

Java Real World

Projects

A pragmatic guide for building

modern

Java applications

Davi Vieira

www.bpbonline.com

https://www.bpbonline.com/

First Edition 2025

Copyright © BPB Publications, India

ISBN: 978-93-65898-972

All Rights Reserved. No part of this publication may be reproduced, distributed

or transmitted in any form or by any means or stored in a database or retrieval

system, without the prior written permission of the publisher with the exception

to the program listings which may be entered, stored and executed in a

computer system, but they can not be reproduced by the means of publication,

photocopy, recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true to correct and the best of author’s

and publisher’s knowledge. The author has made every effort to ensure the

accuracy of these publications, but publisher cannot be held responsible for any

loss or damage arising from any information in this book.

All trademarks referred to in the book are acknowledged as properties of their

respective owners but BPB Publications cannot guarantee the accuracy of this

information.

www.bpbonline.com

https://www.bpbonline.com/

Dedicated to

Those who work late into the night and persist

in their goals.

About the Author

Davi Vieira is a software craftsman with a vested interest

in the challenges large enterprises face in software design,

development, and architecture. He has over ten years of

experience constructing and maintaining complex, long-

lasting, and mission-critical systems using object-oriented

languages. Davi values the good lessons and the software

development tradition left by others who came before him.

Inspired by such software tradition, he develops and evolves

his ideas.

Davi started his career in technology by working as a Linux

system administrator in the web hosting industry. After

learning much about server task automation with shell

scripting, he moved on to the banking industry, where he

fixed bugs in legacy Java systems. Working with such legacy

systems enabled Davi to face exciting challenges in a

telecommunications organization, where he played a crucial

role in helping the company adopt cloud-native

development practices. Eager to learn and make a lasting

impact, Davi works currently as a tech lead for an enterprise

software company.

About the Reviewers

❖ Ron Veen is a seasoned software engineer with over 20

years of experience in the Java ecosystem. From

mainframes to microservices, he’s seen it all. His passion

for software engineering and architecture drives his work.

A certified Java expert (OCP and SCBCD/OCPBCD), Ron is

proficient in a wide range of frameworks and libraries,

from Apache to ZK. He is also keen on exploring

alternative JVM languages like Kotlin.

As a special agent and senior developer at Team

Rockstars IT, Ron shares his knowledge as an

international conference speaker and via his written

works.

He is the author of books on ‘Java Cloud-native

migrations with Jakarta EE’ and ‘virtual threads,

structured concurrency, and scoped values’.

❖ Stan Komar (Stanislaw Kazimierz Komar) is a

business owner focused on industrial automation and

systems integration, using either Rockwell Automation,

Schnieder, Siemens or Mitsubishi Tools. He has been

actively programming since 1973 and is going strong.

Although he should be retired, he enjoys the projects he

works on so much that “Retirement can Wait.” There is

just so much change in the programming world that

keeping up-to-date is very challenging. At 69 years

young, he is an avid tennis player.

Acknowledgement

I vividly remember my brother Bruno Pinheiro de Oliveira

exploring the computer, discovering things on the internet,

and downloading Linux on a dial-up connection until late at

night when I was a kid. My passion for technology started

there. Thank you, my brother, for instilling such a passion in

me.

I am grateful for my parents, Davi and Rosimar, who always

believed in and supported my dreams, and also my wife,

Eloise, and my son, Davi, for giving me a strong why when

things got tough.

My Java journey started when learning the programming

language was more about keeping my job during significant

professional changes than anything else. I am still on this

journey and want to acknowledge the people who

contributed to my learning by allowing me to get along with

them.

My first exposure to enterprise software at HSBC Global

Technology was essential to lay the foundation that would

culminate in the writing of this book. I am forever grateful

for working with remarkable folks like Ana Carolina Moises

de Souza, Renan Augusto da Silva, Caio Cesar Ferreira,

Marco Aurélio Scheid, Ricardo André Pikussa, Carlos

Bochnia, Emilio Fernandes, Adenir Rodrigues Filho, Alejandro

Andrade, Jeferson Rodrigues (in memoriam), and Luiz Hauth

from which will never forget his leadership lessons.

I cannot forget to mention Filipe Negrello for a brief, though

intense, working relationship that led me to start working at

Telefónica, where I had the chance to meet brilliant minds

like Wilson Bissi, Lucas Maldaner, Mauricio Orozimbro de

Souza, Raoni Gabriel, Roberto Silva Ramos Junior, Leonardo

Henrique Pereira, Tiago Silvestrini, Renan Fabrão, Wagner

Fernando Costa, Adriano Wierzbicki, Rodrigo Ribeiro, Nelmar

Alvarenga, Hamilton Santos Junior, Jefferson Lira, Wagner

Sales (in memoriam), Newton Dore, Giuliano Recco, Luiz

Guilherme Mattos, Elizabete Yanase Hirabara Halas, André

Santos, Arthur Gomes Junior, Renan Pazini, Thiago Alberto

Gil, and Julio Cesar Trincaus. Also, I want to thank Fagner da

Silva and Paulo Jorge Lagranha for making a lasting impact

on my career and Java journey that lasts to this day. I am

immensely grateful for working with such amazing people

who influenced me profoundly and shaped my character for

my next challenge

at SAP.

While working at SAP, I had the chance to collaborate on

many cool projects that directly influenced the ideas I

shared in this book. That is why I want thank Victor Fonseca,

Vera Hillmann, Angelina Lange, Nils Faupel, Rafał Sokalski,

Shumail Arshad, Saad Ali Jan, Kaiser Anwar Shad, Bruno

Fracalossi Ferreira, Charne Elizabeth Pearson, Anna Kovtun,

Rachel Falk, Arkadii Drovosekov, Reshmi Muhkerjeee, Anna

Szarek, Rima Augustine, Babatunde Mustapha, Ahmed

Alsharkawy, Taniya Vincent, and Torge Harbig. Thanks also

to Vladimir Afanasenkov for being such a solid professional

reference for me.

Last but not least, I want to thank Scott Wierschem, Bruno

Souza, Elder Moraes, and Otavio Santana for every advice

that influenced my thinking and motivated me to keep

moving forward.

Preface

After so many years since its first release, Java remains as

relevant as ever by powering the most critical applications

in enterprises of all sizes. It is not uncommon to see Java

applications still running ten, twenty, or more years ago,

which serves as a testament to Java’s robust and reliable

nature. On the other side of the coin, Java continues to be

the language of choice for many new projects that have the

luxury of choosing from a set of high-quality frameworks like

Spring Boot, Quarkus, or Jakarta EE, to name a few, that

foster innovation and keep the Java language fresh to tackle

the challenges of modern software development in the age

of cloud and artificial intelligence. There has never been a

better time to be part of such an exciting technological

ecosystem, which offers endless opportunities to impact

other people’s lives through software.

Based on this landscape of opportunities and innovations,

this book was written for those who decide to face the

complexities, ambiguities, and hardships that may derive

from any serious Java project. It is not meant to be a

comprehensive guide for the Java programming language;

instead, it takes a pragmatic approach in emphasizing, from

the author’s perspective, the relevant Java features and

anything related to producing production-ready software.

Starting with exploring Java fundamentals, this book revisits

core Java API components used to efficiently handle data

structures, files, exceptions, logs, and other essential

elements found in most enterprise Java applications. It also

examines how modern Java features such as sealed classes,

pattern matching, record patterns, and virtual threads can

be used to create software systems that extract the best of

what Java can provide. This book presents techniques for

efficiently handling relational databases by tapping into the

Java Database Connectivity (JDBC) and Jakarta

Persistence APIs (JPA), thereby providing a solid Java data

handling foundation. Still, in the context of Java

fundamentals, it explores how to increase overall code

quality by employing unit and integration tests.

After covering the Java Fundamentals, this book explores

how reliable software development frameworks such as

Spring Boot, Quarkus, and Jakarta EE can be used to

develop applications based on developer-friendly and

productivity principles. These frameworks empower the Java

developer by enabling him to use cutting-edge technology

and industry standards that are the basis for most critical

back-end applications.

With an eye on the everyday challenge of keeping Java

applications running reliably in production, this book

describes essential monitoring and observability techniques

that help the Java developer better understand how well its

application is behaving under different and quite often

unexpected circumstances, putting the developer in a more

pro-active than reactive position when dealing with

bottlenecks, scalability and any other issue that can

represent a risk for the application availability.

It concludes with an exploration of how different software

architecture ideas, such as domain-driven design (DDD),

layered architecture, and hexagonal architecture, can play

crucial roles in developing change-tolerable and

maintainable applications that not only deliver what the

customer wants but also establish solid foundations that

enable developers to gracefully introduce code changes

with reduced refactoring efforts.

Chapter 1: Revisiting the Java API - This chapter revisits

essential core Java APIs commonly seen in real-world

projects. It starts by exploring the Collections API’s data

structures, showing the possible ways to handle data as

objects in Java systems. Considering how often files must be

dealt with, this chapter shows how to manipulate files using

the NIO2. A closer examination of exceptions, followed by

the Logging API, provides a solid foundation for helpful error

handling and enhanced logging management. As most Java

applications somehow need to deal with date and time, the

Data-Time API is also explored. Closing the chapter,

functional programming features such as streams and

lambdas are covered to show how to write more efficient

and concise Java code.

Chapter 2: Exploring Modern Java Features - Java is

constantly changing. Therefore, it is essential to keep up to

date with its new features. This chapter looks into modern

Java capabilities developers can leverage to build robust

applications with sophisticated language features. It starts

by explaining how to use sealed classes to increase

inheritance control. It presents an intuitive way of matching

Java types with pattern matching and using record patterns

to extract data from matched types. Finally, it shows how to

simplify the development of concurrent applications with

virtual threads.

Chapter 3: Handling Relational Databases with Java -

The ability to efficiently communicate with databases is a

crucial characteristic of Java applications requiring

persistence. Based on this premise, this chapter explores

the Java Database Connectivity (JDBC) API, a

fundamental Java component for handling relational

databases. To enable developers to handle database entities

as Java objects, it distills the main features of the Jakarta

Persistence. The chapter finishes by examining local

development approaches with container-based and in-

memory databases for Java.

Chapter 4: Preventing Unexpected Behaviors with

Tests - Automated tests help to prevent code changes from

breaking existing system behaviors. To help developers with

such an outcome, this chapter overviews two automated

test approaches: unit and integration testing. It explores the

reliable and widely used test framework JUnit 5. Finally, it

describes how to use Testcontainers to implement reliable

integration tests that rely on real systems as test

dependencies.

Chapter 5: Building Production-Grade Systems with

Spring Boot - Regarded as one of the most well-used Java

frameworks, Spring Boot has withstood the test of time. So,

this chapter explores the fundamental Spring components

present in Spring Boot. Such fundamental knowledge leads

to an analysis of how to bootstrap a new Spring Boot project

and implement a CRUD application with major Spring Boot

features.

Chapter 6: Improving Developer Experience with

Quarkus - In the age of cloud, Quarkus has arisen as a

cloud-first Java development framework with the promise of

delivering a developer-friendly framework that empowers

developers to create cloud-native applications based on the

best industry standards and technology. This chapter starts

assessing the benefits Quarkus provides, shifting quickly to

an explanation that details how to kickstart a new Quarkus

project. It then shows how to use well-known Quarkus

features to develop a CRUD application, including support

for native compilation.

Chapter 7: Building Enterprise Applications with

Jakarta EE and MicroProfile - Accumulating decades of

changes and improvements, the Jakarta EE (formerly Java

EE and J2EE) framework still plays a major role in enterprise

software development. Relying on Jakarta EE, there is also

MicroProfile, a lean framework to develop cloud-native

microservices. Focusing on these two frameworks, this

chapter starts with an overview of the Jakarta EE

development model and its specifications. Then, it jumps to

hands-on practice by showing how to start a new Jakarta EE

project and develop an enterprise application. Finally, it

shows how to create microservices using MicroProfile.

Chapter 8: Running Your Application in Cloud-Native

Environments - Any serious Java developer must be able

to make Java applications extract everything they can and

perform well inside cloud environments. That is why this

chapter explores cloud technologies, starting with container

technologies, including Docker and Kubernetes. It explains

how Java applications developed using frameworks like

Spring Boot, Quarkus, and Jakarta EE can be properly

dockerized to run in containers. Finally, it describes

deploying such applications into a Kubernetes cluster.

Chapter 9: Learning Monitoring and Observability

Fundamentals - Understanding how a Java application

behaves in production while being accessed by many users

is critical to ensuring the business health of any

organization. Considering this concern, this chapter explores

what monitoring and observability mean and why they are

crucial for production-grade Java systems. It then shows

how to implement distributed tracing with Spring Boot and

OpenTelemetry. Also, it explains how to handle logs using

Elasticsearch, Fluentd, and Kibana.

Chapter 10: Implementing Application Metrics with

Micrometer - Metrics are essential to answer whether a

Java application behaves as expected. Micrometer is a key

technology that enables developers to implement metrics

that answer those questions. This chapter explains how to

use a Micrometer to provide metrics in a Spring Boot

application.

Chapter 11: Creating Useful Dashboards with

Prometheus and Grafana - Visualizing important

information regarding an application’s behavior through

dashboards can prevent or considerably speed up the

resolution of incidents in Java applications. Based on such

concern, this chapter examines how to capture application

metrics using Prometheus. It then covers the integration

between Prometheus and Grafana, two essential monitoring

tools. Finally, it shows how to create helpful Grafana

dashboards with metrics generated by a Java application

and use Alertmanager to trigger alerts based on such

metrics.

Chapter 12: Solving problems with Domain-driven

Design - Based on the premise that the application code

can serve as an accurate representation of a problem

domain, Domain-driven Design (DDD) proposes a

development approach that puts the problem domain as the

driving factor that dictates the system’s architecture,

resulting in better maintainable software. Considering such

maintainability benefits, this chapter starts with a DDD

introduction, followed by an analysis of essential ideas like

value objects, entities, and specifications. The chapter

closes by exploring how to test the domain model produced

by a DDD application.

Chapter 13: Fast Application Development with

Layered Architecture - Enterprises of all sorts rely on

back-end Java applications to support their business. The

ability to fast deliver such applications is fundamental in a

competitive environment. Layered architecture emerged

organically among the developer community due to its

straightforward approach to organizing application

responsibilities into layers. In order to show the layered

architecture benefits, this chapter starts with an analysis of

the major ideas that comprise such architecture, followed by

a closer look into applying layered architecture concepts in

the development of a data layer for handling database

access, a service layer for providing business rules, and an

API layer for exposing system behaviors.

Chapter 14: Building Applications with Hexagonal

Architecture - The pace at which technologies change in

software systems has increased considerably over the last

years, creating challenges for those who want to tap into

the latest cutting-edge innovations to build the best

software possible. However, incorporating new technologies

into existing working software may be challenging. That is

where hexagonal architecture comes in as a solution to

build change-tolerable applications that can receive

significant technological changes without major refactoring

efforts. With such advantage in mind, this chapter

introduces the hexagonal architecture ideas, followed by

hands-on guidance explaining the development of a

hexagonal system based on the domain, application, and

framework hexagons.

Code Bundle and Coloured

Images

Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/bdae2b

The code bundle for the book is also hosted on GitHub at

https://github.com/bpbpublications/Java-Real-World-

Projects. In case there’s an update to the code, it will be

updated on the existing GitHub repository.

We have code bundles from our rich catalogue of books and

videos available at https://github.com/bpbpublications.

Check them out!

Errata

We take immense pride in our work at BPB Publications and

follow best practices to ensure the accuracy of our content

to provide with an indulging reading experience to our

subscribers. Our readers are our mirrors, and we use their

inputs to reflect and improve upon human errors, if any, that

may have occurred during the publishing processes

involved. To let us maintain the quality and help us reach

out to any readers who might be having difficulties due to

any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly

appreciated by the BPB Publications’ Family.

https://rebrand.ly/bdae2b
https://github.com/bpbpublications/Java-Real-World-Projects
https://github.com/bpbpublications
mailto:errata@bpbonline.com

Did you know that BPB offers eBook versions of every book published, with

PDF and ePub files available? You can upgrade to the eBook version at

www.bpbonline.com and as a print book customer, you are entitled to a

discount on the eBook copy. Get in touch with us at :

business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical

articles, sign up for a range of free newsletters, and receive exclusive

discounts and offers on BPB books and eBooks.

Piracy

If you come across any illegal copies of our works in any form on the internet,

we would be grateful if you would provide us with the location address or

website name. Please contact us at business@bpbonline.com with a link to

the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either

writing or contributing to a book, please visit www.bpbonline.com. We have

worked with thousands of developers and tech professionals, just like you, to

help them share their insights with the global tech community. You can make

a general application, apply for a specific hot topic that we are recruiting an

author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not leave

a review on the site that you purchased it from? Potential readers can then

see and use your unbiased opinion to make purchase decisions. We at BPB

can understand what you think about our products, and our authors can see

your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates,

Offers, Tech happenings around the world, New Release and

Sessions with the Authors:

https://discord.bpbonline.com

https://www.bpbonline.com/
mailto:business@bpbonline.com
https://www.bpbonline.com/
mailto:business@bpbonline.com
https://www.bpbonline.com/
https://www.bpbonline.com/
https://discord.bpbonline.com/

Table of Contents

1. Revisiting the Java API

Introduction

Structure

Objectives

Handling data structures with collections

Creating ordered object collections with lists

Providing non-duplicate collections with a set

Using maps to create key-value data structures

Using the NIO2 to manipulate files

Creating paths

Handling files and directories

Error handling with exceptions

Checked exceptions

Unchecked exceptions

Final block and try-with-resources

Creating custom exceptions

Improving application maintenance with the Logging API

Log handlers, levels, and formats

Exploring the Date-Time APIs

LocalDate

LocalTime

LocalDateTime

ZoneDateTime

Instant

Functional programming with streams and lambdas

Functional interfaces and lambda expressions

Predicates

Functions

Suppliers

Consumers

Streams

Sourcing streams

Intermediate operation

Terminal operation

Compiling and running the sample project

Conclusion

2. Exploring Modern Java Features

Introduction

Structure

Objectives

Getting more control over inheritance with sealed

classes

Enforcing inheritance expectations

Increasing code readability with pattern matching

Introduction to pattern matching

Pattern matching for type

Pattern matching for switch statement

Pattern matching for record

Increasing application throughput with virtual threads

Understanding Java platform threads

Limitations of platform threads

Platform threads and blocking IO operations

Handling blocking IO with reactive programming

Writing simple concurrent code with virtual threads

Compiling and running the sample project

Conclusion

3. Handling Relational Databases with Java

Introduction

Structure

Objectives

Introduction to JDBC

Creating a database connection with the JDBC API

Getting a database connection with the DriverManager class

Getting a database connection with the DataSource

interface

Executing simple queries with the Statement

Executing parameterized queries with the

PreparedStatement

Calling store procedures with the CallableStatement

Processing results with the ResultSet

Simplifying data handling with the Jakarta Persistence

Defining entities

Defining entity relationships

OneToMany

ManyToOne

OneToOne

ManyToMany

Using Hibernate to handle database entities

Exploring JPQL and the Criteria API

Exploring local development approaches when using

databases

Local development with a remote databases

Local development with in-memory databases

Local development with container databases

Compiling and running the sample project

Conclusion

4. Preventing Unexpected Behaviors with Tests

Introduction

Structure

Objectives

Overviewing unit and integration tests

Unit tests

Integration tests

Using JUnit 5 to write effective unit tests

Setting up JUnit 5

Introducing the account registration system

Testing the account registration system

The Arrange-Act-Assert pattern

Assertions

When to use Mockito

Setting up Mockito with JUnit 5

Adding an external call to the account registration system

Mocking external calls with Mockito

Executing tests with Maven

Implementing reliable integration tests with

Testcontainers

Setting up Testcontainers

Integrating the account registration system with

MySQL

Implementing an integration test with Testcontainers

Running integration tests with Maven

Compiling and running the sample project

Conclusion

5. Building Production-Grade Systems with Spring

Boot

Introduction

Structure

Objectives

Learning Spring fundamentals

Using the Spring context to manage beans

Creating beans with the @Bean annotation

Creating beans with Spring stereotype annotations

The @Component annotation

The @Service annotation

The @Repository annotation

Using stereotype annotations

Injecting dependencies with @Autowired

Providing new application behaviors with aspects

Aspect

Jointpoint

Advice

Pointcut

Using the Spring AOP

Bootstrapping a new Spring Boot project

Creating a Spring Boot project with Spring Initializr

Implementing a CRUD application with Spring Boot

Setting up dependencies

Configuring the Spring Boot application

Defining a database entity

Creating a repository

Implementing a service

Exposing API endpoints with a controller

Sending HTTP requests to the Spring Boot application

Compiling and running the sample project

Conclusion

6. Improving Developer Experience with Quarkus

Introduction

Structure

Objectives

Assessing Quarkus benefits

Kickstarting a new Quarkus project

Building a CRUD app with Quakus

Injecting dependencies with Quarkus DI

Managed beans

Application-scoped beans

Singleton beans

Request-scoped beans

Persisting data with Hibernate

Setting up Quarkus to work with databases

Handling database entities with EntityManager

Simplifying database entity handling with Panache

Panache with repository pattern

Panache with active record pattern

Implementing an API with Quarkus REST

Writing native applications

Introducing the native image

Creating a native executable with Quarkus

Compiling and running the sample project

Conclusion

7. Building Enterprise Applications with Jakarta EE

and MicroProfile

Introduction

Structure

Objectives

Overviewing Jarkarta EE

Designing multitiered applications

Client tier

Web tier

Business tier

Enterprise information system tier

Exploring Jakarta EE specifications

Jakarta EE Platform specification

Jakarta EE Web Profile specification

Jakarta EE Core Profile specification

Packing, deploying, and running Jakarta EE

applications

Java Archive

Web Archive

Enterprise Archive

Introducing MicroProfile

Exploring MicroProfile specifications

Jakarta EE Core Profile specifications

MicroProfile specifications

Starting a new Jakarta EE project

Building an enterprise application with Jakarta EE

Adding microservices and cloud-native support with

MicroProfile

Setting up the project

Defining a data source

Implementing a Jakarta Persistence entity

Implementing a repository with the EntityManager

Implementing a service class as a Jakarta CDI

managed bean

Building API with Jakarta EE and MicroProfile

Using MicroProfile Health to implement health checks

Compiling and running the sample project

Conclusion

8. Running Your Application in Cloud-Native

Environments

Introduction

Structure

Objectives

Understanding container technologies

Introducing virtualization

Full virtualization

Paravirtualization

Container-based virtualization

Exploring Docker

Learning Docker fundamentals

Managing Docker images

Creating Docker containers

Introducing Kubernetes

Kubernetes architecture

kube-scheduler

kube-apiserver

kube-controller-manager

Container runtime

kubelet

kube-proxy

Kubernetes objects

Pod

Deployment

Service

ConfigMap and Secret

Dockerizing a Spring Boot, Quarkus, and Jakarta EE

application

Creating a bootable JAR of a Spring Boot application

Creating a bootable JAR of a Quarkus application

Creating a bootable JAR of a Jakarta EE application

Creating the Docker image

Deploying Docker-based applications on Kubernetes

Externalizing application configuration

Creating Kubernetes objects

Providing application configuration with a ConfigMap

Using a Secret to define database credentials

Deploying the application with a Deployment

Allowing access to the application with a Service

Using kubectl to install Kubernets objects

Compiling and running the sample project

Conclusion

9. Learning Monitoring and Observability

Fundamentals

Introduction

Structure

Objectives

Understanding monitoring and observability

Monitoring

Observability

Implementing distributed tracing with Spring Boot and

OpenTelemetry

Building a simple distributed system

Configuring dependencies

Implementing the inventory service

Implementing the report service

Setting up Docker Compose, Jaeger, and Collector

Handling logs with Elasticsearch, Fluentd, and Kibana

Fluentd

Elasticsearch

Kibana

Setting up EFK stack with Docker Composer

Compiling and running the sample project

Conclusion

10. Implementing Application Metrics with

Micrometer

Introduction

Structure

Objectives

Providing application metrics

Introducing Micrometer

Registry

Meters and tags

Counters

Gauges

Timers

Distribution summaries

Using Micrometer and Spring Boot to implement metrics

Setting up the Maven project

Configuring Spring Boot and Micrometer

Enabling metrics on the file storage system

Implementing the File entity

Implementing the File repository

Implementing the File metrics

Implementing the File service

Implementing the Controller class

Compiling and running the sample project

Conclusion

11. Creating Useful Dashboards with Prometheus and

Grafana

Introduction

Structure

Objectives

Capturing application metrics with Prometheus

Learning the Prometheus architecture

Metrics exporters

Prometheus server

Metrics consumers

Getting Prometheus up and running

Downloading and installing Prometheus

Configuring Prometheus

Exploring the PromQL

Integrating Prometheus with Grafana

Configuring Prometheus as a Grafana data source

Creating Grafana dashboards with application-generated

metrics

Building a Grafana dashboard

Visualization for the number of requests per HTTP method

Visualization for the file upload duration

Visualization for the download size

Triggering alerts with Alertmanager

Setting up the Alertmanager container

Defining Prometheus alerting rule

Defining Alertmanager notification channels

Compiling and running the sample project

Conclusion

12. Solving problems with Domain-driven Design

Introduction

Structure

Objectives

Introducing domain-driven design

Bounded contexts

Ubiquitous language

Event storming

Identifying event storm session participants

Preparing the event storm session

Domain events

Commands

Actors

Aggregates

The domain model

Conveying meaning with value objects

Expressing identity with entities

Defining business rules with specifications

Testing the domain model

Compiling and running the sample project

Conclusion

13. Fast Application Development with Layered

Architecture

Introduction

Structure

Objectives

Importance of software architecture

Understanding layered architecture

A layer knows only the next layer

A layer can know other layers

Handling and persisting data in the data layer

Implementing the category entity and repository

Implementing the account entity and repository

Defining business rules in the service layer

Implementing the transaction service

Implementing the category service

Implementing the account service

Exposing application behaviors in the presentation layer

Implementing the transaction endpoint

Implementing the category endpoint

Implementing the account endpoint

Compiling and running the sample project

Conclusion

14. Building Applications with Hexagonal

Architecture

Introduction

Structure

Objectives

Introducing hexagonal architecture

The domain hexagon

Entities

Value objects

Specifications

The application hexagon

Use cases

Input ports

Output ports

The framework hexagon

Input adapters

Output adapters

Arranging the domain model

Providing input and output ports

Exposing input and output adapters

Creating the output adapter

Creating input adapters

Compiling and running the sample project

Conclusion

Index

CHAPTER 1

Revisiting the Java API

Introduction

Java has been widely used in enterprises of all sorts of industries. One good example of

how Java helps boost developer productivity is how it deals with memory management.

While other programming languages may require developers to specify how program

memory will be allocated, Java takes this memory allocation responsibility and lets the

developers focus on the problem domain they want to solve. Another thing that can boost

developer productivity even more is knowing how to use the Java API properly.

The Java API provides the language building blocks for application development. It crosses

domains such as data structure handling with the Collections API, file manipulation with the

NIO2 API, exception handling, and more. Instead of reinventing the wheel by implementing

your data structures or algorithms, you can save a lot of time by tapping into what the Java

API has to offer.

So, revisiting the Java API while observing how it can be used to solve problems commonly

seen in software projects will give us a solid foundation to explore further how Java can

help us develop better software.

Structure

The chapter covers the following topics:

• Handling data structures with collections
• Using the NIO2 to manipulate files
• Error handling with exceptions
• Improving application maintenance with the Logging API
• Exploring the Date-Time APIs
• Functional programming with Streams and Lambdas
• Compiling and running the sample project

Objectives

By the end of this chapter, you will know how to use some of the most crucial Java APIs.

With such knowledge, you will be able to solve common problems that may occur in your

software project. Understanding the Java API is the foundation for developing robust Java

applications.

Handling data structures with collections

Software development is a data processing activity in which we create systems that

receive and produce data. As programmers, we are responsible for identifying the most

efficient and straightforward ways to handle data in the applications we develop.

Sometimes, this is not easy to achieve because what is efficient may not be simple, and

vice versa. Developers have been searching for a balance between efficiency and

simplicity, considering that nowadays, computing resources are not as expensive as they

used to be.

The maintainability costs of a complex code that is optimized to be very efficient may be

higher than a simpler code that consumes more computing resources but can be easily

understood and changed.

It all depends on the context, of course. Certain businesses require their software to extract

every bit of performance possible, like those of the trading and financial fields, where every

millisecond, even nanosecond, can significantly influence monetary gains. Unless you are

in such cases where high performance is required, there is always a trade-off space where

building simpler, non-extremely efficient code may be the best option for your organization

and customers.

As most applications do not fall under those requiring highly efficient performance, such

applications can rely on standard data structures and algorithms for data processing. This

is where the Java API comes in handy by providing a rich library called Java Collections

Framework that offers a set of built-in data structures that suit most of the use cases we

see in a typical back-end application.

Although the Java Collections Framework has interfaces and classes that may help those

wanting to develop high-performance code, it really shines by providing support for

frequently used data structures through the java.util.List, java.util.Set, and

java.util.Map interfaces. The Map interface is not considered an authentic collection, but

because we can handle map-based classes as if they were collections, we treat them as

such.

Let us start our exploration with the List interface and some of its implementations.

Creating ordered object collections with lists

A common way to store objects in Java is through lists. The basic idea behind this data

structure is that we can collect objects in an orderly manner, allowing us to preserve the

sequence in which we store objects in a given list. It also enables duplicates, so if you try to

insert the same object multiple times, it would not complain.

The java.util.List interface is derived from the java.util.Collection interface,

meaning we can rely on the basic operations to handle a collection and the specific

methods to manipulate lists. The java.util.Collection interface extends the

java.lang.Iterator interface, which allows us to iterate through any list.

We have the java.util.ArrayList implementing the java.util.List interface. The

ArrayList is certainly the most common list and data structure used in Java projects.

Based on the Java arrays, the ArrayList provides a list whose size can be dynamically

increased, something we cannot do with ordinary Java arrays because their size, once

defined, cannot be changed. Below is how we usually create an ArrayList:

List<String> listOfStrings = new ArrayList<>();

Since List and ArrayList are generic types, we can leverage type safety by specifying

which object type our List will support. In the example above, we say that our List will

accept only String objects. We establish it by declaring the variable type as

List<String>. When creating the instance, we can explicitly define a type with angle

brackets like ArrayList<String> or use the diamond operator <> as done in the example

above with ArrayList<>. The compiler infers the ArrayList instance type by checking

which type was defined for the variable String in our example.

Please note that we are using a List instead of an ArrayList as the listOfStrings

variable type. It is a good programming practice to rely on interfaces. If we decide in the

future that an ArrayList is no longer suitable for our needs, we can change the instance

type without changing the variable type:

List<String> listOfStrings = new ArrayList<>();

listOfStrings = new LinkedList<>();

You may start your implementation using an ArrayList and have it referenced in multiple

places of the codebase. Later, you may decide that a LinkedList is better for your use

case. So, relying upon a List as the reference type may significantly decrease your

refactoring efforts while changing the code to make use of a LinkedList instead of an

ArrayList.

We can use a List to collect data from a file or database. It is a recurrent practice to get

database records and represent them as objects in a List. If you have worked with

Hibernate Object–Relational Mapping (ORM) or frameworks that depend on it, you may

have seen helper methods allowing you to query databases and return results in a List.

When working with lists in general, we either get one already populated or we need to

create and populate a new list. Regardless of the context, you may want to iterate over the

list content:

List<String> listOfElements = List.of("Element 1", "Element 2", "Element

3");

// Iterate using the index

for(var i = 0; i<listOfElements.size(); i++) {

 System.out.println(listOfElements.get(i));

}

// Iterate using the enhanced for-loop

for(var element : listOfElements) {

 System.out.println(element);

}

// Iterate using the forEach method with a lambda expression

listOfElements.forEach(element -> System.out.println(element));

We first iterate using the list indexes. Unless we have a special iteration logic that requires

dealing with indexes, we will usually use the enhanced for-loop or the forEach method with

a consumer lambda expression.

Note we are using List.of to generate our list; it is a helper method provided by the List

interface that returns an immutable list. Once you create the list, there is no way to change

its structure or its contents:

List<String> listOfElements = List.of("Element 1", "Element 2", "Element

3");

listOfElements.set(0, "Element 4"); // it throws

java.lang.UnsupportedOperationException

listOfElements.add("Element 5"); // it throws

java.lang.UnsupportedOperationException

listOfElements.remove("Element 1"); // it throws

java.lang.UnsupportedOperationException

We cannot change the list contents nor add or remove an object.

If you intend to change the contents of your list, you can use the Arrays.asList:

List<String> listOfElements = Arrays.asList("Element 1", "Element 2",

"Element 3");

listOfElements.set(0, "Element 4"); // it works

listOfElements.add("Element 5"); // it throws

java.lang.UnsupportedOperationException

listOfElements.remove("Element 3"); // it throws

java.lang.UnsupportedOperationException

With Arrays.asList, it is only possible to change the list contents, not its structure. Any

attempt to add or remove a list object will cause an UnsupportedOperationException.

The ArrayList is the way to go if you are looking for a completely mutable list. It allows

adding and removing items:

List<String> listOfElements = new ArrayList<>();

listOfElements.add("Element 1");

listOfElements.add("Element 2");

listOfElements.remove("Element 1");

System.out.println(listOfElements.size()); // 1

In the example above, we remove a list item by providing an object of type String as a

parameter, "Element 1". It is also possible to remove a list item by specifying its index

position:

List<String> listOfElements = new ArrayList<>();

listOfElements.add("Element 1");

listOfElements.remove(0);

System.out.println(listOfElements.size()); // 0

Removing using the index instead of object equality is always preferable regarding

performance. When we remove objects from the list by passing an object for comparison,

we must traverse all the list objects from beginning to end until we identify an object that

matches. This process takes up the computing time. When passing the index, it just

removes the object in the specified index position.

Lists do not complain if you add duplicates:

List<String> listOfElements = new ArrayList<>();

listOfElements.add("Element 1");

listOfElements.add("Element 1");

System.out.println(listOfElements); // [Element 1, Element 1]

Adding duplicates to a list is okay because there is no mechanism to ensure uniqueness

across the list contents. Now, if we want a data structure that excludes duplicates, then

java.util.Set is the proper collection.

Providing non-duplicate collections with a set

The java.util.Set interface was conceived to provide a collection that excludes

duplicates. However, we need to understand how an object can be compared to know what

in Java can be considered a duplicate object. There are two ways an object can be

compared in Java. The first way is equality based on the object’s location in memory. Two

objects are equal if they point to the same memory address location in the JVM. This is

what happens when we compare objects using the == operator:

class Person {

 String name;

 Person(String name) {

 this.name = name;

 }

}

public class CheckEquality {

 public static void main(String... args) {

 Person person = new Person("john");

 Person samePerson = person;

 System.out.println(person == samePerson); // true

 System.out.println(person.equals(samePerson)); // true

 }

}

We create a new Person instance and assign it to the person variable. We then create the

samePerson variable pointing to the person variable. The result is true when comparing

these variables using either the == operator or the equals method. The equals method

comes from the Object class. All classes in Java inherit the equals method because every

Java class extends the Object class. Below is how the equals method looks like in the

Object class:

public boolean equals(Object obj) {

return (this == obj);

}

We can see that the equals method performs a comparison using the == operator. It means

the default equality behavior of all objects we create in Java is based on the object location

in memory.

Consider now the following scenario:

Person person = new Person("john");

Person samePerson = new Person("john");

System.out.println(person.equals(samePerson)); // false

Comparing person and samePerson returns false because we have two objects with

different memory locations. To solve this problem, we need a comparison mechanism that

checks the object attributes instead of its memory location. We can accomplish this by

overriding the equals and hashCode methods in the Person class:

@Override

public boolean equals(Object o) {

 if (this == o) return true;

 if (o == null || getClass() != o.getClass()) return false;

 Person person = (Person) o;

 return Objects.equals(name, person.name);

}

@Override

public int hashCode() {

 return Objects.hash(name);

}

Our equals implementation checks if both objects refer to the exact memory address

location first. We do that using the == operator. Moving on, we check if the object being

passed is null or if its class is different than the Person class. If the previous checks are

okay, we cast the object to the Person type and compare the name attributes between the

compared objects.

Note we are also overriding the hashCode method. This is especially important when

dealing with Set collections because they are backed by a hash table that relies on the

hash produced by the hashCode method to properly store objects in a key-value-based data

structure where the hash number is the key and the object is the value. We will explore

more about key-value data structures in the next session.

Our hashCode implementation produces a hash based on the name attribute of the Person

class.

When we have equals and hashCode properly implemented, we can leverage the equality

based on object attributes:

Person person = new Person("john");

Person samePerson = new Person("john");

System.out.println(person == samePerson); // false

System.out.println(person.equals(samePerson)); // true

The equality check using the == operators returns false because person and samePerson

point to distinct objects located at different memory address locations. When we compare

using equals, we get true because we now rely on our implementation that checks the

Person’s name attribute.

This knowledge about object equality in Java is fundamental to understanding how the Set

interface excludes duplicates. All this discussion about object equality paves the way to

solve any problem where we need to handle duplicate data.

One of the most used Set interface implementations is the HashSet class. Below is how we

can create and add objects to a HashSet:

Set<Person> setOfPersons = new HashSet<>();

setOfPersons.add(new Person("john"));

setOfPersons.add(new Person("john"));

System.out.println(setOfPersons.size()); // 1

When we call add for the second time, the HashSet identifies that the Person object with

the name attribute "john" already exists, ignoring its insertion. We can confirm the

duplicate Person was not inserted by inspecting the HashSet size, which is one.

Sets, contrary to lists, do not guarantee collection ordering. So, the order in which you

insert objects into a Set will not be preserved. You cannot remove objects from a Set

collection using an index. A set is a key-value-based structure, so you must provide the

object you want to remove. A hash code derived from a given object will be used as the key

for lookup into the Set. If a key representing that object is found, then the object is

removed from the Set:

Set<Person> setOfPersons = new HashSet<>();

Person person = new Person("john");

setOfPersons.add(person);

setOfPersons.remove(person);

System.out.println(setOfPersons.size()); // 0

Although a Set is backed under the hood by the key-value-based Map interface, we cannot

use a Set to have a two-object relationship where one object is a key and the other is a

value. So, we need to rely directly on the Map interface and its implementations for that

purpose. Let us see it in the next section.

Using maps to create key-value data structures

There are scenarios where we need more than just a list or a set of objects to solve our

problems. In certain use cases, we may want a mapping structure that allows us to have an

identification mechanism for our objects. For example, suppose you want to handle

database row records and need to organize the data in a way that the record ID is

connected to the row data it represents in the database. We can map the ID as the key and

the row data as the value. Then, we can use the ID key to retrieve and manipulate row data

values with such a mapping structure. That is, in a nutshell, what the Map interface

provides.

Although the Map interface is not officially part of the Java Collections Framework, it has

been treated as a collection because we can manipulate data produced by a Map in a way

similar to how we manipulate data from other collections.

Imagine a scenario where we need to handle messages coming from a messaging system.

Part of the handling involves receiving the messages and reconstructing them as objects,

doing some processing with the message content, and then using the message ID to notify

an external system that the message was handled.

1. Let us start by defining the Id class:

class Id {

 String id;

 Id(String id) {

 this.id = id;

 }

 @Override

 public boolean equals(Object o) {

 if (this == o) return true;

 if (o == null || getClass() != o.getClass()) return false;

 Id id1 = (Id) o;

 return Objects.equals(id, id1.id);

 }

 @Override

 public int hashCode() {

 return Objects.hash(id);

 }

 @Override

 public String toString() {

 return "Id{" + "id='" + id + '\'' + '}';

 }

}

Notice that we are overriding the equals and hashCode methods. That is important

because duplicate keys are not allowed in a map, and we intend to use the Id as the

key for our map.

2. Following the Id, we implement the Message class:

class Message {

 String content;

 Message(String content) {

 this.content = content;

 }

 public String getContent() {

 return content;

 }

 public void setContent(String content) {

 this.content = content;

 }

}

We use the Message class to only store its content.

3. Finally, we create the HandleMessage class:

public class HandleMessage {

 public static void main(String... args) {

 Map<Id, Message> mapOfMessages = new HashMap<>();

 mapOfMessages.put(new Id("MSG-1"), new Message("First message"));

 mapOfMessages.put(new Id("MSG-2"), new Message("Second message"));

 mapOfMessages.put(new Id("MSG-3"), new Message("Third message"));

 mapOfMessages.put(new Id("MSG-1"), new Message("First message"));

 mapOfMessages.remove(new Id("MSG-3"));

 System.out.println(mapOfMessages.size()); // 2

 mapOfMessages.forEach((id, message) -> {

 appendToContent(message);

 notifyProcessing(id);

 });

 }

 public static void appendToContent(Message message) {

 var content = message.getContent();

 var processedContent = content + " - processed";

 message.setContent(processedContent);

 }

 public static void notifyProcessing(Id id) {

 System.out.println("Message "+ id + " processed.");

 }

}

Executing the above code will produce the following output:

Map size: 2

Message Id{id='MSG-2'} processed.

Message Id{id='MSG-1'} processed.

In the HandleMessage class, we create an empty HashMap, the most common Map interface

implementation. The Map<Id, Message> type specifies that we have the Id class as the

key and the Message class as the value. Next, we add four map entries and remove one

entry. Notice we add two entries with the same id, "MSG-1". When we try to add the "MSG-

1" entry for the second time, the insertion is ignored because the map already contains an

entry with such a key. Then, we remove the entry "MSG-3" from the map. Ignoring

duplicates and removing an entry using the key is possible because of our equals and

hashCode implemented earlier in the Id class. Finally, we print the map size, which is two.

Proceeding with the code, we use forEach to iterate over the map entries. The syntax we

use here is a lambda expression, which we will explore later in this chapter. The map

processing is straightforward; we call appendToContent(Message message) and append

the " - processed" to the original message, followed by a call to notifyProcessing(Id

id), where we use the Id to notify the message was processed.

The previous example illustrates a typical pattern where we map data coming from

somewhere, perform some data processing, and finally take further action after finishing

with data processing. Instead of using a List or Set, we chose a Map to map the Id to a

Message, allowing us to conveniently use each object for different purposes.

The Java Framework Collections is an extensive topic with much more than we covered in

this session. Going into every aspect of this topic is out of this book’s scope. So, this

session focused on collection approaches commonly seen in Java projects. Let us see now

how we can efficiently handle files using Java.

Using the NIO2 to manipulate files

Numerous cases can be where a Java application needs to interact with the operating file

system to handle files and directories. The author recalls a project where they worked with

a system that generated reports and made them available through files for download. The

application would run logic to create the report and save it somewhere in the file system

where the JVM was running. After finishing, the application would provide a URL so the user

could download the report file.

Depending on your use case, you may often handle files and directories with Java. The

good news is that Java has a powerful I/O API called NIO.2 (Non-blocking I/O, version 2),

allowing an intuitive and smooth file system management experience. We can find the

NIO.2 API in the java.nio package. There is also the standard I/O API found in the java.io

package, but this is the old way to handle files in Java. New applications should rely on the

NIO.2 API.

Our focus in this section will be on the NIO.2 API because it provides modern features to

handle files and directories.

Creating paths

A file system represents how files and directories are organized in an operating system.

Such representation follows a tree-based structure where we have a root directory and

other directories and files below it. We have two kinds of file systems, one deriving from

Windows and another from Unix (e.g., Linux or macOS). On Windows, the root directory is

usually C:, while on Linux, it is /.

How we separate paths can also change depending on the operating system. For example,

on Windows, we use the backslash \, while on Linux, it is the forward slash /.

The following is how we can identify the possible root directories available for a Java

application:

System.out.println(FileSystems.getDefault()); // sun.nio.fs.LinuxFileSystem

FileSystems.getDefault().getRootDirectories().forEach(System.out::println);

// "/"

Since the above code is executed in a Linux machine, the FileSystems.getDefault()

returns sun.nio.fs.LinuxFileSystem. When checking for the possible root directories, it

gets only the /, which is the root directory in Linux systems.

The NIO.2 API provides the Path interface representing paths in a file system. A path can

be either a file or a directory. There is also the concept of symbolic links, which resolve to a

file or directory, so Java allows us to create Path objects using symbolic links.

The following is how we can create a Path object:

Path path = Path.of("/path/example");

We use the factory method Path.of with a String representing the path we want to

create. One important thing to understand here is that the path String you pass to the

Path.of may not exist. So, creating a new Path object does not mean the path exists in

the operating system.

Paths can be absolute or relative. We call absolute every complete path, meaning it

contains all path components, including the root directory. The following are examples of

absolute paths:

Path.of("/home/john/textFile.txt"); // Linux absolute path

Path.of("C:\\users\\john\\textFile.txt"); // Windows absolute path

The absolute path above comprises a file called textFile.txt and three directories,

including the root directory. Note we are using a double backslash for the Windows path;

this is required because one backslash is interpreted as the escape character.

Relative paths are those partially representing a path location:

Path.of("./john/textFile.txt"); // Linux relative path

Path.of(".\\john\\textFile.txt"); // Windows relative path

We use ./ or .\ to indicate the current directory. In the example above, we are not

providing the complete path where the textFile.txt is located, making the path a

relative one.

The NIO.2 API offers helpful factory methods to manipulate the Path objects in different

ways. We can, for example, combine an absolute path with a relative one:

Path absPath = Path.of("/home");

Path relativePath = Path.of("./john/textFile.txt");

Path combinedPath = absPath.resolve(relativePath);

System.out.println(combinedPath); // /home/./john/textFile.txt

System.out.println(combinedPath.normalize()); // /home/john/textFile.txt

The resolve method called in a Path object allows us to combine it with another Path

object as we did with the absPath and the relative path.

When printing the combinePath for the first time, we see the presence of the ./ (current

directory) path element, which is redundant and can be excluded from the path

representation. When printing the result of calling the normalize method for the

combinedPath, we see the normalized combinedPath without the ./ element. The

normalize method is helpful to clean up paths containing redundant elements such as ./

(current directory) and ../ (previous directory).

Now that we know how to manipulate Path objects let us see how to use them to handle

files and directories.

Handling files and directories

The NIO.2 API provides the Files class containing factory methods to handle files and

directories. The following is an example of how we can use this class:

import java.io.IOException;

import java.nio.file.*;

public class HandlingFilesAndDirectories {

 public static void main(String... args) throws IOException {

 Path textFile = Files.createFile(Path.of("/tmp/textFile.txt"));

 String content = """

 First line

 Second line

 Third line

 """;

 Files.writeString(

 textFile,

 content);

 }

}

We start by creating a new file with Files.createFile(Path.of("/tmp/textFile.txt")).

Observe that the createFile method requires a Path object with the string representing

our file location. A FileAlreadyExistsException is thrown if the file already exists. Then,

we create a string text block with three lines. Finally, we write these lines into our file using

Files.writeString. The writeString(Path path, CharSequence csq) method expects

the following parameters:

• A Path object representing the file we want to write.
• A CharSequence (String implements it) representing the data we want to write.

The following is the output of the /tmp/textFile.txt file:

First line

Second line

Third line

With the following code, we add the fourth line to the text file:

String content = "Fourth line";

Files.writeString(

 Path.of("/tmp/textFile.txt"),

 content,

 StandardOpenOption.APPEND);

The StandardOpenOption.APPEND is an option that allows writing data to a file without

overwriting already existing content. It appends new lines starting from the last file line.

You may want to create directories and move files across them. The following example

shows how we can do that using the NIO.2 API:

Path dirA = Path.of("/tmp/dirA");

Path fileA = Path.of("/tmp/fileA");

System.out.println(Files.isDirectory(dirA)); // false

System.out.println(Files.isRegularFile(fileA)); // false

Files.createDirectory(dirA);

Files.createFile(fileA);

System.out.println(Files.isDirectory(dirA)); // true

System.out.println(Files.isRegularFile(fileA)); // true

Path destFilePath = Path.of(

 dirA +

 FileSystems.getDefault().getSeparator() +

 fileA.getFileName()

);

System.out.println(Files.move(fileA, destFilePath)); // /tmp/dirA/fileA

We start by creating the Path objects that dirA and fileA represent in our directory and

file, respectively. We can confirm that the directory and file do not exist by using the

isDirectory and isRegularFile methods that check in the file system if the path

provided exists. Following, we call the File.createDirectory and File.createFile

methods with the Path objects dirA and fileA created previously. Executing such methods

will create the directory and file into the file system. We can confirm it by calling the

isDirectory and isRegularFile methods with the dirA and fileA Path objects. Finally,

we create a Path object destFilePath that represents the target place where we want to

move our file, created on "/tmp/file". We construct the string for destFilePath using:

• The target directory that we get from dirA.
• The platform-dependent path separator we get by galling getSeparator, which for

Linux systems is / and Windows usually is C.
• The filename element we get from the fileA path.

Calling Files.move moves the file to the desired destination and returns the target path

where the file is now located, which is /tmp/dir/file. There is also Files.copy, which

works similarly to Files.move.

The NIO.2 API provides helpful factory methods to read file contents like, for example, the

Files.lines method:

Path newFile = Path.of("/tmp/newFile.txt");

String content = """

First Line

Second Line

""";

Files.writeString(

 newFile,

 content,

 StandardOpenOption.CREATE);

Files.lines(newFile).forEach(System.out::println);

The code creates a text file with two lines. Note that we are now using the option

StandardOpenOption.CREATE that creates a new file if it does not already exist. Then we

call Files.lines(newFile) that returns a Stream<String> that we can use to read line by

line from our file. Using a stream to read text files can be efficient in terms of memory

usage because streams do not keep the whole file content in memory. The stream allows

us to read line by line without compromising memory resources.

The next section will explore how to use exceptions to deal with unexpected behavior in a

Java application.

Error handling with exceptions

Developing a robust Java application means understanding what can go wrong and how the

application can gracefully handle unexpected behaviors. Your application can have a logic

that breaks whenever a user provides an unusual input that the application is unprepared

to handle. When integrating your application with a database, you assumed the data would

always come in one format until it came in a different format. The API you are consuming

may suddenly change its contract, causing trouble for your application. The file system

where your application saves files may become full, causing failure when saving new files.

We can go on and on with the things that can cause issues in an application.

The Java architects were aware of the failure conditions an application may face, and

because of that, they designed an error-handling mechanism based on the Throwable

class. This class handles all errors and exceptions while a Java application is running.

In Java, we have checked and unchecked exceptions. Checked exceptions represent failure

conditions that a Java application must handle or catch, while unchecked exceptions are

the opposite, meaning they are not supposed to be caught even though the programmer

may catch them if he wants. We can create a checked exception by using the Exception

class directly or extending it. There is also a RuntimeException class, which is considered

an unchecked exception, extending the Exception class. Every other class that extends

the RuntimeException can also be considered an unchecked exception. The Error class

extends directly from the Throwable class and is considered an unchecked exception.

Catching a checked exception allows us to provide some graceful recovery mechanism to

our application while also notifying us about what went wrong. Properly using the exception

handling mechanism in Java can significantly improve error troubleshooting efforts by

allowing us to identify faster why things are not working as expected in our application.

Next, let us check some use cases for checked exceptions.

Checked exceptions

Here, we have an example showing how checked exceptions can be used:

public class ExceptionAnalysis {

 public static void main(String[] args) {

 try {

 checkParameter(-1);

 } catch (Exception e) {

 System.out.println("The following error occurred: "+

 e.getMessage());

 e.printStackTrace();

 }

 }

 public static void checkParameter(int parameter) throws Exception {

 if(parameter<0)

 throw new Exception("Negative numbers are not allowed");

 }

}

In Java, we use the try-catch construct to handle exceptions. Inside the try block, we put

the code that may throw a checked exception. We may handle the exception inside the

catch block by printing a friendly error message or doing something to recover from a

failure condition.

The code above will print the following output:

The following error occurred: Negative numbers not allowed

java.lang.Exception: Negative numbers not allowed

at ExceptionAnalysis.checkParameter(ExceptionAnalysis.java:14)

at ExceptionAnalysis.main(ExceptionAnalysis.java:5)

The checkParameter checks if the provided parameter is a negative integer. If true, it

throws an exception using the throw keyword. The Exception class provides a one-

parameter constructor, allowing us to provide a String message to the exception.

Since we are throwing a checked exception, we must either handle it inside the

checkParameter or put a throws keyword on the method declaration. The throws keyword

specifies one or more exceptions the method may throw.

We use the throws keyword, which means any other method calling our method will have

to either handle the exception or include the throws keyword in its declaration. If the

programmer does not explicitly handle the exception, then the default JVM exception

handler handles it.

Unchecked exceptions

Contrary to checked exceptions, unchecked exceptions are not required to be handled at

runtime by our code. Although not recommended, handling unchecked exceptions is legal.

Following is an example showing how an application can throw an unchecked exception:

var listOfStrings = List.of("a","b");

var first = listOfStrings.get(0);

var second = listOfStrings.get(1);

var third = listOfStrings.get(2); // IndexOutOfBoundsException: Index: 2

Size: 2

The IndexOutOfBoundsException is considered an unchecked exception because it

extends the RuntimeException class. It occurs when we try to access an index outside the

list bounds. The default JVM exception handler handles this exception directly.

When handling exceptions, there are scenarios where we want to execute some code

whenever the application leaves a try-catch. That is when the final block comes into

play, allowing us to always execute some code, regardless of whether an exception is

caught.

Final block and try-with-resources

Aside from the try-catch, there are also the try-finally and try-catch-finally

constructs. The finally block represents code always executed due to handling an

exception. finally blocks are frequently used when we want to ensure the application

closes resources used by system calls executed inside the try block. The following

example illustrates such a scenario:

public void writeToFile() throws IOException {

FileOutputStream fileOutputStream = new

 FileOutputStream("file.data");

DataOutputStream dataOutputStream = new

 DataOutputStream(fileOutputStream);

try {

 dataOutputStream.writeChars("Some text data");

 } catch (IOException e) {

 e.printStackTrace();

 } finally {

 dataOutputStream.close();

 fileOutputStream.close();

 }

}

The code above serializes text characters into bytes using the DataOutputStream, which

writes the data using the file provided by the FileOutputStream. We are catching

IOException because this is a checked exception thrown by the writeChars method from

the DataOutputStream. Then, we have the finally block, where we close the resources

we opened with FileOutputStream and DataOutputStream outside the try-catch-

finally block at the beginning of the method.

Closing resources is always recommended, especially when opening database connections

or reading or writing data with input and output streams.

Java provides another approach that makes our code more concise; shown as follows:

public static void writeToFile() {

try (FileOutputStream fileOutputStream = new

 FileOutputStream("file.data");

 DataOutputStream dataOutputStream = new

 DataOutputStream(fileOutputStream))

{

 dataOutputStream.writeChars("Some text");

} catch (IOException e) {

 e.printStackTrace();

}

}

The code above uses the try-with-resources construct, which declares resources

between parentheses in the try block initialization. All the resources are closed

automatically in a try-with-resources block, but this only happens if the class opening

the resource implements either the Closable or AutoClosable interfaces.

Before finishing this exception discussion, let us examine how we can create exceptions.

Creating custom exceptions

The Java language comes with helpful checked and non-checked exceptions we can use in

our applications. Although we could use the Exception class everywhere in our system to

tell if something went wrong, that is not a good practice and can create ambiguities

because of different error conditions using the same Exception class.

To provide more efficient and accurate error handling, we can extend the Exception class

to create checked exceptions or the RuntimeException class to create unchecked

exceptions.

The following is how we create a customized checked exception:

public class NegativeNumberException extends Exception {

 public NegativeNumberException(String message) {

 super(message);

 }

}

We can create checked exceptions by extending the Exception class and providing no

additional constructors. The NegativeNumberException class goes beyond that and

provides a constructor receiving a String message parameter, allowing us to provide a

meaningful message when throwing the exception:

throw new NegativeNumberException("Negative numbers are not allowed");

Instead of throwing a generic Exception, we can throw the NegativeNumberException to

express more accurately a failure condition where the application cannot handle negative

numbers, for example.

Creating, throwing, and handling custom exceptions contributes to developing more

straightforward troubleshooting applications. Another thing that can also support

troubleshooting is how we log application behaviors. Let us investigate it in the next

section.

Improving application maintenance with the Logging API

When developing new applications, our main concern may be first solving the problem. It

usually means quick and dirty code. It is not the final solution, but it does the job. At this

stage, we find ways to improve the code by cleaning it and improving the performance

where possible. Another thing that we consider is how we will log the different application

behaviors required to enable the solution. After all, providing relevant log messages can

significantly help when investigating system issues.

To help us provide better logging capabilities to our applications, Java has the Logging API,

which allows us to log application behaviors with different log handlers, levels, and formats.

In the following section, we explore how they work.

Log handlers, levels, and formats

The Logging API is based on log handlers, levels, and formats. We can use built-in handlers

like the ConsoleHandler and FileHandler, but we can also create customized log

handlers. These handlers are responsible for sending the log messages somewhere, like a

log file, for example, in the case of a FileHandler.

We can use the logging.properties configuration file found in the JAVA_HOME/conf

directory for Java versions after 8 or in the JAVA_HOME/jre/lib directory for Java versions

before 8. It is also possible to define a different location where the configuration file will be

located using the following system property when executing the Java application:

java -Djava.util.logging.config.file=/tmp/logging.properties

The following is how we can configure the logging.properties file:

handlers = java.util.logging.FileHandler, java.util.logging.ConsoleHandler

java.util.logging.FileHandler.pattern=%t/java-severe-%u.log

java.util.logging.FileHandler.level=WARNING

java.util.logging.FileHandler.formatter=java.util.logging.SimpleFormatter

Only the ConsoleHandler is enabled by default. The configuration above also includes the

FileHandler through the handler’s property. The pattern property specifies how Java will

create the files containing logging data. We use %t to store log files in the operating

system’s temporary directory, which in Windows is C:\TEMP, and in Linux is the /tmp

directory. We then set the level property as WARNING for the FileHandler. Here are all the

available levels we can set:

OFF

SEVERE

WARNING

INFO

CONFIG

FINE

FINER

FINEST

ALL

OFF means no level at all, and ALL means all log levels. The level mechanism works so that

the FINEST log is the lowest possible configuration, whereas the SEVERE is the highest.

Suppose we configure a handler with the FINEST level. In that case, it will capture FINEST

log level messages and other messages with a level above it, like FINER, FINE, and so on,

until the SEVERE level. Conversely, if we configure a handler with the WARNING level, it will

capture only messages with WARNING and SEVERE levels, ignoring all messages defined with

levels below those two.

Finally, we have the formatter property, which defines how we display log messages. In the

example above, we use a built-in format called java.util.logging.SimpleFormatter, but

we can also implement our custom format by extending the

java.util.logging.Formatter class.

Following, we have a program that logs messages using the logging.properties file that

we defined previously:

package org.corp;

import static java.util.logging.Level.INFO;

import static java.util.logging.Level.SEVERE;

import java.io.IOException;

import java.util.logging.Logger;

public class TestApp {

 private static final Logger logger =

 Logger.getLogger(org.corp.TestApp.class.getName());

 public static void main(String... args) throws IOException {

 logger.log(INFO, "Start operation");

 try {

 execute();

 } catch (Exception e) {

 logger.log(SEVERE, "Error while executing operation", e);

 }

 logger.log(INFO, "Finish operation");

 }

 public static void execute() throws Exception {

 logger.log(INFO, "Executing operation");

 throw new Exception("Application failure");

 }

}

We obtain a Logger object by executing the following line:

Logger logger = Logger.getLogger(dev.davivieira.Main.class.getName());

We use this object to log messages. It is also possible to set the default log level for the

entire class by executing something like the below:

logger.setLevel(Level.INFO);

Setting such a configuration means the logger will capture all messages logged with

SEVERE, WARNING, and INFO levels. Other logging levels below INFO, like CONFIG and FINE,

would be ignored.

Executing the TestApp program will cause the creation of the file /tmp/java-severe-

0.log with the following content:

Jan 28, 2024 12:24:44 PM org.corp.TestApp main

SEVERE: Error while executing operation

java.lang.Exception: Application failure

at org.corp.TestApp.execute(TestApp.java:26)

at org.corp.TestApp.main(TestApp.java:17)

The FileHandler provides the above output. Notice we only see SEVERE log messages. The

INFO log messages are omitted because the FileHandler log level is set to WARNING, which

means we display only WARNING and SEVERE log messages.

The folllowing is the output provided by the ConsoleHandler:

Jan 28, 2024 12:24:44 PM org.corp.TestApp main

INFO: Start operation

Jan 28, 2024 12:24:44 PM org.corp.TestApp execute

INFO: Executing operation

Jan 28, 2024 12:24:44 PM org.corp.TestApp main

SEVERE: Error while executing operation

java.lang.Exception: Application failure

at org.corp.TestApp.execute(TestApp.java:26)

at org.corp.TestApp.main(TestApp.java:17)

Jan 28, 2024 12:24:44 PM org.corp.TestApp main

INFO: Finish operation

Since we rely on the default ConsoleHandler configuration, the default log level is INFO, so

we see SEVERE and INFO log messages here.

Let us explore how we can work date and time in Java.

Exploring the Date-Time APIs

Introduced in JDK 8, the Date-Time API is provided through the java.time package, a set of

classes representing date and time values in different formats. Before the Date-Time API,

we relied on the java.util.Date class. The new Date-Time API was introduced to fill the

gaps from the previous java.util.Date implementation.

This section covers some of the main aspects of the Date-Time API, including date, time,

date with time, and zoned date with times. Let us start by checking how the LocalDate

class works.

LocalDate

We use the LocalDate class when we are only interested in the date representation formed

by days, months, and years. You may be working with an application that provides range

filtering capabilities where the time granularity is defined by days, excluding any time

aspects related to hours or minutes. Such a use case could benefit from the LocalDate

capabilities. The following is how we can create a LocalDate representing the current

date:

System.out.println(LocalDate.now()); // 2024-01-28

When calling the now method, it returns the current date based on the default time zone

where the JVM is running unless we enforce a default time zone using something like below:

TimeZone.setDefault(TimeZone.getTimeZone("Japan"));

If we do not enforce a default timezone through the application, Java relies on the timezone

defined by the operating system where the JVM is running. For example, my computer

clock is configured to use the "Europe/Berlin" timezone. If executed on my computer, the

now method would return the "Europe/Berlin" timezone.

We can pass another timezone if we do not want to use the default one:

System.out.println(LocalDate.now(ZoneId.of("Japan"))); // 2024-01-29

We can specify a different timezone using the of factory method from the ZoneId class. In

the Japan timezone, the date returned one day ahead of the previous example, where I

used the default timezone provided by the operating system.

We can get a LocalDate by providing the year, month, and day:

System.out.println(LocalDate.of(2024, Month.JANUARY, 28)); // 2024-01-28

The LocalDate is composed based on the provided date components like year, month, and

day. We achieve the same result by providing only the year and the day of the year:

System.out.println(LocalDate.ofYearDay(2024, 28)); // 2024-01-28

The day 28 of 2024 falls in January, resulting in a LocalDate with that month. We can also

provide a string that can be parsed and transformed into a LocalDate:

System.out.println(LocalDate.parse("2024-01-28")); // 2024-01-28

The string above must follow the default date format, which expects the year, month, and

day in this order. If we try to pass something like "2024-28-01", we get

DateTimeParseException. We can solve it by using a data formatter:

String myFormat = "yyyy-dd-MM";

DateTimeFormatter myDateFormatter = DateTimeFormatter.ofPattern(myFormat);

System.out.println(LocalDate.parse("2024-28-01", myDateFormatter)); // 2024-

01-28

There is an overloaded parse method from the LocalDate class that accepts a

DateTimeFormatter to allow proper parsing of different date format strings.

We can also increase or decrease the LocalDate:

System.out.println(LocalDate.of(2024, Month.JANUARY, 28).plusDays(1)); //

2024-01-29

System.out.println(LocalDate.of(2024, Month.JANUARY, 28).minusMonths(2)); //

2023-11-28

System.out.println(LocalDate.of(2024, Month.JANUARY, 28).plusYears(1)); //

2025-01-28

It is important to note that when we use methods like plusDays or minusMonths, they do

not change the current LocalDate instance but instead return a new instance with the

changed date.

What if we are only interested in the time aspect of a given date? That is when the

LocalTime comes into play to help us.

LocalTime

The way we manipulate LocalTime objects is similar to how we manipulate LocalDate. The

LocalTime class provides some factory methods that allow the creation of LocalTime

objects in different ways:

System.out.println(LocalTime.now()); // 21:33:08.740527179

System.out.println(LocalTime.now(ZoneId.of("Japan"))); // 05:33:08.740560750

System.out.println(LocalTime.of(20, 10, 5)); // 20:10:05

System.out.println(LocalTime.of(20, 10, 5, 10)); // 20:10:05.000000010

System.out.println(LocalTime.parse("20:10:05")); // 20:10:05

As with LocalDate, we can create LocalTime instances following the principle where we

can get the current time with the now method or get a specific time by providing the time

components like hour, minute, second, and nanosecond. It is also possible to parse a

String representing time. Increasing or decreasing a LocalTime is also supported:

System.out.println(LocalTime.of(20, 10, 5).plusHours(5)); // 01:10:05

System.out.println(LocalTime.of(20, 10, 5).minusSeconds(30)); // 20:09:35

Let us check now how we can have an object that expresses both date and time.

LocalDateTime

By joining the date and time into a single object, the LocalDateTime provides a complete

local representation of date and time. The term local means that these date-time objects

do not contain any reference to their timezone, that is only possible with its variant with

timezone support, which will be seen later in this section.

The following is how we can create a LocalDateTime:

System.out.println(LocalDateTime.now()); // 2024-01-28T22:21:38.049971256

System.out.println(LocalDateTime.now(ZoneId.of("Japan"))); // 2024-01-

29T06:21:38.050009338

var localDate = LocalDate.of(2024, Month.JANUARY, 28);

var localTime = LocalTime.of(20, 10, 5);

System.out.println(LocalDateTime.of(localDate, localTime)); // 2024-01-

28T20:10:05

System.out.println(LocalDateTime.of(2024, Month.JANUARY, 28, 20, 10, 5)); //

2024-01-28T20:10:05

As with other date-time classes, LocalDateTime has a now method that returns the current

date and time. When creating LocalDateTime with a specific date and time, we can

provide LocalDate and LocalTime objects to the factory method. We see next the date-

time type that supports timezones.

ZoneDateTime

In all the previous classes we have seen so far, LocalDate, LocalTime, and LocatDateTime

all provide a date and time presentation without regard to a given time zone. There are use

cases where the time zone is helpful as part of the date-time object. We can save date-

times using the time zone from the region where the Java application is running, like the

scenarios where a system is available for users in different time zones. We can also ensure

the application always uses the Coordinated Universal Time (UTC), a universal way to

represent time, no matter the region where the Java application is running. The use cases

can be numerous, and to enable them, we have the ZoneDateTime class, which works

similarly to the LocalDateTime but with support for time zones. The following is how to

create a ZoneDateTime object representing the current date and time:

System.out.println(ZonedDateTime.now()); // 2024-01-

28T23:46:26.709136750+01:00[Europe/Berlin]

System.out.println(ZonedDateTime.now(ZoneId.of("Japan"))); // 2024-01-

29T07:47:33.206255659+09:00[Japan]

In addition to the date and time components, we have the time zone component as

+01:00[Europe/Berlin] when calling the now method without a parameter defining a time

zone and +09:00[Japan] when calling the now method with the Japan time zone parameter.

It is possible to create the ZoneDateTime from a LocalDateTime:

var localDateTime = LocalDateTime.now();

System.out.println(ZonedDateTime.of(localDateTime, ZoneId.of("UTC"))); //

2024-01-28T23:55:27.406187953Z[UTC]

Remember that the now method gets the current date and time based on the operating

system’s default time zone unless we force the Java Virtual Machine (JVM) to use

another time zone. The example above gets the local date and time and then converts it to

UTC when creating a ZonedDateTime.

Instant

In the previous section, we saw how to use ZoneDateTime to create a moment

representation with UTC. UTC stands for Coordinated Universal Time and is beneficial for

situations where we want to represent time regardless of the geographical location or

different time zones. Database systems usually adopt UTC as the standard for storing date-

time values.

Java has the Instant class representing a moment with a nanoseconds number counting

from the epoch of the beginning of 1970 in UTC. Here is how we can create an Instant:

System.out.println(Instant.now()); // 2024-01-28T23:24:36.093286873Z

System.out.println(Instant.now().getNano()); // 93372648

Using Instant.now() is common when persisting Java data objects into database systems

because it provides a UTC moment representation that is usually compatible with

timestamp data types from most database technologies.

Functional programming with streams and lambdas

The cornerstone of object-oriented programming (OOP) is the idea of objects having

states and data. For example, we may trigger an object’s method to change its state. We

can also make an object take the form of another object. The ability to transform objects’

constitutes a mutation characteristic common with OOP languages. Employing this

mutation can bring benefits in terms of flexibility because we can adapt and reuse the

same object in different contexts. On the other hand, the mutation can bring problems

because the object can change in unexpected ways, causing side effects in our system.

The Java architects introduced functional programming elements to the Java language to

address the possible side effects caused by mutating objects and to allow a more

declarative and concise way to develop software. Starting on Java 8, we have the Stream

interface, which enables us to process a collection of objects in a functional way. There is

also a functional-style syntax called lambda expression, which allows passing blocks of

code, for example, as a parameter for a method or assigned to a variable. We also have

functional interfaces that lambda expressions can implement. The Java API provides built-in

helpful functional interfaces, but we can also implement our own. Let us start our

exploration with lambda expressions.

Functional interfaces and lambda expressions

We consider an interface functional if it has one and only one abstract method. We usually

implement ordinary interfaces with a concrete class, but we can implement functional

interfaces using lambda expressions. The Java API provides many built-in functional

interfaces for different use cases. Unless you have a specific need, you will likely use

already available functional interfaces. Let us look at some of these interfaces, starting

with the Predicate.

Predicates

We use predicates to create expressions that always return a Boolean. The following is how

the Predicate interface is defined in the Java API:

@FunctionalInterface

public interface Predicate<T> {

 // Code omitted

 boolean test(T t);

 // Code omitted

}

The @FunctionalInterface annotation is recommended but not mandatory. We can use

this annotation to ensure the functional interface has only one abstract method. T is the

generic parameter type used in the expression we create, and boolean is what we always

return as a result of evaluating the expression. Look how we can implement a Predicate

with a Lambda expression:

Predicate<String> emptyPredicate = value -> value != null &&

value.isEmpty();

A lambda expression is composed of zero, one or more parameters on the left side, then an

arrow, and finally, the expression body on the right side. Notice we are assigning this

expression to a variable named emptyPredicate. There is no need to specify the value

parameter type here because the Java compiler infers it from the type we provide on

Predicate<String>. We can evaluate our lambda expression by calling the test method

with different values, as follows:

System.out.println(emptyPredicate.test(null)); // false

System.out.println(emptyPredicate.test("")); // true

System.out.println(emptyPredicate.test("abc")); // false

Passing null or "abc" makes our expression return false. It returns true when we pass an

empty String.

Functions

We use functions when we usually want to pass a value, do something with it, and return a

result. That is how the Function functional interface is defined in the Java API:

@FunctionalInterface

public interface Function<T, R> {

 // Code omitted

 R apply(T t);

 // Code omitted

}

R is the result type we expect to get, and T is the parameter type we use inside our

expression.

You may be wonder what R and T means. These letters are identifiers we use to define

generic type parameters used by generic classes or interfaces. Function is a generic

functional interface that receives two generic type parameters: R and T. Where R stands for

return and T stands for type. Generics give us flexibility by providing a way to design

classes and interfaces capable of working with different types.

The following is how we can declare and use the Function interface:

Function<Integer, String> putNumberBetweenParentheses = (input) -> "

("+input+")";

var java = putNumberBetweenParentheses.apply(25);

var function = putNumberBetweenParentheses.apply(8);

System.out.println(java); // (25)

System.out.println(function); // (9)

In the example above, Integer is the type of the parameter we are passing, and String is

the return type. Our function gets an Integer, converts it to a String, and wraps it into

parentheses.

Suppliers

There are scenarios where we need to get an object without providing any input. Suppliers

can help us because that is how they behave: we call them, and they just return

something. Following is how the Java API defines the Supplier interface:

@FunctionalInterface

public interface Supplier<T> {

 // Code omitted);

 T get();

}

T is the return type of the object we receive when calling the get method. Here is an

example showing how to use a Supplier:

Supplier<List<String>> optionsSupplier = () -> List.of("Option 1", "Option

2", "Option 3");

System.out.println(optionsSupplier.get()); // [Option 1, Option 2, Option 3]

Notice that the parameter side () of the lambda expression is empty. If the functional

interface does not expect any parameter, we do not provide it when creating the lambda

expression.

Consumers

With Suppliers, we get an object without providing any input. Consumers work in the

opposite direction because we give input to them, but they return nothing. We use them to

perform some action in the provided input. The following is the Consumer functional

interface definition:

@FunctionalInterface

public interface Consumer<T> {

 // Code omitted

 void accept(T t);

 // Code omitted

}

We pass a generic T type to the accept method that returns nothing. Here, we can see a

lambda expression showing how to use the Consumer functional interface:

Consumer<List<String>> print = list -> {

for(String item : list) {

System.out.println(item+": "+item.length());

}

};

print.accept(List.of("Item A", "Item AB", "Item ABC"));

Implementing the Consumer interface, we have a lambda expression that receives a

List<String> as a parameter. This lambda shows that an expression can be a whole code

block with multiple statements between curly brackets. Here, we are iterating over the list

of items and printing their value and length. Note that this lambda expression does not

return anything; it just gets the list and performs some action with it.

The Java API provides many other functional interfaces. Here, we have just covered some of

the main interfaces to understand their fundamental idea and how they can help us

develop code in a functional way.

Let us explore how to use streams to handle collections of objects.

Streams

Introduced together with functional interfaces and lambda expressions in Java 8, the

Stream interface allows us to handle collections of objects functionally. One significant

difference between streams and the data structures provided by the Collection interface

is that streams are lazy loaded. For example, when we create a list of objects, the entire list

is allocated in memory. If we deal with large amounts of data, our application may struggle

and have memory issues loading all objects into a list. On the other hand, streams allow us

to process one object at a time in a pipeline of steps called intermediate and terminal

operations. Instead of using a collection and loading everything in memory, we rely on a

stream to process object by object, performing the required operations on them.

It is a common situation where getting results from a large database table is necessary.

Instead of returning the results as a List, we can return them as a Stream to prevent

memory bottlenecks in the application.

Streams may be beneficial for preventing memory bottlenecks and also for helping us

handle collections of objects more flexibly. To understand how we can tap into the benefits

provided by streams, we first need to understand the stream structure.

Streams are designed like a pipeline where we have the following components:

• Stream source
• Intermediate operations
• Terminal operation

The stream source is where we get the data we want to process as a stream. We can use a

List, for example, to source a stream. Intermediate operations allow us to manipulate

stream data in a pipeline fashion, where the output from one intermediate operation can

be used as the input to another intermediate operation. As the last component, we have

the terminal operation that determines the stream’s final outcome. Terminal operations can

return an object or handle the stream data without returning something.

Let us start by checking how we can source a stream.

Sourcing streams

The simplest way to initialize a stream is through the of factory method from the Stream

interface:

Stream<String> streamOfStrings = Stream.of("Element 1", "Element 2",

"Element 3");

A more recurrent use is creating streams out of an existing collection like a List, for

example:

var listOfElements = List.of("Element 1", "Element 2", "Element 3");

Stream<String> streamOfStrings = listOfElements.stream();

Once we have a stream, the next step is to handle its data with intermediate and terminal

operations. Let us first check how intermediate operations work.

Intermediate operation

For those familiar with Unix/Linux shells, you may know how helpful it is to use the output

of a command as the input for another command through the usage of the pipe | character.

The Java streams’ intermediate operations work similarly by letting us use the result from

one intermediate operation as the input for the next intermediate operation. Because of

this continuing and compounding nature, these operations are called intermediate. They do

not represent the final outcome of the stream processing.

Here are some common intermediate operations examples:

Stream<String> streamOfStrings = Stream.of("Element 1", "Element 2",

"Element 3");

Stream<String> intermediateStream1 = streamOfStrings.map(value ->

value.toUpperCase());

Stream<String> intermediateStream2 = streamOfStrings.filter(value ->

value.contains("1"));

Stream<String> intermediateStream3 = streamOfStrings.map(value ->

value.toUpperCase()).filter(value -> value.contains("1"));

We start by creating a stream of strings. The first intermediate operation puts all string

characters in uppercase. Note that intermediate operations always return a Stream object,

so we can use it to perform another intermediate operation or terminate the stream

processing with a terminal operation. Next, the second intermediate operation filters the

stream data, returning only the objects containing the "1" string. Finally, we concatenate

the map and filter intermediate operations in the third intermediate operation.

The map intermediate operation receives a lambda expression implementing the Function

interface as its parameter. Remember, a Function is a functional interface that accepts a

parameter and returns an object. We are passing a String and returning another String

with its characters in uppercase.

We are passing a lambda expression for the filter intermediate operation that

implements the Predicate functional interface.

Instead of creating multiple streams containing intermediate operations, we can create one

single stream with multiple intermediate streams, as shown follows:

streamOfStrings

 .map(value -> value.toUpperCase())

 .filter(value -> value.contains("1"))

 .filter(value -> value.contains("3"));

It is important to understand that we are not processing data by creating intermediate

operations. The real processing only happens when we call a terminal operation. Let us

check next if it works.

Terminal operation

Creating one or more intermediate operations on top of a stream does not mean the

application is doing something with the stream data. We are only stating how the data

should be processed at the intermediate level. The stream data is only processed after we

call a terminal operation. Here are some examples of terminal operations:

Stream<String> streamOfStrings = Stream.of("Element 1", "Element 2",

"Element 3");

streamOfStrings

 .map(String::toUpperCase)

 .filter(value -> value.contains("1"))

 .forEach(System.out::println); // ELEMENT 1

 //.collect(Collectors.toList()); // [ELEMENT 1]

 //.count(); // 1

After concatenating the map and filter intermediate operations, we applied a forEach

terminal operation. Notice we use a more concise syntax instead of a lambda expression.

We call this syntax method reference and can use it in scenarios where the parameter

declared on the right side of the lambda expression is the same parameter used in the

method called within the body part of the lambda expression. Here, we have a method

reference and a lambda expression that produce the same result:

.forEach(System.out::println);

.forEach(value -> System.out.println(value));

In addition to forEach, we also have a collect terminal operation, which allows us to

return the stream processing result as a List, for example. The count terminal operation

counts the number of objects the stream still has.

Compiling and running the sample project

This chapter provides a sample project that applies the Java API concepts we have seen.

The project is a Java application called Report Generator, which generates and saves

reports in a text file. You can find the project’s source at

https://github.com/bpbpublications/Java-Real-World-

Projects/tree/main/Chapter%2001.

You need the JDK 21 or above and Maven 3.8.5 or above installed on your machine.

To compile the project, go to the Chapter 1 directory from the book’s repository. From there,

you need to execute the following command:

$ mvn clean package

Maven will create a JAR file that we can use to run the application by running the command

below:

$ java -jar target/chapter01-1.0-SNAPSHOT.jar

Jan 30, 2024 9:44:15 PM dev.davivieira.report.service.ReportService

generateReport

INFO: Starting to generate report

Jan 30, 2024 9:44:15 PM dev.davivieira.report.service.ReportService

generateReport

INFO: Report generated with success

Conclusion

This chapter explored some of the Java APIs often used in most Java projects. Starting with

the Java Collections Framework, we learned to use lists, sorts, and maps to provide a solid

data structure foundation for Java applications. We saw how the NIO2 lets us easily

manipulate files and directories. Keeping an eye on the possibility that a Java application

cannot behave as expected, we explored creating, throwing, and handling exceptions. To

ensure better visibility of what a Java application is doing, we learned how the Logging API

helps to log system behaviors. Next, we explored how the Date-Time gracefully lets us

handle different time and date components, including time zones. Tapping into functional

programming, we learned how powerful stream and lambdas can be in developing code in

a functional way.

https://github.com/bpbpublications/Java-Real-World-Projects/tree/main/Chapter%2001

This chapter reminded us of some cool things the Java API provides. The next chapter will

dive deep into what is new in Java, especially the changes introduced between the Java 17

and 21 releases.

Join our book’s Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the

world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 2

Exploring Modern Java

Features

Introduction

A fascinating aspect of Java is that after more than twenty-

five years since its first release, the language keeps

innovating with new features and enhancing how we develop

software. Many of us rely on Java for its robustness and

commitment to staying as stable as possible regarding

backward compatibility from new to old releases. An amazing

point about Java is its capacity to be rock-solid for mission-

critical applications and, simultaneously, a language offering

cutting-edge features for applications that explore new

concepts and ways of doing things.

As Java is a language that changes and evolves quickly,

keeping up with every new feature may be challenging. So,

in this chapter, we explore essential features introduced

between the Java 17 and 21 releases that help us develop

applications more efficiently.

Structure

The chapter covers the following topics:

• Getting more control over inheritance with sealed
classes

• Increasing code readability with pattern matching
• Increasing application throughput with virtual threads
• Compiling and running the sample project

Objectives

By the end of this chapter, you can tap into Java’s modern

features to develop software more efficiently. By

understanding virtual threads, for example, you will have the

means to simplify the development and increase the

throughput of concurrent systems. By employing pattern

matching, and record patterns, you can make your code

concise and easier to understand. With sealed classes, you

will have fine-grained inheritance control and enhanced

encapsulation.

The features and techniques presented in this chapter can

increase the quality and efficiency of the code written in your

Java projects.

Getting more control over inheritance with

sealed classes

Java provides inheritance capabilities as an object-oriented

language, allowing us to inherit classes and interfaces. When

dealing with classes, inheritance occurs when extending a

concrete or abstract class. With interfaces, we can extend or

implement them. Whether we were dealing with classes or

interfaces, until the Java 15 release (as a preview feature),

there was no way to restrict who could inherit a class or

interface. Letting anyone implement a class, for example,

could cause issues in the application architecture.

Consider the scenario where we have an abstract class

called Card to represent a physical card people use to access

the facilities of a building. Possible implementations of the

Card abstract class could be the PermanentCard or

TemporaryCard classes with different rules regarding

authorization to enter the building. Suppose now the system

responsible for handling those cards will also support storing

and using credit card information to charge people who want

to use the building parking space. To allow it, a developer,

for some reason, decides to create the CreditCard class by

extending the Card abstract class. The issue here is that the

developer who created the Card abstract class designed it in

a way with methods and attributes that would make sense

only in the context of cards as a means for access control,

not payment. The CreditCard class may end up inheriting

from the Card abstract class the methods and attributes that

are not supposed to be used in the context of payments but

as means for access control.

In the scenario described, a developer can provide dummy

implementations of abstract methods to fulfill the abstract

class contract. The code and the feature delivered would

work as expected, but we would have a design incongruence

in our code. Sealed classes can help prevent such

incongruence by enforcing which classes can implement the

Card abstract class provided in our example.

The developer providing the credit card feature would look at

the card-sealed abstract class and see that PermanentCard

and TemporaryCard are the only possible allowed

implementations.

Let us explore the scenario described above by learning how

sealed classes can help us enforce our inheritance

expectations.

Enforcing inheritance expectations

If you have been developing Java code for a while, you may

have heard of the advantages of code reuse, which means

avoiding rewriting logic that already exists somewhere in the

codebase. On Java, the Has-A and Is-A class relationship

establishes how an object can increase its capabilities. With

the Has-A relationship, also known as composition, we can

make a class acquire all the capabilities of another class by

just referring to it, like in the following example:

class Printer {

 void print() {

 // Print something

 }

}

public class Report {

 private Printer printer;

 Report(Printer printer) {

 this.printer = printer;

 }

 public void printSomething() {

 printer.print();

 }

}

The Report class has the Printer class as an attribute,

which means all the visible attributes and methods from the

Printer class will be available to the Report class through

the printer attribute.

On the other hand, with the Is-A, we can rely on the

inheritance between classes to extend the behaviors and

data of another class. The code is as follows:

class Printer {

 protected void print() {

 // Print something

 }

}

public class Report extends Printer {

 public void printSomething() {

 print();

 }

}

We can access the inherited print method by extending the

Printer into the Report class. From an object-oriented

design perspective, it is counterintuitive that a Report is also

a Printer. Still, the example above shows we can do

something like that if we want to access a method from

another class through inheritance. So, to help prevent

counterintuitive inheritances, we can rely on the Has-A

relationship in favor of the Is-A because of the flexibility in

composing class capabilities by referring to other classes

instead of tightly coupling them through the Is-A relationship.

Still, there can be scenarios where the Is-A relationship is

entirely valid to extend class capabilities and better

represent the class design of the problem domain we are

dealing with. A common use case is when we create an

abstract class with the intent to provide some data and

behavior that will be shared across other classes, like in the

following example:

abstract class Report {

 String name;

 abstract void print();

 abstract void generate();

 void printReportName() {

 System.out.println("Report "+name);

 }

}

Based on the generic abstract Report class, we can provide

concrete classes like PDFReport and WordReport containing

specific logic to generate and print reports:

class PDFReport extends Report {

 @Override

 void print() {

 printReportName();

 System.out.println("Print PDF");

 }

 @Override

 void generate() {

 // Generate PDF

 }

}

class WordReport extends Report {

 @Override

 void print() {

 printReportName();

 System.out.println("Print Word");

 }

 @Override

 void generate() {

 // Generate Word

 }

}

Generating and printing reports are behaviors we can always

expect from Report type objects, whether they are

PDFReport or WordReport subtypes. However, what if

someone extended the Report class to create, for example,

the ExcelReport class with slightly different behavior:

class ExcelReport extends Report {

 @Override

 void print() { // Dummy implementation }

 @Override

 void generate() {

 // Generates Excel

 }

}

The ExcelReport class is only concerned with generating

reports; it does not need to print anything, so it just provides

a dummy implementation of the print method. That is not

how we expect classes implementing Report to behave. Our

expectation is based on the behaviors provided by the

PDFReport and WordReport classes. Java allows us to

enforce such expectations with sealed classes. The code

block below shows a sealed class example:

sealed abstract class Report permits PDFReport,

WordReport {

 String name;

 abstract void print();

 abstract void generate();

 void printReportName() {

 System.out.println("Report "+name);

 }

}

We know that the PDFReport and WordReport classes fulfill

the Report abstract class contract by providing meaningful

implementations of the print and generate abstract

methods, so we seal the Report abstract class to restrict its

inheritance to the classes we trust.

The classes implementing the sealed abstract Report class

can be defined as final, sealed, or non-sealed. The

following is how we can define it as final:

final class WordReport extends Report {

 // Code omitted //

}

We use the final keyword to ensure the hierarchy ends on

the WordReport without further extension. It is also possible

to define the child class as a sealed one, like in the following

example:

sealed class WordReport extends Report permits

Word97, Word2003 {

 // Code omitted //

}

final class Word97 extends WordReport {

 // Code omitted //

}

final class Word2003 extends WordReport {

 // Code omitted //

}

The WordReport class is extensible only to Word97 and

Word2003 classes. However, what if you wanted to make

WordReport extensible to any class without restriction? We

can achieve that using a non-sealed class like in the

following example:

public sealed abstract class Report permits

WordReport {

 // Code omitted //

}

non-sealed class WordReport extends Report {

 // Code omitted //

}

There are no permits on the WordReport class because we

want to make it extendable by any other class.

Another benefit of using sealed classes is that switch

statements become more straightforward because the

compiler can infer all the possible types of a sealed

hierarchy, which removes the necessity to define the default

case in a switch statement. Consider the following example:

sealed abstract class Report permits WordReport,

PDFReport {

 // Code omitted //

}

final class WordReport extends Report {

 // Code omitted //

}

final class PDFReport extends Report {

 // Code omitted //

}

class TestSwitch {

 int result(Report report) {

 return switch (report) { // pattern

matching switch

 case WordReport wordReport -> 1;

 case PDFReport pdfReport -> 2;

 // there is no need for default

 };

 }

}

The pattern matching switch receives the sealed abstract

Report class as a parameter that permits only the

WordReport and PDFReport classes. Because the Java

compiler knows these two classes are the only possible types

deriving from the Report class, we do not need to define a

default case in the switch statement.

Sealed classes help us emphasize which class hierarchies

should be controlled to avoid code inconsistencies due to

unadvised inheritances.

Moving out from sealed classes, let us see how we can write

more concise and easily understood code by applying

pattern-matching techniques.

Increasing code readability with pattern

matching

Introduced in the Java 17 release (it appeared initially as a

preview feature on Java 14), pattern matching represents a

notable effort to decrease boilerplate from the Java

language. This feature identifies areas in the language where

pattern-matching techniques make sense, allowing

developers to write cleaner and simpler code. Let us start

our exploration by understanding what pattern matching is,

then where and how Java is applying it to improve the

language.

Introduction to pattern matching

If you have ever faced the troubleshooting problem of

searching for log messages containing a specific term, you

may have used pattern-matching techniques. In Unix-based

environments, tools like sed or grep allow us to match a

word term in a text file. For example, suppose we have a file

called lines.txt with the following content:

Line 1 - Message A

Line 2 - Message B

Line 3 - Message C

Then we execute the following command:

$ grep "Line 2" lines.txt

Line 2 - Message B

Only the line containing the term Line 2 is displayed.

The example above demonstrates the fundamental pattern-

matching mechanism of checking a value against a pattern.

The value is the content from the lines.txt file, and the

pattern is Line 2, which matches Line 2—Message B,

representing the result of the pattern-matching evaluation.

The whole idea behind pattern matching is based on the

following components:

• Matching target
• Pattern expression
• Result

The matching target is the element we are matching against.

In the previous examples, we used a text file and a multi-line

string, but we can use other things, as we will see soon. The

pattern expression represents what we are looking for in the

matching target, and the result is the output captured when

we apply the pattern expression against the matching target.

Java has introduced pattern matching for the following

language features:

• Checking if an object is of a given type (instanceOf)
• Switch statements
• Record classes

Let us start checking the advantages of pattern matching for

checking the object type.

Pattern matching for type

A typical Java construct is when we need to check if an

object is of a given type, and if the type check matches, we

then perform type casting and do something with the

converted type. The following example illustrates it:

Object object = "Java";

if(object instanceof String) {

String name = (String) object;

System.out.println(name+" length is

"+name.length()); // Java length is 4

}

The if conditional checks whether the object variable is of

type String. If it is true, it casts the object to a String,

assigns it to the name variable, and finally prints it. The

following code shows we can achieve the same result using

pattern matching, as follows:

Object object = "Java";

if(object instanceof String name) {

System.out.println(name+" length is

"+name.length()); // Java length is 4

}

Note that the name variable is part of the instanceOf

expression. We call name a pattern variable that we can use if

the pattern expression is evaluated as true. The object

variable containing the "Java" string represents the

matching target, and the String class type (after the

instanceOf) represents the type pattern we match against.

The name pattern variable is the result of storing the object

converted to a String so we can use it in the if expression

body.

We can use pattern matching to simplify the equals method.

Consider the equals implementation for the Person class:

public class Person {

 private String name;

 public boolean equals(Object object) {

 if (!(object instanceof Person)) {

 return false;

 }

 Person person = (Person) object;

 return name.equals(person.name);

 }

}

The previous example shows we can implement the equals

method without pattern matching. The following is the

pattern-matching version:

public class Person {

 private String name;

 public boolean equals(Object object) {

 return object instanceof Person person &&

person.name.equals(name);

 }

}

Pattern matching allows us to inline the equals

implementation by removing unnecessary boilerplate code.

In addition to checking the class types, pattern matching can

also be used with switch expressions. We will explore how to

do so next.

Pattern matching for switch statement

The pattern matching for switch statements is a preview

feature from the Java 19 release, released as a non-preview

feature on Java 21. It allows us to leverage pattern matching

while evaluating case conditions. To understand how it

works, let us consider an example where we use if-else

instead of switch switch:

public class SwitchPatternMatching {

 public static void main(String... args) {

 checkParamType(1); // The param 1 is an

Integer

 }

 private static void checkParamType(Object

param) {

 if (param instanceof String s) {

 System.out.println("The param " + s + "

is a String");

 } else if (param instanceof Integer i) {

 System.out.println("The param " + i + "

is an Integer");

 } else if (param instanceof Double d) {

 System.out.println("The param " + d + "

is a Double");

 } else {

 throw new

IllegalStateException("Unexpected value: " +

param);

 }

 }

}

The method checkParamType uses pattern matching to

check if the passed Object type is a String, Integer, or

Double. When using pattern matching with switch

statements, instead of dealing with values, we deal with

types, as shown in the following example:

private static void checkParamType(Object param) {

switch(param) {

case String s -> System.out.println("The

param "+s+" is a String");

case Integer i -> System.out.println("The

param "+i+" is an Integer");

case Double d -> System.out.println("The

param "+d+" is a Double");

default -> throw new

IllegalStateException("Unexpected value: " +

param);

}

}

On the left side of the -> operator, we have the types

String, Integer, and Double followed by their pattern

variables s, i, and d respectively. On the right side of the ->

operator, we use the pattern variable to print a message

saying which type is the param object. It is also possible to

include a boolean expression together with the type

checking we are doing when evaluating the case:

private static void checkParamType(Object param) {

switch(param) {

 // Code omitted

case Integer i when i>0 ->

System.out.println("The param "+i+" is a positive

Integer");

// Code omitted;

}

}

Here, we check if the param is of type Integer. Next, we use

the when clause to check if i is a positive Integer. The right

side of the case -> operator is only executed if the previous

two checks pass. We call guarded patterns the usage of the

when clause with the case label.

Pattern matching for record

Records are immutable classes we can use as data carriers in

Java. A record class provides default hashCode, equals, and

attribute accessor (e.g., title(), author(), and year())

methods. In the Java 19 release, the pattern match feature

was extended to allow data extraction from record classes.

Consider the following record class:

record Book(String title, String author, int year)

{ }

A record class automatically implements accessor methods

like title() or author(), returning their respective values.

As automatically generated accessor methods are something

a record class will always provide, the pattern matching for

records leverages it to allow a faster way to extract record

attribute data, as shown in the following example code:

record Book(String title, String author, int year)

{ }

public class RecordPatternMatching {

 public static void main(String... args){

 var book = new Book("Book Title", "John

Doe", 1996);

 printAuthor(book);

 var bookWithNullTitle = new Book(null,

"John Doe", 1996);

System.out.println(getTitle(bookWithNullTitle)); //

Unknown

 }

 public static void printAuthor(Object object) {

 if (object instanceof Book(var title, var

author, var year)) {

 System.out.println(author); // John Doe

 }

 }

 public static String getTitle(Object object) {

 return switch (object) {

 case Book(var title, var author, var

year) when title !=null -> title;

 default -> "Unknown";

 };

 }

}

We create a new Book record and pass it to the printAuthor

method. Then, we extract the book’s author attribute value

with the following construct:

if (object instanceof Book(var title, var author,

var year)) {

System.out.println(author); // Book Title

}

The pattern type we want to match, what comes after the

instaceof operator, is the Book record type. We declare it

with all the required record’s initialization parameters,

including title, author, and year. Note we are using the

var keyword to refer to the Book record attributes. It is legal

to use it from a pattern record-matching expression. What

follows inside the if block is that we print the book’s author

using the parameter we previously defined using the var

keyword. Under the hood, Java is calling the accessor

method author from the Book record class.

With the getTitle(Object object) method, we follow the

same idea when defining the case label for the switch

statement. There, we again declare the Book record type

with its initialization parameters. We also use the guarded

pattern to check if the title value is not null.

Increasing application throughput with virtual

threads

A thread is always linked to a process in the operating

system. Multiple threads in each process share the same

resources because they are part of the same process. Some

programs may contain just one thread because their logic

does not require concurrent processing. In this case, you see

a process and a thread in the operating system. Other

programs may create multiple threads because they must

trigger different sequences of activities that must be

executed concurrently, such as one thread per request.

A server application may receive multiple requests at the

same time. A single process in the operating system

represents a running application. To serve various requests

simultaneously, the server application can allocate individual

threads to serve each request. However, such an approach

comes with a computing resource price. Threads are

expensive to create because they need considerable

memory and CPU. Bottlenecks may quickly happen if you

create more threads than available computing resources.

Careful usage of threads is one of the challenges developers

face when building concurrent applications.

With these basic processes and thread concepts in mind, let

us see how Java deals with threads.

Understanding Java platform threads

We know that Java code runs in the Java Virtual Machine

(JVM), executed as a process in the operating system. Every

Java program has at least one thread, called the main

thread. When we create a platform thread in Java, the JVM

triggers the creation of a physical thread in the operating

system. It is called a platform thread because there is a

direct link between the thread object in Java and the physical

thread in the OS. The following figure shows how it works:

Figure 2.1: The JVM platform and OS physical threads

The new virtual thread implementation introduced the term

platform thread to differentiate traditional (now called

platform threads) from virtual threads.

Developing multi-thread applications using platform threads

has been the standard approach since the first Java release.

This approach worked well for quite a while, but as Java

applications started to deal with more intense concurrent

workloads, such an approach began to show some

limitations. Let us assess these limitations.

Limitations of platform threads

The code developed using platform threads is based on the

imperative programming paradigm. Imperative programming

is how we develop software through sequential statements

that change application state through code logic that relies

on conditional expressions, and control flows like while and

for loops. Imperative programming is predictable,

straightforward to understand, and simple to debug. Most

Java programs are written using imperative programming.

A critical challenge with imperative programming is when we

need to deal with applications doing many blocking IO

operations. We call blocking all system calls that need to

wait for data from an external source, like when accessing a

database or waiting for an API call to respond. In the

upcoming section, we will assess how blocking IO operations

can cause trouble and decrease the application’s data

processing throughput.

Platform threads and blocking IO operations

Suppose you have a back-end server application, an API, that

is responsible for doing expensive calculations using data

from a database. These calculations are processed inside a

traditional platform thread. Consider now the scenario where

the API receives 100 concurrent requests. It means that 100

threads must be provided to serve each request. Let us say

we need 20 MB of RAM to create each thread. So, we will

need at least 2 GB RAM to process all those requests. After

creating a thread, we make a database call to perform the

calculation and await a response. We say a thread is blocked

when it is waiting for a response. The application will only

continue execution once it gets a response or times out.

Now, consider that every thread usually takes 20 seconds to

get a response from the database, and during this interval,

more additional requests arrive at the API. If no more than

2GB RAM is available in the machine running our server

application, we will not be able to create more threads

because there is no more available memory. So, those

additional requests will have to wait until the first requests

finish and memory is released to allow the creation of new

platform threads. The following figure describes the scenario:

Figure 2.2: Platform threads memory usage

The issue here lies in the platform thread waiting for a

response. The thread is consuming memory resources but is

not doing anything; it is only waiting for a database

response. We cannot process more requests because no free

available memory exists to create more threads, decreasing

our program throughput capacity.

Besides being expensive to build, platform threads take time

to create. Creating a new thread object for every request is

also a costly activity in terms of time. To overcome this issue,

we can create thread pools with reusable threads. Having a

thread pool solves the overhead problem of creating new

threads, but we still have the hardware limitation on the

number of total threads that can be created.

A technique involving reactive programming has emerged in

Java to solve the throughput problem caused by blocking IO

operations. Let us look at how it works.

Handling blocking IO with reactive

programming

In the previous section, we discussed how imperative

programming is more developer-friendly because of its

sequential nature, which makes it more predictable and

maintainable. Although easier to write, programs that rely on

imperative programming may face bottlenecks when using

platform threads to handle many concurrent IO-blocking

operations.

As an alternative to imperative programming, we have

reactive programming, where a program is designed to react

to events. Instead of describing sequentially what an

application must do, we need to think about which events

can occur and how our application will respond to such

events. Reactive programming is often used when an

application needs to overcome blocking IO issues. An

application can address such issues by running

asynchronous tasks.

In the reactive programming approach, asynchronous

behavior is usually achieved through non-blocking IO

threads. These threads trigger IO operations and are

immediately released instead of being blocked waiting for a

response. A continuation mechanism on non-blocking IO

threads allows them to receive a callback response once the

IO operation is finished, allowing an IO thread to continue the

task execution. The following figure illustrates how non-

blocking IO threads deal with IO operations:

Figure 2.3: IO thread triggering IO operation

In the image above, the non-blocking IO tasks 1# and 2# run

in parallel in non-blocking IO threads, which means no

threads hanging waiting for a response. Once the IO

operation finishes, the non-blocking IO task resumes and

continues its execution. Once the IO operation finishes, the

non-blocking IO task may continue in a different thread than

it had started.

The fact that the execution of non-blocking IO tasks is

distributed in different threads creates a debugging

challenge because the task execution stack trace will be

scattered among distinct threads. If something fails, we may

need to investigate the execution of more than one thread to

understand what happened. In imperative programming, for

example, we can rest assured the stack trace of a single task

is confined to one thread, which considerably decreases the

debugging effort.

Reactive programming may be challenging not only on the

debugging side. The reactive code also differs, relying

heavily on functional programming constructs like streams

and lambda expressions. Not all developers are well-versed

in such a programming style.

Although reactive programming solves the IO blocking

problem, it may create maintainability problems because it is

more difficult to debug and write reactive code. Java

architects aware of this situation came up with a solution

that allows us to leverage non-blocking IO threads and write

and debug code as we do in the imperative programming

style. We call this solution virtual threads. Let us see how it

works.

Writing simple concurrent code with virtual

threads

We checked earlier that traditional platform threads are

linked directly to an OS physical thread. Virtual threads, on

the other hand, are connected to platform threads. Another

critical point is that instead of the 1:1 relationship between

platform and OS physical threads, we have a n:1 relationship

between virtual and platform threads. In other words, we can

have many virtual threads on top of a single platform thread.

This is a fundamental characteristic of the virtual threads

feature as a solution to overcome the thread bottleneck we

have in the traditional platform threads model. The following

is an illustration of how virtual threads are arranged:

Figure 2.4: Virtual and platform threads

Virtual threads share the same platform thread, so they are

cheap to create because creating them does not make the

OS allocate more memory. How do they work under the

hood?

Whenever an IO task is executed inside a virtual thread, such

thread is suspended from the platform thread until the IO

task finishes. The virtual thread runs until it is blocked,

usually by an IO operation. When that happens, the virtual

thread is removed from execution, and a new virtual thread

can be selected to run in a platform thread. There is no

guarantee that a virtual thread that was removed will run as

soon as its blocking operation is completed, nor is there any

guarantee that it will execute on the same platform thread.

Virtual threads allow us to write imperative synchronous

code style and benefit, at the same time, from not blocking

the platform thread from handling IO tasks from other virtual

threads. To get an idea of the difference between reactive

asynchronous code and imperative synchronous code,

consider the following example that fetches data from an

external source using an asynchronous programming style:

public class AsyncApp {

 public static void main(String... args) throws

ExecutionException, InterruptedException {

 CompletableFuture.supplyAsync(() ->

fetchURL().get()).thenAccept(AsyncApp::print).join(

); // OK

 }

 static void print(String result) {

 System.out.println(result);

 }

 static Supplier<String> fetchURL() {

 return () -> {

 try {

 return getResponseMessage();

 } catch (Exception e) {

 throw new RuntimeException(e);

 }

 };

 }

 static String getResponseMessage() throws

Exception {

 var providedUrl =

URI.create("https://davivieira.dev").toURL();

 var con = (HttpURLConnection)

providedUrl.openConnection();

 con.setRequestMethod("GET");

 return con.getResponseMessage();

 }

}

The CompletableFuture is the Java class that lets us write

asynchronous code. We pass the code we want to execute

asynchronously to the supplyAsync. Then, after we get the

result, we display it using the print method we passed to

the accept method. Nothing will be printed if we do not call

the join method because CompletableFuture triggers a

non-blocking operation, which means the code will finish

before we print the OK message. By calling join, we block

the main thread until the CompletableFuture completes its

task.

The following is how the same logic can be expressed using

synchronous imperative programming style using a

traditional platform thread:

public class SynchronousApp {

 public static void main(String... args) {

 Thread.ofPlatform().start(() ->

print(fetchURL().get())); // OK

 }

 // Code omitted

}

The code is slightly more straightforward but relies on a

blocked platform thread until we finish execution. Now,

consider the code using a virtual thread:

public class VirtualThreadApp {

 public static void main(String... args) throws

Exception {

 Thread.ofVirtual().start(() ->

print(fetchURL().get())); // Prints nothing

 }

 // Code omitted

}

Nothing is printed because when we start the IO network

blocking call operation to fetch a URL, the JVM identifies it

and automatically suspends the virtual thread for us. Since

the virtual thread unblocks the IO operation, the program

finishes before it gets a response. We can get the result of a

virtual thread by calling the join method:

Thread.ofVirtual().start(() ->

print(fetchURL().get())).join(); // OK

By calling the join method in a virtual thread, we force the

caller, in our example, the main thread, to wait until the

virtual thread returns its result.

When we create a virtual thread, the JVM mounts it in a

carrier thread, which is a platform thread. During the virtual

thread execution, the JVM unmounts the virtual thread from

the carrier thread if an IO operation is found. The virtual

thread remains unmounted until the IO operations finish.

After finishing it, the virtual thread is mounted again in the

same carrier thread or a different one that continues the task

execution.

By unmounting a virtual thread, the JVM releases the carrier

thread so another virtual thread can mount it. Multiple virtual

threads are mounted and unmounted in the carrier thread as

their IO operations start and finish.

Instead of manually creating virtual threads, we can rely on

the ExecutorService to create virtual threads for us. To

accomplish it, we can use the static factory method

newThreadPerTaskExecutor from the Executors class that

returns an ExecutorService:

public class VirtualThreadApp {

 public static void main(String... args) throws

Exception {

 runTwoVirtualThreadsAtTheSameTime();

 }

 static void runTwoVirtualThreadsAtTheSameTime()

{

 final virtualThreadfactory =

Thread.ofVirtual().factory();

 try (var executor =

Executors.newThreadPerTaskExecutor(virtualThreadfac

tory)) {

 executor.submit(() ->

print(fetchURL().get()));

 executor.submit(() ->

print(fetchURL().get()));

 }

 }

 static void print(String result) {

 System.out.println("Thread:

"+Thread.currentThread()+" - Result: "+result);

 }

 // Code omitted

}

We use the Thread.ofVirtual().factory() to build a

virtual thread factory that is used at

Executors.newThreadPerTaskExecutor(virtualThreadfac

tory) to create a new virtual thread per each task. In the

example above, we submitted two tasks that are executed in

two different virtual threads, producing the following output:

Thread: VirtualThread[#29]/runnable@ForkJoinPool-1-

worker-3 - Result: OK

Thread: VirtualThread[#31]/runnable@ForkJoinPool-1-

worker-2 - Result: OK

The virtual threads are executed in parallel, and their IO

operations do not block the carrier (platform) thread they

use. There are specific scenarios, though, where the virtual

thread is not unmounted from the carrier thread. When this

happens, we say the virtual thread is pinned to a carrier

thread. Such a situation occurs when:

• We have a virtual thread executing code inside a
synchronized block

• The virtual thread runs a native method or foreign
function

When that happens, virtual threads prevent the platform

thread from being mounted by other virtual threads. To

overcome it, new platform threads need to be created to

serve new virtual threads. So, caution is recommended when

using virtual threads in one of the above scenarios. For

scenarios where synchronized locks are necessary, we can

consider replacing them with the ReentrantLock, which

allows a thread to re-acquire a lock already held.

If you are working on a Java project or starting a new one

where IO-intense operations are expected to occur

frequently, consider using virtual threads to enhance the

application performance.

Compiling and running the sample project

As a sample project, we have a Java application called

Remote File Converter. It is a dummy converter that

downloads files from the internet and converts them to

different file types. This application illustrates the usage of

sealed classes, pattern matching, string templates, and

virtual threads.

You can clone the application source code from the GitHub

repository at https://github.com/bpbpublications/Java-

Real-World-Projects/tree/main/Chapter%2002.

You need the JDK 21 or above and Maven 3.8.5 or above

installed on your machine.

To compile the project, go to the Chapter 2 directory from

the book’s repository. From there, you need to execute the

following command:

$ mvn clean package

Maven will create a JAR file that we can use to run the

application by running the following command:

$ java -jar target/chapter02-1.0-SNAPSHOT.jar

Feb 25, 2024 3:04:58 AM

dev.davivieira.file.service.FileConverterService

convertFile

INFO: Downloading file from

https://davivieira.dev/file.pdf

Feb 25, 2024 3:05:00 AM

dev.davivieira.file.service.FileConverterService

convertFile

INFO: The file.pdf has been sucessfully downloaded

https://github.com/bpbpublications/Java-Real-World-Projects/tree/main/Chapter%2002

Feb 25, 2024 3:05:00 AM

dev.davivieira.file.service.FileConverterService

convertFile

INFO: Converting file.pdf to WORD

Feb 25, 2024 3:05:00 AM

dev.davivieira.file.service.FileConverterService

convertFile

INFO: Conversion to WORD was successfull!

The converted file is called converted-from-pdf-to-

word.docx.

Conclusion

By keeping ourselves up-to-date with modern Java features,

we can solve problems more efficiently by tapping into the

newest features of the Java language. In this chapter, we had

the chance to explore how sealed classes help us enforce

inheritance expectations. We learned how pattern matching

allows us to better deal with logic that does type casting

using instanceof, including the switch statement and data

extraction from record classes. We concluded by learning

how virtual threads can significantly increase the throughput

capacity of IO-intensive applications.

In the next chapter, we will explore the technologies and

techniques we can use to handle relational databases in

Java, such as the Java Database Connectivity (JDBC),

which provides an interface that simplifies the interaction

with databases, and the Jakarta Persistence, which lets us

map Java classes to database tables.

Join our book’s Discord space

Join the book's Discord Workspace for Latest updates, Offers,

Tech happenings around the world, New Release and

Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 3

Handling Relational Databases with

Java

Introduction

Relational databases continue to be widely used in Java projects that require data to

be stored in a structured form. In the schema-enforced structure of relational

databases, developers can store data in tables where each column has a specific

data type. Java provides good support for those wanting to interact with relational

databases. Serving as the foundation for database access and data handling, we

have the Java Database Connectivity (JDBC) specification. On a higher level, we

have the Jakarta Persistence (previously known as Java Persistence API), which

allows us to map Java classes to database tables. Understanding how JDBC and

Jakarta Persistence work is essential for anyone involved in Java projects that

depend on relational databases.

Structure

The chapter covers the following topics:

• Introduction to JDBC
• Simplifying data handling with the Jakarta Persistence
• Exploring local development approaches when using databases
• Compiling and running the sample project

Objectives

By the end of this chapter, the reader will have the skills to develop Java applications

that correctly employ the JDBC and Jakarta Persistence to deal with databases. The

reader will also learn about the approaches to providing databases while locally

running and developing a Java application.

Introduction to JDBC

The Java Database Connectivity (JDBC) specification defines how Java

applications should interact with relational databases. It is also an API composed of

interfaces describing how to connect and handle data from databases. Applications

relying on the JDBC may benefit, to a certain extent, from the platform-independent

nature of the JDBC specification, which enables applications to change database

vendors without significant refactoring on the code responsible for connecting to the

database. Changing database technologies is often a non-trivial activity that requires

considerable refactoring, primarily due to the differences in the Structured Query

Language (SQL) syntax and data types that may occur across different database

vendors. That is a problem of database vendors employing non-ANSI-compliant

usage of SQL, which can cause trouble for applications changing from database

vendor A to B.

The JDBC specification provides standardization on an application level regarding the

fundamental operations of any relational database. As fundamental operations,

every relational database must support operations based on the following:

• Data Definition Language: Data Definition Language (DDL) operations
encompass things like creating or changing a database table. It is the language
that deals with the structure in which the data is organized in a relational
database.

• Data Manipulation Language: Data Manipulation Language (DML)
operations, on the other hand, deal directly with data from a relational
database. They provide a language for selecting, inserting, updating, and
deleting data from a relational database.

Database vendors comply with the JDBC specification by implementing the JDBC API

interfaces from the java.sql and javax.sql packages. These interfaces describe

which methods can be used to, for example, create a connection to a database or

send an SQL statement to select data from a table. Let us start our exploration by

learning how to use Java to connect to a relational database.

Creating a database connection with the JDBC API

There are two ways to create a database connection: the first using the

DriverManager class and the second using the DataSource interface. The second

way is preferred because its reliance on the DataSource interface allows Java

applications to create database connections without dealing with implementation

details from the classes that implement the DataSource interface. A significant

motivation to rely on the DataSource instead of the DriveManager is that with the

latter, you would have to implement your connection pooling mechanism

responsible for starting, closing, and caching database connections. With the

DataSource, all such capabilities come for free, already implemented by the

database vendor.

Getting a database connection with the DriverManager class

The DriverManager class has a method called getConnection that receives the

database connection URL, credentials, and additional connection properties as

parameters if required. That method returns a Connection object that can be used

to start interacting with a database. The following is an example of how to create a

database connection using the DriverManager:

public class JdbcConnection {

 public static void main(String... args) throws Exception {

 var user = "test";

 var password = "test";

 var dbName = "test";

 var connection = getConnectionWithDriverManager(user, password,

 dbName);

 System.out.println(connection.isClosed()); // false

 }

 public static Connection getConnectionWithDriverManager(String

user,

 String password, String dbName) throws SQLException {

 var dbProvider = "mysql";

 var dbHost = "127.0.0.1";

 var dbPort = "3306";

 return

 DriverManager.getConnection(

 "jdbc:"+dbProvider+"://"+dbHost+":"+dbPort+"\"+dbName);

 }

}

Assuming a MySQL Server is running locally with a user, password, and database

name defined as test, we compose a database URL connection using the following

structure:

protocol:provider:host:port/database

The protocol is usually jdbc. The provider represents the database vendor, which in

our case is mysql. As the database is running on the same machine as the Java

application, the host is 127.0.0.1. The MySQL server from our example uses the

default port, 3306. The database name is test.

After getting the connection, we confirm if it is opened by calling the isClosed

method, which returns false.

For this approach to work, we must ensure the JDBC driver for MySQL is loaded into

the Java application’s class or module path. The JDBC driver usually comes as a JAR

file, which the database vendor provides.

The same Connection object can be acquired by using the DataSource interface, as

shown in the upcoming section.

Getting a database connection with the DataSource interface

An application server may define the connection details, such as the database

name, host, and credentials. The Java program running inside the application server

does not need to specify the connection details, as it does when using the

DriverManager. Instead, the Java program can rely on an alias name bound to the

data source connection details from the application server. Next, we will see the

steps for connecting to a database using the DataSource interface:

1. Configure and create a DataSource object:

private DataSource createDatasource(String user, String

password, String dbName) {

 var dataSource = new MysqlDataSource();

 dataSource.setPort(3306);

 dataSource.setUser(user);

 dataSource.setPassword(password);

 dataSource.setDatabaseName(dbName);

 return dataSource;

}

a. The application server would typically be responsible for creating the

DataSource object, but we are creating it here to demonstrate how the

DataSource configuration works. Note that we are using the

MySQLDataSource class, which implements the DataSource interface. The

MySQL JDBC driver provides the MySQLDataSource class, which must be

present in the application class or module path.

2. Create an InitialContext and bind a JNDI name to the DataSource object:

private Context createAndBindContext(DataSource dataSource)

throws NamingException {

 var env = new Hashtable(Map.of(Context.INITIAL_CONTEXT_FACTORY,

 "org.osjava.sj.SimpleContextFactory"));

 Context context = new InitialContext(env);

 context.bind("jdbc/testDB", dataSource);

 return context;

}

a. The method above produces a Context object that can be used for

database connection lookups based on the JNDI name. Like the

DataSource, Context objects are usually provided by the Java program’s

application server. What we have here is a standalone Context provider to

illustrate how Context creation works. The Java Naming and Directory

Interface (JNDI) is a Java API that allows clients to look up or discover

resources such as databases. With the JNDI, all that a client needs to know

is the JNDI URI, which is resolved by the application server, which has

resource details for a given JNDI.

b. Observe that we assign to the env variable a Hashtable object containing

a Map as its constructor parameter. This Map has the

Context.INITIAL_CONTEXT_FACTORY as the key and the

org.osjava.sj.SimpleContextFactory string as the value. Because we

are not running the sample code in an application server—such as the

Jboss or Weblogic, for example—we need to provide a context factory that

will produce a Context object for us. We can emulate the application

server’s responsibilities using the Simple-JNDI
1
 library that produces

Context objects. The Simple-JNDI is registered with the

org.java.sj.SimpleContextFactory class. The Hashtable object is then

passed as the constructor parameter for the InitialContext object.

Finally, we bind the name jdbc/testDB to the DataSource object

containing the database connection details.

3. Getting a connection using the DataSource object:

public static Connection getConnectionWithDataSource(String user,

String password, String dbName) throws Exception {

 var dataSource = createDatasource(user, password, dbName);

 var context = createAndBindContext(dataSource);

 return

 ((DataSource)context.lookup("jdbc/testDB")).getConnection();

}

a. This method combines what we did in the previous two steps. First, it

creates a DataSource by calling createDatasource(user, password,

dbName). Second, it creates a Context and binds it to the DataSource

created previously. The last line shows how the Java program performs a

DataSource lookup by simply passing the JNDI name "jdbc/testDB" to the

lookup method from the Context object. Calling the lookup method

returns a DataSource object that we use to obtain a Connection object

using the getConnection method.

4. We can use this Connection object to start interacting with the MySQL

database:

public static void main(String... args) throws Exception {

 var user = "test";

 var password = "test";

 var dbName = "test";

 var connection = getConnectionWithDataSource(user, password,

 dbName);

 System.out.println(connection.isClosed()); // false

}

a. When working with production-grade Java projects, you will not need to

manually create the DataSource and Context objects because they will be

provided through the application server or the framework your Java

program is using.

Now that we know how to set up a database connection using JDBC, let us explore

how to send and process statements to the database.

Executing simple queries with the Statement

Before we start exploring the possibilities the Statement interface provides, let us

consider the MySQL table created based on the following SQL code:

CREATE TABLE PERSON (

 ID int NOT NULL AUTO_INCREMENT,

 FIRST_NAME varchar(255),

 LAST_NAME varchar(255),

 AGE int,

 COUNTRY varchar(255),

 PRIMARY KEY (ID)

);

INSERT INTO PERSON (FIRST_NAME, LAST_NAME, AGE, COUNTRY) VALUES

('John', 'Doe', 23, 'Italy');

INSERT INTO PERSON (FIRST_NAME, LAST_NAME, AGE, COUNTRY) VALUES

('Mary', 'Jane', 35, 'France');

INSERT INTO PERSON (FIRST_NAME, LAST_NAME, AGE, COUNTRY) VALUES

('Samuel', 'Felix', 28, 'Germany');

INSERT INTO PERSON (FIRST_NAME, LAST_NAME, AGE, COUNTRY) VALUES

('James', 'Smith', 51, 'United States');

It creates a table called PERSON and inserts four rows into it. We will use this table to

explore the Statement interface and its derivations, such as PreparedStatement

and CallableStatement.

The Statement interface offers the most straightforward way of sending SQL queries

to a relational database. By calling the method createStatement from the

Connection class, we get a Statement object that lets us execute SQL queries in a

connected database.

Consider the following example:

public class JdbcConnection {

 public static void main(String... args) throws Exception {

 // Code omitted

 var statement = connection.createStatement();

 printPerson(statement);

 }

 private static void printPerson(Statement statement) throws

 SQLException {

 var retrieveAllPersons = "SELECT * FROM PERSON";

 var result = statement.executeQuery(retrieveAllPersons);

 while(result.next()) {

 var firstName = result.getString("FIRST_NAME");

 var age = result.getLong("AGE");

 System.out.println("First Name: "+firstName+"|Age:

"+age);

 }

 }

 // Code omitted

}

The printPerson method receives a Statement object returned from the execution

of the createStatement method from the Connection object. The Statement

interface has the executeQuery method that receives a string representing the SQL

query we want to execute in the database. In this example, we define a query to

select all entries from the PERSON table. The query results are stored as a ResultSet

object in the result variable.

In the previous example, we got the database results using the column’s name:

var firstName = result.getString("FIRST_NAME");

var age = result.getLong("AGE");

It is also possible to retrieve data using the column’s index:

var firstName = result.getString(0);

var age = result.getLong(2);

When using the index approach, we do not pass the column’s name. Instead, we

pass an index number that corresponds to the column position from which we want

to retrieve the data.

Consider the following example to find a PERSON record that matches the

FIRST_NAME:

private static void findAndPrintPersonByFirstName(Statement statement,

String firstName) throws SQLException {

 var retrievePersonByFirstName = "SELECT * FROM PERSON WHERE

 FIRST_NAME="+firstName;

 ResultSet result =

statement.executeQuery(retrievePersonByFirstName);

 while(result.next()) {

 String resultFirstName = result.getString("FIRST_NAME");

 long resultAge = result.getLong("AGE");

 System.out.println("First Name: "+resultFirstName+" | Age: "

 +resultAge);

 }

}

We use string concatenation to include the value from the firstName method

parameter in the SQL statement. Everything is fine if we pass a legit name, as

follows:

findAndPrintPersonByFirstName(connection.createStatement(), "James");

// First Name: James | Age: 51

As expected, only the row containing James as the FIRST_NAME was returned. Things

are okay if we have full control over the values we pass to a Statement. However,

security problems may arise if we use data provided by the user to set the values of

a Statement. It happens because the Statement approach is vulnerable to SQL

injection attacks where an SQL code can be manipulated to produce unintended

results, as follows:

findAndPrintPersonByFirstName(connection.createStatement(), "James' OR

'1'='1");

// First Name: John | Age: 23

// First Name: Mary | Age: 35

// First Name: Samuel | Age: 28

// First Name: James | Age: 51

In the example, we passed the string "James' OR '1'='1". The Statement does not

validate the values being passed, so the string part ' OR '1'='1 is interpreted as a

component of the SQL statement, which is executed and returns all rows from the

PERSON table.

Since the SQL statements produced by the Statement interface do not protect

against SQL injection attacks, they are not recommended for scenarios where SQL

statements are constructed using data from external sources. We can rely on the

PreparedStatement interface for such scenarios.

Executing parameterized queries with the PreparedStatement

The PrepapredStatement interface extends from the Statement interface. SQL

statements built using the PreparedStatement offer more flexibility and security. It

is flexible because it lets us define SQL statements with parameterized values. It is

secure because it can prevent SQL injection attacks by validating the value

parameters. Consider the following example:

private static void findAndPrintPersonByFirstName(String firstName)

throws SQLException {

 String sql = "SELECT * FROM PERSON WHERE FIRST_NAME=?";

 PreparedStatement preparedStatement =

connection.prepareStatement(sql);

 preparedStatement.setString(1, firstName);

 ResultSet result = preparedStatement.executeQuery();

 while (result.next()) {

 String resultFirstName = result.getString("FIRST_NAME");

 long resultAge = result.getLong("AGE");

 System.out.println("First Name: "+resultFirstName+" | Age: "

 +resultAge);

 }

}

The parameter is denoted by the ? character in parts of the SQL statement where

we want to use parameter values. We can set which value must be used for each

parameter by calling methods like setString from the PreparedStatment interface.

In our example, the setString receives the number 1, which represents the index

position of the ? character, and a String object that is used as a value for the ?

character in the index position. The PreparedStament ensures protection against

SQL injection attacks like the one we saw previously in the Statement approach.

Consider the following call to the findAndPrintPersonByFirstName method:

findAndPrintPersonByFirstName("James' OR '1'='1"); // Prints nothing

Attempts to use arbitrary SQL statements like ' OR '1'='1 are appropriately

handled by the PreparedStament and not executed in the database. That is why it is

always recommended to use PreparedStatement when constructing SQL

statements using data coming from external sources.

Besides offering the Statement for simple queries and the PreparedStatement for

parameterized queries, the JDBC API also has the CallableStament interface, which

allows us to call stored procedures. Let us look at how it works.

Calling store procedures with the CallableStatement

The JDBC API offers the Statement for simple queries and the PreparedStatement

for parameterized queries. It also has the CallableStament interface, which allows

us to call stored procedures. Let us use the stored procedure described as follows to

explore how the CallableStament works:

DELIMITER //

DROP PROCEDURE IF EXISTS findPersonOlderThanAge //

CREATE PROCEDURE findPersonOlderThanAge (IN AGE_PARAM INT)

BEGIN

 SELECT FIRST_NAME, AGE FROM PERSON WHERE AGE > AGE_PARAM;

END //

DELIMITER ;

This stored procedure takes the AGE_PARAM integer as the only parameter and

returns all PERSON records where the AGE value column is greater than the

AGE_PARAM. An example showing how to call that store procedure using the

CallableStatement is as follows:

private static void findAndPrintPersonOlderThanAge(int age) throws

SQLException {

 String sql = "CALL findPersonOlderThanAge(?)";

 CallableStatement callableStatement = connection.prepareCall(sql);

 callableStatement.setInt(1, age);

 ResultSet result = callableStatement.executeQuery();

 while (result.next()) {

 String resultFirstName = result.getString("FIRST_NAME");

 long resultAge = result.getLong("AGE");

 System.out.println("First Name: "+resultFirstName+" | Age: "

 +resultAge);

 }

}

The CallableStatement interface extends the PreparedStatement interface and

supports statement parametrization. In our example above, the

findPersonOlderThanAge stored procedure expects an integer parameter

representing age. We use the CALL SQL keyword before the stored procedure name.

Note also that we are using the ? character to set a parameter at

findPersonOlderThanAge(?). Because CallableStatement extends the

PreparedStatement interface, we can set the age parameter using the setInt

method. We call the findAndPrintPersonOlderThanAge method, passing the age

integer as a parameter:

findAndPrintPersonOlderThanAge(29);

// First Name: Mary | Age: 35

// First Name: James | Age: 51

As expected, the store procedure returned two records of persons older than 29.

You may have noted that in this section and the sections covering the Statement

and PreparedStatement interfaces, we have been processing results using a

ResultSet object. Let us examine this further.

Processing results with the ResultSet

The ResultSet is an interface that allows data to be retrieved from and persisted in

the database. Whenever we execute the method executeQuery from a Statement-

type object (which also includes PreparedStatement and CallableStatement), the

result is a ResultSet object because the executeQuery method is used for SELECT

statements whose purpose is to retrieve data from the database. The

executeUpdate method is also used when making changes in the database with the

UPDATE or DELETE statements. The executeUpdate returns an integer representing

the number of rows affected by a UPDATE or DELETE statement. This section will

focus on the executeQuery method and the ResultSet object it returns.

When querying data from a database, we are interested in the rows and columns

returned by the query. The ResultSet interface allows us to inspect what a SELECT

statement returned after it was executed in the database. The following command

will help us get a ResultSet:

var retrieveAllPersons = "SELECT * FROM PERSON";

ResultSet resultSet = statement.executeQuery(retrieveAllPersons);

The ResultSet stores the query result in a table-like structure that we can navigate

through using a cursor that the ResultSet provides. This cursor starts right before

the first row returned by the executed query. We can move the cursor position by

using the next method from the ResultSet:

while (resultSet.next()) {

 String firstName = resultSet.getString("FIRST_NAME");

 long age = resultSet.getLong("AGE");

 System.out.println("First Name: "firstName+" | Age: "+age);

}

As the cursor starts right before the first row, when the while loop calls the

resultSet.next() for the first time, it moves the cursor to the first row. While the

ResultSet cursor is in the first table row position, we extract the data we want using

the resultSet.getString and resultSet.getLong methods. These methods are

mapped to the data type of the database columns. You should use the getString

method to retrieve data stored in a VARCHAR column. If you store data in a BOOLEAN

column, you should use the getBoolean to retrieve data from that column.

Accessing a ResultSet column using the column index rather than the name is also

possible. For example, instead of calling resultSet.getString("FIRST_NAME") we

can call resultSet.getString(1).

In our example, the while iteration continues until resultSet.next() returns false,

meaning no more rows need to be processed. By default, the ResultSet cursor

moves from beginning to end. And if something changes in the database while the

ResultSet is being traversed, those changes will not be reflected in the ResultSet

object. We can change this behavior by passing special properties when creating

Statement objects. The following example shows how we can do that:

private static void printPerson() throws SQLException {

 String sql = "SELECT * FROM PERSON";

 PreparedStatement preparedStatement = connection.prepareStatement(

 sql,

 ResultSet.TYPE_SCROLL_SENSITIVE,

 ResultSet.CONCUR_READ_ONLY);

 var resultSet = preparedStatement.executeQuery();

 resultSet.last();

 resultSet.previous();

 String resultFirstName = resultSet.getString("FIRST_NAME");

 long resultAge = resultSet.getLong("AGE");

 System.out.println("First Name: "+resultFirstName+" | Age:

"+resultAge);

}

...

printPerson() // First Name: Samuel | Age: 28

We can specify different ResultSet options when creating a Statement object. Here,

we are passing the ResultSet.TYPE_SCROLL_SENSITIVE option to make the

ResultSet scrollable—its cursor can move forward and backward. By default,

ResultSet objects are created with the ResultSet.TYPE_SCROLL_INSENSITIVE

option, which means that changes in the database are not reflected in the

ResultSet object. In addition, we have the ResultSet.CONCUR_READ_ONLY option

that makes this ResultSet read-only, meaning we cannot make database changes.

To have a modifiable ResultSet, we need to pass the

ResultSet.CONCUR_UPDATABLE option that allows us to use the ResultSet to make

database changes.

The following is an example of how we can update rows of data using the

ResultSet:

private static void updatePersonCountry(String firstName, String

country) throws SQLException {

 String sql = "SELECT * FROM PERSON WHERE FIRST_NAME="+firstName;

 PreparedStatement preparedStatement = connection.prepareStatement(

 sql,

 ResultSet.TYPE_SCROLL_SENSITIVE,

 ResultSet.CONCUR_UPDATABLE);

 var resultSet = preparedStatement.executeQuery();

 while (resultSet.next()) {

 String resultFirstName = resultSet.getString("FIRST_NAME");

 String resultCountry = resultSet.getString("COUNTRY");

 System.out.println("Before update -- First Name: "

 +resultFirstName+" | Country: "+resultCountry);

 resultSet.updateString("COUNTRY", country);

 resultSet.updateRow();

 resultCountry = resultSet.getString("COUNTRY");

 System.out.println("After update -- First Name: "

 +resultFirstName+" | Country: "+resultCountry);

 }

}

...

updatePersonCountry("James", "Canada");

// Before update -- First Name: James | Country: United States

// After update -- First Name: James | Country: Canada

Creating a statement with the ResultSet.CONCUR_UPDATABLE option is required to

obtain a ResultSet object that can perform changes in the database. In the above

example, where we want to update a person’s country, we traverse the ResultSet

that contains all results matching the previous SELECT statement that returns all

rows where the first name is James. Once we are in the ResultSet cursor position of

the row we want to change, we call first resultSet.updateString("COUNTRY",

country) where "COUNTRY" is the column name and country is the variable

containing the value we want to use for the update. Similar to get methods, the

update methods from the ResultSet are also based on the database column types,

providing methods like updateInt, updateBoolean, and so on. The update only

persists in the database after we call resultSet.updateRow().

The Statement, PreparedStatement, CallableStatement, and ResultSet

interfaces are the building blocks of what the JDBC API provides to allow Java

applications to handle relational databases. Relying purely on the JDBC API is for

those cases where crafting SQL statements and directly manipulating the database

results do not represent a maintenance burden.

When a Java application manages and executes many database statements, it may

benefit from object-relational mapping (ORM) technologies that map database

entities to Java objects, which can simplify the development and maintainability of

the code responsible for interacting with a database. A specification called Jakarta

Persistence API (JPA) establishes how database entities should be managed in a

Java application. Let us explore this in the next section.

Simplifying data handling with the Jakarta Persistence

Maintained by the Eclipse Foundation, the Jakarta Persistence (previously known as

Java Persistence API/JPA) is a specification that provides a standard on how Java

applications can handle database entities. It is part of the Jakarta EE, a project

previously maintained by Oracle under the Java EE name. As a specification, the

Jakarta Persistence only describes how a Java application should manage database

entities. It provides the Jakarta Persistence API with a set of interfaces and classes

that constitute the specification. Different providers implement the Jakarta

Persistence specification. Hibernate and EclipseLink are well-known Jakarta

Persistence implementations.

The decision to use Jakarta Persistence usually comes when a Java project requires a

consistent database handling mechanism that allows database entities to be

mapped to Java classes. The ability to represent a database table as a Java class

enables developers to conveniently handle database entity relationships as Java

objects without manipulating SQL code to achieve it because this is done by a

Jakarta Persistence implementation like Hibernate, for example.

Another good reason to adopt Jakarta Persistence is the standardization benefits it

brings. It allows applications to switch between database technologies without the

need to refactor most of the code responsible for handling database entities. This

happens because the Java representation of database entities is translated to work

with different database technologies.

It means that you can, for most scenarios, change your Java application’s database

from Oracle to SQL Server, for example, and keep your code based on the Jakarta

Persistence untouched.

To understand how we can tap into the benefits provided by Jakarta Persistence, we

will learn how to implement Jakarta Persistence entities and their main

characteristics. We will also learn how to configure and use Hibernate, the most used

ORM technology that implements the Jakarta Persistence specification.

Defining entities

The magic behind the Jakarta Persistence lies in mapping a Java class to a database

table. We can do that by placing the Entity annotation on top of a Java class:

@Entity

@Table(name = "USER")

public class User {

 @Id

 @Column(name = "id", updatable = false, nullable = false)

 private UUID id;

 @Column(name = "email", nullable = false)

 private String email;

 @Column(name = "password", nullable = false)

 private String password;

 @Column(name = "name", nullable = false)

 private String name;

 // Constructor, getters and setters omitted

}

The Entity annotation is mandatory to map a class to a database table. We can also

use the Table annotation to specify the table name to which the Java class is

mapped. If we do not specify the Table annotation, the Java class name is used in

the mapping, and that will work only if both the Java class and table have the same

name. Otherwise, the mapping will not be possible because the table name differs

from the Java class name. Nevertheless, using the Table annotation is

recommended to ensure code clarity.

The class attributes are mapped to table columns. The first attribute we declare is

the id having the Id annotation, which is mandatory for every entity class. Note that

we have the Column annotation describing the column name and declaring that this

column cannot be updated and does not support NULL values. As with the Table

annotation, the Column annotation is optional, and if we do not specify it, a mapping

will be attempted using the class attribute names against the actual table column

names.

We can use the User entity class to retrieve and persist data of the USER table. This

entity class gives us the possibility to handle database entities in the same way we

handle other Java classes.

When dealing with relational databases, we usually work with multiple tables that

relate to each other. Next, let us look at how to use Jakarta Persistence to define a

relationship between entities.

Defining entity relationships

In relational databases, we arrange data in tables that may refer to each other. Table

relationships can help us better structure the data of the problem domain we are

dealing with. The Jakarta Persistence lets us represent table relationships using

entity classes. We can do this through annotations denoting the possible entity

relationships. Let us start our exploration by checking how the OneToMany

relationship annotation works.

OneToMany

A one-to-many relationship means that a row in a table can be mapped to multiple

rows in another table. To illustrate this, consider the scenario where we have the

AttributeDefinition and AttributeValue entities used to map tables storing

attribute definitions and their values. The AttributeDefinition stores the attribute

type and name. The AttributeValue stores the attribute value and a reference to

the attribute definition so we can know which attribute type and name the attribute

value comes from.

The following is the SQL code for MySQL that we can use to create tables

representing attribute definitions and their values:

CREATE TABLE ATTRIBUTE_DEFINITION(

 id INT PRIMARY KEY NOT NULL AUTO_INCREMENT,

 name VARCHAR(255) NOT NULL,

 type VARCHAR(255) NOT NULL

);

CREATE TABLE ATTRIBUTE_VALUE(

 id INT PRIMARY KEY NOT NULL AUTO_INCREMENT,

 definition_id INT NOT NULL,

 value VARCHAR(255) NOT NULL,

 FOREIGN KEY (definition_id) REFERENCES ATTRIBUTE_DEFINITION(id)

);

The ATTRIBUTE_VALUE table has a foreign key definition_id referencing the id

column from the ATTRIBUTE_DEFINITION table. Based on this table structure, the

following is how we define the AttributeDefinition entity:

@Entity

@Table(name = "ATTRIBUTE_DEFINITION")

public class AttributeDefinition {

 @Id

 private Long id;

 private String name;

 private String type;

 @OneToMany(mappedBy="attributeDefinition")

 private List<AttributeValue> values;

 // Constructor, getters and setters omitted

}

We use the OneToMany annotation to express the relationship where an

AttributeDefinition refers to many AttributeValue entities; that is why the

values attribute is of type List<AttributeValue>. The mappedBy property specifies

the class attribute name used in the AttributeValue entity class to refer to the

AttributeDefinition entity class. If the AttributeDefinition entity has a one-to-

many relationship to the AttributeValue, it means the AttributeValue entity can

have a many-to-one relationship to the AttributeDefinition entity. Let us see how

it can be done next.

ManyToOne

A many-to-one relationship occurs when multiple rows of a table can be mapped to

only one row of another. In the context of attribute definitions and values, we can

have multiple attribute values of only one attribute type. We can implement the

AttributeValue entity using the ManyToOne annotation as follows:

@Entity

@Table(name = "ATTRIBUTE_VALUE")

public class AttributeValue {

 @Id

 private Long id;

 private Long definition_id;

 private String value;

 @ManyToOne

 @JoinColumn(name="definition_id", nullable=false)

 private AttributeDefinition attributeDefinition;

 // Constructor, getters and setters omitted

}

Remember we specified the attributeDefinition in the mappedBy property of the

AttributeDefinition entity class. The attributeDefinition appears here as a

class attribute of the AttributeValue entity class. Also note that in addition to the

ManyToOne annotation, we have a JoinColumn annotation specifying which column

from the AttributeValue entity, definition_id in our example, is used to map

AttributeValue entities back to the AttributeDefinition entity.

We use the ManyToOne annotation here because this is a bidirectional relationship in

which the AttributeDefintion entity owns the relationship with the

AttributeValue entity.

Let us check next how to use Jakarta Persistence to implement a one-to-one

relationship.

OneToOne

A one-to-one relationship occurs when a row from a table maps to only one row of

another table.

Consider the scenario where we need to map the relationship between the ACCOUNT

and PROFILE tables used in a database serving an internet forum. The SQL code for

MySQL that creates the ACCOUNT and PROFILE tables is as follows:

CREATE TABLE PROFILE(

 id INT PRIMARY KEY NOT NULL AUTO_INCREMENT,

 name VARCHAR(255) NOT NULL,

 description VARCHAR(255) NOT NULL,

 website VARCHAR(255) NOT NULL

);

CREATE TABLE ACCOUNT(

 id INT PRIMARY KEY NOT NULL AUTO_INCREMENT,

 email VARCHAR(255) NOT NULL,

 password VARCHAR(255) NOT NULL,

 profile_id INT NOT NULL,

 FOREIGN KEY (profile_id) REFERENCES PROFILE(id)

);

The PROFILE table must be created first because its id is a foreign key in the

ACCOUNT table. Next, we can start by defining the Account entity class:

@Entity

@Table(name = "ACCOUNT")

public class Account {

 @Id

 @GeneratedValue (strategy = GenerationType.IDENTITY)

 private Long id;

 private String email;

 private String password;

 @OneToOne(cascade = CascadeType.ALL)

 @JoinColumn(name = "profile_id", referencedColumnName = "id")

 private Profile profile;

 // Constructor, getters and setters omitted

}

We have the GeneratedValue annotation right below the Id annotation. It signals

that the ID database column has an auto-increment mechanism for generating ID

values. The GenerationType.IDENTITY strategy is used for scenarios where a

special database identity column is used when a new entity is created and needs an

ID value as the primary key. The Jakarta Persistence provider does not generate the

ID value; instead, the underlying database generates the ID. There are other

strategies like GenerationType.AUTO, GenerationType.SEQUENCE, and

GenerationType.TABLE that provides different behaviors for ID generation.

When a new user registers in the internet forum, he gets an account and a profile.

The account contains login data such as email and password, while the profile has

data like name, description, and website. Every account must have only one profile

linked to it. We express it using the OneToOne annotation. Note the usage of the

cascade = CascadeType.ALL property. Using it means that if an Account entity is

deleted, then the deletion operation will be propagated to its child relationship

entities, which implies that the Profile entity should also be deleted as it is a child

entity from the Account parent entity.

In the ACCOUNT table, we have a profile_id column that acts as a foreign key that

points to the id column in the PROFILE table. Such a relationship is represented

using the JoinColumn annotation. Note that the Account entity class has a class

attribute called profile. When defining the Profile entity class, we refer to the

profile attribute:

@Entity

@Table(name = "PROFILE")

public class Profile {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 private String name;

 private String description;

 private String website;

 @OneToOne(mappedBy = "profile")

 private Account account;

 // Constructor, getters and setters omitted

}

Again, we use the OneToOne annotation to map the Account entity back to the

Profile entity. The mappedBy contains the name of the class attribute profile

defined in the Account entity class.

The last relationship to check is the many-to-many relationship. Let us see how we

can implement it using Jakarta Persistence.

ManyToMany

In many-to-many relationships, a row from one table can appear multiple times in

another table and vice versa. Such a relationship usually occurs when a join table

connects two tables.

Let us consider the scenario of a user management system that stores users,

groups, and the user group membership. The following is the SQL code for MySQL

that we can use to create tables to support the system:

CREATE TABLE USER(

 id UUID PRIMARY KEY NOT NULL,

 email VARCHAR(255) NOT NULL,

 password VARCHAR(255) NOT NULL,

 name VARCHAR(255) NOT NULL

);

CREATE TABLE GROUP(

 id UUID PRIMARY KEY NOT NULL,

 name VARCHAR(255) NOT NULL

);

CREATE TABLE MEMBERSHIP(

 id int NOT NULL AUTO_INCREMENT,

 user_id UUID NOT NULL,

 group_id UUID NOT NULL,

 PRIMARY KEY (user_id, group_id),

 FOREIGN KEY (user_id) REFERENCES USER(id),

 FOREIGN KEY (group_id) REFERENCES GROUP(id)

);

The MEMBERSHIP table is the join table we use to connect the USER and GROUP tables.

Note that the MEMBERSHIP table has a foreign key called user_id pointing to the id

column from the USER table and another foreign key called group_id pointing to the

id column from the GROUP table.

Let us start by implementing the User entity:

@Entity

@Table(name = "USER")

public class User {

 @Id

 @GeneratedValue(generator = "UUID")

 @GenericGenerator(

 name = "UUID",

 strategy = "org.hibernate.id.UUIDGenerator"

)

 @ColumnDefault(" uuid()")

 private UUID id;

 private String email;

 private String password;

 private String name;

 @ManyToMany

 @JoinTable(

 name="MEMBERSHIP",

 joinColumns = @JoinColumn(name="user_id"),

 inverseJoinColumns = @JoinColumn(name="group_id")

)

 private List<Group> groups;

 // Constructor, getters and setters omitted

}

Instead of using a number as the ID, we use a UUID. Since UUIDS are not numbers,

we cannot rely on ID generators like GenerationType.IDENTITY or

GenerationType.AUTO. That is why we have the GenericGenerator annotation

using the org.hibernate.id.UUIDGenerator class, provided by Hibernate (which

we will explore further in the next section) and not Jakarta Persistence, as the

generator strategy. Note the ColumnDefault annotation; it defines a default column

value when none is provided. We pass the uuid() function from the MySQL database

that generates random UUID values. Such a function can appear under different

names depending on your database technology.

We have a group class attribute annotated with the ManyToMany annotation, followed

by a JoinTable annotation that specifies the join table name as MEMBERSHIP. The

joinColumns property refers to the user_id column, and the inverseJoinColumns

refers to the group_id column, both columns from the MEMBERSHIP table.

Next, we define the Group entity:

@Entity

@Table(name = "GROUP")

public class Group {

 @Id

 @GeneratedValue(generator = "UUID")

 @GenericGenerator(

 name = "UUID",

 strategy = "org.hibernate.id.UUIDGenerator"

)

 @ColumnDefault("uuid()")

 private UUID id;

 private String name;

 @ManyToMany(mappedBy = "groups")

 private List<User> users;

 // Constructor, getters and setters omitted

}

The ManyToMany is used again, but the Group entity is mapped back to the User

entity through the mappedBy property.

Now that we have covered the fundamentals of defining entities and their

relationships, let us explore how to use Hibernate to retrieve and persist database

entities.

Using Hibernate to handle database entities

As stated earlier, the Jakarta Persistence is only a specification; it does not provide

an implementation we can use to interact with databases, so we need to rely on one

of the available Jakarta Persistence implementations. Hibernate is the most well-

known Jakarta Persistence implementation, allowing Java applications to connect and

handle database entities using the Jakarta Persistence specification.

To get started, let us see how we can configure Hibernate.

If your Java application is configured as a Maven project, you can add the following

dependency to the pom.xml of your project:

<dependency>

 <groupId>org.hibernate.orm</groupId>

 <artifactId>hibernate-core</artifactId>

 <version>6.4.4.Final</version>

</dependency>

You can also download the Hibernate ORM library
2
 and put it in your Java

application’s class or module path.

The persistence layer between the Java application and the database is defined by

the persistence.xml file located in the resources/META-INF directory of a Java

project, as follows:

<?xml version="1.0" encoding="UTF-8" ?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"

 version="1.0">

 <persistence-unit name="user">

 <provider>org.hibernate.jpa.HibernatePersistenceProvider.

</provider>

 <properties>

 <property name="jakarta.persistence.jdbc.url"

 value="jdbc:mysql://localhost:3306/user"/>

 <property name="jakarta.persistence.jdbc.user" value="test"/>

 <property name="jakarta.persistence.jdbc.password"

value="test"/>

 </properties>

 </persistence-unit>

</persistence>

This file specifies a persistent unit called the user. Inside it, we can define which

Jakarta Persistence provider we want to use: the

org.hibernate.jpa.HibernatePersistenceProvider in our case. It is in the

persistence.xml that we also define the database connection details. The

configuration provided by the persistence.xml file enables the creation of the

EntityManager, an object responsible for initiating the interaction with a database:

EntityManagerFactory entityManagerFactory =

Persistence.createEntityManagerFactory("user");

var entityManager = entityManagerFactory.createEntityManager();

When we call Persistence.createEntityManagerFactory("user"), Hibernate tries

to identify in the persistence.xml file a persistence unit called user. From an

EntityManagerFactory object, we call createEntityManager to get an

EntityManager that can be used for further interactions with the database. The

EntityManager allows sending queries to the database:

List<Account> account = entityManager

 .createQuery("SELECT a FROM Account a", Account.class)

 .getResultList();

The SQL query we pass to the createQuery method uses the name of the Account

entity class rather than the ACCOUNT table name. Also, we pass the Account.class

to ensure that Hibernate returns Account entities. The getResultList is used when

the query returns one or more results stored in a List collection.

It is also possible to create SQL queries that refer to real table names using the

createNativeQuery:

List<Account> account = entityManager

 .createNativeQuery("SELECT * FROM ACCOUNT", Account.class)

 .getResultList();

We can update or create rows in the database using the persist method:

private void persist(Account account) {

 entityManager.persist(account);

}

The persist method expects, as a parameter, an entity class that is mapped to a

database table.

Next, we have the remove method, which can be used to delete database rows using

the following command:

private void persist(Account account) {

 entityManager.remove(account);

}

The remove method uses the entity’s primary key to identify and remove the table

row.

In addition to the EntityManager, which comes from the Jakarta Persistence

specification, we can also use the Session, which is a Hibernate-specific interface

that extends the EntityManager interface:

Session session = entityManager.unwrap(Session.class);

List<Account> account = session

 .createNativeQuery("SELECT * FROM ACCOUNT", Account.class)

 .getResultList();

A Session object is recommended when the application relies on special features

available only in Hibernate. Otherwise, the EntityManager is enough.

Let us explore next the Jakarta Persistence Query Language (JPQL) and the

Criteria API.

Exploring JPQL and the Criteria API

Besides providing the object-relationship mapping (ORM) capabilities we have

been exploring, the Jakarta Persistence also offers the JPQL. Instead of constructing

SQL statements that refer to real database tables, we can use JPQL to handle Java

objects that map to real database tables.

Consider the following example where we use JPQL:

public User findByEmail(String email) {

 Query query = session.createQuery("SELECT u FROM User u WHERE email

 = :email", User.class);

 query.setParameter("email", email);

 return (User) query.getSingleResult();

 }

The JPQL query refers to the User Java entity instead of the database table name.

The User is assigned to the u identifier, also known as an alias, of the entity we are

dealing with. The :email is defined as a JPQL placeholder; we provide a value for

such a placeholder using the setParameter from the Query type.

The Criteria API is an alternative to JPQL that lets us define query constraints. Below

is an example showing how we can rewrite the previous JPQL-based example using

the Query API:

public User findByEmail(String email) {

 CriteriaBuilder criteriaBuilder = session.getCriteriaBuilder();

 CriteriaQuery<User> criteriaQuery = criteriaBuilder.createQuery

 (User.class);

 Root<User> user = criteriaQuery.from(User.class);

 criteriaQuery

 .select(user)

 .where(criteriaBuilder.equal(user.get("email"), email));

 return session.createQuery(criteriaQuery).getSingleResult();

}

We create a CriteriaBuilder that builds a CriteriaQuery object parameterized to

work with User entities. From the CriteriaQuery, we get the Root object for the

User entity. With CriteriaQuery, we express the database interaction using the

select and where methods. The constraint to select User entities having an specified

email address is applied inside the where method using the equal method from the

CriteriaBuilder. Besides equal, the CriteriaBuilder provides other interesting

helper methods like notEqual, isNull, and isNotNull, to name a few.

In this section, we saw how to create Jakarta Persistence entities and their

relationships. We learned how to configure and use Hibernate, the most well-known

Jakarta Persistence implementation, to handle entity classes by querying, persisting,

and removing them. We also explored JPQL and the Criteria API.

This section covered the fundamentals required to prepare a Java application to take

advantage of the Jakarta Persistence specification and ORM technologies like

Hibernate.

The following section will cover the approaches to providing databases while

developing an application locally.

Exploring local development approaches when using databases

When developing an application that depends on a database, we need to define how

the database will be provided so the application can properly start and connect to it.

In this section, we will assess three different approaches: remote databases, in-

memory databases, and container databases.

Local development with a remote databases

When developing an application that depends on a database, we can rely on remote

databases for local development. The problem with this approach is the operational

burden of creating and managing those databases. Also, we need to consider the

latency issues that may occur because the local application will access the database

through the network.

Remote databases are employed when providing the database locally is not feasible.

It can happen, for example, because the database server is too big to run on the

developer’s laptop.

Local development with in-memory databases

Using in-memory databases is a lightweight approach to locally run and test

applications that depend on a database. In-memory databases are temporary and

last for as long as the application runs. Once the application is terminated, the in-

memory database is destroyed. Most in-memory database technologies, like the H2,

offer the possibility to store the database in a file, so the data is preserved in a file

instead of being destroyed when the application terminates.

The problem with the in-memory database approach is that some features in the

actual database may not exist in the in-memory database, which can be a serious

risk because the code used in the in-memory database may not work with the actual

database and vice versa. So, in-memory databases are recommended for

prototyping or testing basic database functionalities.

Local development with container databases

That is the preferable approach because it allows simple provisioning of different

database servers using container technologies like Docker. Local applications can

immediately consume databases bootstrapped with Docker.

The choice between these three approaches will vary according to constraints like

computing resources and the database technology used by the application.

Compiling and running the sample project

As a sample project, we have a Java application called User Management. Backed by

an in-memory database, this application shows how we can use Jakarta Persistence

and Hibernate to create a system to manage user and group data from a relational

database.

The project’s source code is available at

https://github.com/bpbpublications/Java-Real-World-

Projects/tree/main/Chapter%2003.

You need the JDK 21 or above and Maven 3.8.5 or above installed on your machine.

To compile the project, go to the Chapter 3 directory from the book’s repository.

From there, you need to execute the following command:

$ mvn clean package

Maven will create a JAR file that we can use to run the application by running the

following command:

$ java -jar target/chapter03-1.0-SNAPSHOT-jar-with-dependencies.jar

[User{email='admin@davivieira.dev', name='Admin', groups=

[Group{name='Administrators'}]}, User{email='user1@davivieira.dev',

name='User 1', groups=[Group{name='Administrators'},

Group{name='Users'}]}, User{email='user2@davivieira.dev', name='User

2', groups=[Group{name='Users'}]}, User{email='user3@davivieira.dev',

name='User 3', groups=[Group{name='Users'}]}]

Conclusion

In this chapter, we learned how Java Database Connectivity (JDBC) provides the

building blocks for database interactions. Seeking a consistent and standardized way

to handle databases, we also learned about the Jakarta Persistence specification and

one of its main implementations, Hibernate. We finished this chapter by assessing

the possible approaches to accessing a database while locally running a Java

application.

In the next chapter, we will cover the technologies and techniques used to test Java

code. We will look at essential topics like unit and integration tests, the prominent

testing framework JUnit 5, and the ability to test using real systems with

Testcontainers.

https://github.com/bpbpublications/Java-Real-World-Projects/tree/main/Chapter%2003

1 https://github.com/h-thurow/Simple-JNDI

2 (check https://hibernate.org/)

https://github.com/h-thurow/Simple-JNDI
https://hibernate.org/

CHAPTER 4

Preventing Unexpected

Behaviors with Tests

Introduction

A fundamental success aspect of any Java project lies in how

developers handle tests. They can handle tests using

different approaches like unit and integration testing. The

time invested in testing pays off by the number of

prevented bugs. So, in this chapter, we will explore how to

use technologies like JUnit 5 and Testcontainers to

implement helpful unit and integration tests that prevent

unexpected system behaviors, help us better understand

application behaviors, and design simple yet effective code.

While exploring testing technologies, we will also learn

about good practices for writing helpful tests that are easy

to grasp and maintain.

Structure

The chapter covers the following topics:

• Overviewing unit and integration tests
• Using JUnit 5 to write effective unit tests

• Implementing reliable integration tests with
Testcontainers

• Compiling and running the sample project

Objectives

By the end of this chapter, you will have the fundamental

skills to write effective unit and integration tests on Java

applications using JUnit 5 and Testscontainers. Such skills

will make you a better developer, ready to tackle any

programming challenges with much more confidence by

ensuring the features you are developing are secured by

automated tests. Let us embark together on this fascinating

testing journey.

Overviewing unit and integration tests

Common steps involved in developing a new application or

adding features to an existing one consist of finding some

way to run the application locally to observe how it behaves.

Having the application running locally allows us to test

application behaviors manually. After introducing some

changes in the code, we recompile it, start the application,

and perform some checks to confirm the changes are

working as expected. However, this manual test approach

depends on a human’s ability to interpret the system

behavior and judge whether it produces correct or wrong

results. Besides being time-consuming, manual tests may

not be sustainable in the long run. As the application

receives more features, more manual testing will be

required.

The idea is to find ways to automate some of the tests we

would execute manually to ensure the application is working

well. To achieve test automation, we can rely on techniques

like unit and integration testing, which have different

purposes in terms of testing scope, but both share the

intent to automate tests. So, in this session, we will examine

what it means to employ unit or integration tests in a Java

application. Let us start by exploring unit tests.

Unit tests

When discussing tests, it is always important to consider the

scope we want to address when validating system features.

Such consideration is essential because the bigger the

scope, the broader the test dependencies, which may

include different systems, including databases, front-end

applications, APIs, and so on. Another thing to consider

when widening the scope is the cost and complexity

associated with testing broader aspects of a system.

With the awareness that tests encompassing a large scope

of dependencies are complex and costly, we can reflect on

which system elements can be tested in a smaller scope.

This leads us to the behaviors an application may expose

through methods containing a sequence of instructions. At

the core of any Java application, we have a collection of

classes and methods orchestrating a sequence of

instructions to produce useful application behaviors aimed

at hopefully solving real-life problems.

With that in mind, unit tests are a technique to validate

application behaviors on an isolated, self-contained level. At

this level, we usually have methods containing logic that

dictates how accurate and well an application handles its

use cases. Unit tests are not concerned with the

application’s behavior when interacting with external

resources like a database. Instead, unit tests validate

application behaviors that can be checked without needing

external resources or dependencies. That is why, for

example, we can employ the so-called mocks to simulate

such external resources when unit testing an application

functionality that depends on external resources.

We can then state that unit tests are not supposed to test

an entire use case or application feature but rather a more

minor part that contributes to such a use case or feature. It

is also important to understand that unit tests cannot

replace other tests, like acceptance tests, which validate

how an application behaves from the user’s perspective.

Unit tests are so appealing because they are cheap to

implement yet so beneficial. When properly implemented,

they can protect critical areas of the application from

unwanted changes and side effects. As the code complexity

increases, unit tests can also help us identify what the

application is doing with test cases targeting all the required

behaviors to deliver helpful application features.

Although unit tests help validate how units of code behave,

they cannot help us answer how the application behaves

when it needs to deal with external resources like a

database or an API. For such a purpose, we can rely on

integration tests, which we will examine next.

Integration tests

Earlier in this chapter, we discussed this manual test idea,

which consists of locally running an application and

observing how it behaves when something is changed. We

can also locally run an application and see how it interacts

with its external dependencies, like databases or APIs

served by other systems. This validation increases our

confidence that the application correctly handles data

provided by external resources.

Besides checking how an application behaves when dealing

with external dependencies, we can manually validate how

different application components or modules interact. For

example, imagine an application based on the API, service,

and persistence layers materialized as application modules.

We can validate how a request arrives at the API layer,

passes through the service and persistence layers, and

returns with some response data. Again, we can locally run

our application and manually test this flow by preparing

testing data, requesting payloads, and ensuring all external

dependencies are in place to ensure our tests will not fail.

Real value can be achieved if we can automate the

validation of application behaviors that span different

modules and external dependencies. We are no longer

interested only in the unit level of how an application

behaves; instead, we want to validate the end-to-end

behavior across application modules and their

dependencies. We use integration tests to automate the

validation of end-to-end system functionalities, considering

their required dependencies.

Note that the integration test scope is broader than that of a

unit test, which focuses on self-contained units of code

responsible for supporting an application use case. With

integration tests, we can validate how different units of code

work together when combined.

In the next sections of this chapter, we will explore the

techniques and technologies we can use to create unit and

integration tests. Let us start by exploring what JUnit 5 can

offer in terms of unit test automation.

Using JUnit 5 to write effective unit tests

First introduced in 1997, JUnit remains the most widely used

unit testing framework for Java applications. The latest JUnit

5 release brings enhancements and significant changes over

its previous JUnit 4 release, but the fundamental unit testing

principles remain the same. Our focus in this section is on

JUnit 5 because of its up-to-date testing features and

because modern Java applications can only benefit from the

fantastic testing capabilities offered by JUnit 5. Let us start

by learning to set up JUnit 5 in a Java project.

Setting up JUnit 5

The JUnit 5 framework is built into a modular structure,

allowing Java projects to rely only on the framework

modules that are relevant to the project. We can select

those modules when defining the Java project’s

dependencies through a dependency manager like Maven or

Gradle. The following code is an example showing which

dependencies we must include in the Maven’s pom.xml file

of the Java project to have JUnit 5 working correctly:

<dependency>

 <groupId>org.junit.jupiter</groupId>

 <artifactId>junit-jupiter-api</artifactId>

 <version>5.10.2</version>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>org.junit.jupiter</groupId>

 <artifactId>junit-jupiter-engine</artifactId>

 <version>5.10.2</version>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>org.junit.platform</groupId>

 <artifactId>junit-platform-

launcher</artifactId>

 <scope>test</scope>

 <version>1.8.2</version>

</dependency>

The dependencies with artifactId junit-jupiter-api

and junit-jupiter-api are mandatory and represent the

minimum requirement to get started with JUnit 5. For

example, the last dependency with artifactId junit-

platform-launcher can be included if you face issues while

executing tests directly through an IDE like IntelliJ.

Aside from including the JUnit5 dependencies in the pom.xml

file, we also need to add the maven-surefire-plugin to the

plugin configuration of the pom.xml:

<plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-surefire-plugin</artifactId>

 <version>3.2.5</version>

</plugin>

The maven-surefire-plugin allows us to execute tests

when using Maven to build a Java application.

With all dependencies in place, we are ready to start

creating unit tests. Before we do so, let us create a simple

account registration application that will serve as the basis

for our unit test exploration.

Introducing the account registration system

To allow further exploration of what we can do using JUnit 5,

let us first create a simple account registration application

that we will test later on. The registration system receives

new account request payloads containing email, password,

and birth date. It then validates the payload, saves it into a

database, and returns the account data as a response,

including the creation timestamp and the account status.

Start by defining the AccountPayload record class:

public record AccountPayload(

 String email,

 String password,

 LocalDate birthDate) { }

The AccountPayload represents the data provided by a

client attempting to create a new account. Following it, we

have the ValidatorService class:

public class ValidatorService {

 public final static String

INVALID_EMAIL_MESSAGE = "Email format is not

 valid";

 public final static String

INVALID_PASSWORD_MESSAGE = "Password must

 have at least 6 characters";

 public final static String

INVALID_BIRTHDATE_MESSAGE = "Age must be at

 least 18 years old";

 public void validateAccount(AccountPayload

accountPayload) throws

 Exception {

 var isEmailValid =

validateEmail(accountPayload.email());

 if(!isEmailValid) {

 throw new

Exception(INVALID_EMAIL_MESSAGE);

 }

 var isPasswordValid =

validatePassword(accountPayload.password());

 if(!isPasswordValid) {

 throw new

Exception(INVALID_PASSWORD_MESSAGE);

 }

 var isBirthDateValid =

validateBirthDate(accountPayload.birthDate());

 if(!isBirthDateValid) {

 throw new

Exception(INVALID_BIRTHDATE_MESSAGE);

 }

 }

 // Code omitted

}

The INVALID_EMAIL_MESSAGE, INVALID_PASSWORD_MESSAGE,

and INVALID_BIRTHDATE_MESSAGE are constants we use to

store messages returned when the validation fails. After the

constants, the validateAccount method receives an

AccountPayload object as a parameter. This method relies

on the validateEmail, validatePassword, and

validateBirthDate to check if the AccountPayload data is

valid. If the data is invalid, it throws exceptions with a

message describing why the validation could not be

performed. We describe the implementation of the

validation methods, as follows:

public class ValidatorService {

 //** Code omitted **//

 private boolean validateEmail(String email) {

 var regexPattern = "^(.+)@(\\S+)$";

 return Pattern.compile(regexPattern)

 .matcher(email)

 .matches();

 }

 private boolean validatePassword(String

password) {

 return password.length() >= 6;

 }

 private boolean validateBirthDate(LocalDate

birthDate) {

 return Period.between(birthDate,

LocalDate.now()).getYears() >= 18;

 }

}

The validateEmail checks if the email provided is in the

correct format. The validatePassword ensures the

password contains at least six characters. Finally, the

validateBirthDate ensures that only birth dates equal to

or above eighteen years old are accepted.

These two classes are enough to implement the account

registration system initially. Let us start testing it then.

Testing the account registration system

To test the ValidatorService class, we create the

ValidatorServiceTest test class in the

dev.davivieira.account.service package from the Java

project’s src/main/test/java directory, as follows:

public class ValidatorServiceTest {

 private final ValidatorService

validatorService = new

 ValidatorService();

 // Code omitted

}

We start by setting and initializing the validatorService

instance attribute with an instance of the

ValidatorService that we will use to execute our unit

tests.

Let us implement the first test responsible for testing if

email validation is working by using the following code:

public class ValidatorServiceTest {

 private final ValidatorService

validatorService = new

 ValidatorService();

 @Test

 public void

givenInValidEmailString_thenValidationThrowsExcept

ion() {

 // Arrange

 var email = "@daviveira.dev"; // Invalid

email address

 var password = "123456";

 var birthDate = LocalDate.of(1980, 1, 1);

 // Prepare

 var accountPayload =

getAccountPayload(email, password, birthDate);

 // Execute and Pre-assert

 Exception exception =

assertThrows(Exception.class, () -> {

validatorService.validateAccount(accountPayload);

 });

 // Post-assert

 String expected = "Email format is not

valid";

 String actual = exception.getMessage();

 assertEquals(actual, expected);

 }

 // Code omitted

 }

}

We place the org.junit.jupiter.api.Test annotation on

top of the methods we want to test. The test above checks if

an exception is thrown when we pass AccountPayload with

an invalid email address. Also, it checks if the exception

message is indeed the one that says the email format is

incorrect. Note that we use comment terms like Arrange,

Prepare, Execute, Pre-assert, and Post-assert to describe the

different stages of the testing method. This approach

derives from the Arrange-Act-Assert (AAA) testing

pattern that prescribes a way to organize tests to make

them easier to read and maintain. Following, we explore the

AAA pattern further.

The Arrange-Act-Assert pattern

The original AAA pattern is based on the following steps:

• The Arrange step arranges the data dependencies
required to execute the test.

• On the Act (or Execute) step, we trigger the application
behavior we want to test by usually calling an object’s
method. That call usually returns a result that we use
on the Assert step.

• Based on the result returned from the Act step, in the
Assert step, we check if the application behaved as we
expected.

It is common to find variances in the AAA pattern consisting

of additional steps to clarify even more what the test is

doing. Our test contains the additional Preparation, Pre-

assert, and Post-assert steps. There is no general rule of

thumb for organizing your tests but expressing it through

steps can benefit everyone involved in maintaining them.

The crucial part of any test method is performing assertions.

Next, we will check how JUnit 5 helps us assert testing data.

Assertions

As one of the cornerstones of the JUnit 5 framework, the

assertX methods validate the test behaviors and data. In

the

givenInValidEmailString_thenValidationThrowsExcept

ion test, we are using the assertThrows to check if the

validatorService.validateAccount(accountPayload)

throws an Exception when we pass an AccountPayload

with an invalid email:

// Execute and Pre-assert

Exception exception =

assertThrows(Exception.class, () -> {

validatorService.validateAccount(accountPayload);

});

Moving forward, there is also the assertEquals, which

receives two parameters, the first parameter actual

representing the actual value returned as the result of

testing the method we are interested in, and the second

parameter expected representing the value we expect the

actual value to be:

// Post-assert

String expected = "Email format is not valid";

String actual = exception.getMessage();

assertEquals(actual, expected);

If the actual and expected variables match, then the

assertion is successful; otherwise, the test fails. JUnit 5

provides plenty of other assertX methods, such as

assertTrue, assertFalse, and others, allowing you to

perform many different assertions.

There are situations when we need to unit test a method

that contains calls to external resources like a database. We

can overcome it by mocking those calls and allowing the

test to execute without issues. Let us explore mocking

techniques using a technology called Mockito.

When to use Mockito

The best unit testing scenario is when we test methods that

do not depend on external dependencies like databases or

APIs. In such scenarios, the method we want to test contains

a self-contained sequence of instructions we can directly call

from our test scenario without being concerned that the

execution may fail because some dependencies are

unavailable during test runtime. When that is not the case,

and we want to test a method that contains one or more

calls to external dependencies, then we can mock those

calls, allowing the application to continue with its execution

and test the portion of the code we consider relevant.

Mockito can be integrated with JUnit 5. Next, we check how

to set up this integration.

Setting up Mockito with JUnit 5

To get started with Mockito, we need to add the following

dependencies to the pom.xml file:

<dependency>

 <groupId>org.mockito</groupId>

 <artifactId>mockito-core</artifactId>

 <version>5.3.1</version>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>org.mockito</groupId>

 <artifactId>mockito-junit-jupiter</artifactId>

 <version>5.3.1</version>

 <scope>test</scope>

</dependency>

The dependency specified by the artifactId mockito-core

provides the Mockito engine to the Java project, and the

other dependency, mockito-junit-jupiter, enables us to

use Mockito with JUnit 5.

Before exploring Mockito further, let us extend the account

registration system by adding an external call that we will

mock later.

Adding an external call to the account registration

system

A common external call is the one that persists data in the

database. On the account registration system, such a call is

triggered from a repository class:

public class AccountRepository {

 public void persist(Account account) {

 throw new RuntimeException("Database

integration is not implemented

 yet");

 }

}

Since we do not yet have a database integrated with the

application, we throw a RuntimeException when the

persist method is called.

Next, we implement the RegistrationService, responsible

for validating the AccountPayload, creating an Account

object, persisting it into the database, and returning the

Account object. We start the implementation by defining the

class attributes and constructor as follows:

public class RegistrationService {

 private final ValidatorService

validatorService;

 private final AccountRepository

accountRepository;

 public RegistrationService(ValidatorService

validatorService,

 AccountRepository accountRepository) {

 this.validatorService = validatorService;

 this.accountRepository =

accountRepository;

 }

 // Code omitted

}

We have the ValidatorService we implemented

previously, and the AccountRepository intends to persist

data in a database. Let us now implement the logic that

registers the account:

public class RegistrationService {

 //Code omitted

 public Account register(AccountPayload

accountPayload) throws Exception

 {

validatorService.validateAccount(accountPayload);

 return createAccount(accountPayload);

 }

 private Account createAccount(AccountPayload

accountPayload) {

 var account = new Account(

 accountPayload.email(),

 accountPayload.password(),

 accountPayload.birthDate(),

 Instant.now(),

 Status.ACTIVE

);

 accountRepository.persist(account); //

Throws a RuntimeException

 return account;

 }

}

The register method receives the AccountPayload object as

a parameter that is validated on

validatorService.validateAccount(accountPayload). If

the validation is okay, then it creates an Account object and

persists it into the database by calling

accountRepository.persist(account). Finally, it returns

the Account object. Calling the register method in a unit

test will make it fail because of the RuntimeException. Let

us see how to address it using Mockito.

Mocking external calls with Mockito

The RegistrationService class has a method called

register that is responsible for the actual registration of new

accounts. Let us then create the RegistrationServiceTest

class to test the execution of the register method. We start

by defining instance variables and initializing the mocks:

@ExtendWith(MockitoExtension.class)

public class RegistrationServiceTest {

 private RegistrationService

registrationService;

 @BeforeEach

 private void init(@Mock AccountRepository

accountRepository) {

 registrationService = new

RegistrationService(new

 ValidatorService(), accountRepository);

doNothing().when(accountRepository).persist(any())

;

 }

 // Code omitted

}

We use the class-level annotation

@ExtendWith(MockitoExtension.class) to make Mockito

capabilities available while executing JUnit 5 tests. Next, we

add the @BeforeEach annotation above the init method.

The idea behind this annotation is that the init method will

be executed before every testing method in the class is

executed. Other variations like @BeforeAll, @AfterEach,

and @AfterAll allow us to execute helpful logic across

different stages of the test life cycle.

Note that the init method receives the @Mock

AccountRepository acountRepository as a parameter.

The @Mock annotation marks the accountRepository

parameter as a mock, which Mockito injects during test

execution. Inside the init method, we create a new

instance of the RegistrationService, passing a real

instance of the ValidatorService and a mock of the

AccountRepository.

Creating mocks is not enough; we need to specify in which

conditions the mock will be used. Mockito enables us to

define the application’s behavior when a method from the

mocked object is called. Remember that the persist method

from the AccountRepository throws an exception:

public void persist(Account account) {

 throw new RuntimeException("Database

integration is not implemented

 yet");

}

To avoid this exception, we instruct Mockito to do nothing

when the persist(Account account) method is called:

doNothing().when(accountRepository).persist(any())

;

The idea behind the construct above is that we state the

desired behavior, doNothing(), followed by the condition

when(accountRepository).persist(any()), where we

pass the mocked object accountRepository and describe

which method from it we are mocking, which is the

persist(any()) method. The any() is an argument

matcher that instructs Mockito to accept any object passed

as a parameter to a given method.

Having prepared the mocks, we can proceed to create our

test using the following ccode:

@ExtendWith(MockitoExtension.class)

public class RegistrationServiceTest {

 // Code omitted

 @Test

 public void

givenValidAccountPayload_thenAccountObjectIsCreate

d()

 throws Exception {

 // Arrange

 var email = "user@daviveira.dev";

 var password = "123456";

 var birthDate = LocalDate.of(1980, 1, 1);

 // Prepare

 var accountPayload =

getAccountPayload(email, password, birthDate);

 // Execute

 var account =

registrationService.register(accountPayload);

 // Assert

 assertAll("Account is properly created",

 () ->

assertEquals(account.email(), email),

 () ->

assertEquals(account.password(), password),

 () ->

assertEquals(account.birthDate(), birthDate),

 () ->

assertEquals(account.status(), ACTIVE)

);

 }

 // Code omitted

}

The test above aims to check if the Account object returned

by calling

registrationService.register(accountPayload)

contains all the expected data. Note we have multiple

assertEquals calls inside the assertAll method. Even if

one of the assertEquals fails, the assertAll will continue

executing the other assertions until the end and report

which assertions have failed.

Next, let us check how to use Maven to execute the tests we

created with the RegistrationServiceTest and

ValidatorServiceTest testing classes.

Executing tests with Maven

We can execute tests directly through our preferred IDE or

build tools like Maven or Gradle. Remember, to run JUnit 5

tests with Maven, the maven-surefire-plugin plugin must

be configured in the pom.xml file.

We can use the following command to execute our tests

with Maven:

$ mvn test

The above command will produce an output similar to the

following one:

[INFO] ---

[INFO] T E S T S

[INFO] ---

[INFO] Running

dev.davivieira.account.service.ValidatorServiceTes

t

[INFO] Tests run: 3, Failures: 0, Errors: 0,

Skipped: 0, Time elapsed: 0.028 s -- in

dev.davivieira.account.service.ValidatorServiceTes

t

[INFO] Running

dev.davivieira.account.service.RegistrationService

Test

[INFO] Tests run: 1, Failures: 0, Errors: 0,

Skipped: 0, Time elapsed: 0.480 s -- in

dev.davivieira.account.service.RegistrationService

Test

[INFO]

[INFO] Results:

[INFO]

[INFO] Tests run: 4, Failures: 0, Errors: 0,

Skipped: 0

[INFO]

[INFO] ---

[INFO] BUILD SUCCESS

[INFO] ---

[INFO] Total time: 1.191 s

[INFO] Finished at: 2024-03-24T19:06:45+01:00

[INFO] ---

JUnit5 and Mockito offer us many ways to unit test our

applications. In this session, we have covered the essential

features that help us leverage the benefits of unit testing. In

the next section, we will learn how to use Testcontainers to

create integration tests.

Implementing reliable integration tests with

Testcontainers

The decision to use integration tests comes when we want

to validate the interaction between different application

components and how the application interacts with external

dependencies like a database, for example. Integration tests

are more expensive than unit tests because they require

practically all the same dependencies the application would

need if deployed somewhere. The increased setup cost

comes with the benefit of running tests against real

resources and data instead of using mocks when a resource

is not available.

With the popularization of container technologies like

Docker, which enables us to bring up any system in

seconds, Java projects have started to leverage containers

to simplify the implementation of integration tests. The

Testcontainers library stands out as one of the most well-

known libraries providing containers for testing purposes. It

provides a state-of-the-art solution that lets developers

easily integrate containers into their integration tests.

In this section, we will learn how to configure Testcontainers

in our account registration application and use them to

provide a MySQL database container used by an end-to-end

integration test.

Setting up Testcontainers

Like JUnit 5, Testcontainer is built into a modular structure so

that we can bring only the relevant dependencies to our

Java project. Let us start by adding the Testcontainer

dependencies in the Maven’s pom.xml file, as follows:

<dependency>

 <groupId>org.testcontainers</groupId>

 <artifactId>mysql</artifactId>

 <version>1.19.7</version>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>org.testcontainers</groupId>

 <artifactId>junit-jupiter</artifactId>

 <version>1.19.7</version>

 <scope>test</scope>

</dependency>

The first dependency identified by the artifactId mysql

allows the creation of MySQL database containers. The next

dependency, junit-jupiter, enables us to add containers

into the JUnit 5 tests life-cycle.

Before implementing integration tests, let us provide a

Jakarta Persistence configuration to ensure the account

registration system can connect to a real MySQL database.

Integrating the account registration system

with MySQL

We intend to connect the account registration system to a

MySQL database. To do it, we need the following

dependencies in the pom.xml file:

<dependency>

 <groupId>org.hibernate.orm</groupId>

 <artifactId>hibernate-core</artifactId>

 <version>6.4.4.Final</version>

</dependency>

<dependency>

 <groupId>com.mysql</groupId>

 <artifactId>mysql-connector-j</artifactId>

 <version>8.3.0</version>

</dependency>

The first dependency, hibernate-core, provides the

Jarkarta Persistence implementation we rely on to interact

with a MySQL database. The second dependency, mysql-

connector-j, provides the JDBC driver Jakarta Persistence

requires. Next, we configure the persistence.xml file:

<?xml version="1.0" encoding="UTF-8" ?>

<persistence

xmlns="http://java.sun.com/xml/ns/persistence"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/per

sistence

http://java.sun.com/xml/ns/persistence/persistence

_2_0.xsd"

 version="2.0">

 <persistence-unit name="account" transaction-

type="RESOURCE_LOCAL">

<provider>org.hibernate.jpa.HibernatePersistencePr

ovider</provider>

 <properties>

 <property

name="jakarta.persistence.jdbc.driver"

value="com.mysql.cj.jdbc.Driver" />

 <property

name="jakarta.persistence.jdbc.url"

value="jdbc:mysql://localhost:3306/account" />

 <property

name="jakarta.persistence.jdbc.user"

 value="test" />

 <property

name="jakarta.persistence.jdbc.password"

value="test"

 />

 <property

name="jakarta.persistence.schema-

 generation.database.action"

 value="drop-and-create" />

 <property

name="hibernate.connection.autocommit"

 value="true" />

 <property

name="hibernate.allow_update_outside_transaction"

 value="true"/>

 </properties>

 </persistence-unit>

</persistence>

Note that we specify the com.mysql.cj.jdbc.Driver as the

jakarta.persistence.jdbc.driver. Next, we set

jdbc:mysql://localhost:3306/account as the database

connection URL. We intend to connect to the database in

our machine in port 3306, using the value test as the user

and password. The property jakarta.persistence.schema-

generation.database.action is set to drop-and-create

on purpose to ensure Jakarta Persistence entities are

dropped and created every time the application starts. This

configuration is not recommended in production scenarios;

we only use it here to demonstrate integration tests with

MySQL databases.

Finally, we adjust the AccountRepository class to use the

EntityManager to persist accounts and find them using

their email addresses. Following is the code implementation

that lets us persist and find Account database entities:

public class AccountRepository {

 @PersistenceContext

 private EntityManager entityManager;

 // Code omitted

 public void persist(Account account) {

 AccountData accountData =

convertEntityToData(account);

 entityManager.merge(accountData);

 entityManager.flush();

 }

 public Account findByEmail(String email) {

 Query query =

entityManager.createQuery("SELECT a FROM

AccountData

 a WHERE

 email = :email", AccountData.class);

 query.setParameter("email", email);

 var accountData = (AccountData)

query.getSingleResult();

 return convertDataToEntity(accountData);

 }

 // Code omitted

}

The persist method receives the Account object that we

convert to an AccountData Jakarta Persistence entity object

required to persist data into the database. The findByEmail

method receives a String representing the email address

used to query AccountData objects that convert to the

Account type. We do this conversion because Account is

the domain entity object, and AccountData is the database

entity object.

We are ready to implement an integration with test

Testcontainers.

Implementing an integration test with

Testcontainers

We start by creating the EndToEndIT testing class with a

configuration that makes MySQL containers available for our

tests:

@Testcontainers

public class EndToEndIT {

 @Container

 public MySQLContainer<?> mySQLContainer = new

 MySQLContainer<>("mysql:8.3.0")

 .withDatabaseName("account")

 .withUsername("test")

 .withPassword("test")

 .withExposedPorts(3306)

 .withCreateContainerCmdModifier(cmd ->

cmd.withHostConfig(

 new

HostConfig().withPortBindings(new

PortBinding(Ports.Binding.bindPort(3306), new

 ExposedPort(3306)))

));

 private RegistrationService

registrationService;

 @BeforeEach

 public void init() {

 registrationService = new

RegistrationService(new

 ValidatorService(), new

AccountRepository());

 }

 // Code omitted

}

The @Testcontainers enables the automatic creation of

containers during the JUnit 5 tests. It ensures that

containers are running before testing starts. Next, we have

the @Container annotation on top of the instance variable

mySQLContainer that receives a MySQLContainer instance

that is initialized with the "mysql:latest" Docker image

tag that is pulled from the Docker Hub registry. We also use

the withX methods to set database settings such as

database name, username, and password. The

withExposedPorts and withCreateContainerCmdModifier

ensure the application can connect to the MySQL container

through the 3306 port. Remember that was the port we

defined in the persistence.xml file:

<property name="jakarta.persistence.jdbc.url"

value="jdbc:mysql://localhost:3306/account" />

Testcontainers let us create containers per test or a single

container shared by all tests in the class. We control this

behavior using a static or instance variable with the

@Container annotation. In our example, the

mySQLContainer is an instance variable, so a new container

will be created for every test method.

Once the Testcontainers configuration is done, we can write

our test method, as follows:

@Testcontainers

public class EndToEndIT {

 // Code omitted

 @Test

 public void

givenAnActiveAccountIsProvided_thenAccountIsSuspen

ded()

 throws Exception {

 // Arrange

 var email = "suspended@daviveira.dev";

 var password = "123456";

 var birthDate = LocalDate.of(2000, 1, 1);

 // Prepare

 var accountPayload =

getAccountPayload(email, password, birthDate);

 var activeAccount =

registrationService.register(accountPayload);

 // Pre-assert

 assertEquals(activeAccount.status(),

ACTIVE);

 // Execute

 var suspendAccount =

registrationService.suspend(email);

 // Post-assert

 assertEquals(suspendAccount.status(),

SUSPENDED);

 }

 // Code omitted

}

The above test checks if the account registration system

can successfully suspend an account. First, it creates an

active account. We confirm it by running a pre-assertion

that confirms the ACTIVE status. Then, we execute the

registrationService.suspend(email) and assert that the

returned account is SUSPENDED. This integration test

validates the account suspension use case using a real

MySQL database provided by Testscontainers.

Next, we learn how to run integration tests with Maven.

Running integration tests with Maven

We use the maven-surefire-plugin to run unit tests, but for

integration tests, we need the maven-failsafe-plugin

configured in the pom.xml file:

<plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-failsafe-plugin</artifactId>

 <version>3.2.5</version>

 <executions>

 <execution>

 <goals>

 <goal>integration-test</goal>

 <goal>verify</goal>

 </goals>

 </execution>

 </executions>

</plugin>

The command below shows how we can run the integration

tests using Maven:

$ mvn integration-test

The command above produces an output similar to the one

as follows:

[INFO] Scanning for projects...

[INFO]

[INFO] ----------------------<

dev.davivieira:chapter04 >----------------------

[INFO] Building chapter04 1.0-SNAPSHOT

[INFO] --------------------------------[jar]----

[INFO]

[INFO] --- maven-failsafe-

plugin:3.2.5:integration-test (default) @

chapter04 ---

[INFO] Using auto detected provider

org.apache.maven.surefire.junitplatform.JUnitPlatf

ormProvider

[INFO]

[INFO] ---

[INFO] T E S T S

[INFO] ---

[INFO] Running

dev.davivieira.account.service.EndToEndIT

[INFO] Tests run: 1, Failures: 0, Errors: 0,

Skipped: 0, Time elapsed: 15.41 s -- in

dev.davivieira.account.service.EndToEndIT

[INFO]

[INFO] Results:

[INFO]

[INFO] Tests run: 1, Failures: 0, Errors: 0,

Skipped: 0

[INFO]

[INFO] ---

[INFO] BUILD SUCCESS

[INFO] ---

[INFO] Total time: 20.709 s

Note that the time required to run the integration tests with

Testcontainers is usually higher than to run unit tests. This is

because of the time spent bringing up containers.

We will now check how to compile and run the sample

project accompanying this chapter.

Compiling and running the sample project

As a sample project, we have a Java application called

Account Registration. It is the application we have been

working with throughout the chapter.

You can clone the application source code from the GitHub

repository at https://github.com/bpbpublications/Java-

Real-World-Projects/tree/main/Chapter 04.

https://github.com/bpbpublications/Java-Real-World-Projects/tree/main/Chapter%2004

You need the JDK 21 or above and Maven 3.8.5 or above

installed on your machine.

It is also required to have Docker and Docker Compose

installed because we use them to bring up a MySQL

database container.

To run the application unit tests, go to the Chapter 4

directory from the book’s repository. From there, you need

to execute the following command:

$ mvn test

Execute the following command to run the integration tests:

$ mvn integration-test

Execute the following command to compile the application:

$ mvn clean package

Before starting the application, execute the following

command to bring up the MySQL Docker container:

$ docker-compose up -d

The command above must be executed from the Chapter 4

root directory.

Finally, we can start the application:

$ java -jar target/chapter04-1.0-SNAPSHOT-jar-

with-dependencies.jar

Account[email=test@davivieira.dev,

password=123456, birthDate=1980-01-01,

creationTimestamp=2024-03-25T01:29:17.256603061Z,

status=ACTIVE]

Conclusion

When we talk about testing Java applications, we mainly talk

about running unit and integration tests. Understanding

what they are, their benefits, and how to employ them

constitutes a fundamental skill for any Java developer. We

learned in this chapter how unit tests backed by JUnit 5 can

help validate application behaviors at the unit, self-

contained level, of methods containing sequences of

instructions, including methods with external resource calls

like database access. For such methods, we learned how to

mock external calls using Mockito. Moving ahead, we tapped

into the Testcontainers capabilities to quickly provide

containers for integration tests.

In the next chapter, we will examine the Java software

development frameworks, starting our exploration with

Spring Boot. We will cover the fundamentals of the Spring

Boot framework, learn how to bootstrap a new project,

implement a RESTful API with Spring Web, and persist data

with Spring Data JPA.

Join our book’s Discord space

Join the book's Discord Workspace for Latest updates,

Offers, Tech happenings around the world, New Release and

Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 5

Building Production-Grade Systems with

Spring Boot

Introduction

Software development frameworks constitute the cornerstone of most enterprise

applications, providing the foundation for developing robust systems. Relying on features

provided by a framework can also save us precious time. Aware of the benefits

development frameworks can offer, we explore essential Spring Boot features to build Java

enterprise applications.

Over the years, Spring Boot has become one of the most mature software development

frameworks, vastly used across various industries. If you are an experienced Java

developer, you have encountered at least one Spring Boot application during your career. If

you are a beginner Java developer, chances are high that you will find Spring Boot

applications crossing your path in your developer journey. No matter how experienced you

are, knowing Spring Boot is a fundamental skill to remain relevant in the Java development

market.

This chapter starts with a brief introduction to Spring fundamentals and then proceeds with

a hands-on approach to developing a simple CRUD Spring Boot application from scratch

with RESTful support.

Structure

The chapter covers the following topics:

• Learning Spring fundamentals
• Bootstrapping a new Spring Boot project
• Implementing a CRUD application with Spring Boot
• Compiling and running the sample project

Objectives

By the end of this chapter, you will have mastered the fundamental skills to build Spring

Boot applications, handle HTTP requests through RESTful APIs, and persist data into

relational databases using the Spring Data JPA. You will also grasp how Spring Boot’s

convention-over-configuration philosophy helps you quickly set up new applications without

spending too much time on configuration details. With the knowledge in this chapter, you

will have the essentials to tackle challenging Spring Boot projects.

Learning Spring fundamentals

As we embark on our journey to build a Spring Boot application, let us first understand the

power of Spring and its core concepts. These are the building blocks that make Spring Boot

a popular choice for Java developers.

Previously, if you wanted to build Java applications supporting transactions, security, and

data persistence, you could use a framework called Java Enterprise Edition (EE). That

was the official enterprise framework initially offered by Sun Microsystems, which Oracle

acquired. Oracle continued maintaining Java EE until it decided to open source the project

by handing it to the Eclipse Foundation, which renamed it Jakarta EE.

Creating enterprise applications using Java EE in its first releases did not provide the best

developer experience. Although sufficient to support the development of mission-critical

applications, the Java EE specifications were not simple to use and required considerable

effort from developers to have things in place. That is when, around 2002, Rod Johnson

decided to create the Spring Framework to deliver functionalities quite similar to those

offered by Java EE but without the complexity of the official framework. Effectively, the

Spring Framework was conceived as an interface for Java EE, providing a simpler

abstraction for Java EE features like servlets, persistence with JPA (Java Persistence API),

and messaging with JMS (Java Message Service). Since then, the adoption of the Spring

Framework has tremendously increased over the years due to its ease of use, time-tested

stability, outstanding developer experience, and engaging community.

Spring is now considered an ecosystem of frameworks that serves the most diverse

purposes in software development. Built on the backbone of the Spring Core project are

other projects like Spring Data JPA, Spring Security, and, of course, Spring Boot.

The Spring Core project provides functionalities like context, dependency injection, and

aspects found in most Spring Boot applications.

The Spring Boot project, in turn, takes an opinionated view from Spring maintainers to

provide a framework that lets developers quickly bootstrap new applications, following a

philosophy that favors convention over configuration.

Let us start our exploration by learning what a Spring context is and how we can use it to

manage objects known as beans.

Using the Spring context to manage beans

When we decide to use Spring to develop an application, we must know that we are

delegating part of the execution control and dependency handling to Spring. By execution

control, we refer to the Inversion of Control (IoC) idea, where the application is not the

only agent responsible for creating instances of objects it needs to perform its activities.

The Java objects management responsibility can be transferred from the Java application

being developed to Spring, effectively inverting the object management control from the

Java application to the Spring Framework. A similar idea can be applied to dependency

handling, where Spring provides the dependencies that the application requires rather than

the other way around, where the application itself needs to provide its dependencies

directly.

This discussion about responsibilities is essential because it enables us to understand the

purpose of the Spring context, which is used to provide objects managed by Spring. If we

want our application to benefit from Spring’s features, we need to consider which objects of

our application must be handled by Spring. The way we make Spring manage objects is by

putting them into its context. These objects managed by Spring are also known as beans.

We can create beans from the classes of the application we are developing, but we can

also create beans from classes of third-party libraries.

There are different approaches to creating beans. We can, for example, create beans using

the @Bean annotation in conjunction with Spring configuration classes or through an XML

file configuration. However, the XML approach is uncommon nowadays because it is more

verbose and complicated to maintain Creating beans using Spring stereotype annotations

like @Component or @Service is also possible. Next, let us learn how to create beans using

the @Bean annotation.

Creating beans with the @Bean annotation

To understand the idea behind Spring context and beans, let us consider the following

example:

class Person {

 private String name;

 // Getters and setters omitted

}

public class PersonExample {

 public static void main(String... args) {

 var person = new Person();

 person.setName("John Doe");

 System.out.println(person.getName()); // John Doe

 }

}

The following steps describe how the Person and PersonExample classes are implemented:

1. Create a Person class containing the name attribute.

2. Inside the main method from the PersonExample class, we create a new Person

instance by invoking its empty constructor.

3. Set the Person's name to John Doe and print it.

In the previous example, we created the Person's object using the class’s constructor.

However, there is another approach where Spring can be responsible for object creation.

Consider the following example where Spring is responsible for creating the Person object:

@Configuration

class PersonConfiguration {

 @Bean

 public Person person() {

 var person = new Person();

 person.setName("John Doe");

 return person;

 }

}

// Code omitted

public class PersonExample {

 public static void main(String... args) {

 var context = new

 AnnotationConfigApplicationContext(PersonConfig.class);

 var person = context.getBean(Person.class);

 System.out.println(person.getName()); // John Doe

 }

}

The following steps describe how the PersonConfiguration and PersonExample classes

are implemented:

1. We place the @Configuration annotation on the PersonConfiguration class. The

@Configuration annotation lets us configure the Spring context using a Java class.

2. We place the @Bean annotation above the person method. This annotation tells

Spring to create a new object instance based on the annotated method.

3. Inside the person method, we create a new Person instance, set its name attribute,

and return it. Beans have names; by convention, a bean is named after the method

name that produces the bean instance, which in our example is the Person name.

4. To use the Person bean, we need to initialize the Spring context by passing the

configuration class:

var context = new AnnotationConfigApplicationContext(PersonConfig.class);

5. The AnnotationConfigApplicationContext lets us programmatically create a Spring

context, which we can use to retrieve a bean by calling the getBean method with the

bean class type:

var person = context.getBean(Person.class);

The approach described by the previous example works well when there is only one bean

of the Person type in the Spring context. However, we can have trouble if we produce

multiple beans of the Person type:

@Configuration

class PersonConfiguration {

 @Bean

 public Person person() {

 var person = new Person();

 person.setName("John Doe");

 return person;

 }

 @Bean

 public Person anotherPerson() {

 var person = new Person();

 person.setName("Mary Doe");

 return person;

 }

}

The second bean is defined by the anotherPerson method, which also returns a Person.

We get an exception if we try to retrieve a bean by just informing the bean type to the

getBean method:

var person = context.getBean(Person.class);

// NoUniqueBeanDefinitionException: No qualifying bean of type

'dev.davivieira.Person' available: expected single matching bean but found

2: person,anotherPerson

We can overcome it by specifying also the bean name to the getBean method:

var person = context.getBean("anotherPerson", Person.class);

System.out.println(person.getName()); // Mary Doe

It is also possible to override the default behavior where the method name is used as the

bean name and, instead, define your own bean’s name:

@Bean("mary")

 public Person anotherPerson() {

 var person = new Person();

 person.setName("Mary Doe");

 return person;

}

...

var person = context.getBean("mary", Person.class);

System.out.println(person.getName()); // Mary Doe

In the above example, instead of relying on the default behavior where the bean name

would be anotherPerson, we defined our bean name as mary. We referred to it when

calling the getBean method from the Spring context.

The previous bean creation examples considered only our classes, but we can also create

beans from classes we do not own:

@Bean

public LocalDate currentDate() {

 return LocalDate.now();

}

That is especially useful when you want Spring to control instances of third-party classes.

Using the @Bean annotation is not the only way to add beans into the Spring context. We

can also use special Spring stereotype annotations to transform a class into a bean. Let us

explore this further.

Creating beans with Spring stereotype annotations

We use Spring stereotype annotations to express classes’ roles in a Spring application. This

helps us quickly grasp what a class is responsible for by looking at its annotation. Next, we

briefly examine the most frequently used stereotype annotations.

The @Component annotation

It is a class-level annotation representing a Spring bean object. It has the same effect as

producing beans using the @Bean annotation approach. When we place the @Component

annotation in a class, Spring puts it into its context and becomes responsible for creating

instances of the class annotated with the @Component annotation.

The @Service annotation

Deriving from the @Component annotation, the @Service is often used on classes containing

some business logic. This annotation is usually used on layered-based applications, where

the service layer contains classes annotated with the @Service annotation. Spring also

creates and manages @Service annotated class instances through its context.

The @Repository annotation

We use the @Repository annotation whenever a class is responsible for interacting with a

database. Such an annotation became quite popular due to the repository pattern, which

aggregates into a repository class logic to handle database operations for entity classes.

Using stereotype annotations

What all the stereotype annotations have in common is that they all turn a Java class into a

Spring bean.

The following is an example showing how to create a Spring bean using the @Component

annotation:

@Configuration

@ComponentScan(basePackages = "dev.davivieira")

class PersonConfiguration {

}

@Component

class Person {

 private String name;

 // Code omitted

}

public class PersonExample {

 public static void main(String... args) {

 var context = new

 AnnotationConfigApplicationContext(PersonConfig.class);

 var person = context.getBean(Person.class);

 System.out.println(person.getName()); // null

 }

}

It is not enough to just place the @Component annotation on top of the Person class to

make Spring detect and put it into its context. We need to tell Spring where it must look to

find classes annotated with stereotype annotations. To achieve it, we use

@ComponentScan(basePackages = "dev.davivieira") with the @Configuration

annotation in the PersonConfiguration class. Note that the PersonConfiguration class

is empty this time, as we no longer provide beans using the @Bean annotation. The

@ComponentScan annotation accepts the basePackages parameter to specify the packages

containing the classes Spring needs to scan.

The Person class is in the dev.davivieira package in our example. Note that in the

previous example, when we call person.getName() to print the name attribute of the

Person bean, it returns null, which is expected because Spring provides a Person instance

by using its default empty constructor and not setting any value to class attributes like the

name Person's name attribute.

When using the @Component annotation to create beans, we can set class attribute values

using the @PostConstruct annotation. This annotation is not part of the Spring; it comes

from the Jakarta EE framework, but Spring uses it. We use the @PostContruct annotation

when we want Spring to execute some code just after the bean object is created. The

following is an example of how we can use such annotation to set the Person’s name value:

@Component

class Person {

 private String name;

 @PostConstruct

 private void postConstruct() {

 this.name = "John Doe";

 }

 // Code omitted

}

The postConstruct method is called just after the Person bean instance is created.

There is also the @PreDestroy annotation that lets us execute code just before a bean

instance is destroyed. It is often used to close resources like database connections.

The significant difference between beans created using stereotype annotations like

@Component and those created using the @Bean annotation is that the stereotype

annotations can only be used with our classes. In contrast, the @Bean annotation approach

lets us create beans from classes we do not own, like those from third-party libraries.

Next, let us explore how to use beans to provide dependency injection using the

@Autowired annotation.

Injecting dependencies with @Autowired

In object-oriented programming, a class can augment its capabilities by relying on

behaviors and data provided by other classes. This is called composition and is a well-

known alternative to inheritance. Such classes represent dependencies that need to be

provided somehow to a class that depends on those dependencies. Without dependency

injection, a class has to create instances of the other classes on which it depends. Consider

the following example:

class Skills {

 private static final Logger logger =

 Logger.getLogger(Skills.class.getName());

 void drive(String name) {

 // do something

 logger.log(Level.INFO, name+ " knows how to drive");

 }

}

class Person {

 private Skills skills;

 public Person() {

 this.skills = new Skills();

 }

 // Code omitted

}

The following steps highlight some of the major points regarding the implementation of the

Skills and Person classes:

1. The Skills class contains the drive method, which represents a skill a person can

have.

2. The Person class depends on the Skill class. To fulfill this dependency, the Person

class creates a new instance of the Skill class through its no-arguments constructor.

3. The Person is responsible for creating the Skill instance it needs to carry on with its

activities.

Next, consider how the same Skills class dependency can be provided through

dependency injection:

class Person {

 private Skills skills;

 public Person(Skills skills) {

 this.skills = skills

 }

 // Code omitted

}

Instead of creating the Skills object, the Person class expects to receive that object

through its constructor. However, who can provide a Skills instance to the Person class?

The Spring dependency injection mechanism is the answer that fills this gap. Let us see

how Spring accomplishes it by first turning the Skills class into a Spring bean:

@Component

class Skills {

 private static final Logger logger =

 Logger.getLogger(Skills.class.getName());

 void drive(String name) {

 // do something

 logger.log(Level.INFO, name+" knows how to drive");

 }

}

The @Component annotation lets Spring create and manage instances of the Skills class.

Following it, we need to inject the Skills dependency into the Person class:

@Component

class Person {

 // Code omitted

 @Autowired

 public Person(Skills skills) {

 this.skills = skills;

 }

 public void drive () {

 skills.drive(name);

 }

 // Code omitted

}

The crucial element here is the @Autowired annotation placed at the Person's constructor.

The Person class is a bean managed by Spring. So, when Spring creates a new instance of

the Person class, it detects a constructor annotated with @Autowired that declares a

dependency on the Skills object. Since Skills is also a Spring bean, Spring can get an

instance of the Skill class from its context and use it to initialize the Person object.

When we get a Person bean from the Spring context, we get one that is properly initialized

with its Skills bean dependency:

public class PersonExample {

 public static void main(String... args) {

 var context = new

 AnnotationConfigApplicationContext(PersonConfig.class);

 var person = context.getBean(Person.class);

 person.drive(); // John Doe knows how to drive

 }

}

By calling the drive method from the Person bean, we can confirm it works because it

relies on the behavior provided by the Skills bean.

Injecting dependencies using the @Autowired annotation with the class constructor is not

Spring’s only dependency injection approach. We can also inject dependencies by placing

the @Autowired annotation on top of an instance attribute:

@Component

class Person {

 @Autowired

 private Skills skills;

}

Although possible, this approach is not recommended because it can make running unit

tests of classes with dependencies injected directly into class attributes more difficult.

Now that we know how Spring creates and injects beans, let us explore an exciting feature

that allows us to intercept methods executed by Spring beans.

Providing new application behaviors with aspects

Whenever we want to add new application behavior, the standard approach is to modify

the class we want to include the new behavior. That is an invasive approach that means

changing the working code. If we do not have good unit tests, such code changes have the

potential to cause unwanted side effects.

We can rely on aspect-oriented programming (AOP) to decrease the risks of adding

new application behaviors by modifying existing code. AOP lets us add new application

behaviors without changing existing code. Spring has its own AOP framework. Let us

explore how it works by first understanding some AOP principles.

Aspect

Any behavior that can be shared across different application components is called an

aspect. Aspects are also considered cross-cutting elements because they capture these

shared application behaviors. Once a given behavior is implemented as an aspect, it can be

used by different parts of an application. Aspects represent the code containing the

behavior you want to add without changing the existing code.

Jointpoint

Application behaviors are usually represented through method executions or jointpoints

from the Spring AOP perspective.

Advice

We must define when the new behavior will be executed through an aspect. For that

purpose, we can rely on advice to determine if an element must be executed before or

after an existing application’s method.

Pointcut

The Spring AOP framework intercepts existing application methods and executes aspect

code before or after them. Pointcut represents these methods intercepted by Spring.

With a fundamental understanding of AOP concepts, we are ready to explore how they

work in a Spring application. Let us start by learning how to enable the aspect mechanism.

Using the Spring AOP

To get started with Spring AOP, we need to enable it in the configuration class. Let us do

that using the PersonConfiguration class we used in other examples:

@Configuration

@ComponentScan(basePackages = "dev.davivieira")

@EnableAspectJAutoProxy

class PersonConfiguration { }

The @EnableAspectJAutoProxy annotation enables the aspect mechanism on Spring.

Before we implement an aspect, let us first consider the scenario where we log the method

execution of an application:

@Component

class Person {

 // Code omitted

 private static final Logger logger =

 Logger.getLogger(Person.class.getName());

 public void drive () {

 logger.log(Level.INFO, "Executing skill");

 skills.drive(name);

 logger.log(Level.INFO, "Skill executed with success");

 }

 // Code omitted

}

To log the execution of drive method from the Person class, we need to call logger.log

before and after calling skills.drive(name). When executed, it produces an output

similar to the one as follows:

Apr 06, 2024 9:35:41 PM dev.davivieira.Person drive

INFO: Executing skill

Apr 06, 2024 9:35:41 PM dev.davivieira.Skills drive

INFO: John Doe knows how to drive

Apr 06, 2024 9:35:41 PM dev.davivieira.Person drive

INFO: Skill executed with success

With Spring AOP, we can move the execution of the logger.log to an aspect class:

@Aspect

@Component

public class LogSkillAspect {

 private static final Logger logger =

 Logger.getLogger(LogSkillAspect.class.getName());

 @Around("execution(* dev.davivieira.Person.drive(..))")

 public void logSkill(ProceedingJoinPoint joinPoint) throws Throwable {

 logger.log(Level.INFO, "Executing skill");

 joinPoint.proceed();

 logger.log(Level.INFO, "Skill executed with success");

 }

}

We examine the LogSkillAspect implementation through the following steps:

1. We start by placing the @Aspect and @Component annotations above the

LogSkillAspect class declaration. The @Component is required because the @Aspect

does not make the LogSkillAspect class a Spring bean.

2. We use the Java Logging API to get a Logger object.

3. We use the @Around annotation to specify which methods should be intercepted.

4. The string "execution(* dev.davivieira.Person.drive(..))" we pass matches

the drive method from the Person class. We could use the string "execution(*

dev.davivieira.Person.*(..))" if we wanted to match any method of the Person

class. The * character is a wildcard that can mean different things depending on

where it is placed. For example, when used just after the execution first parentheses,

it matches any method return type. When used after the class name, like Person in

our example, it matches any method name.

5. Note the logSkill method receives a ProceedingJoinPoint as a parameter. This

parameter represents the method being executed. Inside the logSkill method, we

call logger.log(Level.INFO, "Executing skill") before calling

joinPoint.proceed().

6. The proceed method delegates control to the intercepted Person's drive method.

After the drive method executes, logSkill calls logger.log(Level.INFO, "Skill

executed with success").

With the aspect adequately implemented, we can remove the logger from the Person

class:

@Component

class Person {

 // Code omitted

 public void drive () {

 skills.drive(name);

 }

 // Code omitted

}

We get the following output when rerunning the application with the aspect adequately

implemented:

Apr 06, 2024 10:27:37 PM dev.davivieira.LogSkillAspect logSkill

INFO: Executing skill

Apr 06, 2024 10:27:37 PM dev.davivieira.Skills drive

INFO: John Doe knows how to drive

Apr 06, 2024 10:27:37 PM dev.davivieira.LogSkillAspect logSkill

INFO: Skill executed with success

The log starts with the "Executing skill" entry, which refers to the

dev.davivieira.LogSkillAspect class, followed by the "John Doe knows how to

drive" entry, which refers to the dev.davivieira.Skills class, where the drive method

is executed. After the drive method executes, the LogSkillAspect class retakes control

and provides the last "Skill executed with success" log entry.

Aspects, beans, and dependency injection comprise the building blocks of most Spring Boot

applications. Now that we understand how those building blocks work, let us explore how

to bootstrap a new Spring Boot project.

Bootstrapping a new Spring Boot project

As part of the Spring Framework ecosystem, Spring Boot lets developers quickly bootstrap

new Spring applications. The Spring Boot framework is built following the convention-over-

configuration idea. This idea is based on observing how most Spring applications are

developed. Such observations allowed Spring maintainers to identify specific standards

shared across those Spring applications. These standards were based on how a given

Spring component would be configured. The Spring architects found out that most of the

time, the configuration of those Spring components would be the same in many different

Spring applications. So, they thought: why not assume this configuration as the default

convention when this Spring component is used? Hence, this convention-over-configuration

principle ended up being the cornerstone of the Spring Boot.

You get an application with most of its configuration already provided by Spring Boot,

based on the convention of how most applications are configured. Instead of configuring

the application from scratch, you only change parts of the configuration that are relevant

to your project.

Let us start our exploration by learning how to initialize a new Spring Boot project.

Creating a Spring Boot project with Spring Initializr

To start a new Spring Boot project, you can rely on the Spring Initializr, which is available

online on the website https://start.spring.io/, as an IDE plugin (for example, IntelliJ

Ultimate offers it) and as a command line interface (CLI) application you can run from

your machine. You can also start a new Spring Boot project by manually specifying the

Spring Boot dependencies in your Maven or Gradle project.

This book explores the CLI option, which is compatible with Windows, Mac, and Linux

operating systems. Installing the Spring Initializr CLI is outside the scope of this book, but

you can find instructions on how to install it at https://docs.spring.io/spring-

boot/docs/current/reference/html/cli.html.

The following is how we can create a new Spring Boot project using the Spring Initializr CLI:

$ spring init --build=maven --java-version=21 --dependencies=web sample-

project

Using service at https://start.spring.io

Project extracted to '/home/m4ndr4ck/sample-project'

We use the spring init command to set up a new project. The following steps examine

the parameters used to customize the project:

1. The --build parameter allows us to specify which build tool the project uses. Maven

and Gradle are the available build tool options.

2. Next, we can use the --java-version parameter to set the project’s Java version.

3. The --dependencies allow us to provide a comma-separated list of dependencies

required by our project. Here, we pass only the web dependency to enable us to

create RESTful applications.

https://start.spring.io/
https://docs.spring.io/spring-boot/docs/current/reference/html/cli.html

Inside the sample-project directory, you will find a pom.xml with the following

dependencies:

<parent>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-starter-parent</artifactId>

<version>3.2.4</version>

<relativePath/> <!-- lookup parent from repository -->

</parent>

<!-- Code omitted -->

<dependencies>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-test</artifactId>

 <scope>test</scope>

 </dependency>

</dependencies>

The parent block defines the Spring Boot version, which is 3.2.4, and the Bill Of Materials

(BOM) dependency identified by the artifactId spring-boot-starter-parent from

where other Spring dependencies like spring-boot-starter-web and spring-boot-

starter-test come from. These starter dependencies group everything related to a

specific Spring Boot capability. For example, the spring-boot-starter-web dependency

will correctly get all the sub-dependencies required to ensure our Spring Boot project can

be used to serve RESTful HTTP requests, which includes a dependency of the embedded

Tomcat server that makes our Spring Boot project runs as a standalone web application

capable of receiving HTTP requests.

Although it is possible to deploy a Spring Boot project in an application server like

WebLogic, most projects rely on the embedded Tomcat feature, which allows Spring Boot

applications to be easily packed and executed with container technologies like Docker.

Inside the sample-project directory, we have the sample-

project/src/main/resources/application.properties file that lets us configure Spring

Boot. Using the application.yml file to leverage the YAML syntax is also possible.

The spring init command used in our demonstration also creates a Java class at sample-

project/src/main/java/com/example/sampleproject/DemoApplication.java. Use the

following code:

@SpringBootApplication

public class DemoApplication {

 public static void main(String[] args) {

 SpringApplication.run(DemoApplication.class, args);

}

}

The @SpringBootApplication aggregates other annotations like

@EnableAutoConfiguration and @ComponentScan that automatically configure our Spring

Boot application. The SpringApplication.run(DemoApplication.class, args) inside

the main method brings the Spring Boot application alive. We can check it by first

compiling the sample project:

$./mvnw clean package

This command will produce a JAR file located at sample-project/target/sample-

project-0.0.1-SNAPSHOT.jar that we can execute to start the application:

$ java -jar target/sample-project-0.0.1-SNAPSHOT.jar

 . ____ _ __ _ _

 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \

(()___ | '_ | '_| | '_ \/ _` | \ \ \ \

 \\/ ___)| |_)| | | | | || (_| |))))

 ' |____| .__|_| |_|_| |___, | / / / /

 =========|_|==============|___/=/_/_/_/

 :: Spring Boot :: (v3.2.4)

2024-04-07T00:42:57.504+02:00 INFO 31973 --- [demo] [main]

c.example.sampleproject.DemoApplication : Starting DemoApplication v0.0.1-

SNAPSHOT using Java 21.0.1 with PID 31973 (/home/m4ndr4ck/sample-

project/target/sample-project-0.0.1-SNAPSHOT.jar started by m4ndr4ck in

/home/m4ndr4ck/sample-project)

2024-04-07T00:42:57.508+02:00 INFO 31973 --- [demo] [main]

c.example.sampleproject.DemoApplication : No active profile set, falling

back to 1 default profile: "default"

2024-04-07T00:42:58.033+02:00 INFO 31973 --- [demo] [main]

o.s.b.w.embedded.tomcat.TomcatWebServer : Tomcat initialized with port 8080

(http)

2024-04-07T00:42:58.041+02:00 INFO 31973 --- [demo] [main]

o.apache.catalina.core.StandardService : Starting service [Tomcat]

2024-04-07T00:42:58.041+02:00 INFO 31973 --- [demo] [main]

o.apache.catalina.core.StandardEngine : Starting Servlet engine: [Apache

Tomcat/10.1.19]

2024-04-07T00:42:58.057+02:00 INFO 31973 --- [demo] [main]

o.a.c.c.C.[Tomcat].[localhost].[/] : Initializing Spring embedded

WebApplicationContext

2024-04-07T00:42:58.058+02:00 INFO 31973 --- [demo] [main]

w.s.c.ServletWebServerApplicationContext : Root WebApplicationContext:

initialization completed in 506 ms

2024-04-07T00:42:58.239+02:00 INFO 31973 --- [demo] [main]

o.s.b.w.embedded.tomcat.TomcatWebServer : Tomcat started on port 8080

(http) with context path ''

2024-04-07T00:42:58.247+02:00 INFO 31973 --- [demo] [main]

c.example.sampleproject.DemoApplication : Started DemoApplication in 1.055

seconds (process running for 1.278)

As we can see from the output, a Spring Boot web application runs on the 8080 port by

default. We got a Spring Boot application up and running in a few steps. This the starting

point for creating a new Spring Boot project.

Next, we will learn how to create a simple CRUD application with RESTful support using

Spring Boot.

Implementing a CRUD application with Spring Boot

To better understand how different Spring Boot components fit together, in this section, we

will implement an application that creates, retrieves, updates, and deletes persons from a

database, which is fundamentally what a CRUD system does. We will also explore how to

expose a RESTful API that allows us to execute the CRUD operations.

Let us start by configuring the project’s dependencies.

Setting up dependencies

Using Maven as the build tool for our Spring Boot project, we define the following

dependencies in the pom.xml file:

<dependencies>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-data-jpa</artifactId>

 </dependency>

 <dependency>

 <groupId>com.h2database</groupId>

 <artifactId>h2</artifactId>

 <scope>runtime</scope>

 </dependency>

</dependencies>

The spring-boot-starter-web dependency allows the Spring Boot application to expose

RESTful HTTP endpoints. With spring-boot-starter-data-jpa, we can interact with

databases using ORM technologies like Hibernate and Jakarta Persistence. The h2

dependency lets us use an in-memory database while the application is running.

With the dependencies in place, we can configure the Spring Boot application.

Configuring the Spring Boot application

Let us configure our Spring Boot project using the application.yml file:

spring:

 datasource:

 url: jdbc:h2:mem:mydb

 username: sa

 password: password

 driverClassName: org.h2.Driver

 jpa:

 database-platform: org.hibernate.dialect.H2Dialect

Leveraging the YAML syntax, we instruct Spring Boot to use the H2 in-memory database by

providing the connection details through the data source configuration.

To ensure the Spring Boot application can be started, we implement the

SpringSampleApplication class:

@SpringBootApplication

public class SpringSampleApplication {

 public static void main(String... args) {

 SpringApplication.run(SpringSampleApplication.class, args);

 }

}

At this stage, the Spring Boot project can already be up and running. We are ready to start

implementing the application logic. Let’s start with the database entity.

Defining a database entity

We want to use the Spring Boot application to manipulate the Person database entity. To

do so, we first need to implement a database entity class:

@Entity

public class Person {

 @Id

 String email;

 String name;

 // Getters and setters omitted

}

We place the @Entity annotation above the Person class to make it into a Jakarta

Persistence database entity. Spring Data JPA lets us easily interact with databases by using

repository interfaces. Let us explore it further in the next section.

Creating a repository

To handle Person database entities, we need to implement a repository interface:

@Repository

public interface PersonRepository extends CrudRepository<Person, String> {

 Optional<Person> findByEmail(String email);

}

The CrudRepository is an interface provided by Spring with standard database operations

like delete, save, and findAll. Extending from the CrudRepository, we can create our

interface with new operations, like in the above example, by declaring the findByEmail on

the PersonRepository interface. The CrudRepository is a generic type in which we need

to specify the entity class - Person in our example—handled by the repository and the type

used by the entity’s ID, which in our case is a String because the email is the entity’s ID.

Following the convention-over-configuration approach, Spring Data JPA lets us define

methods like findByX, where X can be one of the entity attributes.

With the entity and its repository implemented, we can create a service responsible for

handling database objects.

Implementing a service

It is a common practice to have service classes containing logic related to the database

entities. Also, service classes are sometimes introduced to form a service layer that

intermediates communication with repository classes from the data layer. The following

code can be used to implement the PersonService class:

@Service

public class PersonService {

 private final PersonRepository personRepository;

 @Autowired

 public PersonService(PersonRepository personRepository) {

 this.personRepository = personRepository;

 }

 public Optional<Person> getPerson(String email) {

 return personRepository.findByEmail(email);

 }

 public void addPerson(Person person) {

 personRepository.save(person);

 }

 public void deletePerson(Person person) {

 personRepository.delete(person);

 }

 public List<Person> listAllPersons() {

 return (List<Person>) personRepository.findAll();

 }

}

Spring Boot injects the PersonRepository class into the PersonService's contructor. The

@Autowired annotation is not mandatory here, as Spring Boot understands that the

constructor’s parameters are dependencies that need to be injected. Nevertheless, we

keep it here to emphasize the dependency injection activity that is taking place in the

PersonService's constructor.

At this point, we have the application’s entity, repository, and service classes. The only

thing missing is a controller class that exposes API endpoints.

Exposing API endpoints with a controller

We must implement a controller class to define endpoints that let external clients interact

with the system to allow the Spring Boot application to receive HTTP requests. We do that

by implementing the PersonController class:

@RestController

public class PersonController {

 private final PersonService personService;

 @Autowired

 PersonController(PersonService personService) {

 this.personService = personService;

 }

 @GetMapping("/person")

 private List<Person> getAllPersons() {

 return personService.getAllPersons();

 }

 @PostMapping("/person")

 private void addPerson(@RequestBody Person person) {

 personService.addPerson(person);

 }

 @GetMapping("/person/{email}")

 private Person getPerson(@PathVariable String email) throws Exception {

 return personService.getPerson(email).orElseThrow(() -> new

 Exception("Person not

 found"));

 }

}

We start by placing the @RestController annotation above the PersonController class,

enabling the provision of methods that handle HTTP requests. Note we have annotations

like @GetMapping and @PostMapping. We use them to define the endpoint’s relative URL

and the HTTP method it supports, such as GET or POST.

Note that we also use the @RequestBody annotation with the Person class. This annotation

allows the Spring Boot to map a JSON payload request attributes into class attributes. If we

send a JSON payload with the email and name attributes, Spring Boot will map such

attributes to the Person class attributes.

We can also pass URL parameters as we did with @GetMapping("/person/{email}"),

where the email parameter value is captured by the @PathVariable annotation.

The controller is the last piece of our CRUD application. Let us see how we can play with it

next.

Sending HTTP requests to the Spring Boot application

There are many ways to send HTTP requests to an application. We can use tools like

Insomnia, Postman, or Curl. In this book, we use Curl due to its simplicity and ability to be

used through the command line.

After starting our Spring Boot application, we can send HTTP requests to see how it

behaves. Following, we cover the steps for sending the requests.

1. Let us start by creating some persons:

curl -X POST localhost:8080/person -H 'Content-type:application/json' -d '{

curl -X POST localhost:8080/person -H 'Content-type:application/json' -d '{

curl -X POST localhost:8080/person -H 'Content-type:application/json' -d '{

2. We can confirm the Person was indeed created by making the following request:

$ curl -s localhost:8080/person/person1@davivieira.dev | jq

{

 "email": "person1@davivieira.dev",

 "name": "Person 1"

}

The jq is a command-line tool that formats JSON data to make it easier to read. If you

do not have jq installed on your machine, you can execute only curl, but the JSON

output will not be formatted.

3. Next is how we can get all persons from the database:

curl -s localhost:8080/person | jq

[

 {

 "email": "person1@davivieira.dev",

 "name": "Person 1"

 },

 {

 "email": "person2@davivieira.dev",

 "name": "Person 2"

 },

 {

 "email": "person3@davivieira.dev",

 "name": "Person 3"

 }

]

The /persons endpoint returned all person entries available in the Spring Boot application

database, as expected.

In this section, we learned how Spring Boot can orchestrate different application

components like entity, repository, service, and controller classes to quickly provide

capabilities to handle database entities and expose a RESTful API. Next, we will learn how

to compile and run the sample project accompanying this chapter.

Compiling and running the sample project

The sample project from this chapter is quite similar to the CRUD application we developed

in the previous session. The system enables clients to manage an individual’s records from

the database through a RESTful API.

You can clone the application source code from the GitHub repository at

https://github.com/bpbpublications/Java-Real-World-

Projects/tree/main/Chapter%2005.

You need the JDK 21 or above and Maven 3.8.5 or above installed on your machine.

It is also required to have Curl installed because we use it to send HTTPS requests to the

application.

To compile the project, go to the Chapter 5 directory from the book’s repository. From there,

you need to execute the following command:

$ mvn clean package

Maven will create a JAR file that we can use to run the application by running the following

command:

$ java -jar target/chapter05-1.0-SNAPSHOT.jar

With the application running, you can use the following command to create a new person

record:

$ curl -X POST localhost:8080/person -H 'Content-type:application/json' -d

'{"email": "john.doe@davivieira.dev", "name": "John Doe"}'

The following command lets you retrieve an existing person from the application:

$ curl -s localhost:8080/person/john.doe@davivieira.dev

{"email":"john.doe@davivieira.dev","name":"John Doe"}

The output is a JSON response with personal data retrieved from the database by the

Spring Boot application.

Conclusion

https://github.com/bpbpublications/Java-Real-World-Projects/tree/main/Chapter%2005

This chapter taught us how powerful Spring Boot can be for developing enterprise

applications. Starting with Spring fundamentals, we grasped essential concepts like beans

representing Java objects managed by Spring through its context. To fully tap into the

benefits provided by Spring beans, we explored how the Spring dependency injection

mechanism lets us inject beans into other beans. In closing the fundamentals topic, we

learned about aspect-oriented programming (AOP) and how the Spring AOP lets us add

new application behaviors without modifying existing code. We checked how easy it is to

start a new Spring Boot application using the Spring Initializr CLI. Finally, we developed a

CRUD Spring Boot application with RESTful support to understand how different

components are arranged in a Spring Boot project.

In the next chapter, we continue our journey through Java frameworks by exploring

Quarkus’s cloud-native approach. We will learn the benefits Quarkus provides and how to

kickstart a new Quarkus project that will serve as the foundation for developing a system

exploring Quarkus features such as Quarkus DI, Quarkus REST, and Panache.

CHAPTER 6

Improving Developer Experience with

Quarkus

Introduction

Designed to be a cloud-first framework, Quarkus presents an attractive alternative for

creating applications to run in the cloud. Based on industry standards through

specifications provided by projects like Jakarta EE and Microprofile, Quarkus helps

developers build cloud-native applications by offering through its framework libraries

supporting dependency injection, data persistence, RESTful APIs, and much more.

Quarkus manages to conciliate cloud-native and enterprise development practices

gracefully, bringing the best of both worlds and making developers’ lives easier. So, this

chapter introduces Quarkus and covers some of its features most frequently used in

enterprise Java applications running in the cloud.

Structure

The chapter covers the following topics:

• Assessing Quarkus benefits
• Kickstarting a new Quarkus project
• Building a CRUD app with Quakus
• Writing native applications
• Compiling and running the sample project

Objectives

By the end of this chapter, you will learn why Quarkus can be a viable framework choice for

your next Java project. Once you grasp how fluid software development can be when using

Quarkus, you will get why it can help boost developer productivity. You will also acquire the

skills to build modern Java applications by learning the Quakus way to develop enterprise

software.

Assessing Quarkus benefits

Previously, Java development was not associated with frameworks capable of empowering

developers to build applications optimized to tap into the advantages provided by cloud

environments. Before cloud-native development practices became as widespread as they

are today, it was common to see many Java projects relying on old-fashioned application

servers like WebSphere or Weblogic. Anyone who has ever worked with such technologies

understands how nontrivial it is to set up a local development environment with a properly

configured application server.

With the decreasing cost of computing resources, virtualization technologies like containers

have become popular, allowing faster development. Developers embraced a new approach

where instead of packing their Java systems to run in old-fashioned application servers,

they started to pack them in Docker containers to run in Kubernetes clusters. However, it

was not about just packing the application to run in a different environment. Having a Java

application running in the cloud created opportunities and challenges that forced

developers to think of new ways to design their applications to extract the most of what

cloud environments could provide.

Positioning itself as an alternative to frameworks from an era where cloud computing did

not exist, Quarkus was built from scratch as a cloud-first development framework for Java.

It is cloud-first because the whole framework is designed to help developers create

applications capable of benefiting from the advantages offered by cloud technologies,

especially containerization. Suppose you are starting a new Java project and intend to run it

in a Kubernetes cluster. In that case, Quarkus can help with features that optimize the

execution of your application inside Kubernetes.

One of Quarkus’s most vital points is its reliance on industry standards to provide the

capabilities most enterprises need. Such standards are based on rigorous specifications

determining how a given feature should work. For example, the Quarkus dependency

injection mechanism is based on the Jakarta EE (formerly Java EE) Contexts and

Dependency Injection (CDI) specification, which has been continuously adjusted and

improved for many years. Building your application on Quarkus means you are adhering to

consistent and stable industry standards, making your application more robust.

Regarding computing resource utilization, Quarkus has built-in native image support

backed by GraalVM. This technology allows Java applications to be compiled into native

code instead of bytecode. Native code considerably decreases the starting time of Quarkus

applications, making them suitable for use cases where the time required to start an

application directly impacts cloud resource costs.

Besides being cloud-first and compliant with industry standards, Quarkus is designed to

enhance developer productivity and joy. Features like live coding let developers see the

impact of their code changes without having to restart the application, saving precious

developer time that would be otherwise spent stopping, recompiling, and starting the

application again.

Quarkus is a vast framework with numerous features for many different scenarios. So, this

chapter focuses only on the fundamental framework components used in most Quarkus

projects. We will start by learning how simple it is to bootstrap a new Quarkus application.

After we have our Quarkus app up and running, we will explore how to let Quarkus DI

manage our application’s objects through the CDI. Next, we learn how Quarkus interacts

with databases using Hibernate ORM and Jakarta Persistence. Finally, we explore how to

create RESTful endpoints with Quarkus REST.

We will start by learning how to kickstart a new Quarkus project.

Kickstarting a new Quarkus project

Bootstrapping a Quarkus application from scratch involves setting it up with a build tool like

Maven or Gradle to get the proper dependencies and provide the correct configuration to

compile and run the Quarkus project. Fortunately, we do not need to do it manually

because we can use Quarkus CLI to set up new projects quickly.

Quarkus CLI is available for Windows, Mac, and Linux operating systems. You can find at

https://quarkus.io/guides/cli-tooling instructions on how to install Quarkus CLI on your

machine.

Over the next steps, we will bootstrap a Quarkus project.

1. Once you have Quarkus CLI installed, the following is how you can create a new

Quarkus project using the quarkus command:

$ quarkus create app my-project

Looking for the newly published extensions in registry.quarkus.io

applying codestarts...

 java

 maven

 quarkus

 config-properties

 tooling-dockerfiles

 tooling-maven-wrapper

 rest-codestart

[SUCCESS] quarkus project has been successfully generated in:

--> /home/m4ndr4ck/my-project

Navigate into this directory and get started: quarkus dev

The command above creates a new Quarkus project in the my-project directory. By

default, it uses Maven as the build tool, but Gradle and JBang are also supported. We

pass the app option to create a Quarkus project that runs as a server application. It is

also possible to create CLI applications with the cli option. Java is the default

language, but Kotlin and Scala are also supported.

2. Once the Quarkus project is created, we can check which extensions are enabled. For

that, we need to enter into the project’s directory and execute the following

command:

$ quarkus ext ls

Looking for the newly published extensions in registry.quarkus.io

Current Quarkus extensions installed:

✬ ArtifactId Extension Name

✬ quarkus-rest REST

To get more information, append `--full` to your command line.

By default, new Quarkus projects come only with the REST extension enabled. With

the below command, we can list all available extensions that can be installed:

https://quarkus.io/guides/cli-tooling

$ quarkus ext list --concise -i

Current Quarkus extensions installable:

✬ ArtifactId Extension Name

✬ blaze-persistence-integration-quarkus-3 Blaze-Persistence

✬ camel-quarkus-activemq Camel ActiveMQ

✬ camel-quarkus-amqp Camel AMQP

✬ camel-quarkus-arangodb Camel ArangoDb

...

...

The extension list is quite long, so we display only some of the first entries in the

output above.

3. We can add a new extension to an existing Quarkus project by running the following

command inside the project’s directory:

$ quarkus ext add quarkus-jdbc-h2

[SUCCESS] Extension io.quarkus:quarkus-jdbc-h2 has been installed

The above command changes the pom.xml file of the Quarkus project to include the

H2 dependency:

<dependency>

 <groupId>io.quarkus</groupId>

 <artifactId>quarkus-jdbc-h2</artifactId>

</dependency>

We use the following command to remove the H2 dependency:

$ quarkus ext rm quarkus-jdbc-h2

[SUCCESS] Extension io.quarkus:quarkus-jdbc-h2 has been uninstalled

If we recheck the pom.xml file, the H2 dependency will no longer be listed there.

4. Once we finish adding Quarku’s project extensions, we can start the application by

executing the following command:

$ quarkus dev

Executing this command will trigger the compilation and startup in the development

mode of the Quarkus application. When in the development mode, Quarkus provides

a user interface at the URL http://localhost:8080/q/dev-ui/welcome, which is

shown in the following figure:

http://localhost:8080/q/dev-ui/welcome

Figure 6.1: Quarkus Dev UI

Loading this page in your browser confirms the Quarkus application is up and running.

As part of the bootstrap process, the Quarkus CLI provides a Java class at

src/main/java/org/acme/GreetingResource.java with the following code:

@Path("/hello")

public class GreetingResource {

 @GET

 @Produces(MediaType.TEXT_PLAIN)

 public String hello() {

 return "Hello from Quarkus REST";

 }

}

The GreetingResource class exposes a REST endpoint that we can test by sending an

HTTP GET request to the application:

$ curl localhost:8080/hello

Hello from Quarkus REST

It shows the Quarkus application correctly handles HTTP requests.

If you are familiar with Spring Boot, you will appreciate that Quarkus eliminates the need

for a bootstrap class to start the application. While it is still an option for customizing the

start-up process, Quarkus is designed to start the application without it.

Now that we have the Quarkus application up and running, let us implement a CRUD

project using fundamental Quarkus features like Quarkus DI, Hibernate, Panache, and

Quarkus REST.

Building a CRUD app with Quakus

This section covers some of the fundamental Quarkus features for developing back-end

applications that persist data and expose a REST API. After learning essential Quarkus

components like Quarkus DI, Hibernate, and Panache, we will implement, using Quarkus

REST, a CRUD-based account system allowing us to manage account credentials. Let us

start our exploration with Quarkus DI.

Injecting dependencies with Quarkus DI

The ability to inject dependencies is an essential feature for most development

frameworks, and Quarkus is no different. At the beginning of the chapter, we learned that

Quarkus relies on industry specifications to provide most of its features. Hence, it

implements the Jakarta Contexts and Dependency Injection (CDI) 4.0 specification,

allowing developers to inject dependencies in a Quarkus application. Quarkus DI, also

known as ArC, is the framework component that implements such a specification.

Compared to Spring, Quarkus achieves the exact outcome of allowing developers to create,

inject, and intercept managed beans. Spring and Quarkus differ in how the dependency

injection activity takes place. To get an idea of how Quarkus injects dependencies, we need

to learn about managed beans and how they are produced and injected within a Quarkus-

based application.

Let us learn more about managed beans.

Managed beans

A managed bean is a Java object controlled by the framework. In Spring, managed beans

live in the application context. In Quarkus, they live in what is called the container, which is

the framework environment where the application is running. The managed beans’ lifecycle

is controlled by the container that decides when managed beans are created and

destroyed. In Quarkus, we can create beans at different levels, including the class, method,

and field levels. It is also possible to define the bean scope to determine how visible it will

be to other beans in the application. Some of the scopes we can use in a Quarkus project

are application-scoped, singleton, and request-scoped. Next, we explore how to create and

inject beans using such scopes.

Application-scoped beans

Whenever we need to provide an object that should be accessible from any place in the

application, we can use application-scoped beans. An application-scoped bean object is

created once and lives for the entire application runtime. The following is how we can

create an application-scoped bean:

@ApplicationScoped

public class Person {

 private String name = "John Doe";

 public String getName() {

 return name;

 }

}

That is a class-level application-scoped bean because we put the @ApplicationScoped

annotation on top of the Person class. Following is how we can use this bean in another

part of the application:

@Path("/person")

public class SampleApplication {

 @Inject

 Person person;

 @GET

 @Produces(MediaType.TEXT_PLAIN)

 public String personName() {

 return person.getName(); // John Doe

 }

}

The SampleApplication is annotated with @Path("/person"), making it a RESTful

endpoint. It contains a Person attribute annotated with @Inject. We call injection point

class attributes annotated with @Inject. When the Quarkus application starts, it tries to

locate a managed bean that can be assigned to an injection point. Because we have

annotated the Person class with the @ApplicationScoped, Quarkus can find a managed

bean Person object and assign it to the person attribute injection point. For those from the

Spring world, the @Inject annotation works similarly to the @Autowired annotation.

It is worth noting that application-scoped beans are lazy loaded, which means their

instances are created only when one of their methods or attributes is invoked. In our

previous example, the Person bean instance is created only when its getName method is

called.

An alternative to application-scoped beans is the singleton beans. Let us check how they

work.

Singleton beans

Like application-scoped beans, singleton beans are also created only once and made

available for the entire application. Contrary to application-scoped beans, singleton beans

are eagerly loaded, appearing when the Quarkus application starts. The following is how we

can create a singleton bean:

@Singleton

public class Location {

 public List<String> cities = List.of("Vancouver", "Tokyo", "Rome");

 @Produces

 List<String> countries() {

 return List.of("Canada", "Japan", "Italy");

 }

}

Here, we have two beans, one created at the class level through the @Singleton

annotation and the other at the method level with the @Produces annotation. The following

code is how we can inject those beans:

@Path("/location")

public class SampleApplication {

 @Inject

 Location location;

 @Inject

 List<String> countries;

 @GET

 @Produces(MediaType.TEXT_PLAIN)

 public List<String> location() {

 return Stream

 .of(countries, location.cities)

 .flatMap(Collection::stream)

 .toList();

 // [Canada, Japan, Italy, Vancouver, Tokyo, Rome]

 }

}

Consider the two injection points, represented by the location and country attributes.

Upon the start of a Quarkus application, these attributes are eagerly assigned with bean

instances that are compatible with their types. In this case, injecting Location would be

enough to allow direct access to both the cities field and countries method from the

Location singleton bean instance. However, we introduce a new bean based on the

countries method to illustrate a specific use case: the possibility of having beans at the

method level.

Let us explore the practical application of request-scoped beans in Quarkus. This

understanding will equip us with the knowledge to effectively manage beans in real-world

scenarios.

Request-scoped beans

Both application and singleton-scoped beans are accessible from any part of the system

and last for as long as the Quarkus application is alive. On the other hand, request-scoped

beans let us create objects available only in the context of an HTTP request. Once the

request is finished, the request-scoped bean object ceases to exist. Every HTTP request the

Quarkus application receives will trigger the creation of a new request-scoped bean object.

Following is an example showing how to use request-scoped beans:

@RequestScoped

public class Account {

 private String name;

 private String email;

 private int randomId;

 @PostConstruct

 private void setAccountAttributes() {

 this.name = "John Doe";

 this.email = "john@davivieira.dev";

 this.randomId = new Random().nextInt(50);

 }

 @Override

 public String toString() {

 return "Account{" +

 "name='" + name + '\'' +

 ", email='" + email + '\'' +

 ", randomId=" + randomId +

 '}';

 }

}

The @RequestScoped annotation turns the Account class into a request-scoped bean. Note

that we have the @PostConstruct annotation above the setAccountAttributes method,

which initializes the class attributes after creating the bean instance. Every time a new

Account instance is created, the setAccountAttributes will be executed to initialize all

the attributes, including the random attribute that receives a random number. The following

is how we use the Account bean:

@Path("/account")

public class SampleApplication {

 @Inject

 Account account;

 @GET

 @Produces(MediaType.TEXT_PLAIN)

 public Account account() {

 return account;

 //#1 Account{name='John Doe', email='john@davivieira.dev',

 randomId=49}

 //#2 Account{name='John Doe', email='john@davivieira.dev',

 randomId=23}

 //#3 Account{name='John Doe', email='john@davivieira.dev',

 randomId=27}

 }

}

The comments show which response we may get every time we send a GET request to

http://localhost:8080/account. Note the randomId changes every time a new request is

sent, which confirms that new Account beans are being created for each request.

In addition to the application-scoped, singleton, and request-scoped, there are also the

dependent, session, and other customized scopes. Those additional scopes provide

different bean behaviors that are helpful in specific situations; however, most of the time,

you will be using the scopes we covered in this section.

Quarkus comes with solid support for data persistence. Let us explore it next.

Persisting data with Hibernate

Quarkus has built-in JDBC support for many different database technologies, so you can

easily connect your Quarkus application to a database. It also relies on Hibernate ORM as

the Jakarta Persistence implementation. Quarkus also has a library called Panache, which

significantly enhances the experience of handling Jakarta Persistence entities. So, in this

section, we explore all the aspects related to establishing a database connection and

handling entities. We start by learning how to make Quarkus ready to work with databases.

Setting up Quarkus to work with databases

To enable database support to an existing Quarkus project, we need to add the required

extensions:

$ quarkus ext add quarkus-hibernate-orm quarkus-hibernate-orm-panache

quarkus-jdbc-h2

[SUCCESS] Extension io.quarkus:quarkus-hibernate-orm has been installed

[SUCCESS] Extension io.quarkus:quarkus-hibernate-orm-panache has been

installed

[SUCCESS] Extension io.quarkus:quarkus-jdbc-h2 has been installed

The quarkus-hibernate-orm and quarkus-hibernate-orm-panache extensions add

Hibernate ORM support with the Quarkus Panache library. The quarkus-jdbc-h2 extension

adds the H2 in-memory JDBC driver to the Quarkus application. Once we have the database

dependencies in place, we can configure the database connection and how Hibernate

should behave through the application.properties file:

quarkus.datasource.jdbc.url=jdbc:h2:mem:default

quarkus.datasource.username=admin

quarkus.datasource.password=password

quarkus.hibernate-orm.database.generation=drop-and-create

As we use the H2 in-memory database, settings like username and password are optional

because Quarkus already provides them through a default configuration. However, we need

to specify the JDBC URL, which, in our case, refers to the H2 database that will exist only

during the application runtime. By setting quarkus.hibernate-orm.database.generation

to drop-and-create, we instruct Quarkus to create database tables based on the Jakarta

Persistence entity classes defined in the Quarkus application. When the drop-and-create

option is used with ordinary databases like MySQL or PostgreSQL, it recreates existing

http://localhost:8080/account

tables at every application start. Quarkus is quite flexible regarding database configuration,

providing different ways to control the database application interaction.

Having the correct database dependencies and the database connection adequately

configured, we are ready to explore how Quarkus handles databases. Let us start exploring

how to use Hibernate to handle database entities in a Quarkus application.

Handling database entities with EntityManager

Let us start by implementing an entity class:

@Entity

public class Account {

 @Id

 private String email;

 private String password;

 // Code omitted

}

We can implement an AccountRepository class to handle Account entities:

@ApplicationScoped

@Transactional

public class AccountRepository {

 @Inject

 EntityManager entityManager;

 public void createAccount(String email, String password) {

 entityManager.persist(new Account(email, password));

 }

 public Account getAccount(String email) {

 return entityManager.find(Account.class, email);

 }

}

We turn the AccountRepository into an application-scoped bean so we can inject and use

it in other application areas. This repository class relies on the EntityManager that Quarkus

injects. Since we have already configured the JDBC database connection and the Hibernate

ORM dependency, a valid EntityManager bean is injected by Quarkus into the

AccountRepository class, making it ready to handle any database entity. Note the usage

of the @Transactional annotation; we need it whenever writing operations occur in the

database. The createAccount method is responsible for the database writing operation in

the example above.

The following is how we can use this AccountRepository class in a Quarkus CLI

application:

@Command(name = "SampleCLIQuarkusApp", mixinStandardHelpOptions = true)

public class SampleCLIQuarkusApp implements Runnable {

 @Inject

 AccountRepository accountRepository;

 @Override

 public void run() {

 accountRepository.createAccount("user1@davivieira.dev", "pass");

 accountRepository.createAccount("user2@davivieira.dev", "pass");

 accountRepository.createAccount("user3@davivieira.dev", "pass");

System.out.println(accountRepository.getAccount("user2@davivieira.dev"));

 // Account{email='user2@davivieira.dev', password='pass'}

 }

}

As an alternative to using the EntityManager directly, Quarkus provides a convenient

Panache library that simplifies handling database entities. Let us explore it.

Simplifying database entity handling with Panache

Built on top of Hibernate ORM and Jakarta Persistence, Panache empowers developers to

handle database entities more efficiently. It relies on the active record and repository

patterns, giving more flexibility to database entity mapping activities. Let us see first how

Panache applies the repository pattern.

Panache with repository pattern

We have been doing the repository pattern so far in this section by declaring a repository

class and using it to handle database entities. We did that already using the

EntityManager in the AccountRepository class. Let us refactor that repository class to

use Panache:

@ApplicationScoped

@Transactional

public class AccountRepository implements PanacheRepository<Account> {

 public Account findByEmail(String email) {

 return find("email", email).firstResult();

 }

}

We do not need to worry about injecting an EntityManager because Panache already gives

this. Note we are implementing the PanacheRepository interface. This is a requirement to

turn the class into a Panache repository class. This interface has built-in operations like

persist, findById, and delete, which we can use out of the box. It is also possible to

define our operations as we did in the example above with the findByEmail method. The

find method provided by Panache lets us query the database entity using one of its

attributes. We have the @Transactional annotation because the persist method that

changes the database is inherited from the PanacheRepository. Remember that whenever

having database writing operations in Quarkus, we need the @Transactional annotation.

The following is what our sample application looks like with the refactored version of the

AccountRepository class:

@Command(name = "SampleCLIQuarkusApp", mixinStandardHelpOptions = true)

public class SampleCLIQuarkusApp implements Runnable {

 @Inject

 AccountRepository accountRepository;

 @Override

 public void run() {

 accountRepository.persist(new Account("user1@davivieira.dev",

 "pass"));

 accountRepository.persist(new Account("user2@davivieira.dev",

 "pass"));

 accountRepository.persist(new Account("user3@davivieira.dev",

 "pass"));

System.out.println(accountRepository.findByEmail("user2@davivieira.dev"));

 }

}

Observe that we are calling the persist method from the AccountRepository class. The

persist is a built-in operation provided by Panache that lets us save entities into the

database.

Let us now see how we use the active record pattern to achieve the same results we

achieved using the repository pattern.

Panache with active record pattern

The idea behind the active record pattern is that instead of having separated entity and

repository classes, we merge these classes into a single class representing the entity itself

and the database operations we can do with such an entity. To see how it works, let us

refactor the Account class:

@Entity

public class Account extends PanacheEntityBase {

 @Id

 private String email;

 private String password;

 public static Account findByEmail(String email) {

 return find("email", email).firstResult();

 }

 // Code omitted

}

You must extend from the PanacheEntity or PanacheEntityBase abstract classes to apply

the active record pattern. We are extending from PanacheEntityBase because our entity

has the @Id annotation. Otherwise, Panache would handle the unique identification of the

entity through PanacheEntity. Whether we are extending from PanacheEntity or

PanacheEntityBase, the class extending it will inherit a set of built-in database operations

like persist and delete. Similar to what we did with the repository pattern approach when

applying the active record pattern with Panache, we can define our customized database

operations inside the entity class like we did when defining the findByEmail method in the

Account class.

The following is how we can handle Account entities using the active record pattern

approach:

@Command(name = "SampleCLIQuarkusApp", mixinStandardHelpOptions = true)

public class SampleCLIQuarkusApp implements Runnable {

 @Override

 @Transactional

 public void run() {

 new Account("user1@davivieira.dev", "pass").persist();

 new Account("user2@davivieira.dev", "pass").persist();

 new Account("user3@davivieira.dev", "pass").persist();

 System.out.println(Account.findByEmail("user2@davivieira.dev"));

 }

}

The @Transactional annotation is placed above the run method because, inside it, we

have database writing operations triggered when we call persist after creating the

Account object. With the active record pattern approach, we concentrate everything on the

Account class, which establishes the database table mapping and provides customized

database operations like findByEmail.

Deciding between the repository and active record patterns is something that the needs of

your project will dictate.

Having covered the fundamental aspects of how Quarkus deals with databases, let us

explore how to build an API with Quarkus.

Implementing an API with Quarkus REST

As with most Quarkus features, the Quarkus support for REST APIs is based on the Jakarta

REST specification. The extension Quarkus REST fully implements the Jakarta specification,

allowing developers to implement reactive and non-reactive endpoints. The Quarkus REST

also supports JSON payloads through the Jackson or JSON-B libraries.

In this section, we will walk you through the creation of a practical Quarkus REST API. This

API is capable of creating, retrieving, and deleting data from a database. We will use

examples based on the Account database entity, which we have been working on in

previous sections.

Next, we will look at the steps to implement the API:

1. Before we jump into the API implementation, let us first recap the Account entity

class structure using the following code:

@Entity

public class Account {

 @Id

 private String email;

 private String password;

 // Code omitted

}

2. To allow handling Account entities, we have the following AccountRepository class:

@ApplicationScoped

public class AccountRepository implements PanacheRepository<Account> {

 public Account findByEmail(String email) {

 return find("email", email).firstResult();

 }

 public void deleteByEmail(String email) {

 delete("email", email);

 }

}

Note that we have a new method called deleteByEmail that deletes Account entities

based on the email address.

With entity and repository classes adequately implemented, we can implement REST

endpoints to allow changes to the database.

3. The following is how we can start the implementation of the AccountEndpoint class:

@Path("/account")

public class AccountEndpoint {

 @Inject

 AccountRepository accountRepository;

 // Code omitted

}

We start by placing the @Path("/account") annotation above the class name. By

doing that, we establish a URL path that will be part of all endpoints defined inside

the AccountEndpoint class.

4. We first implement the endpoint that allows creating new accounts:

@Path("/account")

public class AccountEndpoint {

 @Inject

 AccountRepository accountRepository;

 @POST

 @Transactional

 @Consumes(MediaType.APPLICATION_JSON)

 @Produces(MediaType.APPLICATION_JSON)

 public void create(Account account) {

 accountRepository.persist(account);

 }

 // Code omitted

}

HTTP requests that create resources should be handled as POST requests, so we have

the @POST annotation in the create method. The @Transactional annotation is also

present because this endpoint triggers a database writing operation that must be

done inside a transaction. With the @Consumer and @Produces annotations, we can

determine which media type this endpoint consumes and produces:

MediaType.APPLICATION_JSON for both.

5. Moving on, we implement the endpoints that allow us to retrieve accounts:

@Path("/account")

public class AccountEndpoint {

 @Inject

 AccountRepository accountRepository;

 // Code omitted

 @Path("/{email}")

 @GET

 public Account get(@PathParam("email") String email) {

 return accountRepository.findByEmail(email);

 }

 @Path("/all")

 @GET

 public List<Account> getAll() {

 return accountRepository.listAll();

 }

 // Code omitted

}

The endpoint defined by the get method receives GET requests from the

/account/{email} path. The {email} is a path parameter mapped to the endpoint

method parameter at @PathParam("email") String email. We also define an

additional GET endpoint at /account/all that retrieves all existing accounts.

6. Finally, we define an endpoint to delete accounts:

@Path("/account")

public class AccountEndpoint {

 @Inject

 AccountRepository accountRepository;

 // Code omitted

 @Path("/{email}")

 @Transactional

 @DELETE

 public void delete(@PathParam("email") String email) {

 accountRepository.deleteByEmail(email);

 }

 // Code omitted

}

The endpoint defined by the delete method receives HTTP DELETE requests at

/account/{email} that use the email address to locate and delete Account entities

from the database. The @Transactional annotation is required because deletion is a

writing database operation.

Once the Quarkus application is up and running, it is time to get hands-on with the API. We

can interact with it by sending various requests.

We send POST requests to create new accounts:

$ curl -H "Content-Type: application/json" -XPOST --data

'{"email":"user1@davivieira.dev","password":"123"}' localhost:8080/account

$ curl -H "Content-Type: application/json" -XPOST --data

'{"email":"user2@davivieira.dev","password":"123"}' localhost:8080/account

$ curl -H "Content-Type: application/json" -XPOST --data

'{"email":"user3@davivieira.dev","password":"123"}' localhost:8080/account

We can send the following GET request to retrieve a specific account:

$ curl -s localhost:8080/account/user1@davivieira.dev| jq

{

 "email": "user1@davivieira.dev",

 "password": "123"

}

The following is how we can retrieve all accounts:

$ curl -s localhost:8080/account/all| jq

[

 {

 "email": "user1@davivieira.dev",

 "password": "123"

 },

 {

 "email": "user2@davivieira.dev",

 "password": "123"

 },

 {

 "email": "user3@davivieira.dev",

 "password": "123"

 }

]

To delete an account, we need to send an HTTP DELETE request:

curl -XDELETE localhost:8080/account/user2@davivieira.dev

If we send a new request to get all accounts, we can confirm that one of the accounts no

longer exists in the database:

$ curl -s localhost:8080/account/all| jq

[

 {

 "email": "user1@davivieira.dev",

 "password": "123"

 },

 {

 "email": "user3@davivieira.dev",

 "password": "123"

 }

]

Having working REST endpoints in a Quarkus application does not take much. The

framework lets us easily express how the application endpoints should behave through

intuitive annotations.

Let us explore next how to write native applications using Quarkus.

Writing native applications

A typical Java application is based on classes compiled into bytecode that runs inside a

Java Virtual Machine (JVM). The JVM is the software we install in the operating system

we want to run the Java application. Once compiled as bytecode, Java classes can be

executed on different operating systems like Windows, Mac, and Linux, as long as those

systems have a JVM installed on them. The JVM provides benefits like garbage collection

and optimizations that let us efficiently execute Java applications. However, such benefits

come with a price. A JVM running and performing all the warm-up activities required to

execute a Java application consumes computing resources, especially memory.

Before a Java application becomes ready to operate and execute its tasks, the JVM must

spend time processing and optimizing the application’s bytecode. In most use cases,

waiting for the application to start and allocating the necessary memory to run it inside a

JVM is fine. However, there are scenarios where speeding up the application startup and

using as little memory as possible is crucial. The usage of Java applications for one-time

executions, like those offered by function-as-service solutions such as the Amazon Web

Services (AWS) Lambda, is one of the use cases where Java applications with smaller

memory footprint provide benefits because those function-as-service solutions charge

costs based on how much memory the system uses and how much time the system needs

to execute its operations. Reducing the amount of memory a Java application uses and the

time required to start such an application is possible. By doing so, we can save money,

especially when running many sort-lived Java applications is necessary.

Let us explore a technology called native image that enables us to create memory-

optimized versions of Java applications.

Introducing the native image

GraalVM is the Java Development Kit (JDK) that provides a technology called native

image. This technology relies on the ahead-of-time compilation technique to compile a Java

application into a standalone executable that can be executed directly in the operating

system without having a Java Virtual Machine (JVM) installed. An ordinary Java

application is compiled into bytecode that executes inside the JVM. GraalVM, on the other

hand, compiles a Java application into native code that executes directly in the targeted

operating system.

Quarkus relies on GraalVM to provide support for native image compilation. Next, we will

learn how to compile Quarkus applications into native images.

Creating a native executable with Quarkus

On a Maven-based project, we can configure a profile in the pom.xml file that lets us

compile a native executable of the Quarkus application:

<?xml version="1.0" encoding="UTF-8"?>

<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

https://maven.apache.org/xsd/maven-4.0.0.xsd"

xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<!-- Code omitted -->

<profiles>

 <profile>

 <id>native</id>

 <activation>

 <property>

 <name>native</name>

 </property>

 </activation>

 <properties>

 <skipITs>false</skipITs>

 <quarkus.native.enabled>true</quarkus.native.enabled>

 </properties>

 </profile>

</profiles>

<!-- Code omitted -->

</project>

Both the profile ID and name are defined as native. We use the profile name later when

executing the mvn command to compile the native executable. The native compilation is

activated through the quarkus.native.enabled property set as true. After creating the

Maven profile, we can create a native executable by executing the following command:

$ mvn clean package -Pnative

...

Produced artifacts:

 /project/chapter06-1.0.0-SNAPSHOT-runner (executable)

 /project/chapter06-1.0.0-SNAPSHOT-runner-build-output-stats.json

(build_info)

...

Instead of producing a JAR file, the command above creates a native executable called

chapter06-1.0.0-SNAPSHOT-runner that we can execute by issuing the following

command from within the project’s root directory:

$./target/chapter06-1.0.0-SNAPSHOT-runner

__ ____ __ _____ ___ __ ____ ______

 --/ __ \/ / / / _ | / _ \/ //_/ / / / __/

 -/ /_/ / /_/ / __ |/ , _/ ,< / /_/ /\ \

--________/_/ |_/_/|_/_/|_|____/___/

2024-09-08 21:47:13,318 INFO [io.quarkus] (main) chapter06 1.0.0-SNAPSHOT

native (powered by Quarkus 3.9.4) started in 0.016s. Listening on:

http://0.0.0.0:8080

2024-09-08 21:47:13,318 INFO [io.quarkus] (main) Profile prod activated.

2024-09-08 21:47:13,318 INFO [io.quarkus] (main) Installed features:

[agroal, cdi, hibernate-orm, hibernate-orm-panache, jdbc-h2, narayana-jta,

rest, rest-jackson, smallrye-context-propagation, vertx]

Notice that the first logged line mentions that the Quarkus application runs in the native

mode.

To wrap up what we have learned in this chapter, in the next section, we run the Account

application and send sample requests to ensure it is working as expected.

Compiling and running the sample project

This chapter’s sample project is based on the examples we have worked with during the

previous sections. It is a Quarkus CRUD application that manages account data from a

database.

You can clone the application source code from the GitHub repository at

https://github.com/bpbpublications/Java-Real-World-

Projects/tree/main/Chapter%2006.

You need the JDK 21 or above and Maven 3.8.5 or above installed on your machine. To test

the application endpoints, you must have curl or any other HTTP client of your preference.

The jq command line tool is optional but helps format the JSON output generated by curl.

The steps are as follows:

1. Execute the following command to compile the application:

$ mvn clean package

2. After compiling and having generated the JAR file, we can run the following command

to start the Quarkus application:

$ java -jar target/chapter06-1.0.0-SNAPSHOT-runner.jar

__ ____ __ _____ ___ __ ____ ______

 --/ __ \/ / / / _ | / _ \/ //_/ / / / __/

 -/ /_/ / /_/ / __ |/ , _/ ,< / /_/ /\ \

--________/_/ |_/_/|_/_/|_|____/___/

2024-04-21 18:43:26,586 INFO [io.quarkus] (main) chapter06 1.0.0-SNAPSHOT

2024-04-21 18:43:26,587 INFO [io.quarkus] (main) Profile prod activated.

2024-04-21 18:43:26,588 INFO [io.quarkus] (main) Installed features: [agr

3. Once the Quarkus application is running, we test it by sending HTTP requests. The

following is how we can create a new account:

$ curl -H "Content-Type: application/json" --data '{"email":"user1@davivie

4. To confirm the account was created, we can send the following request:

$ curl -s localhost:8080/account/user1@davivieira.dev |jq

{

 "email": "user1@davivieira.dev",

 "password": "123"

}

The JSON response confirms the account was created when we sent the first request.

In the previous steps, we compiled, started, and tested the sample project by sending HTTP

requests to create and retrieve an account.

https://github.com/bpbpublications/Java-Real-World-Projects/tree/main/Chapter%2006

Conclusion

Although Quarkus is a new framework compared to Spring, it is evolving quickly and has an

engaging community. Quarkus is built on and leverages solid industry standards like those

provided by Jakarta EE, a set of specifications for enterprise Java applications, and

Microprofile, a set of specifications for microservices. These standards ensure that Quarkus

is a viable choice for developing enterprise cloud-native applications. As we can see in this

chapter, starting a new Quarkus project is just a matter of running a single command with

the Quarkus CLI that creates a fully working Quarkus application. We learned how to inject

dependencies using Quarkus DI. Dealing with databases is also easy, with extensive

support for different database technologies and the pleasant Panache library that lets us

conveniently handle Jakarta Persistence entities. We closed this chapter by exploring how

simple creating an API with Quarkus REST is.

Quarkus strives to provide the best developer experience by simplifying things that take

precious time. With Quarkus, developers can focus more on developing their solution than

on the technical details that are taken care of by Quarkus, required to enable their solution.

This includes features like live coding, which allows developers to see changes in their code

immediately without having to restart the application, and fast startup times, which enable

quick iteration and testing of code changes.

In the next chapter, we look further into Java enterprise development by learning how to

create enterprise applications using the Jakarta EE. We will learn the Jakarta EE

specification structure and how it defines standards that ensure the development of robust

and reliable applications. We will also explore MicroProfile, a specification derived from the

Jakarta EE that enables the development of microservices.

CHAPTER 7

Building Enterprise

Applications with Jakarta

EE and MicroProfile

Introduction

Developing enterprise-grade applications in Java involves

following the standards and best practices that contribute to

the robustness, stability, reliability, and maintainability

requirements that often appear when building mission-

critical applications. Such requirements can be met by

relying on the specifications provided by the Jakarta EE, a

project that prescribes how fundamental aspects of

enterprise applications, like persistence, dependency

injection, transactions, security, and more, should work.

Although extensive in its coverage of the things enterprise

application requires, the Jakarta EE does not contain

specifications that support the development of lightweight

cloud-native applications based on highly distributed

architectures like microservices. To fill this gap, the

MicroProfile specification helps developers build modern

enterprise applications that are better prepared for cloud-

native environments.

This chapter teaches us how powerful Jakarta EE and

MicroProfile are when combined to build modern enterprise

Java applications.

Structure

The chapter covers the following topics:

• Overviewing Jarkarta EE
• Starting a new Jakarta EE project
• Building an enterprise application with Jakarta EE
• Adding microservices and cloud-native support with

MicroProfile
• Compiling and running the sample project

Objectives

By the end of this chapter, you will be able to develop cloud-

native enterprise applications using the Jakarta EE and

MicroProfile specifications. This chapter shows you how the

technologies derived from both specifications support the

development of applications that harness the time-tested

enterprise features provided by Jakarta while also tapping

into the cloud-native development capabilities offered by

MicroProfile.

Overviewing Jarkarta EE

Jakarta EE is a continuation of a project officially launched in

1999 under the name of Java 2 Enterprise Edition (J2EE).

The vision behind this project was to provide a set of

specifications to support the development of Java enterprise

applications. These specifications would target technologies

like databases, messaging, and web protocols such as HTTP

and WebSockets, which were common in enterprise projects.

Instead of reinventing the wheel by defining how to deal with

those technologies, developers could rely on the standards

provided by the J2EE specifications. Relying on the

specifications would also grant some flexibility and vendor

lock-in protection because multiple vendors offered

implementations of the same J2EE specifications.

Sun Microsystems, later acquired by Oracle, was responsible

for the first versions of the J2EE specifications. In 2006, the

project was renamed to Java EE until 2020, when Oracle

decided to turn Java EE into an open-source project by giving

its governance to the Eclipse Foundation, which renamed it

to Jakarta EE. Oracle decided to give up on Java EE because

it could not catch up on the innovations and features

provided by other frameworks like Spring. Many developers

regarded Java EE as too complex and less productive

compared to its alternatives, which would deliver the same

and even more functionalities more straightforwardly.

However, even with its reputation as complex and

heavyweight, which was to a certain extent lost after the

Java EE 5 version that introduced the annotation-based

configuration as an alternative to the XML-based one, Java

EE found strong adoption across many industries, such as

banking and telecommunication, that relied on the Java

enterprise to enable their most critical operations. The

specifications provided the stability and robustness that big

corporations needed to ensure the health of their

businesses.

Many things have changed since the first J2EE/Java EE

version until its latest incarnation, the Jakarta EE. Some

specifications were removed because they no longer make

sense today, and other specifications evolved to reflect the

needs of modern software development. Although new

frameworks and ways to develop enterprise Java software

have appeared, some principles and ideas from Jakarta EE

remain relevant and are still in use today.

Jakarta EE proposes a multitier architecture for developing

enterprise applications. Let us explore what multitiered

applications mean further.

Designing multitiered applications

An enterprise system is often composed of different

components that complement each other to provide valuable

functionalities. Such components are grouped into tiers

according to their responsibility in the enterprise system. In

the following section, we examine the Jakarta EE tiers.

Client tier

The client tier is where all the enterprise system clients live.

A client can be a user interface (UI) served through a web

browser or desktop application that interacts with the

enterprise system. Other applications that are not UIs can

also act as clients of the enterprise system. The main

characteristic of the client-tier components is that they

trigger behaviors in the enterprise system by making

requests to it. A client is technology-agnostic; it can be

developed in Java or any other technology.

Web tier

An enterprise system may offer a web application that

renders HTML pages accessible through a web browser.

Although not so common today, where most front-end

development is client-side, support for server-side front-end

applications is also part of the Jakarta EE specification. The

Jakarta Server Pages (JSP) and Jakarta Server Faces

(JSF) specifications, built on top of the Jakarta Servlet

specification, are the technologies we find on the web tier

that enable enterprise system components to serve web

resources.

Business tier

Business rules represent the most critical component of an

enterprise system. Whatever business problem an enterprise

system aims to solve, the business tier has components

containing the business logic responsible for solving it. That

is where Jakarta EE components like Jakarta Persistence

entities and stateless, stateful, and message-driven beans,

also known as enterprise beans, are used to solve business

problems.

Enterprise information system tier

Jakarta EE enterprise applications depend on external

systems like databases, mainframes, enterprise resource

planning (ERP), and any other system that provides data to

fulfill the enterprise application requirements. These external

systems comprise the enterprise information system tier.

The following figure illustrates how the tiers relate to each

other:

Figure 7.1: Jakarta EE tiers

Note that the communication flow starts with the client and

then goes through the web, business, and the EIS tier.

Employing all tiers is not mandatory in a Jakarta EE project.

You can have an enterprise system that does not contain any

web component, so the web tier would not exist in such a

system.

Jakarta EE is a collection of specifications governing the

development of enterprise software in Java. Let us further

explore these specifications.

Exploring Jakarta EE specifications

Jakarta EE is a set of specifications for developing enterprise

applications in Java. The Jakarta EE project does not provide

the implementations for those specifications. It is up to the

Jakarta EE vendors to implement them. Developers use the

specification to build their applications and can choose which

Jakarta EE vendor best suits their needs. Jakarta EE

implementation is provided through Java libraries that

implement the specification interfaces. Those libraries are

shipped together with the application server offered by a

Jakarta EE vendor that implements the specifications or

relies on third parties that implement some of the

specifications. Oracle WebLogic, IBM WebSphere, Payara, and

Eclipse Glassfish are some of the Jakarta EE vendors in the

market.

All the Jakarta EE individual specifications are grouped into

the Jakarta EE Platform and Profile specifications. Let us

examine the purpose of each specification further.

Jakarta EE Platform specification

We have seen previously that Jakarta EE projects are based

on a multitier architecture where different application

components interact across the client, web, business, and

enterprise information system (EIS) tiers. Components

from the web and business tiers run in containers, a runtime

environment provided by a Jakarta EE server. There are web

containers responsible for executing web resources like Java

Server Page (JSP) and Enterprise Java Bean (EJB)

containers that execute business logic code. Components

from the client and EIS tiers usually run outside a Jakarta EE

server and interact with components from the web and

business tiers. Running outside a Jakarta EE server, we may

have client systems making calls to enterprise applications

and databases providing data to such applications.

The Jakarta EE Platform specification establishes what is

required from a platform aiming to host Jakarta EE

applications. To comply with the specification, an application

server providing a Jakarta EE platform must meet security,

network, transaction, persistence, and other requirements.

The specification also defines how technologies provided by

different specifications can be integrated. That is helpful

because it gives developers a standard for properly

employing different specifications.

The following is a figure representing all the technologies

covered by the Jakarta EE Platform specification:

Figure 7.2: Jakarta EE 10 Platform specification

In terms of scope, the Jakarta EE Platform specification

covers all aspects related to how a Jakarta EE project is

structured, where and how it should run, and its integration

with different systems and technologies.

Jakarta EE Web Profile specification

Jakarta EE Web Profile specification was the first profile

specification created. Its primary purpose is to group only

specifications related to the development of web

applications. For example, the Jakarta Messaging is part of

the Jakarta EE Platform specification, but not the Jakarta EE

Web Profile specification. This means that platforms

targeting the Web Profile do not need to provide a runtime

environment that fulfills all the same requirements as the

main Jakarta EE Platform specification, contributing to the

development of smaller, leaner enterprise applications. In

the following figure, we can see all the technologies that are

part of the Web Profile:

Figure 7.3: Jakarta EE 10 Web Profile specification

Note that some specification components from the Platform

are not shown here.

Jakarta EE Core Profile specification

Created after the Platform and Web Profile specifications, the

Jakarta EE Core Profile specification came out to support the

development of modern cloud applications. Instead of

bringing many specifications, the Core Profile relies on small

specifications targeting microservices development. Projects

requiring faster startup time and a smaller memory footprint

can benefit from the Core Profile. A figure illustrating how the

Core Profile is composed is as follows:

Figure 7.4: Jakarta EE 10 Core Profile specification

Note that only some specifications are used here. Anything

that is not considered strictly necessary for the development

of cloud applications is removed.

Packing, deploying, and running Jakarta EE

applications

Jakarta EE applications can be packed as Java Archive

(JAR), Web Archive (WAR), or Enterprise Archive (EAR).

Although they have different file name extensions, such as

.jar, .war, and .ear, all these file types share the same

internal file structure based on the .jar file. Next, we

explore the purpose of each one of these files.

Java Archive

We use .jar files to pack classes containing enterprise

beans, which constitute the enterprise application’s business

rules code.

Web Archive

Classes representing web components like servlets and other

web resources, including HTML pages and images, are

packaged in a WAR file. JAR files containing enterprise beans

can also be bundled into a WAR file. So, in this packing

structure, we can have both web and enterprise components

packed into a single WAR file.

Enterprise Archive

It is possible to put all the related modules of an enterprise

application into an EAR file, which allows a packing structure

based on JAR files containing enterprise beans and WAR files

containing web components.

Once you have packaged your enterprise application, you

can deploy it into a compatible server. Fully compliant

Jakarta EE projects must run on certified Jakarta EE servers,

which adhere to one of the Jakarta EE Platform or Profile

specifications. Applications servers like Oracle WebLogic,

RedHat JBoss, and Payara are examples of certified Jakarta

EE servers. It is also possible to deploy WAR and JAR files into

non-certified servers like Tomcat, which does not implement

all the required Jakarta EE specifications but provides enough

capabilities to host enterprise Java applications.

Jakarta EE continues evolving to remain relevant as a solid

platform for developing enterprise applications. In this

section, we covered only the surface of this vast project,

which offers a standard for creating enterprise Java

applications through its specifications. Let us now explore

another ramification of Jakarta EE: MicroProfile, a project that

targets microservices development.

Introducing MicroProfile

Over the years, we have seen significant changes in the

approaches to developing Java enterprise applications. With

decreased computing costs and the popularization of cloud

computing technologies like containers, developers started

to think in different ways to design enterprise systems.

Instead of developing a single monolith application to run in

heavyweight application servers, developers are now

exploring distributed architectures based on smaller

applications, the so-called microservices, that run on

containers orchestrated by Kubernetes.

Organizations seeking to improve their ability to respond

quickly to customer needs have widely adopted distributed

architectures, like microservices. The main argument is that

breaking a monolith system into smaller applications, such

as microservices, helps to tackle the maintainability and

scalability issues when a monolith system becomes too big.

New challenges arise for the Java developer aspiring to tap

into the benefits of cloud-native applications based on the

microservices architecture. It is essential to understand how

Java applications behave when running inside containers.

Knowing how to implement monitoring and observability

capabilities becomes a critical development activity to

ensure all components of a distributed system are running as

expected. It is also fundamental to know how the

components of a distributed system communicate with each

other.

It is not trivial to ensure that a Java distributed system based

on multiple microservices applies the techniques and

technologies to leverage all the benefits provided by cloud

environments. So, MicroProfile proposes, through its

specifications, a standard for developers aiming to create

Java microservices that run in cloud runtimes based on

container technologies like Docker and Kubernetes.

MicroProfile is similar to Jakarta EE in that it prescribes how

to do things in a Java enterprise system. However, it differs

by providing a set of specifications explicitly tailored for

designing enterprise applications using cloud-native

development techniques and technologies.

To better understand how MicroProfile works, let us explore

its specifications further.

Exploring MicroProfile specifications

To guide the development of Java microservices, the

MicroProfile comprises two specification sets: the Jakarta

Core Profile specification and the MicroProfile specification.

Next, we check all the specifications of the MicroProfile 6.1

release.

Jakarta EE Core Profile specifications

MicroProfile relies on the Jakarta EE Core Profile

specifications as the foundation for the development of

cloud-native applications, listed as follows:

• Jakarta RESTful Web Services 3.1
• Jakarta JSON Processing 2.1
• Jakarta JSON Binding 3.0

• Jakarta Interceptors 2.1
• Jakarta Enterprise Beans Lite 4.0
• Jakarta Dependency Injection 2.0
• Jakarta CDI Lite 4.0

The Core Profile specifications constitute the backbone of

any Java enterprise application running in the cloud. We can

use the Jakarta RESTful Web Services 3.1 specification to

construct API endpoints capable of handling JSON payloads.

The Jakarta JSON Processing 2.1 and Jakarta JSON Binding 3.0

specifications provide JSON support. The Jakarta Dependency

Injection 2.0 and Jakarta CDI Lite 4.0 specifications offer a

robust mechanism for handling object dependencies in an

enterprise application.

Complementing the Jakarta EE Core Profile specifications, we

have the MicroProfile specifications.

MicroProfile specifications

A typical Java microservice application may require

monitoring, observability, configuration, security, and other

essential capabilities. The MicroProfile covers the following

capabilities with a set of specifications for cloud-native

development practices:

• MicroProfile Telemetry 1.1
• MicroProfile OpenAPI 3.1
• MicroProfile Rest Client 3.0
• MicroProfile Config 3.1
• MicroProfile Fault Tolerance 4.0
• MicroProfile Metrics 5.1
• MicroProfile JWT Authentication 2.1
• MicroProfile Health 4.0

Troubleshooting errors is one of the challenges when using

microservices architecture because to understand why a

request failed, a developer may need to check the log of

multiple microservices involved in the failing request. The

MicroProfile Telemetry 1.1 provides advanced observability

capabilities with spans and traces, elements that help us to

understand the flow of requests crossing different

applications. With MicroProfile Rest Client 3.0, we can make

microservices communicate with one another. With

MicroProfile Health 4.0, we explore the approaches to notify

external agents about the health of a Java application.

The MicroProfile specifications govern the development

aspects of Java enterprise applications running in cloud-

native environments. Vendors like Open Liberty, Quarkus,

and Payara implement the MicroProfile specifications.

After covering the Jakarta EE and MicroProfile specifications,

let us learn how to use them to build Java enterprise

applications.

Starting a new Jakarta EE project

A convenient way to start a new Jakarta EE project is by

going to the http://start.jakarta.ee website. There, we can

customize the project’s settings by defining things like the

Jakarta EE version, the Jakarta EE profile, the Java SE version,

and other options. It is also possible to start a new project

using Maven’s archetype of a minimal Jakarta EE application,

like shown in the following Maven command example:

$ mvn archetype:generate -

DarchetypeGroupId=org.eclipse.starter -

DarchetypeArtifactId=jakartaee10-minimal -

DarchetypeVersion=1.1.0 -DgroupId=dev.davivieira -

DartifactId=enterpriseapp -Dprofile=web-api -

Dversion=1.0.0-SNAPSHOT -DinteractiveMode=false

http://start.jakarta.ee/

The parameters archetypeGroupId, archetypeArtifactId,

archetypeVersion specify the archetype we want to use to

generate the Maven project. We are using the archetype

provided by the Eclispse foundation for new Jakarta EE

projects. The other parameters specify the configuration of

the Jakarta EE project we are generating. Note that we are

using the web-api profile, which makes it a project that

supports the web application features, like exposing RESTful

endpoints, from the Jakarta EE specification.

After executing the Maven command mentioned in the

previous example, we will have the skeleton project in the

enterpriseapp directory. The code in this directory will

serve as the basis for building an enterprise application with

Jakarta EE, which we will explore next.

Building an enterprise application with Jakarta

EE

As the starting point of a Jakarta EE enterprise application

that is ready to receive HTTP requests, we can extend the

Application class provided by the Jakarta RESTful Web

Services specification. The example below shows how we

can extend the Application class:

@ApplicationPath("")

public class ApplicationConfig extends Application

{

}

The ApplicationConfig from the example above is the

same one produced by the Maven command that created the

initial Jakarta EE project. The @ApplicationPath annotation

lets us configure the root path that will precede all RESTful

endpoints our application provides. We can create a new

RESTful endpoint by implementing the SampleResource

class:

@Path("sample")

public class SampleResource {

 @GET

 @Produces(MediaType.TEXT_PLAIN)

 public String sample() {

 return "Sample data for the Jakarta EE

application";

 }

}

The "sample" path defined here through the @Path

annotation will be appended to the path provided by the

@ApplicationPath defined in the ApplicationConfig class.

The @GET and @Produces annotations come from the Jakarta

RESTful Web Services specification. We use these

annotations to expose an endpoint that receives HTTP GET

requests and produces plain text responses.

To run the enterprise application, we must provide a

compatible Jakarta EE runtime—an application server that

implements the Jakarta EE specification. We can accomplish

this using the WildFly application server. We can configure it

on the project’s pom.xml file by adding the following Maven

plugin:

<plugin>

 <groupId>org.wildfly.plugins</groupId>

 <artifactId>wildfly-maven-plugin</artifactId>

 <version>5.0.1.Final</version>

 <executions>

 <execution>

 <phase>install</phase>

 <goals>

 <goal>deploy</goal>

 </goals>

 </execution>

 </executions>

</plugin>

The plugin above must be placed within the plugins section

of the pom.xml file. Once WildFly is adequately configured,

we can start the application by running the following

command:

$ mvn clean package wildfly:run

We can confirm the application is working by accessing the

URL http://localhost:8080/enterpriseapp/sample in the

browser or executing the following command:

$ curl -X GET

http://localhost:8080/enterpriseapp/sample

Sample data for the Jakarta EE application

We get a plain text response by sending a GET request to

http://localhost:8080/enterpriseapp/sample.

Next, we explore how to combine Jakarta EE and MicroProfile

to build enterprise applications that support cloud-native and

microservices capabilities.

Adding microservices and cloud-native support

with MicroProfile

In this section, we explore how to use Jakarta EE and

MicroProfile specifications to build a Java enterprise

http://localhost:8080/enterpriseapp/sample
http://localhost:8080/enterpriseapp/sample

application supporting all microservices and cloud-native

capabilities provided by MicroProfile. We start by learning

how to set up an initial Maven project with the correct

dependencies, then proceed to implement a simple license

management application that illustrates some of the Jakarta

EE and MicroProfile capabilities.

Setting up the project

To start a new MicroProfile project, we can generate a

skeleton Maven or Gradle project using the project generator

at https://start.microprofile.io/ or manually specify the

dependencies required by our project. Let us proceed with

the manual approach because it gives us a better

understanding of the required dependencies. The following is

how the pom.xml file of a MicroProfile project using Maven

should look like:

<?xml version="1.0" encoding="UTF-8"?>

<project ...>

 <!-- code omitted -->

 <dependencies>

 <dependency>

 <groupId>jakarta.platform</groupId>

 <artifactId>jakarta.jakartaee-

api</artifactId>

 <version>10.0.0</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

<groupId>org.eclipse.microprofile</groupId>

https://start.microprofile.io/

 <artifactId>microprofile</artifactId>

 <version>6.1</version>

 <type>pom</type>

 <scope>provided</scope>

 </dependency>

 </dependencies>

 <!-- code omitted -->

</project>

The first dependency jakarta.jakartaee-api enables

support for the Jakarta EE specifications, while the

dependency microprofile brings all MicroProfile

specifications to the project. Note that these dependencies

do not represent the implementation of the specifications.

The specification vendors provide the implementations and

the runtime server where the enterprise Java application will

run. We use Payara as the MicroProfile vendor for our license

management application.

Continuing with the Maven project’s setup, we configure the

compiling and packaging plugins:

<?xml version="1.0" encoding="UTF-8"?>

<project ...>

 <!-- code omitted -->

 <build>

 <finalName>license-management</finalName>

 <plugins>

 <plugin>

<groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-compiler-

plugin</artifactId>

 <version>3.11.0</version>

 </plugin>

 <plugin>

 <artifactId>maven-war-

plugin</artifactId>

 <version>3.4.0</version>

 <configuration>

<failOnMissingWebXml>false</failOnMissingWebXml>

 </configuration>

 </plugin>

 <!-- code omitted -->

 </plugins>

 </build>

</project>

We use the maven-compiler-plugin to compile the Java

source files from our MicroProfile project. The maven-war-

plugin lets us package the application files into a

deployable WAR file.

Finally, we configure our MicroProfile project to run using the

Payara runtime:

<?xml version="1.0" encoding="UTF-8"?>

<project ...>

 <!-- code omitted -->

 <build>

 <finalName>license-management</finalName>

 <plugins>

 <!-- code omitted -->

 <plugin>

<groupId>org.codehaus.cargo</groupId>

 <artifactId>cargo-maven3-

plugin</artifactId>

 <version>1.10.11</version>

 <configuration>

 <container>

<containerId>payara</containerId>

 <artifactInstaller>

 <groupId>

fish.payara.distributions

 </groupId>

<artifactId>payara</artifactId>

<version>6.2024.1</version>

 </artifactInstaller>

 </container>

 </configuration>

 </plugin>

 </plugins>

 </build>

</project>

The cargo-maven3-plugin configured with the payara

dependency allows us to run our MicroProfile application on a

Payara server that is provided as a dependency of the Maven

project.

After properly setting up the Maven project with the correct

dependencies and build configurations, we can start

development using the Jakarta EE and MicroProfile

specifications. Let us begin defining a persistent data source

for our license management application.

Defining a data source

The license management application relies on an H2 in-

memory database to store data. We can configure this

database by first creating a web.xml file in the

src/main/webapp/WEB-INF directory of the MicroProfile

project:

<?xml version="1.0" encoding="UTF-8"?>

<web-app

xmlns="http://xmlns.jcp.org/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/jav

aee

http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd"

version="3.1" >

<data-source>

<name>java:global/h2-db</name>

<class-

name>org.h2.jdbcx.JdbcDataSource</class-name>

<url>jdbc:h2:mem:test</url>

</data-source>

</web-app>

The name component defines the data source name the

MicroProfile application uses to establish a connection with

the database. The class-name component specifies that this

is an H2 data source. The url component contains the JDBC

URL expressing the connection to an in-memory H2 database

called test. Having a data source declaration inside a

MicroProfile application’s web.xml file allows this data source

configuration to be deployed into the Payara server when the

MicroProfile application is also deployed.

After defining the data source in the web.xml file, we need to

configure the MicroProfile application to use it. We do that

through the persistence.xml file in the

src/main/resources/META-INF directory:

<?xml version="1.0" encoding="UTF-8"?>

<persistence

xmlns="https://jakarta.ee/xml/ns/persistence"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

xsi:schemaLocation="https://jakarta.ee/xml/ns/persi

stence

https://jakarta.ee/xml/ns/persistence/persistence_3

_0.xsd"

 version="3.0">

 <persistence-unit name="H2DB">

 <jta-data-source>java:global/h2-db</jta-

data-source>

 <properties>

 <property

name="jakarta.persistence.schema-

 generation.database.action"

 value="drop-and-create"/>

 </properties>

 </persistence-unit>

</persistence>

By providing the persistence.xml file, we enable our

MicroProfile application to use Jakarta Persistence. Note that

the value java:global/h2-db used in the jta-data-source

configuration component is the same value from the data

source definition of the web.xml file. We set the property

jakarta.persistence.schema-

generation.database.action to drop-and-create to

ensure our MicroProfile application creates tables in the H2

database. These tables are created based on the Jakarta

Persistence entities implemented by the MicroProfile

application.

After configuring the data source, we can start implementing

the business logic of our license management application.

Let us start our implementation by defining a Jakarta

Persistence entity.

Implementing a Jakarta Persistence entity

The license management application enables users to

create, delete, or update software licenses. To store license

data in the database, let us create a Jakarta Persistence

entity class:

@Entity

public class License {

 @Id

 @GeneratedValue(strategy =

GenerationType.SEQUENCE)

 long id;

 String name;

 LocalDate startDate;

 LocalDate endDate;

 boolean isExpired;

 // Code omitted //

}

We place the @Entity annotation to make this class a valid

Jakarta Persistence entity. All entities require an ID, which is

provided by declaring the id attribute with the @Id and

@GeneratedValue annotations. The @GeneratedValue

annotation is configured with the GenerationType.SEQUENCE

strategy that automatically generates IDs when persisting

new entities to the database. Let us create a repository class

responsible for handling license database entities.

Implementing a repository with the

EntityManager

Still relying on the Jakarta Persistence specification, we

implement a repository class using the EntiyManager:

@ApplicationScoped

@Transactional

public class LicenseRepository {

 @PersistenceContext

 private EntityManager entityManager;

 public void persist(License license) {

 entityManager.persist(license);

 }

 public List<License> findAllLicenses() {

 return (List<License>) entityManager

 .createQuery("SELECT license from

License license")

 .getResultList();

 }

}

Coming from the Jakarta CDI specification, we have the

@ApplicationScoped annotation to ensure the creation of

one managed bean instance of the LicenseRepository

class. The @PersistenceContext annotation placed above

the entityManager field relies on the configuration provided

by the persistence.xml we created earlier. This repository

class contains a method that persists License entities and

another that retrieves all License entities from the

database.

The persistence context represents the entities we can

persist into the database. When the Java application starts,

the Jakarta entities are mapped and put into the persistence

context. Every persistence context is associated with an

entity manager, allowing entities to be handled from such a

context.

Implementing a service class as a Jakarta CDI

managed bean

Service classes are usually implemented to apply business

logic and handle application behaviors that may depend on

external data sources. When dealing with business logic that

depends on the database, the service class can have a direct

dependency on the repository class responsible for handling

database entities:

@ApplicationScoped

public class LicenseService {

 @Inject

 private LicenseRepository licenseRepository;

 public void createLicense(License license) {

 licenseRepository.persist(license);

 }

 public List<License> getAllLicenses() {

 return licenseRepository.findAllLicenses();

 }

}

We turn the LicenseService class into a managed bean by

using the @ApplicationScoped annotation. Inside the

LicenseService class, we inject the LicenseRepository

that we use to create and retrieve licenses.

Having implemented the entity, repository, and service

classes using Jakarta EE specifications, let us define an

endpoint class using MicroProfile and Jakarta EE

specifications.

Building API with Jakarta EE and MicroProfile

We can combine Jakarta EE and MicroProfile specifications to

implement a well-documented RESTful API. Let us start by

defining the API base application endpoint path:

@ApplicationPath("api")

@OpenAPIDefinition(

 info = @Info(title = "License Management",

version = "1.0.0")

)

public class LicenseApplication extends Application

{

}

The @ApplicationPath annotation comes from Jakarta EE,

while the @OpenAPIDefinition comes from MicroProfile.

With the @ApplicationPath annotation, we define a base

endpoint path that will be appended as a path component of

other endpoints created for this application. The

@OpenAPIDefinition lets us document the API by defining

its title and version. When the application starts, the

information provided by annotations like the

@OpenAPIDefinition is used to generate the API

documentation based on the OpenAPI specification.

Next, we start implementing the LicenseEndpoint class:

@Path("/license")

@Tag(name = "License API", description = "It allows

managing licenses")

public class LicenseEndpoint {

 @Inject

 private LicenseService licenseService;

 // Code omitted

}

The @Path annotation from the Jakarta RESTful Web Services

specification is crucial as it allows us to define the endpoint

path. It is worth noting that the base application path is

/api, defined in the LicenseApplication class, which is

then prepended to the /license path used here in the

LicenseEndpoint class, resulting in the /api/license path.

The @Tag annotation from the MicroProfile OpenAPI

specification is essential for generating API documentation.

Continuing with the LicenseEndpoint implementation, we

implement an endpoint allowing the creation of new licenses:

@Path("/license")

@Tag(name = "License API", description = "It allows

managing licenses")

public class LicenseEndpoint {

 // Code omitted

 @POST

 @Consumes(MediaType.APPLICATION_JSON)

 @Produces(MediaType.APPLICATION_JSON)

 @Operation(summary = "It creates a license",

description = "A new

 license is created and

 persisted into the database")

 @APIResponses(value = {

 @APIResponse(

 responseCode = "200",

 description = "A new license

has been successfully

 created"

)

 })

 public void createLicense(License license) {

 licenseService.createLicense(license);

 }

 // Code omitted

}

The @POST annotation creates an endpoint path accessible at

/api/license through HTTP POST requests.

The @POST, @Consumes, and @Produces come from the

Jakarta RESTful Web Services specification. Note that this

endpoint consumes and produces JSON data. The Jakarta

JSON Processing and Jakarta JSON Binding specifications

provide JSON support. The remaining annotations come from

the MicroProfile OpenAPI specification and allow us to

provide detailed information that will be used to document

this endpoint in the API documentation.

We finish by implementing an endpoint that retrieves all

available licenses:

@Path("/license")

@Tag(name = "License API", description = "It allows

managing licenses")

public class LicenseEndpoint {

 // Code omitted

 @GET

 @Operation(summary = "It retrieves all

licenses", description = "It

 returns all non-expired

 and expired licenses")

 @APIResponses(value = {

 @APIResponse(

 responseCode = "200",

 description = "List of licenses

retrieved

 successfully",

 content = @Content(

 mediaType =

"application/json",

 schema =

@Schema(implementation = List.class,

 type =

SchemaType.ARRAY)

)

)

 })

 public List<License> getAllLicenses() {

 return licenseService.getAllLicenses();

 }

 // Code omitted

}

We place the @GET annotation to create a new endpoint path

accessible at /api/license through HTTP GET requests.

We need to add the following dependency to the pom.xml file

to enable the OpenAPI UI that lets us see the project’s API

documentation in a web browser:

<dependency>

 <groupId>org.microprofile-ext.openapi-

ext</groupId>

 <artifactId>openapi-ui</artifactId>

 <version>2.0.0</version>

 <scope>runtime</scope>

</dependency>

To ensure the OpenAPI annotations we placed when

implementing the API will be used to generate the API

documentation, we need to create the microprofile-

config.properties file in the src/main/resources/META-

INF directory:

openapi.ui.title=License Management

mp.openapi.scan=true

The microprofile-config.properties allows us to

configure the MicroProfile project’s components, such as the

OpenAPI. The openapi.ui.title option sets the OpenAPI UI

title to License Management. We set mp.openapi.scan to

true to ensure classes containing OpenAPI annotations are

used to generate the API documentation.

We use OpenAPI because we want to provide a standardized

API documentation describing the possible ways one can

interact with the license system. In the following sessions,

we will compile the license system and see how the OpenAPI

user interface looks in the web browser.

Using MicroProfile Health to implement health

checks

We can use health check mechanisms to determine, for

example, if the application’s database connection is working

or if the application is consuming too much memory or CPU.

In the following example, we implement the

LicenseHealthCheck class that demonstrates how we can

employ health checks in a MicroProfile project:

@ApplicationScoped

public class LicenseHealthCheck {

 @Produces

 @Liveness

 HealthCheck checkMemoryUsage() {

 return () ->

HealthCheckResponse.named("memory-

 usage").status(true).build();

 }

 @Produces

 @Readiness

 HealthCheck checkCpuUsage() {

 return () ->

HealthCheckResponse.named("cpu-

 usage").status(true).build();

 }

}

We implement the LicenseHealthCheck class as a managed

bean through the @ApplicationScoped class-level

annotation. The @Produces method-level annotation is used

with the checkMemoryUsage and checkCpuUsage methods

because they produce managed beans of type HealthCheck

containing health information we collect from the

application. On the checkMemoryUsage method, we have the

@Liveness annotation that lets third-party services know if

the MicroProfile application is running correctly. The

@Readiness annotation used with the checkCpuUsage

method lets third-party services know if the MicroProfile

application is ready to receive requests.

Third-party services are often represented through

Kubernetes cluster components responsible for periodically

sending liveness and readiness probes to check the

application’s health. If Kubernetes detects something wrong

when performing liveness and readiness health checks, it

can trigger remedial actions, like restarting the Pod where

the MicroProfile application is running in the Kubernetes

cluster.

In the next section, we will learn how to compile and run the

license management application.

Compiling and running the sample project

In the previous section, we implemented a simple license

management application using Jakarta EE and MicroProfile. In

this section, we explore how to compile and run this project.

You can clone the application source code from the GitHub

repository at https://github.com/bpbpublications/Java-

Real-World-Projects/tree/main/Chapter%2007.

https://github.com/bpbpublications/Java-Real-World-Projects/tree/main/Chapter%2007

You need the JDK 21 or above and Maven 3.8.5 or above

installed on your machine.

Execute the following command to compile and run the

application:

$ mvn clean package cargo:run

It takes time to compile and deploy the application into the

embedded Payara server. You should see an output as

follows when the command finishes its execution:

[INFO] Resolved container artifact

org.codehaus.cargo:cargo-core-container-

payara:jar:1.10.11 for container payara

[INFO] Parsed GlassFish version = [6.11.2]

[INFO] Payara 6.11.2 starting...

[INFO] Waiting for cargo-domain to start

[INFO] Successfully started the domain : cargo-

domain

[INFO] domain Location:

/home/m4ndr4ck/IdeaProjects/Java-Real-World-

Projects/Chapter

07/target/cargo/configurations/payara/cargo-domain

[INFO] Log File: /home/m4ndr4ck/IdeaProjects/Java-

Real-World-Projects/Chapter

07/target/cargo/configurations/payara/cargo-

domain/logs/server.log

[INFO] Admin Port: 4848

[INFO] Command start-domain executed successfully.

[INFO] Payara 6.11.2 started on port [8080]

[INFO] Press Ctrl-C to stop the container...

Following is how you can send requests to create new

licenses:

$ curl -v -H "Content-Type: application/json" --

data '{"name":"Premium License", "startDate":

"2024-01-10", "startDate": "2025-01-18"}'

localhost:8080/license-management/api/license

$ curl -v -H "Content-Type: application/json" --

data '{"name":"Trial License", "startDate": "2024-

01-10", "endDate": "2025-01-18"}'

localhost:8080/license-management/api/license

You can retrieve all licenses by using the following command:

$ curl -s localhost:8080/license-

management/api/license |jq

[

 {

 "expired": false,

 "id": 1,

 "name": "Premium License",

 "startDate": "2025-01-18"

 },

 {

 "endDate": "2025-01-18",

 "expired": false,

 "id": 2,

 "name": "Trial License",

 "startDate": "2024-01-10"

 }

]

It is possible to check the application’s health by sending the

following request:

$ curl -s http://localhost:8080/health | jq

{

 "status": "UP",

 "checks": [

 {

 "name": "cpu-usage",

 "status": "UP",

 "data": {}

 },

 {

 "name": "memory-usage",

 "status": "UP",

 "data": {}

 }

]

}

You can access the OpenAPI UI at

http://localhost:8080/license-

management/api/openapi-ui/index.html, the page will

be as follows:

http://casanova:8080/license-management/api/openapi-ui/index.html

Figure 7.5: OpenAPI UI

The OpenAPI UI is generated from the OpenAPI

documentation annotations used when implementing the API

endpoints of the MicroProfile project.

Conclusion

This chapter explored Jakarta EE and how its Platform, Web

Profile, and Core Profile specifications can be used to develop

Java enterprise applications. While comparing the differences

between the different specifications, we learned that the

Platform specification includes all individual Jakarta EE

specifications: the Web Profile specification, which targets

enterprise applications requiring web components, and the

Core Profile specification, suited for applications running in

cloud-native environments. We also learned how the Jakarta

EE Core Profile specification complements the MicroProfile

specification to provide a set of specifications to support the

development of Java microservices. After overviewing the

Jakarta EE and MicroProfile specifications, we learned how to

use them by developing the license management

application.

The next chapter covers the techniques and technologies for

deploying and running Java applications in cloud-native

environments. We will learn about Kubernetes, its

architecture, and how to deploy and run containerized Java

applications in a Kubernetes cluster.

Join our book’s Discord space

Join the book's Discord Workspace for Latest updates, Offers,

Tech happenings around the world, New Release and

Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 8

Running Your Application

in Cloud-Native

Environments

Introduction

Gone are the days when we used to deploy Java applications

in heavyweight application servers running on expensive

dedicated hardware. Nowadays, it is far more common to

see Java systems running in Kubernetes clusters offered by

major cloud providers like Amazon Web Services (AWS),

Google Cloud Platform (GCP), or Microsoft Azure. By

delegating most of their computing infrastructure operations

to cloud providers, organizations can allocate their time to

activities that have more potential to generate profit or

reduce costs. The Java developer working in an organization

that has its infrastructure on the cloud must know how to

tap into the benefits of running Java applications in cloud-

native environments. That is why this chapter explores good

practices for deploying and running Java applications using

technologies like Docker and Kubernetes.

Structure

The chapter covers the following topics:

• Understanding container technologies
• Introducing Kubernetes
• Dockerizing a Spring Boot, Quarkus, and Jakarta EE

application
• Deploying Docker-based applications on Kubernetes
• Compiling and running the sample project

Objectives

By the end of this chapter, you will know how to package

Java applications into Docker images and deploy them in a

Kubernetes cluster. To serve as a solid foundation for your

practical skills, you will also acquire fundamental knowledge

about cloud technologies like virtualization and containers,

allowing you to use such technologies properly according to

your project’s requirements.

Understanding container technologies

Although industries such as banking, insurance, and

governmental organizations, to name a few, still rely on

traditional application servers to run Java applications, most

new Java projects today run in containers. Containers are

not new technology. However, they matured to the point

that they became an attractive technology for developers

seeking better ways to deploy and run their applications.

To understand containers, we must first understand

virtualization because containers are just one of the possible

ways to virtualize computer resources. Virtualization comes

from the desire to run software in an environment that

wholly or partially represents a real computer. There can be

many motivations to run applications in virtualized

environments. For example, Linux users may employ

virtualization to use software available only to Windows.

Tools like Wine emulate Windows in Linux environments and

can solve most compatibility problems. Still, sometimes,

there is no way to run a specific software other than in the

operating system it was originally designed for.

Another virtualization use case is running legacy

applications that work only in old operating systems.

Running old operating systems on new hardware is

sometimes impossible due to a lack of driver support and

other issues. Virtualization helps those who must run critical

legacy systems that cannot be easily rewritten to run on

modern platforms. We can also use virtualization as a

mechanism to make an application portable. The virtualized

system can provide all the dependencies an application

needs to run correctly. So, instead of delivering only the

application, we can provide it bundled with the virtualized

environment where it runs.

Going next, we explore virtualization methods and

technologies, including container-based virtualization.

Introducing virtualization

Virtualization is the core technology enabling cloud-native

environments. What we call cloud computing nowadays is

only possible due to the ability to virtualize computing

resources. Knowledge of fundamental virtualization

concepts can help us better decide how to run Java

applications in cloud environments. Let us start exploring

the full virtualization concept.

Full virtualization

Full virtualization is the technique of running software in an

environment that reproduces a real computer’s behaviors

and instructions. It allows the complete virtualization of

computer resources like CPU and memory. All things

provided by computer hardware are virtualized, enabling the

execution of software entirely unaware it is executing in a

virtualized environment.

A host machine can provide full virtualization with support

for hardware-assisted virtualization technologies like Intel

VT-x or AMD-V. The host machine runs hypervisor software

responsible for creating virtual machine instances, also

known as guests of the host machine. KVM, VMware, and

VirtualBox are some of the hypervisors that provide full

virtualization. When a machine is fully virtualized, it lets us

install an operating system that is different from the

operating system running on the host machine. For

example, a Linux host machine can have Windows guest

machines.

Cloud providers rely on full virtualization technologies to

provide virtual servers as an Infrastructure-as-a-Service

(IaaS) solution. These virtual servers run on physical

servers and are managed by hypervisor software.

When organizations started to move their infrastructure to

the cloud, virtual servers allowed those organizations to

keep running their legacy and modern applications. An

important feature of virtual servers is the flexibility to adjust

computing resources like CPU and memory according to

user demand. Organizations moving to the cloud would no

longer struggle with over—or under-provisioning computing

resources through physical hardware because these

resources could now be easily managed through the

virtualization hypervisor.

Full virtualization is excellent for running any application.

Modern virtualization technologies make the performance of

applications running in virtualized servers practically the

same as if they were running in bare metal servers.

However, it comes at a cost. Full virtualization is a costly

way to virtualize software execution because it requires

virtualizing all computer components. There is a cheaper

alternative to full virtualization called paravirtualization. Let

us explore it next.

Paravirtualization

Partial virtualization, also known as paravirtualization, is

possible when the host machine executes some instructions

of the virtual guest machine. This implies that the

virtualized operating system needs to be aware that it is

running in a virtual environment. The paravirtualization

technique relies on the cooperation of both host and guest

machines in identifying which instructions are better

executed by the virtualized hardware and which others the

real hardware better execute. Such collaboration between

host and guest machines enhances performance in the

paravirtualized environment.

A paravirtualization hypervisor requires a guest virtual

machine running an operating system that can

communicate with the hypervisor. So, the operating system

needs to be modified or provide special drivers in order to

be compatible with paravirtualized environments. That can

be a limitation if you want to virtually run applications in an

operating system that does not support paravirtualization.

Paravirtualization is cheaper than full virtualization but still

implies significant costs because it consumes valuable

computing resources to provide a functional virtualized

environment. Xen and Hyper-V are some of the available

paravirtualization technologies cloud providers may use to

offer virtualized servers and other cloud solutions backed by

paravirtualization.

Full virtualization and paravirtualization techniques are

extensively used to run Java applications. Such Java systems

can run in application servers executing in virtualized

environments. Kubernetes cluster nodes are provisioned

using virtual servers. So, these virtualization techniques are

awesome for running Java applications. Although they can

make Java applications portable, it may be cumbersome to

package and distribute those applications bundled into full

or paravirtual machine images.

Let us explore a virtualization technique that allows

virtualizing the structure of an operating system, which

enables a convenient way to package applications and their

dependencies into a single, leaner, virtualized environment.

Container-based virtualization

Also known as OS-level virtualization, container-based

virtualization consists of virtualizing components of an

operating system. In this approach, the guest virtualized

environment shares the same kernel used by the host

machine. This container virtualization does not go as deep

as full virtualization or paravirtualization, which virtualizes

hardware instructions to provide the virtual environment.

We call containers the virtual environments offered by

container-based virtualization technologies.

Container technology has been around for quite a while

through solutions like OpenVZ, Linux Containers (LXC),

and Docker. It is based on two essential Linux kernel

features: cgroups and namespaces. These features let

applications run as isolated processes within an operating

system. The namespace kernel mechanism allows the

creation of an isolated environment in the hosting operating

system. From the application perspective, an environment

provided by a Linux namespace looks like a real operating

system containing its own file system and process tree.

Processes running in one namespace cannot see processes

from other namespaces. Computing resources like CPU and

memory are managed by the cgroups kernel feature, which

is responsible for allocating computing resources to

containers controlled by the host operating system.

A container can run as one or more isolated processes.

Processes running inside a container behave as if they were

running in a real machine.

Before the advent of Docker, containers were not widely

embraced by developers. The earlier container technologies

lacked a straightforward method to package and distribute

environment dependencies with application binaries.

However, Docker revolutionized this landscape by offering a

container-based virtualization solution. This allowed

developers to effortlessly bundle their applications into

container images, complete with dependencies like libraries

and customized configurations necessary for application

execution. Docker’s impact extends beyond simplifying

development processes; it also offers significant cost

benefits, making it a game-changer in the world of container

technology. Docker’s cost benefits can lead to significant

savings, a prospect that should inspire optimism in any

organization.

The whole IT industry changed because of Docker. An

increasing number of organizations started to deploy their

applications as Docker containers, which raised challenges

regarding how to efficiently operate containers at a large

scale. That is when technologies like Kubernetes appeared

as a solution to managing containers. Before diving into

Kubernetes, let us discover how Docker works.

Exploring Docker

It is relatively simple to operate a bunch of Docker

containers without the assistance of any other tool than

Docker itself. Containers run like processes in the operating

system, so it is essential to ensure container processes are

always running without errors. A system administrator can

inspect container logs and restart containers when

necessary if something goes wrong. For simple use cases,

Docker alone may be enough to host applications. There

may be manual administration tasks to keep containers

running, which is fine for smaller, non-critical systems.

However, Docker may need to be complemented with other

technologies to host critical enterprise applications.

Docker delivers effective container virtualization technology

but lacks a reliable mechanism for operating containers in

cluster-based environments that can meet strict application

requirements involving high availability and fault tolerance.

With the increasing adoption of container technologies,

container orchestrator solutions like Mesos, Marathon,

Rancher, Docker Swarm, and Kubernetes appeared in the

market. These container orchestrators were designed to

facilitate the operation of critical applications running on

containers. With a container orchestrator, we can

adequately manage operating system resources like

networks and storage to meet the requirements of

container-based systems. Also, container orchestrators play

a fundamental role in deploying the software by allowing

deployment strategies that decrease the risk of application

downtime.

We can only discuss Kubernetes by also discussing

containers. Kubernetes exists only because of the container

technology. So, to prepare ourselves for a deeper

investigation of Kubernetes, we first explore Docker by

examining its fundamentals.

Learning Docker fundamentals

Docker is supported on different operating systems,

including Windows, MacOS, and Linux. To start playing with

it, you can install either the Docker Desktop or the Docker

Engine on your computer. The installation steps for Docker

are outside the scope of this book, but you can find

installation instructions at

https://docs.docker.com/manuals/.

The Docker Engine provides the container virtualization

engine and a CLI command tool for controlling Docker

resources like images, containers, volumes, and networks.

Docker Desktop includes the Docker Engine and a friendly

graphical user interface that simplifies the management of

Docker resources. It is an alternative for those who prefer

the user interface over the CLI command tool.

To create a Docker container, we first need to create a

Docker image using the Dockerfile:

FROM busybox

CMD [“date”]

The two lines above are placed in a file called Dockerfile, the

default file name that Docker uses when building Docker

images. There are two image types: parent-derived image

and base image. Parent-derived images are always built on

top of a parent Docker image. The example above uses the

FROM directive to refer to the busybox parent image. Base

images have no parent; they use the FROM scratch

directive in their Dockerfile to indicate they do not refer to

any parent image. We also use the CMD directive to execute

a command once the container starts. A command is a

program executed as an isolated process in the Docker

container. The Dockerfile supports other directives, allowing

us to customize Docker images by adding files, creating

directories, creating environment variables, setting file

system permissions, and other operations.

https://docs.docker.com/manuals/

Managing Docker images

We can build a Docker image using the Dockerfile we

created previously, using the following command:

$ docker build . -t busybox-date

The command above should be executed in your operating

system terminal. The docker binary is the CLI tool provided

by the Docker Engine. It allows several operations, such as

building images with the build option. After the build

command, the dot sign specifies the Dockerfile path

location, which in our case, is the current directory

represented by the dot sign. The -t option refers to the

Docker image name, which in the command example is

buysbox-date. When tagging a Docker image, we can

specify its path and tag that can work as a versioning

mechanism:

$ docker build . -t s4intlaurent/busybox-date:1.0

The image name provided by the -t option is based on the

namespace/repository:tag structure. In the above

example, s4intlaurent is the namespace from the Docker

Hub, busybox-date is the repository, and 1.0 is the image

tag. Docker Hub (https://hub.docker.com/) is a public

image storage location, also known as a registry, where

users can store their Docker images. Organizations may use

a private registry with their own namespace. If the version is

omitted, the Docker image is automatically tagged as the

latest.

You can list all Docker images stored in your computer using

one of the following commands:

$ docker images

$ docker image ls

Or you can specify the Docker image tag you are looking for:

https://hub.docker.com/

$ docker image ls s4intlaurent/busybox-date:1.0

REPOSITORY TAG

IMAGE ID CREATED SIZE

s4intlaurent/busybox-date 1.0 ca915675332d

11 months ago 4.26MB

Once a Docker image tag is created locally, we can push it

to a remote registry:

$ docker push s4intlaurent/busybox-date:1.0

We can pull a Docker image from a remote registry with the

following command:

$ docker pull s4intlaurent/busybox-date:1.0

There can be multiple tags of the same Docker image

repository, each having its value like 1.0, tag-a, and my-

image-2.0, for example.

Creating Docker containers

To create a container, we can refer to the Docker image

repository name, followed by its tag, or the Docker image

ID:

$ docker run s4intlaurent/busybox-date:1.0

Thu May 9 23:35:47 UTC 2024

By executing the docker run, we create a new container

that executes the date command inside the container. After

the executing date, the process is terminated, which means

the container is also terminated. Remember, a container is

attached to one or more processes. If no processes are

executing, then the container is finished. To keep a

container running, we need a daemon process. This kind of

process is used in scenarios where a process stays alive

indefinitely and can receive and handle requests. We will

explore this scenario later in this chapter when creating a

Docker image of a Spring Boot application.

We can check what containers are currently running with

the following command:

$ docker ps

If we pass the -a option, Docker will show all containers,

including those that have been terminated:

$ docker ps -a

CONTAINER ID IMAGE COMMAND

CREATED STATUS

32ff796facf8 s4intlaurent/busybox-date:1.0 "date"

15 minutes ago Exited(0)

15 minutes ago

The STATUS shows if the container is running or not. Exited

means the container has been terminated.

The following is how we can kill a running container:

$ docker kill [CONTAINER ID]

Issuing a docker kill command immediately terminates

the process inside the Docker container. After killing a

container, we can altogether remove it from the system:

$ docker rm 32ff796facf8

32ff796facf8

The command above relies on the complete container ID.

However, it is sometimes possible to pass only the first

three characters of the ID string.

One of the practical benefits of removing a container is that

it can free up storage space that the killed container might

be utilizing, thereby optimizing your system’s resources.

More advanced commands, like docker volume, let us

create persistent storage that a container can use. By

default, Docker container storage is ephemeral, so files

created in a container will disappear once the container is

terminated. The docker network command also allows us

to create virtual network interfaces.

Let us explore now one of the most used container

orchestrators, Kubernetes.

Introducing Kubernetes

Kubernetes started as an internal Google project called

Borg, which used to operate containers on a large scale.

Google eventually open-sourced the project and renamed it

Kubernetes. It is considered the most used container

orchestrator in the market. Kubernetes can operate

containers in small devices like Raspberry PI or be used on

top of an entire data center dedicated to containers.

Kubernetes has become popular, especially in large

enterprises, because it provides a reliable platform for

managing and running containers. Organizations found

Kubernetes to be a mature technology capable of hosting

mission-critical applications with high availability and fault

tolerance.

The decision to use Kubernetes comes when operating

containers solely with Docker, for example, is insufficient.

Docker alone does not provide a high-availability solution for

distributing container workloads across multiple cluster

servers. Docker cannot dynamically auto-scale containers

based on CPU or memory usage. Applying a load balancing

mechanism on container network traffic is not possible with

just Docker; however, it is possible when using Kubernetes.

So, Kubernetes gets the core container technology and

surrounds it with additional components that make

containers viable for running enterprise applications.

Most cloud providers offer Kubernetes-based solutions, and

companies of all sizes rely on them to run their software.

Designing an application to run on Kubernetes gives an

organization the flexibility to change cloud providers without

significant impact. Applications can be developed to rely on

pure Kubernetes standards instead of features provided by a

specific cloud provider. However, there are customized

container orchestrators built on top of Kubernetes, like

OpenShift from Red Hat and Kyma from SAP, that provide

additional capabilities to ones already provided by

Kubernetes.

A Java developer needs a basic understanding of how

Kubernetes works because a growing number of Java

projects are running in Kubernetes clusters. So, next, we

explore the fundamentals of Kubernetes architecture and

some of its main objects commonly seen when deploying an

application.

Kubernetes architecture

Kubernetes is a cluster made of at least one worker node,

which is where containerized applications run. We can have

Kubernetes running on a single or multiple machines. When

running on a single machine, this machine acts

simultaneously as the master and worker node. When

running with multiple machines, master and worker nodes

run in separate machines. Master nodes are responsible for

cluster management activities, while worker nodes run

containerized applications.

Inside a Kubernetes cluster, we have control plane and node

components. Going next, we cover control plane

components.

kube-scheduler

When Kubernetes objects need to be provisioned in one of

the worker nodes, the kube-scheduler is responsible for

finding a worker node that best suits the requirements of a

given Kubernetes object. Worker nodes with high CPU,

memory, and storage usage may be skipped in favor of

worker nodes with more free capacity. A Pod is one of the

Kubernetes object examples we will explore further in the

next section.

kube-apiserver

The kube-apiserver interconnects different Kubernetes

components and provides an external API that command-

line tools like kubectl use to interact with the Kubernetes

cluster. Practically everything that occurs inside a

Kubernetes cluster passes through the kube-apiserver.

kube-controller-manager

Kubernetes objects have a current and desired state. The

desired state is expressed through a Yet Another Markup

Language (YAML) representation that describes how a

Kubernetes object should be provided. If, for some reason,

the current Kubernetes object’s current state is not the

same as the desired one, then the kube-controller-

manager may take action to ensure the desired state is

achieved.

Control plane components usually run in a master node, a

machine in the Kubernetes cluster used only for

management purposes.

Next, we cover Kubernetes node components.

Container runtime

It is the container engine running in a Kubernetes node. It

can be containerd, which Docker is based on, or any other

compatible container technology. Kubernetes provides the

Container Runtime Interface (CRI), which is a

specification defining how container technologies can be

implemented to be supported by Kubernetes, so any

container runtime that implements such a specification is

also compatible with Kubernetes.

kubelet

Every node in a Kubernetes cluster needs an agent called

kubelet to manage containers running in the node

machine. When adding a new worker node to an existing

Kubernetes cluster, we need to ensure this node has the

kubelet agent properly installed.

kube-proxy

Network access to containers managed by Kubernetes can

be done through the network proxy provided by kube-proxy.

We can use this proxy to set up a direct connection with one

of the ports exposed by a container running in a Kubernetes

cluster.

Node components run on every Kubernetes node, including

master and worker nodes.

Next, we learn about Kubernetes objects and how they are

used to run containerized applications.

Kubernetes objects

The containerized application represents the fundamental

element by which all the Kubernetes machinery is driven.

When hosting an application in Kubernetes, we can make it

available for external networks, provide environment

variables required by the application, and control how many

instances of the application will run simultaneously. Such

tasks can be accomplished by using Kubernetes objects. We

explore them further in the upcoming sections.

Pod

We do not deal directly with containers in a Kubernetes

environment. Instead, we use Pods composed of one or

more containers. A Pod acts like a wrapper that controls the

entire lifecycle of a container. A Pod object specifies the

container image that must be used when the Pod is

deployed in a Kubernetes cluster. We have an example

showing how to create a YAML representation of Pod, as

follows:

apiVersion: v1

kind: Pod

metadata:

 name: httpd

spec:

 containers:

 - name: httpd

 image: httpd: 2.4

 ports:

 - containerPort: 80

When defining a Kubernetes object, we utilize a key

component called kind that specifies the object’s type,

which in the example above is Pod. The metadata block

contains elements that describe the Pod, including its name.

Within the containers block, we can define one or more

containers that are managed by this Pod. Each container is

specified by its name and image. The ports block,

specifically containerPort, allows us to define the port on

which the containerized application is running.

Although possible, it is not a common practice to create

Pods directly. Most of the time, Pods are managed by other

Kubernetes objects like the Deployment. Let us check it

next.

Deployment

Applications running on Kubernetes can scale horizontally,

which means multiple instances of the same application can

be provisioned to distribute application processing better

and provide high availability. We can accomplish this by

using the Deployment object that manages Pod objects. The

Deployment lets us define, for example, how many replicas

of a Pod must run simultaneously. Check the following

example of the YAML representation of a Deployment:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: httpd

 labels:

 app: httpd

spec:

 replicas: 3

 selector:

 matchLabels:

 app: httpd

 template:

 metadata:

 labels:

 app: httpd

 spec:

 containers:

 - name: httpd

 image: httpd:2.4

 ports:

 - containerPort: 80

Part of the Deployment declaration is similar to a Pod

because we need to define how Pods managed by the

Deployment will be created. Note the replicas component;

we use it to tell Kubernetes how many Pod instances must

run under this Deployment. This YAML declaration expresses

the desired state of a Deployment object. Suppose

Kubernetes detects, for example, that only two Pod

instances are running when three instances are the

expected amount. In that case, Kubernetes automatically

tries to bring up another instance to ensure the current

state matches the desired state. Also note the matchLabels

block; we use it to define labels other Kubernetes objects

can use to refer to the Deployment object. A common use

case for the matchLabels component is when we want to

expose a Deployment in the network using a Service

object. We explore Service objects next.

Service

Pods can communicate with each other and be externally

accessible for clients outside the Kubernetes cluster. By

default, when a Pod is deployed, it is not accessible by other

Pods in the cluster. We can solve it by creating a Service

object:

apiVersion: v1

kind: Service

metadata:

 name: httpd

 labels:

 app: httpd

spec:

 type: ClusterIP

 ports:

 - port: 80

 targetPort: 80

 protocol: TCP

 selector:

 app: httpd

The selector block may contain a reference pointing to the

same label value used in a Deployment or Pod object. That

is how a Service can expose other Kubernetes objects to the

network. Note that we use ClusterIP as the Service type in

the example above. We use this Service to expose a Pod to

the internal Kubernetes cluster network, allowing Pods to

communicate with each other through the Service. We can

use the NodePort or LoadBalance Service type to expose a

Pod to networks outside the Kubernetes cluster. A Service

must specify its port and protocol. The targetPort

component refers to the port the containerized application

listens to in the Pod. When omitted, the targetPort is the

same as the Service port.

ConfigMap and Secret

Containerized applications may depend on external data,

such as environment variables and file configuration

properties. Kubernetes provides the ConfigMap and Secret

objects as mechanisms allowing the injecting of external

data for applications running inside the Pods. The following

is how we can create a ConfigMap:

apiVersion: v1

kind: ConfigMap

metadata:

 name: my-application

data:

 DATABASE_URL: "mysql://sample-

database:3306/test"

The example above provides an environment variable called

DATABASE_URL. ConfigMap data can also be used to mount

files inside a Pod.

A Secret is similar to ConfigMap, but it targets sensitive

data. Following is a Secret example:

apiVersion: v1

kind: Secret

metadata:

 name: my-application

type: Opaque

data:

 DATABASE_USERNAME: dGVzdAo=

 DATABASE_PASSWORD: cGFzcwo=

When providing data as environment variables in a Secret

object, the values must be encoded with base64.

Understanding the most important Kubernetes objects is

essential for developers preparing applications for

Kubernetes deployment. We will explore next how to create

a Docker image of a Java application based on the Spring

Boot, Quarkus, and Jakarta EE frameworks.

Dockerizing a Spring Boot, Quarkus, and

Jakarta EE application

Most Java frameworks provide mechanisms to generate a

bootable JAR file containing all dependencies required to run

the application from such a JAR file. Having a bootable JAR is

essential for dockerizing Java applications. By dockerizing,

we mean creating a Docker image using the bootable JAR

file.

A bootable JAR file, also known as an uber of fat JAR, is a file

that contains the compiled application’s class files along

with all the dependencies required to run the Java

application. Such dependencies can also be included as

compiled class files, resulting in a JAR file containing the

application’s compiled class files and their dependencies.

Next, we will explore how to prepare applications based on

Spring Boot, Quarkus, and Jakarta EE to be executed inside

a Docker container.

Creating a bootable JAR of a Spring Boot

application

Spring Boot applications can rely on a Maven plugin, which

creates a JAR file packed with all application classes and

dependencies required to run them. Below is how the

pom.xml file of a Spring Boot application can be configured

to build a bootable JAR file:

<build>

 <finalName>sample-spring-boot-app</finalName>

 <plugins>

 <plugin>

<groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-

plugin</artifactId>

 <version>3.3.4</version>

 </plugin>

 </plugins>

</build>

With the finalName property, we define the JAR file name.

The plugin responsible for doing the magic is called spring-

boot-maven-plugin. When using this plugin, the mvn

package command will create the sample-spring-boot-

app.jar inside the target directory of the Spring Boot

Maven project.

Next, we will learn how to create a bootable JAR for a

Quarkus application.

Creating a bootable JAR of a Quarkus

application

The approach for creating a bootable JAR for Quarkus is

similar to what we did for the Spring Boot application. The

following example shows how we can configure the pom.xml

file:

<build>

 <finalName>sample-quarkus-app</finalName>

 <plugins>

 <plugin>

 <groupId>${quarkus.platform.group-id}

</groupId>

 <artifactId>quarkus-maven-

plugin</artifactId>

 <version>${quarkus.platform.version}

</version>

 <extensions>true</extensions>

 <executions>

 <execution>

 <goals>

 <goal>build</goal>

 <goal>generate-code</goal>

 <goal>generate-code-

tests</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 </plugins>

</build>

The example above relies on the variables

quarkus.platform.group-id and

quarkus.platform.version that you can define based on

the Quarkus version you want to use. Quarkus provides a

plugin called quarkus-maven-plugin, which gathers all

application dependencies into a single JAR file. We must

execute the mvn package command to create a JAR file

called sample-quarkus-app.jar inside the target

directory.

We use the build goal to package the Quarkus application.

The generate-code goal compiles the source code files,

whereas the generate-code-tests goal compiles test code

files. Once both source and test code files are compiled, the

build goal packages them into a bootable JAR file.

Following, we will learn how to create a bootable JAR for a

Jakarta EE application.

Creating a bootable JAR of a Jakarta EE

application

We need a certified Jakarta EE application server to run a

Jakarta EE application. When creating a bootable JAR, such a

requirement can be fulfilled by embedding the application

server into the same JAR file containing the Jakarta EE

application compiled classes. Among the available certified

Jakarta EE application servers, let us use the WildFly for

configuring the pom.xml:

<build>

 <finalName>sample-jakartaee-app</finalName>

 <plugins>

 <plugin>

 <groupId>org.wildfly.plugins</groupId>

 <artifactId>wildfly-jar-maven-

plugin</artifactId>

 <version>11.0.2.Final</version>

 <configuration>

 <feature-pack-location>wildfly-

preview@maven(org.jboss.universe:community-

universe)</feature-pack-location>

 <layers>

 <layer>jaxrs-server</layer>

 </layers>

 <plugin-options>

 <jboss-fork-

embedded>true</jboss-fork-embedded>

 </plugin-options>

 </configuration>

 <executions>

 <execution>

 <goals>

 <goal>package</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 </plugins>

</build>

We rely on the wildfly-jar-maven-plugin to create a

bootable JAR file containing a WildFly application server

configured through the jaxrs-server property value to run

Jakarta EE applications supporting the Jakarta RESTful Web

Services specification. We can add a layer inside the

layers block representing WildFly capabilities, which our

Jakarta EE application requires. Executing the mvn package

command will result in the creation of the sample-jakarta-

app.jar file inside the target directory.

Having learned how to create bootable JAR files of well-

known Java frameworks, let us see how we can use such JAR

files to create a Docker image. The next section uses, as an

example, the bootable JAR file of a Spring Boot application.

Creating the Docker image

The Dockerfile we use to create the Docker is usually placed

in the Java Maven project’s root directory. We can use the

following code to create such a file:

FROM openjdk:21-slim

ENV JAR_FILE sample-spring-boot-app.jar

ENV JAR_HOME /usr/apps

COPY target/$JAR_FILE $JAR_HOME/

WORKDIR $JAR_HOME

ENTRYPOINT ["sh", "-c"]

CMD ["exec java -jar $JAR_FILE"]

EXPOSE 8080

We need the Java Virtual Machine (JVM) to run JAR files

inside the container. That is why, in the example above, our

image refers to a parent image called openjdk:21-slim

that provides the JVM. Then, we use the ENV directive to set

the JAR_FILE environment variable pointing to a JAR file

called sample-spring-boot-app.jar produced by Maven

after the application is compiled and packaged. Another ENV

directive sets the JAR_HOME environment variable to the

directory where the JAR file will be placed in the container.

The COPY directive’s first parameter, target/$JAR_FILE,

refers to a relative path in the local machine building the

Docker image. The second COPY directive parameter refers

to the path in the container environment. The COPY directive

copies files from the local machine to the container

environment. The WORKDIR directive sets the container

default directory from where commands are executed. Next,

the ENTRYPOINT is used to run the container as an

executable. When combined with the CMD directive, the

ENTRYPOINT provides a command the container executes,

and the CMD complements it by giving the command’s

parameters. The ENTRYPOINT starts a command shell that

we use to instruct the JVM to run our application’s JAR file.

Finally, we use the EXPOSE directive to open the 8080

container port, the same port used by the Spring Boot

application.

The following is how we can create the Docker image:

$ docker build . -t s4intlaurent/sample-spring-

boot-app:1.0

After creating the image, we can confirm if it is working by

creating a container out of it:

$ docker run -d -p 8080:8080 s4intlaurent/sample-

spring-boot-app:1.0

The -d option instructs Docker to run the container in the

background; the -p 8080:8080 maps the host port 8080 to

the container port, which is also 8080. By mapping a port to

the container port, we make the container accessible to

external users. We can check the container status by

executing the following command:

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS

2dc5832882e1 s4intlaurent/sample-spring-boot-

app:1.0 "sh -c 'exec java -j…" 2 minutes ago

Up 2 minutes 0.0.0.0:8080->8080/tcp, :::8080-

>8080/tcp

Notice the container STATUS is Up, which confirms the Spring

Boot application is running inside the container.

We must upload the Docker image to the container registry,

which we can use later when deploying the application to

Kubernetes. That can be done by issuing a docker push

command using the image tag we created previously:

$ docker push s4intlaurent/sample-spring-boot-

app:1.0

The push refers to repository

[docker.io/s4intlaurent/sample-spring-boot-app]

5f70bf18a086: Layer already exists

8c17bbbc8b59: Pushed

659a8c4ba776: Pushed

0ac7ecf8a41c: Pushed

d310e774110a: Pushed

1.0: digest:

sha256:415a0b98a203b90548e2ef001fee9fd996f29c07d02

a8df1dc30c26f589eb11a size: 1371

The command above pushes the Docker image to the public

Docker Hub registry accessible through

https://hub.docker.com/r/s4intlaurent/sample-spring-

boot-app.

Next, we learn how to deploy a Docker image into a

Kubernetes cluster.

Deploying Docker-based applications on

Kubernetes

To understand how Docker and Kubernetes can be used

together, we will cover the steps to run a Spring Boot

application in a Kubernets cluster. To prepare a Java system

to run as a containerized application in a Kubernetes cluster

correctly, we need to create a Docker image for it, push the

image to a container registry, and provide the Kubernetes

objects to deploy the Spring Boot application and make it

https://hub.docker.com/r/s4intlaurent/sample-spring-boot-app

available to clients outside the Kubernetes cluster. Instead

of creating a new Spring Boot application from scratch, we

use the one created previously in Chapter 5, Building

production-grade systems with Spring Boot.

As we have already created the Docker image of our

application in the previous section, let’s learn how to

externalize the application configuration through

environment variables. Externalizing application

configuration is common practice when containerizing

application configuration.

Externalizing application configuration

Using environment variables allows you to change

application configuration without recompiling it. That is also

helpful when deploying the application in multiple

environments where each environment may require specific

settings like database host, user, and password. On Spring

Boot, we can apply external configuration using

placeholders when defining the application.yaml file:

spring:

 datasource:

 url: ${DATABASE_URL:jdbc:h2:mem:mydb}

 username: ${DATABASE_USERNAME:sa}

 password: ${DATABASE_PASSWORD:password}

 driverClassName:

${DATABASE_DRIVER:org.h2.Driver}

 jpa:

 database-platform:

${DATABASE_DIALECT:org.hibernate.dialect.H2Dialect

}

For example, ${DATABASE_URL:jdbc:h2:mem:mydb} defines

the data source URL configuration. The DATABASE_URL is the

environment variable expected to be provided by the

environment where the application is running. It can be

provided by our local machine or a container, for example. If

the environment variable value is not defined, Spring Boot

uses the fallback value as jdbc:h2:mem:mydb. Later in this

chapter, we will define environment variable values using

the ConfigMap.

Next, we learn how to create Kubernetes objects required to

run the Java application in a Kubernetes cluster.

Creating Kubernetes objects

We can easily set up a Kubernetes cluster locally using a

local cluster solution like minikube or kind. Installing a local

Kubernetes cluster is out of the scope of this book, but you

can find instructions to install it at

https://minikube.sigs.k8s.io/docs/start/. Having a local

Kubernetes cluster is very convenient for making sure the

Kubernetes objects are working as expected.

After setting up a minikube cluster, we can create the

Kubernetes objects to run our Spring Boot application. Let us

start by creating a ConfigMap.

Providing application configuration with a ConfigMap

Remember, we used environment variables to externalize

the properties used in the application.yaml file from

Spring Boot. We need to create a file called configmap.yaml

to provide the values for those environment variables:

apiVersion: v1

kind: ConfigMap

metadata:

https://minikube.sigs.k8s.io/docs/start/

 name: sample-spring-boot-app

data:

 DATABASE_URL: "mysql://sample-spring-boot-app-

mysql:3306/test"

 DATABASE_DRIVER: "com.mysql.cj.jdbc.Driver"

 DATABASE_DIALECT:

"org.hibernate.dialect.MySQL8Dialect"

The environment variables above are used to establish a

connection with a MySQL database.

The following is how you can install the above ConfigMap in

a Kubernetes cluster, given the object’s file name is

configmap.yml:

$ kubectl apply -f configmap.yaml

Note that there are no credentials data in the ConfigMap; we

put this data into a Secret. Let us check it next.

Using a Secret to define database credentials

Like a ConfigMap, we can use a Secret to define

environment variables containing base64 encoded values.

There are many ways to encode a string; you can do it

online using a base64 encoder website. Most operating

systems like Windows, MacOS, and Linux also contain tools

that let you encode strings. The following example shows

how we can encode the database credentials using base64

on Linux:

$ echo test | base64

dGVzdAo=

$ echo pass | base64

cGFzcwo=

We first encode the test string, which is the database user.

The second command encodes the pass string we use as

the password to connect to the database. Following that, we

use the base64 encoded values when creating the Secret:

apiVersion: v1

kind: Secret

metadata:

 name: sample-spring-boot-app

type: Opaque

data:

 DATABASE_USERNAME: dGVzdAo=

 DATABASE_PASSWORD: cGFzcwo=

The content above is placed in a file called secret.yaml,

which is used to create the Secret object in the Kubernetes

cluster. Following is an example showing how we can install

a Secret object:

$ kubectl apply -f secret.yaml

Having defined the ConfigMap and Secret objects

containing database connection details for our Spring Boot

application, we can create the Deployment objects to deploy

the application.

Deploying the application with a Deployment

We want to use MySQL as the database for our Spring Boot

application. That can be done by creating a database.yaml

file configured to deploy a containerized MySQL server to

the Kubernetes cluster:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: sample-spring-boot-app-mysql

 labels:

 app: sample-spring-boot-app-mysql

spec:

 replicas: 1

 selector:

 matchLabels:

 app: sample-spring-boot-app-mysql

 template:

 metadata:

 labels:

 app: sample-spring-boot-app-mysql

 spec:

 containers:

 - name: sample-spring-boot-app-mysql

 image: mysql:latest

 env:

 - name: MYSQL_ROOT_PASSWORD

 value: "pass"

 - name: MYSQL_DATABASE

 value: "test"

 ports:

 - containerPort: 3306

We explicitly define the MYSQL_ROOT_PASSWORD and

MYSQL_DATABASE environment variable credentials required

by the MySQL container image. Defining environment

variables directly in a Deployment object is a more

straightforward alternative than using a ConfigMap or

Secrets.

Next, we define the Deployment object for our Spring Boot

application by creating the deployment.yaml file:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: sample-spring-boot-app

 labels:

 app: sample-spring-boot-app

spec:

 replicas: 1

 selector:

 matchLabels:

 app: sample-spring-boot-app

 template:

 metadata:

 labels:

 app: sample-spring-boot-app

 spec:

 initContainers:

 - name: sample-spring-boot-app-mysql-init

 image: busybox

 command: ['sh', '-c', 'until nc -zv

sample-spring-boot-app-

mysql.default.svc.cluster.local 3306; do echo

waiting for sample-spring-boot-app-

mysql.default.svc.cluster.local; sleep 5; done;']

 containers:

 - name: sample-spring-boot-app

 image: s4intlaurent/sample-spring-boot-

app:1.0

 envFrom:

 - configMapRef:

 name: sample-spring-boot-app

 - secretRef:

 name: sample-spring-boot-app

 ports:

 - containerPort: 8080

Note that this Deployment has a initContainers block

using a busybox image that executes a Netcat (nc)

command to check if the MySQL database on the host

sample-spring-boot-app-

mysql.default.svc.cluster.local and port 3306 is

accessible. We set the initContainers block here to

prevent the situation where the Spring Boot application

starts before the database, causing application startup

errors. This technique ensures a Pod is only initialized after

tasks from an init container are successfully executed. The

hostname sample-spring-boot-app-

mysql.default.svc.cluster.local refers to the

Kubernetes service that the Spring Boot Application uses to

connect to the database.

We are using the Docker image s4intlaurent/sample-

spring-boot-app:1.0, which we pushed to the Docker Hub

registry when creating the Docker image for our Spring Boot

application. Kubernetes will pull this image when we create

the application Pod.

Once the Deployment object is appropriately configured, we

can install it with a command similar to the one shown

below:

$ kubectl apply -f deployment.yaml

Let us finish the Kubernetes objects configuration by

creating the required Service objects for the Spring Boot

application.

Allowing access to the application with a Service

We need to create a Service object that allows the Spring

Boot application Pod to connect to the MySQL server Pod

and another Service that allows the Spring Boot application

to be exposed to clients outside the Kubernetes cluster.

We define Service for the MySQL server Pod by creating a

database-service.yaml file with the following content:

apiVersion: v1

kind: Service

metadata:

 name: sample-spring-boot-app-mysql

 labels:

 app: sample-spring-boot-app-mysql

spec:

 ports:

 - port: 3306

 protocol: TCP

 selector:

 app: sample-spring-boot-app-mysql

When we omit the Service type, it defaults to ClusterIP,

which is used here because we want to expose the MySQL

Server Pod only to the internal Kubernetes cluster network.

The Service’s name sample-spring-boot-app-mysql

becomes part of the fully qualified domain name (FQDN)

defined as sample-spring-boot-app-

mysql.default.svc.cluster.local. The default term

refers to the namespace where Kubernetes creates objects;

svc stands for Service; and cluster.local refers to the

Kubernetes cluster. Other Pods can access the Service using

the simple hostname sample-spring-boot-app-mysql or

the FQDN.

Next, we create a service.yaml file that defines a Service

object that exposes the Spring Boot application to external

clients:

apiVersion: v1

kind: Service

metadata:

 name: sample-spring-boot-app

 labels:

 app: sample-spring-boot-app

spec:

 type: NodePort

 ports:

 - port: 8080

 nodePort: 30080

 protocol: TCP

 selector:

 app: sample-spring-boot-app

That is a NodePort Service we use to open a port in the

Kubernetes cluster, letting external clients interact directly

with the Spring Boot application Pod. We explicitly set the

30080 as the NodePort. When the NodePort is not defined,

Kubernetes automatically assigns a port from the 30000-

32767 range. The 8080 port value is used for internal

cluster communication and is also used as a default value

for the targetPort when that is omitted, which is the case

in the example above. Remember, targetPort refers to the

port where the Spring Boot application port listens.

The following is an example showing how we can install our

Service object in a Kubernetes cluster:

$ kubectl apply -f service.yaml

Let us see how we can now provision all these Kubernetes

object definitions we created into a Kubernetes cluster.

Using kubectl to install Kubernets objects

A common way to interact with a Kubernetes cluster is

through a command-line tool called kubectl. You can find

the installation and configuration instructions for kubectl at

https://kubernetes.io/docs/tasks/tools/#kubectl.

When using minikube, it automatically configures kubectl

to connect to your local Kubernetes cluster.

Assuming that the Kubernetes objects YAML files were

created in a directory called k8s, the following is how we

can install those objects in our Kubernetes local cluster:

$ kubectl apply -f k8s/

configmap/sample-spring-boot-app created

service/sample-spring-boot-app-mysql created

deployment.apps/sample-spring-boot-app-mysql

created

https://kubernetes.io/docs/tasks/tools/#kubectl

deployment.apps/sample-spring-boot-app created

secret/sample-spring-boot-app created

service/sample-spring-boot-app created

This command creates on the Kubernetes cluster all the

objects specified by YAML files inside the k8s directory.

You can check if the Kubernetes Pods were created by

executing the following command:

$ kubectl get pods

NAME

READY STATUS RESTARTS AGE

sample-spring-boot-app-68bbfd8596-q5g5w

1/1 Running 0 3m48s

sample-spring-boot-app-mysql-5bfdfbdf44-khtk9

1/1 Running 0 3m48s

A similar command be executed to check the Service and

other objects:

$ kubectl get service

NAME

TYPE CLUSTER-IP EXTERNAL-IP

PORT(S) AGE

kubernetes

ClusterIP 10.96.0.1 <none>

443/TCP 276d

sample-spring-boot-app NodePort

10.106.96.230 <none> 8080:30080/TCP 5m33s

sample-spring-boot-app-mysql ClusterIP

10.110.167.11 <none> 3306/TCP 5m33s

The kubectl get {objectType} command lets us inspect

the state of any Kubernetes object.

Let us wrap up now by compiling and running the sample

project.

Compiling and running the sample project

The sample project is based on the containerized Spring

Boot application we have worked with throughout this

chapter.

You can clone the application source code from the GitHub

repository at https://github.com/bpbpublications/Java-

Real-World-Projects/tree/main/Chapter%2008.

You need the JDK 21 or above and Maven 3.8.5 or above

installed on your machine. You also need Docker and

Minikube.

Execute the following command to compile the application:

$ mvn clean package

Maven will create a JAR file called sample-spring-boot-

app.jar, which we use to create a Docker image using the

following command:

$ docker build . -t

{YOUR_DOCKER_HUB_ACCOUNT}/sample-spring-boot-

app:1.0

Replace {YOUR_DOCKER_HUB_ACCOUNT} with your account

from https://hub.docker.com/. You can create an account

there for free if you do not have one yet.

After building the Docker image, push it to the public Docker

registry:

$ docker push {YOUR_DOCKER_HUB_ACCOUNT}/sample-

spring-boot-app:1.0

Pushing the image is necessary before installing the

Deployment Kubernetes object.

https://github.com/bpbpublications/Java-Real-World-Projects/tree/main/Chapter%2008
https://hub.docker.com/

Next, we need to adjust the file at k8s/deployment.yaml by

replacing the Docker image s4intlaurent/sample-spring-

boot-app:1.0 to {YOUR_DOCKER_HUB_ACCOUNT}/sample-

spring-boot-app:1.0 where {YOUR_DOCKER_HUB_ACCOUNT}

is your Docker Hub account name.

Following that, we install Kubernetes objects in the Minikube

cluster:

$ kubectl apply -f k8s/

configmap/sample-spring-boot-app created

service/sample-spring-boot-app-mysql created

deployment.apps/sample-spring-boot-app-mysql

created

deployment.apps/sample-spring-boot-app created

secret/sample-spring-boot-app created

service/sample-spring-boot-app created

The following is how we can make requests to the Spring

Boot application running on Kubernetes:

$ curl -X POST {MIKIKUBE_IP_ADDRESS}:30080/person

-H 'Content-type:application/json' -d '{"email":

"john.doe@davivieira.dev", "name": "John Doe"}'

$ curl -s

{MIKIKUBE_IP_ADDRESS}:30080/person/john.doe@davivi

eira.dev

We can use the following command to get the Minikube IP

address:

$ minikube ip

The IP returned allows access to the Pods running inside the

Minikube cluster.

Conclusion

Cloud technologies like Docker and Kubernetes are familiar

to most Java developers. Knowing how to use these

technologies is fundamental for anyone interested in

designing and operating Java cloud-native systems.

This chapter explored how crucial virtualization technology,

especially container virtualization, is for any cloud-native

environment. We learned that a container comprises one or

more isolated processes provided by the namespace and

cgroups Linux kernel’s features. Known as one of the most

popular container technologies, we discovered how Docker

makes developers’ lives easier by providing a convenient

way to package and deliver containerized applications

through Docker images created with a Dockerfile. Going

deeper into the containers, we learned how powerful

Kubernetes is in providing a container orchestration solution

that reliably hosts containerized applications. Finally, we

applied techniques like configuration externalization on the

Spring Boot application to make it cloud-native and ready to

run in Kubernetes clusters.

In the next chapter, we will look at monitoring and

observability, activities that play a fundamental role in the

availability and reliability of Java applications running in

production. We will learn how to implement distributed

tracing with Spring Boot and OpenTelemetry. Also, we will

explore handling logs using the Elasticsearch, Fluentd,

and Kibana (EFK) stack.

CHAPTER 9

Learning Monitoring and Observability

Fundamentals

Introduction

Those tasked with supporting Java applications in production understand the value of

comprehending system behavior in various situations. This understanding is built on the

foundation of monitoring and observability techniques, which leverage metrics, logs,

events, and other data to predict or address application failures. By looking at the basics of

monitoring and observability, we can make informed decisions about the most effective

technologies and approaches to swiftly respond to unexpected application behaviors.

Structure

The chapter covers the following topics:

• Understanding monitoring and observability
• Implementing distributed tracing with Spring Boot and OpenTelemetry
• Handling logs with Elasticsearch, Fluentd, and Kibana
• Compiling and running the sample project

Objectives

By the end of this chapter, you will learn the main concepts behind monitoring and

observability. With these concepts as a solid foundation, you will learn how to apply

distributed tracing techniques to understand through traces the life cycle of requests

spanning multiple microservices. Finally, you will know how to collect and see logs from a

Java application using Elasticsearch, Fluentd, and Kibana.

Understanding monitoring and observability

The crucial moment for software developers is when their applications go live. For backend

developers, in particular, it is when their software is deployed to production environments.

Although what backend developers deploy most of the time are not user-facing features,

they do deploy backend software components that may support such features provided by

the frontend system. It is fundamental to remember that the well-functioning of these

backend components directly impacts the user-facing features, underscoring the

importance of the backend development in ensuring a seamless user experience.

Imagine you are working as a backend developer. In that case, chances are high that you

will face a scenario similar to the one described above because most backend development

nowadays is based on server-side applications often integrated with frontend applications.

Depending on the organization’s structure, developers will be in charge of ensuring their

applications run well in production. It can also happen that this responsibility will instead

fall on the shoulders of application support analysts or system administrators. Either way,

someone needs to be capable of understanding application behaviors, predicting and

preventing issues, and identifying and fixing those issues when they occur.

For many years, developers, system administrators, support analysts, and anyone

interested have been using monitoring tools and techniques to gain visibility and

understanding of how server-side applications behave when serving requests and

processing data. However, with the rise of distributed architecture applications, traditional

monitoring approaches were found to have limitations. This led to the emergence of

observability, a more comprehensive approach that provides deeper insights, especially in

distributed architectures like microservices.

Before we explore observability, let us check next what is monitoring.

Monitoring

Any application behaves in its own way, given the constraints and load exerted upon it. The

constraints are the computing resources, like CPU, memory, storage, and network

bandwidth, available to the application to perform its activities. The load refers to how

much of the available computing resources the application uses to carry on with its tasks.

Routinely inspecting how an application behaves in the face of its constraints and load is

one form of monitoring. The goal of this kind of monitoring is, for example, to prevent

resource bottlenecks like lack of storage space or memory. That may be accomplished by

setting up monitoring dashboards and alerts configured to send messages or phone calls

when a predefined threshold is met, such as 80% of the disk being used.

Another form of monitoring is concerned with application logic. Some applications are

developed in an enterprise environment to solve business problems. The logic to solve

those problems may be susceptible to dependencies like database availability, input data

provided through an application request, or data obtained from an API. The ability to

inspect how well an application solves business problems is fundamental to predicting or

quickly remediating issues. Monitoring application logic can be accomplished, for example,

through the usage of metrics and application logs. Dashboards and alerts can also be used

on top of data provided by metrics and logs.

Observability techniques were conceived to enhance standard monitoring practices and

achieve a holistic understanding of what happens in a software system by considering the

behavior of not only a single application but also the relationship between multiple of

them, as in the case of distributed architecture systems like microservices. Let us explore

more of it next.

Observability

For quite some time, the standard way to build server-side systems was by developing a

single monolith application. The focal point for all monitoring activities would be around

that single monolith application, resulting in the creation of monitoring dashboards based

on application metrics. These dashboards, a cornerstone of our understanding of the

application’s behavior, were heavily relied upon by developers and other interested parties.

They served as a window into the application’s world, providing crucial insights and

supporting troubleshooting activities. The information obtained from the monitoring

dashboards could trigger further investigation of application logs to identify an issue’s root

cause.

A problem arose when server-side systems started to be developed based on distributed

architectures. The logic from a distributed system is scattered across multiple applications

having particular responsibilities. Instead of having a single monolith application, several

smaller applications are now working together to provide system functionalities. The shift

in how server-side software is developed, from monolith to distributed, also triggered a

change in techniques to understand how distributed software behaves, which ultimately

culminated in what is called observability.

Observability is the ability to understand software system behaviors through structured

events containing contextual data. It aims to enable the discovery of what, when, where,

and why something happened in a system. Such contextual data is made of high-

cardinality and high-dimensionality data.

A structured event is a piece of data describing system behavior at a given time. Its

attributes are arbitrarily defined to provide as much context as possible for what happened

when the software system attempted to do something.

High cardinality refers to data uniqueness. An example of high-cardinality data is an event

having attributes like the Request ID that must store unique values in a system. On the

other hand, a low-cardinality data example would be an event having the Country attribute,

which can contain non-unique values. High-cardinality data is one of the cornerstones of

observability because it allows us to identify events describing system behaviors

accurately.

High dimensionality refers to the data attributes used in an event describing system

behavior. An event containing a comprehensive set of attributes is helpful in understanding

system behaviors from different dimensions. For example, User ID, Organization ID, Region,

Status, Source, or Destination can be used as dimensions where User ID is one dimension,

Organization ID is another, and so on. An event lacking crucial attributes may compromise

the comprehension of system behaviors; that is why it is essential to ensure structured

events have high dimensionality based on relevant data attributes.

Structured events with high-cardinality and high-dimensionality data are the foundation for

observability tools and techniques. In distributed systems, observability techniques can be

used to understand the flow of a request going through multiple applications. Next, we

learn how to implement distributed tracing using Spring Boot and OpenTelemetry.

Implementing distributed tracing with Spring Boot and OpenTelemetry

Understanding system behavior is a non-trivial challenge in distributed architecture

systems. In such an architecture, a user request may trigger other requests on different

applications that work together to provide a system functionality. For example, a user

sends a request to Service A, which sends a request to Service B, which sends another

request to Service C. If something goes wrong in one of the three services involved in the

operation, we must be able to identify in which service the problem is coming from. We can

do that using distributed tracing.

Distributed tracing is the technique that helps us understand system behavior based on

traces emitted by an application. A trace represents the path a request takes to execute a

system behavior. Every trace comprises one or more spans, representing a unit of work. As

the request goes from one application to another, new spans are generated, carrying

contextual data that lets us know the previous span and to which trace all the spans are

associated. With traces and spans, we can better see what happens in a system composed

of multiple applications. We have an illustration of what a trace looks like as follows:

Figure 9.1: The Trace structure

The trace example starts with Span 1, which represents a request coming to Service A.

Span 2 shows us that Service A requested Service B, which, in turn, made a request to the

database, represented through Span 3. Finally, we can see that Service B requested

Service C after receiving a response from the database.

OpenTelemetry provides a set of SDKs, APIs, and libraries that let us instrumentalize

applications to generate telemetry data such as metrics, logs, and traces like the one

presented in the previous example. Once adopted, OpenTelemetry also enables us to

collect and export traces to observability applications, like Jaeager, that let us visualize the

traces generated by a system. Having a way to visualize system traces is very helpful for

troubleshooting purposes.

Let us start by building a simple distributed system based on two Spring Boot applications.

That system will serve as the scenario for implementing distributed tracing using

OpenTelemetry.

Building a simple distributed system

The system we will create is responsible for generating reports based on data stored in an

inventory. Following a distributed architecture approach, we build a service responsible for

generating reports and another service responsible for providing inventory data.

Let us start by defining Maven’s pom.xml with the required dependencies for both services.

Configuring dependencies

We start by defining the base Maven’s project structure in the pom.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <parent>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-parent</artifactId>

 <version>2.7.18</version>

 <relativePath/>

 </parent>

 <groupId>dev.davivieira</groupId>

 <artifactId>chapter09</artifactId>

 <version>1.0-SNAPSHOT</version>

 <packaging>pom</packaging>

 <properties>

 <maven.compiler.source>21</maven.compiler.source>

 <maven.compiler.target>21</maven.compiler.target>

 </properties>

 <modules>

 <module>inventory-service</module>

 <module>report-service</module>

 </modules>

<!-- Code omitted -->

</project>

Note that this is a Maven multi-module project with a module for the inventory service and

another for the report service. All the dependencies and build configurations defined in this

pom.xml file are shared with the inventory service and report service modules, which will

be defined soon.

Spring Boot simplifies our task by providing support for OpenTelemetry libraries. This allows

us to enable distributed tracing effortlessly. Here is how we configure the first part of

Maven’s dependencies for Spring Boot and OpenTelemetry:

<dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-dependencies</artifactId>

 <version>2021.0.5</version>

 <type>pom</type>

 <scope>import</scope>

 </dependency>

 <dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-sleuth-otel-dependencies</artifactId>

 <version>1.1.2</version>

 <scope>import</scope>

 <type>pom</type>

 </dependency>

 </dependencies>

</dependencyManagement>

We use the dependencyManagement block to get the spring-cloud-dependencies and

spring-cloud-sleuth-otel-dependencies POM dependencies. From the POM

dependencies, we can specify the JAR dependencies, which we will do next:

<dependencies>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-starter-sleuth</artifactId>

 <exclusions>

 <exclusion>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-sleuth-brave</artifactId>

 </exclusion>

 </exclusions>

 </dependency>

 <dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-sleuth-otel-autoconfigure</artifactId>

 </dependency>

 <dependency>

 <groupId>io.opentelemetry</groupId>

 <artifactId>opentelemetry-exporter-otlp</artifactId>

 <version>1.23.1</version>

 </dependency>

</dependencies>

We use the spring-boot-starter-web dependency to create REST API endpoints for our

services. The spring-cloud-starter-sleuth dependency provides auto-configuration for

distributed tracing on Spring Boot applications. We exclude the spring-cloud-sleuth-

brave because it is a trace generator library. Instead, we use the spring-cloud-sleuth-

otel-autoconfigure dependency, which generates traces using OpenTelemetry. The

opentelemetry-exporter-otlp lets us collect trace data and export it to a collector.

Let us now start implementing the distributed system with the inventory service.

Implementing the inventory service

The inventory service exposes a single REST endpoint that can be used by the report

service to get inventory data:

@RestController

@RequestMapping("/inventory")

public class InventoryEndpoint {

 private static final Logger LOGGER =

 LoggerFactory.getLogger(InventoryEndpoint.class);

 @GetMapping

 public List<String> getAllInventory() {

 LOGGER.info("Getting all inventory items");

 return List.of("Inventory Item 1", "Inventory Item 2", "Inventory

 Item 3");

 }

}

We use the @GetMapping annotation to expose inventory data through the GET endpoint at

/inventory. That is all we need from the Java class implementation perspective. Now, we

need to enable the application to produce traces. How we can do that using the

application.yml file is shown as follows:

server:

 port : 8080

spring:

 application:

 name: inventory-service

 sleuth:

 otel:

 config:

 trace-id-ratio-based: 1.0

 exporter:

 otlp:

 endpoint: http://collector:4317

There are three essential configurations to pay attention to here:

1. The name property is used to group trace data based on the application’s name.

2. The trace-id-ratio-based defines the ratio through which spans will be captured.

The number 1.0 means all spans will be captured.

3. The endpoint property sets the collector’s URL where trace data will be exported.

The trace collector is an external system that must be available. Otherwise, our Spring

Boot application won’t be able to export trace data. We will see soon how to provide such a

http://collector:4317/

collector system.

Using Docker Compose, we intend to provide the inventory service as a containerized

application. To do so, we need to create a Dockerfile:

FROM openjdk:21-slim

ENV JAR_FILE inventory-service-1.0-SNAPSHOT.jar

ENV JAR_HOME /usr/apps

COPY target/$JAR_FILE $JAR_HOME/

WORKDIR $JAR_HOME

ENTRYPOINT ["sh", "-c"]

CMD ["exec java -jar $JAR_FILE"]

EXPOSE 8080

Note the port 8080 we expose in the Dockerfile is the same port used in the application.yml

file from the Spring Boot application.

Let us now implement the report service

Implementing the report service

The report service communicates directly with the inventory service. Let us implement a

Java class that accomplishes that:

@RestController

@RequestMapping("/report")

public class ReportEndpoint {

 private static final Logger LOGGER =

 LoggerFactory.getLogger(ReportEndpoint.class);

 private final RestTemplate restTemplate;

 @Value("${inventoryService.baseUrl}")

 private String baseUrl;

 @Autowired

 public ReportEndpoint(RestTemplate restTemplate) {

 this.restTemplate = restTemplate;

 }

 @GetMapping(path = "/generate")

 public List<String> generateReport() {

 LOGGER.info("Generating report");

 return getInventoryItems();

 }

 private List<String> getInventoryItems() {

 LOGGER.info("Getting inventory items");

 ResponseEntity<String[]> response =

 restTemplate.getForEntity(baseUrl + "/inventory",

 String[].class);

 return List.of(Objects.requireNonNull(response.getBody()));

 }

}

We use the RestTemplate, which provides a client that lets us communicate with other

applications using the HTTP protocol. The generateReport method is called when the

application receives a GET request at /report/generate. The generateReport method

calls getInventoryItems, which contains the logic responsible for sending a GET request

to the /inventory endpoint from the inventory service application. The implementation is

simple but enough to show us how distributed tracing works.

Next, we configure the application.yml file:

server:

 port : 9090

spring:

 application:

 name: report-service

 sleuth:

 otel:

 config:

 trace-id-ratio-based: 1.0

 exporter:

 otlp:

 endpoint: http://collector:4317

inventoryService:

 baseUrl: ${INVENTORY_BASE_URL:http://localhost:8080}

Note that the configuration is quite similar to the inventory service. The only differences

are the server port, which is 9090, the application’s name, report-service, and the

presence of the baseUrl property containing the inventory service URL.

The Dockerfile configuration is also quite similar to the inventory service:

FROM openjdk:21-slim

ENV JAR_FILE report-service-1.0-SNAPSHOT.jar

ENV JAR_HOME /usr/apps

COPY target/$JAR_FILE $JAR_HOME/

WORKDIR $JAR_HOME

ENTRYPOINT ["sh", "-c"]

CMD ["exec java -jar $JAR_FILE"]

EXPOSE 9090

To ensure the Spring Boot application will be accessible externally, we expose the 9090

port, the same port configured in the Spring Boot application.

At this stage, we have two Spring Boot applications: the inventory and report services. To

complete the setup, we need to configure Docker Compose. This configuration not only

starts both applications but also provides an instance of the Jaeger and OpenTelemetry

Collector. These tools are crucial as they enable us to get and visualize application traces.

Setting up Docker Compose, Jaeger, and Collector

Using Docker Compose, we can bring up the inventory and report services and the

distributed tracing tools Jaeger and OpenTelemetry Collector. Jaeger exposes tracing data

to a user interface, showing application traces. The OpenTelemetry Collector provides

tracing data collected from traces generated by the inventory and report services. The

following code is how we can configure the docker-compose.yml file:

version: '3.8'

services:

 inventory-service:

 build: inventory-service/

 ports:

 - "8080"

 report-service:

 environment:

 - INVENTORY_BASE_URL=http://inventory-service:8080

 build: report-service/

 ports:

 - "9090:9090"

 jaeger-service:

 image: jaegertracing/all-in-one:latest

 ports:

 - "16686:16686"

 - "14250"

 collector:

 image: otel/opentelemetry-collector:0.72.0

 command: ["--config=/etc/otel-collector-config.yml"]

 volumes:

 - ./otel-collector-config.yml:/etc/otel-collector-config.yml

 ports:

 - "4317:4317"

 depends_on:

 - jaeger-service

Observe that in the collector’s configuration, we mount the file otel-collector-config.yml as

a container volume file inside the container. Following is how the otel-collector-config.yml

should look like:

Code omitted

exporters:

 logging:

 loglevel: debug

 jaeger:

 endpoint: jaeger-service:14250

 tls:

 insecure: true

service:

 pipelines:

 traces:

 receivers: [otlp]

 processors: [batch]

 exporters: [logging, jaeger]

Note that we have specified jaeger-service:14250 as the Jaeger endpoint. The host

jaeger-service and 14250 port are part of the Docker Compose configuration defined

previously.

With Jaeger and OpenTelemetry Collector integrated with traces produced by our Spring

Boot applications, we can see how distributed tracing works in practice. Before we start

playing with it, let us add an essential element to our observability setup: centralized

logging.

Handling logs with Elasticsearch, Fluentd, and Kibana

We can identify what is happening and where something went wrong with metrics and

traces, but we may need more information to tell us why something went wrong.

Sometimes, the answers to the root cause of a problem can only be found after inspecting

application logs. Anyone with experience troubleshooting applications knows that. The

problem symptom usually starts, in the best-case scenarios, as an alert saying the system

is not behaving as expected. In the worst-case scenarios, it starts with customers

complaining they cannot use the system. Either way, we must collect evidence to

understand why the issue is happening and apply a fix as soon as possible.

Logs are fundamental in monitoring and observability because they contain information

about application behavior. For quite some time, developers and system administrators

dug directly into the server for application logs. That approach works great for monolith

systems running on a single server. However, when you have distributed systems

composed of many applications running as multiple instances across multiple servers to

ensure high availability, the simple approach of digging directly into the server logs is no

longer feasible. In such scenarios, the vast amount of logs from such diverse sources

requires a centralized approach capable of aggregating logs and allowing people to

navigate them easily.

Logs from different sources can be centralized in one place using technologies like Fluentd,

Elasticsearch, and Kibana. Let us examine the purpose of each technology.

Fluentd

Known as data collection software, Fluentd is frequently used to capture application log

outputs and send them to search engines like Elasticsearch. It has been widely adopted in

distributed architecture systems running in a Kubernetes cluster.

Elasticsearch

Based on the Lucene search engine library, Elasticsearch is a distributed enterprise search

engine often used with data collection systems like Logstash and Fluentd. Elasticsearch

stores data in indexes and allows for the fast search of large amounts of data.

Kibana

Built specifically to work with Elasticsearch, Kibana is a system that provides a user

interface for managing and searching Elasticsearch data. Users can search data using

customized filters and criteria, allowing high flexibility in the search.

The three technologies, Elasticsearch, Fluentd, and Kibana, are commonly used

together, forming the reliable and widely used EFK stack. In the next section, we will

guide you through setting up an EFK stack to capture logs from the Spring Boot

applications we developed earlier.

Setting up EFK stack with Docker Composer

There is no need to change the application code because Fluentd captures data using the

log output produced by the application. So, ensuring proper communication between

applications generating logs and the Fluentd server is essential. We also need to ensure

Fluentd sends log data to the Elasticsearch server that Kibana uses to display logs through

a user interface.

1. Let us start by configuring the EFK stack in the docker-compose.yml file. The code is

as follows:

version: '3.8'

services:

 fluentd:

 build: ./fluentd

 volumes:

 - ./fluentd/conf/fluent.conf:/fluentd/etc/fluent.conf

 links:

 - "elasticsearch"

 ports:

 - "24224:24224"

 - "24224:24224/udp"

 elasticsearch:

 image: elasticsearch:8.13.4

 container_name: elasticsearch

 environment:

 - discovery.type=single-node

 - xpack.security.enabled=false

 expose:

 - "9200"

 ports:

 - "9200:9200"

 kibana:

 image: kibana:8.13.4

 environment:

 - XPACK_SECURITY_ENABLED=false

 - ELASTICSEARCH_HOSTS=http://elasticsearch:9200

 - INTERACTIVESETUP_ENABLED=false

 links:

 - "elasticsearch"

 ports:

 - "5601:5601"

 depends_on:

 - elasticsearch

Elasticsearch and Kibana require security mechanisms by default. For the sake of

simplicity, we are turning them off through environment variables like

XPACK_SECURITY_ENABLED=false and INTERACTIVESETUP_ENABLED=false.

2. For the Fluentd setup, we need to provide a customized Fluentd Docker image

configured with the Elasticsearch plugin. The following code shows how the Dockefile

for such an image should be defined:

FROM fluent/fluentd:v1.17

USER root

RUN ["gem", "install", "fluent-plugin-elasticsearch", "--no-document", "--

USER fluent

Note we also, the docker-compose.yml refers to the file

./fluentd/conf/fluent.conf, which specifies configurations like the IP address and

port the Fluentd will listen to receive application logs, and also the destination place,

Elasticsearch in our case, where log data will be sent:

<source>

 @type forward

 port 24224

 bind 0.0.0.0

</source>

<match *.**>

 @type copy

 <store>

 @type elasticsearch

 host elasticsearch

 port 9200

 logstash_format true

 logstash_prefix fluentd

 logstash_dateformat %Y%m%d

 include_tag_key true

 type_name access_log

 tag_key @log_name

 flush_interval 1s

 </store>

 <store>

 @type stdout

 </store>

</match>

The source configuration block defines a TCP endpoint through the @type forward

option that accepts TCP packets from applications sharing their output. Note port

24224’s definition; we use it when configuring the Spring Boot application container’s

logging on Docker Compose. After the source block, we have a match block to

determine the log output destination. Two necessary configurations here are the host

and port, which are defined as elasticsearch and 9200, respectively.

3. Next, we add to the docker-compose.yml the configuration for the inventory and

report service Spring Boot applications we built in the previous section:

Code omitted

inventory-service:

 build: inventory-service/

 ports:

 - "8080"

 links:

 - fluentd

 logging:

 driver: "fluentd"

 options:

 fluentd-address: localhost:24224

 tag: inventory.service

report-service:

 environment:

 - INVENTORY_BASE_URL=http://inventory-service:8080

 build: report-service/

 ports:

 - "9090:9090"

 links:

 - fluentd

 logging:

 driver: "fluentd"

 options:

 fluentd-address: localhost:24224

 tag: report.service

Note that inventory and report services have a logging configuration block that

defines Fluentd as the log driver connecting to the localhost:24224. Remember, we

previously configured Fluentd to listen in port 24224. What happens here is that logs

produced by inventory-service and report-service containers will be forwarded to the

Fluentd server.

Let us combine all the pieces and play with our observability engine, which supports

distributed tracing and centralized logging.

Compiling and running the sample project

The sample project is based on the two Spring Boot applications developed throughout this

chapter and the observability setup based on OpenTelemetry, Jaeger, and the EFK stack.

You can clone the application source code from the GitHub repository at

https://github.com/bpbpublications/Java-Real-World-

Projects/tree/main/Chapter%2009.

You need to install the JDK 21 or above and Maven 3.8.5 or above on your machine. You

also need Docker and Docker Compose.

Execute the following command to compile the two Spring Boot applications:

$ mvn clean package

https://github.com/bpbpublications/Java-Real-World-Projects/tree/main/Chapter%2009

Maven will create a JAR file for the inventor-service and report-service applications. Next,

you can execute the following command to bring up all the containers from the Spring Boot

applications and also the observability tools:

$ docker-compose up -d --build

After having all containers up and running, you use the following command to send a

sample request to the report service:

$ curl -s localhost:9090/report/generate | jq

[

 "Inventory Item 1",

 "Inventory Item 2",

 "Inventory Item 3"

]

You can visualize application traces by accessing the Jaeger UI URL at

http://localhost:16686. The screen is as follows:

Figure 9.2: The Jaeger UI

Note that the trace comprises spans showing requests crossing through the report-service

and inventory-service applications.

We can find application logs on Kibana at the URL http://localhost:5601. The screen is as

follows:

http://localhost:16686/
http://localhost:5601/

Figure 9.3: Kibana showing application logs

When accessing Kibana for the first time, click on the Explore on my own option, then on

Discover, and finally, Try ES|QL, which lets you see data without configuring indexes.

Conclusion

In this chapter, we explored monitoring and observability. We learned that monitoring

refers to the traditional approach of understanding system behavior through metrics, logs,

dashboards, and alerts. We discovered that observability complements traditional

monitoring techniques and is especially helpful for understanding the behavior of systems

based on distributed architectures, like microservices.

We implemented a simple distributed system based on two Spring Boot applications that

can generate traces. On top of those traces, we configured OpenTelemetry Collector to

capture application traces and send them to the Jaeager, which lets us visualize traces and

their spans.

Finally, we configured centralized logging using the Elasticsearch, Fluentd, and Kibana

(EFK) stack, a solution that aggregates logs from different applications.

In the upcoming chapter, we will look at the exciting world of Micrometer, a library that has

the potential to enhance the observability of Java applications significantly. We will learn

the importance of providing application-specific metrics to enable better monitoring of

application behaviors and explore how to implement such metrics.

CHAPTER 10

Implementing Application Metrics with

Micrometer

Introduction

Understanding how an application behaves through metrics can help us remediate issues

faster or prevent problems from getting worse. Metrics play a fundamental role in

monitoring because they let us capture the state of the functionalities provided by the

application. When interpreted, those states can indicate whether things are working as

expected or if there are deviations requiring further investigation.

To harness the power of metrics in Java applications, we need to adjust them by configuring

metrics to track application behaviors. We can do this using Micrometer, a well-known Java

library that allows us to instrumentalize Java applications to generate metrics. That is why,

in this chapter, we will explore how the Micrometer works, the metrics types it provides,

and how and when we should use these metric types.

Structure

The chapter covers the following topics:

• Providing application metrics
• Introducing Micrometer
• Using Micrometer and Spring Boot to implement metrics
• Compiling and running the sample project

Objectives

By the end of this chapter, you will learn the benefits of instrumentalizing Java applications

to generate metrics that describe how well the system is performing its activities. Knowing

the advantages of application-specific metrics, you will also learn how to implement them

using Micrometer, a powerful metrics library for Java.

Providing application metrics

Software systems are made of a set of instructions aimed at solving real-world problems.

As programmers, we must understand which kind of real-world problems our applications

intend to solve. It does not mean extensive expertise in a given field, like finance or

medicine, is required to develop functional software. We do not need to be bankers to

create good banking software. However, having substantial problem domain knowledge is

invaluable for any developer. Such knowledge usually frames a specific aspect of an area

that, for some reason, needs software to solve specific problems. So, the developed

application should contain solutions for such specific problems.

The solutions software provides are materialized through a set of application behaviors that

handle data by rules and instructions defined by business logic code. The business logic in

enterprise systems is the codified expression of real-world problems. The enterprise system

term is being emphasized to reinforce the focus on applications developed in a commercial,

quite often corporate, context. As the codified representation of real-world problems, the

business logic code plays a critical role in the success of any enterprise application.

Knowing that the business logic code is vital, how can we monitor it so that it works as

expected once the application is up and running in production? Let us check it next.

There are two significant journeys in the software development lifecycle. The first journey is

where problem-solving ideas are turned into working code. The second journey starts when

the software is deployed to production and made available to users. Only after users begin

to use our software, quite often in ways we cannot predict, can we really learn how well the

business logic is fulfilling users’ expectations. Such learning can occur the hard way when

something goes wrong, and we discover it because a user reported application failure. We

can also learn the effectiveness of business logic code through application-specific metrics

implemented in strategic system locations to track critical application behaviors. Having

application-specific metrics placed in the right system locations gives us the necessary

visibility to predict potential failures and the ability to take action before the problem

becomes too big and causes a significant impact on the users. There will be cases in which

prediction will not be possible. Still, the troubleshooting time will be far shorter if the

metrics are used as a starting point to investigate the issue’s root cause and potential

solutions.

It is important to remember that employing application-specific metrics is not a one-time

activity. We usually start with metrics based on initial assumptions regarding what

behaviors should be tracked in the application; then, we add more metrics based on what

we learn by watching how the application reacts when users use it.

Having covered why we should implement metrics in our applications, let us learn about

the Micrometer library, which helps us instrument Java applications with metrics.

Introducing Micrometer

Designed to be an agnostic metrics solution, Micrometer is a powerful library that lets us

instrumentalize Java systems to produce metrics. It is considered agnostic because the

Micrometer metrics are not vendor-specific; they can work with different monitoring

vendors. Micrometer metrics are compatible, for example, with tools like Elastic and

Dynatrace, to name a few. So, using Micrometer allows us to switch across monitoring

vendors without having to refactor the Java application.

Micrometer works so that the metrics it produces are shared by the instrumentalized Java

application that exposes an endpoint used by external monitoring tools like Prometheus,

for example, that record metrics in a time series database. Having a place to record the

metrics produced by a Java application is beneficial because once the application is

restarted, the metrics collected before are gone unless we have stored them elsewhere.

This section explores some core Micrometer concepts, like the registry and meters, and

some of the most used meter types, including counters, gauges, timers, and distribution

summaries. Let us proceed by checking what is a registry in Micrometer.

Registry

The registry is represented through the MeterRegistry interface, which acts as the

fundamental component of the Micrometer architecture. All metrics produced by the

Micrometer come from a registry that enables the creation of different metric types, like

counters and gauges.

The MeterRegistry is an interface with implementations supporting multiple monitoring

systems. The SimpleMeterRegistry class, for example, can be used for testing purposes

because it keeps metrics data only in memory. For real-world scenarios, you might use the

PrometheusMeterRegistry if your monitoring tool is Prometheus. You can create a

SimpleMeterRegistry using the following code:

MeterRegistry registry = new SimpleMeterRegistry();

By default, a registry publishes metrics only to one monitoring system, but it is possible to

publish metrics data to multiple monitoring systems by using the

CompositeMeterRegistry:

CompositeMeterRegistry composite = new CompositeMeterRegistry();

The metrics generation activity always starts with a registry, regardless of whether it is a

single or composite one. Next, let us check how registries use meters to capture metric

data.

Meters and tags

Micrometer supports a set of distinct metrics that are defined as meters. Some of the most

used meters are the counter, timer, gauge, distribution summary, and timer. Every meter

has a name and a group of dimensions, known also as tags. Tags enable us to put more

context into the metric data that is being captured. For example, we can have a counter

meter named http.request with tags like the HTTP method, browser, and operating

system. Consider the following example:

SimpleMeterRegistry meterRegistry = new SimpleMeterRegistry();

var httpMethod = "GET"

Counter.builder("http.request")

 .tag("HTTP Method", httpMethod)

 .register(meterRegistry)

 .increment();

This code creates a counter meter with a tag that specifies the request’s HTTP method.

Here, we manually set it to GET, but in a real-world scenario, we get the HTTP method from

the underlying technology handling the HTTP request. The more tags we add, the more we

increase the metric dimensionality, which makes the metric more valuable because we can

slice and dice through the metric tags.

Counters

There are scenarios where we are interested in knowing the frequency at which something

occurs inside the system. Imagine a web application that receives HTTP requests at

different endpoints. We can use a counter to measure the rate at which the application

processes HTTP requests. A counter corresponds to a positive number that can be

incremented by one or any other arbitrary number. The following is how we can create and

use a counter:

SimpleMeterRegistry meterRegistry = new SimpleMeterRegistry();

Counter httpRequestCounter = Counter

 .builder("http.request")

 .description("HTTP requests")

 .tags("Source IP Address", "Operating System")

 .register(meterRegistry);

httpRequestCounter.increment();

httpRequestCounter.increment();

httpRequestCounter.increment();

System.out.println(httpRequestCounter.count()); // 3

Micrometer provides a builder that lets us intuitively construct the Counter object. Note

that we are setting the counter meter name as http.request, along with other data,

including the description and the meter tags. Ultimately, we need to pass the

meterRegistry reference object used to create the counter meter. A metric is generated

when calling the increment method from the Counter object. Every time the increment

method is called, the count metric number is incremented by one.

Gauges

We use gauges whenever we want to measure the size of a collection of things that can

increase or decrease in a system. For example, we can check how many threads are active

in the system. The number of threads can increase or decrease depending on the moment

the metric is captured. The following code shows how we can create a gauge meter:

AtomicInteger totalThreads = meterRegistry.gauge(

 "Total threads",

 new

AtomicInteger(ManagementFactory.getThreadMXBean().getThreadCount())

);

totalThreads.set(ManagementFactory.getThreadMXBean().getThreadCount());

Instead of using the builder as we did for the counter, we create the gauge meter directly

in the meterRegistry object by providing the value the gauge measures. In the example

above, we provide the total number of threads in the system. We wrap it within an

AtomicInteger because we cannot use primitive numbers or object numbers from

java.lang because they are immutable, which would not allow us to update the gauge

value after we have defined it for the first time.

Timers

In some situations, we want to know how long an operation takes to complete, and timers

are the measure we can use for those situations. Timers are particularly helpful in

identifying if some system behavior is taking longer than expected to finish, for example.

The following code lets us use the timer meter:

SimpleMeterRegistry meterRegistry = new SimpleMeterRegistry();

Timer durationTimer = meterRegistry.timer("task.duration");

timer.record(() -> {

 try {

 TimeUnit.SECONDS.sleep(5);

 } catch (InterruptedException _) {

 }

});

System.out.println(durationTimer.totalTime(TimeUnit.SECONDS)); // 5

5.000323186

The Timer interface has a method called record. As we did in the example above, we can

put the system operation we want to measure inside the record method by placing the call

to TimeUnit.SECONDS.sleep(5). After the execution, we could check that the timer metric

recorded five seconds as the time to execute the task.

Distribution summaries

A recurrent use case for distribution summaries is when we want to measure the file size

an application provides for download. Similarly, we can use a distribution summary to track

the payload size of upload requests handled by the application. The following is how we

can create and use a distribution summary meter:

SimpleMeterRegistry registry = new SimpleMeterRegistry();

var fileSize = 243000.81;

DistributionSummary responseSizeSummary = DistributionSummary

 .builder("file.size")

 .baseUnit("bytes")

 .register(registry);

responseSizeSummary.record(fileSize);

System.out.println(responseSizeSummary.totalAmount()); // 243000.81

Although not mandatory, setting the baseUnit to express which size unit you intend to

track is recommended.

Now that we know how Micrometer works, let us learn how to use it together with Spring

Boot to produce application metrics.

Using Micrometer and Spring Boot to implement metrics

Spring Boot provides full support and seamless integration with Micrometer, allowing us to

export metrics to various monitoring tools. When used together with Spring Boot,

Micrometer metrics are managed by the Spring Boot Actuator component, which exposes

data indicating how healthy the application is. The Actuator is often used with probe

mechanisms, like the readiness and liveness probes from Kubernetes, to health check the

application state through endpoints exposed by the Actuator.

In this section, we explore how to set up Spring Boot with Micrometer to implement a file

storage system that lets users upload and download files stored on an in-memory

database. To understand how metrics can be used in real-world scenarios, we

instrumentalize parts of the file storage system with Micrometer metrics like counter,

timer, and distribution summary.

Let us start by setting up the Spring Boot Maven project with Micrometer dependencies.

Setting up the Maven project

To make Micrometer work with Spring Boot, we must provide specific dependencies from

both projects. The following is how we can configure the dependencies in a Maven’s

pom.xml file:

<dependencies>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-data-jpa</artifactId>

 </dependency>

 <dependency>

 <groupId>io.micrometer</groupId>

 <artifactId>micrometer-registry-prometheus</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-actuator</artifactId>

 </dependency>

 <dependency>

 <groupId>com.h2database</groupId>

 <artifactId>h2</artifactId>

 <scope>runtime</scope>

 </dependency>

</dependencies>

We use the spring-boot-starter-web, spring-boot-starter-data-jpa, and h2

dependencies to implement the file storage system that exposes a RESTful API and persist

file content in an H2 in-memory database. Micrometer provides dependencies with support

for specific monitoring systems. Such dependencies are necessary because there is no

standard for metrics format across different monitoring systems. Micrometer lets

developers choose which dependencies they want based on the monitoring tools with

which they intend to export the metrics. Here, we use the micrometer-registry-

prometheus dependency because our system will export metrics compatible with

Prometheus. Finally, we declare the spring-boot-starter-actuator dependency

responsible for exposing the metrics endpoint that monitoring tools can use to get

application metrics.

With the dependencies properly configured, we can proceed to configure Spring Boot and

Micrometer.

Configuring Spring Boot and Micrometer

The configuration takes place in the application.yml file:

spring:

 servlet:

 multipart:

 max-file-size: 10MB

 max-request-size: 10MB

 datasource:

 url: jdbc:h2:mem:mydb

 username: sa

 password: password

 driverClassName: org.h2.Driver

 jpa:

 database-platform: org.hibernate.dialect.H2Dialect

management:

 metrics:

 enable:

 all: false

 file: true

 endpoints:

 web:

 exposure:

 include: Prometheus

We set the properties max-file-size and max-request-size to 10MB because the Spring

Boot default configuration is 1MB, which is insufficient because we intend to upload files

bigger than that. The datasource property block contains the configuration that defines

the H2 in-memory database mode.

The management block is where we define the properties that govern the behavior of the

actuator and Micrometer. By default, Spring Boot collects many technical metrics from the

system, mainly from the JVM. For simplicity’s sake, we are not interested in them, so we

disable these metrics by setting management.metrics.enable.all to false to turn off all

metrics from the system. However, we cannot leave the configuration that way; otherwise,

no metric will be captured. To solve it, we set the property

management.metrics.enable.file to true, making Spring Boot capture all metrics with

the word file at the beginning of their names. Finally, we define how metrics should be

exposed by setting endpoints.web.exposure.include to prometheus. That does not

mean Spring Boot will connect to a Prometheus instance to export Micrometer metrics.

Instead, it means that the Micrometer will generate metrics compatible with Prometheus.

Having correctly defined the dependencies and adequately configured the Spring Boot

application to work with Micrometer, we are ready to start implementing the file storage

system with metrics instrumentalization.

Enabling metrics on the file storage system

Let us create the bootstrap class that starts the Spring Boot application:

@SpringBootApplication

public class FileStorageApplication {

 public static void main(String... args) {

 SpringApplication.run(FileStorageApplication.class, args);

 }

}

We place the @SpringBootApplication annotation on top of the FileStorageApplication

class to make Spring Boot use this class to initiate the application.

As our file storage system operates by storing files in a database, it is imperative that we

implement a Jakarta entity. This entity will be our key component for interacting with the

database. Let us proceed with this task.

Implementing the File entity

Our intent with the File entity is to store the file name and its content in the database.

The following code is how we can implement such an entity:

@Entity

public class File {

 @Id

 private String id;

 private String name;

 @Lob

 @Column(length = 20971520)

 private byte[] content;

 // Constructors, getters, and setters omitted

}

The file ID is managed by the application, so we are not using an ID auto-generation

mechanism that delegates the ID generation to the database. The attribute name stores the

file name, and the content stores the file data in byte array format. Note that we are using

the @Lob annotation and specifying the column length to 20 megabytes.

After implementing an entity, we need a repository interface containing operations that let

us persist and retrieve files from the database. Let us implement it.

Implementing the File repository

The File repository handles File entity objects by persisting and retrieving them from the

database. Following is the File repository interface implementation:

@Repository

public interface FileRepository extends CrudRepository<File, String> {

 Optional<File> findById(String Id);

}

The method declaration called findById(String Id) lets us retrieve File entities by their

respective IDs. We do not need to declare a method for persisting File entities because

the parent interface, CrudRepository, already provides such a method.

We still need to implement the service and controller classes, but before doing so, let us

create the class containing the File metric builders.

Implementing the File metrics

To instrumentalize our file storage application, we need to provide meters that we can use

to measure different aspects of the system. One way to do that is to create a managed

bean class with public methods that return meter objects we can use in other application

classes. Let us start by defining the initial class structure:

@Component

public class FileMetric {

 private final MeterRegistry meterRegistry;

 @Autowired

 public FileMetric(MeterRegistry meterRegistry) {

 this.meterRegistry = meterRegistry;

 }

 // Code omitted

}

The FileMetric class is annotated with the @Component, making it a Spring managed bean

that can be used in other Spring beans. We use the class constructor to initialize the

meterRegistry class attribute. Remember that MeterRegistry is an interface with

implementations for different monitoring systems. Since we defined the specific

Micrometer Maven dependency with support for Prometheus, when we start this Spring

Boot application, the meterRegistry attribute will be initialized with a

PrometheusMeterRegistry type that is a MeterRegistry implementation. Next, we

implement the methods that return the meters we intend to use in the application:

@Component

public class FileMetric {

 // Code omitted

 public Counter requestCounter(String method, String path) {

 return Counter

 .builder("file.http.request")

 .description("HTTP request")

 .tags("method", method)

 .tags("path", path)

 .register(meterRegistry);

 }

 public Timer fileUploadTimer(String fileName) {

 return Timer

 .builder("file.upload.duration")

 .description("File Upload Duration")

 .tags("fileName", fileName)

 .register(meterRegistry);

 }

 public DistributionSummary fileDownloadSizeSummary(String fileName) {

 return DistributionSummary

 .builder("file.download.size")

 .baseUnit("bytes")

 .description("File Download Size")

 .tags("fileName", fileName)

 .register(meterRegistry);

 }

}

The requestCounter method returns a Counter object that lets us measure how many

HTTP requests are arriving at the file storage system endpoints, which will be implemented

soon. Note that we pass the method and path parameters used in meter tags. Then, we

have the fileUploadTimer method which returns a Timer object we use to measure how

long the application takes to upload a file. Finally, we have the fileDownloadSizeSummary

method which returns a DistributionSummary object that we use to measure the size of

files users download from the file storage system.

Implementing Micrometer metrics with annotations like @Counted and @Timed is also

possible. However, the author recommends using the builder approach because not all

Micrometer metrics annotations may work out of the box in a Spring Boot application. For

example, using the @Counted annotation with classes annotated with @Controller requires

additional Spring configuration.

After implementing the FileMetric class, let us implement the service and controller

classes with metrics instrumentalization. Let us proceed with the service class.

Implementing the File service

We use the service class as an intermediate layer between the controller and the

repository. The service class contains the methods responsible for uploading and

downloading files. The following code is how we can define the initial class structure:

@Service

public class FileService {

 private final FileRepository fileRepository;

 private final FileMetric fileMetric;

 @Autowired

 public FileService(FileRepository fileRepository, FileMetric

 fileMetric) {

 this.fileRepository = fileRepository;

 this.fileMetric = fileMetric;

 }

 // Code omitted

}

We inject the FileRepository and FileMetric dependencies through the class

constructor annotated with @Autowired. Using the following code, we finish the

implementation by providing the methods responsible for uploading and downloading the

files:

@Service<dependency>

 <groupId>org.aspectj</groupId>

 <artifactId>aspectjweaver</artifactId>

 <version>1.8.13</version>

</dependency>

public class FileService {

 // Code omitted

 public void uploadFile(File file) {

 fileMetric.fileUploadTimer(file.getName()).record(

 () -> fileRepository.save(file)

);

 }

 public Optional<File> downloadFile(String id) {

 return fileRepository.findById(id);

 }

}

The essential point to pay attention to here is the usage of the fileUploadTimer to

measure how long the uploadFile method takes to save the file in the database when it

calls the lambda expression () -> fileRepository.save(file) wrapped inside the

record method.

Let us finish the file storage system implementation by creating the controller class and

using the counter and distribution summary meters.

Implementing the Controller class

We implement the controller class to define the RESTful API endpoints responsible for

receiving HTTP requests for uploading and downloading files. Following is the initial class

structure:

@RestController

public class FileController {

 private final FileService fileService;

 private final FileMetric fileMetric;

 @Autowired

 FileController(FileService fileService, FileMetric fileMetric) {

 this.fileService = fileService;

 this.fileMetric = fileMetric;

 }

 // Code omitted

 private void incrementRequestCounter(String method, String path) {

 fileMetric.requestCounter(method, path).increment();

 }

 private void recordDownloadSizeSummary(File file) {

 fileMetric

 .fileDownloadSizeSummary(

 file.getName()).record(file.getContent().length);

 }

}

We inject the FileService and FileMetric dependencies through the class constructor

annotated with @Autowired. Next, we define the incrementRequestCounter method using

the requestCounter method from the FileMetric to increment the counter metric. We do

something similar with the recordDownloadSizeSummary, which records the file content

size.

We are now ready to implement the methods representing the HTTP endpoints for

uploading and downloading files. Let us start with the upload endpoint:

@RestController

public class FileController {

 // Code omitted

 @PostMapping("/file")

 private String uploadFile(@RequestParam("file") MultipartFile file)

 throws IOException {

 incrementRequestCounter(HttpMethod.POST.name(), "/file");

 var fileToUpload = new File(UUID.randomUUID().toString(),

 file.getOriginalFilename(), file.getBytes());

 fileService.uploadFile(fileToUpload);

 return fileToUpload.getId();

 }

 // Code omitted

}

Right at the beginning of the method body, we call the method

incrementRequestCounter(HttpMethod.POST.name(), "/file") defined previously. We

pass the HttpMethod.POST.name() and the "/file" path to it as the metric tags. The

counter meter will be incremented whenever a POST request arrives at this endpoint.

Next, we implement the endpoint that handles file downloads:

@RestController

public class FileController {

 // Code omitted

 @GetMapping("/file/{id}")

 private ResponseEntity<Resource> downloadFile(@PathVariable String id) {

 incrementRequestCounter(HttpMethod.GET.name(), "/file/"+id);

 var file = fileService.downloadFile(id);

 if (file.isEmpty()) {

 return ResponseEntity.notFound().build();

 }

 recordDownloadSizeSummary(file.get());

 var resource = new ByteArrayResource(file.get().getContent());

 return ResponseEntity.ok()

 .contentType(MediaType.APPLICATION_OCTET_STREAM)

 .contentLength(resource.contentLength())

 .header(HttpHeaders.CONTENT_DISPOSITION,

 ContentDisposition.attachment()

 .filename(file.get().getName())

 .build().toString())

 .body(resource);

 }

 // Code omitted

}

The downloadFile method tracks two metrics: first, a request counter metric by calling

incrementRequestCounter(HttpMethod.GET.name(), "/file/"+id) and second, a

download size summary metric through recordDownloadSizeSummary(file.get()).

Requests to the /file/{id} endpoint will trigger a file download in the web browser.

Next, let us check how we can make requests to test our application and visualize the

metrics captured by the Micrometer.

Compiling and running the sample project

In this section, we compile and run the file storage system we implemented throughout the

previous chapter.

You can clone the application source code from the GitHub repository at

https://github.com/bpbpublications/Java-Real-World-

Projects/tree/main/Chapter%2010.

You need the JDK 21 or above and Maven 3.8.5 or above installed on your machine.

Execute the following command to compile the application:

$ mvn clean package

Maven will create a JAR file that we can use to run the application by running the following

command:

$ java -jar target/chapter10-1.0-SNAPSHOT.jar

Next, we go over the steps to generate and visualize application metrics:

1. With the application running, you can use the following command to upload a file:

$ curl --form file='@random.txt' localhost:8080/file

69d67cea-4022-4262-a217-a89b9f52e57b

The previous command returns a file ID you can use to download a file in your browse

with the URL http://localhost:8080/file/{fileId}. You need to replace {fileId} with

the ID provided by the response you got after uploading the file, as shown in the

following figure:

Figure 10.1: Downloading a file from the file storage system

Note that the file name random.txt is the same file name provided when the file was

uploaded.

2. We can access the URL http://localhost:8080/actuator/prometheus to visualize

the application metrics, as shown in the following figure:

https://github.com/bpbpublications/Java-Real-World-Projects/tree/main/Chapter%2010
http://localhost:8080/file/%7BfileId%7D
http://localhost:8080/actuator/prometheus

Figure 10.2: Checking metrics produced by the application

Looking at the metrics in the image above, we can state that the /file endpoint

received one POST request captured by the following metric:

file_http_request_total{method="POST",path="/file",} 1.0

3. On the other hand, we can check that the /file/69d67cea-4022-4262-a217-

a89b9f52e57b endpoint received three requests measured by using the following

metric:

file_http_request_total{method="GET",path="/file/69d67cea-4022-4262-a217-a

The following two metrics captured the time to upload the file and the file download

size, respectively:

file_upload_duration_seconds_sum{fileName="random.txt",} 0.061838373

file_download_size_bytes_sum{fileName="random.txt",} 1.515E7

Note that both metrics have the fileName="random.txt" as their only tag.

Conclusion

We learned in this chapter, how important metrics are to help us understand application

behaviors, playing a fundamental role in measuring how well the business rule code solves

the problems the application is supposed to solve. We also explored the main components

behind the Micrometer. We learned that the most fundamental components are the

registry, which enables the exposure of metrics to specific monitoring tools like

Prometheus, and the meter, which represents different metric types like counter, gauge,

timer, and distribution summary. After grasping the fundamental Micrometer concepts, we

implemented a file storage system using Spring Boot and Micrometer, where we had the

chance to implement metrics to measure the HTTP requests to the application endpoints,

the time required to upload a file, and the size of downloaded files.

This chapter focused on how Micrometer can be used to generate application metrics. The

approach to how such metrics can be scrapped is explored in the next chapter, where we

will learn how to use Prometheus and Grafana to scrap application metrics, enabling us to

create helpful monitoring dashboards and set alerts. We will learn how to capture and use

application metrics with Prometheus after integrating them with Grafana. We will also

explore the features provided by Grafana to create dashboards.

CHAPTER 11

Creating Useful Dashboards with

Prometheus and Grafana

Introduction

Over the last chapters, we have been exploring how essential monitoring tools and

techniques are to clarify how well a software system is running. Such tools and techniques

are fundamental in providing helpful input through metrics, traces, and logs with details

describing system behaviors. Metrics, in particular, represent one of the cornerstones of

monitoring practices that shed light on the inner workings of applications’ operations. In

today’s world, where the number of applications and the volume of metrics they produce is

bigger than ever, a monitoring solution capable of capturing, storing, and serving large

amounts of metrics data is essential to ensure efficient monitoring of highly complex and

demanding applications. We have Prometheus as the solution that can help us tackle such

a monitoring challenge.

Complementing Prometheus in a frequently used technology monitoring stack is Grafana, a

powerful tool that lets us build beautiful and helpful dashboards using metrics from many

supported systems, including Prometheus. In this chapter, we explore how to use Grafana

and Prometheus to monitor Java applications.

Structure

The chapter covers the following topics:

• Capturing application metrics with Prometheus
• Integrating Prometheus with Grafana
• Creating Grafana dashboards with application-generated metrics
• Compiling and running the sample project

Objectives

By the end of this chapter, you will know the Prometheus architecture and its fundamental

concepts, giving you the essential knowledge to introduce Prometheus as a monitoring tool

to capture metrics from your Java applications. Having comprehended the core Prometheus

concepts, you will learn how to apply them in a real-world monitoring setup where

Prometheus captures metrics from a Spring Boot application and serves them to Grafana,

which provides a helpful dashboard on top of those metrics. You will also learn how to use

Prometheus metrics to trigger alerts using Alertmanager.

Capturing application metrics with Prometheus

Released first in 2012, Prometheus is an open-source monitoring and alerting software that

works on top of system-generated metrics. We can use Prometheus to monitor the

infrastructure of where applications are running by checking, for example, how much CPU,

memory, and disk are being used. We can also use Prometheus to monitor application

behaviors by capturing metrics provided by instrumented applications. It has been used by

many organizations worldwide, seeking a robust monitoring solution that can be easily

integrated into cloud-native environments.

Prometheus has gained popularity due to its simple yet powerful features. It allows us to

store and query metrics data in a time-series database. Prometheus also relies on an

alerting mechanism called Alertmanager, which lets us trigger alerts in various places,

including email, phone, and chat systems.

Prometheus is a prevalent component of most enterprise Java projects, supported by well-

known frameworks, including Spring Boot, Quarkus, and MicroProfile. Comprehending how

Prometheus works and how it can be integrated to monitor existing and new applications is

critical for anyone interested in taking their monitoring machinery to the next level. Anyone

running Java applications in production without any monitoring is running into a severe risk

of missing crucial system information that could be used to avoid unwanted things or

prevent something wrong from becoming worse. That is why instrumenting applications

with metrics and employing Prometheus to capture those metrics is the first step to

mitigating the risk of missing critical system behavior information.

We start our Prometheus exploration by learning about its architecture and how it works

with other systems through exporters that expose metrics that dashboard systems like

Grafana can consume. After learning the Prometheus architecture, we will install and

configure it, enabling us to explore PromQL, a query language that lets us get answers from

the metrics stored by Prometheus.

Learning the Prometheus architecture

The Prometheus architecture’s main component is the server process that scrapes metrics

from monitoring targets. It is worth noting that Prometheus is a pull-mode monitoring tool,

which means it pulls monitoring data from the predefined systems through its

configuration. The monitoring data, stored as metrics in a time-series database, is made

available through HTTP API endpoints that alert and dashboard systems can use. In the

following figure, we have a high-level representation of the Prometheus architecture:

Figure 11.1: The Prometheus architecture

Starting at the top in the figure above, the metrics exporters provide metrics data that the

Prometheus server scraps. Metric data is stored in the Prometheus storage, allowing us to

trigger alerts through the Alertmanager and create dashboards. Let us assess each

component of the architecture.

Metrics exporters

Exporters are the architecture components responsible for making metrics available to

Prometheus. There are three types of exporters we will cover, as follows:

1. The third-party exporter is used when one wants to get metrics from a system that

has no control over its source code. Suppose your application stores data in a MySQL

database, and you want to get metrics from it. As you have no control over the MySQL

source code, you must rely on an exporter provided by a third party that provides

MySQL metrics.

2. The application exporter provides metrics generated by instrumented applications.

Contrary to third-party exporters, we have control over the metrics generated by

application exporters because we can change the application’s code.

3. The node exporter is aimed to expose only machine-based metrics like CPU, memory,

and disk usage. It runs as a process in the operating system.

All exporters provide an HTTP endpoint that the Prometheus server uses to pull metrics

data. Let us explore what is inside a Prometheus server.

Prometheus server

The Prometheus server is a fundamental architecture component. Its storage is based on a

time-series database that persists data directly on the operating system disk. However,

remote storage is also supported. The Prometheus server scraps metrics data through a

pull mechanism that reaches out to the HTTP endpoints provided by metric exporters. The

alerting engine uses metrics data that let us define rules for triggering alerts. Finally, we

have metrics consumers covered next.

Metrics consumers

We have two major metrics consumers: the Alertmanager and the dashboard systems.

Alertmanager receives alert events from the Prometheus server and triggers notifications

through emails, phone calls, and messages in chat systems like Slack. Prometheus provides

a basic dashboard engine that lets us visually represent the metrics. However, it is

recommended and widespread practice to plug in dedicated dashboard systems like

Grafana, which we will explore further in this chapter.

Now that we know the Prometheus architecture let us learn how to install the Prometheus

server and explore using PromQL, a powerful query language that allows us to perform

aggregation on metrics.

Getting Prometheus up and running

Prometheus is compatible with multiple operating systems and CPU architectures. The

binary files for the operating system you desire can be found at

https://prometheus.io/download/. Next, we will cover how to download, install,

configure, and run a Prometheus server in a Linux environment.

Downloading and installing Prometheus

Prometheus installation in a local environment is straightforward because it involves

downloading the Prometheus binary, extracting, configuring, and starting it. Next, we cover

the steps for Prometheus installation.

1. You download the Prometheus binary through the browser or running the following

command on a Linux terminal:

$ wget https://github.com/prometheus/prometheus/releases/download/v2.53.0/

The command above downloads the 2.53.0 version, but you can adjust it to get the

latest version.

2. Next, we can extract the Prometheus binary file in the same directory we have

downloaded it:

$ tar xvf prometheus-2.53.0.linux-amd64.tar.gz

3. After extracting it, you can inspect the extracted files by executing the following

command:

$ ls prometheus-2.53.0.linux-amd64

console_libraries consoles LICENSE NOTICE prometheus prometheus.yml

The following two files deserve our attention: the prometheus executable, which

starts the Prometheus server, and the prometheus.yml, which holds the

configuration.

Let us next explore how to provide the initial Prometheus configuration through the

prometheus.yml file.

Configuring Prometheus

Prometheus configuration is defined through the prometheus.yml file that lets us set, for

example, the exporter endpoint that the Prometheus server will use to scrape metrics.

Next, we will cover the steps to configure Prometheus.

https://prometheus.io/download/

1. Let us consider first how the prometheus.yml default configuration looks like:

my global config

global:

 scrape_interval: 15s # Set the scrape interval to every 15 seconds. Defa

 evaluation_interval: 15s # Evaluate rules every 15 seconds. The default

 # scrape_timeout is set to the global default (10s).

Alertmanager configuration

alerting:

 alertmanagers:

 - static_configs:

 - targets:

 # - alertmanager:9093

Load rules once and periodically evaluate them according to the global '

rule_files:

 # - "first_rules.yml"

 # - "second_rules.yml"

A scrape configuration containing exactly one endpoint to scrape:

Here it's Prometheus itself.

scrape_configs:

 # The job name is added as a label `job=<job_name>` to any timeseries sc

 - job_name: "prometheus"

 # metrics_path defaults to '/metrics'

 # scheme defaults to 'http'.

 static_configs:

 - targets: ["localhost:9090"]

The configuration above instructs Prometheus to scrap metrics every 15 seconds,

which means Prometheus goes to the configured exporters’ endpoints to get metrics

data in the mentioned interval. Note also that the alerting configuration is disabled

through a hashtag in the line where the alerting target alertmanager:9093 is

defined. The most important part of the configuration file is the scrap_configs block,

where Prometheus exporters are defined. The configuration above defines one

exporter, the Prometheus server itself, allowing Prometheus to inspect its metrics.

2. There is no need to change the default prometheus.yml file to get it started, so we

can proceed and execute the prometheus executable file:

$./prometheus

...

ts=2024-06-23T17:13:41.342Z caller=main.go:1354 level=info msg="Loading co

ts=2024-06-23T17:13:41.378Z caller=main.go:1391 level=info msg="updated GO

ts=2024-06-23T17:13:41.379Z caller=main.go:1402 level=info msg="Completed

ts=2024-06-23T17:13:41.379Z caller=main.go:1133 level=info msg="Server is

ts=2024-06-23T17:13:41.379Z caller=manager.go:164 level=info component="ru

The output above shows that Prometheus is up and running.

3. At this point, you can access the Prometheus user interface through your web

browser, as shown in the following figure:

Figure 11.2: The Prometheus user interface in the web browser

The figure shows the initial page when you access the URL http://localhost:9090/ in

your web browser.

4. When you click on Status, then Target, you can see what are the exporter endpoints

that Prometheus is connected to, as shown in the following figure:

http://localhost:9090/

Figure 11.3: Prometheus user interface in the web browser

The exporter endpoints in the image above are defined in the prometheus.yml file.

The exporter endpoint http://localhost:9090/metrics lets us get metrics from

Prometheus.

Now that we know how to get Prometheus up and running let us explore Prometheus

Query Language (PromQL), a tool that allows us to query and perform aggregation with

metrics data.

Exploring the PromQL

Prometheus has a powerful query language that lets us extract helpful information from

raw metric data on how the system behaves. Consider, for example, the usage of the

following PromQL expression:

file_http_request_total

The most basic way of executing a query is by providing the metric name we are interested

in, as follows:

http://localhost:9090/metrics

Figure 11.4: Basic PromQL usage

By providing the metric name file_http_request_total as the query expression,

Prometheus returns the metrics data in their raw state. The example above shows that we

have the same metric with different method tags showing how many GET and POST

requests arrived at the /file endpoint. We can filter out GET metric data with the following

expression:

file_http_request_total{method="POST"}

Which would return something as follows:

file_http_request_total{instance="localhost:8080", job="File Storage",

method="POST", path="/file"} 4

Number 4 shows how many total POST requests were captured as metric data. With

PromQL, we can also check how many requests are arriving per second:

rate(file_http_request_total{method="POST", path="/file"}[5m])

The example above uses the rate function, which lets us perform the calculation and tell us

how many requests are arriving per second in the last five minutes. Following is the result

the above expression can return:

{instance="localhost:8080", job="File Storage", method="POST", path="/file"}

0.03157916897662439

The 0.03157916897662439 number tells us the per-second rate at which the system

processes POST requests for the /file endpoint.

PromQL offers query functions that let us aggregate metric data. In addition to the rate

function, we can use the sum function to accumulate data or the topk to get the top

aggregation results, for example.

Having covered the fundamentals of how Prometheus works, let us learn how to integrate it

with Grafana.

Integrating Prometheus with Grafana

Grafana is an analytics and monitoring solution widely used in integration with other

technologies to provide a comprehensive view of monitored systems’ behavior. One of its

strengths is its ability to visually represent metrics and other monitoring data obtained

from systems like Prometheus. In this section, we learn how to configure a simple

integration between these two systems using Docker Compose.

1. Through the docker-compose.yml file, we define a Docker compose configuration for

Prometheus and Grafana:

version: '3.8'

services:

 prometheus:

 image: prom/prometheus:v2.45.6

 network_mode: host

 volumes:

 - ./monitoring/prometheus.yml:/etc/prometheus/prometheus.yml

 grafana:

 image: grafana/grafana:10.4.4

 network_mode: host

 depends_on:

 - Prometheus

2. The Prometheus configuration is done through the prometheus.yml file. Below is how

we configure such file:

global:

 scrape_interval: 15s

 evaluation_interval: 15s

scrape_configs:

 - job_name: "File Storage"

 metrics_path: /actuator/prometheus

 static_configs:

 - targets: ["localhost:8080"]

The metrics_path we pass here is the one that is exposed by the file storage

application through the Spring Boot actuator. The localhost:8080 is the URL

endpoint where the file storage system will run.

3. We start the Grafana and Prometheus containers up by executing the following

command:

$ docker-compose up -d

Creating chapter11_prometheus_1 ... done

Creating chapter11_grafana_1 ... done

We can confirm that the container setup is working by accessing Prometheus at

http://localhost:9090 and Grafana at http://localhost:3000. Next, let us see how to

configure Prometheus as a Grafana data source.

Configuring Prometheus as a Grafana data source

When you access the Grafana URL http://localhost:3000, you are asked for a username

and password. You can use admin for both. Once logged in, you can follow the menu

options Connections, then Data sources. After clicking on the prometheus icon, you will

find the interface that lets you define Prometheus as the data source, as shown in the

following figure:

Figure 11.5: Defining Prometheus data source on Grafana

We use the Prometheus URL http://localhost:9090 as the data source connection

configuration. Once we save it, Grafana is correctly integrated with Prometheus.

At this stage, Grafana is actively consuming metrics data produced by the file storage

system and exposed through Prometheus. This marks the beginning of our dashboard-

building process.

Creating Grafana dashboards with application-generated metrics

In this section, we learn how to use Prometheus and Grafana to monitor a Java application.

To help us with the monitoring setup, we rely on the file storage system we developed in

the previous chapter. The file storage system produces metrics that let us understand how

many requests the system is receiving, the file upload duration, and the file download size.

The outcome here is to represent such metrics in a graphical form through a Grafana

dashboard. We start by providing Prometheus and Grafana as containers.

Building a Grafana dashboard

The file storage system lets users upload and download files, capturing metrics based on

such operations. We can use a Grafana dashboard to represent how the file storage system

handles user requests. To create such a representation, we are building three dashboard

http://localhost:9090/
http://localhost:3000/
http://localhost:3000/
http://localhost:9090/

visualizations: one to check the number of requests per HTTP method like GET or POST,

another to check file upload duration, and the last visualization to verify the download size.

To create a new dashboard, follow these steps: Go to http://localhost:3000/dashboards,

click on New, and then on New dashboard. You will be presented with a screen similar to

the one as follows:

Figure 11.6: New dashboard creation interface

Grafana dashboards are made of visualizations that display metrics in a graphical way. In

the following, we explore how to define the visualizations of the file storage system

dashboard.

Visualization for the number of requests per HTTP method

Grafana provides different visualizations we use to display metric data. We use the bar

gauge visualization to capture the number of requests per HTTP method, as shown in the

following figure:

Figure 11.7: Number of requests per method visualization

http://localhost:3000/dashboards

It is possible to define multiple Prometheus queries to get metric data. In the above

example, we are defining two queries: one for POST requests and another for GET requests.

Note we are employing the sum and increase PromQL aggregation functions to calculate

how many requests have arrived based on the HTTP method:

sum(increase(file_http_request_total{method="POST"}[$__range])) by (method)

The increase is a Prometheus query function that lets us calculate how a metric increases

over a period of time. The increase function is defined in terms of the time series in the

range vector. The time series expresses the time interval we are interested in. It can be

expressed as the last five minutes or an explicit time range containing a beginning and

ending period. In the example above, we use the increase to calculate how the

file_http_request_total counter metric increases over a period defined by [$__range]

that represents the time series in the range vector. The $__range gets replaced by the

time interval we set through the Grafana user interface. After calculating the increase, we

sum up all the results based on the method tag (POST or GET) defined through the by

keyword.

Next, let us see how to define a visualization to verify the file upload duration.

Visualization for the file upload duration

We use a time series visualization to display metrics related to the file upload duration, as

follows:

Figure 11.8: File duration visualization

The above visualization is based on a single query:

sum (rate(file_upload_duration_seconds_sum[$__range])) / sum

(rate(file_upload_duration_seconds_count[$__range]))

We calculate how long it takes to upload a file by dividing the sum aggregation of the

file_upload_duration_seconds_sum and file_upload_duration_seconds_count

metrics.

To finish the dashboard configuration, let us see how to create a visualization to check the

download size next.

Visualization for the download size

We want to check the top 5 biggest files downloaded in a given time interval. We can

accomplish that using a bar gauge visualization, as shown in the following figure:

Figure 11.9: Download size visualization

The visualization is built using the following query:

topk(5,sort_desc(max_over_time(file_download_size_bytes_max[$__range])))

We use the max_over_time function on top of the file_download_size_bytes_max metric,

which is then sorted in a descending way. Finally, we get the top 5 biggest results using the

topk function.

Setting up a Grafana dashboard with meaningful visualizations enhances our visibility over

our systems. We can use the dashboard to troubleshoot issues and predict bottlenecks, but

we do not want to constantly inspect it to see if some threshold has been reached. For that,

we can rely on alerts. Let us explore how we use Prometheus and Alertmanager to trigger

alerts next.

Triggering alerts with Alertmanager

Prometheus has a rules engine that lets us use metrics data to trigger alerts based on

predefined rules that check if some threshold has been reached. Alertmanager is

responsible for receiving the alerts triggered by Prometheus and notifying interested

parties through notification channels like email, for example. In this section, we learn how

to configure Prometheus and Alertmanager to trigger alerts based on the metrics

generated by the file storage system. Let us start by providing a Docker compose

configuration.

Setting up the Alertmanager container

To provide an Alertmanager container, we use the same docker-compose.yml file we used

before to get the Prometheus and Grafana containers:

version: '3.8'

services:

 alertmanager:

 image: prom/alertmanager:v0.27.0

 network_mode: host

 volumes:

 - ./monitoring/alertmanager.yml:/etc/alertmanager/config.yml

 prometheus:

 image: prom/prometheus:v2.45.6

 network_mode: host

 volumes:

 - ./monitoring/prometheus.yml:/etc/prometheus/prometheus.yml

 - ./monitoring/alert-rules.yml:/etc/prometheus/alert-rules.yml

 depends_on:

 - alertmanager

Code omitted

We need to adjust the prometheus.yml file to enable the alerting mechanism:

Code omitted

alerting:

 alertmanagers:

 - static_configs:

 - targets: ['localhost:9093']

rule_files:

 - "/etc/prometheus/alert-rules.yml"

Code omitted

The alerting configuration block lets us specify the Alertmanager URL localhost:9093 that

is used to trigger alerts. With the rule_files block, we can tell Prometheus where it can

find the files containing the alert rules. Let us explore next how we can define Prometheus

rules and configure Alertmanager to send email notifications.

Defining Prometheus alerting rule

We can use the file alerts-rules.yml to set a rule to trigger an alert if the file upload

duration time is higher than 2 seconds for 1 minute:

Alert for high File upload duration time

groups:

 - name: File Upload

 rules:

 - alert: HighFileUploadDurationTime

 expr: sum (rate(file_upload_duration_seconds_sum[1m])) / sum

(rate(file_upload_duration_seconds_count[1m])) > 2

 for: 1m

 labels:

 severity: warning

 annotations:

 summary: "File upload duration time"

 description: "Time to upload a file: {{ $value }}"

The following expression defines the alert rule:

sum (rate(file_upload_duration_seconds_sum[1m])) / sum

(rate(file_upload_duration_seconds_count[1m])) > 2

An alert is only triggered if the evaluation of the above expression over a minute returns a

number higher than 2. When an alert is triggered, Alertmanager is notified and can notify

interested parties that Prometheus triggered the alert. Let us see how to accomplish it

next.

Defining Alertmanager notification channels

The Alertmanager configuration is done through the alertmanager.yml file:

route:

 receiver: 'mail'

 repeat_interval: 1h

 group_by: [alerts]

receivers:

 - name: 'mail'

 email_configs:

 - smarthost: 'smtp.gmail.com:465'

 auth_username: ''

 auth_password: ''

 from: ''

 to: ''

The above configuration lets us send email notifications whenever an alert is triggered by

one of the Prometheus rules.

Let us finish the chapter by running the file storage system, generating metrics, and

testing the alert triggering mechanism with Alertmanager.

Compiling and running the sample project

In this section, we compile and run the file storage system with Prometheus, Grafana, and

Alertmanager.

You can clone the application source code from the GitHub repository at

https://github.com/bpbpublications/Java-Real-World-

Projects/tree/main/Chapter%2011.

You need the JDK 21 or above and Maven 3.8.5 or above installed on your machine. Docker

and Docker Compose are also required.

Execute the following command to compile the application:

$ mvn clean package

https://github.com/bpbpublications/Java-Real-World-Projects/tree/main/Chapter%2011

Maven will create a JAR file that we can use to run the application by running the following

command:

$ java -jar target/chapter11-1.0-SNAPSHOT.jar

After starting the application, you can bring up the Prometheus, Grafana, and Alertmanager

containers with the following command:

$ docker-compose up -d

Creating chapter11_alertmanager_1 ... done

Creating chapter11_prometheus_1 ... done

Creating chapter11_grafana_1 ... done

Now, we cover the steps to test the Grafana dashboard integrated with Prometheus

metrics. We also test the Alertmanager.

1. Access Grafana at http://localhost:3000 and set the Prometheus data source using

the http://localhost:9090 URL.

2. Then, import the dashboard file located at monitoring/file-storage-grafana-

dashboard.json from the project’s repository.

3. Make some requests to generate metrics data:

$ curl --form file='@random.txt' localhost:8080/file

$ curl --form file='@random.txt' localhost:8080/file

$ curl --form file='@random.txt' localhost:8080/file

$ curl localhost:8080/file/{fileId}

$ curl localhost:8080/file/{fileId}

$ curl localhost:8080/file/{fileId}

The fileId value comes from executing the first curl commands used to upload the

random.txt file.

4. Check the File Storage dashboard data on Grafana. The File Storage dashboard is as

follows:

http://localhost:3000/
http://localhost:9090/

Figure 11.10: File Storage dashboard on Grafana

After making many requests to the file storage system, you should see a Grafana

dashboard similar to the one shown in the picture above.

5. Execute the following command every 10 seconds for 1 minute:

$ curl --form file='@random.txt' localhost:8080/file

After executing the command above, you can check the alert captured by

Alertmanager at http://localhost:9093, as shown in the following figure:

Figure 11.11: Alert captured by Alertmanager

We can confirm the alert was successfully captured by checking the alert name

HighFileUploadDurationTime, which is the same as defined in the alert-rules.yml

file.

Conclusion

http://localhost:9093/

Storing and serving metrics data is a fundamental responsibility greatly fulfilled by

Prometheus, which acts as a monitoring backbone solution by letting us capture

application-generated metrics to build meaningful Grafana dashboards and trigger alerts

with Alertmanager.

In this chapter, we learned the Prometheus architecture, exploring how metrics are

collected through the application, node, or third-party exporters. We also learned how

Prometheus stores metrics data and makes them available for alerting and dashboard

creation purposes. To explore Prometheus’s possibilities further, we integrated it with

Grafana by creating visualizations based on the metrics produced by the file storage

system. Finally, we configured a Prometheus rule to trigger an alert through the

Alertmanager.

In the next chapter, we start a discussion on software architecture by examining a

technique called domain-driven design (DDD), which lets us structure software code in a

way that closely represents real-world problems. We will explore DDD concepts such as

entities to express identity and uniqueness in a system. We will also learn how to use value

objects to enhance the meaning of the domain model.

CHAPTER 12

Solving problems with Domain-driven

Design

Introduction

As a Java developer, most of the software you will see is made to solve business problems.

This software represents the processes, rules, and all sorts of things an organization needs

to do to stay profitable and fulfill customer expectations. Malfunctioning and bugs in such

software may translate directly to financial and reputation damage because most, if not all,

business activities depend on the software that enables them.

As the software development industry matured over the years and software systems

shifted from mere supporters of business operations to becoming the core actors of

business success, developers became more concerned about the practices that allowed

them to develop applications that captured business knowledge more accurately. From that

concern, one practice called domain-driven design (DDD) emerged as a software

development technique with the main goal of designing applications driven by real-world

business problems.

Knowing how to employ domain-driven design is a fundamental skill for any Java developer

interested in building enterprise applications that act as crucial assets for businesses. That

is why this chapter covers essential domain-driven design principles and techniques.

Structure

The chapter covers the following topics:

• Introducing domain-driven design
• Conveying meaning with value objects
• Expressing identity with entities
• Defining business rules with specifications
• Testing the domain model
• Compiling and running the sample project

Objectives

By the end of this chapter, you will know how domain-driven design principles such as

bounded context and ubiquitous languages help you to model a problem domain that lets

you write code that not only works but also serves as an accurate expression of the

business operations that are conducted via software to solve real-world problems. By

employing techniques such as entities, value objects, and specifications, you will be able to

develop better-structured applications by keeping complexity under control and avoiding

the so-called big ball of mud systems, where any code change represents a high risk of

breaking things.

Introducing domain-driven design

Software projects in an enterprise environment usually start with the organization’s desire

to solve a perceived problem. The organization assesses the challenges existing and

potential new customers face. Then, it attempts to devise solutions to tackle those

challenges in the best way possible. In agile-based organizations, we often find a product

owner and designer trying to understand with business people what challenges, if solved,

will benefit customers and generate profit for the organization.

Once it is clear which kind of problem needs to be solved and the high-level requirements

to provide a solution are more or less defined, software developers are summoned to

devise a technical path to implement a working software that delivers the value customers

are expected to receive. At first glance, it may seem a straightforward path. Still, in reality,

the journey is marked by ambiguities, unknowns, and unexpected challenges that

developers face when trying to understand what precisely the business needs to fulfill

customer expectations.

Understanding business needs can be quite challenging for developers because they are

supposed to be experts in the technologies they use rather than in the problem domain

from which they want to create a software solution. Knowledge gaps in understanding how

a given business operates pose a critical issue because such a weak understanding will

translate into an ineffective final software product.

Aware of the fact that weak problem domain knowledge on the part of the software

developers represents a considerable risk for the success of enterprise software projects,

Eric Evans shared through his book Domain-Driven Design, published in 2006, ideas

explaining how to bridge the gap between software developers and the required problem

domain knowledge to design software systems aimed to captured business intricacies in

the most cohesive and maintainable way possible. Evan’s ideas considerably impacted the

software development industry.

Evans conceived a set of principles and techniques that put the problem domain as the

main driver for the development of software systems. The problem domain is the specific

field in which the business operates, like logistics, banking, and retail, to name some

examples. The motivation for having better problem domain knowledge was to make

developers think more about business needs than the technologies required to fulfill them.

As may be often the case, developers can be tempted to prioritize, for example, which

programming language, database, and other technologies they will use rather than trying

to understand the problem domain they are dealing with. When taken too far, such

temptation leads to a software code driven more by technology than by business. Domain-

driven design proposes a change in this mindset with a business-centric perspective on

how software can be developed.

Concepts such as the bounded context, ubiquitous language, event storming, and the

domain model are corollaries of the domain-driven design. These concepts help us to

translate business knowledge into working code. Domain-driven design coding techniques

like entities, value objects, and specifications were established to implement the domain

model, a tangible materialization based on code, documents, and diagrams that help us

understand business problems and how they are solved through software code.

This section explores essential domain-driven design concepts, which will help us

implement a domain model in the upcoming sections. Let us start by learning the concept

of bounded context.

Bounded contexts

To understand bounded contexts and why mapping them is a fundamental undertaking in

domain-driven design, let us consider the business scenario of a personal finance solution.

A person usually expects from a personal finance solution the ability to keep track of their

expenses by keeping track of how much money they received, where, when, and what they

spent their money on. Seeing the money activity through a monthly report is also a

valuable capability of such a personal finance solution.

When imagining a software system capable of delivering the personal finance features

described previously, we can consider the following three system responsibilities:

• Money handling: It is responsible for storing and providing access to money
transactions. It also allows for the organization of transactions through user-defined
categories like gym, rent, grocery, investments, etc.

• Report generation: It contains the rules for generating monthly money activity
reports using Excel spreadsheets.

• File storage: It provides file storage capabilities, allowing Excel report files to be
uploaded and downloaded.

In a traditional monolithic approach, all these three responsibilities would be part of the

same application, packed together in the same deployable unit. They would probably be

together in the same source code repository. The following figure illustrates the structure of

a monolith application based on the three responsibilities described above:

Figure 12.1: Personal finance monolith structure

As a monolith system, all system responsibilities related to transactions, categories, report

rules, file uploads, and downloads belong to the same context.

We can create a Transaction class representing money-handling activity. We would use

attributes like amount, date, type, and currency to capture the transaction details. Now,

imagine we need to represent a transaction in the report engine. We could rely on the

same attributes from the Transaction class of the money handling context but add new

attributes like totalAmount, maximumAmount, or minimalAmount. These attributes make

sense only in the context of report generation but not in the context of money handling,

where they are not used. To avoid this situation, we could create a TransactionReport

class or a new Transaction class in a different package. However, employing different

names would only mask a potential issue in the design: the lack of delimited contexts

where a transaction means different things depending on which context it is used.

We can use bounded contexts to solve this problem of a lack of context and define a clear

boundary between money-handling and report-generation contexts. In practical terms, that

could mean splitting the money handling and report generation responsibilities into

separate source code repositories or modules, each containing its version of the

Transaction class based on the context that each system responsibility represents. Going

further, the team responsible for the money handling can differ from those responsible for

report generation, which would justify the repository split or modularization even more. We

can also define a dedicated bounded context for the file download and upload because

such capabilities are not directly connected to the problem of handling money or

generating reports, as shown in the following figure:

Figure 12.2: Personal finance with bounded contexts

Bounded contexts are used to establish a clear delimitation between system

responsibilities and remove ambiguities across elements that can have the same name but

convey different meanings depending on which context they are situated in.

We used nouns like transaction and category while defining the bounded contexts to

describe the system’s responsibilities. However, how can we be sure that everyone

involved in the personal finance project has the same understanding regarding what those

terms mean? We can achieve that by establishing a ubiquitous language. Let us explore it

further.

Ubiquitous language

Clear communication is essential for the success of any software project. On the one hand,

we have customers expressing their needs. On the other hand, business analysts try to

understand those needs and share their learning with product owners and developers.

Failure to express or interpret an idea may have serious consequences, as applications may

be developed based on faulty thinking. How can we bridge the communication gap across

all stakeholders involved in a software project? We can employ the domain-driven design

principle called ubiquitous language, which helps us define a set of terms and their

meanings that accurately describe a problem domain. These terms must be understood the

same way by developers, product owners, designers, business analysts, and any other

relevant stakeholders.

The primary benefit of establishing a ubiquitous language is that when a software system is

developed based on the terms defined by such language, the application code becomes a

source of knowledge of how the business operates. By having the same understanding as

domain experts have in the problem domain, developers go one to create application code

driven primarily by business needs rather than anything else. There is technology

integration with databases and other resources, but it is not the technology choices that

drive the code structure; instead, it is the problem domain.

Coming up with an accurate ubiquitous language can be challenging. Sometimes,

developers have no clue about the problem domain in which they are supposed to develop

a software solution. Such problem domain knowledge usually can be found in the minds of

business analysts or experienced developers who understand how the business operates.

Documentation can also be a source of problem-domain knowledge. However, there may

be scenarios where people with problem domain knowledge no longer work in the

company, and there is no documentation explaining the problem domain. By employing

domain-driven design, we can use knowledge-crunching techniques to learn more about

the problem domain.

Knowledge crunching can range from reading books on the problem domain area to talking

with people who can provide helpful information to understand how a business operates.

We use a technique called event storming as a way for knowledge crunching. Event

storming is a technique that originated from domain-driven design practices and can yield

significant results in understanding the problem domain and building ubiquitous language.

Next, we discuss what event storming is and the benefits it can provide to a software

project.

Event storming

Most businesses operate based on events representing the interaction of people with

business processes. These interactions come from the desire to achieve some outcome

carried out by the business process, which is expected to represent a series of steps that,

when executed, produce a result. Mapping those business processes and how they work

constitutes the major goal of the event storming, which is a workshop session between

people who do not know how the business works and people who know. Software

developers seeking problem-domain knowledge are the people who need to learn how the

business works. On the other hand, those who know about the business process are the so-

called domain experts.

Interested parties, like developers and domain experts, sit together to identify domain

events and to which business processes those events are associated. Learning about

domain events lets one know what must be done to achieve business outcomes. People

usually leave these event storm sessions with a better understanding of how problems are

solved. Interested parties get the input they need to implement applications that will

benefit customers. Domain experts provide their expertise and validate their knowledge by

walking through the steps of the business process.

Aware of the benefits that event storming can provide to help provide clearly defined

bounded contexts, the ubiquitous language, and the domain model, we explore how to

conduct an event storm session.

Identifying event storm session participants

In an organization that follows agile practices, you may find a product owner, a scrum

master, a tech lead, and engineers with back-end, front-end, QA, and DevOps backgrounds.

These people are grouped in a product-oriented team, responsible for an entire product or

one specific part of a product. Product-oriented teams are usually accountable for the

whole life cycle of a software project. By collaborating with business areas, they identify

customer requirements, translate them into technical requirements through user stories,

and implement, deploy, and actively maintain the software solution. Everyone involved in

the software project life-cycle should participate in an event storm session.

Collaboration between business areas and product-oriented teams is essential for the

success of a software project. The business areas are usually composed of non-technical

people who understand how the business operates. These people, also known as domain

experts, must participate in an event-storming session to help those who want to create a

software solution but need to learn how the business works.

A facilitator is also necessary to conduct an event storm session. The facilitator is someone

acquainted with domain-drive design and event-storming techniques. They guide

participants in the right direction by explaining how to identify domain events and map

them to their business processes.

Having learned who should be present in an event storm session, let us see how we can

prepare it.

Preparing the event storm session

An event storm session produces the best results when conducted as an in-person meeting

in a room containing a whiteboard, pens for all participants, and sticky notes in orange,

blue, yellow, and green colors. In the following, we see how each stick note color should be

used:

• Orange stick notes describe domain events. We chose orange to emphasize that the
domain event is a central element during the event storming exercise.

• Blue stick notes are used for commands. A command specifies an action that triggers
a domain event.

• Yellow represents aggregates, which describe the object or data handled by the
domain event and command.

• Green colors can represent human actors, such as users, and non-human actors, such
as systems.

The standard approach for conducting an event storming session is to rely completely on

the whiteboard and physical sticky notes. However, it is also possible to explore a hybrid

approach with web collaboration tools. If we go with that approach, then the participants

need their laptops during the session.

Asking participants to bring their laptops allows us to explore different forms of

collaboration. We can organize an event storm session and put only domain event stick

notes on the physical whiteboard. Once we have enough stick notes to describe the

business processes we are interested in, we can replicate the stick note representation to a

web collaboration tool like Miro or Mural. We can continue the event storm session in the

web collaboration tool by specifying the commands, aggregates, and actors. The benefit of

such an approach is that the event storm session results can be referred to and easily

adjusted later if necessary.

Let us learn more about domain events, commands, and aggregates.

Domain events

The event storm session starts with the intent to acquire knowledge about how a business

process works. Consider, for example, a personal finance solution and how it should work

to achieve business outcomes. One of the most critical aspects of such a solution is to

enable people to track their expenses by adding their transactions. Based on that, we can

define a domain event named TransactionAdded, as shown in the following figure:

Figure 12.3: The domain event stick note

Domain events are always defined as nouns in the past tense describing something as it

has already happened. Alright, we have the TransactionAdded event, but how is it

triggered? To do so, we need to define a command. Let us check it next.

Commands

Having identified our first domain event, the TransactionAdded, we must determine which

command triggers such an event. We can solve it by defining the AddTransaction

command, as shown in the following figure:

Figure 12.4: The command stick note

The AddTransaction command starts with a verb indicating which action is being carried

out to trigger the event. Commands must always be represented with verbs in the present

form.

At this stage, we know the domain event and the command that triggers it, but we need to

know who is responsible for executing the command.

Actors

Actors play a fundamental role in even storming because it is through them that we can

track the source of the existence of domain events. Actors can be defined as humans or

non-humans, and their relationship with domain events is mediated through commands as

follows:

Figure 12.5: The actor stick note

Identifying the actors helps us understand who is triggering the events and allows us to

explore the motivations behind their interactions with commands and the generated

domain events.

Aggregates

We have identified the TransactionAdded domain event and the AddTransaction

command. The first represents an event that happened, while the second refers to the

action generating the event. Domain events and commands represent a connection, an

aggregation of activities to fulfill some business outcome. This connection between domain

events and commands is described, in our personal finance example, through an aggregate

called Transaction, as shown in the following figure:

Figure 12.6: The aggregate stick note

Think of an aggregate as an entity or data that ties together the command and domain

events responsible for enabling the business process. In the example above, the aggregate

is positioned between the command and the domain event stick notes.

We can map all the business processes we are interested in by using domain events,

commands, actors, and aggregates. Once we have them mapped, the final result will serve

as the input for the domain model implementation. In the following section, we will explore

what the domain model is.

The domain model

All this discussion around bounded contexts, the ubiquitous language, and event storming

we have had so far has significantly increased our capacity to acquire knowledge about the

problem domain. We use such knowledge to create the domain model, a tangible

representation of the problem domain we want to solve and how that problem is solved. We

call it tangible because the domain model usually combines artifacts based on written

documents, diagrams, and code. These artifacts share the same ubiquitous language, so

the terms used in the application code will have the same meaning as those in documents

and diagrams. That is especially helpful because it ensures all software projects’

stakeholders have a shared understanding of how the domain model is represented. Non-

technical stakeholders can rely on written documents explaining the domain model,

knowing that the application code follows the same terminology and meanings.

The domain model is usually expressed through elements such as entities, volume objects,

and specifications on the code level. In the next section, we explore using such elements to

implement an application using domain-driven design.

Conveying meaning with value objects

In this section, we start developing the personal finances application, a system that lets us

keep track of expenses and organize them into categories. A basic personal finances

application should allow us to store credit or debit transactions. The transaction itself is the

problem domain element we will address soon when discussing entities, but we can start

thinking about it now by considering which attributes a transaction may have. Being aware

that transactions can be either positive or negative, we can implement the following enum

as a value object:

public enum Type {

 CREDIT,

 DEBIT;

}

Value objects should be immutable because we use them to give meaning to things inside

a domain model. So, to ensure the meaning does not change, we make value objects

immutable. Other than having the Type value object to distinguish different transactions,

we can also have a value object to help us provide a meaningful way to express identity:

@Getter

@ToString

@EqualsAndHashCode

public class Id {

 private final UUID uuid;

 private Id(UUID uuid) {

 this.uuid = uuid;

 }

 public static Id withId(String id) {

 return new Id(UUID.fromString(id));

 }

 public static Id withoutId() {

 return new Id(UUID.randomUUID());

 }

}

We shorten the code by using the annotations @Getter, @ToString, and

@EqualsAndHashCode from the Lombok library. The point of having our Id class instead of

using String or any other type from the Java standard library is that we can more

accurately identify things in a domain model. Note that we have the static method withId

that can be used to create Id objects based on existing data and the withoutId that we

can use for entirely new data.

Having defined the value objects, we can use them to design the entities of the personal

finance application.

Expressing identity with entities

An entity is defined as something with an identity. It is something that we can uniquely

identify. In the context of a personal finance system, an account entity can represent the

person managing their finances. A person is interested in keeping track of their

transactions to know where their money is coming from and where it is going. Every

transaction is unique, so it makes sense to have a transaction entity. Just recording the

transactions in a single bucket may not be enough; the budgeting practice can produce

better results if transactions are categorized. For that, we can have a category entity. Next,

we cover the steps to create the Transaction, Category, and Account entity classes.

1. Let us start with the most fundamental entity, the Transaction:

@Builder

public record Transaction (Id id, String name, Double amount, Type type, I

 public static Transaction createTransaction(Account account,

 String

 name, Double amount, Type type) {

 // Code omitted

 }

 private static Transaction getTransaction(String name, Double

 amount,

 Type type) {

 return Transaction.builder()

 .id(Id.withoutId())

 .name(name)

 .amount(amount)

 .type(type)

 .timestamp(Instant.now())

 .build();

 }

 public boolean addTransactionToCategory(Category category) {

 return category.transactions().add(this);

 }

 public boolean removeTransactionFromCategory(Category category) {

 return category.transactions().remove(this);

 }

}

We use the Id value object to define the attribute uniquely identifying a transaction.

Every transaction in our personal finance system is unique, making it eligible to be

modeled as an entity. The example above relies on Java records to define a

Transaction entity with attributes that let us know its ID, name, amount, type, and

timestamp.

In domain-driven design, entities are not seen just as data carriers. Instead, entities

represent data and behaviors. In the Transaction entity above, we define some

behaviors, such as adding and removing the transaction from a category, which lets

us control which category the transaction will be in. The implementation of the

createTransaction method is not yet available because we want to establish the

business rules that need to be followed to allow the creation of a transaction. We will

explore it soon when discussing specifications in the next section.

2. A category in our domain model can also be uniquely identified, which makes it

eligible to be modeled as an entity. Below is how we can implement the Category

entity:

@Builder

public record Category(Id id, String name, List<Transaction> transactions)

 public static Category createCategory(Account account, String

 name) {

 // Code omitted

 }

 private static Category getCategory(String name) {

 return Category.builder()

 .name(name)

 .id(Id.withoutId())

 .transactions(new ArrayList<>())

 .build();

 }

 // Code omitted

}

We rely on the Id value object to uniquely identify the Category entity. We omit the

implementation of the createCategory method because we want to impose business

rules to allow the creation of a new category. We will revisit the createCategory

method when discussing the specifications later in this chapter.

3. Transactions and categories can be associated with an account representing a person

managing their finances. An account can also be uniquely identified, which makes it

eligible to be modeled as an entity. Following is how we can implement the Account

entity:

public record Account(Id id, String name, List<Transaction> transactions,

 @Builder

 public Account(Id id, String name, List<Transaction> transactions,

 List<Category>

 categories) {

 this.id = id;

 this.name = name;

 if (transactions == null) {

 throw new RuntimeException("Transaction list cannot be

 null");

 } else {

 this.transactions = transactions;

 }

 if (categories == null) {

 throw new RuntimeException("Categories list cannot be

 null");

 } else {

 this.categories = categories;

 }

 }

}

The Account entity is implemented as a record with a constructor with guard checks

to ensure lists of transactions and categories are never null. When an account is

created for the first time, we expect it to have no transactions or categories. From the

code implementation perspective, the constructor accepts empty lists of transactions

and categories but cannot accept nulls.

In the domain model, we use entities to capture the data and behaviors that represent the

business problem we intend to solve. The entity’s behavior can be subjected to constraints

that define what can and cannot be done. Such constraints can be expressed through

specifications that we will explore next.

Defining business rules with specifications

Business rules are the conditions or prerequisites to fulfill some action. Adherence to these

business rules is critical because they ensure the system behaves according to the

outcomes the business expects from the software solution. Quite often, we see such rules

scattered around the code as if-else statements, defining the conditions the application

must meet to proceed with its execution; for those not familiar with the business rules and

how the application code handles them, it can be challenging to understand at first glance

what those if-else statements mean.

To bring more clarity and enhance the understanding of business rules through application

code, we can use the domain-driven design concept called specification, which is an

approach to make business rules more explicit and understandable. Following, we define a

specification mechanism using sealed interfaces and abstract classes that we can use later

on to implement specifications for the personal finance application.

1. Let us start by defining the Specification sealed interface:

public sealed interface Specification<T> permits AbstractSpecification {

 boolean isSatisfiedBy(T t);

 Specification<T> and(Specification<T> specification);

}

We rely on the Java sealed interface feature to enforce who should implement this

interface. The Specification interface defines the isSatisfiedBy and and methods

with generic types. We use generics to make the specification flexible and able to

deal with any object.

2. Next, we implement the AbstractSpecification abstract class:

public abstract sealed class AbstractSpecification<T> implements Specifica

{

 public abstract boolean isSatisfiedBy(T t);

 public abstract void check(T t) throws GenericSpecificationException;

 public Specification<T> and(final Specification<T> specification) {

 return new AndSpecification<T>(this, specification);

 }

}

Note the usage of permits with the AndSpecification, DuplicateCategorySpec,

and TransactionAmountSpec abstract classes. We will define such classes soon when

providing the specifications for the personal finance application. In

AbstractSpecification, we define a new abstract method called check responsible

for performing the business rule validation. The and method lets us combine the

results with multiple specifications by using the AndSpecification abstract class.

3. Following is how we can implement the AndSpecification abstract class:

public final class AndSpecification<T> extends AbstractSpecification<T> {

 private final Specification<T> spec1;

 private final Specification<T> spec2;

 public AndSpecification(final Specification<T> spec1, final

 Specification<T> spec2) {

 this.spec1 = spec1;

 this.spec2 = spec2;

 }

 public boolean isSatisfiedBy(final T t) {

 return spec1.isSatisfiedBy(t) && spec2.isSatisfiedBy(t);

 }

 @Override

 public void check(T t) throws GenericSpecificationException {

 }

}

The validation occurs inside the isSatisfiedBy that evaluates the results of the

spec1 and spec2.

Having implemented the specification abstraction, we implement specifications for the

personal finance application. For that, we can, for example, define a specification with a

business rule that ensures no transactions with zero amount are entered into the system:

public final class TransactionAmountSpec extends

AbstractSpecification<Double> {

 @Override

 public boolean isSatisfiedBy(Double amount) {

 return amount > 0;

 }

 @Override

 public void check(Double amount) throws GenericSpecificationException {

 if(!isSatisfiedBy(amount))

 throw new GenericSpecificationException("Transaction value 0 is

 invalid");

 }

}

The business rule is implemented inside the isSatisfiedBy, where we check if the

transaction value is greater than zero. Below is how we use the TransactionAmountSpec in

the Transaction entity:

@Builder

public record Transaction (Id id, String name, Double amount, Type type,

Instant timestamp) {

 public static Transaction createTransaction(Account account, String

 name, Double amount, Type type) {

 var transaction = getTransaction(name, amount, type);

 var transactions = account.transactions();

 new TransactionAmountSpec().check(transaction.amount);

 transactions.add(transaction);

 return transaction;

 }

 // Code omitted

}

Whenever a new transaction is created, we add it to a list of transactions. Still, before

doing so, we check through the TransactionAmountSpec to see if the transaction amount

is greater than zero. If it is not, then the system throws an exception. We can follow the

same approach for the implementation of a specification that ensures the user does not

provide duplicate categories:

public final class DuplicateCategorySpec extends

AbstractSpecification<Category> {

 private final List<Category> categories;

 public DuplicateCategorySpec(List<Category> categories) {

 this.categories = categories;

 }

 @Override

 public boolean isSatisfiedBy(Category category) {

 return categories.contains(category);

 }

 @Override

 public void check(Category category) throws

 GenericSpecificationException {

 if(isSatisfiedBy(category))

 throw new GenericSpecificationException("Category already

 exists");

 }

}

The DuplicateCategorySpec has a constructor that receives a list of categories of an

account. The specification checks if the new category exists in such a list. If it exists, then it

throws an exception. The following is how we can use the DuplicateCategorySpec in the

Category entity:

@Builder

public record Category(Id id, String name, List<Transaction> transactions) {

 public static Category createCategory(Account account, String name) {

 var category = getCategory(name);

 var categories = account.categories();

 new DuplicateCategorySpec(categories).check(category);

 categories.add(category);

 return category;

 }

 // Code omiited

}

The way we use the DuplicateCategorySpec in the Category entity is similar to what we

did previously in the Transaction entity. If the validation passes, the category is added to

the account’s list of categories.

Testing the domain model

The primary benefit of implementing a domain model with domain-driven design

techniques is that we can easily test it. Since the problem domain drives the

implementation, our code for the domain model should not depend on external resources

like databases, making it more straightforward to test.

1. Let us start by testing the Account entity:

public class AccountTest {

 @Test

 public void accountIsSuccessfullyCreated() {

 var name = "testAccount";

 var account = createAccount(name);

 assertEquals(name, account.name());

 }

 private Account createAccount(String name) {

 return Account

 .builder()

 .id(Id.withoutId())

 .name(name)

 .transactions(new ArrayList<>())

 .categories(new ArrayList<>())

 .build();

 }

}

The test above performs a simple test to ensure the Account entity is created

correctly.

2. Next, we test the Category entity:

public class CategoryTest {

 @Test

 public void Given_an_account_exists_create_a_category() {

 var name = "testAccount";

 var category = "testCategory";

 var account = createAccount(name);

 assertEquals(0, account.categories().size());

 Category.createCategory(account, category);

 assertEquals(1, account.categories().size());

 }

 @Test

 public void Given_a_category_already_exists_throw_exception() {

 var name = "testAccount";

 var category = "testCategory";

 var account = createAccount(name);

 Category.createCategory(account, category);

 assertThrows(GenericSpecificationException.class, () ->

 Category.createCategory(account, category));

 }

 // Code omitted

}

With the Given_an_account_exists_create_a_category test, we can confirm

whether a new category is created in an existing account. We also test if the

specification is really working with the

Given_a_category_already_exists_throw_exception test, which checks if an

exception is caught when we try to add an already existing category.

3. To conclude, we test the Transaction entity:

public class TransactionTest {

 // Code omitted

 @Test

 public void Given_an_invalid_transaction_throw_exception() {

 var account = createAccount("testAccount");

 assertThrows(GenericSpecificationException.class, () ->

 Transaction.createTransaction(account, "testTransac

 tion",

 0.0, Type.DEBIT));

 }

 @Test

 public void Given_a_category_add_and_remove_a_credit_transac

 tion() {

 var account = createAccount("testAccount");

 var category = Category.createCategory(account, "testCate

 gory");

 var transaction = Transaction.createTransaction(account,

 "testTransaction", 10.0, Type.CREDIT);

 assertEquals(0, category.transactions().size());

 transaction.addTransactionToCategory(category);

 assertEquals(1, category.transactions().size());

 transaction.removeTransactionFromCategory(category);

 assertEquals(0, category.transactions().size());

 }

 // Code omitted

}

As we did in the CategoryTest, here in the TransactionTest, we also test if the

specification is working with the Given_an_invalid_transaction_throw_exception

test, which checks if an exception is thrown when the transaction has zero value. With

the Given_a_category_add_and_remove_a_credit_transaction test, we check if

the application adds to and removes transactions from a category.

To wrap up, let us compile the personal finance project and run its tests.

Compiling and running the sample project

In this section, we compile and run the tests of the personal finance project we have been

exploring over the previous sections.

You can clone the application source code from the GitHub repository at

https://github.com/bpbpublications/Java-Real-World-

Projects/tree/main/Chapter%2012.

You need the JDK 21 or above and Maven 3.8.5 or above installed on your machine.

Execute the following command to compile and test the application:

$ mvn clean test

It should produce an output similar to the following:

[INFO] ---

https://github.com/bpbpublications/Java-Real-World-Projects/tree/main/Chapter%2012

[INFO] T E S T S

[INFO] ---

[INFO] Running dev.davivieira.entity.CategoryTest

[INFO] Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.038

s -- in dev.davivieira.entity.CategoryTest

[INFO] Running dev.davivieira.entity.AccountTest

[INFO] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.001

s -- in dev.davivieira.entity.AccountTest

[INFO] Running dev.davivieira.entity.TransactionTest

[INFO] Tests run: 3, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.020

s -- in dev.davivieira.entity.TransactionTest

[INFO]

[INFO] Results:

[INFO]

[INFO] Tests run: 6, Failures: 0, Errors: 0, Skipped: 0

[INFO]

[INFO] ---

[INFO] BUILD SUCCESS

[INFO] ---

The output above confirms the tests from AccountTest, CategoryTest, and

TransacationTest were successfully executed.

Conclusion

Domain-driven design stands as a reliable approach to designing enterprise applications.

By putting business concerns, rather than technology ones, as the main drivers for

application development, the domain-drive design approach with concepts like ubiquitous

language, bound context, and domain model helps us better understand business problems

and how to solve them.

Motivated by the benefits of domain-driven design, we looked at fundamental principles

like the ubiquitous language, which fosters shared understanding among developers,

business analysts, project owners, and other stakeholders. We also explored the

importance of mapping bounded contexts to eliminate ambiguities and clearly define

system responsibilities. Furthermore, we discovered event storming, a powerful

collaboration technique that brings together developers and domain experts to discuss and

gain clarity on the business problems that a software project intends to solve.

Finally, we put these concepts into action by implementing a personal finance application.

This practical exercise allowed us to see how entities, value objects, and specifications, all

key elements of domain-driven design, can be expressed through Java code.

In the next chapter, we explore how to implement Java applications using layered

architecture. We will learn how to develop a Java application using an architecture where

the data layer is responsible for data access and manipulation, the service layer provides

business rules, and the API layer exposes system behaviors.

Join our book’s Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the

world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 13

Fast Application Development with

Layered Architecture

Introduction

Whenever a new software project is started, developers need to decide how the different

software components will be structured and interact with each other to fulfill user

requirements. Such decisions are made to provide working software running in production

in the best way possible. Over the years, developers have been exploring techniques to

structure application code that produces working software and let them do so sustainably

by identifying and separating concerns in a software system.

One technique, known as layered architecture, has been widely adopted in the enterprise

software industry due to its reasonable simplicity and pragmatic approach. When

employing layered architecture, it does not take too much to implement it and explain to

other team members how it works, which may make it a viable alternative for those

wanting to deliver working software faster while keeping, to a certain degree, some order

on how the application code is structured. So, in this chapter, we will explore layered

architecture and how we can use it to develop better-structured Java applications.

Structure

The chapter covers the following topics:

• Importance of software architecture
• Understanding layered architecture
• Handling and persisting data in the data layer
• Defining business rules in the service layer
• Exposing application behaviors in the presentation layer
• Compiling and running the sample project

Objectives

By the end of this chapter, you will understand layered architecture by arranging the

application code into layers, each holding a specific system responsibility. You will learn

how the layered approach helps establish boundaries in the application code, which can

contribute to identifying and separating concerns in a software system, positively

influencing the overall software architecture. To solidify the concepts explored in this

chapter, we will examine the development steps to implement a Java application using

layered architecture ideas.

Importance of software architecture

In the software development life cycle, there is a moment when we, as developers, have

enough clarity regarding the solution we want to provide to solve some specific problem. In

those moments, we have an understanding of user requirements that we judge enough to

start developing the code to provide a solution. After having such an understanding, the

most important thing we should do in the early stages of any application development is to

create a code that solves the problem. Having a dirty, though working code, is much better

than having nothing to show. However, once we figure out how to produce this dirty,

though working code, we need to start thinking of ways to polish it, making it better

structured and maintainable.

The aim for better structured and maintainable code comes from the fact that we expect

the software to change. New features may be introduced, current features may need to

change, and bugs will arise. We expect to revisit the code quite often to change it

whenever necessary. So, by having the awareness that the software will change in the

future, we do not simply want to produce code that only solves the problems we have now,

but we also want to have code that lets us easily tackle the issues we may have in the

future. That is when we must start thinking about software architecture.

The software architecture we choose is decisive in our capacity to accurately, safely, and

quickly introduce code changes whenever needed. A poor software architecture results in

what is known as the big ball of mud, an overly complex application code that is hard to

grasp but that works. Also, since it works, we, ironically, have a problem. It is a problem

because we have software that is useful to its users but a burden to its maintainers. So,

whenever a new user requirement arrives, a journey into the unknown begins with the poor

developer navigating the intricate and highly complex code base of the big ball of mud

software.

How we choose the architecture for the applications we develop is something that, from

the author’s experience, happens as a conscious effort or spontaneously. When done as a

conscious effort, we usually try to assess more or less which kind of application we are

developing and how it should evolve. As a result of this assessment, we determine the

foundation from which the application will be developed. On the other hand, when we

spontaneously choose the software architecture, we make decisions as we go, driven

mainly by the desire to have a working code that solves our current problem, sometimes

putting the maintainability aspect in the second plane.

The reality is harsh, and sometimes, we do not have the time to spend on careful design.

We need to be pragmatic and produce working code now while not neglecting fundamental

software architecture aspects that can undermine our ability to change the code in the

future. Layered architecture is an approach that helps us achieve pragmatism, which we

will explore further in the next section.

Understanding layered architecture

The layered architecture is a software development technique that helps us structure

application code based on the concerns or responsibilities of a software system. To identify

those concerns, we can imagine a user making system requests and the steps required to

fulfill those requests. The first step can be for the user to interact with a graphical user

interface or an API. In this first step, we see a situation where something is presented to

those interested in interacting with the application. Presenting something through a

graphical user interface or an API can be seen as the presentation concern. In the layered

architecture, such a presentation concern can be captured, for example, into the

presentation layer.

The second step of a user request may involve data processing, where certain constraints

are enforced to determine what the software can and cannot do. These constraints are

represented through business rules that establish how the software should behave and how

the data provided by the user in step one, the presentation layer, will be processed. Here,

we have a part of the system that is not concerned with presenting things, but rather, it is

concerned with processing them by applying constraints through business rules that may

validate the data provided in the first step. For this part of the system where we process

data, we can identify another concern, one that can be part of the business or service

layer.

The third and final step of the user request may involve persisting or getting data from a

database. The data layer can capture all aspects related to handling database entities.

So far, we have identified the three possible layers: presentation, service, and data layers.

It does not mean that all applications can be layered in this way. There is no fixed size on

how many layers an application can have. The number of layers depends on our

assessment in identifying which application’s responsibilities make sense to capture as a

layer. That is good because it gives flexibility in defining as many layers as we deem

necessary, but at the same time, it can cause trouble if we define more layers than what is

needed. So, prudence is advised when deciding how many layers are necessary for your

application. The author usually utilizes a few layers, capturing only the explicit system

responsibilities.

Once the layers are defined, we must establish how they will communicate with each other.

Let us explore how to do that next.

A layer knows only the next layer

In this approach, the presentation layer would know and interact, for example, directly with

the service layer. Every interaction with the data layer would be intermediated through the

service layer.

Figure 13.1: One layer knows only the next layer

As depicted in Figure 13.1, this approach assumes that a higher-level layer knows only the

next lower-level layer.

Let us next check an alternative where a layer can interact with other layers.

A layer can know other layers

The presentation layer would be allowed to access, for example, the data layer, as shown

in the figure below:

Figure 13.2: One layer can interact with any low-level layer

With this approach, we can avoid the situation where a layer is used only as a proxy to

access another layer.

Regardless of the layer communication approach, the layer dependency direction must

always go downwards because a high-level layer always depends on a lower-level layer. For

example, the presentation layer can depend on the service or data layer, but the service

layer cannot depend on the presentation layer.

Having grasped the fundamental ideas of layered architecture, let us now look at their

practical application in developing a personal finance system based on the Spring Boot

framework. Starting from the layer structure we have discussed so far, which is based on

the data, service, and presentation layers, we begin by exploring the role of the data layer

in handling data entities and persistence.

Handling and persisting data in the data layer

The personal finance system tracks money spending by storing all user transactions in the

database. To enable it, let us implement the Transaction entity:

@Entity

@Builder

@Getter

@AllArgsConstructor

@NoArgsConstructor

public class Transaction {

 @Id

 private String id;

 private String name;

 private Double amount;

 private String type;

 private Instant timestamp;

}

We use the @NoArgsConstructor, @AllArgsConstructor, @Getter, and @Builder

annotations from Lombok to make the code more concise. Lombok is a Java library that

helps considerably reduce the boilerplate produced by the recurring usage of common

language constructs such as constructor declarations and the definition of getters and

setters. We use the @Entity annotation to make the Transaction class a Jakarta

Persistence entity. When declaring the entity class attributes, we must specify which

attribute will be used for the entity ID. We do that by placing the @Id annotation on the id

attribute.

Next, we can define the repository interface:

@Repository

public interface TransactionRepository extends CrudRepository<Transaction,

String> { }

Here, we are just extending the CrudRepository without defining any additional method

because we are relying only on the basic database operations that are already provided

when the CrudRepository is extended.

Next, we implement the category entity and its repository.

Implementing the category entity and repository

We intend to let users create categories to group similar transactions. Following, we define

the Category entity class:

@Entity

@Getter

@Builder

@AllArgsConstructor

@NoArgsConstructor

public class Category {

 @Id

 private String id;

 private String name;

 @OneToMany(cascade = CascadeType.ALL, fetch = FetchType.EAGER)

 private List<Transaction> transactions;

 @Override

 public boolean equals(Object o) {

 if (this == o) return true;

 if (o == null || getClass() != o.getClass()) return false;

 Category category = (Category) o;

 return Objects.equals(name, category.name);

 }

 @Override

 public int hashCode() {

 return Objects.hash(name);

 }

}

Note that we have a @OneToMany annotation placed above the transactions class attribute.

This annotation expresses a one-to-many relationship between a category and one or more

transactions. Following this, we override both the equals and hashCode methods. The logic

we define establishes that Category objects with the same name are considered equal.

Next, we implement the repository interface as follows:

@Repository

public interface CategoryRepository extends CrudRepository<Category, String>

{ }

As we previously did for the TransactionRepository interface, we extend the

CrudRepository in the CategoryRepository, hence inheriting all built-in database

operations sufficient to handle Category entities.

Finally, we implement the entity and repository classes to handle accounts.

Implementing the account entity and repository

Every transaction and category belongs to an account. Based on such a relationship, the

following code shows how we can implement the Account entity class:

@Entity

@Builder

@Getter

@AllArgsConstructor

@NoArgsConstructor

public class Account {

 @Id

 private String id;

 private String email;

 private String password;

 @OneToMany(cascade = CascadeType.ALL, fetch = FetchType.EAGER)

 private List<Transaction> transactions;

 @OneToMany(cascade = CascadeType.ALL, fetch = FetchType.EAGER)

 private List<Category> categories;

}

There are two one-to-many associations: one that associates an account with transactions

and another that associates an account with categories. The idea is that whenever a

transaction or category is created, it must be linked to an account.

The following is how we can define the AccountRepository interface:

@Repository

public interface AccountRepository extends CrudRepository<Account, String> {

 Optional<Account> findByEmail(String email);

}

We declare the findByEmail method to let us retrieve Account entities based on their

email attribute.

With entities, we can map Java classes to database tables, and with repositories, we can

establish the operations that let us perform database operations using entities. Entities and

repositories comprise the data layer in our layered architecture design.

Let us continue the implementation by defining business rules inside the service layer.

Defining business rules in the service layer

The service layer is where validations and business rules can be enforced on data provided

by the user through the presentation layer. Some projects establish the service layer to

decouple the business rules from the data layer. We lose flexibility when we have business

rules code sitting together with the same code responsible for dealing with the database.

For example, suppose we implement business rules based on the underlying database or

object-relational mapping (ORM) technologies, and later, we decide to change such

technologies. The business rules may not work with the newer database technology

because they were created based on some specific functionality of the older database.

Decoupling with layers may help us save refactoring efforts in case of significant

application changes like using a new database technology.

The service layer of the personal finance system performs validations to ensure that the

data provided by the user does not violate the business rules that govern how transactions

and their categories must be handled.

We start by implementing a service class for handling transactions.

Implementing the transaction service

Activities like creating a new transaction, adding a transaction to a category, or removing a

transaction from a category can be the responsibility of a transaction service class. We

cover the next steps to implement the transaction service.

1. The following code defines the initial class structure:

@Service

public class TransactionService {

 private final CategoryRepository categoryRepository;

 private final AccountRepository accountRepository;

 @Autowired

 public TransactionService(CategoryRepository categoryRepository,

 AccountRepository accountRepository) {

 this.categoryRepository = categoryRepository;

 this.accountRepository = accountRepository;

 }

 // Code omitted

}

We use the @Service annotation from Spring to make it a managed bean, so we do

not need to worry about creating class instances or providing dependencies. We also

define CategoryRepository and AccountRepository class attributes injected

through the TransactionService's constructor.

2. Continuing with the implementation, we implement methods responsible for creating

new transactions:

@Service

public class TransactionService {

 // Code omitted

 public void createTransaction(Account account, TransactionPayload

 transactionPayload) throws Exception {

 validateAmount(transactionPayload);

 var transaction = Transaction.builder()

 .id(transactionPayload.getId())

 .name(transactionPayload.getName())

 .amount(transactionPayload.getAmount())

 .type(transactionPayload.getType())

 .timestamp(transactionPayload.getTimestamp())

 .build();

 account.getTransactions().add(transaction);

 accountRepository.save(account);

 }

 private void validateAmount(TransactionPayload transactionPay

 load)

 throws Exception {

 var amount = transactionPayload.getAmount();

 if(!(amount > 0)) {

 throw new Exception("Transaction value 0 is invalid");

 }

 }

 // Code omitted

}

The createTransaction objects receive as parameters an Account and a

TransactionPayload object. It uses the payload objects to perform validation using

the validateAmount method that throws an exception if the transaction value is zero

or less. If the validation is successful, a new Transaction object is created and added

to the list of existing transactions of an Account object.

3. We use the TransactionPayload class to capture data provided by the user:

@Getter

public class TransactionPayload {

 private String id = UUID.randomUUID().toString();

 private String accountId;

 private String name;

 private Double amount;

 private String type;

 private Instant timestamp = Instant.now();

}

The payload class plays a vital role by serving as the data carrier class in the service

layer. As we will see in the next section, it is also used in the presentation layer to

capture user data coming through API requests.

4. To finish the TransactionService implementation, we define the methods that allow

adding and removing transactions from a category:

@Service

public class TransactionService {

 // Code omitted

 public boolean addTransactionToCategory(

 Category category,

 Transaction transaction) {

 category.getTransactions().add(transaction);

 categoryRepository.save(category);

 return true;

 }

 public boolean removeTransactionFromCategory(

 Category category,

 Transaction transaction) {

 category.getTransactions().remove(transaction);

 categoryRepository.save(category);

 return true;

 }

}

Both methods, addTransactionToCategory and removeTransactionFromCategory,

receive a Category and Transaction objects used to add and remove transactions

from categories.

Let us see now how to implement a service class to handle categories.

Implementing the category service

Other than simply allowing the creation of new categories, we can use the service class to

enforce some rules that must be respected before creating the category.

1. Let us start by defining the initial class structure:

@Service

public class CategoryService {

 private final AccountRepository accountRepository;

 @Autowired

 public CategoryService(AccountRepository accountRepository) {

 this.accountRepository = accountRepository;

 }

 // Code omited

}

We do not persist categories directly into the database. Instead, we save them

through the Account entity to which they belong. That is why AccountRepository

should be injected as a dependency.

2. Next is the code that lets us create a new category:

@Service

public class CategoryService {

 public void createCategory(Account account, CategoryPayload

 categoryPayload) throws Exception {

 var category = getCategory(categoryPayload);

 validateCategory(account, category);

 account.getCategories().add(category);

 accountRepository.save(account);

 }

 private Category getCategory(CategoryPayload categoryPayload) {

 return Category.builder()

 .name(categoryPayload.getName())

 .id(categoryPayload.getId())

 .transactions(List.of())

 .build();

 }

 private void validateCategory(Account account, Category category)

 throws Exception {

 var categories = account.getCategories();

 if(categories.contains(category)) {

 throw new Exception("Category already exists in this ac

 count");

 }

 }

}

The createCategory receives an Account and a CategoryPayload object. Before

saving the new category into the provided Account object, our service class checks,

through the validateCategory method, if the given category does not already exist.

The validation is made by looking at the category’s name. No categories with the

same name can exist in the same account.

3. Following is what the CategoryPayload looks like:

@Getter

public class CategoryPayload {

 private String id = UUID.randomUUID().toString();

 private String accountId;

 private String name;

}

We use the UUID string defined in the CategoryPayload class to persist the Category

entity into the database.

Next, we finish the service layer development by implementing a service class for handling

accounts.

Implementing the account service

Users need to create an account to start using the personal finance system. Such a

responsibility can be part of the account service. Let us implement it through the following

class:

@Service

public class AccountService {

 private final AccountRepository accountRepository;

 @Autowired

 public AccountService(AccountRepository accountRepository) {

 this.accountRepository = accountRepository;

 }

 public Account createAccount(AccountPayload accountPayload) throws

 Exception {

 validateEmail(accountPayload);

 var account = Account.builder()

 .id(accountPayload.getId())

 .email(accountPayload.getEmail())

 .password(accountPayload.getPassword())

 .categories(List.of())

 .transactions(List.of())

 .build();

 accountRepository.save(account);

 return account;

 }

 private void validateEmail(AccountPayload accountPayload) throws

 Exception {

 if (!Pattern.matches("^(.+)@(\\S+)$", accountPayload.getEmail())) {

 throw new Exception("Email format name is invalid.");

 }

 if (accountRepository.findByEmail(accountPayload.getEmail()).isPre

 sent()) {

 throw new Exception("Email provided already exists.");

 }

 }

}

The AccountService is a straightforward service class implementation that relies only on

the AccountRepository class. The createAccount method receives an AccountPayload

object as a parameter used by the validateEmail method to ensure the email provided is

valid. The new account will be saved in the database if the validation passes. The following

is how the AccountPayload class can be implemented:

@Getter

public class AccountPayload {

 private String id = UUID.randomUUID().toString();

 private String email;

 private String password;

}

The AccountPayload is a data carrier class that captures the user’s request data to create

a new account.

Having defined the TransactionService, CategoryService, and AccountService, we can

now check how the behaviors provided by those classes can be exposed in the

presentation layer.

Exposing application behaviors in the presentation layer

In the layered architecture, the presentation layer is commonly seen as a layer associated

with graphical user interfaces because of the idea of presenting something. However, the

meaning you give to the layers in your application can be different from the commonly

known meaning. In the context of a purely back-end system, the presentation layer can

mean the presentation of system behaviors through an API where users and other

applications can interact with the system.

Based on this idea that system behaviors can be presented or exposed through an API, we

will define the presentation layer for the personal finance system.

Let us start by implementing an API endpoint to handle transactions.

Implementing the transaction endpoint

All possible transaction operations are exposed through a RESTful API endpoint. With such

an endpoint, users can request to create transactions and put them into categories.

1. Let us start the transaction endpoint implementation by defining the basic class

structure:

@RestController

public class TransactionEndpoint {

 private final TransactionService transactionService;

 private final TransactionRepository transactionRepository;

 private final AccountRepository accountRepository;

 private final CategoryRepository categoryRepository;

 @Autowired

 private TransactionEndpoint(TransactionService transactionSer

 vice,

 TransactionRepository transaction

 Repository,

 AccountRepository accountRepository,

 CategoryRepository categoryRepository

) {

 this.transactionService = transactionService;

 this.transactionRepository = transactionRepository;

 this.accountRepository = accountRepository;

 this.categoryRepository = categoryRepository;

 }

 // Code omitted

}

We put the @RestController annotation from Spring Boot on top of the

TransactionEndpoint class to expose API endpoints. We inject the

TransactionService, TransactionRepository, AccountRepository, and

CategoryRepository as dependencies to allow proper transaction management.

2. Having the basic class structure, let us define the endpoints to create and retrieve

transactions:

@RestController

public class TransactionEndpoint {

 // Code omitted

 @PostMapping("/transaction")

 public void createTransaction(

 @RequestBody TransactionPayload transactionPayload) throws Excep

 tion {

 var account =

 accountRepository

 .findById(transactionPayload.getAccountId()).get();

 transactionService

 .createTransaction(account, transactionPayload);

 }

 @GetMapping("/transactions")

 public List<Transaction> allTransactions() {

 return (List<Transaction>) transactionRepository.findAll();

 }

 // Code omitted

}

The createTransaction method handles HTTP POST requests at /transaction

containing a JSON payload mapped to the TransactionPayload class. The payload,

based on the data provided by the user, is used to save a new transaction in the

system. We use the account ID obtained from the payload to fetch an Account object.

Then, we pass the Account and TransactionPayload objects to create the

transaction using transactionService.createTransaction(account,

transactionPayload).

The allTransactions method is straightforward. It handles HTTP GET requests that

retrieve all transactions in the system.

3. Other than allowing the creation and retrieving transactions, the

TransactionEndpoint also contains endpoints that let us add to or remove a

transaction from a category:

@RestController

public class TransactionEndpoint {

 // Code omitted

 @PutMapping("/{categoryId}/{transactionId}")

 public void addTransactionToCategory(

 @PathVariable String categoryId,

 @PathVariable String transactionId

) {

 var category = categoryRepository.findById(categoryId).get();

 var transaction =

 transactionRepository.findById(transactionId).get();

 transactionService.removeTransactionFromCategory(category,

 transaction);

 transactionService.addTransactionToCategory(category,

 transaction);

 }

 @DeleteMapping("/{categoryId}/{transactionId}")

 public void removeTransactionFromCategory(

 @PathVariable String categoryId,

 @PathVariable String transactionId

) {

 var category = categoryRepository.findById(categoryId).get();

 var transaction =

 transactionRepository.findById(transactionId).get();

 transactionService.removeTransactionFromCategory(category,

 transaction);

 }

 // Code omitted

}

To add a transaction to a category, the system expects an HTTP PUT request at the

/{categoryId}/{transactionId} endpoint through the addTransactionToCategory

method that receives the categoryId and transcationId parameters that are used

to fetch a Category and Transaction objects that are used to categorize the

transaction through the call of

transactionService.addTransactionToCategory(category, transaction). A

similar operation occurs for the deletion endpoint that receives an HTTP DELETE

request that relies on the call to

transactionService.removeTransactionFromCategory(category, transaction)

to remove a transaction from a category. Note that to change a transaction’s

category, we must first delete it from the existing category by sending an HTTP

DELETE request.

Next, we learn how to implement the category endpoint.

Implementing the category endpoint

As done for the TransactionEndpoint, let us start by defining the CategoryEndpoint

basic structure:

@RestController

public class CategoryEndpoint {

 private final CategoryService categoryService;

 private final CategoryRepository categoryRepository;

 private final AccountRepository accountRepository;

 @Autowired

 private CategoryEndpoint(CategoryService categoryService,

 CategoryRepository categoryRepository,

 AccountRepository accountRepository) {

 this.categoryService = categoryService;

 this.categoryRepository = categoryRepository;

 this.accountRepository = accountRepository;

 }

 // Code omitted

}

We inject the CategoryService, CategoryRepository, and AccountRepository classes as

dependencies. The AccountRepository is required because every category is associated

with an account, so we use the AccountRepository to retrieve Account objects. The

CategoryEndpoint lets users create and list categories, as follows:

@RestController

public class CategoryEndpoint {

 @PostMapping("/category")

 public void createCategory(@RequestBody CategoryPayload

 categoryPayload) throws Exception {

 var account =

 accountRepository.findById(categoryPayload.getAccountId()).get();

 categoryService.createCategory(account, categoryPayload);

 }

 @GetMapping("/categories")

 public List<Category> allCategories() {

 return (List<Category>) categoryRepository.findAll();

 }

}

The createCategory method handles HTTP POST requests at the /category endpoint,

creating a new category based on the user-provided JSON payload mapped to

CategoryPayload. On the other hand, the allCategories method handles HTTP GET

requests at the /categories endpoint, retrieving all available categories.

Having implemented the endpoint classes to handle transactions and categories, we still

need to create an endpoint to handle accounts.

Implementing the account endpoint

All transactions and categories of the personal finance system are associated with an

account. So, as the first step to using the system, the users must create an account. The

following is how we can define the AccountEndpoint:

@RestController

public class AccountEndpoint {

 private final AccountService accountService;

 private final AccountRepository accountRepository;

 @Autowired

 private AccountEndpoint(AccountService accountService,

 AccountRepository

 accountRepository) {

 this.accountService = accountService;

 this.accountRepository = accountRepository;

 }

 @PostMapping("/account")

 public Account createAccount(@RequestBody AccountPayload

 accountPayload) throws

 Exception {

 return accountService.createAccount(accountPayload);

 }

 @GetMapping("/account/{email}")

 public Account getAccount(@PathVariable String email) throws Exception

 {

 return accountRepository.findByEmail(email).orElseThrow(() -> new

 Exception("Account not found"));

 }

}

The createAccount method handles HTTP POST requests at the /account endpoint that

lets users create accounts, while the getAccount method handles HTTP GET requests,

allowing users to get account details by passing the account email address.

At this stage, the personal finance application is implemented using the data, service, and

presentation layers. Let us explore next how to compile and run the personal finance

application.

Compiling and running the sample project

In this section, we compile and run the personal finance project we have been exploring in

the previous sections. As we have exposed an API for the personal finance application, we

also explore how to consume such an API in the next section.

You can clone the application source code from the GitHub repository at

https://github.com/bpbpublications/Java-Real-World-

Projects/tree/main/Chapter%2013.

You need the JDK 21 or above and Maven 3.8.5 or above installed on your machine.

Execute the following command to compile the application:

$ mvn clean package

Maven will create a JAR file that we can use to run the application by running the command

below:

$ java -jar target/chapter13-1.0-SNAPSHOT.jar

Next, we cover the steps to test the application.

1. You can use the following command to create a new account:

$ curl -XPOST localhost:8080/account -H 'Content-type:application/json' -d

https://github.com/bpbpublications/Java-Real-World-Projects/tree/main/Chapter%2013

2. After having an account, we can create some categories for it:

$ curl -XPOST localhost:8080/category -H 'Content-type:application/json' -

$ curl -XPOST localhost:8080/category -H 'Content-type:application/json' -

3. The following is how we can create a new transaction:

$ curl -XPOST localhost:8080/transaction -H 'Content-type:application/json

4. To find out the ID of the transaction and category, we can fetch account details with

the following request:

$ curl localhost:8080/account/john.doe@davivieira.dev

5. Following is how we can add a transaction to a category:

$ curl -XPUT localhost:8080/{CATEGORY_ID}/{TRANSACTION_ID}

You can fetch the account details again to confirm that the transaction has been

inserted into the desired category.

Conclusion

The ability to group system responsibilities into layers allows one to define boundaries

within a system. These boundaries are formed based on our understanding of the steps a

software system needs to conduct to fulfill user needs. The layered architecture helps to

capture such an understanding into layers that cooperate in realizing system behaviors.

Because of its pragmatic approach, the learning curve to grasp layered architecture is not

so high, which makes such architecture a good candidate for fast application development.

Aware of the benefits that layered architecture can provide, in this chapter, we explored

the ideas behind designing software systems into layers by implementing the personal

finance system employing first the data layer, responsible for abstracting and handling all

database interactions, then the service layer in charge of enforcing constraints through

business rules that dictate how the software should behave, and finally the presentation

layer responsible for presenting through an API or a graphical user interface, the behaviors

supported by the personal finance application.

In the next and final chapter, we explore the software design approach called hexagonal

architecture, which allows us to develop more change-tolerable applications. We will learn

how to arrange the domain model in the domain hexagon, provide input and output ports

in the application hexagon, and expose input and output adapters in the framework

hexagon.

CHAPTER 14

Building Applications with Hexagonal

Architecture

Introduction

Software development in an environment of constant changes can be challenging.

Customers want to receive good service, and organizations strive to provide it with efficient

software systems. However, customer needs change. Not only that, the way to fulfill

customer needs can also change. After all, enterprises are in an unending quest to produce

value in the most inexpensive way possible. Such a landscape presents a formidable

challenge for developers who need to solve customer problems now and, at the same time,

ensure the systems they are creating can evolve sustainably. By being sustainable, we are

referring to the ability to handle software changes gracefully, especially those that deal

with fundamental technological dependencies like, for example, database or messaging

systems.

We tackle uncertainty by developing software in a change-tolerable way. We can

accomplish that by using hexagonal architecture, a technique that helps develop software

so that the technological aspects are entirely decoupled from the business ones. This

chapter explores how hexagonal architecture helps create software systems capable of

welcoming fundamental technological changes without significant refactoring efforts.

Structure

The chapter covers the following topics:

• Introducing hexagonal architecture
• Arranging the domain model
• Providing input and output ports
• Exposing input and output adapters
• Compiling and running the sample project

Objectives

By the end of this chapter, you will know how to develop Java applications using the

hexagonal architecture. You will learn how to define the domain model provided by the

domain hexagon. You will also learn how to use input and output ports from the application

hexagon to orchestrate system dependencies required to enable behaviors established by

the domain hexagon. Finally, you will learn how to use adapters from the framework

hexagon to make your system compatible with different technologies.

Introducing hexagonal architecture

Back-end applications are typically designed to work in cooperation with other systems.

The interaction with other systems and their underlying technologies is a fundamental

aspect of software development because it defines how application dependencies will be

provided. We can describe some of the application’s dependencies as follows:

• The database technology we use to store the data.
• The message broker system we use to publish and consume messages.
• The scheduler system we use to schedule tasks.

These dependencies can influence how the software is designed. Applications that heavily

rely, for example, on a specific relational database technology can have business logic

code mixed up with code that deals with specific details of that database technology. That

is not an issue until the underlying database technology changes, forcing a code

refactoring to ensure the business logic code will work with the new database technology.

How can we tackle this issue? Employing hexagonal architecture may be the answer. Let us

check the reason.

Alister Cockburn conceived the hexagonal architecture as a solution to develop

applications where the business logic code can evolve without dependency on external

technology details. Assuming that the business logic code represents the most important,

often unreplaceable, asset in a software system, the hexagonal architecture application is

designed to ensure the business logic code is shielded by any changes in the code

responsible for dealing with any underlying technology dependency. Using hexagonal

architecture allows us to develop more change-tolerable applications because we can make

these applications work efficiently with different technologies. This idea of the ease of

working with any technology can also be captured by the alternative name of hexagonal

architecture, also known as ports and adapters architecture, where the ports express the

behaviors an application supports, and the adapters express the different ways or

technologies to trigger such behaviors.

You may be wondering why hexagonal architecture is named such. Its name comes from

the idea that the hexagon sides represent the boundaries between the hexagonal

application and the other systems in which it interacts. The hexagon form was used to

differentiate from other architectural pictures, which often used rectangles to represent

users and systems, and because hexagons were easier to draw than pentagons or

heptagons, for example. Each hexagon side acts as either an input or output adapter. It

does not mean, however, that a hexagonal application must have only six adapters, which

is the number of sides a hexagon has. The hexagon shape conveys that an application can

have as many adapters as possible to be compatible with different technologies. The

adapters play a fundamental role by communicating between the hexagonal application

and all systems it needs to interact with to conduct its activities.

To better grasp the hexagonal architecture ideas, we explore an approach where the

hexagonal system is divided into the domain, application, and framework hexagons. The

domain hexagon oversees providing the domain model of the software system. The

application hexagon handles data in a technology-agnostic way to enable the domain

model from the domain hexagon. Finally, the framework hexagon provides the mechanisms

for external systems to interact with the hexagonal application. The following figure

provides a high-level representation of a hexagonal application:

Figure 14.1: The hexagonal application

On the driver side, we have systems that can trigger behaviors in the hexagonal

application. On the driven side, we have systems on which the hexagonal application

depends. We can also use the primary and secondary terms instead of driver and driven. In

the upcoming sections, we will explore the driver and driven sides further.

The domain, application, and framework hexagons each have responsibilities in the

hexagonal system. Let us start exploring such responsibilities with the domain hexagon.

The domain hexagon

When starting a new software project, developers may be tempted to think first in

technological terms. They may consider which software development framework best

meets the project’s needs, which database technology is more adequate, which caching

system can provide better performance, and so on. These are all valid concerns and must

be carefully considered to ensure the development of good applications. However, when

these concerns are addressed at the beginning of a software project, they can influence the

development process to the point where the code developed is driven more by the

technologies used to solve business problems than the business problems themselves. The

result is an application tailored to a specific technology stack, giving little flexibility for

technology changes if necessary. Having applications optimized to work with a well-defined

technology stack is not an issue if you are not expecting technology changes. However, if

you expect such changes, the concerns we assessed previously regarding the technology

choices of an application should be postponed to the later stages of a software project.

What should we address first if we postpone the technology choices to a later stage in a

software development project? First, we address the problem domain of the application we

want to develop. We start by creating code that contains the logic responsible for solving

issues presented by the application’s problem domain. We should strive to do that in the

most technologically agnostic way. The author calls it agnostic because such a code must

not depend on frameworks or external libraries that can influence how the business logic

works.

The code responsible for solving business problems lives in the domain hexagon. This code

can be arranged in any way; however, the domain-driven design technique is

recommended because it provides the blueprint to create the domain model code, which

contains all logic that solves business problems without relying on external dependencies.

The following figure shows which elements are found inside the domain hexagon:

Figure 14.2: The domain hexagon

Relying on domain-driven design, a domain hexagon can contain entities, value objects,

specifications, and other domain-driven design elements that express through code the

domain model of a system. Next, we will examine some of the most essential domain-

driven design elements we can use in hexagonal architecture.

Entities

In domain-driven design, we use entities to describe everything that can be uniquely

identified. For example, a person, a product, a user, or an account can be uniquely

identified and modeled as entities in a hexagonal application. These domain entities should

not be misinterpreted with database entities. Instead, such domain entities should be

designed and inspired by our knowledge of the problem domain we are dealing with. We

are not concerned about which technologies we will use to handle the entities on the

domain hexagon. Instead, our focus is on establishing the entity in the most

straightforward way possible without depending on data or behaviors coming from outside

of the application. When considering entity definition from the Java development

perspective, entity classes are defined as Plain Old Java Objects (POJO), classes that

rely only on the standard Java API and nothing more.

Entities carry data and behavior. For example, an account entity can use email and

password as data attributes. It can also have a method called resetPassword as one of its

behaviors.

Value objects

Contrary to entities, value objects are not uniquely identifiable. We can use, however, value

objects as attributes to describe an entity. Implemented as POJOs in a Java application,

value objects contribute with the domain hexagon purpose of solving business problems

without depending on data and behaviors provided by third parties. Because of its

immutable nature, a value object can be implemented as a record in Java. However, the

author recommends using ordinary classes if the value object contains behaviors. The

value objects are pure Java classes that compose classes inside the domain hexagon. For

example, instead of using a String or UUID class to define an ID attribute, we can create an

ID value object value containing the data and behaviors that accurately capture the

identification needs of the problem domain we are working with.

Specifications

Enterprise applications are designed with a real business problem in mind. Specifications

are the domain-driven design technique that lets us capture the rules for solving a

system’s business problems. In a hexagonal architecture application, specifications are

considered the butter in the bread because they carry the most critical asset of an

application, the codified business rules that solve real-world problems. Specifications are

essential because understanding business rules can be challenging, requiring knowledge

and experience on how a business operates. As entities and values objects, specifications

are also modeled as POJOs without dependency on data or behaviors provided by third

parties.

Other domain-driven design elements include aggregates and domain services; however,

entities, value objects, and specifications are enough to start implementing the domain

hexagon.

The domain hexagon is the foundation for the hexagonal system because it contains all the

fundamental data and behaviors on which all other system parts will depend. However, the

domain hexagon alone is insufficient to provide a working system. The domain hexagon

becomes powerful when combined with other hexagonal architecture elements, such as

ports and adapters that rely on the domain hexagon to provide fully functional features.

However, it must be reinforced that the domain hexagon code must evolve without any

dependency on technological details. Such a requirement is necessary to achieve the

essential outcome of shielding the code responsible for solving business problems from the

code responsible for providing the technology to solve those problems.

Let us explore next how the application hexagon helps to provide data and behaviors that

work based on the domain model provided by the domain hexagon through input and

output ports.

The application hexagon

Back-end systems may be expected to receive and process data from users or other

applications. Also, depending on the scenario, such back-end systems may need to send

and retrieve data from different systems, such as databases or message brokers. On the

one hand, we have actors interacting with a system by sending request payloads and

triggering behaviors through the system API. On the other hand, we have the back-end

system interacting with other actors responsible for providing the dependencies required to

make the back-end system work. We can identify these two sides as the driver and driven

sides.

The driver side comprises users and systems that interact with the hexagonal application,

while the driven side corresponds to the systems on which the hexagonal application

depends. Aware of this dynamic, we can affirm that the functionalities provided by a

hexagonal application can be triggered on the driver side, while the dependencies to

enable those functionalities come from the driven side. What lives on the driver’s side has

the characteristic of driving the hexagonal application by triggering its behaviors. On the

other hand, what lives on the driven side is controlled and driven by the hexagonal

application itself. We can implement input and output ports in the application hexagon to

prepare a system to handle driver and driven operations. Also, we can employ use cases

acting as abstractions for the input ports. When putting everything together, we can have

input ports, output ports, and use cases as the elements that comprise the application

hexagon, as shown in the following figure:

Figure 14.3: The application hexagon

When we start developing the application hexagon, the domain hexagon should be already

implemented. The application hexagon depends on the domain hexagon to process the

driver and driven operations. So, we need to determine which kind of data the hexagonal

application is expected to receive from the driver side and how such data should be

processed, considering the possible constraints provided by the domain hexagon. The

hexagonal application may need to retrieve data from somewhere else to process the data

received from the driver side. Such concerns about how the data will be received,

processed, or persisted can be expressed technologically agnostic through input ports,

output ports, and use cases. Let us proceed by exploring use cases.

Use cases

One of the advantages of a software system is the ability to automate things that would

instead be done manually if the software did not exist. Imagine sending a message to a

friend using a letter instead of email. To send a letter, we must write the message on

paper, put it into an envelope, paste a postal seal, and drop it in a mailbox. These are all

manual tasks we must perform to send a physical letter. Now, imagine the scenario of

sending an email. The system responsible for it must provide the means to capture the

message digitally written by a user. Then, it must communicate with an SMTP server to

send the email message to its destination. The ability to store the email message in the

system memory and then send it using an SMTP server is an automated task provided by

the software that has email delivery as one of its use cases.

The use case represents the intent of an actor using the software system. Such an actor

can be a human or another system. In hexagonal applications, use cases can be defined as

abstractions, through interfaces or abstract classes, that represent what the application

can do. A use case abstraction may contain the operations to accomplish a given goal. In

the case of an email delivery system, we can have a Java interface with two abstract

methods called sendEmail(String message) and getSMTPServer() that, when used

together, let the system send email messages.

If the use case is an abstraction, who implements it? The input ports are responsible for

that. Let us check the input ports next.

Input ports

Input ports describe how a use case will be fulfilled. Input ports are responsible for handling

data provided by clients sitting on the driver side of a hexagonal application. Such data can

be processed based on the constraints provided by the domain hexagon. If necessary, the

input port can use output ports to persist or retrieve data from systems on the hexagonal

application’s driven side.

All operations in the application hexagon are defined without specifying the technology

details of systems from both the driver and driven sides of the hexagonal application.

Designing the system without providing the technology details in the application hexagon

gives greater flexibility because we can define system functionalities without specifying

which technologies will enable those functionalities.

We learned earlier that input ports can rely on output ports to persist or retrieve data from

systems on the hexagonal application’s driven side. Let us explore output ports.

Output ports

Acting as abstractions, we use output ports to define what the hexagonal system needs

from the outside. The idea here is to express the need to get some data without specifying

how such data will be obtained. We do that to avoid dependency on the underlying

technology that provides the data. If output ports are abstractions, you may wonder who

provides their implementations. That is the responsibility of the output adapter, which we

will learn next while exploring the framework hexagon.

The framework hexagon

There is a moment in developing a software system in which we must decide which

technologies will enable the system functionalities. When creating a new system based on

the hexagonal architecture, those decisions can be postponed until the last moment when

the domain model has already been implemented in the domain hexagon, and the use

cases and ports are already defined in the application hexagon. What is left now is the

integration of the hexagonal system with its external dependencies, which may include

databases, email services, file servers, message brokers, and so on. The integration also

covers providing an API that lets users and other systems send requests to the hexagonal

application. The idea of having driver and driven sides, as we discussed when covering

ports in the application hexagon, can also be applied when dealing with adapters in the

framework hexagon.

To recap, on the driver side of the hexagonal application, we have actors such as users and

other systems that can trigger system behaviors, and because of that, they are in a

position to drive the hexagonal application. On the driven side, we have actors providing

dependencies such as databases and other systems. It is called driven because the

hexagonal application drives these actors. The input adapters support the driver side, while

the driven side is handled using output adapters. The framework hexagon is composed of

input and output adapters that determine which technologies are supported by the

hexagonal application, as shown in the following figure:

Figure 14.4: The framework hexagon

Next, we explore what input and output adapters are and how we can use them to make

hexagonal applications compatible with any technology.

Input adapters

Once we have the hexagon application features defined as use cases and implemented as

input ports, we may want to expose those features to the outside world. We accomplish

that using input adapters that provide an interface enabling driver actors to interact with

the hexagonal application. Input adapters resemble physical adapters in a way that both

share the purpose of fitting the format of something into another thing. From the software

system perspective, a format can be seen as a protocol supported by a hexagonal system.

The support of a protocol is done through the definition of an API that establishes which

technologies are used to communicate with the hexagonal application. We can define APIs

using HTTP-based solutions like RESTful, gRPC, or SOAP. Depending on the use case, we

can explore protocols like FTP for file transfer or SMTP for email delivery.

Hexagonal architecture allows us to support as many technologies as we want in the form

of input adapters. A hexagonal application can be initially designed to provide an input

adapter supporting RESTful requests. A new input adapter supporting gRPC calls can be

quickly introduced as the application matures. Adding new input adapters impacts only the

framework hexagon. The code on the application and domain hexagons are entirely

protected from changes on the framework hexagon. One or more input adapters can be

connected to the same input port, which allows access to the same system functionality

provided by the input port and exposes it through different technologies supported by the

input adapters.

Input adapters are the hexagonal architecture elements that open the door for those

interested in the functionalities offered by the hexagonal application. However, to enable

those functionalities, the hexagonal application needs to get data and access systems

backed by different technologies. Access to those systems is made possible through the

usage of output adapters. Let us explore them next.

Output adapters

Most back-end applications depend on other systems to conduct their activities. Such

dependency can be expressed by the need to access, for example, an external API

responsible for processing payments, a scheduler system that executes tasks in a pre-

determined time, a message broker that allows asynchronous processing, or a relation

database for data persistence. Countless scenarios can be used as dependency examples

for a back-end application. The critical concept here is that every dependency on

something outside the hexagonal application is handled through an output adapter.

Output adapters support the driven side of a hexagonal system. They are direct

implementations of the output ports defined in the application hexagon. Through the

output adapters, we define the code responsible for dealing with whatever technology is

necessary to provide the data or behavior to enable the hexagonal application

functionalities. The system can start persisting data in MySQL databases and evolve

without major refactoring to support Oracle databases. Every new technology supported is

a new output adapter implementing the same output port that expresses which kind of

data, based on the domain hexagon, the hexagonal system requires.

Having covered the fundamental hexagonal architecture ideas, let us see how we can apply

the concepts learned in developing a hexagonal application next. We start by arranging the

domain model in the domain hexagon.

Arranging the domain model

In this section, we implement a note keeper system based on the hexagonal architecture

concepts we explored in the previous section. The note keeper system is a Spring Boot

application that can be accessible in two ways: command line (CLI) and REST API. As the

first step, we must arrange the domain model in the domain hexagon to develop such an

application. Let us create the Note domain entity:

@Builder

@Getter

@ToString

public class Note {

 private Id id;

 private Title title;

 private String content;

 private Instant creationTime;

 private Note(Id id, Title title, String content, Instant creationTime) {

 this.id = id;

 this.title = title;

 this.content = content;

 this.creationTime = creationTime;

 }

 public static Note of(Title title, String content) {

 return new Note(Id.withoutId(), title, content, Instant.now());

 }

 public static Note of(Id id, Title title, String content, Instant

 creationTime) {

 return new Note(id, title, content, creationTime);

 }

}

We use the @Builder, @Getter, and @ToString Lombok annotations to make the code

more concise. Using helper libraries on domain entities can be tolerated, depending on how

pure we want our domain entities to be. In cases where dependency on helper libraries is

unacceptable, we can rely only on the Java standard API. For other, less strict scenarios,

relying on libraries like Lombok can bring benefits without significantly impacting the

architecture.

The static of(Title title, String content) method is used when a new Note entity

needs to be created. We use the static of(Id id, Title title, String content,

Instant creationTime) method to reconstruct an existing Note. You may have noticed

the usage of the Id and Title attributes; these are value objects used to describe the

domain model better. The following code is how the ID value object can be implemented:

public class Id {

 private final UUID uuid;

 private Id(UUID uuid) {

 this.uuid = uuid;

 }

 public static Id withId(String id) {

 return new Id(UUID.fromString(id));

 }

 public static Id withoutId() {

 return new Id(UUID.randomUUID());

 }

 @Override

 public String toString() {

 return uuid.toString();

 }

}

We use the Id class as a wrapper for the Java UUID type. Id objects can only be created by

one of the available static methods withId and withoutId.

The Title is the second value object that can be implemented as follows:

@Getter

public class Title {

 private final String name;

 private static final int MAX_TITLE_CHARACTERS = 120;

 private Title(String name) {

 if (name.length() > MAX_TITLE_CHARACTERS) {

 throw new IllegalArgumentException("Title name exceeds

 maximum character limit "+MAX_TITLE_CHARACTERS);

 }

 this.name = name;

 }

 public static Title of(String name) {

 return new Title(name);

 }

 @Override

 public String toString() {

 return name;

 }

}

A Title value object can only be created through its static of(String name) method.

Using the Title value object also allows us to enforce a constraint through the class’

constructor, preventing the creation of titles that are too long.

The Note entity, the Id, and the Title value objects comprise the domain model provided

by the domain hexagon. As we will see in upcoming sections, the domain hexagon plays a

fundamental role in the hexagonal architecture because the other hexagons, namely

application and framework, depend on it.

Next, let us see how input and output ports are implemented in the application hexagon.

Providing input and output ports

Inside the application hexagon, we can describe the operations that let us store and

retrieve notes in a technology-agnostic way. Let us start by defining the NoteOutputPort

interface:

public interface NoteOutputPort {

 Note persistNote(Note note);

 List<Note> getNotes();

}

The NoteOutputPort interface definition shows that the application hexagon depends on

the domain hexagon by using the Note entity in the persistNote and getNotes methods.

We do not need to know how the system will persist and get Note objects at the application

hexagon level, so we express this through the NoteOutputPort interface.

The next step is to define the NoteUseCase interface:

public interface NoteUseCase {

 void createNote(Title title, String content);

 List<Note> getNotes();

}

Use cases are employed to define the behaviors supported by an application. The note

keeper system allows us to create and see existing notes. These behaviors are expressed

through the createNote and getNotes methods. Based on the NoteUseCase interface, we

can implement NoteInputPort as follows:

@Service

public class NoteInputPort implements NoteUseCase {

 private final NoteOutputPort noteOutputPort;

 public NoteInputPort (NoteOutputPort noteOutputPort) {

 this.noteOutputPort = noteOutputPort;

 }

 @Override

 public void createNote(Title title, String content) {

 var note = Note.of(title, content);

 persistNote(note);

 }

 private void persistNote(Note note) {

 noteOutputPort.persistNote(note);

 }

 @Override

 public List<Note> getNotes() {

 return noteOutputPort.getNotes();

 }

}

We use the @Service annotation to make the NoteInputPort a managed bean object

controlled by the Spring Boot. Note that we are injecting NoteOutputPort as a dependency

on the NoteInputPort constructor. That is when things get interesting because

NoteOutputPort is defined as an interface, which means there may be different interface

implementations enabling us to get the required data to fulfill the operations of the

NoteInputPort. Moving ahead in the code, we implement the createNote method, which

creates a Note object using the title and content attributes. Then, we persist the Note

object using the persistNote method, which relies on the NoteOutputPort. Finally, we

implement the getNotes method, which uses NoteOutputPort to get all stored Notes.

The NoteInputPort is based on its NoteUseCase interface, the NoteOutputPort

abstraction it uses to get data from outside, and the domain model provided by the domain

hexagon. How can we use the NoteInputPort? Let us discover it next when exposing input

and output adapters in the framework hexagon.

Exposing input and output adapters

In the framework hexagon, we can make decisions such as how the system will be

accessed and how data will be stored. We can store data in a file-based H2 database for

the note keeper system. The following code is how we configure the H2 database in the

application.yml file from Spring Boot:

spring:

 datasource:

 url: jdbc:h2:file:./note-h2-db

 username: sa

 password: password

 driverClassName: org.h2.Driver

 jpa:

 database-platform: org.hibernate.dialect.H2Dialect

 hibernate:

 ddl-auto: update

The note-h2-db file is created when the application starts for the first time. The note

keeper data will be persisted in that file. It is worth noting that the usage of the

jpa.hibernate.ddl-auto: update property to ensure the database schema is kept

updated based on the application’s ORM entity definition. Let us explore such an entity

definition by implementing the output adapter of the note keeper system.

Creating the output adapter

We cannot rely on the Note entity class defined by the domain hexagon to persist data into

the database. For that purpose, we need to implement a proper Jakarta entity:

@Builder

@Getter

@AllArgsConstructor

@NoArgsConstructor

@Entity

@Table(name = "note")

public class NoteData {

 @Id

 private String id;

 private String title;

 private String content;

 private Instant creationTime;

}

We use the @Builder, @Getter, @AllArgsConstructor, and @NoArgsConstructor Lombok

annotations to make the code more concise. The NoteData is a Jakarta entity representing

the Note domain entity defined in the domain hexagon. As we have these two different

types of entities, we need a mapper mechanism that lets us convert one entity into

another:

public class NoteMapper {

 public static Note noteDataToDomain(NoteData noteData) {

 return Note.of(

 Id.withId(noteData.getId().toString()),

 Title.of(noteData.getTitle()),

 noteData.getContent(),

 noteData.getCreationTime()

);

 }

 public static NoteData noteDomainToData(Note note) {

 return NoteData.builder().

 id(note.getId().toString()).

 title(note.getTitle().getName()).

 content(note.getContent()).

 creationTime(note.getCreationTime())

 .build();

 }

}

The NoteMapper provides the noteDataToDomain and noteDomainToData helper methods

that produce Note and NoteData objects, respectively. We will use NodeMapper when

implementing the output adapter class later in this section. Before doing so, let us first

define the repository interface to enable us to handle NoteData Jakarta entities:

@Repository

public interface NoteRepository extends CrudRepository<NoteData, String> {

}

The NoteData, NoteMapper, and NoteRepository are the dependencies we need to

implement the NoteH2Adapter:

@Component

public class NoteH2Adapter implements NoteOutputPort {

 private final NoteRepository noteRepository;

 public NoteH2Adapter(NoteRepository noteRepository) {

 this.noteRepository = noteRepository;

 }

 @Override

 public Note persistNote(Note note) {

 var noteData = NoteMapper.noteDomainToData(note);

 var persistedNoteData = noteRepository.save(noteData);

 return NoteMapper.noteDataToDomain(persistedNoteData);

 }

 @Override

 public List<Note> getNotes() {

 var allNoteData = noteRepository.findAll();

 var notes = new ArrayList<Note>();

 allNoteData.forEach(noteData -> {

 var note = NoteMapper.noteDataToDomain(noteData);

 notes.add(note);

 });

 return notes;

 }

}

We use the @Component Spring annotation to make the NoteH2Adapter class a managed

bean controlled by Spring Boot. The NoteH2Adapter implements the NoteOutputPort by

implementing the persistNote and getNotes methods. The persistNote uses the

NoteMapper to convert the Note domain entity to the NoteData Jakarta entity, then saves it

into the database using the NoteRepository. The getNotes also relies on the NoteMapper

to retrieve and convert the NoteData Jakarta entity to the domain entity format.

Such conversions on the output adapter represent the system’s fundamental change-

tolerable capability. NoteH2Adapter is just one way that the system can persist data. Using

output ports and adapters lets us introduce new output adapters with their proper data

conversions whenever necessary.

Now that we have implemented the note keeper system’s output adapter, let us implement

the input adapters.

Creating input adapters

We can handle notes using a CLI interface or a REST API in the note keeper system. We

need to implement two input adapters to allow handling notes in different ways. One for

the CLI interface and another for the REST API. Let us start implementing the

NoteCLIAdapter:

@Component

public class NoteCLIAdapter {

 private final NoteUseCase noteUseCase;

 public NoteCLIAdapter(NoteUseCase noteUseCase) {

 this.noteUseCase = noteUseCase;

 }

 public String createNote(Scanner requestParams) {

 var noteParams = stdinParams(requestParams);

 var title = noteParams.get("title");

 var content = noteParams.get("content");

 noteUseCase.createNote(Title.of(title), content);

 return "Note created with success";

 }

 private Map<String, String> stdinParams(Scanner requestParams) {

 Map<String, String> params = new HashMap<>();

 System.out.println("Provide the note title:");

 var title = requestParams.nextLine();

 params.put("title", title);

 System.out.println("Provide the note content:");

 var content = requestParams.nextLine();

 params.put("content", content);

 return params;

 }

 public void printNotes() {

 noteUseCase.getNotes().forEach(System.out::println);

 }

}

The NoteCLIAdapter relies on the NoteUseCase interface that the NoteInputPort

implements. The input port provides the behaviors the system supports, and an adapter

can trigger them. The createNote method uses the Scanner object to read data from the

user’s keyboard. The user-provided data is captured through the stdinParams method.

Finally, we have the printNotes method, which displays all stored notes.

As an alternative to the NoteCLIAdapter, we implement the NoteRestAdapter:

@RestController

public class NoteRestAdapter {

 private final NoteUseCase noteUseCase;

 @Autowired

 NoteRestAdapter(NoteUseCase noteUseCase) {

 this.noteUseCase = noteUseCase;

 }

 @PostMapping("/note")

 private void addNote(@RequestBody NotePayload notePayload) {

 noteUseCase.createNote(Title.of(notePayload.title()),

 notePayload.content());

 }

 @GetMapping("/notes")

 private List<Note> all() {

 return noteUseCase.getNotes();

 }

}

Relying on the NoteUseCase as well, the NoteRestAdapter provides the HTTP POST /note

endpoint, which lets us create new notes in the system. It also provides the HTTP GET

/notes endpoint, which brings all stored notes.

The NoteCLIAdapter and NoteRestAdapter connect to the NoteInputPort, derived from

the NoteUseCase interface, to provide the same behavior but through different means.

For the NoteCLIAdapter and NoteRestAdapter adapters to function effectively, it is

necessary to configure Spring Boot properly. To enable the system to work in the CLI mode,

we need to implement the NoteKeeperCLIApplication class:

@Component

@ConditionalOnNotWebApplication

public class NoteKeeperCLIApplication implements CommandLineRunner {

 private final NoteCLIAdapter noteCLIAdapter;

 public NoteKeeperCLIApplication(NoteCLIAdapter noteCLIAdapter) {

 this.noteCLIAdapter = noteCLIAdapter;

 }

 @Override

 public void run(String... args) {

 var operation = args[0];

 Scanner scanner = new Scanner(System.in);

 switch (operation) {

 case "createNote" ->noteCLIAdapter.createNote(scanner);

 case "printNotes" -> noteCLIAdapter.printNotes();

 default -> throw new InvalidParameterException("The supported

 operations are: createNote and getNotes");

 }

 }

}

We implement the CommandLineRunner interface from Spring, which enables us to execute

the application in the CLI mode.

The run method utilizes the String varargs parameter to receive data passed as a

parameter to the Java program, enabling it to either create a new note or print stored

notes.

To enable the system to work in the web mode, we need to implement the

NoteKeeperWebApplication class. The code is as follows:

@SpringBootApplication

public class NoteKeeperWebApplication {

 public static void main(String... args) {

 SpringApplication.run(NoteKeeperWebApplication.class, args);

 }

}

The only requirement to make the application run in the web mode is to use the

@SpringBootApplication annotation.

To wrap up, let us see how to compile and run the note keeper system.

Compiling and running the sample project

In this section, we compile and run the note keeper project we have been exploring in the

previous sections.

You can clone the application source code from the GitHub repository at

https://github.com/bpbpublications/Java-Real-World-

Projects/tree/main/Chapter%2014.

You need the JDK 21 or above and Maven 3.8.5 or above installed on your machine.

https://github.com/bpbpublications/Java-Real-World-Projects/tree/main/Chapter%2014

Execute the following command to compile the application:

$ mvn clean package

Maven will create a JAR file. Once we have this file, we can test the application in different

modes, as covered in the following steps.

1. Below is how we can run the application in the CLI mode:

$ java -jar -Dspring.main.web-application-type=NONE target/chapter14-1.0-S

Provide the note title:

My goal for this week

Provide the note content:

I want to finish reading the Java Real World Projects book

The input provided above creates a new note in the system.

2. We can check existing notes with the following command:

$ java -jar -Dspring.main.web-application-type=NONE target/chapter14-1.0-S

Note(id=fec50f2a-afc6-46a2-a200-bc3a13aadc05, title=My goal for this week,

3. By executing the following command, we can start the application in the web mode,

ready to receive HTTP requests:

$ java -jar -Dspring.main.web-application-type=NONE target/chapter14-1.0-S

4. After having the application running in the web mode, the following command lets us

create a new note:

$ curl -X POST localhost:8080/note -H 'Content-type:application/json' -d '

5. The following command is how we check all stored notes:

$ curl -s localhost:8080/notes | jq

[

 {

 "id": {

 "uuid": "fec50f2a-afc6-46a2-a200-bc3a13aadc05"

 },

 "title": {

 "name": "My goal for this week"

 },

 "content": "I want to finish reading the Java Real World Projects book

 "creationTime": "2024-08-11T00:34:14.331301Z"

 },

 {

 "id": {

 "uuid": "f597f688-bd4c-4059-8d6b-997f81150943"

 },

 "title": {

 "name": "My goal for next week"

 },

 "content": "I want to create a Java project to practice my Java skills

 "creationTime": "2024-08-11T00:35:09.966469Z"

 }

]

The output above shows the first note inserted using the application in the CLI mode and

the note inserted when using the application in the web mode.

Conclusion

We reach the end of this book with the exploration of the hexagonal architecture. This

software design technique lets us create change-tolerable applications by decoupling

technology-related code from the code responsible for solving business problems. This final

chapter covered the fundamentals of hexagonal architecture by exploring essential

concepts like the domain hexagon and its role in providing the domain model based on

domain-drive-design techniques. We learned how the hexagon application helps to express

system behaviors in a technology-agnostic way, which gives excellent flexibility by not

coupling the hexagonal system with third-party technologies. We also learned how the

framework hexagon is fundamental in making the system behaviors compatible with

different technologies.

We could apply the ideas shared in this chapter by implementing the note keeper system, a

Spring Boot application structured using hexagonal architecture. This application shows

how to apply concepts like use cases, input and output ports, and input and output

adapters to create an application accessible through a CLI interface and a REST API.

As we conclude this book, the author wants to acknowledge the challenges you have faced

and the knowledge you have gained in our exploration of Java. You have persevered by

exploring the core Java API, the latest Java features, testing techniques, cloud-native

development, observability, and software architecture. The author encourages you to

continue learning, practicing, and overcoming the complexities that are quite often present

in the life of a Java developer.

Join our book’s Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the

world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

Index

A

account registration system 91-93

Arrange-Act-Assert pattern 95

external call, adding to 97, 98

integrating, with MySQL 103-105

testing 93, 94

Alertmanager 258, 271

container, setting up 272, 273

notification channels, defining 273, 274

alerts

triggering, with Alertmanager 271

Amazon Web Services (AWS) 191

Amazon Web Services (AWS) Lambda 158

AOP principles

advice 123

aspect 122

jointpoint 122

application hexagon 328, 329

input ports 330

output ports 330

use cases 329, 330

application metrics

capturing, with Prometheus 258, 259

providing 240

application-scoped bean 144

Arrange-Act-Assert pattern 95

assertions 95

aspect-oriented programming (AOP) 122

B

beans 113

creating, with @Bean annotation 113-116

creating, with Spring stereotype annotations 117

blocking IO

handling, with reactive programming 51-53

bootable JAR 204

of Jakarta EE application 206, 207

of Quarkus application 205, 206

of Spring Boot application 205

bounded contexts 279-281

business rules

defining, with specifications 291-295

C

CallableStament interface

store procedures, calling with 68, 69

checked exceptions 17, 18

Collections API 1

command line interface (CLI) application 126

container-based virtualization 194

Container Runtime Interface (CRI) 200

container technologies 192

Criteria API 84

CRUD application, with Spring Boot

API endpoints, exposing with controller 133, 134

configuring 130, 131

database entity, defining 131

dependencies, setting up 130

HTTP requests, sending 134, 135

implementation 129

repository, creating 131, 132

service, implementing 132, 133

CRUD app, with Quarkus

building 143

database entity, simplifying with Panache 150

data persistence, with Hibernate 148

dependency injection, with Quarkus DI 143

D

database connection

creating, with DataSource interface 62-64

creating, with DriverManager class 61, 62

creating, with JDBC API 60, 61

Data Definition Language (DDL) 60

data layer

account entity and repository, implementing 308

category entity and repository, implementing 306, 307

data handling 305, 306

data persisting 305, 306

Data Manipulation Language (DML) 60

data structures

handling, with collections 2

key-value data structures, creating with maps 9-12

non-duplicate collections, providing with set 6-8

ordered object collections, creating with lists 3-5

Date-Time APIs 24

Instant class 28

LocalDate 24-26

LocalDateTime 26

LocalTime 26

ZoneDateTime 27

dependency injection

with @Autowired 119-122

distributed tracing 222

implementing, with Spring Boot and OpenTelemetry 222, 223

distribution summaries 244

Docker 195

fundamentals 196

Docker-based applications

access, allowing with Service 214-216

application configuration, externalizing 210

application configuration, providing with ConfigMap 210, 211

deploying, on Kubernetes 209

deploying, with Deployment 212-214

kubectl, for installing Kubernetes objects 216, 217

Kubernetes objects, creating 210

Secret, for defining database credentials 211, 212

Docker containers

creating 197, 198

Docker image

creating 207-209

managing 196, 197

domain-driven design (DDD) 277-279

domain hexagon 326, 327

arranging 332-335

entities 327

input adapter, creating 340-342

input and output adapters 337

input and output ports, providing 335-337

output adapter, creating 337-340

specifications 328

testing 295-298

value objects 327

DriverManager class 61

E

EFK stack 233

setting up, with with Docker Composer 233-236

Elasticsearch 232

enterprise information system (EIS) tiers 167

enterprise information system tier 166

Enterprise Java Bean (EJB) 167

enterprise resource planning (ERP) 166

entity 288

identity, expressing with 288-291

entity relationships

defining 74

many-to-many relationship 78-81

many-to-one relationship 76

one-to-many relationship 74-76

one-to-one relationship 76-78

error handling, with exceptions 17

checked exceptions 17, 18

custom exceptions, creating 20, 21

finally block 19

try-with-resources 19, 20

unchecked exceptions 18, 19

event storming 282, 283

event storm session participants

actors 285

aggregates 286

commands 285

domain events 284

domain model 286

event storm session, preparing 283, 284

identifying 283

F

Fluentd 232

framework hexagon 330, 331

input adapters 331, 332

output adapters 332

functional interfaces 28

Consumer 31

Function 29, 30

Predicate 29

Stream 31, 32

Supplier 30

functional programming

with streams and lambdas 28

G

Google Cloud Platform (GCP) 191

GraalVM 159

Grafana dashboard

building 268, 269

creating, with application-generated metrics 268

visualization for download size 271

visualization for file upload duration 270

visualization for number of requests per HTTP method 269, 270

H

hexagonal architecture 324, 325

application hexagon 328, 329

domain hexagon 326

framework hexagon 330

Hibernate 81

configuring 81

for handling database entities 81-83

I

Infrastructure-as-a-Service (IaaS) solution 193

inheritance 38

expectations 39-43

Instant class 28

integration tests 89

implementing, with Testcontainers 105-107

running, with Maven 107-109

intermediate operations 32

Inversion of Control (IoC) 113

J

Jakarta EE 164-167

enterprise application, building with 174, 175

Jakarta EE Core Profile specification 169, 170

Jakarta EE Platform specification 167, 168

Jakarta EE Web Profile specification 168, 169

multitiered applications, designing 165

Jakarta EE project 173, 174

Jakarta EE tiers

business tier 165

client tier 165

web tier 165

Jakarta Persistence

data handling, simplifying with 72, 73

entities, defining 73, 74

entity relationships, defining 74

Jakarta Server Faces (JSF) 165

Jakarta Server Pages (JSP) 165

Java 1

Java 2 Enterprise Edition (J2EE) 164

Java API 1

Java Archive (JAR) 170

Java Collections Framework 2, 3

Java Database Connectivity (JDBC) 59, 60

Java Development Kit (JDK) 159

Java Enterprise Edition (EE) 112

Java platform threads 49, 50

blocking IO operations 50, 51

limitations 50

Java Server Page (JSP) 167

java.util.Set interface 6

Java Virtual Machine (JVM) 27, 49, 158, 159, 208

JPQL

exploring 83

JUnit 5

account registration system 91-93

setting up 90, 91

using, for writing effective unit tests 90

K

Kibana 232

Kubernetes 198, 199

architecture 199

container runtime 200

kube-apiserver 200

kube-controller-manager 200

kubelet 200

kube-proxy 200

kube-scheduler 199

Kubernetes objects

ConfigMap 203, 204

Deployment 201, 202

Pod 201

Secret 203, 204

Service 203

L

lambda expression 29

layered architecture 303, 304

Linux Containers (LXC) 194

lists 3

LocalDate 24

LocalDateTime class 26

local development

approaches 85

with container databases 86

with in-memory databases 85

with remote databases 85

LocalTime class 26

Logging API

for improving application maintenance 21

formats 21-24

levels 21-24

log handlers 21-24

M

managed bean 143

many-to-many relationship 78

many-to-one relationship 76

Maven

tests, executing with 101

Micrometer 241

counters 242, 243

gauges 243

meters 242

registry 241

tags 242

timers 243, 244

MicroProfile 171, 172

Jakarta EE Core Profile specifications 172

specifications 173

MicroProfile project

API, building with Jakarta EE and MicroProfile 183,-186

data source, defining 179, 180

health checks, implementing 186, 187

Jakarta Persistence entity, implementing 180, 181

repository, implementing with EntityManager 181, 182

service class, implementing as Jakarta CDI managed bean 182

setting up 176-178

Mockito 96

external calls, mocking with 98-100

setting up, with JUnit 5 96

monitoring 220, 221

N

native applications

native image 159

writing, with Quarkus 158, 159

native executable

creating, with Quarkus 159, 160

NIO.2 API 13

NIO2, for file manipulation

files and directories, handling 14-16

paths, creating 12-14

using 12

O

object-oriented programming (OOP) 28

Object–Relational Mapping (ORM) 4, 83, 309

technologies 72

observability 221, 222

one-to-many relationship 74

one-to-one relationship 76

P

Panache

database entity handling, simplifying with 150

with active record pattern 152, 153

with repository pattern 151, 152

paravirtualization 193, 194

pattern matching 44

for record 48, 49

for switch statement 46, 47

for type 45, 46

Plain Old Java Objects (POJO) 327

pointcut

jointpoint 123

PrepapredStatement interface

parameterized queries, executing with 67, 68

presentation layer 304, 305

account endpoint, implementing 320, 321

application behaviors, exposing 315

category endpoint, implementing 319, 320

transaction endpoint, implementing 316-318

Prometheus 258

alerting rule, defining 273

architecture 259

configuring 261-264

configuring, as Grafana data source 267

downloading 261

installing 261

integrating, with Grafana 266, 267

metrics consumers 260

metrics exporters 260

server 260

setting up 261

PromQL

exploring 264-266

Q

Quarkus

benefits 138, 139

Quarkus project

bootstrapping 139-143

database entities, handling with EntityManager 149, 150

database support, enabling 148, 149

Quarkus REST

API implementation with 153-158

R

Remote File Converter 57

request-scoped beans 146-148

ResultSet object

results, processing with 69-72

S

service layer

account service, implementing 314, 315

business rules, defining 309

category service, implementing 312-314

transaction service, implementing 309-312

simple distributed system

building 223

Collector, setting up 230, 231

dependencies, configuring 223-226

Docker Compose, setting up 230

inventory service, implementing 226-228

Jaeger, setting up 230

report service, implementing 228-230

singleton beans 145, 146

software architecture 302, 303

software development 2

Spring 112

fundamentals 112

Spring AOP

using 123-125

Spring Boot Maven project, with Micrometer

configuration 246, 247

controller class, implementing 252-254

File entity, implementing 247, 248

File metrics, implementing 248-250

File repository, implementing 248

File service, implementing 250, 251

metrics, enabling on file storage system 247

setting up 245, 246

Spring Boot project 113

bootstrapping 126

creating, with Spring Initializr 126-129

Spring Boot with Micrometer

for implementing metrics 244

Spring context

for managing beans 113

Spring Core project 113

Spring stereotype annotations

@Component annotation 117

@Repository annotation 117

@Service annotation 117

using 117-119

Statement interface

simple queries, executing 64-67

Stream interface 31, 32

intermediate operation 33

stream source 32

terminal operation 34

stream source 32

Structured Query Language (SQL) syntax 60

T

terminal operation 32

Testcontainers

reliable integration tests, implementing with 102

setting up 102

thread 49

Title value objects 335

U

ubiquitous language 281, 282

unchecked exceptions 18, 19

unit tests 88, 89

V

value objects 287, 288

virtualization 192

container-based virtualization 194, 195

full virtualization 193

paravirtualization 193, 194

virtual threads 49

simple concurrent code, writing 53-57

W

Web Archive (WAR) 171

Y

Yet Another Markup Language (YAML) 200

Z

ZoneDateTime class 27

	Cover
	Title Page
	Copyright Page
	Dedication Page
	About the Author
	About the Reviewers
	Acknowledgement
	Preface
	Table of Contents
	1. Revisiting the Java API
	Introduction
	Structure
	Objectives
	Handling data structures with collections
	Creating ordered object collections with lists
	Providing non-duplicate collections with a set
	Using maps to create key-value data structures

	Using the NIO2 to manipulate files
	Creating paths
	Handling files and directories

	Error handling with exceptions
	Checked exceptions
	Unchecked exceptions
	Final block and try-with-resources
	Creating custom exceptions

	Improving application maintenance with the Logging API
	Log handlers, levels, and formats

	Exploring the Date-Time APIs
	LocalDate
	LocalTime
	LocalDateTime
	ZoneDateTime
	Instant

	Functional programming with streams and lambdas
	Functional interfaces and lambda expressions
	Predicates
	Functions
	Suppliers
	Consumers

	Streams
	Sourcing streams
	Intermediate operation
	Terminal operation

	Compiling and running the sample project
	Conclusion

	2. Exploring Modern Java Features
	Introduction
	Structure
	Objectives
	Getting more control over inheritance with sealed classes
	Enforcing inheritance expectations

	Increasing code readability with pattern matching
	Introduction to pattern matching
	Pattern matching for type
	Pattern matching for switch statement
	Pattern matching for record

	Increasing application throughput with virtual threads
	Understanding Java platform threads
	Limitations of platform threads
	Platform threads and blocking IO operations
	Handling blocking IO with reactive programming
	Writing simple concurrent code with virtual threads

	Compiling and running the sample project
	Conclusion

	3. Handling Relational Databases with Java
	Introduction
	Structure
	Objectives
	Introduction to JDBC
	Creating a database connection with the JDBC API
	Getting a database connection with the DriverManager class
	Getting a database connection with the DataSource interface

	Executing simple queries with the Statement
	Executing parameterized queries with the PreparedStatement
	Calling store procedures with the CallableStatement
	Processing results with the ResultSet

	Simplifying data handling with the Jakarta Persistence
	Defining entities
	Defining entity relationships
	OneToMany
	ManyToOne
	OneToOne
	ManyToMany

	Using Hibernate to handle database entities
	Exploring JPQL and the Criteria API

	Exploring local development approaches when using databases
	Local development with a remote databases
	Local development with in-memory databases
	Local development with container databases

	Compiling and running the sample project
	Conclusion

	4. Preventing Unexpected Behaviors with Tests
	Introduction
	Structure
	Objectives
	Overviewing unit and integration tests
	Unit tests
	Integration tests

	Using JUnit 5 to write effective unit tests
	Setting up JUnit 5
	Introducing the account registration system
	Testing the account registration system
	The Arrange-Act-Assert pattern
	Assertions
	When to use Mockito
	Setting up Mockito with JUnit 5
	Adding an external call to the account registration system
	Mocking external calls with Mockito

	Executing tests with Maven

	Implementing reliable integration tests with Testcontainers
	Setting up Testcontainers
	Integrating the account registration system with MySQL
	Implementing an integration test with Testcontainers
	Running integration tests with Maven

	Compiling and running the sample project
	Conclusion

	5. Building Production-Grade Systems with Spring Boot
	Introduction
	Structure
	Objectives
	Learning Spring fundamentals
	Using the Spring context to manage beans
	Creating beans with the @Bean annotation
	Creating beans with Spring stereotype annotations
	The @Component annotation
	The @Service annotation
	The @Repository annotation
	Using stereotype annotations

	Injecting dependencies with @Autowired
	Providing new application behaviors with aspects
	Aspect
	Jointpoint
	Advice
	Pointcut
	Using the Spring AOP

	Bootstrapping a new Spring Boot project
	Creating a Spring Boot project with Spring Initializr

	Implementing a CRUD application with Spring Boot
	Setting up dependencies
	Configuring the Spring Boot application
	Defining a database entity
	Creating a repository
	Implementing a service
	Exposing API endpoints with a controller
	Sending HTTP requests to the Spring Boot application

	Compiling and running the sample project
	Conclusion

	6. Improving Developer Experience with Quarkus
	Introduction
	Structure
	Objectives
	Assessing Quarkus benefits
	Kickstarting a new Quarkus project
	Building a CRUD app with Quakus
	Injecting dependencies with Quarkus DI
	Managed beans
	Application-scoped beans
	Singleton beans
	Request-scoped beans

	Persisting data with Hibernate
	Setting up Quarkus to work with databases
	Handling database entities with EntityManager

	Simplifying database entity handling with Panache
	Panache with repository pattern
	Panache with active record pattern

	Implementing an API with Quarkus REST

	Writing native applications
	Introducing the native image
	Creating a native executable with Quarkus

	Compiling and running the sample project
	Conclusion

	7. Building Enterprise Applications with Jakarta EE and MicroProfile
	Introduction
	Structure
	Objectives
	Overviewing Jarkarta EE
	Designing multitiered applications
	Client tier
	Web tier
	Business tier
	Enterprise information system tier

	Exploring Jakarta EE specifications
	Jakarta EE Platform specification
	Jakarta EE Web Profile specification
	Jakarta EE Core Profile specification

	Packing, deploying, and running Jakarta EE applications
	Java Archive
	Web Archive
	Enterprise Archive

	Introducing MicroProfile
	Exploring MicroProfile specifications
	Jakarta EE Core Profile specifications
	MicroProfile specifications

	Starting a new Jakarta EE project
	Building an enterprise application with Jakarta EE
	Adding microservices and cloud-native support with MicroProfile
	Setting up the project
	Defining a data source
	Implementing a Jakarta Persistence entity
	Implementing a repository with the EntityManager
	Implementing a service class as a Jakarta CDI managed bean
	Building API with Jakarta EE and MicroProfile
	Using MicroProfile Health to implement health checks

	Compiling and running the sample project
	Conclusion

	8. Running Your Application in Cloud-Native Environments
	Introduction
	Structure
	Objectives
	Understanding container technologies
	Introducing virtualization
	Full virtualization
	Paravirtualization
	Container-based virtualization

	Exploring Docker
	Learning Docker fundamentals
	Managing Docker images
	Creating Docker containers

	Introducing Kubernetes
	Kubernetes architecture
	kube-scheduler
	kube-apiserver
	kube-controller-manager
	Container runtime
	kubelet
	kube-proxy

	Kubernetes objects
	Pod
	Deployment
	Service
	ConfigMap and Secret

	Dockerizing a Spring Boot, Quarkus, and Jakarta EE application
	Creating a bootable JAR of a Spring Boot application
	Creating a bootable JAR of a Quarkus application
	Creating a bootable JAR of a Jakarta EE application
	Creating the Docker image

	Deploying Docker-based applications on Kubernetes
	Externalizing application configuration
	Creating Kubernetes objects
	Providing application configuration with a ConfigMap
	Using a Secret to define database credentials
	Deploying the application with a Deployment
	Allowing access to the application with a Service
	Using kubectl to install Kubernets objects

	Compiling and running the sample project
	Conclusion

	9. Learning Monitoring and Observability Fundamentals
	Introduction
	Structure
	Objectives
	Understanding monitoring and observability
	Monitoring
	Observability

	Implementing distributed tracing with Spring Boot and OpenTelemetry
	Building a simple distributed system
	Configuring dependencies
	Implementing the inventory service
	Implementing the report service
	Setting up Docker Compose, Jaeger, and Collector

	Handling logs with Elasticsearch, Fluentd, and Kibana
	Fluentd
	Elasticsearch
	Kibana
	Setting up EFK stack with Docker Composer

	Compiling and running the sample project
	Conclusion

	10. Implementing Application Metrics with Micrometer
	Introduction
	Structure
	Objectives
	Providing application metrics
	Introducing Micrometer
	Registry
	Meters and tags
	Counters
	Gauges
	Timers
	Distribution summaries

	Using Micrometer and Spring Boot to implement metrics
	Setting up the Maven project
	Configuring Spring Boot and Micrometer
	Enabling metrics on the file storage system
	Implementing the File entity
	Implementing the File repository
	Implementing the File metrics
	Implementing the File service
	Implementing the Controller class

	Compiling and running the sample project
	Conclusion

	11. Creating Useful Dashboards with Prometheus and Grafana
	Introduction
	Structure
	Objectives
	Capturing application metrics with Prometheus
	Learning the Prometheus architecture
	Metrics exporters
	Prometheus server
	Metrics consumers

	Getting Prometheus up and running
	Downloading and installing Prometheus
	Configuring Prometheus
	Exploring the PromQL

	Integrating Prometheus with Grafana
	Configuring Prometheus as a Grafana data source

	Creating Grafana dashboards with application-generated metrics
	Building a Grafana dashboard
	Visualization for the number of requests per HTTP method
	Visualization for the file upload duration
	Visualization for the download size

	Triggering alerts with Alertmanager
	Setting up the Alertmanager container
	Defining Prometheus alerting rule
	Defining Alertmanager notification channels

	Compiling and running the sample project
	Conclusion

	12. Solving problems with Domain-driven Design
	Introduction
	Structure
	Objectives
	Introducing domain-driven design
	Bounded contexts
	Ubiquitous language
	Event storming
	Identifying event storm session participants
	Preparing the event storm session
	Domain events
	Commands
	Actors
	Aggregates

	The domain model

	Conveying meaning with value objects
	Expressing identity with entities
	Defining business rules with specifications
	Testing the domain model
	Compiling and running the sample project
	Conclusion

	13. Fast Application Development with Layered Architecture
	Introduction
	Structure
	Objectives
	Importance of software architecture
	Understanding layered architecture
	A layer knows only the next layer
	A layer can know other layers

	Handling and persisting data in the data layer
	Implementing the category entity and repository
	Implementing the account entity and repository

	Defining business rules in the service layer
	Implementing the transaction service
	Implementing the category service
	Implementing the account service

	Exposing application behaviors in the presentation layer
	Implementing the transaction endpoint
	Implementing the category endpoint
	Implementing the account endpoint

	Compiling and running the sample project
	Conclusion

	14. Building Applications with Hexagonal Architecture
	Introduction
	Structure
	Objectives
	Introducing hexagonal architecture
	The domain hexagon
	Entities
	Value objects
	Specifications

	The application hexagon
	Use cases
	Input ports
	Output ports

	The framework hexagon
	Input adapters
	Output adapters

	Arranging the domain model
	Providing input and output ports
	Exposing input and output adapters
	Creating the output adapter
	Creating input adapters

	Compiling and running the sample project
	Conclusion

	Index

