3: 
Security, Performance, 
and Scalability
	Chapter 8: Securing Services with Spring Security and OAuth 2.0
	Understanding the security areas in your application
	What is OAuth 2.0 and why use it?
	Use case 1 – system A accesses system B-owned resources
	Use case 2 – system A accesses its own resources
	Basic service types in OAuth 2.0
	Industry-grade authorization providers

	Understanding how JWTs work
	The JWT header
	The JWT payload
	The JWT signature

	Different architectures for validating tokens
	Implementing HomeIt security
	Creating your project
	Creating your security configuration class
	Adding Spring Security to the Rental Properties service
	Implementing and using refresh tokens

	Summary

	Chapter 9: High-Performance Secure Communication Between Spring Services
	Technical requirements
	Service communication made easy
	Adding more security to HomeIt authentication
	What is RestAssured?

	Writing a high-performance service with WebFlux
	Looking at the Revoke Token Service folder structure
	Writing the Revoke Token Service properties file
	Writing the database schema file
	Writing the Revoke Token Service persistence layer
	Reactive versus blocking services
	Writing the Revoke Token service class
	Writing a reactive endpoint Handler class
	Writing the RouterConfig and resource addresses
	Writing a customized Basic authorization filter

	Connecting services with API requests
	Adding security filters to your authentication flow

	Writing API integration tests with RestAssured
	Creating the project structure
	Declaring dependencies
	Writing the actual tests
	Making the actual requests using RestAssured

	Summary

	Chapter 10: Building Asynchronous, 
Event-Driven Systems With NoSQL Databases
	Technical requirements
	A maintainability issue with RESTful APIs
	What is heavy coupling?
	How service coupling makes code harder to maintain

	Introducing event-driven architectures
	What is the difference between a queue and a topic?
	How should your notification messages look?

	Using Kafka in event-driven services
	Kafka main concepts
	Installing Kafka on a Linux machine

	Using MongoDB for NoSQL persistency
	Our event-driven sample in HomeIt
	Building our rental proposal service publishers
	Combining WebFlux, MongoDB, and Kafka in Spring Services
	Streaming object collections with WebFlux

	Building our rental properties service consumers
	Extending our end-to-end tests
	Summary

	Part 4: 
Orchestrating 
Resilient Services
	Chapter 11: Launching Your Self-Organizing Microservice Cloud
	Technical requirements
	How to produce your service logs
	What are the existing log levels?
	How to write logs in Spring
	Understanding your log output

	How to organize your property files
	Writing your properties files
	Overriding a property file when starting the packaged application
	Setting property values using environment variables
	Creating property files per deployment environment
	Injecting properties in your services

	Setting up your services using Spring Cloud
	Understanding the Spring Cloud topology
	Launching the Discovery service
	Launching the Config service
	Setting up your property files on a Git repository
	Integrating your services with Spring Cloud
	Launching the API Gateway service
	Hitting the API gateway with our integration tests

	Summary

	Chapter 12: Optimizing Your Services
	Technical requirements
	Setting the right performance expectations for your project
	Failures are unavoidable
	Launch early, optimize later
	Key bottlenecks that can slow things down
	Eliminate single points of failure
	Distributed transactions going wrong
	Prepare your services for concurrent requests

	Using caching to speed up access to critical data
	Recovering from failures with dead letter queues
	Real-time service monitoring with Spring Actuator
	Handling faulty services with Resilience4j
	Using the Circuit Breaker pattern
	Using the Rate Limiting pattern
	Using Retry in Resilience4J
	Using the Bulkhead pattern

	Preventing race conditions with a SQL trick
	Why microservice-level solutions won’t work
	A simple and effective solution – database locks

	Recovering from failures by using an audit job
	Dealing with a surge of requests by using throttling
	Summary
	Epilogue

	Index
	Other Books You May Enjoy



