

Cruising Along with Java

Modernize and Modularize with the
Latest Features

by Venkat Subramaniam

Version: P1.0 (April 2025)

Copyright © 2025 The Pragmatic Programmers, LLC.
This book is licensed to
the individual who
purchased it. We don't copy-protect it
because that would limit your ability to use it for your
own
purposes. Please don't break this trust—you can use
this across all of your devices but please do not
share this copy
with other members of your team, with friends, or via
file sharing services. Thanks.

Many of the designations used by manufacturers and
sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book,
and The Pragmatic Programmers, LLC was
aware of a
trademark claim, the designations have been printed in
initial capital letters or in all capitals.
The Pragmatic
Starter Kit, The Pragmatic Programmer, Pragmatic
Programming, Pragmatic Bookshelf
and the linking g
device are trademarks of The Pragmatic Programmers,
LLC.

Every precaution was taken in the preparation of this book.
However, the publisher assumes no
responsibility for errors
or omissions, or for damages that may result from the use
of information
(including program listings) contained
herein.

About the Pragmatic Bookshelf
The Pragmatic Bookshelf is an agile publishing company.
We’re here because we want to improve the
lives of developers.
We do this by creating timely, practical titles, written by programmers for
programmers.

Our Pragmatic courses, workshops, and other products can
help you and your team create better
software and have more
fun. For more information, as well as the latest Pragmatic
titles, please visit us
at http://pragprog.com.

Our ebooks do not contain any Digital Restrictions
Management, and have always been DRM-free. We
pioneered the
beta book concept, where you can purchase and read a book
while it’s still being written,
and provide feedback to the
author to help make a better book for everyone. Free
resources for all
purchasers include source code downloads
(if applicable), errata and discussion forums, all
available on
the book's home page at pragprog.com. We’re
here to make your life easier.

New Book Announcements
Want to keep up on our latest titles and announcements, and
occasional special offers? Just create an
account on
pragprog.com (an email address and a password is all it takes)
and select the checkbox to
receive newsletters. You can
also follow us on twitter as @pragprog.

About Ebook Formats

If you buy directly from
pragprog.com, you get
ebooks in all available formats for one price. You can
synch your ebooks amongst all your devices (including
iPhone/iPad, Android, laptops, etc.) via
Dropbox.
You get free updates for the life of the edition. And, of
course, you can always come back and
re-download your books
when needed. Ebooks bought from the Amazon Kindle store are
subject to
Amazon's polices. Limitations in Amazon's file
format may cause ebooks to display differently on
different
devices. For more information, please see our FAQ at
pragprog.com/#about-ebooks. To learn
more about this book and access the free resources, go to
https://pragprog.com/book/vscajava, the
book's homepage.

Thanks for your continued support,

The Pragmatic Bookshelf

The team that produced this book includes: Dave Thomas (Publisher), Janet Furlow (COO),
Susannah Davidson (Executive Editor), Jacquelyn Carter (Development Editor),
Corina Lebegioara (Copy Editor), Potomac Indexing, LLC (Indexing), Gilson Graphics (Layout)

For customer support, please contact
support@pragprog.com.

For international rights, please contact
rights@pragprog.com.

http://pragprog.com/
https://pragprog.com/
https://pragprog.com/
https://pragprog.com/support/#about-ebooks
https://pragprog.com/book/vscajava
mailto:support@pragprog.com
mailto:rights@pragprog.com

Table of Contents

 Acknowledgments

 Preface
 What’s in This Book?
 Who’s This Book For?
 Java Version Used in This Book
 How to Read the Code Examples
 Online Resources

1. The Evolution of Java
 Java Is Agile
 Fast-Paced Change
 Recent Changes to Java
 Moving Ahead from an LTS
 Cruising Along with Java

Part I. Syntax Sugar

2. Using Type Inference
 Type Inference and Java
 Generics and Type Witness
 Diamond Operator Enhancements
 Lambda Expressions Parameters Type Inference
 Local Variable Type Inference
 Using Type Inference with for and try
 var: Not a Type nor a Keyword
 Targeted Intersection Types
 Extent of Type Inference

 Mind the Inference
 Wrapping Up

3. Reducing Clutter with Text Blocks
 From Noisy to Nice
 Embedding Strings
 Smart Indentations
 Trailing Spaces and Special Escapes
 Creating XML Documents Using Text Blocks
 Creating JSON Output Using Text Blocks
 Wrapping Up

Part II. Design Aid

4. Programming with Records
 From Verbose to Succinct
 Components, Fields, Getters, and Metadata
 Extent of Immutability
 Built-in Methods
 Implementing Interfaces
 Restrictions for the Greater Good
 Considering a Custom Canonical Constructor?
 Preferring the Compact Constructor
 Creating a Custom Noncanonical Constructor
 (Local) Records as Tuples
 Wrapping Up

5. Designing with Sealed Classes and Interfaces
 Need for a Closed Hierarchy
 Using sealed
 Sealed Related Metadata
 Using the permits Clause
 Constraints on the Subclasses
 Wrapping Up

Part III. Fluent Expressions

6. Switching to Switch Expression
 From Statements to Expressions
 Using Multiple Labels in a Case
 Cases with Non-expressions
 Completeness of a switch Expression
 Wrapping Up

7. Using Powerful Pattern Matching
 Pattern Matching with instanceof
 Using Type Matching
 Matching null
 Guarded Patterns
 Dominance Check
 Completeness Check
 Completeness Check and Sealed Classes/Interfaces
 Deciding to Use default or Not
 Pattern Matching Primitive Types
 Destructuring Records When Pattern Matching
 Type Inference with Destructuring Records
 Unnamed Variables in Pattern Matching
 Wrapping Up

Part IV. Modularization

8. Modularizing Your Java Applications
 Maven, Gradle, and Modularization
 Modules and the Benefits of Modularization
 Modularized Java
 Starting with a Legacy Application
 Perils of the Existing Design

 Modularizing the Space Station Application
 Architectural Constraints Promoted by Modules
 Wrapping Up

9. Working with Modules
 Exploring the Module Metadata
 Defining APIs in a Modular Way
 Targeted Linking Using jlink
 Wrapping Up

10. Creating Plug-ins with ServiceLoader
 The Plug-in Architecture
 Defining a Specification Module
 Creating a Client Module
 Implementing a Plug-in
 Implementing Additional Plug-ins
 Reloading the Implementations
 Functional Style Iteration
 Wrapping Up

Part V. Custom Functional Pipeline Steps

11. Extending Functional Pipelines with Gatherers
 Why Do We Need Gatherers?
 Creating Custom Steps Using the gather() Method
 Using Built-in Gatherers
 Wrapping Up

12. Creating Custom Gatherers
 The Machinery Behind the gather() Method
 Flavors of Gatherers
 Creating Sequential Stateless Gatherers
 Creating Sequential Stateful Gatherers
 Creating Parallelizable Stateless Gatherers
 Creating Parallelizable Stateful Gatherers

 Wrapping Up

 Bibliography

Copyright © 2025, The Pragmatic Bookshelf.

Early Praise for Cruising Along
with Java
I love talks from Venkat. You think you might know some basics about a
given topic, then he appears on stage, no shoes, no slides, and you learn
something completely new and cool that you couldn’t even imagine before.
Every single time. This book gives you the same experience. If you enjoy
Venkat’s talks, you should definitely read this book.

→ Jonatan Ivanov
Software Engineer, Spring Team

Java has come a long way over the last thirty years and it can be
overwhelming to keep up with all the changes. Once again, Venkat cuts
through the confusion providing an invaluable resource for those looking
for a clear and concise guide to Java’s evolution. Whether you’re new to the
language or you’ve used it for years, this book will help you, your team,
and your applications.

→ Nathaniel Schutta
Technical Director, Thoughtworks

The development of the Java language is presented in an easy-to-read
fashion with enough details that anyone can start experimenting with the
new concepts.

→ Isak Renström
System Developer

As the industry is seeing a monumental breakaway from Java 8,
understanding the features introduced from JDK 9 to JDK 24 is crucial.
Venkat explains new syntactical enhancements, introduces type constructs,

describes the importance of modularity, and encourages us to appreciate
what’s up and coming. If you are serious about Java and want to modernize
your codebase, this book is a necessary addition to your shelf.

→ Daniel Hinojosa
Developer/Presenter/Instructor

This is an excellent book for any Java developer wanting to catch up on the
evolution and latest enhancements of Java. The many easy-to-understand
examples will make adoption of these new features a breeze for any
developer or team.

→ Jack Frosch

Acknowledgments

The saying "It takes a village..." applies to writing books as much as it does
to raising kids. So many generously gave their time to help make this book,
and I am forever sincerely thankful to each one of them.

My first thanks go to the hard-working members of the Java team, for their
tireless effort to improve the language in such a meaningful way.

I was truly blessed with highly knowledgeable reviewers who took the time
to go through multiple drafts of this book. Many thanks to Jim Bethancourt,
Don Bogardus,
Alex Buckley,
Jack Frosch,	Daniel Hinojosa,
Jonatan
Ivanov,
Viktor Klang,
Isak Renström,
Brian Sletten,
and
Erik Weibust
for
their attention to detail, suggestions, corrections, and constructive
criticisms.

I am truly humbled and highly inspired by Alex Buckley’s passion and
genuine interest in helping me get the concepts right. He literally spent
hours both on Zoom calls and over email reviewing multiple times and
guiding me along. The words "thank you" are simply not adequate to
express my gratitude, Alex.

When I learned that Viktor Klang was involved in the implementation of
the Gatherers, I was keenly interested in the topic. I have admired his
technical acumen over several years, and I knew this was going to be quite
an interesting and useful feature. This book gave me an opportunity to learn
and appreciate him even further for his thorough review of the Gatherers

chapters, providing valuable insights and feedback. Thank you very much,
Viktor.

If you have ever heard me talk about writing, you would certainly have
heard me praise my editor Jackie Carter. The only thing that surpasses her
ability to guide is her patience. It amazes me how she spends so much time
and effort to take initial ideas and help shape them. I appreciate her prowess
and am privileged to be able to continue to work with her.

To say that the most amazing folks at The Pragmatic Bookshelf were very
understanding and accommodating in giving me the extended time I needed
for development due to the nature of this book is a gross understatement.
By their actions, not mere words, they reminded me again why I so much
enjoy working with them to publish my books.

The idea to write this book came when I was on a hike in the mountains of
Colorado. I thank my wife, Kavitha, for being a continuous source of
encouragement and support ever since hearing about this on that hike.

I thank those who have read the earlier drafts of this book and provided
feedback and words of encouragement along the way. Thank you for your
patience while watching this book evolve.

Copyright © 2025, The Pragmatic Bookshelf.

Preface

Do you have a new-found love for Java? If so, you’re not alone. I once
complained that Java was stagnant and its days were over. The team behind
Java proved the naysayers like me wrong in the most brilliant way—by
making Java a highly vibrant language.

Truly, the first time I did a double take at Java was when the language
introduced the functional programming ability in version 8. I even wrote a
book about it: Functional Programming in Java, Second Edition [Sub23].
Every release since then has only gotten better, more interesting, and more
exciting. And those who know me also know that I can’t keep my
excitement quiet. The result—the book you’re reading.

A number of my clients were eager to get trained on modularizing Java.
They were keen to learn about the developments in the language, how to
make good use of records, the concept of sealed classes, the benefits of
pattern matching, and so on. Ongoing discussions and the continuous
demand for such content prompted me to invest my time and effort to write
in detail about the amazing capabilities of Java from version 9 onward.

Thank you for reading this book. Get ready to dive deep into the features
that were recently added to the Java language.

What’s in This Book?
In Chapter 1, ​The Evolution of Java​, we start with a quick introduction.
Then, we’ll group the changes in Java into these categories:

Syntax Sugar: Some of the features can be classified as syntax sugar;
type Inference and text blocks make us productive but have no
footprint in the bytecode. These are purely compiler-level features and
don’t permeate into the JVM ecosystem. These are covered in Chapter
2, ​Using Type Inference​, and Chapter 3, ​Reducing Clutter with Text
Blocks​.

Design Aid: Features such as records and sealed classes/interfaces help
us with designing better object-oriented code. We’ll see in Chapter 4, ​
Programming with Records​, how records can help to better model data
and in Chapter 5, ​Designing with Sealed Classes and Interfaces​, how
sealed classes can be used to better model and manage inheritance
hierarchies.

Fluent Expressions: No one wants to write verbose code, and no one
ever enjoys maintaining them. Java has upped a notch in fluency, and
we can write highly expressive code that’s less error-prone using switch
as an expression—see Chapter 6, ​Switching to Switch Expression​. We
can take it further and benefit from Pattern Matching, as you’ll see in
Chapter 7, ​Using Powerful Pattern Matching​.

Modularization: The JDK has been finally split into manageable pieces
and we can benefit from the same techniques used in Java to
modularize our own applications. In Chapter 8, ​Modularizing Your
Java Applications​, we’ll discuss the need to modularize and the steps
to take. In Chapter 9, ​Working with Modules​, we’ll look at the practical
considerations of working with multiple modules. Then, in Chapter 10,
​Creating Plug-ins with ServiceLoader​, we’ll see how to use the

powerful ServiceLoader to dynamically discover implementations when
creating plug-ins.

Custom Functional Pipeline Steps: The functional programming
capability of Java has a significant enhancement with the gatherers
facility. In Chapter 11, ​Extending Functional Pipelines with Gatherers​,
we’ll take a look at the intent of gatherers and how to make use of the
built-in gatherers in the JDK. In Chapter 12, ​Creating Custom
Gatherers​, you’ll learn how to create your own custom steps in a
functional pipeline using the Gatherer interface.

Who’s This Book For?
This book is for you if you develop applications with Java and want to stay
abreast of changes in the language. This book assumes you’re familiar with
programming in general and with both object-oriented programming (OOP)
and functional programming concepts possible in Java since version 8.

You’ll benefit the most from this book if you’re a programmer using the
Java language on a daily basis, a team lead, a hands-on architect, or a
technical manager. As a senior developer or an architect, this book will help
you consider and decide features that may be the most useful for the
applications you’re in charge of designing.

In addition to learning the concepts you can directly use for your enterprise
applications, you can also use this book to train your team members with
the latest features of the Java language.

Java Version Used in This Book
The different features you’ll learn in this book were introduced over time in
different versions of Java from Java 9 onward. To be able to execute all the
code in this book, you’ll need at least Java 24.

Take a few minutes to download the appropriate build of the JDK for your
machine and operating system. This will help you follow along with the
examples in this book.

How to Read the Code Examples
When writing code in Java, we place classes in packages and executable
statements and expressions in methods. To reduce clutter, we’ll skip the
package names and imports in the code listings. All code in this book,
except where explicitly stated, has been placed in a package using the
statement:

​ ​package​ ​vsca​;

In case you’re wondering, the package name vsca is based on the code name
we use for this book’s repository and isn’t related to any tool, product, or
company.

Any executable code not listed within a method is part of an undisplayed
main() method. When going through the code listings, if you have an urge to
look at the full source code, remember it’s only a click away at the website
for this book.

[1]

Online Resources
You can download all the source code examples from this book’s page[1] at
the Pragmatic Bookshelf website. You can also provide feedback there by
submitting errata entries or posting your comments and questions in the
forum. If you’re reading the book in PDF form, you can click on the link
above a code listing to view or download the specific examples.

Now let’s dive into the exciting features of the recent versions of Java.

Venkat Subramaniam
April 2025

Footnotes

http://www.pragprog.com/titles/vscajava

Copyright © 2025, The Pragmatic Bookshelf.

http://www.pragprog.com/titles/vscajava

Chapter
1

The Evolution of Java

Java is evolving fast. There is a new release of the language every six
months. Ever since the introduction of the functional programming
capabilities in Java 8, countless new features have been added. This book
walks you through the most significant language changes after Java 8, from
Java 9 through Java 24.

Java started out as an object-oriented programming language mixed with
the imperative style of programming. Then the functional programming
capabilities were added. Many developers have embraced the hybrid
capabilities of the language to write code using a combination of the
imperative style, the functional style, and the object-oriented paradigm.

Even though Java has pretty good OOP and functional programming
support, the folks behind the language haven’t been complacent. They’ve
invested enormous time and effort to keep the language contemporary. But
they don’t achieve that by adding a random set of features into the language
based on impulse, market pressure, or infatuation. They’ve been thorough
in evaluating and setting the direction for the language. When considering
features to add, they ask three significant questions:

Is a feature useful for Java programmers creating enterprise and
complex applications?

Is it feasible to implement a feature without significantly
compromising backward compatibility?

Is it possible to implement a feature in a way that doesn’t hinder future
enhancements?

We see the results of those efforts in the steady improvements to the
language over the past few years.

Java Is Agile
It’s truly refreshing to see agile development in action instead of just
hearing people talk about it. When the Java team announced the newer
versions of the language would be released every six months—in March
and September of each year—it was received with a huge amount of
skepticism. Change is hard in spite of how much better the results might be.
But that release cycle has been one of the most significant and bold
decisions to which the team has stayed committed and on track.

In the past, the team wanted to release a new version of Java every two
years. They would announce plans for what would be in the release.
Developers of the language would put their sincere and hard efforts behind
those planned features. And, when the time came to release, it wasn’t
uncommon to hear what each one of us had said many times to our
managers: “we’re almost done.” That “almost done” generally means “a
few years later” in human timeline terms. To finalize the plan before we
know the details is waterfall-like, which is how things were done before
Java 9.

Agile development is feedback-driven development and, in essence, is
guided by adaptive planning.

That’s exactly what Java development is now.

Fast-Paced Change
Java is being released every six months, but Java is not being developed on
a six-months timeline. It’s naive to think that most complex features that
have a huge impact on well over ten million developers and tens of
thousands of enterprises can be developed from start to finish in six months.
One of the biggest innovations behind Java is the realization that the
timelines for different features don’t have to be tied together into an
arbitrary release.

There’s a release train departing every six months. A feature can get on any
release as soon as it’s ready. What’s in a release isn’t set in stone. The plan
is flexible and based on reality. The details of the features are also not
committed in one shot. The features are released in preview mode and then
altered based on feedback from the community at large.

The frequent release cycles benefit the team behind the language, the
developers, and the companies who make use of Java.

The developers behind the Java language are able to innovate at a faster rate
thanks to the frequent release cycle. They’re able to release in increments,
get feedback, make changes, see their work being actively used, and move
forward to build newer features. They say there’s nothing more motivating
than seeing their hard work benefiting the users right away.

For the users of the language, the enterprises, and the programmers building
their applications, the changes now come in bite-size. They’re able to use
newer features much sooner rather than waiting to receive a large release
once every five or so years. It’s easier and more efficient to learn and use
one feature every six months than six features every five years. Unlike in
the past, Java developers don’t feel like they’re left behind on the language
innovation curve working with a stagnant language. They’re developing on
a powerful and at the same time vibrant platform.

Recent Changes to Java
Adaptive planning and feedback driven, that’s what Java is today and it’s
rocking. Here are the recent and exciting additions to the language—the
features you’ll learn about in this book—corresponding to the Java
versions[2] they were finalized in.

Java 8, 11, 17, and 21 are designated as Long Term Support (LTS)[3]

releases. Oracle provides premier support and periodic updates to customers
who are using an LTS version. The original plan was to designate a release
every three years as LTS, but that plan changed to making an LTS release
every two years. Even though not all the releases of Java are LTS releases,
every single one of the is developed and released with equal quality and
attention to detail.

Most of the features you see in the previous figure were developed as part
of incubator projects, like Project Amber,[4] which were used to explore and
experiment with the design and implementation of ideas that were proposed
as part of the JDK Enhancement-Proposal & Roadmap Process (JEP). Once
a feature is introduced into Java, it goes through at least two rounds of
preview before it’s accepted as an official part of the platform. This is an
amazing display of standardization after innovation.

Moving Ahead from an LTS
The ability to upgrade every six months is superb, but that doesn’t
automatically result in frequent and continuous upgrades for a vast number
of companies. Different organizations are at different stages of adoption of
newer versions of Java. The lag is often no fault of the developers but the
result of various constraints. For instance, the dependencies on third-party
libraries and frameworks sometimes place limitations on upgrading. Also,
the environments where their applications are deployed may place some
restrictions. Some enterprises also place strict restrictions on upgrading past
the versions of Java that are designated as LTS so they can reliably receive
security and other updates periodically.

Depending on the company and the products that you’re working on, you
may have experience with one of the LTS versions and may be eager to
move forward from it. This book was created for you, to take you from
where you’re comfortable and most experienced to where you can tap into
the full potential of the language as your applications journey along the
newer versions of Java.

[2]

[3]

[4]

Cruising Along with Java
We discussed the reasons for the strategic change in the release cycle of
Java and the initiatives and efforts behind the recent versions. Java has
evolved into a true story of successful agile development. The frequent and
continuous release cycle benefits both the development of the language and
the users of the language. Overall, the new features of Java are intended to
improve productivity, application security, and our capabilities to more
effectively design and implement our applications.

In this book we’ll dive deep into each of the significant features that have
been recently added.

Some features like type inference and text blocks are useful to make your
code concise. Other features like records and sealed classes help to create
and implement better object-oriented (OO) design. You can use features like
pattern matching to reduce error and at the same time make the code more
expressive.

You can manage complexity, improve security, and clearly deal with
dependencies by using the modularization capability. There’s a lot to dig
into, and I’m sure you’re eager to get rolling.

Make sure you have Java 24 or newer installed, warm up your IDE, and
let’s dive into the newer features.

Footnotes

https://en.wikipedia.org/wiki/Java_version_history

https://www.oracle.com/java/technologies/java-se-support-roadmap.html

https://openjdk.org/projects/amber/

Copyright © 2025, The Pragmatic Bookshelf.

https://en.wikipedia.org/wiki/Java_version_history
https://www.oracle.com/java/technologies/java-se-support-roadmap.html
https://openjdk.org/projects/amber/

Part 1

Syntax Sugar

A few features in Java make the programmers productive but
don’t have a direct bytecode representation. They don’t
impact runtime performance in any way. They’re purely
Java language facilities and, unlike most other features,

aren’t available at the JVM level for other languages to use
or interoperate with.

In this part we’ll look at how we can benefit from type
inference. Then we’ll see how text blocks reduce so much

verbosity from code.

Chapter
2

Using Type Inference

Java programmers spend a lot of time and effort keying the type
information for variables and parameters into code. Integrated Development
Environments (IDEs) have grown to ease the efforts by providing shortcuts
to fill in the type details as we code along. Even though that saves a few
keystrokes, we’re still left with some noise in code. Even as we experiment
and evolve code, the type details in code hinder our ability to swiftly try out
our new ideas. There are many places where the cost doesn’t outweigh the
benefits of explicitly stating the types. This is where type inference comes
to the rescue.

Type inference is a feature that tells the compiler to figure out, that is infer,
the type of a variable based on the context. Type inference is a feature
found in many statically typed languages. Some developers, upon seeing it
for the first time in Java, freak out saying, “Java is turning into JavaScript.”
Let me assure you, Java will never become that wicked.

Statically typed languages like Haskell, F#, C++, C#, Kotlin, and Scala all
have type inference, and programmers using those languages benefit from
the feature extensively. Most programmers only using Java find it hard to
transition to using type inference mainly because they aren’t used to it or
haven’t been exposed to the feature. It’s a feature that we may fear at first
but will learn to love with experience.

In this chapter you’ll learn how to use and benefit from type inference in
general and from local variable type inference in particular, which was
introduced in Java 10. You’ll quickly understand the powers and also the
limitations of type inference. In addition to looking at how to use type
inference, we’ll also discuss the dos and don’ts to make the best use of this
feature. Fire up your IDE and practice along with the examples.

Type Inference and Java
Inference reduces verbosity in communication when the parties involved
share a context. When you hear a colleague, who shared a stage with you
for a product demo the previous day, say “That was awesome yesterday,”
you quickly infer the conversation is about how the clients were blown
away by the features your team had developed.

You and the compiler share the context in code, and you benefit when the
compiler can infer your crisp syntax.

Statically typed languages, such as Java, perform type checks at compile
time. Some programmers think that static typing is about typing or keying
in the type information. Quite the contrary, static typing is about type
verification and not about type specification.

Traditionally in Java, we were forced to explicitly specify the type details in
code. With more recent changes in Java, we can leave the type information
out of the code in many places and let the compiler infer the details. The
compiler, nevertheless, verifies the type of variables. Any type of
incompatibility results in immediate compile-time failure—we still benefit
from the fast fail.

With type inference, Java didn’t become any less statically typed. Instead of
asking for our help, the language with a powerful compiler that excels in
type verification now provides more help to us. This transition actually
makes the language more statically typed than before since the compiler can
determine the type more strictly than most programmers can or care to
specify.

The support for type inference in Java started back in Java 5. Many of us
may have been using it without realizing, or at least, paying much attention

to it. The most glaring changes related to type inference were in Java 8 and
also in Java 10.

Before diving into the changes in Java 10, let’s quickly revisit the type
inference related developments in the previous versions of Java. This will
help us to see that the change in Java 10 isn’t sudden or drastic, but that
Java has been moving steadily in this direction for a while now.

Generics and Type Witness
Java 5 introduced a healthy dose of type inference as part of the support for
Generics.

In the following code, the compiler does quite a bit of heavy lifting to
determine the type of the returned result from the functions.

typeinference/vsca/GenericsTypeInference.java

​ List<String> justOne = Collections.singletonList(​"howdy"​);

​ List<String> nothingHere = Collections.emptyList();

In the call to the singletonList() of the JDK Collections utility class, the
compiler determined the return type based on the type of the argument. The
part on the left-hand side of the assignment did nothing to influence the
inference in this case.

In the call to the emptyList() method, the right-hand side doesn’t provide
enough context for the compiler to determine the return type. In this case,
the compiler walked an extra mile and looked at where the result was being
assigned to and inferred the type based on that.

Alternatively, you may specify a type witness (a hint) to the compiler, as in
the next code snippet, and the compiler will again not use the left-hand side
to decide the type:

typeinference/vsca/GenericsTypeInference.java

​ List<Integer> nothingHereToo = Collections.<Integer>emptyList();

​ ​//Redundant Type Witness​

Most of the time, you don’t have to specify any type witness. But
occasionally, the compiler will complain because it couldn’t infer the type of
exactly what you were hoping for. In such situations, you have to step in and

http://media.pragprog.com/titles/vscajava/code/typeinference%2Fvsca%2FGenericsTypeInference.java
http://media.pragprog.com/titles/vscajava/code/typeinference%2Fvsca%2FGenericsTypeInference.java

provide a type witness. Let’s look at an example where the compiler will
need your help:

typeinference/vsca/GenericsTypeWitness.java

​ ​public​ ​class​ GenericsTypeWitness {

​ ​public​ <T> ​void​ ​process​(Consumer<T> consumer) {}

​ ​public​ ​static​ ​void​ ​display​(​int​ value) {}

​

​ ​public​ ​static​ ​void​ ​main​(String[] args) {

​ GenericsTypeWitness instance = ​new​ GenericsTypeWitness();

​

​ instance.process(input -> display(input)); ​//ERROR​

​ ​//error: incompatible types: Object cannot be converted to int​

​ }

​ }

The call to display() from within the lambda expression fails to compile since
the compiler inferred the type of input as an Object whereas display() is
expecting an int. The reason the parameter input was inferred as Object is that
the call to process() lacks enough context to infer the type more specifically.
The compiler is satisfied if we modify the process() call and provide a type
witness as in the following:

typeinference/vsca/GenericsTypeWitness.java

​ instance.<Integer>process(input -> display(input));

You may program with Generics for years and not run into a situation where
you may have to provide a type witness; consider yourself lucky in that case.
I once worked on a project where we had to specify type witness extensively
and it wasn’t fun. We wished we could have used type inference more and
type witnesses less on that project. Sometimes you have to miss something
to appreciate how good it was.

For the most part, the type inference works quietly, and we can write concise
code. Don’t specify the type witness if the compiler doesn’t complain. Let

http://media.pragprog.com/titles/vscajava/code/typeinference%2Fvsca%2FGenericsTypeWitness.java
http://media.pragprog.com/titles/vscajava/code/typeinference%2Fvsca%2FGenericsTypeWitness.java

the type inference do its job, and don’t clutter the code with unnecessary
details.

Diamond Operator Enhancements
Java 7 added a useful nugget, the diamond operator. Before that addition, we
had to specify type information redundantly on both sides when instantiating
an object, like in the following example:

typeinference/vsca/Diamond.java

​ Map<String, List<Integer>> scores = ​new​ HashMap<String, List<Integer>>();

Imagine having to say the same darn thing over and over—that was the hard
life before Java 7. Not anymore, thanks to the diamond operator:

typeinference/vsca/Diamond.java

​ Map<String, List<Integer>> scores = ​new​ HashMap<>();

The Java 7 diamond operator had one deficiency: the object creation
couldn’t use an anonymous inner class. That restriction was removed in Java
9, and now you can do the following:

typeinference/vsca/Diamond.java

​ Map<String, List<Integer>> scores = ​new​ HashMap<>() {

​

​ };

The diamond operator is useful to make the code concise, expressive, and
easy to change. But be careful using it with the Java 10 type inference of
local variables—see ​Don’t Use Type Inference with Diamond​.

http://media.pragprog.com/titles/vscajava/code/typeinference%2Fvsca%2FDiamond.java
http://media.pragprog.com/titles/vscajava/code/typeinference%2Fvsca%2FDiamond.java
http://media.pragprog.com/titles/vscajava/code/typeinference%2Fvsca%2FDiamond.java

Lambda Expressions Parameters Type Inference
The first big step for type inference came in Java 8 with the introduction of
lambda expressions into the language.

Suppose we want to iterate over a collection of numbers and print the double
of each value. We may be tempted to write the following:

typeinference/vsca/Lambda.java

​ numbers.forEach((Integer number) -> System.out.println(number * 2));

In this lambda expression, we specified the type of the parameter as Integer,
but in your wildest imagination, if we were to iterate over a collection of
Integers, what would we pull out of the collection? A kitten, a pony…well,
of course, an Integer—why bother saying the obvious?

There is enough context for the compiler to determine the type of the
parameter of the lambda expression. The forEach() method accepts as a
parameter Consumer<T>, but the function is called on a receiver of type
List<Integer>, so the parameterized type T should be specialized to Integer.

The compiler clearly knows the type in this context and so do we. We can
drop the type information from in front of the parameter name, like so:

typeinference/vsca/Lambda.java

​ numbers.forEach((number) -> System.out.println(number * 2));

That’s nice, but there’s more. The compiler quickly rewards us for that
gesture of trust and allows us to drop the parenthesis if the parameter list has
only one parameter, like so:

typeinference/vsca/Lambda.java

​ numbers.forEach(number -> System.out.println(number * 2));

http://media.pragprog.com/titles/vscajava/code/typeinference%2Fvsca%2FLambda.java
http://media.pragprog.com/titles/vscajava/code/typeinference%2Fvsca%2FLambda.java
http://media.pragprog.com/titles/vscajava/code/typeinference%2Fvsca%2FLambda.java

That certainly is less noisy compared to the version where we specified the
type of the parameter. If we made a mistake and assumed the parameter was
some other type that’s incompatible with the correct type, the compiler
would give us an error with no uncertainty. Concise code without
compromising type safety, oh yeah.

There are a few restrictions to using type inference for lambda expression
parameters, however.

If a lambda expression were to receive multiple parameters, then we would
have to specify the type information for all the parameters or use type
inference for all. We’re not allowed to specify the type for some and leave it
out for others. Again here, as much as possible, use type inference rather
than specifying the type details.

The type inference for lambda expressions parameters is powerful, but there
was one limitation in Java 8 and thankfully it was removed in Java 11. If we
wanted to use an annotation, for example, a third-party annotation like
@NotNull, on a lambda expression parameter, we had to specify the type. In
Java 11, we can leave out the type when using annotation provided we mark
the parameter with a var. We’ll discuss the meaning of var later in this
chapter, but for now, we’ll examine the syntax provided in Java 11 for
lambda expressions parameter type inference.

Let’s start with a piece of code that will fail compilation:

typeinference/vsca/Lambda.java

​ numbers.forEach((@NotNull number) -> System.out.println(number * 2)); ​
//ERROR​

The compiler will generate an “illegal start of expression” error upon seeing
the annotation without the type specification. In Java 8, 9, and 10, if you
wanted to specify any annotations on a lambda expression parameter, you

http://media.pragprog.com/titles/vscajava/code/typeinference%2Fvsca%2FLambda.java

had to also specify the type. In Java 11, we can do away with the type
information, like so:

typeinference/vsca/Lambda.java

​ numbers.forEach((@NotNull ​var​ number) -> System.out.println(number * 2));

If you plan to use var for type inference of a lambda expression parameter,
then you have to use it for all the parameters of that lambda expression. You
can’t mix using var for some parameters, using implicit type inference
without var for other parameters, and specifying the type for yet other
parameters. It’s all or nothing when it comes to the type inference of
parameters of a lambda expression.

If the compiler doesn’t ask you to specify the type then don’t. Leave it out
and enjoy the conciseness.

Occasionally, you’ll get an error if the compiler isn’t able to infer the type
properly. This happens if there isn’t enough context for proper type
inference. If this happens, you’ll have to either provide the necessary type
details or change the code so that the compiler gets enough context to infer
the type accurately. Let’s look at an example that illustrates this problem and
explore both of those options for the solution.

In the following code we work with a list of language names. Suppose we
want to print the names sorted in the ascending order of the length of the
names, we can use the sorted() function of the Stream and the comparing() static
method of the Comparator interface.

typeinference/vsca/LambdaTypeInferenceFail.java

​ List<String> languages =

​ List.of(​"Java"​, ​"Kotlin"​, ​"Scala"​, ​"Groovy"​, ​"Clojure"​, ​"JRuby"​);

​

​ languages.stream()

​ .sorted(comparing(name -> name.length()))

​ .forEach(System.out::println);

http://media.pragprog.com/titles/vscajava/code/typeinference%2Fvsca%2FLambda.java
http://media.pragprog.com/titles/vscajava/code/typeinference%2Fvsca%2FLambdaTypeInferenceFail.java

We used type inference for the parameter of the lambda expression passed to
the comparing() method. Just the way we want it—concise and with less
effort to write.

Now, suppose we want to print the names in descending order of their
length. We can invoke the Comparator’s default method named reversed() on
the Comparator instance returned by the comparing() method, like so:

typeinference/vsca/LambdaTypeInferenceFail.java

​ .sorted(comparing(name -> name.length()).reversed())

​ ​//ERROR: cannot find symbol length() on variable name of type Object​

Oops, sadly, that runs into a compilation error. You may be surprised why
the previous code without the reversed() worked but not this version. Let’s
dig in to understand.

Take a look at this call:

​ .sorted(comparing(name -> name.length()))

The compiler examines the lambda expression passed to comparing() and
realizes it needs more context to determine the type of the parameter name. It
looks where the result of comparing() goes to, and it finds
Stream<String>.sorted(Comparator<T>) and determines that T should be String in
this situation. Right inference, kudos.

In the following code the situation is different:

​ .sorted(comparing(name -> name.length()).reversed())

The compiler once again realizes it needs more context to determine the type
of the parameter name of the lambda expression passed to the comparing()

method. It looks where the result of comparing() goes to and finds
Comparator<T>.reversed(). That doesn’t provide any additional details that are
specific about the type. Thus it decides to resolve the parameter types as

http://media.pragprog.com/titles/vscajava/code/typeinference%2Fvsca%2FLambdaTypeInferenceFail.java

Object, which isn’t that useful, but that’s the best it could do given the
situation.

Since the compiler inferred the type of name to be Object, it complains from
within the lambda expression passed to comparing() that name doesn’t have
the length() method—which is a fact—but that doesn’t make the error any
more pleasant.

What gives?

We can use one of two options to resolve this error.

For one, we can break away from the recommendations to use type
inference for lambda parameters and provide the type information for the
name parameter, like so:

typeinference/vsca/LambdaTypeInferenceFail.java

​ .sorted(comparing((String name) -> name.length()).reversed())

This is a reasonable approach if the lambda can’t be replaced by a method
reference. If the lambda doesn’t do much with the parameter and merely
passes it through to another function, then we can replace it with a method
reference, as a second option, like so:

typeinference/vsca/LambdaTypeInferenceFail.java

​ .sorted(comparing(String::length).reversed())

The method reference gives enough context to the compiler to realize we
are talking about a String and not an Object, and it rides forward with that
information.

That last example illustrates a rough patch in the type inference of lambda
expression parameters. Fortunately, we don’t run into that too often, and if
we do, we know how to work around it. Not bad.

http://media.pragprog.com/titles/vscajava/code/typeinference%2Fvsca%2FLambdaTypeInferenceFail.java
http://media.pragprog.com/titles/vscajava/code/typeinference%2Fvsca%2FLambdaTypeInferenceFail.java

Use type inference for lambda parameters where possible. If you need to use
an annotation for the parameter, then use type inference with var.
Occasionally, if the compiler complains, then either provide the type
information or use a method reference if possible.

Local Variable Type Inference
The type inference support that was introduced up until Java 10 was to
provide fluency for other features, like Generics and lambda expressions, for
example. Java 10 took a bold step to bring out type inference of local
variables as a separate feature, to improve developer productivity.
Interestingly, it created a stir among the developers who considered this
feature to be radical—though it was common in other languages, it was
outside the Overton Window[5] for most Java developers.

Java can infer the type of local variables if it finds 100% clarity about the
type. Let’s explore this with some examples.

In the code that follows, we’re providing explicit type information for the
message variable.

typeinference/vsca/LocalVariable.java

​ ​public​ ​static​ ​void​ ​greet​() {

​ String message = ​"hello there"​;

​

​ System.out.println(message);

​ }

Looking at the line where the variable message is defined, it’s abundantly
clear that the variable is of type String. You know it and the compiler knows
it. No need to state the obvious. We can change that line to the following:

typeinference/vsca/LocalVariable.java

​ ​var​ message = ​"hello there"​;

The compiler figures out that the variable is of type String based on what’s
assigned to it and doesn’t need us to specify the type explicitly.

http://media.pragprog.com/titles/vscajava/code/typeinference%2Fvsca%2FLocalVariable.java
http://media.pragprog.com/titles/vscajava/code/typeinference%2Fvsca%2FLocalVariable.java

What’s the big deal, you may wonder. In reality, we saved a total of three
characters by replacing String with var. The savings there aren’t huge, but
consider the following:

​ HashMap<String, List<Integer>> scores = ​new​ HashMap<String, List<Integer>>
();

That’s literally one lineful—verbose, noisy, and so much redundant
information in there both for us and the compiler. We can use type inference
and make that line crisp, like so:

​ ​var​ scores = ​new​ HashMap<String, List<Integer>>();

The benefits go far beyond the characters saved. It’s less clutter, easy to
read, and most importantly easy to change.

In the previous examples, we initialized the type-inferred variables to a
value or an instance that’s created at the point of declaration. In addition to
that, we can also use type inference when a variable is assigned to the result
of a method call, as in the next example:

​ ​var​ numberOfCores = Runtime.getRuntime().availableProcessors();

The type of the variable numberOfCores is inferred as int based on the return
type of the availableProcessors() method’s return type.

Type inference also immensely helps when refactoring code, for example,
when we try to remove duplication.

Let’s explore this aspect with an example.

Suppose we have a list of languages and a list of JVM languages, and we
want to group them based on the length of their names and store the names
in uppercase in the resulting Map. We could write the code, using the full
glory of type specification, like so:

​ List<String> languages =

​ List.of(​"C++"​, ​"C"​, ​"Erlang"​, ​"Elm"​, ​"Haskell"​, ​"Ruby"​, ​"Python"​);

​

​ List<String> jvmLanguages =

​ List.of(​"Java"​, ​"Kotlin"​, ​"Scala"​, ​"Groovy"​, ​"Clojure"​, ​"JRuby"​);

​

​ Map<Integer, List<String>> namesByLength = languages.stream()

​ .collect(groupingBy((String name) -> name.length(),

​ mapping((String name) -> name.toUpperCase(), toList())));

​

​ Map<Integer, List<String>> jvmNamesByLength = jvmLanguages.stream()

​ .collect(groupingBy((String name) -> name.length(),

​ mapping((String name) -> name.toUpperCase(), toList())));

As part of refactoring, suppose we decide to remove the duplication of the
expression passed to the collect() function. We can store the result of the
function call groupingBy() into a variable and reuse it in the two calls to
collect(). We know that collect() takes a Collector and thus the type of variable
we’d like to create is Collector. But, quick, guess the specific parameterized
types that we should place between the angle brackets for Collector<>.

Very few can nail that down, and those who do waste much of their superb
brainpower on something they don’t need to process. The chances are, after
a bit of defiance, most of us will ask the IDE to place the type in front of the
variable. We’ll then end up with the following:

​ Collector<String, ?, Map<Integer, List<String>>> groupingCriteria =

​ groupingBy((String name) -> name.length(),

​ mapping((String name) -> name.toUpperCase(), toList()));

​

​ Map<Integer, List<String>> namesByLength = languages.stream()

​ .collect(groupingCriteria);

​

​ Map<Integer, List<String>> jvmNamesByLength = jvmLanguages.stream()

​ .collect(groupingCriteria);

The type of the variable groupingCriteria that we introduced during the
refactoring step is Collector<String, ?, Map<Integer, List<String>>>. But wait. The ?
in the type indicates that even the compiler doesn’t care to be more specific.
In reality, we know the type is a Collector, but it’s not important to know the

exact type. We can do better, a lot better, by using type inference throughout
that snippet of code, like so:

​ ​var​ groupingCriteria =

​ groupingBy(String::length,

​ mapping((String name) -> name.toUpperCase(), toList()));

​

​ ​var​ namesByLength = languages.stream()

​ .collect(groupingCriteria);

​

​ ​var​ jvmNamesByLength = jvmLanguages.stream()

​ .collect(groupingCriteria);

We used type inference wherever possible. The parameter to the lambda
expression passed to the mapping() function has an explicit type since that’s
necessary for the compiler to infer the type of the variable groupingCriteria.

One additional benefit of using local variable type inference is that we don’t
need to use import for inferred types. For example, in the previous code
examples, where we declare the variable groupingCriteria with the explicit
type Collector..., we’ll also need to include import java.util.stream.Collector; at the
top of the file. But if we use type inference, the var obviates the need for the
import as the compiler determines the type.

When and How to Introduce Type Inference
Type inference can make the code concise, easy to read, and easy to change. Don’t
shy away from using it, but at the same time, don’t force yourself or your team to
use it. Neither "it’s always the best" nor "it’s never a good option" are true. Use it
where you feel that the type specification is redundant. Give your team the
opportunity to get comfortable with the idea. A great place to start using it is in your
test suites. Once the team gets comfortable, start applying it incrementally in
production code. Anytime the code is harder to understand due to missing type
information, feel free to add the type details instead of using type inference.

Using Type Inference with for and try
Local variable type inference can be used for any variable defined locally
within methods, as long as the type can be inferred without any ambiguity.
In the previous examples we saw how the types of variables defined
directly within methods may be inferred. Type inference can be used for
variables defined in for loops and try blocks as well.

Suppose we want to iterate over the values in a collection of names. Using
the imperative for loop, we can use type inference for the loop variable, like
so:

​ ​for​(​var​ name : names) {

​ System.out.println(name);

​ }

Similarly, if we want to use the traditional for loop to iterate over an index,
we can use type inference there as well:

​ ​for​(​var​ i = 0; i < names.size(); i++) {

​ System.out.println(names.get(i));

​ }

When using the try-with-resources syntax, you can use type inference to
define references to instances of classes that implement the AutoCloseable
interface. You can also use type inference within for or try, or just about any
nested body of code within a method, as in the following example:

​ ​try​(​var​ resource = ​new​ Resource()) {

​ ​var​ success = resource.task();

​ ​//...​

​ }

In each of these cases, the type of the variables is clear from the context,
and we can make use of type inference with confidence. In addition to type
inference of local variables, Java also provides type inference when

destructuring records in pattern matching—we’ll see this in ​Type Inference
with Destructuring Records​.

var: Not a Type nor a Keyword
Take a look at this code:

​ ​var​ max = 1000;

You may hear programmers new to type inference say “max is of var type.”
Politely interrupt and tell them that there are no var types.

var isn’t a type specification. Instead, var is more of a wink at the compiler.

Imagine winking at the compiler as you write the code, “Hey, I know that
max is an int and you do too. Want me to say it explicitly? (wink).”

var is purely a syntax sugar that tells the compiler to infer the type. Under
the hood, the compiler stores the actual type, either the one you would have
keyed in or a stricter type it may have decided on, based on the evaluation of
the context—see ​Targeted Intersection Types​.

Let’s write a small piece of code and examine what type the compiler infers
under the hood for a type-inferred variable.

typeinference/vsca/TypeInferred.java

​ ​public​ ​class​ TypeInferred {

​ ​public​ ​static​ ​void​ ​main​(String[] args) {

​ ​var​ message = ​"hello there"​;

​ ​var​ max = 1000;

​ ​var​ instance = ​new​ TypeInferred();

​ }

​ }

Compile the code and use the javap tool to view the bytecode that was
generated by the compiler. Here’s a peek at part of the bytecode from the
compilation of the previous code:

​ 0: ldc #7 // String hello there

http://media.pragprog.com/titles/vscajava/code/typeinference%2Fvsca%2FTypeInferred.java

​ 2: astore_1

​ 3: sipush 1000

​ 6: istore_2

​ 7: new #9 // class vsca/TypeInferred

The first observation: no var type. The bytecode instruction ldc is used to
load a constant, in this case, the String hello there. That clearly tells you the
compiler inferred the type of message as String. The sipush, which stands for
the “push short” instruction, conveys that the compiler is treating 1000 as a
short value. Finally, the last line shows that the compiler is initializing a
reference of the intended type.

There’s no sign of var in the bytecode, and we know it’s not a type or a type
specification. var is also not a keyword. This was a commendable, cautious,
language design choice. If they had introduced var as a keyword in the
language, then existing code that may use var as a variable would break. To
preserve backward compatibility, the developers behind the language
evolution cautiously defined var as a context-sensitive term instead of being
a universal keyword.

Since var isn’t a keyword, it can appear as a variable name in code. But just
because you can do something, that doesn’t mean you should. The following
code is legal and compiles with no errors:

typeinference/vsca/NotAKeyWord.java

​ ​var​ PI = Math.PI;

​ String ​var​ = ​"please don't"​; ​//Possible, but not a good idea​

​ ​//var var = "please don't"; //Also possible, but avoid​

​

​ System.out.println(​var​); ​//prints: please don't​

Defining variables with the name var isn’t a good idea unless your intention
is to mess with the minds of your fellow programmers. It can be confusing
and frustrating to maintain such code. If your legacy code has var as

http://media.pragprog.com/titles/vscajava/code/typeinference%2Fvsca%2FNotAKeyWord.java

variables, take the time to refactor them unless you have a compelling
domain-specific reason to hold on to that name.

Targeted Intersection Types
The compiler doesn’t merely infer the type based on a superficial
examination of the code. The analysis is rigorous, and the type it arrives at
is the least common denominator of the possible types for the reference.

To get a sense of the power of type inference, let’s take a variable
declaration with type inference:

​ ​var​ numbers = List.of(1, 1.2, 3L);

We may surmise that the variable is of type List<Number>. Good guess, but
we can find out for sure what the compiler is thinking by making a mistake,
like this:

​ numbers.add(​"hello"​); ​//ERROR​

Alternatively, we may also rely on some IDEs to quickly figure out the
types. The List created by the List.of() function is immutable, but there’s a
bigger concern—we shouldn’t add a String to the numbers collection. Let’s
take a look at the error from the compiler:

​ ...error: incompatible types: String cannot be converted to INT#1

​ numbers.add("hello"); //ERROR

​ ^

​ where INT#1,INT#2 are intersection types:

​ INT#1 extends Number,Comparable<? extends INT#2>,Constable,ConstantDesc

​ INT#2 extends Number,Comparable<?>,Constable,ConstantDesc

​ ...

The type inference didn’t settle for a trivial analysis. It inferred the
parametrized type of the List to be a Number, Comparable<? extends INT#2>,

Constable, ConstantDesc—a type that’s an intersection, or common, between
the types presented as values to the list.

It’s quite comforting that the type analysis and type inference are working
hard and we can rely on them.

Extent of Type Inference
We saw how Java’s type inference bends over backward to figure out the
most appropriate type for the local variables. The efforts are commendable,
but thankfully, the compiler won’t go overboard and falter.

Type inference requires the type details to be absolutely clear at the point of
declaration.

For example, in the next code, the compiler doesn’t accept either use of var:

​ ​var​ sorryNo; ​//ERROR​

​ ​var​ ref = ​null​; ​//ERROR​

​

​ ​if​(Math.random() > 0.5) {

​ ref = ​"oh"​;

​ } ​else​ {

​ ref = 0;

​ }

At first glance, we may think that the type of the two variables may be
Object, but the compiler doesn’t agree with that:

​ ... error: cannot infer type for local variable sorryNo

​ var sorryNo; //ERROR

​ ^

​ (cannot use 'var' on variable without initializer)

​ ... error: cannot infer type for local variable ref

​ var ref = null; //ERROR

​ ^

​ (variable initializer is 'null')

​ 2 errors

The error messages show clearly the rules the compiler plays by. To use
type inference we have to initialize the variable to a non-null value.

In addition, the Java compiler has a few more rules for type inference.

Whereas languages like Scala and Kotlin allow type inference at the field
level, Java doesn’t permit that.

​ ​public​ ​class​ Book {

​ ​var​ name = ​""​; ​//ERROR​

​

​ ​public​ ​Book​(String bookName) {

​ name = bookName;

​ }

​ }

The compiler, upon seeing the use of type inference, var, at the field level,
will snap with an error:

​ vsca/Book.java:5: error: 'var' is not allowed here

​ var name = ""; //ERROR

​ ^

​ 1 error

In spite of this error, I don’t see any harm in supporting type inference at
the field level, and I hope Java will provide that facility in the future.

I’m not a fan of type inference at the method parameter level. As much as I
love Haskell, type inference of parameters is one of Haskell’s features that I
find unsettling. The types of the parameters are determined based on their
usage within the method. JVM languages like Scala and Kotlin don’t offer
that, and I’m glad that Java doesn’t either. Even though some languages
offer return type inference, Java doesn’t permit that either.

You’re not allowed to use var to type infer the parameters of a method.
Also, the return type of methods isn’t allowed to be var either. The
following code won’t compile:

​ ​public​ ​class​ Battery {

​ ​private​ ​int​ power;

​

​ ​public​ ​var​ ​charge​(​var​ toPower) { ​//ERROR​

​ power = toPower;

​ }

​ }

The compiler wants methods to clearly specify the types expected for the
return and the parameters. The use of var in the previous code results in
the following errors:

​ vsca/Battery.java:7: error: 'var' is not allowed here

​ public var charge(var toPower) { //ERROR

​ ^

​ vsca/Battery.java:7: error: 'var' is not allowed here

​ public var charge(var toPower) { //ERROR

​ ^

​ 2 errors

Even though we can’t use var to type infer parameters of a method, in ​
Lambda Expressions Parameters Type Inference​, we saw that Java has
extensive support for type inference of parameters to lambda expressions.
The reason that’s OK is that the types of the parameters of a lambda
expression are verified and inferred based on the signature of the
corresponding functional interfaces the lambda expressions stand in for.

Mind the Inference
Type inference is a nice tool, but, like any tool, we have to use it correctly,
for the right reasons, and be mindful of the consequences.

In any situation where the context doesn’t clearly reveal the type, the
compiler will let you know in uncertain terms that you can’t use type
inference. In these cases we should specify the type details. We’ve seen
examples of this before, and we’ll see a few more in this section.

There are also a few situations where the compiler will permit type
inference, but this may not be desirable. Knowing them will help you to
stay clear of usage that will result in code that may be error-prone.

Don’t Use Type Inference with Diamond
The diamond operator is useful to reduce verbosity and avoid duplicate type
specifications as we saw in ​Diamond Operator Enhancements​. Mixing the
diamond operator with type inference is a bad idea—I wish the compiler
didn’t permit this.

To see the effect of type inference when used with the diamond operator,
let’s start with a code snippet that specifies the type.

​ List<Integer> values = ​new​ ArrayList<>();

​

​ values.add(1);

​ values.add(​"hi"​); ​//ERROR​

The values variable is of type List<Integer> and is initialized to the instance of
ArrayList<Integer> defined using the diamond operator. Right away we know
it’s a List of Integers. The line of code that adds the value 1 to the list is fine.
But adding a String hi fails compilation—exactly what we would like to see.

Now, if we change the declaration of the variable values to use type
inference, unfortunately, the line that adds the String to the collection passes
compilation:

​ ​var​ values = ​new​ ArrayList<>(); ​//Bad idea, please don't​

​

​ values.add(1);

​ values.add(​"hi"​); ​//Not an ERROR​

The reason for this poor behavior is that the variable values, which we
originally defined as List<Integer>, now becomes a reference of type
ArrayList<Object>—yikes.

It makes no sense to use type inference along with the diamond operator.
Look out for this during code reviews and modify the code to avoid such
usage.

Base vs. Derived Type Inference
Be mindful of the type that the local variable will be inferred to. If your
intention is to use a reference of a base class type or that of an interface, and
the right side is of a derived type at compile time, then avoid using type
inference.

Here’s an example snippet to illustrate the problem:

​ List<Integer> numbers = ​new​ ArrayList<Integer>();

The numbers variable is defined as type List<Integer>, and it refers to an
instance of ArrayList<Integer>. Using the reference, we can call methods that
belong to the base class or interface but not methods that belong only to the
derived class. For example, on numbers, we can call methods that belong to
the List interface, like add(), but not methods that belong only to the ArrayList
class, like ensureCapacity().

Now suppose we use type inference to define the numbers variable, like so:

​ ​var​ numbers = ​new​ ArrayList<Integer>();

After this change, the numbers variable has a more specialized type,
ArrayList<Integer>, than the previous List<Integer>. Thus, unlike before, we’ll
now be able to use this reference to call methods like ensureCapacity(). The
reference now is tightly coupled to the class whereas before it was loosely
coupled via the interface. This might make it harder to refactor the code in
the future to use a different implementation of the interface.

Evaluate the code to make sure it’s OK to use type inference from the
coupling point of view.

Verify Behavior
The behavior of the code shouldn’t be different if we decide to refactor the
code to use type inference. If we might possibly break the code’s behavior,
we want to know that quickly—learning about it from the users is simply
not acceptable.

Automated tests can help to verify that the code behaves the same way as it
did before and after the change. It will help us to keep an eye out for
situations like the following.

Sometimes, a poor design decision in one area may affect another area of
code. Back in Java 5, a decision was made to introduce a remove() method
into the Collections API, where it may take an index or an object. That
seems to be fine until we work with a collection of Integers. Let’s see how
this issue is exacerbated when we use type inference.

​ Collection<Integer> numbers = ​new​ ArrayList<Integer>(List.of(1, 2, 3));

​

​ System.out.println(numbers);

​

​ numbers.remove(1);

​

​ System.out.println(numbers);

We create a collection of numbers, stored into a reference numbers of type
Collection<Integer>. We print the values in the collection, remove the value 1,
and print the result. The output reflects the original values in the
collection and the collection after the value 1 was removed:

​ [1, 2, 3]

​ [2, 3]

Now, let’s use type inference for the numbers variable, like so:

​ ​var​ numbers = ​new​ ArrayList<Integer>(List.of(1, 2, 3));

​

​ System.out.println(numbers);

​

​ numbers.remove(1);

​

​ System.out.println(numbers);

Sadly, in this case, the numbers variable is no longer of type
Collection<Integer>, but, instead, it’s of type ArrayList<Integer>. This may not
be an issue if the design of the collections library had no potential flaws that
may lead to misuse. But the output after changing the code to use type
inference isn’t the same as before the change:

​ [1, 2, 3]

​ [1, 3]

The call to remove() in this case resulted in the removal of the element at
index 1 instead of the object with value 1. When the type changed from that
of a base interface to a derived class, a different version of the remove()

method was invoked. This isn’t the fault of type inference, but we have to
verify that the code behaves the same before and after the change or that the
code behaves as intended. There’s no substitute for verification.

Lambda Expressions Types Can’t Be Inferred

The type of lambda expressions is determined by the functional interfaces
they’re assigned to. When invoking a method, for example, the parameter
types of the method determine if lambda expressions may be passed to the
method as arguments. Likewise, we may assign a lambda expression to a
variable of a functional interface type, as in the next example:

​ Runnable runnable = () -> System.out.println(​"You called..."​);

​

​ runnable.run();

The variable runnable is of the type Runnable, which is a functional interface.
The signature of the lambda expression matches the signature of the run()
method of Runnable, and the compiler was happy to make that initialization
of the variable with the given lambda expression.

Suppose we get tempted to use type inference for the runnable variable, like
so:

​ ​var​ runnable = () -> System.out.println(​"You called..."​); ​//ERROR​

There’s no way for the compiler to determine the type of runnable in this
case. Potentially, more than one functional interface (or none at all) might
match the signature of the given lambda expression. Thus the compiler
can’t make a decision on the type of the variable, so initialization will fail
compilation, as shown here:

​ ... error: cannot infer type for local variable runnable

​ var runnable = () -> System.out.println("You called..."); //ERROR

​ ^

​ (lambda expression needs an explicit target-type)

​ 1 error

If you’d like to assign a lambda expression to a variable, then you need to
explicitly specify the type and can’t use type inference. Some developers
may try to cast a lambda expression and then assign it to a variable with
type inference. But that’s pointless since they’ve expressed the type in the

cast and haven’t gained from type inference. In short, don’t use type
inference to store lambda expressions into variables.

[5]

Wrapping Up
Type inference is a feature of statically typed languages. Java has been
steadily moving towards more type inference starting from Java 5. The
latest related big change was in Java 10 with local variable type inference.
Type inference when used correctly can reduce verbosity in code and make
it easier to experiment and evolve. Use it where type details are abundantly
clear without the explicit type specification. Avoid it in places where the
inferred type may not be the most suitable from your point of view.

In the next chapter we’ll look at another feature that reduces verbosity in
code, but is also a compiler-level change rather than a JVM or bytecode-
level change.

Footnotes

https://en.wikipedia.org/wiki/Overton_window

Copyright © 2025, The Pragmatic Bookshelf.

https://en.wikipedia.org/wiki/Overton_window

Chapter
3

Reducing Clutter with Text Blocks

Representing data in code is a common task that has been a real chore in
Java. Whether you were creating an XML document in code, generating a
JSON response to a web request, or creating a nicely formatted customized
message as an automated response from your support system, the code
often was verbose, smelly, hard to read, and difficult to maintain. The
coding experience was rather unpleasant largely due to the inability to write
multiple lines of strings with ease and the endless escape sequences that had
to be placed in the strings. These were tasks any Java programmer
dreaded…until recently.

Some shells and programming languages offer heredocs as a feature to deal
with escapes but often have rough edges when dealing with indentations
and text termination. Programmers using heredocs often find it frustrating
and waste time due to idiosyncrasies of implementations. The designers
behind the evolution of Java took advantage of learning from the earlier
solutions in other platforms and languages. The result is a pleasant
experience for the Java programmers.

The text blocks feature was introduced in Java 13 and has evolved over a
few versions of the language. With text blocks, we can write multiple lines
of text with ease and don’t have to waste our time and effort with noisy
escape sequences. The text flows naturally, and the compiler is smart
enough to discern between the indentations in code and those in the text.

The compiler is also capable of recognizing and omitting unintended
trailing spaces in text and thus removes the need to strip them out from text
placed in code. Overall, the smartness of the implementation leads to better
developer productivity.

In this chapter we’ll look at the problems that text blocks solve and at how
to make use of this feature to embed raw text, XML, and JSON data in
code. You’ll learn about the behavior of text blocks and the new escape
sequences. Along the way, we’ll also take a peek at the implementation of
text blocks at the bytecode level.

Let’s explore text blocks by starting with an example that suffers from
verbosity, and then we’ll refactor the code to make it expressive and
elegant.

From Noisy to Nice
Suppose you’re working on an application for an online retailer and the task
on hand requires creating a message that will be emailed to users, asking for
their feedback by filling out a survey.

The message is expected to be of the following format right now but may
change in the future to add user and purchase-specific details:

​ Thank you for your purchase. We hope you had a pleasant experience.

​

​ We request that you take a few minutes to provide your feedback.

​

​ Please fill out the survey at https://survey.example.com

​

​ If you have any questions or comments, please click on the "Support" link

​ at https://www.example.com.

In the older versions of Java, you may have to write code like the following
to create the message:

textblocks/vsca/CreateMessage.java

​ ​public​ ​static​ String ​createMessage​() {

​ String message = ​"Thank you for your purchase."​;

​ message += ​" We hope you had a pleasant experience.\n\n"​;

​ message += ​"We request that you take a few minutes "​;

​ message += ​"to provide your feedback.\n\n"​;

​ message += ​"Please fill out the survey at https://survey.example.com\n\n"​;

​ message += ​"If you have any questions or comments, "​;

​ message += ​"please click on the \"Support\" link\n"​;

​ message += ​"at https://www.example.com.\n"​;

​

​ ​return​ message;

​ }

The code uses += to append the text to the String instance. We could have
replaced message += with + to reduce some noise. The code uses

http://media.pragprog.com/titles/vscajava/code/textblocks%2Fvsca%2FCreateMessage.java

combinations of \n to provide line breaks and uses escape to include double
quotes in the text. Also, each line has to end with a semicolon, adding to the
noise.

That’s one verbose code…shudder…one you’d hide for the sake of
humanity, definitely not one you would show to children. I bet that += isn’t a
feature you’d put on your resume either. We need better. Thankfully, Java
has us covered, starting from version 13.

You can refactor the noisy code with text blocks and make it nice and
concise, like so:

textblocks/vsca/CreateMessageConcise.java

​ ​public​ ​static​ String ​createMessage​() {

​ ​var​ message = ​"""​

​ ​ Thank you for your purchase. We hope you had a pleasant experience.​

​

​ ​ We request that you take a few minutes to provide your feedback.​

​

​ ​ Please fill out the survey at https://survey.example.com​

​

​ ​ If you have any questions or comments, please click on the "Support"
link​

​ ​ at https://www.example.com.​

​ ​ """​;

​

​ ​return​ message;

​ }

The refactored version produces exactly the same output as the noisy
version, but the code is easier to read and doesn’t use +=. Also, there are no
escapes for double quotes and no smelly line breaks.

To create this code, you may literally copy the text from a requirements
document, paste it into code, and add the necessary syntax before and after
to define a text block. It’s a huge win to go from the requirements to code
with such little effort.

http://media.pragprog.com/titles/vscajava/code/textblocks%2Fvsca%2FCreateMessageConcise.java

A text block starts with three double quotes """ followed by a line terminator
—they’re truly intended for multiline strings. A text block ends also with
three double quotes """, but that may appear on the same line as the ending
text or on a new line—see ​Smart Indentations​.

Before we dig further into text blocks, we should quickly take a look at how
they’re implemented at the bytecode level. Knowing this will help us to
answer questions that developers often ask about the effect of text blocks on
performance, serialization, and interoperability with other languages.

Text blocks are purely a Java compiler feature and don’t have any special
representation in the bytecode. Once the compiler processes the indentation
and escape characters, it creates a regular String. We can confirm this by
running the javap tool on the bytecode. Let’s take a look at the bytecode
generated for the previous createMessage() method that uses a text block:

textblocks/shoutput/runCreateMessageConcise.sh.output

​ ...

​ public static java.lang.String createMessage();

​ Code:

​ 0: ldc #7 // String Thank

​ you for your purchase. We hope you had a pleasant

​ experience.\n\nWe request that you take a few minutes to

​ provide your feedback.\n\nPlease fill out the survey

​ at https://survey.example.com\n\nIf you have any

​ questions or comments, please click on the \"Support\"

​ link\nat https://www.example.com.\n

​ ...

If we take a quick look at the details produced by the javap tool, we see that
the bytecode has instructions to load up a constant (ldc) value of a String. The
String contains the data created within the text block, with necessary escapes
added in for proper formatting.

There is no runtime impact to process text blocks; the compiler does the
heavy lifting. There are no serializability issues since the representation is

http://media.pragprog.com/titles/vscajava/code/textblocks%2Fshoutput%2FrunCreateMessageConcise.sh.output

the good old String and it’s intended to provide the same performance
benefits we’ve enjoyed all along. There is no interoperability issue either
since at runtime there is no concept of text blocks—it’s all merely Strings.

In addition to removing the need to concatenate texts using + or +=, Java
removes the need to use most escape characters when building a string. Let’s
take a look at that capability next.

Embedding Strings
To embed a double quote within a string we have to use escape characters.
This will result in bloated code that’s hard to maintain, especially when
working with code to generate XML or JSON documents. Text blocks
remove all that noise by letting us place single and double quotes freely
within a string. Let’s look at the benefit of this feature with an example.

Suppose we’re asked to create code to generate the following text:

​ The 'National Weather Service' has issued a "severe" thunderstorm warning

​ for tomorrow. Please """stock up""" on the essentials you'll need during

​ the adverse weather.

​

​ \Approved for general distribution\

To create this text using the common string, we may litter the code with
escape sequences, like so:

textblocks/vsca/Escapes.java

​ String message = ​"The \'National Weather Service\' has issued a "​ +

​ ​"\"severe\" thunderstorm warning\nfor tomorrow. "​ +

​ ​"Please \"\"\"stock up\"\"\" on the essentials you'll need "​ +

​ ​"during\nthe adverse weather.\n\n\\Approved for general distribution\\"​;

Good code should be inviting to the reader’s eyes. The noise of escapes will
likely dissuade even the most excited programmer eager to maintain the
code. It takes a lot of effort to change the code in these situations, and you
can forget about copying and pasting text directly from the requirements
document to code.

Thanks to text blocks, we can remove most of the noise from the previous
code.

​ ​var​ message = ​"""​

​ ​ The 'National Weather Service' has issued a "​severe​" thunderstorm warning​

http://media.pragprog.com/titles/vscajava/code/textblocks%2Fvsca%2FEscapes.java

​ ​ for tomorrow. Please \"""stock up\""" on the essentials you'll need during​

​ ​ the adverse weather.​

​

​ ​ \\Approved for general distribution\\"""​;

Since three quotes are used as a delimiter for text blocks, in the rare
occasion when three double quotes appear continuously in the text, we’ll
have to escape, but with a single backslash. Also, since backslash is used as
an escape character, we’ll have to escape that with another backslash if it
appears in the text.

As you can see, the multiline text block can handle raw strings with less
clutter, is effortless to read, easy to change, and is convenient to copy and
paste from other sources into code.

Multiline strings aren’t unique to Java; they exist in other languages. But
one of Java’s innovations is how it handles the indentation of the text. Let’s
dive into that next.

Smart Indentations
Mixing text with code won’t be a pleasant experience for programmers if the
syntax isn’t cohesive. Any embedded text should naturally flow with the
code and not stand out.

The challenge often arises from the fact that we may want to place text
within a function, in a nested if block, or within multiple levels of nested for
loops. We naturally indent code for readability, and so should the text be
indented along with code even if they’re in a nested level.

Unfortunately, in some languages that support multiline strings, placing
texts within multiple levels of nesting requires awkward indentations, the
use of special characters, or special function calls to align. Thankfully, Java
programmers don’t have to deal with any of that. Text blocks have a smart
indentation feature.

Let’s examine the capabilities of smart indentation in Java with an example.

textblocks/vsca/SmartIndentation.java

​ ​public​ ​class​ SmartIndentation {

​ ​public​ ​static​ String ​smartIndentation​() {

​ ​var​ message = ​"""​

​ ​ It is great​

​ ​ when compilers care about conventions​

​ ​ Makes our lives easier"""​;

​

​ ​return​ message;

​ }

​

​ ​public​ ​static​ ​void​ ​main​(String[] args) {

​ System.out.println(​"--------"​);

​ System.out.print(smartIndentation());

​ System.out.println(​"--------"​);

​ }

​ }

http://media.pragprog.com/titles/vscajava/code/textblocks%2Fvsca%2FSmartIndentation.java

In this example, a text wrapped in a text block appears within a method
smartIndentation(). Thus, the first line of the text is naturally indented like
code. Whereas the first and the third lines of the text have the same
indentation, the second line of text is intentionally indented more.

The indentation before the "It" on the first line and the "Makes" on the third
line is called incidental indentation. The additional two spaces of
indentation before the "when" on the second line are called essential
indentation. Of course, this essential indentation follows the incidental
indentation on the second line.

Java’s smart indentation algorithm strips out any incidental indentation from
each line and keeps only essential indentation. As a result, in the previous
example, all indentations from the first and the third lines of text are
removed. But two spaces of indentation are preserved on the second line.

The output shown next illustrates the behavior of the text block in terms of
how it treats the indentations:

​ --------

​ It is great

​ when compilers care about conventions

​ Makes our lives easier--------

Even though six spaces appeared before the word "It" in the first line of text,
those were considered incidental indentation by the algorithm and were
removed as we see in the output. The two additional spaces in the second
line considered essential are kept.

The smart indentation algorithm is quite sensible. If your intent aligns with
the algorithm’s inference, you’re all set. At the same time, if you want to
vary how the algorithm infers the indentation, that’s as easy as well.

You can convey to the algorithm that you want its default behavior by
placing the text block terminating delimiter """ at the end of the last line of

text, as in the previous example. In this case, the algorithm will consider the
number of spaces before the left-most indentation of text in the text block as
incidental indentation.

In the previous example we placed the text block terminating delimiter """ at
the end of the last line. If you’d like a new line delimiter at the end of the
last line, you may place the text block terminating delimiter """ on a new line
by itself. The incidental indentation and the essential indentation are
determined based on the indentations of each line, including the line
terminating the text block. Let’s vary the indentation for lines within a text
block by placing the ending delimiter with much less indentation than in any
of the other lines of text, like so:

textblocks/vsca/PreserveIndentation.java

​ ​public​ ​class​ PreserveIndentation {

​ ​public​ ​static​ String ​preserveIndentation​() {

​ String message = ​"""​

​ ​ If you like​

​ ​ you can ask the indentations​

​ ​ to be preserved, unaltered, like in this example.​

​ ​"""​;

​

​ ​return​ message;

​ }

​

​ ​public​ ​static​ ​void​ ​main​(String[] args) {

​ System.out.println(​"--------"​);

​ System.out.print(preserveIndentation());

​ System.out.println(​"--------"​);

​ }

​ }

The ending delimiter is placed with no indentation. Thus, in this example,
all the indentations on each line of text are considered as essential
indentations and are preserved. Check out how the text appears indented in
the output:

http://media.pragprog.com/titles/vscajava/code/textblocks%2Fvsca%2FPreserveIndentation.java

​ --------

​ If you like

​ you can ask the indentations

​ to be preserved, unaltered, like in this example.

​ --------

Experiment with the previous code; increase the indentation one space at a
time for the delimiter line and see how it alters the indentation of the text in
the output.

The Java compiler uses spaces to indicate indentations. Tabs are treated
differently by different editors and platforms and may be a source of
confusion in determining the indentation for texts inside a text block. If you
copy and paste text from a document and the text includes a combination of
tabs and spaces, the result may not be what you expect.

In the next example, the second line appears well-indented but has tabs
instead of spaces in front of the first character on that line.

textblocks/vsca/IndentationError.java

​ ​var​ message = ​"""​

​ ​ The compiler can keep an eye​

​ ​ on lines like this with​

​ ​ indentation errors"""​;

If we print the value in the message variable, the output isn’t quite what we
may like to see:

​ --------

​ The compiler can keep an eye

​ on lines like this with

​ indentation errors--------

Visually, when we see indentation of text, it’s reasonable to expect that to be
preserved. There are enough challenges already in life, and the last thing we
need is invisible non-printable characters messing with our minds and
programs’ behavior. To quickly identify issues with indentation, the Java

http://media.pragprog.com/titles/vscajava/code/textblocks%2Fvsca%2FIndentationError.java

compiler provides a compilation flag, -Xlint:text-blocks, that will produce a
warning if characters like tab appear in the text block. Compiling the
previous code with that flag generates the following warning:

​ vsca/IndentationError.java:6: warning:

​ [text-blocks] inconsistent white space indentation

​ var message = """

​ ^

​ 1 warning

Using the flag, you can get an early warning sign if the indentation is going
to be messed up. If you like, turn on the -Werror flag and have the compiler
treat warnings as errors, especially for continuous integration builds.

So far, in the examples we’ve seen, the compiler has been processing the
text blocks in code. Sometimes you may want to process text that you read
from a file or receive from a data source. You can use the same algorithms
that the compiler uses if you’d like to remove incidental indentations or
transform escape characters from the text you read or received at runtime.
To do so, use the String class’s stringIndent() and translateEscape() methods.

Next, let’s look at how trailing spaces in each line of text are handled.

Trailing Spaces and Special Escapes
If you copy and paste a block of text from a documentation into code, the
chances are that you don’t care about the trailing spaces. Some editors may
strip those out automatically. In any case, the trailing spaces may cause text
alignment issues and may not be worth the trouble of preserving unless you
want them. The Java compiler considers trailing spaces as incidental and
removes them by default.

If you want the compiler to preserve the trailing spaces, use the special \s

escape character. Also, if a line of text is too long and you’d like to break it
into two lines in code but not in the generated text, then use the backslash,
that is \, which is yet another special escape character for text blocks.

Let’s make use of these special escape characters and also observe the
behavior of trailing spaces. Here’s a code example:

textblocks/vsca/SpecialEscapes.java

​ ​public​ ​class​ SpecialEscapes {

​ ​public​ ​static​ String ​specialEscapes​() {

​ ​var​ message = ​"""​

​ ​ This line has 3 spaces in the end​

​ ​ This one has too, but is preserved \s​

​ ​ This line is appended\​

​ ​ with the next​

​ ​ This is intentionally indented. """​;

​

​ ​return​ message;

​ }

​

​ ​public​ ​static​ ​void​ ​main​(String[] args) {

​ System.out.println(specialEscapes().replaceAll(​" "​, ​"~"​));

​ }

​ }

http://media.pragprog.com/titles/vscajava/code/textblocks%2Fvsca%2FSpecialEscapes.java

The first line of text has three spaces at the end—sorry you can’t see them in
the code printout and they’ll be removed by the compiler when the text
block is processed. The second line also has three trailing spaces, but we
have a \s at the end to preserve those. On the third line we have a \ to
indicate that we don’t need a line break there.

To see the spaces, we take the text in the message variable and replace all of
the occurrences of spaces with “~”s, using the command replaceAll(" ", "~").
The result of that post-processing of the string in the text block is shown
next:

​ This~line~has~3~spaces~in~the~end

​ This~one~has~too,~but~is~preserved~~~~

​ This~line~is~appendedwith~the~next

​ ~~This~is~intentionally~indented.

The trailing spaces on the first line are gone. The trailing spaces on the
second line are preserved. The third and the fourth lines have been merged.
The last line displays the indentation we intended to keep.

Next, let’s bring all the things we’ve seen so far in this chapter together.

Creating XML Documents Using Text Blocks
Creating data in XML and/or JSON format is a common task in almost any
application. Generally, we start with a format for the data, and we write code
to produce the desired output. Those tasks can become rather tiresome if we
have to deal with concatenating many lines of strings and excessive usage of
escape characters. Let’s see how text blocks make those tasks palatable.

We’ll use an example of language names, their authors, and years of initial
release to build data in XML and JSON formats. Let’s start with two Maps,
one that has the authors as values and the other the years; both have
language names as keys.

textblocks/vsca/XML.java

​ Map<String, String> authors =

​ Map.of(​"Java"​, ​"Gosling"​, ​"Ruby"​, ​"Matsumoto"​, ​"JavaScript"​, ​"Eich"​);

​ Map<String, Integer> years =

​ Map.of(​"Java"​, 1995, ​"Ruby"​, 1996, ​"JavaScript"​, 1995);

Suppose we’re asked to create an XML document with the following
structure, where the language names appear in sorted order:

​ <languages>

​ <language name="Java">

​ <author>Gosling</author>

​ <year>1995</year>

​ </language>

​ <language name="JavaScript">

​ <author>Eich</author>

​ <year>1995</year>

​ </language>

​ <language name="Ruby">

​ <author>Matsumoto</author>

​ <year>1996</year>

​ </language>

​ </languages>

http://media.pragprog.com/titles/vscajava/code/textblocks%2Fvsca%2FXML.java

In the older versions of Java, we’ll have to write code using traditional for
loops and the full fanfare of escape characters, like so:

textblocks/vsca/XML.java

​ String document = ​"<languages>\n"​;

​

​ ​for​(String name : ​new​ TreeSet<String>(authors.keySet())) {

​ document += ​" <language name=\""​ + name + ​"\">\n"​ +

​ ​" <author>"​ + authors.get(name) + ​"</author>\n"​ +

​ ​" <year>"​ + years.get(name) + ​"</year>\n"​;

​

​ document += ​" </language>\n"​;

​ }

​

​ document += ​"</languages>"​;

The code is small but not pleasant to write. It’s hard to read, and any
programmer will hope they won’t be asked to make changes to it.

Let’s rewrite it using a text block. To make it easier to maintain code, avoid
placing text blocks inside expressions or in the arguments to function calls.
Instead, define variables to hold the text blocks and use them in expressions
and function calls.

Let’s look at the code and then discuss how we organize it around text
blocks:

textblocks/vsca/XMLConcise.java

​ ​var​ language = ​"""​

​ ​ <language name="%s">​

​ ​ <author>%s</author>​

​ ​ <year>%d</year>​

​ ​ </language>​

​ ​ """​.indent(2);

​

​ ​var​ childElements = authors.keySet()

​ .stream()

​ .sorted()

http://media.pragprog.com/titles/vscajava/code/textblocks%2Fvsca%2FXML.java
http://media.pragprog.com/titles/vscajava/code/textblocks%2Fvsca%2FXMLConcise.java

​ .map(name -> language.formatted(name, authors.get(name), years.get(name)))

​ .collect(joining(​""​));

​

​ ​return​ ​"""​

​ ​ <languages>​

​ ​ %s\​

​ ​ </languages>"""​.formatted(childElements);

Within the root element <languages>, we have child elements <language> (one
per language) that are present in the Map. We’ll first store the XML snippet
for that, as a text block, into a variable named language. Since the child
elements need to be indented within the root much more than the indentation
we have for the text block for each language, we use the indent() method to
further indent the text block by two spaces, that is, we added additional
essential indentation. We’ll then iterate over the keys from the authors Map

and generate the XML child elements for each language. We’ll use the
Stream API for this purpose.

Finally, we’ll place the child elements into a root element, again using
another text block. Since the XML elements need different pieces of data for
their attributes and child elements, we’ll use the formatted() method to
replace the formatting symbols like %s and %d with the appropriate values.
The new formatted() instance method of String is equivalent to the
String.format() static method that you’re most likely familiar with.

By merely looking at line counts we may argue that this version that uses
text blocks is lengthier. But the code is clearer, easier to understand, less
noisy, and easier to change as well when compared to the other version.

We saw how to easily create an XML document using text blocks. Text
blocks are also useful if we’re asked to generate a JSON output instead of
creating XML. Let’s take a look at an example of that next.

Creating JSON Output Using Text Blocks
Instead of creating an XML format, suppose we’re asked to create a JSON
representation of the data in the following format:

​ {

​ "languages": [

​ {

​ "language": {

​ "name": "Java",

​ "author": "Gosling",

​ "year": 1995

​ }

​ },

​ {

​ "language": {

​ "name": "JavaScript",

​ "author": "Eich",

​ "year": 1995

​ }

​ },

​ {

​ "language": {

​ "name": "Ruby",

​ "author": "Matsumoto",

​ "year": 1996

​ }

​ }

​]

​ }

Writing this code using the traditional string may be considered cruel and
unusual punishment:

textblocks/vsca/JSON.java

​ ​var​ document = ​"{\n"​ +

​ ​" \"languages\": [\n"​;

​

​ ​boolean​ first = ​true​;

http://media.pragprog.com/titles/vscajava/code/textblocks%2Fvsca%2FJSON.java

​

​ ​for​(​var​ name : ​new​ TreeSet<String>(authors.keySet())) {

​ ​if​(!first) {

​ document += ​",\n"​;

​ }

​

​ first = ​false​;

​

​ document += ​" {\n \"language\": {\n"​ +

​ ​" \"name\": \""​ + name + ​"\",\n"​ +

​ ​" \"author\": \""​ + authors.get(name) + ​"\",\n"​ +

​ ​" \"year\": "​ + years.get(name) + ​"\n"​ +

​ ​" }\n }"​;

​ }

​

​ document += ​"\n]\n}"​;

We can agree the decibel level of the code exceeded the local noise
ordinance. Bleh.

Much like how we worked the code for the XML format using text blocks,
we can start with a variable for the text block for the root element and
another for the text block for the child elements.

textblocks/vsca/JSONConcise.java

​ ​var​ language = ​"""​

​ ​ {​

​ ​ "language": {​

​ ​ "name": "%s",​

​ ​ "author": "%s",​

​ ​ "year": %d​

​ ​ }​

​ ​ }"""​.indent(4);

​

​ ​var​ childElements = authors.keySet()

​ .stream()

​ .sorted()

​ .map(name -> language.formatted(name, authors.get(name), years.get(name)))

​ .map(String::stripTrailing)

​ .collect(joining(​","​ + System.lineSeparator()));

​

http://media.pragprog.com/titles/vscajava/code/textblocks%2Fvsca%2FJSONConcise.java

​ ​return​ ​"""​

​ ​ {​

​ ​ "languages": [​

​ ​ %s​

​ ​]​

​ ​ }"""​.formatted(childElements);

Once again we make use of the formatted() method to replace the formatting
symbols with data in the string. The JSON format is clear in the code, it’s
easier to write, and approachable for change as well.

Wrapping Up
Text blocks greatly remove the burden of creating multiline strings in Java.
In addition, they remove the need for escapes to place double quotes within
strings. The newly added methods to the String class help place values into
the string representing the text blocks more easily. Text blocks actually
compile down to String and thus don’t add any runtime overhead, but they
provide all the benefits of using String.

That wraps up this part, which explored features that don’t have a direct
bytecode representation but help to improve programmer productivity. In
the next part we’ll look at features of Java that help with designing OO
code.

Copyright © 2025, The Pragmatic Bookshelf.

Part 2

Design Aid

Java is known for its support for object-oriented
programming (OOP). Arguably, it’s one of the languages

that brought OOP into the mainstream.

Records and sealed classes are two new facilities recently
added to Java to enhance OOP. When programming with
objects, each of these features serves as a good tool by

bringing clarity and ease of design. We’ll dig into these two
additions in this part and see how your OO design and code

can benefit from them.

Chapter
4

Programming with Records

Classes in OOP represent abstractions where the focus is on behavior and
the implementation is well encapsulated. Furthermore, we seek extensibility
using polymorphism and often use inheritance to represent a kind-of
relationship between abstractions. From the beginning, Java has provided
exceptional support to implement such modeling and has served us well.
But there are times when we need something simpler—an object to
represent data with little behavior. There was no easy way to implement this
in Java…until recently.

Languages like Scala and Kotlin provide data classes to specifically model
data. Java 14 introduced Records, which are data classes—classes without
the much-dreaded boilerplate code. They represent data that can’t be
modified, and even though they may have methods, they’re intended mainly
to handle data with ease. From those points of view, they automatically
implement a few methods that are necessary for common data manipulation
operations. By streamlining the implementation of data objects, Records
make it easier to work with data and make the code more concise and less
error-prone.

In this chapter you’ll first learn the problems that Records solve. Then we’ll
look at how to create Records, their capabilities and limitations, and how to
make use of them to model data. We’ll conclude by looking at how Records
can serve as tuples to create concise code with ease.

From Verbose to Succinct
Suppose you’re working on an application that needs a representation of a
location on the surface of the Earth, and you choose to model it using the
latitude and longitude values. Minimally, to represent a location, we need
two decimal fields. In the older versions of Java, we might implement that
using a class, like so:

​ ​public​ ​class​ Location { ​//The old way​

​ ​private​ ​final​ ​double​ latitude;

​ ​private​ ​final​ ​double​ longitude;

​

​ ​public​ ​Location​(​double​ latitude, ​double​ longitude) {

​ ​this​.latitude = latitude;

​ ​this​.longitude = longitude;

​ }

​

​ ​public​ ​double​ ​getLatitude​() { ​return​ latitude; }

​ ​public​ ​double​ ​getLongitude​() { ​return​ longitude; }

​ }

We defined the private fields for the latitude and longitude, marked them final
since we don’t intend to change them, wrote the constructor to initialize
those fields, and added getters for the fields. Feeling accomplished, are we?

Some developers may protest that with a good IDE we don’t have to write
all of that ourselves. We can define the fields, gently right-click on the class,
and watch the IDE vomit the rest of the code. That’s true, but once the IDE
is done, we’re left with that bulky boilerplate code forever.

Whether you wrote the entire code by yourself or let the IDE generate parts
of it, the code isn’t sufficient in spite of already containing so much
verbosity. Let’s define a main() method in the Location class, create an
instance of Location, and print it out to the console:

​ ​public​ ​static​ ​void​ ​main​(String[] args) {

​ ​var​ alcatraz = ​new​ Location(37.827, -122.423);

​

​ System.out.println(alcatraz);

​ }

The details of the instance printed by this code are rather underwhelming:

​ vsca.Location@1dbd16a6

With minimum effort, it will be great to see the details of the fields instead.
Without changing how we use the class, let’s modify the Location from being
a class to a record, like so:

records/vsca/Location.java

​ ​public​ record ​Location​(​double​ latitude, ​double​ longitude) {}

Yep, that’s it…seriously. And, yes, that’s Java. Please go ahead and wipe
those tears of joy before you read further.

That’s truly less for more, as we see from the following output, which is
creating an instance and printing it:

​ Location[latitude=37.827, longitude=-122.423]

When we print an instance of a record, the output shows the values for the
fields. This default behavior is useful but can be customized as we’ll see
later.

We didn’t have to explicitly define a constructor as that was rolled into the
succinct syntax of the record. Of course, if you want to perform some
validation or transformation of data, you can write a custom constructor as
you’ll see in ​Considering a Custom Canonical Constructor?​.

The Location defined as a record has two components, latitude and longitude,
with corresponding private, final fields. Even though we didn’t mark them
explicitly as final, the fields are immutable.

http://media.pragprog.com/titles/vscajava/code/records%2Fvsca%2FLocation.java

The succinct syntax is only the start. There are more benefits. Let’s snoop
into Records.

Components, Fields, Getters, and Metadata
Let’s start by looking at the fields of a Record and their relationships to
components. We’ll then discuss how the compiler creates getters for each
component and look at different ways to access the members and metadata
of a record.

Even though we may define ‘static‘ fields within a record, we’re not
allowed to define instance fields explicitly inside the body of a record. The
fields of a record are derived from the components listed in the definition of
the record—the list in the parentheses.

For each component, like latitude, for example, a field is defined internally
and a getter method is provided, but with the same name as the component.
Unlike the classes we create, records don’t follow the JavaBean getter
method naming convention. Thus, instead of getLatitude(), the getter method
for the latitude component is called latitude().

Since the components are immutable, their corresponding fields are final.
There are no setters for the components/fields.

Here’s an example of how to access the two components of a Location
instance we defined earlier:

​ ​var​ lat = alcatraz.latitude();

​ ​var​ lon = alcatraz.longitude();

​

​ System.out.println(lat);

​ System.out.println(lon);

The values of latitude and longitude obtained from the Location instance are
the following:

​ 37.827

​ -122.423

Since the accessor method for a component is the same as the component’s
name, we can use it concisely as a method reference in the context of the
functional style of programming. For example, if we have a collection of
Locations and want to print only their latitude values, we can write code to
transform Locations into latitude values like so:

​ locations.stream()

​ .map(Location::latitude)

​ .forEach(System.out::println);

Records are special types of classes but are classes nevertheless. They
implicitly extend from java.lang.Record, as we can see, for example, from the
details of the bytecode generated by compiling the Location class:

​ public final class vsca.Location extends java.lang.Record {

Examining the bytecode also reveals that records are implicitly marked final
and thus can’t be extended—they’re intended to be carriers of data, not a
representation of any significant business rule, logic, or behavior.

Since records are classes, we need a way to discern between classes that are
records and those that are not. The JDK has provided a function isRecord() in
the metaclass Class for this purpose. Let’s use that function to examine
instances of two different classes:

​ System.out.println(​"hello a record: "​ + ​"hello"​.getClass().isRecord());

​ System.out.println(​"alcatraz a record: "​ + alcatraz.getClass().isRecord());

The output shows that hello, which is an instance of String, isn’t a record but
an instance of Location is a record:

​ hello a record: false

​ alcatraz a record: true

Since records are carriers of data, the JDK provides an easy way to access
the data within records, using a getRecordComponents() method of the

metaclass Class. The method returns a collection of
java.lang.reflect.RecordComponent, which provides many details of the
components. We can use this to dynamically query the details in a record,
like in the following example:

​ ​for​(RecordComponent component : alcatraz.getClass().getRecordComponents()) {

​ ​var​ name = component.getName();

​ ​var​ type = component.getType();

​ Object value = component.getAccessor().invoke(alcatraz);

​

​ System.out.println(type + ​" "​ + name + ​" has value "​ + value);

​ }

The getName() method returns the name, as String, of the component that’s
represented by an instance of RecordComponent. The getType() returns the
Class metadata for the component’s type. The getAccessor() returns a
java.lang.reflect.Method instance that can be used to invoke the method—the
accessor—to get the value of the component. Here’s the output from the
previous code snippet:

​ double latitude has value 37.827

​ double longitude has value -122.423

Next, we’ll examine the immutable nature of records and their limitations.

Extent of Immutability
Records as carriers of data are intended to be used to pass data around in
enterprise applications. Typically, data travels from a data source, like a
database or a web service, through services and controllers, where it gets
transformed before being presented to the users. In such applications,
generally mutating data often leads to errors and even concurrency issues
potentially. Transforming the data without mutating is a much safer
approach, and Records were designed with this in mind.

The data in a record isn’t intended to be mutated. In that spirit, the fields
that are behind components of a record are all declared final and the
references can’t be mutated.

Let’s attempt to perform the disallowed operation of mutating a field of an
instance of Location:

​ ​var​ alcatraz = ​new​ Location(37.827, -122.423);

​

​ alcatraz.latitude = 0.0;

This code will be met with a stern error message from the compiler:

​ vsca/Location.java:8:

​ error: cannot assign a value to final variable latitude

​ alcatraz.latitude = 0.0;

​ ^

​ 1 error

The message clearly conveys that the field is final and can’t be changed. A
record’s components’ references are all initialized at the time of the instance
initialization and can’t be modified after that.

The scope of immutability in Java is limited to the values and references
marked final and doesn’t influence any instances referenced. That’s been

the case since the beginning of the language and the same rule extends to
how components of a record are treated. For a record to be totally
immutable, all its members should also be immutable. Otherwise, only
shallow immutability is enforced with records.

Let’s take a closer look at this so we can avoid the mistake of assuming
records guarantee immutability. Suppose we have a Server record that holds
details about a server in an enterprise.

​ ​public​ record ​Server​(String id, StringBuilder name) { ​//Bad idea​

​ ​public​ ​static​ ​void​ ​main​(String[] args) {

​ ​var​ server1 = ​new​ Server(​"S1"​, ​new​ StringBuilder(​"app1"​));

​

​ System.out.println(server1);

​

​ ​//Can't assign to server1.id​

​ ​//Can't assign to server1.name​

​

​ server1.name().append(​"--production"​);

​

​ System.out.println(server1);

​ }

​ }

The id component is defined as a String, but the name component is defined
as a StringBuilder. The latter is a bad idea. Both id and name references are
immutable since they’re implicitly marked final. The value referenced by id
is immutable since instances of String are immutable. But instances of
StringBuilder aren’t immutable and may possibly change. In the main()

method, even though we couldn’t directly assign to id or name, we’re
changing the value in the instance referenced from name using the append()
method. Thus, the value in the record instance referenced by server1 is
different before and after the call to append(), as we see in this output:

​ Server[id=S1, name=app1]

​ Server[id=S1, name=app1--production]

Use caution when designing with records:

Where possible, make sure the components’ types are themselves
immutable, like String or other records for instance.

When creating an instance of a record, if a component’s type is an
interface or an abstract base class, choose an implementation that’s
immutable. For example, if a component’s type is List<String>, choose
an immutable instance returned by List.of() or List.copyOf() instead of an
instance of ArrayList<String>.

When using a record don’t mutate any of its members. Design your
code fully knowing that records aren’t intended to be altered.

We saw how the fields generated for components of a Record are implicitly
declared final. The Java compiler goes further, to automatically define some
methods for Records. Let’s take a look at that next.

Built-in Methods
When working with data objects, we often go beyond creating an instance
and accessing its fields. We may use data objects as keys in a Map, compare
the equality of different data objects, and want to display the values
contained in data objects quickly. To make working with data easier and
less error-prone, Java Records provide a buy-one-get-five-free offer by
automatically creating a few methods. You can use these built-in methods
readily, and you may also override them if you desire.

When you define a record in its most rudimentary form, you automatically
get:

a constructor to initialize the fields for each of the components
getters for each of the components
a toString() method to display the values of each component
an equals() method for value-based comparison
a hashCode() method that creates an appropriate hash code value for the
record instance based on the values in the components

The canonical constructor is automatically generated so that each of the
fields corresponding to the components is initialized in the same order as
they appear in the parameter list you provide in the record declaration.

For each of the components, a getter method is automatically created. The
return type of the method is the same as that of the corresponding
component. The name of the method is the same as the name of the
component.

A toString() method is provided for the record and it returns a String
representation of each component in the form of its name and its value.

The equals() method that’s provided automatically will return true if two
instances of record are of the same type and if each of the components of

the records has equal values.

The hashCode() method, as you know, goes hand-in-hand with the equals()
method. If one is overridden in a class, the other is required to be
implemented correctly as well. Such concerns are removed by the default
implementation of the hashCode() method along with the equals() method in
records.

Even though these five methods are provided, you may override any of
them to provide your own custom implementations. When overriding the
methods, make sure to keep the return type and the behavior consistent with
the expectations of the default implementation provided in records. Of
course, if you override either the equals() method or the hashCode() method,
then make sure to override and correctly implement the other method as
well.

Let’s quickly exercise each of the methods provided by default on an
instance of the Location record.

​ ​var​ location1 = ​new​ Location(40.6892, -74.0445);

​ ​var​ location2 = ​new​ Location(40.6892, -74.0445);

​ ​var​ location3 = ​new​ Location(27.9881, 86.9250);

​

​ System.out.println(location1.latitude());

​ System.out.println(location1); ​//using toString()​

​

​ System.out.println(location1.hashCode());

​ System.out.println(location2.hashCode());

​ System.out.println(location3.hashCode());

​

​ System.out.println(location1.equals(location2));

​ System.out.println(location1.equals(location3));

We created three instances of Location using the automatically generated
canonical constructor. We then used the latitude() getter to access the value
of the latitude component from within the first instance of Location. The call

to println() internally uses a call to toString() on the provided instance of
Location. We then examined the results of calls to hashCode() on each of the
three instances of Location. Finally, we output the result of comparing
objects by value. Let’s take a peek at the output:

​ 40.6892

​ Location[latitude=40.6892, longitude=-74.0445]

​ 2126295952

​ 2126295952

​ -140122403

​ true

​ false

The default implementation of toString() promptly returned the name and
value for each of the components of the record. The hash code values for
the first two instances of Location are the same, but the value is different for
the third instance. This is because the components’ values are the same for
the first two instances but different for the third instance. For the same
reason, the comparison of the first two instances using the equals() method
resulted in true, whereas the comparison of the first and the third instances
ended up as false.

You saw how Records act like lightweight classes, but you may be curious
if you can implement interfaces. The answer is yes. Let’s take a look at
when that might be a good idea.

Implementing Interfaces
Records, being classes, are permitted to implement interfaces. What
interfaces a record may implement is of course domain- and application-
dependent. It may be hard to imagine why a record would implement
interfaces like Runnable or Callable<T>. But it’s conceivable that a record
could implement interfaces that may provide consistency in data handling.

There’s nothing special about implementing an interface for a record when
compared to implementing an interface for classes. Let’s confirm that with
an example.

Suppose we have an interface named Json that’s used by a module to
generate JSON representations of objects. The interface has only one
method generateJson(), like so:

​ ​public​ ​interface​ Json {

​ String ​generateJson​();

​ }

We can easily evolve the Location record to implement the Json interface:

​ ​public​ record ​Location​(​double​ latitude, ​double​ longitude) ​implements​ Json {

​ @Override

​ ​public​ String ​generateJson​() {

​ ​return​ ​"""​

​ ​ {​

​ ​ "latitude": %g,​

​ ​ "longitude": %g​

​ ​ }​

​ ​ """​.formatted(latitude, longitude);

​ }

​ }

Within the generateJson() method in the Location class, we’re using the text
blocks feature to generate a JSON representation of the data carried by the

record. Since the Location record implements the Json interface, we can pass
an instance of Location to anywhere an implementation of the Json interface
is expected.

Don’t go overboard implementing interfaces in records. Use them sparingly
where it makes sense to convey compliances, via interfaces, to some data
handling operations. Keep in mind that data objects are intended as carriers
of data and aren’t representations of abstractions with behavior.

It feels natural to implement interfaces in records since records are classes.
But not everything that’s true for classes is true for records, and for good
reasons, as we’ll see next.

Restrictions for the Greater Good
Records are classes in the sense that we can create instances of them. They
follow the normal object lifetime, and we can pass them around just as we
pass instances of classes. But records aren’t like classes from the point of
view of creating abstractions to represent behaviors or business logic.
They’re instead highly specialized to carry around data. As a result, it
doesn’t make sense to expect them to be extensible like normal classes.
This means that:

Records aren’t allowed to extend from any classes or other records.
Records can’t serve as a base class.

We took a quick look at the bytecode that was generated from the earlier
version of the Location class in ​Components, Fields, Getters, and Metadata​.
Let’s look at it again here:

​ public final class vsca.Location extends java.lang.Record {

In the bytecode, the class representing the record Location is marked as final.
That tells us that we can’t have any subclasses of a record, just like we can’t
extend from the String class. This is good news from the modeling point of
view—by preventing the capability to extend, we don’t have any incidental
replacement of instances at runtime with an instance of a different type than
what is intended. The compiler can optimize code and make decisions
knowing that there will be no instances of any subclasses where a record is
expected.

In Java, classes can extend from only one class. Normally, if you don’t
extend a class from another specific class, it automatically extends from
java.lang.Object. Though it’s totally useless to write, you could extend a class
from java.lang.Object if you like redundancies. Records work differently than
classes in this area of extending from a base.

Records automatically extend from java.lang.Record in the same way that
classes automatically extend from java.lang.Object. But the similarity of how
classes and records are treated from the inheritance point of view ends right
there. Classes are allowed to extend from any nonfinal class, including
Object. But you can’t explicitly extend a record from anything, not even
java.lang.Record.

Suppose you try to extend a record from a class, for example, the
java.lang.Record:

​ ​public​ record ​Project​(String name) ​extends​ Record {}

The compiler will act surprised. It doesn’t expect to see the word extends:

​ vsca/Project.java:4: error: '{' expected

​ public record Project(String name) extends Record {}

​ ^

​ 1 error

Records form a rather flat hierarchy from the inheritance point of view.
They may implement interfaces but don’t have any superclasses (other than
the implicit base java.lang.Record) or subclasses.

In addition to these differences, Records also offer a subtle difference in
how we may write constructors, as we’ll see next.

Considering a Custom Canonical Constructor?
Java allows you to create a canonical constructor for Records, but also
provides a newer compact constructor—we’ll see what this is soon. If
you’re writing a new Record from scratch, as you’ll see, you would want to
write a compact constructor. If you’re refactoring an existing class to a
Record, you may continue to keep the canonical constructor until you get
the chance to refactor it to a compact constructor. In this section we’ll take a
look at temporarily creating (or keeping) a custom canonical constructor
and at why we may want to eventually convert that into a compact
constructor.

In OOP, constructors serve a few different purposes. They’re useful to
initialize fields with data given as parameters. They may also often perform
validation of data, fill in default values for fields, cleanse data, and so on. If
you only need to initialize the fields corresponding to the components of a
record, you don’t need to write any constructors. The compiler takes care of
creating the canonical constructor, and you can enjoy the automatically
created constructor without having to waste any effort to initialize records.

If you want to validate, transform, or cleanse data then you may want to
write your own canonical constructor. Alternatively, you may write the
compact constructor to save some effort. If you want to initialize a record
with parameters other than the components, then you may want to write
your own noncanonical constructor. Using the Location record as an
example, we’ll discuss the different options, which ones to choose, and how
to implement these constructors.

In the records we created so far, we didn’t write any constructors. The
compiler generated a constructor for each record, but that doesn’t do a
whole lot other than setting values into the respective fields that correspond
to the components. That may be sufficient to start with until the business

requirements demand that more work be done during the construction of a
record.

Let’s say we just got word from the business folks that we need to perform
some alterations to the Location record we started this chapter with. They
want us to validate that the values for latitude and longitude are within a
meaningful range. Also, they want us to round off only the value of latitude
to the nearest two decimal places. Looks like it’s time to roll out our own
custom canonical constructor.

Writing a custom constructor for a record isn’t too different from writing a
constructor for a class. Instead of letting the compiler autogenerate the
canonical constructor, let’s implement it for the Location record:

​ ​public​ record ​Location​(​double​ latitude, ​double​ longitude) {

​ ​public​ ​Location​(​double​ latitude, ​double​ longitude) { ​//not preferrable​

​ ​if​(latitude < -90 || latitude > 90 ||

​ longitude < -180 || longitude > 180) {

​ ​throw​ ​new​ ​RuntimeException​(​"The location is out of this world"​);

​ }

​

​ ​this​.latitude = Math.round(latitude * 100.0) / 100.0;

​ ​this​.longitude = longitude;

​ }

​

​ }

We check if the values for the latitude and longitude parameters are within
the desired range and, if not, throw an exception. Instead of using a
RuntimeException, we can use our own domain-specific exceptions as well. If
the validation passes, we round off the value in the latitude parameter and
save it into the latitude field of this instance. On the other hand, we save the
longitude value into the field without any transformation.

That was easy, but the constructor is a tad more verbose than we may want,
given that records are concise compared to classes. We’ve also duplicated

the parameter list from the declaration of the record into the parameter list
of the constructor. It’s known that duplication increases the chances of
errors and decreases reputation. Java is ready to reduce those anxieties with
the compact constructor.

Preferring the Compact Constructor
Even though Java allows us to create a custom canonical constructor, it’s
better to create a more concise compact constructor for Records. If you’re
converting a class to a Record, then remember to refactor your canonical
constructor to a compact constructor. In this section we’ll discuss the
reasons and see how to create a compact constructor.

Think of the compact constructor more like a preprocessor than a
constructor. It’s invoked before the autogenerated canonical constructor is
called. The compact constructor doesn’t have a parameter list. The
parameters provided on the declaration line of the record are available
within the compact constructor. Since the actual constructor hasn’t been
invoked yet, we can’t access this anywhere in the compact constructor. Use
the compact constructor to validate, transform, and/or cleanse data, and
leave the initialization of the fields to the autogenerated canonical
constructor.

Let’s discard the custom canonical constructor we wrote for Location and
instead write the compact constructor. In the compact constructor, we’ll
check that the values of the parameters are within the desired range and also
change the value for the parameter latitude to the rounded-off value. We’ll
stop shy of actually setting the fields, however. Once we return from the
compact constructor, the autogenerated constructor will kick in to initialize
the fields with the transformed values from the compact constructor. Let’s
take a look:

​ ​public​ record ​Location​(​double​ latitude, ​double​ longitude) {

​ ​public​ Location {

​ ​if​(latitude < -90 || latitude > 90 ||

​ longitude < -180 || longitude > 180) {

​ ​throw​ ​new​ ​RuntimeException​(​"The location is out of this world"​);

​ }

​

​ latitude = Math.round(latitude * 100.0) / 100.0;

​ }

​ }

The compact constructor doesn’t have any parameter list, instead, it uses the
record’s component declaration. Also, we’re not initializing any field from
within the compact constructor—again, this isn’t accessible from within the
compact constructor. We validated the parameters and transformed the
latitude. That’s it.

It may help to think of the compact constructor as a filter or a map
operation between the code that creates an instance and the autogenerated
constructor that completes the initialization.

Let’s make use of the new version of the Location record, this time to first
create an instance that will fail validation and then create another instance
where the latitude value needs to be rounded off.

​ ​try​ {

​ ​new​ ​Location​(37.827, -222.423);

​ } ​catch​(RuntimeException ex) {

​ System.out.println(ex);

​ }

​

​ ​var​ alcatraz = ​new​ Location(37.827, -122.423);

​

​ System.out.println(alcatraz);

Based on the compact constructor we wrote, the first instantiation should
fail but the second one should succeed. Also, the printout of the instance
should show the latitude value has been rounded off.

​ java.lang.RuntimeException: The location is out of this world

​ Location[latitude=37.83, longitude=-122.423]

Besides being concise, the compact constructor also removes some
redundancies that exist in a canonical constructor. If a class has multiple
fields, but we want to validate and/or transform only some fields, we don’t

have to duplicate the effort to set the fields that aren’t affected. This keeps
the code DRY—see The Pragmatic Programmer, 20th Anniversary
Edition [TH19] by Andy Hunt and Dave Thomas. Also, if we add a new
component to the record but don’t need to validate or transform it, then we
don’t have to change the compact constructor. This makes the code more
extensible and honors the Open-Closed Principle—see Agile Software
Development, Principles, Patterns, and Practices [Mar02] by Robert
Martin.

Let’s recap what we’ve done. You may write a compact constructor or a
custom canonical constructor, but not both. If you only want to initialize
fields and have no need to validate or transform data, then don’t write either
the compact constructor or the canonical constructor. The default
constructor provided is adequate in this case. But if you need to write one,
then write the compact constructor instead of the custom canonical
constructor, as that’s simpler, less verbose, less error-prone, and simply
looks cool compared to the all-too-familiar constructor.

We don’t want to write a canonical constructor, but you may wonder about
the noncanonical constructors. Let’s look into that next.

Creating a Custom Noncanonical Constructor
Sometimes you may want to write a custom noncanonical constructor. For
example, if you receive locations as string, in the format "lat:lon" and want
to easily initialize an instance of Location, having a constructor for that will
be convenient. Let’s next see how to add a noncanonical constructor to the
Location record.

​ ​public​ record ​Location​(​double​ latitude, ​double​ longitude) {

​ ​public​ Location {

​ ​if​(latitude < -90 || latitude > 90 ||

​ longitude < -180 || longitude > 180) {

​ ​throw​ ​new​ ​RuntimeException​(​"The location is out of this world"​);

​ }

​

​ latitude = Math.round(latitude * 100.0) / 100.0;

​ }

​

​ ​public​ ​Location​(String position) {

​ ​this​(Double.parseDouble(position.split(​":"​)[0]),

​ Double.parseDouble(position.split(​":"​)[1]));

​ }

​ }

A noncanonical constructor looks like any constructor we’d generally write,
but it has to call the canonical constructor or another noncanonical
constructor as the first statement. Even though in this example we have the
compact constructor, to write a noncanonical constructor, we don’t have to
write the canonical constructor or the compact constructor.

The conciseness of records spills over to writing constructors as well. We’ll
see how the data carrier nature of records helps to use them as tuples next.

(Local) Records as Tuples
A tuple is an immutable data structure of a finite ordered sequence of
elements. For example, in some languages that support tuples, ("Tom",

"Jerry") may be a tuple representing a pair of names. Likewise, ("GOOG", 122,

116, 119) may be a tuple that represents a stock ticker symbol followed by a
list of high, low, and closing prices for a day.

Tuples make programming easier. When we need to put a bunch of values
together into a group, but don’t want to be spending time and effort creating
a class, Tuples are very helpful. They provide the ability to group different
properties together as classes do, but without having to create a full-blown
class—they’re lightweight to instantiate, use, and discard.

Quite a few languages—C#, Haskell, Python, and Scala, to mention a few
—have tuples. Kotlin provides Pair and Triple. Java, or more precisely the
JDK, doesn’t have tuples, but we can use records instead. Java records are a
nice substitute for the lack of tuples in the JDK.

As we’ve seen so far, records are much easier to define than classes. From
that point of view, they’re nice and easy and lean towards the lightweight
nature of tuples. Like classes, records can be reused anywhere in an
application once they’re defined in a package with public visibility. But if
you want to use a record as a tuple within a function, then you can define it
right there in the function, as a local record. In this case, the record is
visible only within the method where it’s defined and is neither intended
nor available for use outside.

Let’s look at a use case for local records and how they can serve as tuples.

Suppose we’re asked to get the stock prices for a bunch of ticker symbols
and print them if the price is greater than $500. Let’s start with a class Stocks

with a method simulatePrice() to simulate fetching the stock price for a given

ticker. For the purpose of this example, we create a fake stock price by
adding 200 to the sum of the ASCII values of the characters that make up a
ticker.

​ ​public​ ​class​ Stocks {

​ ​public​ ​static​ ​int​ ​simulatePrice​(String ticker) {

​ ​return​ 200 + ticker.chars().sum();

​ }

​

​ ​public​ ​static​ ​void​ ​main​(String[] args) {

​ ​var​ tickers = List.of(​"GOOG"​, ​"MSFT"​, ​"AMZN"​, ​"ORCL"​, ​"INTC"​);

​

​ printPricesOver500(tickers);

​ }

​ }

In the main() method we’re using a yet-to-be-written printPricesOver500()

method to print the prices of stocks over $500 from among a list of ticker
symbols that we pass to it.

Given a list of ticker symbols, we can easily write code using the functional
style and the Stream API to get the price, filter values greater than $500, and
print, like so:

​ ​public​ ​static​ ​void​ ​printPricesOver500​(List<String> tickers) {

​ tickers.stream()

​ .map(ticker -> simulatePrice(ticker))

​ .filter(price -> price > 500)

​ .forEach(System.out::println);

​ }

The map() function transforms a collection of ticker symbols into a
collection of prices, and the filter() function lets only prices greater than the
desired value pass through. Finally, we print the result in the forEach()

method. Let’s take a look at the output:

​ 514

​ 510

​ 504

​ 502

It worked, but the output is rather obtuse. Presenting raw numbers like that
isn’t going to please any business. We need to format the output to be more
presentable and meaningful.

Looking at the functional pipeline, however, we lose some useful
information in the middle of the pipeline. When we get to the filter()

method, we only have the price and not the ticker symbol. Instead of
sending only the price to filter(), the map() function needs to send both the
ticker and the price as a tuple. Then the filter() method can check the price
and forward the tuples that meet the expectations to the forEach() method.

Since we’re printing the results out at the end of the functional pipeline, we
need the tuple only within this function. It’s not necessary outside of
printPricesOver500(). A local record would work quite well for this problem.

We can define a record, Stock, right within the printPricesOver500() method.
The record can have two components, ticker and price. Instead of using the
default implementation the compiler provides, we can implement a nice
toString() method, to format the output the way we desire. Then we can
create an instance of the local record Stock in the map(), check its price value
in the filter(), and finally use the forEach() method to iterate over the
instances. The overridden toString() method will be invoked automatically
when forEach calls the println() method to print the instances. Let’s
implement that plan:

​ ​public​ ​static​ ​void​ ​printPricesOver500​(List<String> tickers) {

​ record ​Stock​(String ticker, ​int​ price) {

​ @Override

​ ​public​ String ​toString​() {

​ ​return​ String.format(​"Ticker: %s Price: $%d"​, ticker, price);

​ }

​ }

​

​ tickers.stream()

​ .map(ticker -> ​new​ Stock(ticker, simulatePrice(ticker)))

​ .filter(stock -> stock.price() > 500)

​ .forEach(System.out::println);

​ }

The function has the local record definition at the top and uses instances of
it from within the functional pipeline. Let’s check out the output of the
code:

​ Ticker: MSFT Price: $514

​ Ticker: AMZN Price: $510

​ Ticker: ORCL Price: $504

​ Ticker: INTC Price: $502

This is the same sequence of prices, but the output has more context on
each line, with the ticker symbol and the corresponding price values.

Within reason, anywhere we’d like to use a tuple, we can create a local
record and write code, with type safety, to make use of the different
properties in the local grouping of data.

Wrapping Up
Records in Java are data classes that hold immutable data. Records remove
boilerplate code and provide some built-in methods to easily work with
data. Unlike classes, records aren’t intended to abstract behavior but to be
used as carriers of data across enterprise applications. Records may also be
used to represent tuples for easy creation of a finite sequence of data.

In the next chapter we’ll look at another feature in Java that’s also geared
towards better OO design: sealed classes.

Copyright © 2025, The Pragmatic Bookshelf.

Chapter
5

Designing with Sealed Classes
and Interfaces

From the outset, Java has supported both abstract base classes and final
classes. These represent two extremes: abstract base classes can have any
number of subclasses whereas final classes can have none. That’s an all-or-
nothing proposition. Sometimes we need something in between; we need to
be able to restrict the specific subclasses a class may have.

The need to restrict subclasses may arise if you create libraries. It may also
arise if your application facilitates a plugin architecture and other
developers provide modules to integrate at runtime. In such cases, you may
intend for them to use your interfaces and classes but you may not want to
allow them to inherit from your classes or interfaces.

You may wonder what options exist to disallow external inheritance from
your classes or interfaces. A compile-time failure is much better than a
runtime failure. If you don’t want others to implement an interface or
extend from a class, you’d much rather want them to know that when they
compile their code instead of finding that out at runtime. A compile time
check will clearly and quickly convey the intent to the users of your code,
save their time debugging, and save you from spending time writing code to
perform runtime checks.

To facilitate such requirements, Java has evolved to include sealed classes
and sealed interfaces. An interface or a class marked as sealed clearly
specifies what can be implemented or extended from it. This provides a way
to close the hierarchy with only the desired members. Any attempt to
extend the hierarchy further will result in a compilation error.

In this chapter we’ll take a close look at the features of sealed interfaces and
classes, the restrictions around their use, and how to design with them.

Need for a Closed Hierarchy
We use classes for abstraction and modeling in applications when we’re
coding with the object-oriented programming paradigm—see Types and
Programming Languages [Pie02] by Benjamin C. Pierce and Thinking in
Java [Eck06] by Bruce Eckel. We often create interfaces, abstract base
classes, classes that implement interfaces and extend other classes, and also
mark some classes as final when we don’t want anyone to extend from them.
In spite of all that richness, when creating OO applications, earlier versions
of Java lacked a capability that may be necessary when a library of code
can be used by others, especially third-party developers. Let’s consider a
hypothetical application where we may have to restrict the inheritance
hierarchy and discuss some traditional design options that have been
available. This will help us to get a good understanding of the problem
before we move on to exploring the solution available in more recent
versions of Java.

Choosing Between enums and sealed Classes
Like sealed classes, enums also provide the capability to create a closed
hierarchy. "Should we choose an enum or sealed classes?" is a reasonable
question.

Prefer enum if you’re designing a closed set of fixed predetermined constants,
like the JDK’s DayOfWeek[6] enum. The values that are part of an enum share the
same properties and methods.

To close the hierarchy of classes that aren’t part of a fixed set of constants use
sealed. Unlike enums, sealed classes that are part of a closed hierarchy may have
different methods and properties. You also have the flexibility to extend the
hierarchy to multiple levels.

Suppose the Department of Transportation (DOT) for a region wants to
build a new application for their traffic control system. Central to their

application are a few entities, including a TrafficLight represented as an
abstract base class and a PowerSource represented as an interface.
Implementations and use of traffic lights may be governed by conventions
and laws prevalent in the region. Thus the department wants to strictly
control the classes that may extend the TrafficLight and those that may
implement the PowerSource.

The developers working for the DOT plan to create the application along
with a core library that will contain their classes and interfaces. The DOT
wants to enable other authorized applications to be able to control the traffic
lights via plugins. For instance, they want to allow the fire department to
turn all traffic lights at an intersection red for an approaching fire truck.
Likewise, the police department, the ambulance operators, the public works
department, and similar authorized authorities may want to exercise a
different set of controls over the lights’ behavior.

The requirements from the DOT state that they control the classes that
derive from the TrafficLight and PowerSource. Other applications may interact
with TrafficLight and PowerSource but aren’t allowed to create subclasses that
extend or implement them. From the OOP point of view, third-party
applications may use the relationships of association or aggregation on
TrafficLight and PowerSource but inheritance shouldn’t be allowed.

Traditionally, we had a few options to implement these requirements.

As one option we could check the type of the object being instantiated in
the constructor of the abstract class TrafficLight. If the class that corresponds
to this at runtime isn’t one of the types permitted by the library then we
could throw an exception. There are at least two disadvantages to this
approach. First, this is a runtime failure. It doesn’t prevent third-party
developers from extending from TrafficLight but will fail at runtime if they
do. This approach won’t provide a pleasant experience for any developer.
This solution will only work for classes and abstract classes to restrict their

hierarchy; it can’t prevent implementations from an interface like the
PowerSource.

Another option might be to make the constructor of the TrafficLight package
private instead of being public. Third-party classes that inherit from
TrafficLight will get a compile-time error that they can’t access the
constructor. This is a notch better than the first option but has some serious
limitations. All the derived classes have to be in the same package as
TrafficLight, and that places limitations on the developers writing the DOT
application. Also, the solution is a roundabout way to implement the
requirements and the intention isn’t clear. To address that, instead of writing
self-documenting code, the developers will have to write documentations
separately. Alas, this solution also won’t help to restrict the hierarchy of
interfaces.

As yet another option, we could consider including performing instanceof
checks at multiple places, but that’s tedious, can lead to duplicated code, is
error-prone, and is also a fail-painfully-slow approach instead of a fast fail.

A determined team of developers may forge ahead to devise custom
annotations to constrain and validate inheritance. This will require defining
annotations, writing validators, creating annotation processors, testing, and
efforts to make sure all that works properly. This option is a lot of effort,
will increase the development and maintenance cost, and is error-prone.

Sadly, none of these options are good for restricting the inheritance
hierarchy. When languages come up deficient, programmers resort to
hacking. Thankfully, Java is no longer lacking the capabilities we need, so
we don’t have to be hacking. Let’s see how the sealed classes and interface
features of Java solve the problem elegantly.

Using sealed
Starting with Java 15, we can mark an interface or a class with the sealed
keyword. A sealed interface or class provides, implicitly or explicitly, a
permits list of derived interfaces or classes. Any interface or class that isn’t
in the list is disallowed from inheriting the sealed interface or class.

The creators of an interface or a class decide which classes should be
permitted to be part of the inheritance hierarchy. Only those who have the
ability to access and modify the source code for the interface or class will be
able to modify the hierarchy at anytime in the future.

The permits list defined by the authors of the interface or class is stored as
metadata in the bytecode. The Java compiler, when compiling interfaces and
classes, checks to see if the base interface or class is sealed and, if so,
continues to verify that the derived interface or class is in the permits list of
the base interface or class. If the base is sealed and the derived isn’t in the
permits list, the compilation fails—fast fail for the win. Furthermore, the
intent is expressed clearly with sealed and the error message on violation is
pretty darn clear as well. Let’s see all this goodness by creating the entities
for the DOT application we discussed in the previous section.

We’ll create the TrafficLight abstract base class as a sealed class and define a
couple of classes that extend from it in the same file:

sealed/ex1/dot/lights/TrafficLight.java

​ ​package​ ​dot.lights​;

​

​ ​public​ sealed ​abstract​ ​class​ TrafficLight {

​ ​public​ ​void​ ​turnRed​() {}

​ ​public​ ​void​ ​turnYellow​() {}

​ ​public​ ​void​ ​turnGreen​() {}

​ ​//...​

​ }

http://media.pragprog.com/titles/vscajava/code/sealed%2Fex1%2Fdot%2Flights%2FTrafficLight.java

​

​ ​final​ ​class​ VerticalTrafficLight ​extends​ TrafficLight {}

​ ​final​ ​class​ HorizontalTrafficLight ​extends​ TrafficLight {}

Since we’re mainly focused on the inheritance hierarchy, we can pretty
much ignore the methods within classes from our discussions in this chapter.

The TrafficLight is an abstract base class and is visible outside the package
since it’s declared public. Those are the capabilities that have existed in
Java since the beginning. The main difference here is the use of the sealed
keyword.

By marking the class as sealed, we’re telling the compiler to recognize the
permitted list of classes that can inherit from this class. But we haven’t listed
any classes, you protest. Good observation. If we don’t provide the permits
list, then all the subclasses of a sealed class are required to be in the same
file. That’s the default behavior and can be useful in some limited cases.
We’ll see later how to provide an explicit permits list and keep derived
classes outside of the file where the base is defined.

The DOT currently uses only two kinds of TrafficLights, but more might be
added in the future by their staff. The VerticalTrafficLight stands vertical,
encompasses a red light on top followed by yellow and green, and extends
from TrafficLight. Likewise, the HorizontalTrafficLight, which would stand
horizontal as the name alludes to, also extends from TrafficLight.

A sealed class is required to have at least one derived class. Otherwise, the
compiler will give an error—you might as well define a class final if you
don’t plan to have any derived classes.

From the given code, we can see that TrafficLight can have only two derived
classes. But for the inheritance hierarchy to be closed, we need to ensure
that no one can extend from VerticalTrafficLight or HorizontalTrafficLight. For
this reason, we marked both of those classes as final. If you remove final

from either of those class declarations, you’ll get a compilation error. We’ll
discuss options other than final for the derived classes in ​Constraints on the
Subclasses​.

We used the default behavior for the sealed class permits list in the previous
code. Implicitly, we’ve told the compiler that only classes inheriting from
the sealed class and residing in the same file as the base are permitted.
That’s nice, but that leads to some limitations.

Having multiple classes in the same file may not be convenient if the classes
were to grow in size. Use this default facility only if the classes are small.

Since we can’t have multiple top-level public classes in one file, we can’t
mark VerticalTrafficLight or HorizontalTrafficLight as public. Thus, these two
classes aren’t visible from outside the package. That may be a feature or a
flaw depending on our overall design objective. If visibility from outside the
package to these classes is needed, then use an explicit permits list—see ​
Using the permits Clause​. In a modular design, we often want external code
to only use our interfaces (or abstract base classes), and we may want to
provide access to our classes only through a factory. In such a case, keeping
the derived classes as nonpublic, that is package-private, isn’t an issue.

It’s likely that we don’t want to expose the VerticalTrafficLight or
HorizontalTrafficLight for direct access from the outside. Keeping them as
package-private works well for our purpose. Let’s create a factory to get
access to them in such a way they’re only seen as TrafficLight from the
outside:

sealed/ex1/dot/lights/TrafficLightFactory.java

​ ​package​ ​dot.lights​;

​

​ ​public​ ​class​ TrafficLightFactory {

​ ​public​ ​static​ TrafficLight ​createVertical​() {

​ ​return​ ​new​ ​VerticalTrafficLight​();

​ }

http://media.pragprog.com/titles/vscajava/code/sealed%2Fex1%2Fdot%2Flights%2FTrafficLightFactory.java

​

​ ​public​ ​static​ TrafficLight ​createHorizontal​() {

​ ​return​ ​new​ ​HorizontalTrafficLight​();

​ }

​ }

The methods of the factory return a reference of the type TrafficLight but the
instances may be of either of the derived classes.

In the example so far, we marked an abstract base class as sealed. We can
mark regular classes as sealed as well, but we’re not allowed to mix final and
sealed for obvious reasons. We can also mark an interface as sealed—see ​
Constraints on the Subclasses​.

In addition to the language syntax changes, the JDK has evolved to support
sealed classes. Let’s take a look at that next.

Sealed Related Metadata
Let’s write a small piece of code to use the classes we’ve written so far for
the DOT application. This will help us to verify that the code we’ve written
using the sealed class compiles. The example will also help us to explore an
addition of sealed class–related metadata to the JDK.

sealed/ex1/dot/use/Examine.java

​ ​package​ ​dot.use​;

​

​ ​import​ ​dot.lights.TrafficLight​;

​ ​import​ ​dot.lights.TrafficLightFactory​;

​

​ ​public​ ​class​ Examine {

​ ​public​ ​static​ ​void​ ​printInfo​(Class<? ​extends​ TrafficLight> klass) {

​ System.out.println(klass.getSimpleName());

​ System.out.println(​"Sealed?: "​ + klass.isSealed());

​

​ System.out.println(​"Permitted subclasses:"​);

​ ​var​ permittedSubclasses = klass.getPermittedSubclasses();

​

​ ​if​(permittedSubclasses != ​null​) {

​ ​for​(​var​ permitted : klass.getPermittedSubclasses()) {

​ System.out.println(permitted);

​ }

​ }

​ }

​

​ ​public​ ​static​ ​void​ ​main​(String[] args) {

​ printInfo(TrafficLightFactory.createVertical().getClass());

​ System.out.println(​"------------"​);

​ printInfo(TrafficLightFactory.createHorizontal().getClass());

​ System.out.println(​"------------"​);

​ printInfo(TrafficLight.class);

​ }

​ }

http://media.pragprog.com/titles/vscajava/code/sealed%2Fex1%2Fdot%2Fuse%2FExamine.java

In the main() method we use the factory to get instances of the two traffic
lights. Then, we use the metadata to examine the classes and also the base
class.

Both classes and interfaces may or may not be marked with the sealed
keyword. If marked as sealed, then a permits list is necessary, whether
defined implicitly or explicitly. The Class metadata of the JDK has been
changed to add functions to provide these details at runtime.

We use the isSealed() method of Class to find if a class or an interface is sealed
or not. The result of that call is a simple boolean true or false.

We also use yet another sealed-class-related metadata function
getPermittedSubClasses() to get the permitted list if the class or interface is
sealed. If it’s not sealed, however, sadly, the getPermittedSubClasses() method
returns a null, so we perform a check before iterating on the results of the
method call.

The output from running the main() method of the Examine class confirms the
design choices we made in the TrafficLight.java file:

​ VerticalTrafficLight

​ Sealed?: false

​ Permitted subclasses:

​ ------------

​ HorizontalTrafficLight

​ Sealed?: false

​ Permitted subclasses:

​ ------------

​ TrafficLight

​ Sealed?: true

​ Permitted subclasses:

​ class dot.lights.VerticalTrafficLight

​ class dot.lights.HorizontalTrafficLight

The methods isSealed() and getPermittedSubclasses() are examining the
metadata that’s stored in the bytecode by the compiler. If you’re curious, you

can examine that anytime using the javap tool, like so:

​ javap -v bin/dot/lights/TrafficLight.class

Make sure to use the appropriate path for where the .class file is located on
your system post-compilation. Let’s take a peek at the bytecode for the
TrafficLight class. The following output shows the last few relevant lines:

​ ...

​ SourceFile: "TrafficLight.java"

​ PermittedSubclasses:

​ dot/lights/VerticalTrafficLight

​ dot/lights/HorizontalTrafficLight

The bytecode for the base class carries the permits list, which is the
information that the compiler uses to allow or deny the compilation of a
derived class.

Using the permits Clause
So far, in the example, we’ve implicitly defined the permits list. This
requires that all the subclasses of the base class be in the same file.

Let’s take a look at how the compiler responds if we try to inherit from the
TrafficLight class, with a class in the same package as the base, but placed in a
different file than the base class.

To the core library, a DOT developer wants to add a new traffic light class,
RailroadLight, that extends from the TrafficLight class and decides to create it in
a file named RailroadLight.java, in the same dot.lights package as the TrafficLight

class.

sealed/ex1/dot/lights/RailroadLight.java

​ ​package​ ​dot.lights​;

​

​ ​final​ ​class​ RailroadLight ​extends​ TrafficLight {}

The RailroadLight class looks no different from the VerticalTrafficLight or the
HorizontalTrafficLight. It’s declared final and extends from TrafficLight. But
unlike the other two classes, it’s not in the same file as the base class. Since
the TrafficLight is using the implicit permits list, only VerticalTrafficLight and
HorizontalTrafficLight are permitted subclasses of TrafficLight. The compiler
doesn’t permit the inheritance of RailroadLight from TrafficLight:

​ dot/lights/RailroadLight.java:3: error: class is not allowed to extend

​ sealed class: TrafficLight (as it is not listed in its permits clause)

​ final class RailroadLight extends TrafficLight {}

​ ^

​ 1 error

The implicit permits list is nice to have, so we don’t have to list the
subclasses if they’re in the same file as a sealed class or an interface. But

http://media.pragprog.com/titles/vscajava/code/sealed%2Fex1%2Fdot%2Flights%2FRailroadLight.java

that’s not the only option to list the permitted subclasses.

In general, it’s not practical to have all the subclasses of a sealed class or a
sealed interface in one file. The file may become large and unwieldy.
Having multiple classes in the same file makes it harder for different
developers to modify different classes at the same time—no one would want
to willfully create a merge hell for their colleagues. Also, if we intend to
make any of the subclasses public, instead of being visible only within the
package, then we can’t have the class in a file with a different name than the
class, due to the good old Java file naming restriction. For most practical
situations we’d want to explicitly define the permits list.

Use the permits clause to define a permitted subclasses list, or simply the
permits list, for a sealed class or sealed interface. Using the clause is all or
nothing. You can either leave out the permits clause to implicitly define the
permits list, or you may use the permits clause to explicitly list all the
permitted subclasses, even if some or all of them are in the same file. Use
one or the other approach—don’t list some and expect the compiler to pick
up the rest from the current file.

The DOT developer implementing the RailroadLight class was surprised to see
the previous error message that said the class isn’t permitted to be a subclass
of TrafficLight. After a quick discussion, the architect on the team agrees,
based on the evolving requirements, that the TrafficLight should permit
RailroadLight as a subclass and they proceed to change the TrafficLight class—I
love them hands-on architects.

​ ​package​ ​dot.lights​;

​

​ ​public​ sealed ​abstract​ ​class​ TrafficLight

​ permits VerticalTrafficLight, HorizontalTrafficLight, RailroadLight {

​ ​public​ ​void​ ​turnRed​() {}

​ ​public​ ​void​ ​turnYellow​() {}

​ ​public​ ​void​ ​turnGreen​() {}

​ ​//...​

​ }

​

​ ​final​ ​class​ VerticalTrafficLight ​extends​ TrafficLight {}

​ ​final​ ​class​ HorizontalTrafficLight ​extends​ TrafficLight {}

The TrafficLight class conveys that the three classes listed in the permits clause
are permitted to be its direct subclasses. As we know, the first two classes in
the list are in the same file whereas the RailroadLight is in a different file.

Even though VerticalTrafficLight and HorizontalTrafficLight are in the same file,
we still have to list them in the permits clause. Otherwise, they won’t be
permitted to be subclasses of TrafficLight. One could argue that those
should be left out, but requiring them to be listed, if the permits clause is
used, is overall a good design decision in the language. It’s explicit and so
easy to see all the permitted subclasses in one place. You can easily move
classes like VerticalTrafficLight to another file and not have to tinker with the
explicitly stated permits list.

The permits clause followed by the list of classes, if present, should be right
before the { that starts the body of the class. If the class extends other classes
or implements interfaces, place those details before the permits clause.

After the most recent change to the TrafficLight class, the developer writing
the RailroadLight is happy since the compiler no longer disallows the class
extending from TrafficLight. The RailroadLight is in a different file than
TrafficLight but it’s part of the same package as the base class. The developer
marked the RailroadLight class as final but they might consider a few other
alternatives as we’ll see next.

Constraints on the Subclasses
The subclasses of a sealed class or a sealed interface can’t be placed
anywhere we like. We also can’t declare them like we write normal classes.
Let’s take a look at the constraints we have to work with.

Java places two main constraints on the permitted subclasses.

It constrains the package to which the subclasses may belong to.
It constrains the declaration that the subclasses should carry.

Both of these constraints are verified and enforced by the compiler. Let’s
take a closer look.

Packages of Subclasses
The first constraint is that the subclasses of a sealed class or a sealed
interface should be in the same package as the base class if the base class
belongs to an unnamed module. You’ll see in Chapter 8, ​Modularizing Your
Java Applications​, that classes by default belong to the unnamed module if
we don’t use the Java modules.

Suppose the developer writing the RailroadLight for the DOT core library
decides to move the RailroadLight class from the dot.lights package to the
dots.lights.railway package and makes the change like so:

​ ​package​ ​dot.lights.railway​;

​

​ ​import​ ​dot.lights.TrafficLight​;

​

​ ​public​ ​final​ ​class​ RailroadLight ​extends​ TrafficLight {}

​ ​//this change will derail without modules​

Since the RailroadLight is now in a different package than TrafficLight, the
developer made sure to make the visibility public for the TrafficLight class, to

be able to see the RailroadLight class.

Suppose the developer then proceeds to change the TrafficLight.java file to
bring in the necessary import (the import line is the only line changed in the
file):

​ ​package​ ​dot.lights​;

​

​ ​import​ ​dot.lights.railway.RailroadLight​; ​//only line that was changed​

​

​ ​public​ sealed ​abstract​ ​class​ TrafficLight

​ permits VerticalTrafficLight, HorizontalTrafficLight, RailroadLight {

​ ​public​ ​void​ ​turnRed​() {}

​ ​public​ ​void​ ​turnYellow​() {}

​ ​public​ ​void​ ​turnGreen​() {}

​ ​//...​

​ }

​

​ ​final​ ​class​ VerticalTrafficLight ​extends​ TrafficLight {}

​ ​final​ ​class​ HorizontalTrafficLight ​extends​ TrafficLight {}

The compiler should be able to recognize the RailroadLight from the other
package. But the compiler isn’t happy and howls at this change:

​ dot/lights/TrafficLight.java:6: error: class TrafficLight in unnamed module

​ cannot extend a sealed class in a different package

​ permits VerticalTrafficLight, HorizontalTrafficLight, RailroadLight {

​ ^

​ 1 error

When not using Java modules, a sealed class or interface and all its
permitted subclasses are required to be in the same package, though they
may be placed in different files.

Disappointed, the developer, who wants to move the RailroadLight class to a
different package, once again meets the architect. The architect assures them
that planning for modularization is underway and the developer will soon be
able to accomplish the desired change but should hold off for now.

If Java modules are used, then the subclasses may be in any package as long
as the base and the subclasses are all part of the same module. We’ll see this
soon.

Declaration of Subclasses
The second constraint Java places is on the declaration of the permitted
subclasses. The subclasses that implement a sealed interface or extend from
a sealed class are required to be marked with exactly one of the following:
final, sealed, or non-sealed.

Let’s dig into these options using the DOT application and its core library.

The DOT developers are active at work building their core library and are
getting started with the work related to the PowerSource entity that’s
represented as an interface. Since they’re starting out, they decided to keep
the interface and subclasses in the same file. As soon as the classes begin to
grow, they’re ready to move them to a different file and use the permits

clause to explicitly declare the permitted subclasses.

Here’s their PowerSource interface:

sealed/ex1/dot/power/PowerSource.java

​ ​package​ ​dot.power​;

​

​ ​public​ sealed ​interface​ PowerSource {

​ ​void​ ​drawEnergy​();

​ }

Since the DOT wants to control the specific power sources that will be used,
it makes sense that the PowerSource interface has been marked as sealed. As
written, the code won’t compile just yet, since what’s marked sealed needs at
least one derived interface or class. No worries, the team is ready to write
their first class that implements the PowerSource interface right away.

http://media.pragprog.com/titles/vscajava/code/sealed%2Fex1%2Fdot%2Fpower%2FPowerSource.java

The region covered by the DOT has both city and some rural areas and
needs to target the power sources based on where the traffic lights will be
located. Their cities have highly reliable electric power from their grids, and
so the ElectricGridSource is their first class to implement the PowerSource
interface:

sealed/ex1/dot/power/PowerSource.java

​ ​final​ ​class​ ElectricGridSource ​implements​ PowerSource {

​ ​public​ ​void​ ​drawEnergy​() {}

​ }

The developer writing the ElectricGridSource class implements it from the
PowerSource interface. In addition, they mark the class as final to convey that
no one can extend the ElectricGridSource class.

final closes the inheritance hierarchy nicely and cements that no further
extension beyond that class in that branch of inheritance hierarchy is
possible. It’s the common, more stringent, and arguably the most sensible
option. Choose this if you’re not sure which one to choose—it’s hard to go
wrong with it. You can always change it to something less stringent later on
if necessary.

The DOT developers soon learn that they need to support a handful of green
power sources, especially for their rural areas where electric power isn’t
reliable but there are plenty of natural energy sources to draw from.

They decide to create GreenPower as an interface since there are multiple
power sources that fit that description. This interface will obviously extend
from PowerSource. But what good is an interface if no one can implement it?
For that reason, it doesn’t make sense to declare it final. They reach for the
second option: sealed. Optionally, they can explicitly define the subclasses
that will implement this sealed interface, using the permits clause:

sealed/ex1/dot/power/PowerSource.java

http://media.pragprog.com/titles/vscajava/code/sealed%2Fex1%2Fdot%2Fpower%2FPowerSource.java
http://media.pragprog.com/titles/vscajava/code/sealed%2Fex1%2Fdot%2Fpower%2FPowerSource.java

​ sealed ​interface​ GreenPower ​extends​ PowerSource

​ permits SolarPower, WindPower {}

​

​ ​final​ ​class​ SolarPower ​implements​ GreenPower {

​ ​public​ ​void​ ​drawEnergy​() {}

​ }

​

​ ​final​ ​class​ WindPower ​implements​ GreenPower {

​ ​public​ ​void​ ​drawEnergy​() {}

​ }

The GreenPower interface extends from PowerSource and lists the subclasses
that are permitted to extend from the sealed interface GreenPower. The
SolarPower and WindPower classes implement the GreenPower interface and are
declared as final to close the inheritance hierarchy from PowerSource via the
GreenPower interface.

sealed reopens the hierarchy starting from PowerSource for at least one more
level of extension. With the definitions we’ve seen so far, a PowerSource may
be an ElectricGridSource, a SolarPower, or a WindPower, and nothing else…at
least as of now.

We’ve used two of the three possible options for declaring the subclasses.
The final and sealed declarations for subclasses or subinterfaces are easy to
understand. The third option of non-sealed is rather puzzling. Why in the
world would we need that, you may wonder, and if you do, you’re definitely
not alone.

final is a common option followed by sealed, and both can be used to close an
inheritance hierarchy. On the other hand, non-sealed opens up the hierarchy
for unrestricted extension, starting from the declaring class or interface, and
is the option that might be used the least. non-sealed counteracts sealed; the
sealed declaration closes the hierarchy to the permitted subclasses whereas
non-sealed allows any subclass to freely extend the hierarchy.

The easiest way to understand the purpose of non-sealed is that it provides a
balance and an escape route. final and sealed push us towards closing a
hierarchy, but sometimes we want the ability to extend the hierarchy in ways
we don’t expect and don’t want to be pushed into a corner. Use the non-sealed
option to say “the hierarchy is closed everywhere, except right here.”

Let’s think of a sensible use case for non-sealed in the context of the DOT
application’s core library. The DOT is currently using some well-proven
power sources but is interested in pushing the boundaries. They currently
have several ideas for new energy sources and they want to be able to
quickly introduce unproven but highly potential power sources and evaluate
how they perform. They want to group these power sources under
ExperimentalPower, but they don’t have an established, stable list of such
power sources. They want the flexibility to add new ones and remove
existing ones without having to tweak a permits clause in any interface or
class.

Within the PowerSource.java file, let’s add an ExperimentalPower interface that
extends the PowerSource, like so:

sealed/ex1/dot/power/PowerSource.java

​ non-sealed ​interface​ ExperimentalPower ​extends​ PowerSource {}

The new ExperimentalPower interface is declared as non-sealed. It simply states
that developers on the DOT core library may add subclasses and
subinterfaces that derive from ExperimentalPower as they please. The interface
ExperimentalPower is right now in the same file as the PowerSource interface,
but it doesn’t have to. We can provide a permits clause for PowerSource, like
so:

​ public sealed interface PowerSource

​ permits ElectricGridSource, GreenPower, ExperimentalPower {

​ //...

​ }

http://media.pragprog.com/titles/vscajava/code/sealed%2Fex1%2Fdot%2Fpower%2FPowerSource.java

Then the ElectricGridSource class, the GreenPower interface, and
ExperimentalPower may be placed in their own respective .java files instead of
being in the same file as the sealed interface PowerSource.

The DOT developers want the ability to try out different experimental power
sources. They made some careful design choices to facilitate that, without
compromising the efforts to close the inheritance hierarchy. Let’s take a
closer look to understand how.

There are only three direct subclasses/subinterfaces of PowerSource. The
inheritance hierarchy from PowerSource is closed via two out of the three
possible branches.

No one can extend ElectricGridSource since it’s final; that path of the hierarchy
is closed.

The GreenPower interface is sealed and can have only two subclasses
SolarPower and WindPower. Both of those classes are declared final as well.
Thus, the path of hierarchy through GreenPower is also closed.

The only route that’s open is the path of hierarchy through ExperimentalPower.
The developers carefully chose to make that interface package-private—no
public declaration in front of non-sealed. When they move to using Java
modules, they may place the ExperimentalPower interface in a different
package, but they won’t export that package—see Chapter 8, ​Modularizing
Your Java Applications​. The result of that decision is that no third-party
developer can implement the ExperimentalPower interface. The consequence
—the interface hierarchy from PowerSource is open only via the
ExperimentalPower interface, and that too can only be extended within the
DOT core library. We’ve controlled extensibility, but not arbitrary
extensibility. Pretty neat, eh?

Recall that if a class is marked sealed, we should have at least one subclass.
Likewise, if an interface is marked sealed, there better be at least one
implementing class of that interface. That rule doesn’t exist for non-sealed;
the compiler doesn’t insist that any class inherit from an interface declared
as non-sealed or extend from a class marked as non-sealed. Even though we
have no class implementing the ExperimentalPower, the code will compile just
fine.

Let’s end this chapter with a fanciful hypothetical example. The DOT
recently hired a young scientist who grew up watching Monsters, Inc.[7] and
is a big fan of the hairy monster James P. Sullivan or Sulley. The developer
is convinced that Sulley was on to something by harvesting clean power
from laughter and has been experimenting, in humane ways of course. The
DOT developers know this is no laughable matter and want to quickly
prototype the new creation. So, they got to it right away:

sealed/ex1/dot/power/LaughterPower.java

​ ​package​ ​dot.power​;

​

​ ​class​ LaughterPower ​implements​ ExperimentalPower {

​ ​public​ ​void​ ​drawEnergy​() {}

​ }

The LaughterPower implements the ExperimentalPower interface, which isn’t
required to be marked as final or sealed, though it could be. They didn’t make
it public, for obvious reasons—technical and intellectual property concerns—
and placed it in its own file. It could belong to a different package as well,
once the architect OKs moving the code to Java modules.

Who knows what the young scientist will conjure up next, but the
developers are ready with their ability to extend the hierarchy in a controlled
manner.

http://media.pragprog.com/titles/vscajava/code/sealed%2Fex1%2Fdot%2Fpower%2FLaughterPower.java

Using the hypothetical DOT project we walked through the powerful
capabilities of sealed classes and sealed interfaces and how they help with
object-oriented modeling. Go ahead and experiment with the code. Create
your own interfaces and classes to extend the given code. Try out different
options to restrict the inheritance hierarchy. The compiler will guide you
along as you play with it and learn.

[6]

[7]

Wrapping Up
Sealed classes and interfaces fill a gap in object-oriented modeling in Java.
They provide the ability to restrict the hierarchy of inheritance so third-
party libraries can use your classes, but may not inherit from them. Using
the newly added facilities you can evolve the inheritance hierarchy in a
controlled manner to more closely match the requirements of your domain.

In this and the previous chapters, we saw two features that improve the
design of object-oriented code. In the next part, we’re going to look at
facilities that make code more expressive and fluent.

Footnotes

https://docs.oracle.com/en/java/javase/24/docs/api/java.base/java/time/DayOfWeek.html

https://en.wikipedia.org/wiki/Monsters,_Inc.

Copyright © 2025, The Pragmatic Bookshelf.

https://docs.oracle.com/en/java/javase/24/docs/api/java.base/java/time/DayOfWeek.html
https://en.wikipedia.org/wiki/Monsters,_Inc.

Part 3

Fluent Expressions

Expressions, as opposed to statements, perform
computations and return results. We can tag along, or
compose, other expressions on the results of a previous

expression. Well-written expressions avoid side-effects and
are easier to compose.

Two recent additions to the language move the needle closer
towards using more expressions in code and thus making it

more fluent. This leads to code that’s easier to read,
understand, reason, and change. In this part we’ll look at

the switch expression and how it evolves further along into a
full-blown pattern matching facility.

Chapter
6

Switching to Switch Expression

An experienced programmer doesn’t write more code, faster. Quite the
opposite, as they gain experience, they find ways to reduce code, clutter,
complexity, and chances of error. They write code to solve the problem on
hand and quickly refactor it to make it concise, expressive, easier to
understand, and easier to maintain. A common concept that often comes to
their aid during such refactoring efforts is trading statements for
expressions.

Statements perform actions but don’t return any results to the caller. By
nature, they promote side-effects and often require mutating variables. The
result is code that’s generally verbose, hard to reason, hard to change, error-
prone, and sometimes outright unpleasant to work with. They also don’t
compose—each statement is executed in isolation from the next. There’s no
way to chain statements.

Expressions perform computations and return their results to the caller.
Well-written expressions are pure and idempotent, don’t cause side-effects,
and don’t mutate any variables. We can also build on the results of one
expression to execute another expression; they compose really well. The
benefit is highly concise code that’s easier to express, easier to understand,
less error-prone, and often pleasant to work with.

In Java, switch has been used only as a statement for years. Now, in addition,
it can also be used as an expression. This capability, introduced in Java 12,
can reduce the size and complexity in existing code and will also change the
way we write new code, so we can take advantage of all the benefits of
using expressions.

In this chapter we will start by converting from a switch statement to an
expression, discuss the benefits, and dive into the different capabilities and
differences of switch expression compared to the old switch statement. This
chapter will prepare you for the greater good that’s waiting in the next
chapter where switch turns from an expression to a full-blown pattern
matching syntax.

From Statements to Expressions
Let’s see how the switch expression can deliver a better signal-to-noise ratio.
We’ll start with a piece of code that uses if-else, refactor that to use the switch

statement, discuss why that’s not sufficient, and move forward into
transforming that code to use the switch expression.

In some languages, like Ruby, Scala, and Kotlin, if is an expression. In Java,
if is a statement (though there if is the ternary operator which is an
expression). That means you can’t assign the result of the evaluation of if to
a variable because if doesn’t yield a result of its execution. This often forces
us to create a variable and mutate it.

Where there’s an if, there’s probably an else that tags along to perform an
alternative action if the condition provided to if isn’t met. That’s more code
we write, to discern between the if and the else parts.

The logic in many applications usually doesn’t end with a plain either-or
situation. The if-else often flows along into a long series of if-else statements.
Looking back at the code we create, we often realize how noisy and
cluttered the code is, with all the recurring if and else. We end up with rather
icky code, to say the least. Such code is often a great candidate for
refactoring to switch. Let’s look at an example.

Let’s take the familiar example of computing the grades from scores, where
different values in a range from 0 to 100 map to grades of ‘A’ to ‘F’. Here’s
a class Grade with a main() method that prints the grades of a few different
scores.

switch/vsca/Grade.java

​ ​public​ ​class​ Grade {

​ ​public​ ​static​ ​void​ ​main​(String[] args) {

http://media.pragprog.com/titles/vscajava/code/switch%2Fvsca%2FGrade.java

​ List.of(59, 64, 76, 82, 89, 94, 100)

​ .stream()

​ .map(Grade::gradeFor)

​ .forEach(System.out::println);

​ }

​ }

It transforms the given scores to a string representation of the grade for each
score and prints it, using a yet-to-be-written method gradeFor(). We want to
implement the gradeFor() method so the program will output a result in the
format:

​ Grade for score 59 is F

​ Grade for score 64 is D

​ Grade for score 76 is C

​ Grade for score 82 is B

​ Grade for score 89 is B

​ Grade for score 94 is A

​ Grade for score 100 is A

If we were using an older version of Java, we’d have to unleash a series of
if-else statements to implement the gradeFor() method, like so:

switch/vsca/Grade.java

​ ​public​ ​static​ String ​gradeFor​(​int​ score) {

​ String letterGrade = ​""​;

​

​ ​if​(score >= 90) {

​ letterGrade = ​"A"​;

​ } ​else​ ​if​(score >= 80) {

​ letterGrade = ​"B"​;

​ } ​else​ ​if​(score >= 70) {

​ letterGrade = ​"C"​;

​ } ​else​ ​if​(score >= 60) {

​ letterGrade = ​"D"​;

​ } ​else​ {

​ letterGrade = ​"F"​;

​ }

​

​ ​return​ ​"Grade for score %d is %s"​.formatted(score, letterGrade);

http://media.pragprog.com/titles/vscajava/code/switch%2Fvsca%2FGrade.java

​ }

The logic is rather simple, but the number of if and else in the code is the
source of the noise in it. That reminds me of a project with many functions
that had sequences of if-else that ran more than 70 levels deep. That project
was filled with several pieces of code that can’t be unseen.

Not all if-else sequences can be refactored to using a switch. But this example
can be converted to using a switch, due to the nice structure in the range of
values being compared. Let’s see how the traditional switch statement holds
up in comparison to the if-else maze.

​ ​public​ ​static​ String ​gradeFor​(​int​ score) {

​ String letterGrade = ​""​;

​

​ ​switch​(Math.min(score / 10, 10)) {

​ ​case​ 10:

​ letterGrade = ​"A"​;

​ ​break​;

​ ​case​ 9:

​ letterGrade = ​"A"​;

​ ​break​;

​ ​case​ 8:

​ letterGrade = ​"B"​;

​ ​break​;

​ ​case​ 7:

​ letterGrade = ​"C"​;

​ ​break​;

​ ​case​ 6:

​ letterGrade = ​"D"​;

​ ​break​;

​ ​default​:

​ letterGrade = ​"F"​;

​ ​break​;

​ }

​

​ ​return​ ​"Grade for score %d is %s"​.formatted(score, letterGrade);

​ }

That probably leaves you with a mixed feeling. The good news is it’s less
noisy and looks less cluttered compared to the if-else version. Kudos for the
refactoring effort for that. But this version has more lines of code and still
mutates the letterGrade variable. There’s also an additional risk: if we forget
the break statements, then the grade computed would be incorrect—such
bugs may start a campus riot if left undetected. (In my youth I actually
started a few riots on campuses, but that’s a story for another book.)

The use of switch is in the right direction. But the switch statement brings its
own set of problems with it. First, it’s a statement and, thus, has side-effects,
such as mutability, and all the smells we’re often told to avoid in good
programming practices. Second, the flow has to be controlled explicitly
using break, and it’s a common mistake among programmers to forget that,
especially when altering code.

The switch expression greatly improves upon the switch statement. Instead of
using a colon case, a switch expression uses an arrow case where each path
is an expression and has an auto-break. In other words, a switch expression is
like a rectified switch statement with the ill behaviors removed.

Let’s refactor the code to turn the switch statement into a switch expression:

​ ​public​ ​static​ String ​gradeFor​(​int​ score) {

​ ​final​ String letterGrade = ​switch​(Math.min(score / 10, 10)) {

​ ​case​ 10 -> ​"A"​;

​ ​case​ 9 -> ​"A"​;

​ ​case​ 8 -> ​"B"​;

​ ​case​ 7 -> ​"C"​;

​ ​case​ 6 -> ​"D"​;

​ ​default​ -> ​"F"​;

​ };

​

​ ​return​ ​"Grade for score %d is %s"​.formatted(score, letterGrade);

​ }

Seeing that is like feeling a breath of fresh air. That code has the perfect
logic-to-break ratio. You may place the cases in any order in this example,
with the default at the end. Depending on the value of the expression passed
as an argument (within the parentheses) to switch(), one and exactly one case
path is taken. Once the expression in a path is evaluated, it’s immediately
returned as the result of the switch expression. You’re not allowed to place a
break statement in the middle of a switch expression—good riddance. The
arrow case has the label, followed by an arrow ->, and then the expression
that should be evaluated if the value passed in matches the given label.

When compared to the if-else version and the switch statement version, this
version is less noisy, shorter, crisp, easy to read, easy to follow, avoids
mutability, has no side-effect, and is overall pleasant to work with. It’s far
easier to reason about than the other versions as well.

Let’s venture further into the features of switch expression so you can reap its
full benefits.

Using Multiple Labels in a Case
We’ve merely scratched the surface of the switch expression. There are a few
syntactical nuances to switch when used as an expression, not to mention its
capabilities to perform pattern matching—see Chapter 7, ​Using Powerful
Pattern Matching​.

To see a few other capabilities of the switch expression, we’ll use an example
of rolling dice and computing scores. This may be part of a game where
scores are computed based on some predetermined points for each pip rolled
by a player.

In the DiceScores class that we’ll write next, we have a list of pips for six
different rolls of a die. We’ll compute the overall score for the six rolls
based on “the prescribed score” for each pip. Let’s start with the main()

method before we get to the code that will compute the score for each roll of
a die.

switch/vsca/DiceScores.java

​ ​public​ ​class​ DiceScores {

​ ​public​ ​static​ ​void​ ​main​(String[] args) {

​ ​var​ rolls = List.of(3, 5, 3, 4, 6, 1);

​

​ ​var​ totalScore = rolls

​ .stream()

​ .mapToInt(DiceScores::scoreForAPip)

​ .sum();

​

​ ​var​ result = ​"Total score after rolling dice %d times is %d"​

​ .formatted(rolls.size(), totalScore);

​

​ System.out.println(result);

​ }

​ }

http://media.pragprog.com/titles/vscajava/code/switch%2Fvsca%2FDiceScores.java

For the given values of pip from the different rolls of a die, we compute the
score for each using the mapToInt() function that calls a scoreForAPip() method,
then totals it using the sum() function.

We’ll use the switch expression to implement the scoreForAPip() method:

switch/vsca/DiceScores.java

​ ​public​ ​static​ ​int​ ​scoreForAPip​(​int​ pip) {

​ ​return​ ​switch​(pip) {

​ ​case​ 1 -> 100;

​ ​case​ 2 -> 2;

​ ​case​ 3 -> 3;

​ ​case​ 4 -> 3;

​ ​case​ 5 -> 5;

​ ​case​ 6 -> 50;

​ ​default​ -> 0;

​ };

​ }

For the different valid values of the pip from 1 to 6, we return a score. The
return placed before the switch will take care of returning the value of the
expression placed to the right of the arrow -> for the appropriate case.

We know that the value of pip will be from 1 to 6, but since an int type is
used, it’s possible that the value passed in may be less than 1 or greater than
6. Thus the compiler will give us an error if we don’t handle all possible
values for the expression presented to switch(). It’s nice that the compiler
looks out for such errors. We can provide a default clause to handle the case
when the value of pip isn’t one of the values we expect. We may choose to
throw an exception from the right side of the default -> if such a value is
unacceptable. Alternatively, we may return a value of 0 for the score. If we
had chosen the exception route, we would have needed to handle the
exception properly on the calling side. Instead, we’ll simply return 0 in this
example if the value is outside of the expected range for pip.

http://media.pragprog.com/titles/vscajava/code/switch%2Fvsca%2FDiceScores.java

Let’s take a look at the output of the code before we revisit it to refactor for
some improvements:

​ Total score after rolling dice 6 times is 164

The output reflects the expected behavior of the code. Good, let’s move
forward.

Looking at the code, there’s a small duplication. Even though the scores for
the pip values of 3 and 4 are the same, we’ve duplicated the same values on
the right side of two cases—one for the label 3 and the other for the label 4.
Instead of duplicating, we can use a single case to match both the labels 3
and 4. In general, the syntax of the arrow case is:

​ case label1, label2, label3, ... -> expression

Let’s merge the case for pip values 3 and 4:

switch/vsca/DiceScoresMultiMatch.java

​ ​return​ ​switch​(pip) {

​ ​case​ 1 -> 100;

​ ​case​ 2 -> 2;

​ ​case​ 3, 4 -> 3;

​ ​case​ 5 -> 5;

​ ​case​ 6 -> 50;

​ ​default​ -> 0;

​ };

The already concise switch expression can be made even crisper with the
support for multiple labels in a case.

So far, everything on the right side of the arrow -> was all simple
expressions. What if we need to include a statement instead of a mere
expression? Let’s consider that situation next.

http://media.pragprog.com/titles/vscajava/code/switch%2Fvsca%2FDiceScoresMultiMatch.java

Cases with Non-expressions
Suppose the gaming board gets involved in monitoring the game that the
scoreForAPip() code is being used in. They want to keep an eye on possible
fraud on the part of the users but also on errors on the part of the gaming
organization. As a first step towards that, suppose they’ve asked us to log if
the pip’s value is a 1, for which the score is the highest, or if the value is
outside of the expected range for pip.

The path of each case in a switch expression should return a result. But some
paths may have to perform a few different steps, execute some statements,
and also compute and return values of an expression. In other words, rather
than being simple expressions, some paths may include compound
statements before returning a result of an expression or throwing an
exception.

If the right side of an arrow is a simple expression or a throw, then place it
directly after the arrow, like in the following syntax:

​ case label1, label2, label3, ... -> expression;

or

​ case label1, label2, label3, ... -> throw new RuntimeException(...);

If the right side of an arrow isn’t a simple expression or a throw, then place
it within a pair of braces {}, like in the following syntax:

​ case label1, label2, label3, ... -> {

​ ...multiple lines of code...

​ ...multiple lines of code...

​ }

In the case of multiple lines of code for a case path, at the end of the block,
we’ll want to return the result of an expression evaluated within the block.

At first, a return may come to mind. But if we were to specify a return, then
it can get confusing to determine if our intent was to return from the switch

to the control flow within the function or to return from the function
encompassing the switch expression. To avoid any such confusion, return is
not permitted within the switch expression. Instead, use yield to convey that
you want to yield a result from the block as a result of evaluating the switch

expression.

Let’s modify the switch expression in the scoreForAPip() method to log the pip
value of 1 and the value of pip outside the expected range—that’s the default

path.

​ ​return​ ​switch​(pip) {

​ ​case​ 1 -> {

​ logger.log(Level.WARNING, ​"high score observed"​);

​ yield 100;

​ }

​ ​case​ 2 -> 2;

​ ​case​ 3, 4 -> 3;

​ ​case​ 5 -> 5;

​ ​case​ 6 -> 50;

​ ​default​ -> {

​ logger.log(Level.SEVERE, ​"invalid roll of dice: "​ + pip);

​ yield 0;

​ }

​ };

The cases for 2 to 6 are unchanged. For case 1 we use the {} to place two lines
of code in that path. Likewise, we placed two lines in the default’s path as
well, again using the braces {}. Unlike at the end of the case with an
expression, we don’t place a semicolon (;) after the ending }. Speaking of a
semicolon, you’ve probably discovered already that ; is needed at the end of
a switch() expression, after the last }, whereas that’s not the case with the
switch statement.

In addition to being concise, switch expressions also provide strict checking
for completeness. We’ll complete the chapter with that discussion next.

Completeness of a switch Expression
It’s likely that a debate ensues among developers about the value of pip
outside the desired range and how the default path is implemented in
scoreForAPip(). Should it return a 0, log an error message, throw an exception,
or call the cyber security division?

As the debate continues, what if one of the developers removes the default
from the switch? Let’s see what will happen in that case:

​ ​return​ ​switch​(pip) {

​ ​case​ 1 -> {

​ logger.log(Level.WARNING, ​"high score observed"​);

​ yield 100;

​ }

​ ​case​ 2 -> 2;

​ ​case​ 3, 4 -> 3;

​ ​case​ 5 -> 5;

​ ​case​ 6 -> 50;

​ ​//ERROR​

​ };

If we get rid of the default the compiler will complain, like so:

​ ...error: the switch expression does not cover all possible input values

​ return switch(pip) {

​ ^

​ 1 error

We can either provide the default path or implement case paths for all
possible values. We don’t like the former, and the latter isn’t a viable option
as long as the pip is of type int.

We need to rethink the design.

The pips on a die are pretty much set to values of 1 to 6. If a die doesn’t roll
over to a proper value, that should be addressed long before the code

execution reaches the scoreForAPip() method. The issue in code arises, But
due to poor representation of a pip. The type of int is too broad compared to
the permitted values of pip. We saw in Chapter 5, ​Designing with Sealed
Classes and Interfaces​, that we can limit permitted subclasses using sealed
classes. But an age-old approach already exists to achieve a similar result—
the enum.

We can model Pip as an enum with only the expected values, like so:

switch/vsca/Pip.java

​ ​public​ ​enum​ Pip { ONE, TWO, THREE, FOUR, FIVE, SIX }

Now, we can modify the signature of scoreForAPip() to accept as its parameter
an instance of Pip instead of an int. After this change, we can modify each of
the case labels to use a Pip enum value instead of an integer value.

After that change, we’ll notice that the default left in the code is rather
redundant. It’s there to handle an out-of-range value, but we have case labels
for all possible values of pip. We’ll talk more about this in ​Completeness
Check​.

We can safely remove the default from the switch expression, and the
compiler won’t gripe about it.

​ ​return​ ​switch​(pip) {

​ ​case​ ONE -> {

​ logger.log(Level.WARNING, ​"high score observed"​);

​ yield 100;

​ }

​ ​case​ TWO -> 2;

​ ​case​ THREE, FOUR -> 3;

​ ​case​ FIVE -> 5;

​ ​case​ SIX -> 50;

​ };

http://media.pragprog.com/titles/vscajava/code/switch%2Fvsca%2FPip.java

Let’s recap. As we’ve seen, if all possible values for the expression passed
to the switch() expression are handled, then the default isn’t required. But if
not all possible values are handled by the cases and the default doesn’t exist,
then the compiler will holler at you. This is yet another distinction between a
switch statement and a switch expression, which is yet another way potential
errors are detected by the compiler when switch is used as an expression
instead of a statement.

Wrapping Up
In Java, switch is no longer only a statement; it may be used as an expression
as well. When used as an expression, it can make code more concise and
easier to maintain. Instead of using a colon case, we use an arrow case
when writing switch expressions. We may combine multiple labels for a case,
and we may also create case paths with multiple lines of code. The compiler
actively looks out for errors and checks for completeness. We also don’t use
the oft error-prone break when writing switch as an expression. In the next
chapter we’ll see how switch has evolved further in Java to a full-blown
pattern matching functionality.

Copyright © 2025, The Pragmatic Bookshelf.

Chapter
7

Using Powerful Pattern Matching

Remember when the skinny Marvel character Steve Rogers[8] was given a
top-secret serum and he turned into a super-soldier Captain America? That’s
kind of what happened to switch in Java, except it was neither a secret nor a
serum that brought the significant super-change. The transformation
happened in public view, with full opportunity for the community to review
and to provide feedback on its evolution from a puny statement into the
super-powered Pattern Matching machinery—this feature takes the
decision-making control flow in code to a whole new level of fluency.

In Java 17, switch has transformed from an expression into a pattern
matching syntax. You’re not restricted to use switch with only constants like
numbers, strings, or enums. Both switch statements and switch expressions
now support expressions of any type, including references. With the pattern
matching syntax, the case labels are no longer limited to being constants.
case labels can also include type-matching patterns and guarded conditions,
and you can rely on the compiler to verify proper coverage of conditions
based on completeness of both values and the types.

The net benefit—we don’t have to write as much boilerplate code as we
used to. The code we write is elegant, concise, and most importantly has
fewer errors, and thus is easier to maintain and change.

In this chapter we’ll walk through the journey of switch as it evolves into the
pattern matching facility. You’ll first learn about the pattern matching of
instanceof that removes the need for explicit casting. This serves as a
foundation for type matching in switch, which we’ll dive into next. We’ll
then move forward to understand how to match for null, use guarded and
parenthesized patterns, and finish with a look at the fantastic compile time
verification for dominance and completeness.

Pattern Matching with instanceof
Before we dive into the full power of pattern matching with switch, let’s look
at the feature of pattern matching with instanceof. With this feature, we’ll see
how Java removes the ceremony in code related to runtime type checking.
Learning about this feature first will help us to see how this facility is then
carried straight into the pattern matching with switch.

It’s not uncommon for us to use instanceof to check if an instance provided to
a function is one of several possible types. For instance, let’s say we are
writing a function process() that receives as a parameter a data of type
CharSequence, but at runtime it may be any one of the implementations of that
interface. In that function, suppose we want to check if the instance is of
type String and if so, if it’s blank. We may be rightfully tempted to write the
code like this:

pattern/vsca/CheckBlank.java

​ ​public​ ​void​ ​process​(CharSequence data) {

​ ​if​(data ​instanceof​ String) {

​ System.out.println(​"The data is blank?: "​ + data.isBlank()); ​//ERROR​

​ }

​ }

This code is pretty direct and does minimally what it needs—it asks “if the
given data is of type String and if so is data blank?” Quite reasonable.

But the compiler doesn’t like that and gives us the following error:

​ vsca/CheckBlank.java:7: error: cannot find symbol

​ System.out.println("The data is blank?: " + data.isBlank()); //ERROR

​ ^

​ symbol: method isBlank()

​ location: variable data of type CharSequence

​ 1 error

http://media.pragprog.com/titles/vscajava/code/pattern%2Fvsca%2FCheckBlank.java

It’s telling us that there is no function isBlank() on the type CharSequence.

Imagine a conversation with a stranger you met at the airport, going like
this:

You: Did you see the most recent Tom Cruise movie?

Stranger: Oh, yes, I did.

You: Did you like it?

Stranger: Did I like what?

You: !!

Any chance of that stranger ever turning into a friend totally diminished
right at that moment, as you tried so hard to resist an eye roll. Sigh.

Like that stranger in the airport, the compiler refused to carry over the
context from the instanceof call to the next line within the branch of the if
statement. Instead, it insisted that we perform a cast operation, like so:

​ ​if​(data ​instanceof​ String) {

​ String str = (String) data;

​ System.out.println(​"The data is blank?: "​ + str.isBlank());

​ }

Within the branch for the if statement, we cast the data to a String type and
placed that reference into the str variable. As you know, both data and str
refer to the same exact memory location. The difference is that data is of
type CharSequence whereas the reference str is of type String. Now, we invoke
the isBlank() method on the str reference, and that makes the compiler totally
happy.

It may make you wonder: Do you work for the compiler or does it work for
you?

It’s important that the compilers work for us and, thankfully, the Java
compiler has evolved to make this experience feel right.

Languages like Groovy and Kotlin handle this elegantly using a feature
called smart casting. Smart casting automatically recognizes where a
variable may be of a specialized type and permits you to invoke the
appropriate methods on it without an explicit cast.

Java has taken a slightly different approach to how it implements the smart
casting feature, which in Java is called pattern matching with instanceof. It
eliminates the explicit cast, like Groovy and Kotin, but requires us to
provide an extra variable name. Let’s take a look at how the previous code
changes if we use this elegant feature.

​ ​if​(data ​instanceof​ String str) {

​ System.out.println(​"The data is blank?: "​ + str.isBlank());

​ }

Right after the instanceof check, following the type, place a new variable
name (str in this example) that doesn’t conflict with any other variable in the
current scope. In this example, data and str refer to the same location in
memory, but while data is a reference of type CharSequence, str is a reference
of type String if the instanceof check passes. Within the if, we can now use the
new variable str to invoke methods that may be available on String, like
isBlank(). The pattern matching with instanceof, as it’s called, removes the
need for explicit casting and makes the code concise.

The scope of the new variable that follows the instanceof check is valid
exclusively in the path of code that’s taken only if the instanceof check
passes. In the code, we can’t use that variable str after the end of the } that
closes the if branch. To be clear, that variable str isn’t visible within an else
block if present.

Let’s further explore the scope of the pattern matching variable in the
context of a ternary operator:

​ ​public​ String ​stringAndNotEmpty​(CharSequence data) {

​ ​return​ data ​instanceof​ String str && !str.isBlank() ? ​"yep"​ : ​"nope"​;

​ }

We were able to use the str variable within the expression that follows the &&
operator, that is, the expression is executed only if the instanceof passes the
check. We can also use the variable str in the ? part, which is where "yep"
appears, but not in the part following “:”, that is where "nope" appears.

The pattern matching with instanceof can be used not only in the if operator
or the ternary operator but also within the switch statement and the switch

expression. Let’s move ahead to see how that looks and the benefits it
brings.

Using Type Matching
In ​From Statements to Expressions​, we discussed the reasons why switch is a
better choice than if in a number of situations. Using a series of if-else to
check if an instance received is one of several types will make code verbose,
hard to maintain, and error-prone. Instead, switch would serve a lot better
since it has evolved significantly.

In the past, you were only allowed to write switch with constants like
number, String, and enums. That restriction has been removed. You can now
use switch with any type. You can pass a primitive to switch, as we did before,
or you can pass a reference to an object of any type. Likewise, in the past,
you were only allowed to use constants as labels for the case. That’s history,
and you can now use a full-blown pattern matching syntax, as we’ll see
soon.

Before we dive into the various facilities available for pattern matching, we
need to prepare some good examples to work with. Let’s create a Trade

interface and two classes Buy and Sell that implement it. We’ll see how the
pattern matching syntax helps us to deal with instances of these different
types.

Here’s the Trade interface with no methods in it—it will serve as a base for
different types of trade.

pattern/vsca/Trade.java

​ ​public​ ​interface​ Trade {}

Suppose we’ll be processing different trades (buy, sell, and so on), and we’ll
need to know the data for the trade. A record will work well to carry such
data. Let’s create a record named Buy first:

pattern/vsca/Buy.java

http://media.pragprog.com/titles/vscajava/code/pattern%2Fvsca%2FTrade.java
http://media.pragprog.com/titles/vscajava/code/pattern%2Fvsca%2FBuy.java

​ ​public​ record ​Buy​(String ticker, ​int​ quantity) ​implements​ Trade {}

Likewise, we can create a Sell:

pattern/vsca/Sell.java

​ ​public​ record ​Sell​(String ticker, ​int​ quantity) ​implements​ Trade {}

In this example we’ll focus on two types of trade, Buy and Sell. Since the
Trade interface may potentially have other implementations, we’ll use an
exception to convey that we’re not dealing with those. Here’s an exception
class for that purpose:

pattern/vsca/TradingException.java

​ ​public​ ​class​ TradingException ​extends​ RuntimeException {

​ ​public​ ​TradingException​(String message) {

​ ​super​(message);

​ }

​ }

We’re equipped with an interface and a couple of records that implement
that interface. We’re all set to dive in if you’re ready.

A ProcessTrade class has a pair of methods, one to deal with the purchase
operation and the other to deal with the sell operation. Let’s get that written
now:

pattern/vsca/ProcessTrade.java

​ ​public​ ​class​ ProcessTrade {

​ ​public​ ​static​ ​boolean​ ​performPurchase​(String ticker, ​int​ quantity) {

​ System.out.println(​"performing a purchase operation for "​ + ticker);

​ ​return​ ​true​;

​ }

​

​ ​public​ ​static​ ​boolean​ ​performSell​(String ticker, ​int​ quantity) {

​ System.out.println(​"performing a sell operation for "​ + ticker);

​ ​return​ ​true​;

http://media.pragprog.com/titles/vscajava/code/pattern%2Fvsca%2FSell.java
http://media.pragprog.com/titles/vscajava/code/pattern%2Fvsca%2FTradingException.java
http://media.pragprog.com/titles/vscajava/code/pattern%2Fvsca%2FProcessTrade.java

​ }

​ }

Imagine that different trade operations arrive continuously over the wire. As
the data arrives, suppose a component translates it into an instance of Trade,
which may be one of the records Buy or Sell. Finally, assume that the
component invokes a processTrade() method to process each of the trades. We
can design the processTrade() method to make use of the two methods we
wrote previously.

If the Trade instance received by processTrade() is an instance of Buy, we need
to call the performPurchase() method. If the instance is of type Sell, we need to
call the performSell() method. Instead of using if and else, we can use switch

with the pattern type matching capability:

pattern/vsca/ProcessTrade.java

​ ​public​ ​static​ ​boolean​ ​processTrade​(Trade trade) {

​ ​return​ ​switch​(trade) {

​ ​case​ Buy buy -> performPurchase(buy.ticker(), buy.quantity());

​ ​case​ Sell sell -> performSell(sell.ticker(), sell.quantity());

​ ​default​ -> ​throw​ ​new​ TradingException(​"invalid trade"​);

​ };

​ }

In the processTrade() method, we pass the given trade to switch and return the
response of switch—we’re using switch as an expression here. The first case

checks if the reference trade is referring to an instance of Buy. If that’s true
then the new reference named buy of type Buy is set to the reference trade.

The case Buy buy is a succinct syntax that does the check if(trade instanceof Buy

buy) under the hood—see ​Pattern Matching with instanceof.

If the first case succeeds we call the processPurchase() method and pass the
ticker and quantity from the instance of Buy received.

http://media.pragprog.com/titles/vscajava/code/pattern%2Fvsca%2FProcessTrade.java

If, instead, the given trade matches the second case, that is if the instance is
of type Sell, then we call the performSell() operation using the details from the
Sell record.

In this example, it doesn’t matter if we place the case Buy buy first or the case

Sell sell first. The look-up time for the different path is a constant, O(1), unlike
the evaluations that may be done using a series of if-else calls (where the
worst-case cost is O(n)). In the given code example, the order of case checks
is alphabetical on the type, but you may choose any order you prefer. If there
is ever an issue with the order, the compiler will clearly let you know.

The compiler will complain about the previous code if we don’t add the
default part within the switch expression. Practically speaking, there’s no limit
to the number of subclasses that may implement the Trade interface, and the
compiler is worried that the processTrade() method may receive something
other than Buy or Sell. “If only you had marked Trade as sealed, buddy,” I hear
you murmur and that’s a good suggestion, but we’ll get to that later.

If, at runtime, the instance of Trade ends up as something other than Buy or
Sell, we’re prepared to deal with it using the default option. The expression
passed to the right side of default throws an exception. We could carry out
other operations here (like logging, sending out alerts, and so on) to report
and take care of this unexpected object type received.

Let’s exercise the code we wrote to make sure it works as expected, meaning
that the pattern matching delivers the results:

pattern/vsca/ProcessTrade.java

​ ​public​ ​static​ ​void​ ​main​(String[] args) {

​ System.out.println(processTrade(​new​ Buy(​"GOOG"​, 1000)));

​ System.out.println(processTrade(​new​ Sell(​"TSLA"​, 500)));

​ System.out.println(processTrade(​new​ Buy(​"AAPL"​, 1000)));

​ System.out.println(processTrade(​new​ Sell(​"AMZN"​, 2000)));

​ }

http://media.pragprog.com/titles/vscajava/code/pattern%2Fvsca%2FProcessTrade.java

We invoke the processTrade() method with a few different trades—Buy and Sell

—and print the result received. Let’s check on the output produced by the
code:

​ performing a purchase operation for GOOG

​ true

​ performing a sell operation for TSLA

​ true

​ performing a purchase operation for AAPL

​ true

​ performing a sell operation for AMZN

​ true

That worked as advertised. In this example we used switch as an expression.
The Java language gives you options, you can use pattern matching with a
switch expression or with a switch statement. Most of the time you have
options, but sometimes you may have to settle for a statement. If you don’t
need to return any results to the caller and if the actions to be performed for
each type are void methods, then you’ll have to use the switch statement
instead of the switch expression.

Syntactically, there are only a few differences if you decide to convert the
expression to a statement, or vice-versa. The arrow cases will turn into colon
cases, and you’ll turn the expressions after -> into statements after :. You can
get rid of ; at the end of the switch() block, as that’s not needed syntactically
for the statement. Here’s how that change will look like for the expression
we wrote within the processTrade() method:

pattern/vsca/ProcessTrade.java

​ ​switch​(trade) {

​ ​case​ Buy buy : ​return​ performPurchase(buy.ticker(), buy.quantity());

​ ​case​ Sell sell : ​return​ performSell(sell.ticker(), sell.quantity());

​ ​default​ : ​throw​ ​new​ TradingException(​"invalid trade"​);

​ }

http://media.pragprog.com/titles/vscajava/code/pattern%2Fvsca%2FProcessTrade.java

Oh, of course, if the statement on the right side of : doesn’t return for any
paths, remember to place the break at the end of those paths. Use the
statement version only if you have no choice. If you can make a choice and
are wondering whether you should use a statement or an expression, pick the
expression—see Chapter 6, ​Switching to Switch Expression​.

Let’s go back to the expression form instead of the statement form. The
compiler forced us to use the default path to address the case where the given
trade may not be Buy or Sell, the two types we check against. The compiler
wants us to handle all possibilities, but, in truth, doesn’t insist that be done
using default. We do have another option—one that’s called the total type
pattern.

Examining the switch expression, the reference passed (trade) is of type Trade,
and we further check if it’s of the specialized type Buy or Sell. If a given
instance is neither of those two types, it’s possibly of some other type still
compatible with the type Trade. (Or the reference may be null—we’ll ignore
this for now.) For any type B that extends from a class A or implements an
interface A, the case A ref is considered the total type pattern match. That is, it
will match any instances of A, B, or almost anything that falls into the
inheritance hierarchy starting from A. The ultimate total type pattern, of
course, is case Object ref.

In situations where the compiler complains that you’re not handling all
possible values, you can use the default or the appropriate total type pattern.
Let’s change the switch expression in the processTrade() method to use the
total type pattern instead of default:

pattern/vsca/ProcessTrade.java

​ ​return​ ​switch​(trade) {

​ ​case​ Buy buy -> performPurchase(buy.ticker(), buy.quantity());

​ ​case​ Sell sell -> performSell(sell.ticker(), sell.quantity());

​ ​case​ Trade unexpected -> ​throw​ ​new​ TradingException(​"invalid trade"​);

http://media.pragprog.com/titles/vscajava/code/pattern%2Fvsca%2FProcessTrade.java

​ };

We replaced default with case Trade unexpected, and the code behaves exactly
the same, at least for the sample calls we made. So why bother, you may
wonder, and that’s a reasonable thought. The total type pattern has one extra
benefit over the default in how it handles null—ah, that’s a nice segue to what
we’ll discuss next.

Matching null
null is a smell,[9] and we should avoid introducing null as much as possible.
It’s no fun receiving a NullPointerException at runtime. In fact, Java
introduced Optional as part of JDK 8 to reduce the possibilities of running
into the NullPointerException. Unfortunately, we have no choice but to deal
with null sometimes, and, in those situations, we have to handle it
gracefully.

The upgraded switch pattern matching facility provides a variety of options
to deal with null:

You can use the good old approach of blowing up with a
NullPointerException when null is encountered—this was the default
behavior of switch in the past and still is if we don’t consider null.

You can provide a separate case for null.

You can combine null handling with a type-matching pattern.

You can deal with it using the total type pattern we saw in the previous
section.

Who knew dealing with null could suddenly be exciting—let’s explore each
of these options.

Traditionally, switch didn’t handle null. If it comes across a null reference it
would blow up with a NullPointerException. That was the behavior of the past
and it still is, for backward compatibility reasons. That means that if you
don’t bother about null, then the switch you write, either as a statement or an
expression, will blow up, just as it did in the past. That’s the default
behavior, which you can override, but keep that in mind.

Here’s the processTrade() method we wrote previously, with the default to
handle the cases where the given trade isn’t one of the two expected types:

​ ​public​ ​static​ ​boolean​ ​processTrade​(Trade trade) {

​ ​return​ ​switch​(trade) {

​ ​case​ Buy buy -> performPurchase(buy.ticker(), buy.quantity());

​ ​case​ Sell sell -> performSell(sell.ticker(), sell.quantity());

​ ​default​ -> ​throw​ ​new​ TradingException(​"invalid trade"​);

​ };

​ }

Let’s call this method with a null argument instead of a valid instance of Buy

or Sell:

​ ​try​ {

​ System.out.println(processTrade(​null​));

​ } ​catch​(Exception ex) {

​ System.out.println(ex);

​ }

Ew, that feels dirty, sorry. The switch expression within the processTrade()

function didn’t concern itself with potential null and so runs into the default
fate:

​ java.lang.NullPointerException

If receiving null references as parameters to functions is a high possibility,
you may want to gracefully handle null. Thankfully, switch has been
extended to deal with the null as a pattern. Drop it straight into your switch as
a case option, like so:

​ ​public​ ​static​ ​boolean​ ​processTrade​(Trade trade) {

​ ​return​ ​switch​(trade) {

​ ​case​ ​null​ -> {

​ System.out.println(​"null is a smell"​);

​ ​throw​ ​new​ ​TradingException​(​"trade was null!!!!"​);

​ }

​ ​case​ Buy buy -> performPurchase(buy.ticker(), buy.quantity());

​ ​case​ Sell sell -> performSell(sell.ticker(), sell.quantity());

​ ​default​ -> ​throw​ ​new​ TradingException(​"invalid trade"​);

​ };

​ }

If the case null is present and if the reference passed in is a null, the switch

won’t blow up with a NullPointerException	exception. Instead, it will execute
the path to the right of the case that handles null. In our example, we print a
message and blow up with a custom exception. We can see this in the
output:

​ null is a smell

​ vsca.TradingException: trade was null!!!!

Providing a separate case null for situations where null is a high probability is
a good idea, but there is another option for you to consider.

You could decide to combine null with the situation where the given trade is
neither an instance of Buy nor of Sell; in that case, you can mix null with
default, like so:

​ ​public​ ​static​ ​boolean​ ​processTrade​(Trade trade) {

​ ​return​ ​switch​(trade) {

​ ​case​ Buy buy -> performPurchase(buy.ticker(), buy.quantity());

​ ​case​ Sell sell -> performSell(sell.ticker(), sell.quantity());

​ ​case​ ​null​, ​default​ -> ​throw​ ​new​ TradingException(​"invalid trade"​);

​ };

​ }

In this case, the last path is taken if the given trade is null or if it’s not a type
expected by the preceding case options.

We looked at two interesting options to deal with null. Both are significant
steps forward from what was available in the past.

In addition to being able to use null as a pattern, we can also scrutinize the
patterns further before deciding to take a case path; let’s check that feature
out next.

Guarded Patterns
If you like pattern matching, you’ll love guarded patterns. Think of a
guarded pattern as a conditional path. In addition to matching a given
pattern, the data should also satisfy one or more conditions or guards for the
control flow to take a guarded case’s path.

Suppose the requirements change and we’re told that if the number of
quantities in a purchase is over 5000, we have to trigger an audit. We want to
be able to fluently handle those pesky regulations that never seem to end.

Within the path for a case, we might be tempted to perform an if-else
condition. The biggest risk of this approach is that, if we forget to handle
the else part in a switch statement, we’ll get no errors. With the compiler not
looking out for such errors, we’ll be left out in the cold. We can only hope
that our unit tests help to identify the errors, and that’s not ideal.

Guarded patterns to the rescue. They make it easy to handle cases where a
computation or an action should be performed only if a condition is met.
The compiler will keep an eye out to verify that the code handles the
situation where the condition is met and also has a path for the situation
where the condition isn’t met—by way of a general pattern match without
any guards.

Let’s modify the processTrade() method to trigger an audit if the quantity of
purchase is over 5000:

​ ​public​ ​static​ ​boolean​ ​processTrade​(Trade trade) {

​ ​return​ ​switch​(trade) {

​ ​case​ Buy buy when buy.quantity() > 5000 -> {

​ generateAuditEventFor(buy);

​ yield ​performPurchase​(buy.ticker(), buy.quantity());

​ }

​ ​case​ Buy buy -> performPurchase(buy.ticker(), buy.quantity());

​ ​case​ Sell sell -> performSell(sell.ticker(), sell.quantity());

​ ​case​ Trade unexpected -> ​throw​ ​new​ TradingException(​"invalid trade"​);

​ };

​ }

The first case uses the new when operator to combine the type pattern to the
left with the condition to its right. The expression to the right of the arrow is
executed only if the instance referenced by trade is of type Buy and the
quantity is more than 5000. Otherwise, the other case options will take up
the matching. Let’s confirm that the guarded pattern is working as intended
by exercising the method processTrade() with a few Trade instances:

​ System.out.println(processTrade(​new​ Buy(​"GOOG"​, 5001)));

​ System.out.println(processTrade(​new​ Sell(​"TSLA"​, 1000)));

Since the quantity for purchase is more than 5000, the code should trigger an
audit, and we can see that in the output:

​ Audit request generated for Buy[ticker=GOOG, quantity=5001]

​ performing a purchase operation for GOOG

​ true

​ performing a sell operation for TSLA

​ true

We can have more than one condition in the guard if we like. In this case,
use the when operator before the first condition and combine the remaining
conditions with the first using the && operator. For example, suppose the
requirement changes and we’re now required to audit if the trade is a Sell,
the quantity is over 500, and the ticker is TSLA. We can easily handle that by
placing multiple conditions after the type pattern, like so:

​ ​public​ ​static​ ​boolean​ ​processTrade​(Trade trade) {

​ ​return​ ​switch​(trade) {

​ ​case​ Buy buy when buy.quantity() > 5000 -> {

​ generateAuditEventFor(buy);

​ yield ​performPurchase​(buy.ticker(), buy.quantity());

​ }

​ ​case​ Buy buy -> performPurchase(buy.ticker(), buy.quantity());

​ ​case​ Sell sell when sell.quantity() > 500

​ && sell.ticker().equals(​"TSLA"​) -> {

​ generateAuditEventFor(sell);

​ yield ​performSell​(sell.ticker(), sell.quantity());

​ }

​ ​case​ Sell sell -> performSell(sell.ticker(), sell.quantity());

​ ​case​ Trade unexpected -> ​throw​ ​new​ TradingException(​"invalid trade"​);

​ };

​ }

We can once again verify the code works as expected with the example
calls to the processTrade() method:

​ Audit request generated for Buy[ticker=GOOG, quantity=5001]

​ performing a purchase operation for GOOG

​ true

​ Audit request generated for Sell[ticker=TSLA, quantity=1000]

​ performing a sell operation for TSLA

​ true

You saw the amazing expressive power of guarded patterns. Along the way,
I alluded that the compiler checks for the integrity of the matches. The
compiler provides two different types of checks to verify that the code is
sufficient from the point of view of matching for patterns.

Let’s take a look at those two facilities next.

Dominance Check
When we use the pattern matching facility, the runtime selects exactly one
path from the available cases or default. The path that’s chosen is the best fit
for the given data. For example, if we have a case for Sell and one for Trade,
the runtime will select the Sell if the instance is of type Sell. It will, on the
other hand, select Trade if the instance is of type Buy and we don’t have a
dedicated case for it. Furthermore, it doesn’t sequentially tally one at a time,
in the given order, at runtime. The search is constant time, that is O(1)

instead of O(n). That means, from the execution and performance point of
view, the order in which we place the cases doesn’t matter. While that is
true, we may have to consider order for other reasons than performance.

The compiler doesn’t only look out for efficiency, it also looks out for
correctness and ease. A good compiler eliminates errors before they could
become an issue. As programmers, we often read code top-down, one step
after the next. If we see that a particular step handles a particular match
and/or a condition, we shouldn’t be forced to read further. This will reduce
the burden on us as we don’t have to comb through all the options in a
switch. Also, if a case already handles a particular pattern, then writing
another case redundantly to handle that specific pattern may be an error.

For ease and to eliminate potential errors, the compiler imposes a logical
order of the case by way of dominance. If the pattern expressed by a case has
been handled by a preceding case, the compiler will report an error.

For example, if the case for the type pattern CharSequence precedes a case for
the type pattern String, then it’s reported as an error. If that were allowed,
then a programmer reviewing the code or debugging could look at
CharSequence and follow that path and not realize there’s a pattern match for
String later on.

Let’s examine the type dominance using the Trade example:

​ ​public​ ​static​ ​boolean​ ​processTrade​(Trade trade) {

​ ​return​ ​switch​(trade) {

​ ​case​ Buy buy -> performPurchase(buy.ticker(), buy.quantity());

​ ​//ERROR​

​ ​case​ Trade unexpected -> ​throw​ ​new​ TradingException(​"invalid trade"​);

​ ​case​ Sell sell -> performSell(sell.ticker(), sell.quantity());

​ };

​ }

We placed the case Trade unexpected before the case Sell sell. The former
dominates the latter and that’s an error. The compiler clearly states that, as
we see from the error reported:

​ ...

​ error: this case label is dominated by a preceding case label

​ case Sell sell -> performSell(sell.ticker(), sell.quantity());

​ ^

​ ...

​ 1 error

If we move the case Trade unexpected to below the case Sell sell, the error will
go away.

In addition to checking for type dominance, the compiler also looks out for
guard dominance. For example, if we place the case Buy buy before the
guarded pattern match case Buy buy when buy.quantity() > 5000, then again the
compiler will generate an error. Let’s examine this situation in code:

​ ​public​ ​static​ ​boolean​ ​processTrade​(Trade trade) {

​ ​return​ ​switch​(trade) {

​ ​//ERROR​

​ ​case​ Buy buy -> performPurchase(buy.ticker(), buy.quantity());

​ ​case​ Buy buy when buy.quantity() > 5000 -> {

​ generateAuditEventFor(buy);

​ yield ​performPurchase​(buy.ticker(), buy.quantity());

​ }

​ ​case​ Sell sell -> performSell(sell.ticker(), sell.quantity());

​ ​case​ Trade unexpected -> ​throw​ ​new​ TradingException(​"invalid trade"​);

​ };

​ }

Once again, if this were allowed, a programmer reviewing code or
debugging might follow the first case for an instance of Buy even if the
second one may have been the right fit. To avoid such misunderstanding
and resulting errors, the compiler will stop this code from compilation:

​ ...

​ error: this case label is dominated by a preceding case label

​ case Buy buy when buy.quantity() > 5000 -> {

​ ^

​ ...

​ 1 error

Here again, we can fix the compilation error by swapping the two cases
related to Buy.

The check for guard dominance is useful, but don’t assume that it’s
guaranteed to catch all possible errors. For example, if you have a check for
buy.quantity() > 1000 before a check for buy.quantity() > 5000, then the latter
branch will never be taken but the compiler won’t catch that issue.
Sufficient unit testing of code is still a necessity.

In addition to checking for errors related to dominance, the compiler also
checks for completeness. Let’s look at that next.

Completeness Check
We discussed completeness with respect to the switch expression in ​
Completeness of a switch Expression​. If not all the possible values for the
expression are handled, we get an error. The compiler extends that
completeness check to type pattern matching as well.

Suppose we don’t write a default and handle only the case for Buy and Sell in
the processTrade() method, like so:

​ ​public​ ​static​ ​boolean​ ​processTrade​(Trade trade) {

​ ​return​ ​switch​(trade) {

​ ​case​ Buy buy -> performPurchase(buy.ticker(), buy.quantity());

​ ​case​ Sell sell -> performSell(sell.ticker(), sell.quantity());

​ };

​ }

This is quite dangerous. What if the instance passed to processTrade() via the
trade reference is neither a Buy nor a Sell? The compiler checks the code with
its eagle eye for such errors and swiftly reports the following:

​ ...

​ error: the switch expression does not cover all possible input values

​ return switch(trade) {

​ ^

​ ...

​ 1 error

The compiler proactively alerts the programmer about a potential error in
the code and refuses to move forward until the issue is fixed.

We can solve this in one of three ways:

We can include a default option—you’ve seen this before.

We can use the total type pattern—the case Trade unexpected example we
saw earlier.

Or, as I bet you’ve been eagerly waiting to see, we can make the Trade

a sealed interface if Buy and Sell are the only currently known
subclasses.

Since we’ve already tried the first two options and have a good idea of how
they work, let’s try the last idea here.

Completeness Check and Sealed
Classes/Interfaces

Since a sealed hierarchy is closed, if in a switch expression all possible
subtypes of a sealed interface or class are handled, then the compiler will
consider the switch to be complete. Extending the previous example, we’ll
declare that Trade is sealed and add the classes Buy and Sell to its permits

clause as the only permitted subclasses.

​ ​public​ sealed ​interface​ Trade permits Buy, Sell {}

After this change, we don’t need default or the total type pattern in the switch
expression. Here it is again, the same as it was before we made the change
to the Trade interface:

​ ​public​ ​static​ ​boolean​ ​processTrade​(Trade trade) {

​ ​return​ ​switch​(trade) {

​ ​case​ Buy buy -> performPurchase(buy.ticker(), buy.quantity());

​ ​case​ Sell sell -> performSell(sell.ticker(), sell.quantity());

​ };

​ }

This time, the compiler has no complaints. It takes a look at the switch and
quickly figures out that the only possible types for the instances of Trade are
covered by the case, so no default or any other additional case is necessary.

We can execute the code to confirm the output is what we expect:

​ performing a purchase operation for GOOG

​ true

​ performing a sell operation for TSLA

​ true

​ performing a purchase operation for AAPL

​ true

​ performing a sell operation for AMZN

​ true

It’s great the compiler is keeping a close eye on completeness and the
resulting correctness of the program. If all paths are covered, we don’t have
to place the default. But, you may ask, is it OK to still place the default in the
case of using enums and sealed classes? That’s a great question and we have
to dig in a bit more to answer that question.

Deciding to Use default or Not
Suppose you’re using the pattern matching facility to match instances of
different subclasses of a sealed class. If you have case labels to cover all
possible types in the inheritance hierarchy, then the default isn’t needed. As
we discussed earlier, the compiler will have no qualms if you don’t provide
the default. But you may wonder if it’s better to implement the case for
default or adhere to the write minimum code principle. In short, don’t write
the default path if it’s not needed.

In the future, if you were to modify the inheritance hierarchy and add
another subclass to the sealed class, then you’ll get a compiler error when
you recompile the code with the switch expression. This is good as the error
appears as a prompt to remind you of the unhandled case. At such time, you
can write the appropriate code to handle the new type. That’s most likely
better than any generic handler one may provide in a default path.

There is a possibility that after the class hierarchy is extended with a new
subclass, the code with the switch may not be recompiled. It’s
understandable to be concerned about such a situation—what if the old
bytecode is executed after the addition of the new class? No worries, the
compiler has you covered already for this possibility.

If you don’t write the default and the compiler determines that it’s not
needed, it automatically adds a default in the bytecode as a safeguard. If this
path is executed, then an exception will be thrown. Thus, if the data passed
to the pattern matching expression is a type that isn’t handled by any of the
cases, you’ll get a runtime exception. Noticing that, you can then modify the
code to add a case for the newly introduced type.

Let’s verify this last scenario with an example.

We’ll work with the following sealed interface and two permitted
subclasses, written in a file named TimeOfDay.java:

​ ​public​ sealed ​interface​ TimeOfDay {}

​

​ ​final​ ​class​ Day ​implements​ TimeOfDay {}

​

​ ​final​ ​class​ Night ​implements​ TimeOfDay {}

Let’s now write a method that uses pattern matching over the Day and Night
classes, like so:

​ ​public​ ​class​ ProcessTimeOfDay {

​ ​public​ ​static​ String ​greet​(TimeOfDay timeofDay) {

​ ​return​ ​switch​(timeofDay) {

​ ​case​ Day day -> ​"good day"​;

​ ​case​ Night night -> ​"good night"​;

​ };

​ }

​ }

We’ll exercise the greet() method with the currently known subclasses of
TimeOfDay from the following code:

​ ​public​ ​class​ Exercise {

​ ​public​ ​static​ ​void​ ​main​(String[] args) {

​ ​try​ {

​ ​for​(​var​ subClasses : TimeOfDay.class.getPermittedSubclasses()) {

​ ​var​ instance =

​ (TimeOfDay) subClasses.getDeclaredConstructor().newInstance();

​ System.out.println(ProcessTimeOfDay.greet(instance));

​ }

​ } ​catch​(Exception ex) {

​ System.out.println(ex);

​ }

​ }

​ }

If we compile all the three Java files and execute the Exercise class’ main()

method, we’ll get the following output:

​ good day

​ good night

Now, let’s modify the TimeOfDay.java file to add another subclass to include
my favorite time of the day:

​ ​final​ ​class​ Dawn ​implements​ TimeOfDay {}

Since the TimeOfDay interface doesn’t have the permits clause, and the new
subclass is in the same file, it’s now a legitimate member of the inheritance
hierarchy. Suppose we now recompile only the modified TimeOfDay.java file
and not the other two Java files. After that, if we execute the precompiled
Exercise class’ main() method, we’ll get the following output:

​ good day

​ good night

​ java.lang.MatchException

The default path that was introduced automatically by the compiler kicks in
when timeOfDay refers to an instance of the previously unknown class Dawn.
The autogenerated code throws an exception of type java.lang.MatchException,
and the catch block we had placed displays that error.

You can safely leave out the default if the compiler doesn’t complain. You
can comfortably rely on the compiler to look out for any changes, both with
compile time and runtime checks.

Pattern Matching Primitive Types

In ​Using Type Matching​, we saw the facility to pattern match on different
reference types, like classes and interfaces. Starting with Java 23, we can
pattern match, switch, and perform instanceof checks on primitive types as
well.

The instanceof check on primitive types is intriguing as it goes beyond a
direct check of the desired type. Some checks may pass or fail at compile
time and others may pass or fail at runtime. Let’s explore this further.

Some of the checks are considered unconditional and pass at compile time.
For example, any variable of type int will match true for checks against the
types int, Integer, Number, and double. The first three are obvious: an int is a
direct match, Integer is the wrapper type that’s used to box int to reference
types, and Number is the superclass of Integer. But Java is also happy to
unconditionally allow a match from an int to a double, since any int value
can be converted to double without loss of data, and this is known at
compile time. The bottom line is a check will pass if there is a safe
conversion of data from one type to the other.

Some of the checks are considered exact if at runtime it can be determined
that a conversion from one type to the other is possible without any loss of
data. Let’s take a look at a few examples to get a grip on this logic.

​ ​int​ max = 1000;

​ ​double​ radium226HalfLifeYears = 1600.00;

​ ​double​ radium228HalfLifeYears = 6.70;

​ ​double​ ageOfUniverse = 13_700_000_000.00;

​

​ ​var​ isTrue = max ​instanceof​ ​double​; ​//unconditional (compile time)​

​ ​var​ isAlsoTrue = radium226HalfLifeYears ​instanceof​ ​int​; ​//exact (runtime)​

​ ​var​ isFalse = radium228HalfLifeYears ​instanceof​ ​int​; ​//not exact (runtime)​

​ ​var​ isAlsoFalse = ageOfUniverse ​instanceof​ ​int​; ​//not exact (runtime)​

The first instanceof check will pass at compile time since there is no possible
loss of data if the value in max is converted to a double. The second
instanceof check will pass at runtime since the value in the variable
radium226HalfLifeYears can be converted to int without losing any data—we
only have 0s in the decimal places, and those can be discarded. On the other
hand, the third and the fourth instanceof checks will fail at runtime since
both will incur a loss of data if the conversion were allowed.

When you write something like switch(variable) { case primitiveType p -> }, the
compiler performs a variable instanceof primitiveType check. Thus, for pattern
matching the same logic we discussed for the instanceof check for primitive
types applies.

Let’s take a look at an example of pattern matching on a variable of type
double. First, we’ll create a record named Tire and a class named
TirePressureCheck with a main() method that invokes a method checkPressure()

that will use pattern matching.

​ record ​Tire​(​double​ pressure) {}

​

​ ​public​ ​class​ TirePressureCheck {

​ ​public​ ​static​ ​void​ ​main​(String[] args) {

​ System.out.println(checkPressure(​new​ Tire(30.25)));

​ System.out.println(checkPressure(​new​ Tire(30.0)));

​ System.out.println(checkPressure(​new​ Tire(32.0)));

​ System.out.println(checkPressure(​new​ Tire(33.9)));

​ }

​ }

The Tire record has a pressure component of primitive type double. The main()

method calls the checkPressure() method with instances of Tire with different
pressure values. We expect the checkPressure() method to provide
recommendations after checking the pressure of the tire it receives as its
parameter. Since the recommendations will depend on the values of the

pressure—you guessed it—we can make use of pattern matching on the
primitive type.

Here’s the code for the checkPressure() method:

​ ​//method of TirePressureCheck​

​ ​public​ ​static​ String ​checkPressure​(Tire tire) {

​ ​var​ recommendation = ​switch​(tire.pressure()) {

​ ​case​ ​int​ i when i == 32 -> ​"tire looks good"​;

​ ​case​ ​double​ d when d > 32.0 -> ​"deflate tire a little"​;

​ ​case​ ​double​ d -> ​"tire needs more air"​;

​ };

​

​ ​return​ ​"%.2f PSI, %s"​.formatted(tire.pressure(), recommendation);

​ }

The switch receives the pressure (a double) and performs pattern matching
using three different cases. The first one matches the given double to an int

with a guard when the value is equal to 32. The pattern matching to int will
succeed only if the value of pressure can be converted to double without any
loss of data. Also, the when clause further restricts this matching to a value
of 32.

If the first case didn’t succeed, then the second case checks if the value of
pressure is greater than 32. The final case will kick in if the value doesn’t
match the first two cases. Since the last case handles any double value and
the type of the expression passed to switch is double, this switch is exhaustive.
The compiler will complain if you try to add a default option to this switch.

Looking at the calls to checkPressure() in the main() method, the first call
passes a Tire with pressure value of 30.25. If this were converted to int there
would be a loss of data, so it wouldn’t match the first case. Even though
pressure is double, since the value isn’t greater than 32, the match will fail
the second case as well, and roll over to the third case.

Let’s now consider the second call with the pressure value of 30.0.
Converting that to int won’t result in any loss of data, and the first case will
partially pass. But since the value isn’t equal to 32, the first case will fail for
this one as well, and the check will continue down to the other options.

The interesting case here is the pressure value of 32.0. In spite of it being a
double, the first case will succeed for this value, thanks to the exact
conversion to int with no loss of data at runtime. Finally, the pressure value
of 33.9 is handled in a similar way to how the other pressure values were
handled.

Let’s take a look at the output to verify that the code behaves as per the
logic we discussed:

​ 30.25 PSI, tire needs more air

​ 30.00 PSI, tire needs more air

​ 32.00 PSI, tire looks good

​ 33.90 PSI, deflate tire a little

The power of pattern matching may appear a bit overwhelming—we can
match using constants, using reference types, with primitive types, and on
null. Also, when we mix pattern matching with sealed classes, we get the
benefit of enhanced completeness checks. But that’s not all—let’s take a
look next at the elegance of pattern matching with records.

Destructuring Records When Pattern Matching
When using records with pattern matching, we can make code concise by
using the feature of destructuring. Destructuring or deconstruction is the
opposite of structuring or construction. Instead of creating an object from
values in variables, we create local variables with values extracted from an
object. Let’s take a look at a use case for this feature by revisiting a
previous example we saw in ​Completeness Check and Sealed
Classes/Interfaces​.

In the following code we have a switch expression that processes instances
of two records—Buy and Sell—that implement the Trade interface.

​ ​public​ ​static​ ​boolean​ ​processTrade​(Trade trade) {

​ ​return​ ​switch​(trade) {

​ ​case​ Buy buy -> performPurchase(buy.ticker(), buy.quantity());

​ ​case​ Sell sell -> performSell(sell.ticker(), sell.quantity());

​ };

​ }

In the paths associated with the case expressions, we’re interested in the
value of the ticker component and the quantity component of the respective
record. We’re not interested in the entire record instances, however. Instead
of using the pattern matching with the instanceof feature to create a new
reference, like buy or sell, we can directly extract the ticker and the quantity

into local variables, like so:

​ ​public​ ​static​ ​boolean​ ​processTrade​(Trade trade) {

​ ​return​ ​switch​(trade) {

​ ​case​ ​Buy​(String ticker, ​int​ count)-> performPurchase(ticker, count);

​ ​case​ ​Sell​(String ticker, ​int​ count) -> performSell(ticker, count);

​ };

​ }

In the first case, instead of binding the instance referenced by trade to a buy

variable, we’re defining two new local variables ticker and count. The order

in which these variables are defined corresponds to the order in which the
respective components are defined in the record. The first local variable
ticker gets the value of the ticker() component. It’s a good idea to keep the
name the same to avoid confusion, but you’re not required to do so. For
instance, instead of using the local variable name quantity, we defined a
local variable count to correspond to the quantity component of Buy. This
ability to provide a different name can be useful if there is already a local
variable with a component’s name.

Upon execution of a case with destructuring, the local variables are defined
and receive a value of the respective components based on their position.
The types of the local variables match the type of the respective
components. Also, since the local variables are being defined in the case, the
names shouldn’t collide with any existing variables in the current scope. We
can directly use the local variables whose values were extracted from the
records within the path of the case where the variables are defined.

Java also supports the destructuring of nested records. For example, let’s
take a DoubleTrade record defined as follows:

record DoubleTrade(Buy buy, Sell sell) {}

The case for working with an instance of DoubleTrade can be written, using
destructuring, like so:

case DoubleTrade(Buy(String tkrBuy, int countBuy), Sell(String tkrSell, int countSell)) ->

...

Within the path of this case, we can use the four newly defined local
variables: tkrBuy, countBuy, tkrSell, and countSell.

Type Inference with Destructuring Records
We saw that the values extracted into the local variables during
destructuring match the components in the records based on the position or
order in which the components are defined in the records. From Chapter 2, ​
Using Type Inference​, you know the types of the local variables can be
inferred from the context. Starting with Java version 22, we can use type
inference of local variables defined during destructuring—yay!

Let’s modify the first case from the processTrade() function we previously
saw to make use of type inference:

​ ​public​ ​static​ ​boolean​ ​processTrade​(Trade trade) {

​ ​return​ ​switch​(trade) {

​ ​case​ ​Buy​(​var​ ticker, ​var​ count)-> performPurchase(ticker, count);

​ ​case​ ​Sell​(String ticker, ​int​ count) -> performSell(ticker, count);

​ };

​ }

In the first case we use type inference whereas in the second case we provide
the type information explicitly. If you’re familiar with the domain and a
variable’s name makes the type obvious, then make use of the type
inference. If you’re totally baffled looking at the code, then either specify
the type or consider refactoring the code so that the type is more obvious
from the variable names or the surrounding usage.

Unnamed Variables in Pattern Matching
When processing a record using a case expression, suppose you don’t have
use for one or more components of a record. But since the destructuring is
based on the position or order of the components definition, the compiler
will insist that you extract each of the components. Not only does this result
in rather verbose code, but programmers may be tempted to give bad names
for variables they don’t intend to use. Also, to further complicate the
situation, some code quality tools may complain about having unused
variables in code. Thanks to a new feature introduced in Java 22—unnamed
variables—we don’t have to suffer through these issues. Let’s take a look at
this feature using an example.

In the following code we’re using destructuring to extract the components
of the Buy record into two local variables, ticker and count.

​ ​case​ Buy(​var​ ticker, ​var​ count)-> {

​ System.out.println(​"Buying "​ + ticker);

​ yield ​true​;

​ }

From the body of the case expression, we see that the ticker is being used but
the count is not. Since count isn’t used, we may be tempted to call it c, temp,
ignore, t, or countless other poor names. Instead of doing so, Java now
allows us to define variables we don’t plan to use with a special
international “I don’t care” symbol, the underscore _.

Let’s change the previous code to make use of _:

​ ​case​ Buy(​var​ ticker, ​var​ _)-> {

​ System.out.println(​"Buying "​ + ticker);

​ yield ​true​;

​ }

We are telling the compiler to extract the ticker component into the ticker

variable and not to bother with the next component in the record. We can
use more than one _ when destructuring, so, use as many _s as the number
of components you would like to ignore. For example, when destructuring
the DoubleTrade record, if we only care about the ticker for the Buy, we can
write the case like so:

case DoubleTrade(Buy(var ticker, int _), Sell _) -> ...

In this case we’re ignoring the quantity component of the embedded Buy

instance within an instance of DoubleTrade and the entire Sell instance
embedded within an instance of DoubleTrade.

[8]

[9]

Wrapping Up
Pattern matching takes decision-making code to a whole new level of
fluency. You’re no longer limited to using switch only on constants. You can
apply switch on both values and references. The case labels may be
constants, types, or null. Also, cases may include guards to examine the data
being processed. In addition to fluency and ease, the compiler automatically
checks for correctness too. You can write concise code and, at the same
time, reduce the chances of errors in code with this powerful feature. In
addition to the power of pattern matching, we also saw the interplay of that
feature with the sealed classes and also destructuring of records.

So far, we’ve seen features that impact how we write code. Next, we’ll look
at a feature that impacts how we structure and build applications on the Java
platform, with modularization.

Footnotes

https://en.wikipedia.org/wiki/Steve_Rogers_(Marvel_Cinematic_Universe)

https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/

Copyright © 2025, The Pragmatic Bookshelf.

https://en.wikipedia.org/wiki/Steve_Rogers_(Marvel_Cinematic_Universe)
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/

Part 4

Modularization

Whether you are creating enterprise monolithic applications
or microservices, from the architecture view point,
modularization is a highly essential characteristic.

Programmers want to thoroughly encapsulate their modules’
internals. Architects want to clearly define the boundaries

and govern their modules’ dependencies. Until Java 9 there
was no direct way to achieve those goals on the JVM.

You can now modularize your applications to reap several
benefits. You can make your applications more secure,

manage the dependencies with clarity, and write tests to
examine the metadata related to the dependencies, so you
can verify that the characteristics implemented in the code
meet your architectural specifications. Curious? Read and

practice along to find out how.

Chapter
8

Modularizing Your Java
Applications

Creating some solutions is like good parenting—a lot of hard work, with
little recognition of value during the struggles, but (hopefully) the results
are appreciated years, if not decades, later. The modularization facility in
Java fits that description aptly. It was introduced in Java 9 and it’s one of
the most important features of the platform, and its benefits reach far
beyond programming, into the architectural governance. In spite of that, the
adoption of this feature has been rather slow in the industry, largely due to
the misunderstanding of the purpose and the benefits.

Modularization is a highly essential architectural characteristic of both
enterprise monolithic systems and microservices. Modules help us to
clearly define the boundaries of subsystems, in terms of their interfaces, and
facilitate a way to strictly encapsulate their internals. Modules also help us
to clearly specify and manage dependencies to easily keep the complexity
of the application in check.

Until Java 8, the JVM lacked the capability to provide this critical
architectural characteristic. Starting with Java 9, you can implement your
application modules from your architectural specifications directly in code.
Architects and team leads can use this feature to enforce and govern their
architectural decisions related to modules and their dependencies.

In this chapter we’ll first discuss the benefits of modularization with respect
to Java applications. We’ll then look at the steps to create modules. Along
the way, we’ll discuss how the interactions between modules are specified
as contracts, and how modularization can lead to a better encapsulation of
modules, loose coupling between modules, and a stricter and thorough
governance of dependencies.

Maven, Gradle, and Modularization
Most teams use Maven or Gradle to build their applications. The
modularization feature of Java complements and doesn’t compete with
these tools. Maven and Gradle abstract the task of building and bundling
applications. Java modules aren’t a replacement for a build system. You’ll
continue to build your applications with tools like Maven and Gradle. These
tools help us to resolve dependencies at build time. Java modules fill in the
gaps at compile time and step in during the runtime.

Imagine an architect points to a JAR file and asks their team for a list of
classes or packages that depend on the JAR and those that the classes in the
JAR depend on. (With frequent news about security exploits, that’s not
something we have to imagine—it’s a sad reality in thousands of
organizations.) In Java 8 and earlier, there was simply no “Java” answer.
Also, if the architect demanded performing runtime checks to govern
dependencies, there was no easy way to achieve that either. With the
modularization capability now present in Java, the team can respond to the
architect with great confidence and agility and make the applications more
secure.

Before modularization, there were several gaps at compile time that are
beyond the capabilities of build tools to address. Modules should have strict
boundaries. You must be able to clearly specify parts that are internal to a
module—intended for use and not reuse—and parts that are for others to
use or reuse. It shouldn’t be possible for others to augment our packages
and, by doing so, gain access to the parts that aren’t intended for others to
use. As a developer, you want to clearly and narrowly specify what you
depend on, and not accidentally use things from a vast number of
dependencies that may be downloaded from the universe. Also, relying on
“package private” as a tool to encapsulate the internals of a package will
make packages become large and less cohesive.

Java modules address all those deficiencies, help us to enforce access
restrictions at compile time, and resolve dependencies at runtime. Modules
can only touch packages exported from the modules they explicitly require.
Unlike in the past, you get access to nothing by default instead of getting
everything.

Java helps you take your design responsibilities seriously—Java modules
reinforce good practices and make it harder to fall into bad practices.

We use the build tools to define what makes a JAR file. Java modules take
that further—they define the access boundaries that separate the parts of a
JAR that are visible to other JARs and the parts that are internal. In other
words, Java modules provide you with the capability to better manage and
control the binaries that you bundle using the build tools.

You can quickly examine a JAR file and determine its dependencies,
irrespective of what build tool was used to bundle the code into the JAR.
You can be confident that at runtime the code executing with the JAR will
gain access only to the code you’ve granted permission to access. Likewise,
you can be certain that the parts you don’t intend to make visible aren’t
accessed from code running within other JAR files, not even using
reflection. These runtime expectations are beyond the scope of any build
tool, and now they’re rightly managed by the Java eco system.

Additionally, the benefits of modularizing our applications extend to
deployment with the fast fail capability. In the past, if one or more JAR files
that an application needed was missing in production, due to an unnoticed
error during deployment, the failure could happen quite late during
execution. Part of the application code that hasn’t been executed during
startup may be accessed upon a user’s request or action, and if that code
were to use a missing class, the application would fail with a
ClassNotFoundException. This is highly undesirable—no code should partially
execute, effecting change, if part of the application is missing. Thankfully,
that’s no longer the case if we use Java modules. Java stores the

dependency details as metadata within the JAR files and verifies all the
dependencies are in place at the start of execution. If a necessary JAR is
missing, the program will fail at start-up with a java.lang.module.FindException,
without even executing the main() method. This makes the application more
robust—fast fail for the win.

You’ve seen how Java doesn’t compete with the build tools. Next, let’s look
at the benefits of the modularization facility now available in Java.

Modules and the Benefits of Modularization
A module is a set of packages that are well-encapsulated and designed for
reuse. A module is implemented as a JAR file. In the past, a package was
considered a logical grouping of classes, interfaces, enums, and so on, and
could be spread across multiple JAR files. With modules, a package is
required to be contained exclusively within a module.

A module is cohesive—things within a module are expected to be used
together and changed together. Modules follow the Reuse/Release
Equivalency Principle, that is, the unit of release is the unit of reuse. Any
user of a module is likely to use all of the members of a module or none at
all.

A module enforces strong encapsulation—it clearly defines the packages
that are visible outside of a module and things that are internal to a module.
It thoroughly declares what’s intended for reuse and what’s for internal use
only. Thus modules provide reliable intentional dependencies instead of
accidental dependencies.

Modularization is the process of defining modules and their interactions in a
codebase. Modularization is a key architectural characteristic for both
enterprise applications and microservices—the larger a system, the more we
would reap the benefits of modularization.

Modules have well-defined boundaries, interact using interfaces, and
strictly enforce encapsulation of their internals. This provides the most
flexibility for the internals to change. Additionally, it prevents external code
from depending on the internals and, as a result, prevents it from being
affected when the internals change. Thus, good modularization improves
the stability of code and reduces the cost of development.

Modularization of the Java ecosystem directly results in benefits for
organizations using Java. If your organization is building serverless
applications (like Amazon Lambdas) or microservices, then they don’t have
to install the JRE on the production systems on the cloud. Instead, they can
create targeted using the JLink tool, with only the binaries that are
necessary for the application to run, leaving out the rest. This not only
reduces the footprint of the applications but can also speed up spinning up
new instances. We’ll see how to create targeted binaries in ​Targeted Linking
Using jlink​.

In summary, modularization offers multiple benefits, by helping to do the
following :

clearly define the boundaries of subsystems
thoroughly encapsulate the internals of modules or subsystems
clarify dependencies at compile time and runtime
make applications more secure
easily validate architectural specifications related to dependencies
provide stricter access control
create smaller, targeted deployments

Next, let’s take a look at how the JDK has been modularized.

Modularized Java
Much like how we can modularize our applications, the JDK has been
modularized as well in order to reap the same benefits for Java. In the past,
the rt.jar file, which holds the JDK runtime, was one big blob. The JDK is
one of the largest and most widely used legacy codebases in the world. The
rt.jar contained almost everything that was part of the JDK and the Java
Ecosystem. In order for us to use something from it, we were forced to
depend on everything. This isn’t the best for applications that are cloud-
native or serverless where a smaller footprint is desirable. To meet the
needs of modern applications, the developers behind Java have modularized
the JDK.

As part of the Modularization effort, the JDK has been split into many
modules, and the parts that are no longer necessary for most applications
have been removed from the core. You can find the modules that are part of
the Java environment using the following command:

​ java --list-modules

If you run this command on your system, you’ll see an output similar to the
following:

​ java.base@24

​ java.compiler@24

​ java.datatransfer@24

​ java.desktop@24

​ java.instrument@24

​ ...

The output shows the modules that are part of the JDK. The number
following the @ symbol conveys the version of Java that you’re using.

The module java.base is required or used by all modules, explicitly or
implicitly. It contains the most fundamental packages that will be used by

most applications. These are some examples pf packages that live in the
java.base module: java.lang, java.math, java.util, java.util.concurrent, and
java.util.stream. You can readily use code in any of the packages of java.base
without explicitly requiring it.

To see the fundamental benefits of modularization—strong encapsulation
and reliable dependency management—we’ll work with a few traditional
JAR files, observe the deficiencies in the design, and then modularize the
JARs to resolve the issues.

Starting with a Legacy Application
Let’s imagine we’ve been asked to resurrect an old application written back
in Java 8. The application displays to the user the location and the occupants
of spaceships. With the rekindled interest in space exploration, the company
is expecting many more spaceships to be floating around in space in the
coming years. They want to make sure their application can easily handle
new spaceships with minimum code change.

Suppose the original application was developed by multiple developers.
Each developer focused on different parts—they set out to create extensible
code but didn’t quite meet that goal. Now the company has asked some
interns who have experience with more recent versions of Java to make
some quick updates. They turned the data classes into records, used List.of()
instead of Arrays.asList(), and made a few more useful improvements, but left
the overall design intact.

Let’s examine the details of the existing design, shown here:

As you can see from the diagram, the application is comprised of three
subprojects, each represented by a JAR: space.jar, iss.jar, and spaceclient.jar.
The team has used Maven as a build tool and has working code to get the
location and occupant data for the International Space Station (ISS).

The team has been tasked to improve the design of the application, to make
it extensible to add new space stations. Let’s quickly get a glimpse at the
existing code that’s part of the three subprojects.

The space Subproject
The space subproject provides the base abstraction with an interface and two
records. Let’s take a look at the interface first.

creatingmodules/spaceinfov1/space/src/main/java/space/SpaceStation.java

​ ​package​ ​space​;

​

​ ​public​ ​interface​ SpaceStation {

​ SpaceStationInfo ​lookup​();

​ }

The interface provides a lookup() function that will return the details of a
space station. The result of the lookup() is a SpaceStationInfo record which is
shown next.

creatingmodules/spaceinfov1/space/src/main/java/space/SpaceStationInfo.java

​ ​package​ ​space​;

​

​ ​public​ record ​SpaceStationInfo​(Location location, List<String> occupants) {}

The record has two components, the Location, which in turn is a record, and a
list of occupant names. The Location record holds the latitude and longitude
on earth above which the spacecraft is currently located, like so:

creatingmodules/spaceinfov1/space/src/main/java/space/Location.java

​ ​package​ ​space​;

​

​ ​public​ record ​Location​(​double​ latitude, ​double​ longitude) {}

The developer who created this subproject had good intentions to create
a layer of abstraction for the rest of the application to rely upon. Let’s take a

http://media.pragprog.com/titles/vscajava/code/creatingmodules%2Fspaceinfov1%2Fspace%2Fsrc%2Fmain%2Fjava%2Fspace%2FSpaceStation.java
http://media.pragprog.com/titles/vscajava/code/creatingmodules%2Fspaceinfov1%2Fspace%2Fsrc%2Fmain%2Fjava%2Fspace%2FSpaceStationInfo.java
http://media.pragprog.com/titles/vscajava/code/creatingmodules%2Fspaceinfov1%2Fspace%2Fsrc%2Fmain%2Fjava%2Fspace%2FLocation.java

look at the iss subproject next.

The iss Subproject
The iss subproject was intended to focus on the ISS. The developer who
wrote this subproject found and made use of web services that provide
location and occupant details.

The ISSSpaceStation class implements the SpaceStation interface and overrides
the lookup() method. Let’s take a look at the details in this class:

creatingmodules/spaceinfov1/iss/src/main/java/iss/ISSSpaceStation.java

​ ​package​ ​iss​;

​

​ ​public​ ​class​ ISSSpaceStation ​implements​ SpaceStation {

​ ​public​ SpaceStationInfo ​lookup​() {

​ ​return​ ​new​ ​SpaceStationInfo​(

​ ​new​ ​ISSLocation​().lookupLocation(),

​ ​new​ ​ISSPeople​().lookupPeople());

​ }

​ }

All the code that deals with the two web services has been nicely tucked
away into two classes ISSLocation and ISSPeople. The ISSSpaceStation
aggregates the data provided by these two classes.

The ISSLocation location class does the heavy lifting to get the location from a
web service and parses the JSON response:

creatingmodules/spaceinfov1/iss/src/main/java/iss/location/ISSLocation.java

​ ​package​ ​iss.location​;

​

​ ​public​ ​class​ ISSLocation {

​ ​public​ Location ​lookupLocation​() {

​ ​//gets raw data from the iss-now URL and parses the JSON response​

​ ​//Please view the code from the book website for full listing​

​ ​//...​

http://media.pragprog.com/titles/vscajava/code/creatingmodules%2Fspaceinfov1%2Fiss%2Fsrc%2Fmain%2Fjava%2Fiss%2FISSSpaceStation.java
http://media.pragprog.com/titles/vscajava/code/creatingmodules%2Fspaceinfov1%2Fiss%2Fsrc%2Fmain%2Fjava%2Fiss%2Flocation%2FISSLocation.java

​ }

​ }

The lookupLocation() function gets the data from the web service and uses the
Jackson library[10] to parse and extract data from the JSON representation.

Likewise, the ISSPeople class has the code to get the occupants of the ISS:

creatingmodules/spaceinfov1/iss/src/main/java/iss/people/ISSPeople.java

​ ​package​ ​iss.people​;

​

​ ​public​ ​class​ ISSPeople {

​ ​public​ List<String> ​lookupPeople​() {

​ ​//gets raw data from the astros URL and parses the JSON response​

​ ​//Please view the code from the book website for full listing​

​ ​//...​

​ }

​ }

The developer of this subproject also did a reasonable job, to the extent
possible with the version of Java they used. They provided an abstraction to
get the data and delegated the implementation details to fetch and parse data
into separate classes that are in different packages.

Let’s take a look at the last subproject next.

The spaceclient Subproject

The spaceclient subproject has only one class with a main() method. The
designers of the other two subprojects were expecting the creator of this
subproject to properly use the abstractions they had created. But the
programmer who wrote the SpaceClient was in a rush and didn’t pay much
attention to the intended design. Here’s the sloppy code for the SpaceClient:

creatingmodules/spaceinfov1/spaceclient/src/main/java/spaceclient/SpaceClient.java

​ ​package​ ​spaceclient​;

​

http://media.pragprog.com/titles/vscajava/code/creatingmodules%2Fspaceinfov1%2Fiss%2Fsrc%2Fmain%2Fjava%2Fiss%2Fpeople%2FISSPeople.java
http://media.pragprog.com/titles/vscajava/code/creatingmodules%2Fspaceinfov1%2Fspaceclient%2Fsrc%2Fmain%2Fjava%2Fspaceclient%2FSpaceClient.java

​ ​public​ ​class​ SpaceClient {

​ ​public​ ​static​ ​void​ ​main​(String[] args) {

​ System.out.println(

​ ​"Please enter the space station you're interested in:"​);

​

​ ​try​(​var​ scanner = ​new​ Scanner(System.in)) {

​ ​var​ spaceStationName = scanner.nextLine();

​

​ ​if​(!spaceStationName.equals(​"ISS"​)) {

​ System.out.println(

​ ​"Space station with name %s not found"​.formatted(

​ spaceStationName));

​ } ​else​ {

​ ​var​ issLocation = ​new​ ISSLocation();

​ ​var​ location = issLocation.lookupLocation();

​

​ System.out.println(

​ ​"Current latitude and longitude of %s: (%g, %g)"​.formatted(

​ spaceStationName,

​ location.latitude(),

​ location.longitude()));

​

​ ​var​ issPeople = ​new​ ISSPeople();

​ ​var​ occupants = issPeople.lookupPeople();

​

​ System.out.println(​"Current occupants of %s: %s"​.formatted(

​ spaceStationName, String.join(​", "​, occupants)));

​ }

​ } ​catch​(Exception ex) {

​ System.out.println(ex.getMessage());

​ }

​ }

​ }

The main() method prints an error message if the requested spaceship name
isn’t ISS. Otherwise, it gets the location details from the ISSLocation class and
the occupants’ details from the ISSPeople class and prints the details.

Before we discuss the issues in this design, let’s first build and execute the
code.

Building and Running the Legacy Code
The original team used Maven to build the application. You can take a look
at the entire project and the Maven build files in the code repository for this
book, under the spaceinfov1 directory. Here’s the script to run the Maven
build and execute the program:

creatingmodules/spaceinfov1/run.sh

​ mvn package

​ mvn dependency:copy-dependencies

​

​ export DEPDIR=spaceclient/target/dependency

​ export DEPENDENCIES=$DEPDIR/space-1.0.jar:$DEPDIR/iss-1.0.jar:\

​ $DEPDIR/jackson-annotations-2.6.0.jar:$DEPDIR/jackson-databind-2.6.7.jar:\

​ $DEPDIR/jackson-core-2.6.7.jar

​

​ java -classpath spaceclient/target/spaceclient-1.0.jar:$DEPENDENCIES\

​ spaceclient.SpaceClient

The JAR files for the subprojects, space.jar and iss.jar, along with the JAR
files for the Jackson library are in the classpath, just like the way we’re used
to running traditional Java programs.

Execute the run.sh script and you’ll see an output similar to the following:

​ Please enter the space station you're interested in:

​ ISS

​ Current latitude and longitude of ISS: (-22.6616, 159.263)

​ Current occupants of ISS: Oleg Kononenko, Nikolai Chub,

​ Tracy Caldwell Dyson, Matthew Dominick, Michael Barratt,

​ Jeanette Epps, Alexander Grebenkin, Butch Wilmore,

​ Sunita Williams

The location and the occupants of the ISS that you see will be different,
based on where the spaceship is and who is on it at the time of execution.

The program works, but the design has some significant flaws. Let’s discuss
the issues next and then see how modularization will help to fix the issues.

http://media.pragprog.com/titles/vscajava/code/creatingmodules%2Fspaceinfov1%2Frun.sh

Perils of the Existing Design
From the extensibility and maintainability point of view, there are some
issues with the design of the code we saw in the previous section. We’ll
discuss those in this section and remedy them in the next section.

Let’s revisit the design diagram we saw in the previous section.

The space subproject is done well and contains the interface and the two
data classes/records. These serve as the specifications for the code to get
information that different space stations can adhere to. Kudos to the
developer who created it. That’s a step in the right direction.

The iss.jar file contains the ISSSpaceStation class that implements the interface
SpaceStation that’s within the space.jar file. The two classes ISSLocation and
ISSPeople are also part of the iss.jar file but are located in two different
packages. The developer who wrote this subproject intended these two
classes to be used only by the ISSSpaceStation class. But there was no way to
specify or enforce this intention. This is a violation of the Open-Closed
Principle. No code is protected against the change to these two classes due
to the lack of encapsulation in the iss subproject.

The spaceclient.jar file contains the class SpaceClient with the main() method.
This class exhibits both tight coupling and improper coupling. Ideally, this
class should have used the SpaceStation interface and the SpaceStationInfo data
class/record. For the implementation of the SpaceStation, this class should
have used the ISSSpaceStation class. Unfortunately, the developer who
created this class instead used the ISSLocation and ISSPeople classes directly.

You may wonder if this problem could have been eliminated if the
developer had created the ISSLocation and the ISSPeople classes in the same
package as the ISSSpaceStation, but marked them as package friendly.

Unfortunately, that only provides weak encapsulation—the classes are still
usable from the outside via reflection—and it also makes the package iss
that the ISSSpaceStation belongs to less cohesive. Overall, that wouldn’t be a
good design.

From the maintenance point of view, the design of the SpaceClient class is a
disaster. If in the future, we decide to use a different web service to get the
location or the occupants, we could create alternative classes for ISSLocation
and ISSPeople and modify the ISSSpaceStation to use the variants. But due to
improper coupling, the SpaceClient would either use stale implementations,
or it might have to change due to the modifications of what is supposed to
be the internals of the iss subproject. This is the effect of the violation of the
Open-Closed Principle in the iss subproject, as we discussed.

The design of the SpaceClient has another major issue. In the future when
new space stations are commissioned, the code will become rather
unwieldy. Ideally, the creation of the implementations of the SpaceStation
interface should be tucked away into a factory, and the client code should
only use the SpaceStation interface. But the current design has improper and
tight coupling of the client code to the implementation details. It may be
easy to point our fingers at the developer of the iss subproject and, to a
greater extent, the developer of the spaceclient subproject. But the real
culprit is the lack of clarity because you don’t have the ability to strongly
encapsulate the members of a jar and to specify in code the intended use.

The above design is an architect’s nightmare. They wouldn’t sleep well with
such a lack of encapsulation and tight coupling. We’ll next see how the
modularization feature will remove those pains for both architects and
programmers.

Modularizing the Space Station Application
Let’s see how modularization will help solve the design flaws we just
discussed.

We want to strongly encapsulate the code in the iss.jar file, and also remove
the tight coupling of the code in the spaceclient.jar on the classes that are
intended to be for internal use in the iss.jar. Modularization can directly help
us with those two goals.

To create a module, we need to define a module declaration. A module
declaration is defined in a file named module-info.java. This is typically kept
at the top level in the source directory, where the directory hierarchy for the
packages starts. Irrespective of where this file is kept, however, when
compiled, the module-info.class should be at the top level within the JAR file.
Java looks for the module declaration (that’s the module-info.class file) there
to determine if a JAR is an explicitly named module or not.

We’ll define a module declaration for each of the subprojects and specify
clearly the dependencies and the encapsulation boundaries. Starting with
version 3.0, Maven is capable of working with Java modules. As mentioned
before, our efforts to modularize supplement the build steps instead of
replacing them. Let’s start with the steps to modularize the application.

Modularizing the space Subproject
Let’s first start by modularizing the space subproject.

We’ll create a module-info.java file for the space subproject in the
space/src/main/java directory. The following figure shows the location of the
module-info.java file with respect to the other source files for this subproject:

​ .

​ |____iss

​ | |____...

​ |____pom.xml

​ |____run.sh

​ |____spaceclient

​ | |____...

​ |____space

​ | |____pom.xml

​ | |____src

​ | | |____test

​ | | | |____...

​ | | |____main

​ | | | |____java

​ | | | | |____module-info.java

​ | | | | |____space

​ | | | | | |____Location.java

​ | | | | | |____SpaceStationInfo.java

​ | | | | | |____SpaceStation.java

The module-info.java will specify the name for a module. The module names
follow the same naming conventions as the package names. In addition, a
module exports packages that it wants to make available for public use. It
also requires the modules it wants to use.

Modules export their packages and require the modules they depend on—
think of this as a handshake. Both people should extend their hand. If one
person extends their hand but the other person doesn’t, it would be a rather
awkward moment with no handshake. Likewise, for modules to interact,
both modules have to specify their intent explicitly. Modules can only use
things that are part of the modules they explicitly require. Also, only those
things that are explicitly exported from the modules are available for other
modules to use. Anything that isn’t exported stays internal and isn’t visible
to other modules.

public is no longer public. Classes that are defined public in a package
become visible at compile time to other modules only if the package they’re
in is exported in the module’s module-info.java file. Likewise, classes that
belong to a package that isn’t exported become visible at runtime only if

their packages are marked opens in the module-info.java. Packages that are
neither exported nor opened are totally hidden from the outside both at
compile time and at runtime.

Edit the newly created module-info.java to add the following content:

​ module space.base {

​ exports space;

​ }

The file defines the name of the module as space.base. Any code in the
space.jar file now will execute in the explicitly named module space.base

when run from within the modulepath. If run from within the classpath,
however, it will belong to the unnamed module.

The module declaration file says that the module doesn’t depend on any
other module, except the mandatory, implicitly specified, java.base module.
Furthermore, it exports the members of the package space for use by other
modules. As we know, the space.jar contains the interface and the data
classes (records) and no real implementations. Thus, it exports everything it
has, which is quite logical.

That’s all the changes we had to make to the space subproject. Let’s now
focus on the iss subproject.

Modularizing the iss Subproject
Let’s create a module-info.java file under the iss/src/main/java directory. We’ll
specify the module name, and, in addition, we have to specify what this
module will require and what it will export.

The iss.jar contains the class ISSSpaceStation which is for outside use, but the
two classes it uses, ISSLocation and ISSPeople, are for internal use only. We
can readily specify these design constraints in the module-info.java, like so:

​ module iss.info {

​ exports iss;

​

​ requires space.base;

​ requires jackson.databind;

​ }

We named the module iss.info. We’ve opened the members of the iss package
for access from the outside. Any members of any other package in this JAR,
like iss.location and iss.people, aren’t visible from the outside, both at compile
time and at runtime.

Since the class ISSSpaceStation implements the space.SpaceStation interface, we
require the module space.base that contains that interface.

The two classes, ISSLocation and ISSPeople depend upon classes from the
java.util and java.net packages that are part of the java.base module, but we
don’t have to explicitly require that module, it’s always required.

We do have to require explicitly the jackson.databind module, however. Our
application uses an old JAR for the Jackson library. From the security point
of view, we should upgrade to a newer version that addresses high-security
vulnerabilities. But if we decide to hold off on upgrading, we’ll see that
Java is smart enough to treat the good old JARs as automatic modules and
synthesize the necessary module descriptions for us. By default, the module
name is extrapolated from the JAR file name, hence we require
jackson.databind—the synthesized module name from the JAR file jackson-

databind-2.6.7.jar. Instead of using the legacy JAR for the Jackson library, we
may also use a more recent modularized version. But it would be a good
idea to take that up as a separate step after converting our JARs to explicitly
named modules, in case there are any compatibility issues between older
and newer versions of that library (though you’ll find that there are none in
this case).

You’ll soon see that the encapsulation offered by the modularization feature
is pretty air-tight and strengthens the contracts and constraints we want in
place for the iss.info module.

Let’s finally modularize the spaceclient subproject.

Modularizing the spaceclient Subproject
As a last step, let’s create the module-info.java under the
spaceclient/src/main/java directory:

​ module space.client {

​ requires space.base;

​ requires iss.info;

​ }

This file says that the space.client module depends on the space.base module
for the interface and the records. It also wants to use the members of the
iss.info module—right now the client is using the ISSLocation and ISSPeople

classes.

Let’s see how this change is going to affect the build. Again, no need to
change anything in the Maven build file. Simply run the run.sh to execute
the mvn package command and watch:

​ ...

​ [ERROR] COMPILATION ERROR :

​ [INFO] ---

​ [ERROR] .../SpaceClient.java:[4,11] package iss.location is not visible

​ (package iss.location is declared in module iss.info,

​ which does not export it)

​ [ERROR] .../SpaceClient.java:[5,11] package iss.people is not visible

​ (package iss.people is declared in module iss.info,

​ which does not export it)

​ [INFO] 2 errors

​ ...

The compilation and creation of the first two JARs, space.jar and iss.jar,
completed without a glitch. But the compilation of the client code failed.

The error message from the module-related code is one of the best,
unmatchable for clarity. The message clearly says that the client isn’t
allowed to directly access the members of the iss.location and the iss.people

packages. That is, the client isn’t permitted to use the ISSLocation class and
the ISSPeople class.

The module declaration for the iss.base module in the iss.jar file did a
wonderful job—it clearly defined the encapsulation boundaries and
specified that the members of the iss package (that is the ISSSpaceStation

class) may be used outside, but not the members of any other package in the
iss.jar. This level of encapsulation is orthogonal to what build tools can
provide; it places the “what is usable” in code and “how to package” in the
build tools—the right separation of concerns.

Since the ISSLocation and ISSPeople classes aren’t visible, we have to rework
the client code to make use of the ISSSpaceStation class, thus removing the
improper undesirable coupling, like so:

​ ​public​ ​class​ SpaceClient {

​ ​public​ ​static​ ​void​ ​main​(String[] args) {

​ System.out.println(

​ ​"Please enter the space station you're interested in:"​);

​

​ ​try​(​var​ scanner = ​new​ Scanner(System.in)) {

​ ​var​ spaceStationName = scanner.nextLine();

​

​ ​if​(!spaceStationName.equals(​"ISS"​)) {

​ System.out.println(

​ ​"Space station with name %s not found"​.formatted(

​ spaceStationName));

​ } ​else​ {

​ ​var​ spaceStation = ​new​ ISSSpaceStation();

​ ​var​ spaceStationInfo = spaceStation.lookup();

​

​ System.out.println(

​ ​"Current latitude and longitude of %s: (%g, %g)"​.formatted(

​ spaceStationName,

​ spaceStationInfo.location().latitude(),

​ spaceStationInfo.location().longitude()));

​

​ System.out.println(​"Current occupants of %s: %s"​.formatted(

​ spaceStationName, String.join(​", "​,

​ spaceStationInfo.occupants())));

​ }

​ } ​catch​(Exception ex) {

​ System.out.println(ex.getMessage());

​ }

​ }

​ }

Let’s now run the following command and see how that goes:

​ mvn package

You’ll notice that all three subprojects compile with no errors.

We can run the code in the classpath, but to reap the full benefit for both
compile time and runtime checks, we would want to run the code from the
modulepath. Let’s modify the run.sh to run the code from the modulepath, like
so:

​ mvn package

​ mvn dependency:copy-dependencies

​

​ java -p spaceclient/target/spaceclient-
1.0.jar:spaceclient/target/dependency\

​ -m space.client/spaceclient.SpaceClient

We specified the spaceclient-1.0.jar along with the entire
spaceclient/target/dependency directory in the modulepath. Thus, all the JAR
files in the dependency directory are now part of the modulepath. We also had
to specify the class with the main function with a prefix of the module name
it belongs to, using the -m option.

Let’s take the run script for a ride and look at the output:

​ Please enter the space station you're interested in:

​ ISS

​ Current latitude and longitude of ISS: (-7.41650, 171.346)

​ Current occupants of ISS: Oleg Kononenko, Nikolai Chub,

​ Tracy Caldwell Dyson, Matthew Dominick, Michael Barratt,

​ Jeanette Epps, Alexander Grebenkin, Butch Wilmore, Sunita Williams

The output shows the updated location of the space station in addition to the
occupants. The result you see would correspond to the current information
at the runtime.

By modularizing the code we’ve gained a few architectural benefits. We
have tight encapsulation, and we can control which members of a module
are visible outside at compile time, which are available during runtime, and
which are for internal use only. We can now control dependencies between
modules more easily and clearly by configuring the constraints in the
module-info.java file. The dependencies of a module are explicit and
intentional, we can quickly tell what’s exported and what’s required. The
access constraints are enforced at compile time and at runtime.

Let’s quickly review some of the architectural constraints that we’re able to
place using modules.

Architectural Constraints Promoted by Modules
You’ve seen the benefits modules offer from the architecture point of view:
clear control over how dependencies are managed and good visibility of
what a module uses and what it exports. Now let’s discuss a few constraints
that are enforced by modules.

Modules may use only what they specifically require. This constraint tightly
controls what code may be executed at runtime. You can have confidence
your code isn’t invoking any unauthorized pieces of code. This gives you
significant command over the security of your code. For example, in ​
Modularizing the iss Subproject​, the module-info.java file for the iss.info

module requires space.base and jackson.databind. In addition, it implicitly
requires the java.base module. The code within the iss.info module is
restricted to use code from only these three modules. Any reference to code
from anywhere else will result in a compilation error.

Modules may use only what is provided to them via exports. A module
can’t sneak around and access—either at compile time or runtime—code
that hasn’t been made available. This greatly enhances the encapsulation of
your code. You don’t have to worry about changing something you’ve
considered internal to your module, since it won’t be visible to any code
outside of your module, both at compile time or at runtime. We saw this
firsthand, as an example, at the beginning of the section ​Modularizing the
spaceclient Subproject​. The space.client module failed to compile since the
code in it was using classes from packages that weren’t exported by the
iss.info module. The module-info.java file we saw in ​Modularizing the iss
Subproject​, was exporting only the iss package and not the iss.location or the
iss.people packages.

Whereas you export packages, you can only require modules. A module
can’t express dependency on packages or parts of a module. This is based

on the Reuse/Release Equivalency Principle. A module forms a cohesive
unit where all members work together towards a common purpose. It
shouldn’t be able to split the module into two parts where one part is of
interest to some modules and the other part to some other modules. By
asking us to require modules, the designers of the module system are
reminding us to make the modules cohesive and follow the Single
Responsibility Principle. We saw this constraint in the way the space.client

module is related to the iss.info module. Even though the module-info.java of
the iss.info module we wrote in ​Modularizing the iss Subproject​, exported a
package, the module-info.java of the space.client module, in ​Modularizing the
spaceclient Subproject​, required the module and not the packages.

At compile time, modules aren’t allowed to have cyclic dependencies. For
example, in the space station information application, the iss.info module is
depending on the space.base module. This is specified by the requires

space.base in the module-info.java file. The space.base module isn’t permitted to
require the iss.info module or any module that in turn may require the iss.info

module. Modules follow the Acyclic Dependency Principle,[11] and any
cyclic dependencies detected at compile time will result in an error. For
instance, if we add a requires space.client to the module-info.java file in the
space.base module or the iss.info module, we’ll get a compilation error due to
the cyclic dependency.

A module may house multiple packages. But packages aren’t allowed to be
split across multiple modules. Modules require that packages are fully
contained within a module. No one can augment your packages to gain
access to its internals. This eliminates the possibility that someone could
access the internals of your packages by creating a package with the same
name in another module. It’s another way modules enhance security. As an
experiment, try creating a class that belongs to the iss package but is in the
codebase for the space.client module and watch how the Java compiler
admonishes that action.

The same module isn’t allowed to appear more than once in the modulepath.
If the same module is found in two or more files at compile time or at
runtime, the compilation or the execution will swiftly terminate with an
error. This also prevents anyone from augmenting your modules.

In the next chapter we’ll discuss some tools that you’ll find useful when
programming with modules.

[10]

[11]

Wrapping Up
Modularization is an architectural concern. With Java’s modularization
capabilities, you can leverage the Java compiler and the JVM to enforce
strong encapsulation of modules and strict boundaries between modules.
With this facility, you can make your applications more secure and easily
validate architectural specifications related to dependencies.

You learned how to define modules and how the module declaration is used
to define what’s exported from and what’s required by modules. You also
saw how to use the module-info.java file to clearly specify the dependencies
between the modules. Java strictly honors the encapsulation boundaries of
your modules, both at compile time and at runtime. Using the
modularization facility, you can create applications that are more secure and
are able to better manage the dependencies.

In the next chapter we’ll take a look at some tools and techniques that help
us effectively work with modules.

Footnotes

https://github.com/FasterXML/jackson

https://en.wikipedia.org/wiki/Acyclic_dependencies_principle

Copyright © 2025, The Pragmatic Bookshelf.

https://github.com/FasterXML/jackson
https://en.wikipedia.org/wiki/Acyclic_dependencies_principle

Chapter
9

Working with Modules

In the previous chapter you learned about the benefits of modules and how
to create them. In this chapter we’ll explore the module metadata. You’ll
learn how to express dependencies when modules expose the APIs from
other modules and how to reduce the footprint when deploying modularized
applications.

When creating enterprise applications, you typically deal with hundreds of
JAR files. Once you modularize your applications and upgrade your
dependencies to their respective modularized versions, you’ll be dealing
with hundreds of modules. This may raise a few questions in your mind:

How in the world do you tell which modules a particular module
depends on?

How do you handle the situation when the users of your module also
need a module that your code depends on?

If your code only needs a handful of modules at runtime, do you have
to deploy all the modules shipped with Java? And what about all the
third-party modules referenced by your build?

You’ll find the answers to those questions in this chapter.

Let’s start with the first question. There are many interesting things to
wonder about in life, but a module’s dependencies shouldn’t be one of
them. Thankfully, the jar tool has been enhanced, as we’ll soon see, to easily
peek into the metadata of modules. Using that tool you can immediately tell
what a module depends on and what it makes visible for others to use, as
well as what’s available in others’ modules that you can use. Also, you can
easily verify that only the parts of your module that you intend for others
are visible for external use.

When creating a module you often import APIs from other modules for
internal use. Suppose you decide to expose some of those APIs—for
example, classes, interfaces, and enums—as part of your module’s API. By
default, the users of your module would have to explicitly configure the
dependencies on each module whose API you made part of your API. This
is rather an extra effort, and the configuration can become messy and
unwieldy. To ease this pain, Java provides a transitive dependency option.
We’ll see how to use this option and also when and why it may be better to
avoid this.

Software development has come a long way since Java was introduced a
few decades ago. In the world of cloud-native applications, serverless
computing, and microservices, we want to be able to spin up lightweight
instances of services quickly, and installing the full JRE may not be the
right option in some situations. Java provides an easy way for targeted
linking—using the jlink tool—so we can bundle only the essential binaries
for deployment instead of the full-fledged JRE. Only modularized
applications can be minified, and by using this tool we can strictly control
the binaries that get deployed into production. From the security point of
view, you can be assured that the only things in production are the modules
that your team has vetted and nothing else can be invoked in production.

In this chapter we’ll first dig into the jar tool to inspect the module metadata
to examine which modules a JAR depends on and which of its packages it

exports for external use. We’ll then dive into the transitive dependencies
and look at a couple of compelling use cases for that feature. We’ll also
discuss when it’s appropriate to specify transitive dependencies and when it
should be avoided. Finally, we’ll wrap up the chapter with a detailed look at
how to create targeted binaries for fast and easy deployment.

Exploring the Module Metadata
In the previous chapter we talked about how modularization is an
architectural concern. The way we modularize and structure an application
is important to multiple people involved in development, from
programmers to devOps to architects. Programmers use modules to reuse
code, and for that, they need to know what different modules expose and
what they, in turn, depend on. Architects want to ensure that the
dependencies between modules conform to the architectural constraints
they’ve laid out. Both architects and devOps want to clearly know the true
dependencies in their systems, which is especially critical for them when
news about yet another security vulnerability of one of the popular Java
libraries spreads across the internet. In short, there’s a significant need to
quickly know what’s in a module, who can access it, and what modules are
actually used in an application. These details are part of the modules’
metadata, and there’s a tool to help us easily and quickly examine the
details.

The details of a module—its name, the packages it exports, the modules it
requires, and so on—are all stored within the JAR files as part of the
module metadata. The compiler and the runtime make use of this metadata
to verify and permit access to various parts of a module. You can look up
the module metadata by passing the -d option to the jar command tool.

If a JAR has the module descriptor, then the details are extracted from that
file. If a JAR doesn’t have the module descriptor, then Java can
automatically synthesize the details. We’ll examine both a JAR without a
module descriptor and one with a module descriptor.

In Chapter 8, ​Modularizing Your Java Applications​, we created a few
modules and also used an older version of the Jackson library. Let’s first

examine the module metadata for one of the JAR files from the Jackson
library.

Let’s continue to work with the example we ran in ​Modularizing the Space
Station Application​. On the command line, change to the
spaceclient/target/dependency directory. Among the JAR files in that
directory, you’ll find the jackson-annotation-2.6.0.jar file. This is part of an
older version of the library, and the JAR doesn’t contain a module
descriptor. Let’s run the jar command with the -d option on this jar, like so:

​ > jar -d -f jackson-annotations-2.6.0.jar

​ No module descriptor found. Derived automatic module.

​

​ jackson.annotations@2.6.0 automatic

​ requires java.base mandated

​ contains com.fasterxml.jackson.annotation

Since the JAR doesn’t have a module descriptor, Java automatically
synthesizes the module details, treating the JAR as an automatic module.
The name for the automatic module is synthesized from the JAR file name
unless an automatic module name is specified in the manifest. In the output,
we can see that the name of the module is synthesized as jackson.annotations,
the module requires java.base, and it contains the package
com.fasterxml.jackson.annotation. For an automatic module, Java automatically
requires all the modules it needs and exports all the packages it contains.

Let’s now examine an explicitly named module, that is, one with a module
descriptor.

​ > jar -d -f iss-1.0.jar

​ iss.info jar:file:...target/dependency/iss-1.0.jar!/module-info.class

​ exports iss

​ requires jackson.databind

​ requires java.base mandated

​ requires space.base

We examined the iss-1.0.jar file. The jar tool tells us that the name of the
module is iss.info, it exports the iss package, and it requires three modules:
jackson.databind, java.base, and space.base.

In addition to viewing the details of a module, you can also extract this
information programmatically. That can be useful to implement checks to
verify architectural constraints of dependencies between modules.

A module’s dependency on another module can be simple or transitive as
we’ll see next.

Defining APIs in a Modular Way
A module’s exports defines the APIs that the module’s owner commits to
supporting. What if a module’s API exposes types from a module it
requires? The wrong approach would be for a user of the module to directly
require every module required by the module. The requires transitive is a
sensible way for the owner of a module to deliberately commit to
supporting the APIs of the module they require as part of their own API.
With this approach, a client of the module sees the types from the module
and its dependency specified as one by requires transitive, without needing
any additional direct requires. Let’s dig into this further in this section.

As we’ve seen already, if a module requires another module, we have to
specify that dependency in the module descriptor. The requires clause
provides access of the requested module’s exported packages to the
requesting module. By default, the contract of the requires ends there—the
requesting module doesn’t pass on the access to any other module that may
depend on it. But there are times when we may need a bit more flexibility.
We’ll discuss the reasons and see how requires transitive helps to address
those special situations.

There are two situations where we would want a module to expose the APIs
that are defined in a module it requires to other modules that require it. The
first is when the code within a module, as part of its API, exposes the types
from a module it requires. The other is when we refactor a module into
smaller modules. Let’s focus on each one of these situations separately.

Using Transitive for Exposing Third-Party Types
Suppose you design a method in one of your classes to accept as parameter
a type defined in a third-party module. Or in another case, suppose the
return type of one of your methods comes from a third-party module.

Certainly, you have to express the dependency on the third-party module
using requires. But what about the users of your module? In this case, the
users of your classes and methods need to reference the types that your
APIs expose. Should the clients of your module have to require both your
module and the modules with the types exposed by your APIs? No, this
would be a wrong approach and, if we choose this route, the client’s module
descriptor file will quickly get messy and unwieldy. With the right
approach, using requires transitive in your module descriptor, you can ease
the pain for the users of your module. Let’s take a closer look at this feature
using an example.

Let’s take another look at the spaceship application from ​Modularizing the
Space Station Application​. Here’s the module descriptor for the iss.info

module:

​ module iss.info {

​ exports iss;

​

​ requires space.base;

​ requires jackson.databind;

​ }

And, here’s the module descriptor for the space.client module:

​ module space.client {

​ requires space.base;

​ requires iss.info;

​ }

From these two descriptors, we see that both the iss.info module and the
space.client module require the space.base module. The dependency graph
looks like the following figure:

It’s logical that iss.info uses requires for the dependency on the
jackson.databind module. The code in the iss.info module uses the Jackson
library today and may opt to use some other library in the future. The fact
that it uses the Jackson library is its internal business and should stay
encapsulated, and there’s no reason for clients of the iss.info module, like
space.client, to know about it.

On the other hand, the lookup() method of the ISSSpaceStation class in the
iss.info module returns the SpaceStationInfo which is part of the space.base

module. In order for the clients of iss.info to properly use the lookup()

method, they have to also require the space.base module in addition to
requiring the iss.info module. This is rather an unnecessary additional effort
for the clients of iss.info, as we can see from the module descriptor for the
space.client module.

We can remove this unnecessary burden on the clients of the iss.info module
by changing its module descriptor, like so:

​ module iss.info {

​ exports iss;

​

​ requires transitive space.base;

​ requires jackson.databind;

​ }

We changed the requires to requires transitive when expressing the
dependency of the iss.info module on the space.base module. Now, we can
change the module descriptor for the space.client module to turn the explicit

dependency on the space.base into a transitive or implicit dependency, like
so:

​ module space.client {

​ requires iss.info;

​ }

The clients of the iss.info module don’t have to take the extra step of
expressing the dependency on the space.base module. They get that
automatically thanks to the transitive dependency.

A module is said to require a module it directly depends on. A module is
said to read a module if the dependency comes via a transitive dependency.
In the previous example, space.client requires iss.info but now reads space.base

as we see in the modified dependency graph in the following figure:

Reducing the burden on clients is a good reason to use requires transitive, but
not breaking existing clients when refactoring is also important. Let’s look
at that scenario next.

Using Transitive When Refactoring a Module
Suppose you have a module, like Module A in the following figure, with a
few packages in it. Your team realizes that the module is too large, not
cohesive, violates the Release/Reuse Equivalency Principle, and changes
too often since different parts change. They decide it’s high time to break
the big module into smaller modules, to follow the Single Responsibility
Principle and make the code more maintainable.

The net result of refactoring, let’s assume, is modules Module 1, Module 2,
and Module 3, each of which is highly cohesive and has a few packages from
the original Module A. The refactored design is shown next.

Your team should have the total freedom to perform such refactoring and
improve the design. But if you’re not careful, there’s a risk of breaking any
client that uses Module A.

After refactoring, Module A’s module descriptor may now use requires to
express its dependency on Module 1, Module 2, and Module 3. But compilation
will fail for any client that uses the packages that were in Module A

originally, but now have been moved into any of the smaller modules. Even
though Module 1 exports the packages it contains, a client whose descriptor
hasn’t changed, won’t be permitted to access the packages in Module 1 since
it requires Module A and not Module 1. Sadly, the authors of the clients that
use Module A will now be forced to change their module descriptors to add
requires on Module 1, and so on. Such breaking changes won’t lead to more
peace in the development world. There’s thankfully an easy way to avoid
that issue.

Instead of using requires in the module descriptor of Module A, when
refactoring, use requires transitive, as shown in the following figure.

The Module A module descriptor expresses its dependency on each of the
modules that it was split into using requires transitive in its module descriptor.
The result of this small change is that existing clients that use Module A don’t
fail compilation and aren’t forced to change their module descriptors. Any
client that requires Module A is also provided access to the transitive modules
that Module A requires.

The benefit of this design is that whereas existing clients can continue to
work without change, new clients can choose to depend only on the parts
they need and not on the bigger module. Any new client that doesn’t need
Module A but needs only one of the smaller modules, like Module 1, can
directly require only the modules it needs. Likewise, anytime in the future,
the developers of an existing client can choose to modify their module
descriptor, at their own will and schedule, to depend on one or more of the
smaller modules their code needs and remove the dependency on Module A.

Use transitive dependency to avoid breaking clients when refactoring
modules.

Next, we’ll look at a way to reduce the binary footprint.

Should We Always Use requires transitive?

It may be tempting to ask if we should always use requires transitive instead of
requires?

No, not always.

What’s internal to your module should remain internal. For example, in the
spaceship application, the Jackson library is used by the iss.info module. That
dependency should be expressed using requires and not requires transitive. The
clients of the iss.info should never get access to the Jackson library by way of
their dependency on that module. If coincidentally a client needs to use the
Jackson library, that’s their business and not a concern of the designers of the
iss.info module. Furthermore, if the authors of the iss.info module decide to use
something other than the Jackson library in the future, that change should be
internal and shouldn’t affect the clients of the module in any way.

Use requires transitive if the code in your module exposes the types in another
module, that is, your public-visible functions use types from other modules as
parameters or the return types. Also, use requires transitive if you decide to split
your module and the types in the extracted modules are visible to the clients of
your module. If the split modules contain only packages that weren’t exported,
then use only requires and not requires transitive.

Targeted Linking Using jlink
Since the birth of Java a few decades ago, the world has changed a lot.
Today we deploy applications on the cloud, run serverless applications,
create microservices, and so on. It’s often necessary to spin up servers
quickly, and that may require that we reduce the footprint of our
applications.

If our application uses a handful of modules, we’d want to trim down the
installation specifically to those modules instead of installing all the
modules that are part of the JDK. You can use the jlink tool to achieve that
goal without changing any code. It performs targeted linking, which minifies
the binaries that will be distributed for deployment. You simply point to the
top-level modules, and the tool takes care of minimally bundling the
necessary modules together. You can also ask the tool to create a launcher
that you can easily use to run your application.

Even though no code change is necessary to use jlink, the tool can’t work
with automatic modules. The reason you can’t use automatic modules or
traditional JARs is that the dependencies have to be clearly specified;
explicit modules which have module descriptors provide reliable
configuration that jlink depends on.

Your typical enterprise applications would use hundreds, if not thousands, of
JARs and multiple libraries and frameworks like Micronaut, Quarkus,
Spring, and so on. When you modularize your code and use the modularized
versions of those libraries and frameworks you depend on, you can
minify the modules that go into production. In addition to having a smaller
footprint, this provides an added security benefit—you clearly dictate what
goes on the production systems, the essential parts and nothing extraneous.

Let’s use the spaceship application that we modularized previously to create
a targeted linking.

As a first step, since we can’t use automatic modules with jlink, we’ll have
to upgrade from the Jackson library legacy to a modularized version. Let’s
upgrade from version 2.6.7 to one of the more recent versions like 2.18.2. You
can see that the Maven pom files in the code repository at
spaceinfov5/iss/pom.xml reflect this change.

You may use the jlink tool from the command line directly if you like, but
if you’re using build tools like Maven, it’s more convenient to fold the
targeted linking into the build steps. Maven has a jlink plugin to facilitate
this.

Take a look at the pom.xml file under the code/multiplemodules/spaceinfov5

directory for the configuration of the jlink plugin. In addition to this
configuration, we’ve created a new Maven module named mod-jlink. In the
pom file for this new Maven module, we express the dependency on the
spaceclient module.

In addition to targeted linking, jlink can also create a launcher to easily start
the application. You can configure the name of the launcher along with the
module name and the main class using a launcher property in the Maven pom
file, like so:

​ <launcher>spaceclientapp=space.client/spaceclient.SpaceClient</launcher>

For a full example of where this line is used, refer to the pom.xml under the
spaceinfov5 directory.

Practice along to create a targeted linking. On the command line, cd to
the spaceinfov5 directory and run the following command:

multiplemodules/spaceinfov5/run.sh

​ mvn package

http://media.pragprog.com/titles/vscajava/code/multiplemodules%2Fspaceinfov5%2Frun.sh

Running the command will compile the three different projects and also
create a targeted link. Here’s a glimpse at the files created:

​ contents of mod-jlink/target/maven-jlink/default

​ bin conf include legal lib release

​ contents of mod-jlink/target/maven-jlink/default/bin

​ java keytool spaceclientapp

We can see that the jlink tool created a specialized java, which we’ll call our
precious little java. Also, it created an easily to launch binary named
spaceclientapp.

These targeted links are for the specific operating system on which the build
is executed. You may deploy these binaries on the same architecture, on the
cloud, or on standalone machines.

Let’s dig in to examine the targeted binaries. First, let’s look at the “number
of modules in JRE java” that are part of the JDK, by running this command:

multiplemodules/spaceinfov5/run.sh

​ echo "number of modules in the JRE java"

​ java --list-modules | wc -l

The output shows the number of modules that are part of the JDK:

​ number of modules in the JRE java

​ 69

That’s all the modules that are part of the JDK, and that doesn’t include any
third-party modules our application will specifically need, like the Jackson
databind module, for example.

Now, let’s find out how many modules are part of our precious little java:

multiplemodules/spaceinfov5/run.sh

​ echo "number of modules in our precious little java"

​ mod-jlink/target/maven-jlink/default/bin/java --list-modules | wc -l

http://media.pragprog.com/titles/vscajava/code/multiplemodules%2Fspaceinfov5%2Frun.sh
http://media.pragprog.com/titles/vscajava/code/multiplemodules%2Fspaceinfov5%2Frun.sh

The output of the previous command is shown here:

​ number of modules in our precious little java

​ 8

That’s a lot fewer, but what are those you may wonder. Let’s examine this
further using the following command:

multiplemodules/spaceinfov5/run.sh

​ echo "modules in our precious little java"

​ mod-jlink/target/maven-jlink/default/bin/java --list-modules

Let’s take a look at the output:

​ modules in our precious little java

​ com.fasterxml.jackson.annotation@2.18.2

​ com.fasterxml.jackson.core@2.18.2

​ com.fasterxml.jackson.databind@2.18.2

​ iss.info

​ java.base@24

​ java.logging@24

​ space.base

​ space.client

The modules that are part of our precious little java are only the ones we
specifically need: the space.client, the iss.info that it requires, and the
space.base it reads. In addition, the modules needed by the iss.info—the
Jackson library modules plus the fundamental java.base—were also pulled in
by the jlink tool as part of the targeted linking.

With the targeted linking, we don’t have to install the JRE on the target
machines. Instead, we can deploy the files that have been generated by jlink.

Let’s execute our precious little java with the following command:

multiplemodules/spaceinfov5/run.sh

​ echo "Running the targeted java"

​ mod-jlink/target/maven-jlink/default/bin/java \

http://media.pragprog.com/titles/vscajava/code/multiplemodules%2Fspaceinfov5%2Frun.sh
http://media.pragprog.com/titles/vscajava/code/multiplemodules%2Fspaceinfov5%2Frun.sh

​ -m space.client/spaceclient.SpaceClient

We specify the module name and the main class name that we want to
execute. The result of the execution is shown next:

​ Running the targeted java

​ Please enter the space station you're interested in:

​ ISS

​ Current latitude and longitude of ISS: (50.7912, -112.560)

​ Current occupants of ISS: Oleg Kononenko, Nikolai Chub,

​ Tracy Caldwell Dyson, Matthew Dominick, Michael Barratt,

​ Jeanette Epps, Alexander Grebenkin, Butch Wilmore,

​ Sunita Williams

The output you’ll see will reflect the current location of the ISS along with
the updated occupants.

Instead of running our precious little java, we can also run the launcher we
created. In this case, we don’t have to specify the module and the main class
name as that has been provided when the launcher was created. Here’s the
command to run the launcher:

multiplemodules/spaceinfov5/run.sh

​ echo "Running the launcher"

​ mod-jlink/target/maven-jlink/default/bin/spaceclientapp

The output from this easier option to execute is shown next:

​ Running the launcher

​ Please enter the space station you're interested in:

​ ISS

​ Current latitude and longitude of ISS: (50.8094, -112.415)

​ Current occupants of ISS: Oleg Kononenko, Nikolai Chub,

​ Tracy Caldwell Dyson, Matthew Dominick, Michael Barratt,

​ Jeanette Epps, Alexander Grebenkin, Butch Wilmore,

​ Sunita Williams

The jlink tool provides a convenient post-build facility to create targeted
binaries with a small footprint compared to the entire JRE. The binaries are

http://media.pragprog.com/titles/vscajava/code/multiplemodules%2Fspaceinfov5%2Frun.sh

targeted for the specific operating system for which they’re built. You can
deploy these binaries instead of installing the entire JRE and easily execute
the program as well. In addition to reduced footprint, since we’re able to
strictly tighten what goes into production, using jlink also increases the
security of your applications.

Wrapping Up
Modules carry their metadata, and using the jar tool, we can quickly and
easily examine the dependencies of a module and the packages it exports.

When building larger applications with multiple dependencies, the require

transitive feature can be helpful. It’s useful when the types from a module
that’s required are used as part of the public API of the requiring module.
When used, require transitive will reduce the burden on the clients since they
automatically get the dependency for the types exposed by the module they
depend on. Also, this feature is invaluable when refactoring large modules.

In addition to facilitating large enterprise systems, Java also looks out for
more modern applications, like microservices by providing the targeted
linking capability. With this feature we don’t have to deploy the full JRE
and instead can deploy smaller bundles that contain only the essential
modules and binaries.

In the next chapter we’ll look at another exciting capability of Java: the
ability to dynamically discover services that are embedded within multiple
modules and how this capability is highly useful to create plugins.

Copyright © 2025, The Pragmatic Bookshelf.

Chapter
10

Creating Plug-ins with
ServiceLoader

The rules related to modules that we’ve seen so far are useful if you’re
implementing the client-server architecture, the Microservices architecture,
or one of the many other architectural patterns. But if you’re implementing
the Plug-in architecture, you’ll need some additional support to modularize
your application.

In a Plug-in architecture, we typically provide a set of interfaces and some
core functionality. We then allow the users of our applications to drop in
implementations of the interfaces. Our application doesn’t know beforehand
what plug-ins will be provided by the users. This is where the ServiceLoader
class of the java.util package comes in.

In the previous chapters we saw that in order to use an API from another
module we have to explicitly specify the dependency in the consuming
module’s module-info file. We saw the architectural benefits of that
constraint. When implementing the Plug-in architecture, it’s not practical to
specify the dependencies explicitly since we need the ability to dynamically
discover the implementations of an interface at runtime. Our focus in this
chapter is to see how to achieve that, without compromising security or
encapsulation.

In this chapter we’ll take a look at how the ServiceLoader class provides an
amazing capability to dynamically bring in dependencies and, at the same
time, safely decouples parts of the code from one another. We’ll see the
application of the Abstract Factory Pattern along with different ways to
iterate and make use of various implementations of an interface. With the
knowledge you gain from this chapter, you can reap the benefits of using
modules and, at the same time, create applications that are highly
extensible.

The Plug-in Architecture
Java Modules facilitate building the popular Plug-in architecture.[12]
This
architecture comprises a set of core functionalities, a repository, and a
common user interface. The users of the applications build on this
architecture and then extend the applications’ functionality by providing
implementations or plug-ins via some well-known interfaces specified by
the applications. The extensions may provide technology-based variations,
like how data is parsed or handled, and/or domain-based variations, like
different shipping methods an online retailer may want to use.

The Plug-in architecture provides a great amount of extensibility while
standardizing a common set of operations. The plug-ins or the variations
may be introduced or removed at anytime, and they require no code change,
recompilation, or redeployment of the core parts of the application to
accommodate the change to the plug-ins. The introduction of plug-ins may
require a restart of the application or may be a hot deployment that requires
no restart.

Eclipse, PMD, and Jenkins are some of the well-known implementations of
the Plug-in architecture. The space station information application we
looked at in Chapter 8, ​Modularizing Your Java Applications​, may be a
good candidate for the Plug-in architecture. We could bring in the
information providers for new spaceships as plug-ins, for example. After
this chapter, as an exercise, you could refactor that application to make use
of the facilities you learn in this chapter.

Let’s create a new application to see how modularization facilitates the
implementation of the Plug-in architecture. In keeping up with current
societal trends, suppose we’re asked by a restaurant to implement an
application that will take orders from a table. We’ll focus on a small part
where a customer may place an order for a drink.

We’re told that the restaurant may change the drinks that they offer at
anytime due to the restaurant’s contractual changes with vendors. We
certainly don’t want to change the code each time a new type of drink is
added or removed.

We can envision the architecture of the application, with respect to the order
taking part and the soft drinks, in the figure.

The application has a core which is comprised of two modules: the Order
Taking Module and the Drinks Module. Any number of plug-ins, one for
each vendor who provides some type of drink, may appear in the
application as additional modules.

Let’s implement this architectural concept to see how the ServiceLoader can
provide dynamic dependency discovery, loose coupling, and binding of the
interface implementations to the user of the interface. Refill your favorite
drink and dive in. We’ll start with the Drinks module.

Defining a Specification Module
The application should offer different drinks to the customers and ask them
to pick their choice. Different vendors may provide different drinks, but the
application can abstract out a couple of details that will be provided by the
vendors. This can go into a com.restaurants.drinks module.

We’ll keep the code minimum to focus on the design with modules rather
than the intricate details of the application, like pricing, etc. We’ll start with
a Drink interface, like so:

serviceloader/softdrink/drinks/com/restaurants/products/Drink.java

​ ​package​ ​com.restaurants.products​;

​

​ ​public​ ​interface​ Drink {

​ String ​getName​();

​ ​int​ ​getSize​();

​

​ ​default​ String ​getInfo​() {

​ ​return​ ​"%s [%d]ml"​.formatted(getName(), getSize());

​ }

​ }

Under a new directory drinks, we’ve created an interface Drink in the package
com.restaurants.products. The interface will serve as a base for drink products
provided by different vendors.

Next, we’ll create an annotation that vendors can use to differentiate
products that are at least marginally less damaging to the human body.

serviceloader/softdrink/drinks/com/restaurants/health/LowCalorie.java

​ ​package​ ​com.restaurants.health​;

​

​ ​import​ ​java.lang.annotation.Retention​;

​ ​import​ ​java.lang.annotation.RetentionPolicy​;

http://media.pragprog.com/titles/vscajava/code/serviceloader%2Fsoftdrink%2Fdrinks%2Fcom%2Frestaurants%2Fproducts%2FDrink.java
http://media.pragprog.com/titles/vscajava/code/serviceloader%2Fsoftdrink%2Fdrinks%2Fcom%2Frestaurants%2Fhealth%2FLowCalorie.java

​

​ @Retention(RetentionPolicy.RUNTIME)

​ ​public​ @interface LowCalorie {

​ }

This annotation will be retained at runtime and may be used if a customer
wants to pick only low-calorie drinks, as we’ll see later.

The specification module is almost ready, we need to specify the module
name and the exports. Here’s the module-info.java for that:

serviceloader/softdrink/drinks/module-info.java

​ module com.restaurants.drinks {

​ exports com.restaurants.products;

​ exports com.restaurants.health;

​ }

The module is named com.restaurants.drinks, and it exports both the packages
that are contained in it.

Let’s create a script to compile the code. We’ll add to this script as we
progress with this example. Here are the steps to compile the module we just
created:

serviceloader/softdrink/runbuild.sh

​ /bin/rm -rf bin

​ mkdir -p bin/classes

​ mkdir -p bin/lib

​

​ javac -d bin/classes `find drinks -name *.java`

​ jar -c -f bin/lib/com.restaurant.drinks.jar -C bin/classes .

​ /bin/rm -rf bin/classes/*

Go ahead and run the build and make sure the com.restaurants.drinks.jar is
created in the build/lib directory.

http://media.pragprog.com/titles/vscajava/code/serviceloader%2Fsoftdrink%2Fdrinks%2Fmodule-info.java
http://media.pragprog.com/titles/vscajava/code/serviceloader%2Fsoftdrink%2Frunbuild.sh

Let’s now move on to create a client module that also belongs to the core
part of the application.

Creating a Client Module
We’ll create a com.restaurants.orders module which will contain the code that
offers the products to the customers and asks them for their pick.

Let’s first look at the code for the TakeOrder class and then discuss the details
in it:

serviceloader/softdrink/orders/com/restaurants/process/TakeOrder.java

​ ​package​ ​com.restaurants.process​;

​

​ ​import​ ​java.util.ServiceLoader​;

​ ​import​ ​com.restaurants.products.Drink​;

​

​ ​public​ ​class​ TakeOrder {

​ ​public​ ​static​ ​void​ ​main​(String[] args) {

​ System.out.println(​"We're ready to take your order"​);

​ System.out.println(​"What would you like?"​);

​

​ ​var​ drinks = ServiceLoader.load(Drink.class);

​

​ ​for​(​var​ drink : drinks) {

​ System.out.println(drink.getInfo());

​ }

​

​ System.out.println(​"Please choose from the above."​);

​ }

​ }

The ServiceLoader class was introduced in Java 6 but has been enhanced to
work remarkably well with modules. The load() method will look for the
implementations of the provided type among all the modules in the
modulepath. We’ll soon see the rules for that wiring to work seamlessly and
securely. The load() method returns a collection of providers or proxies that
will create an instance of each implementation of the Drink interface it can
find in this example.

http://media.pragprog.com/titles/vscajava/code/serviceloader%2Fsoftdrink%2Forders%2Fcom%2Frestaurants%2Fprocess%2FTakeOrder.java

As the next step in creating this module, we need to work on the module
declaration in a new module-info.java file for this module. The TakeOrder class
depends on the Drink interface from the com.restaurant.drinks module. So,
we’ll have to add a requires to that module in the declaration. In addition, the
ServiceLoader needs an assurance from us that we truly intend to bring in (or
plug in) the implementations of the Drink interface. The Java runtime is
cautious here to make sure that no code you call is able to maliciously pull
in runtime dependencies; it wants you to give your explicit declaration for
bringing in dynamic dependencies. We can give that permission by using a
uses clause to tell the runtime we permit the ServiceLoader to load instances of
class that implement the desired interface. Let’s take a look at the syntax for
that:

serviceloader/softdrink/orders/module-info.java

​ module com.restaurants.orders {

​ requires com.restaurants.drinks;

​

​ uses com.restaurants.products.Drink;

​ }

If you don’t provide the uses declaration, then the call to the load() method of
ServiceLoader will fail at runtime.

We’ll compile the TakeOrder class into a com.restaurant.orders.jar and then
execute the main() method. Here are the commands to compile and execute
the new module:

​ javac -d bin/classes -p bin/lib `find orders -name *.java`

​ jar -c -f bin/lib/com.restaurant.orders.jar -C bin/classes .

​ /bin/rm -rf bin/classes/*

​

​ echo "Running with no vendors"

​ java -p bin/lib \

​ -m com.restaurants.orders/com.restaurants.process.TakeOrder

http://media.pragprog.com/titles/vscajava/code/serviceloader%2Fsoftdrink%2Forders%2Fmodule-info.java

Currently, we have the module that contains the interface and the module
that contains the main() method. We don’t have any implementations of the
interface yet. Thus, the execution of the code won’t bring in any
implementations, as we see in this output:

​ Running with no vendors

​ We're ready to take your order

​ What would you like?

​ Please choose from the above.

The code to work with different vendors is ready as part of the core of the
application. It’s time to focus on a few plug-ins; we’ll start with the first one.

Implementing a Plug-in
Suppose the restaurant finds a vendor who is interested in offering Coca-
Cola products. We’ll create a new vendor module named com.cokevendor with
two classes Coke and DietCoke. Let’s start with the Coke class.

serviceloader/softdrink/cokevendor/com/cokevendor/cocacola/Coke.java

​ ​package​ ​com.cokevendor.cocacola​;

​

​ ​import​ ​com.restaurants.products.Drink​;

​

​ ​public​ ​class​ Coke ​implements​ Drink {

​ ​public​ ​Coke​() {

​ System.out.println(​"creating "​ + ​this​);

​ }

​

​ @Override ​public​ String ​getName​() {

​ ​return​ ​"Coke"​;

​ }

​

​ @Override ​public​ ​int​ ​getSize​() {

​ ​return​ 355;

​ }

​ }

The Coke class implements the Drink interface and returns some details for
the method that gets the name and the size. In addition, we have a
constructor that prints the details about the instance that’s being created.
We’ll use this information to understand the lifecycle of the instances that
are created by the ServiceLoader.

Next, we’ll create a DietCoke class that also implements the Drink interface. In
addition, we’ll annotate this class with @LowCalorie to convey that this
product has low calories compared to the other drink.

serviceloader/softdrink/cokevendor/com/cokevendor/cocacola/DietCoke.java

http://media.pragprog.com/titles/vscajava/code/serviceloader%2Fsoftdrink%2Fcokevendor%2Fcom%2Fcokevendor%2Fcocacola%2FCoke.java
http://media.pragprog.com/titles/vscajava/code/serviceloader%2Fsoftdrink%2Fcokevendor%2Fcom%2Fcokevendor%2Fcocacola%2FDietCoke.java

​ ​package​ ​com.cokevendor.cocacola​;

​

​ ​import​ ​com.restaurants.products.Drink​;

​ ​import​ ​com.restaurants.health.LowCalorie​;

​

​ @LowCalorie

​ ​public​ ​class​ DietCoke ​implements​ Drink {

​ ​public​ ​DietCoke​() {

​ System.out.println(​"creating "​ + ​this​);

​ }

​

​ @Override ​public​ String ​getName​() {

​ ​return​ ​"Diet Coke"​;

​ }

​

​ @Override ​public​ ​int​ ​getSize​() {

​ ​return​ 355;

​ }

​ }

We have two implementations of the Drink interface, but Java doesn’t assume
they should be automatically made available to anyone requesting
implementations of the interface. It’s possible that you may have a class
currently in development but not ready for use in production, or a class that
has been decommissioned but hasn’t yet been removed. You may also have
a class you’re using for test purposes, and you don’t intend it for any real
use. Whatever the reasons may be, Java ensures that you’re in full control of
what’s used by other modules and what shouldn’t be.

To that effect, we use the provides clause to convey that our module provides
implementations of an interface with some classes. An entry for this appears
in—as you’d guess—the module’s module-info.java file. In addition, we also
have to place a requires for the com.restaurants.drinks module. Let’s take a look
at the module-info.java file on the next page.

serviceloader/softdrink/cokevendor/module-info.java

​ module com.cokevendor {

​ requires com.restaurants.drinks;

http://media.pragprog.com/titles/vscajava/code/serviceloader%2Fsoftdrink%2Fcokevendor%2Fmodule-info.java

​

​ provides com.restaurants.products.Drink with

​ com.cokevendor.cocacola.Coke,

​ com.cokevendor.cocacola.DietCoke;

​ }

The provides declaration takes an interface name followed by the word with.
Following that, we can specify a comma-separated list of one or more names
of implementation classes that are part of the current module.

Here’s the script to compile this module and execute the TakeOrder class once
again, this time with an implementation plug-in in the modulepath.

​ javac -d bin/classes -p bin/lib `find cokevendor -name *.java`

​ jar -c -f bin/lib/com.cokevendor.jar -C bin/classes .

​ /bin/rm -rf bin/classes/*

​

​ echo "Running with coke vendor"

​ java -p bin/lib \

​ -m com.restaurants.orders/com.restaurants.process.TakeOrder

Let’s take a look at the output of the execution:

​ Running with coke vendor

​ We're ready to take your order

​ What would you like?

​ creating com.cokevendor.cocacola.Coke@7adf9f5f

​ Coke [355]ml

​ creating com.cokevendor.cocacola.DietCoke@33c7353a

​ Diet Coke [355]ml

​ Please choose from the above.

Unlike the previous execution, this run brought an instance of Coke and one
of DietCoke. The output also shows that the creation of the instances was lazy
—that is the ServiceLoader didn’t pre-create instances for all the
implementation classes it found. Instead, it creates instances on demand.
The load() mechanism works as a factory, bringing this close to the
application of the Abstract Factory Pattern.

We have one plug-in with two implementations in it. Let’s now look at how
to bring in a second plug-in and along the way learn about one variation in
implementing the interface.

Implementing Additional Plug-ins
Suppose the restaurant finds another vendor who is interested in offering
Pepsi Cola products and wants to provide more flavory options to the
customers. We’ll create another vendor module, this one named
com.pepsivendor, with two classes, Pepsi and DietPepsi.

Let’s take a look at the implementation of the Pepsi class:

serviceloader/softdrink/pepsivendor/com/pepsivendor/pepsicola/Pepsi.java

​ ​package​ ​com.pepsivendor.pepsicola​;

​

​ ​import​ ​com.restaurants.products.Drink​;

​

​ ​public​ ​class​ Pepsi ​implements​ Drink {

​ @Override ​public​ String ​getName​() {

​ ​return​ ​"Pepsi"​;

​ }

​

​ @Override ​public​ ​int​ ​getSize​() {

​ ​return​ 355;

​ }

​ }

The Pepsi class implements the Drink interface. There’s nothing new here to
observe. Let’s move on to the DietPepsi class.

serviceloader/softdrink/pepsivendor/com/pepsivendor/pepsicola/DietPepsi.java

​ ​package​ ​com.pepsivendor.pepsicola​;

​

​ ​import​ ​com.restaurants.products.Drink​;

​ ​import​ ​com.restaurants.health.LowCalorie​;

​

​ @LowCalorie

​ ​public​ ​class​ DietPepsi ​implements​ Drink {

​ ​private​ ​final​ ​int​ size;

​

http://media.pragprog.com/titles/vscajava/code/serviceloader%2Fsoftdrink%2Fpepsivendor%2Fcom%2Fpepsivendor%2Fpepsicola%2FPepsi.java
http://media.pragprog.com/titles/vscajava/code/serviceloader%2Fsoftdrink%2Fpepsivendor%2Fcom%2Fpepsivendor%2Fpepsicola%2FDietPepsi.java

​ ​public​ ​DietPepsi​(​int​ size) {

​ ​this​.size = size;

​ }

​

​ ​public​ ​static​ DietPepsi ​provider​() {

​ ​return​ ​new​ ​DietPepsi​(300);

​ }

​

​ @Override ​public​ String ​getName​() {

​ ​return​ ​"Diet Pepsi"​;

​ }

​

​ @Override ​public​ ​int​ ​getSize​() {

​ ​return​ size;

​ }

​ }

The DietPepsi class is different from the classes we’ve seen so far. The
discovery mechanism behind the ServiceLoader expects implementation
classes to see a no-argument constructor, either default or written in. If it
instead finds one or more constructors that take parameters, it will complain
that a no-argument constructor is required—unless we provide, as an
alternative, a static provider() method.

The provider() method doesn’t take any parameter and works like a static
factory method to create an instance of the implementation class. This
approach may be useful if there’s a need for a more complex creation of an
object that couldn’t be safely done within a no-argument constructor.

Next, we need to declare that this module provides two classes as
implementations of the Drink interface. That, as you know, goes into a new
module-info.java for this module:

serviceloader/softdrink/pepsivendor/module-info.java

​ module com.pepsivendor {

​ requires com.restaurants.drinks;

​

​ provides com.restaurants.products.Drink with

http://media.pragprog.com/titles/vscajava/code/serviceloader%2Fsoftdrink%2Fpepsivendor%2Fmodule-info.java

​ com.pepsivendor.pepsicola.Pepsi,

​ com.pepsivendor.pepsicola.DietPepsi;

​ }

Let’s compile this new module and run the TakeOrder with the two vendor
modules. Here’s the script to build the new module and execute the main()

method:

​ javac -d bin/classes -p bin/lib `find pepsivendor -name *.java`

​ jar -c -f bin/lib/com.pepsivendor.jar -C bin/classes .

​ /bin/rm -rf bin/classes/*

​

​ echo "Running with coke and pepsi vendors"

​ java -p bin/lib \

​ -m com.restaurants.orders/com.restaurants.process.TakeOrder

Let’s take a look at the output of the execution:

​ Running with coke and pepsi vendors

​ We're ready to take your order

​ What would you like?

​ Pepsi [355]ml

​ Diet Pepsi [300]ml

​ creating com.cokevendor.cocacola.Coke@1fb3ebeb

​ Coke [355]ml

​ creating com.cokevendor.cocacola.DietCoke@3e3abc88

​ Diet Coke [355]ml

​ Please choose from the above.

The restaurant is all set to serve the customers with more flavored drinks. If
new vendors start offering good deals for other products, the restaurant can
bring them on board without having to change any existing code. They plug
in the new modules for the new vendors and off they go; that’s as sweet as
the drinks they serve.

Reloading the Implementations
From the output we saw in the previous sections, we know that an instance
for each of the provided implementations of the interface is created lazily,
only on demand. If we break out of the loop before an instance is used, then
there’s no overhead of creating that instance. That’s pretty nice, but what if
we iterate over the provided implementations more than once, you may ask.

Let’s do just that; we’ll iterate over the result of load() twice in this modified
version of TakeOrder:

​ System.out.println(​"We're ready to take your order"​);

​ System.out.println(​"What would you like?"​);

​

​ ​var​ drinks = ServiceLoader.load(Drink.class);

​

​ ​for​(​var​ drink : drinks) {

​ System.out.println(drink.getInfo());

​ }

​

​ System.out.println(​"Please choose from the above."​);

​ System.out.println(​""​);

​

​ System.out.println(​"Let's reiterate..."​);

​ ​for​(​var​ drink : drinks) {

​ System.out.println(drink.getInfo());

​ }

As if the user pressed a refresh and the details are displayed again, we
reiterate over the drinks collection returned by the load() function. Let’s take
a look at the output of the execution of this modified main() method of
TakeOrder:

​ We're ready to take your order

​ What would you like?

​ Pepsi [355]ml

​ Diet Pepsi [300]ml

​ creating com.cokevendor.cocacola.Coke@1fb3ebeb

​ Coke [355]ml

​ creating com.cokevendor.cocacola.DietCoke@3e3abc88

​ Diet Coke [355]ml

​ Please choose from the above.

​

​ Let's reiterate...

​ Pepsi [355]ml

​ Diet Pepsi [300]ml

​ Coke [355]ml

​ Diet Coke [355]ml

The output shows that when we reiterate no new instances of the
implementations were created—the missing output from the constructor
conveys that.

This shows that the load() method isn’t only lazy but also caches the
instances as they’re created—that’s like receiving a double-shot of one’s
favorite drink.

What if we want to get a fresh instance when we reiterate? We can
accomplish that with a call to reload(), like so:

​ System.out.println(​"Let's reload and then reiterate..."​);

​ drinks.reload();

​

​ ​for​(​var​ drink : drinks) {

​ System.out.println(drink.getInfo());

​ }

The output will show that new instances of the implementations are being
created this time around:

​ Let's reload and then reiterate...

​ Pepsi [355]ml

​ Diet Pepsi [300]ml

​ creating com.cokevendor.cocacola.Coke@6ce253f1

​ Coke [355]ml

​ creating com.cokevendor.cocacola.DietCoke@53d8d10a

​ Diet Coke [355]ml

We saw the power of the ServiceLoader in terms of how it decouples the
client code from the implementations of the interface. It makes it easier to
apply the Dependency Inversion Principle, and, at the same time, it
delicately deals with the instances’ lifecycle, all while allowing us to
control how and when the dependencies are used.

In the examples so far, we used the imperative style iteration, but if you’re
an enthusiast of the functional style of programming, then you may use the
internal iterator to traverse the implementations. Let’s see how you do this
and also look at an additional benefit beyond code elegance.

Functional Style Iteration
You can easily trade the imperative style for loops with the functional style
iteration using the stream() method. Unlike the imperative style iteration that
yields instances of the implementation classes, the functional style iteration
introduces a layer of abstraction between the caller and the implementation.
As you traverse the collection, you need to ask a ServiceLoader.Provider to get
you the instance of the implementation.

Let’s modify the main() method of TakeOrder to use the functional style
iteration instead of the previously used imperative style:

​ System.out.println(​"We're ready to take your order"​);

​ System.out.println(​"What would you like?"​);

​

​ ServiceLoader.load(Drink.class).stream()

​ .map(ServiceLoader.Provider::get)

​ .map(Drink::getInfo)

​ .forEach(System.out::println);

​

​ System.out.println(​"Please choose from the above."​);

​ System.out.println(​""​);

We worked off the result of stream() to map each provider to an instance of
the implementation class, using the get() method. Then, we asked for the
information about the drinks, using the getInfo() method, and finally printed
it out.

Here’s the output of executing this version of TakeOrder’s main() method:

​ We're ready to take your order

​ What would you like?

​ Pepsi [355]ml

​ Diet Pepsi [300]ml

​ creating com.cokevendor.cocacola.Coke@3e3abc88

​ Coke [355]ml

​ creating com.cokevendor.cocacola.DietCoke@1b28cdfa

​ Diet Coke [355]ml

​ Please choose from the above.

The functional iteration also exhibits lazy initialization like the imperative
style iteration. That’s good, but as much as the functional style is generally
elegant, in this case, the imperative style iteration looks concise by
comparison. So, it’s a fair question to ask if we should bother with the extra
step of working with the ServiceLoader.Provider.

The short answer—also the most infamous answer we give to almost any
question in our field—is it depends.

If all you want is the implementations, then it may not be worth the trouble.
Try both versions and see which one is better for the problem at hand. If
you plan to perform some complex processing using the provided
implementations, it may be that the functional style turns out to be more
elegant. Don’t hesitate to prototype both ways and pick the one you like the
most.

One scenario where the functional style version stands out is when we want
to work with the metadata of the implementations.

In addition to the get() method, the ServiceLoader.Provider interface also has a
type() method that returns the Class<T> metadata of the implementation. We
can use this to perform additional checks before using an implementation.

Suppose the restaurant wants us to provide an option where only low-
calorie drinks, instead of all the drinks, are displayed. If that information is
part of the metadata, we can query for that ahead of creating any instances.
In our application, the low-calorie products are annotated with @LowCalorie,
and we can readily make use of that information to meet this new
requirement.

The Class<T> metaclass already has a method isAnnotationPresent(). We can
use that on the result of the type() method to filter out the desired providers:

​ System.out.println(​"We're ready to take your order"​);

​ System.out.println(

​ ​"What would you like from these low calorie drinks?"​);

​

​ ServiceLoader.load(Drink.class).stream()

​ .filter(provider ->

​ provider.type().isAnnotationPresent(LowCalorie.class))

​ .map(ServiceLoader.Provider::get)

​ .map(Drink::getInfo)

​ .forEach(System.out::println);

​

​ System.out.println(​"Please choose from the above."​);

​ System.out.println(​""​);

The filter() method of the functional pipeline comes in handy to eliminate
the implementations that don’t satisfy the conditions. The rest of the code
works with the selected providers. Let’s see the output of this version of
code:

​ We're ready to take your order

​ What would you like from these low calorie drinks?

​ Diet Pepsi [300]ml

​ creating com.cokevendor.cocacola.DietCoke@4769b07b

​ Diet Coke [355]ml

​ Please choose from the above.

The output shows that no instance of Coke was created and only the low-
calories products are listed.

The modularization feature in combination with the ServiceLoader API brings
together some amazing capabilities from the design and architecture point
of view. As mentioned earlier, you can use the space station information
application to practice these concepts so you can get comfortable in
applying them.

[12]

Wrapping Up
Java modules provide great support when building client-server
architecture, microservices architecture, or one of the many other
architectural patterns. But if you’re implementing the Plug-in architecture,
you’ll need some additional support to modularize your applications. This is
where the ServiceLoader class is useful—to implement the Plug-in
architecture and, at the same time, enjoy the architectural benefits of using
Java modules. Using the ServiceLoader, you can specify the dependencies
between modules, but without tightly coupling the modules with one
another. You can also use this feature to dynamically discover at runtime the
plug-ins for your applications. The uses and provides clauses in the module
descriptors are used in combination with the ServiceLoader to bring this
capability to fruition. These facilities make it easier to implement the Plug-
in architecture without compromising the encapsulation and safety that
come from the use of Java modules.

In the next chapter we’ll see a feature, gatherers, that enhances the
functional programming capability, specifically when creating functional
pipelines.

Footnotes

https://en.wikipedia.org/wiki/Plug-in_(computing)

Copyright © 2025, The Pragmatic Bookshelf.

https://en.wikipedia.org/wiki/Plug-in_(computing)

Part 5

Custom Functional Pipeline Steps

Since Java gained functional programming capabilities,
back in version 8, there have been steady improvements to

the functional API, mostly by way of newer functions added
to the Collectors utility class and the Stream interface. The

addition of gatherers is not only the most recent change but
also a significant one as well.

You can use the gatherers to create custom steps in
functional pipelines. In this part you’ll learn the intent of

gatherers, how to use built-in gatherers, and ways to create
your own custom gatherers.

Chapter
11

Extending Functional Pipelines
with Gatherers

Starting with version 8 we’ve been able to write functional style code in
Java. You can transform data using functional pipelines, with methods of
the Stream interface, like filter(), map(), limit(), forEach(), and so on. The recent
addition of gatherers has boosted Java’s already powerful functional
programming capability.

You may have wondered if it’s possible to create your own steps in a
functional pipeline to perform operations beyond the traditional methods
like filter() and map(). You don’t have to wonder anymore—you can crank
out your own custom steps in a functional pipeline using the gatherers
feature.

As you know, a functional pipeline is made up of three parts: a source of
elements, a number of intermediate operations, and one terminal operation.
(See Functional Programming in Java, Second Edition [Sub23].) Largely,
the intermediate operations have been stateless, with a few exceptions. The
terminal operations, on the other hand, have generally been stateful. Also,
the intermediate operations are evaluated lazily, and their execution is
triggered by the call to a terminal operation.

Gatherers allow you to create your own intermediate operations that can be
either stateless or stateful and can be executed sequentially or in parallel.

You no longer have to struggle to map your domain-specific computations
into the confines of the handful of methods of the Stream interface.
Gatherers give you the freedom to customize the functional pipeline to the
extent you need, based on the requirements of your applications.

In addition to the ability to create our own custom steps, one of the biggest
benefits of gatherers is the ability to perform as intermediate operations the
functions that were available only as terminal operations in the past. The
resulting benefit of that ability is more fluent code that can be stitched
together into a functional pipeline.

The gatherers API is complex, and to truly understand it we have to ease
into it. To that end, in this chapter, we’ll first discuss the need for the
gatherers and the role that the gather() method of Stream plays. Then, to
become comfortable, we’ll look at some built-in gatherers that you can
readily use. This will help you to understand this new feature and provide a
segue to the next chapter where we’ll dive into creating our own custom
steps in functional pipelines.

Why Do We Need Gatherers?
Starting with Java 8 we’ve built functional pipelines using methods of
Stream like filter(), map(), and so on. But these aren’t sufficient to solve all
possible problems. For example, takeWhile() wasn’t introduced until Java 9—
imagine how you would exit out from the middle of a functional style
iteration without that method.

What can you do if the methods of Stream aren’t adequate to solve your
problem? Gatherers address that problem by giving you a way to create
custom steps in a functional pipeline to solve your business-specific
problems. Let’s take a closer look, using takeWhile() as an example.

The following figure illustrates a sample data passing through a functional
pipeline with the intermediate filter() and mapToInt() operations, followed by
the terminal sum() operation:

Here’s the Java code to implement that functional pipeline:

gatherers/vsca/Pipeline.java

​ ​var​ result = List.of(1, 2, 5, 4, 3, 6).stream()

​ .filter(e -> e % 2 == 0)

​ .mapToInt(e -> e * 2)

​ .sum();

You might assume that functions like filter() and map() are all we need to
perform almost any operation, but in JDK 8 there was no direct way to
conditionally exit out of a functional style iteration. The pipeline processes
all the values in the given collection, but what if we wanted to process
values only until we hit a value of 3?

http://media.pragprog.com/titles/vscajava/code/gatherers%2Fvsca%2FPipeline.java

The much-needed takeWhile() and dropWhile() methods, which provide finer
control over the execution flow and termination of an iteration, were
introduced in Java 9. Here’s an example of the pipeline modified to
terminate upon seeing the value of 3.

gatherers/vsca/Pipeline.java

​ ​var​ result = List.of(1, 2, 5, 4, 3, 6).stream()

​ .takeWhile(e -> e != 3)

​ .filter(e -> e % 2 == 0)

​ .mapToInt(e -> e * 2)

​ .sum();

This is elegant code. The takeWhile() method gives us full control to
terminate from the middle of the iteration. Now imagine other situations
today where you might need this kind of fine control over the iteration, or
you want to perform other specialized operations in the middle of the
functional style iteration—you need other functions that are similar to
takeWhile() and dropWhile().

We can’t expect, nor can we wait for, the JDK to solve all of our problems.
As we address more complex logic, we’ll eventually need specialized
intermediate operations that aren’t in the Stream API. Also, the function we
need might be so domain-specific that it will never be added to the general-
purpose JDK. We need a way to extend the functional pipeline with our own
custom operations. That’s exactly what gatherers are for, and the gather()
method of the Stream interface is the gateway to creating custom
intermediate operations.

Let’s take a look at how the new gather() method will help us to create a
custom intermediate operation.

http://media.pragprog.com/titles/vscajava/code/gatherers%2Fvsca%2FPipeline.java

Creating Custom Steps Using the gather() Method
Thanks to the new gather() method of the Stream interface, and the Gatherer

interface, you can crank out your own custom intermediate steps in the
functional pipeline to meet your specific business needs. Let’s look at the
role that the gather() method plays in the functional pipeline.

Exploring gather()
You can read the gather() method of the Stream interface as
performACustomStep(). Much like the filter() and map() methods, the gather()

method sits as an intermediate operation in a functional pipeline. As you
know, the filter() method helps to pick desired data from a collection and the
map() method helps to transform a given data from one value to another.
Unlike these operations, the gather() method doesn’t have a preset operation.
Instead, it merely hands the control over to you, so you can perform your
own custom operation on the data as it passes through the functional
pipeline.

The gather() method calls can appear anywhere in the functional pipeline
before the terminal operation, as shown in the following figure:

You can have zero or more gather() calls in a pipeline. You can tailor the
operation you perform during a gather() step to be either stateless or stateful,
depending on how you configure the Gatherer that’s provided as an argument
to the gather() method.

The Gatherer performs three distinct actions:

Executes its custom operation on the given element.

Pushes the result of the operation downstream, to the next step in the
pipeline.

Conveys to the previous step in the pipeline if more data may be sent
for processing.

To be efficient, each step in the pipeline executes only if the following step
indicates that it expects data to be sent. If a downstream operation indicates
that it doesn’t want any more data, the Gatherer, in turn, will communicate
that to the operation upstream and expect not to be invoked anymore. We’ll
dive deeper into the mechanics in the next chapter where we’ll look at
creating some complex custom gatherers.

To demonstrate how to use gatherers, let’s implement a custom step that
performs the same operation as the map() function. Note that this is a simple
exercise to learn about gatherers. In practice, you’d use the map() method of
Stream instead of duplicating the effort to create a custom step for
transforming data…unless, of course, you work for the Department of
Redundancies.

Using gather()
Let’s use the gather() method of the Stream interface and pass the result of a
call to the yet-to-be-written redundantMap() method to it.

gatherers/vsca/CustomMap.java

​ ​public​ ​class​ CustomMap {

​ ​public​ ​static​ ​void​ ​main​(String[] args) {

​ List.of(1, 2, 3).stream()

​ .gather(redundantMap(e -> e * 2))

​ .forEach(System.out::println);

​ }

​ }

http://media.pragprog.com/titles/vscajava/code/gatherers%2Fvsca%2FCustomMap.java

The redundantMap() method will return an implementation of the Gatherer

interface. The gather() method will pass each element, as it flows through the
pipeline, to the Gatherer. Using the mapper function provided, the Gatherer

will transform the elements that flow in, by doubling the value.

Let’s implement the redundantMap() method that will take a mapper function
and return an implementation of the Gatherer interface.

gatherers/vsca/CustomMap.java

​ ​public​ ​static​ Gatherer<Integer, ?, Integer> ​redundantMap​(

​ Function<Integer, Integer> mapper) {

​

​ ​return​ Gatherer.of((_, element, downstream) ->

​ downstream.push(mapper.apply(element)));

​ }

The redundantMap() method uses the Gatherer’s static helper method of() to
create an implementation of the Gatherer interface. Since the of() method
accepts a functional interface, we pass a lambda as an argument. The first
parameter of the lambda represents a state, and, since we don’t use state in
this example, we use an underscore (_) as an unnamed variable. The second
argument is the element that flows through the pipeline, and the third
argument is a reference to the next step downstream. The implementation of
the Gatherer interface merely transforms the element using the given mapper
function and pushes it downstream. The lambda’s implicit return transmits
upstream the request of the downstream step to either receive more data or
not.

The output of the previous example is the same as what you’d expect if you
had replaced the .gather(redundantMap(e -> e * 2)) line with the familiar .map(e ->

e * 2):

​ 2

​ 4

​ 6

http://media.pragprog.com/titles/vscajava/code/gatherers%2Fvsca%2FCustomMap.java

The example is rather a simplistic implementation of a gatherer. Don’t be
fooled by the ease of this example—in the next chapter you’ll see that
implementing gatherers can get quite intense depending on the complexity
of the custom logic you set out to implement.

Before we dive into creating our own nontrivial custom steps, in the next
chapter, let’s take a look at some built-in gatherers.

Using Built-in Gatherers
The gather() method and the Gatherer interface have been introduced to help
us create custom intermediate steps in a functional pipeline. But some pre-
built Gatherers have been provided as part of the JDK to serve as examples.
In addition to illustrating how custom steps may be implemented, these
examples also provide code that we could use if our business needs match
the built-in implementations.

You can find the built-in gatherers in the JDK’s Gatherers utility class. Before
implementing your own custom gatherer, check to see if any of the ones
provided in the Gatherers will be sufficient. Make sure to check this utility
when you upgrade to a future version of Java as newer built-in functions
may be added.

In this section we’ll take a look at three different built-in Gatherers.

The fold() Gatherer
The built-in fold() gatherer serves as the intermediate operation equivalent of
the terminal reduce() operation. Why would that be useful, you may wonder.
Let’s first discuss the reason and then look at using the fold() gatherer.

The reduce() method is a terminal operation that’s used to accumulate or
combine the elements that flow through the functional pipeline, in an order-
independent fashion since the reduction function must be associative. For
example, the reduce() method may be used to total the elements that flow
through the pipeline. But since it’s a terminal operation, the result of reduce()

is a value, and the stream that the elements flow through terminates at the
reduce() call.

Suppose we want to perform further operations on the result of the reduce()

method, for example, multiply the value by 10 and then print the resulting

value. Since the stream terminates at reduce(), we can’t add these last two
steps to a functional pipeline and, thus, the fluency of the code is disrupted
as we see in the following example.

gatherers/vsca/Fold.java

​ ​var​ result = List.of(1, 2, 3, 4, 5, 6).stream()

​ .filter(e -> e % 2 == 0)

​ .reduce(0, Integer::sum);

​

​ ​var​ tenTimesResult = result * 10;

​

​ System.out.println(tenTimesResult);

The output of the previous code is 120, ten times the sum of all the even
numbers in the given collection.

If the reduce() operation were an intermediate operation instead of a terminal
operation, then we could combine all that code into one single elegant
functional pipeline. That’s where the fold() gatherer comes to the rescue.

You can find the fold() method as a static method in the Gatherers utility class
in the JDK. This method returns an implementation of the Gatherer interface,
and a call to fold() can be placed as a parameter to the gather() method, just
like the way we placed a call to our redundantMap() method in an earlier
example. Using the fold() method avoids disrupting the fluency of the code.
We can add the steps to multiply and print to the functional pipeline like
this:

gatherers/vsca/Fold.java

​ List.of(1, 2, 3, 4, 5, 6).stream()

​ .filter(e -> e % 2 == 0)

​ .gather(Gatherers.fold(() -> 0, Integer::sum))

​ .map(e -> e * 10)

​ .forEach(System.out::println);

http://media.pragprog.com/titles/vscajava/code/gatherers%2Fvsca%2FFold.java
http://media.pragprog.com/titles/vscajava/code/gatherers%2Fvsca%2FFold.java

We replaced the call to the reduce() method with a call to gather(). To the
gather() method, we pass the result of a call to the fold() method. That result
is an implementation of the Gatherer interface. The fold() method itself takes
two arguments: a Supplier, which provides an initial value for the combine
operation, and the combine operation, which is the Integer’s sum() method in
this example.

Since gather() is an intermediate operation, the result of the gather() method
on a Stream<T> is a Stream<R>, unlike the result of the reduce() method, which
is R, where T and R are parametric types that correspond to the input type and
the output type for the function provided to fold() or reduce(). Thus, we can
continue to call the methods of the Stream interface on the result of gather(),
like the calls to map() and forEach() in the previous code example.

The output of this modified version of code is also 120. But the code is more
fluent; it produces the same result as the previous more verbose version.

The scan() Gatherer
Both the reduce() terminal operation and the intermediate operation of the
fold() gatherer produce a single value. Sometimes we may be interested in
processing each one of the intermediate values of the combine operation
that’s passed to reduce() or fold(). That’s the purpose of the scan() gatherer.

Looking at the previous two examples, the result of both reduce() and fold() is
12, the total of all the even numbers in the given collection, that is, the
values passed downstream by the filter() operation in both examples. Instead
of receiving the single value, we can receive the intermediate or partial
results of the combine operation, by using the scan() gatherer, as illustrated in
the following figure:

Let’s modify the previous example that uses fold() to yield the partial results
of the combine operation as elements that flow in the functional pipeline.

gatherers/vsca/UsingScan.java

​ List.of(1, 2, 3, 4, 5, 6).stream()

​ .filter(e -> e % 2 == 0)

​ .gather(Gatherers.scan(() -> 0, Integer::sum))

​ .forEach(System.out::println);

As the elements move through the pipeline, the result after each summation
is pushed downstream for us to view or perform further processing. The
output shows the result of the previous code:

​ 2

​ 6

​ 12

The final result, 12, of adding all the transformed values is at the end. But
we also see the partial values, 2 and 6, that were generated as the summation
progressed.

Use fold() if you want to perform the reduce() operation but as an
intermediate operation instead of a terminal operation. Alternatively, use
scan() if you want to perform reduce() as an intermediate operation and, at the
same time, be able to view and process the partial results of reduce()’s
combine operation.

Next, we’ll see two more functions that are part of the Gatherers utility class.

http://media.pragprog.com/titles/vscajava/code/gatherers%2Fvsca%2FUsingScan.java

The Window Gatherers
The Gatherers utility class provides two more functions, windowFixed() and
windowSliding(), that group elements into windows of desired size. Before we
dig into the code, let’s take a look at what the result of window gatherers
will look like, in the following figure.

The windowFixed() function takes a desired size and gathers elements into
groups of that size as they flow through the pipeline. In this figure, the
desired size is 3, so the values 1, 2, 3, 4, 5 are placed into two groups: the first
of size 3 with values 1, 2, 3 and the second of size 2 with values 4, 5. The
second group is smaller than the desired size since there aren’t enough
elements in the source collection to fill the second group.

The windowSliding() function uses a sliding window to group the elements. As
illustrated in the figure, for a desired size of 3, the first group contains the
first three elements from the source collection. The second group also has
three elements, starting from the second element. The third group, likewise,
has three elements, starting from the third element. Since there are no more
elements to fill a group, the grouping stops after generating the third group.

Let’s create an example to use the windowFixed() gatherer:

gatherers/vsca/UsingWindowGatherers.java

​ ​var​ numbers = List.of(1, 2, 3, 4, 5);

​

​ numbers.stream()

http://media.pragprog.com/titles/vscajava/code/gatherers%2Fvsca%2FUsingWindowGatherers.java

​ .gather(Gatherers.windowFixed(3))

​ .forEach(System.out::println);

The result of this code is the following:

​ [1, 2, 3]

​ [4, 5]

Let’s now use the windowSliding() gatherer on the same collection of data:

gatherers/vsca/UsingWindowGatherers.java

​ numbers.stream()

​ .gather(Gatherers.windowSliding(3))

​ .forEach(System.out::println);

The result is a sliding group, as we see in the following output from
executing that code:

​ [1, 2, 3]

​ [2, 3, 4]

​ [3, 4, 5]

We saw examples of built-in gatherers and also a rather simplistic example
of implementing the map() function using our own, albeit redundant,
gatherer. In the next chapter we’ll focus on how to create our own custom
gatherers, so please fasten your seatbelts because it’s going to get bumpy.

http://media.pragprog.com/titles/vscajava/code/gatherers%2Fvsca%2FUsingWindowGatherers.java

Wrapping Up
You can extend the functional pipelines using the gatherers feature. A
gatherer provides a way for you to write your own custom intermediate
operations in a functional pipeline. This frees you from being constrained to
only using the pre-built operations in a functional pipeline.

In this chapter we created a rather simplistic gatherer to ease you into the
concept of creating custom intermediate steps in a functional pipeline. In
addition, we also looked at a few built-in gatherers that are provided as
examples in the JDK to illustrate the use of gatherers. With this knowledge
under our belt, in the next chapter we’ll dive into the more complex topic of
creating our own nontrivial custom gatherers.

Copyright © 2025, The Pragmatic Bookshelf.

Chapter
12

Creating Custom Gatherers

Creating a custom gatherer is a nontrivial task but one that can be rewarding
if used appropriately. We discussed the need for gatherers in the previous
chapter. You got a glimpse of creating a custom gatherer, albeit a simple
one, that mimicked the implementation of the map() method. That
implementation was deceivingly easy but, in reality, the more complicated
the logic you want to implement, the more complex the code will be. In this
chapter you’ll get a good understanding of how to create and configure
custom gatherers to meet the challenges of your applications.

The intermediate operations in a functional pipeline may be stateless, like
the behavior of filter() and map(), or stateful, like the behavior of limit(). Also,
intermediate operations may choose to operate sequentially only, like limit(),
or in parallel, like map(). Thus, gatherers, being intermediate operations,
provide different flavors of execution: stateless vs. stateful and sequential
vs. parallel. Depending on the problem you’re solving, you’ll have to
decide if the gatherer you’re implementing should be stateless or stateful.
Likewise, you have to choose whether to support parallel execution or
sequential execution only.

Implementing any nontrivial gatherer takes significant effort, so before you
set out to create your own gatherer, see if one of the traditional methods of
the Stream API will be sufficient to solve your problem. If gatherer is the
option that’s most suitable, check to see if the Gatherers utility class has any

built-in gatherer that meets your needs. Embark on your mission to create
your own gatherer as the last option. This chapter will equip you with all
the details you’ll need for that arduous journey if and when you choose to
undertake it.

Fill up your beverage containers with your favorite drink and start up your
IDE. We’re all set to dig into creating custom gatherers.

The Machinery Behind the gather() Method
Let’s first focus on the machinery behind the gather() method and how it
engages the implementation of the Gatherer interface provided to it.
Knowing this fundamental is essential for you to be able to implement your
own custom steps in a functional pipeline.

As the data flows through the pipeline, the gather() method will hand over
the data to the implementation of the Gatherer interface that’s provided to
the gather() method. The Gatherer should perform three distinct actions:

Execute its custom operation on the given element.

Optionally, push the result of the operation downstream, to the next
step in the pipeline.

Convey to the previous step in the pipeline if more data may be sent
for processing.

To be efficient, each step in the pipeline executes only if the following step
indicates it expects data to be sent. If a downstream operation indicates it
doesn’t want any more data, the Gatherer, in turn, will communicate that to
the operation upstream and expect not to be invoked anymore.

To understand this better, let’s imagine we want to implement the filter()
method on our own using the gather() method. Since the job of filter() is to
pick or discard elements as they flow through the pipeline, our hypothetical
implementation of the Gatherer interface to mimic the filter() functionality
will have to decide if an element should be pushed downstream or not. The
following figure illustrates the behavior of such a gatherer:

Let’s unpack the operations of this gatherer to get a deeper understanding:

The gatherer will first evaluate a Predicate, given as an argument, with
an element that flows through the pipeline.

If the Predicate test passes, the gatherer will push the element to the
next step downstream; otherwise, it will simply discard the element.

Upon receiving the call to push, the downstream operation will return
true if it expects more data and false otherwise.

The gatherer will then return this result from the downstream’s push()
call to the operation upstream.

If no data was pushed because the Predicate test failed, then the
gatherer will return true to tell the upstream operation that it may send
more data.

If the gatherer returns false to the upstream operation, as a result of
false being returned by the downstream’s push(), then the step doesn’t
expect to receive any further elements to process.

As you can see, even a simple gatherer needs significant coordination
between different stages in the functional pipeline. We can express the

behavior of the gatherer that mimics filter() using the following pseudocode:

​ ​if​(predicate.test(element)) {

​ ​return​ downstream.push(element);

​ } ​else​ {

​ ​return​ ​true​;

​ }

To further hone this concept, as an exercise, imagine creating a custom step
to perform the map() operation—as we did in ​Creating Custom Steps Using
the gather() Method​. The gatherer that mimics the map() operation will be
provided a mapper function that transforms elements from one value to
another, for example, to double a given value. The gatherer should apply the
given function for the element that flows through the pipeline and push it
downstream. In addition, it should convey to the upstream the desire of the
downstream step if more data is expected or not.

The figure illustrates the behavior of a hypothetical gatherer that mimics the
map() operation.

Here’s the pseudocode for such a gatherer:

​ ​return​ downstream.push(givenMapperFunction.apply(element));

The pseudocode shows the Gatherer implementation transforming the given
element using the given mapper function, pushing the result downstream,

and conveying to upstream, by way of the return statement, the desire of the
downstream to receive more elements or not.

We’ve discussed the basics of the machinery behind the gather() method. To
reiterate, the fundamental actions of the Gatherer provided to the gather()
method are to perform the custom operation, optionally push the data to the
next downstream step, and convey to the step upstream if more data should
be sent. Next, we’ll discuss the flavors of gatherers that you’ll have to pick
from to implement your custom step, based on your applications’ needs.

Flavors of Gatherers
When you set out to create a gatherer you have to decide, based on the
problem you’re solving, the type or flavor to implement. Each flavor comes
with its own capabilities and complexities.

The gatherers come in one of four flavors: sequential stateless, sequential
stateful, parallelizable stateless, or parallelizable stateful. The figure shows
the four possible flavors and the behavior of each type of gatherer.

A sequential stateful gatherer has slightly more increased complexity
compared to the sequential stateless gatherers. A parallelizable stateful
gatherer is the most complex of all the gatherers you’d implement. A
parallelizable stateful gatherer will have to provide a merge phase to
combine the partial results that were created from the parallel processing of
different elements. You can think of this as a synchronization or merge
phase where the partial results are combined.

A few static methods of the Gatherer interface provide convenience methods
to create the different flavors of gatherers.

You can use the Gatherer.ofSequential() method to implement a
sequentially executed gatherer, stateless or stateful.

You can use one of the overloaded versions of the Gatherer.of() method
to implement a gatherer that allows parallel execution, stateless or
stateful.

If a gather() step is executed in a pipeline that’s run sequentially, then the
gather step will run sequentially no matter how it’s configured. On the other
hand, if the gather() is run as part of a parallel stream execution, then
depending on how a gatherer is configured, it may run sequentially or in
parallel. Irrespective of the way a gatherer is configured, the steps before
and after the gather step decide on their own the evaluation strategy to run
sequentially or in parallel.

We can visualize the execution of a parallel stream with a gather step like
traffic flow on a multiline freeway, as you see in the following figure:

In the case of a stateless gatherer that can run in parallel, as seen in the left-
most scenario in the figure, the gather step will run sequentially when
executed within a sequential pipeline and run in parallel when executed
within a parallel pipeline.

The parallelizable stateless gatherer, however, pushes data downstream in
batches, via a synchronization point, to ensure that data is pushed to the
downstream step only if necessary. This avoids dumping downstream all

the data generated in parallel, and, instead, values are pushed only as
necessary and not in excess, irrespective of how much data was created in
parallel.

In the case of a gatherer that needs to run sequentially, the steps before and
after the gather phase may run in parallel. But much like the way vehicles
will have to squeeze by a construction zone one at a time, the execution of
the gather step will be done sequentially.

In the case of a stateful gatherer that can be parallelized, in spite of being
stateful, the integration and combine phases are run in parallel to process
data in chunks, and then the finish phase completes the final operation for
the result to be pushed to the next step in the pipeline.

As you can gather (pun intended) from the discussions so far, before you
can implement a custom step in a functional pipeline, you have to decide
which flavor of gatherer you should implement. Then, you have to figure
out how to implement your business needs for the custom step within the
confines of the gather() method, the Gatherer interface, and the convenience
methods provided in the JDK.

In the rest of this chapter, you’ll walk through all these details. You’ll learn
when to implement each one of the flavors of gatherers, the functions you’ll
use to create the implementations, and how to implement the custom steps.
We’ll look at creating sequential stateless gatherers, sequential stateful
gatherers, and parallelizable stateless gatherers, and then we’ll delve into
the complexities of creating parallelizable stateful gatherers.

Please buckle up your seatbelt—we’ll start with creating the sequential
stateless flavor of gatherers.

Creating Sequential Stateless Gatherers
Choose a sequential stateless gatherer if you need to process elements in the
encountered order but otherwise in an independent manner. This is a good
option if you don’t have to carry state between the processing of one
element to the next. A sequential stateless gatherer is the easiest one to
implement.

What's "the Encountered Order?"
A stream doesn’t impose any arbitrary order on the elements it processes. A
source of data may impose an order; for example, lists are ordered collections of
data whereas sets are unordered collections. Likewise, a step in the functional
pipeline may impose an order, such as the sorted method that orders elements in
the ascending order.

A step in a functional pipeline that processes elements in the encountered order
honors the order of elements it sees or encounters. The order may be imposed by
the source of data or a prior step in the functional pipeline. If the data flows in a
particular order, then the step that honors the encountered order will strictly
follow that order for processing.

The forEach method is an example of a step that doesn’t care for the encountered
order. If you place forEach at the end of a parallel stream, there’s no guarantee of
the order in which elements are processed by this step. But the forEachOrdered
method is an example of a step that preserves the encountered order. Even when
placed at the end of a parallel stream, forEachOrdered will process elements in
the order imposed by the source or a prior step. Likewise, findAny is an example
of a step that doesn’t honor the encountered order, and findFirst is an example of
a step that does.

The nature of the problem you’re dealing with should help you decide if you
need to process elements in a strictly encountered order.

Think of a stateless sequential gatherer as an intermediate operation
equivalent to the terminal forEachOrdered() operation. Unlike the forEach()

terminal operation, the forEachOrdered() method, which is also a terminal
operation, processes elements in the encounter order. Both of these are
stateless operations. Surprisingly, there’s no built-in stateless sequential
intermediate operation in the Stream API. If you ever need such a custom
intermediate operation, then the gather() method has your back. Let’s think of
an example of such a situation.

The forEach() terminal operation of Stream consumes an element at the end of
a functional pipeline. The forEachOrdered() is similar to forEach() but preserves
the encountered order. The intermediate operation that’s equivalent to
forEach() is the peek() method—you can use that to consume an element in an
intermediate step. But there’s no equivalent intermediate operation to
forEachOrdered(). If you want to consume elements in an intermediate step, in
the encountered order, there’s no built-in method to facilitate that. We’ll
have to create a custom step for that—let’s create a sequential stateless
gatherer to peek at elements in the encountered order.

You can implement a sequential stateless gatherer using the Gatherer’s
ofSequential() static method. The instance of the Gatherer generated using this
method should perform its operation, push the result downstream, and tell
the upstream operation if more data may be sent or not. That’s pretty much
all you have to do.

Let’s create a custom intermediate step that can be used to consume data in
the middle of a functional pipeline. Let’s call this operation peekInOrder
gatherer. Unlike the Stream’s peek(), our peekInOrder gatherer will process
elements in the encountered order. We’ll place all the custom gatherers that
we create in this chapter within a UsingGatherers class.

We’ll first create a helper method named consumeAndPush() that will capture
the essential behavior of our gatherer. This method will take three
parameters: an element to process, a Consumer that abstracts the custom
processing of the element, and a reference to the downstream step. This

method will pass a given element to a consumer, push the element
downstream to the next step in the pipeline by calling push(), and return the
true/false result of that call. Here’s the consumeAndPush() method:

gatherers/vsca/UsingGatherers.java

​ ​private​ ​static​ <T> ​boolean​ ​consumeAndPush​(

​ T element,

​ Consumer<T> consumer,

​ Gatherer.Downstream<? ​super​ T> downstream) {

​ consumer.accept(element);

​ ​return​ downstream.push(element);

​ }

We’ll make use of this consumeAndPush() method in the implementation of
our custom peekInOrder() method that returns an implementation of the
Gatherer interface, like so:

gatherers/vsca/UsingGatherers.java

​ ​public​ ​static​ <T> Gatherer<T, ?, T> ​peekInOrder​(

​ Consumer<T> consumer) {

​ ​return​ Gatherer.ofSequential((_, element, downstream) ->

​ consumeAndPush(element, consumer, downstream));

​ }

The Gatherer is a generic interface with three parameterized types:

The first parameterized type stands for the type of the elements being
processed.

The second parameterized type is for the state that’s optionally used by
the Gatherer.

The third parameterized type tells us about the type of the result
generated by this step in the pipeline.

http://media.pragprog.com/titles/vscajava/code/gatherers%2Fvsca%2FUsingGatherers.java
http://media.pragprog.com/titles/vscajava/code/gatherers%2Fvsca%2FUsingGatherers.java

The first and third parametric types for the Gatherer<T, ?, T> returned by
peekInOrder() show the type of the element being processed and the type of
the result generated by this step are the same. We use ? for the middle
parametric type to indicate that we’re not keen on any state for this gatherer.

We’ll use the Gatherer’s static ofSequential() method to easily create a gatherer.
As we discussed, the job of a gatherer, as an intermediate operation, is to
process an element and (optionally) push the result to the next step in the
functional pipeline. This step is called an integration step, and since the
Integrator is a functional interface, we can use a lambda expression to create
an integrator. The lambda takes three parameters: a state, the element that’s
being processed, and a reference to the next operation downstream in the
pipeline.

In the implementation of the peekInOrder() method, we pass a lambda
expression to the ofSequential() method. The first parameter of the lambda
represents the state. Since we’re not dealing with any state, we can ignore
that parameter and thus we use an unnamed variable _ to represent it. Within
the lambda, we invoke the consumeAndPush() method to process the given
element and then push it downstream. The result of consumeAndPush() is
returned by this lambda via the implicit return. Thus, if the push() on the
downstream returns true, then the gatherer conveys to the upstream step that
it could send more elements for processing. If the downstream step returns
false, then the gatherer tells the upstream step not to send any more elements.

Our final task is to make use of the simple sequential stateless gatherer
we’ve created. Let’s put the peekInOrder() method to use from within a
usePeekInOrder() method:

gatherers/vsca/UsingGatherers.java

​ ​public​ ​static​ ​void​ ​usePeekInOrder​() {

​ ​var​ numbers = List.of(10, 11, 15, 12);

​

http://media.pragprog.com/titles/vscajava/code/gatherers%2Fvsca%2FUsingGatherers.java

​ numbers.parallelStream()

​ .peek(System.out::println)

​ .reduce(0, Integer::sum);

​

​ System.out.println(​"-----"​);

​

​ numbers.parallelStream()

​ .gather(peekInOrder(System.out::println))

​ .reduce(0, Integer::sum);

​ }

The example illustrates the difference between the encountered order
ignoring the peek() of the Stream interface and the peekInOrder() gatherer we
created. We create a list of numbers and invoke the peek() method in the
pipeline before calling reduce(). The Consumer passed to peek() merely prints
the value that passes through. Then, on the same list, we call the gather()

method and pass the peekInOrder() gatherer we created, before calling the
reduce() method. We run each of the pipelines, one using peek() and the other
using peekInOrder(), in parallel using parallelStream().

The output of calling the usePeekInOrder() is shown below:

​ 15

​ 11

​ 12

​ 10

​ -----

​ 10

​ 11

​ 15

​ 12

The first part of the output shows that the peek() method prints the values in
a nondeterministic order, the result of multiple threads executing the
pipeline. On the other hand, the second part shows our gatherer honors the
ordering of the elements in the list and displays the results in the appropriate
order, even though the pipeline is being executed in parallel. The gather

step, in this case, is being executed sequentially to preserve the encountered
order.

Even though the sequential stateless gatherers are one of the simplest to
create, their applicability is rather limited in reality. That’s one of the
reasons why there are no built-in sequential stateless intermediate operations
in the Stream API. But if you come across a problem in the wild that would
make use of one, you’re now all set to create an implementation.

The sequential stateful gatherers are more common, relatively speaking,
than their stateless counterparts. When using the ofSequential() method of
Gatherer in this section, we ignored the first parameter that represents state.
In the next section we’ll make use of that parameter to implement a
sequential stateful gatherer.

Creating Sequential Stateful Gatherers
Choose a sequential stateful gatherer if you need to carry some state from
processing one element to the next and, at the same time, you also need
to process the elements in the encountered order.

If you examine the intermediate operations in the Stream API, you’ll notice
some common stateless operations like filter() and map(). At the same time,
you’ll also see some stateful intermediate operations, like limit(). The limit()

method is stateful since it has to keep track of the number of elements that
have passed through the pipeline. Thus, it’s both stateful and has to be
executed sequentially. Sequential stateful gatherers are used to create our
own custom intermediate operations similar to the limit() method.

A sequential stateful gatherer may be used both in pipelines that run
sequentially and in pipelines that run in parallel. When executed in a parallel
pipeline, the steps before and after the sequentially stateful gatherer step
may process elements sequentially or in parallel, based on their own
evaluation strategy. The sequential stateful gatherer step, however, since it
has to manage state and honor the encountered order, will process elements
sequentially. Think of this step as similar to the narrow neck that connects
the two glass bulbs of an hourglass. The flow of sand is restricted as it
moves through the narrow neck. Likewise, during the parallel execution of a
pipeline, the flow of data is restricted to be sequential as it moves through a
sequential stateful gatherer step.

To create a sequential stateful gatherer you can use the same ofSequential()

method of the Gatherer interface that you used to create the sequential
stateless gatherer, with one difference. Instead of ignoring the first parameter
that represents state, you’ll make good use of that. Let’s explore this with an
example.

In the Stream API, there’s no easy way to view both the position and the
value of an element as it flows through the functional pipeline. We can
create a custom step, a sequential stateful gatherer, that can keep track of the
position of elements as they pass through the pipeline. The map() method of
Stream is useful to transform a value as it flows through the pipeline. We’ll
create a mapWithIndex() that will pass downstream both a transformed value
of an element and its position.

To hold a value and its position in the stream, let’s first define a record
named ValueWithIndex:

gatherers/vsca/UsingGatherers.java

​ ​public​ record ValueWithIndex<E>(E value, ​int​ index) {

​ @Override

​ ​public​ String ​toString​() {

​ ​return​ ​"%d: %s"​.formatted(index, value);

​ }

​ }

An instance of the ValueWithIndex record will hold both a value and the
position as index. Its toString() method serves as a convenience method to
print the index along with the value.

We’ll need a class to carry the state—the computation of the position of an
element—from the processing of one element to the next. Since this state
needs to be mutated, we can’t simply use an int or an Integer. Thus, we’ll
create a class Index that will hold an int for position and provide a method to
increment that value:

gatherers/vsca/UsingGatherers.java

​ ​static​ ​class​ Index {

​ ​private​ ​int​ position = 0;

​

​ ​public​ ​int​ ​getAndIncrement​() {

​ ​return​ position++;

http://media.pragprog.com/titles/vscajava/code/gatherers%2Fvsca%2FUsingGatherers.java
http://media.pragprog.com/titles/vscajava/code/gatherers%2Fvsca%2FUsingGatherers.java

​ }

​ }

Now, let’s create an implementation of the Gatherer, using a mapWithIndex()

method, that’ll transform data and return the index and the transformed
value. The return type of mapWithIndex() will be Gatherer<? super T, Index,

ValueWithIndex<R>>. The first parametric type ? super T indicates that the
elements being processed may be of some generic type T or one of its base
types. The second parametric type Index conveys the type of the state that
will be carried between the processing of elements. Finally, the third
parametric type ValueWithIndex<R> provides us with the return type of this
step.

Within the mapWithIndex() method, we’ll use the Gatherer’s ofSequential() static
method to create the desired instance of the Gatherer. To keep track of the
index, the ofSequential() method receives the initialization state as the first
argument. In this case we’ll use a new instance of the Index class to convey
the first index, the initial state, is 0. The second argument to the ofSequential()

method is an Integrator whose job is to process the elements and combine the
state. Let’s take a look at the code.

gatherers/vsca/UsingGatherers.java

​ ​public​ ​static​ <T, R> Gatherer<? ​super​ T, Index, ValueWithIndex<R>>

​ ​mapWithIndex​(Function<T, R> mapper) {

​ ​return​ Gatherer.ofSequential(Index::​new​,

​ (index, element, downstream) ->

​ downstream.push(​new​ ValueWithIndex<>(

​ mapper.apply(element), index.getAndIncrement())));

​ }

The Integrator receives three arguments: the state referenced by index, the
element, and a reference to the downstream step. Within the lambda for the
Integrator, we push an instance of ValueWithIndex downstream. This instance
holds the transformed or mapped value of the given element and the current

http://media.pragprog.com/titles/vscajava/code/gatherers%2Fvsca%2FUsingGatherers.java

value of the index. Also, as we pass the current value of the index, we post-
increment it, using the getAndIncrement() method of Index.

Observing the previous code, we can see that the sequential gatherer starts
with an initialization state of 0 for index, and after each element is processed
by the Integrator the index is incremented, one value at a time. Thus, when
the Integrator is called for the second element, the index will be 1 instead of
0, and so on for other elements that follow.

Let’s invoke the mapWithIndex() method we created and pass the resulting
Gatherer instance as an argument to the gather() method call:

gatherers/vsca/UsingGatherers.java

​ ​public​ ​static​ ​void​ ​useMapWithIndex​() {

​ List.of(​"Tom"​, ​"Jerry"​, ​"Tyke"​)

​ .parallelStream() ​// or .stream()​

​ .filter(name -> name.length() > 3)

​ .gather(UsingGatherers.<String,
String>mapWithIndex(String::toUpperCase))

​ .forEach(System.out::println);

​ }

We start with a collection of Strings representing some names. We filter out
any name that’s not of a desired length. Then, we transform the names to
uppercase, and at the same time, create an index for the transformed values,
using the gatherer we wrote.

Here’s the output of executing the useMapWithIndex() method:

​ 1: TYKE

​ 0: JERRY

The output shows the index for the elements. Since the code is run as a
parallel stream and we’re using forEach(), there’s no guarantee of the order of
the output. We may see 0: JERRY first and then 1:TYKE, or we may see them in
the reverse order. If we use forEachOrdered() instead of forEach(), we’ll see

http://media.pragprog.com/titles/vscajava/code/gatherers%2Fvsca%2FUsingGatherers.java

them in the right order. In any case, even though the steps before and after
the gather step process elements in parallel, the gather step itself was
executed sequentially, and we can be assured that the index of the elements
is in the encountered order. Thus, since JERRY appears before Tyke in the
source, the index of JERRY is less than the index of Tyke.

The code for a sequential stateful gatherer is a tad more complex than the
code for a sequential stateless gatherer due to the need to handle state. The
state is internally mutable, that is, the state change is encapsulated within the
gatherer and the mutable state isn’t directly visible or accessible outside of
the step.

Next, we’ll take a look at creating the third flavor—parallelizable stateless
gatherers.

Creating Parallelizable Stateless Gatherers
If you don’t need to follow the encountered order when processing elements
and you don’t have any state to carry between the processing of
elements, then choose to implement a parallelizable stateless gatherer.

You can use one of the overloaded static methods, named of(), of the Gatherer

interface to create a parallelizable stateless gatherer. To see how to make use
of it let’s look at an example.

We’ll create an intermediate custom step, a parallelizable stateless gatherer,
that’s the equivalent of the combined capabilities of Stream’s intermediate
filter() and the terminal findAny() operations. Let’s first discuss the benefit of
such a step and then dive into the implementation.

As you know, the terminal findAny() method of the Stream<T> interface will
return an Optional<T> with any element it can find in the stream. This method
is useful to pick one of the elements that flow through the stream. If we
wanted to continue processing the result using a functional pipeline, we’d
have to call the stream() method on the result of findAny(). Sadly, this would
create a new stream rather than adding the operations to the original stream.
Furthermore, the findAny() method doesn’t take any predicate to constrain the
nature of the element we’d like to pick; typically, we’d have to use a filter()

operation to make that selection ahead in the functional pipeline.

It would be nice to have one intermediate operation to filter and find and, at
the same time, continue processing on the current stream. Let’s create a
takeAnyOneMatching() gatherer that will achieve that.

First, let’s make use of the takeAnyOneMatching() method which we’ll
implement soon. Here’s a piece of code that invokes the gather() method of
Stream.

gatherers/vsca/UsingGatherers.java

​ ​public​ ​static​ ​void​ ​useTakeAnyOneMatching​() {

​ List.of(10, 11, 15, 12, 11, 44, 67, 83, 23, 12, 34, 12, 55)

​ .parallelStream() ​//or .stream()​

​ .gather(UsingGatherers.<Integer>takeAnyOneMatching(e -> e > 25))

​ .map(e -> e * 10)

​ .forEach(System.out::println);

​ }

In this code we pass the result of the call to the takeAnyOneMatching() method
as the argument to the gather() method. The takeAnyOneMatching() method
itself takes a Predicate as an argument, which in this example returns true if
the element being processed is greater than 25. In short, in the gather step of
this functional pipeline, we want to pick at most one element that’s greater
than 25 for further processing.

Next, let’s take a look at how to implement the takeAnyOneMatching() method.
Instead of tailoring it specifically to work with Integer, let’s generalize it
using a parametric type T. The takeAnyOneMatching() will take a Predicate<T>

and return a Gatherer, like so:

gatherers/vsca/UsingGatherers.java

​ ​public​ ​static​ <T> Gatherer<? ​super​ T, ?, T> ​takeAnyOneMatching​(

​ Predicate<T> predicate) {

​ ​return​ Gatherer.of(

​ (_, element, downstream) -> pushIfMatch(predicate, element,
downstream));

​ }

Here again, the parametric types of the return type, Gatherer<? super T, ?, T>,
provides details about the type of the element being processed, the type of
the state, and the type of the result of this step. In this example, the type of
the elements processed in the pipeline is T or any of its super types. We’re
not using any state since we’re creating a stateless gatherer, and the result
type is the same as the type of the element being processed.

http://media.pragprog.com/titles/vscajava/code/gatherers%2Fvsca%2FUsingGatherers.java
http://media.pragprog.com/titles/vscajava/code/gatherers%2Fvsca%2FUsingGatherers.java

The lambda passed to the of() method of Gatherer takes three parameters: a
state (which we don’t care for in this example, hence the _ is used for the
parameter variable name), the element that’s being processed, and a reference
to the next operation downstream in the pipeline. If the element satisfies the
given predicate, the gather step in this example will push the element to the
next step in the pipeline; otherwise, the element is ignored. We delegate that
responsibility to the pushIfMatch() method. The lambda for the Integrator

returns true or false based on what the pushIfMatch() method returns.

Let’s now implement the last function we need, the pushIfMatch() method:

gatherers/vsca/UsingGatherers.java

​ ​private​ ​static​ <T> ​boolean​ ​pushIfMatch​(Predicate<T> predicate, T element,

​ Gatherer.Downstream<? ​super​ T> downstream) {

​ ​if​(predicate.test(element)) {

​ downstream.push(element);

​ ​return​ ​false​;

​ }

​

​ ​return​ ​true​;

​ }

The pushIfMatch() method checks if the element passes the Predicate’s test,
and if it does, it pushes the element downstream. In this case, it returns false

to tell the upstream operation not to send any more elements since the
candidate element has been found. If the element doesn’t match, it’s
discarded—it’s not pushed downstream, and the method returns true to say it
still is looking for a suitable element and the upstream operation should send
another element if it has one.

Read the push() method of downstream as if it were named pushIfPossible; it’s
a request and not a command to the next step in the pipeline. The behind-
the-scenes logic that wires the Integrator to the gather step may choose to
discard the element if appropriate, and may not send it to the next step. This
behavior is essential for the proper execution of the intermediate operation,

http://media.pragprog.com/titles/vscajava/code/gatherers%2Fvsca%2FUsingGatherers.java

especially when it may be run in parallel. Since the pushIfMatch() method will
be called in parallel from different threads when the stream is run in parallel,
multiple calls to downstream.push() will be made. But since the method
returns false after the call to push(), internally, the executor of the gatherer
will ensure that only one of the push requests actually resulted in the push to
the next step and the other elements that were pushed will be discarded.

As a reminder, when implementing the Integrator, make sure the method
returns true or false as appropriate, based on whether you want more
elements in the pipeline to be processed or not. Depending on the logic
you’re implementing, sometimes you may return the result of the push() call,
and sometimes you may return true or false to convey your own decision to
receive more elements or not. A general rule you should follow is to return
false if push() returns false. Also, return false regardless of what push() returns
if you choose not to process any more elements.

The result of executing the useTakeAnyOneMatching() method from within a
main method is this:

​ 440

Our gather step picked the number 44 from the stream, and the map() step
that follows the gather() step transformed the value to 440.

We’ve seen three flavors of gatherers so far. The last flavor, parallelizable
stateful gatherer, is the most powerful and the most complex to implement.
Let’s see how to create one of those next.

Creating Parallelizable Stateful Gatherers
Choose a parallelizable stateful gatherer if you need to implement a gatherer
that needs to carry state across the processing of elements and you don’t
have to process the elements in the encountered order. This is the parallel
counterpart of the sequential stateful gatherers, but it’s a lot more complex
to implement.

To implement a parallelizable stateful gatherer, we’ll make use of one of the
overloaded methods of() of the Gatherer interface. In its full glory, this
method takes four arguments. Each of the arguments is a method that
focuses on a distinct phase during a gather operation. The four phases are:

the initialization phase
the integration phase
the combine phase
the finish phase

The initialization phase is used to initialize any state that may be needed
for the gather operation. The integration phase may be run in parallel for the
elements that flow through the pipeline. The results of the intermediate
phase are fed, in parallel, to the combine phase for the partial results to be
combined or merged. Finally, the finish phase is executed to perform an end-
of-input operation which may push additional elements to the next phase.

To learn how to create a parallelizable stateful gatherer, we’ll use an
example of a step that will pick distinct elements that flow through a
pipeline. The Stream interface already has a distinct() method that discards
duplicate elements from a stream. This method, however, relies on the
objects’ equality to determine if objects are distinct or duplicates. Suppose
we want to determine the uniqueness of elements based on the value of one
or more properties instead of the equality of elements. There’s no easy way

to do that, which gives us the opportunity to create our own custom step, a
distinctBy() gatherer.

Creating a parallelizable stateful gatherer is a nontrivial task. To ease the
journey, it would be better to create a sequential stateful gatherer first and
then turn that into an implementation that will allow parallel execution. This
two-step process will help you to first ensure the core logic works as
expected using the sequential implementation. Then you can, as a next step,
deal with the additional complexities to make the gatherer run in parallel.
An additional benefit of this approach is that you can stop with the
sequential solution if you find that’s adequate. If you decide you need to
squeeze out more performance, you can take the additional effort to turn that
solution into a parallel version.

Start with a Sequential Stateful Gatherer
We’ll create a sequential stateful gatherer first and then, in the next section,
turn that into a parallelizable stateful gatherer. This will help us to
implement the logic first and then take the next step to improve the
performance of the code. For this example, we’ll work with a collection of
Persons in order to pick distinct people using their age group as criteria. First,
we need a Person class. Let’s implement it as a record:

gatherers/vsca/UsingGatherers.java

​ ​public​ record ​Person​(String name, ​int​ age) {

​ ​public​ ​int​ ​ageGroup​() { ​return​ age / 10 * 10; }

​ }

The ageGroup() method will tell us if a person belongs to a group of 0 to 9-
year-olds, 10 to 19-year-olds, and so on.

Next, we’ll create a collection of Persons and use a gatherer named
distinctBy() to only keep people in different age groups in the collection. If
two persons in the collection belong to the same age group, one of them is

http://media.pragprog.com/titles/vscajava/code/gatherers%2Fvsca%2FUsingGatherers.java

discarded. Here’s the code to execute the functional pipeline on a collection
of Persons to only keep distinct elements by age group:

gatherers/vsca/UsingGatherers.java

​ ​public​ ​static​ ​void​ ​useDistinctBy​() {

​ ​var​ people = List.of(​new​ Person(​"Jill"​, 21), ​new​ Person(​"Jake"​, 8),

​ ​new​ ​Person​(​"Bill"​, 21), ​new​ Person(​"Nancy"​, 22), ​new​ Person(​"Mark"​, 9),

​ ​new​ ​Person​(​"Sara"​, 18), ​new​ Person(​"Paul"​, 15), ​new​ Person(​"Sam"​, 28));

​

​ people.parallelStream() ​//or people.stream()​

​ .gather(distinctBy(Person::ageGroup))

​ .forEach(System.out::println);

​ }

The gather() method receives as argument a Gatherer returned by the yet-to-
be-written distinctBy() method. The distinctBy() method takes as argument a
Function that returns the property of a Person we’d like to use as the criteria
for comparison to determine if an element being processed is distinct from
all other elements that have already been processed in the pipeline.

We need to implement the distinctBy() method. As we discussed, instead of
diving into a parallel gatherer implementation right away, we’ll implement a
sequential gatherer as a first intermediate step.

gatherers/vsca/UsingGatherers.java

​ ​public​ ​static​ <T, C ​extends​ Comparable<C>> Gatherer<? ​super​ T, ?, T>

​ ​distinctBy​(Function<T, C> criteria) {

​ ​return​ Gatherer.ofSequential(HashSet<C>::​new​,

​ (state, element, downStream) ->

​ !state.add(criteria.apply(element)) || downStream.push(element));

​ }

Since this is a stateful gatherer, we use the ofSequential() method and pass an
empty HashSet of criteria as the first argument to represent the initialization
state. The Integrator gets the criteria of the given element and adds it to the
HashSet. If the add() method returns false since the set already contains the

http://media.pragprog.com/titles/vscajava/code/gatherers%2Fvsca%2FUsingGatherers.java
http://media.pragprog.com/titles/vscajava/code/gatherers%2Fvsca%2FUsingGatherers.java

element, the Integrator returns true indicating it’s ready to receive the next
element from upstream. In this case, since an element with the same criteria
has been seen before, the element isn’t pushed downstream. On the other
hand, if the add() method of HashSet returns true, then the element’s criteria
was just added to the HashSet, indicating this is the first element to be seen
with that criteria. So, the element is pushed downstream, and the Integrator
returns the results of the call to push(), which will be either a true or a false.

The implementation, when applied to a list of Persons, will keep only one
person per age group from the given elements and discard any person whose
age group already exists in the list. Let’s take a look at the output of
executing the useDistinctBy() method:

​ Person[name=Jake, age=8]

​ Person[name=Sara, age=18]

​ Person[name=Jill, age=21]

Even though the source people has 8 elements, the output shows that the
result only has 3 elements—one per age group of 0, 10, and 20.

Aim for Adequate Speed Instead of Fastest Code
Sometimes you may get to this point and find that the sequential
stateful implementation gives you the much-needed insight into
the logic you need to implement the gatherer. If you find that the
performance of the sequential stateful gatherer meets your
application needs, you might not want to make the
implementation parallel. You wouldn’t want to bother with the
increased complexity to make the code parallel if it truly doesn’t
provide much benefit. Ask if the performance is adequate
instead of asking if the code can run faster. You may save
yourself from a boatload of complexity, extra time, and effort to
implement and maintain it.

The sequential stateful implementation gave us insight into the logic we can
use to implement the gatherer for picking distinct elements by a criteria.
Next, let’s see what it takes to turn this into a parallelizable stateful gatherer.

Transform the Sequential Stateful to a Parallelizable Stateful
Gatherer
Now let’s turn this into a parallel gatherer, which will take some effort.
We’ll start by writing a new method for the parallel version so we can keep
both the sequential and parallel versions around for comparison. In the
argument of the gather() method, let’s change distinctBy() to distinctByParallel(),
like so:

gatherers/vsca/UsingGatherers.java

​ .gather(distinctByParallel(Person::ageGroup))

A parallelizable stateful gatherer needs four things:

an initialization state
an Integrator that will update the state for a given element
a Combiner that can merge multiple partial states together
a Finisher that can finally take the collective state and push it
downstream

To implement the distinctByParallel(), we’ll use a HashSet<T> of elements for
the state instead of the HashSet<C> of criteria properties we used in the
implementation of the distinctBy() method. This is because we won’t push the
elements downstream in the integration or combine phase but will save the
elements, in the state, and push them downstream in the finishing phase. In
addition, we’ll wrap the HashSet<T> within a DistinctValues<T> class. This class
will be useful to nicely bring together the methods that manipulate the state
and simplify the lambdas for the different phases of the gatherer.

Let’s take a look at the code first and then discuss further details:

http://media.pragprog.com/titles/vscajava/code/gatherers%2Fvsca%2FUsingGatherers.java

gatherers/vsca/UsingGatherers.java

​ ​public​ ​static​ <T, C ​extends​ Comparable<C>> Gatherer<? ​super​ T, ?, T>

​ ​distinctByParallel​(Function<T, C> criteria) {

​ ​return​ Gatherer.of(DistinctValues<T>::​new​,

​ (state, element, _) -> state.addIfDistinct(criteria, element),

​ (state1, state2) -> state1.combineDistinct(criteria, state2),

​ DistinctValues::pushEachValueDownstream

​);

​ }

We pass four arguments to the Gatherer.of() method to create a Gatherer.
Within the arguments, we’ll call some helper methods that we’ll write soon.

The first argument is Supplier. It creates an instance of DistinctValues<T> that
holds an empty HashSet<T>; this serves as an initialization state.

The second argument is an Integrator that adds an element to the state, the
HashSet<T> that’s within an instance of DistinctValues<T>. The add happens
only if the element is distinct among the elements already in the HashSet<T>.
To determine this, we use a addIfDistinct() method. Unlike the previous
implementations of Integrators, this one doesn’t push the element to
downstream. The reason is that we’re creating multiple partial HashSet<T>s in
parallel. Whereas elements in each HashSet<T> are distinct, there may be
duplicates between the HashSet<T>s. We have to eliminate the duplicates
when the partial sets of combined, before finally pushing the distinct
elements downstream.

The third argument, the combiner, merges two states, that is two HashSet<T>
instances into one by keeping only distinct elements. For this we use a
combineDistinct() method.

Finally, the fourth argument, the finisher, takes the elements from the
combined HashSet<T> and pushes downstream each element. For this, it uses
a pushEachValueDownstream() method.

http://media.pragprog.com/titles/vscajava/code/gatherers%2Fvsca%2FUsingGatherers.java

Keeping the methods short and modular can help a great deal to reason
about the code, debug if things go wrong, and maintain it in the future as
well. Avoid the desire to clutter the code by placing a lot of code within any
of the lambda expressions—your colleagues will silently be thankful.

Let’s take a look at the helper methods. Let’s start with the addIfDistinct()
method, which is a member of the DistinctValues<T> class:

gatherers/vsca/UsingGatherers.java

​ ​static​ ​class​ DistinctValues<T> {

​ ​private​ ​final​ Set<T> distinctElements = ​new​ HashSet<>();

​

​ ​public​ <C ​extends​ Comparable<C>> ​boolean​

​ ​addIfDistinct​(Function<T, C> criteria, T element) {

​ ​if​(distinctElements.stream().noneMatch(existing ->

​ criteria.apply(existing).compareTo(criteria.apply(element)) == 0)) {

​ distinctElements.add(element);

​ }

​

​ ​return​ ​true​;

​ }

​ }

The addIfDistinct() method uses the given criteria function to check if a similar
element already exists in the state. If this element is determined to be
distinct from the elements already in the state, the element is added to the
state.

Let’s now look at the combineDistinct() method:

gatherers/vsca/UsingGatherers.java

​ ​//a method of DistinctValues<T>​

​ ​public​ <C ​extends​ Comparable<C>> DistinctValues<T> ​combineDistinct​(

​ Function<T, C> criteria, DistinctValues<T> toCombine) {

​ ​for​(​var​ item : toCombine.distinctElements) {

​ addIfDistinct(criteria, item);

​ }

http://media.pragprog.com/titles/vscajava/code/gatherers%2Fvsca%2FUsingGatherers.java
http://media.pragprog.com/titles/vscajava/code/gatherers%2Fvsca%2FUsingGatherers.java

​

​ ​return​ ​this​;

​ }

This method merges the values in the given state into the state that belongs
to the instance but discards any non-distinct element present in the given
state. The combined state is then returned from this method.

Let’s now look at the last helper method, pushEachValueDownstream():

gatherers/vsca/UsingGatherers.java

​ ​//a method of DistinctValues<T>​

​ ​public​ ​void​ ​pushEachValueDownstream​(

​ Gatherer.Downstream<? ​super​ T> downstream) {

​ ​for​(​var​ element : distinctElements) {

​ ​if​(!downstream.push(element)) {

​ ​break​;

​ }

​ }

​ }

This method takes each element from the finished state and pushes it
downstream—a crucial but easy step. If the downstream push() tells us no
more elements are expected, the loop terminates immediately.

Let’s run the useDistinctBy() method again and see the output:

​ Person[name=Jake, age=8]

​ Person[name=Jill, age=21]

​ Person[name=Sara, age=18]

The output again shows distinct elements. The order of the elements may
vary since the set doesn’t guarantee a particular order of iteration and the
merger happened in parallel as well. You may use a LinkedHashSet<T> instead
of HashSet<T> to preserve the order during iteration.

We saw how to create our own custom sequential stateless gatherers,
sequential stateful gatherers, parallelizable stateless gatherers, and finally

http://media.pragprog.com/titles/vscajava/code/gatherers%2Fvsca%2FUsingGatherers.java

parallelizable stateful gatherers. Each of these has increasing complexity in
implementation. Choose the option that serves the best for the problem at
hand. Keep in mind Occam’s razor—keep code as minimalistic as possible
and favor solutions that are simpler to reason about and explain.

Make sure to thoroughly test your custom gatherers. Having a good set of
unit tests can help a great deal to verify the code works as intended, and also
to provide quick feedback if and when you decide to make any changes to
the gatherers.

Wrapping Up
The gatherers is a useful feature to create your own custom intermediate
steps in a functional pipeline. You can use one of the built-in gatherers
available in the Gatherers’ utility class. Alternatively, you may create a
gatherer to meet your specific business needs.

There are four flavors of gatherers that vary based on being stateless or
stateful and based on whether they can run only sequentially or may run in
parallel as well. The parallelizable stateful gatherer is the most powerful but
the most complex to implement. Choose the right flavor based on your
application needs.

Thank you for reading this book and cruising along with Java. The real fun
is in making use of these features in your applications. Best wishes for your
ongoing journey. Fair winds and following seas.

Copyright © 2025, The Pragmatic Bookshelf.

[Eck06]

[Mar02]

[Pie02]

[Sub23]

[TH19]

Thank you!
We hope you enjoyed this book and that you’re already thinking about what
you want to learn next. To help make that decision easier, we’re offering you
this gift.

Head on over to https://pragprog.com right now, and use the coupon code
BUYANOTHER2025 to save 30% on your next ebook. Offer is void where
prohibited or restricted. This offer does not apply to any edition of The
Pragmatic Programmer ebook.

And if you’d like to share your own expertise with the world, why not
propose a writing idea to us? After all, many of our best authors started off as
our readers, just like you. With up to a 50% royalty, world-class editorial

Bibliography

Bruce Eckel. Thinking in Java. Prentice Hall, Englewood Cliffs,
NJ, Fourth, 2006.
Robert C. Martin. Agile Software Development, Principles,
Patterns, and Practices. Prentice Hall, Englewood Cliffs, NJ,
2002.
Benjamin C. Pierce. Types and Programming Languages. MIT
Press, Cambridge, MA, 2002.
Venkat Subramaniam. Functional Programming in Java, Second
Edition. The Pragmatic Bookshelf, Dallas, TX, 2023.
David Thomas and Andrew Hunt. The Pragmatic Programmer,
20th Anniversary Edition. The Pragmatic Bookshelf, Dallas, TX,
2019.

Copyright © 2025, The Pragmatic Bookshelf.

https://pragprog.com/

Functional Programming in Java, Second Edition
Imagine writing Java code that reads like the
problem statement, code that’s highly expressive,
concise, easy to read and modify, and has reduced
complexity. With the functional programming
capabilities in Java, that’s not a fantasy. This book
will guide you from the familiar imperative style
through the practical aspects of functional
programming, using plenty of examples. Apply the

techniques you learn to turn highly complex imperative code into elegant
and easy-to-understand functional-style code. Updated to the latest
version of Java, this edition has four new chapters on error handling,
refactoring to functional style, transforming data, and idioms of
functional programming.

Venkat Subramaniam

(274 pages) ISBN: 9781680509793 $53.95

Programming Kotlin
Programmers don’t just use Kotlin, they love it. Even Google has
adopted it as a first-class language for Android development. With
Kotlin, you can intermix imperative, functional, and object-oriented
styles of programming and benefit from the approach that’s most suitable
for the problem at hand. Learn to use the many features of this highly

You May Be Interested In…
Select a cover for more information

http://pragmaticprogrammer.com/titles/vsjava2e

concise, fluent, elegant, and expressive statically
typed language with easy-to-understand examples.
Learn to write maintainable, high-performing JVM
and Android applications, create DSLs, program
asynchronously, and much more.

Venkat Subramaniam

(460 pages) ISBN: 9781680506358 $51.95

Programming Groovy 2
Groovy brings you the best of both worlds: a
flexible, highly productive, agile, dynamic language
that runs on the rich framework of the Java
Platform. Groovy preserves the Java semantics and
extends the JDK to give you true dynamic language
capabilities. Programming Groovy 2 will help you,
the experienced Java developer, learn and take
advantage of the latest version of this rich dynamic

language. You’ll go from the basics of Groovy to the latest advances in
the language, including options for type checking, tail-call and
memoization optimizations, compile time metaprogramming, and fluent
interfaces to create DSLs.

Venkat Subramaniam

(370 pages) ISBN: 9781937785307 $35

Engineering Elixir Applications

http://pragmaticprogrammer.com/titles/vskotlin
http://pragmaticprogrammer.com/titles/vslg2

The days of separate dev and ops teams are over—
knowledge silos and the “throw it over the fence”
culture they create are the enemy of progress. As an
engineer or developer, you need to confidently own
each stage of the software delivery process. This
book introduces a new paradigm, BEAMOps, that
helps you build, test, deploy, and debug BEAM
applications. Create effective development and

deployment strategies; leverage continuous improvement pipelines; and
ensure environment integrity. Combine operational orchestrators such as
Docker Swarm with the distribution, fault tolerance, and scalability of the
BEAM, to create robust and reliable applications.

Ellie Fairholm and Josep Giralt D'Lacoste

(458 pages) ISBN: 9798888650677 $61.95

Pragmatic Unit Testing in Java with JUnit, Third Edition
The classic Pragmatic Unit Testing with Java in
JUnit returns for a third edition, streamlined and
rewritten with updated and more accessible code
examples. In this edition, you’ll learn how to create
concise, maintainable unit tests with confidence.
New chapters provide a foundation of examples for
testing common concepts, and guidance on
incorporating modern AI tools into your

development and testing. Updated topics include improving test quality
via development mnemonics, increasing ROI through test and production
code refactoring, and using tests to drive development.

Jeff Langr

http://pragmaticprogrammer.com/titles/beamops
http://pragmaticprogrammer.com/titles/utj3

(275 pages) ISBN: 9798888651032 $53.95

Guiding Star OKRs
Tired of traditional OKRs that stifle innovation and
demotivate teams? The Guiding Star OKR
framework offers a refreshing new approach to goal
setting, emphasizing purpose, unified direction, and
adaptability. Best-selling author Staffan Nöteberg
distills knowledge from diverse industries, teaching
you to create a compelling “Guiding Star” vision
that inspires, aligns, and empowers teams. Learn to

foster intrinsic motivation, embrace continuous adaptation, and unlock
strategic agility for sustainable success in today’s ever-changing business
world.

Staffan Nöteberg

(176 pages) ISBN: 9798888651285 $42.95

Real-World Event Sourcing

Reality is event-sourced; your mind processes sight,
sound, taste, smell, and touch to create its
perception of reality. Software isn’t that different.
Applications use streams of incoming data to create
their own realities, and when you interpret that data
as events containing state and context, even some of
the most complex problems become easily solvable.
Unravel the theory behind event sourcing and

discover how to put this approach into practice with practical, hands-on
coding examples. From early-stage development through production and

http://pragmaticprogrammer.com/titles/snokrs
http://pragmaticprogrammer.com/titles/khpes

release, you’ll unlock powerful new ways of clearing even the toughest
programming hurdles.

Kevin Hoffman

(202 pages) ISBN: 9798888651063 $46.95

tmux 3
Your mouse is slowing you down. You’re juggling
multiple terminal windows, development tools, or
shell sessions, and the context switching is eating
away at your productivity. Take control of your
environment with tmux, a keyboard-driven terminal
multiplexer that you can tailor to your workflow.
With this updated third edition for tmux 3, you’ll
customize, script, and leverage tmux’s unique

abilities to craft a productive terminal environment that lets you keep
your fingers on your keyboard’s home row.

Brian P. Hogan

(118 pages) ISBN: 9798888651315 $35.95

http://pragmaticprogrammer.com/titles/bhtmux3

	Acknowledgments
	Preface
	What’s in This Book?
	Who’s This Book For?
	Java Version Used in This Book
	How to Read the Code Examples
	Online Resources

	1. The Evolution of Java
	Java Is Agile
	Fast-Paced Change
	Recent Changes to Java
	Moving Ahead from an LTS
	Cruising Along with Java

	Part I. Syntax Sugar
	2. Using Type Inference
	Type Inference and Java
	Generics and Type Witness
	Diamond Operator Enhancements
	Lambda Expressions Parameters Type Inference
	Local Variable Type Inference
	Using Type Inference with for and try
	var: Not a Type nor a Keyword
	Targeted Intersection Types
	Extent of Type Inference
	Mind the Inference
	Wrapping Up

	3. Reducing Clutter with Text Blocks
	From Noisy to Nice
	Embedding Strings
	Smart Indentations
	Trailing Spaces and Special Escapes
	Creating XML Documents Using Text Blocks
	Creating JSON Output Using Text Blocks
	Wrapping Up

	Part II. Design Aid
	4. Programming with Records
	From Verbose to Succinct
	Components, Fields, Getters, and Metadata
	Extent of Immutability
	Built-in Methods
	Implementing Interfaces
	Restrictions for the Greater Good
	Considering a Custom Canonical Constructor?
	Preferring the Compact Constructor
	Creating a Custom Noncanonical Constructor
	(Local) Records as Tuples
	Wrapping Up

	5. Designing with Sealed Classes and Interfaces
	Need for a Closed Hierarchy
	Using sealed
	Sealed Related Metadata
	Using the permits Clause
	Constraints on the Subclasses
	Wrapping Up

	Part III. Fluent Expressions
	6. Switching to Switch Expression
	From Statements to Expressions
	Using Multiple Labels in a Case
	Cases with Non-expressions
	Completeness of a switch Expression
	Wrapping Up

	7. Using Powerful Pattern Matching
	Pattern Matching with instanceof
	Using Type Matching
	Matching null
	Guarded Patterns
	Dominance Check
	Completeness Check
	Completeness Check and Sealed Classes/Interfaces
	Deciding to Use default or Not
	Pattern Matching Primitive Types
	Destructuring Records When Pattern Matching
	Type Inference with Destructuring Records
	Unnamed Variables in Pattern Matching
	Wrapping Up

	Part IV. Modularization
	8. Modularizing Your Java Applications
	Maven, Gradle, and Modularization
	Modules and the Benefits of Modularization
	Modularized Java
	Starting with a Legacy Application
	Perils of the Existing Design
	Modularizing the Space Station Application
	Architectural Constraints Promoted by Modules
	Wrapping Up

	9. Working with Modules
	Exploring the Module Metadata
	Defining APIs in a Modular Way
	Targeted Linking Using jlink
	Wrapping Up

	10. Creating Plug-ins with ServiceLoader
	The Plug-in Architecture
	Defining a Specification Module
	Creating a Client Module
	Implementing a Plug-in
	Implementing Additional Plug-ins
	Reloading the Implementations
	Functional Style Iteration
	Wrapping Up

	Part V. Custom Functional Pipeline Steps
	11. Extending Functional Pipelines with Gatherers
	Why Do We Need Gatherers?
	Creating Custom Steps Using the gather() Method
	Using Built-in Gatherers
	Wrapping Up

	12. Creating Custom Gatherers
	The Machinery Behind the gather() Method
	Flavors of Gatherers
	Creating Sequential Stateless Gatherers
	Creating Sequential Stateful Gatherers
	Creating Parallelizable Stateless Gatherers
	Creating Parallelizable Stateful Gatherers
	Wrapping Up

	Bibliography

