

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter
Blind Folio: i

Java™

A Beginner’s Guide

Ninth Edition

00-FM.indd 1 12/11/21 9:20 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter
Blind Folio: ii

About the Author
Best-selling author Herbert Schildt has written extensively
about programming for over three decades and is a leading
authority on the Java language. Called “one of the world’s
foremost authors of books about programming” by
International Developer magazine, his books have sold millions
of copies worldwide and have been translated into all major
foreign languages. He is the author of numerous books on Java,
including Java: The Complete Reference; Herb Schildt’s Java
Programming Cookbook; Introducing JavaFX 8 Programming;
and Swing: A Beginner’s Guide. He has also written extensively
about C, C++, and C#. Featured as one of the rock star
programmers in Ed Burns’ book Secrets of the Rock Star
Programmers: Riding the IT Crest, Schildt is interested in
all facets of computing, but his primary focus is computer
languages. Schildt holds both BA and MCS degrees from the
University of Illinois. His website is www.HerbSchildt.com.

About the Technical Editor
Dr. Danny Coward has worked on all editions of the Java
platform. He led the definition of Java Servlets into the first
version of the Java EE platform and beyond, web services
into the Java ME platform, and the strategy and planning for
Java SE 7. He founded JavaFX technology and, most recently,
designed the largest addition to the Java EE 7 standard, the
Java WebSocket API. From coding in Java, to designing
APIs with industry experts, to serving for several years as an
executive to the Java Community Process, he has a uniquely
broad perspective into multiple aspects of Java technology. In
addition, he is the author of two books on Java programming:
Java WebSocket Programming and Java EE 7: The Big Picture.
Most recently, he has been applying his knowledge of Java
to helping scale massive Java-based services for one of the
world’s most successful software companies. Dr. Coward holds
a bachelor’s, master’s, and doctorate in mathematics from the
University of Oxford.

00-FM.indd 2 12/11/21 9:20 PM

http://www.HerbSchildt.com

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter
Blind Folio: iii

Java™

A Beginner’s Guide

Ninth Edition

Herbert Schildt

New York Chicago San Francisco
Athens London Madrid Mexico City
Milan New Delhi Singapore Sydney Toronto

00-FM.indd 3 12/11/21 9:20 PM

Copyright © 2022 by McGraw Hill. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no
part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval sys-
tem, without the prior written permission of the publisher, with the exception that the program listings may be entered, stored,
and executed in a computer system, but they may not be reproduced for publication.

ISBN: 978-1-26-046356-9
MHID: 1-26-046356-7

The material in this eBook also appears in the print version of this title: ISBN: 978-1-26-046355-2,
MHID: 1-26-046355-9.

eBook conversion by codeMantra
Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a
trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of
infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and sales promotions or for
use in corporate training programs. To contact a representative, please visit the Contact Us page at www.mhprofessional.com.

Information has been obtained by McGraw Hill from sources believed to be reliable. However, because of the possibility of
human or mechanical error by our sources, McGraw Hill, or others, McGraw Hill does not guarantee the accuracy, adequacy,
or completeness of any information and is not responsible for any errors or omissions or the results obtained from the use of
such information.

Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of any in-
formation contained in this Work, and is not responsible for any errors or omissions.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights in and to the work. Use of this work
is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the
work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit,
distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill Education’s prior consent.
You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your
right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION AND ITS LICENSORS MAKE NO GUARANTEES
OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED
FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK
VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, IN-
CLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICU-
LAR PURPOSE. McGraw-Hill Education and its licensors do not warrant or guarantee that the functions contained in the
work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill Education
nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work
or for any damages resulting therefrom. McGraw-Hill Education has no responsibility for the content of any information ac-
cessed through the work. Under no circumstances shall McGraw-Hill Education and/or its licensors be liable for any indirect,
incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if
any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause
whatsoever whether such claim or cause arises in contract, tort or otherwise.

http://www.mhprofessional.com

v

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter

Contents

INTRODUCTION . xvii

 1 Java Fundamentals .. 1
The History and Philosophy of Java ... 3

The Origins of Java ... 3
Java’s Lineage: C and C++ ... 4
How Java Impacted the Internet .. 4
Java’s Magic: The Bytecode ... 6
Moving Beyond Applets ... 8
A Faster Release Schedule .. 8
The Java Buzzwords ... 9

Object-Oriented Programming ... 10
Encapsulation .. 11
Polymorphism ... 11
Inheritance .. 12

The Java Development Kit ... 12
A First Simple Program .. 13

Entering the Program .. 14
Compiling the Program ... 14
The First Sample Program Line by Line .. 15

00-FM.indd 5 12/11/21 9:20 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter

 vi Java: A Beginner’s Guide

Handling Syntax Errors .. 17
A Second Simple Program ... 18
Another Data Type ... 20
Try This 1-1: Converting Gallons to Liters .. 21
Two Control Statements ... 22

The if Statement .. 23
The for Loop ... 24

Create Blocks of Code .. 26
Semicolons and Positioning ... 27
Indentation Practices .. 28
Try This 1-2: Improving the Gallons-to-Liters Converter .. 28
The Java Keywords ... 29
Identifiers in Java .. 30
The Java Class Libraries ... 31
Chapter 1 Self Test ... 31

 2 Introducing Data Types and Operators .. 33
Why Data Types Are Important .. 34
Java’s Primitive Types .. 34

Integers .. 35
Floating-Point Types ... 37
Characters ... 37

The Boolean Type ... 39
Try This 2-1: How Far Away Is the Lightning? .. 40
Literals .. 41

Hexadecimal, Octal, and Binary Literals .. 42
Character Escape Sequences ... 42
String Literals ... 43

A Closer Look at Variables ... 44
Initializing a Variable .. 44
Dynamic Initialization .. 45

The Scope and Lifetime of Variables ... 45
Operators .. 48
Arithmetic Operators .. 48

Increment and Decrement ... 49
Relational and Logical Operators ... 50
Short-Circuit Logical Operators ... 52
The Assignment Operator ... 53
Shorthand Assignments .. 53
Type Conversion in Assignments ... 55
Casting Incompatible Types ... 56
Operator Precedence ... 58
Try This 2-2: Display a Truth Table for the Logical Operators 59

00-FM.indd 6 12/11/21 9:20 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter

 Contents vii

Expressions ... 60
Type Conversion in Expressions ... 60
Spacing and Parentheses ... 62

Chapter 2 Self Test ... 62

 3 Program Control Statements ... 65
Input Characters from the Keyboard .. 66
The if Statement ... 67
Nested ifs .. 69
The if-else-if Ladder ... 70
The Traditional switch Statement ... 71
Nested switch Statements ... 75
Try This 3-1: Start Building a Java Help System ... 75
The for Loop ... 77
Some Variations on the for Loop .. 79
Missing Pieces .. 80

The Infinite Loop .. 81
Loops with No Body .. 81
Declaring Loop Control Variables Inside the for Loop .. 82
The Enhanced for Loop .. 83
The while Loop .. 83
The do-while Loop ... 85
Try This 3-2: Improve the Java Help System ... 87
Use break to Exit a Loop .. 90
Use break as a Form of goto ... 91
Use continue ... 96
Try This 3-3: Finish the Java Help System .. 97
Nested Loops .. 101
Chapter 3 Self Test ... 102

 4 Introducing Classes, Objects, and Methods .. 105
Class Fundamentals .. 106

The General Form of a Class .. 107
Defining a Class .. 108

How Objects Are Created ... 110
Reference Variables and Assignment ... 111
Methods .. 112

Adding a Method to the Vehicle Class .. 112
Returning from a Method ... 114
Returning a Value ... 115
Using Parameters .. 117

Adding a Parameterized Method to Vehicle ... 119
Try This 4-1: Creating a Help Class ... 121

00-FM.indd 7 12/11/21 9:20 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter

 viii Java: A Beginner’s Guide

Constructors ... 126
Parameterized Constructors .. 128
Adding a Constructor to the Vehicle Class ... 128
The new Operator Revisited ... 130
Garbage Collection ... 130
The this Keyword ... 131
Chapter 4 Self Test ... 133

 5 More Data Types and Operators ... 135
Arrays ... 136

One-Dimensional Arrays .. 137
Try This 5-1: Sorting an Array ... 140
Multidimensional Arrays .. 142

Two-Dimensional Arrays .. 142
Irregular Arrays ... 143
Arrays of Three or More Dimensions ... 144
Initializing Multidimensional Arrays .. 144

Alternative Array Declaration Syntax .. 145
Assigning Array References ... 146
Using the length Member ... 147
Try This 5-2: A Queue Class .. 149
The For-Each Style for Loop .. 153

Iterating Over Multidimensional Arrays ... 156
Applying the Enhanced for ... 157

Strings ... 158
Constructing Strings ... 159
Operating on Strings ... 160
Arrays of Strings ... 162
Strings Are Immutable .. 162
Using a String to Control a switch Statement ... 163

Using Command-Line Arguments .. 166
Using Type Inference with Local Variables .. 167

Local Variable Type Inference with Reference Types .. 169
Using Local Variable Type Inference in a for Loop .. 171
Some var Restrictions ... 171

The Bitwise Operators .. 172
The Bitwise AND, OR, XOR, and NOT Operators .. 173
The Shift Operators ... 177
Bitwise Shorthand Assignments ... 179

Try This 5-3: A ShowBits Class ... 180
The ? Operator .. 182
Chapter 5 Self Test ... 184

00-FM.indd 8 12/11/21 9:20 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter

 Contents ix

 6 A Closer Look at Methods and Classes ... 187
Controlling Access to Class Members ... 188

Java’s Access Modifiers .. 189
Try This 6-1: Improving the Queue Class .. 193
Pass Objects to Methods ... 194

How Arguments Are Passed .. 196
Returning Objects ... 198
Method Overloading ... 200
Overloading Constructors ... 205
Try This 6-2: Overloading the Queue Constructor ... 207
Recursion .. 210
Understanding static ... 212

Static Blocks ... 215
Try This 6-3: The Quicksort ... 216
Introducing Nested and Inner Classes .. 219
Varargs: Variable-Length Arguments ... 222

Varargs Basics ... 223
Overloading Varargs Methods .. 226
Varargs and Ambiguity ... 227

Chapter 6 Self Test ... 228

 7 Inheritance ... 231
Inheritance Basics ... 232
Member Access and Inheritance ... 235
Constructors and Inheritance .. 238
Using super to Call Superclass Constructors ... 240
Using super to Access Superclass Members .. 244
Try This 7-1: Extending the Vehicle Class ... 245
Creating a Multilevel Hierarchy ... 248
When Are Constructors Executed? ... 250
Superclass References and Subclass Objects ... 252
Method Overriding ... 256
Overridden Methods Support Polymorphism ... 259
Why Overridden Methods? .. 261

Applying Method Overriding to TwoDShape ... 261
Using Abstract Classes ... 265
Using final .. 269

final Prevents Overriding .. 269
final Prevents Inheritance ... 269
Using final with Data Members .. 270

The Object Class .. 271
Chapter 7 Self Test ... 272

00-FM.indd 9 12/11/21 9:20 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter

 x Java: A Beginner’s Guide

 8 Packages and Interfaces .. 275
Packages ... 276

Defining a Package ... 277
Finding Packages and CLASSPATH .. 278
A Short Package Example .. 278

Packages and Member Access .. 280
A Package Access Example .. 281

Understanding Protected Members .. 282
Importing Packages .. 284
Java’s Class Library Is Contained in Packages .. 286
Interfaces .. 286
Implementing Interfaces ... 287
Using Interface References .. 291
Try This 8-1: Creating a Queue Interface ... 293
Variables in Interfaces .. 298
Interfaces Can Be Extended ... 299
Default Interface Methods .. 300

Default Method Fundamentals ... 301
A More Practical Example of a Default Method .. 303
Multiple Inheritance Issues ... 304

Use static Methods in an Interface ... 305
Private Interface Methods ... 306
Final Thoughts on Packages and Interfaces ... 307
Chapter 8 Self Test ... 307

 9 Exception Handling ... 309
The Exception Hierarchy .. 311
Exception Handling Fundamentals .. 311

Using try and catch ... 312
A Simple Exception Example ... 312

The Consequences of an Uncaught Exception ... 314
Exceptions Enable You to Handle Errors Gracefully .. 316

Using Multiple catch Statements .. 317
Catching Subclass Exceptions .. 318
Try Blocks Can Be Nested ... 319
Throwing an Exception .. 320

Rethrowing an Exception .. 321
A Closer Look at Throwable .. 322
Using finally ... 324
Using throws ... 326
Three Additional Exception Features ... 327
Java’s Built-in Exceptions .. 329
Creating Exception Subclasses ... 331
Try This 9-1: Adding Exceptions to the Queue Class .. 333
Chapter 9 Self Test ... 337

00-FM.indd 10 12/11/21 9:20 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter

 Contents xi

 10 Using I/O .. 339
Java’s I/O Is Built upon Streams .. 341
Byte Streams and Character Streams ... 341
The Byte Stream Classes .. 341
The Character Stream Classes .. 342
The Predefined Streams .. 343
Using the Byte Streams .. 344

Reading Console Input ... 345
Writing Console Output .. 346

Reading and Writing Files Using Byte Streams ... 347
Inputting from a File ... 347
Writing to a File .. 351

Automatically Closing a File .. 353
Reading and Writing Binary Data .. 356
Try This 10-1: A File Comparison Utility .. 359
Random-Access Files ... 360
Using Java’s Character-Based Streams .. 362

Console Input Using Character Streams ... 364
Console Output Using Character Streams .. 368

File I/O Using Character Streams .. 369
Using a FileWriter .. 369
Using a FileReader ... 370

Using Java’s Type Wrappers to Convert Numeric Strings ... 372
Try This 10-2: Creating a Disk-Based Help System .. 374
Chapter 10 Self Test ... 381

 11 Multithreaded Programming ... 383
Multithreading Fundamentals .. 384
The Thread Class and Runnable Interface .. 385
Creating a Thread ... 386

One Improvement and Two Simple Variations ... 389
Try This 11-1: Extending Thread ... 393
Creating Multiple Threads .. 396
Determining When a Thread Ends ... 399
Thread Priorities ... 402
Synchronization .. 406
Using Synchronized Methods .. 406
The synchronized Statement .. 409
Thread Communication Using notify(), wait(), and notifyAll() 412

An Example That Uses wait() and notify() ... 413
Suspending, Resuming, and Stopping Threads .. 418
Try This 11-2: Using the Main Thread ... 422
Chapter 11 Self Test ... 424

00-FM.indd 11 12/11/21 9:20 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter

 xii Java: A Beginner’s Guide

 12 Enumerations, Autoboxing, Annotations, and More 425
Enumerations .. 426

Enumeration Fundamentals .. 427
Java Enumerations Are Class Types ... 429
The values() and valueOf() Methods .. 429
Constructors, Methods, Instance Variables, and Enumerations 431

Two Important Restrictions .. 433
Enumerations Inherit Enum .. 433
Try This 12-1: A Computer-Controlled Traffic Light .. 435
Autoboxing ... 440
Type Wrappers .. 440
Autoboxing Fundamentals ... 442
Autoboxing and Methods ... 443
Autoboxing/Unboxing Occurs in Expressions ... 445

A Word of Warning ... 446
Static Import ... 447
Annotations (Metadata) .. 450
Introducing instanceof .. 453
Chapter 12 Self Test ... 455

 13 Generics .. 457
Generics Fundamentals .. 458
A Simple Generics Example .. 459

Generics Work Only with Reference Types .. 463
Generic Types Differ Based on Their Type Arguments .. 463
A Generic Class with Two Type Parameters ... 464
The General Form of a Generic Class .. 465

Bounded Types ... 466
Using Wildcard Arguments .. 469
Bounded Wildcards .. 472
Generic Methods .. 475
Generic Constructors .. 477
Generic Interfaces ... 478
Try This 13-1: Create a Generic Queue .. 480
Raw Types and Legacy Code ... 485
Type Inference with the Diamond Operator ... 488
Local Variable Type Inference and Generics .. 489
Erasure .. 489
Ambiguity Errors .. 490
Some Generic Restrictions ... 491

Type Parameters Can’t Be Instantiated ... 491
Restrictions on Static Members .. 491
Generic Array Restrictions ... 492
Generic Exception Restriction .. 493

00-FM.indd 12 12/11/21 9:20 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter

 Contents xiii

Continuing Your Study of Generics .. 493
Chapter 13 Self Test ... 493

 14 Lambda Expressions and Method References ... 495
Introducing Lambda Expressions ... 496

Lambda Expression Fundamentals ... 497
Functional Interfaces ... 498
Lambda Expressions in Action ... 500

Block Lambda Expressions .. 505
Generic Functional Interfaces .. 506
Try This 14-1: Pass a Lambda Expression as an Argument ... 508
Lambda Expressions and Variable Capture .. 513
Throw an Exception from Within a Lambda Expression ... 514
Method References ... 516

Method References to static Methods ... 516
Method References to Instance Methods .. 518

Constructor References .. 522
Predefined Functional Interfaces .. 525
Chapter 14 Self Test ... 527

 15 Modules .. 529
Module Basics .. 531

A Simple Module Example .. 532
Compile and Run the First Module Example ... 536
A Closer Look at requires and exports .. 537

java.base and the Platform Modules ... 538
Legacy Code and the Unnamed Module .. 540
Exporting to a Specific Module .. 541
Using requires transitive ... 542
Try This 15-1: Experiment with requires transitive ... 543
Use Services ... 546

Service and Service Provider Basics .. 547
The Service-Based Keywords ... 548
A Module-Based Service Example ... 548

Additional Module Features ... 555
Open Modules ... 555
The opens Statement ... 556
requires static .. 556

Continuing Your Study of Modules .. 556
Chapter 15 Self Test ... 557

 16 Switch Expressions, Records, and Other Recently Added Features 559
Enhancements to switch ... 561

Use a List of case Constants ... 563
Introducing the switch Expression and the yield Statement 563

00-FM.indd 13 12/11/21 9:20 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter

 xiv Java: A Beginner’s Guide

Introducing the Arrow in a case Statement ... 565
A Closer Look at the Arrow case .. 567

Try This 16-1: Use a switch Expression to Obtain a City’s Time Zone 571
Records ... 573

Record Basics ... 574
Create Record Constructors .. 576
A Closer Look at Record Getter Methods .. 581

Pattern Matching with instanceof ... 581
Sealed Classes and Interfaces ... 583

Sealed Classes ... 583
Sealed Interfaces ... 586

Future Directions .. 587
Chapter 16 Self Test ... 588

 17 Introducing Swing ... 591
The Origins and Design Philosophy of Swing ... 593
Components and Containers ... 595

Components .. 595
Containers ... 596
The Top-Level Container Panes .. 596

Layout Managers .. 597
A First Simple Swing Program .. 597

The First Swing Example Line by Line .. 599
Swing Event Handling .. 602

Events .. 603
Event Sources ... 603
Event Listeners ... 603
Event Classes and Listener Interfaces .. 604

Use JButton .. 604
Work with JTextField ... 608
Create a JCheckBox ... 611
Work with JList .. 615
Try This 17-1: A Swing-Based File Comparison Utility .. 619
Use Anonymous Inner Classes or Lambda Expressions to Handle Events 624
 Chapter 17 Self Test .. 626

 A Answers to Self Tests ... 627
Chapter 1: Java Fundamentals .. 628
Chapter 2: Introducing Data Types and Operators ... 630
Chapter 3: Program Control Statements ... 631
Chapter 4: Introducing Classes, Objects, and Methods .. 634
Chapter 5: More Data Types and Operators ... 635
Chapter 6: A Closer Look at Methods and Classes .. 640
Chapter 7: Inheritance .. 645

00-FM.indd 14 12/11/21 9:20 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter

 Contents xv

Chapter 8: Packages and Interfaces .. 647
Chapter 9: Exception Handling .. 649
Chapter 10: Using I/O .. 652
Chapter 11: Multithreaded Programming ... 656
Chapter 12: Enumerations, Autoboxing, Annotations, and More 658
Chapter 13: Generics .. 662
Chapter 14: Lambda Expressions and Method References .. 666
Chapter 15: Modules .. 670
Chapter 16: Switch Expressions, Records, and Other Recently Added Features 671
Chapter 17: Introducing Swing .. 675

 B Using Java’s Documentation Comments ... 683
The javadoc Tags .. 684

@author .. 685
{@code} ... 685
@deprecated ... 685
{@docRoot} ... 685
@exception ... 686
@hidden .. 686
{@index} .. 686
{@inheritDoc} .. 686
{@link} ... 686
{@linkplain} ... 687
{@literal} ... 687
@param ... 687
@provides ... 687
@return ... 687
@see .. 687
@since .. 688
{@summary} .. 688
@throws .. 688
@uses .. 688
{@value} .. 688
@version ... 689

The General Form of a Documentation Comment ... 689
What javadoc Outputs .. 689
An Example That Uses Documentation Comments ... 689

 C Compile and Run Simple Single-File Programs in One Step 691

 D Introducing JShell ... 693
JShell Basics ... 694
List, Edit, and Rerun Code ... 696
Add a Method ... 697
Create a Class ... 698

00-FM.indd 15 12/11/21 9:20 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter

 xvi Java: A Beginner’s Guide

Use an Interface .. 699
Evaluate Expressions and Use Built-in Variables ... 700
Importing Packages .. 701
Exceptions .. 702
Some More JShell Commands ... 702
Exploring JShell Further .. 703

 E More Java Keywords ... 705
The transient and volatile Modifiers ... 706
strictfp ... 706
assert ... 707
Native Methods .. 708
Another Form of this .. 708

 Index . 711

00-FM.indd 16 12/11/21 9:20 PM

xvii

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter

Introduction

The purpose of this book is to teach you the fundamentals of Java programming. It uses
a step-by-step approach complete with numerous examples, self tests, and projects. It

assumes no previous programming experience. The book starts with the basics, such as how
to compile and run a Java program. It then discusses the keywords, features, and constructs
that form the core of the Java language. You’ll also find coverage of some of Java’s most
advanced features, including multithreaded programming, generics, lambda expressions,
records, and modules. An introduction to the fundamentals of Swing concludes the book.
By the time you finish, you will have a firm grasp of the essentials of Java programming.

It is important to state at the outset that this book is just a starting point. Java is more than
just the elements that define the language. Java also includes extensive libraries and tools that
aid in the development of programs. To be a top-notch Java programmer implies mastery of
these areas, too. After completing this book, you will have the knowledge to pursue any and all
other aspects of Java.

The Evolution of Java
Only a few languages have fundamentally reshaped the very essence of programming. In this
elite group, one stands out because its impact was both rapid and widespread. This language
is, of course, Java. It is not an overstatement to say that the original release of Java 1.0 in 1995
by Sun Microsystems, Inc., caused a revolution in programming. This revolution radically
transformed the Web into a highly interactive environment. In the process, Java set a new
standard in computer language design.

00-FM.indd 17 12/11/21 9:20 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter

 xviii Java: A Beginner’s Guide

Over the years, Java has continued to grow, evolve, and otherwise redefine itself. Unlike
many other languages, which are slow to incorporate new features, Java has often been at the
forefront of computer language development. One reason for this is the culture of innovation
and change that came to surround Java. As a result, Java has gone through several upgrades—
some relatively small, others more significant.

The first major update to Java was version 1.1. The features added by Java 1.1 were
more substantial than the increase in the minor revision number would have you think.
For example, Java 1.1 added many new library elements, redefined the way events are
handled, and reconfigured many features of the original 1.0 library.

The next major release of Java was Java 2, where the 2 indicates “second generation.”
The creation of Java 2 was a watershed event, marking the beginning of Java’s “modern
age.” The first release of Java 2 carried the version number 1.2. It may seem odd that the first
release of Java 2 used the 1.2 version number. The reason is that it originally referred to the
internal version number of the Java libraries but then was generalized to refer to the entire
release itself. With Java 2, Sun repackaged the Java product as J2SE (Java 2 Platform Standard
Edition), and the version numbers began to be applied to that product.

The next upgrade of Java was J2SE 1.3. This version of Java was the first major upgrade to
the original Java 2 release. For the most part, it added to existing functionality and “tightened
up” the development environment. The release of J2SE 1.4 further enhanced Java. This release
contained several important new features, including chained exceptions, channel-based I/O,
and the assert keyword.

The release of J2SE 5 created nothing short of a second Java revolution. Unlike most of
the previous Java upgrades, which offered important but incremental improvements, J2SE 5
fundamentally expanded the scope, power, and range of the language. To give you an idea of
the magnitude of the changes caused by J2SE 5, here is a list of its major new features:

● Generics

● Autoboxing/unboxing

● Enumerations

● The enhanced “for-each” style for loop

● Variable-length arguments (varargs)

● Static import

● Annotations

This is not a list of minor tweaks or incremental upgrades. Each item in the list represents a
significant addition to the Java language. Some, such as generics, the enhanced for loop, and
varargs, introduced new syntax elements. Others, such as autoboxing and auto-unboxing, altered
the semantics of the language. Annotations added an entirely new dimension to programming.

The importance of these new features is reflected in the use of the version number “5.”
The next version number for Java would normally have been 1.5. However, the new features
were so significant that a shift from 1.4 to 1.5 just didn’t seem to express the magnitude of the
change. Instead, Sun elected to increase the version number to 5 as a way of emphasizing that

00-FM.indd 18 12/11/21 9:20 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter

 Introduction xix

a major event was taking place. Thus, it was named J2SE 5, and the Java Development Kit
(JDK) was called JDK 5. In order to maintain consistency, however, Sun decided to use 1.5 as
its internal version number, which is also referred to as the developer version number. The “5”
in J2SE 5 is called the product version number.

The next release of Java was called Java SE 6, and Sun once again decided to change the
name of the Java platform. First, notice that the “2” has been dropped. Thus, the platform now
had the name Java SE, and the official product name was Java Platform, Standard Edition 6,
with the development kit being called JDK 6. As with J2SE 5, the 6 in Java SE 6 is the product
version number. The internal, developer version number is 1.6.

Java SE 6 built on the base of J2SE 5, adding incremental improvements. Java SE 6 added
no major features to the Java language proper, but it did enhance the API libraries, added several
new packages, and offered improvements to the run time. It also went through several updates
during its long (in Java terms) life cycle, with several upgrades added along the way. In general,
Java SE 6 served to further solidify the advances made by J2SE 5.

The next release of Java was called Java SE 7, with the development kit being called JDK 7.
It has an internal version number of 1.7. Java SE 7 was the first major release of Java after Sun
Microsystems was acquired by Oracle. Java SE 7 added several new features, including significant
additions to the language and the API libraries. Some of the most important features added by Java
SE 7 were those developed as part of Project Coin. The purpose of Project Coin was to identify a
number of small changes to the Java language that would be incorporated into JDK 7, including

● A String can control a switch statement.

● Binary integer literals.

● Underscores in numeric literals.

● An expanded try statement, called try-with-resources, that supports automatic resource
management.

● Type inference (via the diamond operator) when constructing a generic instance.

● Enhanced exception handling in which two or more exceptions can be caught by a single
catch (multicatch) and better type checking for exceptions that are rethrown.

As you can see, even though the Project Coin features were considered to be small changes
to the language, their benefits were much larger than the qualifier “small” would suggest.
In particular, the try-with-resources statement profoundly affects the way that a substantial
amount of code is written.

The next release of Java was Java SE 8, with the development kit being called JDK 8.
It has an internal version number of 1.8. JDK 8 represented a very significant upgrade to
the Java language because of the inclusion of a far-reaching new language feature: the lambda
expression. The impact of lambda expressions was, and continues to be, quite profound,
changing both the way that programming solutions are conceptualized and how Java code
is written. In the process, lambda expressions can simplify and reduce the amount of source
code needed to create certain constructs. The addition of lambda expressions also caused a
new operator (the –>) and a new syntax element to be added to the language. In addition to

00-FM.indd 19 12/11/21 9:20 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter

 xx Java: A Beginner’s Guide

lambda expressions, JDK 8 added many other important new features. For example, beginning
with JDK 8, it is now possible to define a default implementation for a method specified by
an interface. In the final analysis, Java SE 8 was a major release that profoundly expanded the
capabilities of the language and changed the way that Java code is written.

The next release of Java was Java SE 9. The developer’s kit was called JDK 9. With the
release of JDK 9, the internal version number is also 9. JDK 9 represented a major Java release,
incorporating significant enhancements to both the Java language and its libraries. The primary
new feature was modules, which enable you to specify the relationships and dependencies of
the code that comprises an application. Modules also add another dimension to Java’s access
control features. The inclusion of modules caused a new syntax element, several new keywords,
and various tool enhancements to be added to Java. Modules had a profound effect on the API
library because, beginning with JDK 9, the library packages are now organized into modules.

In addition to modules, JDK 9 included several other new features. One of particular
interest is JShell, which is a tool that supports interactive program experimentation and
learning. (An introduction to JShell is found in Appendix D.) Another interesting upgrade is
support for private interface methods. Their inclusion further enhanced JDK 8’s support for
default methods in interfaces. JDK 9 added a search feature to the javadoc tool and a new tag
called @index to support it. As with previous releases, JDK 9 contains a number of updates
and enhancements to Java’s API libraries.

As a general rule, in any Java release, it is the new features that receive the most attention.
However, there is one high-profile aspect of Java that was deprecated by JDK 9: applets.
Beginning with JDK 9, applets are no longer recommended for new projects. As will be
explained in greater detail in Chapter 1, because of waning browser support for applets
(and other factors), JDK 9 deprecated the entire applet API.

The next release of Java was Java SE 10 (JDK 10). However, prior to its release, a major
change occurred in the Java release schedule. In the past, major releases were often separated
by two or more years. However, beginning with JDK 10, the time between releases was
significantly shortened. Releases are now expected to occur on a strict time-based schedule,
with the anticipated time between major releases (now called feature releases) to be just six
months. As a result, JDK 10 was released in March 2018, which is six months after the release
of JDK 9. This more rapid release cadence enables new features and improvements to be
quickly available to Java programmers. Instead of waiting two or more years, when a new
feature is ready, it becomes part of the next scheduled release.

Another facet of the changes to the Java release schedule is the long-term support (LTS)
release. It is now anticipated that an LTS release will take place every three years. An LTS
release will be supported (and thus remain viable) for a period of time longer than six months.
The first LTS release was JDK 11. The second LTS release was JDK 17, for which this book
has been updated. Because of the stability that an LTS release offers, it is likely that its feature
set will define a baseline of functionality for a number of years. Consult Oracle for the latest
information concerning long-term support and the LTS release schedule.

The primary new language feature added by JDK 10 was support for local variable
type inference. With local variable type inference, it is now possible to let the type of a
local variable be inferred from the type of its initializer, rather than being explicitly specified.

00-FM.indd 20 12/11/21 9:20 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter

 Introduction xxi

To support this new capability, the context-sensitive keyword var was added to Java. Type
inference can streamline code by eliminating the need to redundantly specify a variable’s type
when it can be inferred from its initializer. It can also simplify declarations in cases in which
the type is difficult to discern or cannot be explicitly specified. Local variable type inference
has become a common part of the contemporary programming environment. Its inclusion in
Java helps keep Java up-to-date with evolving trends in language design. Along with a number
of other changes, JDK 10 also redefined the Java version string, changing the meaning of the
version numbers so they better align with the new time-based release schedule.

The next version of Java was Java SE 11 (JDK 11). It was released in September 2018,
which is six months after JDK 10. It was an LTS release. The primary new language feature
in JDK 11 was its support for the use of var in a lambda expression. Also, another execution
mode was added to the Java launcher that enables it to directly execute simple single-file
programs. JDK 11 also removed some features. Perhaps of greatest interest, because of its
historical significance, is the removal of support for applets. Recall that applets were first
deprecated by JDK 9. With the release of JDK 11, applet support has been removed. Support
for another deployment-related technology called Java Web Start was also removed from
JDK 11. There is one other high-profile removal in JDK 11: JavaFX. This GUI framework is
no longer part of the JDK, becoming a separate open-source project instead. Because these
features have been removed from the JDK, they are not discussed in this book.

Between the JDK 11 LTS and the next LTS release (JDK 17) were five feature releases:
JDK 12 through JDK 16. JDK 12 and JDK 13 did not add any new language features. JDK 14
added support for the switch expression, which is a switch that produces a value. Other
enhancements to switch were also included. Text blocks, which are essentially string literals
that can span more than one line, were added by JDK 15. JDK 16 enhanced instanceof with
pattern matching and added a new type of class called a record along with the new context-
sensitive keyword record. A record provides a convenient means of aggregating data. JDK 16
also supplied a new application packaging tool called jpackage.

At the time of this writing, Java SE 17 (JDK 17) is the latest version of Java. As mentioned,
it is the second LTS Java release. Thus, it is of particular importance. Its major new feature is
the ability to seal classes and interfaces. Sealing gives you control over the inheritance of a
class and the inheritance and implementation of an interface. Towards this end, it adds a new
context-sensitive keyword sealed. It also adds the context-sensitive keyword non-sealed, which
is the first hyphenated Java keyword. JDK 17 marks the applet API as deprecated for removal.
As explained, support of applets was removed several years ago. However, the applet API was
simply deprecated, which allowed vestigial code that relied on this API to still compile. With the
release of JDK 17, the applet API is now subject to removal by a future release.

One other point about the evolution of Java: Beginning in 2006, the process of open-
sourcing Java began. Today, open-source implementations of the JDK are available. Open
sourcing further contributes to the dynamic nature of Java development. In the final analysis,
Java’s legacy of innovation is secure. Java remains the vibrant, nimble language that the
programming world has come to expect.

The material in this book has been updated through JDK 17. As the preceding discussion
has highlighted, however, the history of Java programming is marked by dynamic change. As
you advance in your study of Java, you will want to watch for new features of each subsequent
Java release. Simply put: The evolution of Java continues!

00-FM.indd 21 12/11/21 9:20 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter

 xxii Java: A Beginner’s Guide

How This Book Is Organized
This book presents an evenly paced tutorial in which each section builds upon the previous
one. It contains 17 chapters, each discussing an aspect of Java. This book is unique because it
includes several special elements that reinforce what you are learning.

Key Skills & Concepts
Each chapter begins with a set of critical skills that you will be learning.

Self Test
Each chapter concludes with a Self Test that lets you test your knowledge. The answers are
in Appendix A.

Ask the Expert
Sprinkled throughout the book are special “Ask the Expert” boxes. These contain additional
information or interesting commentary about a topic. They use a question/answer format.

Try This Elements
Each chapter contains one or more Try This elements, which are projects that show you how to
apply what you are learning. In many cases, these are real-world examples that you can use as
starting points for your own programs.

No Previous Programming Experience Required
This book assumes no previous programming experience. Thus, if you have never programmed
before, you can use this book. If you do have some previous programming experience, you will
be able to advance a bit more quickly. Keep in mind, however, that Java differs in several key
ways from other popular computer languages. It is important not to jump to conclusions. Thus,
even for the experienced programmer, a careful reading is advised.

Required Software
To compile and run all of the programs in this book, you will need the latest Java Development Kit
(JDK), which, at the time of this writing, is JDK 17. This is the JDK for Java SE 17. Instructions
for obtaining the Java JDK are given in Chapter 1.

If you are using an earlier version of Java, you will still be able to use this book, but you
won’t be able to compile and run the programs that use Java’s newer features.

Don’t Forget: Code on the Web
Remember, the source code for all of the examples and projects in this book is available free of
charge on the Web at www.mhprofessional.com.

00-FM.indd 22 12/11/21 9:20 PM

http://www.mhprofessional.com

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter

 Introduction xxiii

Special Thanks
Special thanks to Danny Coward, the technical editor for this edition of the book. Danny has
worked on several of my books, and his advice, insights, and suggestions have always been of
great value and much appreciated.

For Further Study
Java: A Beginner’s Guide is your gateway to the Herb Schildt series of Java programming
books. Here are some others that you will find of interest:

Java: The Complete Reference

Herb Schildt’s Java Programming Cookbook

The Art of Java

Swing: A Beginner’s Guide

Introducing JavaFX 8 Programming

00-FM.indd 23 12/11/21 9:20 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter
Blind Folio: xxiv

00-FM.indd 24 12/11/21 9:20 PM

This page intentionally left blank

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 1
Blind Folio: 1

Chapter 1
Java Fundamentals

01-ch01.indd 1 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 1

 2 Java: A Beginner’s Guide

Key Skills & Concepts

● Know the history and philosophy of Java

● Understand Java’s contribution to the Internet

● Understand the importance of bytecode

● Know the Java buzzwords

● Understand the foundational principles of object-oriented programming

● Create, compile, and run a simple Java program

● Use variables

● Use the if and for control statements

● Create blocks of code

● Understand how statements are positioned, indented, and terminated

● Know the Java keywords

● Understand the rules for Java identifiers

In computing, few technologies have had the impact of Java. Its creation in the early days of the
Web helped shape the modern form of the Internet, including both the client and server sides.
Its innovative features advanced the art and science of programming, setting a new standard in
computer language design. The forward-thinking culture that grew up around Java ensured it
would remain vibrant and alive, adapting to the often rapid and varied changes in the computing
landscape. Simply put: not only is Java one of the world’s most important computer languages,
it is a force that revolutionized programming and, in the process, changed the world.

Although Java is a language often associated with Internet programming, it is by no
means limited in that regard. Java is a powerful, full-featured, general-purpose programming
language. Thus, if you are new to programming, Java is an excellent language to learn.
Moreover, to be a professional programmer today implies the ability to program in Java—it
is that important. In the course of this book, you will learn the basic skills that will help you
master it.

The purpose of this chapter is to introduce you to Java, beginning with its history, its
design philosophy, and several of its most important features. By far, the hardest thing about
learning a programming language is the fact that no element exists in isolation. Instead, the
components of the language work in conjunction with each other. This interrelatedness is
especially pronounced in Java. In fact, it is difficult to discuss one aspect of Java without
involving others. To help overcome this problem, this chapter provides a brief overview

01-ch01.indd 2 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 1

 Chapter 1: Java Fundamentals 3

of several Java features, including the general form of a Java program, some basic control
structures, and simple operators. It does not go into too many details, but, rather, concentrates
on general concepts common to any Java program.

The History and Philosophy of Java
Before one can fully appreciate the unique aspects of Java, it is necessary to understand the
forces that drove its creation, the programming philosophy that it embodies, and key concepts
of its design. As you advance through this book, you will see that many aspects of Java are
either a direct or indirect result of the historical forces that shaped the language. Thus, it
is fitting that we begin our examination of Java by exploring how Java relates to the larger
programming universe.

The Origins of Java
Java was conceived by James Gosling, Patrick Naughton, Chris Warth, Ed Frank, and Mike
Sheridan at Sun Microsystems in 1991. This language was initially called “Oak” but was
renamed “Java” in 1995. Somewhat surprisingly, the original impetus for Java was not the
Internet! Instead, the primary motivation was the need for a platform-independent language
that could be used to create software to be embedded in various consumer electronic devices,
such as toasters, microwave ovens, and remote controls. As you can probably guess, many
different types of CPUs are used as controllers. The trouble was that (at the time) most
computer languages were designed to be compiled into machine code that was targeted for a
specific type of CPU. For example, consider the C++ language.

Although it was possible to compile a C++ program for just about any type of CPU, to do
so required a full C++ compiler targeted for that CPU. The problem, however, is that compilers
are expensive and time consuming to create. In an attempt to find a better solution, Gosling
and the others worked on a portable, cross-platform language that could produce code that
would run on a variety of CPUs under differing environments. This effort ultimately led to the
creation of Java.

About the time that the details of Java were being worked out, a second, and ultimately
more important, factor emerged that would play a crucial role in the future of Java. This
second force was, of course, the World Wide Web. Had the Web not taken shape at about the
same time that Java was being implemented, Java might have remained a useful but obscure
language for programming consumer electronics. However, with the emergence of the Web,
Java was propelled to the forefront of computer language design, because the Web, too,
demanded portable programs.

Most programmers learn early in their careers that portable programs are as elusive as they
are desirable. While the quest for a way to create efficient, portable (platform-independent)
programs is nearly as old as the discipline of programming itself, it had taken a back seat to
other, more pressing problems. However, with the advent of the Internet and the Web, the old
problem of portability returned with a vengeance. After all, the Internet consisted of a diverse,
distributed universe populated with many types of computers, operating systems, and CPUs.

What was once an irritating but low-priority problem had become a high-profile necessity.
By 1993 it became obvious to members of the Java design team that the problems of portability
frequently encountered when creating code for embedded controllers are also found when

01-ch01.indd 3 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 1

 4 Java: A Beginner’s Guide

attempting to create code for the Internet. This realization caused the focus of Java to switch
from consumer electronics to Internet programming. So, although it was the desire for an
architecture-neutral programming language that provided the initial spark, it was the Internet
that ultimately led to Java’s large-scale success.

Java’s Lineage: C and C++
The history of computer languages is not one of isolated events. Rather, it is a continuum in
which each new language is influenced in one way or another by what has come before. In this
regard, Java is no exception. Before moving on, it is useful to understand where Java fits into
the family tree of computer languages.

The two languages that form Java’s closest ancestors are C and C++. As you may know,
C and C++ are among the most important computer languages ever invented and are still in
widespread use today. From C, Java inherits its syntax. Java’s object model is adapted from
C++. Java’s relationship to C and C++ is important for a number of reasons. First, at the time
of Java’s creation, many programmers were familiar with the C/C++ syntax. Because Java
uses a similar syntax, it was relatively easy for a C/C++ programmer to learn Java. This made
it possible for Java to be readily utilized by the pool of existing programmers, thus facilitating
Java’s acceptance by the programming community.

Second, Java’s designers did not “reinvent the wheel.” Instead, they further refined an
already highly successful programming paradigm. The modern age of programming began
with C. It moved to C++ and then to Java. By inheriting and building on that rich heritage,
Java provides a powerful, logically consistent programming environment that takes the best
of the past and adds new features related to the online environment and advances in the art of
programming. Perhaps most important, because of their similarities, C, C++, and Java define
a common, conceptual framework for the professional programmer. Programmers do not face
major rifts when switching from one language to another.

Java has another attribute in common with C and C++: it was designed, tested, and
refined by real working programmers. It is a language grounded in the needs and experiences
of the people who devised it. There is no better way to produce a top-flight professional
programming language.

One last point: although C++ and Java are related, especially in their support for object-
oriented programming, Java is not simply the “Internet version of C++.” Java has significant
practical and philosophical differences from C++. Furthermore, Java is not an enhanced version
of C++. For example, it is neither upwardly nor downwardly compatible with C++. Moreover,
Java was not designed to replace C++. Java was designed to solve a certain set of problems. C++
was designed to solve a different set of problems. They will coexist for many years to come.

How Java Impacted the Internet
The Internet helped catapult Java to the forefront of programming, and Java, in turn, had a
profound effect on the Internet. First, the creation of Java simplified Internet programming
in general, acting as a catalyst that drew legions of programmers to the Web. Second, Java
innovated a new type of networked program called the applet that changed the way the online
world thought about content. Finally, and perhaps most importantly, Java addressed some of
the thorniest issues associated with the Internet: portability and security.

01-ch01.indd 4 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 1

 Chapter 1: Java Fundamentals 5

Java Simplified Web-Based Programming
From the start, Java simplified web-based programming in a number of ways. Arguably the
most important is found in its ability to create portable, cross-platform programs. Of nearly
equal importance is Java’s support for networking. Its library of ready-to-use functionality
enabled programmers to easily write programs that accessed or made use of the Internet. It also
provided mechanisms that enabled programs to be readily delivered over the Internet. Although
the details are beyond the scope of this book, it is sufficient to know that Java’s support for
networking was a key factor in its rapid rise.

Java Applets
At the time of Java’s creation, one of its most exciting features was the applet. An applet
is a special kind of Java program that is designed to be transmitted over the Internet and
automatically executed inside a Java-compatible web browser. If the user clicks a link that
contains an applet, the applet will download and run in the browser automatically. Applets
were intended to be small programs, typically used to display data provided by the server,
handle user input, or provide simple functions, such as a loan calculator. The key feature of
applets is that they execute locally, rather than on the server. In essence, the applet allowed
some functionality to be moved from the server to the client.

The creation of the applet was important because, at the time, it expanded the universe
of objects that could move about freely in cyberspace. In general, there are two very broad
categories of objects that are transmitted between the server and the client: passive information
and dynamic active programs. For example, when you read your e-mail, you are viewing
passive data. Even when you download a program, the program’s code is still only passive
data until you execute it. By contrast, the applet is a dynamic, self-executing program. Such a
program is an active agent on the client computer, yet it is delivered by the server.

In the early days of Java, applets were a crucial part of Java programming. They illustrated
the power and benefits of Java, added an exciting dimension to web pages, and enabled
programmers to explore the full extent of what was possible with Java. Although it is likely
that there are still applets in use today, over time they became less important, and for reasons
that will be explained shortly, JDK 9 began their phase-out process. Finally, applet support was
removed by JDK 11.

Q: What is C# and how does it relate to Java?

A: A few years after the creation of Java, Microsoft developed the C# language. This is
important because C# is closely related to Java. In fact, many of C#’s features directly
parallel Java. Both Java and C# share the same general C++-style syntax, support
distributed programming, and utilize a similar object model. There are, of course,
differences between Java and C#, but the overall “look and feel” of these languages is very
similar. This means that if you already know C#, then learning Java will be especially easy.
Conversely, if C# is in your future, then your knowledge of Java will come in handy.

Ask the Expert

01-ch01.indd 5 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 1

 6 Java: A Beginner’s Guide

Security
As desirable as dynamic, networked programs are, they also present serious problems in the
areas of security and portability. Obviously, a program that downloads and executes on the
client computer must be prevented from doing harm. It must also be able to run in a variety of
different environments and under different operating systems. As you will see, Java addressed
these problems in an effective and elegant way. Let’s look a bit more closely at each, beginning
with security.

As you are likely aware, every time that you download a program, you are taking a
risk because the code you are downloading might contain a virus, Trojan horse, or other
harmful code. At the core of the problem is the fact that malicious code can cause damage
because it has gained unauthorized access to system resources. For example, a virus program
might gather private information, such as credit card numbers, bank account balances, and
passwords, by searching the contents of your computer’s local file system. In order for Java
to enable programs to be safely downloaded and executed on the client computer, it was
necessary to prevent them from launching such an attack.

Java achieved this protection by enabling you to confine an application to the Java
execution environment and prevent it from accessing other parts of the computer. (You will see
how this is accomplished shortly.) The ability to download an application with a high level of
confidence that no harm will be done contributed significantly to Java’s early success.

Portability
Portability is a major aspect of the Internet because there are many different types of
computers and operating systems connected to it. If a Java program were to be run on virtually
any computer connected to the Internet, there needed to be some way to enable that program
to execute on different types of systems. In other words, a mechanism that allows the same
application to be downloaded and executed by a wide variety of CPUs, operating systems, and
browsers is required. It is not practical to have different versions of the same application for
different computers. The same application code must work in all computers. Therefore, some
means of generating portable code was needed. As you will soon see, the same mechanism that
helps ensure security also helps create portability.

Java’s Magic: The Bytecode
The key that allowed Java to address both the security and the portability problems just
described is that the output of a Java compiler is not executable code. Rather, it is bytecode.
Bytecode is a highly optimized set of instructions designed to be executed by what is called
the Java Virtual Machine (JVM), which is part of the Java Runtime Environment (JRE). In
essence, the original JVM was designed as an interpreter for bytecode. This may come as a bit
of a surprise because many modern languages are designed to be compiled into CPU-specific,
executable code due to performance concerns. However, the fact that a Java program is executed
by the JVM helps solve the major problems associated with web-based programs. Here is why.

Translating a Java program into bytecode makes it much easier to run a program in a
wide variety of environments because only the JRE (which includes the JVM) needs to be
implemented for each platform. Once a JRE exists for a given system, any Java program can
run on it. Remember, although the details of the JRE will differ from platform to platform, all
JREs understand the same Java bytecode. If a Java program were compiled to native code, then

01-ch01.indd 6 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 1

 Chapter 1: Java Fundamentals 7

different versions of the same program would have to exist for each type of CPU connected to
the Internet. This is, of course, not a feasible solution. Thus, the execution of bytecode by the
JVM is the easiest way to create truly portable programs.

The fact that a Java program is executed by the JVM also helps to make it secure. Because
the JVM is in control, it manages program execution. Thus, it was possible for the JVM to create
a restricted execution environment, called the sandbox, that contains the program, preventing
unrestricted access to the machine. Safety is also enhanced by certain restrictions that exist in
the Java language.

When a program is interpreted, it generally runs slower than the same program would run
if compiled to executable code. However, with Java, the differential between the two is not so
great. Because bytecode has been highly optimized, the use of bytecode enables the JVM to
execute programs much faster than you might expect.

Although Java was designed as an interpreted language, there is nothing about Java that
prevents on-the-fly compilation of bytecode into native code in order to boost performance.
For this reason, the HotSpot JVM was introduced not long after Java’s initial release. HotSpot
includes a just-in-time (JIT) compiler for bytecode. When a JIT compiler is part of the JVM,
selected portions of bytecode are compiled into executable code in real time on a piece-by-
piece demand basis. That is, a JIT compiler compiles code as it is needed during execution.
Furthermore, not all sequences of bytecode are compiled—only those that will benefit from
compilation. The remaining code is simply interpreted. However, the just-in-time approach
still yields a significant performance boost. Even when dynamic compilation is applied to
bytecode, the portability and safety features still apply because the JVM is still in charge of
the execution environment.

One other point: There has been experimentation with an ahead-of-time compiler for Java.
Such a compiler can be used to compile bytecode into native code prior to execution by the
JVM, rather than on-the-fly. Some previous versions of the JDK supplied an experimental
ahead-of-time compiler; however, JDK 17 has removed it. Ahead-of-time compilation is a
specialized feature and it does not replace Java’s traditional approach just described. Because
of the highly sophisticated nature of ahead-of-time compilation, it is not something that you
will use when learning Java, and it is not discussed further in this book.

Q: I have heard about a special type of Java program called a servlet. What is it?

A: A Java servlet is a small program that executes on a server. Servlets dynamically extend
the functionality of a web server. It is helpful to understand that as useful as client-side
applications can be, they are just one half of the client/server equation. Not long after the
initial release of Java, it became obvious that Java would also be useful on the server side.
One result was the servlet. Thus, with the advent of the servlet, Java spanned both sides of
the client/server connection. Although the topic of servlets, and server-side programming
in general, is beyond the scope of this beginner’s guide, they are something that you will
likely find of interest as you advance in Java programming.

Ask the Expert

01-ch01.indd 7 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 1

 8 Java: A Beginner’s Guide

Moving Beyond Applets
At the time of this writing, it has been more than two decades since Java’s original release.
Over those years, many changes have taken place. At the time of Java’s creation, the Internet
was a new and exciting innovation; web browsers were undergoing rapid development and
refinement; the modern form of the smartphone had not yet been invented; and the near
ubiquitous use of computers was still a few years off. As you would expect, Java has also
changed and so, too, has the way that Java is used. Perhaps nothing illustrates the ongoing
evolution of Java better than the applet.

As explained previously, in the early years of Java, applets were a crucial part of Java
programming. They not only added excitement to a web page, they were a highly visible part
of Java, which added to its charisma. However, applets rely on a Java browser plug-in. Thus,
for an applet to work, it must be supported by the browser. Over the past few years support for
the Java browser plug-in has been waning. Simply put, without browser support, applets are
not viable. Because of this, beginning with JDK 9, the phase-out of applets was begun, with
support for applets being deprecated. In the language of Java, deprecated means that a feature
is still available but flagged as obsolete. Thus, a deprecated feature should not be used for new
code. The phase-out became complete with the release of JDK 11 because run-time support
for applets was removed. Beginning with JDK 17, the entire Applet API was deprecated for
removal, which means that it will be removed from the JDK at some point in the future.

As a point of interest, a few years after Java’s creation an alternative to applets was added.
Called Java Web Start, it enabled an application to be dynamically downloaded from a web
page. It was a deployment mechanism that was especially useful for larger Java applications
that were not appropriate for applets. The difference between an applet and a Web Start
application is that a Web Start application runs on its own, not inside the browser. Thus, it
looks much like a “normal” application. It does, however, require that a stand-alone JRE that
supports Web Start is available on the host system. Beginning with JDK 11, support for Java
Web Start has been removed.

Given that neither applets nor Java Web Start are viable options for modern versions of
Java, you might wonder what mechanism should be used to deploy a Java application. At
the time of this writing, one part of the answer is to use the jlink tool added by JDK 9. It
can create a complete run-time image that includes all necessary support for your program,
including the JRE. Another part of the answer is the jpackage tool. Added by JDK 16, it can
be used to create a ready-to-install application. As you might guess, deployment is a rather
advanced topic that is outside the scope of this book. Fortunately, you won’t need to worry
about deployment to use this book because all of the sample programs run directly on your
computer. They are not deployed over the Internet.

A Faster Release Schedule
Not long ago, another major change occurred in Java, but it does not involve changes to the
language or the run-time environment. Rather, it relates to the way that Java releases are
scheduled. In the past, major Java releases were typically separated by two or more years.
However, subsequent to the release of JDK 9, the time between major Java releases has
been decreased. Today, it is anticipated that a major release will occur on a strict time-based
schedule, with the expected time between major releases being just six months.

01-ch01.indd 8 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 1

 Chapter 1: Java Fundamentals 9

Each major release, now called a feature release, will include those features ready at the
time of the release. This increased release cadence enables new features and enhancements to
be available to Java programmers in a timely fashion. Furthermore, it allows Java to respond
quickly to the demands of an ever-changing programming environment. Simply put, the faster
release schedule promises to be a very positive development for Java programmers.

At three-year intervals it is anticipated that a long-term support (LTS) release will take
place. An LTS release will be supported (and thus remain viable) for a period of time longer
than six months. The first LTS release was JDK 11. The second LTS release was JDK 17, for
which this book has been updated. Because of the stability that an LTS release offers, it is
likely that its feature-set will define a baseline of functionality for a number of years. Consult
Oracle for the latest information concerning long-term support and the LTS release schedule.

Currently, feature releases are scheduled for March and September of each year. As a result,
JDK 10 was released in March 2018, which was six months after the release of JDK 9. The next
release (JDK 11) was in September 2018. It was an LTS release. This was followed by JDK 12 In
March 2019, JDK 13 in September 2019, and so on. At the time of this writing, the latest release
is JDK 17, which is an LTS release. Again, it is anticipated that every six months a new feature
release will take place. Of course, you will want to consult the latest release schedule information.

At the time of this writing, there are a number of new Java features on the horizon. Because
of the faster release schedule, it is very likely that several of them will be added to Java over the
next few years. You will want to review the information and release notes provided by each six-
month release in detail. It is truly an exciting time to be a Java programmer!

The Java Buzzwords
No history of Java is complete without a look at the Java buzzwords. Although the fundamental
forces that necessitated the invention of Java are portability and security, other factors played
an important role in molding the final form of the language. The key considerations were
summed up by the Java design team in the following list of buzzwords.

Simple Java has a concise, cohesive set of features that makes it easy to learn and use.

Secure Java provides a secure means of creating Internet applications.

Portable Java programs can execute in any environment for which there is a Java run-
time system.

Object-oriented Java embodies the modern object-oriented programming philosophy.

Robust Java encourages error-free programming by being strictly typed and
performing run-time checks.

Multithreaded Java provides integrated support for multithreaded programming.

Architecture-neutral Java is not tied to a specific machine or operating system architecture.

Interpreted Java supports cross-platform code through the use of Java bytecode.

High performance The Java bytecode is highly optimized for speed of execution.

Distributed Java was designed with the distributed environment of the Internet in mind.

Dynamic Java programs carry with them substantial amounts of run-time type
information that is used to verify and resolve access to objects at run time.

01-ch01.indd 9 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 1

 10 Java: A Beginner’s Guide

Object-Oriented Programming
At the center of Java is object-oriented programming (OOP). The object-oriented methodology
is inseparable from Java, and all Java programs are, to at least some extent, object-oriented.
Because of OOP’s importance to Java, it is useful to understand in a general way OOP’s basic
principles before you write even a simple Java program. Later in this book, you will see how to
put these concepts into practice.

OOP is a powerful way to approach the job of programming. Programming methodologies
have changed dramatically since the invention of the computer, primarily to accommodate
the increasing complexity of programs. For example, when computers were first invented,
programming was done by toggling in the binary machine instructions using the computer’s
front panel. As long as programs were just a few hundred instructions long, this approach
worked. As programs grew, assembly language was invented so that a programmer could deal
with larger, increasingly complex programs, using symbolic representations of the machine
instructions. As programs continued to grow, high-level languages were introduced that gave
the programmer more tools with which to handle complexity. The first widespread language
was, of course, FORTRAN. Although FORTRAN was a very impressive first step, it was
hardly a language that encouraged clear, easy-to-understand programs.

The 1960s gave birth to structured programming. This is the method encouraged by
languages such as C and Pascal. The use of structured languages made it possible to write
moderately complex programs fairly easily. Structured languages are characterized by their
support for stand-alone subroutines, local variables, rich control constructs, and their lack of
reliance upon the GOTO. Although structured languages are a powerful tool, even they reach
their limit when a project becomes too large.

Consider this: At each milestone in the development of programming, techniques and
tools were created to allow the programmer to deal with increasingly greater complexity.
Each step of the way, the new approach took the best elements of the previous methods and
moved forward. Prior to the invention of OOP, many projects were nearing (or exceeding) the
point where the structured approach no longer works. Object-oriented methods were created to
help programmers break through these barriers.

Object-oriented programming took the best ideas of structured programming and combined
them with several new concepts. The result was a different way of organizing a program. In
the most general sense, a program can be organized in one of two ways: around its code (what
is happening) or around its data (what is being affected). Using only structured programming
techniques, programs are typically organized around code. This approach can be thought of as
“code acting on data.”

Object-oriented programs work the other way around. They are organized around data,
with the key principle being “data controlling access to code.” In an object-oriented language,
you define the data and the routines that are permitted to act on that data. Thus, a data type
defines precisely what sort of operations can be applied to that data.

To support the principles of object-oriented programming, all OOP languages, including
Java, have three traits in common: encapsulation, polymorphism, and inheritance. Let’s
examine each.

01-ch01.indd 10 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 1

 Chapter 1: Java Fundamentals 11

Encapsulation
Encapsulation is a programming mechanism that binds together code and the data it
manipulates, and that keeps both safe from outside interference and misuse. In an object-
oriented language, code and data can be bound together in such a way that a self-contained
black box is created. Within the box are all necessary data and code. When code and data are
linked together in this fashion, an object is created. In other words, an object is the device
that supports encapsulation.

Within an object, code, data, or both may be private to that object or public. Private code
or data is known to and accessible by only another part of the object. That is, private code or
data cannot be accessed by a piece of the program that exists outside the object. When code
or data is public, other parts of your program can access it even though it is defined within an
object. Typically, the public parts of an object are used to provide a controlled interface to the
private elements of the object.

Java’s basic unit of encapsulation is the class. Although the class will be examined in great
detail later in this book, the following brief discussion will be helpful now. A class defines the
form of an object. It specifies both the data and the code that will operate on that data. Java
uses a class specification to construct objects. Objects are instances of a class. Thus, a class is
essentially a set of plans that specify how to build an object.

The code and data that constitute a class are called members of the class. Specifically, the
data defined by the class are referred to as member variables or instance variables. The code
that operates on that data is referred to as member methods or just methods. Method is Java’s
term for a subroutine. If you are familiar with C/C++, it may help to know that what a Java
programmer calls a method, a C/C++ programmer calls a function.

Polymorphism
Polymorphism (from Greek, meaning “many forms”) is the quality that allows one interface to
access a general class of actions. The specific action is determined by the exact nature of the
situation. A simple example of polymorphism is found in the steering wheel of an automobile.
The steering wheel (i.e., the interface) is the same no matter what type of actual steering
mechanism is used. That is, the steering wheel works the same whether your car has manual
steering, power steering, or rack-and-pinion steering. Therefore, once you know how to operate
the steering wheel, you can drive any type of car.

The same principle can also apply to programming. For example, consider a stack (which
is a first-in, last-out list). You might have a program that requires three different types of stacks.
One stack is used for integer values, one for floating-point values, and one for characters. In this
case, the algorithm that implements each stack is the same, even though the data being stored
differs. In a non-object-oriented language, you would be required to create three different sets of
stack routines, with each set using different names. However, because of polymorphism, in Java
you can create one general set of stack routines that works for all three specific situations. This
way, once you know how to use one stack, you can use them all.

More generally, the concept of polymorphism is often expressed by the phrase “one interface,
multiple methods.” This means that it is possible to design a generic interface to a group of
related activities. Polymorphism helps reduce complexity by allowing the same interface to

01-ch01.indd 11 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 1

 12 Java: A Beginner’s Guide

be used to specify a general class of action. It is the compiler’s job to select the specific action
(i.e., method) as it applies to each situation. You, the programmer, don’t need to do this selection
manually. You need only remember and utilize the general interface.

Inheritance
Inheritance is the process by which one object can acquire the properties of another object.
This is important because it supports the concept of hierarchical classification. If you think
about it, most knowledge is made manageable by hierarchical (i.e., top-down) classifications.
For example, a Red Delicious apple is part of the classification apple, which in turn is part of
the fruit class, which is under the larger class food. That is, the food class possesses certain
qualities (edible, nutritious, etc.) which also, logically, apply to its subclass, fruit. In addition
to these qualities, the fruit class has specific characteristics (juicy, sweet, etc.) that distinguish
it from other food. The apple class defines those qualities specific to an apple (grows on
trees, not tropical, etc.). A Red Delicious apple would, in turn, inherit all the qualities of all
preceding classes, and would define only those qualities that make it unique.

Without the use of hierarchies, each object would have to explicitly define all of its
characteristics. Using inheritance, an object need only define those qualities that make it
unique within its class. It can inherit its general attributes from its parent. Thus, it is the
inheritance mechanism that makes it possible for one object to be a specific instance of a
more general case.

The Java Development Kit
Now that the theoretical underpinning of Java has been explained, it is time to start writing
Java programs. Before you can compile and run those programs, you must have a Java
Development Kit (JDK). At the time of this writing, the current release of the JDK is
JDK 17. This is the version for Java SE 17. (SE stands for Standard Edition.) It is also the
version described in this book. Because JDK 17 contains features that are not supported by
earlier versions of Java, it is recommended that you use JDK 17 (or later) to compile and run
the programs in this book. (Remember, because of Java’s faster release schedule, JDK feature
releases are expected at six-month intervals. Thus, don’t be surprised by a JDK with a higher
release number.) However, depending on the environment in which you are working, an earlier
JDK may already be installed. If this is the case, then newer Java features will not be available.

If you need to install the JDK on your computer, be aware that for modern versions of
Java, both Oracle JDKs and open source OpenJDKs are available for download. In general,
you should first find the JDK you want to use. For example, at the time of this writing, the
Oracle JDK can be downloaded from www.oracle.com/java/technologies/downloads/. Also
at the time of this writing, an open source version is available at jdk.java.net. Next, download
the JDK of your choice and follow its instructions to install it on your computer. After you have
installed the JDK, you will be able to compile and run programs.

The JDK supplies two primary programs. The first is javac, which is the Java compiler.
The second is java, which is the standard Java interpreter and is also referred to as the
application launcher. One other point: The JDK runs in the command-prompt environment
and uses command-line tools. It is not a windowed application. It is also not an integrated
development environment (IDE).

01-ch01.indd 12 12/11/21 9:21 PM

http://www.oracle.com/java/technologies/downloads/
http://jdk.java.net

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 1

 Chapter 1: Java Fundamentals 13

NOTE
In addition to the basic command-line tools supplied with the JDK, there are several
high-quality IDEs available for Java, such as NetBeans and Eclipse. An IDE can be
very helpful when developing and deploying commercial applications. As a general
rule, you can also use an IDE to compile and run the programs in this book if you so
choose. However, the instructions presented in this book for compiling and running a
Java program describe only the JDK command-line tools. The reasons for this are easy
to understand. First, the JDK is readily available to all readers. Second, the instructions
for using the JDK will be the same for all readers. Furthermore, for the simple programs
presented in this book, using the JDK command-line tools is usually the easiest
approach. If you are using an IDE, you will need to follow its instructions. Because
of differences between IDEs, no general set of instructions can be given.

A First Simple Program
Let’s start by compiling and running the short sample program shown here:

/*
 This is a simple Java program.

 Call this file Example.java.
*/
class Example {
 // A Java program begins with a call to main().
 public static void main(String[] args) {
 System.out.println("Java drives the Web.");
 }
}

Q: You state that object-oriented programming is an effective way to manage large
programs. However, it seems that it might add substantial overhead to relatively small
ones. Since you say that all Java programs are, to some extent, object-oriented, does
this impose a penalty for smaller programs?

A: No. As you will see, for small programs, Java’s object-oriented features are nearly transparent.
Although it is true that Java follows a strict object model, you have wide latitude as to the
degree to which you employ it. For smaller programs, their “object-orientedness” is
barely perceptible. As your programs grow, you will integrate more object-oriented features
effortlessly.

Ask the Expert

01-ch01.indd 13 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 1

 14 Java: A Beginner’s Guide

You will follow these three steps:

 1. Enter the program.

 2. Compile the program.

 3. Run the program.

Entering the Program
The programs shown in this book are available from www.mhprofessional.com. However,
if you want to enter the programs by hand, you are free to do so. In this case, you must enter
the program into your computer using a text editor, not a word processor. Word processors
typically store format information along with text. This format information will confuse
the Java compiler. If you are using a Windows platform, you can use Notepad or any other
programming editor that you like.

For most computer languages, the name of the file that holds the source code to a program
is arbitrary. However, this is not the case with Java. The first thing that you must learn about
Java is that the name you give to a source file is very important. For this example, the name of
the source file should be Example.java. Let’s see why.

In Java, a source file is officially called a compilation unit. It is a text file that contains (among
other things) one or more class definitions. (For now, we will be using source files that contain
only one class.) The Java compiler requires that a source file use the .java filename extension.
As you can see by looking at the program, the name of the class defined by the program is also
Example. This is not a coincidence. In Java, all code must reside inside a class. By convention, the
name of the main class should match the name of the file that holds the program. You should also
make sure that the capitalization of the filename matches the class name. The reason for this is that
Java is case sensitive. At this point, the convention that filenames correspond to class names may
seem arbitrary. However, this convention makes it easier to maintain and organize your programs.
Furthermore, as you will see later in this book, in some cases, it is required.

Compiling the Program
To compile the Example program, execute the compiler, javac, specifying the name of the
source file on the command line, as shown here:

javac Example.java

The javac compiler creates a file called Example.class that contains the bytecode version of
the program. Remember, bytecode is not executable code. Bytecode must be executed by a
Java Virtual Machine. Thus, the output of javac is not code that can be directly executed.

To actually run the program, you must use the Java interpreter, java. To do so, pass the
class name Example as a command-line argument, as shown here:

java Example

When the program is run, the following output is displayed:

Java drives the Web.

01-ch01.indd 14 12/11/21 9:21 PM

http://www.mhprofessional.com

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 1

 Chapter 1: Java Fundamentals 15

When Java source code is compiled, each individual class is put into its own output file
named after the class and using the .class extension. This is why it is a good idea to give your
Java source files the same name as the class they contain—the name of the source file will
match the name of the .class file. When you execute the Java interpreter as just shown, you
are actually specifying the name of the class that you want the interpreter to execute. It will
automatically search for a file by that name that has the .class extension. If it finds the file, it
will execute the code contained in the specified class.

Before moving on, it is important to mention that beginning with JDK 11, Java provides
a way to run some types of simple programs directly from a source file, without explicitly
invoking javac. This technique, which can be useful in some situations, is described in
Appendix C. For the purposes of this book, it is assumed that you are using the normal
compilation process just described.

NOTE
If, when you try to compile the program, the computer cannot find javac (and assuming
that you have installed the JDK correctly), you may need to specify the path to the
command-line tools. In Windows, for example, this means that you will need to add
the path to the command-line tools to the paths defined for the PATH environmental
variable. For example, if JDK 17 was installed under the Program Files directory, then
the path to the command-line tools will be similar to C:\Program Files\Java\jdk-17\bin.
(Of course, you will need to find the path to Java on your computer, which may differ
from the one just shown. Also the specific version of the JDK may differ.) You will need
to consult the documentation for your operating system on how to set the path, because
this procedure differs between OSes.

The First Sample Program Line by Line
Although Example.java is quite short, it includes several key features that are common to all
Java programs. Let’s closely examine each part of the program.

The program begins with the following lines:

/*
 This is a simple Java program.

 Call this file Example.java.
*/

This is a comment. Like most other programming languages, Java lets you enter a remark
into a program’s source file. The contents of a comment are ignored by the compiler. Instead,
a comment describes or explains the operation of the program to anyone who is reading its
source code. In this case, the comment describes the program and reminds you that the source
file should be called Example.java. Of course, in real applications, comments generally
explain how some part of the program works or what a specific feature does.

Java supports three styles of comments. The one shown at the top of the program is called
a multiline comment. This type of comment must begin with /* and end with */. Anything
between these two comment symbols is ignored by the compiler. As the name suggests, a
multiline comment may be several lines long.

01-ch01.indd 15 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 1

 16 Java: A Beginner’s Guide

The next line of code in the program is shown here:

class Example {

This line uses the keyword class to declare that a new class is being defined. As mentioned,
the class is Java’s basic unit of encapsulation. Example is the name of the class. The class
definition begins with the opening curly brace ({) and ends with the closing curly brace (}).
The elements between the two braces are members of the class. For the moment, don’t worry
too much about the details of a class except to note that in Java, all program activity occurs
within one. This is one reason why all Java programs are (at least a little bit) object-oriented.

The next line in the program is the single-line comment, shown here:

// A Java program begins with a call to main().

This is the second type of comment supported by Java. A single-line comment begins with a
// and ends at the end of the line. As a general rule, programmers use multiline comments for
longer remarks and single-line comments for brief, line-by-line descriptions.

The next line of code is shown here:

public static void main (String[] args) {

This line begins the main() method. As mentioned earlier, in Java, a subroutine is called a
method. As the comment preceding it suggests, this is the line at which the program will begin
executing. In general, Java applications begin execution by calling main(). The exact meaning
of each part of this line cannot be given now, since it involves a detailed understanding of
several other of Java’s features. However, since many of the examples in this book will use this
line of code, let’s take a brief look at each part now.

The public keyword is an access modifier. An access modifier determines how other parts of
the program can access the members of the class. When a class member is preceded by public,
then that member can be accessed by code outside the class in which it is declared. (The opposite
of public is private, which prevents a member from being used by code defined outside of its
class.) In this case, main() must be declared as public, since it must be called by code outside
of its class when the program is started. The keyword static allows main() to be called before
an object of the class has been created. This is necessary because main() is called by the JVM
before any objects are made. The keyword void simply tells the compiler that main() does not
return a value. As you will see, methods may also return values. If all this seems a bit confusing,
don’t worry. All of these concepts will be discussed in detail in subsequent chapters.

As stated, main() is the method called when a Java application begins. Any information
that you need to pass to a method is received by variables specified within the set of
parentheses that follow the name of the method. These variables are called parameters. If no
parameters are required for a given method, you still need to include the empty parentheses.
In main() there is only one parameter, String[] args, which declares a parameter named args.
This is an array of objects of type String. (Arrays are collections of similar objects.) Objects
of type String store sequences of characters. In this case, args receives any command-line
arguments present when the program is executed. This program does not make use of this
information, but other programs shown later in this book will.

01-ch01.indd 16 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 1

 Chapter 1: Java Fundamentals 17

The last character on the line is the {. This signals the start of main()’s body. All of the
code included in a method will occur between the method’s opening curly brace and its closing
curly brace.

The next line of code is shown here. Notice that it occurs inside main().

System.out.println("Java drives the Web.");

This line outputs the string "Java drives the Web." followed by a new line on the screen. Output
is actually accomplished by the built-in println() method. In this case, println() displays
the string that is passed to it. As you will see, println() can be used to display other types
of information, too. The line begins with System.out. While too complicated to explain in
detail at this time, briefly, System is a predefined class that provides access to the system,
and out is the output stream that is connected to the console. Thus, System.out is an object
that encapsulates console output. The fact that Java uses an object to define console output is
further evidence of its object-oriented nature.

As you have probably guessed, console output (and input) is not used frequently in real-
world Java applications. Since most modern computing environments are windowed and
graphical in nature, console I/O is used mostly for simple utility programs, for demonstration
programs, and for server-side code. Later in this book, you will learn other ways to generate
output using Java, but for now, we will continue to use the console I/O methods.

Notice that the println() statement ends with a semicolon. Many statements in Java end
with a semicolon. As you will see, the semicolon is an important part of the Java syntax.

The first } in the program ends main(), and the last } ends the Example class definition.
One last point: Java is case sensitive. Forgetting this can cause you serious problems.

For example, if you accidentally type Main instead of main, or PrintLn instead of println,
the preceding program will be incorrect. Furthermore, although the Java compiler will compile
classes that do not contain a main() method, it has no way to execute them. So, if you had
mistyped main, the compiler would still compile your program. However, the Java interpreter
would report an error because it would be unable to find the main() method.

Handling Syntax Errors
If you have not yet done so, enter, compile, and run the preceding program. As you may know
from your previous programming experience, it is quite easy to accidentally type something
incorrectly when entering code into your computer. Fortunately, if you enter something
incorrectly into your program, the compiler will report a syntax error message when it tries to
compile it. The Java compiler attempts to make sense out of your source code no matter what you
have written. For this reason, the error that is reported may not always reflect the actual cause of
the problem. In the preceding program, for example, an accidental omission of the opening curly
brace after the main() method causes the compiler to report the following two errors:

Example.java:8: error: ';' expected
 public static void main(String[] args)
 ^
Example.java:11: error: class, interface, enum, or record expected
}
^

01-ch01.indd 17 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 1

 18 Java: A Beginner’s Guide

Clearly, the first error message is completely wrong because what is missing is not a semicolon,
but a curly brace.

The point of this discussion is that when your program contains a syntax error, you shouldn’t
necessarily take the compiler’s messages at face value. The messages may be misleading. You
may need to “second-guess” an error message in order to find the real problem. Also, look at the
last few lines of code in your program that precede the line being flagged. Sometimes an error
will not be reported until several lines after the point at which the error actually occurred.

A Second Simple Program
Perhaps no other construct is as important to a programming language as the assignment of a value
to a variable. A variable is a named memory location that can be assigned a value. Further, the value
of a variable can be changed during the execution of a program. That is, the content of a variable is
changeable, not fixed. The following program creates two variables called myVar1 and myVar2:

/*
 This demonstrates a variable.

 Call this file Example2.java.
*/
class Example2 {
 public static void main(String[] args) {
 int myVar1; // this declares a variable
 int myVar2; // this declares another variable

 myVar1 = 1024; // this assigns 1024 to myVar1

 System.out.println("myVar1 contains " + myVar1);

 myVar2 = myVar1 / 2;

 System.out.print("myVar2 contains myVar1 / 2: ");
 System.out.println(myVar2);
 }
}

When you run this program, you will see the following output:

myVar1 contains 1024
myVar2 contains myVar1 / 2: 512

This program introduces several new concepts. First, the statement

int myVar1; // this declares a variable

declares a variable called myVar1 of type integer. In Java, all variables must be declared before
they are used. Further, the type of values that the variable can hold must also be specified. This
is called the type of the variable. In this case, myVar1 can hold integer values. These are whole
number values. In Java, to declare a variable to be of type integer, precede its name with the
keyword int. Thus, the preceding statement declares a variable called myVar1 of type int.

Declare variables.

Assign a variable a value.

01-ch01.indd 18 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 1

 Chapter 1: Java Fundamentals 19

The next line declares a second variable called myVar2:

int myVar2; // this declares another variable

Notice that this line uses the same format as the first line except that the name of the variable
is different.

In general, to declare a variable you will use a statement like this:

type var-name;

Here, type specifies the type of variable being declared, and var-name is the name of the variable.
In addition to int, Java supports several other data types.

The following line of code assigns myVar1 the value 1024:

myVar1 = 1024; // this assigns 1024 to var1

In Java, the assignment operator is the single equal sign. It copies the value on its right side
into the variable on its left.

The next line of code outputs the value of myVar1 preceded by the string "myVar1 contains ":

System.out.println("myVar1 contains " + myVar1);

In this statement, the plus sign causes the value of myVar1 to be displayed after the string that
precedes it. This approach can be generalized. Using the + operator, you can chain together as
many items as you want within a single println() statement.

The next line of code assigns myVar2 the value of myVar1 divided by 2:

myVar2 = myVar1 / 2;

This line divides the value in myVar1 by 2 and then stores that result in myVar2. Thus,
after the line executes, myVar2 will contain the value 512. The value of myVar1 will be
unchanged. Like most other computer languages, Java supports a full range of arithmetic
operators, including those shown here:

+ Addition

– Subtraction

* Multiplication

/ Division

Here are the next two lines in the program:

System.out.print("myVar2 contains myVar1 / 2: ");
System.out.println(myVar2);

Two new things are occurring here. First, the built-in method print() is used to display the
string "myVar2 contains myVar1 / 2: ". This string is not followed by a new line. This means
that when the next output is generated, it will start on the same line. The print() method is
just like println(), except that it does not output a new line after each call. Second, in the call
to println(), notice that myVar2 is used by itself. Both print() and println() can be used to
output values of any of Java’s built-in types.

01-ch01.indd 19 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 1

 20 Java: A Beginner’s Guide

One more point about declaring variables before we move on: It is possible to declare two
or more variables using the same declaration statement. Just separate their names by commas.
For example, myVar1 and myVar2 could have been declared like this:

int myVar1, myVar2; // both declared using one statement

Another Data Type
In the preceding program, a variable of type int was used. However, a variable of type int can
hold only whole numbers. Thus, it cannot be used when a fractional component is required. For
example, an int variable can hold the value 18, but not the value 18.3. Fortunately, int is only
one of several data types defined by Java. To allow numbers with fractional components, Java
defines two floating-point types: float and double, which represent single- and double-precision
values, respectively. Of the two, double is the most commonly used.

To declare a variable of type double, use a statement similar to that shown here:

double x;

Here, x is the name of the variable, which is of type double. Because x has a floating-point
type, it can hold values such as 122.23, 0.034, or –19.0.

To better understand the difference between int and double, try the following program:

/*
 This program illustrates the differences
 between int and double.

 Call this file Example3.java.
*/
class Example3 {
 public static void main(String[] args) {
 int v; // this declares an int variable
 double x; // this declares a floating-point variable

 v = 10; // assign v the value 10

 x = 10.0; // assign x the value 10.0

 System.out.println("Original value of v: " + v);
 System.out.println("Original value of x: " + x);
 System.out.println(); // print a blank line

 // now, divide both by 4
 v = v / 4;
 x = x / 4;

 System.out.println("v after division: " + v);
 System.out.println("x after division: " + x);
 }
}

Output a blank line.

01-ch01.indd 20 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 1

 Chapter 1: Java Fundamentals 21

Try This 1-1

The output from this program is shown here:

Original value of v: 10
Original value of x: 10.0

v after division: 2
x after division: 2.5

As you can see, when v is divided by 4, a whole-number division is performed, and the
outcome is 2—the fractional component is lost. However, when the double variable x is
divided by 4, the fractional component is preserved, and the proper answer is displayed.

There is one other new thing to notice in the program. To print a blank line, simply call
println() without any arguments.

 Converting Gallons to Liters
Although the preceding sample programs illustrate several important features
of the Java language, they are not very useful. Even though you do not know

much about Java at this point, you can still put what you have learned to work to create a
practical program. In this project, we will create a program that converts gallons to liters.
The program will work by declaring two double variables. One will hold the number of the
gallons, and the second will hold the number of liters after the conversion. There are 3.7854

Fractional component lost
Fractional component preserved

GalToLit.java

(continued)

Q: Why does Java have different data types for integers and floating-point values? That
is, why aren’t all numeric values just the same type?

A: Java supplies different data types so that you can write efficient programs. For example,
integer arithmetic is faster than floating-point calculations. Thus, if you don’t need
fractional values, then you don’t need to incur the overhead associated with types float or
double. Second, the amount of memory required for one type of data might be less than
that required for another. By supplying different types, Java enables you to make best use
of system resources. Finally, some algorithms require (or at least benefit from) the use of
a specific type of data. In general, Java supplies a number of built-in types to give you the
greatest flexibility.

Ask the Expert

01-ch01.indd 21 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 1

 22 Java: A Beginner’s Guide

liters in a gallon. Thus, to convert gallons to liters, the gallon value is multiplied by 3.7854.
The program displays both the number of gallons and the equivalent number of liters.

 1. Create a new file called GalToLit.java.

 2. Enter the following program into the file:

/*
 Try This 1-1

 This program converts gallons to liters.

 Call this program GalToLit.java.
*/
class GalToLit {
 public static void main(String[] args) {
 double gallons; // holds the number of gallons
 double liters; // holds conversion to liters

 gallons = 10; // start with 10 gallons

 liters = gallons * 3.7854; // convert to liters

 System.out.println(gallons + " gallons is " + liters + " liters.");
 }
}

 3. Compile the program using the following command line:

javac GalToLit.java

 4. Run the program using this command:

java GalToLit

You will see this output:

10.0 gallons is 37.854 liters.

 5. As it stands, this program converts 10 gallons to liters. However, by changing the value
assigned to gallons, you can have the program convert a different number of gallons into its
equivalent number of liters.

Two Control Statements
Inside a method, execution proceeds from one statement to the next, top to bottom. However,
it is possible to alter this flow through the use of the various program control statements
supported by Java. Although we will look closely at control statements later, two are briefly
introduced here because we will be using them to write sample programs.

01-ch01.indd 22 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 1

 Chapter 1: Java Fundamentals 23

The if Statement
You can selectively execute part of a program through the use of Java’s conditional statement: the
if. The Java if statement works much like the IF statement in any other language. It determines
the flow of program execution based on whether some condition is true or false. Its simplest form
is shown here:

if(condition) statement;

Here, condition is a Boolean expression. (A Boolean expression is one that evaluates to either
true or false.) If condition is true, then the statement is executed. If condition is false, then the
statement is bypassed. Here is an example:

if(10 < 11) System.out.println("10 is less than 11");

In this case, since 10 is less than 11, the conditional expression is true, and println() will
execute. However, consider the following:

if(10 < 9) System.out.println("this won't be displayed");

In this case, 10 is not less than 9. Thus, the call to println() will not take place.
Java defines a full complement of relational operators that may be used in a conditional

expression. They are shown here:

Operator Meaning

< Less than

<= Less than or equal

> Greater than

>= Greater than or equal

= = Equal to

!= Not equal

Notice that the test for equality is the double equal sign.
Here is a program that illustrates the if statement:

/*
 Demonstrate the if.

 Call this file IfDemo.java.
*/
class IfDemo {
 public static void main(String[] args) {
 int a, b, c;

 a = 2;
 b = 3;

 if(a < b) System.out.println("a is less than b");

01-ch01.indd 23 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 1

 24 Java: A Beginner’s Guide

 // this won't display anything
 if(a == b) System.out.println("you won't see this");

 System.out.println();

 c = a - b; // c contains -1

 System.out.println("c contains -1");
 if(c >= 0) System.out.println("c is non-negative");
 if(c < 0) System.out.println("c is negative");

 System.out.println();

 c = b - a; // c now contains 1

 System.out.println("c contains 1");
 if(c >= 0) System.out.println("c is non-negative");
 if(c < 0) System.out.println("c is negative");

 }
}

The output generated by this program is shown here:

a is less than b

c contains -1
c is negative

c contains 1
c is non-negative

Notice one other thing in this program. The line

int a, b, c;

declares three variables, a, b, and c, by use of a comma-separated list. As mentioned earlier,
when you need two or more variables of the same type, they can be declared in one statement.
Just separate the variable names by commas.

The for Loop
You can repeatedly execute a sequence of code by creating a loop. Loops are used whenever
you need to perform a repetitive task because they are much simpler and easier than trying to
write the same statement sequence over and over again. Java supplies a powerful assortment
of loop constructs. The one we will look at here is the for loop. The simplest form of the for
loop is shown here:

for(initialization; condition; iteration) statement;

In its most common form, the initialization portion of the loop sets a loop control variable
to an initial value. The condition is a Boolean expression that tests the loop control variable.

01-ch01.indd 24 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 1

 Chapter 1: Java Fundamentals 25

If the outcome of that test is true, statement executes and the for loop continues to iterate. If it
is false, the loop terminates. The iteration expression determines how the loop control variable
is changed each time the loop iterates. Here is a short program that illustrates the for loop:

/*
 Demonstrate the for loop.

 Call this file ForDemo.java.
*/
class ForDemo {
 public static void main(String[] args) {
 int count;

 for(count = 0; count < 5; count = count+1)
 System.out.println("This is count: " + count);

 System.out.println("Done!");
 }
}

The output generated by the program is shown here:

This is count: 0
This is count: 1
This is count: 2
This is count: 3
This is count: 4
Done!

In this example, count is the loop control variable. It is set to zero in the initialization portion
of the for. At the start of each iteration (including the first one), the conditional test count < 5
is performed. If the outcome of this test is true, the println() statement is executed, and
then the iteration portion of the loop is executed, which increases count by 1. This process
continues until the conditional test is false, at which point execution picks up at the bottom of
the loop. As a point of interest, in professionally written Java programs, you will almost never
see the iteration portion of the loop written as shown in the preceding program. That is, you
will seldom see statements like this:

count = count + 1;

The reason is that Java includes a special increment operator that performs this operation more
efficiently. The increment operator is ++ (that is, two plus signs back to back). The increment
operator increases its operand by one. By use of the increment operator, the preceding statement
can be written like this:

count++;

Thus, the for in the preceding program will usually be written like this:

for(count = 0; count < 5; count++)

You might want to try this. As you will see, the loop still runs exactly the same as it did before.

This loop iterates five times.

01-ch01.indd 25 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 1

 26 Java: A Beginner’s Guide

Java also provides a decrement operator, which is specified as – –. This operator decreases
its operand by one.

Create Blocks of Code
Another key element of Java is the code block. A code block is a grouping of two or more
statements. This is done by enclosing the statements between opening and closing curly braces.
Once a block of code has been created, it becomes a logical unit that can be used any place that
a single statement can. For example, a block can be a target for Java’s if and for statements.
Consider this if statement:

if(w < h) {
 v = w * h;
 w = 0;
}

Here, if w is less than h, both statements inside the block will be executed. Thus, the two
statements inside the block form a logical unit, and one statement cannot execute without
the other also executing. The key point here is that whenever you need to logically link two
or more statements, you do so by creating a block. Code blocks allow many algorithms to
be implemented with greater clarity and efficiency.

Here is a program that uses a block of code to prevent a division by zero:

/*
 Demonstrate a block of code.

 Call this file BlockDemo.java.
*/
class BlockDemo {
 public static void main(String[] args) {
 double i, j, d;

 i = 5;
 j = 10;

 // the target of this if is a block
 if(i != 0) {
 System.out.println("i does not equal zero");
 d = j / i;
 System.out.println("j / i is " + d);
 }
 }
}

The output generated by this program is shown here:

i does not equal zero
j / i is 2.0

Start of block

End of block

The target of the if
is this entire block.

01-ch01.indd 26 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 1

 Chapter 1: Java Fundamentals 27

In this case, the target of the if statement is a block of code and not just a single statement. If the
condition controlling the if is true (as it is in this case), the three statements inside the block will be
executed. Try setting i to zero and observe the result. You will see that the entire block is skipped.

As you will see later in this book, blocks of code have additional properties and uses.
However, the main reason for their existence is to create logically inseparable units of code.

Semicolons and Positioning
In Java, the semicolon is a separator. It is often used to terminate a statement. In essence, the
semicolon indicates the end of one logical entity.

As you know, a block is a set of logically connected statements that are surrounded by
opening and closing braces. A block is not terminated with a semicolon. Instead, the end of
the block is indicated by the closing brace.

Java does not recognize the end of the line as a terminator. For this reason, it does not
matter where on a line you put a statement. For example,

x = y;
y = y + 1;
System.out.println(x + " " + y);

is the same as the following, to Java:

x = y; y = y + 1; System.out.println(x + " " + y);

Furthermore, the individual elements of a statement can also be put on separate lines. For
example, the following is perfectly acceptable:

System.out.println("This is a long line of output" +
 x + y + z +
 "more output");

Breaking long lines in this fashion is often used to make programs more readable. It can also
help prevent excessively long lines from wrapping.

Q: Does the use of a code block introduce any run-time inefficiencies? In other words,
does Java actually execute the { and }?

A: No. Code blocks do not add any overhead whatsoever. In fact, because of their ability to
simplify the coding of certain algorithms, their use generally increases speed and efficiency.
Also, the { and } exist only in your program’s source code. Java does not, per se, execute
the { or }.

Ask the Expert

01-ch01.indd 27 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 1

 28 Java: A Beginner’s Guide

Try This 1-2

Indentation Practices
You may have noticed in the previous examples that certain statements were indented. Java
is a free-form language, meaning that it does not matter where you place statements relative
to each other on a line. However, over the years, a common and accepted indentation style
has developed that allows for very readable programs. This book follows that style, and it is
recommended that you do so as well. Using this style, you indent one level after each opening
brace, and move back out one level after each closing brace. Certain statements encourage
some additional indenting; these will be covered later.

 Improving the Gallons-to-Liters Converter
You can use the for loop, the if statement, and code blocks to create an
improved version of the gallons-to-liters converter that you developed

in the first project. This new version will print a table of conversions, beginning with 1
gallon and ending at 100 gallons. After every 10 gallons, a blank line will be output. This is
accomplished through the use of a variable called counter that counts the number of lines that
have been output. Pay special attention to its use.

 1. Create a new file called GalToLitTable.java.

 2. Enter the following program into the file:

/*
 Try This 1-2

 This program displays a conversion
 table of gallons to liters.

 Call this program "GalToLitTable.java".
*/
class GalToLitTable {
 public static void main(String[] args) {
 double gallons, liters;
 int counter;

 counter = 0;
 for(gallons = 1; gallons <= 100; gallons++) {
 liters = gallons * 3.7854; // convert to liters
 System.out.println(gallons + " gallons is " +
 liters + " liters.");

 counter++;
 // every 10th line, print a blank line
 if(counter == 10) {
 System.out.println();
 counter = 0; // reset the line counter
 }
 }
 }
}

GalToLitTable.java

Line counter is initially set to zero.

Increment the line counter
with each loop iteration.

If counter is 10,
output a blank line.

01-ch01.indd 28 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 1

 Chapter 1: Java Fundamentals 29

 3. Compile the program using the following command line:

javac GalToLitTable.java

 4. Run the program using this command:

java GalToLitTable

Here is a portion of the output that you will see:

1.0 gallons is 3.7854 liters.
2.0 gallons is 7.5708 liters.
3.0 gallons is 11.356200000000001 liters.
4.0 gallons is 15.1416 liters.
5.0 gallons is 18.927 liters.
6.0 gallons is 22.712400000000002 liters.
7.0 gallons is 26.4978 liters.
8.0 gallons is 30.2832 liters.
9.0 gallons is 34.0686 liters.
10.0 gallons is 37.854 liters.

11.0 gallons is 41.6394 liters.
12.0 gallons is 45.424800000000005 liters.
13.0 gallons is 49.2102 liters.
14.0 gallons is 52.9956 liters.
15.0 gallons is 56.781 liters.
16.0 gallons is 60.5664 liters.
17.0 gallons is 64.3518 liters.
18.0 gallons is 68.1372 liters.
19.0 gallons is 71.9226 liters.
20.0 gallons is 75.708 liters.

21.0 gallons is 79.49340000000001 liters.
22.0 gallons is 83.2788 liters.
23.0 gallons is 87.0642 liters.
24.0 gallons is 90.84960000000001 liters.
25.0 gallons is 94.635 liters.
26.0 gallons is 98.4204 liters.
27.0 gallons is 102.2058 liters.
28.0 gallons is 105.9912 liters.
29.0 gallons is 109.7766 liters.
30.0 gallons is 113.562 liters.

The Java Keywords
Sixty-seven keywords are currently defined in the Java language (see Table 1-1). These keywords,
combined with the syntax of the operators and separators, form the definition of the Java
language. In general, keywords cannot be used as names for a variable, class, or method.
However, 16 of the keywords are context-sensitive, which means that they are only keywords

01-ch01.indd 29 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 1

 30 Java: A Beginner’s Guide

when used with the feature to which they relate. They support features added to Java over the
past few years. Ten relate to modules: exports, module, open, opens, provides, requires, to,
transitive, uses, and with. Records are declared by record; sealed classes and interfaces use
sealed, non-sealed, and permits; yield is used by the enhanced switch; and var supports local
variable type inference. Because they are context-sensitive, existing programs were unaffected
by their addition. Also, beginning with JDK 9, an underscore by itself is considered a keyword
in order to prevent its use as the name of something in your program. Beginning with JDK 17,
strictfp no longer has any effect and is unnecessary. It is, however, still a Java keyword.

The keywords const and goto are reserved but not used. In the early days of Java, several
other keywords were reserved for possible future use. However, the current specification for
Java defines only the keywords shown in Table 1-1.

In addition to the keywords, Java reserves three other names that have been part of Java
since the start: true, false, and null. These are values defined by Java. You may not use these
words for the names of variables, classes, and so on.

Identifiers in Java
In Java an identifier is, essentially, a name given to a method, a variable, or any other user-defined
item. Identifiers can be from one to several characters long. Variable names may start with any
letter of the alphabet, an underscore, or a dollar sign. (The $ is not intended for general use.)
Next may be either a letter, a digit, a dollar sign, or an underscore. The underscore can be used
to enhance the readability of a variable name, as in line_count. Uppercase and lowercase are

Table 1-1 The Java Keywords

abstract assert boolean break byte case

catch char class const continue default

do double else enum exports extends

final finally float for goto if

implements import instanceof int interface long

module native new non-sealed open opens

package permits private protected provides public

record requires return sealed short static

strictfp super switch synchronized this throw

throws to transient transitive try uses var

void volatile while with yield _

01-ch01.indd 30 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 1

 Chapter 1: Java Fundamentals 31

different; that is, to Java, myvar and MyVar are separate names. Here are some examples of
legal identifiers:

Test x y2 MaxLoad

up _top my_var sample23

Remember, you can’t start an identifier with a digit. Thus, 12x is invalid, for example.
In general, you cannot use the Java keywords as identifier names. Also, you should not

use the name of any standard method, such as println, as an identifier. Beyond these two
restrictions, good programming practice dictates that you use identifier names that reflect the
meaning or usage of the items being named.

The Java Class Libraries
The sample programs shown in this chapter make use of two of Java’s built-in methods:
println() and print(). These methods are accessed through System.out. System is a class
predefined by Java that is automatically included in your programs. In the larger view, the Java
environment relies on several built-in class libraries that contain many built-in methods that
provide support for such things as I/O, string handling, networking, and graphics. The standard
classes also provide support for a graphical user interface (GUI). Thus, Java as a totality is a
combination of the Java language itself, plus its standard classes. As you will see, the class
libraries provide much of the functionality that comes with Java. Indeed, part of becoming a
Java programmer is learning to use the standard Java classes. Throughout this book, various
elements of the standard library classes and methods are described. However, the Java library
is something that you will also want to explore more on your own.

 Chapter 1 Self Test
 1. What is bytecode and why is it important to Java’s use for Internet programming?

 2. What are the three main principles of object-oriented programming?

 3. Where do Java programs begin execution?

 4. What is a variable?

 5. Which of the following variable names is invalid?

 A. count

 B. $count

 C. count27

 D. 67count

✓

01-ch01.indd 31 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 1

 32 Java: A Beginner’s Guide

 6. How do you create a single-line comment? How do you create a multiline comment?

 7. Show the general form of the if statement. Show the general form of the for loop.

 8. How do you create a block of code?

 9. The moon’s gravity is about 17 percent that of earth’s. Write a program that computes your
effective weight on the moon.

 10. Adapt Try This 1-2 so that it prints a conversion table of inches to meters. Display 12 feet
of conversions, inch by inch. Output a blank line every 12 inches. (One meter equals
approximately 39.37 inches.)

 11. If you make a typing mistake when entering your program, what sort of error will result?

 12. Does it matter where on a line you put a statement?

01-ch01.indd 32 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 2
Blind Folio: 33

Chapter 2
Introducing Data Types
and Operators

02-ch02.indd 33 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 2

 34 Java: A Beginner’s Guide

Key Skills & Concepts

● Know Java’s primitive types

● Use literals

● Initialize variables

● Know the scope rules of variables within a method

● Use the arithmetic operators

● Use the relational and logical operators

● Understand the assignment operators

● Use shorthand assignments

● Understand type conversion in assignments

● Cast incompatible types

● Understand type conversion in expressions

A t the foundation of any programming language are its data types and operators, and Java
is no exception. These elements define the limits of a language and determine the kind of

tasks to which it can be applied. Fortunately, Java supports a rich assortment of both data types
and operators, making it suitable for any type of programming.

Data types and operators are a large subject. We will begin here with an examination of
Java’s foundational data types and its most commonly used operators. We will also take a
closer look at variables and examine the expression.

Why Data Types Are Important
Data types are especially important in Java because it is a strongly typed language. This means
that all operations are type-checked by the compiler for type compatibility. Illegal operations
will not be compiled. Thus, strong type checking helps prevent errors and enhances reliability.
To enable strong type checking, all variables, expressions, and values have a type. There is no
concept of a “type-less” variable, for example. Furthermore, the type of a value determines what
operations are allowed on it. An operation allowed on one type might not be allowed on another.

Java’s Primitive Types
Java contains two general categories of built-in data types: object-oriented and non-object-
oriented. Java’s object-oriented types are defined by classes, and a discussion of classes is

02-ch02.indd 34 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 2

 Chapter 2: Introducing Data Types and Operators 35

deferred until later. However, at the core of Java are eight primitive (also called elemental or
simple) types of data, which are shown in Table 2-1. The term primitive is used here to indicate
that these types are not objects in an object-oriented sense, but rather, normal binary values.
These primitive types are not objects because of efficiency concerns. All of Java’s other data
types are constructed from these primitive types.

Java strictly specifies a range and behavior for each primitive type, which all implementations
of the Java Virtual Machine must support. Because of Java’s portability requirement, Java is
uncompromising on this account. For example, an int is the same in all execution environments.
This allows programs to be fully portable. There is no need to rewrite code to fit a specific
platform. Although strictly specifying the range of the primitive types may cause a small loss
of performance in some environments, it is necessary in order to achieve portability.

Integers
Java defines four integer types: byte, short, int, and long, which are shown here:

Type Width in Bits Range

byte 8 –128 to 127

short 16 –32,768 to 32,767

int 32 –2,147,483,648 to 2,147,483,647

long 64 –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

As the table shows, all of the integer types are signed positive and negative values. Java
does not support unsigned (positive-only) integers. Many other computer languages support
both signed and unsigned integers. However, Java’s designers felt that unsigned integers
were unnecessary.

NOTE
Technically, the Java run-time system can use any size it wants to store a primitive type.
However, in all cases, types must act as specified.

Table 2-1 Java’s Built-in Primitive Data Types

Type Meaning

boolean Represents true/false values

byte 8-bit integer

char Character

double Double-precision floating point

float Single-precision floating point

int Integer

long Long integer

short Short integer

02-ch02.indd 35 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 2

 36 Java: A Beginner’s Guide

The most commonly used integer type is int. Variables of type int are often employed to
control loops, to index arrays, and to perform general-purpose integer math.

When you need an integer that has a range greater than int, use long. For example, here is
a program that computes the number of cubic inches contained in a cube that is one mile by
one mile, by one mile:

/*
 Compute the number of cubic inches
 in 1 cubic mile.
*/
class Inches {
 public static void main(String[] args) {
 long ci;
 long im;

 im = 5280 * 12;

 ci = im * im * im;

 System.out.println("There are " + ci +
 " cubic inches in cubic mile.");

 }
}

Here is the output from the program:

There are 254358061056000 cubic inches in cubic mile.

Clearly, the result could not have been held in an int variable.
The smallest integer type is byte. Variables of type byte are especially useful when working

with raw binary data that may not be directly compatible with Java’s other built-in types. The
short type creates a short integer. Variables of type short are appropriate when you don’t need
the larger range offered by int.

Q: You say that there are four integer types: int, short, long, and byte. However, I have
heard that char can also be categorized as an integer type in Java. Can you explain?

A: The formal specification for Java defines a type category called integral types, which
includes byte, short, int, long, and char. They are called integral types because they all
hold whole-number, binary values. However, the purpose of the first four is to represent
numeric integer quantities. The purpose of char is to represent characters. Therefore, the
principal uses of char and the principal uses of the other integral types are fundamentally
different. Because of the differences, the char type is treated separately in this book.

Ask the Expert

02-ch02.indd 36 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 2

 Chapter 2: Introducing Data Types and Operators 37

Floating-Point Types
As explained in Chapter 1, the floating-point types can represent numbers that have fractional
components. There are two kinds of floating-point types, float and double, which represent
single- and double-precision numbers, respectively. Type float is 32 bits wide and type double
is 64 bits wide.

Of the two, double is the most commonly used, and many of the math functions in Java’s
class library use double values. For example, the sqrt() method (which is defined by the
standard Math class) returns a double value that is the square root of its double argument.
Here, sqrt() is used to compute the length of the hypotenuse, given the lengths of the two
opposing sides:

/*
 Use the Pythagorean theorem to
 find the length of the hypotenuse
 given the lengths of the two opposing
 sides.
*/
class Hypot {
 public static void main(String[] args) {
 double x, y, z;

 x = 3;
 y = 4;

 z = Math.sqrt(x*x + y*y);

 System.out.println("Hypotenuse is " +z);
 }
}

The output from the program is shown here:

Hypotenuse is 5.0

One other point about the preceding example: As mentioned, sqrt() is a member of the
standard Math class. Notice how sqrt() is called; it is preceded by the name Math. This is
similar to the way System.out precedes println(). Although not all standard methods are
called by specifying their class name first, several are.

Characters
In Java, characters are not 8-bit quantities like they are in many other computer languages.
Instead, Java uses Unicode. Unicode defines a character set that can represent all of the
characters found in all human languages. In Java, char is an unsigned 16-bit type having a
range of 0 to 65,535. The standard 8-bit ASCII character set is a subset of Unicode and ranges
from 0 to 127. Thus, the ASCII characters are still valid Java characters.

Notice how sqrt() is called. It is preceded by
the name of the class of which it is a member.

02-ch02.indd 37 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 2

 38 Java: A Beginner’s Guide

A character variable can be assigned a value by enclosing the character in single quotes.
For example, this assigns the variable ch the letter X:

char ch;
ch = 'X';

You can output a char value using a println() statement. For example, this line outputs
the value in ch:

System.out.println("This is ch: " + ch);

Since char is an unsigned 16-bit type, it is possible to perform various arithmetic
manipulations on a char variable. For example, consider the following program:

// Character variables can be handled like integers.
class CharArithDemo {
 public static void main(String[] args) {
 char ch;

 ch = 'X';
 System.out.println("ch contains " + ch);

 ch++; // increment ch
 System.out.println("ch is now " + ch);

 ch = 90; // give ch the value Z
 System.out.println("ch is now " + ch);
 }
}

The output generated by this program is shown here:

ch contains X
ch is now Y
ch is now Z

In the program, ch is first given the value X. Next, ch is incremented. This results in ch
containing Y, the next character in the ASCII (and Unicode) sequence. Next, ch is assigned
the value 90, which is the ASCII (and Unicode) value that corresponds to the letter Z. Since
the ASCII character set occupies the first 127 values in the Unicode character set, all the “old
tricks” that you may have used with characters in other languages will work in Java, too.

A char can be incremented.

A char can be assigned an integer value.

02-ch02.indd 38 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 2

 Chapter 2: Introducing Data Types and Operators 39

The Boolean Type
The boolean type represents true/false values. Java defines the values true and false using the
reserved words true and false. Thus, a variable or expression of type boolean will be one of
these two values.

Here is a program that demonstrates the boolean type:

// Demonstrate boolean values.
class BoolDemo {
 public static void main(String[] args) {
 boolean b;

 b = false;
 System.out.println("b is " + b);
 b = true;
 System.out.println("b is " + b);

 // a boolean value can control the if statement
 if(b) System.out.println("This is executed.");

 b = false;
 if(b) System.out.println("This is not executed.");

 // outcome of a relational operator is a boolean value
 System.out.println("10 > 9 is " + (10 > 9));
 }
}

The output generated by this program is shown here:

b is false
b is true
This is executed.
10 > 9 is true

Q: Why does Java use Unicode?

A: Java was designed for worldwide use. Thus, it needs to use a character set that can represent
all the world’s languages. Unicode is the standard character set designed expressly for
this purpose. Of course, the use of Unicode is inefficient for languages such as English,
German, Spanish, or French, whose characters can be contained within 8 bits. But such is
the price that must be paid for global portability.

Ask the Expert

02-ch02.indd 39 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 2

 40 Java: A Beginner’s Guide

Try This 2-1

There are three interesting things to notice about this program. First, as you can see, when
a boolean value is output by println(), "true" or "false" is displayed. Second, the value of a
boolean variable is sufficient, by itself, to control the if statement. There is no need to write an
if statement like this:

if(b == true) ...

Third, the outcome of a relational operator, such as <, is a boolean value. This is why the
expression 10 > 9 displays the value "true." Further, the extra set of parentheses around 10 > 9
is necessary because the + operator has a higher precedence than the >.

 How Far Away Is the Lightning?
In this project, you will create a program that computes how far away, in feet,
a listener is from a lightning strike. Sound travels approximately 1,100 feet per

second through air. Thus, knowing the interval between the time you see a lightning bolt and
the time the sound reaches you enables you to compute the distance to the lightning. For this
project, assume that the time interval is 7.2 seconds.

 1. Create a new file called Sound.java.

 2. To compute the distance, you will need to use floating-point values. Why? Because the
time interval, 7.2, has a fractional component. Although it would be permissible to use a
value of type float, we will use double in the example.

 3. To compute the distance, you will multiply 7.2 by 1,100. You will then assign this value to
a variable.

 4. Finally, you will display the result.

Here is the entire Sound.java program listing:

/*
 Try This 2-1
 Compute the distance to a lightning
 strike whose sound takes 7.2 seconds
 to reach you.
*/
class Sound {
 public static void main(String[] args) {
 double dist;

 dist = 7.2 * 1100;

 System.out.println("The lightning is " + dist +
 " feet away.");

 }
}

Sound.java

02-ch02.indd 40 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 2

 Chapter 2: Introducing Data Types and Operators 41

 5. Compile and run the program. The following result is displayed:

The lightning is 7920.0 feet away.

 6. Extra challenge: You can compute the distance to a large object, such as a rock wall, by
timing the echo. For example, if you clap your hands and time how long it takes for you
to hear the echo, then you know the total round-trip time. Dividing this value by two
yields the time it takes the sound to go one way. You can then use this value to compute
the distance to the object. Modify the preceding program so that it computes the distance,
assuming that the time interval is that of an echo.

Literals
In Java, literals refer to fixed values that are represented in their human-readable form. For
example, the number 100 is a literal. Literals are also commonly called constants. For the most
part, literals, and their usage, are so intuitive that they have been used in one form or another
by all the preceding sample programs. Now the time has come to explain them formally.

Java literals can be of any of the primitive data types. The way each literal is represented
depends upon its type. As explained earlier, character constants are enclosed in single quotes.
For example, 'a' and ' %' are both character constants.

Integer literals are specified as numbers without fractional components. For example,
10 and –100 are integer literals. Floating-point literals require the use of the decimal point
followed by the number’s fractional component. For example, 11.123 is a floating-point literal.
Java also allows you to use scientific notation for floating-point numbers.

By default, integer literals are of type int. If you want to specify a long literal, append an
l or an L. For example, 12 is an int, but 12L is a long.

By default, floating-point literals are of type double. To specify a float literal, append an
F or f to the constant. For example, 10.19F is of type float.

Although integer literals create an int value by default, they can still be assigned to variables
of type char, byte, or short as long as the value being assigned can be represented by the target
type. An integer literal can always be assigned to a long variable.

You can embed one or more underscores into an integer or floating-point literal. Doing so
can make it easier to read values consisting of many digits. When the literal is compiled, the
underscores are simply discarded. Here is an example:

123_45_1234

This specifies the value 123,451,234. The use of underscores is particularly useful when
encoding things like part numbers, customer IDs, and status codes that are commonly thought
of as consisting of subgroups of digits.

02-ch02.indd 41 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 2

 42 Java: A Beginner’s Guide

Hexadecimal, Octal, and Binary Literals
As you may know, in programming it is sometimes easier to use a number system based on 8 or
16 instead of 10. The number system based on 8 is called octal, and it uses the digits 0 through
7. In octal the number 10 is the same as 8 in decimal. The base 16 number system is called
hexadecimal and uses the digits 0 through 9 plus the letters A through F, which stand for 10, 11,
12, 13, 14, and 15. For example, the hexadecimal number 10 is 16 in decimal. Because of the
frequency with which these two number systems are used, Java allows you to specify integer
literals in hexadecimal or octal instead of decimal. A hexadecimal literal must begin with 0x or
0X (a zero followed by an x or X). An octal literal begins with a zero. Here are some examples:

hex = 0xFF; // 255 in decimal
oct = 011; // 9 in decimal

As a point of interest, Java also allows hexadecimal floating-point literals, but they are
seldom used.

It is possible to specify an integer literal by use of binary. To do so, precede the binary
number with a 0b or 0B. For example, this specifies the value 12 in binary: 0b1100.

Character Escape Sequences
Enclosing character constants in single quotes works for most printing characters, but a few
characters, such as the carriage return, pose a special problem when a text editor is used. In
addition, certain other characters, such as the single and double quotes, have special meaning
in Java, so you cannot use them directly. For these reasons, Java provides special escape
sequences, sometimes referred to as backslash character constants, shown in Table 2-2. These
sequences are used in place of the characters that they represent.

Table 2-2 Character Escape Sequences

Escape Sequence Description

\' Single quote

\" Double quote

\\ Backslash

\r Carriage return

\n New line

\f Form feed

\t Horizontal tab

\b Backspace

\ddd Octal constant (where ddd is an octal constant)

\uxxxx Hexadecimal constant (where xxxx is a hexadecimal constant)

\s Space (added by JDK 15)

\endofline Continue line (applies to only text block; added by JDK 15)

02-ch02.indd 42 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 2

 Chapter 2: Introducing Data Types and Operators 43

For example, this assigns ch the tab character:

ch = '\t';

The next example assigns a single quote to ch:

ch = '\'';

String Literals
Java supports another type of literal: the string. A string is a set of characters enclosed by
double quotes. For example,

"this is a test"

is a string. You have seen examples of strings in many of the println() statements in the
preceding sample programs.

In addition to normal characters, a string literal can also contain one or more of the escape
sequences just described. For example, consider the following program. It uses the \n and \t
escape sequences.

// Demonstrate escape sequences in strings.
class StrDemo {
 public static void main(String[] args) {
 System.out.println("First line\nSecond line");
 System.out.println("A\tB\tC");
 System.out.println("D\tE\tF") ;
 }
}

The output is shown here:

First line
Second line
A B C
D E F

Use \n to generate a new line.

Use tabs to align output.

Q: Is a string consisting of a single character the same as a character literal? For example,
is "k" the same as 'k'?

A: No. You must not confuse strings with characters. A character literal represents a single
letter of type char. A string containing only one letter is still a string. Although strings
consist of characters, they are not the same type.

Ask the Expert

02-ch02.indd 43 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 2

 44 Java: A Beginner’s Guide

Notice how the \n escape sequence is used to generate a new line. You don’t need to use
multiple println() statements to get multiline output. Just embed \n within a longer string
at the points where you want the new lines to occur. One other point: As you will see in
Chapter 5, there is a feature called a text block that was recently added to Java. A text block
offers more control and flexibility when you need multiple lines of text.

A Closer Look at Variables
Variables were introduced in Chapter 1. Here, we will take a closer look at them. As you
learned earlier, variables are declared using this form of statement,

type var-name;

where type is the data type of the variable, and var-name is its name. You can declare a variable
of any valid type, including the simple types just described, and every variable will have a
type. Thus, the capabilities of a variable are determined by its type. For example, a variable
of type boolean cannot be used to store floating-point values. Furthermore, the type of a
variable cannot change during its lifetime. An int variable cannot turn into a char variable, for
example.

All variables in Java must be declared prior to their use. This is necessary because the
compiler must know what type of data a variable contains before it can properly compile any
statement that uses the variable. It also enables Java to perform strict type checking.

Initializing a Variable
In general, you must give a variable a value prior to using it. One way to give a variable a value
is through an assignment statement, as you have already seen. Another way is by giving it an
initial value when it is declared. To do this, follow the variable’s name with an equal sign and
the value being assigned. The general form of initialization is shown here:

type var = value;

Here, value is the value that is given to var when var is created. The value must be compatible
with the specified type. Here are some examples:

int count = 10; // give count an initial value of 10
char ch = 'X'; // initialize ch with the letter X
float f = 1.2F; // f is initialized with 1.2

When declaring two or more variables of the same type using a comma-separated list, you
can give one or more of those variables an initial value. For example:

int a, b = 8, c = 19, d; // b and c have initializations

In this case, only b and c are initialized.

02-ch02.indd 44 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 2

 Chapter 2: Introducing Data Types and Operators 45

Dynamic Initialization
Although the preceding examples have used only constants as initializers, Java allows variables
to be initialized dynamically, using any expression valid at the time the variable is declared.
For example, here is a short program that computes the volume of a cylinder given the radius
of its base and its height:

// Demonstrate dynamic initialization.
class DynInit {
 public static void main(String[] args) {
 double radius = 4, height = 5;

 // dynamically initialize volume
 double volume = 3.1416 * radius * radius * height;

 System.out.println("Volume is " + volume);
 }
}

Here, three local variables—radius, height, and volume—are declared. The first two, radius and
height, are initialized by constants. However, volume is initialized dynamically to the volume of
the cylinder. The key point here is that the initialization expression can use any element valid at
the time of the initialization, including calls to methods, other variables, or literals.

The Scope and Lifetime of Variables
So far, all of the variables that we have been using were declared at the start of the main()
method. However, Java allows variables to be declared within any block. As explained in
Chapter 1, a block is begun with an opening curly brace and ended by a closing curly brace.
A block defines a scope. Thus, each time you start a new block, you are creating a new scope.
A scope determines what objects are visible to other parts of your program. It also determines
the lifetime of those objects.

In general, every declaration in Java has a scope. As a result, Java defines a powerful,
finely grained concept of scope. Two of the most common scopes in Java are those defined
by a class and those defined by a method. A discussion of class scope (and variables declared
within it) is deferred until later in this book, when classes are described. For now, we will
examine only the scopes defined by or within a method.

The scope defined by a method begins with its opening curly brace. However, if that
method has parameters, they too are included within the method’s scope. A method’s scope
ends with its closing curly brace. This block of code is called the method body.

As a general rule, variables declared inside a scope are not visible (that is, accessible) to
code that is defined outside that scope. Thus, when you declare a variable within a scope, you
are localizing that variable and protecting it from unauthorized access and/or modification.
Indeed, the scope rules provide the foundation for encapsulation. A variable declared within a
block is called a local variable.

Scopes can be nested. For example, each time you create a block of code, you are creating
a new, nested scope. When this occurs, the outer scope encloses the inner scope. This means

volume is dynamically initialized at run time.

02-ch02.indd 45 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 2

 46 Java: A Beginner’s Guide

that objects declared in the outer scope will be visible to code within the inner scope. However,
the reverse is not true. Objects declared within the inner scope will not be visible outside it.

To understand the effect of nested scopes, consider the following program:

// Demonstrate block scope.
class ScopeDemo {
 public static void main(String[] args) {
 int x; // known to all code within main

 x = 10;
 if(x == 10) { // start new scope

 int y = 20; // known only to this block

 // x and y both known here.

 System.out.println("x and y: " + x + " " + y);
 x = y * 2;
 }
 // y = 100; // Error! y not known here

 // x is still known here.
 System.out.println("x is " + x);
 }
}

As the comments indicate, the variable x is declared at the start of main()’s scope and is
accessible to all subsequent code within main(). Within the if block, y is declared. Since a
block defines a scope, y is visible only to other code within its block. This is why outside of
its block, the line y = 100; is commented out. If you remove the leading comment symbol, a
compile-time error will occur, because y is not visible outside of its block. Within the if block,
x can be used because code within a block (that is, a nested scope) has access to variables
declared by an enclosing scope.

Within a block, variables can be declared at any point, but are valid only after they are
declared. Thus, if you define a variable at the start of a method, it is available to all of the code
within that method. Conversely, if you declare a variable at the end of a block, it is effectively
useless, because no code will have access to it.

Here is another important point to remember: variables are created when their scope is
entered, and destroyed when their scope is left. This means that a variable will not hold its
value once it has gone out of scope. Therefore, variables declared within a method will not
hold their values between calls to that method. Also, a variable declared within a block will
lose its value when the block is left. Thus, the lifetime of a variable is confined to its scope.

If a variable declaration includes an initializer, that variable will be reinitialized each time
the block in which it is declared is entered. For example, consider this program:

// Demonstrate lifetime of a variable.
class VarInitDemo {
 public static void main(String[] args) {
 int x;

Here, y is outside of its scope.

02-ch02.indd 46 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 2

 Chapter 2: Introducing Data Types and Operators 47

 for(x = 0; x < 3; x++) {
 int y = -1; // y is initialized each time block is entered
 System.out.println("y is: " + y); // this always prints -1
 y = 100;
 System.out.println("y is now: " + y);
 }
 }
}

The output generated by this program is shown here:

y is: -1
y is now: 100
y is: -1
y is now: 100
y is: -1
y is now: 100

As you can see, y is reinitialized to –1 each time the inner for loop is entered. Even though it is
subsequently assigned the value 100, this value is lost.

There is one quirk to Java’s scope rules that may surprise you: although blocks can be
nested, no variable declared within an inner scope can have the same name as a variable
declared by an enclosing scope. For example, the following program, which tries to declare
two separate variables with the same name, will not compile.

/*
 This program attempts to declare a variable
 in an inner scope with the same name as one
 defined in an outer scope.

 *** This program will not compile. ***
*/
class NestVar {
 public static void main(String[] args) {
 int count;

 for(count = 0; count < 10; count = count+1) {
 System.out.println("This is count: " + count);

 int count; // illegal!!!
 for(count = 0; count < 2; count++)
 System.out.println("This program is in error!");
 }
 }
}

Can’t declare count again because
it’s already declared.

02-ch02.indd 47 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 2

 48 Java: A Beginner’s Guide

Operators
Java provides a rich operator environment. An operator is a symbol that tells the compiler
to perform a specific mathematical or logical manipulation. Java has four general classes
of operators: arithmetic, bitwise, relational, and logical. Java also defines some additional
operators that handle certain special situations. This chapter will examine the arithmetic,
relational, and logical operators. We will also examine the assignment operator. The bitwise
and other special operators are examined later.

Arithmetic Operators
Java defines the following arithmetic operators:

Operator Meaning

+ Addition (also unary plus)

– Subtraction (also unary minus)

* Multiplication

/ Division

% Modulus

++ Increment

– – Decrement

The operators +, –, *, and / all work the same way in Java as they do in any other computer
language (or algebra, for that matter). These can be applied to any built-in numeric data type.
They can also be used on objects of type char.

Although the actions of arithmetic operators are well known to all readers, a few special
situations warrant some explanation. First, remember that when / is applied to an integer, any
remainder will be truncated; for example, 10/3 will equal 3 in integer division. You can obtain
the remainder of this division by using the modulus operator %. It yields the remainder of
an integer division. For example, 10 % 3 is 1. In Java, the % can be applied to both integer
and floating-point types. Thus, 10.0 % 3.0 is also 1. The following program demonstrates the
modulus operator.

// Demonstrate the % operator.
class ModDemo {
 public static void main(String[] args) {
 int iresult, irem;
 double dresult, drem;

 iresult = 10 / 3;
 irem = 10 % 3;

02-ch02.indd 48 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 2

 Chapter 2: Introducing Data Types and Operators 49

 dresult = 10.0 / 3.0;
 drem = 10.0 % 3.0;

 System.out.println("Result and remainder of 10 / 3: " +
 iresult + " " + irem);
 System.out.println("Result and remainder of 10.0 / 3.0: " +
 dresult + " " + drem);

 }
}

The output from the program is shown here:

Result and remainder of 10 / 3: 3 1
Result and remainder of 10.0 / 3.0: 3.3333333333333335 1.0

As you can see, the % yields a remainder of 1 for both integer and floating-point operations.

Increment and Decrement
Introduced in Chapter 1, the ++ and the – – are Java’s increment and decrement operators. As
you will see, they have some special properties that make them quite interesting. Let’s begin
by reviewing precisely what the increment and decrement operators do.

The increment operator adds 1 to its operand, and the decrement operator subtracts 1. Therefore,

x = x + 1;

is the same as

x++;

and

x = x - 1;

is the same as

x--;

Both the increment and decrement operators can either precede (prefix) or follow (postfix)
the operand. For example,

x = x + 1;

can be written as

++x; // prefix form

or as

x++; // postfix form

In the foregoing example, there is no difference whether the increment is applied as a prefix
or a postfix. However, when an increment or decrement is used as part of a larger expression,

02-ch02.indd 49 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 2

 50 Java: A Beginner’s Guide

there is an important difference. When an increment or decrement operator precedes its operand,
Java will perform the corresponding operation prior to obtaining the operand’s value for use
by the rest of the expression. If the operator follows its operand, Java will obtain the operand’s
value before incrementing or decrementing it. Consider the following:

x = 10;
y = ++x;

In this case, y will be set to 11. However, if the code is written as

x = 10;
y = x++;

then y will be set to 10. In both cases, x is still set to 11; the difference is when it happens.
There are significant advantages in being able to control when the increment or decrement
operation takes place.

Relational and Logical Operators
In the terms relational operator and logical operator, relational refers to the relationships that
values can have with one another, and logical refers to the ways in which true and false values
can be connected together. Since the relational operators produce true or false results, they
often work with the logical operators. For this reason they will be discussed together here.

The relational operators are shown here:

Operator Meaning

= = Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

The logical operators are shown next:

Operator Meaning

& AND

| OR

^ XOR (exclusive OR)

|| Short-circuit OR

&& Short-circuit AND

! NOT

The outcome of the relational and logical operators is a boolean value.

02-ch02.indd 50 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 2

 Chapter 2: Introducing Data Types and Operators 51

In Java, all objects can be compared for equality or inequality using = = and !=. However,
the comparison operators, <, >, <=, or >=, can be applied only to those types that support an
ordering relationship. Therefore, all of the relational operators can be applied to all numeric
types and to type char. However, values of type boolean can only be compared for equality
or inequality, since the true and false values are not ordered. For example, true > false has no
meaning in Java.

For the logical operators, the operands must be of type boolean, and the result of a logical
operation is of type boolean. The logical operators, &, |, ^, and !, support the basic logical
operations AND, OR, XOR, and NOT, according to the following truth table:

p q p & q p | q p ^ q !p

False False False False False True

True False False True True False

False True False True True True

True True True True False False

As the table shows, the outcome of an exclusive OR operation is true when exactly one and
only one operand is true.

Here is a program that demonstrates several of the relational and logical operators:

// Demonstrate the relational and logical operators.
class RelLogOps {
 public static void main(String[] args) {
 int i, j;
 boolean b1, b2;

 i = 10;
 j = 11;
 if(i < j) System.out.println("i < j");
 if(i <= j) System.out.println("i <= j");
 if(i != j) System.out.println("i != j");
 if(i == j) System.out.println("this won't execute");
 if(i >= j) System.out.println("this won't execute");
 if(i > j) System.out.println("this won't execute");

 b1 = true;
 b2 = false;
 if(b1 & b2) System.out.println("this won't execute");
 if(!(b1 & b2)) System.out.println("!(b1 & b2) is true");
 if(b1 | b2) System.out.println("b1 | b2 is true");
 if(b1 ^ b2) System.out.println("b1 ^ b2 is true");
 }
}

02-ch02.indd 51 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 2

 52 Java: A Beginner’s Guide

The output from the program is shown here:

i < j
i <= j
i != j
!(b1 & b2) is true
b1 | b2 is true
b1 ^ b2 is true

Short-Circuit Logical Operators
Java supplies special short-circuit versions of its AND and OR logical operators that can be
used to produce more efficient code. To understand why, consider the following. In an AND
operation, if the first operand is false, the outcome is false no matter what value the second
operand has. In an OR operation, if the first operand is true, the outcome of the operation is
true no matter what the value of the second operand. Thus, in these two cases there is no need
to evaluate the second operand. By not evaluating the second operand, time is saved and more
efficient code is produced.

The short-circuit AND operator is &&, and the short-circuit OR operator is ||. Their
normal counterparts are & and |. The only difference between the normal and short-circuit
versions is that the normal operands will always evaluate each operand, but short-circuit
versions will evaluate the second operand only when necessary.

Here is a program that demonstrates the short-circuit AND operator. The program determines
whether the value in d is a factor of n. It does this by performing a modulus operation. If the
remainder of n / d is zero, then d is a factor. However, since the modulus operation involves a
division, the short-circuit form of the AND is used to prevent a divide-by-zero error.

// Demonstrate the short-circuit operators.
class SCops {
 public static void main(String[] args) {
 int n, d, q;

 n = 10;
 d = 2;
 if(d != 0 && (n % d) == 0)
 System.out.println(d + " is a factor of " + n);

 d = 0; // now, set d to zero

 // Since d is zero, the second operand is not evaluated.
 if(d != 0 && (n % d) == 0)
 System.out.println(d + " is a factor of " + n);

 /* Now, try same thing without short-circuit operator.

The short-circuit
operator prevents
a division by zero.

02-ch02.indd 52 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 2

 Chapter 2: Introducing Data Types and Operators 53

 This will cause a divide-by-zero error.
 */
 if(d != 0 & (n % d) == 0)
 System.out.println(d + " is a factor of " + n);
 }
}

To prevent a divide-by-zero, the if statement first checks to see if d is equal to zero. If it is,
the short-circuit AND stops at that point and does not perform the modulus division. Thus, in
the first test, d is 2 and the modulus operation is performed. The second test fails because d is
set to zero, and the modulus operation is skipped, avoiding a divide-by-zero error. Finally, the
normal AND operator is tried. This causes both operands to be evaluated, which leads to a run-
time error when the division by zero occurs.

One last point: The formal specification for Java refers to the short-circuit operators as the
conditional-or and the conditional-and operators, but the term “short-circuit” is commonly used.

The Assignment Operator
You have been using the assignment operator since Chapter 1. Now it is time to take a formal
look at it. The assignment operator is the single equal sign, =. This operator works in Java
much as it does in any other computer language. It has this general form:

var = expression;

Here, the type of var must be compatible with the type of expression.
The assignment operator does have one interesting attribute that you may not be familiar

with: it allows you to create a chain of assignments. For example, consider this fragment:

int x, y, z;

x = y = z = 100; // set x, y, and z to 100

This fragment sets the variables x, y, and z to 100 using a single statement. This works because
the = is an operator that yields the value of the right-hand expression. Thus, the value of z = 100
is 100, which is then assigned to y, which in turn is assigned to x. Using a “chain of assignment”
is an easy way to set a group of variables to a common value.

Shorthand Assignments
Java provides special shorthand assignment operators that simplify the coding of certain
assignment statements. Let’s begin with an example. The assignment statement shown here

x = x + 10;

can be written, using Java shorthand, as

x += 10;

Now both
expressions
are evaluated,
allowing a division
by zero to occur.

02-ch02.indd 53 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 2

 54 Java: A Beginner’s Guide

The operator pair += tells the compiler to assign to x the value of x plus 10. Here is another
example. The statement

x = x - 100;

is the same as

x -= 100;

Both statements assign to x the value of x minus 100.

Q: Since the short-circuit operators are, in some cases, more efficient than their normal
counterparts, why does Java still offer the normal AND and OR operators?

A: In some cases you will want both operands of an AND or OR operation to be evaluated
because of the side effects produced. Consider the following:

// Side effects can be important.
class SideEffects {
 public static void main(String[] args) {
 int i;

 i = 0;

 /* Here, i is still incremented even though
 the if statement fails. */
 if(false & (++i < 100))
 System.out.println("this won't be displayed");
 System.out.println("if statement executed: " + i); // displays 1

 /* In this case, i is not incremented because
 the short-circuit operator skips the increment. */
 if(false && (++i < 100))
 System.out.println("this won't be displayed");
 System.out.println("if statement executed: " + i); // still 1 !!
 }
}

As the comments indicate, in the first if statement, i is incremented whether the if
succeeds or not. However, when the short-circuit operator is used, the variable i is not
incremented when the first operand is false. The lesson here is that if your code expects the
right-hand operand of an AND or OR operation to be evaluated, you must use Java’s non-
short-circuit forms of these operations.

Ask the Expert

02-ch02.indd 54 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 2

 Chapter 2: Introducing Data Types and Operators 55

This shorthand will work for all the binary operators in Java (that is, those that require two
operands). The general form of the shorthand is

var op = expression;

Thus, the arithmetic and logical shorthand assignment operators are the following:

+= –= *= /=

%= &= |= ^=

Because these operators combine an operation with an assignment, they are formally referred
to as compound assignment operators.

The compound assignment operators provide two benefits. First, they are more compact
than their “longhand” equivalents. Second, in some cases, they are more efficient. For these
reasons, you will often see the compound assignment operators used in professionally written
Java programs.

Type Conversion in Assignments
In programming, it is common to assign one type of variable to another. For example, you
might want to assign an int value to a float variable, as shown here:

int i;
float f;

i = 10;
f = i; // assign an int to a float

When compatible types are mixed in an assignment, the value of the right side is automatically
converted to the type of the left side. Thus, in the preceding fragment, the value in i is
converted into a float and then assigned to f. However, because of Java’s strict type checking,
not all types are compatible, and thus, not all type conversions are implicitly allowed. For
example, boolean and int are not compatible.

When one type of data is assigned to another type of variable, an automatic type
conversion will take place if

● The two types are compatible.

● The destination type is larger than the source type.

When these two conditions are met, a widening conversion takes place. For example, the int
type is always large enough to hold all valid byte values, and both int and byte are integer
types, so an automatic conversion from byte to int can be applied.

02-ch02.indd 55 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 2

 56 Java: A Beginner’s Guide

For widening conversions, the numeric types, including integer and floating-point types,
are compatible with each other. For example, the following program is perfectly valid since
long to double is a widening conversion that is automatically performed.

// Demonstrate automatic conversion from long to double.
class LtoD {
 public static void main(String[] args) {
 long L;
 double D;

 L = 100123285L;
 D = L;

 System.out.println("L and D: " + L + " " + D);

 }
}

Although there is an automatic conversion from long to double, there is no automatic
conversion from double to long, since this is not a widening conversion. Thus, the following
version of the preceding program is invalid.

// *** This program will not compile. ***
class LtoD {
 public static void main(String[] args) {
 long L;
 double D;

 D = 100123285.0;
 L = D; // Illegal!!!

 System.out.println("L and D: " + L + " " + D);

 }
}

There are no automatic conversions from the numeric types to char or boolean. Also,
char and boolean are not compatible with each other. However, an integer literal can be
assigned to char.

Casting Incompatible Types
Although the automatic type conversions are helpful, they will not fulfill all programming needs
because they apply only to widening conversions between compatible types. For all other cases
you must employ a cast. A cast is an instruction to the compiler to convert one type into another.
Thus, it requests an explicit type conversion. A cast has this general form:

(target-type) expression

Automatic conversion from long to double

No automatic conversion from double to long

02-ch02.indd 56 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 2

 Chapter 2: Introducing Data Types and Operators 57

Here, target-type specifies the desired type to convert the specified expression to. For example,
if you want to convert the type of the expression x/y to int, you can write

double x, y;
// ...
(int) (x / y)

Here, even though x and y are of type double, the cast converts the outcome of the expression
to int. The parentheses surrounding x / y are necessary. Otherwise, the cast to int would apply
only to the x and not to the outcome of the division. The cast is necessary here because there is
no automatic conversion from double to int.

When a cast involves a narrowing conversion, information might be lost. For example,
when casting a long into a short, information will be lost if the long’s value is greater than the
range of a short because its high-order bits are removed. When a floating-point value is cast to
an integer type, the fractional component will also be lost due to truncation. For example, if the
value 1.23 is assigned to an integer, the resulting value will simply be 1. The 0.23 is lost.

The following program demonstrates some type conversions that require casts:

// Demonstrate casting.
class CastDemo {
 public static void main(String[] args) {
 double x, y;
 byte b;
 int i;
 char ch;

 x = 10.0;
 y = 3.0;

 i = (int) (x / y); // cast double to int
 System.out.println("Integer outcome of x / y: " + i);

 i = 100;
 b = (byte) i;
 System.out.println("Value of b: " + b);

 i = 257;
 b = (byte) i;
 System.out.println("Value of b: " + b);

 b = 88; // ASCII code for X
 ch = (char) b;
 System.out.println("ch: " + ch);
 }
}

Truncation will occur in this conversion.

No loss of info here. A byte can hold the value 100.

Information loss this time. A byte cannot hold the value 257.

Cast between incompatible types

02-ch02.indd 57 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 2

 58 Java: A Beginner’s Guide

The output from the program is shown here:

Integer outcome of x / y: 3
Value of b: 100
Value of b: 1
ch: X

In the program, the cast of (x / y) to int results in the truncation of the fractional
component, and information is lost. Next, no loss of information occurs when b is assigned
the value 100 because a byte can hold the value 100. However, when the attempt is made to
assign b the value 257, information loss occurs because 257 exceeds a byte’s maximum value.
Finally, no information is lost, but a cast is needed when assigning a byte value to a char.

Operator Precedence
Table 2-3 shows the order of precedence for all Java operators, from highest to lowest. This
table includes several operators that will be discussed later in this book. Although technically
separators, the [], (), and . can also act like operators. In that capacity, they would have the
highest precedence.

Table 2-3 The Precedence of the Java Operators

Highest

++ (postfix) – – (postfix)

++ (prefix) – – (prefix) ~ ! + (unary) – (unary) (type-cast)

* / %

+ −

>> >>> <<

> >= < <= instanceof

== !=

&

^

|

&&

||

?:

−>

= op=

Lowest

02-ch02.indd 58 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 2

 Chapter 2: Introducing Data Types and Operators 59

Try This 2-2 Display a Truth Table
for the Logical Operators

In this project, you will create a program that displays the truth table
for Java’s logical operators. You must make the columns in the table

line up. This project makes use of several features covered in this chapter, including one of
Java’s escape sequences and the logical operators. It also illustrates the differences in the
precedence between the arithmetic + operator and the logical operators.

 1. Create a new file called LogicalOpTable.java.

 2. To ensure that the columns line up, you will use the \t escape sequence to embed tabs into
each output string. For example, this println() statement displays the header for the table:

System.out.println("P\tQ\tAND\tOR\tXOR\tNOT");

 3. Each subsequent line in the table will use tabs to position the outcome of each operation
under its proper heading.

 4. Here is the entire LogicalOpTable.java program listing. Enter it at this time.

// Try This 2-2: a truth table for the logical operators.
class LogicalOpTable {
 public static void main(String[] args) {

 boolean p, q;

 System.out.println("P\tQ\tAND\tOR\tXOR\tNOT");

 p = true; q = true;
 System.out.print(p + "\t" + q +"\t");
 System.out.print((p&q) + "\t" + (p|q) + "\t");
 System.out.println((p^q) + "\t" + (!p));

 p = true; q = false;
 System.out.print(p + "\t" + q +"\t");
 System.out.print((p&q) + "\t" + (p|q) + "\t");
 System.out.println((p^q) + "\t" + (!p));

 p = false; q = true;
 System.out.print(p + "\t" + q +"\t");
 System.out.print((p&q) + "\t" + (p|q) + "\t");
 System.out.println((p^q) + "\t" + (!p));

(continued)

LogicalOpTable.java

02-ch02.indd 59 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 2

 60 Java: A Beginner’s Guide

 p = false; q = false;
 System.out.print(p + "\t" + q +"\t");
 System.out.print((p&q) + "\t" + (p|q) + "\t");
 System.out.println((p^q) + "\t" + (!p));
 }
}

 Notice the parentheses surrounding the logical operations inside the println() statements.
They are necessary because of the precedence of Java’s operators. The + operator is higher
than the logical operators.

 5. Compile and run the program. The following table is displayed.

P Q AND OR XOR NOT
true true true true false false
true false false true true false
false true false true true true
false false false false false true

 6. On your own, try modifying the program so that it uses and displays 1’s and 0’s, rather than
true and false. This may involve a bit more effort than you might at first think!

Expressions
Operators, variables, and literals are constituents of expressions. You probably already know
the general form of an expression from your other programming experience, or from algebra.
However, a few aspects of expressions will be discussed now.

Type Conversion in Expressions
Within an expression, it is possible to mix two or more different types of data as long as they
are compatible with each other. For example, you can mix short and long within an expression
because they are both numeric types. When different types of data are mixed within an
expression, they are all converted to the same type. This is accomplished through the use of
Java’s type promotion rules.

First, all char, byte, and short values are promoted to int. Then, if one operand is a
long, the whole expression is promoted to long. If one operand is a float operand, the entire
expression is promoted to float. If any of the operands is double, the result is double.

It is important to understand that type promotions apply only to the values operated upon
when an expression is evaluated. For example, if the value of a byte variable is promoted to int
inside an expression, outside the expression, the variable is still a byte. Type promotion only
affects the evaluation of an expression.

Type promotion can, however, lead to somewhat unexpected results. For example, when
an arithmetic operation involves two byte values, the following sequence occurs: First, the
byte operands are promoted to int. Then the operation takes place, yielding an int result.

02-ch02.indd 60 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 2

 Chapter 2: Introducing Data Types and Operators 61

Thus, the outcome of an operation involving two byte values will be an int. This is not what
you might intuitively expect. Consider the following program:

// A promotion surprise!
class PromDemo {
 public static void main(String[] args) {
 byte b;
 int i;

 b = 10;
 i = b * b; // OK, no cast needed

 b = 10;
 b = (byte) (b * b); // cast needed!!

 System.out.println("i and b: " + i + " " + b);
 }
}

Somewhat counterintuitively, no cast is needed when assigning b*b to i, because b is
promoted to int when the expression is evaluated. However, when you try to assign b * b to b,
you do need a cast—back to byte! Keep this in mind if you get unexpected type-incompatibility
error messages on expressions that would otherwise seem perfectly OK.

This same sort of situation also occurs when performing operations on chars. For example,
in the following fragment, the cast back to char is needed because of the promotion of ch1 and
ch2 to int within the expression:

char ch1 = 'a', ch2 = 'b';

ch1 = (char) (ch1 + ch2);

Without the cast, the result of adding ch1 to ch2 would be int, which can’t be assigned to a char.
Casts are not only useful when converting between types in an assignment. For example,

consider the following program. It uses a cast to double to obtain a fractional component from
an otherwise integer division.

// Using a cast.
class UseCast {
 public static void main(String[] args) {
 int i;

 for(i = 0; i < 5; i++) {
 System.out.println(i + " / 3: " + i / 3);
 System.out.println(i + " / 3 with fractions: "
 + (double) i / 3);
 System.out.println();
 }
 }
}

No cast needed because result is already elevated to int.

Cast is needed here to assign an int to a byte!

02-ch02.indd 61 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 2

 62 Java: A Beginner’s Guide

The output from the program is shown here:

0 / 3: 0
0 / 3 with fractions: 0.0

1 / 3: 0
1 / 3 with fractions: 0.3333333333333333

2 / 3: 0
2 / 3 with fractions: 0.6666666666666666

3 / 3: 1
3 / 3 with fractions: 1.0

4 / 3: 1
4 / 3 with fractions: 1.3333333333333333

Spacing and Parentheses
An expression in Java may have tabs and spaces in it to make it more readable. For example,
the following two expressions are the same, but the second is easier to read:

x=10/y*(127/x);

x = 10 / y * (127/x);

Parentheses increase the precedence of the operations contained within them, just like in
algebra. Use of redundant or additional parentheses will not cause errors or slow down the
execution of the expression. You are encouraged to use parentheses to make clear the exact
order of evaluation, both for yourself and for others who may have to figure out your program
later. For example, which of the following two expressions is easier to read?

x = y/3-34*temp+127;

x = (y/3) - (34*temp) + 127;

 Chapter 2 Self Test
 1. Why does Java strictly specify the range and behavior of its primitive types?

 2. What is Java’s character type, and how does it differ from the character type used by some
other programming languages?

 3. A boolean value can have any value you like because any non-zero value is true. True or False?

✓

02-ch02.indd 62 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 2

 Chapter 2: Introducing Data Types and Operators 63

 4. Given this output,

One
Two
Three

 using a single string, show the println() statement that produced it.

 5. What is wrong with this fragment?

for(i = 0; i < 10; i++) {
 int sum;

 sum = sum + i;
}
System.out.println("Sum is: " + sum);

 6. Explain the difference between the prefix and postfix forms of the increment operator.

 7. Show how a short-circuit AND can be used to prevent a divide-by-zero error.

 8. In an expression, what type are byte and short promoted to?

 9. In general, when is a cast needed?

 10. Write a program that finds all of the prime numbers between 2 and 100.

 11. Does the use of redundant parentheses affect program performance?

 12. Does a block define a scope?

02-ch02.indd 63 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter
Blind Folio: xxiv

00-FM.indd 24 12/11/21 9:20 PM

This page intentionally left blank

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3
Blind Folio: 65

Chapter 3
Program Control
Statements

03-ch03.indd 65 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 66 Java: A Beginner’s Guide

Key Skills & Concepts

● Input characters from the keyboard

● Know the complete form of the if statement

● Use the switch statement

● Know the complete form of the for loop

● Use the while loop

● Use the do-while loop

● Use break to exit a loop

● Use break as a form of goto

● Apply continue

● Nest loops

In this chapter, you will learn about the statements that control a program’s flow of execution.
There are three categories of program control statements: selection statements, which include
the if and the switch; iteration statements, which include the for, while, and do-while loops;
and jump statements, which include break, continue, and return. Except for return, which
is discussed later in this book, the remaining control statements, including the if and for
statements to which you have already had a brief introduction, are examined in detail here.
The chapter begins by explaining how to perform some simple keyboard input.

Input Characters from the Keyboard
Before examining Java’s control statements, we will make a short digression that will allow
you to begin writing interactive programs. Up to this point, the sample programs in this
book have displayed information to the user, but they have not received information from the
user. Thus, you have been using console output, but not console (keyboard) input. The main
reason for this is that Java’s input capabilities rely on or make use of features not discussed
until later in this book. Also, most real-world Java applications will be graphical and window
based, not console based. For these reasons, not much use of console input is found in this
book. However, there is one type of console input that is relatively easy to use: reading a
character from the keyboard. Since several of the examples in this chapter will make use of
this feature, it is discussed here.

To read a character from the keyboard, we will use System.in.read(). System.in is the
complement to System.out. It is the input object attached to the keyboard. The read() method

03-ch03.indd 66 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 Chapter 3: Program Control Statements 67

waits until the user presses a key and then returns the result. The character is returned as an
integer, so it must be cast into a char to assign it to a char variable. By default, console input
is line buffered. Here, the term buffer refers to a small portion of memory that is used to hold
the characters before they are read by your program. In this case, the buffer holds a complete
line of text. As a result, you must press ENTER before any character that you type will be sent
to your program. Here is a program that reads a character from the keyboard:

// Read a character from the keyboard.
class KbIn {
 public static void main(String[] args)
 throws java.io.IOException {

 char ch;

 System.out.print("Press a key followed by ENTER: ");

 ch = (char) System.in.read(); // get a char

 System.out.println("Your key is: " + ch);
 }
}

Here is a sample run:

Press a key followed by ENTER: t
Your key is: t

In the program, notice that main() begins like this:

public static void main(String[] args)
 throws java.io.IOException {

Because System.in.read() is being used, the program must specify the throws
java.io.IOException clause. This line is necessary to handle input errors. It is part of
Java’s exception handling mechanism, which is discussed in Chapter 9. For now, don’t
worry about its precise meaning.

The fact that System.in is line buffered is a source of annoyance at times. When you
press ENTER, a carriage return, line feed sequence is entered into the input stream. Furthermore,
these characters are left pending in the input buffer until you read them. Thus, for some
applications, you may need to remove them (by reading them) before the next input operation.
You will see an example of this later in this chapter.

The if Statement
Chapter 1 introduced the if statement. It is examined in detail here. The complete form of
the if statement is

if(condition) statement;
else statement;

Read a character
from the keyboard.

03-ch03.indd 67 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 68 Java: A Beginner’s Guide

where the targets of the if and else are single statements. The else clause is optional. The
targets of both the if and else can be blocks of statements. The general form of the if, using
blocks of statements, is

if(condition)
{
 statement sequence
}
else
{
 statement sequence
}

If the conditional expression is true, the target of the if will be executed; otherwise, if it exists,
the target of the else will be executed. At no time will both of them be executed. The conditional
expression controlling the if must produce a boolean result.

To demonstrate the if (and several other control statements), we will create and develop
a simple computerized guessing game that would be suitable for young children. In the first
version of the game, the program asks the player for a letter between A and Z. If the player
presses the correct letter on the keyboard, the program responds by printing the message
** Right **. The program is shown here:

// Guess the letter game.
class Guess {
 public static void main(String[] args)
 throws java.io.IOException {

 char ch, answer = 'K';

 System.out.println("I'm thinking of a letter between A and Z.");
 System.out.print("Can you guess it: ");

 ch = (char) System.in.read(); // read a char from the keyboard

 if(ch == answer) System.out.println("** Right **");
 }
}

This program prompts the player and then reads a character from the keyboard. Using an
if statement, it then checks that character against the answer, which is K in this case. If K was
entered, the message is displayed. When you try this program, remember that the K must be
entered in uppercase.

Taking the guessing game further, the next version uses the else to print a message when the
wrong letter is picked.

// Guess the letter game, 2nd version.
class Guess2 {
 public static void main(String[] args)
 throws java.io.IOException {

03-ch03.indd 68 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 Chapter 3: Program Control Statements 69

 char ch, answer = 'K';

 System.out.println("I'm thinking of a letter between A and Z.");
 System.out.print("Can you guess it: ");

 ch = (char) System.in.read(); // get a char

 if(ch == answer) System.out.println("** Right **");
 else System.out.println("...Sorry, you're wrong.");
 }
}

Nested ifs
A nested if is an if statement that is the target of another if or else. Nested ifs are very common
in programming. The main thing to remember about nested ifs in Java is that an else statement
always refers to the nearest if statement that is within the same block as the else and not already
associated with an else. Here is an example:

if(i == 10) {
 if(j < 20) a = b;
 if(k > 100) c = d;
 else a = c; // this else refers to if(k > 100)
}
else a = d; // this else refers to if(i == 10)

As the comments indicate, the final else is not associated with if(j < 20), because it is not
in the same block (even though it is the nearest if without an else). Rather, the final else is
associated with if(i == 10). The inner else refers to if(k > 100), because it is the closest if
within the same block.

You can use a nested if to add a further improvement to the guessing game. This addition
provides the player with feedback about a wrong guess.

// Guess the letter game, 3rd version.
class Guess3 {
 public static void main(String[] args)
 throws java.io.IOException {

 char ch, answer = 'K';

 System.out.println("I'm thinking of a letter between A and Z.");
 System.out.print("Can you guess it: ");

 ch = (char) System.in.read(); // get a char

 if(ch == answer) System.out.println("** Right **");
 else {
 System.out.print("...Sorry, you're ");

03-ch03.indd 69 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 70 Java: A Beginner’s Guide

 // a nested if
 if(ch < answer) System.out.println("too low");
 else System.out.println("too high");
 }
 }
}

A sample run is shown here:

I'm thinking of a letter between A and Z.
Can you guess it: Z
...Sorry, you're too high

The if-else-if Ladder
A common programming construct that is based upon the nested if is the if-else-if ladder. It
looks like this:

if(condition)
 statement;
else if(condition)
 statement;
else if(condition)
 statement;
.
.
.
else
 statement;

The conditional expressions are evaluated from the top downward. As soon as a true condition
is found, the statement associated with it is executed, and the rest of the ladder is bypassed. If
none of the conditions are true, the final else statement will be executed. The final else often
acts as a default condition; that is, if all other conditional tests fail, the last else statement is
performed. If there is no final else and all other conditions are false, no action will take place.

The following program demonstrates the if-else-if ladder:

// Demonstrate an if-else-if ladder.
class Ladder {
 public static void main(String[] args) {
 int x;

 for(x=0; x<6; x++) {
 if(x==1)
 System.out.println("x is one");
 else if(x==2)
 System.out.println("x is two");
 else if(x==3)

This is a nested if.

03-ch03.indd 70 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 Chapter 3: Program Control Statements 71

 System.out.println("x is three");
 else if(x==4)
 System.out.println("x is four");
 else
 System.out.println("x is not between 1 and 4");
 }
 }
}

The program produces the following output:

x is not between 1 and 4
x is one
x is two
x is three
x is four
x is not between 1 and 4

As you can see, the default else is executed only if none of the preceding if statements succeeds.

The Traditional switch Statement
The second of Java’s selection statements is the switch. The switch provides for a multiway
branch. Thus, it enables a program to select among several alternatives. Although a series
of nested if statements can perform multiway tests, for many situations the switch is a more
efficient approach.

Before we continue, an important point needs to be made. Beginning with JDK 14, the
switch has been significantly enhanced and expanded with several new features that go
far beyond its original capabilities. Because of the substantial nature of the recent switch
enhancements, they are described in Chapter 16, in the context of other recent additions to
Java. Here, the switch is introduced in its traditional form. This is the form of switch that has
been part of Java from the start and is in widespread use. It is also the form that will work
in all Java development environments. The traditional switch works like this: the value of
an expression is successively tested against a list of constants. When a match is found, the
statement sequence associated with that match is executed.

The general form of the traditional switch statement is

switch(expression) {
 case constant1:
 statement sequence
 break;
 case constant2:
 statement sequence
 break;
 case constant3:
 statement sequence
 break;

This is the
default statement.

03-ch03.indd 71 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 72 Java: A Beginner’s Guide

.

.

.
 default:
 statement sequence
}

For versions of Java prior to JDK 7, the expression controlling the switch must resolve to
type byte, short, int, char, or an enumeration. (Enumerations are described in Chapter 12.)
However, today, expression can also be of type String. This means that modern versions of
Java can use a string to control a switch. (This technique is demonstrated in Chapter 5, when
String is described.) Frequently, the expression controlling a switch is simply a variable rather
than a larger expression.

Each value specified in the case statements must be a unique constant expression (such as a
literal value). Duplicate case values are not allowed. The type of each value must be compatible
with the type of expression.

The default statement sequence is executed if no case constant matches the expression.
The default is optional; if it is not present, no action takes place if all matches fail. When
a match is found, the statements associated with that case are executed until the break is
encountered or, in the case of default or the last case, until the end of the switch is reached.

The following program demonstrates the switch:

// Demonstrate the switch.
class SwitchDemo {
 public static void main(String[] args) {
 int i;

 for(i=0; i<10; i++)
 switch(i) {
 case 0:
 System.out.println("i is zero");
 break;
 case 1:
 System.out.println("i is one");
 break;
 case 2:
 System.out.println("i is two");
 break;
 case 3:
 System.out.println("i is three");
 break;
 case 4:
 System.out.println("i is four");
 break;
 default:
 System.out.println("i is five or more");
 }
 }
}

03-ch03.indd 72 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 Chapter 3: Program Control Statements 73

The output produced by this program is shown here:

i is zero
i is one
i is two
i is three
i is four
i is five or more
i is five or more
i is five or more
i is five or more
i is five or more

As you can see, each time through the loop, the statements associated with the case constant that
matches i are executed. All others are bypassed. When i is five or greater, no case statements
match, so the default statement is executed.

Technically, the break statement is optional, although most applications of the switch will
use it. When encountered within the statement sequence of a case, the break statement causes
program flow to exit from the entire switch statement and resume at the next statement outside
the switch. However, if a break statement does not end the statement sequence associated with
a case, then all the statements at and following the matching case will be executed until a break
(or the end of the switch) is encountered. Thus, a case without a break will "fall through" to the
next case.

For example, study the following program carefully. Before looking at the output, can you
figure out what it will display on the screen?

// Demonstrate the switch without break statements.
class NoBreak {
 public static void main(String[] args) {
 int i;

 for(i=0; i<=5; i++) {
 switch(i) {
 case 0:
 System.out.println("i is less than one");
 case 1:
 System.out.println("i is less than two");
 case 2:
 System.out.println("i is less than three");
 case 3:
 System.out.println("i is less than four");
 case 4:
 System.out.println("i is less than five");
 }
 System.out.println();
 }
 }
}

The case statements
fall through here.

03-ch03.indd 73 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 74 Java: A Beginner’s Guide

This program displays the following output:

i is less than one
i is less than two
i is less than three
i is less than four
i is less than five

i is less than two
i is less than three
i is less than four
i is less than five

i is less than three
i is less than four
i is less than five

i is less than four
i is less than five

i is less than five

As this program illustrates, execution will continue into the next case if no break statement is
present.

You can have empty cases, as shown in this example:

switch(i) {
 case 1:
 case 2:
 case 3: System.out.println("i is 1, 2 or 3");
 break;
 case 4: System.out.println("i is 4");
 break;
}

In this fragment, if i has the value 1, 2, or 3, the first println() statement executes. If it is 4,
the second println() statement executes. The “stacking” of cases, as shown in this example,
is common when several cases share common code.

REMEMBER
Recently, the capabilities and features of switch have been substantially expanded
beyond those offered by the traditional switch just described. Refer to Chapter 16 for
details on the enhanced switch.

03-ch03.indd 74 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 Chapter 3: Program Control Statements 75

Help.java

Try This 3-1

Nested switch Statements
It is possible to have a switch as part of the statement sequence of an outer switch. This is called
a nested switch. Even if the case constants of the inner and outer switch contain common values,
no conflicts will arise. For example, the following code fragment is perfectly acceptable:

switch(ch1) {
 case 'A': System.out.println("This A is part of outer switch.");
 switch(ch2) {
 case 'A':
 System.out.println("This A is part of inner switch");
 break;
 case 'B': // ...
 } // end of inner switch
 break;
 case 'B': // ...

 Start Building a Java Help System
This project builds a simple help system that displays the syntax for the Java control
statements. The program displays a menu containing the control statements and then

waits for you to choose one. After one is chosen, the syntax of the statement is displayed. In this
first version of the program, help is available for only the if and traditional switch statements.
The other control statements are added in subsequent projects.

 1. Create a file called Help.java.

 2. The program begins by displaying the following menu:

Help on:
 1. if
 2. switch
Choose one:

 To accomplish this, you will use the statement sequence shown here:

System.out.println("Help on:");
System.out.println(" 1. if");
System.out.println(" 2. switch");
System.out.print("Choose one: ");

 3. Next, the program obtains the user’s selection by calling System.in.read(), as shown here:

choice = (char) System.in.read();

(continued)

03-ch03.indd 75 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 76 Java: A Beginner’s Guide

 4. Once the selection has been obtained, the program uses the switch statement shown here to
display the syntax for the selected statement.

switch(choice) {
 case '1':
 System.out.println("The if:\n");
 System.out.println("if(condition) statement;");
 System.out.println("else statement;");
 break;
 case '2':
 System.out.println("The traditional switch:\n");
 System.out.println("switch(expression) {");
 System.out.println(" case constant:");
 System.out.println(" statement sequence");
 System.out.println(" break;");
 System.out.println(" // ...");
 System.out.println("}");
 break;
 default:
 System.out.print("Selection not found.");
}

 Notice how the default clause catches invalid choices. For example, if the user enters 3, no
case constants will match, causing the default sequence to execute.

 5. Here is the entire Help.java program listing:

/*
 Try This 3-1

 A simple help system.
*/
class Help {
 public static void main(String[] args)
 throws java.io.IOException {
 char choice;

 System.out.println("Help on:");
 System.out.println(" 1. if");
 System.out.println(" 2. switch");
 System.out.print("Choose one: ");
 choice = (char) System.in.read();

 System.out.println("\n");

 switch(choice) {
 case '1':
 System.out.println("The if:\n");
 System.out.println("if(condition) statement;");

03-ch03.indd 76 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 Chapter 3: Program Control Statements 77

 System.out.println("else statement;");
 break;
 case '2':
 System.out.println("The traditional switch:\n");
 System.out.println("switch(expression) {");
 System.out.println(" case constant:");
 System.out.println(" statement sequence");
 System.out.println(" break;");
 System.out.println(" // ...");
 System.out.println("}");
 break;
 default:
 System.out.print("Selection not found.");
 }
 }
}

 6. Here is a sample run.

Help on:
 1. if
 2. switch
Choose one: 1

The if:

if(condition) statement;
else statement;

The for Loop
You have been using a simple form of the for loop since Chapter 1. You might be surprised
at just how powerful and flexible the for loop is. Let’s begin by reviewing the basics, starting
with the most traditional forms of the for.

The general form of the for loop for repeating a single statement is

for(initialization; condition; iteration) statement;

For repeating a block, the general form is

for(initialization; condition; iteration)
{
 statement sequence
}

The initialization is usually an assignment statement that sets the initial value of the loop control
variable, which acts as the counter that controls the loop. The condition is a Boolean expression
that determines whether or not the loop will repeat. The iteration expression defines the amount

03-ch03.indd 77 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 78 Java: A Beginner’s Guide

by which the loop control variable will change each time the loop is repeated. Notice that these
three major sections of the loop must be separated by semicolons. The for loop will continue to
execute as long as the condition tests true. Once the condition becomes false, the loop will exit,
and program execution will resume on the statement following the for.

The following program uses a for loop to print the square roots of the numbers between 1
and 99. It also displays the rounding error present for each square root.

// Show square roots of 1 to 99 and the rounding error.
class SqrRoot {
 public static void main(String[] args) {
 double num, sroot, rerr;

 for(num = 1.0; num < 100.0; num++) {
 sroot = Math.sqrt(num);
 System.out.println("Square root of " + num +
 " is " + sroot);

 // compute rounding error
 rerr = num - (sroot * sroot);
 System.out.println("Rounding error is " + rerr);
 System.out.println();
 }
 }
}

Notice that the rounding error is computed by squaring the square root of each number. This result
is then subtracted from the original number, thus yielding the rounding error.

Q: Under what conditions should I use an if-else-if ladder rather than a switch when
coding a multiway branch?

A: In general, use an if-else-if ladder when the conditions controlling the selection process do
not rely upon a single value. For example, consider the following if-else-if sequence:

if(x < 10) // ...
else if(y != 0) // ...
else if(!done) // ...

This sequence cannot be recoded into a switch because all three conditions involve different
variables—and differing types. What variable would control the switch? Also, you will need
to use an if-else-if ladder when testing floating-point values or other objects that are not of
types valid for use in the expression controlling the switch.

Ask the Expert

03-ch03.indd 78 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 Chapter 3: Program Control Statements 79

The for loop can proceed in a positive or negative fashion, and it can change the loop
control variable by any amount. For example, the following program prints the numbers 100 to
–95, in decrements of 5:

// A negatively running for loop.
class DecrFor {
 public static void main(String[] args) {
 int x;

 for(x = 100; x > -100; x -= 5)
 System.out.println(x);
 }
}

An important point about for loops is that the conditional expression is always tested at
the top of the loop. This means that the code inside the loop may not be executed at all if the
condition is false to begin with. Here is an example:

for(count=10; count < 5; count++)
 x += count; // this statement will not execute

This loop will never execute because its control variable, count, is greater than 5 when the
loop is first entered. This makes the conditional expression, count < 5, false from the outset;
thus, not even one iteration of the loop will occur.

Some Variations on the for Loop
The for is one of the most versatile statements in the Java language because it allows a wide
range of variations. For example, multiple loop control variables can be used. Consider the
following program:

// Use commas in a for statement.
class Comma {
 public static void main(String[] args) {
 int i, j;

 for(i=0, j=10; i < j; i++, j--)
 System.out.println("i and j: " + i + " " + j);
 }
}

The output from the program is shown here:

i and j: 0 10
i and j: 1 9
i and j: 2 8
i and j: 3 7
i and j: 4 6

Here, commas separate the two initialization statements and the two iteration expressions.
When the loop begins, both i and j are initialized. Each time the loop repeats, i is incremented
and j is decremented. Multiple loop control variables are often convenient and can simplify

Loop control variable is
decremented by 5 each time.

Notice the two loop
control variables.

03-ch03.indd 79 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 80 Java: A Beginner’s Guide

certain algorithms. You can have any number of initialization and iteration statements, but in
practice, more than two or three make the for loop unwieldy.

The condition controlling the loop can be any valid Boolean expression. It does not need
to involve the loop control variable. In the next example, the loop continues to execute until
the user types the letter S at the keyboard:

// Loop until an S is typed.
class ForTest {
 public static void main(String[] args)
 throws java.io.IOException {

 int i;

 System.out.println("Press S to stop.");

 for(i = 0; (char) System.in.read() != 'S'; i++)
 System.out.println("Pass #" + i);
 }
}

Missing Pieces
Some interesting for loop variations are created by leaving pieces of the loop definition empty.
In Java, it is possible for any or all of the initialization, condition, or iteration portions of the
for loop to be blank. For example, consider the following program:

// Parts of the for can be empty.
class Empty {
 public static void main(String[] args) {
 int i;

 for(i = 0; i < 10;) {
 System.out.println("Pass #" + i);
 i++; // increment loop control var
 }
 }
}

Here, the iteration expression of the for is empty. Instead, the loop control variable i is
incremented inside the body of the loop. This means that each time the loop repeats, i is tested to
see whether it equals 10, but no further action takes place. Of course, since i is still incremented
within the body of the loop, the loop runs normally, displaying the following output:

Pass #0
Pass #1
Pass #2
Pass #3
Pass #4
Pass #5
Pass #6

The iteration expression is missing.

03-ch03.indd 80 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 Chapter 3: Program Control Statements 81

Pass #7
Pass #8
Pass #9

In the next example, the initialization portion is also moved out of the for:

// Move more out of the for loop.
class Empty2 {
 public static void main(String[] args) {
 int i;

 i = 0; // move initialization out of loop
 for(; i < 10;) {
 System.out.println("Pass #" + i);
 i++; // increment loop control var
 }
 }
}

In this version, i is initialized before the loop begins, rather than as part of the for. Normally,
you will want to initialize the loop control variable inside the for. Placing the initialization
outside of the loop is generally done only when the initial value is derived through a complex
process that does not lend itself to containment inside the for statement.

The Infinite Loop
You can create an infinite loop (a loop that never terminates) using the for by leaving the
conditional expression empty. For example, the following fragment shows the way many Java
programmers create an infinite loop:

for(;;) // intentionally infinite loop
{
 //...
}

This loop will run forever. Although there are some programming tasks, such as operating
system command processors, that require an infinite loop, most “infinite loops” are really just
loops with special termination requirements. Near the end of this chapter, you will see how to
halt a loop of this type. (Hint: It’s done using the break statement.)

Loops with No Body
In Java, the body associated with a for loop (or any other loop) can be empty. This is because a
null statement is syntactically valid. Body-less loops are often useful. For example, the following
program uses one to sum the numbers 1 through 5:

// The body of a loop can be empty.
class Empty3 {
 public static void main(String[] args) {
 int i;
 int sum = 0;

The initialization expression
is moved out of the loop.

03-ch03.indd 81 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 82 Java: A Beginner’s Guide

 // sum the numbers through 5
 for(i = 1; i <= 5; sum += i++) ;

 System.out.println("Sum is " + sum);
 }
}

The output from the program is shown here:

Sum is 15

Notice that the summation process is handled entirely within the for statement, and no body is
needed. Pay special attention to the iteration expression:

sum += i++

Don’t be intimidated by statements like this. They are common in professionally written Java
programs and are easy to understand if you break them down into their parts. In other words,
this statement says, “Add to sum the value of sum plus i, then increment i.” Thus, it is the
same as this sequence of statements:

sum = sum + i;
i++;

Declaring Loop Control Variables Inside the for Loop
Often the variable that controls a for loop is needed only for the purposes of the loop and
is not used elsewhere. When this is the case, it is possible to declare the variable inside the
initialization portion of the for. For example, the following program computes both the
summation and the factorial of the numbers 1 through 5. It declares its loop control variable i
inside the for.

// Declare loop control variable inside the for.
class ForVar {
 public static void main(String[] args) {
 int sum = 0;
 int fact = 1;

 // compute the factorial of the numbers through 5
 for(int i = 1; i <= 5; i++) {
 sum += i; // i is known throughout the loop
 fact *= i;
 }

 // but, i is not known here

 System.out.println("Sum is " + sum);
 System.out.println("Factorial is " + fact);
 }
}

No body in this loop!

The variable i is declared
inside the for statement.

03-ch03.indd 82 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 Chapter 3: Program Control Statements 83

When you declare a variable inside a for loop, there is one important point to remember:
the scope of that variable ends when the for statement does. (That is, the scope of the variable
is limited to the for loop.) Outside the for loop, the variable will cease to exist. Thus, in the
preceding example, i is not accessible outside the for loop. If you need to use the loop control
variable elsewhere in your program, you will not be able to declare it inside the for loop.

Before moving on, you might want to experiment with your own variations on the for loop.
As you will find, it is a fascinating loop.

The Enhanced for Loop
There is another form of the for loop, called the enhanced for. The enhanced for provides a
streamlined way to cycle through the contents of a collection of objects, such as an array. The
enhanced for loop is discussed in Chapter 5, after arrays have been introduced.

The while Loop
Another of Java’s loops is the while. The general form of the while loop is

while(condition) statement;

where statement may be a single statement or a block of statements, and condition defines the
condition that controls the loop. The condition may be any valid Boolean expression. The loop
repeats while the condition is true. When the condition becomes false, program control passes
to the line immediately following the loop.

Here is a simple example in which a while is used to print the alphabet:

// Demonstrate the while loop.
class WhileDemo {
 public static void main(String[] args) {
 char ch;

 // print the alphabet using a while loop
 ch = 'a';
 while(ch <= 'z') {
 System.out.print(ch);
 ch++;
 }
 }
}

Here, ch is initialized to the letter a. Each time through the loop, ch is output and then
incremented. This process continues until ch is greater than z.

As with the for loop, the while checks the conditional expression at the top of the loop,
which means that the loop code may not execute at all. This eliminates the need for performing

03-ch03.indd 83 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 84 Java: A Beginner’s Guide

a separate test before the loop. The following program illustrates this characteristic of the while
loop. It computes the integer powers of 2, from 0 to 9.

// Compute integer powers of 2.
class Power {
 public static void main(String[] args) {
 int e;
 int result;

 for(int i=0; i < 10; i++) {
 result = 1;
 e = i;
 while(e > 0) {
 result *= 2;
 e--;
 }

 System.out.println("2 to the " + i +
 " power is " + result);
 }
 }
}

The output from the program is shown here:

2 to the 0 power is 1
2 to the 1 power is 2
2 to the 2 power is 4
2 to the 3 power is 8
2 to the 4 power is 16
2 to the 5 power is 32
2 to the 6 power is 64
2 to the 7 power is 128
2 to the 8 power is 256
2 to the 9 power is 512

Notice that the while loop executes only when e is greater than 0. Thus, when e is zero, as it is
in the first iteration of the for loop, the while loop is skipped.

Q: Given the flexibility inherent in all of Java’s loops, what criteria should I use when
selecting a loop? That is, how do I choose the right loop for a specific job?

A: Use a for loop when performing a known number of iterations based on the value of a
loop control variable. Use the do-while when you need a loop that will always perform at
least one iteration. The while is best used when the loop will repeat until some condition
becomes false.

Ask the Expert

03-ch03.indd 84 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 Chapter 3: Program Control Statements 85

The do-while Loop
The last of Java’s loops is the do-while. Unlike the for and the while loops, in which the
condition is tested at the top of the loop, the do-while loop checks its condition at the bottom
of the loop. This means that a do-while loop will always execute at least once. The general
form of the do-while loop is

do {
 statements;
} while(condition);

Although the braces are not necessary when only one statement is present, they are often used
to improve readability of the do-while construct, thus preventing confusion with the while.
The do-while loop executes as long as the conditional expression is true.

The following program loops until the user enters the letter q:

// Demonstrate the do-while loop.
class DWDemo {
 public static void main(String[] args)
 throws java.io.IOException {

 char ch;

 do {
 System.out.print("Press a key followed by ENTER: ");
 ch = (char) System.in.read(); // get a char
 } while(ch != 'q');
 }
}

Using a do-while loop, we can further improve the guessing game program from earlier in
this chapter. This time, the program loops until you guess the letter.

// Guess the letter game, 4th version.
class Guess4 {
 public static void main(String[] args)
 throws java.io.IOException {

 char ch, ignore, answer = 'K';

 do {
 System.out.println("I'm thinking of a letter between A and Z.");
 System.out.print("Can you guess it: ");

 // read a character
 ch = (char) System.in.read();

 // discard any other characters in the input buffer
 do {
 ignore = (char) System.in.read();

03-ch03.indd 85 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 86 Java: A Beginner’s Guide

 } while(ignore != '\n');

 if(ch == answer) System.out.println("** Right **");
 else {
 System.out.print("...Sorry, you're ");
 if(ch < answer) System.out.println("too low");
 else System.out.println("too high");
 System.out.println("Try again!\n");
 }
 } while(answer != ch);
 }
}

Here is a sample run:

I'm thinking of a letter between A and Z.
Can you guess it: A
...Sorry, you're too low
Try again!

I'm thinking of a letter between A and Z.
Can you guess it: Z
...Sorry, you're too high
Try again!

I'm thinking of a letter between A and Z.
Can you guess it: K
** Right **

Notice one other thing of interest in this program. There are two do-while loops in the
program. The first loops until the user guesses the letter. Its operation and meaning should be
clear. The second do-while loop, shown again here, warrants some explanation:

// discard any other characters in the input buffer
do {
 ignore = (char) System.in.read();
} while(ignore != '\n');

As explained earlier, console input is line buffered—you have to press ENTER before characters are
sent. Pressing ENTER causes a carriage return and a line feed (newline) sequence to be generated.
These characters are left pending in the input buffer. Also, if you typed more than one key before
pressing ENTER, they too would still be in the input buffer. This loop discards those characters by
continuing to read input until the end of the line is reached. If they were not discarded, then those
characters would also be sent to the program as guesses, which is not what is wanted. (To see the
effect of this, you might try removing the inner do-while loop.) In Chapter 10, after you have
learned more about Java, some other, higher-level ways of handling console input are described.
However, the use of read() here gives you insight into how the foundation of Java's I/O system
operates. It also shows another example of Java's loops in action.

03-ch03.indd 86 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 Chapter 3: Program Control Statements 87

Try This 3-2 Improve the Java Help System
This project expands on the Java help system that was created in Try This 3-1. This
version adds the syntax for the for, while, and do-while loops. It also checks the

user’s menu selection, looping until a valid response is entered.

 1. Copy Help.java to a new file called Help2.java.

 2. Change the first part of main() so that it uses a loop to display the choices, as shown here:

public static void main(String[] args)
 throws java.io.IOException {
 char choice, ignore;

 do {
 System.out.println("Help on:");
 System.out.println(" 1. if");
 System.out.println(" 2. switch");
 System.out.println(" 3. for");
 System.out.println(" 4. while");
 System.out.println(" 5. do-while\n");
 System.out.print("Choose one: ");

 choice = (char) System.in.read();

 do {
 ignore = (char) System.in.read();
 } while(ignore != '\n');
 } while(choice < '1' | choice > '5');

 Notice that a nested do-while loop is used to discard any unwanted characters remaining
in the input buffer. After making this change, the program will loop, displaying the menu
until the user enters a response that is between 1 and 5.

 3. Expand the switch statement to include the for, while, and do-while loops, as shown here:

switch(choice) {
 case '1':
 System.out.println("The if:\n");
 System.out.println("if(condition) statement;");
 System.out.println("else statement;");
 break;
 case '2':
 System.out.println("The traditional switch:\n");
 System.out.println("switch(expression) {");
 System.out.println(" case constant:");
 System.out.println(" statement sequence");
 System.out.println(" break;");

Help2.java

(continued)

03-ch03.indd 87 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 88 Java: A Beginner’s Guide

 System.out.println(" // ...");
 System.out.println("}");
 break;
 case '3':
 System.out.println("The for:\n");
 System.out.print("for(init; condition; iteration)");
 System.out.println(" statement;");
 break;
 case '4':
 System.out.println("The while:\n");
 System.out.println("while(condition) statement;");
 break;
 case '5':
 System.out.println("The do-while:\n");
 System.out.println("do {");
 System.out.println(" statement;");
 System.out.println("} while (condition);");
 break;
}

 Notice that no default statement is present in this version of the switch. Since the menu
loop ensures that a valid response will be entered, it is no longer necessary to include a
default statement to handle an invalid choice.

 4. Here is the entire Help2.java program listing:

/*
 Try This 3-2

 An improved Help system that uses a
 do-while to process a menu selection.
*/
class Help2 {
 public static void main(String[] args)
 throws java.io.IOException {
 char choice, ignore;

 do {
 System.out.println("Help on:");
 System.out.println(" 1. if");
 System.out.println(" 2. switch");
 System.out.println(" 3. for");
 System.out.println(" 4. while");
 System.out.println(" 5. do-while\n");
 System.out.print("Choose one: ");

03-ch03.indd 88 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 Chapter 3: Program Control Statements 89

 choice = (char) System.in.read();

 do {
 ignore = (char) System.in.read();
 } while(ignore != '\n');
 } while(choice < '1' | choice > '5');

 System.out.println("\n");

 switch(choice) {
 case '1':
 System.out.println("The if:\n");
 System.out.println("if(condition) statement;");
 System.out.println("else statement;");
 break;
 case '2':
 System.out.println("The traditional switch:\n");
 System.out.println("switch(expression) {");
 System.out.println(" case constant:");
 System.out.println(" statement sequence");
 System.out.println(" break;");
 System.out.println(" // ...");
 System.out.println("}");
 break;
 case '3':
 System.out.println("The for:\n");
 System.out.print("for(init; condition; iteration)");
 System.out.println(" statement;");
 break;
 case '4':
 System.out.println("The while:\n");
 System.out.println("while(condition) statement;");
 break;
 case '5':
 System.out.println("The do-while:\n");
 System.out.println("do {");
 System.out.println(" statement;");
 System.out.println("} while (condition);");
 break;
 }
 }
}

03-ch03.indd 89 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 90 Java: A Beginner’s Guide

Use break to Exit a Loop
It is possible to force an immediate exit from a loop, bypassing any remaining code in the
body of the loop and the loop’s conditional test, by using the break statement. When a break
statement is encountered inside a loop, the loop is terminated and program control resumes at
the next statement following the loop. Here is a simple example:

// Using break to exit a loop.
class BreakDemo {
 public static void main(String[] args) {
 int num;

 num = 100;

 // loop while i-squared is less than num
 for(int i=0; i < num; i++) {
 if(i*i >= num) break; // terminate loop if i*i >= 100
 System.out.print(i + " ");
 }
 System.out.println("Loop complete.");
 }
}

This program generates the following output:

0 1 2 3 4 5 6 7 8 9 Loop complete.

As you can see, although the for loop is designed to run from 0 to num (which in this case is
100), the break statement causes it to terminate early, when i squared is greater than or equal
to num.

The break statement can be used with any of Java’s loops, including intentionally infinite
loops. For example, the following program simply reads input until the user types the letter q:

// Read input until a q is received.
class Break2 {
 public static void main(String[] args)
 throws java.io.IOException {

 char ch;

 for(; ;) {
 ch = (char) System.in.read(); // get a char
 if(ch == 'q') break;
 }
 System.out.println("You pressed q!");
 }
}

This “infinite” loop is
terminated by the break.

03-ch03.indd 90 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 Chapter 3: Program Control Statements 91

When used inside a set of nested loops, the break statement will break out of only the
innermost loop. For example:

// Using break with nested loops.
class Break3 {
 public static void main(String[] args) {

 for(int i=0; i<3; i++) {
 System.out.println("Outer loop count: " + i);
 System.out.print(" Inner loop count: ");

 int t = 0;
 while(t < 100) {
 if(t == 10) break; // terminate loop if t is 10
 System.out.print(t + " ");
 t++;
 }
 System.out.println();
 }
 System.out.println("Loops complete.");
 }
}

This program generates the following output:

Outer loop count: 0
 Inner loop count: 0 1 2 3 4 5 6 7 8 9
Outer loop count: 1
 Inner loop count: 0 1 2 3 4 5 6 7 8 9
Outer loop count: 2
 Inner loop count: 0 1 2 3 4 5 6 7 8 9
Loops complete.

As you can see, the break statement in the inner loop causes the termination of only that loop.
The outer loop is unaffected.

Here are two other points to remember about break. First, more than one break statement
may appear in a loop. However, be careful. Too many break statements have the tendency to
destructure your code. Second, the break that terminates a switch statement affects only that
switch statement and not any enclosing loops.

Use break as a Form of goto
In addition to its uses with the switch statement and loops, the break statement can be
employed by itself to provide a “civilized” form of the goto statement. Java does not have a
goto statement, because it provides an unstructured way to alter the flow of program execution.
Programs that make extensive use of the goto are usually hard to understand and hard to
maintain. There are, however, a few places where the goto is a useful and legitimate device.

03-ch03.indd 91 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 92 Java: A Beginner’s Guide

For example, the goto can be helpful when exiting from a deeply nested set of loops. To handle
such situations, Java defines an expanded form of the break statement. By using this form of
break, you can, for example, break out of one or more blocks of code. These blocks need not
be part of a loop or a switch. They can be any block. Further, you can specify precisely where
execution will resume, because this form of break works with a label. As you will see, break
gives you the benefits of a goto without its problems.

The general form of the labeled break statement is shown here:

break label;

Typically, label is the name of a label that identifies a block of code. When this form of break
executes, control is transferred out of the named block of code. The labeled block of code must
enclose the break statement, but it does not need to be the immediately enclosing block. This
means that you can use a labeled break statement to exit from a set of nested blocks. But you
cannot use break to transfer control to a block of code that does not enclose the break statement.

To name a block, put a label at the start of it. The block being labeled can be a stand-alone
block, or a statement that has a block as its target. A label is any valid Java identifier followed
by a colon. Once you have labeled a block, you can then use this label as the target of a break
statement. Doing so causes execution to resume at the end of the labeled block. For example,
the following program shows three nested blocks:

// Using break with a label.
class Break4 {
 public static void main(String[] args) {
 int i;

 for(i=1; i<4; i++) {
one: {
two: {
three: {
 System.out.println("\ni is " + i);
 if(i==1) break one;
 if(i==2) break two;
 if(i==3) break three;

 // this is never reached
 System.out.println("won't print");
 }
 System.out.println("After block three.");
 }
 System.out.println("After block two.");
 }
 System.out.println("After block one.");
 }
 System.out.println("After for.");
 }
}

Break to a label.

03-ch03.indd 92 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 Chapter 3: Program Control Statements 93

The output from the program is shown here:

i is 1
After block one.

i is 2
After block two.
After block one.

i is 3
After block three.
After block two.
After block one.
After for.

Let’s look closely at the program to understand precisely why this output is produced. When i
is 1, the first if statement succeeds, causing a break to the end of the block of code defined by
label one. This causes After block one. to print. When i is 2, the second if succeeds, causing
control to be transferred to the end of the block labeled by two. This causes the messages
After block two. and After block one. to be printed, in that order. When i is 3, the third if
succeeds, and control is transferred to the end of the block labeled by three. Now, all three
messages are displayed.

Here is another example. This time, break is being used to jump outside of a series of
nested for loops. When the break statement in the inner loop is executed, program control
jumps to the end of the block defined by the outer for loop, which is labeled by done. This
causes the remainder of all three loops to be bypassed.

// Another example of using break with a label.
class Break5 {
 public static void main(String[] args) {

done:
 for(int i=0; i<10; i++) {
 for(int j=0; j<10; j++) {
 for(int k=0; k<10; k++) {
 System.out.println(k + " ");
 if(k == 5) break done; // jump to done
 }
 System.out.println("After k loop"); // won't execute
 }
 System.out.println("After j loop"); // won't execute
 }
 System.out.println("After i loop");
 }
}

03-ch03.indd 93 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 94 Java: A Beginner’s Guide

The output from the program is shown here:

0
1
2
3
4
5
After i loop

Precisely where you put a label is very important—especially when working with loops.
For example, consider the following program:

// Where you put a label is important.
class Break6 {
 public static void main(String[] args) {
 int x=0, y=0;

// here, put label before for statement.
stop1: for(x=0; x < 5; x++) {
 for(y = 0; y < 5; y++) {
 if(y == 2) break stop1;
 System.out.println("x and y: " + x + " " + y);
 }
 }

 System.out.println();

// now, put label immediately before {
 for(x=0; x < 5; x++)
stop2: {
 for(y = 0; y < 5; y++) {
 if(y == 2) break stop2;
 System.out.println("x and y: " + x + " " + y);
 }
 }
 }
}

The output from this program is shown here:

x and y: 0 0
x and y: 0 1

x and y: 0 0
x and y: 0 1

03-ch03.indd 94 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 Chapter 3: Program Control Statements 95

x and y: 1 0
x and y: 1 1
x and y: 2 0
x and y: 2 1
x and y: 3 0
x and y: 3 1
x and y: 4 0
x and y: 4 1

In the program, both sets of nested loops are the same except for one point. In the first set, the
label precedes the outer for loop. In this case, when the break executes, it transfers control to
the end of the entire for block, skipping the rest of the outer loop’s iterations. In the second
set, the label precedes the outer for’s opening curly brace. Thus, when break stop2 executes,
control is transferred to the end of the outer for’s block, causing the next iteration to occur.

Keep in mind that you cannot break to any label that is not defined for an enclosing block.
For example, the following program is invalid and will not compile:

// This program contains an error.
class BreakErr {
 public static void main(String[] args) {

 one: for(int i=0; i<3; i++) {
 System.out.print("Pass " + i + ": ");
 }

 for(int j=0; j<100; j++) {
 if(j == 10) break one; // WRONG
 System.out.print(j + " ");
 }
 }
}

Since the loop labeled one does not enclose the break statement, it is not possible to transfer
control to that block.

Q: You say that the goto is unstructured and that the break with a label offers a better
alternative. But really, doesn’t breaking to a label, which might be many lines of code
and levels of nesting removed from the break, also destructure code?

A: The short answer is yes! However, in those cases in which a jarring change in program flow
is required, breaking to a label still retains some structure. A goto has none!

Ask the Expert

03-ch03.indd 95 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 96 Java: A Beginner’s Guide

Use continue
It is possible to force an early iteration of a loop, bypassing the loop’s normal control structure.
This is accomplished using continue. The continue statement forces the next iteration of
the loop to take place, skipping any code between itself and the conditional expression that
controls the loop. Thus, continue is essentially the complement of break. For example, the
following program uses continue to help print the even numbers between 0 and 100:

// Use continue.
class ContDemo {
 public static void main(String[] args) {
 int i;

 // print even numbers between 0 and 100
 for(i = 0; i<=100; i++) {
 if((i%2) != 0) continue; // iterate
 System.out.println(i);
 }
 }
}

Only even numbers are printed, because an odd one will cause the loop to iterate early, bypassing
the call to println().

In while and do-while loops, a continue statement will cause control to go directly to
the conditional expression and then continue the looping process. In the case of the for, the
iteration expression of the loop is evaluated, then the conditional expression is executed, and
then the loop continues.

As with the break statement, continue may specify a label to describe which enclosing
loop to continue. Here is an example program that uses continue with a label:

// Use continue with a label.
class ContToLabel {
 public static void main(String[] args) {

outerloop:
 for(int i=1; i < 10; i++) {
 System.out.print("\nOuter loop pass " + i +
 ", Inner loop: ");
 for(int j = 1; j < 10; j++) {
 if(j == 5) continue outerloop; // continue outer loop
 System.out.print(j);
 }
 }
 }
}

03-ch03.indd 96 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 Chapter 3: Program Control Statements 97

Try This 3-3

The output from the program is shown here:

Outer loop pass 1, Inner loop: 1234
Outer loop pass 2, Inner loop: 1234
Outer loop pass 3, Inner loop: 1234
Outer loop pass 4, Inner loop: 1234
Outer loop pass 5, Inner loop: 1234
Outer loop pass 6, Inner loop: 1234
Outer loop pass 7, Inner loop: 1234
Outer loop pass 8, Inner loop: 1234
Outer loop pass 9, Inner loop: 1234

As the output shows, when the continue executes, control passes to the outer loop, skipping
the remainder of the inner loop.

Good uses of continue are rare. One reason is that Java provides a rich set of loop
statements that fit most applications. However, for those special circumstances in which early
iteration is needed, the continue statement provides a structured way to accomplish it.

 Finish the Java Help System
This project puts the finishing touches on the Java help system that was created in
the previous projects. This version adds the syntax for break and continue. It also

allows the user to request the syntax for more than one statement. It does this by adding an outer
loop that runs until the user enters q as a menu selection.

 1. Copy Help2.java to a new file called Help3.java.

 2. Surround all of the program code with an infinite for loop. Break out of this loop, using
break, when a letter q is entered. Since this loop surrounds all of the program code,
breaking out of this loop causes the program to terminate.

 3. Change the menu loop as shown here:

do {
 System.out.println("Help on:");
 System.out.println(" 1. if");
 System.out.println(" 2. switch");
 System.out.println(" 3. for");
 System.out.println(" 4. while");
 System.out.println(" 5. do-while");
 System.out.println(" 6. break");
 System.out.println(" 7. continue\n");
 System.out.print("Choose one (q to quit): ");

 choice = (char) System.in.read();

(continued)

Help3.java

03-ch03.indd 97 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 98 Java: A Beginner’s Guide

 do {
 ignore = (char) System.in.read();
 } while(ignore != '\n');
} while(choice < '1' | choice > '7' & choice != 'q');

 Notice that this loop now includes the break and continue statements. It also accepts the
letter q as a valid choice.

 4. Expand the switch statement to include the break and continue statements, as shown here:

case '6':
 System.out.println("The break:\n");
 System.out.println("break; or break label;");
 break;
case '7':
 System.out.println("The continue:\n");
 System.out.println("continue; or continue label;");
 break;

 5. Here is the entire Help3.java program listing:

/*
 Try This 3-3

 The finished Java statement Help system
 that processes multiple requests.
*/
class Help3 {
 public static void main(String[] args)
 throws java.io.IOException {
 char choice, ignore;

 for(;;) {
 do {
 System.out.println("Help on:");
 System.out.println(" 1. if");
 System.out.println(" 2. switch");
 System.out.println(" 3. for");
 System.out.println(" 4. while");
 System.out.println(" 5. do-while");
 System.out.println(" 6. break");
 System.out.println(" 7. continue\n");
 System.out.print("Choose one (q to quit): ");

 choice = (char) System.in.read();

 do {
 ignore = (char) System.in.read();
 } while(ignore != '\n');

03-ch03.indd 98 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 Chapter 3: Program Control Statements 99

 } while(choice < '1' | choice > '7' & choice != 'q');

 if(choice == 'q') break;

 System.out.println("\n");

 switch(choice) {
 case '1':
 System.out.println("The if:\n");
 System.out.println("if(condition) statement;");
 System.out.println("else statement;");
 break;
 case '2':
 System.out.println("The tradtional switch:\n");
 System.out.println("switch(expression) {");
 System.out.println(" case constant:");
 System.out.println(" statement sequence");
 System.out.println(" break;");
 System.out.println(" // ...");
 System.out.println("}");
 break;
 case '3':
 System.out.println("The for:\n");
 System.out.print("for(init; condition; iteration)");
 System.out.println(" statement;");
 break;
 case '4':
 System.out.println("The while:\n");
 System.out.println("while(condition) statement;");
 break;
 case '5':
 System.out.println("The do-while:\n");
 System.out.println("do {");
 System.out.println(" statement;");
 System.out.println("} while (condition);");
 break;
 case '6':
 System.out.println("The break:\n");
 System.out.println("break; or break label;");
 break;
 case '7':
 System.out.println("The continue:\n");
 System.out.println("continue; or continue label;");
 break;
 }
 System.out.println();

(continued)

03-ch03.indd 99 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 100 Java: A Beginner’s Guide

 }
 }
}

 6. Here is a sample run:

Help on:
 1. if
 2. switch
 3. for
 4. while
 5. do-while
 6. break
 7. continue

Choose one (q to quit): 1

The if:

if(condition) statement;
else statement;

Help on:
 1. if
 2. switch
 3. for
 4. while
 5. do-while
 6. break
 7. continue

Choose one (q to quit): 6

The break:

break; or break label;

Help on:
 1. if
 2. switch
 3. for
 4. while
 5. do-while
 6. break
 7. continue

Choose one (q to quit): q

03-ch03.indd 100 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 Chapter 3: Program Control Statements 101

Nested Loops
As you have seen in some of the preceding examples, one loop can be nested inside of another.
Nested loops are used to solve a wide variety of programming problems and are an essential
part of programming. So, before leaving the topic of Java’s loop statements, let’s look at one
more nested loop example. The following program uses a nested for loop to find the factors of
the numbers from 2 to 100:

/*
 Use nested loops to find factors of numbers
 between 2 and 100.
*/
class FindFac {
 public static void main(String[] args) {

 for(int i=2; i <= 100; i++) {
 System.out.print("Factors of " + i + ": ");
 for(int j = 2; j < i; j++)
 if((i%j) == 0) System.out.print(j + " ");
 System.out.println();
 }
 }
}

Here is a portion of the output produced by the program:

Factors of 2:
Factors of 3:
Factors of 4: 2
Factors of 5:
Factors of 6: 2 3
Factors of 7:
Factors of 8: 2 4
Factors of 9: 3
Factors of 10: 2 5
Factors of 11:
Factors of 12: 2 3 4 6
Factors of 13:
Factors of 14: 2 7
Factors of 15: 3 5
Factors of 16: 2 4 8
Factors of 17:
Factors of 18: 2 3 6 9
Factors of 19:
Factors of 20: 2 4 5 10

In the program, the outer loop runs i from 2 through 100. The inner loop successively tests
all numbers from 2 up to i, printing those that evenly divide i. Extra challenge: The preceding
program can be made more efficient. Can you see how? (Hint: The number of iterations in the
inner loop can be reduced.)

03-ch03.indd 101 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 102 Java: A Beginner’s Guide

 Chapter 3 Self Test
 1. Write a program that reads characters from the keyboard until a period is received. Have the

program count the number of spaces. Report the total at the end of the program.

 2. Show the general form of the if-else-if ladder.

 3. Given

if(x < 10)
 if(y > 100) {
 if(!done) x = z;
 else y = z;
 }
else System.out.println("error"); // what if?

 to what if does the last else associate?

 4. Show the for statement for a loop that counts from 1000 to 0 by –2.

 5. Is the following fragment valid?

for(int i = 0; i < num; i++)
 sum += i;

count = i;

 6. Explain what break does. Be sure to explain both of its forms.

 7. In the following fragment, after the break statement executes, what is displayed?

for(i = 0; i < 10; i++) {
 while(running) {
 if(x<y) break;
 // ...
 }
 System.out.println("after while");
}
System.out.println("After for");

 8. What does the following fragment print?

for(int i = 0; i<10; i++) {
 System.out.print(i + " ");
 if((i%2) == 0) continue;
 System.out.println();
}

✓

03-ch03.indd 102 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 3

 Chapter 3: Program Control Statements 103

 9. The iteration expression in a for loop need not always alter the loop control variable by a
fixed amount. Instead, the loop control variable can change in any arbitrary way. Using this
concept, write a program that uses a for loop to generate and display the progression 1, 2, 4,
8, 16, 32, and so on.

 10. The ASCII lowercase letters are separated from the uppercase letters by 32. Thus, to convert
a lowercase letter to uppercase, subtract 32 from it. Use this information to write a program
that reads characters from the keyboard. Have it convert all lowercase letters to uppercase,
and all uppercase letters to lowercase, displaying the result. Make no changes to any other
character. Have the program stop when the user enters a period. At the end, have the program
display the number of case changes that have taken place.

 11. What is an infinite loop?

 12. When using break with a label, must the label be on a block that contains the break?

03-ch03.indd 103 12/11/21 9:31 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter
Blind Folio: xxiv

00-FM.indd 24 12/11/21 9:20 PM

This page intentionally left blank

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 4
Blind Folio: 105

Chapter 4
Introducing Classes,
Objects, and Methods

04-ch04.indd 105 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 4

 106 Java: A Beginner’s Guide

Key Skills & Concepts

● Know the fundamentals of the class

● Understand how objects are created

● Understand how reference variables are assigned

● Create methods, return values, and use parameters

● Use the return keyword

● Return a value from a method

● Add parameters to a method

● Utilize constructors

● Create parameterized constructors

● Understand new

● Understand garbage collection

● Use the this keyword

Before you can go much further in your study of Java, you need to learn about the class. The
class is the essence of Java. It is the foundation upon which the entire Java language is built

because the class defines the nature of an object. As such, the class forms the basis for object-
oriented programming in Java. Within a class are defined data and code that acts upon that data.
The code is contained in methods. Because classes, objects, and methods are fundamental to
Java, they are introduced in this chapter. Having a basic understanding of these features will
allow you to write more sophisticated programs and better understand certain key Java elements
described in the following chapter.

Class Fundamentals
Since all Java program activity occurs within a class, we have been using classes since the start
of this book. Of course, only extremely simple classes have been used, and we have not taken
advantage of the majority of their features. As you will see, classes are substantially more
powerful than the limited ones presented so far.

Let’s begin by reviewing the basics. A class is a template that defines the form of an
object. It specifies both the data and the code that will operate on that data. Java uses a class
specification to construct objects. Objects are instances of a class. Thus, a class is essentially

04-ch04.indd 106 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 4

 Chapter 4: Introducing Classes, Objects, and Methods 107

a set of plans that specify how to build an object. It is important to be clear on one issue:
a class is a logical abstraction. It is not until an object of that class has been created that a
physical representation of that class exists in memory.

One other point: Recall that the methods and variables that constitute a class are called
members of the class. The data members are also referred to as instance variables.

The General Form of a Class
When you define a class, you declare its exact form and nature. You do this by specifying
the instance variables that it contains and the methods that operate on them. Although very
simple classes might contain only methods or only instance variables, most real-world classes
contain both.

A class is created by using the keyword class. A simplified general form of a class
definition is shown here:

class classname {
 // declare instance variables
 type var1;
 type var2;
 // ...
 type varN;

 // declare methods
 type method1(parameters) {
 // body of method
 }
 type method2(parameters) {
 // body of method
 }
 // ...
 type methodN(parameters) {
 // body of method
 }
}

Although there is no syntactic rule that enforces it, a well-designed class should define
one and only one logical entity. For example, a class that stores names and telephone numbers
will not normally also store information about the stock market, average rainfall, sunspot
cycles, or other unrelated information. The point here is that a well-designed class groups
logically connected information. Putting unrelated information into the same class will quickly
destructure your code!

Up to this point, the classes that we have been using have had only one method: main().
Soon you will see how to create others. However, notice that the general form of a class does
not specify a main() method. A main() method is required only if that class is the starting
point for your program. Also, some types of Java applications don’t require a main().

04-ch04.indd 107 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 4

 108 Java: A Beginner’s Guide

Defining a Class
To illustrate classes, we will develop a class that encapsulates information about vehicles, such
as cars, vans, and trucks. This class is called Vehicle, and it will store three items of information
about a vehicle: the number of passengers that it can carry, its fuel capacity, and its average fuel
consumption (in miles per gallon).

The first version of Vehicle is shown next. It defines three instance variables: passengers,
fuelcap, and mpg. Notice that Vehicle does not contain any methods. Thus, it is currently a
data-only class. (Subsequent sections will add methods to it.)

class Vehicle {
 int passengers; // number of passengers
 int fuelcap; // fuel capacity in gallons
 int mpg; // fuel consumption in miles per gallon
}

A class definition creates a new data type. In this case, the new data type is called Vehicle.
You will use this name to declare objects of type Vehicle. Remember that a class declaration is
only a type description; it does not create an actual object. Thus, the preceding code does not
cause any objects of type Vehicle to come into existence.

To actually create a Vehicle object, you will use a statement like the following:

Vehicle minivan = new Vehicle(); // create a Vehicle object called minivan

After this statement executes, minivan refers to an instance of Vehicle. Thus, it will have
“physical” reality. For the moment, don’t worry about the details of this statement.

Each time you create an instance of a class, you are creating an object that contains its own
copy of each instance variable defined by the class. Thus, every Vehicle object will contain its
own copies of the instance variables passengers, fuelcap, and mpg. To access these variables,
you will use the dot (.) operator. The dot operator links the name of an object with the name of
a member. The general form of the dot operator is shown here:

object.member

Thus, the object is specified on the left, and the member is put on the right. For example, to
assign the fuelcap variable of minivan the value 16, use the following statement:

minivan.fuelcap = 16;

In general, you can use the dot operator to access both instance variables and methods.
Here is a complete program that uses the Vehicle class:

// A program that uses the Vehicle class.

class Vehicle {
 int passengers; // number of passengers
 int fuelcap; // fuel capacity in gallons
 int mpg; // fuel consumption in miles per gallon
}

// This class declares an object of type Vehicle.
class VehicleDemo {

04-ch04.indd 108 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 4

 Chapter 4: Introducing Classes, Objects, and Methods 109

 public static void main(String[] args) {
 Vehicle minivan = new Vehicle();
 int range;

 // assign values to fields in minivan
 minivan.passengers = 7;
 minivan.fuelcap = 16;
 minivan.mpg = 21;

 // compute the range assuming a full tank of gas
 range = minivan.fuelcap * minivan.mpg;
 System.out.println("Minivan can carry " + minivan.passengers +
 " with a range of " + range);
 }
}

To try this program, you can put both the Vehicle and VehicleDemo classes in the same
source file. For example, you could call the file that contains this program VehicleDemo.java.
This name makes sense because the main() method is in the class called VehicleDemo, not
the class called Vehicle. Either class can be the first one in the file. When you compile this
program using javac, you will find that two .class files have been created, one for Vehicle and
one for VehicleDemo. The Java compiler automatically puts each class into its own .class file.
It is important to understand that it is not necessary for both the Vehicle and the VehicleDemo
class to be in the same source file. You could put each class in its own file, called Vehicle.java
and VehicleDemo.java, respectively. If you do this, you can still compile the program by
compiling VehicleDemo.java.

To run this program, you must execute VehicleDemo.class. The following output is displayed:

Minivan can carry 7 with a range of 336

Before moving on, let’s review a fundamental principle: each object has its own copies of
the instance variables defined by its class. Thus, the contents of the variables in one object can
differ from the contents of the variables in another. There is no connection between the two
objects except for the fact that they are both objects of the same type. For example, if you have
two Vehicle objects, each has its own copy of passengers, fuelcap, and mpg, and the contents
of these can differ between the two objects. The following program demonstrates this fact.
(Notice that the class with main() is now called TwoVehicles.)

// This program creates two Vehicle objects.

class Vehicle {
 int passengers; // number of passengers
 int fuelcap; // fuel capacity in gallons
 int mpg; // fuel consumption in miles per gallon
}

// This class declares an object of type Vehicle.
class TwoVehicles {
 public static void main(String[] args) {

Notice the use of the dot
operator to access a member.

04-ch04.indd 109 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 4

 110 Java: A Beginner’s Guide

 Vehicle minivan = new Vehicle();
 Vehicle sportscar = new Vehicle();

 int range1, range2;

 // assign values to fields in minivan
 minivan.passengers = 7;
 minivan.fuelcap = 16;
 minivan.mpg = 21;

 // assign values to fields in sportscar
 sportscar.passengers = 2;
 sportscar.fuelcap = 14;
 sportscar.mpg = 12;

 // compute the ranges assuming a full tank of gas
 range1 = minivan.fuelcap * minivan.mpg;
 range2 = sportscar.fuelcap * sportscar.mpg;

 System.out.println("Minivan can carry " + minivan.passengers +
 " with a range of " + range1);

 System.out.println("Sportscar can carry " + sportscar.passengers +
 " with a range of " + range2);
 }
}

The output produced by this program is shown here:

Minivan can carry 7 with a range of 336
Sportscar can carry 2 with a range of 168

As you can see, minivan’s data is completely separate from the data contained in sportscar.
The following illustration depicts this situation.

How Objects Are Created
In the preceding programs, the following line was used to declare an object of type Vehicle:

Vehicle minivan = new Vehicle();

Remember,
minivan and
sportscar refer
to separate
objects.

04-ch04.indd 110 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 4

 Chapter 4: Introducing Classes, Objects, and Methods 111

This declaration performs two functions. First, it declares a variable called minivan of the
class type Vehicle. This variable does not define an object. Instead, it is simply a variable that
can refer to an object. Second, the declaration creates an instance of the object and assigns to
minivan a reference to that object. This is done by using the new operator.

The new operator dynamically allocates (that is, allocates at run time) memory for an object
and returns a reference to it. This reference is, essentially, the address in memory of the object
allocated by new. This reference is then stored in a variable. Thus, in Java, all class objects must
be dynamically allocated.

The two steps combined in the preceding statement can be rewritten like this to show each
step individually:

Vehicle minivan; // declare reference to object
minivan = new Vehicle(); // allocate a Vehicle object

The first line declares minivan as a reference to an object of type Vehicle. Thus, minivan is
a variable that can refer to an object, but it is not an object itself. At this point, minivan does
not refer to an object. The next line creates a new Vehicle object and assigns a reference to it
to minivan. Now, minivan is linked with an object.

Reference Variables and Assignment
In an assignment operation, object reference variables act differently than do variables of
a primitive type, such as int. When you assign one primitive-type variable to another, the
situation is straightforward. The variable on the left receives a copy of the value of the variable
on the right. When you assign one object reference variable to another, the situation is a bit
more complicated because you are changing the object that the reference variable refers to.
The effect of this difference can cause some counterintuitive results. For example, consider the
following fragment:

Vehicle car1 = new Vehicle();
Vehicle car2 = car1;

At first glance, it is easy to think that car1 and car2 refer to different objects, but this is not
the case. Instead, car1 and car2 will both refer to the same object. The assignment of car1 to
car2 simply makes car2 refer to the same object as does car1. Thus, the object can be acted
upon by either car1 or car2. For example, after the assignment

car1.mpg = 26;

executes, both of these println() statements

System.out.println(car1.mpg);
System.out.println(car2.mpg);

display the same value: 26.

04-ch04.indd 111 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 4

 112 Java: A Beginner’s Guide

Although car1 and car2 both refer to the same object, they are not linked in any other way.
For example, a subsequent assignment to car2 simply changes the object to which car2 refers.
For example:

Vehicle car1 = new Vehicle();
Vehicle car2 = car1;
Vehicle car3 = new Vehicle();

car2 = car3; // now car2 and car3 refer to the same object.

After this sequence executes, car2 refers to the same object as car3. The object referred to by
car1 is unchanged.

Methods
As explained, instance variables and methods are constituents of classes. So far, the Vehicle
class contains data, but no methods. Although data-only classes are perfectly valid, most
classes will have methods. Methods are subroutines that manipulate the data defined by
the class and, in many cases, provide access to that data. In most cases, other parts of your
program will interact with a class through its methods.

A method contains one or more statements. In well-written Java code, each method
performs only one task. Each method has a name, and it is this name that is used to call the
method. In general, you can give a method whatever name you please. However, remember
that main() is reserved for the method that begins execution of your program. Also, don’t use
Java’s keywords for method names.

When denoting methods in text, this book has used and will continue to use a convention that
has become common when writing about Java. A method will have parentheses after its name.
For example, if a method’s name is getVal, it will be written getVal() when its name is used in a
sentence. This notation will help you distinguish variable names from method names in this book.

The general form of a method is shown here:

ret-type name(parameter-list) {
 // body of method
}

Here, ret-type specifies the type of data returned by the method. This can be any valid type,
including class types that you create. If the method does not return a value, its return type
must be void. The name of the method is specified by name. This can be any legal identifier
other than those already used by other items within the current scope. The parameter-list is a
sequence of type and identifier pairs separated by commas. Parameters are essentially variables
that receive the value of the arguments passed to the method when it is called. If the method
has no parameters, the parameter list will be empty.

Adding a Method to the Vehicle Class
As just explained, the methods of a class typically manipulate and provide access to the data of
the class. With this in mind, recall that main() in the preceding examples computed the range of
a vehicle by multiplying its fuel consumption rate by its fuel capacity. While technically correct,

04-ch04.indd 112 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 4

 Chapter 4: Introducing Classes, Objects, and Methods 113

this is not the best way to handle this computation. The calculation of a vehicle’s range is
something that is best handled by the Vehicle class itself. The reason for this conclusion is easy
to understand: the range of a vehicle is dependent upon the capacity of the fuel tank and the
rate of fuel consumption, and both of these quantities are encapsulated by Vehicle. By adding
a method to Vehicle that computes the range, you are enhancing its object-oriented structure.
To add a method to Vehicle, specify it within Vehicle’s declaration. For example, the following
version of Vehicle contains a method called range() that displays the range of the vehicle.

// Add range to Vehicle.

class Vehicle {
 int passengers; // number of passengers
 int fuelcap; // fuel capacity in gallons
 int mpg; // fuel consumption in miles per gallon

 // Display the range.
 void range() {
 System.out.println("Range is " + fuelcap * mpg);
 }
}

class AddMeth {
 public static void main(String[] args) {
 Vehicle minivan = new Vehicle();
 Vehicle sportscar = new Vehicle();

 int range1, range2;

 // assign values to fields in minivan
 minivan.passengers = 7;
 minivan.fuelcap = 16;
 minivan.mpg = 21;

 // assign values to fields in sportscar
 sportscar.passengers = 2;
 sportscar.fuelcap = 14;
 sportscar.mpg = 12;

 System.out.print("Minivan can carry " + minivan.passengers +
 ". ");

 minivan.range(); // display range of minivan

 System.out.print("Sportscar can carry " + sportscar.passengers +
 ". ");

 sportscar.range(); // display range of sportscar.
 }
}

The range() method is contained within the Vehicle class.

Notice that fuelcap and mpg are used directly, without the dot operator.

04-ch04.indd 113 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 4

 114 Java: A Beginner’s Guide

This program generates the following output:

Minivan can carry 7. Range is 336
Sportscar can carry 2. Range is 168

Let’s look at the key elements of this program, beginning with the range() method itself.
The first line of range() is

void range() {

This line declares a method called range that has no parameters. Its return type is void. Thus,
range() does not return a value to the caller. The line ends with the opening curly brace of the
method body.

The body of range() consists solely of this line:

System.out.println("Range is " + fuelcap * mpg);

This statement displays the range of the vehicle by multiplying fuelcap by mpg. Since each
object of type Vehicle has its own copy of fuelcap and mpg, when range() is called, the range
computation uses the calling object’s copies of those variables.

The range() method ends when its closing curly brace is encountered. This causes
program control to transfer back to the caller.

Next, look closely at this line of code from inside main():

minivan.range();

This statement invokes the range() method on minivan. That is, it calls range() relative to
the minivan object, using the object’s name followed by the dot operator. When a method is
called, program control is transferred to the method. When the method terminates, control is
transferred back to the caller, and execution resumes with the line of code following the call.

In this case, the call to minivan.range() displays the range of the vehicle defined by minivan.
In similar fashion, the call to sportscar.range() displays the range of the vehicle defined by
sportscar. Each time range() is invoked, it displays the range for the specified object.

There is something very important to notice inside the range() method: the instance
variables fuelcap and mpg are referred to directly, without preceding them with an object name
or the dot operator. When a method uses an instance variable that is defined by its class, it does
so directly, without explicit reference to an object and without use of the dot operator. This is
easy to understand if you think about it. A method is always invoked relative to some object of
its class. Once this invocation has occurred, the object is known. Thus, within a method, there is
no need to specify the object a second time. This means that fuelcap and mpg inside range()
implicitly refer to the copies of those variables found in the object that invokes range().

Returning from a Method
In general, there are two conditions that cause a method to return—first, as the range() method
in the preceding example shows, when the method’s closing curly brace is encountered. The
second is when a return statement is executed. There are two forms of return—one for use in

04-ch04.indd 114 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 4

 Chapter 4: Introducing Classes, Objects, and Methods 115

void methods (those that do not return a value) and one for returning values. The first form is
examined here. The next section explains how to return values.

In a void method, you can cause the immediate termination of a method by using this form
of return:

return ;

When this statement executes, program control returns to the caller, skipping any remaining
code in the method. For example, consider this method:

void myMeth() {
 int i;

 for(i=0; i<10; i++) {
 if(i == 5) return; // stop at 5
 System.out.println();
 }
}

Here, the for loop will only run from 0 to 5, because once i equals 5, the method returns. It is
permissible to have multiple return statements in a method, especially when there are two or
more routes out of it. For example:

void myMeth() {
 // ...
 if(done) return;
 // ...
 if(error) return;
 // ...
}

Here, the method returns if it is done or if an error occurs. Be careful, however, because
having too many exit points in a method can destructure your code; so avoid using them
casually. A well-designed method has well-defined exit points.

To review: A void method can return in one of two ways—its closing curly brace is
reached, or a return statement is executed.

Returning a Value
Although methods with a return type of void are not rare, most methods will return a value.
In fact, the ability to return a value is one of the most useful features of a method. You have
already seen one example of a return value: when we used the sqrt() function to obtain a
square root.

Return values are used for a variety of purposes in programming. In some cases, such as
with sqrt(), the return value contains the outcome of some calculation. In other cases, the
return value may simply indicate success or failure. In still others, it may contain a status code.
Whatever the purpose, using method return values is an integral part of Java programming.

04-ch04.indd 115 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 4

 116 Java: A Beginner’s Guide

Methods return a value to the calling routine using this form of return:

return value;

Here, value is the value returned. This form of return can be used only with methods that have
a non-void return type. Furthermore, a non-void method must return a value by using this form
of return.

You can use a return value to improve the implementation of range(). Instead of displaying
the range, a better approach is to have range() compute the range and return this value. Among
the advantages to this approach is that you can use the value for other calculations. The following
example modifies range() to return the range rather than displaying it.

// Use a return value.

class Vehicle {
 int passengers; // number of passengers
 int fuelcap; // fuel capacity in gallons
 int mpg; // fuel consumption in miles per gallon

 // Return the range.
 int range() {
 return mpg * fuelcap;
 }
}

class RetMeth {
 public static void main(String[] args) {
 Vehicle minivan = new Vehicle();
 Vehicle sportscar = new Vehicle();

 int range1, range2;

 // assign values to fields in minivan
 minivan.passengers = 7;
 minivan.fuelcap = 16;
 minivan.mpg = 21;

 // assign values to fields in sportscar
 sportscar.passengers = 2;
 sportscar.fuelcap = 14;
 sportscar.mpg = 12;

 // get the ranges
 range1 = minivan.range();
 range2 = sportscar.range();

Return the range for a given vehicle.

Assign the value
returned to a variable.

04-ch04.indd 116 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 4

 Chapter 4: Introducing Classes, Objects, and Methods 117

 System.out.println("Minivan can carry " + minivan.passengers +
 " with range of " + range1 + " Miles");

 System.out.println("Sportscar can carry " + sportscar.passengers +
 " with range of " + range2 + " miles");

 }
}

The output is shown here:

Minivan can carry 7 with range of 336 Miles
Sportscar can carry 2 with range of 168 miles

In the program, notice that when range() is called, it is put on the right side of an assignment
statement. On the left is a variable that will receive the value returned by range(). Thus, after

range1 = minivan.range();

executes, the range of the minivan object is stored in range1.
Notice that range() now has a return type of int. This means that it will return an integer

value to the caller. The return type of a method is important because the type of data returned
by a method must be compatible with the return type specified by the method. Thus, if you
want a method to return data of type double, its return type must be type double.

Although the preceding program is correct, it is not written as efficiently as it could be.
Specifically, there is no need for the range1 or range2 variables. A call to range() can be
used in the println() statement directly, as shown here:

System.out.println("Minivan can carry " + minivan.passengers +
 " with range of " + minivan.range() + " Miles");

In this case, when println() is executed, minivan.range() is called automatically and its value
will be passed to println(). Furthermore, you can use a call to range() whenever the range of a
Vehicle object is needed. For example, this statement compares the ranges of two vehicles:

if(v1.range() > v2.range()) System.out.println("v1 has greater range");

Using Parameters
It is possible to pass one or more values to a method when the method is called. Recall that a
value passed to a method is called an argument. Inside the method, the variable that receives
the argument is called a parameter. Parameters are declared inside the parentheses that follow
the method’s name. The parameter declaration syntax is the same as that used for variables.
A parameter is within the scope of its method, and aside from its special task of receiving an
argument, it acts like any other local variable.

04-ch04.indd 117 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 4

 118 Java: A Beginner’s Guide

Here is a simple example that uses a parameter. Inside the ChkNum class, the method
isEven() returns true if the value that it is passed is even. It returns false otherwise. Therefore,
isEven() has a return type of boolean.

// A simple example that uses a parameter.

class ChkNum {
 // return true if x is even
 boolean isEven(int x) {
 if((x%2) == 0) return true;
 else return false;
 }
}

class ParmDemo {
 public static void main(String[] args) {
 ChkNum e = new ChkNum();

 if(e.isEven(10)) System.out.println("10 is even.");

 if(e.isEven(9)) System.out.println("9 is even.");

 if(e.isEven(8)) System.out.println("8 is even.");

 }
}

Here is the output produced by the program:

10 is even.
8 is even.

In the program, isEven() is called three times, and each time a different value is passed.
Let’s look at this process closely. First, notice how isEven() is called. The argument is specified
between the parentheses. When isEven() is called the first time, it is passed the value 10. Thus,
when isEven() begins executing, the parameter x receives the value 10. In the second call, 9 is
the argument, and x, then, has the value 9. In the third call, the argument is 8, which is the value
that x receives. The point is that the value passed as an argument when isEven() is called is the
value received by its parameter, x.

A method can have more than one parameter. Simply declare each parameter, separating
one from the next with a comma. For example, the Factor class defines a method called
isFactor() that determines whether the first parameter is a factor of the second.

class Factor {
 boolean isFactor(int a, int b) {
 if((b % a) == 0) return true;
 else return false;

Here, x is an integer parameter of isEven().

Pass arguments
to isEven().

This method has two parameters.

04-ch04.indd 118 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 4

 Chapter 4: Introducing Classes, Objects, and Methods 119

 }
}
class IsFact {
 public static void main(String[] args) {
 Factor x = new Factor();

 if(x.isFactor(2, 20)) System.out.println("2 is factor");
 if(x.isFactor(3, 20)) System.out.println("this won't be displayed");

 }
}

Notice that when isFactor() is called, the arguments are also separated by commas.
When using multiple parameters, each parameter specifies its own type, which can differ

from the others. For example, this is perfectly valid:

int myMeth(int a, double b, float c) {
// ...

Adding a Parameterized Method to Vehicle
You can use a parameterized method to add a new feature to the Vehicle class: the ability
to compute the amount of fuel needed for a given distance. This new method is called
fuelNeeded(). This method takes the number of miles that you want to drive and returns
the number of gallons of gas required. The fuelNeeded() method is defined like this:

double fuelNeeded(int miles) {
 return (double) miles / mpg;
}

Notice that this method returns a value of type double. This is useful since the amount of
fuel needed for a given distance might not be a whole number. The entire Vehicle class that
includes fuelNeeded() is shown here:

/*
 Add a parameterized method that computes the
 fuel required for a given distance.
*/

class Vehicle {
 int passengers; // number of passengers
 int fuelcap; // fuel capacity in gallons
 int mpg; // fuel consumption in miles per gallon

Pass two arguments
to isFactor().

04-ch04.indd 119 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 4

 120 Java: A Beginner’s Guide

 // Return the range.
 int range() {
 return mpg * fuelcap;
 }

 // Compute fuel needed for a given distance.
 double fuelNeeded(int miles) {
 return (double) miles / mpg;
 }
}

class CompFuel {
 public static void main(String[] args) {
 Vehicle minivan = new Vehicle();
 Vehicle sportscar = new Vehicle();
 double gallons;
 int dist = 252;

 // assign values to fields in minivan
 minivan.passengers = 7;
 minivan.fuelcap = 16;
 minivan.mpg = 21;

 // assign values to fields in sportscar
 sportscar.passengers = 2;
 sportscar.fuelcap = 14;
 sportscar.mpg = 12;

 gallons = minivan.fuelNeeded(dist);

 System.out.println("To go " + dist + " miles minivan needs " +
 gallons + " gallons of fuel.");

 gallons = sportscar.fuelNeeded(dist);

 System.out.println("To go " + dist + " miles sportscar needs " +
 gallons + " gallons of fuel.");

 }
}

The output from the program is shown here:

To go 252 miles minivan needs 12.0 gallons of fuel.
To go 252 miles sportscar needs 21.0 gallons of fuel.

04-ch04.indd 120 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 4

 Chapter 4: Introducing Classes, Objects, and Methods 121

Try This 4-1

(continued)

HelpClassDemo.java

 Creating a Help Class
If one were to try to summarize the essence of the class in one sentence,
it might be this: a class encapsulates functionality. Of course, sometimes

the trick is knowing where one “functionality” ends and another begins. As a general rule,
you will want your classes to be the building blocks of your larger application. In order to do
this, each class must represent a single functional unit that performs clearly delineated actions.
Thus, you will want your classes to be as small as possible—but no smaller! That is, classes
that contain extraneous functionality confuse and destructure code, but classes that contain too
little functionality are fragmented. What is the balance? It is at this point that the science of
programming becomes the art of programming. Fortunately, most programmers find that this
balancing act becomes easier with experience.

To begin to gain that experience you will convert the help system from Try This 3-3 in
the preceding chapter into a Help class. Let’s examine why this is a good idea. First, the help
system defines one logical unit. It simply displays the syntax for Java’s control statements.
Thus, its functionality is compact and well defined. Second, putting help in a class is an
esthetically pleasing approach. Whenever you want to offer the help system to a user, simply
instantiate a help-system object. Finally, because help is encapsulated, it can be upgraded or
changed without causing unwanted side effects in the programs that use it.

 1. Create a new file called HelpClassDemo.java. To save you some typing, you might want
to copy the file from Try This 3-3, Help3.java, into HelpClassDemo.java.

 2. To convert the help system into a class, you must first determine precisely what constitutes
the help system. For example, in Help3.java, there is code to display a menu, input the
user’s choice, check for a valid response, and display information about the item selected.
The program also loops until the letter q is pressed. If you think about it, it is clear that
the menu, the check for a valid response, and the display of the information are integral
to the help system. How user input is obtained, and whether repeated requests should be
processed, are not. Thus, you will create a class that displays the help information, the help
menu, and checks for a valid selection. Its methods will be called helpOn(), showMenu(),
and isValid(), respectively.

 3. Create the helpOn() method as shown here:

void helpOn(int what) {
 switch(what) {
 case '1':
 System.out.println("The if:\n");
 System.out.println("if(condition) statement;");
 System.out.println("else statement;");
 break;
 case '2':
 System.out.println("The traditional switch:\n");
 System.out.println("switch(expression) {");

04-ch04.indd 121 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 4

 122 Java: A Beginner’s Guide

 System.out.println(" case constant:");
 System.out.println(" statement sequence");
 System.out.println(" break;");
 System.out.println(" // ...");
 System.out.println("}");
 break;
 case '3':
 System.out.println("The for:\n");
 System.out.print("for(init; condition; iteration)");
 System.out.println(" statement;");
 break;
 case '4':
 System.out.println("The while:\n");
 System.out.println("while(condition) statement;");
 break;
 case '5':
 System.out.println("The do-while:\n");
 System.out.println("do {");
 System.out.println(" statement;");
 System.out.println("} while (condition);");
 break;
 case '6':
 System.out.println("The break:\n");
 System.out.println("break; or break label;");
 break;
 case '7':
 System.out.println("The continue:\n");
 System.out.println("continue; or continue label;");
 break;
 }
 System.out.println();
}

 4. Next, create the showMenu() method:

void showMenu() {
 System.out.println("Help on:");
 System.out.println(" 1. if");
 System.out.println(" 2. switch");
 System.out.println(" 3. for");
 System.out.println(" 4. while");
 System.out.println(" 5. do-while");
 System.out.println(" 6. break");
 System.out.println(" 7. continue\n");
 System.out.print("Choose one (q to quit): ");
}

04-ch04.indd 122 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 4

 Chapter 4: Introducing Classes, Objects, and Methods 123

 5. Create the isValid() method, shown here:

boolean isValid(int ch) {
 if(ch < '1' | ch > '7' & ch != 'q') return false;
 else return true;
}

 6. Assemble the foregoing methods into the Help class, shown here:

class Help {
 void helpOn(int what) {
 switch(what) {
 case '1':
 System.out.println("The if:\n");
 System.out.println("if(condition) statement;");
 System.out.println("else statement;");
 break;
 case '2':
 System.out.println("The traditional switch:\n");
 System.out.println("switch(expression) {");
 System.out.println(" case constant:");
 System.out.println(" statement sequence");
 System.out.println(" break;");
 System.out.println(" // ...");
 System.out.println("}");
 break;
 case '3':
 System.out.println("The for:\n");
 System.out.print("for(init; condition; iteration)");
 System.out.println(" statement;");
 break;
 case '4':
 System.out.println("The while:\n");
 System.out.println("while(condition) statement;");
 break;
 case '5':
 System.out.println("The do-while:\n");
 System.out.println("do {");
 System.out.println(" statement;");
 System.out.println("} while (condition);");
 break;
 case '6':
 System.out.println("The break:\n");
 System.out.println("break; or break label;");
 break;

(continued)

04-ch04.indd 123 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 4

 124 Java: A Beginner’s Guide

 case '7':
 System.out.println("The continue:\n");
 System.out.println("continue; or continue label;");
 break;
 }
 System.out.println();
 }

 void showMenu() {
 System.out.println("Help on:");
 System.out.println(" 1. if");
 System.out.println(" 2. switch");
 System.out.println(" 3. for");
 System.out.println(" 4. while");
 System.out.println(" 5. do-while");
 System.out.println(" 6. break");
 System.out.println(" 7. continue\n");
 System.out.print("Choose one (q to quit): ");
 }

 boolean isValid(int ch) {
 if(ch < '1' | ch > '7' & ch != 'q') return false;
 else return true;
 }

}

 7. Finally, rewrite the main() method from Try This 3-3 so that it uses the new Help class. Call
this class HelpClassDemo. The entire listing for HelpClassDemo.java is shown here:

/*
 Try This 4-1

 Convert the help system from Try This 3-3 into
 a Help class.
*/

class Help {
 void helpOn(int what) {
 switch(what) {
 case '1':
 System.out.println("The if:\n");
 System.out.println("if(condition) statement;");
 System.out.println("else statement;");
 break;

04-ch04.indd 124 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 4

 Chapter 4: Introducing Classes, Objects, and Methods 125

 case '2':
 System.out.println("The traditional switch:\n");
 System.out.println("switch(expression) {");
 System.out.println(" case constant:");
 System.out.println(" statement sequence");
 System.out.println(" break;");
 System.out.println(" // ...");
 System.out.println("}");
 break;
 case '3':
 System.out.println("The for:\n");
 System.out.print("for(init; condition; iteration)");
 System.out.println(" statement;");
 break;
 case '4':
 System.out.println("The while:\n");
 System.out.println("while(condition) statement;");
 break;
 case '5':
 System.out.println("The do-while:\n");
 System.out.println("do {");
 System.out.println(" statement;");
 System.out.println("} while (condition);");
 break;
 case '6':
 System.out.println("The break:\n");
 System.out.println("break; or break label;");
 break;
 case '7':
 System.out.println("The continue:\n");
 System.out.println("continue; or continue label;");
 break;
 }
 System.out.println();
 }

 void showMenu() {
 System.out.println("Help on:");
 System.out.println(" 1. if");
 System.out.println(" 2. switch");
 System.out.println(" 3. for");
 System.out.println(" 4. while");
 System.out.println(" 5. do-while");
 System.out.println(" 6. break");
 System.out.println(" 7. continue\n");
 System.out.print("Choose one (q to quit): ");
 }

(continued)

04-ch04.indd 125 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 4

 126 Java: A Beginner’s Guide

 boolean isValid(int ch) {
 if(ch < '1' | ch > '7' & ch != 'q') return false;
 else return true;
 }

}

class HelpClassDemo {
 public static void main(String[] args)
 throws java.io.IOException {
 char choice, ignore;
 Help hlpobj = new Help();

 for(;;) {
 do {
 hlpobj.showMenu();

 choice = (char) System.in.read();

 do {
 ignore = (char) System.in.read();
 } while(ignore != '\n');

 } while(!hlpobj.isValid(choice));

 if(choice == 'q') break;

 System.out.println("\n");

 hlpobj.helpOn(choice);
 }
 }
}

When you try the program, you will find that it is functionally the same as before. The
advantage to this approach is that you now have a help system component that can be reused
whenever it is needed.

Constructors
In the preceding examples, the instance variables of each Vehicle object had to be set manually
using a sequence of statements, such as:

minivan.passengers = 7;
minivan.fuelcap = 16;
minivan.mpg = 21;

04-ch04.indd 126 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 4

 Chapter 4: Introducing Classes, Objects, and Methods 127

An approach like this would never be used in professionally written Java code. Aside from
being error prone (you might forget to set one of the fields), there is simply a better way to
accomplish this task: the constructor.

A constructor initializes an object when it is created. It has the same name as its class
and is syntactically similar to a method. However, constructors have no explicit return
type. Typically, you will use a constructor to give initial values to the instance variables
defined by the class, or to perform any other startup procedures required to create a fully
formed object.

All classes have constructors, whether you define one or not, because Java automatically
provides a default constructor. In this case, non-initialized member variables have their default
values, which are zero, null, and false, for numeric types, reference types, and booleans,
respectively. Once you define your own constructor, the default constructor is no longer used.

Here is a simple example that uses a constructor:

// A simple constructor.

class MyClass {
 int x;

 MyClass() {
 x = 10;
 }
}

class ConsDemo {
 public static void main(String[] args) {
 MyClass t1 = new MyClass();
 MyClass t2 = new MyClass();

 System.out.println(t1.x + " " + t2.x);
 }
}

In this example, the constructor for MyClass is

MyClass() {
 x = 10;
}

This constructor assigns the instance variable x of MyClass the value 10. This constructor is
called by new when an object is created. For example, in the line

MyClass t1 = new MyClass();

the constructor MyClass() is called on the t1 object, giving t1.x the value 10. The same is true
for t2. After construction, t2.x has the value 10. Thus, the output from the program is

10 10

This is the constructor for MyClass.

04-ch04.indd 127 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 4

 128 Java: A Beginner’s Guide

Parameterized Constructors
In the preceding example, a parameter-less constructor was used. Although this is fine for
some situations, most often you will need a constructor that accepts one or more parameters.
Parameters are added to a constructor in the same way that they are added to a method: just
declare them inside the parentheses after the constructor’s name. For example, here, MyClass
is given a parameterized constructor:

// A parameterized constructor.

class MyClass {
 int x;

 MyClass(int i) {
 x = i;
 }
}

class ParmConsDemo {
 public static void main(String[] args) {
 MyClass t1 = new MyClass(10);
 MyClass t2 = new MyClass(88);

 System.out.println(t1.x + " " + t2.x);
 }
}

The output from this program is shown here:

10 88

In this version of the program, the MyClass() constructor defines one parameter called i,
which is used to initialize the instance variable, x. Thus, when the line

MyClass t1 = new MyClass(10);

executes, the value 10 is passed to i, which is then assigned to x.

Adding a Constructor to the Vehicle Class
We can improve the Vehicle class by adding a constructor that automatically initializes the
passengers, fuelcap, and mpg fields when an object is constructed. Pay special attention to
how Vehicle objects are created.

// Add a constructor.

class Vehicle {
 int passengers; // number of passengers
 int fuelcap; // fuel capacity in gallons
 int mpg; // fuel consumption in miles per gallon

This constructor has a parameter.

04-ch04.indd 128 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 4

 Chapter 4: Introducing Classes, Objects, and Methods 129

 // This is a constructor for Vehicle.
 Vehicle(int p, int f, int m) {
 passengers = p;
 fuelcap = f;
 mpg = m;
 }

 // Return the range.
 int range() {
 return mpg * fuelcap;
 }

 // Compute fuel needed for a given distance.
 double fuelNeeded(int miles) {
 return (double) miles / mpg;
 }
}

class VehConsDemo {
 public static void main(String[] args) {

 // construct complete vehicles
 Vehicle minivan = new Vehicle(7, 16, 21);
 Vehicle sportscar = new Vehicle(2, 14, 12);
 double gallons;
 int dist = 252;

 gallons = minivan.fuelNeeded(dist);

 System.out.println("To go " + dist + " miles minivan needs " +
 gallons + " gallons of fuel.");

 gallons = sportscar.fuelNeeded(dist);

 System.out.println("To go " + dist + " miles sportscar needs " +
 gallons + " gallons of fuel.");

 }
}

Both minivan and sportscar are initialized by the Vehicle() constructor when they are
created. Each object is initialized as specified in the parameters to its constructor. For example,
in the following line,

Vehicle minivan = new Vehicle(7, 16, 21);

the values 7, 16, and 21 are passed to the Vehicle() constructor when new creates the object.
Thus, minivan’s copy of passengers, fuelcap, and mpg will contain the values 7, 16, and 21,
respectively. The output from this program is the same as the previous version.

Constructor for Vehicle

04-ch04.indd 129 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 4

 130 Java: A Beginner’s Guide

The new Operator Revisited
Now that you know more about classes and their constructors, let’s take a closer look at the
new operator. In the context of an assignment, the new operator has this general form:

class-var = new class-name(arg-list);

Here, class-var is a variable of the class type being created. The class-name is the name of
the class that is being instantiated. The class name followed by a parenthesized argument list
(which can be empty) specifies the constructor for the class. If a class does not define its own
constructor, new will use the default constructor supplied by Java. Thus, new can be used to
create an object of any class type. The new operator returns a reference to the newly created
object, which (in this case) is assigned to class-var.

Since memory is finite, it is possible that new will not be able to allocate memory for
an object because insufficient memory exists. If this happens, a run-time exception will
occur. (You will learn about exceptions in Chapter 9.) For the sample programs in this book,
you won’t need to worry about running out of memory, but you will need to consider this
possibility in real-world programs that you write.

Garbage Collection
As you have seen, objects are dynamically allocated from a pool of free memory by using the
new operator. As explained, memory is not infinite, and the free memory can be exhausted.
Thus, it is possible for new to fail because there is insufficient free memory to create the
desired object. For this reason, a key component of any dynamic allocation scheme is the
recovery of free memory from unused objects, making that memory available for subsequent
reallocation. In some programming languages, the release of previously allocated memory
is handled manually. However, Java uses a different, more trouble-free approach: garbage
collection.

Java’s garbage collection system reclaims objects automatically—occurring transparently,
behind the scenes, without any programmer intervention. It works like this: When no references
to an object exist, that object is assumed to be no longer needed, and the memory occupied by
the object is released. This recycled memory can then be used for a subsequent allocation.

Q: Why don’t I need to use new for variables of the primitive types, such as int or float?

A: Java’s primitive types are not implemented as objects. Rather, because of efficiency
concerns, they are implemented as “normal” variables. A variable of a primitive type
actually contains the value that you have given it. As explained, object variables are
references to the object. This layer of indirection (and other object features) adds overhead
to an object that is avoided by a primitive type.

Ask the Expert

04-ch04.indd 130 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 4

 Chapter 4: Introducing Classes, Objects, and Methods 131

Garbage collection occurs only sporadically during the execution of your program. It will
not occur simply because one or more objects exist that are no longer used. For efficiency,
the garbage collector will usually run only when two conditions are met: there are objects to
recycle, and there is a reason to recycle them. Remember, garbage collection takes time, so the
Java run-time system does it only when it is appropriate. Thus, you can’t know precisely when
garbage collection will take place.

The this Keyword
Before concluding this chapter, it is necessary to introduce this. When a method is called, it is
automatically passed an implicit argument that is a reference to the invoking object (that is, the
object on which the method is called). This reference is called this. To understand this, first
consider a program that creates a class called Pwr that computes the result of a number raised
to some integer power:

class Pwr {
 double b;
 int e;
 double val;

 Pwr(double base, int exp) {
 b = base;
 e = exp;

 val = 1;
 if(exp==0) return;
 for(; exp>0; exp--) val = val * base;
 }

 double getVal() {
 return val;
 }
}

class DemoPwr {
 public static void main(String[] args) {
 Pwr x = new Pwr(4.0, 2);
 Pwr y = new Pwr(2.5, 1);
 Pwr z = new Pwr(5.7, 0);

 System.out.println(x.b + " raised to the " + x.e +
 " power is " + x.getVal());
 System.out.println(y.b + " raised to the " + y.e +
 " power is " + y.getVal());
 System.out.println(z.b + " raised to the " + z.e +
 " power is " + z.getVal());
 }
}

04-ch04.indd 131 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 4

 132 Java: A Beginner’s Guide

As you know, within a method, the other members of a class can be accessed directly,
without any object or class qualification. Thus, inside getVal(), the statement

return val;

means that the copy of val associated with the invoking object will be returned. However, the
same statement can also be written like this:

return this.val;

Here, this refers to the object on which getVal() was called. Thus, this.val refers to that
object’s copy of val. For example, if getVal() had been invoked on x, then this in the
preceding statement would have been referring to x. Writing the statement without using this
is really just shorthand.

Here is the entire Pwr class written using the this reference:

class Pwr {
 double b;
 int e;
 double val;

 Pwr(double base, int exp) {
 this.b = base;
 this.e = exp;

 this.val = 1;
 if(exp==0) return;
 for(; exp>0; exp--) this.val = this.val * base;
 }

 double getVal() {
 return this.val;
 }
}

Actually, no Java programmer would write Pwr as just shown because nothing is gained,
and the standard form is easier. However, this has some important uses. For example, the
Java syntax permits the name of a parameter or a local variable to be the same as the name of
an instance variable. When this happens, the local name hides the instance variable. You can
gain access to the hidden instance variable by referring to it through this. For example, the
following is a syntactically valid way to write the Pwr() constructor.

Pwr(double b, int e) {
 this.b = b;
 this.e = e;

This refers to the b instance
variable, not the parameter.

04-ch04.indd 132 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 4

 Chapter 4: Introducing Classes, Objects, and Methods 133

 val = 1;
 if(e==0) return;
 for(; e>0; e--) val = val * b;
}

In this version, the names of the parameters are the same as the names of the instance variables,
thus hiding them. However, this is used to “uncover” the instance variables.

 Chapter 4 Self Test
 1. What is the difference between a class and an object?

 2. How is a class defined?

 3. What does each object have its own copy of?

 4. Using two separate statements, show how to declare an object called counter of a class
called MyCounter.

 5. Show how a method called myMeth() is declared if it has a return type of double and has
two int parameters called a and b.

 6. How must a method return if it returns a value?

 7. What name does a constructor have?

 8. What does new do?

 9. What is garbage collection, and how does it work?

 10. What is this?

 11. Can a constructor have one or more parameters?

 12. If a method returns no value, what must its return type be?

✓

04-ch04.indd 133 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter
Blind Folio: xxiv

00-FM.indd 24 12/11/21 9:20 PM

This page intentionally left blank

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5
Blind Folio: 135

Chapter 5
More Data Types
and Operators

05-ch05.indd 135 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 136 Java: A Beginner’s Guide

Key Skills & Concepts

● Understand and create arrays

● Create multidimensional arrays

● Create irregular arrays

● Know the alternative array declaration syntax

● Assign array references

● Use the length array member

● Use the for-each style for loop

● Work with strings

● Apply command-line arguments

● Use type inference with local variables

● Use the bitwise operators

● Apply the ? operator

This chapter returns to the subject of Java’s data types and operators. It discusses arrays, the
String type, local variable type inference, the bitwise operators, and the ? ternary operator. It

also covers Java’s for-each style for loop. Along the way, command-line arguments are described.

Arrays
An array is a collection of variables of the same type, referred to by a common name. In Java,
arrays can have one or more dimensions, although the one-dimensional array is the most
common. Arrays are used for a variety of purposes because they offer a convenient means of
grouping together related variables. For example, you might use an array to hold a record of
the daily high temperature for a month, a list of stock price averages, or a list of your collection
of programming books.

The principal advantage of an array is that it organizes data in such a way that it can be
easily manipulated. For example, if you have an array containing the incomes for a selected
group of households, it is easy to compute the average income by cycling through the array.
Also, arrays organize data in such a way that it can be easily sorted.

Although arrays in Java can be used just like arrays in other programming languages,
they have one special attribute: they are implemented as objects. This fact is one reason that a
discussion of arrays was deferred until objects had been introduced. By implementing arrays

05-ch05.indd 136 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 Chapter 5: More Data Types and Operators 137

as objects, several important advantages are gained, not the least of which is that unused arrays
can be garbage collected.

One-Dimensional Arrays
A one-dimensional array is a list of related variables. Such lists are common in programming.
For example, you might use a one-dimensional array to store the account numbers of the active
users on a network. Another array might be used to store the current batting averages for a
baseball team.

To declare a one-dimensional array, you can use this general form:

type[] array-name = new type[size];

Here, type declares the element type of the array. (The element type is also commonly referred
to as the base type.) The element type determines the data type of each element contained in the
array. The number of elements that the array will hold is determined by size. Since arrays are
implemented as objects, the creation of an array is a two-step process. First, you declare an array
reference variable. Second, you allocate memory for the array, assigning a reference to that memory
to the array variable. Thus, arrays in Java are dynamically allocated using the new operator.

Here is an example. The following creates an int array of 10 elements and links it to an
array reference variable named sample:

int[] sample = new int[10];

This declaration works just like an object declaration. The sample variable holds a reference
to the memory allocated by new. This memory is large enough to hold 10 elements of type int.
As with objects, it is possible to break the preceding declaration in two. For example:

int[] sample;
sample = new int[10];

In this case, when sample is first created, it refers to no physical object. It is only after the second
statement executes that sample is linked with an array.

An individual element within an array is accessed by use of an index. An index describes
the position of an element within an array. In Java, all arrays have zero as the index of their
first element. Because sample has 10 elements, it has index values of 0 through 9. To index
an array, specify the number of the element you want, surrounded by square brackets. Thus,
the first element in sample is sample[0], and the last element is sample[9]. For example, the
following program loads sample with the numbers 0 through 9:

// Demonstrate a one-dimensional array.
class ArrayDemo {
 public static void main(String[] args) {
 int[] sample = new int[10];
 int i;

 for(i = 0; i < 10; i = i+1)
 sample[i] = i;

 for(i = 0; i < 10; i = i+1)

Arrays are indexed from zero.

05-ch05.indd 137 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 138 Java: A Beginner’s Guide

 System.out.println("This is sample[" + i + "]: " +
 sample[i]);
 }
}

The output from the program is shown here:

This is sample[0]: 0
This is sample[1]: 1
This is sample[2]: 2
This is sample[3]: 3
This is sample[4]: 4
This is sample[5]: 5
This is sample[6]: 6
This is sample[7]: 7
This is sample[8]: 8
This is sample[9]: 9

Conceptually, the sample array looks like this:

Arrays are common in programming because they let you deal easily with large numbers
of related variables. For example, the following program finds the minimum and maximum
values stored in the nums array by cycling through the array using a for loop:

// Find the minimum and maximum values in an array.
class MinMax {
 public static void main(String[] args) {
 int[] nums = new int[10];
 int min, max;

 nums[0] = 99;
 nums[1] = -10;
 nums[2] = 100123;
 nums[3] = 18;
 nums[4] = -978;
 nums[5] = 5623;
 nums[6] = 463;
 nums[7] = -9;
 nums[8] = 287;
 nums[9] = 49;

05-ch05.indd 138 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 Chapter 5: More Data Types and Operators 139

 min = max = nums[0];
 for(int i=1; i < 10; i++) {
 if(nums[i] < min) min = nums[i];
 if(nums[i] > max) max = nums[i];
 }
 System.out.println("min and max: " + min + " " + max);
 }
}

The output from the program is shown here:

min and max: -978 100123

In the preceding program, the nums array was given values by hand, using 10 separate
assignment statements. Although perfectly correct, there is an easier way to accomplish this.
Arrays can be initialized when they are created. The general form for initializing a one-
dimensional array is shown here:

type[] array-name = { val1, val2, val3, ... , valN };

Here, the initial values are specified by val1 through valN. They are assigned in sequence,
left to right, in index order. Java automatically allocates an array large enough to hold the
initializers that you specify. There is no need to explicitly use the new operator. For example,
here is a better way to write the MinMax program:

// Use array initializers.
class MinMax2 {
 public static void main(String[] args) {
 int[] nums = { 99, -10, 100123, 18, -978,
 5623, 463, -9, 287, 49 };
 int min, max;

 min = max = nums[0];
 for(int i=1; i < 10; i++) {
 if(nums[i] < min) min = nums[i];
 if(nums[i] > max) max = nums[i];
 }
 System.out.println("Min and max: " + min + " " + max);
 }
}

Array boundaries are strictly enforced in Java; it is a run-time error to overrun or underrun
the end of an array. If you want to confirm this for yourself, try the following program that
purposely overruns an array:

// Demonstrate an array overrun.
class ArrayErr {
 public static void main(String[] args) {
 int[] sample = new int[10];
 int i;

Array initializers

05-ch05.indd 139 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 140 Java: A Beginner’s Guide

Try This 5-1

Bubble.java

 // generate an array overrun
 for(i = 0; i < 100; i = i+1)
 sample[i] = i;
 }
}

As soon as i reaches 10, an ArrayIndexOutOfBoundsException is generated and the
program is terminated.

 Sorting an Array
Because a one-dimensional array organizes data into an indexable linear list, it is
the perfect data structure for sorting. In this project you will learn a simple way

to sort an array. As you may know, there are a number of different sorting algorithms. There
are the quick sort, the shaker sort, and the shell sort, to name just three. However, the best
known, simplest, and easiest to understand is called the Bubble sort. Although the Bubble sort
is not very efficient—in fact, its performance is unacceptable for sorting large arrays—it may
be used effectively for sorting small arrays.

 1. Create a file called Bubble.java.

 2. The Bubble sort gets its name from the way it performs the sorting operation. It uses the
repeated comparison and, if necessary, exchange of adjacent elements in the array. In
this process, small values move toward one end and large ones toward the other end. The
process is conceptually similar to bubbles finding their own level in a tank of water. The
Bubble sort operates by making several passes through the array, exchanging out-of-place
elements when necessary. The number of passes required to ensure that the array is sorted
is equal to one less than the number of elements in the array.

 Here is the code that forms the core of the Bubble sort. The array being sorted is called nums.

// This is the Bubble sort.
for(a=1; a < size; a++)
 for(b=size-1; b >= a; b--) {
 if(nums[b-1] > nums[b]) { // if out of order
 // exchange elements
 t = nums[b-1];
 nums[b-1] = nums[b];
 nums[b] = t;
 }
}

 Notice that sort relies on two for loops. The inner loop checks adjacent elements in the
array, looking for out-of-order elements. When an out-of-order element pair is found, the
two elements are exchanged. With each pass, the smallest of the remaining elements moves
into its proper location. The outer loop causes this process to repeat until the entire array
has been sorted.

05-ch05.indd 140 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 Chapter 5: More Data Types and Operators 141

 3. Here is the entire Bubble program:

/*
 Try This 5-1

 Demonstrate the Bubble sort.
*/

class Bubble {
 public static void main(String[] args) {
 int[] nums = { 99, -10, 100123, 18, -978,
 5623, 463, -9, 287, 49 };
 int a, b, t;
 int size;

 size = 10; // number of elements to sort

 // display original array
 System.out.print("Original array is:");
 for(int i=0; i < size; i++)
 System.out.print(" " + nums[i]);
 System.out.println();

 // This is the Bubble sort.
 for(a=1; a < size; a++)
 for(b=size-1; b >= a; b--) {
 if(nums[b-1] > nums[b]) { // if out of order
 // exchange elements
 t = nums[b-1];
 nums[b-1] = nums[b];
 nums[b] = t;
 }
 }

 // display sorted array
 System.out.print("Sorted array is:");
 for(int i=0; i < size; i++)
 System.out.print(" " + nums[i]);
 System.out.println();
 }
}

 The output from the program is shown here:

Original array is: 99 -10 100123 18 -978 5623 463 -9 287 49
Sorted array is: -978 -10 -9 18 49 99 287 463 5623 100123

 4. Although the Bubble sort is good for small arrays, it is not efficient when used on larger
ones. A much better general-purpose sorting algorithm is the Quicksort. The Quicksort,
however, relies on features of Java that you have not yet learned about.

05-ch05.indd 141 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 142 Java: A Beginner’s Guide

Multidimensional Arrays
Although the one-dimensional array is often the most commonly used array in programming,
multidimensional arrays (arrays of two or more dimensions) are certainly not rare. In Java,
a multidimensional array is an array of arrays.

Two-Dimensional Arrays
The simplest form of the multidimensional array is the two-dimensional array. A two-dimensional
array is, in essence, a list of one-dimensional arrays. To declare a two-dimensional integer array
table of size 10, 20 you would write

int[][] table = new int[10][20];

Pay careful attention to the declaration. Unlike some other computer languages, which use
commas to separate the array dimensions, Java places each dimension in its own set of brackets.
Similarly, to access point 3, 5 of array table, you would use table[3][5].

In the next example, a two-dimensional array is loaded with the numbers 1 through 12.

// Demonstrate a two-dimensional array.
class TwoD {
 public static void main(String[] args) {
 int t, i;
 int[][] table = new int[3][4];

 for(t=0; t < 3; ++t) {
 for(i=0; i < 4; ++i) {
 table[t][i] = (t*4)+i+1;
 System.out.print(table[t][i] + " ");
 }
 System.out.println();
 }
 }
}

In this example, table[0][0] will have the value 1, table[0][1] the value 2, table[0][2] the
value 3, and so on. The value of table[2][3] will be 12. Conceptually, the array will look like
that shown in Figure 5-1.

Figure 5-1 Conceptual view of the table array by the TwoD program

05-ch05.indd 142 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 Chapter 5: More Data Types and Operators 143

Irregular Arrays
When you allocate memory for a multidimensional array, you need to specify only the memory
for the first (leftmost) dimension. You can allocate the remaining dimensions separately. For
example, the following code allocates memory for the first dimension of table when it is
declared. It allocates the second dimension manually.

int[][] table = new int[3][];
table[0] = new int[4];
table[1] = new int[4];
table[2] = new int[4];

Although there is no advantage to individually allocating the second dimension arrays
in this situation, there may be in others. For example, when you allocate dimensions
separately, you do not need to allocate the same number of elements for each index. Since
multidimensional arrays are implemented as arrays of arrays, the length of each array is
under your control. For example, assume you are writing a program that stores the number of
passengers that ride an airport shuttle. If the shuttle runs 10 times a day during the week and
twice a day on Saturday and Sunday, you could use the riders array shown in the following
program to store the information. Notice that the length of the second dimension for the first
five indices is 10 and the length of the second dimension for the last two indices is 2.

// Manually allocate differing size second dimensions.
class Ragged {
 public static void main(String[] args) {
 int[][] riders = new int[7][];
 riders[0] = new int[10];
 riders[1] = new int[10];
 riders[2] = new int[10];
 riders[3] = new int[10];
 riders[4] = new int[10];
 riders[5] = new int[2];
 riders[6] = new int[2];

 int i, j;

 // fabricate some fake data
 for(i=0; i < 5; i++)
 for(j=0; j < 10; j++)
 riders[i][j] = i + j + 10;
 for(i=5; i < 7; i++)
 for(j=0; j < 2; j++)
 riders[i][j] = i + j + 10;

 System.out.println("Riders per trip during the week:");
 for(i=0; i < 5; i++) {
 for(j=0; j < 10; j++)
 System.out.print(riders[i][j] + " ");
 System.out.println();
 }

Here, the second dimensions
are 10 elements long.

But here, they are
2 elements long.

05-ch05.indd 143 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 144 Java: A Beginner’s Guide

 System.out.println();

 System.out.println("Riders per trip on the weekend:");
 for(i=5; i < 7; i++) {
 for(j=0; j < 2; j++)
 System.out.print(riders[i][j] + " ");
 System.out.println();
 }
 }
}

The use of irregular (or ragged) multidimensional arrays does not, obviously, apply to all
cases. However, irregular arrays can be quite effective in some situations. For example, if you
need a very large two-dimensional array that is sparsely populated (that is, one in which not all
of the elements will be used), an irregular array might be a perfect solution.

Arrays of Three or More Dimensions
Java allows arrays with more than two dimensions. Here is the general form of a multidimensional
array declaration:

type[] []...[] name = new type[size1][size2]...[sizeN];

For example, the following declaration creates a 4 × 10 × 3 three-dimensional integer array.

int[][][] multidim = new int[4][10][3];

Initializing Multidimensional Arrays
A multidimensional array can be initialized by enclosing each dimension’s initializer list
within its own set of curly braces. For example, the general form of array initialization for
a two-dimensional array is shown here:

type-specifier[] [] array_name = {
 { val, val, val, ..., val },
 { val, val, val, ..., val },
.
.
.
 { val, val, val, ..., val }
};

Here, val indicates an initialization value. Each inner block designates a row. Within each row,
the first value will be stored in the first position of the subarray, the second value in the second
position, and so on. Notice that commas separate the initializer blocks and that a semicolon
follows the closing }.

05-ch05.indd 144 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 Chapter 5: More Data Types and Operators 145

For example, the following program initializes an array called sqrs with the numbers 1
through 10 and their squares:

// Initialize a two-dimensional array.
class Squares {
 public static void main(String[] args) {
 int[][] sqrs = {
 { 1, 1 },
 { 2, 4 },
 { 3, 9 },
 { 4, 16 },
 { 5, 25 },
 { 6, 36 },
 { 7, 49 },
 { 8, 64 },
 { 9, 81 },
 { 10, 100 }
 };
 int i, j;

 for(i=0; i < 10; i++) {
 for(j=0; j < 2; j++)
 System.out.print(sqrs[i][j] + " ");
 System.out.println();
 }
 }
}

Here is the output from the program:

1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100

Alternative Array Declaration Syntax
There is a second form that can be used to declare an array:

type var-name[];

Notice how each row has
its own set of initializers.

05-ch05.indd 145 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 146 Java: A Beginner’s Guide

Here, the square brackets follow the name of the array variable, not the type specifier. For
example, the following two declarations are equivalent:

int counter[] = new int[3];
int[] counter = new int[3];

The following declarations are also equivalent:

char table[][] = new char[3][4];
char[][] table = new char[3][4];

This alternative declaration form offers convenience when converting code from C/C++
to Java. (In C/C++, arrays are declared in a fashion similar to Java’s alternative form.) It also
lets you declare both array and non-array variables in a single declaration statement. Today,
the alternative form of array declaration is less commonly used, but it is still important that
you are familiar with it because both forms of array declarations are legal in Java.

Assigning Array References
As with other objects, when you assign one array reference variable to another, you are simply
changing what object that variable refers to. You are not causing a copy of the array to be
made, nor are you causing the contents of one array to be copied to the other. For example,
consider this program:

// Assigning array reference variables.
class AssignARef {
 public static void main(String[] args) {
 int i;

 int[] nums1 = new int[10];
 int[] nums2 = new int[10];

 for(i=0; i < 10; i++)
 nums1[i] = i;

 for(i=0; i < 10; i++)
 nums2[i] = -i;

 System.out.print("Here is nums1: ");
 for(i=0; i < 10; i++)
 System.out.print(nums1[i] + " ");
 System.out.println();

 System.out.print("Here is nums2: ");
 for(i=0; i < 10; i++)
 System.out.print(nums2[i] + " ");
 System.out.println();

 nums2 = nums1; // now nums2 refers to nums1

Assign an array reference.

05-ch05.indd 146 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 Chapter 5: More Data Types and Operators 147

 System.out.print("Here is nums2 after assignment: ");
 for(i=0; i < 10; i++)
 System.out.print(nums2[i] + " ");
 System.out.println();

 // now operate on nums1 array through nums2
 nums2[3] = 99;

 System.out.print("Here is nums1 after change through nums2: ");
 for(i=0; i < 10; i++)
 System.out.print(nums1[i] + " ");
 System.out.println();
 }
}

The output from the program is shown here:

Here is nums1: 0 1 2 3 4 5 6 7 8 9
Here is nums2: 0 -1 -2 -3 -4 -5 -6 -7 -8 -9
Here is nums2 after assignment: 0 1 2 3 4 5 6 7 8 9
Here is nums1 after change through nums2: 0 1 2 99 4 5 6 7 8 9

As the output shows, after the assignment of nums1 to nums2, both array reference variables
refer to the same object.

Using the length Member
Recall that in Java, arrays are implemented as objects. One benefit of this approach is that each
array has associated with it a length instance variable that contains the number of elements
that the array can hold. (In other words, length contains the size of the array.) Here is a
program that demonstrates this property:

// Use the length array member.
class LengthDemo {
 public static void main(String[] args) {
 int[] list = new int[10];
 int[] nums = { 1, 2, 3 };
 int[][] table = { // a variable-length table
 {1, 2, 3},
 {4, 5},
 {6, 7, 8, 9}
 };

 System.out.println("length of list is " + list.length);
 System.out.println("length of nums is " + nums.length);
 System.out.println("length of table is " + table.length);
 System.out.println("length of table[0] is " + table[0].length);
 System.out.println("length of table[1] is " + table[1].length);
 System.out.println("length of table[2] is " + table[2].length);
 System.out.println();

05-ch05.indd 147 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 148 Java: A Beginner’s Guide

 // use length to initialize list
 for(int i=0; i < list.length; i++)
 list[i] = i * i;

 System.out.print("Here is list: ");
 // now use length to display list
 for(int i=0; i < list.length; i++)
 System.out.print(list[i] + " ");
 System.out.println();
 }
}

This program displays the following output:

length of list is 10
length of nums is 3
length of table is 3
length of table[0] is 3
length of table[1] is 2
length of table[2] is 4

Here is list: 0 1 4 9 16 25 36 49 64 81

Pay special attention to the way length is used with the two-dimensional array table.
As explained, a two-dimensional array is an array of arrays. Thus, when the expression

table.length

is used, it obtains the number of arrays stored in table, which is 3 in this case. To obtain the
length of any individual array in table, you will use an expression such as this,

table[0].length

which, in this case, obtains the length of the first array.
One other thing to notice in LengthDemo is the way that list.length is used by the for

loops to govern the number of iterations that take place. Since each array carries with it its
own length, you can use this information rather than manually keeping track of an array’s size.
Keep in mind that the value of length has nothing to do with the number of elements that are
actually in use. It contains the number of elements that the array is capable of holding.

The inclusion of the length member simplifies many algorithms by making certain types
of array operations easier—and safer—to perform. For example, the following program uses
length to copy one array to another while preventing an array overrun and its attendant run-
time exception.

// Use length variable to help copy an array.
class ACopy {
 public static void main(String[] args) {

Use length to
control a for loop.

05-ch05.indd 148 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 Chapter 5: More Data Types and Operators 149

Try This 5-2

 int i;
 int[] nums1 = new int[10];
 int[] nums2 = new int[10];

 for(i=0; i < nums1.length; i++)
 nums1[i] = i;

 // copy nums1 to nums2
 if(nums2.length >= nums1.length)
 for(i = 0; i < nums1.length; i++)
 nums2[i] = nums1[i];

 for(i=0; i < nums2.length; i++)
 System.out.print(nums2[i] + " ");
 }
}

Here, length helps perform two important functions. First, it is used to confirm that the
target array is large enough to hold the contents of the source array. Second, it provides the
termination condition of the for loop that performs the copy. Of course, in this simple example,
the sizes of the arrays are easily known, but this same approach can be applied to a wide range
of more challenging situations.

 A Queue Class
As you may know, a data structure is a means of organizing data. The simplest
data structure is the array, which is a linear list that supports random access to its

elements. Arrays are often used as the underpinning for more sophisticated data structures,
such as stacks and queues. A stack is a list in which elements can be accessed in first-in, last-
out (FILO) order only. A queue is a list in which elements can be accessed in first-in, first-out
(FIFO) order only. Thus, a stack is like a stack of plates on a table—the first down is the last to
be used. A queue is like a line at a bank—the first in line is the first served.

What makes data structures such as stacks and queues interesting is that they combine
storage for information with the methods that access that information. Thus, stacks and queues
are data engines in which storage and retrieval are provided by the data structure itself, not
manually by your program. Such a combination is, obviously, an excellent choice for a class,
and in this project you will create a simple queue class.

In general, queues support two basic operations: put and get. Each put operation places a
new element on the end of the queue. Each get operation retrieves the next element from the
front of the queue. Queue operations are consumptive: once an element has been retrieved,
it cannot be retrieved again. The queue can also become full, if there is no space available to
store an item, and it can become empty, if all of the elements have been removed.

Use length to compare array sizes.

(continued)

QDemo.java

05-ch05.indd 149 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 150 Java: A Beginner’s Guide

One last point: There are two basic types of queues—circular and noncircular. A circular
queue reuses locations in the underlying array when elements are removed. A noncircular
queue does not reuse locations and eventually becomes exhausted. For the sake of simplicity,
this example creates a noncircular queue, but with a little thought and effort, you can easily
transform it into a circular queue.

 1. Create a file called QDemo.java.

 2. Although there are other ways to support a queue, the method we will use is based
upon an array. That is, an array will provide the storage for the items put into the queue.
This array will be accessed through two indices. The put index determines where the next
element of data will be stored. The get index indicates at what location the next element
of data will be obtained. Keep in mind that the get operation is consumptive, and it is not
possible to retrieve the same element twice. Although the queue that we will be creating
stores characters, the same logic can be used to store any type of object. Begin creating the
Queue class with these lines:

class Queue {
 char[] q; // this array holds the queue
 int putloc, getloc; // the put and get indices

 3. The constructor for the Queue class creates a queue of a given size. Here is the Queue
constructor:

Queue(int size) {
 q = new char[size]; // allocate memory for queue
 putloc = getloc = 0;
}

 Notice that the put and get indices are initially set to zero.

 4. The put() method, which stores elements, is shown next:

// put a character into the queue
void put(char ch) {
 if(putloc==q.length) {
 System.out.println(" – Queue is full.");
 return;
 }

 q[putloc++] = ch;
}

 The method begins by checking for a queue-full condition. If putloc is equal to one
past the last location in the q array, there is no more room in which to store elements.
Otherwise, the new element is stored at that location and putloc is incremented. Thus,
putloc is always the index where the next element will be stored.

05-ch05.indd 150 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 Chapter 5: More Data Types and Operators 151

 5. To retrieve elements, use the get() method, shown next:

// get a character from the queue
char get() {
 if(getloc == putloc) {
 System.out.println(" – Queue is empty.");
 return (char) 0;
 }

 return q[getloc++];
}

 Notice first the check for queue-empty. If getloc and putloc both index the same element,
the queue is assumed to be empty. This is why getloc and putloc were both initialized to
zero by the Queue constructor. Then, the next element is returned. In the process, getloc is
incremented. Thus, getloc always indicates the location of the next element to be retrieved.

 6. Here is the entire QDemo.java program:

/*
 Try This 5-2

 A queue class for characters.
*/

class Queue {
 char[] q; // this array holds the queue
 int putloc, getloc; // the put and get indices

 Queue(int size) {
 q = new char[size]; // allocate memory for queue
 putloc = getloc = 0;
 }

 // put a character into the queue
 void put(char ch) {
 if(putloc==q.length) {
 System.out.println(" – Queue is full.");
 return;
 }

 q[putloc++] = ch;
 }

 // get a character from the queue
 char get() {
 if(getloc == putloc) {
 System.out.println(" – Queue is empty.");
 return (char) 0;
 }

(continued)

05-ch05.indd 151 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 152 Java: A Beginner’s Guide

 return q[getloc++];
 }
}

// Demonstrate the Queue class.
class QDemo {
 public static void main(String[] args) {
 Queue bigQ = new Queue(100);
 Queue smallQ = new Queue(4);
 char ch;
 int i;

 System.out.println("Using bigQ to store the alphabet.");
 // put some numbers into bigQ
 for(i=0; i < 26; i++)
 bigQ.put((char) ('A' + i));

 // retrieve and display elements from bigQ
 System.out.print("Contents of bigQ: ");
 for(i=0; i < 26; i++) {
 ch = bigQ.get();
 if(ch != (char) 0) System.out.print(ch);
 }

 System.out.println("\n");

 System.out.println("Using smallQ to generate errors.");
 // Now, use smallQ to generate some errors
 for(i=0; i < 5; i++) {
 System.out.print("Attempting to store " +
 (char) ('Z' - i));

 smallQ.put((char) ('Z' - i));

 System.out.println();
 }
 System.out.println();

 // more errors on smallQ
 System.out.print("Contents of smallQ: ");
 for(i=0; i < 5; i++) {
 ch = smallQ.get();

 if(ch != (char) 0) System.out.print(ch);
 }
 }
}

05-ch05.indd 152 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 Chapter 5: More Data Types and Operators 153

 7. The output produced by the program is shown here:

Using bigQ to store the alphabet.
Contents of bigQ: ABCDEFGHIJKLMNOPQRSTUVWXYZ

Using smallQ to generate errors.

Attempting to store Z
Attempting to store Y
Attempting to store X
Attempting to store W
Attempting to store V – Queue is full.

Contents of smallQ: ZYXW – Queue is empty.

 8. On your own, try modifying Queue so that it stores other types of objects. For example,
have it store ints or doubles.

The For-Each Style for Loop
When working with arrays, it is common to encounter situations in which each element in an
array must be examined, from start to finish. For example, to compute the sum of the values
held in an array, each element in the array must be examined. The same situation occurs when
computing an average, searching for a value, copying an array, and so on. Because such “start
to finish” operations are so common, Java defines a second form of the for loop that streamlines
this operation.

The second form of the for implements a “for-each” style loop. A for-each loop cycles
through a collection of objects, such as an array, in strictly sequential fashion, from start to
finish. For reasons that will become clear, for-each style loops have become quite popular
among both computer language designers and programmers. Interestingly, Java did not
originally offer a for-each style loop. However, several years ago (beginning with JDK 5),
the for loop was enhanced to provide this option. The for-each style of for is also referred
to as the enhanced for loop. Both terms are used in this book.

The general form of the for-each style for is shown here.

for(type itr-var : collection) statement-or-block

Here, type specifies the type, and itr-var specifies the name of an iteration variable that will
receive the elements from a collection, one at a time, from beginning to end. The collection
being cycled through is specified by collection. There are various types of collections that can
be used with the for, but the only type used in this book is the array. With each iteration of the
loop, the next element in the collection is retrieved and stored in itr-var. The loop repeats until
all elements in the collection have been obtained. Thus, when iterating over an array of size N,
the enhanced for obtains the elements in the array in index order, from 0 to N–1.

05-ch05.indd 153 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 154 Java: A Beginner’s Guide

Because the iteration variable receives values from the collection, type must be the same
as (or compatible with) the elements stored in the collection. Thus, when iterating over arrays,
type must be compatible with the element type of the array.

To understand the motivation behind a for-each style loop, consider the type of for loop
that it is designed to replace. The following fragment uses a traditional for loop to compute
the sum of the values in an array:

int[] nums = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int sum = 0;

for(int i=0; i < 10; i++) sum += nums[i];

To compute the sum, each element in nums is read, in order, from start to finish. Thus, the
entire array is read in strictly sequential order. This is accomplished by manually indexing
the nums array by i, the loop control variable. Furthermore, the starting and ending value
for the loop control variable, and its increment, must be explicitly specified.

The for-each style for automates the preceding loop. Specifically, it eliminates the need
to establish a loop counter, specify a starting and ending value, and manually index the array.
Instead, it automatically cycles through the entire array, obtaining one element at a time, in
sequence, from beginning to end. For example, here is the preceding fragment rewritten using
a for-each version of the for:

int[] nums = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int sum = 0;

for(int x: nums) sum += x;

With each pass through the loop, x is automatically given a value equal to the next element in
nums. Thus, on the first iteration, x contains 1, on the second iteration, x contains 2, and so on.
Not only is the syntax streamlined, it also prevents boundary errors.

Q: Aside from arrays, what other types of collections can the for-each style for loop
cycle through?

A: One of the most important uses of the for-each style for is to cycle through the contents
of a collection defined by the Collections Framework. The Collections Framework is
a set of classes that implement various data structures, such as lists, vectors, sets, and
maps. A discussion of the Collections Framework is beyond the scope of this book,
but detailed coverage of the Collections Framework can be found in Java: The Complete
Reference, Twelfth Edition (McGraw Hill, 2022).

Ask the Expert

05-ch05.indd 154 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 Chapter 5: More Data Types and Operators 155

Here is an entire program that demonstrates the for-each version of the for just described:

// Use a for-each style for loop.
class ForEach {
 public static void main(String[] args) {
 int[] nums = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 int sum = 0;

 // Use for-each style for to display and sum the values.
 for(int x : nums) {
 System.out.println("Value is: " + x);
 sum += x;
 }

 System.out.println("Summation: " + sum);
 }
}

The output from the program is shown here:

Value is: 1
Value is: 2
Value is: 3
Value is: 4
Value is: 5
Value is: 6
Value is: 7
Value is: 8
Value is: 9
Value is: 10
Summation: 55

As this output shows, the for-each style for automatically cycles through an array in sequence
from the lowest index to the highest.

Although the for-each for loop iterates until all elements in an array have been examined,
it is possible to terminate the loop early by using a break statement. For example, this loop
sums only the first five elements of nums:

// Sum only the first 5 elements.
for(int x : nums) {
 System.out.println("Value is: " + x);
 sum += x;
 if(x == 5) break; // stop the loop when 5 is obtained
}

There is one important point to understand about the for-each style for loop. Its iteration
variable is “read-only” as it relates to the underlying array. An assignment to the iteration

A for-each style for loop

05-ch05.indd 155 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 156 Java: A Beginner’s Guide

variable has no effect on the underlying array. In other words, you can’t change the contents of
the array by assigning the iteration variable a new value. For example, consider this program:

// The for-each loop is essentially read-only.
class NoChange {
 public static void main(String[] args) {
 int[] nums = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 for(int x : nums) {
 System.out.print(x + " ");
 x = x * 10; // no effect on nums
 }

 System.out.println();

 for(int x : nums)
 System.out.print(x + " ");

 System.out.println();
 }
}

The first for loop increases the value of the iteration variable by a factor of 10. However, this
assignment has no effect on the underlying array nums, as the second for loop illustrates. The
output, shown here, proves this point:

1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10

Iterating Over Multidimensional Arrays
The enhanced for also works on multidimensional arrays. Remember, however, that in Java,
multidimensional arrays consist of arrays of arrays. (For example, a two-dimensional array is
an array of one-dimensional arrays.) This is important when iterating over a multidimensional
array because each iteration obtains the next array, not an individual element. Furthermore,
the iteration variable in the for loop must be compatible with the type of array being obtained.
For example, in the case of a two-dimensional array, the iteration variable must be a reference
to a one-dimensional array. In general, when using the for-each for to iterate over an array
of N dimensions, the objects obtained will be arrays of N–1 dimensions. To understand the
implications of this, consider the following program. It uses nested for loops to obtain the
elements of a two-dimensional array in row order, from first to last.

// Use for-each style for on a two-dimensional array.
class ForEach2 {
 public static void main(String[] args) {
 int sum = 0;
 int[][] nums = new int[3][5];

This does not change nums.

05-ch05.indd 156 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 Chapter 5: More Data Types and Operators 157

 // give nums some values
 for(int i = 0; i < 3; i++)
 for(int j=0; j < 5; j++)
 nums[i][j] = (i+1)*(j+1);

 // Use for-each for loop to display and sum the values.
 for(int[] x : nums) {
 for(int y : x) {
 System.out.println("Value is: " + y);
 sum += y;
 }
 }
 System.out.println("Summation: " + sum);
 }
}

The output from this program is shown here:

Value is: 1
Value is: 2
Value is: 3
Value is: 4
Value is: 5
Value is: 2
Value is: 4
Value is: 6
Value is: 8
Value is: 10
Value is: 3
Value is: 6
Value is: 9
Value is: 12
Value is: 15
Summation: 90

In the program, pay special attention to this line:

for(int[] x : nums) {

Notice how x is declared. It is a reference to a one-dimensional array of integers. This is
necessary because each iteration of the for obtains the next array in nums, beginning with
the array specified by nums[0]. The inner for loop then cycles through each of these arrays,
displaying the values of each element.

Applying the Enhanced for
Since the for-each style for can only cycle through an array sequentially, from start to
finish, you might think that its use is limited. However, this is not true. A large number
of algorithms require exactly this mechanism. One of the most common is searching.

Notice how x is declared.

05-ch05.indd 157 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 158 Java: A Beginner’s Guide

For example, the following program uses a for loop to search an unsorted array for a value.
It stops if the value is found.

// Search an array using for-each style for.
class Search {
 public static void main(String[] args) {
 int[] nums = { 6, 8, 3, 7, 5, 6, 1, 4 };
 int val = 5;
 boolean found = false;

 // Use for-each style for to search nums for val.
 for(int x : nums) {
 if(x == val) {
 found = true;
 break;
 }
 }

 if(found)
 System.out.println("Value found!");
 }
}

The for-each style for is an excellent choice in this application because searching an
unsorted array involves examining each element in sequence. (Of course, if the array were
sorted, a binary search could be used, which would require a different style loop.) Other types
of applications that benefit from for-each style loops include computing an average, finding the
minimum or maximum of a set, looking for duplicates, and so on.

Now that the for-each style for has been introduced, it will be used where appropriate
throughout the remainder of this book.

Strings
From a day-to-day programming standpoint, one of the most important of Java’s data types is
String. String defines and supports character strings. In some other programming languages,
a string is an array of characters. This is not the case with Java. In Java, strings are objects.

Actually, you have been using the String class since Chapter 1, but you did not know it.
When you create a string literal, you are actually creating a String object. For example, in
the statement

System.out.println("In Java, strings are objects.");

the string "In Java, strings are objects." is automatically made into a String object by Java.
Thus, the use of the String class has been “below the surface” in the preceding programs.

05-ch05.indd 158 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 Chapter 5: More Data Types and Operators 159

In the following sections, you will learn to handle it explicitly. Be aware, however, that the
String class is quite large, and we will only scratch its surface here. It is a class that you will
want to explore on its own.

Constructing Strings
You can construct a String just like you construct any other type of object: by using new and
calling the String constructor. For example:

String str = new String("Hello");

This creates a String object called str that contains the character string "Hello". You can also
construct a String from another String. For example:

String str = new String("Hello");
String str2 = new String(str);

After this sequence executes, str2 will also contain the character string "Hello".
Another easy way to create a String is shown here:

String str = "Java strings are powerful.";

In this case, str is initialized to the character sequence "Java strings are powerful."
Once you have created a String object, you can use it anywhere that a quoted string is

allowed. For example, you can use a String object as an argument to println(), as shown in
this example:

// Introduce String.
class StringDemo {
 public static void main(String[] args) {
 // declare strings in various ways
 String str1 = new String("Java strings are objects.");
 String str2 = "They are constructed various ways.";
 String str3 = new String(str2);

 System.out.println(str1);
 System.out.println(str2);
 System.out.println(str3);
 }
}

The output from the program is shown here:

Java strings are objects.
They are constructed various ways.
They are constructed various ways.

05-ch05.indd 159 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 160 Java: A Beginner’s Guide

Operating on Strings
The String class contains several methods that operate on strings. Here are the general forms
for a few:

boolean equals(str) Returns true if the invoking string contains the same character
sequence as str.

int length() Obtains the length of a string.

char charAt(index) Obtains the character at the index specified by index.

int compareTo(str) Returns less than zero if the invoking string is less than str, greater
than zero if the invoking string is greater than str, and zero if the
strings are equal.

int indexOf(str) Searches the invoking string for the substring specified by str. Returns
the index of the first match or –1 on failure.

int lastIndexOf(str) Searches the invoking string for the substring specified by str. Returns
the index of the last match or –1 on failure.

Here is a program that demonstrates these methods:

// Some String operations.
class StrOps {
 public static void main(String[] args) {
 String str1 =
 "When it comes to Web programming, Java is #1.";
 String str2 = new String(str1);
 String str3 = "Java strings are powerful.";
 int result, idx;
 char ch;

 System.out.println("Length of str1: " +
 str1.length());

 // display str1, one char at a time.
 for(int i=0; i < str1.length(); i++)
 System.out.print(str1.charAt(i));
 System.out.println();

 if(str1.equals(str2))
 System.out.println("str1 equals str2");
 else
 System.out.println("str1 does not equal str2");

 if(str1.equals(str3))
 System.out.println("str1 equals str3");
 else
 System.out.println("str1 does not equal str3");

05-ch05.indd 160 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 Chapter 5: More Data Types and Operators 161

 result = str1.compareTo(str3);
 if(result == 0)
 System.out.println("str1 and str3 are equal");
 else if(result < 0)
 System.out.println("str1 is less than str3");
 else
 System.out.println("str1 is greater than str3");

 // assign a new string to str2
 str2 = "One Two Three One";

 idx = str2.indexOf("One");
 System.out.println("Index of first occurrence of One: " + idx);
 idx = str2.lastIndexOf("One");
 System.out.println("Index of last occurrence of One: " + idx);
 }
}

This program generates the following output:

Length of str1: 45
When it comes to Web programming, Java is #1.
str1 equals str2
str1 does not equal str3
str1 is greater than str3
Index of first occurrence of One: 0
Index of last occurrence of One: 14

You can concatenate (join together) two strings using the + operator. For example, this
statement

String str1 = "One";
String str2 = "Two";
String str3 = "Three";
String str4 = str1 + str2 + str3;

initializes str4 with the string "OneTwoThree".

Q: Why does String define the equals() method? Can’t I just use ==?

A: The equals() method compares the character sequences of two String objects for equality.
Applying the == to two String references simply determines whether the two references
refer to the same object.

Ask the Expert

05-ch05.indd 161 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 162 Java: A Beginner’s Guide

Arrays of Strings
Like any other data type, strings can be assembled into arrays. For example:

// Demonstrate String arrays.
class StringArrays {
 public static void main(String[] args) {
 String[] strs = { "This", "is", "a", "test." };

 System.out.println("Original array: ");
 for(String s : strs)
 System.out.print(s + " ");
 System.out.println("\n");

 // change a string
 strs[1] = "was";
 strs[3] = "test, too!";

 System.out.println("Modified array: ");
 for(String s : strs)
 System.out.print(s + " ");
 }
}

Here is the output from this program:

Original array:
This is a test.

Modified array:
This was a test, too!

Strings Are Immutable
The contents of a String object are immutable. That is, once created, the character sequence that
makes up the string cannot be altered. This restriction allows Java to implement strings more
efficiently. Even though this probably sounds like a serious drawback, it isn’t. When you need
a string that is a variation on one that already exists, simply create a new string that contains the
desired changes. Since unused String objects are automatically garbage collected, you don’t
even need to worry about what happens to the discarded strings. It must be made clear, however,
that String reference variables may, of course, change the object to which they refer. It is just
that the contents of a specific String object cannot be changed after it is created.

To fully understand why immutable strings are not a hindrance, we will use another of
String’s methods: substring(). The substring() method returns a new string that contains
a specified portion of the invoking string. Because a new String object is manufactured that
contains the substring, the original string is unaltered, and the rule of immutability remains
intact. The form of substring() that we will be using is shown here:

String substring(int startIndex, int endIndex)

05-ch05.indd 162 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 Chapter 5: More Data Types and Operators 163

Here, startIndex specifies the beginning index, and endIndex specifies the stopping point. Here
is a program that demonstrates substring() and the principle of immutable strings:

// Use substring().
class SubStr {
 public static void main(String[] args) {
 String orgstr = "Java makes the Web move.";

 // construct a substring
 String substr = orgstr.substring(5, 18);

 System.out.println("orgstr: " + orgstr);
 System.out.println("substr: " + substr);
 }
}

Here is the output from the program:

orgstr: Java makes the Web move.
substr: makes the Web

As you can see, the original string orgstr is unchanged, and substr contains the substring.

Using a String to Control a switch Statement
As explained in Chapter 3, in the past a switch had to be controlled by an integer type, such
as int or char. This precluded the use of a switch in situations in which one of several actions is
selected based on the contents of a string. Instead, an if-else-if ladder was the typical solution.

This creates a
new string that
contains the
desired substring.

Q: You say that once created, String objects are immutable. I understand that, from
a practical point of view, this is not a serious restriction, but what if I want to create
a string that can be changed?

A: You’re in luck. Java offers a class called StringBuffer, which creates string objects that can
be changed. For example, in addition to the charAt() method, which obtains the character
at a specific location, StringBuffer defines setCharAt(), which sets a character within
the string. Java also supplies StringBuilder, which is related to StringBuffer, and also
supports strings that can be changed. However, for most purposes you will want to use String,
not StringBuffer or StringBuilder.

Ask the Expert

05-ch05.indd 163 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 164 Java: A Beginner’s Guide

Although an if-else-if ladder is semantically correct, a switch statement would be the more
natural idiom for such a selection. Fortunately, this situation has been remedied. With a
modern version of Java, you can use a String to control a switch. This results in more readable,
streamlined code in many situations.

Here is an example that demonstrates controlling a switch with a String:

// Use a string to control a switch statement.

class StringSwitch {
 public static void main(String[] args) {

 String command = "cancel";

 switch(command) {
 case "connect":
 System.out.println("Connecting");
 break;
 case "cancel":
 System.out.println("Canceling");
 break;
 case "disconnect":
 System.out.println("Disconnecting");
 break;
 default:
 System.out.println("Command Error!");
 break;
 }
 }
}

As you would expect, the output from the program is

Canceling

The string contained in command (which is "cancel" in this program) is tested against the case
constants. When a match is found (as it is in the second case), the code sequence associated
with that sequence is executed.

Being able to use strings in a switch statement can be very convenient and can improve
the readability of some code. For example, using a string-based switch is an improvement
over using the equivalent sequence of if/else statements. However, switching on strings can be
less efficient than switching on integers. Therefore, it is best to switch on strings only in cases
in which the controlling data is already in string form. In other words, don’t use strings in a
switch unnecessarily.

05-ch05.indd 164 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 Chapter 5: More Data Types and Operators 165

Q: I have heard about another type of string literal called a text block. Can you tell me
about it?

A: Yes, text blocks were added to Java by JDK 15. A text block is a new kind of string literal
that is comprised of a sequence of characters that can occupy more than one line. A text
block reduces the tedium programmers often face when creating multiline string literals
because newline characters can be used in a text block without the need for the \n escape
sequence. Furthermore, tab and double quote characters can also be entered directly, without
using an escape sequence, and the indentation of a multiline string can be preserved. Thus,
text blocks provide an elegant alternative to what can be a rather annoying process.

A text block is supported by a delimiter that consists of three double-quote characters:
""". A block of text is created by enclosing a string within a set of these delimiters.
Specifically, a text block begins immediately following the newline after the opening """.
Thus, the opening delimiter must end with a newline. The text block begins on the next
line. A text block ends at the first character of the closing """. It is important to emphasize
that even though a text block uses the """ delimiter, it is still of type String. Thus, a text
block can be used wherever any other string can.

Here is a simple example of a text block. It assigns a multiline text block to str.

String str = """
Text blocks make multiple lines easy because they eliminate
 the need to use \n escape sequences to indicate a newline.
As a result, text blocks make the programmer's life better!
""";

This example creates a string in which each line is separated from the next by a
newline. It is not necessary to use the \n escape sequence to obtain the newline. Thus, the
text block automatically preserves the newlines in the text. Notice that the second line is
indented. When str is output using this statement:

System.out.println(str);

the following is displayed:

Text blocks make multiple lines easy because they eliminate
 the need to use \n escape sequences to indicate a newline.
As a result, text blocks make the programmer's life better!

As the output shows, the newlines and the indentation of the second line are preserved.
These are key benefits of text blocks.

Text blocks have additional attributes, such as the ability to removed unwanted leading
whitespace. It is a feature that you will want to look at more closely as you advance in your
study of Java. Simply put, text blocks make what was often a difficult coding task easy.

Ask the Expert

05-ch05.indd 165 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 166 Java: A Beginner’s Guide

Using Command-Line Arguments
Now that you know about the String class, you can understand the args parameter to
main() that has been in every program shown so far. Many programs accept what are called
command-line arguments. A command-line argument is the information that directly follows
the program’s name on the command line when it is executed. To access the command-line
arguments inside a Java program is quite easy—they are stored as strings in the String array
passed to main(). For example, the following program displays all of the command-line
arguments that it is called with:

// Display all command-line information.
class CLDemo {
 public static void main(String[] args) {
 System.out.println("There are " + args.length +
 " command-line arguments.");

 System.out.println("They are: ");
 for(int i=0; i<args.length; i++)
 System.out.println("arg[" + i + "]: " + args[i]);
 }
}

If CLDemo is executed like this,

java CLDemo one two three

you will see the following output:

There are 3 command-line arguments.
They are:
arg[0]: one
arg[1]: two
arg[2]: three

Notice that the first argument is stored at index 0, the second argument is stored at index 1, and
so on.

To get a taste of the way command-line arguments can be used, consider the next program.
It takes one command-line argument that specifies a person’s name. It then searches through
a two-dimensional array of strings for that name. If it finds a match, it displays that person’s
telephone number.

// A simple automated telephone directory.
class Phone {
 public static void main(String[] args) {
 String[][] numbers = {
 { "Tom", "555-3322" },
 { "Mary", "555-8976" },
 { "Jon", "555-1037" },
 { "Rachel", "555-1400" }
 };

05-ch05.indd 166 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 Chapter 5: More Data Types and Operators 167

 int i;

 if(args.length != 1)
 System.out.println("Usage: java Phone <name>");
 else {
 for(i=0; i<numbers.length; i++) {
 if(numbers[i][0].equals(args[0])) {
 System.out.println(numbers[i][0] + ": " +
 numbers[i][1]);
 break;
 }
 }
 if(i == numbers.length)
 System.out.println("Name not found.");
 }
 }
}

Here is a sample run:

java Phone Mary
Mary: 555-8976

Using Type Inference with Local Variables
Not long ago, a feature called local variable type inference was added to the Java language.
To begin, let’s review two important aspects of variables. First, all variables in Java must
be declared prior to their use. Second, a variable can be initialized with a value when it is
declared. Furthermore, when a variable is initialized, the type of the initializer must be the
same as (or convertible to) the declared type of the variable. Thus, in principle, it would not
be necessary to specify an explicit type for an initialized variable because it could be inferred
from the type of its initializer. Of course, in the past, Java did not support such inference and
all variables required an explicitly declared type, whether they were initialized or not. Today,
that situation has changed.

Beginning with JDK 10, it became possible to let the compiler infer the type of a local
variable based on the type of its initializer, thus avoiding the need to explicitly specify the type.
Local variable type inference offers a number of advantages. For example, it can streamline
code by eliminating the need to redundantly specify a variable’s type when it can be inferred
from its initializer. It can simplify declarations in cases in which the type is quite lengthy,
such as can be the case with some class names. It can also be helpful when a type is difficult
to discern or cannot be denoted. (An example of a type that cannot be denoted is the type of
an anonymous class, discussed in Chapter 17.) Furthermore, local variable type inference has
become a common part of the contemporary programming environment. Its inclusion in Java
helps keep Java up-to-date with evolving trends in language design. To support local variable
type inference, the context-sensitive keyword var was added to Java.

To use the program,
one command-line
argument must be
present.

05-ch05.indd 167 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 168 Java: A Beginner’s Guide

To use local variable type inference, the variable must be declared with var as the type
name and it must include an initializer. Let’s begin with a simple example. Consider the
following statement that declares a local double variable called avg that is initialized with
the value 10.0:

double avg = 10.0;

Using type inference, this declaration can also be written like this:

var avg = 10.0;

In both cases, avg will be of type double. In the first case, its type is explicitly specified. In the
second, its type is inferred as double because the initializer 10.0 is of type double.

As mentioned, var is context-sensitive. When it is used as the type name in the context
of a local variable declaration, it tells the compiler to use type inference to determine the type
of the variable being declared based on the type of the initializer. Thus, in a local variable
declaration, var is a placeholder for the actual inferred type. However, when used in most
other places, var is simply a user-defined identifier with no special meaning. For example,
the following declaration is still valid:

int var = 1; // In this case, var is simply a user-defined identifier.

In this case, the type is explicitly specified as int and var is the name of the variable being
declared. Even though it is context-sensitive, there are a few places in which the use of var
is illegal. It cannot be used as the name of a class, for example.

The following program puts the preceding discussion into action:

// A simple demonstration of local variable type inference.
class VarDemo {
 public static void main(String[] args) {

 // Use type inference to determine the type of the
 // variable named avg. In this case, double is inferred.
 var avg = 10.0;
 System.out.println("Value of avg: " + avg);

 // In the following context, var is not a predefined identifier.
 // It is simply a user-defined variable name.
 int var = 1;
 System.out.println("Value of var: " + var);

 // Interestingly, in the following sequence, var is used
 // as both the type of the declaration and as a variable name
 // in the initializer.
 var k = -var;
 System.out.println("Value of k: " + k);
 }
}

Use var to infer
type of avg.

05-ch05.indd 168 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 Chapter 5: More Data Types and Operators 169

Here is the output:

Value of avg: 10.0
Value of var: 1
Value of k: -1

The preceding example uses var to declare only simple variables, but you can also use var
to declare an array. For example:

var myArray = new int[10]; // This is valid.

Notice that neither var nor myArray has brackets. Instead, the type of myArray is inferred to
be int[]. Furthermore, you cannot use brackets on the left side of a var declaration. Thus, both
of these declarations are invalid:

var[] myArray = new int[10]; // Wrong
var myArray[] = new int[10]; // Wrong

In the first line, an attempt is made to bracket var. In the second, an attempt is made to bracket
myArray. In both cases, the use of the brackets is wrong because the type is inferred from the
type of the initializer.

It is important to emphasize that var can be used to declare a variable only when that
variable is initialized. Therefore, the following statement is wrong:

var counter; // Wrong! Initializer required.

Also, remember that var can be used only to declare local variables. It cannot be used when
declaring instance variables, parameters, or return types, for example.

Local Variable Type Inference with Reference Types
The preceding examples introduced the fundamentals of local variable type inference using
primitive types. However, it is with reference types, such as class types, that the full benefits of
type inference become apparent. Moreover, local variable type inference with reference types
constitutes a primary use of this feature.

Let’s again begin with a simple example. The following declarations use type inference to
declare two String variables called myStr and mySubStr:

var myStr = "This is a string";
var mySubStr = myStr.substring(5, 10);

Recall that a quoted string is an object of type String. Because a quoted string is used as
an initializer, the type of myStr is inferred to be String. The type of mySubStr is also inferred
to be String because the type of reference returned by the substring() method is String.

Of course, you can also use local variable type inference with user-defined classes, as the
following program illustrates. It creates a class called MyClass and then uses local variable
type inference to declare and initialize an object of that class.

// Local variable type inference with a user-defined class type.
class MyClass {
 private int i;

05-ch05.indd 169 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 170 Java: A Beginner’s Guide

 MyClass(int k) { i = k;}

 int geti() { return i; }
 void seti(int k) { if(k >= 0) i = k; }
}

class VarDemo2 {
 public static void main(String[] args) {
 var mc = new MyClass(10); // Notice the use of var here.

 System.out.println("Value of i in mc is " + mc.geti());
 mc.seti(19);
 System.out.println("Value of i in mc is now " + mc.geti());
 }
}

The output of the program is shown here:

Value of i in mc is 10
Value of i in mc is now 19

In the program, pay special attention to this line:

var mc = new MyClass(10); // Notice the use of var here.

Here, the type of mc will be inferred as MyClass because that is the type of the initializer, which
is a new MyClass object.

As mentioned, one of the primary benefits of local variable type inference is its ability to
streamline code, and it is with reference types where such streamlining is most apparent. As
you advance in your study of Java, you will find that many class types have rather long names.
For example, in Chapter 10 you will learn about the FileInputStream class, which is used
to open a file for input operations. Without the use of type inference, you would declare and
initialize a FileInputStream using a traditional declaration like the one shown here:

FileInputStream fin = new FileInputStream("test.txt");

With the use of var, it can now be written like this:

var fin = new FileInputStream("test.txt");

Here, fin is inferred to be of type FileInputStream because that is the type of its initializer.
There is no need to explicitly repeat the type name. As a result, this declaration of fin is
substantially shorter than writing it the traditional way. Thus, the use of var streamlines the
declaration. In general, the streamlining attribute of local variable type inference helps lessen
the tedium of entering long type names into your program. Of course, local variable type
inference must be used carefully to avoid reducing the readability of your program and thus
obscuring its meaning. In essence, it is a feature that you should use wisely.

05-ch05.indd 170 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 Chapter 5: More Data Types and Operators 171

Using Local Variable Type Inference in a for Loop
Another place that local variable type inference can be used is in a for loop when declaring
and initializing the loop control variable inside a traditional for loop, or when specifying the
iteration variable in a for-each for. The following program shows an example of each case:

// Use type inference in a for loop.
class VarDemo3 {
 public static void main(String[] args) {

 // Use type inference with the loop control variable.
 System.out.print("Values of x: ");
 for(var x = 2.5; x < 100.0; x = x * 2)
 System.out.print(x + " ");

 System.out.println();

 // Use type inference with the iteration variable.
 int[] nums = { 1, 2, 3, 4, 5, 6};
 System.out.print("Values in nums array: ");
 for(var v : nums)
 System.out.print(v + " ");

 System.out.println();
 }
}

The output is shown here:

Values of x: 2.5 5.0 10.0 20.0 40.0 80.0
Values in nums array: 1 2 3 4 5 6

In this example, loop control variable x in this line:

for(var x = 2.5; x < 100.0; x = x * 2)

is inferred to be type double because that is the type of its initializer. Iteration variable v in
this line:

for(var v : nums)

is inferred to be of type int because that is the element type of the array nums.

Some var Restrictions
In addition to those mentioned in the preceding discussion, several other restrictions apply
to the use of var. Only one variable can be declared at a time; a variable cannot use null as
an initializer; and the variable being declared cannot be used by the initializer expression.
Although you can declare an array type using var, you cannot use var with an array initializer.

Use var in a for loop.

05-ch05.indd 171 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 172 Java: A Beginner’s Guide

For example, this is valid:

var myArray = new int[10]; // This is valid.

but this is not:

var myArray = { 1, 2, 3 }; // Wrong

As mentioned earlier, var cannot be used as the name of a class. It also cannot be used as
the name of other reference types, including an interface, enumeration, or annotation, which
are described later in this book. Here are two other restrictions that relate to Java features
also described later, but mentioned here in the interest of completeness. Local variable type
inference cannot be used to declare the exception type caught by a catch statement. Also,
neither lambda expressions nor method references can be used as initializers.

NOTE
At the time of this writing, a number of readers will be using Java environments that
predate JDK 10. So that as many of the code examples as possible can be compiled
and run with older JDKs, local variable type inference will not be used by most of the
programs in the remainder of this edition of the book. Using the full syntax also makes
it very clear at a glance what type of variable is being created, which is important for
example code. Of course, going forward, you should consider the use of local variable
type inference where appropriate in your own code.

The Bitwise Operators
In Chapter 2 you learned about Java’s arithmetic, relational, and logical operators. Although
these are often the most commonly used, Java provides additional operators that expand the set
of problems to which Java can be applied: the bitwise operators. The bitwise operators can be
used on values of type long, int, short, char, or byte. Bitwise operations cannot be used on
boolean, float, or double, or class types. They are called the bitwise operators because they
are used to test, set, or shift the individual bits that make up a value. Bitwise operations are
important to a wide variety of systems-level programming tasks in which status information
from a device must be interrogated or constructed. Table 5-1 lists the bitwise operators.

Operator Result

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

>> Shift right

>>> Unsigned shift right

<< Shift left

~ One’s complement (unary NOT)

Table 5-1 The Bitwise Operators

05-ch05.indd 172 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 Chapter 5: More Data Types and Operators 173

The Bitwise AND, OR, XOR, and NOT Operators
The bitwise operators AND, OR, XOR, and NOT are &, |, ^, and ~. They perform the same
operations as their Boolean logical equivalents described in Chapter 2. The difference is that
the bitwise operators work on a bit-by-bit basis. The following table shows the outcome of
each operation using 1’s and 0’s:

p q p & q p | q p ^ q ~p

0 0 0 0 0 1

1 0 0 1 1 0

0 1 0 1 1 1

1 1 1 1 0 0

In terms of one common usage, you can think of the bitwise AND as a way to turn bits off.
That is, any bit that is 0 in either operand will cause the corresponding bit in the outcome to be
set to 0. For example:

 1 1 0 1 0 0 1 1
& 1 0 1 0 1 0 1 0
 1 0 0 0 0 0 1 0

The following program demonstrates the & by turning any lowercase letter into uppercase
by resetting the 6th bit to 0. As the Unicode/ASCII character set is defined, the lowercase
letters are the same as the uppercase ones except that the lowercase ones are greater in value
by exactly 32. Therefore, to transform a lowercase letter to uppercase, just turn off the 6th bit,
as this program illustrates:

// Uppercase letters.
class UpCase {
 public static void main(String[] args) {
 char ch;

 for(int i=0; i < 10; i++) {
 ch = (char) ('a' + i);
 System.out.print(ch);

 // This statement turns off the 6th bit.
 ch = (char) ((int) ch & 65503); // ch is now uppercase

 System.out.print(ch + " ");
 }
 }
}

05-ch05.indd 173 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 174 Java: A Beginner’s Guide

The output from this program is shown here:

aA bB cC dD eE fF gG hH iI jJ

The value 65,503 used in the AND statement is the decimal representation of 1111 1111 1101
1111. Thus, the AND operation leaves all bits in ch unchanged except for the 6th one, which is
set to 0.

The AND operator is also useful when you want to determine whether a bit is on or off.
For example, this statement determines whether bit 4 in status is set:

if((status & 8)!= 0) System.out.println("bit 4 is on");

The number 8 is used because it translates into a binary value that has only the 4th bit set.
Therefore, the if statement can succeed only when bit 4 of status is also on. An interesting
use of this concept is to show the bits of a byte value in binary format.

// Display the bits within a byte.
class ShowBits {
 public static void main(String[] args) {
 int t;
 byte val;

 val = 123;
 for(t=128; t > 0; t = t/2) {
 if((val & t) != 0) System.out.print("1 ");
 else System.out.print("0 ");
 }
 }
}

The output is shown here:

0 1 1 1 1 0 1 1

The for loop successively tests each bit in val, using the bitwise AND, to determine whether it
is on or off. If the bit is on, the digit 1 is displayed; otherwise, 0 is displayed. In Try This 5-3,
you will see how this basic concept can be expanded to create a class that will display the bits
in any type of integer.

The bitwise OR, as the reverse of AND, can be used to turn bits on. Any bit that is set to 1
in either operand will cause the corresponding bit in the result to be set to 1. For example:

 1 1 0 1 0 0 1 1
| 1 0 1 0 1 0 1 0
 1 1 1 1 1 0 1 1

05-ch05.indd 174 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 Chapter 5: More Data Types and Operators 175

We can make use of the OR to change the uppercasing program into a lowercasing
program, as shown here:

// Lowercase letters.
class LowCase {
 public static void main(String[] args) {
 char ch;

 for(int i=0; i < 10; i++) {
 ch = (char) ('A' + i);
 System.out.print(ch);

 // This statement turns on the 6th bit.
 ch = (char) ((int) ch | 32); // ch is now lowercase

 System.out.print(ch + " ");
 }
 }
}

The output from this program is shown here:

Aa Bb Cc Dd Ee Ff Gg Hh Ii Jj

The program works by ORing each character with the value 32, which is 0000 0000 0010 0000
in binary. Thus, 32 is the value that produces a value in binary in which only the 6th bit is set.
When this value is ORed with any other value, it produces a result in which the 6th bit is set and
all other bits remain unchanged. As explained, for characters this means that each uppercase
letter is transformed into its lowercase equivalent.

An exclusive OR, usually abbreviated XOR, will result in a set bit if, and only if, the bits
being compared are different, as illustrated here:

 0 1 1 1 1 1 1 1
^ 1 0 1 1 1 0 0 1
 1 1 0 0 0 1 1 0

The XOR operator has an interesting property that makes it a simple way to encode a
message. When some value X is XORed with another value Y, and then that result is XORed
with Y again, X is produced. That is, given the sequence

R1 = X ^ Y; R2 = R1 ^ Y;

then R2 is the same value as X. Thus, the outcome of a sequence of two XORs can produce the
original value.

You can use this principle to create a simple cipher program in which some integer is the key
that is used to both encode and decode a message by XORing the characters in that message. To
encode, the XOR operation is applied the first time, yielding the cipher text. To decode, the XOR

05-ch05.indd 175 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 176 Java: A Beginner’s Guide

is applied a second time, yielding the plain text. Of course, such a cipher has no practical value,
being trivially easy to break. It does, however, provide an interesting way to demonstrate the XOR.
Here is a program that uses this approach to encode and decode a short message:

// Use XOR to encode and decode a message.
class Encode {
 public static void main(String[] args) {
 String msg = "This is a test";
 String encmsg = "";
 String decmsg = "";
 int key = 88;

 System.out.print("Original message: ");
 System.out.println(msg);

 // encode the message
 for(int i=0; i < msg.length(); i++)
 encmsg = encmsg + (char) (msg.charAt(i) ^ key);

 System.out.print("Encoded message: ");
 System.out.println(encmsg);

 // decode the message
 for(int i=0; i < msg.length(); i++)
 decmsg = decmsg + (char) (encmsg.charAt(i) ^ key);

 System.out.print("Decoded message: ");
 System.out.println(decmsg);
 }
}

Here is the output:

Original message: This is a test
Encoded message: 01+x1+x9x,=+,
Decoded message: This is a test

As you can see, the result of two XORs using the same key produces the decoded message.
The unary one’s complement (NOT) operator reverses the state of all the bits of the

operand. For example, if some integer called A has the bit pattern 1001 0110, then ~A
produces a result with the bit pattern 0110 1001.

The following program demonstrates the NOT operator by displaying a number and its
complement in binary:

// Demonstrate the bitwise NOT.
class NotDemo {
 public static void main(String[] args) {
 byte b = -34;

This constructs the encoded string.

This constructs the decoded string.

05-ch05.indd 176 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 Chapter 5: More Data Types and Operators 177

 for(int t=128; t > 0; t = t/2) {
 if((b & t) != 0) System.out.print("1 ");
 else System.out.print("0 ");
 }
 System.out.println();

 // reverse all bits
 b = (byte) ~b;

 for(int t=128; t > 0; t = t/2) {
 if((b & t) != 0) System.out.print("1 ");
 else System.out.print("0 ");
 }
 }
}

Here is the output:

1 1 0 1 1 1 1 0
0 0 1 0 0 0 0 1

The Shift Operators
In Java it is possible to shift the bits that make up a value to the left or to the right by a
specified amount. Java defines the three bit-shift operators shown here:

<< Left shift

>> Right shift

>>> Unsigned right shift

The general forms for these operators are shown here:

value << num-bits
value >> num-bits
value >>> num-bits

Here, value is the value being shifted by the number of bit positions specified by num-bits.
Each left shift causes all bits within the specified value to be shifted left one position and

a 0 bit to be brought in on the right. Each right shift shifts all bits to the right one position and
preserves the sign bit. As you may know, negative numbers are usually represented by setting
the high-order bit of an integer value to 1, and this is the approach used by Java. Thus, if the
value being shifted is negative, each right shift brings in a 1 on the left. If the value is positive,
each right shift brings in a 0 on the left.

In addition to the sign bit, there is something else to be aware of when right shifting. Java
uses two’s complement to represent negative values. In this approach negative values are stored

05-ch05.indd 177 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 178 Java: A Beginner’s Guide

by first reversing the bits in the value and then adding 1. Thus, the byte value for –1 in binary
is 1111 1111. Right shifting this value will always produce –1!

If you don’t want to preserve the sign bit when shifting right, you can use an unsigned
right shift (>>>), which always brings in a 0 on the left. For this reason, the >>> is also called
the zero-fill right shift. You will use the unsigned right shift when shifting bit patterns, such as
status codes, that do not represent integers.

For all of the shifts, the bits shifted out are lost. Thus, a shift is not a rotate, and there is no
way to retrieve a bit that has been shifted out.

Shown next is a program that graphically illustrates the effect of a left and right shift.
Here, an integer is given an initial value of 1, which means that its low-order bit is set. Then,
a series of eight shifts are performed on the integer. After each shift, the lower 8 bits of the
value are shown. The process is then repeated, except that a 1 is put in the 8th bit position,
and right shifts are performed.

// Demonstrate the shift << and >> operators.
class ShiftDemo {
 public static void main(String[] args) {
 int val = 1;

 for(int i = 0; i < 8; i++) {
 for(int t=128; t > 0; t = t/2) {
 if((val & t) != 0) System.out.print("1 ");
 else System.out.print("0 ");
 }
 System.out.println();
 val = val << 1; // left shift
 }
 System.out.println();

 val = 128;
 for(int i = 0; i < 8; i++) {
 for(int t=128; t > 0; t = t/2) {
 if((val & t) != 0) System.out.print("1 ");
 else System.out.print("0 ");
 }
 System.out.println();
 val = val >> 1; // right shift
 }
 }
}

The output from the program is shown here:

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0

05-ch05.indd 178 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 Chapter 5: More Data Types and Operators 179

0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

You need to be careful when shifting byte and short values because Java will automatically
promote these types to int when evaluating an expression. For example, if you right shift a
byte value, it will first be promoted to int and then shifted. The result of the shift will also be
of type int. Often this conversion is of no consequence. However, if you shift a negative byte
or short value, it will be sign-extended when it is promoted to int. Thus, the high-order bits of
the resulting integer value will be filled with ones. This is fine when performing a normal right
shift. But when you perform a zero-fill right shift, there are 24 ones to be shifted before the byte
value begins to see zeros.

Bitwise Shorthand Assignments
All of the binary bitwise operators have a shorthand form that combines an assignment with
the bitwise operation. For example, the following two statements both assign to x the outcome
of an XOR of x with the value 127.

x = x ^ 127;
x ^= 127;

Q: Since binary is based on powers of two, can the shift operators be used as a shortcut
for multiplying or dividing an integer by two?

A: Yes. The bitwise shift operators can be used to perform very fast multiplication or division
by two. A shift left doubles a value. A shift right halves it.

Ask the Expert

05-ch05.indd 179 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 180 Java: A Beginner’s Guide

Try This 5-3 A ShowBits Class
This project creates a class called ShowBits that enables you to display
in binary the bit pattern for any integer value. Such a class can be quite

useful in programming. For example, if you are debugging device-driver code, then being able
to monitor the data stream in binary is often a benefit.

 1. Create a file called ShowBitsDemo.java.

 2. Begin the ShowBits class as shown here:

class ShowBits {
 int numbits;

 ShowBits(int n) {
 numbits = n;
 }

 ShowBits creates objects that display a specified number of bits. For example, to create an
object that will display the low-order 8 bits of some value, use

ShowBits byteval = new ShowBits(8)

 The number of bits to display is stored in numbits.

 3. To actually display the bit pattern, ShowBits provides the method show(), which is
shown here:

void show(long val) {
 long mask = 1;

 // left-shift a 1 into the proper position
 mask <<= numbits-1;

 int spacer = 0;
 for(; mask != 0; mask >>>= 1) {
 if((val & mask) != 0) System.out.print("1");
 else System.out.print("0");
 spacer++;
 if((spacer % 8) == 0) {
 System.out.print(" ");
 spacer = 0;
 }
 }
 System.out.println();
}

ShowBitsDemo.java

05-ch05.indd 180 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 Chapter 5: More Data Types and Operators 181

 Notice that show() specifies one long parameter. This does not mean that you always have
to pass show() a long value, however. Because of Java’s automatic type promotions, any
integer type can be passed to show(). The number of bits displayed is determined by the
value stored in numbits. After each group of 8 bits, show() outputs a space. This makes it
easier to read the binary values of long bit patterns.

 4. The ShowBitsDemo program is shown here:

/*
 Try This 5-3
 A class that displays the binary representation of a value.
*/

class ShowBits {
 int numbits;

 ShowBits(int n) {
 numbits = n;
 }

 void show(long val) {
 long mask = 1;

 // left-shift a 1 into the proper position
 mask <<= numbits-1;

 int spacer = 0;
 for(; mask != 0; mask >>>= 1) {
 if((val & mask) != 0) System.out.print("1");
 else System.out.print("0");
 spacer++;
 if((spacer % 8) == 0) {
 System.out.print(" ");
 spacer = 0;
 }
 }
 System.out.println();
 }
}

// Demonstrate ShowBits.
class ShowBitsDemo {
 public static void main(String[] args) {
 ShowBits b = new ShowBits(8);
 ShowBits i = new ShowBits(32);
 ShowBits li = new ShowBits(64);

(continued)

05-ch05.indd 181 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 182 Java: A Beginner’s Guide

 System.out.println("123 in binary: ");
 b.show(123);

 System.out.println("\n87987 in binary: ");
 i.show(87987);

 System.out.println("\n237658768 in binary: ");
 li.show(237658768);

 // you can also show low-order bits of any integer
 System.out.println("\nLow order 8 bits of 87987 in binary: ");
 b.show(87987);
 }
}

 5. The output from ShowBitsDemo is shown here:

123 in binary:
01111011

87987 in binary:
00000000 00000001 01010111 10110011

237658768 in binary:
00000000 00000000 00000000 00000000 00001110 00101010 01100010
10010000

Low order 8 bits of 87987 in binary:
10110011

The ? Operator
One of Java’s most fascinating operators is the ?. The ? operator is often used to replace if-else
statements of this general form:

if (condition)
 myVar = expression1;
else
 myVar = expression2;

Here, the value assigned to myVar depends upon the outcome of the condition controlling the if.

05-ch05.indd 182 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 Chapter 5: More Data Types and Operators 183

The ? is called a ternary operator because it requires three operands. It takes the general form

Exp1 ? Exp2 : Exp3;

where Exp1 is a boolean expression, and Exp2 and Exp3 are expressions of any type other than
void. The type of Exp2 and Exp3 must be the same (or compatible), though. Notice the use and
placement of the colon.

The value of a ? expression is determined like this: Exp1 is evaluated. If it is true, then
Exp2 is evaluated and becomes the value of the entire ? expression. If Exp1 is false, then
Exp3 is evaluated and its value becomes the value of the expression. Consider this example,
which assigns absval the absolute value of val:

absval = val < 0 ? -val : val; // get absolute value of val

Here, absval will be assigned the value of val if val is zero or greater. If val is negative, then
absval will be assigned the negative of that value (which yields a positive value). The same
code written using the if-else structure would look like this:

if(val < 0) absval = -val;
else absval = val;

Here is another example of the ? operator. This program divides two numbers, but will not
allow a division by zero.

// Prevent a division by zero using the ?.
class NoZeroDiv {
 public static void main(String[] args) {
 int result;

 for(int i = -5; i < 6; i++) {
 result = i != 0 ? 100 / i : 0;
 if(i != 0)
 System.out.println("100 / " + i + " is " + result);
 }
 }
}

The output from the program is shown here:

100 / -5 is -20
100 / -4 is -25
100 / -3 is -33
100 / -2 is -50
100 / -1 is -100
100 / 1 is 100
100 / 2 is 50
100 / 3 is 33
100 / 4 is 25
100 / 5 is 20

This prevents a divide-by-zero.

05-ch05.indd 183 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 184 Java: A Beginner’s Guide

Pay special attention to this line from the program:

result = i != 0 ? 100 / i : 0;

Here, result is assigned the outcome of the division of 100 by i. However, this division takes
place only if i is not zero. When i is zero, a placeholder value of zero is assigned to result.

You don’t actually have to assign the value produced by the ? to some variable. For example,
you could use the value as an argument in a call to a method. Or, if the expressions are all of
type boolean, the ? can be used as the conditional expression in a loop or if statement. For
example, here is the preceding program rewritten a bit more efficiently. It produces the same
output as before.

// Prevent a division by zero using the ?.
class NoZeroDiv2 {
 public static void main(String[] args) {

 for(int i = -5; i < 6; i++)
 if(i != 0 ? true : false)
 System.out.println("100 / " + i +
 " is " + 100 / i);
 }
}

Notice the if statement. If i is zero, then the outcome of the if is false, the division by zero is
prevented, and no result is displayed. Otherwise, the division takes place.

 Chapter 5 Self Test
 1. Show two ways to declare a one-dimensional array of 12 doubles.

 2. Show how to initialize a one-dimensional array of integers to the values 1 through 5.

 3. Write a program that uses an array to find the average of 10 double values. Use any 10 values
you like.

 4. Change the sort in Try This 5-1 so that it sorts an array of strings. Demonstrate that it
works.

 5. What is the difference between the String methods indexOf() and lastIndexOf()?

 6. Since all strings are objects of type String, show how you can call the length() and charAt()
methods on this string literal: "I like Java".

 7. Expanding on the Encode cipher class, modify it so that it uses an eight-character string
as the key.

✓

05-ch05.indd 184 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 5

 Chapter 5: More Data Types and Operators 185

 8. Can the bitwise operators be applied to the double type?

 9. Show how this sequence can be rewritten using the ? operator.

if(x < 0) y = 10;
else y = 20;

 10. In the following fragment, is the & a bitwise or logical operator? Why?

boolean a, b;
// ...
if(a & b) ...

 11. Is it an error to overrun the end of an array? Is it an error to index an array with a negative value?

 12. What is the unsigned right-shift operator?

 13. Rewrite the MinMax class shown earlier in this chapter so that it uses a for-each style for loop.

 14. Can the for loops that perform sorting in the Bubble class shown in Try This 5-1 be converted
into for-each style loops? If not, why not?

 15. Can a String control a switch statement?

 16. What keyword is reserved for use with local variable type inference?

 17. Show how to use local variable type inference to declare a boolean variable called done
that has an initial value of false.

 18. Can var be the name of a variable? Can var be the name of a class?

 19. Is the following declaration valid? If not, why not.

var[] avgTemps = new double[7];

 20. Is the following declaration valid? If not, why not?

var alpha = 10, beta = 20;

 21. In the show() method of the ShowBits class developed in Try This 5-3, the local variable
mask is declared as shown here:

long mask = 1;

 Change this declaration so that it uses local variable type inference. When doing so, be sure
that mask is of type long (as it is here), and not of type int.

05-ch05.indd 185 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter
Blind Folio: xxiv

00-FM.indd 24 12/11/21 9:20 PM

This page intentionally left blank

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6
Blind Folio: 187

Chapter 6
A Closer Look at
Methods and Classes

06-ch06.indd 187 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 188 Java: A Beginner’s Guide

Key Skills & Concepts

● Control access to members

● Pass objects to a method

● Return objects from a method

● Overload methods

● Overload constructors

● Use recursion

● Apply static

● Use inner classes

● Use varargs

This chapter resumes our examination of classes and methods. It begins by explaining how
to control access to the members of a class. It then discusses the passing and returning of

objects, method overloading, recursion, and the use of the keyword static. Also described are
nested classes and variable-length arguments.

Controlling Access to Class Members
In its support for encapsulation, the class provides two major benefits. First, it links data with
the code that manipulates it. You have been taking advantage of this aspect of the class since
Chapter 4. Second, it provides the means by which access to members can be controlled. It is
this feature that is examined here.

Although Java’s approach is a bit more sophisticated, in essence, there are two basic types
of class members: public and private. A public member can be freely accessed by code defined
outside of its class. A private member can be accessed only by other methods defined by its
class. It is through the use of private members that access is controlled.

Restricting access to a class’ members is a fundamental part of object-oriented programming
because it helps prevent the misuse of an object. By allowing access to private data only through
a well-defined set of methods, you can prevent improper values from being assigned to that
data—by performing a range check, for example. It is not possible for code outside the class to
set the value of a private member directly. You can also control precisely how and when the data
within an object is used. Thus, when correctly implemented, a class creates a “black box” that can
be used, but the inner workings of which are not open to tampering.

06-ch06.indd 188 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 Chapter 6: A Closer Look at Methods and Classes 189

Up to this point, you haven’t had to worry about access control because Java provides a
default access setting in which, for the types of programs shown earlier, the members of a
class are freely available to the other code in the program. (Thus, for the preceding examples,
the default access setting is essentially public.) Although convenient for simple classes (and
example programs in books such as this one), this default setting is inadequate for many real-
world situations. Here we introduce Java’s other access control features.

Java’s Access Modifiers
Member access control is achieved through the use of three access modifiers: public, private,
and protected. As explained, if no access modifier is used, the default access setting is assumed.
In this chapter, we will be concerned with public and private. The protected modifier applies
only when inheritance is involved and is described in Chapter 8.

When a member of a class is modified by the public specifier, that member can be accessed
by any other code in your program. This includes by methods defined inside other classes.

When a member of a class is specified as private, that member can be accessed only by
other members of its class. Thus, methods in other classes cannot access a private member of
another class.

The default access setting (in which no access modifier is used) is the same as public unless
your program is broken down into packages. A package is, essentially, a grouping of classes.
Packages are both an organizational and an access control feature, but a discussion of packages
must wait until Chapter 8. For the types of programs shown in this and the preceding chapters,
public access is the same as default access.

An access modifier precedes the rest of a member’s type specification. That is, it must begin
a member’s declaration statement. Here are some examples:

public String errMsg;
private accountBalance bal;

private boolean isError(byte status) { // ...

To understand the effects of public and private, consider the following program:

// Public vs private access.
class MyClass {
 private int alpha; // private access
 public int beta; // public access
 int gamma; // default access

 /* Methods to access alpha. It is OK for a
 member of a class to access a private member
 of the same class.
 */
 void setAlpha(int a) {
 alpha = a;
 }

06-ch06.indd 189 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 190 Java: A Beginner’s Guide

 int getAlpha() {
 return alpha;
 }
}

class AccessDemo {
 public static void main(String[] args) {
 MyClass ob = new MyClass();

 /* Access to alpha is allowed only through
 its accessor methods. */
 ob.setAlpha(-99);
 System.out.println("ob.alpha is " + ob.getAlpha());

 // You cannot access alpha like this:
// ob.alpha = 10; // Wrong! alpha is private!

 // These are OK because beta and gamma are public.
 ob.beta = 88;
 ob.gamma = 99;
 }
}

As you can see, inside the MyClass class, alpha is specified as private, beta is explicitly
specified as public, and gamma uses the default access, which for this example is the same as
specifying public. Because alpha is private, it cannot be accessed by code outside of its class.
Therefore, inside the AccessDemo class, alpha cannot be used directly. It must be accessed
through its public accessor methods: setAlpha() and getAlpha(). If you were to remove the
comment symbol from the beginning of the following line,

// ob.alpha = 10; // Wrong! alpha is private!

you would not be able to compile this program because of the access violation. Although
access to alpha by code outside of MyClass is not allowed, methods defined within MyClass
can freely access it, as the setAlpha() and getAlpha() methods show.

The key point is this: A private member can be used freely by other members of its class,
but it cannot be accessed by code outside its class.

To see how access control can be applied to a more practical example, consider the
following program that implements a “fail-soft” int array, in which boundary errors are
prevented, thus avoiding a run-time exception from being generated. This is accomplished
by encapsulating the array as a private member of a class, allowing access to the array only
through member methods. With this approach, any attempt to access the array beyond its
boundaries can be prevented, with such an attempt failing gracefully (resulting in a “soft”
landing rather than a “crash”). The fail-soft array is implemented by the FailSoftArray class,
shown here:

/* This class implements a "fail-soft" array which prevents
 runtime errors.
*/

Wrong—alpha is private!

OK because these are public.

06-ch06.indd 190 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 Chapter 6: A Closer Look at Methods and Classes 191

class FailSoftArray {
 private int[] a; // reference to array
 private int errval; // value to return if get() fails
 public int length; // length is public

 /* Construct array given its size and the value to
 return if get() fails. */
 public FailSoftArray(int size, int errv) {
 a = new int[size];
 errval = errv;
 length = size;
 }

 // Return value at given index.
 public int get(int index) {
 if(indexOK(index)) return a[index];
 return errval;
 }

 // Put a value at an index. Return false on failure.
 public boolean put(int index, int val) {
 if(indexOK(index)) {
 a[index] = val;
 return true;
 }
 return false;
 }

 // Return true if index is within bounds.
 private boolean indexOK(int index) {
 if(index >= 0 & index < length) return true;
 return false;
 }
}

// Demonstrate the fail-soft array.
class FSDemo {
 public static void main(String[] args) {
 FailSoftArray fs = new FailSoftArray(5, -1);
 int x;

 // show quiet failures
 System.out.println("Fail quietly.");
 for(int i=0; i < (fs.length * 2); i++)
 fs.put(i, i*10);

 for(int i=0; i < (fs.length * 2); i++) {
 x = fs.get(i);

Trap on out-of-bounds index.

Access to array must be through its accessor methods.

06-ch06.indd 191 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 192 Java: A Beginner’s Guide

 if(x != -1) System.out.print(x + " ");
 }
 System.out.println("");

 // now, handle failures
 System.out.println("\nFail with error reports.");
 for(int i=0; i < (fs.length * 2); i++)
 if(!fs.put(i, i*10))
 System.out.println("Index " + i + " out-of-bounds");

 for(int i=0; i < (fs.length * 2); i++) {
 x = fs.get(i);
 if(x != -1) System.out.print(x + " ");
 else
 System.out.println("Index " + i + " out-of-bounds");
 }
 }
}

The output from the program is shown here:

Fail quietly.
0 10 20 30 40

Fail with error reports.
Index 5 out-of-bounds
Index 6 out-of-bounds
Index 7 out-of-bounds
Index 8 out-of-bounds
Index 9 out-of-bounds
0 10 20 30 40 Index 5 out-of-bounds
Index 6 out-of-bounds
Index 7 out-of-bounds
Index 8 out-of-bounds
Index 9 out-of-bounds

Let’s look closely at this example. Inside FailSoftArray are defined three private members.
The first is a, which stores a reference to the array that will actually hold information. The
second is errval, which is the value that will be returned when a call to get() fails. The
third is the private method indexOK(), which determines whether an index is within bounds.
Thus, these three members can be used only by other members of the FailSoftArray class.
Specifically, a and errval can be used only by other methods in the class, and indexOK() can
be called only by other members of FailSoftArray. The rest of the class members are public
and can be called by any other code in a program that uses FailSoftArray.

When a FailSoftArray object is constructed, you must specify the size of the array and the
value that you want to return if a call to get() fails. The error value must be a value that would
otherwise not be stored in the array. Once constructed, the actual array referred to by a and the

06-ch06.indd 192 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 Chapter 6: A Closer Look at Methods and Classes 193

Try This 6-1

(continued)

Queue.java

error value stored in errval cannot be accessed by users of the FailSoftArray object. Thus, they
are not open to misuse. For example, the user cannot try to index a directly, possibly exceeding
its bounds. Access is available only through the get() and put() methods.

The indexOK() method is private mostly for the sake of illustration. It would be harmless
to make it public because it does not modify the object. However, since it is used internally by
the FailSoftArray class, it can be private.

Notice that the length instance variable is public. This is in keeping with the way Java
implements arrays. To obtain the length of a FailSoftArray, simply use its length member.

To use a FailSoftArray array, call put() to store a value at the specified index. Call get()
to retrieve a value from a specified index. If the index is out-of-bounds, put() returns false and
get() returns errval.

For the sake of convenience, the majority of the examples in this book will continue to use
default access for most members. Remember, however, that in the real world, restricting access
to members—especially instance variables—is an important part of successful object-oriented
programming. As you will see in Chapter 7, access control is even more vital when inheritance
is involved.

NOTE
The modules feature added by JDK 9 can also play a role in accessibility. Modules are
discussed in Chapter 15.

 Improving the Queue Class
You can use the private modifier to make a rather important improvement to the
Queue class developed in Chapter 5, Try This 5-2. In that version, all members

of the Queue class use the default access. This means that it would be possible for a program
that uses a Queue to directly access the underlying array, possibly accessing its elements out
of turn. Since the entire point of a queue is to provide a first-in, first-out list, allowing out-of-
order access is not desirable. It would also be possible for a malicious programmer to alter the
values stored in the putloc and getloc indices, thus corrupting the queue. Fortunately, these
types of problems are easy to prevent by applying the private specifier.

 1. Copy the original Queue class in Try This 5-2 to a new file called Queue.java.

 2. In the Queue class, add the private modifier to the q array, and the indices putloc and
getloc, as shown here:

// An improved queue class for characters.
class Queue {
 // these members are now private
 private char[] q; // this array holds the queue
 private int putloc, getloc; // the put and get indices

 Queue(int size) {
 q = new char[size]; // allocate memory for queue
 putloc = getloc = 0;
 }

06-ch06.indd 193 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 194 Java: A Beginner’s Guide

 // Put a character into the queue.
 void put(char ch) {
 if(putloc==q.length) {
 System.out.println(" – Queue is full.");
 return;
 }

 q[putloc++] = ch;
 }

 // Get a character from the queue.
 char get() {
 if(getloc == putloc) {
 System.out.println(" – Queue is empty.");
 return (char) 0;
 }

 return q[getloc++];
 }
}

 3. Changing q, putloc, and getloc from default access to private access has no effect on a
program that properly uses Queue. For example, it still works fine with the QDemo class
from Try This 5-2. However, it prevents the improper use of a Queue. For example, the
following types of statements are illegal:

Queue test = new Queue(10);

test.q[0] = 99; // wrong!
test.putloc = -100; // won't work!

 4. Now that q, putloc, and getloc are private, the Queue class strictly enforces the first-in,
first-out attribute of a queue.

Pass Objects to Methods
Up to this point, the examples in this book have been using simple types as parameters to
methods. However, it is both correct and common to pass objects to methods. For example,
the following program defines a class called Block that stores the dimensions of a three-
dimensional block:

// Objects can be passed to methods.
class Block {
 int a, b, c;
 int volume;

06-ch06.indd 194 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 Chapter 6: A Closer Look at Methods and Classes 195

 Block(int i, int j, int k) {
 a = i;
 b = j;
 c = k;
 volume = a * b * c;
 }

 // Return true if ob defines same block.
 boolean sameBlock(Block ob) {
 if((ob.a == a) & (ob.b == b) & (ob.c == c)) return true;
 else return false;
 }

 // Return true if ob has same volume.
 boolean sameVolume(Block ob) {
 if(ob.volume == volume) return true;
 else return false;
 }
}

class PassOb {
 public static void main(String[] args) {
 Block ob1 = new Block(10, 2, 5);
 Block ob2 = new Block(10, 2, 5);
 Block ob3 = new Block(4, 5, 5);

 System.out.println("ob1 same dimensions as ob2: " +
 ob1.sameBlock(ob2));
 System.out.println("ob1 same dimensions as ob3: " +
 ob1.sameBlock(ob3));
 System.out.println("ob1 same volume as ob3: " +
 ob1.sameVolume(ob3));
 }
}

This program generates the following output:

ob1 same dimensions as ob2: true
ob1 same dimensions as ob3: false
ob1 same volume as ob3: true

The sameBlock() and sameVolume() methods compare the Block object passed as
a parameter to the invoking object. For sameBlock(), the dimensions of the objects are
compared and true is returned only if the two blocks are the same. For sameVolume(), the
two blocks are compared only to determine whether they have the same volume. In both cases,
notice that the parameter ob specifies Block as its type. Although Block is a class type created
by the program, it is used in the same way as Java’s built-in types.

Use object type for parameter.

Pass an object.

06-ch06.indd 195 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 196 Java: A Beginner’s Guide

How Arguments Are Passed
As the preceding example demonstrated, passing an object to a method is a straightforward
task. However, there are some nuances of passing an object that are not shown in the example.
In certain cases, the effects of passing an object will be different from those experienced when
passing non-object arguments. To see why, you need to understand in a general sense the two
ways in which an argument can be passed to a subroutine.

The first way is call-by-value. This approach copies the value of an argument into the formal
parameter of the subroutine. Therefore, changes made to the parameter of the subroutine have
no effect on the argument in the call. The second way an argument can be passed is call-by-
reference. In this approach, a reference to an argument (not the value of the argument) is passed
to the parameter. Inside the subroutine, this reference is used to access the actual argument
specified in the call. This means that changes made to the parameter will affect the argument used
to call the subroutine. As you will see, although Java uses call-by-value to pass arguments, the
precise effect differs between whether a primitive type or a reference type is passed.

When you pass a primitive type, such as int or double, to a method, it is passed by value.
Thus, a copy of the argument is made, and what occurs to the parameter that receives the
argument has no effect outside the method. For example, consider the following program:

// Primitive types are passed by value.
class Test {
 /* This method causes no change to the arguments
 used in the call. */
 void noChange(int i, int j) {
 i = i + j;
 j = -j;
 }
}

class CallByValue {
 public static void main(String[] args) {
 Test ob = new Test();

 int a = 15, b = 20;

 System.out.println("a and b before call: " +
 a + " " + b);

 ob.noChange(a, b);

 System.out.println("a and b after call: " +
 a + " " + b);
 }
}

The output from this program is shown here:

a and b before call: 15 20
a and b after call: 15 20

06-ch06.indd 196 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 Chapter 6: A Closer Look at Methods and Classes 197

As you can see, the operations that occur inside noChange() have no effect on the values of a
and b used in the call.

When you pass an object to a method, the situation changes dramatically, because objects
are implicitly passed by reference. Keep in mind that when you create a variable of a class
type, you are creating a reference to an object. It is the reference, not the object itself, that
is actually passed to the method. As a result, when you pass this reference to a method, the
parameter that receives it will refer to the same object as that referred to by the argument. This
effectively means that objects are passed to methods by use of call-by-reference. Changes to
the object inside the method do affect the object used as an argument. For example, consider
the following program:

// Objects are passed through their references.
class Test {
 int a, b;

 Test(int i, int j) {
 a = i;
 b = j;
 }
 /* Pass an object. Now, ob.a and ob.b in object
 used in the call will be changed. */
 void change(Test ob) {
 ob.a = ob.a + ob.b;
 ob.b = -ob.b;
 }
}

class PassObRef {
 public static void main(String[] args) {
 Test ob = new Test(15, 20);

 System.out.println("ob.a and ob.b before call: " +
 ob.a + " " + ob.b);

 ob.change(ob);

 System.out.println("ob.a and ob.b after call: " +
 ob.a + " " + ob.b);
 }
}

This program generates the following output:

ob.a and ob.b before call: 15 20
ob.a and ob.b after call: 35 -20

As you can see, in this case, the actions inside change() have affected the object used as
an argument.

06-ch06.indd 197 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 198 Java: A Beginner’s Guide

Remember, when an object reference is passed to a method, the reference itself is passed
by use of call-by-value. However, since the value being passed refers to an object, the copy of
that value will still refer to the same object referred to by its corresponding argument.

Returning Objects
A method can return any type of data, including class types. For example, the class ErrorMsg
shown here could be used to report errors. Its method, getErrorMsg(), returns a String object
that contains a description of an error based upon the error code that it is passed.

// Return a String object.
class ErrorMsg {
 String[] msgs = {
 "Output Error",
 "Input Error",
 "Disk Full",
 "Index Out-Of-Bounds"
 };

 // Return the error message.
 String getErrorMsg(int i) {
 if(i >=0 & i < msgs.length)
 return msgs[i];
 else
 return "Invalid Error Code";
 }
}

class ErrMsg {
 public static void main(String[] args) {
 ErrorMsg err = new ErrorMsg();

Return an object of type String.

Q: Is there any way that I can pass a primitive type by reference?

A: Not directly. However, Java defines a set of classes that wrap the primitive types in objects.
These are Double, Float, Byte, Short, Integer, Long, and Character. In addition to
allowing a primitive type to be passed by reference, these wrapper classes define several
methods that enable you to manipulate their values. For example, the numeric type wrappers
include methods that convert a numeric value from its binary form into its human-readable
String form, and vice versa.

Ask the Expert

06-ch06.indd 198 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 Chapter 6: A Closer Look at Methods and Classes 199

 System.out.println(err.getErrorMsg(2));
 System.out.println(err.getErrorMsg(19));
 }
}

Its output is shown here:

Disk Full
Invalid Error Code

You can, of course, also return objects of classes that you create. For example, here is
a reworked version of the preceding program that creates two error classes. One is called
Err, and it encapsulates an error message along with a severity code. The second is called
ErrorInfo. It defines a method called getErrorInfo(), which returns an Err object.

// Return a programmer-defined object.
class Err {
 String msg; // error message
 int severity; // code indicating severity of error

 Err(String m, int s) {
 msg = m;
 severity = s;
 }
}

class ErrorInfo {
 String[] msgs = {
 "Output Error",
 "Input Error",
 "Disk Full",
 "Index Out-Of-Bounds"
 };
 int[] howBad = { 3, 3, 2, 4 };

 Err getErrorInfo(int i) {
 if(i >= 0 & i < msgs.length)
 return new Err(msgs[i], howBad[i]);
 else
 return new Err("Invalid Error Code", 0);
 }
}

class ErrInfo {
 public static void main(String[] args) {
 ErrorInfo err = new ErrorInfo();
 Err e;

Return an object of type Err.

06-ch06.indd 199 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 200 Java: A Beginner’s Guide

 e = err.getErrorInfo(2);
 System.out.println(e.msg + " severity: " + e.severity);

 e = err.getErrorInfo(19);
 System.out.println(e.msg + " severity: " + e.severity);
 }
}

Here is the output:

Disk Full severity: 2
Invalid Error Code severity: 0

Each time getErrorInfo() is invoked, a new Err object is created, and a reference to it is
returned to the calling routine. This object is then used within main() to display the error
message and severity code.

When an object is returned by a method, it remains in existence until there are no more
references to it. At that point, it is subject to garbage collection. Thus, an object won’t be
destroyed just because the method that created it terminates.

Method Overloading
In this section, you will learn about one of Java’s most exciting features: method overloading.
In Java, two or more methods within the same class can share the same name, as long as
their parameter declarations are different. When this is the case, the methods are said to be
overloaded, and the process is referred to as method overloading. Method overloading is one
of the ways that Java implements polymorphism.

In general, to overload a method, simply declare different versions of it. The compiler
takes care of the rest. You must observe one important restriction: the type and/or number of
the parameters of each overloaded method must differ. It is not sufficient for two methods
to differ only in their return types. (Return types do not provide sufficient information in all
cases for Java to decide which method to use.) Of course, overloaded methods may differ in
their return types, too. When an overloaded method is called, the version of the method whose
parameters match the arguments is executed.

Here is a simple example that illustrates method overloading:

// Demonstrate method overloading.
class Overload {
 void ovlDemo() {
 System.out.println("No parameters");
 }

 // Overload ovlDemo for one integer parameter.
 void ovlDemo(int a) {
 System.out.println("One parameter: " + a);
 }

First version

Second version

06-ch06.indd 200 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 Chapter 6: A Closer Look at Methods and Classes 201

 // Overload ovlDemo for two integer parameters.
 int ovlDemo(int a, int b) {
 System.out.println("Two parameters: " + a + " " + b);
 return a + b;
 }

 // Overload ovlDemo for two double parameters.
 double ovlDemo(double a, double b) {
 System.out.println("Two double parameters: " +
 a + " " + b);
 return a + b;
 }
}

class OverloadDemo {
 public static void main(String[] args) {
 Overload ob = new Overload();
 int resI;
 double resD;

 // call all versions of ovlDemo()
 ob.ovlDemo();
 System.out.println();

 ob.ovlDemo(2);
 System.out.println();

 resI = ob.ovlDemo(4, 6);
 System.out.println("Result of ob.ovlDemo(4, 6): " +
 resI);
 System.out.println();

 resD = ob.ovlDemo(1.1, 2.32);
 System.out.println("Result of ob.ovlDemo(1.1, 2.32): " +
 resD);
 }
}

This program generates the following output:

No parameters

One parameter: 2

Two parameters: 4 6
Result of ob.ovlDemo(4, 6): 10

Two double parameters: 1.1 2.32
Result of ob.ovlDemo(1.1, 2.32): 3.42

Third version

Fourth version

06-ch06.indd 201 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 202 Java: A Beginner’s Guide

As you can see, ovlDemo() is overloaded four times. The first version takes no parameters, the
second takes one integer parameter, the third takes two integer parameters, and the fourth takes
two double parameters. Notice that the first two versions of ovlDemo() return void, and the
second two return a value. This is perfectly valid, but as explained, overloading is not affected
one way or the other by the return type of a method. Thus, attempting to use the following two
versions of ovlDemo() will cause an error:

// One ovlDemo(int) is OK.
void ovlDemo(int a) {
 System.out.println("One parameter: " + a);
}

/* Error! Two ovlDemo(int)s are not OK even though
 return types differ.
*/
int ovlDemo(int a) {
 System.out.println("One parameter: " + a);
 return a * a;
}

As the comments suggest, the difference in their return types is insufficient for the purposes
of overloading.

As you will recall from Chapter 2, Java provides certain automatic type conversions.
These conversions also apply to parameters of overloaded methods. For example, consider
the following:

/* Automatic type conversions can affect
 overloaded method resolution.
*/
class Overload2 {
 void f(int x) {
 System.out.println("Inside f(int): " + x);
 }

 void f(double x) {
 System.out.println("Inside f(double): " + x);
 }
}

class TypeConv {
 public static void main(String[] args) {
 Overload2 ob = new Overload2();

 int i = 10;
 double d = 10.1;

 byte b = 99;
 short s = 10;
 float f = 11.5F;

Return types cannot be used to
differentiate overloaded methods.

06-ch06.indd 202 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 Chapter 6: A Closer Look at Methods and Classes 203

 ob.f(i); // calls ob.f(int)
 ob.f(d); // calls ob.f(double)

 ob.f(b); // calls ob.f(int) – type conversion
 ob.f(s); // calls ob.f(int) – type conversion
 ob.f(f); // calls ob.f(double) – type conversion
 }
}

The output from the program is shown here:

Inside f(int): 10
Inside f(double): 10.1
Inside f(int): 99
Inside f(int): 10
Inside f(double): 11.5

In this example, only two versions of f() are defined: one that has an int parameter and one
that has a double parameter. However, it is possible to pass f() a byte, short, or float value.
In the case of byte and short, Java automatically converts them to int. Thus, f(int) is invoked.
In the case of float, the value is converted to double and f(double) is called.

It is important to understand, however, that the automatic conversions apply only if there
is no direct match between a parameter and an argument. For example, here is the preceding
program with the addition of a version of f() that specifies a byte parameter:

// Add f(byte).
class Overload2 {
 void f(byte x) {
 System.out.println("Inside f(byte): " + x);
 }

 void f(int x) {
 System.out.println("Inside f(int): " + x);
 }

 void f(double x) {
 System.out.println("Inside f(double): " + x);
 }
}

class TypeConv {
 public static void main(String[] args) {
 Overload2 ob = new Overload2();

 int i = 10;
 double d = 10.1;

 byte b = 99;
 short s = 10;
 float f = 11.5F;

This version specifies
a byte parameter.

06-ch06.indd 203 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 204 Java: A Beginner’s Guide

 ob.f(i); // calls ob.f(int)
 ob.f(d); // calls ob.f(double)

 ob.f(b); // calls ob.f(byte) – now, no type conversion

 ob.f(s); // calls ob.f(int) – type conversion
 ob.f(f); // calls ob.f(double) – type conversion
 }
}

Now when the program is run, the following output is produced:

Inside f(int): 10
Inside f(double): 10.1
Inside f(byte): 99
Inside f(int): 10
Inside f(double): 11.5

In this version, since there is a version of f() that takes a byte argument, when f() is called
with a byte argument, f(byte) is invoked and the automatic conversion to int does not occur.

Method overloading supports polymorphism because it is one way that Java implements
the “one interface, multiple methods” paradigm. To understand how, consider the following:
In languages that do not support method overloading, each method must be given a unique
name. However, frequently you will want to implement essentially the same method for
different types of data. Consider the absolute value function. In languages that do not support
overloading, there are usually three or more versions of this function, each with a slightly
different name. For instance, in C, the function abs() returns the absolute value of an integer,
labs() returns the absolute value of a long integer, and fabs() returns the absolute value of a
floating-point value. Since C does not support overloading, each function has to have its own
name, even though all three functions do essentially the same thing. This makes the situation
more complex, conceptually, than it actually is. Although the underlying concept of each
function is the same, you still have three names to remember. This situation does not occur in
Java, because each absolute value method can use the same name. Indeed, Java’s standard class
library includes an absolute value method, called abs(). This method is overloaded by Java’s
Math class to handle all of the numeric types. Java determines which version of abs() to call
based upon the type of argument.

The value of overloading is that it allows related methods to be accessed by use of a
common name. Thus, the name abs represents the general action that is being performed. It is
left to the compiler to choose the correct specific version for a particular circumstance. You,
the programmer, need only remember the general operation being performed. Through the
application of polymorphism, several names have been reduced to one. Although this example
is fairly simple, if you expand the concept, you can see how overloading can help manage
greater complexity.

When you overload a method, each version of that method can perform any activity you
desire. There is no rule stating that overloaded methods must relate to one another. However,
from a stylistic point of view, method overloading implies a relationship. Thus, while you can

06-ch06.indd 204 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 Chapter 6: A Closer Look at Methods and Classes 205

use the same name to overload unrelated methods, you should not. For example, you could
use the name sqr to create methods that return the square of an integer and the square root of
a floating-point value. But these two operations are fundamentally different. Applying method
overloading in this manner defeats its original purpose. In practice, you should overload only
closely related operations.

Overloading Constructors
Like methods, constructors can also be overloaded. Doing so allows you to construct objects in
a variety of ways. For example, consider the following program:

// Demonstrate an overloaded constructor.
class MyClass {
 int x;

 MyClass() {
 System.out.println("Inside MyClass().");
 x = 0;
 }

 MyClass(int i) {
 System.out.println("Inside MyClass(int).");
 x = i;
 }

 MyClass(double d) {
 System.out.println("Inside MyClass(double).");
 x = (int) d;
 }

 MyClass(int i, int j) {
 System.out.println("Inside MyClass(int, int).");
 x = i * j;
 }
}

Construct objects in a variety of ways.

Q: I’ve heard the term signature used by Java programmers. What is it?

A: As it applies to Java, a signature is the name of a method plus its parameter list. Thus, for
the purposes of overloading, no two methods within the same class can have the same
signature. Notice that a signature does not include the return type, since it is not used by
Java for overload resolution.

Ask the Expert

06-ch06.indd 205 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 206 Java: A Beginner’s Guide

class OverloadConsDemo {
 public static void main(String[] args) {
 MyClass t1 = new MyClass();
 MyClass t2 = new MyClass(88);
 MyClass t3 = new MyClass(17.23);
 MyClass t4 = new MyClass(2, 4);

 System.out.println("t1.x: " + t1.x);
 System.out.println("t2.x: " + t2.x);
 System.out.println("t3.x: " + t3.x);
 System.out.println("t4.x: " + t4.x);
 }
}

The output from the program is shown here:

Inside MyClass().
Inside MyClass(int).
Inside MyClass(double).
Inside MyClass(int, int).
t1.x: 0
t2.x: 88
t3.x: 17
t4.x: 8

MyClass() is overloaded four ways, each constructing an object differently. The proper
constructor is called based upon the parameters specified when new is executed. By overloading
a class’ constructor, you give the user of your class flexibility in the way objects are constructed.

One of the most common reasons that constructors are overloaded is to allow one object
to initialize another. For example, consider this program that uses the Summation class to
compute the summation of an integer value:

// Initialize one object with another.
class Summation {
 int sum;

 // Construct from an int.
 Summation(int num) {
 sum = 0;
 for(int i=1; i <= num; i++)
 sum += i;
 }

 // Construct from another object.
 Summation(Summation ob) {
 sum = ob.sum;
 }
}

Construct one object from another.

06-ch06.indd 206 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 Chapter 6: A Closer Look at Methods and Classes 207

Try This 6-2

QDemo2.java

class SumDemo {
 public static void main(String[] args) {
 Summation s1 = new Summation(5);
 Summation s2 = new Summation(s1);

 System.out.println("s1.sum: " + s1.sum);
 System.out.println("s2.sum: " + s2.sum);
 }
}

The output is shown here:

s1.sum: 15
s2.sum: 15

Often, as this example shows, an advantage of providing a constructor that uses one object
to initialize another is efficiency. In this case, when s2 is constructed, it is not necessary to
recompute the summation. Of course, even in cases when efficiency is not an issue, it is often
useful to provide a constructor that makes a copy of an object.

 Overloading the Queue Constructor
In this project, you will enhance the Queue class by giving it two additional
constructors. The first will construct a new queue from another queue.

The second will construct a queue, giving it initial values. As you will see, adding these
constructors enhances the usability of Queue substantially.

 1. Create a file called QDemo2.java and copy the updated Queue class from Try This 6-1
into it.

 2. First, add the following constructor, which constructs a queue from a queue.

// Construct a Queue from a Queue.
Queue(Queue ob) {
 putloc = ob.putloc;
 getloc = ob.getloc;
 q = new char[ob.q.length];

 // copy elements
 for(int i=getloc; i < putloc; i++)
 q[i] = ob.q[i];
}

 Look closely at this constructor. It initializes putloc and getloc to the values contained in
the ob parameter. It then allocates a new array to hold the queue and copies the elements
from ob into that array. Once constructed, the new queue will be an identical copy of the
original, but both will be completely separate objects.

(continued)

06-ch06.indd 207 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 208 Java: A Beginner’s Guide

 3. Now add the constructor that initializes the queue from a character array, as shown here:

// Construct a Queue with initial values.
Queue(char[] a) {
 putloc = 0;
 getloc = 0;
 q = new char[a.length];

 for(int i = 0; i < a.length; i++) put(a[i]);
}

 This constructor creates a queue large enough to hold the characters in a and then stores
those characters in the queue.

 4. Here is the complete updated Queue class along with the QDemo2 class, which
demonstrates it:

// A queue class for characters.
class Queue {
 private char[] q; // this array holds the queue
 private int putloc, getloc; // the put and get indices

 // Construct an empty Queue given its size.
 Queue(int size) {
 q = new char[size]; // allocate memory for queue
 putloc = getloc = 0;
 }

 // Construct a Queue from a Queue.
 Queue(Queue ob) {
 putloc = ob.putloc;
 getloc = ob.getloc;
 q = new char[ob.q.length];

 // copy elements
 for(int i=getloc; i < putloc; i++)
 q[i] = ob.q[i];
 }

 // Construct a Queue with initial values.
 Queue(char[] a) {
 putloc = 0;
 getloc = 0;
 q = new char[a.length];

 for(int i = 0; i < a.length; i++) put(a[i]);
 }

06-ch06.indd 208 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 Chapter 6: A Closer Look at Methods and Classes 209

 // Put a character into the queue.
 void put(char ch) {
 if(putloc==q.length) {
 System.out.println(" – Queue is full.");
 return;
 }

 q[putloc++] = ch;
 }

 // Get a character from the queue.
 char get() {
 if(getloc == putloc) {
 System.out.println(" – Queue is empty.");
 return (char) 0;
 }

 return q[getloc++];
 }
}

// Demonstrate the Queue class.
class QDemo2 {
 public static void main(String[] args) {
 // construct 10-element empty queue
 Queue q1 = new Queue(10);

 char[] name = {'T', 'o', 'm'};
 // construct queue from array
 Queue q2 = new Queue(name);

 char ch;
 int i;

 // put some characters into q1
 for(i=0; i < 10; i++)
 q1.put((char) ('A' + i));

 // construct queue from another queue
 Queue q3 = new Queue(q1);

 // Show the queues.
 System.out.print("Contents of q1: ");
 for(i=0; i < 10; i++) {
 ch = q1.get();

(continued)

06-ch06.indd 209 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 210 Java: A Beginner’s Guide

 System.out.print(ch);
 }

 System.out.println("\n");

 System.out.print("Contents of q2: ");
 for(i=0; i < 3; i++) {
 ch = q2.get();
 System.out.print(ch);
 }

 System.out.println("\n");

 System.out.print("Contents of q3: ");
 for(i=0; i < 10; i++) {
 ch = q3.get();
 System.out.print(ch);
 }
 }
}

 The output from the program is shown here:

Contents of q1: ABCDEFGHIJ

Contents of q2: Tom

Contents of q3: ABCDEFGHIJ

Recursion
In Java, a method can call itself. This process is called recursion, and a method that calls itself
is said to be recursive. In general, recursion is the process of defining something in terms
of itself and is somewhat similar to a circular definition. The key component of a recursive
method is a statement that executes a call to itself. Recursion is a powerful control mechanism.

The classic example of recursion is the computation of the factorial of a number. The
factorial of a number N is the product of all the whole numbers between 1 and N. For example,
3 factorial is 1 × 2 × 3, or 6. The following program shows a recursive way to compute the
factorial of a number. For comparison purposes, a nonrecursive equivalent is also included.

// A simple example of recursion.
class Factorial {
 // This is a recursive function.
 int factR(int n) {
 int result;

06-ch06.indd 210 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 Chapter 6: A Closer Look at Methods and Classes 211

 if(n==1) return 1;
 result = factR(n-1) * n;
 return result;
 }

 // This is an iterative equivalent.
 int factI(int n) {
 int t, result;

 result = 1;
 for(t=1; t <= n; t++) result *= t;
 return result;
 }
}

class Recursion {
 public static void main(String[] args) {
 Factorial f = new Factorial();

 System.out.println("Factorials using recursive method.");
 System.out.println("Factorial of 3 is " + f.factR(3));
 System.out.println("Factorial of 4 is " + f.factR(4));
 System.out.println("Factorial of 5 is " + f.factR(5));
 System.out.println();

 System.out.println("Factorials using iterative method.");
 System.out.println("Factorial of 3 is " + f.factI(3));
 System.out.println("Factorial of 4 is " + f.factI(4));
 System.out.println("Factorial of 5 is " + f.factI(5));
 }
}

The output from this program is shown here:

Factorials using recursive method.
Factorial of 3 is 6
Factorial of 4 is 24
Factorial of 5 is 120

Factorials using iterative method.
Factorial of 3 is 6
Factorial of 4 is 24
Factorial of 5 is 120

The operation of the nonrecursive method factI() should be clear. It uses a loop starting
at 1 and progressively multiplies each number by the moving product.

The operation of the recursive factR() is a bit more complex. When factR() is called with
an argument of 1, the method returns 1; otherwise, it returns the product of factR(n–1)*n. To
evaluate this expression, factR() is called with n–1. This process repeats until n equals 1 and
the calls to the method begin returning. For example, when the factorial of 2 is calculated, the

Execute the recursive call to factR().

06-ch06.indd 211 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 212 Java: A Beginner’s Guide

first call to factR() will cause a second call to be made with an argument of 1. This call will
return 1, which is then multiplied by 2 (the original value of n). The answer is then 2. You
might find it interesting to insert println() statements into factR() that show at what level
each call is, and what the intermediate results are.

When a method calls itself, new local variables and parameters are allocated storage on
the stack, and the method code is executed with these new variables from the start. A recursive
call does not make a new copy of the method. Only the arguments are new. As each recursive
call returns, the old local variables and parameters are removed from the stack, and execution
resumes at the point of the call inside the method. Recursive methods could be said to
“telescope” out and back.

Recursive versions of many routines may execute a bit more slowly than their iterative
equivalents because of the added overhead of the additional method calls. Too many recursive
calls to a method could cause a stack overrun. Because storage for parameters and local
variables is on the stack and each new call creates a new copy of these variables, it is possible
that the stack could be exhausted. If this occurs, the Java run-time system will cause an
exception. However, you probably will not encounter this unless a recursive routine runs wild.
The main advantage to recursion is that some types of algorithms can be implemented more
clearly and simply recursively than they can be iteratively. For example, the Quicksort sorting
algorithm is quite difficult to implement in an iterative way. Also, some problems, especially
AI-related ones, seem to lend themselves to recursive solutions. When writing recursive
methods, you must have a conditional statement, such as an if, somewhere to force the method
to return without the recursive call being executed. If you don’t do this, once you call the
method, it will never return. This type of error is very common when working with recursion.
Use println() statements liberally so that you can watch what is going on and abort execution
if you see that you have made a mistake.

Understanding static
There will be times when you will want to define a class member that will be used independently
of any object of that class. Normally a class member must be accessed through an object of
its class, but it is possible to create a member that can be used by itself, without reference to
a specific instance. To create such a member, precede its declaration with the keyword static.
When a member is declared static, it can be accessed before any objects of its class are created,
and without reference to any object. You can declare both methods and variables to be static.
The most common example of a static member is main(). main() is declared as static because
it must be called by the JVM when your program begins. Outside the class, to use a static
member, you need only specify the name of its class followed by the dot operator. No object
needs to be created. For example, if you want to assign the value 10 to a static variable called
count that is part of the Timer class, use this line:

Timer.count = 10;

This format is similar to that used to access normal instance variables through an object, except
that the class name is used. A static method can be called in the same way—by use of the dot
operator on the name of the class.

06-ch06.indd 212 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 Chapter 6: A Closer Look at Methods and Classes 213

Variables declared as static are, essentially, global variables. When an object is declared,
no copy of a static variable is made. Instead, all instances of the class share the same static
variable. Here is an example that shows the differences between a static variable and an
instance variable:

// Use a static variable.
class StaticDemo {
 int x; // a normal instance variable
 static int y; // a static variable

 // Return the sum of the instance variable x
 // and the static variable y.
 int sum() {
 return x + y;
 }
}

class SDemo {
 public static void main(String[] args) {
 StaticDemo ob1 = new StaticDemo();
 StaticDemo ob2 = new StaticDemo();

 // Each object has its own copy of an instance variable.
 ob1.x = 10;
 ob2.x = 20;
 System.out.println("Of course, ob1.x and ob2.x " +
 "are independent.");
 System.out.println("ob1.x: " + ob1.x +
 "\nob2.x: " + ob2.x);
 System.out.println();

 // Each object shares one copy of a static variable.
 System.out.println("The static variable y is shared.");
 StaticDemo.y = 19;
 System.out.println("Set StaticDemo.y to 19.");

 System.out.println("ob1.sum(): " + ob1.sum());
 System.out.println("ob2.sum(): " + ob2.sum());
 System.out.println();

 StaticDemo.y = 100;
 System.out.println("Change StaticDemo.y to 100");

 System.out.println("ob1.sum(): " + ob1.sum());
 System.out.println("ob2.sum(): " + ob2.sum());
 System.out.println(); }
}

There is one copy of y
for all objects to share.

06-ch06.indd 213 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 214 Java: A Beginner’s Guide

The output from the program is shown here:

Of course, ob1.x and ob2.x are independent.
ob1.x: 10
ob2.x: 20

The static variable y is shared.
Set StaticDemo.y to 19.
ob1.sum(): 29
ob2.sum(): 39

Change StaticDemo.y to 100
ob1.sum(): 110
ob2.sum(): 120

As you can see, the static variable y is shared by both ob1 and ob2. Changing it affects the
entire class, not just an instance.

The difference between a static method and a normal method is that the static method is
called through its class name, without any object of that class being created. You have seen an
example of this already: the sqrt() method, which is a static method within Java’s standard
Math class. Here is an example that creates a static method:

// Use a static method.
class StaticMeth {
 static int val = 1024; // a static variable

 // a static method
 static int valDiv2() {
 return val/2;
 }
}

class SDemo2 {
 public static void main(String[] args) {

 System.out.println("val is " + StaticMeth.val);
 System.out.println("StaticMeth.valDiv2(): " +
 StaticMeth.valDiv2());

 StaticMeth.val = 4;
 System.out.println("val is " + StaticMeth.val);
 System.out.println("StaticMeth.valDiv2(): " +
 StaticMeth.valDiv2());
 }
}

A static method.

06-ch06.indd 214 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 Chapter 6: A Closer Look at Methods and Classes 215

The output is shown here:

val is 1024
StaticMeth.valDiv2(): 512
val is 4
StaticMeth.valDiv2(): 2

Methods declared as static have several restrictions:

● They can directly call only other static methods in their class.

● They can directly access only static variables in their class.

● They do not have a this reference.

For example, in the following class, the static method valDivDenom() is illegal:

class StaticError {
 int denom = 3; // a normal instance variable
 static int val = 1024; // a static variable

 /* Error! Can't access a non-static variable
 from within a static method. */
 static int valDivDenom() {
 return val/denom; // won't compile!
 }
}

Here, denom is a normal instance variable that cannot be accessed within a static method.

Static Blocks
Sometimes a class will require some type of initialization before it is ready to create objects.
For example, it might need to establish a connection to a remote site. It also might need to
initialize certain static variables before any of the class’ static methods are used. To handle
these types of situations, Java allows you to declare a static block. A static block is executed
when the class is first loaded. Thus, it is executed before the class can be used for any other
purpose. Here is an example of a static block:

// Use a static block
class StaticBlock {
 static double rootOf2;
 static double rootOf3;

 static {
 System.out.println("Inside static block.");
 rootOf2 = Math.sqrt(2.0);
 rootOf3 = Math.sqrt(3.0);
 }

This block is executed
when the class is loaded.

06-ch06.indd 215 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 216 Java: A Beginner’s Guide

Try This 6-3

QSDemo.java

 StaticBlock(String msg) {
 System.out.println(msg);
 }
}

class SDemo3 {
 public static void main(String[] args) {
 StaticBlock ob = new StaticBlock("Inside Constructor");

 System.out.println("Square root of 2 is " +
 StaticBlock.rootOf2);
 System.out.println("Square root of 3 is " +
 StaticBlock.rootOf3);

 }
}

The output is shown here:

Inside static block.
Inside Constructor
Square root of 2 is 1.4142135623730951
Square root of 3 is 1.7320508075688772

As you can see, the static block is executed before any objects are constructed.

 The Quicksort
In Chapter 5 you were shown a simple sorting method called the Bubble sort.
It was mentioned at the time that substantially better sorts exist. Here you will

develop a version of one of the best: the Quicksort. The Quicksort, invented and named by
C.A.R. Hoare, is arguably the best general-purpose sorting algorithm currently available. The
reason it could not be shown in Chapter 5 is that the best implementations of the Quicksort rely
on recursion. The version we will develop sorts a character array, but the logic can be adapted
to sort any type of object you like.

The Quicksort is built on the idea of partitions. The general procedure is to select a value,
called the comparand, and then to partition the array into two sections. All elements greater
than or equal to the partition value are put on one side, and those less than the value are put
on the other. This process is then repeated for each remaining section until the array is sorted.
For example, given the array fedacb and using the value d as the comparand, the first pass of
the Quicksort would rearrange the array as follows:

Initial f e d a c b

Pass1 b c a d e f

06-ch06.indd 216 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 Chapter 6: A Closer Look at Methods and Classes 217

This process is then repeated for each section—that is, bca and def. As you can see,
the process is essentially recursive in nature, and indeed, the cleanest implementation of
Quicksort is recursive.

Assuming that you have no information about the distribution of the data to be sorted,
there are a number of ways you can select the comparand. Here are two. You can choose a
value at random from within the data, or you can select it by averaging a small set of values
taken from the data. For optimal sorting, you want a value that is precisely in the middle of
the range of values. However, this is often not practical. In the worst case, the value chosen is
at one extremity. Even in this case, however, Quicksort still performs correctly. The version of
Quicksort that we will develop selects the middle element of the array as the comparand.

 1. Create a file called QSDemo.java.

 2. First, create the Quicksort class shown here:

// Try This 6-3: A simple version of the Quicksort.
class Quicksort {

 // Set up a call to the actual Quicksort method.
 static void qsort(char[] items) {
 qs(items, 0, items.length-1);
 }

 // A recursive version of Quicksort for characters.
 private static void qs(char[] items, int left, int right)
 {
 int i, j;
 char x, y;

 i = left; j = right;
 x = items[(left+right)/2];

 do {
 while((items[i] < x) && (i < right)) i++;
 while((x < items[j]) && (j > left)) j--;

 if(i <= j) {
 y = items[i];
 items[i] = items[j];
 items[j] = y;
 i++; j--;
 }
 } while(i <= j);

 if(left < j) qs(items, left, j);
 if(i < right) qs(items, i, right);
 }
}

(continued)

06-ch06.indd 217 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 218 Java: A Beginner’s Guide

 To keep the interface to the Quicksort simple, the Quicksort class provides the qsort()
method, which sets up a call to the actual Quicksort method, qs(). This enables the Quicksort
to be called with just the name of the array to be sorted, without having to provide an initial
partition. Since qs() is only used internally, it is specified as private.

 3. To use the Quicksort, simply call Quicksort.qsort(). Since qsort() is specified as static,
it can be called through its class rather than on an object. Thus, there is no need to create a
Quicksort object. After the call returns, the array will be sorted. Remember, this version works
only for character arrays, but you can adapt the logic to sort any type of arrays you want.

 4. Here is a program that demonstrates Quicksort:

// Try This 6-3: A simple version of the Quicksort.
class Quicksort {

 // Set up a call to the actual Quicksort method.
 static void qsort(char[] items) {
 qs(items, 0, items.length-1);
 }

 // A recursive version of Quicksort for characters.
 private static void qs(char[] items, int left, int right)
 {
 int i, j;
 char x, y;

 i = left; j = right;
 x = items[(left+right)/2];

 do {
 while((items[i] < x) && (i < right)) i++;
 while((x < items[j]) && (j > left)) j--;

 if(i <= j) {
 y = items[i];
 items[i] = items[j];
 items[j] = y;
 i++; j--;
 }
 } while(i <= j);

 if(left < j) qs(items, left, j);
 if(i < right) qs(items, i, right);
 }
}

class QSDemo {

06-ch06.indd 218 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 Chapter 6: A Closer Look at Methods and Classes 219

 public static void main(String[] args) {
 char[] a = { 'd', 'x', 'a', 'r', 'p', 'j', 'i' };
 int i;

 System.out.print("Original array: ");
 for(i=0; i < a.length; i++)
 System.out.print(a[i]);

 System.out.println();

 // now, sort the array
 Quicksort.qsort(a);

 System.out.print("Sorted array: ");
 for(i=0; i < a.length; i++)
 System.out.print(a[i]);
 }
}

Introducing Nested and Inner Classes
In Java, you can define a nested class. This is a class that is declared within another class. Frankly,
the nested class is a somewhat advanced topic. In fact, nested classes were not even allowed in the
first version of Java. It was not until Java 1.1 that they were added. However, it is important that
you know what they are and the mechanics of how they are used because they play an important
role in many real-world programs.

A nested class does not exist independently of its enclosing class. Thus, the scope of a
nested class is bounded by its outer class. A nested class that is declared directly within its
enclosing class scope is a member of its enclosing class. It is also possible to declare a nested
class that is local to a block.

There are two general types of nested classes: those that are preceded by the static modifier
and those that are not. The only type that we are concerned about in this book is the non-static
variety. This type of nested class is also called an inner class. It has access to all of the variables
and methods of its outer class and may refer to them directly in the same way that other non-
static members of the outer class do.

Sometimes an inner class is used to provide a set of services that is needed only by its
enclosing class. Here is an example that uses an inner class to compute various values for its
enclosing class:

// Use an inner class.
class Outer {
 int[] nums;

06-ch06.indd 219 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 220 Java: A Beginner’s Guide

 Outer(int[] n) {
 nums = n;
 }

 void analyze() {
 Inner inOb = new Inner();

 System.out.println("Minimum: " + inOb.min());
 System.out.println("Maximum: " + inOb.max());
 System.out.println("Average: " + inOb.avg());
 }

 // This is an inner class.
 class Inner {
 int min() {
 int m = nums[0];

 for(int i=1; i < nums.length; i++)
 if(nums[i] < m) m = nums[i];

 return m;
 }

 int max() {
 int m = nums[0];
 for(int i=1; i < nums.length; i++)
 if(nums[i] > m) m = nums[i];

 return m;
 }

 int avg() {
 int a = 0;
 for(int i=0; i < nums.length; i++)
 a += nums[i];

 return a / nums.length;
 }
 }
}

class NestedClassDemo {
 public static void main(String[] args) {
 int[] x = { 3, 2, 1, 5, 6, 9, 7, 8 };
 Outer outOb = new Outer(x);

 outOb.analyze();
 }
}

An inner class

06-ch06.indd 220 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 Chapter 6: A Closer Look at Methods and Classes 221

The output from the program is shown here:

Minimum: 1
Maximum: 9
Average: 5

In this example, the inner class Inner computes various values from the array nums, which
is a member of Outer. As explained, an inner class has access to the members of its enclosing
class, so it is perfectly acceptable for Inner to access the nums array directly. Of course, the
opposite is not true. For example, it would not be possible for analyze() to invoke the min()
method directly, without creating an Inner object.

As mentioned, it is possible to nest a class within a block scope. Doing so simply creates
a localized class that is not known outside its block. The following example adapts the ShowBits
class developed in Try This 5-3 for use as a local class.

// Use ShowBits as a local class.
class LocalClassDemo {
 public static void main(String[] args) {

 // An inner class version of ShowBits.
 class ShowBits {
 int numbits;

 ShowBits(int n) {
 numbits = n;
 }

 void show(long val) {
 long mask = 1;

 // left-shift a 1 into the proper position
 mask <<= numbits-1;

 int spacer = 0;
 for(; mask != 0; mask >>>= 1) {
 if((val & mask) != 0) System.out.print("1");
 else System.out.print("0");
 spacer++;
 if((spacer % 8) == 0) {
 System.out.print(" ");
 spacer = 0;
 }
 }
 System.out.println();
 }
 }

 for(byte b = 0; b < 10; b++) {
 ShowBits byteval = new ShowBits(8);

A local class nested within a method

06-ch06.indd 221 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 222 Java: A Beginner’s Guide

 System.out.print(b + " in binary: ");
 byteval.show(b);
 }
 }
}

The output from this version of the program is shown here:

0 in binary: 00000000
1 in binary: 00000001
2 in binary: 00000010
3 in binary: 00000011
4 in binary: 00000100
5 in binary: 00000101
6 in binary: 00000110
7 in binary: 00000111
8 in binary: 00001000
9 in binary: 00001001

In this example, the ShowBits class is not known outside of main(), and any attempt to access
it by any method other than main() will result in an error.

One last point: You can create an inner class that does not have a name. This is called an
anonymous inner class. An object of an anonymous inner class is instantiated when the class is
declared, using new. Anonymous inner classes are discussed further in Chapter 17.

Varargs: Variable-Length Arguments
Sometimes you will want to create a method that takes a variable number of arguments, based
on its precise usage. For example, a method that opens an Internet connection might take a user
name, password, file name, protocol, and so on, but supply defaults if some of this information
is not provided. In this situation, it would be convenient to pass only the arguments to which
the defaults did not apply. To create such a method implies that there must be some way to
create a list of arguments that is variable in length, rather than fixed.

In the early days of Java, methods that required a variable-length argument list could be
handled two ways, neither of which was particularly pleasing. First, if the maximum number
of arguments was small and known, then you could create overloaded versions of the method,

Q: What makes a static nested class different from a non-static one?

A: A static nested class is one that has the static modifier applied. Because it is static, it
can access only other static members of the enclosing class directly. It must access other
members of its outer class through an object reference.

Ask the Expert

06-ch06.indd 222 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 Chapter 6: A Closer Look at Methods and Classes 223

one for each way the method could be called. Although this works and is suitable for some
situations, it applies to only a narrow class of situations. In cases where the maximum number
of potential arguments is larger, or unknowable, a second approach was used in which the
arguments were put into an array, and then the array was passed to the method. Frankly, both
of these approaches often resulted in clumsy solutions, and it was widely acknowledged that a
better approach was needed.

Fortunately, today, Java includes a feature that greatly simplifies the creation of methods
that require a variable number of arguments. This feature is called varargs, which is short for
variable-length arguments. A method that takes a variable number of arguments is called a
variable-arity method, or simply a varargs method. The parameter list for a varargs method
is not fixed, but rather variable in length. Thus, a varargs method can take a variable number
of arguments.

Varargs Basics
A variable-length argument is specified by three periods (...). For example, here is how to write
a method called vaTest() that takes a variable number of arguments:

// vaTest() uses a vararg.
static void vaTest(int ... v) {
 System.out.println("Number of args: " + v.length);
 System.out.println("Contents: ");

 for(int i=0; i < v.length; i++)
 System.out.println(" arg " + i + ": " + v[i]);

 System.out.println();
}

Notice that v is declared as shown here:

int ... v

This syntax tells the compiler that vaTest() can be called with zero or more arguments.
Furthermore, it causes v to be implicitly declared as an array of type int[]. Thus, inside
vaTest(), v is accessed using the normal array syntax.

Here is a complete program that demonstrates vaTest():

// Demonstrate variable-length arguments.
class VarArgs {

 // vaTest() uses a vararg.
 static void vaTest(int ... v) {
 System.out.println("Number of args: " + v.length);
 System.out.println("Contents: ");

 for(int i=0; i < v.length; i++)
 System.out.println(" arg " + i + ": " + v[i]);

Declare a variable-length argument list.

06-ch06.indd 223 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 224 Java: A Beginner’s Guide

 System.out.println();
 }

 public static void main(String[] args)
 {

 // Notice how vaTest() can be called with a
 // variable number of arguments.
 vaTest(10); // 1 arg
 vaTest(1, 2, 3); // 3 args
 vaTest(); // no args
 }
}

The output from the program is shown here:

Number of args: 1
Contents:
 arg 0: 10

Number of args: 3
Contents:
 arg 0: 1
 arg 1: 2
 arg 2: 3

Number of args: 0
Contents:

There are two important things to notice about this program. First, as explained, inside
vaTest(), v is operated on as an array. This is because v is an array. The ... syntax simply tells
the compiler that a variable number of arguments will be used, and that these arguments will
be stored in the array referred to by v. Second, in main(), vaTest() is called with different
numbers of arguments, including no arguments at all. The arguments are automatically put in
an array and passed to v. In the case of no arguments, the length of the array is zero.

A method can have “normal” parameters along with a variable-length parameter. However,
the variable-length parameter must be the last parameter declared by the method. For example,
this method declaration is perfectly acceptable:

int doIt(int a, int b, double c, int ... vals) {

In this case, the first three arguments used in a call to doIt() are matched to the first three
parameters. Then, any remaining arguments are assumed to belong to vals.

Here is a reworked version of the vaTest() method that takes a regular argument and a
variable-length argument:

// Use varargs with standard arguments.
class VarArgs2 {

Call with different numbers
of arguments.

06-ch06.indd 224 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 Chapter 6: A Closer Look at Methods and Classes 225

 // Here, msg is a normal parameter and v is a
 // varargs parameter.
 static void vaTest(String msg, int ... v) {
 System.out.println(msg + v.length);
 System.out.println("Contents: ");

 for(int i=0; i < v.length; i++)
 System.out.println(" arg " + i + ": " + v[i]);

 System.out.println();
 }

 public static void main(String[] args)
 {
 vaTest("One vararg: ", 10);
 vaTest("Three varargs: ", 1, 2, 3);
 vaTest("No varargs: ");
 }
}

The output from this program is shown here:

One vararg: 1
Contents:
 arg 0: 10

Three varargs: 3
Contents:
 arg 0: 1
 arg 1: 2
 arg 2: 3

No varargs: 0
Contents:

Remember, the varargs parameter must be last. For example, the following declaration is
incorrect:

int doIt(int a, int b, double c, int ... vals, boolean stopFlag) { // Error!

Here, there is an attempt to declare a regular parameter after the varargs parameter, which is
illegal. There is one more restriction to be aware of: there must be only one varargs parameter.
For example, this declaration is also invalid:

int doIt(int a, int b, double c, int ... vals, double ... morevals) { // Error!

The attempt to declare the second varargs parameter is illegal.

A “normal” and
vararg parameter

06-ch06.indd 225 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 226 Java: A Beginner’s Guide

Overloading Varargs Methods
You can overload a method that takes a variable-length argument. For example, the following
program overloads vaTest() three times:

// Varargs and overloading.
class VarArgs3 {

 static void vaTest(int ... v) {
 System.out.println("vaTest(int ...): " +
 "Number of args: " + v.length);
 System.out.println("Contents: ");

 for(int i=0; i < v.length; i++)
 System.out.println(" arg " + i + ": " + v[i]);

 System.out.println();
 }

 static void vaTest(boolean ... v) {
 System.out.println("vaTest(boolean ...): " +
 "Number of args: " + v.length);
 System.out.println("Contents: ");

 for(int i=0; i < v.length; i++)
 System.out.println(" arg " + i + ": " + v[i]);

 System.out.println();
 }

 static void vaTest(String msg, int ... v) {
 System.out.println("vaTest(String, int ...): " +
 msg + v.length);
 System.out.println("Contents: ");

 for(int i=0; i < v.length; i++)
 System.out.println(" arg " + i + ": " + v[i]);

 System.out.println();
 }

 public static void main(String[] args)
 {
 vaTest(1, 2, 3);
 vaTest("Testing: ", 10, 20);
 vaTest(true, false, false);
 }
}

First version of vaTest()

Second version of vaTest()

Third version of vaTest()

06-ch06.indd 226 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 Chapter 6: A Closer Look at Methods and Classes 227

The output produced by this program is shown here:

vaTest(int ...): Number of args: 3
Contents:
 arg 0: 1
 arg 1: 2
 arg 2: 3

vaTest(String, int ...): Testing: 2
Contents:
 arg 0: 10
 arg 1: 20

vaTest(boolean ...): Number of args: 3
Contents:
 arg 0: true
 arg 1: false
 arg 2: false

This program illustrates both ways that a varargs method can be overloaded. First, the types
of its vararg parameter can differ. This is the case for vaTest(int ...) and vaTest(boolean ...).
Remember, the ... causes the parameter to be treated as an array of the specified type. Therefore,
just as you can overload methods by using different types of array parameters, you can overload
varargs methods by using different types of varargs. In this case, Java uses the type difference to
determine which overloaded method to call.

The second way to overload a varargs method is to add one or more normal parameters.
This is what was done with vaTest(String, int ...). In this case, Java uses both the number of
arguments and the type of the arguments to determine which method to call.

Varargs and Ambiguity
Somewhat unexpected errors can result when overloading a method that takes a variable-length
argument. These errors involve ambiguity because it is possible to create an ambiguous call to
an overloaded varargs method. For example, consider the following program:

// Varargs, overloading, and ambiguity.
//
// This program contains an error and will
// not compile!
class VarArgs4 {

 // Use an int vararg parameter.
 static void vaTest(int ... v) {
 // ...
 }

 // Use a boolean vararg parameter.
 static void vaTest(boolean ... v) {
 // ...
 }

An int vararg

A boolean vararg

06-ch06.indd 227 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 228 Java: A Beginner’s Guide

 public static void main(String[] args)
 {
 vaTest(1, 2, 3); // OK
 vaTest(true, false, false); // OK

 vaTest(); // Error: Ambiguous!
 }
}

In this program, the overloading of vaTest() is perfectly correct. However, this program will
not compile because of the following call:

vaTest(); // Error: Ambiguous!

Because the vararg parameter can be empty, this call could be translated into a call to vaTest(int ...)
or to vaTest(boolean ...). Both are equally valid. Thus, the call is inherently ambiguous.

Here is another example of ambiguity. The following overloaded versions of vaTest() are
inherently ambiguous even though one takes a normal parameter:

static void vaTest(int ... v) { // ...

static void vaTest(int n, int ... v) { // ...

Although the parameter lists of vaTest() differ, there is no way for the compiler to resolve the
following call:

vaTest(1)

Does this translate into a call to vaTest(int ...), with one varargs argument, or into a call to
vaTest(int, int ...) with no varargs arguments? There is no way for the compiler to answer
this question. Thus, the situation is ambiguous.

Because of ambiguity errors like those just shown, sometimes you will need to forego
overloading and simply use two different method names. Also, in some cases, ambiguity errors
expose a conceptual flaw in your code, which you can remedy by more carefully crafting a solution.

 Chapter 6 Self Test
 1. Given this fragment,

class X {
 private int count;

 is the following fragment correct?

class Y {
 public static void main(String[] args) {
 X ob = new X();

 ob.count = 10;

Ambiguous!

✓

06-ch06.indd 228 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 6

 Chapter 6: A Closer Look at Methods and Classes 229

 2. An access modifier must __________ a member’s declaration.

 3. The complement of a queue is a stack. It uses first-in, last-out accessing and is often likened
to a stack of plates. The first plate put on the table is the last plate used. Create a stack
class called Stack that can hold characters. Call the methods that access the stack push()
and pop(). Allow the user to specify the size of the stack when it is created. Keep all other
members of the Stack class private. (Hint: You can use the Queue class as a model; just
change the way the data is accessed.)

 4. Given this class,

class Test {
 int a;
 Test(int i) { a = i; }
}

 write a method called swap() that exchanges the contents of the objects referred to by two
Test object references.

 5. Is the following fragment correct?

class X {
 int meth(int a, int b) { ... }
 String meth(int a, int b) { ... }

 6. Write a recursive method that displays the contents of a string backwards.

 7. If all objects of a class need to share the same variable, how must you declare that variable?

 8. Why might you need to use a static block?

 9. What is an inner class?

 10. To make a member accessible by only other members of its class, what access modifier
must be used?

 11. The name of a method plus its parameter list constitutes the method’s _______________.

 12. An int argument is passed to a method by using call-by-_______________.

 13. Create a varargs method called sum() that sums the int values passed to it. Have it return
the result. Demonstrate its use.

 14. Can a varargs method be overloaded?

 15. Show an example of an overloaded varargs method that is ambiguous.

06-ch06.indd 229 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter
Blind Folio: xxiv

00-FM.indd 24 12/11/21 9:20 PM

This page intentionally left blank

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7
Blind Folio: 231

Chapter 7
Inheritance

07-ch07.indd 231 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 232 Java: A Beginner’s Guide

Key Skills & Concepts

● Understand inheritance basics

● Call superclass constructors

● Use super to access superclass members

● Create a multilevel class hierarchy

● Know when constructors are called

● Understand superclass references to subclass objects

● Override methods

● Use overridden methods to achieve dynamic method dispatch

● Use abstract classes

● Use final

● Know the Object class

Inheritance is one of the three foundation principles of object-oriented programming because it
allows the creation of hierarchical classifications. Using inheritance, you can create a general
class that defines traits common to a set of related items. This class can then be inherited by
other, more specific classes, each adding those things that are unique to it.

In the language of Java, a class that is inherited is called a superclass. The class that
does the inheriting is called a subclass. Therefore, a subclass is a specialized version of a
superclass. It inherits all of the variables and methods defined by the superclass and adds its
own, unique elements.

Inheritance Basics
Java supports inheritance by allowing one class to incorporate another class into its declaration.
This is done by using the extends keyword. Thus, the subclass adds to (extends) the superclass.

Let’s begin with a short example that illustrates several of the key features of inheritance.
The following program creates a superclass called TwoDShape, which stores the width and
height of a two-dimensional object, and a subclass called Triangle. Notice how the keyword
extends is used to create a subclass.

// A simple class hierarchy.

// A class for two-dimensional objects.
class TwoDShape {

07-ch07.indd 232 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 Chapter 7: Inheritance 233

 double width;
 double height;

 void showDim() {
 System.out.println("Width and height are " +
 width + " and " + height);
 }
}

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
 String style;

 double area() {
 return width * height / 2;
 }

 void showStyle() {
 System.out.println("Triangle is " + style);

 }
}

class Shapes {
 public static void main(String[] args) {
 Triangle t1 = new Triangle();
 Triangle t2 = new Triangle();

 t1.width = 4.0;
 t1.height = 4.0;
 t1.style = "filled";

 t2.width = 8.0;
 t2.height = 12.0;
 t2.style = "outlined";

 System.out.println("Info for t1: ");
 t1.showStyle();
 t1.showDim();
 System.out.println("Area is " + t1.area());

 System.out.println();

 System.out.println("Info for t2: ");
 t2.showStyle();
 t2.showDim();
 System.out.println("Area is " + t2.area());
 }
}

Triangle inherits TwoDShape.

Triangle can refer to the members of TwoDShape
as if they were declared by Triangle.

All members of Triangle are available to Triangle
objects, even those inherited from TwoDShape.

07-ch07.indd 233 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 234 Java: A Beginner’s Guide

The output from this program is shown here:

Info for t1:
Triangle is filled
Width and height are 4.0 and 4.0
Area is 8.0

Info for t2:
Triangle is outlined
Width and height are 8.0 and 12.0
Area is 48.0

Here, TwoDShape defines the attributes of a “generic” two-dimensional shape, such as a
square, rectangle, triangle, and so on. The Triangle class creates a specific type of TwoDShape,
in this case, a triangle. The Triangle class includes all of TwoDShape and adds the field style,
the method area(), and the method showStyle(). The triangle’s style is stored in style. This
can be any string that describes the triangle, such as "filled", "outlined", "transparent", or even
something like "warning symbol", "isosceles", or "rounded". The area() method computes and
returns the area of the triangle, and showStyle() displays the triangle style.

Because Triangle includes all of the members of its superclass, TwoDShape, it can access
width and height inside area(). Also, inside main(), objects t1 and t2 can refer to width and
height directly, as if they were declared by Triangle. Figure 7-1 depicts conceptually how
TwoDShape is incorporated into Triangle.

Even though TwoDShape is a superclass for Triangle, it is also a completely independent,
stand-alone class. Being a superclass for a subclass does not mean that the superclass cannot
be used by itself. For example, the following is perfectly valid:

TwoDShape shape = new TwoDShape();

shape.width = 10;
shape.height = 20;

shape.showDim();

Of course, an object of TwoDShape has no knowledge of or access to any subclasses of
TwoDShape.

Figure 7-1 A conceptual depiction of the Triangle class

07-ch07.indd 234 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 Chapter 7: Inheritance 235

The general form of a class declaration that inherits a superclass is shown here:

class subclass-name extends superclass-name {
 // body of class
}

You can specify only one superclass for any subclass that you create. Java does not support
the inheritance of multiple superclasses into a single subclass. (This differs from C++, in
which you can inherit multiple base classes. Be aware of this when converting C++ code
to Java.) You can, however, create a hierarchy of inheritance in which a subclass becomes
a superclass of another subclass. Of course, no class can be a superclass of itself.

A major advantage of inheritance is that once you have created a superclass that defines
the attributes common to a set of objects, it can be used to create any number of more specific
subclasses. Each subclass can precisely tailor its own classification. For example, here is another
subclass of TwoDShape that encapsulates rectangles:

// A subclass of TwoDShape for rectangles.
class Rectangle extends TwoDShape {
 boolean isSquare() {
 if(width == height) return true;
 return false;
 }

 double area() {
 return width * height;
 }
}

The Rectangle class includes TwoDShape and adds the methods isSquare(), which
determines if the rectangle is square, and area(), which computes the area of a rectangle.

Member Access and Inheritance
As you learned in Chapter 6, often an instance variable of a class will be declared private
to prevent its unauthorized use or tampering. Inheriting a class does not overrule the private
access restriction. Thus, even though a subclass includes all of the members of its superclass,
it cannot access those members of the superclass that have been declared private. For example,
if, as shown here, width and height are made private in TwoDShape, then Triangle will not
be able to access them:

// Private members are not inherited.

// This example will not compile.

// A class for two-dimensional objects.
class TwoDShape {

07-ch07.indd 235 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 236 Java: A Beginner’s Guide

 private double width; // these are
 private double height; // now private

 void showDim() {
 System.out.println("Width and height are " +
 width + " and " + height);
 }
}

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
 String style;

 double area() {
 return width * height / 2; // Error! can't access
 }

 void showStyle() {
 System.out.println("Triangle is " + style);
 }
}

The Triangle class will not compile because the reference to width and height inside the
area() method causes an access violation. Since width and height are declared private, they
are accessible only by other members of their own class. Subclasses have no access to them.

Remember that a class member that has been declared private will remain private to its
class. It is not accessible by any code outside its class, including subclasses.

At first, you might think that the fact that subclasses do not have access to the private
members of superclasses is a serious restriction that would prevent the use of private members
in many situations. However, this is not true. As explained in Chapter 6, Java programmers
typically use accessor methods to provide access to the private members of a class. Here is
a rewrite of the TwoDShape and Triangle classes that uses methods to access the private
instance variables width and height:

// Use accessor methods to set and get private members.

// A class for two-dimensional objects.
class TwoDShape {
 private double width; // these are
 private double height; // now private

 // Accessor methods for width and height.
 double getWidth() { return width; }
 double getHeight() { return height; }
 void setWidth(double w) { width = w; }
 void setHeight(double h) { height = h; }

Can’t access a private member
of a superclass.

Accessor methods for
width and height

07-ch07.indd 236 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 Chapter 7: Inheritance 237

void showDim() {
 System.out.println("Width and height are " +
 width + " and " + height);
 }
}

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
 String style;

 double area() {
 return getWidth() * getHeight() / 2;
 }

 void showStyle() {
 System.out.println("Triangle is " + style);
 }
}

class Shapes2 {
 public static void main(String[] args) {
 Triangle t1 = new Triangle();
 Triangle t2 = new Triangle();

 t1.setWidth(4.0);
 t1.setHeight(4.0);
 t1.style = "filled";

 t2.setWidth(8.0);
 t2.setHeight(12.0);
 t2.style = "outlined";

 System.out.println("Info for t1: ");
 t1.showStyle();
 t1.showDim();
 System.out.println("Area is " + t1.area());

 System.out.println();

 System.out.println("Info for t2: ");
 t2.showStyle();
 t2.showDim();
 System.out.println("Area is " + t2.area());
 }
}

Use accessor methods
provided by superclass.

07-ch07.indd 237 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 238 Java: A Beginner’s Guide

Constructors and Inheritance
In a hierarchy, it is possible for both superclasses and subclasses to have their own constructors.
This raises an important question: What constructor is responsible for building an object of the
subclass—the one in the superclass, the one in the subclass, or both? The answer is this: The
constructor for the superclass constructs the superclass portion of the object, and the constructor
for the subclass constructs the subclass part. This makes sense because the superclass has no
knowledge of or access to any element in a subclass. Thus, their construction must be separate.
The preceding examples have relied upon the default constructors created automatically by Java,
so this was not an issue. However, in practice, most classes will have explicit constructors. Here
you will see how to handle this situation.

When only the subclass defines a constructor, the process is straightforward: simply
construct the subclass object. The superclass portion of the object is constructed automatically
using its default constructor. For example, here is a reworked version of Triangle that defines
a constructor. It also makes style private, since it is now set by the constructor.

// Add a constructor to Triangle.

// A class for two-dimensional objects.
class TwoDShape {
 private double width; // these are
 private double height; // now private

 // Accessor methods for width and height.
 double getWidth() { return width; }
 double getHeight() { return height; }
 void setWidth(double w) { width = w; }
 void setHeight(double h) { height = h; }

 void showDim() {
 System.out.println("Width and height are " +
 width + " and " + height);
 }
}

Q: When should I make an instance variable private?

A: There are no hard and fast rules, but here are two general principles. If an instance variable
is to be used only by methods defined within its class, then it should be made private. If
an instance variable must be within certain bounds, then it should be private and made
available only through accessor methods. This way, you can prevent invalid values from
being assigned.

Ask the Expert

07-ch07.indd 238 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 Chapter 7: Inheritance 239

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
 private String style;

 // Constructor
 Triangle(String s, double w, double h) {
 setWidth(w);
 setHeight(h);

 style = s;
 }

 double area() {
 return getWidth() * getHeight() / 2;
 }

 void showStyle() {
 System.out.println("Triangle is " + style);
 }
}

class Shapes3 {
 public static void main(String[] args) {
 Triangle t1 = new Triangle("filled", 4.0, 4.0);
 Triangle t2 = new Triangle("outlined", 8.0, 12.0);

 System.out.println("Info for t1: ");
 t1.showStyle();
 t1.showDim();
 System.out.println("Area is " + t1.area());

 System.out.println();

 System.out.println("Info for t2: ");
 t2.showStyle();
 t2.showDim();
 System.out.println("Area is " + t2.area());
 }
}

Here, Triangle’s constructor initializes the members of TwoDClass that it inherits along with
its own style field.

When both the superclass and the subclass define constructors, the process is a bit more
complicated because both the superclass and subclass constructors must be executed. In this
case, you must use another of Java’s keywords, super, which has two general forms. The
first calls a superclass constructor. The second is used to access a member of the superclass
that has been hidden by a member of a subclass. Here, we will look at its first use.

Initialize TwoDShape
portion of object.

07-ch07.indd 239 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 240 Java: A Beginner’s Guide

Using super to Call Superclass Constructors
A subclass can call a constructor defined by its superclass by use of the following form of super:

super(parameter-list);

Here, parameter-list specifies any parameters needed by the constructor in the superclass.
super() must always be the first statement executed inside a subclass constructor. To see how
super() is used, consider the version of TwoDShape in the following program. It defines a
constructor that initializes width and height.

// Add constructors to TwoDShape.
class TwoDShape {
 private double width;
 private double height;

 // Parameterized constructor.
 TwoDShape(double w, double h) {
 width = w;
 height = h;
 }

 // Accessor methods for width and height.
 double getWidth() { return width; }
 double getHeight() { return height; }
 void setWidth(double w) { width = w; }
 void setHeight(double h) { height = h; }

 void showDim() {
 System.out.println("Width and height are " +
 width + " and " + height);
 }
}

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
 private String style;

 Triangle(String s, double w, double h) {
 super(w, h); // call superclass constructor

 style = s;
 }

 double area() {
 return getWidth() * getHeight() / 2;
 }

A constructor for TwoDShape

Use super() to execute the
TwoDShape constructor.

07-ch07.indd 240 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 Chapter 7: Inheritance 241

 void showStyle() {
 System.out.println("Triangle is " + style);
 }
}

class Shapes4 {
 public static void main(String[] args) {
 Triangle t1 = new Triangle("filled", 4.0, 4.0);
 Triangle t2 = new Triangle("outlined", 8.0, 12.0);

 System.out.println("Info for t1: ");
 t1.showStyle();
 t1.showDim();
 System.out.println("Area is " + t1.area());

 System.out.println();

 System.out.println("Info for t2: ");
 t2.showStyle();
 t2.showDim();
 System.out.println("Area is " + t2.area());
 }
}

Here, Triangle() calls super() with the parameters w and h. This causes the TwoDShape()
constructor to be called, which initializes width and height using these values. Triangle
no longer initializes these values itself. It need only initialize the value unique to it: style.
This leaves TwoDShape free to construct its subobject in any manner that it so chooses.
Furthermore, TwoDShape can add functionality about which existing subclasses have no
knowledge, thus preventing existing code from breaking.

Any form of constructor defined by the superclass can be called by super(). The constructor
executed will be the one that matches the arguments. For example, here are expanded versions
of both TwoDShape and Triangle that include default constructors and constructors that take
one argument:

// Add more constructors to TwoDShape.
class TwoDShape {
 private double width;
 private double height;

 // A default constructor.
 TwoDShape() {
 width = height = 0.0;
 }

 // Parameterized constructor.
 TwoDShape(double w, double h) {
 width = w;
 height = h;
 }

07-ch07.indd 241 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 242 Java: A Beginner’s Guide

 // Construct object with equal width and height.
 TwoDShape(double x) {
 width = height = x;
 }

 // Accessor methods for width and height.
 double getWidth() { return width; }
 double getHeight() { return height; }
 void setWidth(double w) { width = w; }
 void setHeight(double h) { height = h; }

 void showDim() {
 System.out.println("Width and height are " +
 width + " and " + height);
 }
}

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
 private String style;

 // A default constructor.
 Triangle() {
 super();
 style = "none";
 }

 // Constructor
 Triangle(String s, double w, double h) {
 super(w, h); // call superclass constructor

 style = s;
 }

 // One argument constructor.
 Triangle(double x) {
 super(x); // call superclass constructor

 style = "filled";
 }

 double area() {
 return getWidth() * getHeight() / 2;
 }

 void showStyle() {
 System.out.println("Triangle is " + style);
 }
}

Use super() to call the
various forms of the
TwoDShape constructor.

07-ch07.indd 242 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 Chapter 7: Inheritance 243

class Shapes5 {
 public static void main(String[] args) {
 Triangle t1 = new Triangle();
 Triangle t2 = new Triangle("outlined", 8.0, 12.0);
 Triangle t3 = new Triangle(4.0);

 t1 = t2;

 System.out.println("Info for t1: ");
 t1.showStyle();
 t1.showDim();
 System.out.println("Area is " + t1.area());

 System.out.println();

 System.out.println("Info for t2: ");
 t2.showStyle();
 t2.showDim();
 System.out.println("Area is " + t2.area());

 System.out.println();

 System.out.println("Info for t3: ");
 t3.showStyle();
 t3.showDim();
 System.out.println("Area is " + t3.area());

 System.out.println();
 }
}

Here is the output from this version:

Info for t1:
Triangle is outlined
Width and height are 8.0 and 12.0
Area is 48.0

Info for t2:
Triangle is outlined
Width and height are 8.0 and 12.0
Area is 48.0

Info for t3:
Triangle is filled
Width and height are 4.0 and 4.0
Area is 8.0

Let’s review the key concepts behind super(). When a subclass calls super(), it is calling
the constructor of its immediate superclass. Thus, super() always refers to the superclass

07-ch07.indd 243 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 244 Java: A Beginner’s Guide

immediately above the calling class. This is true even in a multilevel hierarchy. Also, super()
must always be the first statement executed inside a subclass constructor.

Using super to Access Superclass Members
There is a second form of super that acts somewhat like this, except that it always refers to the
superclass of the subclass in which it is used. This usage has the following general form:

super.member

Here, member can be either a method or an instance variable.
This form of super is most applicable to situations in which member names of a subclass

hide members by the same name in the superclass. Consider this simple class hierarchy:

// Using super to overcome name hiding.
class A {
 int i;
}

// Create a subclass by extending class A.
class B extends A {
 int i; // this i hides the i in A

 B(int a, int b) {
 super.i = a; // i in A
 i = b; // i in B
 }

 void show() {
 System.out.println("i in superclass: " + super.i);
 System.out.println("i in subclass: " + i);
 }
}

class UseSuper {
 public static void main(String[] args) {
 B subOb = new B(1, 2);

 subOb.show();
 }
}

This program displays the following:

i in superclass: 1
i in subclass: 2

Although the instance variable i in B hides the i in A, super allows access to the i defined
in the superclass. super can also be used to call methods that are hidden by a subclass.

Here, super.i refers
to the i in A.

07-ch07.indd 244 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 Chapter 7: Inheritance 245

Try This 7-1

TruckDemo.java

 Extending the Vehicle Class
To illustrate the power of inheritance, we will extend the Vehicle class first
developed in Chapter 4. As you should recall, Vehicle encapsulates information

about vehicles, including the number of passengers they can carry, their fuel capacity, and
their fuel consumption rate. We can use the Vehicle class as a starting point from which more
specialized classes are developed. For example, one type of vehicle is a truck. An important
attribute of a truck is its cargo capacity. Thus, to create a Truck class, you can extend Vehicle,
adding an instance variable that stores the carrying capacity. Here is a version of Truck that
does this. In the process, the instance variables in Vehicle will be made private, and accessor
methods are provided to get and set their values.

 1. Create a file called TruckDemo.java and copy the last implementation of Vehicle from
Chapter 4 into the file:

 2. Create the Truck class as shown here:

// Extend Vehicle to create a Truck specialization.
class Truck extends Vehicle {
 private int cargocap; // cargo capacity in pounds

 // This is a constructor for Truck.
 Truck(int p, int f, int m, int c) {
 /* Initialize Vehicle members using
 Vehicle's constructor. */
 super(p, f, m);

 cargocap = c;
 }

 // Accessor methods for cargocap.
 int getCargo() { return cargocap; }
 void putCargo(int c) { cargocap = c; }
}

 Here, Truck inherits Vehicle, adding cargocap, getCargo(), and putCargo(). Thus,
Truck includes all of the general vehicle attributes defined by Vehicle. It need add only
those items that are unique to its own class.

 3. Next, make the instance variables of Vehicle private, as shown here:

private int passengers; // number of passengers
private int fuelcap; // fuel capacity in gallons
private int mpg; // fuel consumption in miles per gallon

 4. Here is an entire program that demonstrates the Truck class:

// Try This 7-1
//
// Build a subclass of Vehicle for trucks.

(continued)

07-ch07.indd 245 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 246 Java: A Beginner’s Guide

class Vehicle {
 private int passengers; // number of passengers
 private int fuelcap; // fuel capacity in gallons
 private int mpg; // fuel consumption in miles per gallon

 // This is a constructor for Vehicle.
 Vehicle(int p, int f, int m) {
 passengers = p;
 fuelcap = f;
 mpg = m;
 }

 // Return the range.
 int range() {
 return mpg * fuelcap;
 }

 // Compute fuel needed for a given distance.
 double fuelNeeded(int miles) {
 return (double) miles / mpg;
 }

 // Accessor methods for instance variables.
 int getPassengers() { return passengers; }
 void setPassengers(int p) { passengers = p; }
 int getFuelcap() { return fuelcap; }
 void setFuelcap(int f) { fuelcap = f; }
 int getMpg() { return mpg; }
 void setMpg(int m) { mpg = m; }

}

// Extend Vehicle to create a Truck specialization.
class Truck extends Vehicle {
 private int cargocap; // cargo capacity in pounds

 // This is a constructor for Truck.
 Truck(int p, int f, int m, int c) {
 /* Initialize Vehicle members using
 Vehicle's constructor. */
 super(p, f, m);

 cargocap = c;
 }

 // Accessor methods for cargocap.
 int getCargo() { return cargocap; }
 void putCargo(int c) { cargocap = c; }
}

07-ch07.indd 246 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 Chapter 7: Inheritance 247

class TruckDemo {
 public static void main(String[] args) {

 // construct some trucks
 Truck semi = new Truck(2, 200, 7, 44000);
 Truck pickup = new Truck(3, 28, 15, 2000);
 double gallons;
 int dist = 252;

 gallons = semi.fuelNeeded(dist);

 System.out.println("Semi can carry " + semi.getCargo() +
 " pounds.");
 System.out.println("To go " + dist + " miles semi needs " +
 gallons + " gallons of fuel.\n");

 gallons = pickup.fuelNeeded(dist);

 System.out.println("Pickup can carry " + pickup.getCargo() +
 " pounds.");
 System.out.println("To go " + dist + " miles pickup needs " +
 gallons + " gallons of fuel.");
 }
}

 5. The output from this program is shown here:

Semi can carry 44000 pounds.
To go 252 miles semi needs 36.0 gallons of fuel.

Pickup can carry 2000 pounds.
To go 252 miles pickup needs 16.8 gallons of fuel.

 6. Many other types of classes can be derived from Vehicle. For example, the following
skeleton creates an off-road class that stores the ground clearance of the vehicle.

// Create an off-road vehicle class
class OffRoad extends Vehicle {
 private int groundClearance; // ground clearance in inches

 // ...
}

 The key point is that once you have created a superclass that defines the general aspects
of an object, that superclass can be inherited to form specialized classes. Each subclass
simply adds its own, unique attributes. This is the essence of inheritance.

07-ch07.indd 247 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 248 Java: A Beginner’s Guide

Creating a Multilevel Hierarchy
Up to this point, we have been using simple class hierarchies that consist of only a superclass
and a subclass. However, you can build hierarchies that contain as many layers of inheritance
as you like. As mentioned, it is perfectly acceptable to use a subclass as a superclass of
another. For example, given three classes called A, B, and C, C can be a subclass of B, which
is a subclass of A. When this type of situation occurs, each subclass inherits all of the traits
found in all of its superclasses. In this case, C inherits all aspects of B and A.

To see how a multilevel hierarchy can be useful, consider the following program. In it,
the subclass Triangle is used as a superclass to create the subclass called ColorTriangle.
ColorTriangle inherits all of the traits of Triangle and TwoDShape and adds a field called
color, which holds the color of the triangle.

// A multilevel hierarchy.
class TwoDShape {
 private double width;
 private double height;

 // A default constructor.
 TwoDShape() {
 width = height = 0.0;
 }

 // Parameterized constructor.
 TwoDShape(double w, double h) {
 width = w;
 height = h;
 }

 // Construct object with equal width and height.
 TwoDShape(double x) {
 width = height = x;
 }

 // Accessor methods for width and height.
 double getWidth() { return width; }
 double getHeight() { return height; }
 void setWidth(double w) { width = w; }
 void setHeight(double h) { height = h; }

 void showDim() {
 System.out.println("Width and height are " +
 width + " and " + height);
 }
}

// Extend TwoDShape.
class Triangle extends TwoDShape {
 private String style;

07-ch07.indd 248 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 Chapter 7: Inheritance 249

 // A default constructor.
 Triangle() {
 super();
 style = "none";
 }

 Triangle(String s, double w, double h) {
 super(w, h); // call superclass constructor

 style = s;
 }

 // One argument constructor.
 Triangle(double x) {
 super(x); // call superclass constructor

 style = "filled";
 }

 double area() {
 return getWidth() * getHeight() / 2;
 }

 void showStyle() {
 System.out.println("Triangle is " + style);
 }
}

// Extend Triangle.
class ColorTriangle extends Triangle {
 private String color;

 ColorTriangle(String c, String s,
 double w, double h) {
 super(s, w, h);

 color = c;
 }

 String getColor() { return color; }

 void showColor() {
 System.out.println("Color is " + color);
 }
}

class Shapes6 {
 public static void main(String[] args) {
 ColorTriangle t1 =
 new ColorTriangle("Blue", "outlined", 8.0, 12.0);

ColorTriangle inherits Triangle, which
is descended from TwoDShape, so
ColorTriangle includes all members
of Triangle and TwoDShape.

07-ch07.indd 249 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 250 Java: A Beginner’s Guide

 ColorTriangle t2 =
 new ColorTriangle("Red", "filled", 2.0, 2.0);

 System.out.println("Info for t1: ");
 t1.showStyle();
 t1.showDim();
 t1.showColor();
 System.out.println("Area is " + t1.area());

 System.out.println();

 System.out.println("Info for t2: ");
 t2.showStyle();
 t2.showDim();
 t2.showColor();
 System.out.println("Area is " + t2.area());
 }
}

The output of this program is shown here:

Info for t1:
Triangle is outlined
Width and height are 8.0 and 12.0
Color is Blue
Area is 48.0

Info for t2:
Triangle is filled
Width and height are 2.0 and 2.0
Color is Red
Area is 2.0

Because of inheritance, ColorTriangle can make use of the previously defined classes of
Triangle and TwoDShape, adding only the extra information it needs for its own, specific
application. This is part of the value of inheritance; it allows the reuse of code.

This example illustrates one other important point: super() always refers to the constructor
in the closest superclass. The super() in ColorTriangle calls the constructor in Triangle. The
super() in Triangle calls the constructor in TwoDShape. In a class hierarchy, if a superclass
constructor requires parameters, then all subclasses must pass those parameters “up the line.”
This is true whether or not a subclass needs parameters of its own.

When Are Constructors Executed?
In the foregoing discussion of inheritance and class hierarchies, an important question may
have occurred to you: When a subclass object is created, whose constructor is executed first, the
one in the subclass or the one defined by the superclass? For example, given a subclass called

A ColorTriangle object can call methods
defined by itself and its superclasses.

07-ch07.indd 250 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 Chapter 7: Inheritance 251

B and a superclass called A, is A’s constructor executed before B’s, or vice versa? The answer
is that in a class hierarchy, constructors complete their execution in order of derivation, from
superclass to subclass. Further, since super() must be the first statement executed in a subclass’
constructor, this order is the same whether or not super() is used. If super() is not used, then
the default (parameterless) constructor of each superclass will be executed. The following
program illustrates when constructors are executed:

// Demonstrate when constructors are executed.

// Create a super class.
class A {
 A() {
 System.out.println("Constructing A.");
 }
}

// Create a subclass by extending class A.
class B extends A {
 B() {
 System.out.println("Constructing B.");
 }
}

// Create another subclass by extending B.
class C extends B {
 C() {
 System.out.println("Constructing C.");
 }
}

class OrderOfConstruction {
 public static void main(String[] args) {
 C c = new C();
 }
}

The output from this program is shown here:

Constructing A.
Constructing B.
Constructing C.

As you can see, the constructors are executed in order of derivation.
If you think about it, it makes sense that constructors are executed in order of derivation.

Because a superclass has no knowledge of any subclass, any initialization it needs to perform
is separate from and possibly prerequisite to any initialization performed by the subclass.
Therefore, it must complete its execution first.

07-ch07.indd 251 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 252 Java: A Beginner’s Guide

Superclass References and Subclass Objects
As you know, Java is a strongly typed language. Aside from the standard conversions and
automatic promotions that apply to its primitive types, type compatibility is strictly enforced.
Therefore, a reference variable for one class type cannot normally refer to an object of another
class type. For example, consider the following program:

// This will not compile.
class X {
 int a;

 X(int i) { a = i; }
}

class Y {
 int a;

 Y(int i) { a = i; }
}

class IncompatibleRef {
 public static void main(String[] args) {
 X x = new X(10);
 X x2;
 Y y = new Y(5);

 x2 = x; // OK, both of same type

 x2 = y; // Error, not of same type
 }
}

Here, even though class X and class Y are structurally the same, it is not possible to assign an
X reference to a Y object because they have different types. In general, an object reference
variable can refer only to objects of its type.

There is, however, an important exception to Java’s strict type enforcement. A reference
variable of a superclass can be assigned a reference to an object of any subclass derived from
that superclass. In other words, a superclass reference can refer to a subclass object. Here is
an example:

// A superclass reference can refer to a subclass object.
class X {
 int a;

 X(int i) { a = i; }
}

class Y extends X {
 int b;

07-ch07.indd 252 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 Chapter 7: Inheritance 253

 Y(int i, int j) {
 super(j);
 b = i;
 }
}

class SupSubRef {
 public static void main(String[] args) {
 X x = new X(10);
 X x2;
 Y y = new Y(5, 6);

 x2 = x; // OK, both of same type
 System.out.println("x2.a: " + x2.a);

 x2 = y; // still Ok because Y is derived from X
 System.out.println("x2.a: " + x2.a);

 // X references know only about X members
 x2.a = 19; // OK
// x2.b = 27; // Error, X doesn't have a b member
 }
}

Here, Y is now derived from X; thus, it is permissible for x2 to be assigned a reference to a
Y object.

It is important to understand that it is the type of the reference variable—not the type of
the object that it refers to—that determines what members can be accessed. That is, when a
reference to a subclass object is assigned to a superclass reference variable, you will have access
only to those parts of the object defined by the superclass. This is why x2 can’t access b even
when it refers to a Y object. If you think about it, this makes sense, because the superclass has
no knowledge of what a subclass adds to it. This is why the last line of code in the program is
commented out.

Although the preceding discussion may seem a bit esoteric, it has some important practical
applications. One is described here. The other is discussed later in this chapter, when method
overriding is covered.

An important place where subclass references are assigned to superclass variables is when
constructors are called in a class hierarchy. As you know, it is common for a class to define a
constructor that takes an object of the class as a parameter. This allows the class to construct
a copy of an object. Subclasses of such a class can take advantage of this feature. For example,
consider the following versions of TwoDShape and Triangle. Both add constructors that take
an object as a parameter.

class TwoDShape {
 private double width;
 private double height;

 // A default constructor.
 TwoDShape() {

OK because Y is a subclass of X;
thus x2 can refer to y.

07-ch07.indd 253 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 254 Java: A Beginner’s Guide

 width = height = 0.0;
 }

 // Parameterized constructor.
 TwoDShape(double w, double h) {
 width = w;
 height = h;
 }

 // Construct an object with equal width and height.
 TwoDShape(double x) {
 width = height = x;
 }

 // Construct an object from an object.
 TwoDShape(TwoDShape ob) {
 width = ob.width;
 height = ob.height;
 }

 // Accessor methods for width and height.
 double getWidth() { return width; }
 double getHeight() { return height; }
 void setWidth(double w) { width = w; }
 void setHeight(double h) { height = h; }

 void showDim() {
 System.out.println("Width and height are " +
 width + " and " + height);
 }
}

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
 private String style;

 // A default constructor.
 Triangle() {
 super();
 style = "none";
 }

 // Constructor for Triangle.
 Triangle(String s, double w, double h) {
 super(w, h); // call superclass constructor

 style = s;
 }

Construct object from an object.

07-ch07.indd 254 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 Chapter 7: Inheritance 255

 // One argument constructor.
 Triangle(double x) {
 super(x); // call superclass constructor

 style = "filled";
 }

 // Construct an object from an object.
 Triangle(Triangle ob) {
 super(ob); // pass object to TwoDShape constructor
 style = ob.style;
 }

 double area() {
 return getWidth() * getHeight() / 2;
 }

 void showStyle() {
 System.out.println("Triangle is " + style);
 }
}

class Shapes7 {
 public static void main(String[] args) {
 Triangle t1 =
 new Triangle("outlined", 8.0, 12.0);

 // make a copy of t1
 Triangle t2 = new Triangle(t1);

 System.out.println("Info for t1: ");
 t1.showStyle();
 t1.showDim();
 System.out.println("Area is " + t1.area());

 System.out.println();

 System.out.println("Info for t2: ");
 t2.showStyle();
 t2.showDim();
 System.out.println("Area is " + t2.area());
 }
}

In this program, t2 is constructed from t1 and is, thus, identical. The output is shown here:

Info for t1:
Triangle is outlined
Width and height are 8.0 and 12.0
Area is 48.0

Pass a Triangle reference to
TwoDShape’s constructor.

07-ch07.indd 255 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 256 Java: A Beginner’s Guide

Info for t2:
Triangle is outlined
Width and height are 8.0 and 12.0
Area is 48.0

Pay special attention to this Triangle constructor:

// Construct an object from an object.
Triangle(Triangle ob) {
 super(ob); // pass object to TwoDShape constructor
 style = ob.style;
}

It receives an object of type Triangle and it passes that object (through super) to this
TwoDShape constructor:

// Construct an object from an object.
TwoDShape(TwoDShape ob) {
 width = ob.width;
 height = ob.height;
}

The key point is that TwoDshape() is expecting a TwoDShape object. However, Triangle()
passes it a Triangle object. The reason this works is because, as explained, a superclass reference
can refer to a subclass object. Thus, it is perfectly acceptable to pass TwoDShape() a reference
to an object of a class derived from TwoDShape. Because the TwoDShape() constructor is
initializing only those portions of the subclass object that are members of TwoDShape, it doesn’t
matter that the object might also contain other members added by derived classes.

Method Overriding
In a class hierarchy, when a method in a subclass has the same return type and signature as a
method in its superclass, then the method in the subclass is said to override the method in the
superclass. When an overridden method is called from within a subclass, it will always refer
to the version of that method defined by the subclass. The version of the method defined by
the superclass will be hidden. Consider the following:

// Method overriding.
class A {
 int i, j;
 A(int a, int b) {
 i = a;
 j = b;
 }

 // display i and j
 void show() {

07-ch07.indd 256 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 Chapter 7: Inheritance 257

 System.out.println("i and j: " + i + " " + j);
 }
}

class B extends A {
 int k;

 B(int a, int b, int c) {
 super(a, b);
 k = c;
 }

 // display k – this overrides show() in A
 void show() {
 System.out.println("k: " + k);
 }
}

class Override {
 public static void main(String[] args) {
 B subOb = new B(1, 2, 3);

 subOb.show(); // this calls show() in B
 }
}

The output produced by this program is shown here:

k: 3

When show() is invoked on an object of type B, the version of show() defined within B
is used. That is, the version of show() inside B overrides the version declared in A.

If you want to access the superclass version of an overridden method, you can do so by
using super. For example, in this version of B, the superclass version of show() is invoked
within the subclass’ version. This allows all instance variables to be displayed.

class B extends A {
 int k;

 B(int a, int b, int c) {
 super(a, b);
 k = c;
 }

 void show() {
 super.show(); // this calls A’s show()
 System.out.println("k: " + k);
 }
}

This show() in B overrides
the one defined by A.

Use super to call the version of
show() defined by superclass A.

07-ch07.indd 257 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 258 Java: A Beginner’s Guide

If you substitute this version of show() into the previous program, you will see the
following output:

i and j: 1 2
k: 3

Here, super.show() calls the superclass version of show().
Method overriding occurs only when the signatures of the two methods are identical. If

they are not, then the two methods are simply overloaded. For example, consider this modified
version of the preceding example:

/* Methods with differing signatures are
 overloaded and not overridden. */
class A {
 int i, j;

 A(int a, int b) {
 i = a;
 j = b;
 }

 // display i and j
 void show() {
 System.out.println("i and j: " + i + " " + j);
 }
}

// Create a subclass by extending class A.
class B extends A {
 int k;

 B(int a, int b, int c) {
 super(a, b);
 k = c;
 }

 // overload show()
 void show(String msg) {
 System.out.println(msg + k);
 }
}

class Overload {
 public static void main(String[] args) {
 B subOb = new B(1, 2, 3);

Because signatures differ, this
show() simply overloads show()
in superclass A.

07-ch07.indd 258 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 Chapter 7: Inheritance 259

 subOb.show("This is k: "); // this calls show() in B
 subOb.show(); // this calls show() in A
 }
}

The output produced by this program is shown here:

This is k: 3
i and j: 1 2

The version of show() in B takes a string parameter. This makes its signature different from
the one in A, which takes no parameters. Therefore, no overriding (or name hiding) takes place.

Overridden Methods Support Polymorphism
While the examples in the preceding section demonstrate the mechanics of method overriding,
they do not show its power. Indeed, if there were nothing more to method overriding than a
namespace convention, then it would be, at best, an interesting curiosity but of little real value.
However, this is not the case. Method overriding forms the basis for one of Java’s most powerful
concepts: dynamic method dispatch. Dynamic method dispatch is the mechanism by which a
call to an overridden method is resolved at run time rather than compile time. Dynamic method
dispatch is important because this is how Java implements run-time polymorphism.

Let’s begin by restating an important principle: a superclass reference variable can refer to
a subclass object. Java uses this fact to resolve calls to overridden methods at run time. Here’s
how. When an overridden method is called through a superclass reference, Java determines which
version of that method to execute based upon the type of the object being referred to at the time
the call occurs. Thus, this determination is made at run time. When different types of objects are
referred to, different versions of an overridden method will be called. In other words, it is the
type of the object being referred to (not the type of the reference variable) that determines which
version of an overridden method will be executed. Therefore, if a superclass contains a method
that is overridden by a subclass, then when different types of objects are referred to through a
superclass reference variable, different versions of the method are executed.

Here is an example that illustrates dynamic method dispatch:

// Demonstrate dynamic method dispatch.

class Sup {
 void who() {
 System.out.println("who() in Sup");
 }
}

class Sub1 extends Sup {
 void who() {
 System.out.println("who() in Sub1");
 }
}

07-ch07.indd 259 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 260 Java: A Beginner’s Guide

class Sub2 extends Sup {
 void who() {
 System.out.println("who() in Sub2");
 }
}

class DynDispDemo {
 public static void main(String[] args) {
 Sup superOb = new Sup();
 Sub1 subOb1 = new Sub1();
 Sub2 subOb2 = new Sub2();

 Sup supRef;

 supRef = superOb;
 supRef.who();

 supRef = subOb1;
 supRef.who();

 supRef = subOb2;
 supRef.who();
 }
}

The output from the program is shown here:

who() in Sup
who() in Sub1
who() in Sub2

This program creates a superclass called Sup and two subclasses of it, called Sub1 and Sub2.
Sup declares a method called who(), and the subclasses override it. Inside the main() method,
objects of type Sup, Sub1, and Sub2 are declared. Also, a reference of type Sup, called supRef,
is declared. The program then assigns a reference to each type of object to supRef and uses that
reference to call who(). As the output shows, the version of who() executed is determined by the
type of object being referred to at the time of the call, not by the class type of supRef.

In each case,
the version of
who() to call
is determined
at run time by
the type of
object being
referred to.

Q: Overridden methods in Java look a lot like virtual functions in C++. Is there a
similarity?

A: Yes. Readers familiar with C++ will recognize that overridden methods in Java are
equivalent in purpose and similar in operation to virtual functions in C++.

Ask the Expert

07-ch07.indd 260 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 Chapter 7: Inheritance 261

Why Overridden Methods?
As stated earlier, overridden methods allow Java to support run-time polymorphism.
Polymorphism is essential to object-oriented programming for one reason: it allows a general
class to specify methods that will be common to all of its derivatives, while allowing subclasses
to define the specific implementation of some or all of those methods. Overridden methods are
another way that Java implements the “one interface, multiple methods” aspect of polymorphism.
Part of the key to successfully applying polymorphism is understanding that the superclasses and
subclasses form a hierarchy that moves from lesser to greater specialization. Used correctly, the
superclass provides all elements that a subclass can use directly. It also defines those methods
that the derived class must implement on its own. This allows the subclass the flexibility to define
its own methods, yet still enforces a consistent interface. Thus, by combining inheritance with
overridden methods, a superclass can define the general form of the methods that will be used by
all of its subclasses.

Applying Method Overriding to TwoDShape
To better understand the power of method overriding, we will apply it to the TwoDShape class.
In the preceding examples, each class derived from TwoDShape defines a method called area().
This suggests that it might be better to make area() part of the TwoDShape class, allowing
each subclass to override it, defining how the area is calculated for the type of shape that the
class encapsulates. The following program does this. For convenience, it also adds a name field
to TwoDShape. (This makes it easier to write demonstration programs.)

// Use dynamic method dispatch.
class TwoDShape {
 private double width;
 private double height;
 private String name;

 // A default constructor.
 TwoDShape() {
 width = height = 0.0;
 name = "none";
 }

 // Parameterized constructor.
 TwoDShape(double w, double h, String n) {
 width = w;
 height = h;
 name = n;
 }

 // Construct object with equal width and height.
 TwoDShape(double x, String n) {
 width = height = x;
 name = n;
 }

07-ch07.indd 261 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 262 Java: A Beginner’s Guide

 // Construct an object from an object.
 TwoDShape(TwoDShape ob) {
 width = ob.width;
 height = ob.height;
 name = ob.name;
 }

 // Accessor methods for width and height.
 double getWidth() { return width; }
 double getHeight() { return height; }
 void setWidth(double w) { width = w; }
 void setHeight(double h) { height = h; }

 String getName() { return name; }

 void showDim() {
 System.out.println("Width and height are " +
 width + " and " + height);
 }

 double area() {
 System.out.println("area() must be overridden");
 return 0.0;
 }
}

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
 private String style;

 // A default constructor.
 Triangle() {
 super();
 style = "none";
 }

 // Constructor for Triangle.
 Triangle(String s, double w, double h) {
 super(w, h, "triangle");

 style = s;
 }

 // One argument constructor.
 Triangle(double x) {
 super(x, "triangle"); // call superclass constructor

 style = "filled";
 }

The area() method defined by TwoDShape

07-ch07.indd 262 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 Chapter 7: Inheritance 263

 // Construct an object from an object.
 Triangle(Triangle ob) {
 super(ob); // pass object to TwoDShape constructor
 style = ob.style;
 }

 // Override area() for Triangle.
 double area() {
 return getWidth() * getHeight() / 2;
 }

 void showStyle() {
 System.out.println("Triangle is " + style);
 }
}

// A subclass of TwoDShape for rectangles.
class Rectangle extends TwoDShape {
 // A default constructor.
 Rectangle() {
 super();
 }

 // Constructor for Rectangle.
 Rectangle(double w, double h) {
 super(w, h, "rectangle"); // call superclass constructor
 }

 // Construct a square.
 Rectangle(double x) {
 super(x, "rectangle"); // call superclass constructor
 }

 // Construct an object from an object.
 Rectangle(Rectangle ob) {
 super(ob); // pass object to TwoDShape constructor
 }

 boolean isSquare() {
 if(getWidth() == getHeight()) return true;
 return false;
 }

 // Override area() for Rectangle.
 double area() {
 return getWidth() * getHeight();
 }
}

Override area() for Triangle

Override area() for Rectangle

07-ch07.indd 263 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 264 Java: A Beginner’s Guide

class DynShapes {
 public static void main(String[] args) {
 TwoDShape[] shapes = new TwoDShape[5];

 shapes[0] = new Triangle("outlined", 8.0, 12.0);
 shapes[1] = new Rectangle(10);
 shapes[2] = new Rectangle(10, 4);
 shapes[3] = new Triangle(7.0);
 shapes[4] = new TwoDShape(10, 20, "generic");

 for(int i=0; i < shapes.length; i++) {
 System.out.println("object is " + shapes[i].getName());
 System.out.println("Area is " + shapes[i].area());
 System.out.println();
 }
 }
}

The output from the program is shown here:

object is triangle
Area is 48.0

object is rectangle
Area is 100.0

object is rectangle
Area is 40.0

object is triangle
Area is 24.5

object is generic
area() must be overridden
Area is 0.0

Let’s examine this program closely. First, as explained, area() is now part of the
TwoDShape class and is overridden by Triangle and Rectangle. Inside TwoDShape, area()
is given a placeholder implementation that simply informs the user that this method must be
overridden by a subclass. Each override of area() supplies an implementation that is suitable
for the type of object encapsulated by the subclass. Thus, if you were to implement an ellipse
class, for example, then area() would need to compute the area() of an ellipse.

There is one other important feature in the preceding program. Notice in main() that
shapes is declared as an array of TwoDShape objects. However, the elements of this array
are assigned Triangle, Rectangle, and TwoDShape references. This is valid because, as
explained, a superclass reference can refer to a subclass object. The program then cycles
through the array, displaying information about each object. Although quite simple, this
illustrates the power of both inheritance and method overriding. The type of object referred
to by a superclass reference variable is determined at run time and acted on accordingly.

The proper version of area()
is called for each shape.

07-ch07.indd 264 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 Chapter 7: Inheritance 265

If an object is derived from TwoDShape, then its area can be obtained by calling area().
The interface to this operation is the same no matter what type of shape is being used.

Using Abstract Classes
Sometimes you will want to create a superclass that defines only a generalized form that will
be shared by all of its subclasses, leaving it to each subclass to fill in the details. Such a class
determines the nature of the methods that the subclasses must implement but does not, itself,
provide an implementation of one or more of these methods. One way this situation can occur
is when a superclass is unable to create a meaningful implementation for a method. This is the
case with the version of TwoDShape used in the preceding example. The definition of area()
is simply a placeholder. It will not compute and display the area of any type of object.

As you will see as you create your own class libraries, it is not uncommon for a method to
have no meaningful definition in the context of its superclass. You can handle this situation in
two ways. One way, as shown in the previous example, is to simply have it report a warning
message. While this approach can be useful in certain situations—such as debugging—it is not
usually appropriate. You may have methods which must be overridden by the subclass in order
for the subclass to have any meaning. Consider the class Triangle. It is incomplete if area()
is not defined. In this case, you want some way to ensure that a subclass does, indeed, override
all necessary methods. Java’s solution to this problem is the abstract method.

An abstract method is created by specifying the abstract type modifier. An abstract method
contains no body and is, therefore, not implemented by the superclass. Thus, a subclass must
override it—it cannot simply use the version defined in the superclass. To declare an abstract
method, use this general form:

abstract type name(parameter-list);

As you can see, no method body is present. The abstract modifier can be used only on instance
methods. It cannot be applied to static methods or to constructors.

A class that contains one or more abstract methods must also be declared as abstract by
preceding its class declaration with the abstract modifier. Since an abstract class does not
define a complete implementation, there can be no objects of an abstract class. Thus, attempting
to create an object of an abstract class by using new will result in a compile-time error.

When a subclass inherits an abstract class, it must implement all of the abstract methods
in the superclass. If it doesn’t, then the subclass must also be specified as abstract. Thus, the
abstract attribute is inherited until such time as a complete implementation is achieved.

Using an abstract class, you can improve the TwoDShape class. Since there is no meaningful
concept of area for an undefined two-dimensional figure, the following version of the preceding
program declares area() as abstract inside TwoDShape, and TwoDShape as abstract. This, of
course, means that all classes derived from TwoDShape must override area().

// Create an abstract class.
abstract class TwoDShape {
 private double width;
 private double height;
 private String name;

TwoDShape is now abstract.

07-ch07.indd 265 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 266 Java: A Beginner’s Guide

 // A default constructor.
 TwoDShape() {
 width = height = 0.0;
 name = "none";
 }

 // Parameterized constructor.
 TwoDShape(double w, double h, String n) {
 width = w;
 height = h;
 name = n;
 }

 // Construct object with equal width and height.
 TwoDShape(double x, String n) {
 width = height = x;
 name = n;
 }

 // Construct an object from an object.
 TwoDShape(TwoDShape ob) {
 width = ob.width;
 height = ob.height;
 name = ob.name;
 }

 // Accessor methods for width and height.
 double getWidth() { return width; }
 double getHeight() { return height; }
 void setWidth(double w) { width = w; }
 void setHeight(double h) { height = h; }

 String getName() { return name; }

 void showDim() {
 System.out.println("Width and height are " +
 width + " and " + height);
 }

 // Now, area() is abstract.
 abstract double area();
}

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
 private String style;

Make area() into an
abstract method.

07-ch07.indd 266 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 Chapter 7: Inheritance 267

 // A default constructor.
 Triangle() {
 super();
 style = "none";
 }

 // Constructor for Triangle.
 Triangle(String s, double w, double h) {
 super(w, h, "triangle");

 style = s;
 }

 // One argument constructor.
 Triangle(double x) {
 super(x, "triangle"); // call superclass constructor

 style = "filled";
 }

 // Construct an object from an object.
 Triangle(Triangle ob) {
 super(ob); // pass object to TwoDShape constructor
 style = ob.style;
 }

 double area() {
 return getWidth() * getHeight() / 2;
 }

 void showStyle() {
 System.out.println("Triangle is " + style);
 }
}

// A subclass of TwoDShape for rectangles.
class Rectangle extends TwoDShape {
 // A default constructor.
 Rectangle() {
 super();
 }

 // Constructor for Rectangle.
 Rectangle(double w, double h) {
 super(w, h, "rectangle"); // call superclass constructor
 }

07-ch07.indd 267 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 268 Java: A Beginner’s Guide

 // Construct a square.
 Rectangle(double x) {
 super(x, "rectangle"); // call superclass constructor
 }

 // Construct an object from an object.
 Rectangle(Rectangle ob) {
 super(ob); // pass object to TwoDShape constructor
 }

 boolean isSquare() {
 if(getWidth() == getHeight()) return true;
 return false;
 }

 double area() {
 return getWidth() * getHeight();
 }
}

class AbsShape {
 public static void main(String[] args) {
 TwoDShape[] shapes = new TwoDShape[4];

 shapes[0] = new Triangle("outlined", 8.0, 12.0);
 shapes[1] = new Rectangle(10);
 shapes[2] = new Rectangle(10, 4);
 shapes[3] = new Triangle(7.0);

 for(int i=0; i < shapes.length; i++) {
 System.out.println("object is " +
 shapes[i].getName());
 System.out.println("Area is " + shapes[i].area());

 System.out.println();
 }
 }
}

As the program illustrates, all subclasses of TwoDShape must override area(). To prove this
to yourself, try creating a subclass that does not override area(). You will receive a compile-time
error. Of course, it is still possible to create an object reference of type TwoDShape, which the
program does. However, it is no longer possible to declare objects of type TwoDShape. Because
of this, in main() the shapes array has been shortened to 4, and a TwoDShape object is no
longer created.

One last point: Notice that TwoDShape still includes the showDim() and getName()
methods and that these are not modified by abstract. It is perfectly acceptable—indeed, quite
common—for an abstract class to contain concrete methods which a subclass is free to use as
is. Only those methods declared as abstract need be overridden by subclasses.

07-ch07.indd 268 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 Chapter 7: Inheritance 269

Using final
As powerful and useful as method overriding and inheritance are, sometimes you will want to
prevent them. For example, you might have a class that encapsulates control of some hardware
device. Further, this class might offer the user the ability to initialize the device, making use of
private, proprietary information. In this case, you don’t want users of your class to be able to
override the initialization method. Whatever the reason, in Java it is easy to prevent a method
from being overridden or a class from being inherited by using the keyword final.

final Prevents Overriding
To prevent a method from being overridden, specify final as a modifier at the start of its
declaration. Methods declared as final cannot be overridden. The following fragment
illustrates final:

class A {
 final void meth() {
 System.out.println("This is a final method.");
 }
}

class B extends A {
 void meth() { // ERROR! Can't override.
 System.out.println("Illegal!");
 }
}

Because meth() is declared as final, it cannot be overridden in B. If you attempt to do so, a
compile-time error will result.

final Prevents Inheritance
You can prevent a class from being inherited by preceding its declaration with final. Declaring a
class as final implicitly declares all of its methods as final, too. As you might expect, it is illegal
to declare a class as both abstract and final since an abstract class is incomplete by itself and
relies upon its subclasses to provide complete implementations.

Here is an example of a final class:

final class A {
 // ...
}

// The following class is illegal.
class B extends A { // ERROR! Can't subclass A
 // ...
}

As the comments imply, it is illegal for B to inherit A since A is declared as final.

07-ch07.indd 269 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 270 Java: A Beginner’s Guide

NOTE
Beginning with JDK 17, the ability to seal a class was added to Java. Sealing offers
fine-grained control over inheritance. Sealing is described in Chapter 16.

Using final with Data Members
In addition to the uses of final just shown, final can also be applied to member variables to create
what amounts to named constants. If you precede an instance variable’s name with final, its value
cannot be changed throughout the lifetime of your program. You can, of course, give that variable
an initial value. For example, in Chapter 6 a simple error-management class called ErrorMsg
was shown. That class mapped a human-readable string to an error code. Here, that original class
is improved by the addition of final constants which stand for the errors. Now, instead of passing
getErrorMsg() a number such as 2, you can pass the named integer constant DISKERR.

// Return a String object.
class ErrorMsg {
 // Error codes.
 final int OUTERR = 0;
 final int INERR = 1;
 final int DISKERR = 2;
 final int INDEXERR = 3;

 String[] msgs = {
 "Output Error",
 "Input Error",
 "Disk Full",
 "Index Out-Of-Bounds"
 };

 // Return the error message.
 String getErrorMsg(int i) {
 if(i >=0 & i < msgs.length)
 return msgs[i];
 else
 return "Invalid Error Code";
 }
}

class FinalD {
 public static void main(String[] args) {
 ErrorMsg err = new ErrorMsg();

 System.out.println(err.getErrorMsg(err.OUTERR));
 System.out.println(err.getErrorMsg(err.DISKERR));
 }
}

Notice how the final constants are used in main(). Since they are members of the ErrorMsg
class, they must be accessed via an object of that class. Of course, they can also be inherited by
subclasses and accessed directly inside those subclasses.

Declare final constants.

Use final constants.

07-ch07.indd 270 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 Chapter 7: Inheritance 271

As a point of style, many Java programmers use uppercase identifiers for final constants,
as does the preceding example. But this is not a hard and fast rule.

The Object Class
Java defines one special class called Object that is an implicit superclass of all other classes.
In other words, all other classes are subclasses of Object. This means that a reference variable
of type Object can refer to an object of any other class. Also, since arrays are implemented as
classes, a variable of type Object can also refer to any array.

Object defines the following methods, which means that they are available in every object:

Method Purpose

Object clone() Creates a new object that is the same as the object being cloned.

boolean equals(Object object) Determines whether one object is equal to another.

void finalize() Called before an unused object is recycled. (Deprecated by JDK 9.)

Class<?> getClass() Obtains the class of an object at run time.

int hashCode() Returns the hash code associated with the invoking object.

void notify() Resumes execution of a thread waiting on the invoking object.

void notifyAll() Resumes execution of all threads waiting on the invoking object.

String toString() Returns a string that describes the object.

void wait()
void wait(long milliseconds)
void wait(long milliseconds,
 int nanoseconds)

Waits on another thread of execution.

Q: Can final member variables be made static? Can final be used on method parameters
and local variables?

A: The answer to both is Yes. Making a final member variable static lets you refer to the
constant through its class name rather than through an object. For example, if the constants
in ErrorMsg were modified by static, then the println() statements in main() could look
like this:

System.out.println(err.getErrorMsg(ErrorMsg.OUTERR));
System.out.println(err.getErrorMsg(ErrorMsg.DISKERR));

Declaring a parameter final prevents it from being changed within the method. Declaring
a local variable final prevents it from being assigned a value more than once.

Ask the Expert

07-ch07.indd 271 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 272 Java: A Beginner’s Guide

The methods getClass(), notify(), notifyAll(), and wait() are declared as final. You
can override the others. Several of these methods are described later in this book. However,
notice two methods now: equals() and toString(). The equals() method compares two
objects. It returns true if the objects are equal, and false otherwise. The precise definition of
equality can vary, depending on the type of objects to be compared. The toString() method
returns a string that contains a description of the object on which it is called. Also, this method
is automatically called when an object is output using println(). Many classes override this
method. Doing so allows them to tailor a description specifically for the types of objects that
they create.

One last point: Notice the unusual syntax in the return type for getClass(). This relates
to Java’s generics feature. Generics allow the type of data used by a class or method to be
specified as a parameter. Generics are discussed in Chapter 13.

 Chapter 7 Self Test
 1. Does a superclass have access to the members of a subclass? Does a subclass have access to

the members of a superclass?

 2. Create a subclass of TwoDShape called Circle. Include an area() method that computes
the area of the circle and a constructor that uses super to initialize the TwoDShape portion.

 3. How do you prevent a subclass from having access to a member of a superclass?

 4. Describe the purpose and use of the two versions of super described in this chapter.

 5. Given the following hierarchy:

class Alpha { ...

class Beta extends Alpha { ...

Class Gamma extends Beta { ...

 In what order do the constructors for these classes complete their execution when a Gamma
object is instantiated?

 6. A superclass reference can refer to a subclass object. Explain why this is important as it
relates to method overriding.

 7. What is an abstract class?

 8. How do you prevent a method from being overridden? How do you prevent a class from
being inherited?

 9. Explain how inheritance, method overriding, and abstract classes are used to support
polymorphism.

 10. What class is a superclass of every other class?

✓

07-ch07.indd 272 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 7

 Chapter 7: Inheritance 273

 11. A class that contains at least one abstract method must, itself, be declared abstract.
True or False?

 12. What keyword is used to create a named constant?

 13. Assume that class B inherits class A. Further, assume a method called makeObj() that is
declared as shown here:

A makeObj(int which) {
 if(which == 0) return new A();
 else return new B();
}

 Notice that makeObj() returns a reference to an object of either type A or B, depending on
the value of which. Notice, however, that the return type of makeObj() is A. (Recall that
a superclass reference can refer to a subclass object.) Given this situation and assuming
that you are using JDK 10 or later, what is the type of myRef in the following declaration
and why?

var myRef = makeObj(1);

 14. Assuming the situation described in Question 13, what will the type of myRef be given
this statement?

var myRef = (B) makeObj(1);

07-ch07.indd 273 12/11/21 9:21 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter
Blind Folio: xxiv

00-FM.indd 24 12/11/21 9:20 PM

This page intentionally left blank

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8
Blind Folio: 275

Chapter 8
Packages
and Interfaces

08-ch08.indd 275 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8

 276 Java: A Beginner’s Guide

Key Skills & Concepts

● Use packages

● Understand how packages affect access

● Apply the protected access modifier

● Import packages

● Know Java’s standard packages

● Understand interface fundamentals

● Implement an interface

● Apply interface references

● Understand interface variables

● Extend interfaces

● Create default, static, and private interface methods

This chapter examines two of Java’s most innovative features: packages and interfaces.
Packages are groups of related classes. Packages help organize your code and provide

another layer of encapsulation. As you will see in Chapter 15, packages also play an important
role with modules. An interface defines a set of methods that will be implemented by a class.
Thus, an interface gives you a way to specify what a class will do, but not how it will do it.
Packages and interfaces give you greater control over the organization of your program.

Packages
In programming, it is often helpful to group related pieces of a program together. In Java, this
can be accomplished by using a package. A package serves two purposes. First, it provides a
mechanism by which related pieces of a program can be organized as a unit. Classes defined
within a package must be accessed through their package name. Thus, a package provides a
way to name a collection of classes. Second, a package participates in Java’s access control
mechanism. Classes defined within a package can be made private to that package and not
accessible by code outside the package. Thus, the package provides a means by which classes
can be encapsulated. Let’s examine each feature a bit more closely.

In general, when you name a class, you are allocating a name from the namespace.
A namespace defines a declarative region. In Java, no two classes can use the same name
from the same namespace. Thus, within a given namespace, each class name must be
unique. The examples shown in the preceding chapters have all used the default namespace.

08-ch08.indd 276 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8

 Chapter 8: Packages and Interfaces 277

While this is fine for short sample programs, it becomes a problem as programs grow and
the default namespace becomes crowded. In large programs, finding unique names for each
class can be difficult. Furthermore, you must avoid name collisions with code created by
other programmers working on the same project, and with Java’s library. The solution to these
problems is the package because it gives you a way to partition the namespace. When a class
is defined within a package, the name of that package is attached to each class, thus avoiding
name collisions with other classes that have the same name, but are in other packages.

Since a package usually contains related classes, Java defines special access rights to code
within a package. In a package, you can define code that is accessible by other code within the
same package but not by code outside the package. This enables you to create self-contained
groups of related classes that keep their operation private.

Defining a Package
All classes in Java belong to some package. When no package statement is specified, the
default package is used. Furthermore, the default package has no name, which makes the default
package transparent. This is why you haven’t had to worry about packages before now. While
the default package is fine for short, sample programs, it is inadequate for real applications.
Most of the time, you will define one or more packages for your code.

To create a package, put a package command at the top of a Java source file. The classes
declared within that file will then belong to the specified package. Since a package defines a
namespace, the names of the classes that you put into the file become part of that package’s
namespace.

This is the general form of the package statement:

package pkg;

Here, pkg is the name of the package. For example, the following statement creates a package
called mypack:

package mypack;

Typically, Java uses the file system to manage packages, with each package stored in its
own directory, and this is the approach assumed by the discussions and examples of packages in
this book. For example, the .class files for any classes you declare to be part of mypack must be
stored in a directory called mypack.

Like the rest of Java, package names are case sensitive. This means that the directory in
which a package is stored must be precisely the same as the package name. If you have trouble
trying the examples in this chapter, remember to check your package and directory names
carefully. Lowercase is often used for package names.

More than one file can include the same package statement. The package statement simply
specifies to which package the classes defined in a file belong. It does not exclude other classes
in other files from being part of that same package. Most real-world packages are spread across
many files.

You can create a hierarchy of packages. To do so, simply separate each package name from
the one above it by use of a period. The general form of a multileveled package statement is
shown here:

package pack1.pack2.pack3...packN;

08-ch08.indd 277 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8

 278 Java: A Beginner’s Guide

Of course, you must create directories that support the package hierarchy that you create.
For example,

package alpha.beta.gamma;

must be stored in .../alpha/beta/gamma, where ... specifies the path to the specified directories.

Finding Packages and CLASSPATH
As just explained, packages are typically mirrored by directories. This raises an important
question: How does the Java run-time system know where to look for packages that you
create? As it relates to the examples in this chapter, the answer has three parts. First,
by default, the Java run-time system uses the current working directory as its starting
point. Thus, if your package is in a subdirectory of the current directory, it will be found.
Second, you can specify a directory path or paths by setting the CLASSPATH environmental
variable. Third, you can use the -classpath option with java and javac to specify the path to
your classes. It is useful to point out that, beginning with JDK 9, a package can be part of a
module, and thus found on the module path. However, a discussion of modules and module
paths is deferred until Chapter 15. For now, we will use only class paths.

For example, assuming the following package specification:

package mypack

In order for a program to find mypack, the program can be executed from a directory immediately
above mypack, or CLASSPATH must be set to include the path to mypack, or the -classpath
option must specify the path to mypack when the program is run via java.

The easiest way to try the examples shown in this chapter is to simply create the package
directories below your current development directory, put the .class files into the appropriate
directories, and then execute the programs from the development directory. This is the approach
used by the following examples.

One last point: To avoid problems, it is best to keep all .java and .class files associated
with a package in that package’s directory. Also, compile each file from the directory above
the package directory.

A Short Package Example
Keeping the preceding discussion in mind, try this short package example. It creates a simple
book database that is contained within a package called bookpack.

// A short package demonstration.
package bookpack;

class Book {
 private String title;
 private String author;
 private int pubDate;

 Book(String t, String a, int d) {
 title = t;

This file is part of the bookpack package.

Thus, Book is part of bookpack.

08-ch08.indd 278 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8

 Chapter 8: Packages and Interfaces 279

 author = a;
 pubDate = d;
 }

 void show() {
 System.out.println(title);
 System.out.println(author);
 System.out.println(pubDate);
 System.out.println();
 }
}

class BookDemo {
 public static void main(String[] args) {
 Book[] books = new Book[5];

 books[0] = new Book("Java: A Beginner's Guide",
 "Schildt", 2022);
 books[1] = new Book("Java: The Complete Reference",
 "Schildt", 2022);
 books[2] = new Book("1984",
 "Orwell", 1949);
 books[3] = new Book("Red Storm Rising",
 "Clancy", 1986);
 books[4] = new Book("On the Road",
 "Kerouac", 1955);

 for(int i=0; i < books.length; i++) books[i].show();
 }
}

Call this file BookDemo.java and put it in a directory called bookpack.
Next, compile the file. You can do this by specifying

javac bookpack/BookDemo.java

from the directory directly above bookpack. Then try executing the class, using the following
command line:

java bookpack.BookDemo

Remember, you will need to be in the directory above bookpack when you execute this
command. (Or, use one of the other two options described in the preceding section to specify
the path to bookpack.)

As explained, BookDemo and Book are now part of the package bookpack. This means
that BookDemo cannot be executed by itself. That is, you cannot use this command line:

java BookDemo

Instead, BookDemo must be qualified with its package name.

BookDemo is also part of bookpack.

08-ch08.indd 279 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8

 280 Java: A Beginner’s Guide

Packages and Member Access
The preceding chapters have introduced the fundamentals of access control, including the
private and public modifiers, but they have not told the entire story. One reason for this is
that packages also participate in Java’s access control mechanism, and this aspect of access
control had to wait until packages were covered. Before we continue, it is important to note
that the modules feature also offers another dimension to accessibility, but here we focus
strictly on the interplay between packages and classes.

The visibility of an element is affected by its access specification—private, public,
protected, or default—and the package in which it resides. Thus, as it relates to classes
and packages, the visibility of an element is determined by its visibility within a class and
its visibility within a package. This multilayered approach to access control supports a rich
assortment of access privileges. Table 8-1 summarizes the various access levels. Let’s examine
each access option individually.

If a member of a class has no explicit access modifier, then it is visible within its package
but not outside its package. Therefore, you will use the default access specification for elements
that you want to keep private to a package but public within that package.

Members explicitly declared public are the most visible, and can be accessed from different
classes and different packages. A private member is accessible only to the other members of its
class. A private member is unaffected by its membership in a package. A member specified as
protected is accessible within its package and to subclasses in other packages.

Table 8-1 applies only to members of classes. A top-level class has only two possible access
levels: default and public. When a class is declared as public, it is accessible outside its package.
If a class has default access, it can be accessed only by other code within its same package.
Also, a class that is declared public must reside in a file by the same name.

Private Member Default Member Protected Member Public Member

Visible within
same class

Yes Yes Yes Yes

Visible within
same package
by subclass

No Yes Yes Yes

Visible within
same package
by non-subclass

No Yes Yes Yes

Visible within
different package
by subclass

No No Yes Yes

Visible within
different package
by non-subclass

No No No Yes

Table 8-1 Class Member Access

08-ch08.indd 280 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8

 Chapter 8: Packages and Interfaces 281

NOTE
Remember, the modules feature can also affect accessibility. Modules are discussed
in Chapter 15.

A Package Access Example
In the package example shown earlier, both Book and BookDemo were in the same package,
so there was no problem with BookDemo using Book because the default access privilege
grants all members of the same package access. However, if Book were in one package and
BookDemo were in another, the situation would be different. In this case, access to Book
would be denied. To make Book available to other packages, you must make three changes.
First, Book needs to be declared public. This makes Book visible outside of bookpack.
Second, its constructor must be made public, and finally, its show() method needs to be
public. This allows them to be visible outside of bookpack, too. Thus, to make Book usable
by other packages, it must be recoded as shown here:

// Book recoded for public access.
package bookpack;

public class Book {
 private String title;
 private String author;
 private int pubDate;

 // Now public.
 public Book(String t, String a, int d) {
 title = t;
 author = a;
 pubDate = d;
 }

 // Now public.
 public void show() {
 System.out.println(title);
 System.out.println(author);
 System.out.println(pubDate);
 System.out.println();
 }
}

To use Book from another package, either you must use the import statement described
in the next section, or you must fully qualify its name to include its full package specification.
For example, here is a class called UseBook, which is contained in the bookpackext package.
It fully qualifies Book in order to use it.

// This class is in package bookpackext.
package bookpackext;

Book and its members must be public
in order to be used by other packages.

08-ch08.indd 281 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8

 282 Java: A Beginner’s Guide

// Use the Book class from bookpack.
class UseBook {
 public static void main(String[] args) {
 bookpack.Book[] books = new bookpack.Book[5];

 books[0] = new bookpack.Book("Java: A Beginner's Guide",
 "Schildt", 2022);
 books[1] = new bookpack.Book("Java: The Complete Reference",
 "Schildt", 2022);
 books[2] = new bookpack.Book("1984",
 "Orwell", 1949);
 books[3] = new bookpack.Book("Red Storm Rising",
 "Clancy", 1986);
 books[4] = new bookpack.Book("On the Road",
 "Kerouac", 1955);

 for(int i=0; i < books.length; i++) books[i].show();
 }
}

Notice how every use of Book is preceded with the bookpack qualifier. Without this specification,
Book would not be found when you tried to compile UseBook.

Understanding Protected Members
Newcomers to Java are sometimes confused by the meaning and use of protected. As explained,
the protected modifier creates a member that is accessible within its package and to subclasses
in other packages. Thus, a protected member is available for all subclasses to use but is still
protected from arbitrary access by code outside its package.

To better understand the effects of protected, let’s work through an example. First, change
the Book class so that its instance variables are protected, as shown here:

// Make the instance variables in Book protected.
package bookpack;

public class Book {
 // these are now protected
 protected String title;
 protected String author;
 protected int pubDate;

 public Book(String t, String a, int d) {
 title = t;
 author = a;
 pubDate = d;
 }

Qualify Book with its
package name: bookpack.

These are now protected.

08-ch08.indd 282 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8

 Chapter 8: Packages and Interfaces 283

 public void show() {
 System.out.println(title);
 System.out.println(author);
 System.out.println(pubDate);
 System.out.println();
 }
}

Next, create a subclass of Book, called ExtBook, and a class called ProtectDemo that
uses ExtBook. ExtBook adds a field that stores the name of the publisher and several accessor
methods. Both of these classes will be in their own package called bookpackext. They are
shown here:

// Demonstrate protected.
package bookpackext;

class ExtBook extends bookpack.Book {
 private String publisher;

 public ExtBook(String t, String a, int d, String p) {
 super(t, a, d);
 publisher = p;
 }

 public void show() {
 super.show();
 System.out.println(publisher);
 System.out.println();
 }

 public String getPublisher() { return publisher; }
 public void setPublisher(String p) { publisher = p; }

 /* These are OK because subclass can access
 a protected member. */
 public String getTitle() { return title; }
 public void setTitle(String t) { title = t; }
 public String getAuthor() { return author; }
 public void setAuthor(String a) { author = a; }
 public int getPubDate() { return pubDate; }
 public void setPubDate(int d) { pubDate = d; }
}

class ProtectDemo {
 public static void main(String[] args) {
 ExtBook[] books = new ExtBook[5];

Access to Book’s members
is allowed for subclasses.

08-ch08.indd 283 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8

 284 Java: A Beginner’s Guide

 books[0] = new ExtBook("Java: A Beginner's Guide",
 "Schildt", 2022, "McGraw Hill");
 books[1] = new ExtBook("Java: The Complete Reference",
 "Schildt", 2022, "McGraw Hill");
 books[2] = new ExtBook("1984",
 "Orwell", 1949,
 "Harcourt Brace Jovanovich");
 books[3] = new ExtBook("Red Storm Rising",
 "Clancy", 1986, "Putnam");
 books[4] = new ExtBook("On the Road",
 "Kerouac", 1955, "Viking");

 for(int i=0; i < books.length; i++) books[i].show();

 // Find books by author
 System.out.println("Showing all books by Schildt.");
 for(int i=0; i < books.length; i++)
 if(books[i].getAuthor() == "Schildt")
 System.out.println(books[i].getTitle());

// books[0].title = "test title"; // Error – not accessible
 }
}

Look first at the code inside ExtBook. Because ExtBook extends Book, it has access to
the protected members of Book, even though ExtBook is in a different package. Thus, it
can access title, author, and pubDate directly, as it does in the accessor methods it creates
for those variables. However, in ProtectDemo, access to these variables is denied because
ProtectDemo is not a subclass of Book. For example, if you remove the comment symbol
from the following line, the program will not compile.

// books[0].title = "test title"; // Error – not accessible

Importing Packages
When you use a class from another package, you can fully qualify the name of the class with the
name of its package, as the preceding examples have done. However, such an approach could
easily become tiresome and awkward, especially if the classes you are qualifying are deeply
nested in a package hierarchy. Since Java was invented by programmers for programmers—and
programmers don’t like tedious constructs—it should come as no surprise that a more convenient
method exists for using the contents of packages: the import statement. Using import you
can bring one or more members of a package into view. This allows you to use those members
directly, without explicit package qualification.

Access to protected field not allowed by non-subclass.

08-ch08.indd 284 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8

 Chapter 8: Packages and Interfaces 285

Here is the general form of the import statement:

import pkg.classname;

Here, pkg is the name of the package, which can include its full path, and classname is the
name of the class being imported. If you want to import the entire contents of a package, use
an asterisk (*) for the class name. Here are examples of both forms:

import mypack.MyClass
import mypack.*;

In the first case, the MyClass class is imported from mypack. In the second, all of the classes
in mypack are imported. In a Java source file, import statements occur immediately following
the package statement (if it exists) and before any class definitions.

You can use import to bring the bookpack package into view so that the Book class can
be used without qualification. To do so, simply add this import statement to the top of any file
that uses Book.

import bookpack.*;

For example, here is the UseBook class recoded to use import:

// Demonstrate import.
package bookpackext;
import bookpack.*;

// Use the Book class from bookpack.
class UseBook {
 public static void main(String[] args) {
 Book[] books = new Book[5];

 books[0] = new Book("Java: A Beginner's Guide",
 "Schildt", 2022);
 books[1] = new Book("Java: The Complete Reference",
 "Schildt", 2022);
 books[2] = new Book("1984",
 "Orwell", 1949);
 books[3] = new Book("Red Storm Rising",
 "Clancy", 1986);
 books[4] = new Book("On the Road",
 "Kerouac", 1955);

 for(int i=0; i < books.length; i++) books[i].show();
 }
}

Notice that you no longer need to qualify Book with its package name.

Import bookpack.

Now, you can refer to Book
directly, without qualification.

08-ch08.indd 285 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8

 286 Java: A Beginner’s Guide

Java’s Class Library Is Contained in Packages
As explained earlier in this book, Java defines a large number of standard classes that are
available to all programs. This class library is often referred to as the Java API (Application
Programming Interface). The Java API is stored in packages. At the top of the package hierarchy
is java. Descending from java are several subpackages. Here are a few examples:

Subpackage Description

java.lang Contains a large number of general-purpose classes

java.io Contains I/O classes

java.net Contains classes that support networking

java.util Contains a large number of utility classes, including the Collections Framework

java.awt Contains classes that support the Abstract Window Toolkit

Since the beginning of this book, you have been using java.lang. It contains, among
several others, the System class, which you have been using when performing output using
println(). The java.lang package is unique because it is imported automatically into every
Java program. This is why you did not have to import java.lang in the preceding sample
programs. However, you must explicitly import the other packages. We will be examining
several packages in subsequent chapters.

Interfaces
In object-oriented programming, it is sometimes helpful to define what a class must do but not
how it will do it. You have already seen an example of this: the abstract method. An abstract
method defines the signature for a method but provides no implementation. A subclass must
provide its own implementation of each abstract method defined by its superclass. Thus, an
abstract method specifies the interface to the method but not the implementation. While abstract
classes and methods are useful, it is possible to take this concept a step further. In Java, you can
fully separate a class’ interface from its implementation by using the keyword interface.

An interface is syntactically similar to an abstract class, in that you can specify one or
more methods that have no body. Those methods must be implemented by a class in order for
their actions to be defined. Thus, an interface specifies what must be done, but not how to do
it. Once an interface is defined, any number of classes can implement it. Also, one class can
implement any number of interfaces.

To implement an interface, a class must provide bodies (implementations) for the methods
described by the interface. Each class is free to determine the details of its own implementation.
Two classes might implement the same interface in different ways, but each class still
supports the same set of methods. Thus, code that has knowledge of the interface can use objects
of either class since the interface to those objects is the same. By providing the interface keyword,
Java allows you to fully utilize the “one interface, multiple methods” aspect of polymorphism.

Before continuing an important point needs to be made. JDK 8 added a feature to interface
that made a significant change to its capabilities. Prior to JDK 8, an interface could not define any
implementation whatsoever. Thus, prior to JDK 8, an interface could define only what, but not
how, as just described. JDK 8 changed this. Today, it is possible to add a default implementation

08-ch08.indd 286 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8

 Chapter 8: Packages and Interfaces 287

to an interface method. Furthermore, static interface methods are now supported, and beginning
with JDK 9, an interface can also include private methods. Thus, it is now possible for interface
to specify some behavior. However, such methods constitute what are, in essence, special-use
features, and the original intent behind interface still remains. Therefore, as a general rule, you
will still often create and use interfaces in which no use is made of these new features. For this
reason, we will begin by discussing the interface in its traditional form. The expanded interface
features are described at the end of this chapter.

Here is a simplified general form of a traditional interface:

access interface name {
 ret-type method-name1(param-list);
 ret-type method-name2(param-list);
 type var1 = value;
 type var2 = value;
 // ...
 ret-type method-nameN(param-list);
 type varN = value;
}

For a top-level interface, access is either public or not used. When no access modifier is included,
then default access results, and the interface is available only to other members of its package.
When it is declared as public, the interface can be used by any other code. (When an interface is
declared public, it must be in a file of the same name.) name is the name of the interface and can
be any valid identifier.

In the traditional form of an interface, methods are declared using only their return type
and signature. They are, essentially, abstract methods. Thus, each class that includes such an
interface must implement all of its methods. In an interface, methods are implicitly public.

Variables declared in an interface are not instance variables. Instead, they are implicitly public,
final, and static and must be initialized. Thus, they are essentially constants.

Here is an example of an interface definition. It specifies the interface to a class that
generates a series of numbers.

public interface Series {
 int getNext(); // return next number in series
 void reset(); // restart
 void setStart(int x); // set starting value
}

This interface is declared public so that it can be implemented by code in any package.

Implementing Interfaces
Once an interface has been defined, one or more classes can implement that interface.
To implement an interface, include the implements clause in a class definition and then
create the methods required by the interface. The general form of a class that includes the
implements clause looks like this:

class classname extends superclass implements interface {
 // class-body
}

08-ch08.indd 287 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8

 288 Java: A Beginner’s Guide

To implement more than one interface, the interfaces are separated with a comma. Of course,
the extends clause is optional.

The methods that implement an interface must be declared public. Also, the type signature
of the implementing method must match exactly the type signature specified in the interface
definition.

Here is an example that implements the Series interface shown earlier. It creates a class
called ByTwos, which generates a series of numbers, each two greater than the previous one.

// Implement Series.
class ByTwos implements Series {
 int start;
 int val;

 ByTwos() {
 start = 0;
 val = 0;
 }

 public int getNext() {
 val += 2;
 return val;
 }

 public void reset() {
 val = start;
 }

 public void setStart(int x) {
 start = x;
 val = x;
 }
}

Notice that the methods getNext(), reset(), and setStart() are declared using the public access
specifier. This is necessary. Whenever you implement a method defined by an interface, it must
be implemented as public because all members of an interface are implicitly public.

Here is a class that demonstrates ByTwos:

class SeriesDemo {
 public static void main(String[] args) {
 ByTwos ob = new ByTwos();

 for(int i=0; i < 5; i++)
 System.out.println("Next value is " +
 ob.getNext());

 System.out.println("\nResetting");
 ob.reset();
 for(int i=0; i < 5; i++)
 System.out.println("Next value is " +

Implement the Series interface.

08-ch08.indd 288 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8

 Chapter 8: Packages and Interfaces 289

 ob.getNext());

 System.out.println("\nStarting at 100");
 ob.setStart(100);
 for(int i=0; i < 5; i++)
 System.out.println("Next value is " +
 ob.getNext());
 }
}

The output from this program is shown here:

Next value is 2
Next value is 4
Next value is 6
Next value is 8
Next value is 10

Resetting
Next value is 2
Next value is 4
Next value is 6
Next value is 8
Next value is 10

Starting at 100
Next value is 102
Next value is 104
Next value is 106
Next value is 108
Next value is 110

It is both permissible and common for classes that implement interfaces to define
additional members of their own. For example, the following version of ByTwos adds the
method getPrevious(), which returns the previous value:

// Implement Series and add getPrevious().
class ByTwos implements Series {
 int start;
 int val;
 int prev;

 ByTwos() {
 start = 0;
 val = 0;
 prev = -2;
 }

 public int getNext() {
 prev = val;
 val += 2;

08-ch08.indd 289 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8

 290 Java: A Beginner’s Guide

 return val;
 }

 public void reset() {
 val = start;
 prev = start - 2;
 }

 public void setStart(int x) {
 start = x;
 val = x;
 prev = x - 2;
 }

 int getPrevious() {
 return prev;
 }
}

Notice that the addition of getPrevious() required a change to the implementations of the
methods defined by Series. However, since the interface to those methods stays the same,
the change is seamless and does not break preexisting code. This is one of the advantages
of interfaces.

As explained, any number of classes can implement an interface. For example, here is
a class called ByThrees that generates a series that consists of multiples of three:

// Implement Series.
class ByThrees implements Series {
 int start;
 int val;

 ByThrees() {
 start = 0;
 val = 0;
 }

 public int getNext() {
 val += 3;
 return val;
 }

 public void reset() {
 val = start;
 }

 public void setStart(int x) {
 start = x;
 val = x;
 }
}

Add a method not defined by Series.

Implement Series a different way.

08-ch08.indd 290 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8

 Chapter 8: Packages and Interfaces 291

One more point: If a class includes an interface but does not fully implement the methods
defined by that interface, then that class must be declared abstract. No objects of such
a class can be created, but it can be used as an abstract superclass, allowing subclasses to
provide the complete implementation.

Using Interface References
You might be somewhat surprised to learn that you can declare a reference variable of an
interface type. In other words, you can create an interface reference variable. Such a variable
can refer to any object that implements its interface. When you call a method on an object
through an interface reference, it is the version of the method implemented by the object
that is executed. This process is similar to using a superclass reference to access a subclass
object, as described in Chapter 7.

The following example illustrates this process. It uses the same interface reference variable
to call methods on objects of both ByTwos and ByThrees.

// Demonstrate interface references.

class ByTwos implements Series {
 int start;
 int val;

 ByTwos() {
 start = 0;
 val = 0;
 }

 public int getNext() {
 val += 2;
 return val;
 }

 public void reset() {
 val = start;
 }

 public void setStart(int x) {
 start = x;
 val = x;
 }
}

class ByThrees implements Series {
 int start;
 int val;

08-ch08.indd 291 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8

 292 Java: A Beginner’s Guide

 ByThrees() {
 start = 0;
 val = 0;
 }

 public int getNext() {
 val += 3;
 return val;
 }

 public void reset() {
 val = start;
 }

 public void setStart(int x) {
 start = x;
 val = x;
 }
}

class SeriesDemo2 {
 public static void main(String[] args) {
 ByTwos twoOb = new ByTwos();
 ByThrees threeOb = new ByThrees();
 Series ob;

 for(int i=0; i < 5; i++) {
 ob = twoOb;
 System.out.println("Next ByTwos value is " +
 ob.getNext());
 ob = threeOb;
 System.out.println("Next ByThrees value is " +
 ob.getNext());
 }
 }
}

In main(), ob is declared to be a reference to a Series interface. This means that it can be
used to store references to any object that implements Series. In this case, it is used to refer
to twoOb and threeOb, which are objects of type ByTwos and ByThrees, respectively, which
both implement Series. An interface reference variable has knowledge only of the methods
declared by its interface declaration. Thus, ob could not be used to access any other variables
or methods that might be supported by the object.

Access an object via
an interface reference.

08-ch08.indd 292 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8

 Chapter 8: Packages and Interfaces 293

Try This 8-1 Creating a Queue Interface
To see the power of interfaces in action, we will look at a practical example.
In earlier chapters, you developed a class called Queue that implemented
a simple fixed-size queue for characters. However, there are many ways to

implement a queue. For example, the queue can be of a fixed size or it can be “growable.”
The queue can be linear, in which case it can be used up, or it can be circular, in which case
elements can be put in as long as elements are being taken off. The queue can also be held in
an array, a linked list, a binary tree, and so on. No matter how the queue is implemented, the
interface to the queue remains the same, and the methods put() and get() define the interface
to the queue independently of the details of the implementation. Because the interface to a
queue is separate from its implementation, it is easy to define a queue interface, leaving it to
each implementation to define the specifics.

In this project, you will create an interface for a character queue and three implementations.
All three implementations will use an array to store the characters. One queue will be the fixed-
size, linear queue developed earlier. Another will be a circular queue. In a circular queue, when
the end of the underlying array is encountered, the get and put indices automatically loop back
to the start. Thus, any number of items can be stored in a circular queue as long as items are also
being taken out. The final implementation creates a dynamic queue, which grows as necessary
when its size is exceeded.

 1. Create a file called ICharQ.java and put into that file the following interface definition:

// A character queue interface.
public interface ICharQ {
 // Put a character into the queue.
 void put(char ch);

 // Get a character from the queue.
 char get();
}

 As you can see, this interface is very simple, consisting of only two methods. Each class
that implements ICharQ will need to implement these methods.

 2. Create a file called IQDemo.java.

 3. Begin creating IQDemo.java by adding the FixedQueue class shown here:

// A fixed-size queue class for characters.
class FixedQueue implements ICharQ {
 private char[] q; // this array holds the queue
 private int putloc, getloc; // the put and get indices

 // Construct an empty queue given its size.
 public FixedQueue(int size) {
 q = new char[size]; // allocate memory for queue

ICharQ.java
IQDemo.java

(continued)

08-ch08.indd 293 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8

 294 Java: A Beginner’s Guide

 putloc = getloc = 0;
 }

 // Put a character into the queue.
 public void put(char ch) {
 if(putloc==q.length) {
 System.out.println(" - Queue is full.");
 return;
 }

 q[putloc++] = ch;
 }

 // Get a character from the queue.
 public char get() {
 if(getloc == putloc) {
 System.out.println(" - Queue is empty.");
 return (char) 0;
 }

 return q[getloc++];
 }
}

 This implementation of ICharQ is adapted from the Queue class shown in Chapter 5 and
should already be familiar to you.

 4. To IQDemo.java add the CircularQueue class shown here. It implements a circular queue
for characters.

// A circular queue.
class CircularQueue implements ICharQ {
 private char[] q; // this array holds the queue
 private int putloc, getloc; // the put and get indices

 // Construct an empty queue given its size.
 public CircularQueue(int size) {
 q = new char[size+1]; // allocate memory for queue
 putloc = getloc = 0;
 }

 // Put a character into the queue.
 public void put(char ch) {
 /* Queue is full if either putloc is one less than
 getloc, or if putloc is at the end of the array
 and getloc is at the beginning. */
 if(putloc+1==getloc |

08-ch08.indd 294 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8

 Chapter 8: Packages and Interfaces 295

 ((putloc==q.length-1) & (getloc==0))) {
 System.out.println(" - Queue is full.");
 return;
 }

 q[putloc++] = ch;
 if(putloc==q.length) putloc = 0; // loop back
 }

 // Get a character from the queue.
 public char get() {
 if(getloc == putloc) {
 System.out.println(" - Queue is empty.");
 return (char) 0;
 }

 char ch = q[getloc++];
 if(getloc==q.length) getloc = 0; // loop back
 return ch;
 }
}

 The circular queue works by reusing space in the array that is freed when elements are
retrieved. Thus, it can store an unlimited number of elements as long as elements are also
being removed. While conceptually simple—just reset the appropriate index to zero when
the end of the array is reached—the boundary conditions are a bit confusing at first. In a
circular queue, the queue is full not when the end of the underlying array is reached, but
rather when storing an item would cause an unretrieved item to be overwritten. Thus, put()
must check several conditions in order to determine if the queue is full. As the comments
suggest, the queue is full when either putloc is one less than getloc, or if putloc is at the
end of the array and getloc is at the beginning. As before, the queue is empty when getloc
and putloc are equal. To make these checks easier, the underlying array is created one size
larger than the queue size.

 5. Put into IQDemo.java the DynQueue class shown next. It implements a “growable” queue
that expands its size when space is exhausted.

// A dynamic queue.
class DynQueue implements ICharQ {
 private char[] q; // this array holds the queue
 private int putloc, getloc; // the put and get indices

 // Construct an empty queue given its size.
 public DynQueue(int size) {
 q = new char[size]; // allocate memory for queue
 putloc = getloc = 0;
 }
 (continued)

08-ch08.indd 295 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8

 296 Java: A Beginner’s Guide

 // Put a character into the queue.
 public void put(char ch) {
 if(putloc==q.length) {
 // increase queue size
 char[] t = new char[q.length * 2];

 // copy elements into new queue
 for(int i=0; i < q.length; i++)
 t[i] = q[i];

 q = t;
 }

 q[putloc++] = ch;
 }

 // Get a character from the queue.
 public char get() {
 if(getloc == putloc) {
 System.out.println(" - Queue is empty.");
 return (char) 0;
 }

 return q[getloc++];
 }
}

 In this queue implementation, when the queue is full, an attempt to store another element
causes a new underlying array to be allocated that is twice as large as the original, the
current contents of the queue are copied into this array, and a reference to the new array
is stored in q.

 6. To demonstrate the three ICharQ implementations, enter the following class into
IQDemo.java. It uses an ICharQ reference to access all three queues.

// Demonstrate the ICharQ interface.
class IQDemo {
 public static void main(String[] args) {
 FixedQueue q1 = new FixedQueue(10);
 DynQueue q2 = new DynQueue(5);
 CircularQueue q3 = new CircularQueue(10);

 ICharQ iQ;

 char ch;
 int i;

08-ch08.indd 296 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8

 Chapter 8: Packages and Interfaces 297

 iQ = q1;
 // Put some characters into fixed queue.
 for(i=0; i < 10; i++)
 iQ.put((char) ('A' + i));

 // Show the queue.
 System.out.print("Contents of fixed queue: ");
 for(i=0; i < 10; i++) {
 ch = iQ.get();
 System.out.print(ch);
 }
 System.out.println();

 iQ = q2;
 // Put some characters into dynamic queue.
 for(i=0; i < 10; i++)
 iQ.put((char) ('Z' - i));

 // Show the queue.
 System.out.print("Contents of dynamic queue: ");
 for(i=0; i < 10; i++) {
 ch = iQ.get();
 System.out.print(ch);
 }

 System.out.println();

 iQ = q3;
 // Put some characters into circular queue.
 for(i=0; i < 10; i++)
 iQ.put((char) ('A' + i));

 // Show the queue.
 System.out.print("Contents of circular queue: ");
 for(i=0; i < 10; i++) {
 ch = iQ.get();
 System.out.print(ch);
 }

 System.out.println();

 // Put more characters into circular queue.
 for(i=10; i < 20; i++)
 iQ.put((char) ('A' + i));

 // Show the queue.
 System.out.print("Contents of circular queue: ");
 for(i=0; i < 10; i++) {

(continued)

08-ch08.indd 297 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8

 298 Java: A Beginner’s Guide

 ch = iQ.get();
 System.out.print(ch);
 }

 System.out.println("\nStore and consume from" +
 " circular queue.");

 // Store in and consume from circular queue.
 for(i=0; i < 20; i++) {
 iQ.put((char) ('A' + i));
 ch = iQ.get();
 System.out.print(ch);
 }
 }
}

 7. The output from this program is shown here:

Contents of fixed queue: ABCDEFGHIJ
Contents of dynamic queue: ZYXWVUTSRQ
Contents of circular queue: ABCDEFGHIJ
Contents of circular queue: KLMNOPQRST
Store and consume from circular queue.
ABCDEFGHIJKLMNOPQRST

 8. Here are some things to try on your own. Create a circular version of DynQueue. Add a
reset() method to ICharQ, which resets the queue. Create a static method that copies the
contents of one type of queue into another.

Variables in Interfaces
As mentioned, variables can be declared in an interface, but they are implicitly public, static, and
final. At first glance, you might think that there would be very limited use for such variables, but
the opposite is true. Large programs typically make use of several constant values that describe
such things as array size, various limits, special values, and the like. Since a large program is
typically held in a number of separate source files, there needs to be a convenient way to make
these constants available to each file. In Java, interface variables offer one solution.

To define a set of shared constants, create an interface that contains only these constants,
without any methods. Each file that needs access to the constants simply “implements” the
interface. This brings the constants into view. Here is an example:

// An interface that contains constants.
interface IConst {
 int MIN = 0;
 int MAX = 10;
 String ERRORMSG = "Boundary Error";
}

These are constants.

08-ch08.indd 298 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8

 Chapter 8: Packages and Interfaces 299

class IConstD implements IConst {
 public static void main(String[] args) {
 int[] nums = new int[MAX];

 for(int i=MIN; i < 11; i++) {
 if(i >= MAX) System.out.println(ERRORMSG);
 else {
 nums[i] = i;
 System.out.print(nums[i] + " ");
 }
 }
 }
}

NOTE
The technique of using an interface to define shared constants is controversial. It is
described here for completeness.

Interfaces Can Be Extended
One interface can inherit another by use of the keyword extends. The syntax is the same as for
inheriting classes. When a class implements an interface that inherits another interface, it must
provide implementations for all methods required by the interface inheritance chain. Following
is an example:

// One interface can extend another.
interface A {
 void meth1();
 void meth2();
}

// B now includes meth1() and meth2() – it adds meth3().
interface B extends A {
 void meth3();
}

// This class must implement all of A and B
class MyClass implements B {
 public void meth1() {
 System.out.println("Implement meth1().");
 }

B inherits A.

08-ch08.indd 299 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8

 300 Java: A Beginner’s Guide

 public void meth2() {
 System.out.println("Implement meth2().");
 }

 public void meth3() {
 System.out.println("Implement meth3().");
 }
}

class IFExtend {
 public static void main(String[] args) {
 MyClass ob = new MyClass();

 ob.meth1();
 ob.meth2();
 ob.meth3();
 }
}

As an experiment, you might try removing the implementation for meth1() in MyClass.
This will cause a compile-time error. As stated earlier, any class that implements an interface
must implement all methods required by that interface, including any that are inherited from
other interfaces.

Default Interface Methods
As explained earlier, prior to JDK 8, an interface could not define any implementation
whatsoever. This meant that for all previous versions of Java, the methods specified by an
interface were abstract, containing no body. This is the traditional form of an interface and is
the type of interface that the preceding discussions have used. The release of JDK 8 changed
this by adding a new capability to interface called the default method. A default method
lets you define a default implementation for an interface method. In other words, by use of
a default method, it is possible for an interface method to provide a body, rather than being
abstract. During its development, the default method was also referred to as an extension
method, and you will likely see both terms used.

A primary motivation for the default method was to provide a means by which interfaces
could be expanded without breaking existing code. Recall that there must be implementations
for all methods defined by an interface. In the past, if a new method were added to a popular,
widely used interface, then the addition of that method would break existing code because
no implementation would be found for that method. The default method solves this problem
by supplying an implementation that will be used if no other implementation is explicitly
provided. Thus, the addition of a default method will not cause preexisting code to break.

Another motivation for the default method was the desire to specify methods in an interface
that are, essentially, optional, depending on how the interface is used. For example, an interface
might define a group of methods that act on a sequence of elements. One of these methods might

08-ch08.indd 300 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8

 Chapter 8: Packages and Interfaces 301

be called remove(), and its purpose is to remove an element from the sequence. However, if the
interface is intended to support both modifiable and non-modifiable sequences, then remove()
is essentially optional because it won’t be used by non-modifiable sequences. In the past, a class
that implemented a non-modifiable sequence would have had to define an empty implementation
of remove(), even though it was not needed. Today, a default implementation for remove() can
be specified in the interface that either does nothing or reports an error. Providing this default
prevents a class used for non-modifiable sequences from having to define its own, placeholder
version of remove(). Thus, by providing a default, the interface makes the implementation of
remove() by a class optional.

It is important to point out that the addition of default methods does not change a key
aspect of interface: an interface still cannot have instance variables. Thus, the defining
difference between an interface and a class is that a class can maintain state information, but
an interface cannot. Furthermore, it is still not possible to create an instance of an interface
by itself. It must be implemented by a class. Therefore, even though modern versions of Java
allow an interface to define default methods, the interface must still be implemented by a class
if an instance is to be created.

One last point: As a general rule, default methods constitute a special-purpose feature.
Interfaces that you create will still be used primarily to specify what and not how. However,
the inclusion of the default method gives you added flexibility.

Default Method Fundamentals
An interface default method is defined similar to the way a method is defined by a class. The
primary difference is that the declaration is preceded by the keyword default. For example,
consider this simple interface:

public interface MyIF {
 // This is a "normal" interface method declaration.
 // It does NOT define a default implementation.
 int getUserID();

 // This is a default method. Notice that it provides
 // a default implementation.
 default int getAdminID() {
 return 1;
 }
}

MyIF declares two methods. The first, getUserID(), is a standard interface method
declaration. It defines no implementation whatsoever. The second method is getAdminID(),
and it does include a default implementation. In this case, it simply returns 1. Pay special
attention to the way getAdminID() is declared. Its declaration is preceded by the default
modifier. This syntax can be generalized. To define a default method, precede its declaration
with default.

Because getAdminID() includes a default implementation, it is not necessary for an
implementing class to override it. In other words, if an implementing class does not provide

08-ch08.indd 301 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8

 302 Java: A Beginner’s Guide

its own implementation, the default is used. For example, the MyIFImp class shown next is
perfectly valid:

// Implement MyIF.
class MyIFImp implements MyIF {
 // Only getUserID() defined by MyIF needs to be implemented.
 // getAdminID() can be allowed to default.
 public int getUserID() {
 return 100;
 }
}

The following code creates an instance of MyIFImp and uses it to call both getUserID()
and getAdminID().

// Use the default method.
class DefaultMethodDemo {
 public static void main(String[] args) {

 MyIFImp obj = new MyIFImp();

 // Can call getUserID(), because it is explicitly
 // implemented by MyIFImp:
 System.out.println("User ID is " + obj.getUserID());

 // Can also call getAdminID(), because of default
 // implementation:
 System.out.println("Administrator ID is " + obj.getAdminID());
 }
}

The output is shown here:

User ID is 100
Administrator ID is 1

As you can see, the default implementation of getAdminID() was automatically used. It
was not necessary for MyIFImp to define it. Thus, for getAdminID(), implementation by a
class is optional. (Of course, its implementation by a class will be required if the class needs to
return a different ID.)

It is both possible and common for an implementing class to define its own implementation
of a default method. For example, MyIFImp2 overrides getAdminID(), as shown here:

class MyIFImp2 implements MyIF {
 // Here, implementations for both getUserID() and getAdminID() are
 // provided.
 public int getUserID() {
 return 100;
 }

08-ch08.indd 302 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8

 Chapter 8: Packages and Interfaces 303

 public int getAdminID() {
 return 42;
 }
}

Now, when getAdminID() is called, a value other than its default is returned.

A More Practical Example of a Default Method
Although the preceding shows the mechanics of using default methods, it doesn’t illustrate
their usefulness in a more practical setting. To do this, let’s return to the Series interface
shown earlier in this chapter. For the sake of discussion, assume that Series is widely used
and many programs rely on it. Further assume that through an analysis of usage patterns, it
was discovered that many implementations of Series were adding a method that returned
an array that contained the next n elements in the series. Given this situation, you decide to
enhance Series so that it includes such a method, calling the new method getNextArray() and
declaring it as shown here:

int[] getNextArray(int n)

Here, n specifies the number of elements to retrieve. Prior to default methods, adding this
method to Series would have broken preexisting code because existing implementations would
not have defined the method. However, by providing a default for this new method, it can be
added to Series without causing harm. Let’s work through the process.

In some cases, when a default method is added to an existing interface, its implementation
simply reports an error if an attempt is made to use the default. This approach is necessary in
the case of default methods for which no implementation can be provided that will work in all
cases. These types of default methods define what is, essentially, optional code. However, in
some cases, you can define a default method that will work in all cases. This is the situation
for getNextArray(). Because Series already requires that a class implement getNext(), the
default version of getNextArray() can use it. Thus, here is one way to implement the new
version of Series that includes the default getNextArray() method:

// An enhanced version of Series that includes a default
// method called getNextArray().
public interface Series {
 int getNext(); // return next number in series

 // Return an array that contains the next n elements
 // in the series beyond the current element.
 default int[] getNextArray(int n) {
 int[] vals = new int[n];

 for(int i=0; i < n; i++) vals[i] = getNext();
 return vals;
 }

 void reset(); // restart
 void setStart(int x); // set starting value
}

08-ch08.indd 303 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8

 304 Java: A Beginner’s Guide

Pay special attention to the way that the default method getNextArray() is implemented.
Because getNext() was part of the original specification for Series, any class that implements
Series will provide that method. Thus, it can be used inside getNextArray() to obtain the next
n elements in the series. As a result, any class that implements the enhanced version of Series
will be able to use getNextArray() as is, and no class is required to override it. Therefore,
no preexisting code is broken. Of course, it is still possible for a class to provide its own
implementation of getNextArray(), if you choose.

As the preceding example shows, the default method provides two major benefits:

● It gives you a way to gracefully evolve interfaces over time without breaking existing code.

● It provides optional functionality without requiring that a class provide a placeholder
implementation when that functionality is not needed.

In the case of getNextArray(), the second point is especially important. If an implementation
of Series does not require the capability offered by getNextArray(), it need not provide its
own placeholder implementation. This allows cleaner code to be created.

Multiple Inheritance Issues
As explained earlier in this book, Java does not support the multiple inheritance of classes.
Now that an interface can include default methods, you might be wondering if an interface can
provide a way around this restriction. The answer is, essentially, no. Recall that there is still a
key difference between a class and an interface: a class can maintain state information (through
the use of instance variables), but an interface cannot.

The preceding notwithstanding, default methods do offer a bit of what one would normally
associate with the concept of multiple inheritance. For example, you might have a class that
implements two interfaces. If each of these interfaces provides default methods, then some
behavior is inherited from both. Thus, to a limited extent, default methods do support multiple
inheritance of behavior. As you might guess, in such a situation, it is possible that a name
conflict will occur.

For example, assume that two interfaces called Alpha and Beta are implemented by a
class called MyClass. What happens if both Alpha and Beta provide a method called reset()
for which both declare a default implementation? Is the version by Alpha or the version by
Beta used by MyClass? Or, consider a situation in which Beta extends Alpha. Which version
of the default method is used? Or, what if MyClass provides its own implementation of the
method? To handle these and other similar types of situations, Java defines a set of rules that
resolve such conflicts.

First, in all cases a class implementation takes priority over an interface default
implementation. Thus, if MyClass provides an override of the reset() default method,
MyClass’s version is used. This is the case even if MyClass implements both Alpha and Beta.
In this case, both defaults are overridden by MyClass’s implementation.

Second, in cases in which a class inherits two interfaces that both have the same default
method, if the class does not override that method, then an error will result. Continuing with
the example, if MyClass inherits both Alpha and Beta, but does not override reset(), then an
error will occur.

08-ch08.indd 304 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8

 Chapter 8: Packages and Interfaces 305

In cases in which one interface inherits another, with both defining a common default
method, the inheriting interface’s version of the method takes precedence. Therefore, continuing
the example, if Beta extends Alpha, then Beta’s version of reset() will be used.

It is possible to refer explicitly to a default implementation by using a new form of super.
Its general form is shown here:

InterfaceName.super.methodName()

For example, if Beta wants to refer to Alpha’s default for reset(), it can use this statement:

Alpha.super.reset();

Use static Methods in an Interface
JDK 8 added another new capability to interface: the ability to define one or more static
methods. Like static methods in a class, a static method defined by an interface can be called
independently of any object. Thus, no implementation of the interface is necessary, and no
instance of the interface is required in order to call a static method. Instead, a static method is
called by specifying the interface name, followed by a period, followed by the method name.
Here is the general form:

InterfaceName.staticMethodName

Notice that this is similar to the way that a static method in a class is called.
The following shows an example of a static method in an interface by adding one to MyIF,

shown earlier. The static method is getUniversalID(). It returns zero.

public interface MyIF {
 // This is a "normal" interface method declaration.
 // It does NOT define a default implementation.
 int getUserID();

 // This is a default method. Notice that it provides
 // a default implementation.
 default int getAdminID() {
 return 1;
 }

 // This is a static interface method.
 static int getUniversalID() {
 return 0;
 }
}

The getUniversalID() method can be called, as shown here:

int uID = MyIF.getUniversalID();

08-ch08.indd 305 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8

 306 Java: A Beginner’s Guide

As mentioned, no implementation or instance of MyIF is required to call getUniversalID()
because it is static.

One last point: static interface methods are not inherited by either an implementing class
or a subinterface.

Private Interface Methods
Beginning with JDK 9, an interface can include a private method. A private interface method
can be called only by a default method or another private method defined by the same
interface. Because a private interface method is specified private, it cannot be used by code
outside the interface in which it is defined. This restriction includes subinterfaces because a
private interface method is not inherited by a subinterface.

The key benefit of a private interface method is that it lets two or more default methods
use a common piece of code, thus avoiding code duplication. For example, here is a
further enhanced version of the Series interface that adds a second default method called
skipAndGetNextArray(). It skips a specified number of elements and then returns an array
that contains the subsequent elements. It uses a private method called getArray() to obtain
an element array of a specified size.

// A further enhanced version of Series that includes two
// default methods that use a private method called getArray();
public interface Series {
 int getNext(); // return next number in series

 // Return an array that contains the next n elements
 // in the series beyond the current element.
 default int[] getNextArray(int n) {
 return getArray(n);
 }

 // Return an array that contains the next n elements
 // in the series, after skipping elements.
 default int[] skipAndGetNextArray(int skip, int n) {

 // Skip the specified number of elements.
 getArray(skip);

 return getArray(n);
 }

 // A private method that returns an array containing
 // the next n elements.
 private int[] getArray(int n) {
 int[] vals = new int[n];

08-ch08.indd 306 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8

 Chapter 8: Packages and Interfaces 307

 for(int i=0; i < n; i++) vals[i] = getNext();
 return vals;
 }

 void reset(); // restart
 void setStart(int x); // set starting value
}

Notice that both getNextArray() and skipAndGetNextArray() use the private getArray()
method to obtain the array to return. This prevents both methods from having to duplicate the
same code sequence. Keep in mind that because getArray() is private, it cannot be called by
code outside Series. Thus, its use is limited to the default methods inside Series.

Although the private interface method is a feature that you will seldom need, in those cases
in which you do need it, you will find it quite useful.

Final Thoughts on Packages and Interfaces
Although the examples we’ve included in this book do not make frequent use of packages or
interfaces, both of these tools are an important part of the Java programming environment.
Virtually all real programs that you write in Java will be contained within packages. A number
will probably implement interfaces as well. As you will see in Chapter 15, packages play an
important role in the modules feature. It is important, therefore, that you be comfortable with
their usage.

 Chapter 8 Self Test
 1. Using the code from Try This 8-1, put the ICharQ interface and its three implementations

into a package called qpack. Keeping the queue demonstration class IQDemo in the default
package, show how to import and use the classes in qpack.

 2. What is a namespace? Why is it important that Java allows you to partition the namespace?

 3. Typically, packages are stored in ______________.

 4. Explain the difference between protected and default access.

 5. Explain the two ways that the members of a package can be used by other packages.

 6. “One interface, multiple methods” is a key tenet of Java. What feature best exemplifies it?

 7. How many classes can implement an interface? How many interfaces can a class implement?

 8. Can interfaces be extended?

 9. Create an interface for the Vehicle class from Chapter 7. Call the interface IVehicle.

 10. Variables declared in an interface are implicitly static and final. Can they be shared with
other parts of a program?

✓

08-ch08.indd 307 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 8

 308 Java: A Beginner’s Guide

 11. A package is, in essence, a container for classes. True or False?

 12. What standard Java package is automatically imported into a program?

 13. What keyword is used to declare a default interface method?

 14. Is it possible to define a static method in an interface?

 15. Assume that the ICharQ interface shown in Try This 8-1 has been in widespread use for
several years. Now, you want to add a method to it called reset(), which will be used to
reset the queue to its empty, starting condition. How can this be accomplished without
breaking preexisting code?

 16. How is a static method in an interface called?

 17. Can an interface have a private method?

08-ch08.indd 308 12/11/21 9:32 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 9
Blind Folio: 309

Chapter 9
Exception Handling

09-ch09.indd 309 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 9

 310 Java: A Beginner’s Guide

Key Skills & Concepts

● Know the exception hierarchy

● Use try and catch

● Understand the effects of an uncaught exception

● Use multiple catch statements

● Catch subclass exceptions

● Nest try blocks

● Throw an exception

● Know the members of Throwable

● Use finally

● Use throws

● Know Java’s built-in exceptions

● Create custom exception classes

This chapter discusses exception handling. An exception is an error that occurs at run time.
Using Java’s exception handling subsystem you can, in a structured and controlled manner,

handle run-time errors. Although most modern programming languages offer some form of
exception handling, Java’s support for it is both easy-to-use and flexible.

A principal advantage of exception handling is that it automates much of the error handling
code that previously had to be entered “by hand” into any large program. For example, in some
older computer languages, error codes are returned when a method fails, and these values must be
checked manually, each time the method is called. This approach is both tedious and error-prone.
Exception handling streamlines error handling by allowing your program to define a block of
code, called an exception handler, that is executed automatically when an error occurs. It is not
necessary to manually check the success or failure of each specific operation or method call. If an
error occurs, it will be processed by the exception handler.

Another reason that exception handling is important is that Java defines standard exceptions
for common program errors, such as divide-by-zero or file-not-found. To respond to these
errors, your program must watch for and handle these exceptions. Also, Java’s API library
makes extensive use of exceptions.

In the final analysis, to be a successful Java programmer means that you are fully capable
of navigating Java’s exception handling subsystem.

09-ch09.indd 310 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 9

 Chapter 9: Exception Handling 311

The Exception Hierarchy
In Java, all exceptions are represented by classes. All exception classes are derived from a class
called Throwable. Thus, when an exception occurs in a program, an object of some type of
exception class is generated. There are two direct subclasses of Throwable: Exception and
Error. Exceptions of type Error are related to errors that occur in the Java Virtual Machine
itself, and not in your program. These types of exceptions are beyond your control, and your
program will not usually deal with them. Thus, these types of exceptions are not described here.

Errors that result from program activity are represented by subclasses of Exception.
For example, divide-by-zero, array boundary, and file errors fall into this category. In general,
your program should handle exceptions of these types. An important subclass of Exception is
RuntimeException, which is used to represent various common types of run-time errors.

Exception Handling Fundamentals
Java exception handling is managed via five keywords: try, catch, throw, throws, and
finally. They form an interrelated subsystem in which the use of one implies the use of
another. Throughout the course of this chapter, each keyword is examined in detail. However,
it is useful at the outset to have a general understanding of the role each plays in exception
handling. Briefly, here is how they work.

Program statements that you want to monitor for exceptions are contained within a try
block. If an exception occurs within the try block, it is thrown. Your code can catch this
exception using catch and handle it in some rational manner. System-generated exceptions
are automatically thrown by the Java run-time system. To manually throw an exception,
use the keyword throw. In some cases, an exception that is thrown out of a method must
be specified as such by a throws clause. Any code that absolutely must be executed upon
exiting from a try block is put in a finally block.

Q: Just to be sure, could you review the conditions that cause an exception to be
generated?

A: Exceptions are generated in three different ways. First, the Java Virtual Machine can
generate an exception in response to some internal error which is beyond your control.
Normally, your program won’t handle these types of exceptions. Second, standard
exceptions, such as those corresponding to divide-by-zero or array index out-of-bounds, are
generated by errors in program code. You need to handle these exceptions. Third, you can
manually generate an exception by using the throw statement. No matter how an exception
is generated, it is handled in the same way.

Ask the Expert

09-ch09.indd 311 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 9

 312 Java: A Beginner’s Guide

Using try and catch
At the core of exception handling are try and catch. These keywords work together; you can’t
have a catch without a try. Here is the general form of the try/catch exception handling blocks:

try {
 // block of code to monitor for errors
}
catch (ExcepType1 exOb) {
 // handler for ExcepType1
}
catch (ExcepType2 exOb) {
 // handler for ExcepType2
}
.
.
.

Here, ExcepType is the type of exception that has occurred. When an exception is thrown, it is
caught by its corresponding catch statement, which then processes the exception. As the general
form shows, there can be more than one catch statement associated with a try. The type of the
exception determines which catch statement is executed. That is, if the exception type specified
by a catch statement matches that of the exception, then that catch statement is executed (and all
others are bypassed). When an exception is caught, exOb will receive its value.

Here is an important point: If no exception is thrown, then a try block ends normally, and
all of its catch statements are bypassed. Execution resumes with the first statement following
the last catch. Thus, catch statements are executed only if an exception is thrown.

NOTE
There is another form of the try statement that supports automatic resource
management. This form of try is called try-with-resources. It is described
in Chapter 10, in the context of managing I/O streams (such as those connected
to a file) because I/O streams are some of the most commonly used resources.

A Simple Exception Example
Here is a simple example that illustrates how to watch for and catch an exception. As you
know, it is an error to attempt to index an array beyond its boundaries. When this occurs, the
JVM throws an ArrayIndexOutOfBoundsException. The following program purposely
generates such an exception and then catches it:

// Demonstrate exception handling.
class ExcDemo1 {
 public static void main(String[] args) {
 int[] nums = new int[4];

09-ch09.indd 312 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 9

 Chapter 9: Exception Handling 313

 try {
 System.out.println("Before exception is generated.");

 // Generate an index out-of-bounds exception.
 nums[7] = 10;
 System.out.println("this won't be displayed");
 }
 catch (ArrayIndexOutOfBoundsException exc) {
 // catch the exception
 System.out.println("Index out-of-bounds!");
 }
 System.out.println("After catch statement.");
 }
}

This program displays the following output:

Before exception is generated.
Index out-of-bounds!
After catch statement.

Although quite short, the preceding program illustrates several key points about exception
handling. First, the code that you want to monitor for errors is contained within a try block.
Second, when an exception occurs (in this case, because of the attempt to index nums beyond its
bounds), the exception is thrown out of the try block and caught by the catch statement. At this
point, control passes to the catch, and the try block is terminated. That is, catch is not called.
Rather, program execution is transferred to it. Thus, the println() statement following the out-of-
bounds index will never execute. After the catch statement executes, program control continues
with the statements following the catch. Thus, it is the job of your exception handler to remedy
the problem that caused the exception so that program execution can continue normally.

Remember, if no exception is thrown by a try block, no catch statements will be executed
and program control resumes after the catch statement. To confirm this, in the preceding
program, change the line

nums[7] = 10;

to

nums[0] = 10;

Now, no exception is generated, and the catch block is not executed.
It is important to understand that all code within a try block is monitored for exceptions.

This includes exceptions that might be generated by a method called from within the try block.
An exception thrown by a method called from within a try block can be caught by the catch
statements associated with that try block—assuming, of course, that the method did not catch
the exception itself. For example, this is a valid program:

/* An exception can be generated by one
 method and caught by another. */

Create a try block.

Attempt to index past
nums boundary.

Catch array boundary
errors.

09-ch09.indd 313 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 9

 314 Java: A Beginner’s Guide

class ExcTest {
 // Generate an exception.
 static void genException() {
 int[] nums = new int[4];

 System.out.println("Before exception is generated.");

 // generate an index out-of-bounds exception
 nums[7] = 10;
 System.out.println("this won't be displayed");
 }
}

class ExcDemo2 {
 public static void main(String[] args) {

 try {
 ExcTest.genException();
 } catch (ArrayIndexOutOfBoundsException exc) {
 // catch the exception
 System.out.println("Index out-of-bounds!");
 }
 System.out.println("After catch statement.");
 }
}

This program produces the following output, which is the same as that produced by the first
version of the program shown earlier:

Before exception is generated.
Index out-of-bounds!
After catch statement.

Since genException() is called from within a try block, the exception that it generates (and
does not catch) is caught by the catch in main(). Understand, however, that if genException()
had caught the exception itself, it never would have been passed back to main().

The Consequences of an Uncaught Exception
Catching one of Java’s standard exceptions, as the preceding program does, has a side benefit:
It prevents abnormal program termination. When an exception is thrown, it must be caught
by some piece of code, somewhere. In general, if your program does not catch an exception,
then it will be caught by the JVM. The trouble is that the JVM’s default exception handler
terminates execution and displays a stack trace and error message. For example, in this version
of the preceding example, the index out-of-bounds exception is not caught by the program.

// Let JVM handle the error.
class NotHandled {
 public static void main(String[] args) {

Exception generated here.

Exception caught here.

09-ch09.indd 314 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 9

 Chapter 9: Exception Handling 315

 int[] nums = new int[4];

 System.out.println("Before exception is generated.");

 // generate an index out-of-bounds exception
 nums[7] = 10;
 }
}

When the array index error occurs, execution is halted, and the following error message is
displayed. (The exact output you see may vary because of differences between JDKs.)

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException:
 Index 7 out of bounds for length 4
 at NotHandled.main(NotHandled.java:9)

While such a message is useful for you while debugging, it would not be something that
you would want others to see, to say the least! This is why it is important for your program to
handle exceptions itself, rather than rely upon the JVM.

As mentioned earlier, the type of the exception must match the type specified in a catch
statement. If it doesn’t, the exception won’t be caught. For example, the following program
tries to catch an array boundary error with a catch statement for an ArithmeticException
(another of Java’s built-in exceptions). When the array boundary is overrun, an
ArrayIndexOutOfBoundsException is generated, but it won’t be caught by the catch
statement. This results in abnormal program termination.

// This won't work!
class ExcTypeMismatch {
 public static void main(String[] args) {
 int[] nums = new int[4];

 try {
 System.out.println("Before exception is generated.");

 //generate an index out-of-bounds exception
 nums[7] = 10;
 System.out.println("this won't be displayed");
 }

 /* Can't catch an array boundary error with an
 ArithmeticException. */
 catch (ArithmeticException exc) {
 // catch the exception
 System.out.println("Index out-of-bounds!");
 }
 System.out.println("After catch statement.");
 }
}

This throws an
ArrayIndexOutOfBoundsException.

This tries to catch it with an
ArithmeticException.

09-ch09.indd 315 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 9

 316 Java: A Beginner’s Guide

The output is shown here. (Again, your output may vary based on differences between JDKs.)

Before exception is generated.
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException:
 Index 7 out of bounds for length 4
 at ExcTypeMismatch.main(ExcTypeMismatch.java:10)

As the output demonstrates, a catch for ArithmeticException won’t catch an
ArrayIndexOutOfBoundsException.

Exceptions Enable You to Handle Errors Gracefully
One of the key benefits of exception handling is that it enables your program to respond
to an error and then continue running. For example, consider the following example that
divides the elements of one array by the elements of another. If a division by zero occurs,
an ArithmeticException is generated. In the program, this exception is handled by reporting
the error and then continuing with execution. Thus, attempting to divide by zero does not cause
an abrupt run-time error resulting in the termination of the program. Instead, it is handled
gracefully, allowing program execution to continue.

// Handle error gracefully and continue.
class ExcDemo3 {
 public static void main(String[] args) {
 int[] numer = { 4, 8, 16, 32, 64, 128 };
 int[] denum = { 2, 0, 4, 4, 0, 8 };

 for(int i=0; i<numer.length; i++) {
 try {
 System.out.println(numer[i] + " / " +
 denom[i] + " is " +
 numer[i]/denom[i]);
 }
 catch (ArithmeticException exc) {
 // catch the exception
 System.out.println("Can't divide by Zero!");
 }
 }
 }
}

The output from the program is shown here:

4 / 2 is 2
Can't divide by Zero!
16 / 4 is 4
32 / 4 is 8
Can't divide by Zero!
128 / 8 is 16

09-ch09.indd 316 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 9

 Chapter 9: Exception Handling 317

This example makes another important point: Once an exception has been handled, it is
removed from the system. Therefore, in the program, each pass through the loop enters the
try block anew; any prior exceptions have been handled. This enables your program to handle
repeated errors.

Using Multiple catch Statements
As stated earlier, you can associate more than one catch statement with a try. In fact, it is
common to do so. However, each catch must catch a different type of exception. For example,
the program shown here catches both array boundary and divide-by-zero errors:

// Use multiple catch statements.
class ExcDemo4 {
 public static void main(String[] args) {
 // Here, numer is longer than denom.
 int[] numer = { 4, 8, 16, 32, 64, 128, 256, 512 };
 int[] denom = { 2, 0, 4, 4, 0, 8 };

 for(int i=0; i<numer.length; i++) {
 try {
 System.out.println(numer[i] + " / " +
 denom[i] + " is " +
 numer[i]/denom[i]);
 }
 catch (ArithmeticException exc) {
 // catch the exception
 System.out.println("Can't divide by Zero!");
 }
 catch (ArrayIndexOutOfBoundsException exc) {
 // catch the exception
 System.out.println("No matching element found.");
 }
 }
 }
}

This program produces the following output:

4 / 2 is 2
Can't divide by Zero!
16 / 4 is 4
32 / 4 is 8
Can't divide by Zero!
128 / 8 is 16
No matching element found.
No matching element found.

As the output confirms, each catch statement responds only to its own type of exception.

Multiple catch statements

09-ch09.indd 317 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 9

 318 Java: A Beginner’s Guide

In general, catch expressions are checked in the order in which they occur in a program.
Only a matching statement is executed. All other catch blocks are ignored.

Catching Subclass Exceptions
There is one important point about multiple catch statements that relates to subclasses. A catch
clause for a superclass will also match any of its subclasses. For example, since the superclass
of all exceptions is Throwable, to catch all possible exceptions, catch Throwable. If you want
to catch exceptions of both a superclass type and a subclass type, put the subclass first in the
catch sequence. If you don’t, then the superclass catch will also catch all derived classes. This
rule is self-enforcing because putting the superclass first causes unreachable code to be created,
since the subclass catch clause can never execute. In Java, unreachable code is an error.

For example, consider the following program:

// Subclasses must precede superclasses in catch statements.
class ExcDemo5 {
 public static void main(String[] args) {
 // Here, numer is longer than denom.
 int[] numer = { 4, 8, 16, 32, 64, 128, 256, 512 };
 int[] denom = { 2, 0, 4, 4, 0, 8 };

 for(int i=0; i<numer.length; i++) {
 try {
 System.out.println(numer[i] + " / " +
 denom[i] + " is " +
 numer[i]/denom[i]);
 }
 catch (ArrayIndexOutOfBoundsException exc) {
 // catch the exception
 System.out.println("No matching element found.");
 }
 catch (Throwable exc) {
 System.out.println("Some exception occurred.");
 }
 }
 }
}

The output from the program is shown here:

4 / 2 is 2
Some exception occurred.
16 / 4 is 4
32 / 4 is 8
Some exception occurred.
128 / 8 is 16
No matching element found.
No matching element found.

Catch subclass

Catch superclass

09-ch09.indd 318 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 9

 Chapter 9: Exception Handling 319

In this case, catch(Throwable) catches all exceptions except for ArrayIndexOutOfBounds-
Exception. The issue of catching subclass exceptions becomes more important when you
create exceptions of your own.

Try Blocks Can Be Nested
One try block can be nested within another. An exception generated within the inner try block
that is not caught by a catch associated with that try is propagated to the outer try block. For
example, here the ArrayIndexOutOfBoundsException is not caught by the inner catch, but
by the outer catch:

// Use a nested try block.
class NestTrys {
 public static void main(String[] args) {
 // Here, numer is longer than denom.
 int[] numer = { 4, 8, 16, 32, 64, 128, 256, 512 };
 int[] denom = { 2, 0, 4, 4, 0, 8 };

 try { // outer try
 for(int i=0; i<numer.length; i++) {
 try { // nested try
 System.out.println(numer[i] + " / " +
 denom[i] + " is " +
 numer[i]/denom[i]);
 }
 catch (ArithmeticException exc) {
 // catch the exception
 System.out.println("Can't divide by Zero!");
 }
 }
 }

Nested try blocks

Q: Why would I want to catch superclass exceptions?

A: There are, of course, a variety of reasons. Here are a couple. First, if you add a catch clause
that catches exceptions of type Exception, then you have effectively added a “catch all”
clause to your exception handler that deals with all program-related exceptions. Such a
“catch all” clause might be useful in a situation in which abnormal program termination
must be avoided no matter what occurs. Second, in some situations, an entire category of
exceptions can be handled by the same clause. Catching the superclass of these exceptions
allows you to handle all without duplicated code.

Ask the Expert

09-ch09.indd 319 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 9

 320 Java: A Beginner’s Guide

 catch (ArrayIndexOutOfBoundsException exc) {
 // catch the exception
 System.out.println("No matching element found.");
 System.out.println("Fatal error - program terminated.");
 }
 }
}

The output from the program is shown here:

4 / 2 is 2
Can't divide by Zero!
16 / 4 is 4
32 / 4 is 8
Can't divide by Zero!
128 / 8 is 16
No matching element found.
Fatal error – program terminated.

In this example, an exception that can be handled by the inner try—in this case, a divide-
by-zero error—allows the program to continue. However, an array boundary error is caught by
the outer try, which causes the program to terminate.

Although certainly not the only reason for nested try statements, the preceding program
makes an important point that can be generalized. Often nested try blocks are used to allow
different categories of errors to be handled in different ways. Some types of errors are
catastrophic and cannot be fixed. Some are minor and can be handled immediately. You might
use an outer try block to catch the most severe errors, allowing inner try blocks to handle less
serious ones.

Throwing an Exception
The preceding examples have been catching exceptions generated automatically by the JVM.
However, it is possible to manually throw an exception by using the throw statement. Its general
form is shown here:

throw exceptOb;

Here, exceptOb must be an object of an exception class derived from Throwable.
Here is an example that illustrates the throw statement by manually throwing an

ArithmeticException:

// Manually throw an exception.
class ThrowDemo {
 public static void main(String[] args) {
 try {
 System.out.println("Before throw.");
 throw new ArithmeticException(); Throw an exception.

09-ch09.indd 320 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 9

 Chapter 9: Exception Handling 321

 }
 catch (ArithmeticException exc) {
 // catch the exception
 System.out.println("Exception caught.");
 }
 System.out.println("After try/catch block.");
 }
}

The output from the program is shown here:

Before throw.
Exception caught.
After try/catch block.

Notice how the ArithmeticException was created using new in the throw statement.
Remember, throw throws an object. Thus, you must create an object for it to throw. That is,
you can’t just throw a type.

Rethrowing an Exception
An exception caught by one catch statement can be rethrown so that it can be caught by an
outer catch. The most likely reason for rethrowing this way is to allow multiple handlers
access to the exception. For example, perhaps one exception handler manages one aspect of
an exception, and a second handler copes with another aspect. Remember, when you rethrow
an exception, it will not be recaught by the same catch statement. It will propagate to the next
catch statement. The following program illustrates rethrowing an exception:

// Rethrow an exception.
class Rethrow {
 public static void genException() {
 // here, numer is longer than denom
 int[] numer = { 4, 8, 16, 32, 64, 128, 256, 512 };
 int[] denom = { 2, 0, 4, 4, 0, 8 };

Q: Why would I want to manually throw an exception?

A: Most often, the exceptions that you will throw will be instances of exception classes that
you created. As you will see later in this chapter, creating your own exception classes
allows you to handle errors in your code as part of your program’s overall exception
handling strategy.

Ask the Expert

09-ch09.indd 321 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 9

 322 Java: A Beginner’s Guide

 for(int i=0; i<numer.length; i++) {
 try {
 System.out.println(numer[i] + " / " +
 denom[i] + " is " +
 numer[i]/denom[i]);
 }
 catch (ArithmeticException exc) {
 // catch the exception
 System.out.println("Can't divide by Zero!");
 }
 catch (ArrayIndexOutOfBoundsException exc) {
 // catch the exception
 System.out.println("No matching element found.");
 throw exc; // rethrow the exception
 }
 }
 }
}

class RethrowDemo {
 public static void main(String[] args) {
 try {
 Rethrow.genException();
 }
 catch(ArrayIndexOutOfBoundsException exc) {
 // recatch exception
 System.out.println("Fatal error - " +
 "program terminated.");
 }
 }
}

In this program, divide-by-zero errors are handled locally, by genException(), but an
array boundary error is rethrown. In this case, it is caught by main().

A Closer Look at Throwable
Up to this point, we have been catching exceptions, but we haven’t been doing anything
with the exception object itself. As the preceding examples all show, a catch clause specifies
an exception type and a parameter. The parameter receives the exception object. Since all
exceptions are subclasses of Throwable, all exceptions support the methods defined by
Throwable. Several commonly used ones are shown in Table 9-1.

Of the methods defined by Throwable, two of the most interesting are printStackTrace()
and toString(). You can display the standard error message plus a record of the method calls
that lead up to the exception by calling printStackTrace(). You can use toString() to retrieve

Rethrow the exception.

Catch rethrown exception.

09-ch09.indd 322 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 9

 Chapter 9: Exception Handling 323

the standard error message. The toString() method is also called when an exception is used as
an argument to println(). The following program demonstrates these methods:

// Using the Throwable methods.

class ExcTest {
 static void genException() {
 int[] nums = new int[4];

 System.out.println("Before exception is generated.");

 // generate an index out-of-bounds exception
 nums[7] = 10;
 System.out.println("this won't be displayed");
 }
}

class UseThrowableMethods {
 public static void main(String[] args) {

 try {
 ExcTest.genException();
 }
 catch (ArrayIndexOutOfBoundsException exc) {
 // catch the exception
 System.out.println("Standard message is: ");
 System.out.println(exc);
 System.out.println("\nStack trace: ");

Method Description

Throwable fillInStackTrace() Returns a Throwable object that contains a completed
stack trace. This object can be rethrown.

String getLocalizedMessage() Returns a localized description of the exception.

String getMessage() Returns a description of the exception.

void printStackTrace() Displays the stack trace.

void printStackTrace(PrintStream stream) Sends the stack trace to the specified stream.

void printStackTrace(PrintWriter stream) Sends the stack trace to the specified stream.

String toString() Returns a String object containing a complete description
of the exception. This method is called by println() when
outputting a Throwable object.

Table 9-1 Commonly Used Methods Defined by Throwable

09-ch09.indd 323 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 9

 324 Java: A Beginner’s Guide

 exc.printStackTrace();
 }
 System.out.println("After catch statement.");
 }
}

The output from this program is shown here. (Your output may vary because of differences
between JDKs.)

Before exception is generated.
Standard message is:
java.lang.ArrayIndexOutOfBoundsException: Index 7 out of bounds for length 4

Stack trace:
java.lang.ArrayIndexOutOfBoundsException: Index 7 out of bounds for length 4
 at ExcTest.genException(UseThrowableMethods.java:10)
 at UseThrowableMethods.main(UseThrowableMethods.java:19)
After catch statement.

Using finally
Sometimes you will want to define a block of code that will execute when a try/catch block
is left. For example, an exception might cause an error that terminates the current method,
causing its premature return. However, that method may have opened a file or a network
connection that needs to be closed. Such types of circumstances are common in programming,
and Java provides a convenient way to handle them: finally.

To specify a block of code to execute when a try/catch block is exited, include a finally
block at the end of a try/catch sequence. The general form of a try/catch that includes finally
is shown here.

try {
 // block of code to monitor for errors
}
catch (ExcepType1 exOb) {
 // handler for ExcepType1
}
catch (ExcepType2 exOb) {
 // handler for ExcepType2
}
//...
finally {
 // finally code
}

09-ch09.indd 324 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 9

 Chapter 9: Exception Handling 325

The finally block will be executed whenever execution leaves a try/catch block, no
matter what conditions cause it. That is, whether the try block ends normally, or because
of an exception, the last code executed is that defined by finally. The finally block is
also executed if any code within the try block or any of its catch statements return from
the method.

Here is an example of finally:

// Use finally.
class UseFinally {
 public static void genException(int what) {
 int t;
 int[] nums = new int[2];

 System.out.println("Receiving " + what);
 try {
 switch(what) {
 case 0:
 t = 10 / what; // generate div-by-zero error
 break;
 case 1:
 nums[4] = 4; // generate array index error.
 break;
 case 2:
 return; // return from try block
 }
 }
 catch (ArithmeticException exc) {
 // catch the exception
 System.out.println("Can't divide by Zero!");
 return; // return from catch
 }
 catch (ArrayIndexOutOfBoundsException exc) {
 // catch the exception
 System.out.println("No matching element found.");
 }
 finally {
 System.out.println("Leaving try.");
 }
 }
}

class FinallyDemo {
 public static void main(String[] args) {

This is executed on the way
out of try/catch blocks.

09-ch09.indd 325 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 9

 326 Java: A Beginner’s Guide

 for(int i=0; i < 3; i++) {
 UseFinally.genException(i);
 System.out.println();
 }
 }
}

Here is the output produced by the program:

Receiving 0
Can't divide by Zero!
Leaving try.

Receiving 1
No matching element found.
Leaving try.

Receiving 2
Leaving try.

As the output shows, no matter how the try block is exited, the finally block is executed.

Using throws
In some cases, if a method generates an exception that it does not handle, it must declare that
exception in a throws clause. Here is the general form of a method that includes a throws clause:

ret-type methName(param-list) throws except-list {
 // body
}

Here, except-list is a comma-separated list of exceptions that the method might throw outside
of itself.

You might be wondering why you did not need to specify a throws clause for some of the
preceding examples, which threw exceptions outside of methods. The answer is that exceptions
that are subclasses of Error or RuntimeException don’t need to be specified in a throws list.
Java simply assumes that a method may throw one. All other types of exceptions do need to be
declared. Failure to do so causes a compile-time error.

Actually, you saw an example of a throws clause earlier in this book. As you will recall,
when performing keyboard input, you needed to add the clause

throws java.io.IOException

to main(). Now you can understand why. An input statement might generate an IOException,
and at that time, we weren’t able to handle that exception. Thus, such an exception would be
thrown out of main() and needed to be specified as such. Now that you know about exceptions,
you can easily handle IOException.

09-ch09.indd 326 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 9

 Chapter 9: Exception Handling 327

Let’s look at an example that handles IOException. It creates a method called prompt(),
which displays a prompting message and then reads a character from the keyboard. Since input is
being performed, an IOException might occur. However, the prompt() method does not handle
IOException itself. Instead, it uses a throws clause, which means that the calling method must
handle it. In this example, the calling method is main(), and it deals with the error.

// Use throws.
class ThrowsDemo {
 public static char prompt(String str)
 throws java.io.IOException {

 System.out.print(str + ": ");
 return (char) System.in.read();
 }

 public static void main(String[] args) {
 char ch;

 try {
 ch = prompt("Enter a letter");
 }
 catch(java.io.IOException exc) {
 System.out.println("I/O exception occurred.");
 ch = 'X';
 }

 System.out.println("You pressed " + ch);
 }
}

On a related point, notice that IOException is fully qualified by its package name java.io.
As you will learn in Chapter 10, Java’s I/O system is contained in the java.io package. Thus,
the IOException is also contained there. It would also have been possible to import java.io
and then refer to IOException directly.

Three Additional Exception Features
In addition to the exception handling features already discussed, modern versions of Java include
three more. The first supports automatic resource management, which automates the process
of releasing a resource, such as a file, when it is no longer needed. It is based on an expanded
form of try, called the try-with-resources statement, and it is described in Chapter 10, when files
are discussed. The second feature is called multi-catch, and the third is sometimes called final
rethrow or more precise rethrow. These two features are described here.

Multi-catch allows two or more exceptions to be caught by the same catch clause. As
you learned earlier, it is possible (indeed, common) for a try to be followed by two or more
catch clauses. Although each catch clause often supplies its own unique code sequence,

Notice the throws clause.

Since prompt() might throw an
exception, a call to it must be
enclosed within a try block.

09-ch09.indd 327 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 9

 328 Java: A Beginner’s Guide

it is not uncommon to have situations in which two or more catch clauses execute the same
code sequence even though they catch different exceptions. Instead of having to catch each
exception type individually, you can use a single catch clause to handle the exceptions without
code duplication.

To create a multi-catch, specify a list of exceptions within a single catch clause. You do this
by separating each exception type in the list with the OR operator. Each multi-catch parameter
is implicitly final. (You can explicitly specify final, if desired, but it is not necessary.) Because
each multi-catch parameter is implicitly final, it can't be assigned a new value.

Here is how you can use the multi-catch feature to catch both ArithmeticException and
ArrayIndexOutOfBoundsException with a single catch clause:

catch(ArithmeticException | ArrayIndexOutOfBoundsException e) {

Here is a simple program that demonstrates the use of this multi-catch:

// Use the multi-catch feature. Note: This code requires JDK 7 or
// later to compile.
class MultiCatch {
 public static void main(String[] args) {
 int a=88, b=0;
 int result;
 char[] chrs = { 'A', 'B', 'C' };

 for(int i=0; i < 2; i++) {
 try {
 if(i == 0)
 result = a / b; // generate an ArithmeticException
 else
 chrs[5] = 'X'; // generate an ArrayIndexOutOfBoundsException

 // This catch clause catches both exceptions.
 }
 catch(ArithmeticException | ArrayIndexOutOfBoundsException e) {
 System.out.println("Exception caught: " + e);
 }
 }

 System.out.println("After multi-catch.");
 }
}

The program will generate an ArithmeticException when the division by zero is attempted.
It will generate an ArrayIndexOutOfBoundsException when the attempt is made to access
outside the bounds of chrs. Both exceptions are caught by the single catch statement.

The more precise rethrow feature restricts the type of exceptions that can be rethrown to only
those checked exceptions that the associated try block throws, that are not handled by a preceding
catch clause, and that are a subtype or supertype of the parameter. While this capability might not
be needed often, it is now available for use. For the final rethrow feature to be in force, the catch

09-ch09.indd 328 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 9

 Chapter 9: Exception Handling 329

parameter must be effectively final. This means that it must not be assigned a new value inside the
catch block. It can also be explicitly specified as final, but this is not necessary.

Java’s Built-in Exceptions
Inside the standard package java.lang, Java defines several exception classes. A few have been
used by the preceding examples. The most general of these exceptions are subclasses of the
standard type RuntimeException. Since java.lang is implicitly imported into all Java programs,
many exceptions derived from RuntimeException are automatically available. Furthermore,
they need not be included in any method’s throws list. In the language of Java, these are called
unchecked exceptions because the compiler does not check to see if a method handles or throws
these exceptions. The unchecked exceptions defined in java.lang are listed in Table 9-2. Table 9-3
lists those exceptions defined by java.lang that must be included in a method’s throws list if
that method can generate one of these exceptions and does not handle it itself. These are called
checked exceptions. In addition to the exceptions in java.lang, Java defines several other types of
exceptions that relate to other packages, such as IOException mentioned earlier.

Exception Meaning

ArithmeticException Arithmetic error, such as integer divide-by-zero.

ArrayIndexOutOfBoundsException Array index is out-of-bounds.

ArrayStoreException Assignment to an array element of an incompatible type.

ClassCastException Invalid cast.

EnumConstantNotPresentException An attempt is made to use an undefined enumeration value.

IllegalArgumentException Illegal argument used to invoke a method.

IllegalCallerException A method cannot be legally executed by the calling code.

IllegalMonitorStateException Illegal monitor operation, such as waiting on an unlocked thread.

IllegalStateException Environment or application is in incorrect state.

IllegalThreadStateException Requested operation not compatible with current thread state.

IndexOutOfBoundsException Some type of index is out-of-bounds.

LayerInstantiationException A module layer cannot be created.

NegativeArraySizeException Array created with a negative size.

NullPointerException Invalid use of a null reference.

NumberFormatException Invalid conversion of a string to a numeric format.

SecurityException Attempt to violate security.

StringIndexOutOfBoundsException Attempt to index outside the bounds of a string.

TypeNotPresentException Type not found.

UnsupportedOperationException An unsupported operation was encountered.

Table 9-2 The Unchecked Exceptions Defined in java.lang

09-ch09.indd 329 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 9

 330 Java: A Beginner’s Guide

Table 9-3 The Checked Exceptions Defined in java.lang

Exception Meaning

ClassNotFoundException Class not found.

CloneNotSupportedException Attempt to clone an object that does not implement the
Cloneable interface.

IllegalAccessException Access to a class is denied.

InstantiationException Attempt to create an object of an abstract class or interface.

InterruptedException One thread has been interrupted by another thread.

NoSuchFieldException A requested field does not exist.

NoSuchMethodException A requested method does not exist.

ReflectiveOperationException Superclass of reflection-related exceptions.

Q: I have heard that Java supports something called chained exceptions. What are they?

A: A number of years ago, chained exceptions were incorporated into Java. The chained
exception feature allows you to specify one exception as the underlying cause of another.
For example, imagine a situation in which a method throws an ArithmeticException
because of an attempt to divide by zero. However, the actual cause of the problem was
that an I/O error occurred, which caused the divisor to be set improperly. Although the
method must certainly throw an ArithmeticException, since that is the error that occurred,
you might also want to let the calling code know that the underlying cause was an I/O
error. Chained exceptions let you handle this, and any other situation, in which layers of
exceptions exist.

To allow chained exceptions, two constructors and two methods were added to
Throwable. The constructors are shown here:

Throwable(Throwable causeExc)
Throwable(String msg, Throwable causeExc)

In the first form, causeExc is the exception that causes the current exception. That is,
causeExc is the underlying reason that an exception occurred. The second form allows you
to specify a description at the same time that you specify a cause exception. These two
constructors were also added to the Error, Exception, and RuntimeException classes.

(continued)

Ask the Expert

09-ch09.indd 330 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 9

 Chapter 9: Exception Handling 331

Creating Exception Subclasses
Although Java’s built-in exceptions handle most common errors, Java’s exception handling
mechanism is not limited to these errors. In fact, part of the power of Java’s approach to
exceptions is its ability to handle exception types that you create. Through the use of custom
exceptions, you can manage errors that relate specifically to your application. Creating an
exception class is easy. Just define a subclass of Exception (which is, of course, a subclass of
Throwable). Your subclasses don’t need to actually implement anything—it is their existence in
the type system that allows you to use them as exceptions.

The Exception class does not define any methods of its own. It does, of course, inherit
those methods provided by Throwable. Thus, all exceptions, including those that you create,
have the methods defined by Throwable available to them. Of course, you can override one
or more of these methods in exception subclasses that you create.

Here is an example that creates an exception called NonIntResultException, which is
generated when the result of dividing two integer values produces a result with a fractional
component. NonIntResultException has two fields which hold the integer values; a constructor;
and an override of the toString() method, allowing the description of the exception to be
displayed using println().

// Use a custom exception.

// Create an exception.
class NonIntResultException extends Exception {
 int n;
 int d;

 NonIntResultException(int i, int j) {
 n = i;
 d = j;
 }

The chained exception methods added to Throwable are getCause() and initCause().
These methods are shown here:

Throwable getCause()
Throwable initCause(Throwable causeExc)

The getCause() method returns the exception that underlies the current exception. If there is
no underlying exception, null is returned. The initCause() method associates causeExc with
the invoking exception and returns a reference to the exception. Thus, you can associate a
cause with an exception after the exception has been created. In general, initCause() is used
to set a cause for legacy exception classes that don’t support the two additional constructors
described earlier.

Chained exceptions are not something that every program will need. However, in cases
in which knowledge of an underlying cause is useful, they offer an elegant solution.

09-ch09.indd 331 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 9

 332 Java: A Beginner’s Guide

 public String toString() {
 return "Result of " + n + " / " + d +
 " is non-integer.";
 }
}

class CustomExceptDemo {
 public static void main(String[] args) {

 // Here, numer contains some odd values.
 int[] numer = { 4, 8, 15, 32, 64, 127, 256, 512 };
 int[] denom = { 2, 0, 4, 4, 0, 8 };

 for(int i=0; i<numer.length; i++) {
 try {
 if((numer[i]%2) != 0)
 throw new
 NonIntResultException(numer[i], denom[i]);

 System.out.println(numer[i] + " / " +
 denom[i] + " is " +
 numer[i]/denom[i]);
 }
 catch (ArithmeticException exc) {
 // catch the exception
 System.out.println("Can't divide by Zero!");
 }
 catch (ArrayIndexOutOfBoundsException exc) {
 // catch the exception
 System.out.println("No matching element found.");
 }
 catch (NonIntResultException exc) {
 System.out.println(exc);
 }
 }
 }
}

The output from the program is shown here:

4 / 2 is 2
Can't divide by Zero!
Result of 15 / 4 is non-integer.
32 / 4 is 8
Can't divide by Zero!
Result of 127 / 8 is non-integer.
No matching element found.
No matching element found.

09-ch09.indd 332 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 9

 Chapter 9: Exception Handling 333

Try This 9-1

QueueFullException.java
QueueEmptyException.java
FixedQueue.java
QExcDemo.java

 Adding Exceptions to the Queue Class
In this project, you will create two exception classes that can
be used by the queue classes developed by Project 8-1. They
will indicate the queue-full and queue-empty error conditions.
These exceptions can be thrown by the put() and get() methods,
respectively. For the sake of simplicity, this project will add these

exceptions to the FixedQueue class, but you can easily incorporate them into the other queue
classes from Project 8-1.

 1. You will create two files that will hold the queue exception classes. Call the first file
QueueFullException.java and enter into it the following:

// An exception for queue-full errors.
public class QueueFullException extends Exception {
 int size;

 QueueFullException(int s) { size = s; }

 public String toString() {
 return "\nQueue is full. Maximum size is " +
 size;
 }
}

Q: When should I use exception handling in a program? When should I create my own
custom exception classes?

A: Since the Java API makes extensive use of exceptions to report errors, nearly all real-world
programs will make use of exception handling. This is the part of exception handling that
most new Java programmers find easy. It is harder to decide when and how to use your
own custom-made exceptions. In general, errors can be reported in two ways: return values
and exceptions. When is one approach better than the other? Simply put, in Java, exception
handling should be the norm. Certainly, returning an error code is a valid alternative in some
cases, but exceptions provide a more powerful, structured way to handle errors. They are the
way professional Java programmers handle errors in their code.

Ask the Expert

(continued)

09-ch09.indd 333 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 9

 334 Java: A Beginner’s Guide

 A QueueFullException will be generated when an attempt is made to store an item in an
already full queue.

 2. Create the second file QueueEmptyException.java and enter into it the following:

// An exception for queue-empty errors.
public class QueueEmptyException extends Exception {

 public String toString() {
 return "\nQueue is empty.";
 }
}

 A QueueEmptyException will be generated when an attempt is made to remove an
element from an empty queue.

 3. Modify the FixedQueue class so that it throws exceptions when an error occurs, as shown
here. Put it in a file called FixedQueue.java.

// A fixed-size queue class for characters that uses exceptions.
class FixedQueue implements ICharQ {
 private char[] q; // this array holds the queue
 private int putloc, getloc; // the put and get indices

 // Construct an empty queue given its size.
 public FixedQueue(int size) {
 q = new char[size]; // allocate memory for queue
 putloc = getloc = 0;
 }

 // Put a character into the queue.
 public void put(char ch)
 throws QueueFullException {

 if(putloc==q.length)
 throw new QueueFullException(q.length);

 q[putloc++] = ch;
 }

 // Get a character from the queue.
 public char get()
 throws QueueEmptyException {

 if(getloc == putloc)
 throw new QueueEmptyException();

 return q[getloc++];
 }
}

09-ch09.indd 334 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 9

 Chapter 9: Exception Handling 335

 Notice that two steps are required to add exceptions to FixedQueue. First, get() and put()
must have a throws clause added to their declarations. Second, when an error occurs, these
methods throw an exception. Using exceptions allows the calling code to handle the error
in a rational fashion. You might recall that the previous versions simply reported the error.
Throwing an exception is a much better approach.

 4. To try the updated FixedQueue class, use the QExcDemo class shown here. Put it into
a file called QExcDemo.java:

// Demonstrate the queue exceptions.
class QExcDemo {
 public static void main(String[] args) {
 FixedQueue q = new FixedQueue(10);
 char ch;
 int i;

 try {
 // overrun the queue
 for(i=0; i < 11; i++) {
 System.out.print("Attempting to store : " +
 (char) ('A' + i));
 q.put((char) ('A' + i));
 System.out.println(" - OK");
 }
 System.out.println();
 }
 catch (QueueFullException exc) {
 System.out.println(exc);
 }
 System.out.println();

 try {
 // over-empty the queue
 for(i=0; i < 11; i++) {
 System.out.print("Getting next char: ");
 ch = q.get();
 System.out.println(ch);
 }
 }
 catch (QueueEmptyException exc) {
 System.out.println(exc);
 }
 }
}

(continued)

09-ch09.indd 335 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 9

 336 Java: A Beginner’s Guide

 5. Since FixedQueue implements the ICharQ interface, which defines the two queue
methods get() and put(), ICharQ will need to be changed to reflect the throws clause.
Here is the updated ICharQ interface. Remember, this must be in a file by itself called
ICharQ.java.

// A character queue interface that throws exceptions.
public interface ICharQ {
 // Put a character into the queue.
 void put(char ch) throws QueueFullException;

 // Get a character from the queue.
 char get() throws QueueEmptyException;
}

 6. Now, compile the updated ICharQ.java file. Then, compile FixedQueue.java,
QueueFullException.java, QueueEmptyException.java, and QExcDemo.java.
Finally, run QExcDemo. You will see the following output:

Attempting to store : A – OK
Attempting to store : B – OK
Attempting to store : C – OK
Attempting to store : D – OK
Attempting to store : E – OK
Attempting to store : F – OK
Attempting to store : G – OK
Attempting to store : H – OK
Attempting to store : I – OK
Attempting to store : J – OK
Attempting to store : K
Queue is full. Maximum size is 10

Getting next char: A
Getting next char: B
Getting next char: C
Getting next char: D
Getting next char: E
Getting next char: F
Getting next char: G
Getting next char: H
Getting next char: I
Getting next char: J
Getting next char:
Queue is empty.

09-ch09.indd 336 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 9

 Chapter 9: Exception Handling 337

 Chapter 9 Self Test
 1. What class is at the top of the exception hierarchy?

 2. Briefly explain how to use try and catch.

 3. What is wrong with this fragment?

// ...
vals[18] = 10;
catch (ArrayIndexOutOfBoundsException exc) {
 // handle error
}

 4. What happens if an exception is not caught?

 5. What is wrong with this fragment?

class A extends Exception { ...

class B extends A { ...

// ...

try {
 // ...
}
catch (A exc) { ... }
catch (B exc) { ... }

 6. Can an inner catch rethrow an exception to an outer catch?

 7. The finally block is the last bit of code executed before your program ends. True or False?
Explain your answer.

 8. What type of exceptions must be explicitly declared in a throws clause of a method?

 9. What is wrong with this fragment?

class MyClass { // ... }
// ...
throw new MyClass();

 10. In question 3 of the Chapter 6 Self Test, you created a Stack class. Add custom exceptions
to your class that report stack full and stack empty conditions.

 11. What are the three ways that an exception can be generated?

 12. What are the two direct subclasses of Throwable?

 13. What is the multi-catch feature?

 14. Should your code typically catch exceptions of type Error?

✓

09-ch09.indd 337 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter
Blind Folio: xxiv

00-FM.indd 24 12/11/21 9:20 PM

This page intentionally left blank

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10
Blind Folio: 339

Chapter 10
Using I/O

10-ch10.indd 339 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 340 Java: A Beginner’s Guide

Key Skills & Concepts

● Understand the stream

● Know the difference between byte and character streams

● Know Java’s byte stream classes

● Know Java’s character stream classes

● Know the predefined streams

● Use byte streams

● Use byte streams for file I/O

● Automatically close a file by using try-with-resources

● Read and write binary data

● Use random-access files

● Use character streams

● Use character streams for file I/O

● Apply Java’s type wrappers to convert numeric strings

Since the beginning of this book, you have been using parts of the Java I/O system, such as
println(). However, you have been doing so without much formal explanation. Because

the Java I/O system is based upon a hierarchy of classes, it was not possible to present its
theory and details without first discussing classes, inheritance, and exceptions. Now it is time
to examine Java’s approach to I/O in detail.

Be forewarned, Java’s I/O system is quite large, containing many classes, interfaces, and
methods. Part of the reason for its size is that Java defines two complete I/O systems: one for
byte I/O and the other for character I/O. It won’t be possible to discuss every aspect of Java’s
I/O here. (An entire book could easily be dedicated to Java’s I/O system!) This chapter will,
however, introduce you to many important and commonly used features. Fortunately, Java’s
I/O system is cohesive and consistent; once you understand its fundamentals, the rest of the
I/O system is easy to master.

Before we begin, an important point needs to be made. The I/O classes described in this
chapter support text-based console I/O and file I/O. They are not used to create graphical user

10-ch10.indd 340 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 Chapter 10: Using I/O 341

interfaces (GUIs). Thus, you will not use them to create windowed applications, for example.
However, Java does include substantial support for building graphical user interfaces. The basics
of GUI programming are found in Chapter 17, which offers an introduction to Swing, Java’s
most widely used GUI toolkit.

Java’s I/O Is Built upon Streams
Java programs perform I/O through streams. An I/O stream is an abstraction that either produces
or consumes information. A stream is linked to a physical device by the Java I/O system.
All streams behave in the same manner, even if the actual physical devices they are linked to
differ. Thus, the same I/O classes and methods can be applied to different types of devices. For
example, the same methods that you use to write to the console can also be used to write to a
disk file. Java implements I/O streams within class hierarchies defined in the java.io package.

Byte Streams and Character Streams
Modern versions of Java define two types of I/O streams: byte and character. (The original
version of Java defined only the byte stream, but character streams were quickly added.)
Byte streams provide a convenient means for handling input and output of bytes. They are
used, for example, when reading or writing binary data. They are especially helpful when
working with files. Character streams are designed for handling the input and output of
characters. They use Unicode and, therefore, can be internationalized. Also, in some cases,
character streams are more efficient than byte streams.

The fact that Java defines two different types of streams makes the I/O system quite large
because two separate sets of class hierarchies (one for bytes, one for characters) are needed.
The sheer number of I/O classes can make the I/O system appear more intimidating than it
actually is. Just remember, for the most part, the functionality of byte streams is paralleled by
that of the character streams.

One other point: At the lowest level, all I/O is still byte-oriented. The character-based
streams simply provide a convenient and efficient means for handling characters.

The Byte Stream Classes
Byte streams are defined by using two class hierarchies. At the top of these are two abstract
classes: InputStream and OutputStream. InputStream defines the characteristics common
to byte input streams and OutputStream describes the behavior of byte output streams.

From InputStream and OutputStream are created several concrete subclasses that offer
varying functionality and handle the details of reading and writing to various devices, such as
disk files. The non-deprecated byte stream classes in java.io are shown in Table 10-1. Don’t
be overwhelmed by the number of different classes. Once you can use one byte stream, the
others are easy to master.

10-ch10.indd 341 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 342 Java: A Beginner’s Guide

Byte Stream Class Meaning

BufferedInputStream Buffered input stream

BufferedOutputStream Buffered output stream

ByteArrayInputStream Input stream that reads from a byte array

ByteArrayOutputStream Output stream that writes to a byte array

DataInputStream An input stream that contains methods for reading the Java
standard data types

DataOutputStream An output stream that contains methods for writing the Java
standard data types

FileInputStream Input stream that reads from a file

FileOutputStream Output stream that writes to a file

FilterInputStream Implements InputStream

FilterOutputStream Implements OutputStream

InputStream Abstract class that describes stream input

ObjectInputStream Input stream for objects

ObjectOutputStream Output stream for objects

OutputStream Abstract class that describes stream output

PipedInputStream Input pipe

PipedOutputStream Output pipe

PrintStream Output stream that contains print() and println()

PushbackInputStream Input stream that allows bytes to be returned to the stream

SequenceInputStream Input stream that is a combination of two or more input streams that
will be read sequentially, one after the other

Table 10-1 The Non-Deprecated Byte Stream Classes in java.io

The Character Stream Classes
Character streams are defined by using two class hierarchies topped by these two abstract classes:
Reader and Writer. Reader is used for input, and Writer is used for output. Concrete classes
derived from Reader and Writer operate on Unicode character streams.

From Reader and Writer are derived several concrete subclasses that handle various I/O
situations. In general, the character-based classes parallel the byte-based classes. The character
stream classes in java.io are shown in Table 10-2.

10-ch10.indd 342 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 Chapter 10: Using I/O 343

The Predefined Streams
As you know, all Java programs automatically import the java.lang package. This package
defines a class called System, which encapsulates several aspects of the run-time environment.
Among other things, it contains three predefined stream variables, called in, out, and err. These
fields are declared as public, final, and static within System. This means that they can be used
by any other part of your program and without reference to a specific System object.

System.out refers to the standard output stream. By default, this is the console. System.in
refers to standard input, which is by default the keyboard. System.err refers to the standard
error stream, which is also the console by default. However, these streams can be redirected to
any compatible I/O device.

System.in is an object of type InputStream; System.out and System.err are objects of
type PrintStream. These are byte streams, even though they are typically used to read and
write characters from and to the console. The reason they are byte and not character streams
is that the predefined streams were part of the original specification for Java, which did not
include the character streams. As you will see, it is possible to wrap these within character-
based streams if desired.

Table 10-2 The Character Stream I/O Classes in java.io

Character Stream Class Meaning

BufferedReader Buffered input character stream

BufferedWriter Buffered output character stream

CharArrayReader Input stream that reads from a character array

CharArrayWriter Output stream that writes to a character array

FileReader Input stream that reads from a file

FileWriter Output stream that writes to a file

FilterReader Filtered reader

FilterWriter Filtered writer

InputStreamReader Input stream that translates bytes to characters

LineNumberReader Input stream that counts lines

OutputStreamWriter Output stream that translates characters to bytes

PipedReader Input pipe

PipedWriter Output pipe

PrintWriter Output stream that contains print() and println()

PushbackReader Input stream that allows characters to be returned to the input stream

Reader Abstract class that describes character stream input

StringReader Input stream that reads from a string

StringWriter Output stream that writes to a string

Writer Abstract class that describes character stream output

10-ch10.indd 343 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 344 Java: A Beginner’s Guide

Using the Byte Streams
We will begin our examination of Java’s I/O with the byte streams. As explained, at the top
of the byte stream hierarchy are the InputStream and OutputStream classes. Table 10-3
shows the methods in InputStream, and Table 10-4 shows the methods in OutputStream.

Table 10-3 The Methods Defined by InputStream

Method Description
int available() Returns the number of bytes of input currently available for reading.

void close() Closes the input source. Subsequent read attempts will generate
an IOException.

void mark(int numBytes) Places a mark at the current point in the input stream that will
remain valid until numBytes bytes are read.

boolean markSupported() Returns true if mark()/reset() are supported by the invoking stream.

static InputStream nullInputStream() Returns an open, but null stream, which is a stream that contains
no data. Thus, the stream is always at the end of the stream and no
input can be obtained. The stream can, however, be closed.

int read() Returns an integer representation of the next available byte of input. –1
is returned when an attempt is made to read at the end of the stream.

int read(byte[] buffer) Attempts to read up to buffer.length bytes into buffer and returns the
actual number of bytes that were successfully read. –1 is returned
when an attempt is made to read at the end of the stream.

int read(byte[] buffer, int offset,
 int numBytes)

Attempts to read up to numBytes bytes into buffer starting at
buffer[offset], returning the number of bytes successfully read. –1 is
returned when an attempt is made to read at the end of the stream.

byte[] readAllBytes() Reads and returns, in the form of an array of bytes, all bytes
available in the stream. An attempt to read at the end of the stream
results in an empty array.

byte[] readNBytes(int numBytes) Attempts to read numBytes bytes, returning the result in a byte
array. If the end of the stream is reached before numBytes bytes
have been read, then the returned array will contain less than
numBytes bytes.

int readNBytes(byte[] buffer, int offset,
 int numBytes)

Attempts to read up to numBytes bytes into buffer starting at
buffer[offset], returning the number of bytes successfully read.
An attempt to read at the end of the stream results in zero bytes
being read.

void reset() Resets the input pointer to the previously set mark.

long skip(long numBytes) Ignores (that is, skips) numBytes bytes of input, returning the number
of bytes actually ignored.

void skipNBytes(long numBytes) Ignores (that is, skips) numBytes of input. Throws EOFException if
the end of the stream is reached before numBytes are skipped, or
IOException if an I/O error occurs.

long transferTo(OutputStream outStrm) Copies the contents of the invoking stream to outStrm, returning the
number of bytes copied.

10-ch10.indd 344 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 Chapter 10: Using I/O 345

In general, the methods in InputStream and OutputStream can throw an IOException on
error. The methods defined by these two abstract classes are available to all of their subclasses.
Thus, they form a minimal set of I/O functions that all byte streams will have.

Reading Console Input
Originally, the only way to perform console input was to use a byte stream, and much
Java code still uses the byte streams exclusively. Today, you can use byte or character streams.
For commercial code, the preferred method of reading console input is to use a character-
oriented stream. Doing so makes your program easier to internationalize and easier to
maintain. It is also more convenient to operate directly on characters rather than converting
back and forth between characters and bytes. However, for sample programs, simple utility
programs for your own use, and applications that deal with raw keyboard input, using the
byte streams is acceptable. For this reason, console I/O using byte streams is examined here.

Because System.in is an instance of InputStream, you automatically have access to the
methods defined by InputStream. This means that, for example, you can use the read() method
to read bytes from System.in. There are three versions of read(), which are shown here:

int read() throws IOException
int read(byte[] data) throws IOException
int read(byte[] data, int start, int max) throws IOException

In Chapter 3, you saw how to use the first version of read() to read a single character from
the keyboard (from System.in). It returns –1 when an attempt is made to read at the end of the
stream. The second version reads bytes from the input stream and puts them into data until
either the array is full, the end of stream is reached, or an error occurs. It returns the number of
bytes read, or –1 when an attempt is made to read at the end of the stream. The third version
reads input into data beginning at the location specified by start. Up to max bytes are stored.

Table 10-4 The Methods Defined by OutputStream

Method Description

void close() Closes the output stream. Subsequent write attempts will generate
an IOException.

void flush() Causes any output that has been buffered to be sent to its
destination. That is, it flushes the output buffer.

static OutputStream
 nullOutputStream()

Returns an open, but null output stream, which is a stream to which
no output is written. The stream can, however, be closed.

void write(int b) Writes a single byte to an output stream. Note that the parameter
is an int, which allows you to call write() with expressions without
having to cast them back to byte.

void write(byte[] buffer) Writes a complete array of bytes to an output stream.

void write(byte[] buffer, int offset,
 int numBytes)

Writes a subrange of numBytes bytes from the array buffer,
beginning at buffer[offset].

10-ch10.indd 345 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 346 Java: A Beginner’s Guide

It returns the number of bytes read, or –1 when an attempt is made to read at the end of the
stream. All throw an IOException when an error occurs.

Here is a program that demonstrates reading an array of bytes from System.in. Notice
that any I/O exceptions that might be generated are simply thrown out of main(). Such an
approach is common when reading from the console, but you can handle these types of errors
yourself, if you choose.

// Read an array of bytes from the keyboard.

import java.io.*;

class ReadBytes {
 public static void main(String[] args)
 throws IOException {
 byte[] data = new byte[10];

 System.out.println("Enter some characters.");
 System.in.read(data);
 System.out.print("You entered: ");
 for(int i=0; i < data.length; i++)
 System.out.print((char) data[i]);
 }
}

Here is a sample run:

Enter some characters.
Read Bytes
You entered: Read Bytes

Writing Console Output
As is the case with console input, Java originally provided only byte streams for console
output. Java 1.1 added character streams. For the most portable code, character streams are
recommended. Because System.out is a byte stream, however, byte-based console output is
still widely used. In fact, all of the programs in this book up to this point have used it! Thus,
it is examined here.

Console output is most easily accomplished with print() and println(), with which you
are already familiar. These methods are defined by the class PrintStream (which is the type
of the object referenced by System.out). Even though System.out is a byte stream, it is still
acceptable to use this stream for simple console output.

Since PrintStream is an output stream derived from OutputStream, it also implements
the low-level method write(). Thus, it is possible to write to the console by using write().
The simplest form of write() defined by PrintStream is shown here:

void write(int byteval)

Read an array of bytes
from the keyboard.

10-ch10.indd 346 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 Chapter 10: Using I/O 347

This method writes the byte specified by byteval to the file. Although byteval is declared as
an integer, only the low-order 8 bits are written. Here is a short example that uses write() to
output the character X followed by a new line:

// Demonstrate System.out.write().
class WriteDemo {
 public static void main(String[] args) {
 int b;

 b = 'X';
 System.out.write(b);
 System.out.write('\n');
 }
}

You will not often use write() to perform console output (although it might be useful in
some situations), since print() and println() are substantially easier to use.

PrintStream supplies two additional output methods: printf() and format(). Both give
you detailed control over the precise format of data that you output. For example, you can
specify the number of decimal places displayed, a minimum field width, or the format of a
negative value. Although we won’t be using these methods in the examples in this book, they
are features that you will want to look into as you advance in your knowledge of Java.

Reading and Writing Files Using Byte Streams
Java provides a number of classes and methods that allow you to read and write files. Of
course, the most common types of files are disk files. In Java, all files are byte-oriented, and
Java provides methods to read and write bytes from and to a file. Thus, reading and writing
files using byte streams is very common. However, Java allows you to wrap a byte-oriented
file stream within a character-based object, which is shown later in this chapter.

To create a byte stream linked to a file, use FileInputStream or FileOutputStream.
To open a file, simply create an object of one of these classes, specifying the name of the
file as an argument to the constructor. Once the file is open, you can read from or write to it.

Inputting from a File
A file is opened for input by creating a FileInputStream object. Here is a commonly
used constructor:

FileInputStream(String fileName) throws FileNotFoundException

Here, fileName specifies the name of the file you want to open. If the file does not exist, then
FileNotFoundException is thrown. FileNotFoundException is a subclass of IOException.

To read from a file, you can use read(). The version that we will use is shown here:

int read() throws IOException

Each time it is called, read() reads a single byte from the file and returns it as an integer value.
It returns –1 when the end of the file is encountered. It throws an IOException when an error
occurs. Thus, this version of read() is the same as the one used to read from the console.

Write a byte to the screen.

10-ch10.indd 347 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 348 Java: A Beginner’s Guide

When you are done with a file, you must close it by calling close(). Its general form is
shown here:

void close() throws IOException

Closing a file releases the system resources allocated to the file, allowing them to be used by
another file. Failure to close a file can result in “memory leaks” because of unused resources
remaining allocated.

The following program uses read() to input and display the contents of a text file, the
name of which is specified as a command-line argument. Notice how the try/catch blocks
handle I/O errors that might occur.

/* Display a text file.

 To use this program, specify the name
 of the file that you want to see.
 For example, to see a file called TEST.TXT,
 use the following command line.

 java ShowFile TEST.TXT
*/

import java.io.*;

class ShowFile {
 public static void main(String[] args)
 {
 int i;
 FileInputStream fin;

 // First make sure that a file has been specified.
 if(args.length != 1) {
 System.out.println("Usage: ShowFile File");
 return;
 }

 try {
 fin = new FileInputStream(args[0]);
 } catch(FileNotFoundException exc) {
 System.out.println("File Not Found");
 return;
 }

 try {
 // read bytes until EOF is encountered
 do {
 i = fin.read();
 if(i != -1) System.out.print((char) i);
 } while(i != -1);
 } catch(IOException exc) {

Open the file.

Read from the file.

When i equals –1, the end of
the file has been reached.

10-ch10.indd 348 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 Chapter 10: Using I/O 349

 System.out.println("Error reading file.");
 }

 try {
 fin.close();
 } catch(IOException exc) {
 System.out.println("Error closing file.");
 }
 }
}

Notice that the preceding example closes the file stream after the try block that reads the
file has completed. Although this approach is occasionally useful, Java supports a variation that
is often a better choice. The variation is to call close() within a finally block. In this approach,
all of the methods that access the file are contained within a try block, and the finally block
is used to close the file. This way, no matter how the try block terminates, the file is closed.
Assuming the preceding example, here is how the try block that reads the file can be recoded:

try {
 do {
 i = fin.read();
 if(i != -1) System.out.print((char) i);
 } while(i != -1);
} catch(IOException exc) {
 System.out.println("Error Reading File");
} finally {
 // Close file on the way out of the try block.
 try {
 fin.close();
 } catch(IOException exc) {
 System.out.println("Error Closing File");
 }
}

One advantage to this approach in general is that if the code that accesses a file terminates
because of some non-I/O-related exception, the file is still closed by the finally block.
Although not an issue in this example (or most other example programs) because the program
simply ends if an unexpected exception occurs, this can be a major source of trouble in larger
programs. Using finally avoids this trouble.

Sometimes it’s easier to wrap the portions of a program that open the file and access the
file within a single try block (rather than separating the two), and then use a finally block to
close the file. For example, here is another way to write the ShowFile program:

/* This variation wraps the code that opens and
 accesses the file within a single try block.
 The file is closed by the finally block.
*/

import java.io.*;

Close the file.

Use a finally clause to
close the file.

10-ch10.indd 349 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 350 Java: A Beginner’s Guide

class ShowFile {
 public static void main(String[] args)
 {
 int i;
 FileInputStream fin = null;

 // First, confirm that a file name has been specified.
 if(args.length != 1) {
 System.out.println("Usage: ShowFile filename");
 return;
 }

 // The following code opens a file, reads characters until EOF
 // is encountered, and then closes the file via a finally block.
 try {
 fin = new FileInputStream(args[0]);

 do {
 i = fin.read();
 if(i != -1) System.out.print((char) i);
 } while(i != -1);

 } catch(FileNotFoundException exc) {
 System.out.println("File Not Found.");
 } catch(IOException exc) {
 System.out.println("An I/O Error Occurred");
 } finally {
 // Close file in all cases.
 try {
 if(fin != null) fin.close();
 } catch(IOException exc) {
 System.out.println("Error Closing File");
 }
 }
 }
}

In this approach, notice that fin is initialized to null. Then, in the finally block, the file is closed
only if fin is not null. This works because fin will be non-null only if the file was successfully
opened. Thus, close() will not be called if an exception occurs while opening the file.

It is possible to make the try/catch sequence in the preceding example a bit more compact.
Because FileNotFoundException is a subclass of IOException, it need not be caught separately.
For example, this catch clause could be used to catch both exceptions, eliminating the need to
catch FileNotFoundException separately. In this case, the standard exception message, which
describes the error, is displayed.

...
} catch(IOException exc) {
 System.out.println("I/O Error: " + exc);
} finally {
...

Here, fin is initialized to null.

Close fin only if it is not null.

10-ch10.indd 350 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 Chapter 10: Using I/O 351

In this approach, any error, including an error opening the file, will simply be handled by
the single catch statement. Because of its compactness, this approach is used by most of the
I/O examples in this book. Be aware, however, that it will not be appropriate in cases in which
you want to deal separately with a failure to open a file, such as might be caused if a user
mistypes a file name. In such a situation, you might want to prompt for the correct name, for
example, before entering a try block that accesses the file.

Writing to a File
To open a file for output, create a FileOutputStream object. Here are two commonly used
constructors:

FileOutputStream(String fileName) throws FileNotFoundException
FileOutputStream(String fileName, boolean append)
 throws FileNotFoundException

If the file cannot be created, then FileNotFoundException is thrown. In the first form,
when an output file is opened, any preexisting file by the same name is destroyed. In the
second form, if append is true, then output is appended to the end of the file. Otherwise,
the file is overwritten.

To write to a file, you will use the write() method. Its simplest form is shown here:

void write(int byteval) throws IOException

This method writes the byte specified by byteval to the file. Although byteval is declared as an
integer, only the low-order 8 bits are written to the file. If an error occurs during writing, an
IOException is thrown.

Once you are done with an output file, you must close it using close(), shown here:

void close() throws IOException

Closing a file releases the system resources allocated to the file, allowing them to be used
by another file. It also helps ensure that any output remaining in an output buffer is actually
written to the physical device.

Q: I noticed that read() returns –1 when the end of the file has been reached, but that it
does not have a special return value for a file error. Why not?

A: In Java, errors are handled by exceptions. Thus, if read(), or any other I/O method, returns
a value, it means that no error has occurred. This is a much cleaner way than handling I/O
errors by using special error codes.

Ask the Expert

10-ch10.indd 351 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 352 Java: A Beginner’s Guide

The following example copies a text file. The names of the source and destination files are
specified on the command line.

/* Copy a text file.
 To use this program, specify the name
 of the source file and the destination file.
 For example, to copy a file called FIRST.TXT
 to a file called SECOND.TXT, use the following
 command line.

 java CopyFile FIRST.TXT SECOND.TXT
*/

import java.io.*;

class CopyFile {
 public static void main(String[] args) throws IOException
 {
 int i;
 FileInputStream fin = null;
 FileOutputStream fout = null;

 // First, make sure that both files has been specified.
 if(args.length != 2) {
 System.out.println("Usage: CopyFile from to");
 return;
 }

 // Copy a File.
 try {
 // Attempt to open the files.
 fin = new FileInputStream(args[0]);
 fout = new FileOutputStream(args[1]);

 do {
 i = fin.read();
 if(i != -1) fout.write(i);
 } while(i != -1);

 } catch(IOException exc) {
 System.out.println("I/O Error: " + exc);
 } finally {
 try {
 if(fin != null) fin.close();
 } catch(IOException exc) {
 System.out.println("Error Closing Input File");
 }
 try {
 if(fout != null) fout.close();
 } catch(IOException exc) {
 System.out.println("Error Closing Output File");

Read bytes from one file
and write them to another.

10-ch10.indd 352 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 Chapter 10: Using I/O 353

 }
 }
 }
}

Automatically Closing a File
In the preceding section, the example programs have made explicit calls to close() to close
a file once it is no longer needed. This is the way files have been closed since Java was first
created. As a result, this approach is widespread in existing code. Furthermore, this approach
is still valid and useful. However, beginning with JDK 7, Java has included a feature that offers
another, more streamlined way to manage resources, such as file streams, by automating the
closing process. It is based on another version of the try statement called try-with-resources,
and is sometimes referred to as automatic resource management. The principal advantage
of try-with-resources is that it prevents situations in which a file (or other resource) is
inadvertently not released after it is no longer needed. As explained, forgetting to close a file
can result in memory leaks and could lead to other problems.

The try-with-resources statement has this general form:

try (resource-specification) {
 // use the resource
}

Often, resource-specification is a statement that declares and initializes a resource, such as a file. In
this case, it consists of a variable declaration in which the variable is initialized with a reference to
the object being managed. When the try block ends, the resource is automatically released. In the
case of a file, this means that the file is automatically closed. (Thus, there is no need to call close()
explicitly.) A try -with-resources statement can also include catch and finally clauses.

NOTE
Beginning with JDK 9, it is also possible for the resource specification of the try to
consist of a variable that has been declared and initialized earlier in the program.
However, that variable must be effectively final, which means that it has not been
assigned a new value after being given its initial value.

The try-with-resources statement can be used only with those resources that implement
the AutoCloseable interface defined by java.lang. This interface defines the close() method.
AutoCloseable is inherited by the Closeable interface defined in java.io. Both interfaces are
implemented by the stream classes, including FileInputStream and FileOutputStream. Thus,
try-with-resources can be used when working with I/O streams, including file streams.

As a first example of automatically closing a file, here is a reworked version of the
ShowFile program that uses it:

/* This version of the ShowFile program uses a try-with-resources
 statement to automatically close a file when it is no longer needed.
*/

import java.io.*;

10-ch10.indd 353 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 354 Java: A Beginner’s Guide

class ShowFile {
 public static void main(String[] args)
 {
 int i;

 // First, make sure that a file name has been specified.
 if(args.length != 1) {
 System.out.println("Usage: ShowFile filename");
 return;
 }

 // The following code uses try-with-resources to open a file
 // and then automatically close it when the try block is left.
 try(FileInputStream fin = new FileInputStream(args[0])) {

 do {
 i = fin.read();
 if(i != -1) System.out.print((char) i);
 } while(i != -1);

 } catch(IOException exc) {
 System.out.println("I/O Error: " + exc);
 }
 }
}

In the program, pay special attention to how the file is opened within the try-with-
resources statement:

try(FileInputStream fin = new FileInputStream(args[0])) {

Notice how the resource-specification portion of the try declares a FileInputStream called fin,
which is then assigned a reference to the file opened by its constructor. Thus, in this version
of the program the variable fin is local to the try block, being created when the try is entered.
When the try is exited, the file associated with fin is automatically closed by an implicit call to
close(). You don’t need to call close() explicitly, which means that you can’t forget to close the
file. This is a key advantage of automatic resource management.

It is important to understand that a resource declared in the try statement is implicitly
final. This means that you can’t assign to the resource after it has been created. Also, the scope
of the resource is limited to the try-with-resources statement.

Before moving on, it is useful to mention that beginning with JDK 10, you can use local
variable type inference to specify the type of the resource declared in a try-with-resources
statement. To do so, specify the type as var. When this is done, the type of the resource is
inferred from its initializer. For example, the try statement in the preceding program can now
be written like this:

try(var fin = new FileInputStream(args[0])) {

Here, fin is inferred to be of type FileInputStream because that is the type of its initializer.
To enable readers working in Java environments that predate JDK 10 to compile the examples,

A try-with-resources block.

10-ch10.indd 354 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 Chapter 10: Using I/O 355

try-with-resource statements in the remainder of this book will not make use of type inference.
Of course, going forward, you should consider using it in your own code.

You can manage more than one resource within a single try statement. To do so, simply
separate each resource specification with a semicolon. The following program shows an
example. It reworks the CopyFile program shown earlier so that it uses a single try-with-
resources statement to manage both fin and fout.

/* A version of CopyFile that uses try-with-resources.
 It demonstrates two resources (in this case files) being
 managed by a single try statement.

*/

import java.io.*;

class CopyFile {
 public static void main(String[] args) throws IOException
 {
 int i;

 // First, confirm that both files have been specified.
 if(args.length != 2) {
 System.out.println("Usage: CopyFile from to");
 return;
 }

 // Open and manage two files via the try statement.
 try (FileInputStream fin = new FileInputStream(args[0]);
 FileOutputStream fout = new FileOutputStream(args[1]))
 {

 do {
 i = fin.read();
 if(i != -1) fout.write(i);
 } while(i != -1);

 } catch(IOException exc) {
 System.out.println("I/O Error: " + exc);
 }
 }
}

In this program, notice how the input and output files are opened within the try:

try (FileInputStream fin = new FileInputStream(args[0]);
 FileOutputStream fout = new FileOutputStream(args[1]))
{

After this try block ends, both fin and fout will have been closed. If you compare this version of
the program to the previous version, you will see that it is much shorter. The ability to streamline
source code is a side-benefit of try-with-resources.

Manage two resources.

10-ch10.indd 355 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 356 Java: A Beginner’s Guide

There is one other aspect to try-with-resources that needs to be mentioned. In general, when
a try block executes, it is possible that an exception inside the try block will lead to another
exception that occurs when the resource is closed in a finally clause. In the case of a “normal”
try statement, the original exception is lost, being preempted by the second exception. However,
with a try-with-resources statement, the second exception is suppressed. It is not, however, lost.
Instead, it is added to the list of suppressed exceptions associated with the first exception. The
list of suppressed exceptions can be obtained by use of the getSuppressed() method defined
by Throwable.

Because of its advantages, try-with-resources will be used by the remaining examples in
this chapter. However, it is still very important that you are familiar with the traditional approach
shown earlier in which close() is called explicitly. There are several reasons for this. First, you
may encounter legacy code that still relies on the traditional approach. It is important that all Java
programmers be fully versed in and comfortable with the traditional approach when maintaining
or updating this older code. Second, you might need to work in an environment that predates JDK
7. In such a situation, the try-with-resources statement will not be available and the traditional
approach must be employed. Finally, there may be cases in which explicitly closing a resource is
more appropriate than the automated approach. The foregoing notwithstanding, if you are using
a modern version of Java, then you will usually want to use the automated approach to resource
management. It offers a streamlined, robust alternative to the traditional approach.

Reading and Writing Binary Data
So far, we have just been reading and writing bytes containing ASCII characters, but it is
possible—indeed, common—to read and write other types of data. For example, you might
want to create a file that contains ints, doubles, or shorts. To read and write binary values of
the Java primitive types, you will use DataInputStream and DataOutputStream.

DataOutputStream implements the DataOutput interface. This interface defines
methods that write all of Java’s primitive types to a file. It is important to understand that this
data is written using its internal, binary format, not its human-readable text form. Several
commonly used output methods for Java’s primitive types are shown in Table 10-5. Each
throws an IOException on failure.

Output Method Purpose

void writeBoolean(boolean val) Writes the boolean specified by val.

void writeByte(int val) Writes the low-order byte specified by val.

void writeChar(int val) Writes the value specified by val as a char.

void writeDouble(double val) Writes the double specified by val.

void writeFloat(float val) Writes the float specified by val.

void writeInt(int val) Writes the int specified by val.

void writeLong(long val) Writes the long specified by val.

void writeShort(int val) Writes the value specified by val as a short.

Table 10-5 Commonly Used Output Methods Defined by DataOutputStream

10-ch10.indd 356 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 Chapter 10: Using I/O 357

Here is the constructor for DataOutputStream. Notice that it is built upon an instance
of OutputStream.

DataOutputStream(OutputStream outputStream)

Here, outputStream is the stream to which data is written. To write output to a file, you can use
the object created by FileOutputStream for this parameter.

DataInputStream implements the DataInput interface, which provides methods for reading
all of Java’s primitive types. These methods are shown in Table 10-6, and each can throw an
IOException. DataInputStream uses an InputStream instance as its foundation, overlaying
it with methods that read the various Java data types. Remember that DataInputStream reads
data in its binary format, not its human-readable form. The constructor for DataInputStream
is shown here:

DataInputStream(InputStream inputStream)

Here, inputStream is the stream that is linked to the instance of DataInputStream being created.
To read input from a file, you can use the object created by FileInputStream for this parameter.

Here is a program that demonstrates DataOutputStream and DataInputStream. It writes
and then reads back various types of data to and from a file.

// Write and then read back binary data.

import java.io.*;

class RWData {
 public static void main(String[] args)
 {
 int i = 10;
 double d = 1023.56;
 boolean b = true;

Table 10-6 Commonly Used Input Methods Defined by DataInputStream

Input Method Purpose

boolean readBoolean() Reads a boolean.

byte readByte() Reads a byte.

char readChar() Reads a char.

double readDouble() Reads a double.

float readFloat() Reads a float.

int readInt() Reads an int.

long readLong() Reads a long.

short readShort() Reads a short.

10-ch10.indd 357 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 358 Java: A Beginner’s Guide

 // Write some values.
 try (DataOutputStream dataOut =
 new DataOutputStream(new FileOutputStream("testdata")))
 {
 System.out.println("Writing " + i);
 dataOut.writeInt(i);

 System.out.println("Writing " + d);
 dataOut.writeDouble(d);

 System.out.println("Writing " + b);
 dataOut.writeBoolean(b);

 System.out.println("Writing " + 12.2 * 7.4);
 dataOut.writeDouble(12.2 * 7.4);
 }
 catch(IOException exc) {
 System.out.println("Write error.");
 return;
 }

 System.out.println();

 // Now, read them back.
 try (DataInputStream dataIn =
 new DataInputStream(new FileInputStream("testdata")))
 {
 i = dataIn.readInt();
 System.out.println("Reading " + i);

 d = dataIn.readDouble();
 System.out.println("Reading " + d);

 b = dataIn.readBoolean();
 System.out.println("Reading " + b);

 d = dataIn.readDouble();
 System.out.println("Reading " + d);
 }
 catch(IOException exc) {
 System.out.println("Read error.");
 }
 }
}

The output from the program is shown here.

Writing 10
Writing 1023.56
Writing true
Writing 90.28

Write binary data.

Read binary data.

10-ch10.indd 358 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 Chapter 10: Using I/O 359

Try This 10-1

Reading 10
Reading 1023.56
Reading true
Reading 90.28

 A File Comparison Utility
This project develops a simple, yet useful file comparison utility. It works
by opening both files to be compared and then reading and comparing each

corresponding set of bytes. If a mismatch is found, the files differ. If the end of each file is
reached at the same time and if no mismatches have been found, then the files are the same.
Notice that it uses a try-with-resources statement to automatically close the files.

 1. Create a file called CompFiles.java.

 2. Into CompFiles.java, add the following program:

/*
 Try This 10-1

 Compare two files.

 To use this program, specify the names
 of the files to be compared on the command line.

 java CompFile FIRST.TXT SECOND.TXT
*/

import java.io.*;

class CompFiles {
 public static void main(String[] args)
 {
 int i=0, j=0;

 // First make sure that both files have been specified.
 if(args.length !=2) {
 System.out.println("Usage: CompFiles f1 f2");
 return;
 }

 // Compare the files.
 try (FileInputStream f1 = new FileInputStream(args[0]);
 FileInputStream f2 = new FileInputStream(args[1]))
 {
 // Check the contents of each file.

CompFiles.java

(continued)

10-ch10.indd 359 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 360 Java: A Beginner’s Guide

 do {
 i = f1.read();
 j = f2.read();
 if(i != j) break;
 } while(i != -1 && j != -1);

 if(i != j)
 System.out.println("Files differ.");
 else
 System.out.println("Files are the same.");
 } catch(IOException exc) {
 System.out.println("I/O Error: " + exc);
 }
 }
}

 3. To try CompFiles, first copy CompFiles.java to a file called temp. Then, try this command
line:

java CompFiles CompFiles.java temp

 The program will report that the files are the same. Next, compare CompFiles.java to
CopyFile.java (shown earlier) using this command line:

java CompFiles CompFiles.java CopyFile.java

 These files differ and CompFiles will report this fact.

 4. On your own, try enhancing CompFiles with various options. For example, add an option
that ignores the case of letters. Another idea is to have CompFiles display the position within
the file where the files differ.

Random-Access Files
Up to this point, we have been using sequential files, which are files that are accessed in
a strictly linear fashion, one byte after another. However, Java also allows you to access
the contents of a file in random order. To do this, you will use RandomAccessFile, which
encapsulates a random-access file. RandomAccessFile is not derived from InputStream or
OutputStream. Instead, it implements the interfaces DataInput and DataOutput, which
define the basic I/O methods. It also supports positioning requests—that is, you can position
the file pointer within the file. The constructor that we will be using is shown here:

RandomAccessFile(String fileName, String access)
 throws FileNotFoundException

Here, the name of the file is passed in fileName and access determines what type of file access
is permitted. If it is "r", the file can be read but not written. If it is "rw", the file is opened
in read-write mode. (The access parameter also supports "rws" and "rwd", which (for local
devices) ensure that changes to the file are immediately written to the physical device.)

10-ch10.indd 360 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 Chapter 10: Using I/O 361

The method seek(), shown here, is used to set the current position of the file pointer within
the file:

void seek(long newPos) throws IOException

Here, newPos specifies the new position, in bytes, of the file pointer from the beginning of the
file. After a call to seek(), the next read or write operation will occur at the new file position.

Because RandomAccessFile implements the DataInput and DataOuput interfaces,
methods to read and write the primitive types, such as readInt() and writeDouble(), are
available. The read() and write() methods are also supported.

Here is an example that demonstrates random-access I/O. It writes six doubles to a file and
then reads them back in nonsequential order.

// Demonstrate random access files.

import java.io.*;

class RandomAccessDemo {
 public static void main(String[] args)
 {
 double[] data = { 19.4, 10.1, 123.54, 33.0, 87.9, 74.25 };
 double d;

 // Open and use a random access file.
 try (RandomAccessFile raf = new RandomAccessFile("random.dat", "rw"))
 {
 // Write values to the file.
 for(int i=0; i < data.length; i++) {
 raf.writeDouble(data[i]);
 }

 // Now, read back specific values
 raf.seek(0); // seek to first double
 d = raf.readDouble();
 System.out.println("First value is " + d);

 raf.seek(8); // seek to second double
 d = raf.readDouble();
 System.out.println("Second value is " + d);

 raf.seek(8 * 3); // seek to fourth double
 d = raf.readDouble();
 System.out.println("Fourth value is " + d);

 System.out.println();

 // Now, read every other value.
 System.out.println("Here is every other value: ");
 for(int i=0; i < data.length; i+=2) {
 raf.seek(8 * i); // seek to ith double
 d = raf.readDouble();
 System.out.print(d + " ");

Open random-access file.

Use seek() to set
the file pointer.

10-ch10.indd 361 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 362 Java: A Beginner’s Guide

 }
 }
 catch(IOException exc) {
 System.out.println("I/O Error: " + exc);
 }
 }
}

The output from the program is shown here.

First value is 19.4
Second value is 10.1
Fourth value is 33.0

Here is every other value:
19.4 123.54 87.9

Notice how each value is located. Since each double value is 8 bytes long, each value starts on
an 8-byte boundary. Thus, the first value is located at zero, the second begins at byte 8, the third
starts at byte 16, and so on. Thus, to read the fourth value, the program seeks to location 24.

Using Java’s Character-Based Streams
As the preceding sections have shown, Java’s byte streams are both powerful and flexible.
However, they are not the ideal way to handle character-based I/O. For this purpose, Java
defines the character stream classes. At the top of the character stream hierarchy are the abstract
classes Reader and Writer. Table 10-7 shows the methods in Reader, and Table 10-8 shows
the methods in Writer. Most of the methods can throw an IOException on error. The methods
defined by these two abstract classes are available to all of their subclasses. Thus, they form a
minimal set of I/O functions that all character streams will have.

Table 10-7 The Methods Defined by Reader (continued)

Method Description

abstract void close() Closes the input source. Subsequent read attempts will generate
an IOException.

void mark(int numChars) Places a mark at the current point in the input stream that will
remain valid until numChars characters are read.

boolean markSupported() Returns true if mark()/reset() are supported on this stream.

static Reader nullReader() Returns an open, but null reader, which is a reader that contains
no data. Thus, the reader is always at the end of the stream and
no input can be obtained. The reader can, however, be closed.

int read() Returns an integer representation of the next available character
from the invoking input stream. –1 is returned when an attempt is
made to read at the end of the stream.

10-ch10.indd 362 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 Chapter 10: Using I/O 363

Method Description

int read(char[] buffer) Attempts to read up to buffer.length characters into buffer and
returns the actual number of characters that were successfully
read. –1 is returned when an attempt is made to read at the end
of the stream.

abstract int read(char[] buffer,
 int offset,
 int numChars)

Attempts to read up to numChars characters into buffer starting
at buffer[offset], returning the number of characters successfully
read. –1 is returned when an attempt is made to read at the end
of the stream.

int read(CharBuffer buffer) Attempts to fill the buffer specified by buffer, returning the number
of characters successfully read. –1 is returned when an attempt is
made to read at the end of the stream. CharBuffer is a class that
encapsulates a sequence of characters, such as a string.

boolean ready() Returns true if the next input request will not wait. Otherwise,
it returns false.

void reset() Resets the input pointer to the previously set mark.

long skip(long numChars) Skips over numChars characters of input, returning the number
of characters actually skipped.

long transferTo(Writer writer) Copies the contents of the invoking reader to writer, returning the
number of characters copied.

Table 10-7 The Methods Defined by Reader

Method Description

Writer append(char ch) Appends ch to the end of the invoking output stream. Returns a
reference to the invoking stream.

Writer append(CharSequence chars) Appends chars to the end of the invoking output stream. Returns
a reference to the invoking stream. CharSequence is an interface
that defines read-only operations on a sequence of characters.

Writer append(CharSequence chars,
 int begin, int end)

Appends the sequence of chars starting at begin and stopping
with end to the end of the invoking output stream. Returns a
reference to the invoking stream. CharSequence is an interface
that defines read-only operations on a sequence of characters.

abstract void close() Closes the output stream. Subsequent write attempts will
generate an IOException.

abstract void flush() Causes any output that has been buffered to be sent to its
destination. That is, it flushes the output buffer.

static Writer nullWriter() Returns an open, but null output writer, which is a writer to
which no output is written. The writer can, however, be closed.

Table 10-8 The Methods Defined by Writer (continued)

10-ch10.indd 363 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 364 Java: A Beginner’s Guide

Console Input Using Character Streams
For code that will be internationalized, inputting from the console using Java’s character-based
streams is a better, more convenient way to read characters from the keyboard than is using
the byte streams. However, since System.in is a byte stream, you will need to wrap System.in
inside some type of Reader. The best class for reading console input is BufferedReader, which
supports a buffered input stream. A commonly used constructor is shown here:

BufferedReader(Reader inputReader)

Here, inputReader is the stream that is linked to the instance of BufferedReader that is being
created. You cannot construct a BufferedReader directly from System.in because System.in is
an InputStream, not a Reader. Instead, you must first convert it into a character stream. To do
this, you will use InputStreamReader.

Beginning with JDK 17, the precise way you obtain an InputStreamReader linked to
System.in has changed. In the past, it was common to use the following InputStreamReader
constructor for this purpose:

InputStreamReader(InputStream inputStream)

Because System.in refers to an object of type InputStream, it can be used for inputStream.
Thus, in the past, the following line of code shows a commonly used approach to creating a
BufferedReader connected to the keyboard:

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

After this statement executes, br is a character-based stream that is linked to the console
through System.in.

However, beginning with JDK 17, it is now recommended to explicitly specify the charset
associated with the console when creating the InputStreamReader. A charset defines the

Method Description

void write(int ch) Writes a single character to the invoking output stream. Note
that the parameter is an int, which allows you to call write()
with expressions without having to cast them back to char.

void write(char[] buffer) Writes a complete array of characters to the invoking output
stream.

abstract void write(char[] buffer,
 int offset,
 int numChars)

Writes a subrange of numChars characters from the array
buffer, beginning at buffer[offset] to the invoking output stream.

void write(String str) Writes str to the invoking output stream.

void write(String str, int offset,
 int numChars)

Writes a subrange of numChars characters from the array str,
beginning at the specified offset.

Table 10-8 The Methods Defined by Writer

10-ch10.indd 364 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 Chapter 10: Using I/O 365

way that bytes are mapped to characters. Normally, when a charset is not specified, the default
charset of the JVM is used. However, in the case of the console, the charset used for console
input may differ from this default charset. Thus, it is now recommended that this form of
InputStreamReader constructor be used:

InputStreamReader(InputStream inputStream, Charset charset)

For charset, use the charset associated with the console. This charset is returned by calling
charset(), which is a new method added by JDK 17 to the Console class. You obtain a
Console object by calling System.console(). It returns reference to the console, or null if no
console is present. Therefore, today the following sequence shows one way to wrap System.in
in a BufferedReader:

Console con = System.console(); // get the console
if(con==null) return; // if no console present, return

BufferedReader br = new
 BufferedReader(new InputStreamReader(System.in, con.charset()));

Of course, in cases in which you know that a console will be present, the sequence can be
shortened to:

BufferedReader br = new
 BufferedReader(new InputStreamReader(System.in,
 System.console().charset()));

Because a console is (obviously) required to run the examples in this book, this is the form we
will use.

Reading Characters
Characters can be read from System.in using the read() method defined by BufferedReader
in much the same way as they were read using byte streams. Here are three versions of read()
supported by BufferedReader.

int read() throws IOException
int read(char[] data) throws IOException
int read(char[] data, int start, int max) throws IOException

The first version of read() reads a single Unicode character. It returns –1 when an attempt
is made to read at the end of the stream. The second version reads characters from the input
stream and puts them into data until either the array is full, the end of stream is reached, or an
error occurs. It returns the number of characters read or –1 when an attempt is made to read at
the end of the stream. The third version reads input into data beginning at the location specified
by start. Up to max characters are stored. It returns the number of characters read or –1 when an
attempt is made to read at the end of the stream. All throw an IOException on error.

The following program demonstrates read() by reading characters from the console until the
user types a period. Notice that any I/O exceptions that might be generated are simply thrown out

10-ch10.indd 365 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 366 Java: A Beginner’s Guide

of main(). As mentioned earlier in this chapter, such an approach is common when reading from
the console. Of course, you can handle these types of errors under program control, if you choose.

// Use a BufferedReader to read characters from the console.
import java.io.*;

class ReadChars {
 public static void main(String[] args)
 throws IOException
 {
 char c;

 BufferedReader br = new BufferedReader(new
 InputStreamReader(System.in, System.console().charset()));

 System.out.println("Enter characters, period to quit.");

 // read characters
 do {
 c = (char) br.read();
 System.out.println(c);
 } while(c != '.');
 }
}

Here is a sample run:

Enter characters, period to quit.
One Two.
O
n
e

T
w
o
.

Reading Strings
To read a string from the keyboard, use the version of readLine() that is a member of the
BufferedReader class. Its general form is shown here:

String readLine() throws IOException

It returns a String object that contains the characters read. It returns null if an attempt is made
to read when at the end of the stream.

The following program demonstrates BufferedReader and the readLine() method. The
program reads and displays lines of text until you enter the word “stop”.

// Read a string from console using a BufferedReader.
import java.io.*;

Create BufferedReader
linked to System.in.

10-ch10.indd 366 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 Chapter 10: Using I/O 367

class ReadLines {
 public static void main(String[] args)
 throws IOException
 {
 // create a BufferedReader using System.in
 BufferedReader br = new BufferedReader(new
 InputStreamReader(System.in, System.console().charset()));

 String str;

 System.out.println("Enter lines of text.");
 System.out.println("Enter 'stop' to quit.");
 do {
 str = br.readLine();
 System.out.println(str);
 } while(!str.equals("stop"));
 }
}

Use readLine() from BufferedReader
to read a line of text.

Q: In the preceding discussion, you mentioned the Console class. What else can you tell
me about it?

A: The Console class was added a number of years ago (by JDK 6), and it is used to read
from and write to the console. Console is primarily a convenience class because most of its
functionality is available through System.in and System.out. However, its use can simplify
some types of console interactions, especially when reading strings from the console.

Console supplies no constructors. As explained, a Console object is obtained by calling
System.console(). If a console is available, then a reference to it is returned. Otherwise,
null is returned. A console may not be available in all cases, such as when a program runs
as a background task. Therefore, if null is returned, no console I/O is possible.

Console offers a useful array of functionality that you will find interesting to explore.
For example, it defines several methods that perform I/O, such as readLine() and printf().
It also defines a method called readPassword(), which can be used to obtain a password.
It lets your application read a password without echoing what is typed. As you have
seen, beginning with JDK 17 Console provides the charset() method, which obtains
the charset used by the console. You can also obtain a reference to the Reader and the
Writer that are attached to the console. Using the Reader obtained from Console offers an
alternative to wrapping System.in in an InputStreamReader. However, this book uses the
InputStreamReader approach because it explicitly demonstrates the way that byte streams
and characters streams can interact.

Ask the Expert

10-ch10.indd 367 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 368 Java: A Beginner’s Guide

Console Output Using Character Streams
While it is still permissible to use System.out to write to the console under Java, its use is
recommended mostly for debugging purposes or for sample programs such as those found in this
book. For real-world programs, the preferred method of writing to the console when using Java is
through a PrintWriter stream. PrintWriter is one of the character-based classes. As explained,
using a character-based class for console output makes it easier to internationalize your program.

PrintWriter defines several constructors. The one we will use is shown here:

PrintWriter(OutputStream outputStream, boolean flushingOn)

Here, outputStream is an object of type OutputStream and flushingOn controls whether
Java flushes the output stream every time a println() method (among others) is called. If
flushingOn is true, flushing automatically takes place. If false, flushing is not automatic.

PrintWriter supports the print() and println() methods for all types including Object.
Thus, you can use these methods in just the same way as they have been used with System.out.
If an argument is not a primitive type, the PrintWriter methods will call the object’s toString()
method and then print out the result.

To write to the console using a PrintWriter, specify System.out for the output stream
and flush the stream after each call to println(). For example, this line of code creates
a PrintWriter that is connected to console output.

PrintWriter pw = new PrintWriter(System.out, true);

The following application illustrates using a PrintWriter to handle console output.

// Demonstrate PrintWriter.
import java.io.*;

public class PrintWriterDemo {
 public static void main(String[] args) {
 PrintWriter pw = new PrintWriter(System.out, true);
 int i = 10;
 double d = 123.65;

 pw.println("Using a PrintWriter.");
 pw.println(i);
 pw.println(d);

 pw.println(i + " + " + d + " is " + (i+d));
 }
}

The output from this program is

Using a PrintWriter.
10
123.65
10 + 123.65 is 133.65

Create a PrintWriter linked
to System.out.

10-ch10.indd 368 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 Chapter 10: Using I/O 369

Remember that there is nothing wrong with using System.out to write simple text output
to the console when you are learning Java or debugging your programs. However, using
a PrintWriter will make your real-world applications easier to internationalize. Since no
advantage is to be gained by using a PrintWriter in the sample programs shown in this book,
for convenience we will continue to use System.out to write to the console.

File I/O Using Character Streams
Although byte-oriented file handling is often the most common, it is possible to use character-
based streams for this purpose. The advantage to the character streams is that they operate
directly on Unicode characters. Thus, if you want to store Unicode text, the character streams
are certainly your best option. In general, to perform character-based file I/O, you will use the
FileReader and FileWriter classes.

Using a FileWriter
FileWriter creates a Writer that you can use to write to a file. Two commonly used
constructors are shown here:

FileWriter(String fileName) throws IOException
FileWriter(String fileName, boolean append) throws IOException

Here, fileName is the full path name of a file. If append is true, then output is appended to
the end of the file. Otherwise, the file is overwritten. Either throws an IOException on failure.
FileWriter is derived from OutputStreamWriter and Writer. Thus, it has access to the
methods defined by these classes.

Here is a simple key-to-disk utility that reads lines of text entered at the keyboard and
writes them to a file called "test.txt". Text is read until the user enters the word "stop". It uses
a FileWriter to output to the file.

// A simple key-to-disk utility that demonstrates a FileWriter.
import java.io.*;

class KtoD {
 public static void main(String[] args)
 {

 String str;
 BufferedReader br = new BufferedReader(new
 InputStreamReader(System.in, System.console().charset()));

 System.out.println("Enter text ('stop' to quit).");

10-ch10.indd 369 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 370 Java: A Beginner’s Guide

 try (FileWriter fw = new FileWriter("test.txt"))
 {
 do {
 System.out.print(": ");
 str = br.readLine();

 if(str.compareTo("stop") == 0) break;

 str = str + "\r\n"; // add newline
 fw.write(str);
 } while(str.compareTo("stop") != 0);
 } catch(IOException exc) {
 System.out.println("I/O Error: " + exc);
 }
 }
}

Using a FileReader
The FileReader class creates a Reader that you can use to read the contents of a file.
A commonly used constructor is shown here:

FileReader(String fileName) throws FileNotFoundException

Here, fileName is the full path name of a file. It throws a FileNotFoundException if the file
does not exist. FileReader is derived from InputStreamReader and Reader. Thus, it has
access to the methods defined by these classes.

The following program creates a simple disk-to-screen utility that reads a text file called
"test.txt" and displays its contents on the screen. Thus, it is the complement of the key-to-disk
utility shown in the previous section.

// A simple disk-to-screen utilitiy that demonstrates a FileReader.

import java.io.*;

class DtoS {
 public static void main(String[] args) {
 String s;

 // Create and use a FileReader wrapped in a BufferedReader.
 try (BufferedReader br = new BufferedReader(new FileReader("test.txt")))

Create a FileWriter.

Write strings to the file.

Create a File Reader.

10-ch10.indd 370 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 Chapter 10: Using I/O 371

 {
 while((s = br.readLine()) != null) {
 System.out.println(s);
 }
 } catch(IOException exc) {
 System.out.println("I/O Error: " + exc);
 }
 }
}

In this example, notice that the FileReader is wrapped in a BufferedReader. This gives it
access to readLine(). Also, closing the BufferedReader, br in this case, automatically closes
the file.

Read lines from the file and
display them on the screen.

Q: I have heard about another I/O package called NIO. Can you tell me about it?

A: Originally called New I/O, NIO was added to Java several years ago. It supports a channel-
based approach to I/O operations. The NIO classes are contained in java.nio and its
subordinate packages, such as java.nio.channels and java.nio.charset.

NIO is built on two foundational items: buffers and channels. A buffer holds data.
A channel represents an open connection to an I/O device, such as a file or a socket. In
general, to use the new I/O system, you obtain a channel to an I/O device and a buffer to
hold data. You then operate on the buffer, inputting or outputting data as needed.

Two other entities used by NIO are charsets and selectors. A charset defines the way
that bytes are mapped to characters. You can encode a sequence of characters into bytes
using an encoder. You can decode a sequence of bytes into characters using a decoder.
A selector supports key-based, non-blocking, multiplexed I/O. In other words, selectors
enable you to perform I/O through multiple channels. Selectors are most applicable to
socket-backed channels.

Beginning with JDK 7, NIO was substantially enhanced, so much so that the term
NIO.2 is often used. The improvements included three new packages (java.nio.file,
java.nio.file.attribute, and java.nio.file.spi); several new classes, interfaces, and methods;
and direct support for stream-based I/O. The additions greatly expanded the ways in which
NIO can be used, especially with files.

It is important to understand that NIO does not replace the I/O classes found in java.io,
which are discussed in this chapter. Instead, the NIO classes are designed to supplement
the standard I/O system, offering an alternative approach, which can be beneficial in some
circumstances.

Ask the Expert

10-ch10.indd 371 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 372 Java: A Beginner’s Guide

Using Java’s Type Wrappers
to Convert Numeric Strings

Before leaving the topic of I/O, we will examine a technique useful when reading numeric
strings. As you know, Java’s println() method provides a convenient way to output various
types of data to the console, including numeric values of the built-in types, such as int and
double. Thus, println() automatically converts numeric values into their human-readable
form. However, methods like read() do not provide a parallel functionality that reads and
converts a string containing a numeric value into its internal, binary format. For example,
there is no version of read() that reads a string such as "100" and then automatically converts
it into its corresponding binary value that is able to be stored in an int variable. Instead, Java
provides various other ways to accomplish this task. Perhaps the easiest is to use one of Java’s
type wrappers.

Java’s type wrappers are classes that encapsulate, or wrap, the primitive types. Type
wrappers are needed because the primitive types are not objects. This limits their use to some
extent. For example, a primitive type cannot be passed by reference. To address this kind of
need, Java provides classes that correspond to each of the primitive types.

The type wrappers are Double, Float, Long, Integer, Short, Byte, Character, and
Boolean. These classes offer a wide array of methods that allow you to fully integrate the
primitive types into Java’s object hierarchy. As a side benefit, the numeric wrappers also define
methods that convert a numeric string into its corresponding binary equivalent. Several of these
conversion methods are shown here. Each returns a binary value that corresponds to the string.

Wrapper Conversion Method

Double static double parseDouble(String str) throws NumberFormatException

Float static float parseFloat(String str) throws NumberFormatException

Long static long parseLong(String str) throws NumberFormatException

Integer static int parseInt(String str) throws NumberFormatException

Short static short parseShort(String str) throws NumberFormatException

Byte static byte parseByte(String str) throws NumberFormatException

The integer wrappers also offer a second parsing method that allows you to specify the radix.
The parsing methods give us an easy way to convert a numeric value, read as a string from

the keyboard or a text file, into its proper internal format. For example, the following program
demonstrates parseInt() and parseDouble(). It averages a list of numbers entered by the user.
It first asks the user for the number of values to be averaged. It then reads that number using
readLine() and uses parseInt() to convert the string into an integer. Next, it inputs the values,
using parseDouble() to convert the strings into their double equivalents.

// This program averages a list of numbers entered by the user.
import java.io.*;

10-ch10.indd 372 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 Chapter 10: Using I/O 373

class AvgNums {
 public static void main(String[] args)
 throws IOException
 {
 // create a BufferedReader using System.in
 BufferedReader br = new BufferedReader(new
 InputStreamReader(System.in, System.console().charset()));

 String str;
 int n;
 double sum = 0.0;
 double avg, t;

 System.out.print("How many numbers will you enter: ");
 str = br.readLine();
 try {
 n = Integer.parseInt(str);
 }
 catch(NumberFormatException exc) {
 System.out.println("Invalid format");
 n = 0;
 }

 System.out.println("Enter " + n + " values.");
 for(int i=0; i < n ; i++) {
 System.out.print(": ");
 str = br.readLine();
 try {
 t = Double.parseDouble(str);
 } catch(NumberFormatException exc) {
 System.out.println("Invalid format");
 t = 0.0;
 }
 sum += t;
 }
 avg = sum / n;
 System.out.println("Average is " + avg);
 }
}

Here is a sample run:

How many numbers will you enter: 5
Enter 5 values.
: 1.1
: 2.2
: 3.3
: 4.4
: 5.5
Average is 3.3

Convert string to int.

Convert string to double.

10-ch10.indd 373 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 374 Java: A Beginner’s Guide

Try This 10-2 Creating a Disk-Based Help System
In Try This 4-1, you created a Help class that displayed information about
Java’s control statements. In that implementation, the help information was

stored within the class itself, and the user selected help from a menu of numbered options.
Although this approach was fully functional, it is certainly not the ideal way of creating

a Help system. For example, to add to or change the help information, the source code of the
program needed to be modified. Also, the selection of the topic by number rather than by name
is tedious, and is not suitable for long lists of topics. Here, we will remedy these shortcomings
by creating a disk-based Help system.

The disk-based Help system stores help information in a help file. The help file is a standard
text file that can be changed or expanded at will, without changing the Help program. The user
obtains help about a topic by typing in its name. The Help system searches the help file for the
topic. If it is found, information about the topic is displayed.

 1. Create the help file that will be used by the Help system. The help file is a standard text file
that is organized like this:

#topic-name1
topic info

#topic-name2
topic info

.

.

.
#topic-nameN
topic info

Q: What else can the primitive type wrapper classes do?

A: The primitive type wrappers provide a number of methods that help integrate the primitive
types into the object hierarchy. For example, various storage mechanisms provided by
the Java library, including maps, lists, and sets, work only with objects. Thus, to store an
int, for example, in a list, it must be wrapped in an object. Also, all type wrappers have
a method called compareTo(), which compares the value contained within the wrapper;
equals(), which tests two values for equality; and methods that return the value of the
object in various forms. The topic of type wrappers is taken up again in Chapter 12, when
autoboxing is discussed.

Ask the Expert

FileHelp.java

10-ch10.indd 374 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 Chapter 10: Using I/O 375

 The name of each topic must be preceded by a #, and the topic name must be on a line of
its own. Preceding each topic name with a # allows the program to quickly find the start
of each topic. After the topic name are any number of information lines about the topic.
However, there must be a blank line between the end of one topic’s information and the start
of the next topic. Also, there must be no trailing spaces at the end of any help-topic lines.

 Here is a simple help file that you can use to try the disk-based Help system. It stores
information about Java’s control statements.

#if
if(condition) statement;
else statement;

#switch
switch(expression) { // traditional form
 case constant:
 statement sequence
 break;
 // ...
 }

#for
for(init; condition; iteration) statement;

#while
while(condition) statement;

#do
do {
 statement;
} while (condition);

#break
break; or break label;

#continue
continue; or continue label;

 Call this file helpfile.txt.

 2. Create a file called FileHelp.java.

 3. Begin creating the new Help class with these lines of code.

class Help {
 String helpfile; // name of help file

 Help(String fname) {
 helpfile = fname;
 }

(continued)

10-ch10.indd 375 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 376 Java: A Beginner’s Guide

 The name of the help file is passed to the Help constructor and stored in the instance variable
helpfile. Since each instance of Help will have its own copy of helpfile, each instance can
use a different file. Thus, you can create different sets of help files for different sets of topics.

 4. Add the helpOn() method shown here to the Help class. This method retrieves help on the
specified topic.

// Display help on a topic.
boolean helpOn(String what) {
 int ch;
 String topic, info;

 // Open the help file.
 try (BufferedReader helpRdr =
 new BufferedReader(new FileReader(helpfile)))
 {
 do {
 // read characters until a # is found
 ch = helpRdr.read();

 // now, see if topics match
 if(ch == '#') {
 topic = helpRdr.readLine();
 if(what.compareTo(topic) == 0) { // found topic
 do {
 info = helpRdr.readLine();
 if(info != null) System.out.println(info);
 } while((info != null) &&
 (info.compareTo("") != 0));
 return true;
 }
 }
 } while(ch != -1);
 }
 catch(IOException exc) {
 System.out.println("Error accessing help file.");
 return false;
 }
 return false; // topic not found
}

 The first thing to notice is that helpOn() handles all possible I/O exceptions itself and
does not include a throws clause. By handling its own exceptions, it prevents this burden
from being passed on to all code that uses it. Thus, other code can simply call helpOn()
without having to wrap that call in a try/catch block.

 The help file is opened using a FileReader that is wrapped in a BufferedReader. Since
the help file contains text, using a character stream allows the Help system to be more
efficiently internationalized.

10-ch10.indd 376 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 Chapter 10: Using I/O 377

 The helpOn() method works like this. A string containing the name of the topic is passed
in the what parameter. The help file is then opened. Then, the file is searched, looking for a
match between what and a topic in the file. Remember, in the file, each topic is preceded by
a #, so the search loop scans the file for #s. When it finds one, it then checks to see if the topic
following that # matches the one passed in what. If it does, the information associated with
that topic is displayed. If a match is found, helpOn() returns true. Otherwise, it returns false.

 5. The Help class also provides a method called getSelection(). It prompts the user for a
topic and returns the topic string entered by the user.

// Get a Help topic.
String getSelection() {
 String topic = "";

 BufferedReader br = new BufferedReader(
 new InputStreamReader(System.in, System.console().charset()));

 System.out.print("Enter topic: ");
 try {
 topic = br.readLine();
 }
 catch(IOException exc) {
 System.out.println("Error reading console.");
 }
 return topic;
}

 This method creates a BufferedReader attached to System.in. It then prompts for the name
of a topic, reads the topic, and returns it to the caller.

 6. The entire disk-based Help system is shown here:

/*
 Try This 10-2

 A help program that uses a disk file
 to store help information.
*/

import java.io.*;

/* The Help class opens a help file,
 searches for a topic, and then displays
 the information associated with that topic.
 Notice that it handles all I/O exceptions
 itself, avoiding the need for calling
 code to do so. */
class Help {
 String helpfile; // name of help file
 (continued)

10-ch10.indd 377 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 378 Java: A Beginner’s Guide

 Help(String fname) {
 helpfile = fname;
 }

 // Display help on a topic.
 boolean helpOn(String what) {
 int ch;
 String topic, info;

 // Open the help file.
 try (BufferedReader helpRdr =
 new BufferedReader(new FileReader(helpfile)))
 {
 do {
 // read characters until a # is found
 ch = helpRdr.read();

 // now, see if topics match
 if(ch == '#') {
 topic = helpRdr.readLine();
 if(what.compareTo(topic) == 0) { // found topic
 do {
 info = helpRdr.readLine();
 if(info != null) System.out.println(info);
 } while((info != null) &&
 (info.compareTo("") != 0));
 return true;
 }
 }
 } while(ch != -1);
 }
 catch(IOException exc) {
 System.out.println("Error accessing help file.");
 return false;
 }
 return false; // topic not found
 }

 // Get a Help topic.
 String getSelection() {
 String topic = "";

 BufferedReader br = new BufferedReader(
 new InputStreamReader(System.in, System.console().charset()));

 System.out.print("Enter topic: ");
 try {
 topic = br.readLine();

10-ch10.indd 378 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 Chapter 10: Using I/O 379

 }
 catch(IOException exc) {
 System.out.println("Error reading console.");
 }
 return topic;
 }
}

// Demonstrate the file-based Help system.
class FileHelp {
 public static void main(String[] args) {
 Help hlpobj = new Help("helpfile.txt");
 String topic;

 System.out.println("Try the help system. " +
 "Enter 'stop' to end.");
 do {
 topic = hlpobj.getSelection();

 if(!hlpobj.helpOn(topic))
 System.out.println("Topic not found.\n");

 } while(topic.compareTo("stop") != 0);
 }
}

Q: In addition to the parse methods defined by the primitive type wrappers, is there
another easy way to convert a numeric string entered at the keyboard into its
equivalent binary format?

A: Yes! Another way to convert a numeric string into its internal, binary format is to use one of
the methods defined by the Scanner class, packaged in java.util. Scanner reads formatted
(that is, human-readable) input and converts it into its binary form. Scanner can be used to
read input from a variety of sources, including the console and files. Therefore, you can use
Scanner to read a numeric string entered at the keyboard and assign its value to a variable.
Although Scanner contains far too many features to describe in detail, the following
illustrates its basic usage.

Ask the Expert

(continued)

10-ch10.indd 379 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 380 Java: A Beginner’s Guide

To use Scanner to read from the keyboard, you must first create a Scanner linked to
console input. To do this, you will use the following constructor:

Scanner(InputStream from)

This creates a Scanner that uses the stream specified by from as a source for input. You can
use this constructor to create a Scanner linked to console input, as shown here:

Scanner conin = new Scanner(System.in);

This works because System.in is an object of type InputStream. After this line executes,
conin can be used to read input from the keyboard.

Once you have created a Scanner, it is a simple matter to use it to read numeric input.
Here is the general procedure:

 1. Determine if a specific type of input is available by calling one of Scanner’s
hasNextX methods, where X is the type of data desired.

 2. If input is available, read it by calling one of Scanner’s nextX methods.

As the preceding indicates, Scanner defines two sets of methods that enable you to read
input. The first are the hasNext methods. These include methods such as hasNextInt() and
hasNextDouble(), for example. Each of the hasNext methods returns true if the desired
data type is the next available item in the data stream, and false otherwise. For example, calling
hasNextInt() returns true only if the next item in the stream is the human-readable form of
an integer. If the desired data is available, you can read it by calling one of Scanner’s next
methods, such as nextInt() or nextDouble(). These methods convert the human-readable
form of the data into its internal, binary representation and return the result. For example, to
read an integer, call nextInt().

The following sequence shows how to read an integer from the keyboard.

Scanner conin = new Scanner(System.in);
int i;

if (conin.hasNextInt()) i = conin.nextInt();

Using this code, if you enter the number 123 on the keyboard, then i will contain the value 123.
Technically, you can call a next method without first calling a hasNext method.

However, doing so is not usually a good idea. If a next method cannot find the type of
data it is looking for, it throws an InputMismatchException. For this reason, it is best to
first confirm that the desired type of data is available by calling a hasNext method before
calling its corresponding next method.

10-ch10.indd 380 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 10

 Chapter 10: Using I/O 381

 Chapter 10 Self Test
 1. Why does Java define both byte and character streams?

 2. Even though console input and output is text-based, why does Java still use byte streams for
this purpose?

 3. Show how to open a file for reading bytes.

 4. Show how to open a file for reading characters.

 5. Show how to open a file for random-access I/O.

 6. How can you convert a numeric string such as "123.23" into its binary equivalent?

 7. Write a program that copies a text file. In the process, have it convert all spaces into hyphens.
Use the byte stream file classes. Use the traditional approach to closing a file by explicitly
calling close().

 8. Rewrite the program described in question 7 so that it uses the character stream classes. This
time, use the try-with-resources statement to automatically close the file.

 9. What type of stream is System.in?

 10. What does the read() method of InputStream return when an attempt is made to read at
the end of the stream?

 11. What type of stream is used to read binary data?

 12. Reader and Writer are at the top of the ____________ class hierarchies.

 13. The try-with-resources statement is used for ___________ ____________ ____________.

 14. If you are using the traditional method of closing a file, then closing a file within a finally
block is generally a good approach. True or False?

 15. Can local variable type inference be used when declaring the resource in a try-with-resources
statement?

✓

10-ch10.indd 381 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter
Blind Folio: xxiv

00-FM.indd 24 12/11/21 9:20 PM

This page intentionally left blank

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11
Blind Folio: 383

Chapter 11
Multithreaded
Programming

11-ch11.indd 383 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 384 Java: A Beginner’s Guide

Key Skills & Concepts

● Understand multithreading fundamentals

● Know the Thread class and the Runnable interface

● Create a thread

● Create multiple threads

● Determine when a thread ends

● Use thread priorities

● Understand thread synchronization

● Use synchronized methods

● Use synchronized blocks

● Communicate between threads

● Suspend, resume, and stop threads

Although Java contains many innovative features, one of its most exciting is its built-in
support for multithreaded programming. A multithreaded program contains two or more

parts that can run concurrently. Each part of such a program is called a thread, and each thread
defines a separate path of execution. Thus, multithreading is a specialized form of multitasking.

Multithreading Fundamentals
There are two distinct types of multitasking: process-based and thread-based. It is important to
understand the difference between the two. A process is, in essence, a program that is executing.
Thus, process-based multitasking is the feature that allows your computer to run two or more
programs concurrently. For example, it is process-based multitasking that allows you to run the
Java compiler at the same time you are using a text editor or browsing the Internet. In process-
based multitasking, a program is the smallest unit of code that can be dispatched by the scheduler.

In a thread-based multitasking environment, the thread is the smallest unit of dispatchable
code. This means that a single program can perform two or more tasks at once. For instance,
a text editor can be formatting text at the same time that it is printing, as long as these two
actions are being performed by two separate threads. Although Java programs make use of
process-based multitasking environments, process-based multitasking is not under the control
of Java. Multithreaded multitasking is.

A principal advantage of multithreading is that it enables you to write very efficient programs
because it lets you utilize the idle time that is present in most programs. As you probably know,

11-ch11.indd 384 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 Chapter 11: Multithreaded Programming 385

most I/O devices, whether they be network ports, disk drives, or the keyboard, are much slower
than the CPU. Thus, a program will often spend a majority of its execution time waiting to send
or receive information to or from a device. By using multithreading, your program can execute
another task during this idle time. For example, while one part of your program is sending a file
over the Internet, another part can be reading keyboard input, and still another can be buffering
the next block of data to send.

As you probably know, over the past few years, multiprocessor and multicore systems have
become commonplace. Of course, single-processor systems are still in widespread use. It is
important to understand that Java’s multithreading features work in both types of systems. In a
single-core system, concurrently executing threads share the CPU, with each thread receiving a
slice of CPU time. Therefore, in a single-core system, two or more threads do not actually run
at the same time, but idle CPU time is utilized. However, in multiprocessor/multicore systems,
it is possible for two or more threads to actually execute simultaneously. In many cases, this
can further improve program efficiency and increase the speed of certain operations.

A thread can be in one of several states. It can be running. It can be ready to run as soon as
it gets CPU time. A running thread can be suspended, which is a temporary halt to its execution.
It can later be resumed. A thread can be blocked when waiting for a resource. A thread can be
terminated, in which case its execution ends and cannot be resumed.

Along with thread-based multitasking comes the need for a special type of feature called
synchronization, which allows the execution of threads to be coordinated in certain well-defined
ways. Java has a complete subsystem devoted to synchronization, and its key features are also
described here.

If you have programmed for operating systems such as Windows, then you are already
familiar with multithreaded programming. However, the fact that Java manages threads
through language elements makes multithreading especially convenient. Many of the details
are handled for you.

The Thread Class and Runnable Interface
Java’s multithreading system is built upon the Thread class and its companion interface,
Runnable. Both are packaged in java.lang. Thread encapsulates a thread of execution. To create
a new thread, your program will either extend Thread or implement the Runnable interface.

The Thread class defines several methods that help manage threads. Here are some of the
more commonly used ones (we will be looking at these more closely as they are used):

Method Meaning

final String getName() Obtains a thread’s name.

final int getPriority() Obtains a thread’s priority.

final boolean isAlive() Determines whether a thread is still running.

final void join() Waits for a thread to terminate.

void run() Entry point for the thread.

static void sleep(long milliseconds) Suspends a thread for a specified period of milliseconds.

void start() Starts a thread by calling its run() method.

11-ch11.indd 385 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 386 Java: A Beginner’s Guide

All processes have at least one thread of execution, which is usually called the main thread,
because it is the one that is executed when your program begins. Thus, the main thread is the
thread that all of the preceding example programs in the book have been using. From the main
thread, you can create other threads.

Creating a Thread
You create a thread by instantiating an object of type Thread. The Thread class encapsulates
an object that is runnable. As mentioned, Java defines two ways in which you can create a
runnable object:

● You can implement the Runnable interface.

● You can extend the Thread class.

Most of the examples in this chapter will use the approach that implements Runnable.
However, Try This 11-1 shows how to implement a thread by extending Thread. Remember:
Both approaches still use the Thread class to instantiate, access, and control the thread. The
only difference is how a thread-enabled class is created.

The Runnable interface abstracts a unit of executable code. You can construct a thread on
any object that implements the Runnable interface. Runnable defines only one method called
run(), which is declared like this:

public void run()

Inside run(), you will define the code that constitutes the new thread. It is important to
understand that run() can call other methods, use other classes, and declare variables just
like the main thread. The only difference is that run() establishes the entry point for another,
concurrent thread of execution within your program. This thread will end when run() returns.

After you have created a class that implements Runnable, you will instantiate an object of
type Thread on an object of that class. Thread defines several constructors. The one that we
will use first is shown here:

Thread(Runnable threadOb)

In this constructor, threadOb is an instance of a class that implements the Runnable interface.
This defines where execution of the thread will begin.

Once created, the new thread will not start running until you call its start() method, which
is declared within Thread. In essence, start() executes a call to run(). The start() method is
shown here:

void start()

Here is an example that creates a new thread and starts it running:

// Create a thread by implementing Runnable.

class MyThread implements Runnable {
 String thrdName;

Objects of MyThread can be run in
their own threads because MyThread
implements Runnable.

11-ch11.indd 386 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 Chapter 11: Multithreaded Programming 387

 MyThread(String name) {
 thrdName = name;
 }

 // Entry point of thread.
 public void run() {
 System.out.println(thrdName + " starting.");
 try {
 for(int count=0; count < 10; count++) {
 Thread.sleep(400);
 System.out.println("In " + thrdName +
 ", count is " + count);
 }
 }
 catch(InterruptedException exc) {
 System.out.println(thrdName + " interrupted.");
 }
 System.out.println(thrdName + " terminating.");
 }
}

class UseThreads {
 public static void main(String[] args) {
 System.out.println("Main thread starting.");

 // First, construct a MyThread object.
 MyThread mt = new MyThread("Child #1");

 // Next, construct a thread from that object.
 Thread newThrd = new Thread(mt);

 // Finally, start execution of the thread.
 newThrd.start();

 for(int i=0; i<50; i++) {
 System.out.print(".");
 try {
 Thread.sleep(100);
 }
 catch(InterruptedException exc) {
 System.out.println("Main thread interrupted.");
 }
 }

 System.out.println("Main thread ending.");
 }
}

Threads start executing here.

Create a runnable object.

Construct a thread on that object.

Start running the thread.

11-ch11.indd 387 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 388 Java: A Beginner’s Guide

Let’s look closely at this program. First, MyThread implements Runnable. This means
that an object of type MyThread is suitable for use as a thread and can be passed to the
Thread constructor.

Inside run(), a loop is established that counts from 0 to 9. Notice the call to sleep(). The
sleep() method causes the thread from which it is called to suspend execution for the specified
period of milliseconds. Its general form is shown here:

static void sleep(long milliseconds) throws InterruptedException

The number of milliseconds to suspend is specified in milliseconds. This method can throw an
InterruptedException. Thus, calls to it must be wrapped in a try block. The sleep() method
also has a second form, which allows you to specify the period in terms of milliseconds
and nanoseconds if you need that level of precision. In run(), sleep() pauses the thread for
400 milliseconds each time through the loop. This lets the thread run slow enough for you to
watch it execute.

Inside main(), a new Thread object is created by the following sequence of statements:

// First, construct a MyThread object.
MyThread mt = new MyThread("Child #1");

// Next, construct a thread from that object.
Thread newThrd = new Thread(mt);

// Finally, start execution of the thread.
newThrd.start();

As the comments suggest, first an object of MyThread is created. This object is then used to
construct a Thread object. This is possible because MyThread implements Runnable. Finally,
execution of the new thread is started by calling start(). This causes the child thread’s run()
method to begin. After calling start(), execution returns to main(), and it enters main()’s for
loop. Notice that this loop iterates 50 times, pausing 100 milliseconds each time through the loop.
Both threads continue running, sharing the CPU in single-CPU systems, until their loops finish.
The output produced by this program is as follows. Because of differences between computing
environments, the precise output that you see may differ slightly from that shown here:

Main thread starting.
.Child #1 starting.
...In Child #1, count is 0
....In Child #1, count is 1
....In Child #1, count is 2
...In Child #1, count is 3
....In Child #1, count is 4
....In Child #1, count is 5
....In Child #1, count is 6
...In Child #1, count is 7
....In Child #1, count is 8
....In Child #1, count is 9
Child #1 terminating.
............Main thread ending.

11-ch11.indd 388 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 Chapter 11: Multithreaded Programming 389

There is another point of interest to notice in this first threading example. To illustrate the
fact that the main thread and mt execute concurrently, it is necessary to keep main() from
terminating until mt is finished. Here, this is done through the timing differences between
the two threads. Because the calls to sleep() inside main()’s for loop cause a total delay of
5 seconds (50 iterations times 100 milliseconds), but the total delay within run()’s loop is only
4 seconds (10 iterations times 400 milliseconds), run() will finish approximately 1 second
before main(). As a result, both the main thread and mt will execute concurrently until mt
ends. Then, about 1 second later main() ends.

Although this use of timing differences to ensure that main() finishes last is sufficient
for this simple example, it is not something that you would normally use in practice. Java
provides much better ways of waiting for a thread to end. It is, however, sufficient for the
next few programs. Later in this chapter, you will see a better way for one thread to wait until
another completes.

One other point: In a multithreaded program, you often will want the main thread to be
the last thread to finish running. As a general rule, a program continues to run until all of
its threads have ended. Thus, having the main thread finish last is not a requirement. It is,
however, often a good practice to follow—especially when you are first learning about threads.

One Improvement and Two Simple Variations
The preceding program demonstrates the fundamentals of creating a Thread based on a
Runnable and then starting the thread. The approach shown in that program is perfectly valid
and is often exactly what you will want. However, two simple variations can make MyThread
more flexible and easier to use in some cases. Furthermore, you may find that these variations
are helpful when you create your own Runnable classes. It is also possible to make one
significant improvement to MyThread that takes advantage of another feature of the Thread
class. Let’s begin with the improvement.

In the preceding program, notice that an instance variable called thrdName is defined
by MyThread and is used to hold the name of the thread. However, there is no need for
MyThread to store the name of the thread since it is possible to give a name to a thread when
it is created. To do so, use this version of Thread’s constructor:

Thread(Runnable threadOb, String name)

Q: You state that in a multithreaded program, one will often want the main thread to
finish last. Can you explain?

A: The main thread is a convenient place to perform the orderly shutdown of your program,
such as the closing of files. It also provides a well-defined exit point for your program.
Therefore, it often makes sense for it to finish last. Fortunately, as you will soon see, it is
trivially easy for the main thread to wait until the child threads have completed.

Ask the Expert

11-ch11.indd 389 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 390 Java: A Beginner’s Guide

Here, name becomes the name of the thread. You can obtain the name of the thread by calling
getName() defined by Thread. Its general form is shown here:

final String getName()

Giving a thread a name when it is created provides two advantages. First, there is no need
for you to use a separate variable to hold the name because Thread already provides this
capability. Second, the name of the thread will be available to any code that holds a reference
to the thread. One other point: although not needed by this example, you can set the name of
a thread after it is created by using setName(), which is shown here:

final void setName(String threadName)

Here, threadName specifies the new name of the thread.
As mentioned, there are two variations that can, depending on the situation, make MyThread

more convenient to use. First, it is possible for the MyThread constructor to create a Thread
object for the thread, storing a reference to that thread in an instance variable. With this approach,
the thread is ready to start as soon as the MyThread constructor returns. You simply call start()
on the Thread instance encapsulated by MyThread.

The second variation offers a way to have a thread begin execution as soon as it is created.
This approach is useful in cases in which there is no need to separate thread creation from thread
execution. One way to accomplish this for MyThread is to provide a static factory method that:

 1. creates a new MyThread instance,

 2. calls start() on the thread associated with that instance,

 3. and then returns a reference to the newly created MyThread object.

With this approach, it becomes possible to create and start a thread through a single method
call. This can streamline the use of MyThread, especially in cases in which several threads
must be created and started.

The following version of the preceding program incorporates the changes just described:

// MyThread variations. This version of MyThread
// creates a Thread when its constructor is called and
// stores it in an instance variable called thrd.
// It also sets the name of the thread and provides
// a factory method to create and start a thread.

class MyThread implements Runnable {
 Thread thrd;

 // Construct a new thread using this Runnable and give
 // it a name.

A reference to the thread is stored in thrd.

11-ch11.indd 390 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 Chapter 11: Multithreaded Programming 391

 MyThread(String name) {
 thrd = new Thread(this, name);
 }

 // A factory method that creates and starts a thread.
 public static MyThread createAndStart(String name) {
 MyThread myThrd = new MyThread(name);

 myThrd.thrd.start(); // start the thread
 return myThrd;
 }

 // Entry point of thread.
 public void run() {
 System.out.println(thrd.getName() + " starting.");
 try {
 for(int count=0; count<10; count++) {
 Thread.sleep(400);
 System.out.println("In " + thrd.getName() +
 ", count is " + count);
 }
 }
 catch(InterruptedException exc) {
 System.out.println(thrd.getName() + " interrupted.");
 }
 System.out.println(thrd.getName() + " terminating.");
 }
}

class ThreadVariations {
 public static void main(String[] args) {
 System.out.println("Main thread starting.");

 // Create and start a thread.
 MyThread mt = MyThread.createAndStart("Child #1");

 for(int i=0; i < 50; i++) {
 System.out.print(".");
 try {
 Thread.sleep(100);
 }
 catch(InterruptedException exc) {
 System.out.println("Main thread interrupted.");
 }
 }

 System.out.println("Main thread ending.");
 }
}

The thread is named when it is created.

Begin executing the thread.

Now the thread starts when it is created.

11-ch11.indd 391 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 392 Java: A Beginner’s Guide

This version produces the same output as before. However, notice that now MyThread
no longer contains the name of the thread. Instead, it provides an instance variable called thrd
that holds a reference to the Thread object created by MyThread’s constructor, shown here:

MyThread(String name) {
 thrd = new Thread(this, name);
}

Thus, after MyThread’s constructor executes, thrd will contain a reference to the newly
created thread. To start the thread, you will simply call start() on thrd.

Next, pay special attention to the createAndStart() factory method, shown here:

// A factory method that creates and starts a thread.
public static MyThread createAndStart(String name) {
 MyThread myThrd = new MyThread(name);

 myThrd.thrd.start(); // start the thread
 return myThrd;
}

When this method is called, it creates a new instance of MyThread called myThrd. It then
calls start() on myThrd’s copy of thrd. Finally, it returns a reference to the newly created
MyThread instance. Thus, once the call to createAndStart() returns, the thread will already
have been started. Therefore, in main(), this line creates and begins the execution of a thread
in a single call:

MyThread mt = MyThread.createAndStart("Child #1");

Because of the convenience that createAndStart() offers, it will be used by several of
the examples in this chapter. Furthermore, you may find it helpful to adapt such a method for
use in thread-based applications of your own. Of course, in cases in which you want a thread’s
execution to be separate from its creation, you can simply create a MyThread object and then
call start() later.

Q: Earlier, you used the term factory method and showed one example in the method
called createAndStart(). Can you give me a more general definition?

A: Yes. In general, a factory method is a method that returns an object of a class. Typically,
factory methods are static methods of a class. Factory methods are useful in a variety of
situations. Here are some examples. As you just saw in the case of createAndStart(), a
factory method enables an object to be constructed and then set to some specified state
prior to being returned to the caller. Another type of factory method is used to provide
an easy-to-remember name that indicates the variety of object that is being constructed.

Ask the Expert

(continued)

11-ch11.indd 392 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 Chapter 11: Multithreaded Programming 393

Try This 11-1 Extending Thread
Implementing Runnable is one way to create a class that can instantiate
thread objects. Extending Thread is the other. In this project, you will see

how to extend Thread by creating a program functionally similar to the UseThreads program
shown at the start of this chapter.

When a class extends Thread, it must override the run() method, which is the entry point
for the new thread. It must also call start() to begin execution of the new thread. It is possible
to override other Thread methods, but doing so is not required.

 1. Create a file called ExtendThread.java. Begin this file with the following lines:

/*
 Try This 11-1

 Extend Thread.
*/
class MyThread extends Thread {

 Notice that MyThread now extends Thread instead of implementing Runnable.

 2. Add the following MyThread constructor:

// Construct a new thread.
MyThread(String name) {
 super(name); // name thread
}

 Here, super is used to call this version of Thread’s constructor:

Thread(String threadName)

 Here, threadName specifies the name of the thread. As explained previously, Thread
provides the ability to hold a thread’s name. Thus, no instance variable is required by
MyThread to store the name.

 3. Conclude MyThread by adding the following run() method:

 // Entry point of thread.
 public void run() {

ExtendThread.java

(continued)

For example, assuming a class called Line, you might have factory methods that create
lines of specific colors, such as createRedLine() or createBlueLine(). Instead of having
to remember a potentially complex call to a constructor, you can simply use the factory
method whose name indicates the type of line you want. In some cases it is also possible
for a factory method to reuse an object, rather than constructing a new one. As you will see
as you advance in your study of Java, factory methods are common in the Java API library.

11-ch11.indd 393 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 394 Java: A Beginner’s Guide

 System.out.println(getName() + " starting.");
 try {
 for(int count=0; count < 10; count++) {
 Thread.sleep(400);
 System.out.println("In " + getName() +
 ", count is " + count);
 }
 }
 catch(InterruptedException exc) {
 System.out.println(getName() + " interrupted.");
 }

 System.out.println(getName() + " terminating.");
 }
}

 Notice the calls to getName(). Because ExtendThread extends Thread, it can directly
call all of Thread’s methods, including the getName() method.

 4. Next, add the ExtendThread class shown here:

class ExtendThread {
 public static void main(String[] args) {
 System.out.println("Main thread starting.");

 MyThread mt = new MyThread("Child #1");

 mt.start();

 for(int i=0; i < 50; i++) {
 System.out.print(".");
 try {
 Thread.sleep(100);
 }
 catch(InterruptedException exc) {
 System.out.println("Main thread interrupted.");
 }
 }

 System.out.println("Main thread ending.");
 }
}

 In main(), notice how an instance of MyThread is created and then started with these
two lines:

MyThread mt = new MyThread("Child #1");
mt.start();

11-ch11.indd 394 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 Chapter 11: Multithreaded Programming 395

 Because MyThread now implements Thread, start() is called directly on the MyThread
instance, mt.

 5. Here is the complete program. Its output is the same as the UseThreads example, but in
this case, Thread is extended rather than Runnable being implemented.

/*
 Try This 11-1

 Extend Thread.
*/
class MyThread extends Thread {

 // Construct a new thread.
 MyThread(String name) {
 super(name); // name thread
 }

 // Entry point of thread.
 public void run() {
 System.out.println(getName() + " starting.");
 try {
 for(int count=0; count < 10; count++) {
 Thread.sleep(400);
 System.out.println("In " + getName() +
 ", count is " + count);
 }
 }
 catch(InterruptedException exc) {
 System.out.println(getName() + " interrupted.");
 }

 System.out.println(getName() + " terminating.");
 }
}

class ExtendThread {
 public static void main(String[] args) {
 System.out.println("Main thread starting.");

 MyThread mt = new MyThread("Child #1");

 mt.start();

 for(int i=0; i < 50; i++) {
 System.out.print(".");
 try {

(continued)

11-ch11.indd 395 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 396 Java: A Beginner’s Guide

 Thread.sleep(100);
 }
 catch(InterruptedException exc) {
 System.out.println("Main thread interrupted.");
 }
 }

 System.out.println("Main thread ending.");
 }
}

 6. When extending Thread, it is also possible to include the ability to create and start a thread
in one step by using a static factory method, similar to that used by the ThreadVariations
program shown earlier. To try this, add the following method to MyThread:

public static MyThread createAndStart(String name) {
 MyThread myThrd = new MyThread(name);
 myThrd.start();
 return myThrd;
}

 As you can see, this method creates a new MyThread instance with the specified name,
calls start() on that thread, and returns a reference to the thread. To try createAndStart(),
replace these two lines in main():

System.out.println("Main thread starting.");
MyThread mt = new MyThread("Child #1");

 with this line:

MyThread mt = MyThread.createAndStart("Child #1");

 After making these changes, the program will run the same as before, but you will be
creating and starting the thread using a single method call.

Creating Multiple Threads
The preceding examples have created only one child thread. However, your program can spawn
as many threads as it needs. For example, the following program creates three child threads:

// Create multiple threads.

class MyThread implements Runnable {
 Thread thrd;

 // Construct a new thread.
 MyThread(String name) {
 thrd = new Thread(this, name);
 }

11-ch11.indd 396 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 Chapter 11: Multithreaded Programming 397

 // A factory method that creates and starts a thread.
 public static MyThread createAndStart(String name) {
 MyThread myThrd = new MyThread(name);

 myThrd.thrd.start(); // start the thread
 return myThrd;
 }

 // Entry point of thread.
 public void run() {
 System.out.println(thrd.getName() + " starting.");
 try {
 for(int count=0; count < 10; count++) {
 Thread.sleep(400);
 System.out.println("In " + thrd.getName() +
 ", count is " + count);
 }
 }
 catch(InterruptedException exc) {
 System.out.println(thrd.getName() + " interrupted.");
 }
 System.out.println(thrd.getName() + " terminating.");
 }
}

class MoreThreads {
 public static void main(String[] args) {
 System.out.println("Main thread starting.");

 MyThread mt1 = MyThread.createAndStart("Child #1");
 MyThread mt2 = MyThread.createAndStart("Child #2");
 MyThread mt3 = MyThread.createAndStart("Child #3");

 for(int i=0; i < 50; i++) {
 System.out.print(".");
 try {
 Thread.sleep(100);
 }
 catch(InterruptedException exc) {
 System.out.println("Main thread interrupted.");
 }
 }

 System.out.println("Main thread ending.");
 }
}

Create and start
executing three threads.

11-ch11.indd 397 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 398 Java: A Beginner’s Guide

Sample output from this program follows:

Main thread starting.
Child #1 starting.
.Child #2 starting.
Child #3 starting.
...In Child #3, count is 0
In Child #2, count is 0
In Child #1, count is 0
....In Child #1, count is 1
In Child #2, count is 1
In Child #3, count is 1
....In Child #2, count is 2
In Child #3, count is 2
In Child #1, count is 2
...In Child #1, count is 3
In Child #2, count is 3
In Child #3, count is 3
....In Child #1, count is 4
In Child #3, count is 4
In Child #2, count is 4
....In Child #1, count is 5
In Child #3, count is 5
In Child #2, count is 5
...In Child #3, count is 6
.In Child #2, count is 6
In Child #1, count is 6
...In Child #3, count is 7
In Child #1, count is 7
In Child #2, count is 7
....In Child #2, count is 8

Q: Why does Java have two ways to create child threads (by extending Thread or
implementing Runnable) and which approach is better?

A: The Thread class defines several methods that can be overridden by a derived class. Of
these methods, the only one that must be overridden is run(). This is, of course, the same
method required when you implement Runnable. Some Java programmers feel that classes
should be extended only when they are being expanded or customized in some way. So,
if you will not be overriding any of Thread’s other methods, it is probably best to simply
implement Runnable. Also, by implementing Runnable, you enable your thread to inherit
a class other than Thread.

Ask the Expert

11-ch11.indd 398 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 Chapter 11: Multithreaded Programming 399

In Child #1, count is 8
In Child #3, count is 8
....In Child #1, count is 9
Child #1 terminating.
In Child #2, count is 9
Child #2 terminating.
In Child #3, count is 9
Child #3 terminating.
............Main thread ending.

As you can see, once started, all three child threads share the CPU. Notice that in this run
the threads are started in the order in which they are created. However, this may not always be
the case. Java is free to schedule the execution of threads in its own way. Of course, because of
differences in timing or environment, the precise output from the program may differ, so don’t be
surprised if you see slightly different results when you try the program.

Determining When a Thread Ends
It is often useful to know when a thread has ended. For example, in the preceding examples, for
the sake of illustration it was helpful to keep the main thread alive until the other threads ended.
In those examples, this was accomplished by having the main thread sleep longer than the child
threads that it spawned. This is, of course, hardly a satisfactory or generalizable solution!

Fortunately, Thread provides two means by which you can determine if a thread has ended.
First, you can call isAlive() on the thread. Its general form is shown here:

final boolean isAlive()

The isAlive() method returns true if the thread upon which it is called is still running. It returns
false otherwise. To try isAlive(), substitute this version of MoreThreads for the one shown in
the preceding program:

// Use isAlive().
class MoreThreads {
 public static void main(String[] args) {
 System.out.println("Main thread starting.");

 MyThread mt1 = MyThread.createAndStart("Child #1");
 MyThread mt2 = MyThread.createAndStart("Child #2");
 MyThread mt3 = MyThread.createAndStart("Child #3");

 do {
 System.out.print(".");
 try {
 Thread.sleep(100);
 }
 catch(InterruptedException exc) {
 System.out.println("Main thread interrupted.");
 }

11-ch11.indd 399 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 400 Java: A Beginner’s Guide

 } while (mt1.thrd.isAlive() ||
 mt2.thrd.isAlive() ||
 mt3.thrd.isAlive());

 System.out.println("Main thread ending.");
 }
}

This version produces output that is similar to the previous version, except that main() ends
as soon as the other threads finish. The difference is that it uses isAlive() to wait for the child
threads to terminate. Another way to wait for a thread to finish is to call join(), shown here:

final void join() throws InterruptedException

This method waits until the thread on which it is called terminates. Its name comes from the
concept of the calling thread waiting until the specified thread joins it. Additional forms of
join() allow you to specify a maximum amount of time that you want to wait for the specified
thread to terminate.

Here is a program that uses join() to ensure that the main thread is the last to stop:

// Use join().

class MyThread implements Runnable {
 Thread thrd;

 // Construct a new thread.
 MyThread(String name) {
 thrd = new Thread(this, name);
 }

 // A factory method that creates and starts a thread.
 public static MyThread createAndStart(String name) {
 MyThread myThrd = new MyThread(name);

 myThrd.thrd.start(); // start the thread
 return myThrd;
 }

 // Entry point of thread.
 public void run() {
 System.out.println(thrd.getName() + " starting.");
 try {
 for(int count=0; count < 10; count++) {
 Thread.sleep(400);
 System.out.println("In " + thrd.getName() +
 ", count is " + count);
 }
 }

This waits until all threads terminate.

11-ch11.indd 400 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 Chapter 11: Multithreaded Programming 401

 catch(InterruptedException exc) {
 System.out.println(thrd.getName() + " interrupted.");
 }
 System.out.println(thrd.getName() + " terminating.");
 }
}

class JoinThreads {
 public static void main(String[] args) {
 System.out.println("Main thread starting.");

 MyThread mt1 = MyThread.createAndStart("Child #1");
 MyThread mt2 = MyThread.createAndStart("Child #2");
 MyThread mt3 = MyThread.createAndStart("Child #3");

 try {
 mt1.thrd.join();
 System.out.println("Child #1 joined.");
 mt2.thrd.join();
 System.out.println("Child #2 joined.");
 mt3.thrd.join();
 System.out.println("Child #3 joined.");
 }
 catch(InterruptedException exc) {
 System.out.println("Main thread interrupted.");
 }
 System.out.println("Main thread ending.");
 }
}

Sample output from this program is shown here. Remember that when you try the program,
your precise output may vary slightly.

Main thread starting.
Child #1 starting.
Child #2 starting.
Child #3 starting.
In Child #2, count is 0
In Child #1, count is 0
In Child #3, count is 0
In Child #2, count is 1
In Child #3, count is 1
In Child #1, count is 1
In Child #2, count is 2
In Child #1, count is 2
In Child #3, count is 2
In Child #2, count is 3

Wait until the specified
thread ends.

11-ch11.indd 401 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 402 Java: A Beginner’s Guide

In Child #3, count is 3
In Child #1, count is 3
In Child #3, count is 4
In Child #2, count is 4
In Child #1, count is 4
In Child #3, count is 5
In Child #1, count is 5
In Child #2, count is 5
In Child #3, count is 6
In Child #2, count is 6
In Child #1, count is 6
In Child #3, count is 7
In Child #1, count is 7
In Child #2, count is 7
In Child #3, count is 8
In Child #2, count is 8
In Child #1, count is 8
In Child #3, count is 9
Child #3 terminating.
In Child #2, count is 9
Child #2 terminating.
In Child #1, count is 9
Child #1 terminating.
Child #1 joined.
Child #2 joined.
Child #3 joined.
Main thread ending.

As you can see, after the calls to join() return, the threads have stopped executing.

Thread Priorities
Each thread has associated with it a priority setting. A thread’s priority determines, in part,
how much CPU time a thread receives relative to the other active threads. In general, over a
given period of time, low-priority threads receive little. High-priority threads receive a lot. As
you might expect, how much CPU time a thread receives has profound impact on its execution
characteristics and its interaction with other threads currently executing in the system.

It is important to understand that factors other than a thread’s priority also affect how
much CPU time a thread receives. For example, if a high-priority thread is waiting on some
resource, perhaps for keyboard input, then it will be blocked, and a lower-priority thread will
run. However, when that high-priority thread gains access to the resource, it can preempt the
low-priority thread and resume execution. Another factor that affects the scheduling of threads
is the way the operating system implements multitasking. (See “Ask the Expert” at the end of
this section.) Thus, just because you give one thread a high priority and another a low priority

11-ch11.indd 402 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 Chapter 11: Multithreaded Programming 403

does not necessarily mean that one thread will run faster or more often than the other. It’s just
that the high-priority thread has greater potential access to the CPU.

When a child thread is started, its priority setting is equal to that of its parent thread. You
can change a thread’s priority by calling setPriority(), which is a member of Thread. This is
its general form:

final void setPriority(int level)

Here, level specifies the new priority setting for the calling thread. The value of level must be
within the range MIN_PRIORITY and MAX_PRIORITY. Currently, these values are 1 and
10, respectively. To return a thread to default priority, specify NORM_PRIORITY, which is
currently 5. These priorities are defined as static final variables within Thread.

You can obtain the current priority setting by calling the getPriority() method of Thread,
shown here:

final int getPriority()

The following example demonstrates threads at different priorities. The threads are created
as instances of Priority. The run() method contains a loop that counts the number of iterations.
The loop stops when either the count reaches 10,000,000 or the static variable stop is true.
Initially, stop is set to false, but the first thread to finish counting sets stop to true. This causes
each other thread to terminate with its next time slice. Each time through the loop the string
in currentName is checked against the name of the executing thread. If they don’t match, it
means that a task-switch occurred. Each time a task-switch happens, the name of the new thread
is displayed, and currentName is given the name of the new thread. Displaying each thread
switch allows you to watch (in a very imprecise way) when the threads gain access to the CPU.
After the threads stop, the number of iterations for each loop is displayed.

// Demonstrate thread priorities.

class Priority implements Runnable {
 int count;
 Thread thrd;

 static boolean stop = false;
 static String currentName;

 // Construct a new thread.
 Priority(String name) {
 thrd = new Thread(this, name);
 count = 0;
 currentName = name;
 }

11-ch11.indd 403 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 404 Java: A Beginner’s Guide

 // Entry point of thread.
 public void run() {
 System.out.println(thrd.getName() + " starting.");
 do {
 count++;

 if(currentName.compareTo(thrd.getName()) != 0) {
 currentName = thrd.getName();
 System.out.println("In " + currentName);
 }

 } while(stop == false && count < 10000000);
 stop = true;

 System.out.println("\n" + thrd.getName() +
 " terminating.");
 }
}

class PriorityDemo {
 public static void main(String[] args) {
 Priority mt1 = new Priority("High Priority");
 Priority mt2 = new Priority("Low Priority");
 Priority mt3 = new Priority("Normal Priority #1");
 Priority mt4 = new Priority("Normal Priority #2");
 Priority mt5 = new Priority("Normal Priority #3");

 // set the priorities
 mt1.thrd.setPriority(Thread.NORM_PRIORITY+2);
 mt2.thrd.setPriority(Thread.NORM_PRIORITY-2);
 // Leave mt3, mt4, and mt5 at the default, normal priority level

 // start the threads
 mt1.thrd.start();
 mt2.thrd.start();
 mt3.thrd.start();
 mt4.thrd.start();
 mt5.thrd.start();

 try {
 mt1.thrd.join();
 mt2.thrd.join();
 mt3.thrd.join();
 mt4.thrd.join();
 mt5.thrd.join();
 }

The first thread to
10,000,000 stops
all threads.

Give mt1 a higher priority
than mt2.

11-ch11.indd 404 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 Chapter 11: Multithreaded Programming 405

 catch(InterruptedException exc) {
 System.out.println("Main thread interrupted.");
 }

 System.out.println("\nHigh priority thread counted to " +
 mt1.count);
 System.out.println("Low priority thread counted to " +
 mt2.count);
 System.out.println("1st Normal priority thread counted to " +
 mt3.count);
 System.out.println("2nd Normal priority thread counted to " +
 mt4.count);
 System.out.println("3rd Normal priority thread counted to " +
 mt5.count);

 }
}

Here are the results of a sample run:

High priority thread counted to 10000000
Low priority thread counted to 3477862
1st Normal priority thread counted to 7000045
2nd Normal priority thread counted to 6576054
3rd Normal priority thread counted to 7373846

In this run, the high-priority thread got the greatest amount of the CPU time. Of course, the
exact output produced by this program will depend upon a number of factors, including the speed
of your CPU, the number of CPUs in your system, the operating system you are using, and the
number and nature of other tasks running in the system. Thus, for any given run, it is actually
possible for the low-priority thread to get the most CPU time if the circumstances are right.

Q: Does the operating system’s implementation of multitasking affect how much CPU
time a thread receives?

A: Aside from a thread’s priority setting, the most important factor affecting thread execution
is the way the operating system implements multitasking and scheduling. Some operating
systems use preemptive multitasking in which each thread receives a time slice, at least
occasionally. Other systems use nonpreemptive scheduling in which one thread must yield
execution before another thread will execute. In nonpreemptive systems, it is easy for one
thread to dominate, preventing others from running.

Ask the Expert

11-ch11.indd 405 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 406 Java: A Beginner’s Guide

Synchronization
When using multiple threads, it is sometimes necessary to coordinate the activities of two
or more. The process by which this is achieved is called synchronization. The most common
reason for synchronization is when two or more threads need access to a shared resource
that can be used by only one thread at a time. For example, when one thread is writing to a
file, a second thread must be prevented from doing so at the same time. Another reason for
synchronization is when one thread is waiting for an event that is caused by another thread.
In this case, there must be some means by which the first thread is held in a suspended state
until the event has occurred. Then, the waiting thread must resume execution.

Key to synchronization in Java is the concept of the monitor, which controls access to an
object. A monitor works by implementing the concept of a lock. When an object is locked by
one thread, no other thread can gain access to the object. When the thread exits, the object is
unlocked and is available for use by another thread.

All objects in Java have a monitor. This feature is built into the Java language itself. Thus,
all objects can be synchronized. Synchronization is supported by the keyword synchronized
and a few well-defined methods that all objects have. Since synchronization was designed
into Java from the start, it is much easier to use than you might first expect. In fact, for many
programs, the synchronization of objects is almost transparent.

There are two ways that you can synchronize your code. Both involve the use of the
synchronized keyword, and both are examined here.

Using Synchronized Methods
You can synchronize access to a method by modifying it with the synchronized keyword.
When that method is called, the calling thread enters the object’s monitor, which then locks
the object. While locked, no other thread can enter the method, or enter any other synchronized
method defined by the object’s class. When the thread returns from the method, the monitor
unlocks the object, allowing it to be used by the next thread. Thus, synchronization is achieved
with virtually no programming effort on your part.

The following program demonstrates synchronization by controlling access to a method
called sumArray(), which sums the elements of an integer array.

// Use synchronize to control access.

class SumArray {
 private int sum;

 synchronized int sumArray(int[] nums) {
 sum = 0; // reset sum

 for(int i=0; i<nums.length; i++) {
 sum += nums[i];
 System.out.println("Running total for " +
 Thread.currentThread().getName() +
 " is " + sum);
 try {

sumArray() is synchronized.

11-ch11.indd 406 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 Chapter 11: Multithreaded Programming 407

 Thread.sleep(10); // allow task-switch
 }
 catch(InterruptedException exc) {
 System.out.println("Thread interrupted.");
 }
 }
 return sum;
 }
}

class MyThread implements Runnable {
 Thread thrd;
 static SumArray sa = new SumArray();
 int[] a;
 int answer;

 // Construct a new thread.
 MyThread(String name, int[] nums) {
 thrd = new Thread(this, name);
 a = nums;
 }

 // A factory method that creates and starts a thread.
 public static MyThread createAndStart(String name, int[] nums) {
 MyThread myThrd = new MyThread(name, nums);

 myThrd.thrd.start(); // start the thread
 return myThrd;
 }

 // Entry point of thread.
 public void run() {
 int sum;

 System.out.println(thrd.getName() + " starting.");

 answer = sa.sumArray(a);
 System.out.println("Sum for " + thrd.getName() +
 " is " + answer);

 System.out.println(thrd.getName() + " terminating.");
 }
}

class Sync {
 public static void main(String[] args) {
 int[] a = {1, 2, 3, 4, 5};

 MyThread mt1 = MyThread.createAndStart("Child #1", a);
 MyThread mt2 = MyThread.createAndStart("Child #2", a);

11-ch11.indd 407 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 408 Java: A Beginner’s Guide

 try {
 mt1.thrd.join();
 mt2.thrd.join();
 }
 catch(InterruptedException exc) {
 System.out.println("Main thread interrupted.");
 }

 }
}

The output from the program is shown here. (The precise output may differ on your
computer.)

Child #1 starting.
Running total for Child #1 is 1
Child #2 starting.
Running total for Child #1 is 3
Running total for Child #1 is 6
Running total for Child #1 is 10
Running total for Child #1 is 15
Sum for Child #1 is 15
Child #1 terminating.
Running total for Child #2 is 1
Running total for Child #2 is 3
Running total for Child #2 is 6
Running total for Child #2 is 10
Running total for Child #2 is 15
Sum for Child #2 is 15
Child #2 terminating.

Let’s examine this program in detail. The program creates three classes. The first is
SumArray. It contains the method sumArray(), which sums an integer array. The second
class is MyThread, which uses a static object of type SumArray to obtain the sum of an
integer array. This object is called sa and because it is static, there is only one copy of it that
is shared by all instances of MyThread. Finally, the class Sync creates two threads and has
each compute the sum of an integer array.

Inside sumArray(), sleep() is called to purposely allow a task switch to occur, if one
can—but it can’t. Because sumArray() is synchronized, it can be used by only one thread at
a time. Thus, when the second child thread begins execution, it does not enter sumArray()
until after the first child thread is done with it. This ensures that the correct result is produced.

To fully understand the effects of synchronized, try removing it from the declaration
of sumArray(). After doing this, sumArray() is no longer synchronized, and any number
of threads may use it concurrently. The problem with this is that the running total is stored in
sum, which will be changed by each thread that calls sumArray() through the static object sa.
Thus, when two threads call sa.sumArray() at the same time, incorrect results are produced
because sum reflects the summation of both threads, mixed together. For example, here is

11-ch11.indd 408 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 Chapter 11: Multithreaded Programming 409

sample output from the program after synchronized has been removed from sumArray()’s
declaration. (The precise output may differ on your computer.)

Child #1 starting.
Running total for Child #1 is 1
Child #2 starting.
Running total for Child #2 is 1
Running total for Child #1 is 3
Running total for Child #2 is 5
Running total for Child #2 is 8
Running total for Child #1 is 11
Running total for Child #2 is 15
Running total for Child #1 is 19
Running total for Child #2 is 24
Sum for Child #2 is 24
Child #2 terminating.
Running total for Child #1 is 29
Sum for Child #1 is 29
Child #1 terminating.

As the output shows, both child threads are calling sa.sumArray() concurrently, and the
value of sum is corrupted. Before moving on, let’s review the key points of a synchronized method:

● A synchronized method is created by preceding its declaration with synchronized.

● For any given object, once a synchronized method has been called, the object is locked and
no synchronized methods on the same object can be used by another thread of execution.

● Other threads trying to call an in-use synchronized object will enter a wait state until the
object is unlocked.

● When a thread leaves the synchronized method, the object is unlocked.

The synchronized Statement
Although creating synchronized methods within classes that you create is an easy and effective
means of achieving synchronization, it will not work in all cases. For example, you might want
to synchronize access to some method that is not modified by synchronized. This can occur
because you want to use a class that was not created by you but by a third party, and you do
not have access to the source code. Thus, it is not possible for you to add synchronized to the
appropriate methods within the class. How can access to an object of this class be synchronized?
Fortunately, the solution to this problem is quite easy: You simply put calls to the methods defined
by this class inside a synchronized block.

This is the general form of a synchronized block:

synchronized(objref) {
 // statements to be synchronized
}

11-ch11.indd 409 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 410 Java: A Beginner’s Guide

Here, objref is a reference to the object being synchronized. Once a synchronized block has
been entered, no other thread can call a synchronized method on the object referred to by
objref until the block has been exited.

For example, another way to synchronize calls to sumArray() is to call it from within
a synchronized block, as shown in this version of the program:

// Use a synchronized block to control access to SumArray.
class SumArray {
 private int sum;

 int sumArray(int[] nums) {
 sum = 0; // reset sum

 for(int i=0; i<nums.length; i++) {
 sum += nums[i];
 System.out.println("Running total for " +
 Thread.currentThread().getName() +
 " is " + sum);
 try {
 Thread.sleep(10); // allow task-switch
 }
 catch(InterruptedException exc) {
 System.out.println("Thread interrupted.");
 }
 }
 return sum;
 }
}

class MyThread implements Runnable {
 Thread thrd;
 static SumArray sa = new SumArray();
 int[] a;
 int answer;

 // Construct a new thread.
 MyThread(String name, int[] nums) {
 thrd = new Thread(this, name);
 a = nums;
 }

 // A factory method that creates and starts a thread.
 public static MyThread createAndStart(String name, int[] nums) {
 MyThread myThrd = new MyThread(name, nums);

 myThrd.thrd.start(); // start the thread
 return myThrd;
 }

Here, sumArray()
is not synchronized.

11-ch11.indd 410 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 Chapter 11: Multithreaded Programming 411

 // Entry point of thread.
 public void run() {
 int sum;

 System.out.println(thrd.getName() + " starting.");

 // synchronize calls to sumArray()
 synchronized(sa) {
 answer = sa.sumArray(a);
 }
 System.out.println("Sum for " + thrd.getName() +
 " is " + answer);

 System.out.println(thrd.getName() + " terminating.");
 }
}

class Sync {
 public static void main(String[] args) {
 int[] a = {1, 2, 3, 4, 5};

 MyThread mt1 = MyThread.createAndStart("Child #1", a);
 MyThread mt2 = MyThread.createAndStart("Child #2", a);

 try {
 mt1.thrd.join();
 mt2.thrd.join();
 } catch(InterruptedException exc) {
 System.out.println("Main thread interrupted.");
 }
 }
}

This version produces the same, correct output as the one shown earlier that uses a
synchronized method.

Here, calls to sumArray()
on sa are synchronized.

Q: I have heard of something called the “concurrency utilities.” What are these? Also,
what is the Fork/Join Framework?

A: The concurrency utilities, which are packaged in java.util.concurrent (and its
subpackages), support concurrent programming. Among several other items, they offer
synchronizers, thread pools, execution managers, and locks that expand your control over
thread execution. One of the most exciting features of the concurrent API is the Fork/Join
Framework.

Ask the Expert

(continued)

11-ch11.indd 411 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 412 Java: A Beginner’s Guide

Thread Communication Using
notify(), wait(), and notifyAll()

Consider the following situation. A thread called T is executing inside a synchronized method and
needs access to a resource called R that is temporarily unavailable. What should T do? If T enters
some form of polling loop that waits for R, T ties up the object, preventing other threads’ access to
it. This is a less than optimal solution because it partially defeats the advantages of programming
for a multithreaded environment. A better solution is to have T temporarily relinquish control
of the object, allowing another thread to run. When R becomes available, T can be notified and
resume execution. Such an approach relies upon some form of interthread communication in
which one thread can notify another that it is blocked and be notified that it can resume execution.
Java supports interthread communication with the wait(), notify(), and notifyAll() methods.

The wait(), notify(), and notifyAll() methods are part of all objects because they
are implemented by the Object class. These methods should be called only from within a
synchronized context. Here is how they are used. When a thread is temporarily blocked from
running, it calls wait(). This causes the thread to go to sleep and the monitor for that object
to be released, allowing another thread to use the object. At a later point, the sleeping thread is
awakened when some other thread enters the same monitor and calls notify(), or notifyAll().

Following are the various forms of wait() defined by Object:

final void wait() throws InterruptedException

final void wait(long millis) throws InterruptedException

final void wait(long millis, int nanos) throws InterruptedException

The first form waits until notified. The second form waits until notified or until the specified
period of milliseconds has expired. The third form allows you to specify the wait period in
terms of nanoseconds.

The Fork/Join Framework supports what is often termed parallel programming. This
is the name commonly given to the techniques that take advantage of computers that
contain two or more processors (including multicore systems) by subdividing a task into
subtasks, with each subtask executing on its own processor. As you can imagine, such an
approach can lead to significantly higher throughput and performance. The key advantage
of the Fork/Join Framework is ease of use; it streamlines the development of multithreaded
code that automatically scales to utilize the number of processors in a system. Thus, it
facilitates the creation of concurrent solutions to some common programming tasks, such
as performing operations on the elements of an array. The concurrency utilities in general,
and the Fork/Join Framework specifically, are features that you will want to explore after
you have become more experienced with multithreading.

11-ch11.indd 412 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 Chapter 11: Multithreaded Programming 413

Here are the general forms for notify() and notifyAll():

final void notify()

final void notifyAll()

A call to notify() resumes one waiting thread. A call to notifyAll() notifies all threads, with
the scheduler determining which thread gains access to the object.

Before looking at an example that uses wait(), an important point needs to be made. Although
wait() normally waits until notify() or notifyAll() is called, there is a possibility that in very
rare cases the waiting thread could be awakened due to a spurious wakeup. The conditions that
lead to a spurious wakeup are complex and beyond the scope of this book. However, the Java
API documentation recommends that because of the remote possibility of a spurious wakeup,
calls to wait() should take place within a loop that checks the condition on which the thread is
waiting. The following example shows this technique.

An Example That Uses wait() and notify()
To understand the need for and the application of wait() and notify(), we will create a program
that simulates the ticking of a clock by displaying the words Tick and Tock on the screen. To
accomplish this, we will create a class called TickTock that contains two methods: tick() and
tock(). The tick() method displays the word "Tick", and tock() displays "Tock". To run the
clock, two threads are created, one that calls tick() and one that calls tock(). The goal is to
make the two threads execute in a way that the output from the program displays a consistent
"Tick Tock"—that is, a repeated pattern of one tick followed by one tock.

// Use wait() and notify() to create a ticking clock.

class TickTock {

 String state; // contains the state of the clock

 synchronized void tick(boolean running) {
 if(!running) { // stop the clock
 state = "ticked";
 notify(); // notify any waiting threads
 return;
 }

 System.out.print("Tick ");

 state = "ticked"; // set the current state to ticked

 notify(); // let tock() run
 try {
 while(!state.equals("tocked"))
 wait(); // wait for tock() to complete
 }

tick() notifies tock().

tick() waits for tock().

11-ch11.indd 413 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 414 Java: A Beginner’s Guide

 catch(InterruptedException exc) {
 System.out.println("Thread interrupted.");
 }
 }

 synchronized void tock(boolean running) {
 if(!running) { // stop the clock
 state = "tocked";
 notify(); // notify any waiting threads
 return;
 }

 System.out.println("Tock");

 state = "tocked"; // set the current state to tocked

 notify(); // let tick() run
 try {
 while(!state.equals("ticked"))
 wait(); // wait for tick to complete
 }
 catch(InterruptedException exc) {
 System.out.println("Thread interrupted.");
 }
 }
}

class MyThread implements Runnable {
 Thread thrd;
 TickTock ttOb;

 // Construct a new thread.
 MyThread(String name, TickTock tt) {
 thrd = new Thread(this, name);
 ttOb = tt;
 }

 // A factory method that creates and starts a thread.
 public static MyThread createAndStart(String name, TickTock tt) {
 MyThread myThrd = new MyThread(name, tt);

 myThrd.thrd.start(); // start the thread
 return myThrd;
 }

 // Entry point of thread.
 public void run() {

tock() notifies tick().

tock() waits for tick().

11-ch11.indd 414 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 Chapter 11: Multithreaded Programming 415

 if(thrd.getName().compareTo("Tick") == 0) {
 for(int i=0; i<5; i++) ttOb.tick(true);
 ttOb.tick(false);
 }
 else {
 for(int i=0; i<5; i++) ttOb.tock(true);
 ttOb.tock(false);
 }
 }
}

class ThreadCom {
 public static void main(String[] args) {
 TickTock tt = new TickTock();
 MyThread mt1 = MyThread.createAndStart("Tick", tt);
 MyThread mt2 = MyThread.createAndStart("Tock", tt);

 try {
 mt1.thrd.join();
 mt2.thrd.join();
 } catch(InterruptedException exc) {
 System.out.println("Main thread interrupted.");
 }
 }
}

Here is the output produced by the program:

Tick Tock
Tick Tock
Tick Tock
Tick Tock
Tick Tock

Let’s take a close look at this program. The heart of the clock is the TickTock class. It
contains two methods, tick() and tock(), which communicate with each other to ensure that
a Tick is always followed by a Tock, which is always followed by a Tick, and so on. Notice the
state field. When the clock is running, state will hold either the string "ticked" or "tocked",
which indicates the current state of the clock. In main(), a TickTock object called tt is created,
and this object is used to start two threads of execution.

The threads are based on objects of type MyThread. Both the MyThread constructor and
the createAndStart() method are passed two arguments. The first becomes the name of the
thread. This will be either "Tick" or "Tock". The second is a reference to the TickTock object,
which is tt in this case. Inside the run() method of MyThread, if the name of the thread
is "Tick", then calls to tick() are made. If the name of the thread is "Tock", then the tock()
method is called. Five calls that pass true as an argument are made to each method. The clock
runs as long as true is passed. A final call that passes false to each method stops the clock.

11-ch11.indd 415 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 416 Java: A Beginner’s Guide

The most important part of the program is found in the tick() and tock() methods of
TickTock. We will begin with the tick() method, which, for convenience, is shown here:

synchronized void tick(boolean running) {
 if(!running) { // stop the clock
 state = "ticked";
 notify(); // notify any waiting threads
 return;
 }

 System.out.print("Tick ");

 state = "ticked"; // set the current state to ticked

 notify(); // let tock() run
 try {
 while(!state.equals("tocked"))
 wait(); // wait for tock() to complete
 }
 catch(InterruptedException exc) {
 System.out.println("Thread interrupted.");
 }
}

First, notice that tick() is modified by synchronized. Remember, wait() and notify() apply
only to synchronized methods. The method begins by checking the value of the running
parameter. This parameter is used to provide a clean shutdown of the clock. If it is false, then
the clock has been stopped. If this is the case, state is set to "ticked" and a call to notify() is
made to enable any waiting thread to run. We will return to this point in a moment.

Assuming that the clock is running when tick() executes, the word "Tick" is displayed,
state is set to "ticked", and then a call to notify() takes place. The call to notify() allows a
thread waiting on the same object to run. Next, wait() is called within a while loop. The call
to wait() causes tick() to suspend until another thread calls notify(). Therefore, the loop will
not iterate until another thread calls notify() on the same object. As a result, when tick() is
called, it displays one "Tick", lets another thread run, and then suspends.

The while loop that calls wait() checks the value of state, waiting for it to equal "tocked",
which will be the case only after the tock() method executes. As explained, using a while loop
to check this condition prevents a spurious wakeup from incorrectly restarting the thread. If
state does not equal "tocked" when wait() returns, it means that a spurious wakeup occurred,
and wait() is simply called again.

The tock() method is an exact copy of tick() except that it displays "Tock" and sets state
to "tocked". Thus, when entered, it displays "Tock", calls notify(), and then waits. When
viewed as a pair, a call to tick() can only be followed by a call to tock(), which can only be
followed by a call to tick(), and so on. Therefore, the two methods are mutually synchronized.

11-ch11.indd 416 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 Chapter 11: Multithreaded Programming 417

The reason for the call to notify() when the clock is stopped is to allow a final call to wait()
to succeed. Remember, both tick() and tock() execute a call to wait() after displaying their
message. The problem is that when the clock is stopped, one of the methods will still be waiting.
Thus, a final call to notify() is required in order for the waiting method to run. As an experiment,
try removing this call to notify() and watch what happens. As you will see, the program will
“hang,” and you will need to press CTRL-C to exit. The reason for this is that when the final call
to tock() calls wait(), there is no corresponding call to notify() that lets tock() conclude. Thus,
tock() just sits there, waiting forever.

Before moving on, if you have any doubt that the calls to wait() and notify() are actually
needed to make the “clock” run right, substitute this version of TickTock into the preceding
program. It has all calls to wait() and notify() removed.

// No calls to wait() or notify().
class TickTock {

 String state; // contains the state of the clock

 synchronized void tick(boolean running) {
 if(!running) { // stop the clock
 state = "ticked";
 return;
 }

 System.out.print("Tick ");

 state = "ticked"; // set the current state to ticked
 }

 synchronized void tock(boolean running) {
 if(!running) { // stop the clock
 state = "tocked";
 return;
 }

 System.out.println("Tock");

 state = "tocked"; // set the current state to tocked
 }
}

After the substitution, the output produced by the program will look like this:

Tick Tick Tick Tick Tick Tock
Tock
Tock
Tock
Tock

Clearly, the tick() and tock() methods are no longer working together!

11-ch11.indd 417 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 418 Java: A Beginner’s Guide

Q: I have heard the term deadlock applied to misbehaving multithreaded programs.
What is it, and how can I avoid it? Also, what is a race condition, and how can I avoid
that, too?

A: Deadlock is, as the name implies, a situation in which one thread is waiting for another
thread to do something, but that other thread is waiting on the first. Thus, both threads are
suspended, waiting on each other, and neither executes. This situation is analogous to two
overly polite people, both insisting that the other step through a door first!

Avoiding deadlock seems easy, but it’s not. For example, deadlock can occur in
roundabout ways. The cause of the deadlock often is not readily understood just by looking
at the source code to the program because concurrently executing threads can interact in
complex ways at run time. To avoid deadlock, careful programming and thorough testing
is required. Remember, if a multithreaded program occasionally “hangs,” deadlock is the
likely cause.

A race condition occurs when two (or more) threads attempt to access a shared
resource at the same time, without proper synchronization. For example, one thread may
be writing a new value to a variable while another thread is incrementing the variable’s
current value. Without synchronization, the new value of the variable will depend upon the
order in which the threads execute. (Does the second thread increment the original value
or the new value written by the first thread?) In situations like this, the two threads are said
to be “racing each other,” with the final outcome determined by which thread finishes first.
Like deadlock, a race condition can occur in difficult-to-discover ways. The solution is
prevention: careful programming that properly synchronizes access to shared resources.

Ask the Expert

Suspending, Resuming, and Stopping Threads
It is sometimes useful to suspend execution of a thread. For example, a separate thread can
be used to display the time of day. If the user does not desire a clock, then its thread can be
suspended. Whatever the case, it is a simple matter to suspend a thread. Once suspended, it is
also a simple matter to restart the thread.

The mechanisms to suspend, stop, and resume threads differ between early versions
of Java and more modern versions, beginning with Java 2. Prior to Java 2, a program used
suspend(), resume(), and stop(), which are methods defined by Thread, to pause, restart,
and stop the execution of a thread. They have the following forms:

final void resume()

final void suspend()

final void stop()

11-ch11.indd 418 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 Chapter 11: Multithreaded Programming 419

While these methods seem to be a perfectly reasonable and convenient approach to
managing the execution of threads, they must no longer be used. Here’s why. The suspend()
method of the Thread class was deprecated by Java 2. This was done because suspend()
can sometimes cause serious problems that involve deadlock. The resume() method is also
deprecated. It does not cause problems but cannot be used without the suspend() method as its
counterpart. The stop() method of the Thread class was also deprecated by Java 2. This was
done because this method too can sometimes cause serious problems.

Since you cannot now use the suspend(), resume(), or stop() methods to control a
thread, you might at first be thinking that there is no way to pause, restart, or terminate a
thread. But, fortunately, this is not true. Instead, a thread must be designed so that the run()
method periodically checks to determine if that thread should suspend, resume, or stop its own
execution. Typically, this is accomplished by establishing two flag variables: one for suspend
and resume, and one for stop. For suspend and resume, as long as the flag is set to “running,”
the run() method must continue to let the thread execute. If this variable is set to “suspend,”
the thread must pause. For the stop flag, if it is set to “stop,” the thread must terminate.

The following example shows one way to implement your own versions of suspend(),
resume(), and stop():

// Suspending, resuming, and stopping a thread.

class MyThread implements Runnable {
 Thread thrd;
 boolean suspended;
 boolean stopped;

 MyThread(String name) {
 thrd = new Thread(this, name);
 suspended = false;
 stopped = false;
 }

 // A factory method that creates and starts a thread.
 public static MyThread createAndStart(String name) {
 MyThread myThrd = new MyThread(name);

 myThrd.thrd.start(); // start the thread
 return myThrd;
 }

 // Entry point of thread.
 public void run() {
 System.out.println(thrd.getName() + " starting.");
 try {
 for(int i = 1; i < 1000; i++) {
 System.out.print(i + " ");
 if((i%10)==0) {
 System.out.println();
 Thread.sleep(250);
 }

Suspends thread when true.
Stops thread when true.

11-ch11.indd 419 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 420 Java: A Beginner’s Guide

 // Use synchronized block to check suspended and stopped.
 synchronized(this) {
 while(suspended) {
 wait();
 }
 if(stopped) break;
 }
 }
 } catch (InterruptedException exc) {
 System.out.println(thrd.getName() + " interrupted.");
 }
 System.out.println(thrd.getName() + " exiting.");
 }

 // Stop the thread.
 synchronized void mystop() {
 stopped = true;

 // The following ensures that a suspended thread can be stopped.
 suspended = false;
 notify();
 }

 // Suspend the thread.
 synchronized void mysuspend() {
 suspended = true;
 }

 // Resume the thread.
 synchronized void myresume() {
 suspended = false;
 notify();
 }
}

class Suspend {
 public static void main(String[] args) {
 MyThread mt1 = MyThread.createAndStart("My Thread");

 try {
 Thread.sleep(1000); // let ob1 thread start executing

 mt1.mysuspend();
 System.out.println("Suspending thread.");
 Thread.sleep(1000);

 mt1.myresume();
 System.out.println("Resuming thread.");
 Thread.sleep(1000);

This synchronized block checks
suspended and stopped.

11-ch11.indd 420 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 Chapter 11: Multithreaded Programming 421

 mt1.mysuspend();
 System.out.println("Suspending thread.");
 Thread.sleep(1000);

 mt1.myresume();
 System.out.println("Resuming thread.");
 Thread.sleep(1000);

 mt1.mysuspend();
 System.out.println("Stopping thread.");
 mt1.mystop();

 } catch (InterruptedException e) {
 System.out.println("Main thread Interrupted");
 }

 // wait for thread to finish
 try {
 mt1.thrd.join();
 } catch (InterruptedException e) {
 System.out.println("Main thread Interrupted");
 }

 System.out.println("Main thread exiting.");
 }
}

Sample output from this program is shown here. (Your output may differ slightly.)

My Thread starting.
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
Suspending thread.
Resuming thread.
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
Suspending thread.
Resuming thread.
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100
101 102 103 104 105 106 107 108 109 110
111 112 113 114 115 116 117 118 119 120
Stopping thread.
My Thread exiting.
Main thread exiting.

11-ch11.indd 421 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 422 Java: A Beginner’s Guide

Try This 11-2

Here is how the program works. The thread class MyThread defines two Boolean variables,
suspended and stopped, which govern the suspension and termination of a thread. Both are
initialized to false by the constructor. The run() method contains a synchronized statement
block that checks suspended. If that variable is true, the wait() method is invoked to suspend
the execution of the thread. To suspend execution of the thread, call mysuspend(), which sets
suspended to true. To resume execution, call myresume(), which sets suspended to false and
invokes notify() to restart the thread.

To stop the thread, call mystop(), which sets stopped to true. In addition, mystop() sets
suspended to false and then calls notify(). These steps are necessary to stop a suspended thread.

 Using the Main Thread
All Java programs have at least one thread of execution, called the main thread,
which is given to the program automatically when it begins running. So far, we

have been taking the main thread for granted. In this project, you will see that the main thread
can be handled just like all other threads.

 1. Create a file called UseMain.java.

 2. To access the main thread, you must obtain a Thread object that refers to it. You do this
by calling the currentThread() method, which is a static member of Thread. Its general
form is shown here:

static Thread currentThread()

 This method returns a reference to the thread in which it is called. Therefore, if you call
currentThread() while execution is inside the main thread, you will obtain a reference
to the main thread. Once you have this reference, you can control the main thread just like
any other thread.

UseMain.java

Q: Multithreading seems like a great way to improve the efficiency of my programs.
Can you give me any tips on effectively using it?

A: The key to effectively utilizing multithreading is to think concurrently rather than serially.
For example, when you have two subsystems within a program that are fully independent
of each other, consider making them into individual threads. A word of caution is in order,
however. If you create too many threads, you can actually degrade the performance of your
program rather than enhance it. Remember, overhead is associated with context switching.
If you create too many threads, more CPU time will be spent changing contexts than in
executing your program!

Ask the Expert

11-ch11.indd 422 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 Chapter 11: Multithreaded Programming 423

 3. Enter the following program into the file. It obtains a reference to the main thread, and then
gets and sets the main thread’s name and priority.

/*
 Try This 11-2

 Controlling the main thread.
*/

class UseMain {
 public static void main(String[] args) {
 Thread thrd;

 // Get the main thread.
 thrd = Thread.currentThread();

 // Display main thread's name.
 System.out.println("Main thread is called: " +
 thrd.getName());

 // Display main thread's priority.
 System.out.println("Priority: " +
 thrd.getPriority());

 System.out.println();

 // Set the name and priority.
 System.out.println("Setting name and priority.\n");
 thrd.setName("Thread #1");
 thrd.setPriority(Thread.NORM_PRIORITY+3);

 System.out.println("Main thread is now called: " +
 thrd.getName());

 System.out.println("Priority is now: " +
 thrd.getPriority());
 }
}

 4. The output from the program is shown here:

Main thread is called: main
Priority: 5

Setting name and priority.

Main thread is now called: Thread #1
Priority is now: 8

(continued)

11-ch11.indd 423 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 11

 424 Java: A Beginner’s Guide

 5. You need to be careful about what operations you perform on the main thread. For example,
if you add the following code to the end of main(), the program will never terminate because
it will be waiting for the main thread to end!

try {
 thrd.join();
} catch(InterruptedException exc) {
 System.out.println("Interrupted");
}

 Chapter 11 Self Test
 1. How does Java’s multithreading capability enable you to write more efficient programs?

 2. Multithreading is supported by the _________ class and the ________ interface.

 3. When creating a runnable object, why might you want to extend Thread rather than
implement Runnable?

 4. Show how to use join() to wait for a thread object called MyThrd to end.

 5. Show how to set a thread called MyThrd to three levels above normal priority.

 6. What is the effect of adding the synchronized keyword to a method?

 7. The wait() and notify() methods are used to perform _______________________.

 8. Change the TickTock class so that it actually keeps time. That is, have each tick take one
half second, and each tock take one half second. Thus, each tick-tock will take one second.
(Don’t worry about the time it takes to switch tasks, etc.)

 9. Why can’t you use suspend(), resume(), and stop() for new programs?

 10. What method defined by Thread obtains the name of a thread?

 11. What does isAlive() return?

 12. On your own, try adding synchronization to the Queue class developed in previous chapters
so that it is safe for multithreaded use.

✓

11-ch11.indd 424 12/11/21 9:33 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 12
Blind Folio: 425

Chapter 12
Enumerations, Autoboxing,
Annotations, and More

12-ch12.indd 425 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 12

 426 Java: A Beginner’s Guide

Key Skills & Concepts

● Understand enumeration fundamentals

● Use the class-based features of enumerations

● Apply the values() and valueof() methods to enumerations

● Create enumerations that have constructors, instance variables, and methods

● Employ the ordinal() and compareTo() methods that enumerations inherit
from Enum

● Use Java’s type wrappers

● Know the basics of autoboxing and auto-unboxing

● Use autoboxing with methods

● Understand how autoboxing works with expressions

● Apply static import

● Gain an overview of annotations

● Use the instanceof operator

This chapter discusses a number of important Java features. Interestingly, four—enumerations,
autoboxing, static import, and annotations—were not part of the original definition of Java, each

having been added by JDK 5. However, each significantly enhanced the power and usability of the
language. In the case of enumerations and autoboxing, both addressed what was, at the time, long-
standing needs. Static import streamlined the use of static members. Annotations expanded the
kinds of information that can be embedded within a source file. Collectively, these features offered
a better way to solve common programming problems. Frankly, today, it is difficult to imagine
Java without them. They have become that important. Also discussed in this chapter are Java’s
type wrappers, which provide a bridge between the primitive types and object types. Finally,
the instanceof operator is introduced. It lets you check the type of an object at run time.

Enumerations
In its simplest form, an enumeration is a list of named constants that define a new data type.
An object of an enumeration type can hold only the values that are defined by the list. Thus, an
enumeration gives you a way to precisely define a new type of data that has a fixed number of
valid values.

Enumerations are common in everyday life. For example, an enumeration of the coins used
in the United States is penny, nickel, dime, quarter, half-dollar, and dollar. An enumeration of

12-ch12.indd 426 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 12

 Chapter 12: Enumerations, Autoboxing, Annotations, and More 427

the months in the year consists of the names January through December. An enumeration of
the days of the week is Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, and Saturday.

From a programming perspective, enumerations are useful whenever you need to define a
set of values that represent a collection of items. For example, you might use an enumeration
to represent a set of status codes, such as success, waiting, failed, and retrying, which indicate
the progress of some action. In the past, such values were defined as final variables, but
enumerations offer a more structured approach.

Enumeration Fundamentals
An enumeration is created using the enum keyword. For example, here is a simple enumeration
that lists various forms of transportation:

// An enumeration of transportation.
enum Transport {
 CAR, TRUCK, AIRPLANE, TRAIN, BOAT
}

The identifiers CAR, TRUCK, and so on, are called enumeration constants. Each is implicitly
declared as a public, static member of Transport. Furthermore, the enumeration constants’
type is the type of the enumeration in which the constants are declared, which is Transport
in this case. Thus, in the language of Java, these constants are called self-typed, where “self”
refers to the enclosing enumeration.

Once you have defined an enumeration, you can create a variable of that type. However, even
though enumerations define a class type, you do not instantiate an enum using new. Instead, you
declare and use an enumeration variable in much the same way that you do one of the primitive
types. For example, this declares tp as a variable of enumeration type Transport:

Transport tp;

Because tp is of type Transport, the only values that it can be assigned are those defined by
the enumeration. For example, this assigns tp the value AIRPLANE:

tp = Transport.AIRPLANE;

Notice that the symbol AIRPLANE is qualified by Transport.
Two enumeration constants can be compared for equality by using the = = relational

operator. For example, this statement compares the value in tp with the TRAIN constant:

if(tp == Transport.TRAIN) // ...

An enumeration value can also be used to control a switch statement. Of course, all of the
case statements must use constants from the same enum as that used by the switch expression.
For example, this switch is perfectly valid:

// Use an enum to control a switch statement.
switch(tp) {
 case CAR:
 // ...
 case TRUCK:
 // ...

12-ch12.indd 427 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 12

 428 Java: A Beginner’s Guide

Notice that in the case statements, the names of the enumeration constants are used without
being qualified by their enumeration type name. That is, TRUCK, not Transport.TRUCK,
is used. This is because the type of the enumeration in the switch expression has already
implicitly specified the enum type of the case constants. There is no need to qualify the
constants in the case statements with their enum type name. In fact, attempting to do so will
cause a compilation error.

When an enumeration constant is displayed, such as in a println() statement, its name is
output. For example, given this statement:

System.out.println(Transport.BOAT);

the name BOAT is displayed.
The following program puts together all of the pieces and demonstrates the Transport

enumeration:

// An enumeration of Transport varieties.
enum Transport {
 CAR, TRUCK, AIRPLANE, TRAIN, BOAT
}

class EnumDemo {
 public static void main(String[] args)
 {
 Transport tp;

 tp = Transport.AIRPLANE;

 // Output an enum value.
 System.out.println("Value of tp: " + tp);
 System.out.println();

 tp = Transport.TRAIN;

 // Compare two enum values.
 if(tp == Transport.TRAIN)
 System.out.println("tp contains TRAIN.\n");

 // Use an enum to control a switch statement.
 switch(tp) {
 case CAR:
 System.out.println("A car carries people.");
 break;
 case TRUCK:
 System.out.println("A truck carries freight.");
 break;
 case AIRPLANE:
 System.out.println("An airplane flies.");
 break;

Declare an enumeration.

Declare a Transport reference.

Assign tp the constant AIRPLANE.

Compare two Transport
objects for equality.

Use an enumeration to
control a switch statement.

12-ch12.indd 428 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 12

 Chapter 12: Enumerations, Autoboxing, Annotations, and More 429

 case TRAIN:
 System.out.println("A train runs on rails.");
 break;
 case BOAT:
 System.out.println("A boat sails on water.");
 break;
 }
 }
}

The output from the program is shown here:

Value of tp: AIRPLANE

tp contains TRAIN.

A train runs on rails.

Before moving on, it’s necessary to make one stylistic point. The constants in Transport
use uppercase. (Thus, CAR, not car, is used.) However, the use of uppercase is not required.
In other words, there is no rule that requires enumeration constants to be in uppercase.
Because enumerations often replace final variables, which have traditionally used uppercase,
some programmers believe that uppercasing enumeration constants is also appropriate. There
are, of course, other viewpoints and styles. The examples in this book will use uppercase for
enumeration constants, for consistency.

Java Enumerations Are Class Types
Although the preceding examples show the mechanics of creating and using an enumeration,
they don’t show all of its capabilities. Unlike the way enumerations are implemented in some
other languages, Java implements enumerations as class types. Although you don’t instantiate
an enum using new, it otherwise acts much like other classes. The fact that enum defines a
class enables the Java enumeration to have powers that enumerations in some other languages
do not. For example, you can give it constructors, add instance variables and methods, and
even implement interfaces.

The values() and valueOf() Methods
All enumerations automatically have two predefined methods: values() and valueOf(). Their
general forms are shown here:

public static enum-type[] values()

public static enum-type valueOf(String str)

12-ch12.indd 429 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 12

 430 Java: A Beginner’s Guide

The values() method returns an array that contains a list of the enumeration constants. The
valueOf() method returns the enumeration constant whose value corresponds to the string
passed in str. In both cases, enum-type is the type of the enumeration. For example, in the case
of the Transport enumeration shown earlier, the return type of Transport.valueOf("TRAIN")
is Transport. The value returned is TRAIN. The following program demonstrates the values()
and valueOf() methods:

// Use the built-in enumeration methods.

// An enumeration of Transport varieties.
enum Transport {
 CAR, TRUCK, AIRPLANE, TRAIN, BOAT
}

class EnumDemo2 {
 public static void main(String[] args)
 {
 Transport tp;

 System.out.println("Here are all Transport constants");

 // use values()
 Transport[] allTransports = Transport.values();
 for(Transport t : allTransports)
 System.out.println(t);

 System.out.println();

 // use valueOf()
 tp = Transport.valueOf("AIRPLANE");
 System.out.println("tp contains " + tp);
 }
}

The output from the program is shown here:

Here are all Transport constants
CAR
TRUCK
AIRPLANE
TRAIN
BOAT

tp contains AIRPLANE

Notice that this program uses a for-each style for loop to cycle through the array of constants
obtained by calling values(). For the sake of illustration, the variable allTransports was created

Obtain an array of
Transport constants.

Obtain the constant with
the name AIRPLANE.

12-ch12.indd 430 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 12

 Chapter 12: Enumerations, Autoboxing, Annotations, and More 431

and assigned a reference to the enumeration array. However, this step is not necessary because the
for could have been written as shown here, eliminating the need for the allTransports variable:

for(Transport t : Transport.values())
 System.out.println(t);

Now, notice how the value corresponding to the name AIRPLANE was obtained by
calling valueOf():

tp = Transport.valueOf("AIRPLANE");

As explained, valueOf() returns the enumeration value associated with the name of the constant
represented as a string.

Constructors, Methods,
Instance Variables, and Enumerations

It is important to understand that each enumeration constant is an object of its enumeration type.
Thus, an enumeration can define constructors, add methods, and have instance variables. When
you define a constructor for an enum, the constructor is called when each enumeration constant
is created. Each enumeration constant can call any method defined by the enumeration. Each
enumeration constant has its own copy of any instance variables defined by the enumeration.
The following version of Transport illustrates the use of a constructor, an instance variable, and
a method. It gives each type of transportation a typical speed.

// Use an enum constructor, instance variable, and method.
enum Transport {
 CAR(65), TRUCK(55), AIRPLANE(600), TRAIN(70), BOAT(22);

 private int speed; // typical speed of each transport

 // Constructor
 Transport(int s) { speed = s; }

 int getSpeed() { return speed; }
}

class EnumDemo3 {
 public static void main(String[] args)
 {
 Transport tp;

 // Display speed of an airplane.
 System.out.println("Typical speed for an airplane is " +
 Transport.AIRPLANE.getSpeed() +
 " miles per hour.\n");

Notice the
initialization
values.

Add an instance variable.

Add a constructor.

Add a method.

Obtain the speed by
calling getSpeed().

12-ch12.indd 431 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 12

 432 Java: A Beginner’s Guide

 // Display all Transports and speeds.
 System.out.println("All Transport speeds: ");
 for(Transport t : Transport.values())
 System.out.println(t + " typical speed is " +
 t.getSpeed() +
 " miles per hour.");
 }
}

The output is shown here:

Typical speed for an airplane is 600 miles per hour.

All Transport speeds:
CAR typical speed is 65 miles per hour.
TRUCK typical speed is 55 miles per hour.
AIRPLANE typical speed is 600 miles per hour.
TRAIN typical speed is 70 miles per hour.
BOAT typical speed is 22 miles per hour.

This version of Transport adds three things. The first is the instance variable speed, which
is used to hold the speed of each kind of transport. The second is the Transport constructor,
which is passed the speed of a transport. The third is the method getSpeed(), which returns
the value of speed.

When the variable tp is declared in main(), the constructor for Transport is called once
for each constant that is specified. Notice how the arguments to the constructor are specified,
by putting them inside parentheses, after each constant, as shown here:

CAR(65), TRUCK(55), AIRPLANE(600), TRAIN(70), BOAT(22);

These values are passed to the s parameter of Transport(), which then assigns this value
to speed. There is something else to notice about the list of enumeration constants: it is
terminated by a semicolon. That is, the last constant, BOAT, is followed by a semicolon. When
an enumeration contains other members, the enumeration list must end in a semicolon.

Because each enumeration constant has its own copy of speed, you can obtain the speed
of a specified type of transport by calling getSpeed(). For example, in main() the speed of an
airplane is obtained by the following call:

Transport.AIRPLANE.getSpeed()

The speed of each transport is obtained by cycling through the enumeration using a for loop.
Because there is a copy of speed for each enumeration constant, the value associated with one
constant is separate and distinct from the value associated with another constant. This is a powerful
concept, which is available only when enumerations are implemented as classes, as Java does.

Although the preceding example contains only one constructor, an enum can offer two or
more overloaded forms, just as can any other class.

12-ch12.indd 432 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 12

 Chapter 12: Enumerations, Autoboxing, Annotations, and More 433

Two Important Restrictions
There are two restrictions that apply to enumerations. First, an enumeration can’t inherit another
class. Second, an enum cannot be a superclass. This means that an enum can’t be extended.
Otherwise, enum acts much like any other class type. The key is to remember that each of the
enumeration constants is an object of the class in which it is defined.

Enumerations Inherit Enum
Although you can’t inherit a superclass when declaring an enum, all enumerations automatically
inherit one: java.lang.Enum. This class defines several methods that are available for use by all
enumerations. Most often, you won’t need to use these methods, but there are two that you may
occasionally employ: ordinal() and compareTo().

The ordinal() method obtains a value that indicates an enumeration constant’s position in
the list of constants. This is called its ordinal value. The ordinal() method is shown here:

final int ordinal()

It returns the ordinal value of the invoking constant. Ordinal values begin at zero. Thus, in the
Transport enumeration, CAR has an ordinal value of zero, TRUCK has an ordinal value of 1,
AIRPLANE has an ordinal value of 2, and so on.

You can compare the ordinal value of two constants of the same enumeration by using the
compareTo() method. It has this general form:

final int compareTo(enum-type e)

Here, enum-type is the type of the enumeration and e is the constant being compared to the
invoking constant. Remember, both the invoking constant and e must be of the same enumeration.
If the invoking constant has an ordinal value less than e’s, then compareTo() returns a negative
value. If the two ordinal values are the same, then zero is returned. If the invoking constant has
an ordinal value greater than e’s, then a positive value is returned.

Q: Since enumerations have been added to Java, should I avoid the use of final variables?
In other words, have enumerations rendered final variables obsolete?

A: No. Enumerations are appropriate when you are working with lists of items that must be
represented by identifiers. A final variable is appropriate when you have a constant value,
such as an array size, that will be used in many places. Thus, each has its own use. The
advantage of enumerations is that final variables don’t have to be pressed into service for
a job for which they are not ideally suited.

Ask the Expert

12-ch12.indd 433 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 12

 434 Java: A Beginner’s Guide

The following program demonstrates ordinal() and compareTo():

// Demonstrate ordinal() and compareTo().

// An enumeration of Transport varieties.
enum Transport {
 CAR, TRUCK, AIRPLANE, TRAIN, BOAT
}

class EnumDemo4 {
 public static void main(String[] args)
 {
 Transport tp, tp2, tp3;

 // Obtain all ordinal values using ordinal().
 System.out.println("Here are all Transport constants" +
 " and their ordinal values: ");
 for(Transport t : Transport.values())
 System.out.println(t + " " + t.ordinal());

 tp = Transport.AIRPLANE;
 tp2 = Transport.TRAIN;
 tp3 = Transport.AIRPLANE;

 System.out.println();

 // Demonstrate compareTo()
 if(tp.compareTo(tp2) < 0)
 System.out.println(tp + " comes before " + tp2);

 if(tp.compareTo(tp2) > 0)
 System.out.println(tp2 + " comes before " + tp);

 if(tp.compareTo(tp3) == 0)
 System.out.println(tp + " equals " + tp3);
 }
}

The output from the program is shown here:

Here are all Transport constants and their ordinal values:
CAR 0
TRUCK 1
AIRPLANE 2
TRAIN 3
BOAT 4

AIRPLANE comes before TRAIN
AIRPLANE equals AIRPLANE

Obtain ordinal values.

Compare ordinal values.

12-ch12.indd 434 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 12

 Chapter 12: Enumerations, Autoboxing, Annotations, and More 435

Try This 12-1 A Computer-Controlled Traffic Light
Enumerations are particularly useful when your program needs a
set of constants, but the actual values of the constants are arbitrary,

as long as all differ. This type of situation comes up quite often when programming. One
common instance involves handling the states in which some device can exist. For example,
imagine that you are writing a program that controls a traffic light. Your traffic light code must
automatically cycle through the light’s three states: green, yellow, and red. It also must enable
other code to know the current color of the light and let the color of the light be set to a known
initial value. This means that the three states must be represented in some way. Although it
would be possible to represent these three states by integer values (for example, the values 1,
2, and 3) or by strings (such as "red", "green", and "yellow"), an enumeration offers a much
better approach. Using an enumeration results in code that is more efficient than if strings
represented the states and more structured than if integers represented the states.

In this project, you will create a simulation of an automated traffic light, as just described.
This project not only demonstrates an enumeration in action, it also shows another example of
multithreading and synchronization.

 1. Create a file called TrafficLightDemo.java.

 2. Begin by defining an enumeration called TrafficLightColor that represents the three states
of the light, as shown here:

// An enumeration of the colors of a traffic light.
enum TrafficLightColor {
 RED, GREEN, YELLOW
}

 Whenever the color of the light is needed, its enumeration value is used.

 3. Next, begin defining TrafficLightSimulator, as shown next. TrafficLightSimulator is the
class that encapsulates the traffic light simulation.

// A computerized traffic light.
class TrafficLightSimulator implements Runnable {
 private TrafficLightColor tlc; // holds the traffic light color
 private boolean stop = false; // set to true to stop the simulation
 private boolean changed = false; // true when the light has changed

 TrafficLightSimulator(TrafficLightColor init) {
 tlc = init;
 }

 TrafficLightSimulator() {
 tlc = TrafficLightColor.RED;
 }

 Notice that TrafficLightSimulator implements Runnable. This is necessary because a
separate thread is used to run each traffic light. This thread will cycle through the colors.

TrafficLightDemo.java

(continued)

12-ch12.indd 435 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 12

 436 Java: A Beginner’s Guide

Two constructors are created. The first lets you specify the initial light color. The second
defaults to red.

 Now look at the instance variables. A reference to the traffic light thread is stored in thrd.
The current traffic light color is stored in tlc. The stop variable is used to stop the simulation.
It is initially set to false. The light will run until this variable is set to true. The changed
variable is true when the light has changed.

 4. Next, add the run() method, shown here, which begins running the traffic light:

// Start up the light.
public void run() {
 while(!stop) {
 try {
 switch(tlc) {
 case GREEN:
 Thread.sleep(10000); // green for 10 seconds
 break;
 case YELLOW:
 Thread.sleep(2000); // yellow for 2 seconds
 break;
 case RED:
 Thread.sleep(12000); // red for 12 seconds
 break;
 }
 } catch(InterruptedException exc) {
 System.out.println(exc);
 }
 changeColor();
 }
}

 This method cycles the light through the colors. First, it sleeps an appropriate amount of
time, based on the current color. Then, it calls changeColor() to change to the next color
in the sequence.

 5. Now, add the changeColor() method, as shown here:

// Change color.
synchronized void changeColor() {
 switch(tlc) {
 case RED:
 tlc = TrafficLightColor.GREEN;
 break;
 case YELLOW:
 tlc = TrafficLightColor.RED;
 break;
 case GREEN:
 tlc = TrafficLightColor.YELLOW;
 }

12-ch12.indd 436 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 12

 Chapter 12: Enumerations, Autoboxing, Annotations, and More 437

 changed = true;
 notify(); // signal that the light has changed
}

 The switch statement examines the color currently stored in tlc and then assigns the next
color in the sequence. Notice that this method is synchronized. This is necessary because
it calls notify() to signal that a color change has taken place. (Recall that notify() can be
called only from a synchronized context.)

 6. The next method is waitForChange(), which waits until the color of the light is changed.

// Wait until a light change occurs.
synchronized void waitForChange() {
 try {
 while(!changed)
 wait(); // wait for light to change
 changed = false;
 } catch(InterruptedException exc) {
 System.out.println(exc);
 }
}

 This method simply calls wait(). This call won’t return until changeColor() executes a
call to notify(). Thus, waitForChange() won’t return until the color has changed.

 7. Finally, add the methods getColor(), which returns the current light color, and cancel(),
which stops the traffic light thread by setting stop to true. These methods are shown here:

// Return current color.
synchronized TrafficLightColor getColor() {
 return tlc;
}

// Stop the traffic light.
synchronized void cancel() {
 stop = true;
}

 8. Here is all the code assembled into a complete program that demonstrates the traffic light:

// Try This 12-1

// A simulation of a traffic light that uses
// an enumeration to describe the light's color.

// An enumeration of the colors of a traffic light.
enum TrafficLightColor {
 RED, GREEN, YELLOW
}

(continued)

12-ch12.indd 437 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 12

 438 Java: A Beginner’s Guide

// A computerized traffic light.
class TrafficLightSimulator implements Runnable {
 private TrafficLightColor tlc; // holds the traffic light color
 private boolean stop = false; // set to true to stop the simulation
 private boolean changed = false; // true when the light has changed

 TrafficLightSimulator(TrafficLightColor init) {
 tlc = init;
 }

 TrafficLightSimulator() {
 tlc = TrafficLightColor.RED;
 }

 // Start up the light.
 public void run() {
 while(!stop) {
 try {
 switch(tlc) {
 case GREEN:
 Thread.sleep(10000); // green for 10 seconds
 break;
 case YELLOW:
 Thread.sleep(2000); // yellow for 2 seconds
 break;
 case RED:
 Thread.sleep(12000); // red for 12 seconds
 break;
 }
 } catch(InterruptedException exc) {
 System.out.println(exc);
 }
 changeColor();
 }
 }

 // Change color.
 synchronized void changeColor() {
 switch(tlc) {
 case RED:
 tlc = TrafficLightColor.GREEN;
 break;
 case YELLOW:
 tlc = TrafficLightColor.RED;
 break;
 case GREEN:
 tlc = TrafficLightColor.YELLOW;
 }

12-ch12.indd 438 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 12

 Chapter 12: Enumerations, Autoboxing, Annotations, and More 439

 changed = true;
 notify(); // signal that the light has changed
 }

 // Wait until a light change occurs.
 synchronized void waitForChange() {
 try {
 while(!changed)
 wait(); // wait for light to change
 changed = false;
 } catch(InterruptedException exc) {
 System.out.println(exc);
 }
 }

 // Return current color.
 synchronized TrafficLightColor getColor() {
 return tlc;
 }

 // Stop the traffic light.
 synchronized void cancel() {
 stop = true;
 }
}

class TrafficLightDemo {
 public static void main(String[] args) {
 TrafficLightSimulator tl =
 new TrafficLightSimulator(TrafficLightColor.GREEN);
 Thread thrd = new Thread(tl);
 thrd.start();

 for(int i=0; i < 9; i++) {
 System.out.println(tl.getColor());
 tl.waitForChange();
 }

 tl.cancel();
 }
}

 The following output is produced. As you can see, the traffic light cycles through the colors
in order of green, yellow, and red:

GREEN
YELLOW
RED

(continued)

12-ch12.indd 439 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 12

 440 Java: A Beginner’s Guide

GREEN
YELLOW
RED
GREEN
YELLOW
RED

 In the program, notice how the use of the enumeration simplifies and adds structure to the
code that needs to know the state of the traffic light. Because the light can have only three
states (red, green, or yellow), the use of an enumeration ensures that only these values
are valid, thus preventing accidental misuse.

 9. It is possible to improve the preceding program by taking advantage of the class capabilities
of an enumeration. For example, by adding a constructor, instance variable, and method
to TrafficLightColor, you can substantially improve the preceding programming. This
improvement is left as an exercise. See Self Test, question 4.

Autoboxing
Modern versions of Java include two very helpful features: autoboxing and auto-unboxing.
Autoboxing/unboxing greatly simplifies and streamlines code that must convert primitive
types into objects, and vice versa. Because such situations are found frequently in Java code,
the benefits of autoboxing/unboxing affect nearly all Java programmers. As you will see in
Chapter 13, autoboxing/unboxing also contributes greatly to the usability of generics.

Autoboxing/unboxing is directly related to Java’s type wrappers, and to the way that values
are moved into and out of an instance of a wrapper. For this reason, we will begin with an
overview of the type wrappers and the process of manually boxing and unboxing values.

Type Wrappers
As you know, Java uses primitive types, such as int or double, to hold the basic data types
supported by the language. Primitive types, rather than objects, are used for these quantities
for the sake of performance. Using objects for these basic types would add an unacceptable
overhead to even the simplest of calculations. Thus, the primitive types are not part of the
object hierarchy, and they do not inherit Object.

Despite the performance benefit offered by the primitive types, there are times when you
will need an object representation. For example, you can’t pass a primitive type by reference to
a method. Also, many of the standard data structures implemented by Java operate on objects,
which means that you can’t use these data structures to store primitive types. To handle these
(and other) situations, Java provides type wrappers, which are classes that encapsulate a primitive
type within an object. The type wrapper classes were introduced briefly in Chapter 10. Here, we
will look at them more closely.

The type wrappers are Double, Float, Long, Integer, Short, Byte, Character, and Boolean,
which are packaged in java.lang. These classes offer a wide array of methods that allow you to
fully integrate the primitive types into Java’s object hierarchy.

12-ch12.indd 440 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 12

 Chapter 12: Enumerations, Autoboxing, Annotations, and More 441

Probably the most commonly used type wrappers are those that represent numeric values.
These are Byte, Short, Integer, Long, Float, and Double. All of the numeric type wrappers
inherit the abstract class Number. Number declares methods that return the value of an object
in each of the different numeric types. These methods are shown here:

byte byteValue()

double doubleValue()

float floatValue()

int intValue()

long longValue()

short shortValue()

For example, doubleValue() returns the value of an object as a double, floatValue() returns
the value as a float, and so on. These methods are implemented by each of the numeric type
wrappers.

All of the numeric type wrappers define constructors that allow an object to be constructed
from a given value, or a string representation of that value. For example, here are the constructors
defined for Integer and Double:

Integer(int num)
Integer(String str) throws NumberFormatException

Double(double num)
Double(String str) throws NumberFormatException

If str does not contain a valid numeric value, then a NumberFormatException is thrown.
However, beginning with JDK 9, the type-wrapper constructors were deprecated, and beginning
with JDK 16, they have been deprecated for removal. Today, it is strongly recommended that
you use one of the valueOf() methods to obtain a wrapper object. The valueOf() method is a
static member of all of the wrapper classes and all numeric classes support forms that convert a
numeric value or a string into an object. For example, here are two forms supported by Integer:

static Integer valueOf(int val)
static Integer valueOf(String valStr) throws NumberFormatException

Here, val specifies an integer value and valStr specifies a string that represents a properly
formatted numeric value in string form. Each returns an Integer object that wraps the specified
value. Here is an example:

Integer iOb = Integer.valueOf(100);

After this statement executes, the value 100 is represented by an Integer instance. Thus, iOb
wraps the value 100 within an object.

12-ch12.indd 441 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 12

 442 Java: A Beginner’s Guide

All of the type wrappers override toString(). It returns the human-readable form of the
value contained within the wrapper. This allows you to output the value by passing a type
wrapper object to println(), for example, without having to convert it into its primitive type.

The process of encapsulating a value within an object is called boxing. In the early
days of Java, all boxing took place manually, with the programmer explicitly constructing
an instance of a wrapper with the desired value, as just shown. Therefore, in the preceding
example, the value 100 is said to be boxed inside iOb.

The process of extracting a value from a type wrapper is called unboxing. Again, in the
early days of Java, all unboxing also took place manually, with the programmer explicitly
calling a method on the wrapper to obtain its value. For example, this manually unboxes the
value in iOb into an int.

int i = iOb.intValue();

Here, intValue() returns the value encapsulated within iOb as an int.
The following program demonstrates the preceding concepts:

// Demonstrate manual boxing and unboxing with a type wrapper.
class Wrap {
 public static void main(String[] args) {

 Integer iOb = new Integer.valueOf(100);

 int i = iOb.intValue();

 System.out.println(i + " " + iOb); // displays 100 100
 }
}

This program wraps the integer value 100 inside an Integer object called iOb. The program
then obtains this value by calling intValue() and stores the result in i. Finally, it displays the
values of i and iOb, both of which are 100.

The same general procedure used by the preceding example to manually box and unbox
values was required by all versions of Java prior to JDK 5 and may still be found in legacy
code. The problem is that it is both tedious and error-prone because it requires the programmer
to manually create the appropriate object to wrap a value and to explicitly obtain the proper
primitive type when its value is needed. Fortunately, autoboxing/unboxing fundamentally
improves on these essential procedures.

Autoboxing Fundamentals
Autoboxing is the process by which a primitive type is automatically encapsulated (boxed)
into its equivalent type wrapper whenever an object of that type is needed. There is no need to
explicitly obtain an object. Auto-unboxing is the process by which the value of a boxed object
is automatically extracted (unboxed) from a type wrapper when its value is needed. There is
no need to call a method such as intValue() or doubleValue().

Manually box the value 100.

Manually unbox the value in iOb.

12-ch12.indd 442 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 12

 Chapter 12: Enumerations, Autoboxing, Annotations, and More 443

The addition of autoboxing and auto-unboxing greatly streamlines the coding of several
algorithms, removing the tedium of manually boxing and unboxing values. It also helps
prevent errors. With autoboxing it is not necessary to manually construct an object in order
to wrap a primitive type. You need only assign that value to a type-wrapper reference. Java
automatically constructs the object for you. For example, here is the modern way to declare
an Integer object that has the value 100:

Integer iOb = 100; // autobox an int

Notice that the object is not explicitly boxed. Java handles this for you, automatically.
To unbox an object, simply assign that object reference to a primitive-type variable. For

example, to unbox iOb, you can use this line:

int i = iOb; // auto-unbox

Java handles the details for you.
The following program demonstrates the preceding statements:

// Demonstrate autoboxing/unboxing.
class AutoBox {
 public static void main(String[] args) {

 Integer iOb = 100; // autobox an int

 int i = iOb; // auto-unbox

 System.out.println(i + " " + iOb); // displays 100 100
 }
}

Autoboxing and Methods
In addition to the simple case of assignments, autoboxing automatically occurs whenever a
primitive type must be converted into an object, and auto-unboxing takes place whenever an
object must be converted into a primitive type. Thus, autoboxing/unboxing might occur when
an argument is passed to a method or when a value is returned by a method. For example,
consider the following:

// Autoboxing/unboxing takes place with
// method parameters and return values.

class AutoBox2 {
 // This method has an Integer parameter.
 static void m(Integer v) {
 System.out.println("m() received " + v);
 }

Autobox and then auto-unbox
the value 100.

Receives an Integer.

12-ch12.indd 443 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 12

 444 Java: A Beginner’s Guide

 // This method returns an int.
 static int m2() {
 return 10;
 }

 // This method returns an Integer.
 static Integer m3() {
 return 99; // autoboxing 99 into an Integer.
 }

 public static void main(String[] args) {

 // Pass an int to m(). Because m() has an Integer
 // parameter, the int value passed is automatically boxed.
 m(199);

 // Here, iOb receives the int value returned by m2().
 // This value is automatically boxed so that it can be
 // assigned to iOb.
 Integer iOb = m2();
 System.out.println("Return value from m2() is " + iOb);

 // Next, m3() is called. It returns an Integer value
 // which is auto-unboxed into an int.
 int i = m3();
 System.out.println("Return value from m3() is " + i);

 // Next, Math.sqrt() is called with iOb as an argument.
 // In this case, iOb is auto-unboxed and its value promoted to
 // double, which is the type needed by sqrt().
 iOb = 100;
 System.out.println("Square root of iOb is " + Math.sqrt(iOb));
 }
}

This program displays the following result:

m() received 199
Return value from m2() is 10
Return value from m3() is 99
Square root of iOb is 10.0

In the program, notice that m() specifies an Integer parameter. Inside main(), m() is
passed the int value 199. Because m() is expecting an Integer, this value is automatically
boxed. Next, m2() is called. It returns the int value 10. This int value is assigned to iOb in
main(). Because iOb is an Integer, the value returned by m2() is autoboxed. Next, m3() is
called. It returns an Integer that is auto-unboxed into an int. Finally, Math.sqrt() is called
with iOb as an argument. In this case, iOb is auto-unboxed and its value promoted to double,
since that is the type expected by Math.sqrt().

Returns an int.

Returns an Integer.

12-ch12.indd 444 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 12

 Chapter 12: Enumerations, Autoboxing, Annotations, and More 445

Autoboxing/Unboxing Occurs in Expressions
In general, autoboxing and unboxing take place whenever a conversion into an object or from
an object is required. This applies to expressions. Within an expression, a numeric object is
automatically unboxed. The outcome of the expression is reboxed, if necessary. For example,
consider the following program:

// Autoboxing/unboxing occurs inside expressions.

class AutoBox3 {
 public static void main(String[] args) {
 Integer iOb, iOb2;
 int i;

 iOb = 99;
 System.out.println("Original value of iOb: " + iOb);

 // The following automatically unboxes iOb,
 // performs the increment, and then reboxes
 // the result back into iOb.
 ++iOb;
 System.out.println("After ++iOb: " + iOb);

 // Here, iOb is unboxed, its value is increased by 10,
 // and the result is boxed and stored back in iOb.
 iOb += 10;
 System.out.println("After iOb += 10: " + iOb);

 // Here, iOb is unboxed, the expression is
 // evaluated, and the result is reboxed and
 // assigned to iOb2.
 iOb2 = iOb + (iOb / 3);
 System.out.println("iOb2 after expression: " + iOb2);

 // The same expression is evaluated, but the
 // result is not reboxed.
 i = iOb + (iOb / 3);
 System.out.println("i after expression: " + i);
 }
}

The output is shown here:

Original value of iOb: 99
After ++iOb: 100
After iOb += 10: 110
iOb2 after expression: 146
i after expression: 146

Autoboxing/
unboxing occurs
in expressions.

12-ch12.indd 445 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 12

 446 Java: A Beginner’s Guide

In the program, pay special attention to this line:

++iOb;

This causes the value in iOb to be incremented. It works like this: iOb is unboxed, the value is
incremented, and the result is reboxed.

Because of auto-unboxing, you can use integer numeric objects, such as an Integer, to control
a switch statement. For example, consider this fragment:

Integer iOb = 2;

switch(iOb) {
 case 1: System.out.println("one");
 break;
 case 2: System.out.println("two");
 break;
 default: System.out.println("error");
}

When the switch expression is evaluated, iOb is unboxed and its int value is obtained.
As the examples in the program show, because of autoboxing/unboxing, using numeric

objects in an expression is both intuitive and easy. With early versions of Java, such code
would have involved casts and calls to methods such as intValue().

A Word of Warning
Because of autoboxing and auto-unboxing, one might be tempted to use objects such as Integer
or Double exclusively, abandoning primitives altogether. For example, with autoboxing/unboxing
it is possible to write code like this:

// A bad use of autoboxing/unboxing!
Double a, b, c;

a = 10.2;
b = 11.4;
c = 9.8;

Double avg = (a + b + c) / 3;

In this example, objects of type Double hold values, which are then averaged and the result
assigned to another Double object. Although this code is technically correct and does, in fact,
work properly, it is a very bad use of autoboxing/unboxing. It is far less efficient than the
equivalent code written using the primitive type double. The reason is that each autobox and
auto-unbox adds overhead that is not present if the primitive type is used.

In general, you should restrict your use of the type wrappers to only those cases in which
an object representation of a primitive type is required. Autoboxing/unboxing was not added to
Java as a “back door” way of eliminating the primitive types.

12-ch12.indd 446 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 12

 Chapter 12: Enumerations, Autoboxing, Annotations, and More 447

Static Import
Java supports an expanded use of the import keyword. By following import with the
keyword static, an import statement can be used to import the static members of a class
or interface. This is called static import. When using static import, it is possible to refer to
static members directly by their names, without having to qualify them with the name of
their class. This simplifies and shortens the syntax required to use a static member.

To understand the usefulness of static import, let’s begin with an example that does not use
it. The following program computes the solutions to a quadratic equation, which has this form:

ax2 + bx + c = 0

The program uses two static methods from Java’s built-in math class Math, which is part of
java.lang. The first is Math.pow(), which returns a value raised to a specified power. The
second is Math.sqrt(), which returns the square root of its argument.

// Find the solutions to a quadratic equation.
class Quadratic {
 public static void main(String[] args) {

 // a, b, and c represent the coefficients in the
 // quadratic equation: ax2 + bx + c = 0
 double a, b, c, x;

 // Solve 4x2 + x - 3 = 0 for x.
 a = 4;
 b = 1;
 c = -3;

 // Find first solution.
 x = (-b + Math.sqrt(Math.pow(b, 2) - 4 * a * c)) / (2 * a);
 System.out.println("First solution: " + x);

 // Find second solution.
 x = (-b - Math.sqrt(Math.pow(b, 2) - 4 * a * c)) / (2 * a);
 System.out.println("Second solution: " + x);
 }
}

Because pow() and sqrt() are static methods, they must be called through the use of their
class’ name, Math. This results in a somewhat unwieldy expression:

x = (-b + Math.sqrt(Math.pow(b, 2) - 4 * a * c)) / (2 * a);

Furthermore, having to specify the class name each time pow() or sqrt() (or any of Java’s
other math methods, such as sin(), cos(), and tan()) are used can become tedious.

12-ch12.indd 447 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 12

 448 Java: A Beginner’s Guide

You can eliminate the tedium of specifying the class name through the use of static import,
as shown in the following version of the preceding program:

// Use static import to bring sqrt() and pow() into view.
import static java.lang.Math.sqrt;
import static java.lang.Math.pow;

class Quadratic {
 public static void main(String[] args) {

 // a, b, and c represent the coefficients in the
 // quadratic equation: ax2 + bx + c = 0
 double a, b, c, x;

 // Solve 4x2 + x - 3 = 0 for x.
 a = 4;
 b = 1;
 c = -3;

 // Find first solution.
 x = (-b + sqrt(pow(b, 2) - 4 * a * c)) / (2 * a);
 System.out.println("First solution: " + x);

 // Find second solution.
 x = (-b - sqrt(pow(b, 2) - 4 * a * c)) / (2 * a);
 System.out.println("Second solution: " + x);
 }
}

In this version, the names sqrt and pow are brought into view by these static import statements:

import static java.lang.Math.sqrt;
import static java.lang.Math.pow;

After these statements, it is no longer necessary to qualify sqrt() or pow() with its class
name. Therefore, the expression can more conveniently be specified, as shown here:

x = (-b + sqrt(pow(b, 2) - 4 * a * c)) / (2 * a);

As you can see, this form is considerably shorter and easier to read.
There are two general forms of the import static statement. The first, which is used by the

preceding example, brings into view a single name. Its general form is shown here:

import static pkg.type-name.static-member-name;

Here, type-name is the name of a class or interface that contains the desired static member. Its full
package name is specified by pkg. The name of the member is specified by static-member-name.

Use static import to bring sqrt()
and pow() into view.

12-ch12.indd 448 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 12

 Chapter 12: Enumerations, Autoboxing, Annotations, and More 449

The second form of static import imports all static members. Its general form is shown here:

import static pkg.type-name.*;

If you will be using many static methods or fields defined by a class, then this form lets you bring
them into view without having to specify each individually. Therefore, the preceding program
could have used this single import statement to bring both pow() and sqrt() (and all other static
members of Math) into view:

import static java.lang.Math.*;

Of course, static import is not limited just to the Math class or just to methods. For example,
this brings the static field System.out into view:

import static java.lang.System.out;

After this statement, you can output to the console without having to qualify out with System,
as shown here:

out.println("After importing System.out, you can use out directly.");

Whether importing System.out as just shown is a good idea is subject to debate. Although it
does shorten the statement, it is no longer instantly clear to anyone reading the program that
the out being referred to is System.out.

As convenient as static import can be, it is important not to abuse it. Remember, one reason
that Java organizes its libraries into packages is to avoid namespace collisions. When you
import static members, you are bringing those members into the current namespace. Thus, you
are increasing the potential for namespace conflicts and inadvertent name hiding. If you are
using a static member once or twice in the program, it’s best not to import it. Also, some static
names, such as System.out, are so recognizable that you might not want to import them. Static
import is designed for those situations in which you are using a static member repeatedly, such
as when performing a series of mathematical computations. In essence, you should use, but not
abuse, this feature.

Q: Using static import, can I import the static members of classes that I create?

A: Yes, you can use static import to import the static members of classes and interfaces you
create. Doing so is especially convenient when you define several static members that are
used frequently throughout a large program. For example, if a class defines a number of
static final constants that define various limits, then using static import to bring them into
view will save you a lot of tedious typing.

Ask the Expert

12-ch12.indd 449 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 12

 450 Java: A Beginner’s Guide

Annotations (Metadata)
Java provides a feature that enables you to embed supplemental information into a source file.
This information, called an annotation, does not change the actions of a program. However,
this information can be used by various tools, during both development and deployment. For
example, an annotation might be processed by a source-code generator, by the compiler, or
by a deployment tool. The term metadata is also used to refer to this feature, but the term
annotation is the most descriptive, and more commonly used.

Annotation is a large and sophisticated topic, and it is far beyond the scope of this book to
cover it in detail. However, an overview is given here so that you will be familiar with the concept.

NOTE
A more detailed discussion of annotations can be found in Java: The Complete
Reference, Twelfth Edition (McGraw Hill, 2022).

An annotation is created through a mechanism based on the interface. Here is a simple
example:

// A simple annotation type.
@interface MyAnno {
 String str();
 int val();
}

This declares an annotation called MyAnno. Notice the @ that precedes the keyword interface.
This tells the compiler that an annotation type is being declared. Next, notice the two members
str() and val(). All annotations consist solely of method declarations. However, you don’t
provide bodies for these methods. Instead, Java implements these methods. Moreover, the
methods act much like fields.

All annotation types automatically extend the Annotation interface. Thus, Annotation is
a super-interface of all annotations. It is declared within the java.lang.annotation package.

Originally, annotations were used to annotate only declarations. In this usage, any type of
declaration can have an annotation associated with it. For example, classes, methods, fields,
parameters, and enum constants can be annotated. Even an annotation can be annotated. In
such cases, the annotation precedes the rest of the declaration. Beginning with JDK 8, you can
also annotate a type use, such as a cast or a method return type.

When you apply an annotation, you give values to its members. For example, here is an
example of MyAnno being applied to a method:

// Annotate a method.
@MyAnno(str = "Annotation Example", val = 100)
public static void myMeth() { // ...

This annotation is linked with the method myMeth(). Look closely at the annotation syntax.
The name of the annotation, preceded by an @, is followed by a parenthesized list of member
initializations. To give a member a value, that member’s name is assigned a value. Therefore,
in the example, the string "Annotation Example" is assigned to the str member of MyAnno.

12-ch12.indd 450 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 12

 Chapter 12: Enumerations, Autoboxing, Annotations, and More 451

Notice that no parentheses follow str in this assignment. When an annotation member
is given a value, only its name is used. Thus, annotation members look like fields in
this context.

Annotations that don’t have parameters are called marker annotations. These are specified
without passing any arguments and without using parentheses. Their sole purpose is to mark
an item with some attribute.

Java defines many built-in annotations. Most are specialized, but nine are general purpose.
Four are imported from java.lang.annotation: @Retention, @Documented, @Target, and
@Inherited. Five, @Override, @Deprecated, @SafeVarargs, @FunctionalInterface, and
@SuppressWarnings, are included in java.lang. These are shown in Table 12-1.

Annotation Description

@Retention Specifies the retention policy that will be associated with the annotation.
The retention policy determines how long an annotation is present during the
compilation and deployment process.

@Documented A marker annotation that tells a tool that an annotation is to be documented. It is
designed to be used only as an annotation to an annotation declaration.

@Target Specifies the types of items to which an annotation can be applied. It is designed to
be used only as an annotation to another annotation. @Target takes one argument,
which must be a constant or array of constants from the ElementType enumeration,
which defines various constants, such as CONSTRUCTOR, FIELD, and METHOD.
The argument determines the types of items to which the annotation can be applied.
If @Target is not specified, the annotation can be used on any declaration.

@Inherited A marker annotation that causes the annotation for a superclass to be inherited
by a subclass.

@Override A method annotated with @Override must override a method from a superclass. If it
doesn’t, a compile-time error will result. It is used to ensure that a superclass method
is actually overridden, and not simply overloaded. This is a marker annotation.

@Deprecated An annotation that indicates that an item is obsolete and not recommended for
use. Beginning with JDK 9, @Deprecated has been enhanced to enable the Java
version in which the deprecation occurred and whether the deprecated element
is slated for removal to be specified.

@SafeVarargs A marker annotation that indicates that no unsafe actions related to a varargs
parameter in a method or constructor occur. Can be applied to methods and
constructors, with various restrictions.

@SuppressWarnings Specifies that one or more warnings that might be issued by the compiler are to
be suppressed. The warnings to suppress are specified by name, in string form.

@FunctionalInterface A marker annotation that is used to annotate an interface declaration. It indicates
that the annotated interface is a functional interface, which is an interface that
contains one and only one abstract method. Functional interfaces are used by
lambda expressions. (See Chapter 14 for details on functional interfaces.) It is
important to understand that @FunctionalInterface is purely informational. Any
interface with exactly one abstract method is, by definition, a functional interface.

Table 12-1 The General Purpose Built-in Annotations

12-ch12.indd 451 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 12

 452 Java: A Beginner’s Guide

NOTE
Beginning with JDK 8, java.lang.annotation also includes the annotations
@Repeatable and @Native. @Repeatable supports repeatable annotations,
which are annotations that can be applied more than once to a single item.
@Native is used to annotate a constant field accessed by executable (i.e., native) code.
Both are special-use annotations that are beyond the scope of this book.

Here is an example that uses @Deprecated to mark the MyClass class and the getMsg()
method. When you try to compile this program, warnings will report the use of these deprecated
elements.

// An example that uses @Deprecated.

// Deprecate a class.
@Deprecated
class MyClass {
 private String msg;

 MyClass(String m) {
 msg = m;
 }

 // Deprecate a method within a class.
 @Deprecated
 String getMsg() {
 return msg;
 }

 // ...
}

class AnnoDemo {
 public static void main(String[] args) {
 MyClass myObj = new MyClass("test");

 System.out.println(myObj.getMsg());
 }
}

As a point of interest, over the years several elements in Java’s API library have been
deprecated, and additional deprecations may occur as Java continues to evolve. Remember,
although deprecated API elements are still available, they are not recommended for use.
Typically, an alternative to the deprecated API element is offered.

Mark a class as deprecated.

Mark a method as deprecated.

12-ch12.indd 452 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 12

 Chapter 12: Enumerations, Autoboxing, Annotations, and More 453

Introducing instanceof
Sometimes it is useful to know the type of an object at run time. For example, you might
have one thread of execution that generates various types of objects and another thread that
processes these objects. In this situation, it might be useful for the processing thread to know
the type of each object when it receives it so that it can take action appropriate to the object’s
type. Another situation in which knowledge of an object’s type at run time is important
involves casting. In Java, an invalid cast can cause a run-time error. Although many invalid
casts can be caught at compile time, casts involving class hierarchies can produce invalid casts
that can only be detected at run time. As you saw in Chapter 7, a superclass reference can
refer to a subclass object. Thus, in some cases it may not be possible to know at compile time
whether or not a cast is valid when it involves a superclass reference and subclass objects.

For example, consider a superclass called Alpha that has two subclasses, called Beta and
Gamma. In this situation, casting a Beta object to Alpha or casting a Gamma object to Alpha
is legal since both inherit Alpha. (In other words, because both Beta and Gamma contain an
Alpha, a cast to Alpha is valid.) However, casting a Beta object to Gamma (or vice versa) isn’t
legal because even though each inherits Alpha, they are otherwise unrelated to each other.
Furthermore, casting an Alpha object to Beta or Gamma is also illegal, because the Alpha
object does not contain the Beta or Gamma portion. Because an Alpha reference can refer to
objects of either Alpha, Beta, or Gamma, how can you know at run time what type of object
is actually being referred to before attempting to cast the object to Gamma, for example? It
could be an object of type Gamma, which would be a legal cast, but it could also be an object
of type Alpha or Beta. If it is an Alpha or Beta object, then a cast to Gamma would be illegal
and a run-time exception would be thrown. The instanceof operator addresses this and other
similar situations.

Before we continue, it is necessary to state that instanceof was significantly enhanced by
JDK 17 with a powerful new feature based on pattern matching. Here, the traditional form of
instanceof is introduced. The enhanced form is covered in Chapter 16.

The traditional form of the instanceof operator has this general form:

objref instanceof type

Here, objref is a reference to an object and type is a class or interface type. If the object
referred to by objref is of the specified type or can be cast to the specified type, then the
instanceof operator evaluates to true. Otherwise, its result is false. (If objref is null, the result
is also false.) Thus, instanceof is the means by which your program can determine if an object
is an instance of a specified type at run time.

The following program demonstrates the traditional form of the instanceof operator:

// Demonstrate the traditional form of the instanceof operator.
class Alpha {
 // ...
}
class Beta extends Alpha {
 // ...
}
class Gamma extends Alpha{

12-ch12.indd 453 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 12

 454 Java: A Beginner’s Guide

 // ...
}

class InstanceOfDemo {
 public static void main(String[] args) {
 Alpha alpha = new Alpha();
 Beta beta = new Beta();
 Gamma gamma = new Gamma();

 // instanceof succeeds when the object is the same
 // type as the specified type.
 if(alpha instanceof Alpha)
 System.out.println(“alpha is instance of Alpha”);
 if(beta instanceof Beta)
 System.out.println(“beta is instance of Beta”);
 if(gamma instanceof Gamma)
 System.out.println(“gamma is instance of Gamma”);

 // instanceof succeeds when the object is an instance
 // of a subclass of the specified type.
 if(beta instanceof Alpha)
 System.out.println(“beta is also an instance of Alpha”);
 if(gamma instanceof Alpha)
 System.out.println(“gamma is also an instance of Alpha”);

 // This won’t compile because gamma is not an instance of Beta
 // or a subclass of Beta.
// if(gamma instanceof Beta) System.out.println(“Wrong”);

 // Now, make an Alpha reference refer to a Beta object.
 alpha = beta;

 // Because alpha refers to a Beta, this if will succeed and
 // alpha can be cast to Beta.
 if(alpha instanceof Beta) {
 System.out.println(“alpha can be cast to Beta”);
 beta = (Beta) alpha;
 }

 // This instanceof will fail because alpha refers to a Beta
 // object, which cannot be cast to Gamma. Thus, it prevents
 // a runtime error/
 if(alpha instanceof Gamma) {
 // This won’t execute.
 gamma = (Gamma) alpha; // error
 }
 }
}

12-ch12.indd 454 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 12

 Chapter 12: Enumerations, Autoboxing, Annotations, and More 455

The output is shown here:

alpha is instance of Alpha
beta is instance of Beta
gamma is instance of Gamma
beta is also an instance of Alpha
gamma is also an instance of Alpha
alpha refers to a Beta object and can be cast to Beta

Although most simple programs will not need to use instanceof because you know the
type of objects with which you are working, it can be very useful when objects of a complex
class hierarchy are involved. As you will see, the pattern matching enhancements described in
Chapter 16 streamline its use.

 Chapter 12 Self Test
 1. Enumeration constants are said to be self-typed. What does this mean?

 2. What class do all enumerations automatically inherit?

 3. Given the following enumeration, write a program that uses values() to show a list of the
constants and their ordinal values.

enum Tools {
 SCREWDRIVER, WRENCH, HAMMER, PLIERS
}

 4. The traffic light simulation developed in Try This 12-1 can be improved with a few simple
changes that take advantage of an enumeration’s class features. In the version shown, the
duration of each color was controlled by the TrafficLightSimulator class by hard-coding
these values into the run() method. Change this so that the duration of each color is stored
by the constants in the TrafficLightColor enumeration. To do this, you will need to add
a constructor, a private instance variable, and a method called getDelay(). After making
these changes, what improvements do you see? On your own, can you think of other
improvements? (Hint: Try using ordinal values to switch light colors rather than relying
on a switch statement.)

 5. Define boxing and unboxing. How does autoboxing/unboxing affect these actions?

 6. Change the following fragment so that it uses autoboxing.

Double val = Double.valueOf(123.0);

 7. In your own words, what does static import do?

 8. What does this statement do?

import static java.lang.Integer.parseInt;

✓

12-ch12.indd 455 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 12

 456 Java: A Beginner’s Guide

 9. Is static import designed for special-case situations, or is it good practice to bring
all static members of all classes into view?

 10. An annotation is syntactically based on a/an ________________ .

 11. What is a marker annotation?

 12. An annotation can be applied only to methods. True or False?

 13. What operator determines if an object is of a specified type?

 14. Will an invalid cast that occurs at run time result in an exception?

12-ch12.indd 456 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13
Blind Folio: 457

Chapter 13
Generics

13-ch13.indd 457 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 458 Java: A Beginner’s Guide

Key Skills & Concepts

● Understand the benefits of generics

● Create a generic class

● Apply bounded type parameters

● Use wildcard arguments

● Apply bounded wildcards

● Create a generic method

● Create a generic constructor

● Create a generic interface

● Utilize raw types

● Apply type inference with the diamond operator

● Understand erasure

● Avoid ambiguity errors

● Know generics restrictions

Since its original 1.0 version, many new features have been added to Java. All have enhanced
and expanded the scope of the language, but one that has had an especially profound and

far-reaching impact is generics because its effects were felt throughout the entire Java language.
For example, generics added a completely new syntax element and caused changes to many of
the classes and methods in the core API. It is not an overstatement to say that the inclusion of
generics fundamentally reshaped the character of Java.

The topic of generics is quite large, and some of it is sufficiently advanced to be beyond
the scope of this book. However, a basic understanding of generics is necessary for all Java
programmers. At first glance, the generics syntax may look a bit intimidating, but don’t worry.
Generics are surprisingly simple to use. By the time you finish this chapter, you will have
a grasp of the key concepts that underlie generics and sufficient knowledge to use generics
effectively in your own programs.

Generics Fundamentals
At its core, the term generics means parameterized types. Parameterized types are important
because they enable you to create classes, interfaces, and methods in which the type of data

13-ch13.indd 458 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 Chapter 13: Generics 459

upon which they operate is specified as a parameter. A class, interface, or method that operates
on a type parameter is called generic, as in generic class or generic method.

A principal advantage of generic code is that it will automatically work with the type of
data passed to its type parameter. Many algorithms are logically the same no matter what type
of data they are being applied to. For example, a Quicksort is the same whether it is sorting
items of type Integer, String, Object, or Thread. With generics, you can define an algorithm
once, independently of any specific type of data, and then apply that algorithm to a wide
variety of data types without any additional effort.

It is important to understand that Java has always given you the ability to create generalized
classes, interfaces, and methods by operating through references of type Object. Because
Object is the superclass of all other classes, an Object reference can refer to any type of object.
Thus, in pre-generics code, generalized classes, interfaces, and methods used Object references
to operate on various types of data. The problem was that they could not do so with type safety
because casts were needed to explicitly convert from Object to the actual type of data being
operated upon. Thus, it was possible to accidentally create type mismatches. Generics add the
type safety that was lacking because they make these casts automatic and implicit. In short,
generics expand your ability to reuse code and let you do so safely and reliably.

A Simple Generics Example
Before discussing any more theory, it’s best to look at a simple generics example. The
following program defines two classes. The first is the generic class Gen, and the second is
GenDemo, which uses Gen.

// A simple generic class.
// Here, T is a type parameter that
// will be replaced by a real type
// when an object of type Gen is created.
class Gen<T> {
 T ob; // declare an object of type T

Q: I have heard that Java’s generics are similar to templates in C++. Is this the case?

A: Java generics are similar to templates in C++. What Java calls a parameterized type, C++
calls a template. However, Java generics and C++ templates are not the same, and there are
some fundamental differences between the two approaches to generic types. For the most
part, Java’s approach is simpler to use.

A word of warning: If you have a background in C++, it is important not to jump to
conclusions about how generics work in Java. The two approaches to generic code differ in
subtle but fundamental ways.

Ask the Expert

Declare a generic class. T is the
generic type parameter.

13-ch13.indd 459 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 460 Java: A Beginner’s Guide

 // Pass the constructor a reference to
 // an object of type T.
 Gen(T o) {
 ob = o;
 }

 // Return ob.
 T getOb() {
 return ob;
 }

 // Show type of T.
 void showType() {
 System.out.println("Type of T is " +
 ob.getClass().getName());
 }
 }

// Demonstrate the generic class.
class GenDemo {
 public static void main(String[] args) {
 // Create a Gen reference for Integers.
 Gen<Integer> iOb;

 // Create a Gen<Integer> object and assign its
 // reference to iOb. Notice the use of autoboxing
 // to encapsulate the value 88 within an Integer object.
 iOb = new Gen<Integer>(88);

 // Show the type of data used by iOb.
 iOb.showType();

 // Get the value in iOb. Notice that
 // no cast is needed.
 int v = iOb.getOb();
 System.out.println("value: " + v);

 System.out.println();

 // Create a Gen object for Strings.
 Gen<String> strOb = new Gen<String>("Generics Test");

 // Show the type of data used by strOb.
 strOb.showType();

Create a reference
to an object of type
Gen<Integer>.

Instantiate an object of type
Gen<Integer>.

Create a reference and an
object of type Gen<String>.

13-ch13.indd 460 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 Chapter 13: Generics 461

 // Get the value of strOb. Again, notice
 // that no cast is needed.
 String str = strOb.getOb();
 System.out.println("value: " + str);
 }
}

The output produced by the program is shown here:

Type of T is java.lang.Integer
value: 88

Type of T is java.lang.String
value: Generics Test

Let’s examine this program carefully. First, notice how Gen is declared by the following
line:

class Gen<T> {

Here, T is the name of a type parameter. This name is used as a placeholder for the actual type
that will be passed to Gen when an object is created. Thus, T is used within Gen whenever the
type parameter is needed. Notice that T is contained within < >. This syntax can be generalized.
Whenever a type parameter is being declared, it is specified within angle brackets. Because
Gen uses a type parameter, Gen is a generic class.

In the declaration of Gen, there is no special significance to the name T. Any valid
identifier could have been used, but T is traditional. Furthermore, it is recommended that
type parameter names be single-character, capital letters. Other commonly used type parameter
names are V and E. One other point about type parameter names: Beginning with JDK 10, you
cannot use var as the name of a type parameter.

Next, T is used to declare an object called ob, as shown here:

T ob; // declare an object of type T

As explained, T is a placeholder for the actual type that will be specified when a Gen object
is created. Thus, ob will be an object of the type passed to T. For example, if type String is
passed to T, then in that instance, ob will be of type String.

Now consider Gen’s constructor:

Gen(T o) {
 ob = o;
}

Notice that its parameter, o, is of type T. This means that the actual type of o is determined by
the type passed to T when a Gen object is created. Also, because both the parameter o and the
member variable ob are of type T, they will both be of the same actual type when a Gen object
is created.

13-ch13.indd 461 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 462 Java: A Beginner’s Guide

The type parameter T can also be used to specify the return type of a method, as is the case
with the getOb() method, shown here:

T getOb() {
 return ob;
}

Because ob is also of type T, its type is compatible with the return type specified by getOb().
The showType() method displays the type of T. It does this by calling getName() on

the Class object returned by the call to getClass() on ob. We haven’t used this feature before,
so let’s examine it closely. As you should recall from Chapter 7, the Object class defines the
method getClass(). Thus, getClass() is a member of all class types. It returns a Class object
that corresponds to the class type of the object on which it is called. Class is a class defined
within java.lang that encapsulates information about a class. Class defines several methods
that can be used to obtain information about a class at run time. Among these is the getName()
method, which returns a string representation of the class name.

The GenDemo class demonstrates the generic Gen class. It first creates a version of Gen
for integers, as shown here:

Gen<Integer> iOb;

Look carefully at this declaration. First, notice that the type Integer is specified within the
angle brackets after Gen. In this case, Integer is a type argument that is passed to Gen’s
type parameter, T. This effectively creates a version of Gen in which all references to T are
translated into references to Integer. Thus, for this declaration, ob is of type Integer, and the
return type of getOb() is of type Integer.

Before moving on, it’s necessary to state that the Java compiler does not actually create
different versions of Gen, or of any other generic class. Although it’s helpful to think in
these terms, it is not what actually happens. Instead, the compiler removes all generic type
information, substituting the necessary casts, to make your code behave as if a specific version
of Gen was created. Thus, there is really only one version of Gen that actually exists in
your program. The process of removing generic type information is called erasure, which is
discussed later in this chapter.

The next line assigns to iOb a reference to an instance of an Integer version of the Gen class.

iOb = new Gen<Integer>(88);

Notice that when the Gen constructor is called, the type argument Integer is also specified.
This is because the type of the object (in this case iOb) to which the reference is being
assigned is of type Gen<Integer>. Thus, the reference returned by new must also be of
type Gen<Integer>. If it isn’t, a compile-time error will result. For example, the following
assignment will cause a compile-time error:

iOb = new Gen<Double>(88.0); // Error!

Because iOb is of type Gen<Integer>, it can’t be used to refer to an object of Gen<Double>.
This type of checking is one of the main benefits of generics because it ensures type safety.

13-ch13.indd 462 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 Chapter 13: Generics 463

As the comments in the program state, the assignment

iOb = new Gen<Integer>(88);

makes use of autoboxing to encapsulate the value 88, which is an int, into an Integer. This
works because Gen<Integer> creates a constructor that takes an Integer argument. Because
an Integer is expected, Java will automatically box 88 inside one. Of course, the assignment
could also have been written explicitly, like this:

iOb = new Gen<Integer>(Integer.valueOf(88));

However, there would be no benefit to using this version.
The program then displays the type of ob within iOb, which is Integer. Next, the program

obtains the value of ob by use of the following line:

int v = iOb.getOb();

Because the return type of getOb() is T, which was replaced by Integer when iOb was declared,
the return type of getOb() is also Integer, which auto-unboxes into int when assigned to v
(which is an int). Thus, there is no need to cast the return type of getOb() to Integer.

Next, GenDemo declares an object of type Gen<String>:

Gen<String> strOb = new Gen<String>("Generics Test");

Because the type argument is String, String is substituted for T inside Gen. This creates
(conceptually) a String version of Gen, as the remaining lines in the program demonstrate.

Generics Work Only with Reference Types
When declaring an instance of a generic type, the type argument passed to the type parameter
must be a reference type. You cannot use a primitive type, such as int or char. For example,
with Gen, it is possible to pass any class type to T, but you cannot pass a primitive type to T.
Therefore, the following declaration is illegal:

Gen<int> intOb = new Gen<int>(53); // Error, can't use primitive type

Of course, not being able to specify a primitive type is not a serious restriction because you
can use the type wrappers (as the preceding example did) to encapsulate a primitive type.
Further, Java’s autoboxing and auto-unboxing mechanism makes the use of the type wrapper
transparent.

Generic Types Differ Based on Their Type Arguments
A key point to understand about generic types is that a reference of one specific version of a
generic type is not type-compatible with another version of the same generic type. For example,
assuming the program just shown, the following line of code is in error and will not compile:

iOb = strOb; // Wrong!

13-ch13.indd 463 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 464 Java: A Beginner’s Guide

Even though both iOb and strOb are of type Gen<T>, they are references to different types
because their type arguments differ. This is part of the way that generics add type safety and
prevent errors.

A Generic Class with Two Type Parameters
You can declare more than one type parameter in a generic type. To specify two or more type
parameters, simply use a comma-separated list. For example, the following TwoGen class is a
variation of the Gen class that has two type parameters:

// A simple generic class with two type
// parameters: T and V.
class TwoGen<T, V> {
 T ob1;
 V ob2;

 // Pass the constructor references to
 // objects of type T and V.
 TwoGen(T o1, V o2) {
 ob1 = o1;
 ob2 = o2;
 }

 // Show types of T and V.
 void showTypes() {
 System.out.println("Type of T is " +
 ob1.getClass().getName());

 System.out.println("Type of V is " +
 ob2.getClass().getName());
 }

 T getOb1() {
 return ob1;
 }

 V getOb2() {
 return ob2;
 }
}

// Demonstrate TwoGen.
class SimpGen {
 public static void main(String[] args) {

 TwoGen<Integer, String> tgObj =
 new TwoGen<Integer, String>(88, "Generics");

Use two type parameters.

Here, Integer is passed to T,
and String is passed to V.

13-ch13.indd 464 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 Chapter 13: Generics 465

 // Show the types.
 tgObj.showTypes();

 // Obtain and show values.
 int v = tgObj.getOb1();
 System.out.println("value: " + v);

 String str = tgObj.getOb2();
 System.out.println("value: " + str);
 }
}

The output from this program is shown here:

Type of T is java.lang.Integer
Type of V is java.lang.String
value: 88
value: Generics

Notice how TwoGen is declared:

class TwoGen<T, V> {

It specifies two type parameters, T and V, separated by a comma. Because it has two type
parameters, two type arguments must be passed to TwoGen when an object is created, as
shown next:

TwoGen<Integer, String> tgObj =
 new TwoGen<Integer, String>(88, "Generics");

In this case, Integer is substituted for T, and String is substituted for V. Although the two type
arguments differ in this example, it is possible for both types to be the same. For example, the
following line of code is valid:

TwoGen<String, String> x = new TwoGen<String, String>("A", "B");

In this case, both T and V would be of type String. Of course, if the type arguments were
always the same, then two type parameters would be unnecessary.

The General Form of a Generic Class
The generics syntax shown in the preceding examples can be generalized. Here is the syntax
for declaring a generic class:

class class-name<type-param-list> { // ...

Here is the full syntax for declaring a reference to a generic class and creating a generic
instance:

class-name<type-arg-list> var-name =
 new class-name<type-arg-list>(cons-arg-list);

13-ch13.indd 465 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 466 Java: A Beginner’s Guide

Bounded Types
In the preceding examples, the type parameters could be replaced by any class type. This
is fine for many purposes, but sometimes it is useful to limit the types that can be passed
to a type parameter. For example, assume that you want to create a generic class that stores
a numeric value and is capable of performing various mathematical functions, such as
computing the reciprocal or obtaining the fractional component. Furthermore, you want to use
the class to compute these quantities for any type of number, including integers, floats, and
doubles. Thus, you want to specify the type of the numbers generically, using a type parameter.
To create such a class, you might try something like this:

// NumericFns attempts (unsuccessfully) to create
// a generic class that can compute various
// numeric functions, such as the reciprocal or the
// fractional component, given any type of number.
class NumericFns<T> {
 T num;

 // Pass the constructor a reference to
 // a numeric object.
 NumericFns(T n) {
 num = n;
 }

 // Return the reciprocal.
 double reciprocal() {
 return 1 / num.doubleValue(); // Error!
 }

 // Return the fractional component.
 double fraction() {
 return num.doubleValue() - num.intValue(); // Error!
 }

 // ...
}

Unfortunately, NumericFns will not compile as written because both methods will
generate compile-time errors. First, examine the reciprocal() method, which attempts to
return the reciprocal of num. To do this, it must divide 1 by the value of num. The value of
num is obtained by calling doubleValue(), which obtains the double version of the numeric
object stored in num. Because all numeric classes, such as Integer and Double, are subclasses
of Number, and Number defines the doubleValue() method, this method is available to
all numeric wrapper classes. The trouble is that the compiler has no way to know that you
are intending to create NumericFns objects using only numeric types. Thus, when you try
to compile NumericFns, an error is reported that indicates that the doubleValue() method
is unknown. The same type of error occurs twice in fraction(), which needs to call both

13-ch13.indd 466 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 Chapter 13: Generics 467

doubleValue() and intValue(). Both calls result in error messages stating that these methods
are unknown. To solve this problem, you need some way to tell the compiler that you intend
to pass only numeric types to T. Furthermore, you need some way to ensure that only numeric
types are actually passed.

To handle such situations, Java provides bounded types. When specifying a type parameter,
you can create an upper bound that declares the superclass from which all type arguments must
be derived. This is accomplished through the use of an extends clause when specifying the
type parameter, as shown here:

<T extends superclass>

This specifies that T can be replaced only by superclass, or subclasses of superclass. Thus,
superclass defines an inclusive, upper limit.

You can use an upper bound to fix the NumericFns class shown earlier by specifying
Number as an upper bound, as shown here:

// In this version of NumericFns, the type argument
// for T must be either Number, or a class derived
// from Number.
class NumericFns<T extends Number> {
 T num;

 // Pass the constructor a reference to
 // a numeric object.
 NumericFns(T n) {
 num = n;
 }

 // Return the reciprocal.
 double reciprocal() {
 return 1 / num.doubleValue();
 }

 // Return the fractional component.
 double fraction() {
 return num.doubleValue() - num.intValue();
 }

 // ...
}

// Demonstrate NumericFns.
class BoundsDemo {
 public static void main(String[] args) {

 NumericFns<Integer> iOb =
 new NumericFns<Integer>(5);

In this case, the type argument
must be either Number or
a subclass of Number.

Integer is OK because it
is a subclass of Number.

13-ch13.indd 467 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 468 Java: A Beginner’s Guide

 System.out.println("Reciprocal of iOb is " +
 iOb.reciprocal());
 System.out.println("Fractional component of iOb is " +
 iOb.fraction());

 System.out.println();

 NumericFns<Double> dOb =
 new NumericFns<Double>(5.25);

 System.out.println("Reciprocal of dOb is " +
 dOb.reciprocal());
 System.out.println("Fractional component of dOb is " +
 dOb.fraction());

 // This won't compile because String is not a
 // subclass of Number.
// NumericFns<String> strOb = new NumericFns<String>("Error");
 }
}

The output is shown here:

Reciprocal of iOb is 0.2
Fractional component of iOb is 0.0

Reciprocal of dOb is 0.19047619047619047
Fractional component of dOb is 0.25

Notice how NumericFns is now declared by this line:

class NumericFns<T extends Number> {

Because the type T is now bounded by Number, the Java compiler knows that all objects of
type T can call doubleValue() because it is a method declared by Number. This is, by itself,
a major advantage. However, as an added bonus, the bounding of T also prevents nonnumeric
NumericFns objects from being created. For example, if you remove the comments from the
line at the end of the program, and then try re-compiling, you will receive compile-time errors
because String is not a subclass of Number.

Bounded types are especially useful when you need to ensure that one type parameter is
compatible with another. For example, consider the following class called Pair, which stores
two objects that must be compatible with each other:

class Pair<T, V extends T> {
 T first;
 V second;

Double is also OK.

String is illegal because it is
not a subclass of Number.

Here, V must be either the same
type as T, or a subclass of T.

13-ch13.indd 468 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 Chapter 13: Generics 469

 Pair(T a, V b) {
 first = a;
 second = b;
 }

 // ...
}

Notice that Pair uses two type parameters, T and V, and that V extends T. This means
that V will either be the same as T or a subclass of T. This ensures that the two arguments
to Pair’s constructor will be objects of the same type or of related types. For example, the
following constructions are valid:

// This is OK because both T and V are Integer.
Pair<Integer, Integer> x = new Pair<Integer, Integer>(1, 2);

// This is OK because Integer is a subclass of Number.
Pair<Number, Integer> y = new Pair<Number, Integer>(10.4, 12);

However, the following is invalid:

// This causes an error because String is not
// a subclass of Number
Pair<Number, String> z = new Pair<Number, String>(10.4, "12");

In this case, String is not a subclass of Number, which violates the bound specified by Pair.

Using Wildcard Arguments
As useful as type safety is, sometimes it can get in the way of perfectly acceptable constructs.
For example, given the NumericFns class shown at the end of the preceding section, assume
that you want to add a method called absEqual() that returns true if two NumericFns objects
contain numbers whose absolute values are the same. Furthermore, you want this method to be
able to work properly no matter what type of number each object holds. For example, if one
object contains the Double value 1.25 and the other object contains the Float value –1.25, then
absEqual() would return true. One way to implement absEqual() is to pass it a NumericFns
argument, and then compare the absolute value of that argument against the absolute value of
the invoking object, returning true only if the values are the same. For example, you want to be
able to call absEqual(), as shown here:

NumericFns<Double> dOb = new NumericFns<Double>(1.25);
NumericFns<Float> fOb = new NumericFns<Float>(-1.25);

if(dOb.absEqual(fOb))
 System.out.println("Absolute values are the same.");
else
 System.out.println("Absolute values differ.");

13-ch13.indd 469 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 470 Java: A Beginner’s Guide

At first, creating absEqual() seems like an easy task. Unfortunately, trouble starts as
soon as you try to declare a parameter of type NumericFns. What type do you specify for
NumericFns’ type parameter? At first, you might think of a solution like this, in which T is
used as the type parameter:

// This won't work!
// Determine if the absolute values of two objects are the same.
boolean absEqual(NumericFns<T> ob) {
 if(Math.abs(num.doubleValue()) ==
 Math.abs(ob.num.doubleValue()) return true;

 return false;
}

Here, the standard method Math.abs() is used to obtain the absolute value of each number,
and then the values are compared. The trouble with this attempt is that it will work only with
other NumericFns objects whose type is the same as the invoking object. For example, if the
invoking object is of type NumericFns<Integer>, then the parameter ob must also be of type
NumericFns<Integer>. It can’t be used to compare an object of type NumericFns<Double>,
for example. Therefore, this approach does not yield a general (i.e., generic) solution.

To create a generic absEqual() method, you must use another feature of Java generics: the
wildcard argument. The wildcard argument is specified by the ?, and it represents an unknown
type. Using a wildcard, here is one way to write the absEqual() method:

// Determine if the absolute values of two
// objects are the same.
boolean absEqual(NumericFns<?> ob) {
 if(Math.abs(num.doubleValue()) ==
 Math.abs(ob.num.doubleValue())) return true;

 return false;
}

Here, NumericFns<?> matches any type of NumericFns object, allowing any two
NumericFns objects to have their absolute values compared. The following program
demonstrates this:

// Use a wildcard.
class NumericFns<T extends Number> {
 T num;

 // Pass the constructor a reference to
 // a numeric object.
 NumericFns(T n) {
 num = n;
 }

 // Return the reciprocal.
 double reciprocal() {

Notice the wildcard.

13-ch13.indd 470 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 Chapter 13: Generics 471

 return 1 / num.doubleValue();
 }

 // Return the fractional component.
 double fraction() {
 return num.doubleValue() - num.intValue();
 }

 // Determine if the absolute values of two
 // objects are the same.
 boolean absEqual(NumericFns<?> ob) {
 if(Math.abs(num.doubleValue()) ==
 Math.abs(ob.num.doubleValue())) return true;

 return false;
 }

 // ...
}

// Demonstrate a wildcard.
class WildcardDemo {
 public static void main(String[] args) {

 NumericFns<Integer> iOb =
 new NumericFns<Integer>(6);

 NumericFns<Double> dOb =
 new NumericFns<Double>(-6.0);

 NumericFns<Long> lOb =
 new NumericFns<Long>(5L);

 System.out.println("Testing iOb and dOb.");
 if(iOb.absEqual(dOb))
 System.out.println("Absolute values are equal.");
 else
 System.out.println("Absolute values differ.");

 System.out.println();

 System.out.println("Testing iOb and lOb.");
 if(iOb.absEqual(lOb))
 System.out.println("Absolute values are equal.");
 else
 System.out.println("Absolute values differ.");

 }
}

In this call, the wildcard
type matches Double.

In this call, the wildcard
matches Long.

13-ch13.indd 471 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 472 Java: A Beginner’s Guide

The output is shown here:

Testing iOb and dOb.
Absolute values are equal.

Testing iOb and lOb.
Absolute values differ.

In the program, notice these two calls to absEqual():

if(iOb.absEqual(dOb))

if(iOb.absEqual(lOb))

In the first call, iOb is an object of type NumericFns<Integer> and dOb is an object of type
NumericFns<Double>. However, through the use of a wildcard, it is possible for iOb to pass
dOb in the call to absEqual(). The same applies to the second call, in which an object of type
NumericFns<Long> is passed.

One last point: It is important to understand that the wildcard does not affect what
type of NumericFns objects can be created. This is governed by the extends clause in the
NumericFns declaration. The wildcard simply matches any valid NumericFns object.

Bounded Wildcards
Wildcard arguments can be bounded in much the same way that a type parameter can be
bounded. A bounded wildcard is especially important when you are creating a method that is
designed to operate only on objects that are subclasses of a specific superclass. To understand
why, let’s work through a simple example. Consider the following set of classes:

class A {
 // ...
}

class B extends A {
 // ...
}

class C extends A {
 // ...
}

// Note that D does NOT extend A.
class D {
 // ...
}

Here, class A is extended by classes B and C, but not by D.

13-ch13.indd 472 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 Chapter 13: Generics 473

Next, consider the following very simple generic class:

// A simple generic class.
class Gen<T> {
 T ob;

 Gen(T o) {
 ob = o;
 }
}

Gen takes one type parameter, which specifies the type of object stored in ob. Because T is
unbounded, the type of T is unrestricted. That is, T can be of any class type.

Now, suppose that you want to create a method that takes as an argument any type of Gen
object so long as its type parameter is A or a subclass of A. In other words, you want to create
a method that operates only on objects of Gen<type>, where type is either A or a subclass of
A. To accomplish this, you must use a bounded wildcard. For example, here is a method called
test() that accepts as an argument only Gen objects whose type parameter is A or a subclass
of A:

// Here, the ? will match A or any class type
// that extends A.
static void test(Gen<? extends A> o) {
 // ...
}

The following class demonstrates the types of Gen objects that can be passed to test().

class UseBoundedWildcard {
 // Here, the ? will match A or any class type
 // that extends A.
 static void test(Gen<? extends A> o) {
 // ...
 }

 public static void main(String[] args) {
 A a = new A();
 B b = new B();
 C c = new C();
 D d = new D();

 Gen<A> w = new Gen<A>(a);
 Gen w2 = new Gen(b);
 Gen<C> w3 = new Gen<C>(c);
 Gen<D> w4 = new Gen<D>(d);

Use a bounded wildcard.

13-ch13.indd 473 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 474 Java: A Beginner’s Guide

 // These calls to test() are OK.
 test(w);
 test(w2);
 test(w3);

 // Can't call test() with w4 because
 // it is not an object of a class that
 // inherits A.
// test(w4); // Error!
 }
}

In main(), objects of type A, B, C, and D are created. These are then used to create four Gen
objects, one for each type. Finally, four calls to test() are made, with the last call commented
out. The first three calls are valid because w, w2, and w3 are Gen objects whose type is either
A or a subclass of A. However, the last call to test() is illegal because w4 is an object of type
D, which is not derived from A. Thus, the bounded wildcard in test() will not accept w4 as an
argument.

In general, to establish an upper bound for a wildcard, use the following type of wildcard
expression:

<? extends superclass>

These are legal because w, w2, and w3 are subclasses of A.

This is illegal because w4 is not a subclass of A.

Q: Can I cast one instance of a generic class into another?

A: Yes, you can cast one instance of a generic class into another, but only if the two are
otherwise compatible and their type arguments are the same. For example, assume a generic
class called Gen that is declared like this:

class Gen<T> { // ...

Next, assume that x is declared as shown here:

Gen<Integer> x = new Gen<Integer>();

Then, this cast is legal

(Gen<Integer>) x // legal

because x is an instance of Gen<Integer>. But, this cast

(Gen<Long>) x // illegal

is not legal because x is not an instance of Gen<Long>.

Ask the Expert

13-ch13.indd 474 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 Chapter 13: Generics 475

where superclass is the name of the class that serves as the upper bound. Remember, this is an
inclusive clause because the class forming the upper bound (specified by superclass) is also
within bounds.

You can also specify a lower bound for a wildcard by adding a super clause to a wildcard
declaration. Here is its general form:

<? super subclass>

In this case, only classes that are superclasses of subclass are acceptable arguments. This is an
inclusive clause.

Generic Methods
As the preceding examples have shown, methods inside a generic class can make use of a class’
type parameter and are, therefore, automatically generic relative to the type parameter. However,
it is possible to declare a generic method that uses one or more type parameters of its own.
Furthermore, it is possible to create a generic method that is enclosed within a nongeneric class.

The following program declares a nongeneric class called GenericMethodDemo and
a static generic method within that class called arraysEqual(). This method determines if
two arrays contain the same elements, in the same order. It can be used to compare any two
arrays as long as the arrays are of the same or compatible types and the array elements are,
themselves, comparable.

// Demonstrate a simple generic method.
class GenericMethodDemo {

 // Determine if the contents of two arrays are the same.
 static <T extends Comparable<T>, V extends T> boolean
 arraysEqual(T[] x, V[] y) {
 // If array lengths differ, then the arrays differ.
 if(x.length != y.length) return false;

 for(int i=0; i < x.length; i++)
 if(!x[i].equals(y[i])) return false; // arrays differ

 return true; // contents of arrays are equivalent
 }

 public static void main(String[] args) {

 Integer[] nums = { 1, 2, 3, 4, 5 };
 Integer[] nums2 = { 1, 2, 3, 4, 5 };
 Integer[] nums3 = { 1, 2, 7, 4, 5 };
 Integer[] nums4 = { 1, 2, 7, 4, 5, 6 };

 if(arraysEqual(nums, nums))
 System.out.println("nums equals nums");

 if(arraysEqual(nums, nums2))
 System.out.println("nums equals nums2");

A generic method.

The type arguments for T and V
are implicitly determined when
the method is called.

13-ch13.indd 475 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 476 Java: A Beginner’s Guide

 if(arraysEqual(nums, nums3))
 System.out.println("nums equals nums3");

 if(arraysEqual(nums, nums4))
 System.out.println("nums equals nums4");

 // Create an array of Doubles
 Double[] dvals = { 1.1, 2.2, 3.3, 4.4, 5.5 };

 // This won't compile because nums and dvals
 // are not of the same type.
// if(arraysEqual(nums, dvals))
// System.out.println("nums equals dvals");
 }
}

The output from the program is shown here:

nums equals nums
nums equals nums2

Let’s examine arraysEqual() closely. First, notice how it is declared by this line:

static <T extends Comparable<T>, V extends T> boolean arraysEqual(T[] x, V[] y) {

The type parameters are declared before the return type of the method. Also note that T
extends Comparable<T>. Comparable is an interface declared in java.lang. A class that
implements Comparable defines objects that can be ordered. Thus, requiring an upper bound
of Comparable ensures that arraysEqual() can be used only with objects that are capable of
being compared. Comparable is generic, and its type parameter specifies the type of objects
that it compares. (Shortly, you will see how to create a generic interface.) Next, notice that
the type V is upper-bounded by T. Thus, V must be either the same as type T or a subclass of
T. This relationship enforces that arraysEqual() can be called only with arguments that are
comparable with each other. Also notice that arraysEqual() is static, enabling it to be called
independently of any object. Understand, though, that generic methods can be either static or
nonstatic. There is no restriction in this regard.

Now, notice how arraysEqual() is called within main() by use of the normal call syntax,
without the need to specify type arguments. This is because the types of the arguments are
automatically discerned, and the types of T and V are adjusted accordingly. For example, in
the first call:

if(arraysEqual(nums, nums))

the element type of the first argument is Integer, which causes Integer to be substituted for T.
The element type of the second argument is also Integer, which makes Integer a substitute for V,
too. Thus, the call to arraysEqual() is legal, and the two arrays can be compared.

13-ch13.indd 476 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 Chapter 13: Generics 477

Now, notice the commented-out code, shown here:

// if(arraysEqual(nums, dvals))
// System.out.println("nums equals dvals");

If you remove the comments and then try to compile the program, you will receive an error. The
reason is that the type parameter V is bounded by T in the extends clause in V’s declaration.
This means that V must be either type T or a subclass of T. In this case, the first argument is of
type Integer, making T into Integer, but the second argument is of type Double, which is not a
subclass of Integer. This makes the call to arraysEqual() illegal, and results in a compile-time
type-mismatch error.

The syntax used to create arraysEqual() can be generalized. Here is the syntax for a
generic method:

<type-param-list> ret-type meth-name(param-list) { // ...

In all cases, type-param-list is a comma-separated list of type parameters. Notice that for a
generic method, the type parameter list precedes the return type.

Generic Constructors
A constructor can be generic, even if its class is not. For example, in the following program,
the class Summation is not generic, but its constructor is.

// Use a generic constructor.
class Summation {
 private int sum;

 <T extends Number> Summation(T arg) {
 sum = 0;

 for(int i=0; i <= arg.intValue(); i++)
 sum += i;
 }

 int getSum() {
 return sum;
 }
}

class GenConsDemo {
 public static void main(String[] args) {
 Summation ob = new Summation(4.0);

 System.out.println("Summation of 4.0 is " +
 ob.getSum());
 }
}

The Summation class computes and encapsulates the summation of the numeric value passed
to its constructor. Recall that the summation of N is the sum of all the whole numbers between

A generic constructor

13-ch13.indd 477 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 478 Java: A Beginner’s Guide

0 and N. Because Summation() specifies a type parameter that is bounded by Number, a
Summation object can be constructed using any numeric type, including Integer, Float, or
Double. No matter what numeric type is used, its value is converted to Integer by calling
intValue(), and the summation is computed. Therefore, it is not necessary for the class
Summation to be generic; only a generic constructor is needed.

Generic Interfaces
As you saw in the GenericMethodDemo program presented earlier, an interface can be
generic. In that example, the standard interface Comparable<T> was used to ensure that
elements of two arrays could be compared. Of course, you can also define your own generic
interface. Generic interfaces are specified just like generic classes. Here is an example. It
creates an interface called Containment, which can be implemented by classes that store one
or more values. It declares a method called contains() that determines if a specified value is
contained by the invoking object.

// A generic interface example.

// A generic containment interface.
// This interface implies that an implementing
// class contains one or more values.
interface Containment<T> {
 // The contains() method tests if a
 // specific item is contained within
 // an object that implements Containment.
 boolean contains(T o);
}

// Implement Containment using an array to
// hold the values.
class MyClass<T> implements Containment<T> {
 T[] arrayRef;

 MyClass(T[] o) {
 arrayRef = o;
 }

 // Implement contains()
 public boolean contains(T o) {
 for(T x : arrayRef)
 if(x.equals(o)) return true;
 return false;
 }
}

class GenIFDemo {
 public static void main(String[] args) {
 Integer[] x = { 1, 2, 3 };

 MyClass<Integer> ob = new MyClass<Integer>(x);

A generic interface

Any class that implements
a generic interface must
itself be generic.

13-ch13.indd 478 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 Chapter 13: Generics 479

 if(ob.contains(2))
 System.out.println("2 is in ob");
 else
 System.out.println("2 is NOT in ob");

 if(ob.contains(5))
 System.out.println("5 is in ob");
 else
 System.out.println("5 is NOT in ob");

 // The following is illegal because ob
 // is an Integer Containment and 9.25 is
 // a Double value.
// if(ob.contains(9.25)) // Illegal!
// System.out.println("9.25 is in ob");
 }
}

The output is shown here:

2 is in ob
5 is NOT in ob

Although most aspects of this program should be easy to understand, a couple of key points
need to be made. First, notice that Containment is declared like this:

interface Containment<T> {

In general, a generic interface is declared in the same way as a generic class. In this case, the
type parameter T specifies the type of objects that are contained.

Next, Containment is implemented by MyClass. Notice the declaration of MyClass,
shown here:

class MyClass<T> implements Containment<T> {

In general, if a class implements a generic interface, then that class must also be generic, at
least to the extent that it takes a type parameter that is passed to the interface. For example,
the following attempt to declare MyClass is in error:

class MyClass implements Containment<T> { // Wrong!

This declaration is wrong because MyClass does not declare a type parameter, which means that
there is no way to pass one to Containment. In this case, the identifier T is simply unknown and
the compiler reports an error. Of course, if a class implements a specific type of generic interface,
such as shown here:

class MyClass implements Containment<Double> { // OK

then the implementing class does not need to be generic.

13-ch13.indd 479 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 480 Java: A Beginner’s Guide

Try This 13-1

As you might expect, the type parameter(s) specified by a generic interface can be bounded.
This lets you limit the type of data for which the interface can be implemented. For example, if
you wanted to limit Containment to numeric types, then you could declare it like this:

interface Containment<T extends Number> {

Now, any implementing class must pass to Containment a type argument also having the
same bound. For example, now MyClass must be declared as shown here:

class MyClass<T extends Number> implements Containment<T> {

Pay special attention to the way the type parameter T is declared by MyClass and then passed
to Containment. Because Containment now requires a type that extends Number, the
implementing class (MyClass in this case) must specify the same bound. Furthermore, once this
bound has been established, there is no need to specify it again in the implements clause. In
fact, it would be wrong to do so. For example, this declaration is incorrect and won’t compile:

// This is wrong!
class MyClass<T extends Number>
 implements Containment<T extends Number> { // Wrong!

Once the type parameter has been established, it is simply passed to the interface without
further modification.

Here is the generalized syntax for a generic interface:

interface interface-name<type-param-list> { // ...

Here, type-param-list is a comma-separated list of type parameters. When a generic interface is
implemented, you must specify the type arguments, as shown here:

class class-name<type-param-list>
 implements interface-name<type-param-list> {

 Create a Generic Queue
One of the most powerful advantages that generics bring to
programming is the ability to construct reliable, reusable code.
As mentioned at the start of this chapter, many algorithms are
the same no matter what type of data they are used on. For
example, a queue works the same way whether that queue is for
integers, strings, or File objects. Instead of creating a separate

queue class for each type of object, you can craft a single, generic solution that can be used
with any type of object. Thus, the development cycle of design, code, test, and debug occurs
only once when you create a generic solution—not repeatedly, each time a queue is needed for
a new data type.

In this project, you will adapt the queue example that has been evolving since Try This 5-2,
making it generic. This project represents the final evolution of the queue. It includes a generic

IGenQ.java
QueueFullException.java
QueueEmptyException.java
GenQueue.java
GenQDemo.java

13-ch13.indd 480 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 Chapter 13: Generics 481

interface that defines the queue operations, two exception classes, and one queue implementation:
a fixed-size queue. Of course, you can experiment with other types of generic queues, such
as a generic dynamic queue or a generic circular queue. Just follow the lead of the example
shown here.

Like the previous version of the queue shown in Try This 9-1, this project organizes the
queue code into a set of separate files: one for the interface, one for each queue exception,
one for the fixed-queue implementation, and one for the program that demonstrates it. This
organization reflects the way that this project would normally be organized in the real world.

 1. The first step in creating a generic queue is to create a generic interface that describes the
queue’s two operations: put and get. The generic version of the queue interface is called
IGenQ and it is shown here. Put this interface into a file called IGenQ.java.

// A generic queue interface.
public interface IGenQ<T> {
 // Put an item into the queue.
 void put(T ch) throws QueueFullException;

 // Get an item from the queue.
 T get() throws QueueEmptyException;
}

 Notice that the type of data stored by the queue is specified by the generic type parameter T.

 2. Next, create the files QueueFullException.java and QueueEmptyException.java. Put in
each file its corresponding class, shown here:

// An exception for queue-full errors.
public class QueueFullException extends Exception {
 int size;

 QueueFullException(int s) { size = s; }

 public String toString() {
 return "\nQueue is full. Maximum size is " +
 size;
 }
}

// An exception for queue-empty errors.
public class QueueEmptyException extends Exception {

 public String toString() {
 return "\nQueue is empty.";
 }
}

 These classes encapsulate the two queue errors: full or empty. They are not generic classes
because they are the same no matter what type of data is stored in a queue. Thus, these two
files will be the same as those you used with Try This 9-1.

(continued)

13-ch13.indd 481 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 482 Java: A Beginner’s Guide

 3. Now, create a file called GenQueue.java. Into that file, put the following code, which
implements a fixed-size queue:

// A generic, fixed-size queue class.
class GenQueue<T> implements IGenQ<T> {
 private T[] q; // this array holds the queue
 private int putloc, getloc; // the put and get indices

 // Construct an empty queue with the given array.
 public GenQueue(T[] aRef) {
 q = aRef;
 putloc = getloc = 0;
 }

 // Put an item into the queue.
 public void put(T obj)
 throws QueueFullException {

 if(putloc==q.length)
 throw new QueueFullException(q.length);

 q[putloc++] = obj;
 }

 // Get a character from the queue.
 public T get()
 throws QueueEmptyException {

 if(getloc == putloc)
 throw new QueueEmptyException();

 return q[getloc++];
 }
}

 GenQueue is a generic class with type parameter T, which specifies the type of data stored
in the queue. Notice that T is also passed to the IGenQ interface.

 Notice that the GenQueue constructor is passed a reference to an array that will be used to
hold the queue. Thus, to construct a GenQueue, you will first create an array whose type
is compatible with the objects that you will be storing in the queue and whose size is long
enough to store the number of objects that will be placed in the queue.

 For example, the following sequence shows how to create a queue that holds strings:

String[] strArray = new String[10];
GenQueue<String> strQ = new GenQueue<String>(strArray);

13-ch13.indd 482 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 Chapter 13: Generics 483

 4. Create a file called GenQDemo.java and put the following code into it. This program
demonstrates the generic queue.

/*
 Try This 13-1

 Demonstrate a generic queue class.
*/
class GenQDemo {
 public static void main(String[] args) {
 // Create an integer queue.
 Integer[] iStore = new Integer[10];
 GenQueue<Integer> q = new GenQueue<Integer>(iStore);

 Integer iVal;

 System.out.println("Demonstrate a queue of Integers.");
 try {
 for(int i=0; i < 5; i++) {
 System.out.println("Adding " + i + " to q.");
 q.put(i); // add integer value to q
 }
 }
 catch (QueueFullException exc) {
 System.out.println(exc);
 }
 System.out.println();

 try {
 for(int i=0; i < 5; i++) {
 System.out.print("Getting next Integer from q: ");
 iVal = q.get();
 System.out.println(iVal);
 }
 }
 catch (QueueEmptyException exc) {
 System.out.println(exc);
 }

 System.out.println();

 // Create a Double queue.
 Double[] dStore = new Double[10];
 GenQueue<Double> q2 = new GenQueue<Double>(dStore);

(continued)

13-ch13.indd 483 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 484 Java: A Beginner’s Guide

 Double dVal;

 System.out.println("Demonstrate a queue of Doubles.");
 try {
 for(int i=0; i < 5; i++) {
 System.out.println("Adding " + (double)i/2 +
 " to q2.");
 q2.put((double)i/2); // add double value to q2
 }
 }
 catch (QueueFullException exc) {
 System.out.println(exc);
 }
 System.out.println();

 try {
 for(int i=0; i < 5; i++) {
 System.out.print("Getting next Double from q2: ");
 dVal = q2.get();
 System.out.println(dVal);
 }
 }
 catch (QueueEmptyException exc) {
 System.out.println(exc);
 }
 }
}

 5. Compile the program and run it. You will see the output shown here:

Demonstrate a queue of Integers.
Adding 0 to q.
Adding 1 to q.
Adding 2 to q.
Adding 3 to q.
Adding 4 to q.

Getting next Integer from q: 0
Getting next Integer from q: 1
Getting next Integer from q: 2
Getting next Integer from q: 3
Getting next Integer from q: 4

Demonstrate a queue of Doubles.
Adding 0.0 to q2.
Adding 0.5 to q2.
Adding 1.0 to q2.
Adding 1.5 to q2.
Adding 2.0 to q2.

13-ch13.indd 484 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 Chapter 13: Generics 485

Getting next Double from q2: 0.0
Getting next Double from q2: 0.5
Getting next Double from q2: 1.0
Getting next Double from q2: 1.5
Getting next Double from q2: 2.0

 6. On your own, try converting the CircularQueue and DynQueue classes from Try This 8-1
into generic classes.

Raw Types and Legacy Code
Because support for generics did not exist prior to JDK 5, it was necessary for Java to provide
some transition path from old, pre-generics code. Simply put, pre-generics legacy code had to
remain both functional and compatible with generics. This meant that pre-generics code must
be able to work with generics, and generic code must be able to work with pre-generics code.

To handle the transition to generics, Java allows a generic class to be used without any type
arguments. This creates a raw type for the class. This raw type is compatible with legacy code,
which has no knowledge of generics. The main drawback to using the raw type is that the type
safety of generics is lost.

Here is an example that shows a raw type in action:

// Demonstrate a raw type.
class Gen<T> {
 T ob; // declare an object of type T

 // Pass the constructor a reference to
 // an object of type T.
 Gen(T o) {
 ob = o;
 }

 // Return ob.
 T getOb() {
 return ob;
 }
}

// Demonstrate raw type.
class RawDemo {
 public static void main(String[] args) {

 // Create a Gen object for Integers.
 Gen<Integer> iOb = new Gen<Integer>(88);

13-ch13.indd 485 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 486 Java: A Beginner’s Guide

 // Create a Gen object for Strings.
 Gen<String> strOb = new Gen<String>("Generics Test");

 // Create a raw-type Gen object and give it
 // a Double value.
 Gen raw = new Gen(98.6);

 // Cast here is necessary because type is unknown.
 double d = (Double) raw.getOb();
 System.out.println("value: " + d);

 // The use of a raw type can lead to run-time.
 // exceptions. Here are some examples.

 // The following cast causes a run-time error!
// int i = (Integer) raw.getOb(); // run-time error

 // This assignment overrides type safety.
 strOb = raw; // OK, but potentially wrong
// String str = strOb.getOb(); // run-time error

 // This assignment also overrides type safety.
 raw = iOb; // OK, but potentially wrong
// d = (Double) raw.getOb(); // run-time error
 }
}

This program contains several interesting things. First, a raw type of the generic Gen class
is created by the following declaration:

Gen raw = new Gen(98.6);

Notice that no type arguments are specified. In essence, this creates a Gen object whose type T
is replaced by Object.

A raw type is not type safe. Thus, a variable of a raw type can be assigned a reference to
any type of Gen object. The reverse is also allowed, in which a variable of a specific Gen type
can be assigned a reference to a raw Gen object. However, both operations are potentially
unsafe because the type checking mechanism of generics is circumvented.

This lack of type safety is illustrated by the commented-out lines at the end of the program.
Let’s examine each case. First, consider the following situation:

// int i = (Integer) raw.getOb(); // run-time error

In this statement, the value of ob inside raw is obtained, and this value is cast to Integer.
The trouble is that raw contains a Double value, not an integer value. However, this cannot
be detected at compile time because the type of raw is unknown. Thus, this statement fails at
run time.

When no type argument is
supplied, a raw type is created.

Raw types override
type safety.

13-ch13.indd 486 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 Chapter 13: Generics 487

The next sequence assigns to strOb (a reference of type Gen<String>) a reference to a
raw Gen object:

 strOb = raw; // OK, but potentially wrong
// String str = strOb.getOb(); // run-time error

The assignment itself is syntactically correct, but questionable. Because strOb is of type
Gen<String>, it is assumed to contain a String. However, after the assignment, the object
referred to by strOb contains a Double. Thus, at run time, when an attempt is made to assign
the contents of strOb to str, a run-time error results because strOb now contains a Double.
Thus, the assignment of a raw reference to a generic reference bypasses the type-safety
mechanism.

The following sequence inverts the preceding case:

 raw = iOb; // OK, but potentially wrong
// d = (Double) raw.getOb(); // run-time error

Here, a generic reference is assigned to a raw reference variable. Although this is syntactically
correct, it can lead to problems, as illustrated by the second line. In this case, raw now refers
to an object that contains an Integer object, but the cast assumes that it contains a Double.
This error cannot be prevented at compile time. Rather, it causes a run-time error.

Because of the potential for danger inherent in raw types, javac displays unchecked warnings
when a raw type is used in a way that might jeopardize type safety. In the preceding program,
these lines generate unchecked warnings:

Gen raw = new Gen(98.6);

strOb = raw; // OK, but potentially wrong

In the first line, it is the use of Gen without a type argument that causes the warning. In the
second line, it is the assignment of a raw reference to a generic variable that generates the
warning.

At first, you might think that this line should also generate an unchecked warning, but it
does not:

raw = iOb; // OK, but potentially wrong

No compiler warning is issued because the assignment does not cause any further loss of type
safety than had already occurred when raw was created.

One final point: You should limit the use of raw types to those cases in which you must
mix legacy code with modern, generic code. Raw types are simply a transitional feature and
not something that should be used for new code.

13-ch13.indd 487 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 488 Java: A Beginner’s Guide

Type Inference with the Diamond Operator
Beginning with JDK 7, it is possible to shorten the syntax used to create an instance of a
generic type. To begin, think back to the TwoGen class shown earlier in this chapter. A portion
is shown here for convenience. Notice that it uses two generic types.

class TwoGen<T, V> {
 T ob1;
 V ob2;

 // Pass the constructor a reference to
 // an object of type T.
 TwoGen(T o1, V o2) {
 ob1 = o1;
 ob2 = o2;
 }
 // ...
}

For versions of Java prior to JDK 7, to create an instance of TwoGen, you must use a
statement similar to the following:

TwoGen<Integer, String> tgOb =
 new TwoGen<Integer, String>(42, "testing");

Here, the type arguments (which are Integer and String) are specified twice: first, when
tgOb is declared, and second, when a TwoGen instance is created via new. While there
is nothing wrong, per se, with this form, it is a bit more verbose than it needs to be. Since,
in the new clause, the type of the type arguments can be readily inferred, there is really no
reason that they need to be specified a second time. To address this situation, JDK 7 added a
syntactic element that lets you avoid the second specification.

Today, the preceding declaration can be rewritten as shown here:

TwoGen<Integer, String> tgOb = new TwoGen<>(42, "testing");

Notice that the instance creation portion simply uses < >, which is an empty type argument
list. This is referred to as the diamond operator. It tells the compiler to infer the type arguments
needed by the constructor in the new expression. The principal advantage of this type-
inference syntax is that it shortens what are sometimes quite long declaration statements. This
is especially helpful for generic types that specify bounds.

The preceding example can be generalized. When type inference is used, the declaration
syntax for a generic reference and instance creation has this general form:

class-name<type-arg-list> var-name = new class-name< >(cons-arg-list);

Here, the type argument list of the new clause is empty.

13-ch13.indd 488 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 Chapter 13: Generics 489

Although mostly for use in declaration statements, type inference can also be applied to
parameter passing. For example, if the following method is added to TwoGen:

boolean isSame(TwoGen<T, V> o) {
 if(ob1 == o.ob1 && ob2 == o.ob2) return true;
 else return false;
}

then the following call is legal:

if(tgOb.isSame(new TwoGen<>(42, "testing"))) System.out.println("Same");

In this case, the type arguments for the arguments passed to isSame() can be inferred from the
parameters’ types. They don’t need to be specified again.

Although the diamond operator offers convenience, in general, the remaining examples of
generics in this book will continue to use the full syntax when declaring instances of generic
classes. There are two reasons for this. First, and most importantly, using the full-length syntax
makes it very clear precisely what is being created, which is helpful when example code is
shown. Second, the code will work in environments that are using an older compiler. Of course,
in your own code, the use of the type inference syntax will streamline your declarations.

Local Variable Type Inference and Generics
As just explained, type inference is already supported for generics through the use of the
diamond operator. However, you can also use the local variable type inference feature added by
JDK 10 with a generic class. For example, again assuming the TwoGen class, this declaration:

TwoGen<Integer, String> tgObj =
 new TwoGen<Integer, String>(42, "testing");

can be rewritten like this using local variable type inference:

var tgOb = new TwoGen<Integer, String>(42, "testing");

In this case, the type of tgOb is inferred to be TwoGen<Integer, String> because that is the
type of its initializer. Also notice that the use of var results in a shorter declaration than would
be the case otherwise. In general, generic type names can often be quite long and (in some
cases) complicated. The use of var is another way to substantially shorten such declarations.
For the same reasons as just explained for the diamond operator, the remaining examples in
this book will continue to use the full generic syntax, but in your own code the use of local
variable type inference can be quite helpful.

Erasure
Usually, it is not necessary for the programmer to know the details about how the Java compiler
transforms your source code into object code. However, in the case of generics, some general
understanding of the process is important because it explains why the generic features work as
they do—and why their behavior is sometimes a bit surprising. For this reason, a brief discussion
of how generics are implemented in Java is in order.

13-ch13.indd 489 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 490 Java: A Beginner’s Guide

An important constraint that governed the way generics were added to Java was the
need for compatibility with previous versions of Java. Simply put: generic code had to be
compatible with preexisting, nongeneric code. Thus, any changes to the syntax of the Java
language, or to the JVM, had to avoid breaking older code. The way Java implements generics
while satisfying this constraint is through the use of erasure.

In general, here is how erasure works. When your Java code is compiled, all generic
type information is removed (erased). This means replacing type parameters with their bound
type, which is Object if no explicit bound is specified, and then applying the appropriate
casts (as determined by the type arguments) to maintain type compatibility with the types
specified by the type arguments. The compiler also enforces this type compatibility. This
approach to generics means that no type parameters exist at run time. They are simply a
source-code mechanism.

Ambiguity Errors
The inclusion of generics gives rise to a new type of error that you must guard against: ambiguity.
Ambiguity errors occur when erasure causes two seemingly distinct generic declarations to
resolve to the same erased type, causing a conflict. Here is an example that involves method
overloading:

// Ambiguity caused by erasure on
// overloaded methods.
class MyGenClass<T, V> {
 T ob1;
 V ob2;

 // ...

 // These two overloaded methods are ambiguous
 // and will not compile.
 void set(T o) {
 ob1 = o;
 }

 void set(V o) {
 ob2 = o;
 }
}

Notice that MyGenClass declares two generic types: T and V. Inside MyGenClass,
an attempt is made to overload set() based on parameters of type T and V. This looks
reasonable because T and V appear to be different types. However, there are two ambiguity
problems here.

These two methods are
inherently ambiguous.

13-ch13.indd 490 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 Chapter 13: Generics 491

First, as MyGenClass is written there is no requirement that T and V actually be different
types. For example, it is perfectly correct (in principle) to construct a MyGenClass object as
shown here:

MyGenClass<String, String> obj = new MyGenClass<String, String>()

In this case, both T and V will be replaced by String. This makes both versions of set()
identical, which is, of course, an error.

Second, and more fundamental, is that the type erasure of set() effectively reduces both
versions to the following:

void set(Object o) { // ...

Thus, the overloading of set() as attempted in MyGenClass is inherently ambiguous. The
solution in this case is to use two separate method names rather than trying to overload set().

Some Generic Restrictions
There are a few restrictions that you need to keep in mind when using generics. They
involve creating objects of a type parameter, static members, exceptions, and arrays. Each
is examined here.

Type Parameters Can’t Be Instantiated
It is not possible to create an instance of a type parameter. For example, consider this class:

// Can't create an instance of T.
class Gen<T> {
 T ob;
 Gen() {
 ob = new T(); // Illegal!!!
 }
}

Here, it is illegal to attempt to create an instance of T. The reason should be easy to understand:
the compiler has no way to know what type of object to create. T is simply a placeholder.

Restrictions on Static Members
No static member can use a type parameter declared by the enclosing class. For example, both
of the static members of this class are illegal:

class Wrong<T> {
 // Wrong, no static variables of type T.
 static T ob;

 // Wrong, no static method can use T.
 static T getOb() {
 return ob;
 }
}

13-ch13.indd 491 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 492 Java: A Beginner’s Guide

Although you can’t declare static members that use a type parameter declared by the
enclosing class, you can declare static generic methods, which define their own type parameters,
as was done earlier in this chapter.

Generic Array Restrictions
There are two important generics restrictions that apply to arrays. First, you cannot instantiate an
array whose element type is a type parameter. Second, you cannot create an array of type-specific
generic references. The following short program shows both situations:

// Generics and arrays.
class Gen<T extends Number> {
 T ob;

 T[] vals; // OK

 Gen(T o, T[] nums) {
 ob = o;

 // This statement is illegal.
// vals = new T[10]; // can't create an array of T

 // But, this statement is OK.
 vals = nums; // OK to assign reference to existent array
 }
}

class GenArrays {
 public static void main(String[] args) {
 Integer[] n = { 1, 2, 3, 4, 5 };

 Gen<Integer> iOb = new Gen<Integer>(50, n);

 // Can't create an array of type-specific generic references.
 // Gen<Integer>[] gens = new Gen<Integer>[10]; // Wrong!

 // This is OK.
 Gen<?>[] gens = new Gen<?>[10]; // OK
 }
}

As the program shows, it’s valid to declare a reference to an array of type T, as this line does:

T[] vals; // OK

But, you cannot instantiate an array of T, as this commented-out line attempts:

// vals = new T[10]; // can't create an array of T

13-ch13.indd 492 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 Chapter 13: Generics 493

The reason you can’t create an array of T is that there is no way for the compiler to know what
type of array to actually create. However, you can pass a reference to a type-compatible array
to Gen() when an object is created and assign that reference to vals, as the program does in
this line:

vals = nums; // OK to assign reference to existent array

This works because the array passed to Gen() has a known type, which will be the same type
as T at the time of object creation. Inside main(), notice that you can’t declare an array of
references to a specific generic type. That is, this line

// Gen<Integer>[] gens = new Gen<Integer>[10]; // Wrong!

won’t compile.

Generic Exception Restriction
A generic class cannot extend Throwable. This means that you cannot create generic
exception classes.

Continuing Your Study of Generics
As mentioned at the start, this chapter gives you sufficient knowledge to use generics
effectively in your own programs. However, there are many side issues and special
cases that are not covered here. Readers especially interested in generics will want to learn
about how generics affect class hierarchies, run-time type comparisons, and overriding,
for example. Discussions of these and other topics are found in Java: The Complete
Reference, Twelfth Edition (McGraw Hill, 2022).

 Chapter 13 Self Test
 1. Generics are important to Java because they enable the creation of code that is

 A. Type-safe

 B. Reusable

 C. Reliable

 D. All of the above

 2. Can a primitive type be used as a type argument?

 3. Show how to declare a class called FlightSched that takes two generic parameters.

 4. Beginning with your answer to question 3, change FlightSched’s second type parameter so
that it must extend Thread.

✓

13-ch13.indd 493 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 13

 494 Java: A Beginner’s Guide

 5. Now, change FlightSched so that its second type parameter must be a subclass of its first
type parameter.

 6. As it relates to generics, what is the ? and what does it do?

 7. Can the wildcard argument be bounded?

 8. A generic method called MyGen() has one type parameter. Furthermore, MyGen() has
one parameter whose type is that of the type parameter. It also returns an object of that type
parameter. Show how to declare MyGen().

 9. Given this generic interface

interface IGenIF<T, V extends T> { // ...

 show the declaration of a class called MyClass that implements IGenIF.

 10. Given a generic class called Counter<T>, show how to create an object of its raw type.

 11. Do type parameters exist at run time?

 12. Convert your solution to question 10 of the Self Test for Chapter 9 so that it is generic.
In the process, create a stack interface called IGenStack that generically defines the
operations push() and pop().

 13. What is < >?

 14. How can the following be simplified?

MyClass<Double,String> obj = new MyClass<Double,String>(1.1,"Hi");

13-ch13.indd 494 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14
Blind Folio: 495

Chapter 14
Lambda Expressions
and Method References

14-ch14.indd 495 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14

 496 Java: A Beginner’s Guide

Key Skills & Concepts

● Know the general form of a lambda expression

● Understand the definition of a functional interface

● Use expression lambdas

● Use block lambdas

● Use generic functional interfaces

● Understand variable capture in a lambda expression

● Throw an exception from a lambda expression

● Understand the method reference

● Understand the constructor reference

● Know about the predefined functional interfaces in java.util.function

Beginning with JDK 8, a feature was added to Java that profoundly enhanced the expressive
power of the language. This feature is the lambda expression. Not only did lambda

expressions add new syntax elements to the language, they also streamlined the way that
certain common constructs are implemented. In much the same way that the addition of
generics reshaped Java years ago, lambda expressions continue to reshape Java today. They
truly are that important.

The addition of lambda expressions also provided the catalyst for other Java features.
You have already seen one of them—the default method—which was described in Chapter 8.
It lets you define default behavior for an interface method. Another example is the method
reference, described later in this chapter, which lets you refer to a method without executing it.
Furthermore, the inclusion of lambda expressions resulted in new capabilities being incorporated
into the API library.

Beyond the benefits that lambda expressions bring to the language, there is another reason
why they constitute such an important part of Java. Over the past few years, lambda
expressions have become a major focus of computer language design. For example, they have
been added to languages such as C# and C++. Their inclusion in Java helps it remain the vibrant,
innovative language that programmers have come to expect. This chapter presents an introduction
to this important feature.

Introducing Lambda Expressions
Key to understanding the lambda expression are two constructs. The first is the lambda expression,
itself. The second is the functional interface. Let’s begin with a simple definition of each.

14-ch14.indd 496 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14

 Chapter 14: Lambda Expressions and Method References 497

A lambda expression is, essentially, an anonymous (that is, unnamed) method. However,
this method is not executed on its own. Instead, it is used to implement a method defined by a
functional interface. Thus, a lambda expression results in a form of anonymous class. Lambda
expressions are also commonly referred to as closures.

A functional interface is an interface that contains one and only one abstract method.
Normally, this method specifies the intended purpose of the interface. Thus, a functional
interface typically represents a single action. For example, the standard interface Runnable is
a functional interface because it defines only one method: run(). Therefore, run() defines the
action of Runnable. Furthermore, a functional interface defines the target type of a lambda
expression. Here is a key point: a lambda expression can be used only in a context in which
a target type is specified. One other thing: a functional interface is sometimes referred to as a
SAM type, where SAM stands for Single Abstract Method.

Let’s now look more closely at both lambda expressions and functional interfaces.

NOTE
A functional interface may specify any public method defined by Object, such
as equals(), without affecting its “functional interface” status. The public Object
methods are considered implicit members of a functional interface because they are
automatically implemented by an instance of a functional interface.

Lambda Expression Fundamentals
The lambda expression relies on a syntax element and operator that differ from what you have
seen in the preceding chapters. The operator, sometimes referred to as the lambda operator or
the arrow operator, is –>. It divides a lambda expression into two parts. The left side specifies
any parameters required by the lambda expression. On the right side is the lambda body, which
specifies the actions of the lambda expression. Java defines two types of lambda bodies. One
type consists of a single expression, and the other type consists of a block of code. We will
begin with lambdas that define a single expression.

At this point, it will be helpful to look at a few examples of lambda expressions before
continuing. Let’s begin with what is probably the simplest type of lambda expression you can
write. It evaluates to a constant value and is shown here:

() -> 98.6

This lambda expression takes no parameters, thus the parameter list is empty. It returns the
constant value 98.6. The return type is inferred to be double. Therefore, it is similar to the
following method:

double myMeth() { return 98.6; }

Of course, the method defined by a lambda expression does not have a name.
A slightly more interesting lambda expression is shown here:

() -> Math.random() * 100

This lambda expression obtains a pseudo-random value from Math.random(), multiplies it by
100, and returns the result. It, too, does not require a parameter.

14-ch14.indd 497 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14

 498 Java: A Beginner’s Guide

When a lambda expression requires a parameter, it is specified in the parameter list on the
left side of the lambda operator. Here is a simple example:

(n) -> 1.0 / n

This lambda expression returns the reciprocal of the value of parameter n. Thus, if n is 4.0, the
reciprocal is 0.25. Although it is possible to explicitly specify the type of a parameter, such as
n in this case, often you won’t need to because, in many cases, its type can be inferred. Like a
named method, a lambda expression can specify as many parameters as needed.

Any valid type can be used as the return type of a lambda expression. For example, this
lambda expression returns true if the value of parameter n is even and false otherwise.

(n) -> (n % 2)==0

Thus, the return type of this lambda expression is boolean.
One other point before moving on. When a lambda expression has only one parameter,

it is not necessary to surround the parameter name with parentheses when it is specified on
the left side of the lambda operator. For example, this is also a valid way to write the lambda
expression just shown:

n -> (n % 2)==0

For consistency, this book will surround all lambda expression parameter lists with
parentheses, even those containing only one parameter. Of course, you are free to adopt
a different style.

Functional Interfaces
As stated, a functional interface is an interface that specifies only one abstract method. Before
continuing, recall from Chapter 8 that not all interface methods are abstract. Beginning with
JDK 8, it is possible for an interface to have one or more default methods. Default methods
are not abstract. Neither are static or private interface methods. Thus, an interface method is
abstract only if it is does not specify an implementation. This means that a functional interface
can include default, static, or private methods, but in all cases it must have one and only one
abstract method. Because non-default, non-static, non-private interface methods are implicitly
abstract, there is no need to use the abstract modifier (although you can specify it, if you like).

Here is an example of a functional interface:

interface MyValue {
 double getValue();
}

In this case, the method getValue() is implicitly abstract, and it is the only method defined by
MyValue. Thus, MyValue is a functional interface, and its function is defined by getValue().

As mentioned earlier, a lambda expression is not executed on its own. Rather, it forms
the implementation of the abstract method defined by the functional interface that specifies

14-ch14.indd 498 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14

 Chapter 14: Lambda Expressions and Method References 499

its target type. As a result, a lambda expression can be specified only in a context in which a
target type is defined. One of these contexts is created when a lambda expression is assigned
to a functional interface reference. Other target type contexts include variable initialization,
return statements, and method arguments, to name a few.

Let’s work through a simple example. First, a reference to the functional interface
MyValue is declared:

// Create a reference to a MyValue instance.
MyValue myVal;

Next, a lambda expression is assigned to that interface reference:

// Use a lambda in an assignment context.
myVal = () -> 98.6;

This lambda expression is compatible with getValue() because, like getValue(), it has no
parameters and returns a double result. In general, the type of the abstract method defined
by the functional interface and the type of the lambda expression must be compatible. If they
aren’t, a compile-time error will result.

As you can probably guess, the two steps just shown can be combined into a single
statement, if desired:

MyValue myVal = () -> 98.6;

Here, myVal is initialized with the lambda expression.
When a lambda expression occurs in a target type context, an instance of a class is

automatically created that implements the functional interface, with the lambda expression
defining the behavior of the abstract method declared by the functional interface. When
that method is called through the target, the lambda expression is executed. Thus, a lambda
expression gives us a way to transform a code segment into an object.

In the preceding example, the lambda expression becomes the implementation for the
getValue() method. As a result, the following displays the value 98.6:

// Call getValue(), which is implemented by the previously assigned
// lambda expression.
System.out.println("A constant value: " + myVal.getValue());

Because the lambda expression assigned to myVal returns the value 98.6, that is the value
obtained when getValue() is called.

If the lambda expression takes one or more parameters, then the abstract method in the
functional interface must also take the same number of parameters. For example, here is a
functional interface called MyParamValue, which lets you pass a value to getValue():

interface MyParamValue {
 double getValue(double v);
}

14-ch14.indd 499 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14

 500 Java: A Beginner’s Guide

You can use this interface to implement the reciprocal lambda shown in the previous section.
For example:

MyParamValue myPval = (n) -> 1.0 / n;

You can then use myPval like this:

System.out.println("Reciprocal of 4 is " + myPval.getValue(4.0));

Here, getValue() is implemented by the lambda expression referred to by myPval,
which returns the reciprocal of the argument. In this case, 4.0 is passed to getValue(), which
returns 0.25.

There is something else of interest in the preceding example. Notice that the type of n
is not specified. Rather, its type is inferred from the context. In this case, its type is inferred
from the parameter type of getValue() as defined by the MyParamValue interface, which is
double. It is also possible to explicitly specify the type of a parameter in a lambda expression.
For example, this is also a valid way to write the preceding:

(double n) -> 1.0 / n;

Here, n is explicitly specified as double. Usually it is not necessary to explicitly specify the type.

NOTE
As a point of interest, beginning with JDK 11, you can also explicitly indicate
type inference for a lambda expression parameter by use of var. For example,
you could write:

(var n) -> 1.0 / n;

Of course, the use of var here is redundant. Its use would, however, allow an
annotation to be added.

Before moving on, it is important to emphasize a key point: For a lambda expression to be
used in a target type context, the type of the abstract method and the type of the lambda expression
must be compatible. For example, if the abstract method specifies two int parameters, then the
lambda must specify two parameters whose type either is explicitly int or can be implicitly
inferred as int by the context. In general, the type and number of the lambda expression’s
parameters must be compatible with the method’s parameters and its return type.

Lambda Expressions in Action
With the preceding discussion in mind, let’s look at some simple examples that put the basic
lambda expression concepts into action. The first example assembles the pieces shown in the
foregoing section into a complete program that you can run and experiment with.

// Demonstrate two simple lambda expressions.

// A functional interface.

14-ch14.indd 500 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14

 Chapter 14: Lambda Expressions and Method References 501

interface MyValue {
 double getValue();
}

// Another functional interface.
interface MyParamValue {
 double getValue(double v);
}

class LambdaDemo {
 public static void main(String[] args)
 {
 MyValue myVal; // declare an interface reference

 // Here, the lambda expression is simply a constant expression.
 // When it is assigned to myVal, a class instance is
 // constructed in which the lambda expression implements
 // the getValue() method in MyValue.
 myVal = () -> 98.6;

 // Call getValue(), which is provided by the previously assigned
 // lambda expression.
 System.out.println("A constant value: " + myVal.getValue());

 // Now, create a parameterized lambda expression and assign it to
 // a MyParamValue reference. This lambda expression returns
 // the reciprocal of its argument.
 MyParamValue myPval = (n) -> 1.0 / n;

 // Call getValue(v) through the myPval reference.
 System.out.println("Reciprocal of 4 is " + myPval.getValue(4.0));
 System.out.println("Reciprocal of 8 is " + myPval.getValue(8.0));

 // A lambda expression must be compatible with the method
 // defined by the functional interface. Therefore, these won't work:
// myVal = () -> "three"; // Error! String not compatible with double!
// myPval = () -> Math.random(); // Error! Parameter required!
 }
}

Sample output from the program is shown here:

A constant value: 98.6
Reciprocal of 4 is 0.25
Reciprocal of 8 is 0.125

As mentioned, the lambda expression must be compatible with the abstract method that it
is intended to implement. For this reason, the commented-out lines at the end of the preceding
program are illegal. The first, because a value of type String is not compatible with double,
which is the return type required by getValue(). The second, because getValue(int) in
MyParamValue requires a parameter, and one is not provided.

Functional interfaces

A simple lambda expression

A lambda expression that
has a parameter

14-ch14.indd 501 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14

 502 Java: A Beginner’s Guide

A key aspect of a functional interface is that it can be used with any lambda expression
that is compatible with it. For example, consider the following program. It defines a functional
interface called NumericTest that declares the abstract method test(). This method has two int
parameters and returns a boolean result. Its purpose is to determine if the two arguments passed
to test() satisfy some condition. It returns the result of the test. In main(), three different tests
are created through the use of lambda expressions. One tests if the first argument can be evenly
divided by the second; the second determines if the first argument is less than the second; and
the third returns true if the absolute values of the arguments are equal. Notice that the lambda
expressions that implement these tests have two parameters and return a boolean result. This is,
of course, necessary since test() has two parameters and returns a boolean result.

// Use the same functional interface with three different lambda expressions.

// A functional interface that takes two int parameters and returns
// a boolean result.
interface NumericTest {
 boolean test(int n, int m);
}

class LambdaDemo2 {
 public static void main(String[] args)
 {
 // This lambda expression determines if one number is
 // a factor of another.
 NumericTest isFactor = (n, d) -> (n % d) == 0;

 if(isFactor.test(10, 2))
 System.out.println("2 is a factor of 10");
 if(!isFactor.test(10, 3))
 System.out.println("3 is not a factor of 10");
 System.out.println();

 // This lambda expression returns true if the first
 // argument is less than the second.
 NumericTest lessThan = (n, m) -> (n < m);

 if(lessThan.test(2, 10))
 System.out.println("2 is less than 10");
 if(!lessThan.test(10, 2))
 System.out.println("10 is not less than 2");
 System.out.println();

 // This lambda expression returns true if the absolute
 // values of the arguments are equal.
 NumericTest absEqual = (n, m) -> (n < 0 ? -n : n) == (m < 0 ? -m : m);

 if(absEqual.test(4, -4))
 System.out.println("Absolute values of 4 and -4 are equal.");

Use the same
functional interface
with three different
lambda expressions.

14-ch14.indd 502 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14

 Chapter 14: Lambda Expressions and Method References 503

 if(!lessThan.test(4, -5))
 System.out.println("Absolute values of 4 and -5 are not equal.");
 System.out.println();
 }
}

The output is shown here:

2 is a factor of 10
3 is not a factor of 10

2 is less than 10
10 is not less than 2

Absolute values of 4 and -4 are equal.
Absolute values of 4 and -5 are not equal.

As the program illustrates, because all three lambda expressions are compatible with
test(), all can be executed through a NumericTest reference. In fact, there is no need to use
three separate NumericTest reference variables because the same one could have been used
for all three tests. For example, you could create the variable myTest and then use it to refer to
each test, in turn, as shown here:

NumericTest myTest;

myTest = (n, d) -> (n % d) == 0;
if(myTest.test(10, 2))
 System.out.println("2 is a factor of 10");
// ...
myTest = (n, m) -> (n < m);
if(myTest.test(2, 10))
 System.out.println("2 is less than 10");
//...
myTest = (n, m) -> (n < 0 ? -n : n) == (m < 0 ? -m : m);
if(myTest.test(4, -4))
 System.out.println("Absolute values of 4 and -4 are equal.");
// ...

Of course, using different reference variables called isFactor, lessThan, and absEqual,
as the original program does, makes it very clear to which lambda expression each variable
refers.

There is one other point of interest in the preceding program. Notice how the two
parameters are specified for the lambda expressions. For example, here is the one that
determines if one number is a factor of another:

(n, d) -> (n % d) == 0

Notice that n and d are separated by commas. In general, whenever more than one parameter is
required, the parameters are specified, separated by commas, in a parenthesized list on the left
side of the lambda operator.

14-ch14.indd 503 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14

 504 Java: A Beginner’s Guide

Although the preceding examples used primitive values as the parameter types and return
type of the abstract method defined by a functional interface, there is no restriction in this
regard. For example, the following program declares a functional interface called StringTest.
It has a method called test() that takes two String parameters and returns a boolean result.
Thus, it can be used to test some condition related to strings. Here, a lambda expression is
created that determines if one string is contained within another:

// A functional interface that tests two strings.
interface StringTest {
 boolean test(String aStr, String bStr);
}

class LambdaDemo3 {
 public static void main(String[] args)
 {
 // This lambda expression determines if one string is
 // part of another.
 StringTest isIn = (a, b) -> a.indexOf(b) != -1;

 String str = "This is a test";

 System.out.println("Testing string: " + str);

 if(isIn.test(str, "is a"))
 System.out.println("'is a' found.");
 else
 System.out.println("'is a' not found.");

 if(isIn.test(str, "xyz"))
 System.out.println("'xyz' Found");
 else
 System.out.println("'xyz' not found");
 }
}

The output is shown here:

Testing string: This is a test
'is a' found.
'xyz' not found

Notice that the lambda expression uses the indexOf() method defined by the String class
to determine if one string is part of another. This works because the parameters a and b are
determined by type inference to be of type String. Thus, it is permissible to call a String
method on a.

14-ch14.indd 504 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14

 Chapter 14: Lambda Expressions and Method References 505

Q: Earlier you mentioned that I can explicitly declare the type of a parameter in a
lambda expression if needed. In cases in which a lambda expression requires two or
more parameters, must I specify the types of all parameters, or can I let one or more
use type inference?

A: In cases in which you need to explicitly declare the type of a parameter, then all of the
parameters in the list must have declared types. For example, this is legal:

(int n, int d) -> (n % d) == 0

But this is not legal:

(int n, d) -> (n % d) == 0

Nor is this legal:

(n, int d) -> (n % d) == 0

Ask the Expert

Block Lambda Expressions
The body of the lambdas shown in the preceding examples consist of a single expression.
These types of lambda bodies are referred to as expression bodies, and lambdas that have
expression bodies are sometimes called expression lambdas. In an expression body, the code
on the right side of the lambda operator must consist of a single expression, which becomes
the lambda’s value. Although expression lambdas are quite useful, sometimes the situation
will require more than a single expression. To handle such cases, Java supports a second type
of lambda expression in which the code on the right side of the lambda operator consists of a
block of code that can contain more than one statement. This type of lambda body is called a
block body. Lambdas that have block bodies are sometimes referred to as block lambdas.

A block lambda expands the types of operations that can be handled within a lambda
expression because it allows the body of the lambda to contain multiple statements. For
example, in a block lambda you can declare variables, use loops, specify if and switch
statements, create nested blocks, and so on. A block lambda is easy to create. Simply enclose
the body within braces as you would any other block of statements.

Aside from allowing multiple statements, block lambdas are used much like the expression
lambdas just discussed. One key difference, however, is that you must explicitly use a return
statement to return a value. This is necessary because a block lambda body does not represent
a single expression.

Here is an example that uses a block lambda to find the smallest positive factor of an int
value. It uses an interface called NumericFunc that has a method called func(), which takes

14-ch14.indd 505 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14

 506 Java: A Beginner’s Guide

one int argument and returns an int result. Thus, NumericFunc supports a numeric function
on values of type int.

// A block lambda that finds the smallest positive factor
// of an int value.

interface NumericFunc {
 int func(int n);
}

class BlockLambdaDemo {
 public static void main(String[] args)
 {

 // This block lambda returns the smallest positive factor of a value.
 NumericFunc smallestF = (n) -> {
 int result = 1;

 // Get absolute value of n.
 n = n < 0 ? -n : n;

 for(int i=2; i <= n/i; i++)
 if((n % i) == 0) {
 result = i;
 break;
 }

 return result;
 };

 System.out.println("Smallest factor of 12 is " + smallestF.func(12));
 System.out.println("Smallest factor of 11 is " + smallestF.func(11));
 }
}

The output is shown here:

Smallest factor of 12 is 2
Smallest factor of 11 is 1

In the program, notice that the block lambda declares a variable called result, uses a for
loop, and has a return statement. These are legal inside a block lambda body. In essence, the
block body of a lambda is similar to a method body. One other point. When a return statement
occurs within a lambda expression, it simply causes a return from the lambda. It does not cause
an enclosing method to return.

Generic Functional Interfaces
A lambda expression, itself, cannot specify type parameters. Thus, a lambda expression cannot be
generic. (Of course, because of type inference, all lambda expressions exhibit some “generic-like”
qualities.) However, the functional interface associated with a lambda expression can be generic.

A block lambda expression

14-ch14.indd 506 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14

 Chapter 14: Lambda Expressions and Method References 507

In this case, the target type of the lambda expression is determined, in part, by the type argument
or arguments specified when a functional interface reference is declared.

To understand the value of generic functional interfaces, consider this. Earlier in this
chapter, two different functional interfaces were created, one called NumericTest and the other
called StringTest. They were used to determine if two values satisfied some condition. To
do this, both defined a method called test() that took two parameters and returned a boolean
result. In the case of NumericTest, the values being tested were integers. For StringTest, the
values were of type String. Thus, the only difference between the two methods was the type of
data they operated on. Such a situation is perfect for generics. Instead of having two functional
interfaces whose methods differ only in their data types, it is possible to declare one generic
interface that can be used to handle both circumstances. The following program shows this
approach:

// Use a generic functional interface.

// A generic functional interface with two parameters
// that returns a boolean result.
interface SomeTest<T> {
 boolean test(T n, T m);
}

class GenericFunctionalInterfaceDemo {
 public static void main(String[] args)
 {
 // This lambda expression determines if one integer is
 // a factor of another.
 SomeTest<Integer> isFactor = (n, d) -> (n % d) == 0;

 if(isFactor.test(10, 2))
 System.out.println("2 is a factor of 10");
 System.out.println();

 // The next lambda expression determines if one Double is
 // a factor of another.
 SomeTest<Double> isFactorD = (n, d) -> (n % d) == 0;

 if(isFactorD.test(212.0, 4.0))
 System.out.println("4.0 is a factor of 212.0");
 System.out.println();

 // This lambda expression determines if one string is
 // part of another.
 SomeTest<String> isIn = (a, b) -> a.indexOf(b) != -1;

 String str = "Generic Functional Interface";

 System.out.println("Testing string: " + str);

A generic functional interface

14-ch14.indd 507 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14

 508 Java: A Beginner’s Guide

Try This 14-1

 if(isIn.test(str, "face"))
 System.out.println("'face' is found.");
 else
 System.out.println("'face' not found.");
 }
}

The output is shown here:

2 is a factor of 10

4.0 is a factor of 212.0

Testing string: Generic Functional Interface
'face' is found.

In the program, the generic functional interface SomeTest is declared as shown here:

interface SomeTest<T> {
 boolean test(T n, T m);
}

Here, T specifies the type of both parameters for test(). This means that it is compatible with
any lambda expression that takes two parameters of the same type and returns a boolean result.

The SomeTest interface is used to provide a reference to three different types of lambdas.
The first uses type Integer, the second uses type Double, and the third uses type String.
Thus, the same functional interface can be used to refer to the isFactor, isFactorD, and isIn
lambdas. Only the type argument passed to SomeTest differs.

As a point of interest, the NumericFunc interface shown in the previous section can also
be rewritten as a generic interface. This is an exercise in “Chapter 14 Self Test,” at the end of
this chapter.

 Pass a Lambda Expression
as an Argument

A lambda expression can be used in any context that provides
a target type. The target contexts used by the preceding

examples are assignment and initialization. Another one is when a lambda expression is passed
as an argument. In fact, passing a lambda expression as an argument is a common use of
lambdas. Moreover, it is a very powerful use because it gives you a way to pass executable code
as an argument to a method. This greatly enhances the expressive power of Java.

To illustrate the process, this project creates three string functions that perform the following
operations: reverse a string, reverse the case of letters within a string, and replace spaces with
hyphens. These functions are implemented as lambda expressions of the functional interface
StringFunc. They are then passed as the first argument to a method called changeStr().
This method applies the string function to the string passed as the second argument to

LambdaArgumentDemo.java

14-ch14.indd 508 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14

 Chapter 14: Lambda Expressions and Method References 509

changeStr() and returns the result. Thus, changeStr() can be used to apply a variety of
different string functions.

 1. Create a file called LambdaArgumentDemo.java.

 2. To the file, add the functional interface StringFunc, as shown here:

interface StringFunc {
 String func(String str);
}

 This interface defines the method func(), which takes a String argument and returns a
String. Thus, func() can act on a string and return the result.

 3. Begin the LambdaArgumentDemo class, as shown here, by defining the changeStr()
method:

class LambdaArgumentDemo {

 // This method has a functional interface as the type of its
 // first parameter. Thus, it can be passed a reference to any
 // instance of that interface, including an instance created
 // by a lambda expression. The second parameter specifies the
 // string to operate on.
 static String changeStr(StringFunc sf, String s) {
 return sf.func(s);
 }

 As the comment indicates, changeStr() has two parameters. The type of the first is
StringFunc. This means it can be passed a reference to any StringFunc instance. Thus, it
can be passed a reference to an instance created by a lambda expression that is compatible
with StringFunc. The string to be acted on is passed to s. The resulting string is returned.

 4. Begin the main() method, as shown here:

public static void main(String[] args)
{
 String inStr = "Lambda Expressions Expand Java";
 String outStr;

 System.out.println("Here is input string: " + inStr);

 Here, inStr refers to the string that will be acted on, and outStr will receive the modified
string.

 5. Define a lambda expression that reverses the characters in a string and assign it to a
StringFunc reference. Notice that this is another example of a block lambda.

// Define a lambda expression that reverses the contents
// of a string and assign it to a StringFunc reference variable.
StringFunc reverse = (str) -> {
 String result = "";
 (continued)

14-ch14.indd 509 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14

 510 Java: A Beginner’s Guide

 for(int i = str.length()-1; i >= 0; i--)
 result += str.charAt(i);

 return result;
};

 6. Call changeStr(), passing in the reverse lambda and inStr. Assign the result to outStr,
and display the result.

// Pass reverse to the first argument to changeStr().
// Pass the input string as the second argument.
outStr = changeStr(reverse, inStr);
System.out.println("The string reversed: " + outStr);

 Because the first parameter to changeStr() is of type StringFunc, the reverse lambda can
be passed to it. Recall that a lambda expression causes an instance of its target type to be
created, which in this case is StringFunc. Thus, a lambda expression gives you a way to
effectively pass a code sequence to a method.

 7. Finish the program by adding lambdas that replace spaces with hyphens and invert the case
of the letters, as shown next. Notice that both of these lambdas are embedded in the call to
changeStr(), itself, rather than using a separate StringFunc variable.

 // This lambda expression replaces spaces with hyphens.
 // It is embedded directly in the call to changeStr().
 outStr = changeStr((str) -> str.replace(' ', '-'), inStr);
 System.out.println("The string with spaces replaced: " + outStr);

 // This block lambda inverts the case of the characters in the
 // string. It is also embedded directly in the call to changeStr().
 outStr = changeStr((str) -> {
 String result = "";
 char ch;

 for(int i = 0; i < str.length(); i++) {
 ch = str.charAt(i);
 if(Character.isUpperCase(ch))
 result += Character.toLowerCase(ch);
 else
 result += Character.toUpperCase(ch);
 }
 return result;
 }, inStr);

 System.out.println("The string in reversed case: " + outStr);
 }
}

 As you can see by looking at this code, embedding the lambda that replaces spaces with
hyphens in the call to changeStr() is both convenient and easy to understand. This is

14-ch14.indd 510 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14

 Chapter 14: Lambda Expressions and Method References 511

because it is a short, expression lambda that simply calls replace() to replace spaces with
hyphens. The replace() method is another method defined by the String class. The version
used here takes as arguments the character to be replaced and its replacement. It returns a
modified string.

For the sake of illustration, the lambda that inverts the case of the letters in a string is
also embedded in the call to changeStr(). However, in this case, rather unwieldy code is
produced that is somewhat hard to follow. Usually, it is better to assign such a lambda to
a separate reference variable (as was done for the string-reversing lambda), and then pass
that variable to the method. Of course, it is technically correct to pass a block lambda as an
argument, as the example shows.

One other point: notice that the invert-case lambda uses the static methods
isUpperCase(), toUpperCase(), and toLowerCase() defined by Character. Recall
that Character is a wrapper class for char. The isUpperCase() method returns true
if its argument is an uppercase letter and false otherwise. The toUpperCase() and
toLowerCase() perform the indicated action and return the result. In addition to these
methods, Character defines several others that manipulate or test characters. You will
want to explore them on your own.

 8. Here is all the code assembled into a complete program.

// Use a lambda expression as an argument to a method.

interface StringFunc {
 String func(String str);
}

class LambdaArgumentDemo {

 // This method has a functional interface as the type of its
 // first parameter. Thus, it can be passed a reference to any
 // instance of that interface, including an instance created
 // by a lambda expression. The second parameter specifies the
 // string to operate on.
 static String changeStr(StringFunc sf, String s) {
 return sf.func(s);
 }

 public static void main(String[] args)
 {
 String inStr = "Lambda Expressions Expand Java";
 String outStr;

 System.out.println("Here is input string: " + inStr);

 // Define a lambda expression that reverses the contents
 // of a string and assign it to a StringFunc reference variable.

(continued)

14-ch14.indd 511 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14

 512 Java: A Beginner’s Guide

 StringFunc reverse = (str) -> {
 String result = "";

 for(int i = str.length()-1; i >= 0; i--)
 result += str.charAt(i);

 return result;
 };

 // Pass reverse to the first argument to changeStr().
 // Pass the input string as the second argument.
 outStr = changeStr(reverse, inStr);
 System.out.println("The string reversed: " + outStr);

 // This lambda expression replaces spaces with hyphens.
 // It is embedded directly in the call to changeStr().
 outStr = changeStr((str) -> str.replace(' ', '-'), inStr);
 System.out.println("The string with spaces replaced: " + outStr);

 // This block lambda inverts the case of the characters in the
 // string. It is also embedded directly in the call to changeStr().
 outStr = changeStr((str) -> {
 String result = "";
 char ch;

 for(int i = 0; i < str.length(); i++) {
 ch = str.charAt(i);
 if(Character.isUpperCase(ch))
 result += Character.toLowerCase(ch);
 else
 result += Character.toUpperCase(ch);
 }
 return result;
 }, inStr);

 System.out.println("The string in reversed case: " + outStr);
 }
}

The following output is produced:

Here is input string: Lambda Expressions Expand Java
The string reversed: avaJ dnapxE snoisserpxE adbmaL
The string with spaces replaced: Lambda-Expressions-Expand-Java
The string in reversed case: lAMBDA eXPRESSIONS eXPAND jAVA

14-ch14.indd 512 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14

 Chapter 14: Lambda Expressions and Method References 513

Lambda Expressions and Variable Capture
Variables defined by the enclosing scope of a lambda expression are accessible within the
lambda expression. For example, a lambda expression can use an instance variable or static
variable defined by its enclosing class. A lambda expression also has access to this (both
explicitly and implicitly), which refers to the invoking instance of the lambda expression’s
enclosing class. Thus, a lambda expression can obtain or set the value of an instance variable
or static variable and call a method defined by its enclosing class.

However, when a lambda expression uses a local variable from its enclosing scope, a
special situation is created that is referred to as a variable capture. In this case, a lambda
expression may only use local variables that are effectively final. An effectively final variable is
one whose value does not change after it is first assigned. There is no need to explicitly declare
such a variable as final, although doing so would not be an error. (The this parameter of an
enclosing scope is automatically effectively final, and lambda expressions do not have a this of
their own.)

It is important to understand that a local variable of the enclosing scope cannot be modified
by the lambda expression. Doing so would remove its effectively final status, thus rendering it
illegal for capture.

The following program illustrates the difference between effectively final and mutable
local variables:

// An example of capturing a local variable from the enclosing scope.

interface MyFunc {
 int func(int n);
}

class VarCapture {
 public static void main(String[] args)
 {
 // A local variable that can be captured.
 int num = 10;

 MyFunc myLambda = (n) -> {
 // This use of num is OK. It does not modify num.
 int v = num + n;

Q: In addition to variable initialization, assignment, and argument passing, what other
places constitute a target type context for a lambda expression?

A: Casts, the ? operator, array initializers, return statements, and lambda expressions,
themselves, can also serve as target type contexts.

Ask the Expert

14-ch14.indd 513 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14

 514 Java: A Beginner’s Guide

 // However, the following is illegal because it attempts
 // to modify the value of num.
// num++;

 return v;
 };

 // Use the lambda. This will display 18.
 System.out.println(myLambda.func(8));

 // The following line would also cause an error, because
 // it would remove the effectively final status from num.
// num = 9;
 }
}

As the comments indicate, num is effectively final and can, therefore, be used inside
myLambda. This is why the println() statement outputs the number 18. When func() is
called with the argument 8, the value of v inside the lambda is set by adding num (which is 10)
to the value passed to n (which is 8). Thus, func() returns 18. This works because num is not
modified after it is initialized. However, if num were to be modified, either inside the lambda
or outside of it, num would lose its effectively final status. This would cause an error, and the
program would not compile.

It is important to emphasize that a lambda expression can use and modify an instance
variable from its invoking class. It just can’t use a local variable of its enclosing scope unless
that variable is effectively final.

Throw an Exception from
Within a Lambda Expression

A lambda expression can throw an exception. If it throws a checked exception, however, then
that exception must be compatible with the exception(s) listed in the throws clause of the
abstract method in the functional interface. For example, if a lambda expression throws an
IOException, then the abstract method in the functional interface must list IOException in
a throws clause. This situation is demonstrated by the following program:

import java.io.*;

interface MyIOAction {
 boolean ioAction(Reader rdr) throws IOException;
}

class LambdaExceptionDemo {

 public static void main(String[] args)
 {

14-ch14.indd 514 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14

 Chapter 14: Lambda Expressions and Method References 515

 // This block lambda could throw an IOException.
 // Thus, IOException must be specified in a throws
 // clause of ioAction() in MyIOAction.
 MyIOAction myIO = (rdr) -> {
 int ch = rdr.read(); // could throw IOException
 // ...
 return true;
 };
 }
}

Because a call to read() could result in an IOException, the ioAction() method of the
functional interface MyIOAction must include IOException in a throws clause. Without it,
the program will not compile because the lambda expression will no longer be compatible with
ioAction(). To prove this, simply remove the throws clause and try compiling the program. As
you will see, an error will result.

This lambda might
throw an exception.

Q: Can a lambda expression use a parameter that is an array?

A: Yes. However, when the type of the parameter is inferred, the parameter to the lambda
expression is not specified using the normal array syntax. Rather, the parameter is specified as
a simple name, such as n, not as n[]. Remember, the type of a lambda expression parameter
will be inferred from the target context. Thus, if the target context requires an array, then the
parameter’s type will automatically be inferred as an array. To better understand this, let’s
work through a short example.

Here is a generic functional interface called MyTransform, which can be used to apply
some transform to the elements of an array:

// A functional interface.
interface MyTransform<T> {
 void transform(T[] a);
}

Notice that the parameter to the transform() method is an array of type T. Now, consider
the following lambda expression that uses MyTransform to convert the elements of an
array of Double values into their square roots:

MyTransform<Double> sqrts = (v) -> {
 for(int i=0; i < v.length; i++) v[i] = Math.sqrt(v[i]);
};

Here, the type of a in transform() is Double[], because Double is specified as the type
parameter for MyTransform when sqrts is declared. Therefore, the type of v in the lambda
expression is inferred as Double[]. It is not necessary (or legal) to specify it as v[].

One last point: It is legal to declare the lambda parameter as Double[] v, because doing
so explicitly declares the type of the parameter. However, doing so gains nothing in this case.

Ask the Expert

14-ch14.indd 515 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14

 516 Java: A Beginner’s Guide

Method References
There is an important feature related to lambda expressions called the method reference.
A method reference provides a way to refer to a method without executing it. It relates to
lambda expressions because it, too, requires a target type context that consists of a compatible
functional interface. When evaluated, a method reference also creates an instance of a functional
interface. There are different types of method references. We will begin with method references
to static methods.

Method References to static Methods
A method reference to a static method is created by specifying the method name preceded by
its class name, using this general syntax:

ClassName::methodName

Notice that the class name is separated from the method name by a double colon. The :: is a
separator that was added to Java by JDK 8 expressly for this purpose. This method reference
can be used anywhere in which it is compatible with its target type.

The following program demonstrates the static method reference. It does so by first
declaring a functional interface called IntPredicate that has a method called test(). This
method has an int parameter and returns a boolean result. Thus, it can be used to test an integer
value against some condition. The program then creates a class called MyIntPredicates, which
defines three static methods, with each one checking if a value satisfies some condition. The
methods are called isPrime(), isEven(), and isPositive(), and each method performs the test
indicated by its name. Inside MethodRefDemo, a method called numTest() is created that
has as its first parameter, a reference to IntPredicate. Its second parameter specifies the integer
being tested. Inside main(), three different tests are performed by calling numTest(), passing
in a method reference to the test to perform.

// Demonstrate a method reference for a static method.

// A functional interface for numeric predicates that operate
// on integer values.
interface IntPredicate {
 boolean test(int n);
}

// This class defines three static methods that check an integer
// against some condition.
class MyIntPredicates {
 // A static method that returns true if a number is prime.
 static boolean isPrime(int n) {

 if(n < 2) return false;

14-ch14.indd 516 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14

 Chapter 14: Lambda Expressions and Method References 517

 for(int i=2; i <= n/i; i++) {
 if((n % i) == 0)
 return false;
 }
 return true;
 }

 // A static method that returns true if a number is even.
 static boolean isEven(int n) {
 return (n % 2) == 0;
 }

 // A static method that returns true if a number is positive.
 static boolean isPositive(int n) {
 return n > 0;
 }
}

class MethodRefDemo {

 // This method has a functional interface as the type of its
 // first parameter. Thus, it can be passed a reference to any
 // instance of that interface, including one created by a
 // method reference.
 static boolean numTest(IntPredicate p, int v) {
 return p.test(v);
 }

 public static void main(String[] args)
 {
 boolean result;

 // Here, a method reference to isPrime is passed to numTest().
 result = numTest(MyIntPredicates::isPrime, 17);
 if(result) System.out.println("17 is prime.");

 // Next, a method reference to isEven is used.
 result = numTest(MyIntPredicates::isEven, 12);
 if(result) System.out.println("12 is even.");

 // Now, a method reference to isPositive is passed.
 result = numTest(MyIntPredicates::isPositive, 11);
 if(result) System.out.println("11 is positive.");
 }
}

Use method
references to a
static method.

14-ch14.indd 517 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14

 518 Java: A Beginner’s Guide

The output is shown here:

17 is prime.
12 is even.
11 is positive.

In the program, pay special attention to this line:

result = numTest(MyIntPredicates::isPrime, 17);

Here, a reference to the static method isPrime() is passed as the first argument to numTest().
This works because isPrime is compatible with the IntPredicate functional interface. Thus,
the expression MyIntPredicates::isPrime evaluates to a reference to an object in which
isPrime() provides the implementation of test() in IntPredicate. The other two calls to
numTest() work in the same way.

Method References to Instance Methods
A reference to an instance method on a specific object is created by this basic syntax:

objRef::methodName

As you can see, the syntax is similar to that used for a static method, except that an object
reference is used instead of a class name. Thus, the method referred to by the method reference
operates relative to objRef. The following program illustrates this point. It uses the same
IntPredicate interface and test() method as the previous program. However, it creates a
class called MyIntNum, which stores an int value and defines the method isFactor(), which
determines if the value passed is a factor of the value stored by the MyIntNum instance. The
main() method then creates two MyIntNum instances. It then calls numTest(), passing in
a method reference to the isFactor() method and the value to be checked. In each case, the
method reference operates relative to the specific object.

// Use a method reference to an instance method.

// A functional interface for numeric predicates that operate
// on integer values.
interface IntPredicate {
 boolean test(int n);
}

// This class stores an int value and defines the instance
// method isFactor(), which returns true if its argument
// is a factor of the stored value.
class MyIntNum {
 private int v;

 MyIntNum(int x) { v = x; }

14-ch14.indd 518 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14

 Chapter 14: Lambda Expressions and Method References 519

 int getNum() { return v; }

 // Return true if n is a factor of v.
 boolean isFactor(int n) {
 return (v % n) == 0;
 }
}

class MethodRefDemo2 {

 public static void main(String[] args)
 {
 boolean result;

 MyIntNum myNum = new MyIntNum(12);
 MyIntNum myNum2 = new MyIntNum(16);

 // Here, a method reference to isFactor on myNum is created.
 IntPredicate ip = myNum::isFactor;

 // Now, it is used to call isFactor() via test().
 result = ip.test(3);
 if(result) System.out.println("3 is a factor of " + myNum.getNum());

 // This time, a method reference to isFactor on myNum2 is created.
 // and used to call isFactor() via test().
 ip = myNum2::isFactor;
 result = ip.test(3);
 if(!result) System.out.println("3 is not a factor of " + myNum2.getNum());
 }
}

This program produces the following output:

3 is a factor of 12
3 is not a factor of 16

In the program, pay special attention to the line

IntPredicate ip = myNum::isFactor;

Here, the method reference assigned to ip refers to an instance method isFactor() on myNum.
Thus, when test() is called through that reference, as shown here:

result = ip.test(3);

the method will call isFactor() on myNum, which is the object specified when the method
reference was created. The same situation occurs with the method reference myNum2::isFactor,
except that isFactor() will be called on myNum2. This is confirmed by the output.

A method reference
to an instance method

14-ch14.indd 519 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14

 520 Java: A Beginner’s Guide

It is also possible to handle a situation in which you want to specify an instance method
that can be used with any object of a given class—not just a specified object. In this case, you
will create a method reference as shown here:

ClassName::instanceMethodName

Here, the name of the class is used instead of a specific object, even though an instance method
is specified. With this form, the first parameter of the functional interface method matches
the invoking object and the second parameter matches the parameter (if any) specified by
the instance method. Here is an example. It reworks the previous example. First, it replaces
IntPredicate with the interface MyIntNumPredicate. In this case, the first parameter to
test() is of type MyIntNum. It will be used to receive the object being operated upon. This
allows the program to create a method reference to the instance method isFactor() that can be
used with any MyIntNum object.

// Use an instance method reference to refer to any instance.

// A functional interface for numeric predicates that operate
// on an object of type MyIntNum and an integer value.
interface MyIntNumPredicate {
 boolean test(MyIntNum mv, int n);
}

// This class stores an int value and defines the instance
// method isFactor(), which returns true if its argument
// is a factor of the stored value.
class MyIntNum {
 private int v;

 MyIntNum(int x) { v = x; }

 int getNum() { return v; }

 // Return true if n is a factor of v.
 boolean isFactor(int n) {
 return (v % n) == 0;
 }
}

class MethodRefDemo3 {
 public static void main(String[] args)
 {
 boolean result;

 MyIntNum myNum = new MyIntNum(12);
 MyIntNum myNum2 = new MyIntNum(16);

14-ch14.indd 520 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14

 Chapter 14: Lambda Expressions and Method References 521

 // This makes inp refer to the instance method isFactor().
 MyIntNumPredicate inp = MyIntNum::isFactor;

 // The following calls isFactor() on myNum.
 result = inp.test(myNum, 3);
 if(result)
 System.out.println("3 is a factor of " + myNum.getNum());

 // The following calls isFactor() on myNum2.
 result = inp.test(myNum2, 3);
 if(!result)
 System.out.println("3 is a not a factor of " + myNum2.getNum());
 }
}

A method reference to any
object of type MyIntNum

Q: How do I specify a method reference to a generic method?

A: Often, because of type inference, you won’t need to explicitly specify a type argument to
a generic method when obtaining its method reference, but Java does include a syntax to
handle those cases in which you do. For example, assuming the following:

interface SomeTest<T> {
 boolean test(T n, T m);
}

class MyClass {
 static <T> boolean myGenMeth(T x, T y) {
 boolean result = false;
 // ...
 return result;
 }
}

the following statement is valid:

SomeTest<Integer> mRef = MyClass::<Integer>myGenMeth;

Here, the type argument for the generic method myGenMeth is explicitly specified. Notice
that the type argument occurs after the ::. This syntax can be generalized: When a generic
method is specified as a method reference, its type argument comes after the :: and before
the method name. In cases in which a generic class is specified, the type argument follows
the class name and precedes the ::.

Ask the Expert

14-ch14.indd 521 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14

 522 Java: A Beginner’s Guide

The output is shown here:

3 is a factor of 12
3 is a not a factor of 16

In the program, pay special attention to this line:

MyIntNumPredicate inp = MyIntNum::isFactor;

It creates a method reference to the instance method isFactor() that will work with any object
of type MyIntNum. For example, when test() is called through the inp, as shown here:

result = inp.test(myNum, 3);

it results in a call to myNum.isFactor(3). In other words, myNum becomes the object on
which isFactor(3) is called.

NOTE
A method reference can use the keyword super to refer to a superclass version
of a method. The general forms of the syntax are super::methodName and
typeName.super::methodName. In the second form, typeName must refer to
the enclosing class or a superinterface.

Constructor References
Similar to the way that you can create references to methods, you can also create references
to constructors. Here is the general form of the syntax that you will use:

classname::new

This reference can be assigned to any functional interface reference that defines a method
compatible with the constructor. Here is a simple example:

// Demonstrate a Constructor reference.

// MyFunc is a functional interface whose method returns
// a MyClass reference.
interface MyFunc {
 MyClass func(String s);
}

class MyClass {
 private String str;

 // This constructor takes an argument.
 MyClass(String s) { str = s; }

 // This is the default constructor.
 MyClass() { str = ""; }

14-ch14.indd 522 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14

 Chapter 14: Lambda Expressions and Method References 523

 // ...

 String getStr() { return str; }
}

class ConstructorRefDemo {
 public static void main(String[] args)
 {
 // Create a reference to the MyClass constructor.
 // Because func() in MyFunc takes an argument, new
 // refers to the parameterized constructor in MyClass,
 // not the default constructor.
 MyFunc myClassCons = MyClass::new;

 // Create an instance of MyClass via that constructor reference.
 MyClass mc = myClassCons.func("Testing");

 // Use the instance of MyClass just created.
 System.out.println("str in mc is " + mc.getStr());
 }
}

The output is shown here:

str in mc is Testing

In the program, notice that the func() method of MyFunc returns a reference of type
MyClass and has a String parameter. Next, notice that MyClass defines two constructors. The
first specifies a parameter of type String. The second is the default, parameterless constructor.
Now, examine the following line:

MyFunc myClassCons = MyClass::new;

Here, the expression MyClass::new creates a constructor reference to a MyClass constructor.
In this case, because MyFunc’s func() method takes a String parameter, the constructor
being referred to is MyClass(String s) because it is the one that matches. Also notice that the
reference to this constructor is assigned to a MyFunc reference called myClassCons. After
this statement executes, myClassCons can be used to create an instance of MyClass, as this
line shows:

MyClass mc = myClassCons.func("Testing");

In essence, myClassCons has become another way to call MyClass(String s).
If you wanted MyClass::new to use MyClass’s default constructor, then you would need

to use a functional interface that defines a method that has no parameter. For example, if you
define MyFunc2, as shown here:

interface MyFunc2 {
 MyClass func();
}

A constructor reference

14-ch14.indd 523 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14

 524 Java: A Beginner’s Guide

then the following line will assign to MyClassCons a reference to MyClass’s default (i.e.,
parameterless) constructor:

MyFunc2 myClassCons = MyClass::new;

In general, the constructor that will be used when ::new is specified is the one whose parameters
match those specified by the functional interface.

Q: Can I declare a constructor reference that creates an array?

A: Yes. To create a constructor reference for an array, use this construct:

type[]::new

Here, type specifies the type of object being created. For example, assuming the form
of MyClass shown in the preceding example and given the MyClassArrayCreator
interface shown here:

interface MyClassArrayCreator {
 MyClass[] func(int n);
}

the following creates an array of MyClass objects and gives each element an initial value:

MyClassArrayCreator mcArrayCons = MyClass[]::new;
MyClass[] a = mcArrayCons.func(3);
for(int i=0; i < 3; i++)
 a[i] = new MyClass(i+"");

Here, the call to func(3) causes a three-element array to be created. This example can be
generalized. Any functional interface that will be used to create an array must contain a method
that takes a single int parameter and returns a reference to the array of the specified size.

As a point of interest, you can create a generic functional interface that can be used
with other types of classes, as shown here:

interface MyArrayCreator<T> {
 T[] func(int n);
}

For example, you could create an array of five Thread objects like this:

MyArrayCreator<Thread> mcArrayCons = Thread[]::new;
Thread[] thrds = mcArrayCons.func(5);

Ask the Expert

14-ch14.indd 524 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14

 Chapter 14: Lambda Expressions and Method References 525

One last point: In the case of creating a constructor reference for a generic class, you
can specify the type parameter in the normal way, after the class name. For example, if
MyGenClass is declared like this:

MyGenClass<T> { // ...

then the following creates a constructor reference with a type argument of Integer:

MyGenClass<Integer>::new;

Because of type inference, you won’t always need to specify the type argument, but you can
when necessary.

Predefined Functional Interfaces
Up to this point, the examples in this chapter have defined their own functional interfaces so
that the fundamental concepts behind lambda expressions and functional interfaces could be
clearly illustrated. In many cases, however, you won’t need to define your own functional
interface because the package java.util.function provides several predefined ones. Here is
a sampling:

Interface Purpose

UnaryOperator<T> Apply a unary operation to an object of type T and return the
result, which is also of type T. Its method is called apply().

BinaryOperator<T> Apply an operation to two objects of type T and return the result,
which is also of type T. Its method is called apply().

Consumer<T> Apply an operation on an object of type T. Its method is called
accept().

Supplier<T> Return an object of type T. Its method is called get().

Function<T, R> Apply an operation to an object of type T and return the result as
an object of type R. Its method is called apply().

Predicate<T> Determine if an object of type T fulfills some constraint. Returns a
boolean value that indicates the outcome. Its method is called test().

The following program shows the Predicate interface in action. It uses Predicate as the
functional interface for a lambda expression the determines if a number is even. Predicate’s
abstract method is called test(), and it is shown here:

boolean test(T val)

14-ch14.indd 525 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14

 526 Java: A Beginner’s Guide

It must return true if val satisfies some constraint or condition. As it is used here, it will return
true if val is even.

// Use the Predicate built-in functional interface.

// Import the Predicate interface.
import java.util.function.Predicate;

class UsePredicateInterface {
 public static void main(String[] args)
 {

 // This lambda uses Predicate<Integer> to determine
 // if a number is even.
 Predicate<Integer> isEven = (n) -> (n %2) == 0;

 if(isEven.test(4)) System.out.println("4 is even");

 if(!isEven.test(5)) System.out.println("5 is odd");
 }
}

Use the built-in
Predicate interface.

Q: At the start of this chapter, you mentioned that the inclusion of lambda expressions
resulted in new capabilities being incorporated into the API library. Can you give me
an example?

A: One example is the stream package java.util.stream. This package defines several stream
interfaces, the most general of which is Stream. As it relates to java.util.stream, a stream
is a conduit for data. Thus, a stream represents a sequence of objects. Furthermore, a
stream supports many types of operations that let you create a pipeline that performs a
series of actions on the data. Often, these actions are represented by lambda expressions.
For example, using the stream API, you can construct sequences of actions that resemble,
in concept, the type of database queries for which you might use SQL. Furthermore, in
many cases, such actions can be performed in parallel, thus providing a high level of
efficiency, especially when large data sets are involved. Put simply, the stream API provides
a powerful means of handling data in an efficient, yet easy to use way. One last point:
although the streams supported by the new stream API have some similarities with the I/O
streams described in Chapter 10, they are not the same.

Ask the Expert

14-ch14.indd 526 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14

 Chapter 14: Lambda Expressions and Method References 527

The program produces the following output:

4 is even
5 is odd

 Chapter 14 Self Test
 1. What is the lambda operator?

 2. What is a functional interface?

 3. How do functional interfaces and lambda expressions relate?

 4. What are the two general types of lambda expressions?

 5. Show a lambda expression that returns true if a number is between 10 and 20, inclusive.

 6. Create a functional interface that can support the lambda expression you created in question 5.
Call the interface MyTest and its abstract method testing().

 7. Create a block lambda that computes the factorial of an integer value. Demonstrate its use.
Use NumericFunc, shown in this chapter, for the functional interface.

 8. Create a generic functional interface called MyFunc<T>. Call its abstract method func().
Have func() return a reference of type T. Have it take a parameter of type T. (Thus, MyFunc
will be a generic version of NumericFunc shown in the chapter.) Demonstrate its use by
rewriting your answer to question 7 so it uses MyFunc<T> rather than NumericFunc.

 9. Using the program shown in Try This 14-1, create a lambda expression that removes
all spaces from a string and returns the result. Demonstrate this method by passing it to
changeStr().

 10. Can a lambda expression use a local variable? If so, what constraint must be met?

 11. If a lambda expression throws a checked exception, the abstract method in the functional
interface must have a throws clause that includes that exception. True or False?

 12. What is a method reference?

 13. When evaluated, a method reference creates an instance of the ____________
___________ supplied by its target context.

 14. Given a class called MyClass that contains a static method called myStaticMethod(),
show how to specify a method reference to myStaticMethod().

 15. Given a class called MyClass that contains an instance method called myInstMethod()
and assuming an object of MyClass called mcObj, show how to create a method reference
to myInstMethod() on mcObj.

✓

14-ch14.indd 527 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 14

 528 Java: A Beginner’s Guide

 16. To the MethodRefDemo2 program, add a new method to MyIntNum called
hasCommonFactor(). Have it return true if its int argument and the value stored in the
invoking MyIntNum object have at least one factor in common. For example, 9 and 12
have a common factor, which is 3, but 9 and 16 have no common factor. Demonstrate
hasCommonFactor() via a method reference.

 17. How is a constructor reference specified?

 18. Java defines several predefined functional interfaces in what package?

14-ch14.indd 528 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 15
Blind Folio: 529

Chapter 15
Modules

15-ch15.indd 529 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 15

 530 Java: A Beginner’s Guide

Key Skills & Concepts

● Know the definition of a module

● Know Java’s module-related keywords

● Declare a module by use of the module keyword

● Use requires and exports

● Understand the purpose of module-info.java

● Use javac and java to compile and run module-based programs

● Understand the purpose of java.base

● Understand how pre-module legacy code is supported

● Export a package to a specific module

● Use implied readability

● Use services in a module

Beginning with JDK 9, an important feature called modules was added to Java. Modules
give you a way to describe the relationships and dependencies of the code that comprises

an application. Modules also let you control which parts of a module are accessible to
other modules and which are not. Through the use of modules you can create more reliable,
scalable programs.

As a general rule, modules are most helpful to large applications because they help reduce
the management complexity often associated with a large software system. However, small
programs also benefit from modules because the Java API library has now been organized
into modules. Thus, it is now possible to specify which parts of the API are required by your
program and which are not. This makes it possible to deploy programs with a smaller run-time
footprint, which is especially important when creating code for small devices, such as those
intended to be part of the Internet of Things (IoT).

Support for modules is provided both by language elements, including several keywords,
and by enhancements to javac, java, and other JDK tools. Furthermore, new tools and file
formats were introduced. As a result, the JDK and the run-time system were substantially
upgraded to support modules. In short, modules constitute a major addition to, and evolution
of, the Java language. This chapter introduces the key aspects of this important, recently
added capability.

15-ch15.indd 530 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 15

 Chapter 15: Modules 531

Module Basics
In its most fundamental sense, a module is a grouping of packages and resources that can be
collectively referred to by the module’s name. A module declaration specifies the name of a
module and defines the relationship a module and its packages have to other modules. Module
declarations are program statements in a Java source file and are supported by several module-
related keywords added to Java by JDK 9. They are shown here:

exports module open opens

provides requires to transitive

uses with

It is important to understand that these keywords are recognized as keywords only in the context
of a module declaration. Otherwise, they are interpreted as identifiers in other situations. Thus,
the keyword module could, for example, also be used as a parameter name, but such a use is
certainly not now recommended.

A module declaration is contained in a file called module-info.java. Thus, a module is
defined in a Java source file. This file is then compiled by javac into a class file and is known
as a module descriptor. The module-info.java file must contain only a module definition. It is
not a general-purpose file.

A module declaration begins with the keyword module. Here is its general form:

module moduleName {
 // module definition
}

The name of the module is specified by moduleName, which must be a valid Java identifier or a
sequence of identifiers separated by periods. The module definition is specified within the braces.

Q: Why are the module-related keywords, such as module and requires, recognized as
keywords only in the context of a module declaration?

A: Restricting their use as keywords to a module declaration prevents problems with preexisting
code that uses one or more of them as identifiers. For example, consider a situation in
which a pre-JDK 9 program uses requires as the name of a variable. When that program
is ported to a modern version of Java, if requires were recognized as a keyword outside a
module declaration, then any other place in which it is used would result in a compilation
error. By recognizing requires as a keyword only within a module declaration, any other
uses of requires in the program are unaffected and remain valid. Of course, the same goes
for the other module-related keywords.

Ask the Expert

15-ch15.indd 531 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 15

 532 Java: A Beginner’s Guide

Although a module definition may be empty (which results in a declaration that simply names the
module), typically it specifies one or more clauses that define the characteristics of the module.

A Simple Module Example
At the foundation of a module’s capabilities are two key features. The first is a module’s
ability to specify that it requires another module. In other words, one module can specify that
it depends on another. A dependence relationship is specified by use of a requires statement.
By default, the presence of the required module is checked at both compile time and run
time. The second key feature is a module’s ability to control which, if any, of its packages are
accessible by another module. This is accomplished by use of the exports keyword. The public
and protected types within a package are accessible to other modules only if they are explicitly
exported. Here we will develop an example that introduces both of these features.

The following example creates a modular application that demonstrates some simple
mathematical functions. Although this application is purposely very small, it illustrates
the core concepts and procedures required to create, compile, and run module-based code.
Furthermore, the general approach shown here also applies to larger, real-world applications.
It is strongly recommended that you work through the example on your computer, carefully
following each step.

NOTE
This chapter shows the process of creating, compiling, and running module-based code
by use of the command-line tools. This approach has two advantages. First, it works for
all Java programmers, because no IDE is required. Second, it very clearly shows the
fundamentals of the module system, including how it utilizes directories. To follow along,
you will need to manually create a number of directories and ensure that each file is placed
in its proper directory. As you might expect, when creating real-world, module-based
applications you will likely find a module-aware IDE easier to use because, typically, it will
automate much of the process. However, learning the fundamentals of modules using the
command-line tools ensures that you have a solid understanding of the topic.

The application defines two modules. The first module is called appstart. It contains a
package called appstart.mymodappdemo that defines the application’s entry point in a class
called MyModAppDemo. Thus, MyModAppDemo contains the application’s main() method.
The second module is called appfuncs. It contains a package called appfuncs.simplefuncs
that includes the class SimpleMathFuncs. This class defines three static methods that implement
some simple mathematical functions. The entire application will be contained in a directory
tree that begins at mymodapp.

Before continuing, a few words about module names are appropriate. First, in the examples
that follow, the name of a module (such as appfuncs) is the prefix of the name of a package
(such as appfuncs.simplefuncs) that it contains. This is not required, but is used here as a way
of clearly indicating to what module a package belongs. In general, when learning about and
experimenting with modules, short, simple names, such as those used in this chapter, are helpful,
and you can use any sort of convenient names that you like. However, when creating modules
suitable for distribution, you must be careful with the names you choose because you will want

15-ch15.indd 532 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 15

 Chapter 15: Modules 533

those names to be unique. At the time of this writing, the suggested way to achieve this is to
use the reverse domain name method. In this method, the reverse domain name of the domain
that “owns” the project is used as a prefix for the module. For example, a project associated
with herbschildt.com would use com.herbschildt as the module prefix. (The same goes for
package names.) Because naming conventions may evolve over time, you will want to check
the Java documentation for current recommendations.

Let’s now begin. Start by creating the necessary source code directories by following
these steps:

 1. Create a directory called mymodapp. This is the top-level directory for the entire application.

 2. Under mymodapp, create a subdirectory called appsrc. This is the top-level directory for the
application’s source code.

 3. Under appsrc, create the subdirectory appstart. Under this directory, create a subdirectory
also called appstart. Under this directory, create the directory mymodappdemo. Thus,
beginning with appsrc, you will have created this tree:

appsrc\appstart\appstart\mymodappdemo

 4. Also under appsrc, create the subdirectory appfuncs. Under this directory, create a subdirectory
also called appfuncs. Under this directory, create the directory called simplefuncs. Thus,
beginning with appsrc, you will have created this tree:

appsrc\appfuncs\appfuncs\simplefuncs

Your directory tree should look like that shown here.

appsrc

mymodapp

appstart appfuncs

appstart appfuncs

mymodappdemo simplefuncs

After you have set up these directories, you can create the application’s source files.

15-ch15.indd 533 12/11/21 9:34 PM

http://herbschildt.com

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 15

 534 Java: A Beginner’s Guide

This example will use four source files. Two are the source files that define the application.
The first is SimpleMathFuncs.java, shown here. Notice that SimpleMathFuncs is packaged
in appfuncs.simplefuncs.

// Some simple math functions.

package appfuncs.simplefuncs;

public class SimpleMathFuncs {

 // Determine if a is a factor of b.
 public static boolean isFactor(int a, int b) {
 if((b%a) == 0) return true;
 return false;
 }

 // Return the smallest positive factor that a and b have in common.
 public static int lcf(int a, int b) {
 // Factor using positive values.
 a = Math.abs(a);
 b = Math.abs(b);

 int min = a < b ? a : b;

 for(int i = 2; i <= min/2; i++) {
 if(isFactor(i, a) && isFactor(i, b))
 return i;
 }

 return 1;
 }

 // Return the largest positive factor that a and b have in common.
 public static int gcf(int a, int b) {
 // Factor using positive values.
 a = Math.abs(a);
 b = Math.abs(b);

 int min = a < b ? a : b;

 for(int i = min/2; i >= 2; i--) {
 if(isFactor(i, a) && isFactor(i, b))
 return i;
 }

 return 1;
 }
}

Notice the package
declaration.

15-ch15.indd 534 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 15

 Chapter 15: Modules 535

SimpleMathFuncs defines three simple static math functions. The first, isFactor(), returns
true if a is a factor of b. The lcf() method returns the smallest factor common to both a and b.
In other words, it returns the least common factor of a and b. The gcf() method returns the
greatest common factor of a and b. In both cases, 1 is returned if no common factors are found.
This file must be put in the following directory:

appsrc\appfuncs\appfuncs\simplefuncs

This is the appfuncs.simplefuncs package directory.
The second source file is MyModAppDemo.java, shown next. It uses the methods in

SimpleMathFuncs. Notice that it is packaged in appstart.mymodappdemo. Also note that
it imports the SimpleMathFuncs class because it depends on SimpleMathFuncs for its
operation.

// Demonstrate a simple module-based application.
package appstart.mymodappdemo;

import appfuncs.simplefuncs.SimpleMathFuncs;

public class MyModAppDemo {
 public static void main(String[] args) {

 if(SimpleMathFuncs.isFactor(2, 10))
 System.out.println("2 is a factor of 10");

 System.out.println("Smallest factor common to both 35 and 105 is " +
 SimpleMathFuncs.lcf(35, 105));

 System.out.println("Largest factor common to both 35 and 105 is " +
 SimpleMathFuncs.gcf(35, 105));

 }
}

This file must be put in the following directory:

appsrc\appstart\appstart\mymodappdemo

This is the directory for the appstart.mymodappdemo package.
Next, you will need to add module-info.java files for each module. These files contain the

module definitions. First, add this one, which defines the appfuncs module:

// Module definition for the functions module.
module appfuncs {
 // Exports the package appfuncs.simplefuncs.
 exports appfuncs.simplefuncs;
}

Notice the package
declaration and the
import statement.

Define a module for appfuncs.

15-ch15.indd 535 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 15

 536 Java: A Beginner’s Guide

Notice that appfuncs exports the package appfuncs.simplefuncs, which makes it accessible to
other modules. This file must be put into this directory:

appsrc\appfuncs

Thus, it goes in the appfuncs module directory, which is above the package directories.
Finally, add the module-info.java file for the appstart module. It is shown here. Notice

that appstart requires the module appfuncs.

// Module definition for the main application module.
module appstart {
 // Requires the module appfuncs.
 requires appfuncs;
}

This file must be put into its module directory:

appsrc\appstart

Before examining the requires, exports, and module statements more closely, let’s first
compile and run this example. Be sure that you have correctly created the directories and
entered each file into its proper directory, as just explained.

Compile and Run the First Module Example
Beginning with JDK 9, javac has been updated to support modules. Thus, like all other Java
programs, module-based programs are compiled using javac. The process is easy, with the
primary difference being that you will usually explicitly specify a module path. A module
path tells the compiler where the compiled files will be located. When following along with
this example, be sure that you execute the javac commands from the mymodapp directory in
order for the paths to be correct. Recall that mymodapp is the top-level directory for the entire
module application.

To begin, compile the SimpleMathFuncs.java file, using this command:

javac -d appmodules\appfuncs
 appsrc\appfuncs\appfuncs\simplefuncs\SimpleMathFuncs.java

Remember, this command must be executed from the mymodapp directory. Notice the use
of the -d option. This tells javac where to put the output .class file. For the examples in
this chapter, the top of the directory tree for compiled code is appmodules. This command
will automatically create the output package directories for appfuncs.simplefuncs under
appmodules\appfuncs as needed.

Next, here is the javac command that compiles the module-info.java file for the appfuncs
module:

javac -d appmodules\appfuncs appsrc\appfuncs\module-info.java

This puts the module-info.class file into the appmodules\appfuncs directory.

Define a module for appstart.

15-ch15.indd 536 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 15

 Chapter 15: Modules 537

Although the preceding two-step process works, it was shown primarily for the sake of
discussion. It is usually easier to compile a module’s module-info.java file and its source files
in one command line. Here, the preceding two javac commands are combined into one:

javac -d appmodules\appfuncs appsrc\appfuncs\module-info.java
 appsrc\appfuncs\appfuncs\simplefuncs\SimpleMathFuncs.java

In this case, each compiled file is put in its proper module or package directory.
Now, compile the module-info.java and MyModAppDemo.java files for the appstart

module, using this command:

javac --module-path appmodules -d appmodules\appstart
 appsrc\appstart\module-info.java
 appsrc\appstart\appstart\mymodappdemo\MyModAppDemo.java

Notice the --module-path option. It specifies the module path, which is the path on which the
compiler will look for the user-defined modules required by the module-info.java file. In this
case, it will look for the appfuncs module because it is needed by the appstart module. Also,
notice that it specifies the output directory as appmodules\appstart. This means that the module-
info.class file will be in the appmodules\appstart module directory and MyModAppDemo.class
will be in the appmodules\appstart\appstart\mymodappdemo package directory.

Once you have completed the compilation, you can run the application with this java
command:

java --module-path appmodules -m appstart/appstart.mymodappdemo.MyModAppDemo

Here, the --module-path option specifies the path to the application’s modules. As mentioned,
appmodules is the directory at the top of the compiled modules tree. The -m option specifies
the class that contains the entry point of the application and, in this case, the name of the class
that contains the main() method. When you run the program, you will see the following output:

2 is a factor of 10
Smallest factor common to both 35 and 105 is 5
Largest factor common to both 35 and 105 is 7

A Closer Look at requires and exports
The preceding module-based example relies on the two foundational features of the module
system: the ability to specify a dependence and the ability to satisfy that dependence. These
capabilities are specified through the use of the requires and exports statements within a
module declaration. Each merits a closer examination at this time.

Here is the form of the requires statement used in the example:

requires moduleName;

15-ch15.indd 537 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 15

 538 Java: A Beginner’s Guide

Here, moduleName specifies the name of a module that is required by the module in which the
requires statement occurs. This means that the required module must be present in order for
the current module to compile. In the language of modules, the current module is said to read
the module specified in the requires statement. In general, the requires statement gives you a
way to ensure that your program has access to the modules that it needs.

Here is the general form of the exports statement used in the example:

exports packageName;

Here, packageName specifies the name of the package that is exported by the module in which
this statement occurs. When a module exports a package, it makes all of the public and protected
types in the package accessible to other modules. Furthermore, the public and protected members
of those types are also accessible. However, if a package within a module is not exported, then
it is private to that module, including all of its public types. For example, even though a class
is declared as public within a package, if that package is not explicitly exported by an exports
statement, then that class is not accessible to other modules. It is important to understand that the
public and protected types of a package, whether exported or not, are always accessible within
that package’s module. The exports statement simply makes them accessible to outside modules.
Thus, any nonexported package is only for the internal use of its module.

The key to understanding requires and exports is that they work together. If one module
depends on another, then it must specify that dependence with requires. The module on which
another depends must explicitly export (i.e., make accessible) the packages that the dependent
module needs. If either side of this dependence relationship is missing, the dependent module
will not compile. As it relates to the foregoing example, MyModAppDemo uses the functions in
SimpleMathFuncs. As a result, the appstart module declaration contains a requires statement
that names the appfuncs module. The appfuncs module declaration exports the appfuncs
.simplefuncs package, thus making the public types in the SimpleMathFuncs class available.
Since both sides of the dependence relationship have been fulfilled, the application can compile
and run. If either is missing, the compilation will fail. (You will see the results of a missing
exports statement when you answer exercise 10 in the self-test at the end of this chapter.)

It is important to emphasize that requires and exports statements must occur only within
a module statement. Furthermore, a module statement must occur by itself in a file called
module-info.java.

java.base and the Platform Modules
As mentioned at the start of this chapter, beginning with JDK 9 the Java API packages have
been incorporated into modules. In fact, the modularization of the API is one of the primary
benefits realized by the addition of the modules. Because of their special role, the API modules
are referred to as platform modules, and their names all begin with the prefix java. Here are
some examples: java.base, java.desktop, and java.xml. By modularizing the API, it becomes
possible to deploy an application with only the packages that it requires, rather than the entire
Java Runtime Environment (JRE). Because of the size of the full JRE, this is a very important
improvement.

15-ch15.indd 538 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 15

 Chapter 15: Modules 539

The fact that all of the Java API library packages are now in modules gives rise to the
following question: How can the main() method in MyModAppDemo in the preceding
example use System.out.println() without specifying a requires statement for the module that
contains the System class? Obviously, the program will not compile and run unless System is
present. The same question also applies to the use of the Math class in SimpleMathFuncs.
The answer to this question is found in java.base.

Of the platform modules, the most important is java.base. It includes and exports those
packages fundamental to Java, such as java.lang, java.io, and java.util, among many others.
Because of its importance, java.base is automatically accessible to all modules. Furthermore, all
other modules automatically require java.base. There is no need to include a requires java.base
statement in a module declaration. (As a point of interest, it is not wrong to explicitly specify
java.base; it’s just not necessary.) Thus, in much the same way that java.lang is automatically
available to all programs without the use of an import statement, the java.base module is
automatically accessible to all module-based programs without explicitly requesting it.

Because java.base contains the java.lang package, and java.lang contains the System
class, MyModAppDemo in the preceding example can automatically use System.out.println()
without an explicit requires statement. The same applies to the use of the Math class in
SimpleMathFuncs, because the Math class is also in java.lang. As you will see when
you begin to create your own module-based applications, many of the API classes you will
commonly need are in the packages included in java.base. Thus, the automatic inclusion of
java.base simplifies the creation of module-based code because Java’s core packages are
automatically accessible.

One last point: Beginning with JDK 9, the documentation for the Java API now tells you
the name of the module in which a package is contained. If the module is java.base, then you
can use the contents of that package directly. Otherwise, your module declaration must include
a requires clause for the desired module.

Q: I recall that JDK 8 had the ability to use a feature called compact profiles. Are compact
profiles a part of modules?

A: Compact profiles are a feature that, in some situations, let you specify a subset of the API
library. They are not part of the module system. Moreover, the module system introduced
by JDK 9 fully supersedes them.

Ask the Expert

15-ch15.indd 539 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 15

 540 Java: A Beginner’s Guide

Legacy Code and the Unnamed Module
Another question may have occurred to you when working through the first example module
program. Because Java now supports modules, and the API packages are also contained in
modules, why do all of the other programs in the preceding chapters compile and run without
error even though they do not use modules? More generally, since there is now over 20 years
of Java code in existence and (at the time of this writing) much of that code does not use
modules, how is it possible to compile, run, and maintain that legacy code with a modern
compiler? Given Java’s original philosophy of “write once, run everywhere,” this is a very
important question because backward capability must be maintained. As you will see, Java
answers this question by providing an elegant, nearly transparent means of ensuring backward
compatibility with preexisting code.

Support for legacy code is provided by two key features. The first is the unnamed module.
When you use code that is not part of a named module, it automatically becomes part of the
unnamed module. The unnamed module has two important attributes. First, all of the packages
in the unnamed module are automatically exported. Second, the unnamed module can access
any and all other modules. Thus, when a program does not use modules, all API modules in the
Java platform are automatically accessible through the unnamed module.

The second key feature that supports legacy code is the automatic use of the class path,
rather than the module path. When you compile a program that does not use modules, the class
path mechanism is employed, just as it has been since Java’s original release. As a result, the
program is compiled and run in the same way it was prior to the advent of modules.

Because of the unnamed module and the automatic use of the class path, there was
no need to declare any modules for the sample programs shown elsewhere in this book.
They run properly whether you compile them with a modern compiler or an earlier one,
such as JDK 8. Thus, even though modules are a feature that has a significant impact on
Java, compatibility with legacy code is maintained. This approach also provides a smooth,
nonintrusive, nondisruptive transition path to modules. Thus, it enables you to move a legacy
application to modules at your own pace. Furthermore, it allows you to avoid the use of modules
when they are not needed.

Before moving on, an important point needs to be made. For the types of example programs
used elsewhere in this book, and for example programs in general, there is no benefit in using
modules. Modularizing them would simply add clutter and complicate them for no reason or benefit.
Furthermore, for many simple programs that you will write when learning the essentials
of Java, there is no need to contain them in modules. For the reasons stated at the start of
this chapter, modules are often of the greatest benefit when creating commercial programs.
Therefore, no examples outside this chapter will use modules. This also allows the examples to
be compiled and run in a pre-JDK 9 environment, which is important to readers using an older
version of Java. Thus, except for the examples in this chapter, the examples in this book work
for both pre-module and post-module JDKs.

15-ch15.indd 540 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 15

 Chapter 15: Modules 541

Exporting to a Specific Module
The basic form of the exports statement makes a package accessible to any and all other modules.
This is often exactly what you want. However, in some specialized development situations, it can
be desirable to make a package accessible to only a specific set of modules, not all other modules.
For example, a library developer might want to export a support package to certain other modules
within the library, but not make it available for general use. Adding a to clause to the exports
statement provides a means by which this can be accomplished.

In an exports statement, the to clause specifies a list of one or more modules that have access
to the exported package. Furthermore, only those modules named in the to clause will have
access. In the language of modules, the to clause creates what is known as a qualified export.

The form of exports that includes to is shown here:

exports packageName to moduleNames;

Here, moduleNames is a comma-separated list of modules to which the exporting module
grants access.

You can try the to clause by changing the module-info.java file for the appfuncs module,
as shown here:

// Module definition that uses a to clause.
module appfuncs {
 // Exports the package appfuncs.simplefuncs to appstart.
 exports appfuncs.simplefuncs to appstart;
}

Now, simplefuncs is exported only to appstart and to no other modules. After making this
change, you can recompile the application by using this javac command:

javac -d appmodules --module-source-path appsrc
 appsrc\appstart\appstart\mymodappdemo\MyModAppDemo.java

After compiling, you can run the application as shown earlier.
This example also uses another module-related feature. Look closely at the preceding

javac command. First, notice that it specifies the --module-source-path option. The module
source path specifies the top of the module source tree. The --module-source-path option
automatically compiles the files in the tree under the specified directory, which is appsrc in
this example. The --module-source-path option must be used with the -d option to ensure
that the compiled modules are stored in their proper directories under appmodules. This form
of javac is called multimodule mode because it enables more than one module to be compiled
at a time. The multimodule compilation mode is especially helpful here because the to clause
refers to a specific module, and the requiring module must have access to the exported package.
Thus, in this case, both appstart and appfuncs are needed to avoid warnings and/or errors during
compilation. Multimodule mode avoids this problem because both modules are being compiled
at the same time.

A qualified export.

15-ch15.indd 541 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 15

 542 Java: A Beginner’s Guide

The multimodule mode of javac has another advantage. It automatically finds and
compiles all source files for the application, creating the necessary output directories.
Because of the advantages that multimodule compilation mode offers, it will be used for the
subsequent examples.

NOTE
As a general rule, qualified export is a special case feature. Most often, your modules
will either provide unqualified export of a package or not export the package at all,
keeping it inaccessible. As such, qualified export is discussed here primarily for the sake
of completeness. Also, qualified export by itself does not prevent the exported package
from being misused by malicious code in a module that masquerades as the targeted
module. The security techniques required to prevent this from happening are beyond
the scope of this book. Consult the Oracle documentation for details on security in this
regard and Java security details in general.

Using requires transitive
Consider a situation in which there are three modules, A, B, and C, that have the following
dependences:

● A requires B.

● B requires C.

Given this situation, it is clear that since A depends on B and B depends on C, A has an indirect
dependence on C. As long as A does not directly use any of the contents of C, then you can
simply have A require B in its module-info file, and have B export the packages required by
A in its module-info file, as shown here:

// A's module-info file:
module A {
 requires B;
}

// B's module-info file.
module B {
 exports somepack;
 requires C;
}

Here, somepack is a placeholder for the package exported by B and used by A. Although this
works as long as A does not need to use anything defined in C, a problem occurs if A does want
to access a type in C. In this case, there are two solutions.

The first solution is to simply add a requires C statement to A’s file, as shown here:

// A's module-info file updated to explicitly require C:
module A {
 requires B;
 requires C; // also require C
}

15-ch15.indd 542 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 15

 Chapter 15: Modules 543

Try This 15-1

This solution certainly works, but if B will be used by many modules, you must add requires C
to all module definitions that require B. This is not only tedious; it is also error prone. Fortunately,
there is a better solution. You can create an implied dependence on C. Implied dependence is
also referred to as implied readability.

To create an implied dependence, add the transitive keyword after requires in the clause
that requires the module upon which an implied readability is needed. In the case of this example,
you would change B’s module-info file as shown here:

// B's module-info file.
module B {
 exports somepack;
 requires transitive C;
}

Here, C is now required as transitive. After making this change, any module that depends on B
will also automatically depend on C. Thus, A would automatically have access to C.

As a point of interest, because of a special exception in the Java syntax, in a requires statement,
if transitive is immediately followed by a separator (such as a semicolon), it is interpreted as an
identifier (for example, as a module name) rather than a keyword.

 Experiment with requires transitive
You can experiment with requires transitive by reworking the preceding
modular application example. Here, you will remove the isFactor()
method from the SimpleMathFuncs class in the appfuncs.simplefuncs
package and put it into a new class, module, and package. The new class
will be called SupportFuncs, the module will be called appsupport,

and the package will be called appsupport.supportfuncs. The appfuncs module will then add
a dependence on the appsupport module by use of requires transitive. This will enable both
the appfuncs and appstart modules to access it without appstart having to provide its own
requires statement. This works because appstart receives access to it through an appfuncs
requires transitive statement.

 1. To begin, create the source directories that support the new appsupport module. To do so,
create appsupport under the appsrc directory. This is the module directory for the support
functions. Under appsupport, create the package directory by adding the appsupport
subdirectory followed by the supportfuncs subdirectory. Thus, the directory tree for
appsupport should now look like this:

appsrc\appsupport\appsupport\supportfuncs

(continued)

MyModAppDemo.java
SimpleFuncs.java
SupportFuncs.java
module-info.java

15-ch15.indd 543 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 15

 544 Java: A Beginner’s Guide

 2. Add the following module-info.java file to the module source directory for appsupport,
which is appsrc\appsupport:

// Module definition for appsupport.
module appsupport {
 exports appsupport.supportfuncs;
}

 3. In the appsupport.supportfuncs package directory, add the following file called
SupportFuncs.java:

// Support functions.

package appsupport.supportfuncs;

public class SupportFuncs {

 // Determine if a is a factor of b.
 public static boolean isFactor(int a, int b) {
 if((b%a) == 0) return true;
 return false;
 }
}

 As you can see, the isFactor() method is now in SupportFuncs rather than in
SimpleMathFuncs.

 4. Remove isFactor() from SimpleMathFuncs. Thus, SimpleMathFuncs.java will now look
like this:

// Some simple math functions, with isFactor() removed.

package appfuncs.simplefuncs;
import appsupport.supportfuncs.SupportFuncs;

public class SimpleMathFuncs {

 // Return the smallest positive factor that a and b have in common.
 public static int lcf(int a, int b) {
 // Factor using positive values.
 a = Math.abs(a);
 b = Math.abs(b);

 int min = a < b ? a : b;

 for(int i = 2; i <= min/2; i++) {
 if(SupportFuncs.isFactor(i, a) && SupportFuncs.isFactor(i, b))
 return i;
 }

 return 1;
 }

15-ch15.indd 544 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 15

 Chapter 15: Modules 545

 // Return the largest positive factor that a and b have in common.
 public static int gcf(int a, int b) {
 // Factor using positive values.
 a = Math.abs(a);
 b = Math.abs(b);

 int min = a < b ? a : b;

 for(int i = min/2; i >= 2; i--) {
 if(SupportFuncs.isFactor(i, a) && SupportFuncs.isFactor(i, b))
 return i;
 }

 return 1;
 }
}

 Notice that now the SupportFuncs class is imported, and calls to isFactor() are referred to
through the class name SupportFuncs.

 5. Change the module-info.java file for appfuncs so that in its requires statement,
appsupport is specified as transitive, as shown here:

// Module definition for appfuncs.
module appfuncs {
 // Exports the package appfuncs.simplefuncs.
 exports appfuncs.simplefuncs;

 // Requires appsupport and makes it transitive.
 requires transitive appsupport;
}

 6. Because appfuncs requires appsupport as transitive, there is no need for the module-info
.java file for appstart to also require it. Its dependence on appsupport is implied. Thus, no
changes to the module-info.java file for appstart are required.

 7. Update MyModAppDemo.java to reflect these changes. Specifically, it must now import
the SupportFuncs class and specify it when invoking isFactor(), as shown here:

// Updated to use SupportFuncs.
package appstart.mymodappdemo;

import appfuncs.simplefuncs.SimpleMathFuncs;
import appsupport.supportfuncs.SupportFuncs;

public class MyModAppDemo {
 public static void main(String[] args) {

 // Now, isFactor() is referred to via SupportFuncs,
 // not SimpleMathFuncs.
 if(SupportFuncs.isFactor(2, 10))
 System.out.println("2 is a factor of 10");
 (continued)

15-ch15.indd 545 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 15

 546 Java: A Beginner’s Guide

 System.out.println("Smallest factor common to both 35 and 105 is " +
 SimpleMathFuncs.lcf(35, 105));

 System.out.println("Largest factor common to both 35 and 105 is " +
 SimpleMathFuncs.gcf(35, 105));

 }
}

 8. Recompile the entire program using this multimodule compilation command:

javac -d appmodules --module-source-path appsrc
 appsrc\appstart\appstart\mymodappdemo\MyModAppDemo.java

 As explained earlier, the multimodule compilation will automatically create the parallel
module subdirectories under the appmodules directory.

 9. Run the application as before, using this command:

java --module-path appmodules -m appstart/appstart.mymodappdemo.MyModAppDemo

 It will produce the same output as before.

 10. As an experiment, remove the transitive specifier from the module-info.java file
for appfuncs and then try recompiling. As you will see, an error will result because
appsupport is no longer accessible by appstart.

 11. Here is another experiment. In the module-info file for appsupport, try exporting the
appsupport.supportfuncs package to only appfuncs by use of a qualified export, as shown
here:

exports appsupport.supportfuncs to appfuncs;

 Next, try recompiling the program. As you can see, the program will not compile because
now the support function isFactor() is not available to the MyModAppDemo, which is
in the appstart module. As explained previously, a qualified export restricts access to a
package to only those modules specified by the to clause.

Use Services
In programming, it is often useful to separate what must be done from how it is done. As you
learned in Chapter 8, one way this is accomplished in Java is through the use of interfaces. The
interface specifies the what, and the implementing class specifies the how. This concept can
be expanded so that the implementing class is provided by code that is outside your program,
through the use of a plug-in. Using such an approach, the capabilities of an application can be

15-ch15.indd 546 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 15

 Chapter 15: Modules 547

enhanced, upgraded, or altered by simply changing the plug-in. The core of the application
itself remains unchanged. One way that Java supports a pluggable application architecture is
through the use of services and service providers. Because of their importance, especially in
large, commercial applications, Java’s module system provides support for them.

Before we begin, it is necessary to state that applications that use services and service
providers are typically fairly sophisticated. Therefore, you may find that you do not often need
the service-based module features. However, because support for services constitutes a rather
significant part of the module system, it is important that you have a general understanding
of how these features work. Also, a simple example is presented that illustrates the core
techniques needed to use them.

Service and Service Provider Basics
In Java, a service is a program unit whose functionality is defined by an interface or an abstract
class. Thus, a service specifies in a general way some form of program activity. A concrete
implementation of a service is supplied by a service provider. In other words, a service defines
the form of some action, and the service provider supplies that action.

As mentioned, services are often used to support a pluggable architecture. For example, a
service might be used to support the translation of one language into another. In this case, the
service supports translation in general. The service provider supplies a specific translation, such
as German to English or French to Chinese. Because all service providers implement the same
interface, different translators can be used to translate different languages without having to
change the core of the application. You can simply change the service provider.

Service providers are supported by the ServiceLoader class. ServiceLoader is a generic
class packaged in java.util. It is declared like this:

class ServiceLoader<S>

Here, S specifies the service type. Service providers are loaded by the load() method. It has
several forms; the one we will use is shown here:

public static <S> ServiceLoader<S> load(Class <S> serviceType)

Here, serviceType specifies the Class object for the desired service type. Recall from Chapter 13
that Class is a class that encapsulates information about a class. There are a variety of ways to
obtain a Class instance. The way we will use here is called a class literal. A class literal has
this general form:

className.class

Here, className specifies the name of the class.
When load() is called, it returns a ServiceLoader instance for the application. This object

supports iteration and can be cycled through by use of a for-each for loop. Therefore, to find a
specific provider, simply search for it using a loop.

15-ch15.indd 547 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 15

 548 Java: A Beginner’s Guide

The Service-Based Keywords
Modules support services through the use of the keywords provides, uses, and with. Essentially,
a module specifies that it provides a service with a provides statement. A module indicates
that it requires a service with a uses statement. The specific type of service provider is declared
by with. When used together, they enable you to specify a module that provides a service, a
module that needs that service, and the specific implementation of that service. Furthermore, the
module system ensures that the service and service providers are available and will be found.

Here is the general form of provides:

provides serviceType with implementationTypes;

Here, serviceType specifies the type of the service, which is often an interface, although abstract
classes are also used. A comma-separated list of the implementation types is specified by
implementationTypes. Therefore, to provide a service, the module indicates both the name of
the service and its implementation.

Here is the general form of the uses statement:

uses serviceType;

Here, serviceType specifies the type of the service required.

A Module-Based Service Example
To demonstrate the use of services, we will add a service to the modular application example
that we have been using. For simplicity, we will begin with the first version of the application
shown at the start of this chapter. To it we will add two new modules. The first is called
userfuncs. It will define interfaces that support functions that perform binary operations in which
each argument is an int and the result is an int. The second module is called userfuncsimp,
and it contains concrete implementations of the interfaces.

Begin by creating the necessary source directories.

 1. Under the appsrc directory, add directories called userfuncs and userfuncsimp.

 2. Under userfuncs, add the subdirectory also called userfuncs. Under that directory, add the
subdirectory binaryfuncs. Thus, beginning with appsrc, you will have created this tree:

appsrc\userfuncs\userfuncs\binaryfuncs

 3. Under userfuncsimp, add the subdirectory also called userfuncsimp. Under that directory,
add the subdirectory binaryfuncsimp. Thus, beginning with appsrc, you will have created
this tree:

appsrc\userfuncsimp\userfuncsimp\binaryfuncsimp

This example expands the original version of the application by providing support for
functions beyond those built into the application. Recall that the SimpleMathFuncs class
supplies three built-in functions: isFactor(), lcf(), and gcf(). Although it would be possible to
add more functions to this class, doing so requires modifying and recompiling the application.
By implementing services, it becomes possible to “plug in” new functions at run time without

15-ch15.indd 548 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 15

 Chapter 15: Modules 549

modifying the application, and that is what this example will do. In this case, the service supplies
functions that take two int arguments and return an int result. Of course, other types of functions
can be supported if additional interfaces are provided, but support for binary integer functions is
sufficient for our purposes and keeps the source code size of the example manageable.

The Service Interfaces
Two service-related interfaces are needed. One specifies the form of an action, and the other
specifies the form of the provider of that action. Both go in the binaryfuncs directory, and
both are in the userfuncs.binaryfuncs package. The first, called BinaryFunc, declares the
form of a binary function. It is shown here:

// This interface defines a function that takes two int
// arguments and returns an int result. Thus, it can
// describe any binary operation on two ints that
// returns an int.

package userfuncs.binaryfuncs;

public interface BinaryFunc {
 // Obtain the name of the function.
 public String getName();

 // This is the function to perform. It will be
 // provided by specific implementations.
 public int func(int a, int b);
}

BinaryFunc declares the form of an object that can implement a binary integer function. This
is specified by the func() method. The name of the function is obtainable from getName().
The name will be used to determine what type of function is implemented. This interface is
implemented by a class that supplies a binary function.

The second interface declares the form of the service provider. It is called
BinFuncProvider and is shown here:

// This interface defines the form of a service provider that
// obtains BinaryFunc instances.
package userfuncs.binaryfuncs;

import userfuncs.binaryfuncs.BinaryFunc;

public interface BinFuncProvider {

 // Obtain a BinaryFunc.
 public BinaryFunc get();
}

BinFuncProvider declares only one method, get(), which is used to obtain an instance of
BinaryFunc. This interface must be implemented by a class that wants to provide instances of
BinaryFunc.

15-ch15.indd 549 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 15

 550 Java: A Beginner’s Guide

The Implementation Classes
In this example, two concrete implementations of BinaryFunc are supported. The first is
AbsPlus, which returns the sum of the absolute values of its arguments. The second is AbsMinus,
which returns the result of subtracting the absolute value of the second argument from the
absolute value of the first argument. These are provided by the classes AbsPlusProvider and
AbsMinusProvider. The source code for these classes must be stored in the binaryfuncsimp
directory, and they are all part of the userfuncsimp.binaryfuncsimp package.

The code for AbsPlus is shown here:

// AbsPlus provides a concrete implementation of
// BinaryFunc. It returns the result of abs(a) + abs(b).
package userfuncsimp.binaryfuncsimp;

import userfuncs.binaryfuncs.BinaryFunc;

public class AbsPlus implements BinaryFunc {

 // Return name of this function.
 public String getName() {
 return "absPlus";
 }

 // Implement the AbsPlus function.
 public int func(int a, int b) { return Math.abs(a) + Math.abs(b); }
}

AbsPlus implements func() such that it returns the result of adding the absolute values of a
and b. Notice that getName() returns the "absPlus" string. It identifies this function.

The AbsMinus class is shown next:

// AbsMinus provides a concrete implementation of
// BinaryFunc. It returns the result of abs(a) - abs(b).

package userfuncsimp.binaryfuncsimp;

import userfuncs.binaryfuncs.BinaryFunc;

public class AbsMinus implements BinaryFunc {

 // Return name of this function.
 public String getName() {
 return "absMinus";
 }

 // Implement the AbsMinus function.
 public int func(int a, int b) { return Math.abs(a) - Math.abs(b); }
}

Implement func() for
absolute-value addition.

Implement func() for
absolute-value subtraction.

15-ch15.indd 550 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 15

 Chapter 15: Modules 551

Here, func() is implemented to return the difference between the absolute values of a and b,
and the string "absMinus" is returned by getName().

To obtain an instance of AbsPlus, the AbsPlusProvider is used. It implements
BinFuncProvider and is shown here:

// This is a provider for the AbsPlus function.

package userfuncsimp.binaryfuncsimp;

import userfuncs.binaryfuncs.*;

public class AbsPlusProvider implements BinFuncProvider {

 // Provide an AbsPlus object.
 public BinaryFunc get() { return new AbsPlus(); }
}

The get() method simply returns a new AbsPlus() object. Although this provider is very
simple, it is important to point out that some service providers will be much more complex.

The provider for AbsMinus is called AbsMinusProvider and is shown next:

// This is a provider for the AbsMinus function.

package userfuncsimp.binaryfuncsimp;

import userfuncs.binaryfuncs.*;

public class AbsMinusProvider implements BinFuncProvider {

 // Provide an AbsMinus object.
 public BinaryFunc get() { return new AbsMinus(); }
}

Its get() method returns an object of AbsMinus.

The Module Definition Files
Next, two module definition files are needed. The first is for the userfuncs module. It is shown
here:

module userfuncs {
 exports userfuncs.binaryfuncs;
}

This code must be contained in a module-info.java file that is in the userfuncs module directory.
Notice that it exports the userfuncs.binaryfuncs package. This is the package that defines the
BinaryFunc and BinFuncProvider interfaces.

Returns an
AbsPlus object.

Returns an
AbsMinus object.

15-ch15.indd 551 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 15

 552 Java: A Beginner’s Guide

The second module-info.java file is shown next. It defines the module that contains the
implementations. It goes in the userfuncsimp module directory.

module userfuncsimp {
 requires userfuncs;

 provides userfuncs.binaryfuncs.BinFuncProvider with
 userfuncsimp.binaryfuncsimp.AbsPlusProvider,
 userfuncsimp.binaryfuncsimp.AbsMinusProvider;
}

This module requires userfuncs because that is where BinaryFunc and BinFuncProvider
are contained, and those interfaces are needed by the implementations. The module provides
BinFuncProvider implementations with the classes AbsPlusProvider and AbsMinusProvider.

Demonstrate the Service Providers in MyModAppDemo
To demonstrate the use of the services, the main() method of MyModAppDemo is expanded to
use AbsPlus and AbsMinus. It does so by loading them at run time by use of ServiceLoader
.load(). Here is the updated code:

// A module-based application that demonstrates services
// and service providers.

package appstart.mymodappdemo;

import java.util.ServiceLoader;

import appfuncs.simplefuncs.SimpleMathFuncs;
import userfuncs.binaryfuncs.*;

public class MyModAppDemo {
 public static void main(String[] args) {

 // First, use built-in functions as before.
 if(SimpleMathFuncs.isFactor(2, 10))
 System.out.println("2 is a factor of 10");

 System.out.println("Smallest factor common to both 35 and 105 is " +
 SimpleMathFuncs.lcf(35, 105));

 System.out.println("Largest factor common to both 35 and 105 is " +
 SimpleMathFuncs.gcf(35, 105));

 // Now, use service-based, user-defined operations.

 // Get a service loader for binary functions.
 ServiceLoader<BinFuncProvider> ldr = Load services.

15-ch15.indd 552 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 15

 Chapter 15: Modules 553

 ServiceLoader.load(BinFuncProvider.class);

 BinaryFunc binOp = null;

 // Find the provider for absPlus and obtain the function.
 for(BinFuncProvider bfp : ldr) {
 if(bfp.get().getName().equals("absPlus")) {
 binOp = bfp.get();
 break;
 }
 }

 if(binOp != null)
 System.out.println("Result of absPlus function: " +
 binOp.func(12, -4));
 else
 System.out.println("absPlus function not found");

 binOp = null;

 // Now, find the provider for absMinus and obtain the function.
 for(BinFuncProvider bfp : ldr) {
 if(bfp.get().getName().equals("absMinus")) {
 binOp = bfp.get();
 break;
 }
 }

 if(binOp != null)
 System.out.println("Result of absMinus function: " +
 binOp.func(12, -4));
 else
 System.out.println("absMinus function not found");

 }
}

Let’s take a close look at how a service is loaded and executed by the preceding code. First, a
service loader for services of type BinFuncProvider is created with this statement:

ServiceLoader<BinFuncProvider> ldr =
 ServiceLoader.load(BinFuncProvider.class);

Notice that the type parameter to ServiceLoader is BinFuncProvider. This is also the type
used in the call to load(). This means that providers that implement this interface will be found.
Thus, after this statement executes, BinFuncProvider classes in the module will be available
through ldr. In this case, both AbsPlusProvider and AbsMinusProvider will be available.

Find provider for
absolute-value addition.

Find provider
for absolute-value
subtraction.

15-ch15.indd 553 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 15

 554 Java: A Beginner’s Guide

Next, a reference of type BinaryFunc called binOp is declared and initialized to null.
It will be used to refer to an implementation that supplies a specific type of binary function.
Next, the following loop searches ldr for one that has the "absPlus" name.

// Find the provider for absPlus and obtain the function.
for(BinFuncProvider bfp : ldr) {
 if(bfp.get().getName().equals("absPlus")) {
 binOp = bfp.get();
 break;
 }
}

Here, a for-each loop iterates through ldr. Inside the loop, the name of the function supplied by
the provider is checked. If it matches "absPlus", that function is assigned to binOp by calling
the provider’s get() method.

Finally, if the function is found, as it will be in this example, it is executed by this statement:

if(binOp != null)
 System.out.println("Result of absPlus function: " +
 binOp.func(12, -4));

In this case, because binOp refers to an instance of AbsPlus, the call to func() performs an
absolute value addition. A similar sequence is used to find and execute AbsMinus.

Because MyModAppDemo now uses BinFuncProvider, its module definition file must
include a uses statement that specifies this fact. Recall that MyModAppDemo is in the appstart
module. Therefore, you must change the module-info.java file for appstart as shown here:

// Module definition for the main application module.
// It now uses BinFuncProvider.
module appstart {
 // Requires the modules appfuncs and userfuncs.
 requires appfuncs;
 requires userfuncs;

 // appstart now uses BinFuncProvider.
 uses userfuncs.binaryfuncs.BinFuncProvider;
}

Compile and Run the Module-Based Service Example
Once you have performed all of the preceding steps, you can compile and run the example by
executing the following commands:

javac -d appmodules --module-source-path appsrc
 appsrc\userfuncsimp\module-info.java
 appsrc\appstart\appstart\mymodappdemo\MyModAppDemo.java

java --module-path appmodules -m appstart/appstart.mymodappdemo.MyModAppDemo

15-ch15.indd 554 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 15

 Chapter 15: Modules 555

Here is the output:

2 is a factor of 10
Smallest factor common to both 35 and 105 is 5
Largest factor common to both 35 and 105 is 7
Result of absPlus function: 16
Result of absMinus function: 8

As the output shows, the binary functions were located and executed. It is important to
emphasize that if either the provides statement in the userfuncsimp module or the uses
statement in the appstart module were missing, the application would fail.

Additional Module Features
Before concluding our discussion of modules, there are three more features that require a
brief introduction. These are the open module, the opens statement, and the use of requires
static. Each of these features is designed to handle a specialized situation, and each constitutes
a fairly advanced aspect of the module system. That said, it is important for you to have a
general understanding of their purpose. As you gain more experience with Java, you may
encounter situations for which they provide elegant solutions.

Open Modules
As you learned earlier in this chapter, by default, the types in a module’s packages are
accessible only if they are explicitly exported via an exports statement. While this is usually
what you will want, there can be circumstances in which it is useful to enable run-time access
to all packages in the module, whether a package is exported or not. To allow this, you can
create an open module. An open module is declared by preceding the module keyword with
the open modifier, as shown here:

open module moduleName {
 // module definition
}

In an open module, types in all packages are accessible at run time. Understand, however, that
only those packages that are explicitly exported are available at compile time. Thus, the open
modifier affects only run-time accessibility.

The primary reason for an open module is to enable the packages in the module to be accessed
through reflection. Reflection is the feature that lets a program analyze code at run time. Although
the topic of and techniques required to use reflection are beyond the scope of this book, it can be
quite important to certain types of programs that require run-time access to a third-party library.

NOTE
Information about reflection can be found in Java: The Complete Reference,
Twelfth Edition (McGraw Hill, 2022).

15-ch15.indd 555 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 15

 556 Java: A Beginner’s Guide

The opens Statement
It is possible for a module to open a specific package for run-time access by other modules and
for reflective access rather than opening an entire module. To do so, use the opens statement,
shown here:

opens packageName;

Here, packageName specifies the package to open. It is also possible to include a to clause,
which names those modules for which the package is opened.

It is important to understand that opens does not grant compile-time access. It is used only
to open a package for run-time and reflective access. One other point: an opens statement cannot
be used in an open module. Remember, all packages in an open module are already open.

requires static
As you know, requires specifies a dependence that, by default, is enforced both during compilation
and at run time. However, it is possible to relax this requirement in such a way that a module is not
required at run time. This is accomplished by use of the static modifier in a requires statement.
For example, this specifies that mymod is required for compilation, but not at run time:

requires static mymod;

In this case, the addition of static makes mymod optional at run time. This can be helpful in
a situation in which a program can utilize functionality if it is present, but not require it.

Continuing Your Study of Modules
The preceding discussions have introduced and demonstrated the core elements of Java’s
module system. They are the features that are directly supported by keywords in the Java
language. Thus, they are the features about which every Java programmer should have at least
a basic understanding. As you might guess, the module system provides additional features
that you will want to learn about as you advance in your study of Java. A good place to begin
is with javac and java. Both have more options related to modules.

Here are some other areas that you will want to explore. Beginning with JDK 9, the JDK
includes the jlink tool that assembles a modular application into a run-time image that has
only those modules related to the application. This saves both space and download time. A
modular application can be packaged into a JAR file. (JAR stands for Java ARchive. It is a file
format typically used for application deployment.) As a result, the jar tool now has options that
support modules. For example, it can now recognize a module path. A JAR file that contains
a module-info.class file is called a modular JAR file. For specialized advanced work with
modules, you will want to learn about layers of modules, automatic modules, and the technique
by which modules can be added during compilation or execution.

In conclusion, modules are expected to play an important role in Java programming.
Although their use is not required at this time, they offer important benefits for commercial
applications that no Java programmer can afford to ignore. It is likely that module-based
development will be in nearly every Java programmer’s future.

15-ch15.indd 556 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 15

 Chapter 15: Modules 557

 Chapter 15 Self Test
 1. In general terms, modules give you a way to specify when one unit of code depends on

another. True or False?

 2. A module is declared using what keyword?

 3. The keywords that support modules are context sensitive. Explain what this means.

 4. What is module-info.java and why is it important?

 5. To declare that one module depends on another module, what keyword do you use?

 6. To make the public members of a package accessible outside the module in which it is
contained, it must be specified in an _________ statement.

✓

Q: I have heard the term module graph used in discussions of modules. What does it
mean?

A: During compilation, the compiler resolves the dependence relationships between modules
by creating a module graph that represents the dependences. The process ensures that all
dependences are resolved, including those that occur indirectly. For example, if module A
requires module B and B requires module C, then the module graph will contain module C
even if A does not use it directly.

Module graphs can be depicted visually in a drawing to illustrate the relationship
between modules, and you will likely encounter one as you continue on in Java. Here is a
simple example. It is the graph for the first module example in this chapter. (Because java
.base is automatically included, it is not shown in the diagram.)

appstart

appfuncs

In Java, the arrows point from the dependent module to the required module. Thus, a
drawing of a module graph depicts what modules have access to what other modules.
Frankly, only the smallest applications can have their module graphs visually represented
because of the complexity typically involved in many commercial applications.

Ask the Expert

15-ch15.indd 557 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 15

 558 Java: A Beginner’s Guide

 7. When compiling or running a module-based application, why is the module path important?

 8. What does requires transitive do?

 9. Does an exports statement export another module, or does it export a package?

 10. In the first module example, if you remove

exports appfuncs.simplefuncs;

 from the appfuncs module-info file and then attempt to compile the program, what error do
you see?

 11. Module-based services are supported by what keywords?

 12. A service specifies the general form of a unit of program functionality using either an
interface or abstract class. True or False?

 13. A service provider ____________ a service.

 14. To load a service, what class do you use?

 15. Can a module dependency be made optional at run time? If so, how?

 16. Briefly describe what open and opens do.

15-ch15.indd 558 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 16
Blind Folio: 559

Chapter 16
Switch Expressions,
Records, and Other
Recently Added Features

16-ch16.indd 559 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 16

 560 Java: A Beginner’s Guide

Key Skills & Concepts

● Know the features of the expanded switch statement

● Use a list of case constants with switch

● Understand the switch expression

● Use an arrow case with the switch

● Know the fundamentals of record

● Use record canonical constructors

● Use record non-canonical constructors

● Understand how patterns are used with instanceof

● Know the fundamentals of sealed classes and interfaces

● Gain insight into Java’s future directions

One of the key ingredients of Java’s long-term success has been its ability to adapt to
the fast-paced evolution of the modern computing environment. Over the years, Java

has incorporated many new features, each responding to changes in hardware, software, or
usage patterns and to innovations in computer language design. This ongoing process has
enabled Java to remain one of the world’s most important and popular computer languages.
As explained earlier, this book has been updated for JDK 17, which is a long-term support
(LTS) version of Java. JDK 17 incorporates a number of new language features that have
been added to Java since the previous LTS version, which was JDK 11. A few of the smaller
additions, such as text blocks, have been described in the preceding chapters. Here, the major
additions are examined. They are

● Enhancements to switch

● Records

● Patterns in instanceof

● Sealed classes and interfaces

Here is a brief description of each. The switch has been enhanced in a number of ways,
the most impacting of which is the switch expression. A switch expression enables a switch
to produce a value. Supported by the new keyword record, records enable you to create a
new kind of class that is specifically designed to hold a group of values. A second form of

16-ch16.indd 560 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 16

 Chapter 16: Switch Expressions, Records, and Other Recently Added Features 561

instanceof has been added that uses a type pattern. With this form, you can specify a variable
that receives an instance of the type being tested if instanceof succeeds. It is now possible to
specify a sealed class or interface. A sealed class can be inherited by only explicitly specified
subclasses. A sealed interface can be implemented by only explicitly specified classes, or
extended by only explicitly specified interfaces. Thus, sealing a class or interface gives you
detailed control over its inheritance and implementation.

Enhancements to switch
The switch statement has been part of Java since the start. It is a crucial element of Java’s
program control statements and provides for a multiway branch. Moreover, switch is
so fundamental to programming that it is found in one form or another in other popular
programming languages. The traditional form of switch was described in Chapter 3. This is
the form of switch that has always been part of Java. Beginning with JDK 14, switch has been
substantially enhanced with the addition of four new features, shown here:

● The switch expression

● The yield statement

● The case with an arrow

● Support for a list of case constants

The switch expression is, essentially, a switch that produces a value. Thus, a switch expression
can be used on the right side of an assignment, for example. The yield statement specifies
the value that is produced by a switch expression. It is now possible to specify more than one
case constant in a case statement through the use of a list of case constants. A second form
of case has been added that uses an arrow (->) instead of a colon. The arrow gives case new
capabilities. In the sections that follow, each new switch feature is described in detail.

Q: The expanded switch features appear to involve very significant changes and additions
to the original switch statement. Am I understanding this correctly?

A: Yes. Collectively, the enhancements to switch represent a significant change to the original
switch, and to the Java language in general. Not only do they provide new capabilities,
but in some situations, they also offer superior alternatives to the traditional approaches.
Frankly, in the years to come, the expanded switch features will change the way you
craft solutions and code your programs. Because of this, a solid understanding of the
“how” and “why” behind the switch enhancements is important. The “new” switch really
is that important.

Ask the Expert

16-ch16.indd 561 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 16

 562 Java: A Beginner’s Guide

Perhaps the best way to understand the switch enhancements is to start with an example
that uses a traditional switch and then gradually incorporate each new feature. This way, the
use and benefit of the enhancements will be clearly apparent. To begin, imagine a distribution
center that ships various products, each identified by an ID number. Most products are
shipped in the standard way, but a few require special handling. Here is a program that uses a
traditional switch to supply the shipping method for a given product ID:

// Use a traditional switch to obtain the shipping method
// associated with a product ID. Most products use standard
// shipping, but a few require special handling.
class TraditionalSwitch {

 enum ShipMethod { STANDARD, TRUCK, AIR, OVERNIGHT }

 public static void main(String[] args) {
 ShipMethod shipBy;

 int productID = 5099;

 // Here, a traditional switch is used to obtain the
 // shipping method. Notice that case stacking is used.
 switch(productID) {
 case 1774:
 case 8708:
 case 6709:
 shipBy = ShipMethod.TRUCK;
 break;
 case 4657:
 case 2195:
 case 3621:
 case 1887:
 shipBy = ShipMethod.AIR;
 break;
 case 2907:
 case 5099:
 shipBy = ShipMethod.OVERNIGHT;
 break;
 default:
 shipBy = ShipMethod.STANDARD;
 }

 System.out.println("Shipping method for product number " +
 productID + " is " + shipBy);
 }
}

16-ch16.indd 562 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 16

 Chapter 16: Switch Expressions, Records, and Other Recently Added Features 563

The output is shown here:

Shipping method for product number 5099 is OVERNIGHT

There is certainly nothing wrong with using a traditional switch as shown in the program,
and this is the way Java code has been written for more than two decades. However, as the
following sections will show, in many cases, the traditional switch can be improved by use of
the enhanced switch features.

Use a List of case Constants
We begin with one of the easiest ways to modernize a traditional switch: by use of a list of
case constants. In the past, when two or more constants were both handled by the same code
sequence, case stacking was employed, and this is the approach used by the preceding program.
For example, here are how the cases for product IDs 1774, 8708, and 6709 are handled:

case 1774:
case 8708:
case 6709:
 shipBy = ShipMethod.TRUCK;
 break;

The stacking of case statements enables all three case statements to use the same code sequence
that sets the shipping method. As explained in Chapter 3, in a traditional-style switch, the
stacking of cases is made possible because execution falls through each case until a break is
encountered. Although this approach works, a more elegant solution can be achieved by use of a
case constant list.

Beginning with JDK 14, you can specify more than one case constant in a single case. To
do so, simply separate each constant with a comma. For example, here is a more compact way
to code the case for product IDs 1774, 8708, and 6709:

case 1774, 8708, 6709:
 shipBy = ShipMethod.TRUCK;
 break;

Here, one case statement replaces what previously took three. If the switch matches any of
the three constants in the case statement, shipBy is set to ShipMethod.TRUCK. Thus, a case
constant list streamlines the code. Because of the ease with which you can incorporate a list of
case constants into existing code, it is a feature that you will want to put to work immediately.

Introducing the switch Expression and the yield Statement
The switch enhancement that will have the most profound impact on the way you write code is
the switch expression. A switch expression is, essentially, a switch that returns a value. Thus, it
has all of the capabilities of a traditional switch statement, plus the ability to produce a result.
This added capability can significantly improve the way that certain uses of switch are coded.

16-ch16.indd 563 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 16

 564 Java: A Beginner’s Guide

One way to supply the value of a switch expression is with the yield statement. It has this
general form:

yield value;

Here, value is the value produced by the switch, and it can be any expression compatible
with the type of value required. A key point to understand about yield is that it immediately
terminates the switch. Thus, it works somewhat like break, with the added capability of
supplying a value. It is important to point out that yield is a context-sensitive keyword. This
means that outside its use in a switch expression, yield is simply an identifier with no special
meaning. However, if you use a method called yield(), it must be qualified. For example, if
yield() is a non-static method within its class, you must use this.yield().

It is very easy to specify a switch expression. Simply use the switch in a context in which a
value is required, such as on the right side of an assignment statement, an argument to a method,
or a return value. For example, this line indicates that a switch expression is being employed:

int result = switch(what) { // ...

Here, the switch result is being assigned to the result variable. A key point about using a
switch expression is that each case (plus default) must produce a value (unless it throws an
exception). In other words, each path through a switch expression must produce a result.

The addition of the switch expression simplifies the coding of situations in which each case
sets the value of some variable. Such situations can occur in a number of different ways. For
example, each case could set a boolean variable that indicates the success or failure of some
action taken by the switch. Often, however, the setting of a variable is the primary purpose of
the switch, as is the case with the switch used by the preceding program. Its job is to obtain the
shipping method associated with a product ID. With a traditional switch statement, each case
statement must individually assign a value to the variable, and this variable becomes the de facto
result of the switch. This is the approach used by the preceding program, in which the value of
the variable shipBy is set by each case. Although this approach has been used in Java programs
for decades, the switch expression offers a better solution because the desired value is produced
by the switch itself.

The following version of the program puts the preceding discussion into action by changing
the switch statement into a switch expression. It also uses case constant lists.

// Convert a switch statement into a switch expression.
class SwitchExprDemo {

 enum ShipMethod { STANDARD, TRUCK, AIR, OVERNIGHT }

 public static void main(String[] args) {

 int productID = 5099;

 // This is a switch expression. The value produced by
 // the yield statement in the case that matches productID
 // is assigned to the shipBy variable.
 ShipMethod shipBy = switch(productID) {

16-ch16.indd 564 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 16

 Chapter 16: Switch Expressions, Records, and Other Recently Added Features 565

 case 1774, 8708, 6709:
 yield ShipMethod.TRUCK;
 case 4657, 2195, 1887, 3621:
 yield ShipMethod.AIR;
 case 2907, 5099:
 yield ShipMethod.OVERNIGHT;
 default:
 yield ShipMethod.STANDARD;
 }; // Notice that a semicolon is required here.

 System.out.println("Shipping method for product number " +
 productID + " is " + shipBy);
 }
}

Look closely at the switch in the program. Notice that it differs in important ways from
the one used in the previous example. Instead of each case assigning a value to shipBy
individually, this version assigns the outcome of the switch itself to the shipBy variable.
Thus, only one assignment to shipBy is required, and the length of the switch is reduced.
Using a switch expression also ensures that each case yields a value, thus avoiding the
possibility of forgetting to give shipBy a value in one of the cases. Notice that the value of
the switch is produced by the yield statement inside each case. As explained, yield causes
immediate termination of the switch, so no fall through from case to case will occur. Thus,
no break statement is required, or allowed. One other thing to notice is the semicolon after
the closing brace of the switch. Because this switch is used in an assignment, it must be
terminated by a semicolon.

There is an important restriction that applies to a switch expression: the case statements
must handle all of the values that might occur. Thus, a switch expression must be exhaustive.
For example, if its controlling expression is of type int, then all int values must be handled by
the switch. This would, of course, constitute a very large number of case statements! For this
reason, most switch expressions will have a default statement. The exception to this rule is
when an enumeration is used, and each value of the enumeration is matched by a case.

Introducing the Arrow in a case Statement
Although the use of yield in the preceding program is a perfectly valid way to specify a value
for a switch expression, it is not the only way to do so. In many situations, an easier way to
supply a value is through the use of a new form of the case that substitutes -> for the colon in
a case. For example, this line:

case 'X': // ...

can be rewritten using the arrow like this:

case 'X' -> // ...

To avoid confusion, in this discussion we will refer to a case with an arrow as an arrow case and
the traditional, colon-based form as a colon case. Although both forms will match the character X,
the precise action of each style of case statement differs in three very important ways.

Use yield to produce a value.

16-ch16.indd 565 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 16

 566 Java: A Beginner’s Guide

First, one arrow case does not fall through to the next case. Thus, there is no need to use
break. Execution simply terminates at the end of an arrow case. Although the fall-through
nature of a traditional colon case has always been part of Java, fall through has been criticized
because it can be a source for bugs, such as when the programmer forgets to add a break
statement to prevent fall through when fall through is not desired. The arrow case avoids this
situation. Second, the arrow case provides a “shorthand” way to supply a value when used in a
switch expression. For this reason, the arrow case is often used in switch expressions. Third,
the target of an arrow case must be either an expression, a block, or throw an exception. It
cannot be a statement sequence, as is allowed with a traditional case. Thus, the arrow case will
have one of these general forms:

case constant -> expression;
case constant -> { block-of-statements }
case constant -> throw …

Of course, the first two forms represent the primary uses.
Arguably, the most common use of an arrow case is in a switch expression, and the most

common target of the arrow case is an expression. Thus, it is here that we will begin. When
the target of an arrow case is an expression, the value of that expression becomes the value of
the switch when that case is matched. As such, it provides a very efficient alternative to the
yield statement in many situations. For example, here is the first case in the preceding example
rewritten to use an arrow case:

case 1774, 8708, 6709 -> ShipMethod.TRUCK;

Here, the value of the expression (which is ShipMethod.TRUCK) automatically becomes
the value produced by the switch when this case is matched. In other words, the expression
becomes the value yielded by the switch. Notice that this statement is quite compact, yet
clearly expresses the intent to supply a value.

In the following program, the entire switch expression has been completely rewritten to
use the arrow case:

// Use the arrow case "shorthand" to supply the shipping method.
class SwitchExprDemo2 {

 enum ShipMethod { STANDARD, TRUCK, AIR, OVERNIGHT }

 public static void main(String[] args) {

 int productID = 5099;

 // In this switch expression, the value is supplied
 // by use of an arrow case, rather than a yield statement.
 // Notice that no break statements are required because
 // arrow cases do not fall through.
 ShipMethod shipBy = switch(productID) {
 case 1774, 8708, 6709 -> ShipMethod.TRUCK;
 case 4657, 2195, 1887, 3621 -> ShipMethod.AIR;

Notice the use of the
arrow and that no
break is required.

16-ch16.indd 566 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 16

 Chapter 16: Switch Expressions, Records, and Other Recently Added Features 567

 case 2907, 5099 -> ShipMethod.OVERNIGHT;
 default -> ShipMethod.STANDARD;
 };

 System.out.println("Shipping method for product number " +
 productID + " is " + shipBy);
 }
}

This produces the same output as before, but the switch is more compact and eliminates the
need for a separate yield statement. Because the arrow case does not fall through, there is
no need for a break statement. Each case terminates by yielding the value of its expression.
Furthermore, if you compare this final version of the switch to the original, traditional switch
shown at the start of this discussion, it is readily apparent how streamlined and expressive this
version is. In combination, the switch enhancements offer a truly impressive way to improve
the clarity and resiliency of your code.

A Closer Look at the Arrow case
As mentioned, the target of the -> can also be a block of code. You will need to use a block as
the target of an arrow case whenever you need more than a single expression. For example, in
addition to yielding the shipping method, each case in this version of the previous program sets
a variable called extraCharge to indicate if an extra shipping charge is required. Therefore, a
block of code is required.

// Use blocks with the arrow case.
class BlockArrowCaseDemo {

 enum ShipMethod { STANDARD, TRUCK, AIR, OVERNIGHT }

 public static void main(String[] args) {

 int productID = 5099;

 boolean extraCharge;

 // Use code blocks with an arrow case. Because
 // the target of the arrow is a block, yield must
 // be used to supply the value. As before, no break
 // statements are needed (or legal) because no fall
 // through occurs with the arrow.
 ShipMethod shipBy = switch(productID) {
 case 1774, 8708, 6709 -> {
 extraCharge = true;
 yield ShipMethod.TRUCK;
 }
 case 4657, 2195, 1887, 3621 -> {
 extraCharge = false;
 yield ShipMethod.AIR;
 }

In a block of code, yield
is used to supply a value.

16-ch16.indd 567 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 16

 568 Java: A Beginner’s Guide

 case 2907, 5099 -> {
 extraCharge = true;
 yield ShipMethod.OVERNIGHT;
 }
 default -> {
 extraCharge = false;
 yield ShipMethod.STANDARD;
 }
 };

 System.out.println("Shipping method for product number " +
 productID + " is " + shipBy);
 if(extraCharge) System.out.println("Extra charge required.");
 }
}

Here is the output:

Shipping method for product number 5099 is OVERNIGHT
Extra charge required.

As this example shows, when using a block, you must use yield to supply a value to a switch
expression. Furthermore, even though block targets are used, each path through the switch
expression must still provide a value.

Although the arrow case is very helpful in a switch expression, it is important to emphasize
that it is not limited to that use. The arrow case can also be used in a switch statement, which
enables you to write switches in which no case fall through can occur. In this situation, no yield
statement is required (or allowed), and no value is produced by the switch. In essence, it works
much like a traditional switch but without the fall through. Here is an example. Assume a situation

Q: In the BlockArrowCaseDemo program, the shipping method is returned by the switch,
but the extraCharge variable is still set explicitly within each case block. Is there a way
for the switch to efficiently yield more than one value?

A: Yes. Although this program was designed to provide a simple illustration of a block target
of an arrow case, it can be improved through the new record feature. Added by JDK 16 and
described later in this chapter, a record offers a convenient and efficient way to link two or
more values in a single logical unit. In this case, the record would hold both the shipping
method and the extraCharge value, and this record can be supplied by the switch as a
unit. Thus, using a record, a switch could yield more than a single value. Reworking this
program to use a record is the subject of Exercise 14.

Ask the Expert

16-ch16.indd 568 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 16

 Chapter 16: Switch Expressions, Records, and Other Recently Added Features 569

in which a factory has three production lines and a count of the number of units produced by each
line is needed. The following program simulates this situation. It uses a switch to increase the unit
count for each production line as units are produced.

// Use case arrows with a switch statement. This example
// uses a switch to count the number of units produced
// by three simulated production lines.
class StatementSwitchWithArrows {

 public static void main(String[] args) {
 // Production line counters.
 int line1count = 0;
 int line2count = 0;
 int line3count = 0;

 // Production line number.
 int productionLine;

 for(int i=1; i < 10; i++) {
 // Simulate production line output.
 productionLine = (i % 3) + 1;

 // Use arrows with a switch statement. Notice that
 // no value is yielded. Instead, a line counter
 // is updated based on which line produced the unit and
 // a message indicating the unit is displayed.
 switch(productionLine) {
 case 1 -> { line1count++;
 System.out.println("Line 1 produced a unit.");
 }
 case 2 -> { line2count++;
 System.out.println("Line 2 produced a unit.");
 }
 case 3 -> { line3count++;
 System.out.println("Line 3 produced a unit.");
 }
 }
 }

 System.out.println("Total counts for Lines 1, 2, and 3: " + line1count +
 ", " + line2count + ", " + line3count);
 }
}

In this program, the switch is a statement, not an expression, because no value is produced.
Also, this switch does not have a default clause. If this switch were an expression, then
default would be needed because a switch expression is required to be exhaustive, but
a switch statement is not. Because no fall through occurs with an arrow case, no break
statements are needed (or allowed). Instead, the matching line counter is updated, a message
is displayed, and then the switch ends. As a point of interest, because each case increases
the value of a different variable, it would not be possible to transform this switch into an
expression. What value would it produce? All three cases set a different variable.

16-ch16.indd 569 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 16

 570 Java: A Beginner’s Guide

One last point: you cannot mix arrow cases with traditional, colon cases in the same
switch. You must choose one or the other. For example, this sequence is invalid:

// This won't work! You cannot mix a colon case with an arrow case.
switch(productionLine) {
 case 1 -> { line1count++;
 System.out.println("Line 1 produced a unit.");
 }
 case 2: line2count++; // Wrong! Can't mix case styles!
 System.out.println("Line 2 produced a unit.");
 break;
 case 3 -> { line3count++;
 System.out.println("Line 3 produced a unit.");
 }
}

Q: In the foregoing switch expression examples, constant values have been returned
via yield or as the target of an arrow case. Can the result of a more complex
expression be used?

A: Yes. Any valid expression can be used as the target of the -> or yield as long as it
is compatible with the type required by the switch. For example, assuming that
getErrorCode() returns an int value and that the switch is expected to produce
an int result, then the following is a valid case statement:

case -1 –> getErrorCode();

Here, the result of the call to getErrorCode() becomes the value of the switch
expression. Here is another example:

case 0 -> normalCompletion = true;

In this case, the result of the assignment, which is true, becomes the value produced. Of
course, the context in which the switch is used must be expecting a boolean result. In the
next example, the uppercase version of str is yielded:

case UPCASE -> str.toUpperCase();

Here, toUpperCase() returns a string, which means that the switch must be expected to
produce a String result. The key point is that the type of expression must be compatible
with the type required by the switch.

Ask the Expert

16-ch16.indd 570 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 16

 Chapter 16: Switch Expressions, Records, and Other Recently Added Features 571

Try This 16-1 Use a switch Expression
to Obtain a City’s Time Zone

Imagine that you are a programmer working for a large company that has
offices in several major cities located within the continental United States.

Furthermore, these offices are spread out across the country, resulting in offices in four different
time zones. (For the purposes of this project, it is not necessary to distinguish between daylight
saving time and standard time.) The company offices and time zones are shown here.

Time Zone Offices

Eastern New York, Boston, Miami

Central Chicago, St. Louis, Des Moines

Mountain Denver, Albuquerque

Pacific Seattle, San Francisco, Los Angeles, Portland

In this project, you will create a switch expression that yields the time zone of a city given
the city’s name and demonstrate the switch in a short program. You will use arrow cases and
case constant lists to streamline the switch.

 1. This program involves several pieces. To begin, declare a class called CityTZDemo. Inside
that class, create an enumeration called TZ that enumerates the four time zones in the
continental United States, plus a value that indicates that an office is outside the continental
United States. The enumeration is shown here:

enum TZ { Eastern, Central, Mountain, Pacific, Other }

 2. Declare the main() method and then add the following array, which contains the names of
cities in which the company has offices:

String[] cities = {
 "New York", "Boston", "Miami", "Chicago",
 "St. Louis", "Des Moines", "Denver",
 "Albuquerque", "Seattle", "San Francisco",
 "Los Angeles", "Portland"
 };

 You will use this array to demonstrate the switch expression.

 3. Add the switch expression that returns the time zone for a city. It is shown here:

TZ zone = switch(city) {
 case "New York", "Boston", "Miami" -> TZ.Eastern;
 case "Chicago", "St. Louis", "Des Moines" -> TZ.Central;
 case "Albuquerque", "Denver" -> TZ.Mountain;
 case "Seattle", "San Francisco", "Los Angeles",
 "Portland" -> TZ.Pacific;
 default -> TZ.Other;
};

CityTZDemo.java

(continued)

16-ch16.indd 571 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 16

 572 Java: A Beginner’s Guide

 Because a switch expression must handle all possible values of its controlling expression,
the default clause is required. Notice that this switch uses the arrow to produce a value.
Thus, no break statements are needed because fall through does not occur. Also, notice the
use of case constant lists. In combination, these features substantially shorten the switch
and make it more resilient.

 4. To cycle through the cities array and display the time zones, put the switch inside a for-
each style for loop, as shown here:

// Display the time zone for each city in the array.
for(String city: cities) {

 // This expression switch yields an enumeration value
 // that indicates the time zone of a city.
 TZ zone = switch(city) {
 case "New York", "Boston", "Miami" -> TZ.Eastern;
 case "Chicago", "St. Louis", "Des Moines" -> TZ.Central;
 case "Albuquerque", "Denver" -> TZ.Mountain;
 case "Seattle", "San Francisco", "Los Angeles",
 "Portland" -> TZ.Pacific;
 default -> TZ.Other;
 };

 if(zone == TZ.Other)
 System.out.println(city + " is outside the Continental US");
 else
 System.out.println(city + " is in the " + zone + " time zone");
}

 5. Here is the entire demonstration program, with all of the pieces assembled:

// Use a switch expression to obtain the time zone for selected
// cities in continental US.
class CityTZDemo {

 // Use an enumeration to describe the time zones.
 enum TZ { Eastern, Central, Mountain, Pacific, Other }

 public static void main(String[] args) {

 // An array of various cities in North America.
 String[] cities = {
 "New York", "Boston", "Miami", "Chicago",
 "St. Louis", "Des Moines", "Denver",
 "Albuquerque", "Seattle", "San Francisco",
 "Los Angeles", "Portland"
 };

 // Display the time zone for each city in the array.
 for(String city: cities) {

16-ch16.indd 572 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 16

 Chapter 16: Switch Expressions, Records, and Other Recently Added Features 573

 // This switch expression yields an enumeration value
 // that indicates the time zone of a city.
 TZ zone = switch(city) {
 case "New York", "Boston", "Miami" -> TZ.Eastern;
 case "Chicago", "St. Louis", "Des Moines" -> TZ.Central;
 case "Albuquerque", "Denver" -> TZ.Mountain;
 case "Seattle", "San Francisco", "Los Angeles",
 "Portland" -> TZ.Pacific;
 default -> TZ.Other;
 };

 if(zone == TZ.Other)
 System.out.println(city + " is outside the Continental US");
 else
 System.out.println(city + " is in the " + zone + " time zone");
 }
 }
}

 The output is shown here:

New York is in the Eastern time zone
Boston is in the Eastern time zone
Miami is in the Eastern time zone
Chicago is in the Central time zone
St. Louis is in the Central time zone
Des Moines is in the Central time zone
Denver is in the Mountain time zone
Albuquerque is in the Mountain time zone
Seattle is in the Pacific time zone
San Francisco is in the Pacific time zone
Los Angeles is in the Pacific time zone
Portland is in the Pacific time zone

 6. As an experiment, try adding a city called Honolulu to the cities array, but do not include
it in the switch. After making that change, when you run the program, Honolulu will be
handled by the default clause. This demonstrates that this switch expression is complete
and handles all possible values.

Records
Beginning with JDK 16, Java supports a special-purpose class called a record. A record is
designed to provide an efficient, easy-to-use way to hold a group of values. For example, you
might use a record to hold a set of coordinates; bank account numbers and balances; the length,
width, and height of a shipping container; and so on. Because it holds a group of values, a

16-ch16.indd 573 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 16

 574 Java: A Beginner’s Guide

record is commonly referred to as an aggregate type. However, the record is more than simply
a means of grouping data because records also have some of the capabilities of a class. In
addition, a record has unique features that simplify its declaration and streamline access to its
values. As a result, records make it much easier to work with groups of related data.

One of the central motivations for records is the reduction of the effort required to create a
class whose primary purpose is to organize two or more values into a single unit. Although it
has always been possible to use class for this purpose, doing so can entail writing a number of
lines of code for constructors, getter methods, and possibly (depending on use) overriding one
or more of the methods inherited from Object. As you will see, by creating a data aggregate
by use of record, these elements are handled automatically for you, greatly simplifying your
code. Another reason for the addition of records is to enable a program to clearly indicate that
the intended purpose of a class is to hold a grouping of data, rather than to act as a full-featured
class. Because of these advantages, records are a much welcomed addition to Java.

Record Basics
As stated, a record is a narrowly focused, specialized class. It is declared by use of the
record context-sensitive keyword. As such, record is a keyword only in the context of
a record declaration. Otherwise, it is treated as a user-defined identifier with no special
meaning. Thus, the addition of record does not impact or break existing code.

The general form of a basic record declaration is shown here:

record recordName(component-list) {
 // optional body statements
}

As the general form shows, a record declaration has significant differences from a class
declaration. First, notice that the record name is immediately followed by a comma-separated
list of parameter declarations called a component list. This list defines the data that the record
will hold. Second, notice that the body is optional. This is made possible because the compiler
will automatically provide the elements necessary to store the data; construct a record; create
getter methods to access the data; and override toString(), equals(), and hashCode() inherited
from Object. As a result, for many uses of a record, no body is required because the record
declaration itself fully defines the record.

Here is an example of a simple record declaration:

record Item(String name, int itemNum, double price) { }

The record name is Item and it has three components: the string name, the integer itemNum,
and the double price. It specifies no statements in its body, so its body is empty. As the names
imply, the record aggregates three pieces of information about some item: its name, its item
identification number, and the item’s price. Such a record could be used to describe an entry in
an online retailer’s catalog, for example.

Given the Item declaration just shown, a number of elements are automatically created.
First, private final fields for name, itemNum, and price are declared, with types String, int,
and double, respectively. Second, public read-only accessor methods (getter methods) that have
the same names and types as the record components name, itemNum, and price are provided.

16-ch16.indd 574 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 16

 Chapter 16: Switch Expressions, Records, and Other Recently Added Features 575

Therefore, these getter methods are called name(), itemNum(), and price(). In general, each
record component will have a corresponding private final field and a read-only public getter
method automatically created by the compiler.

Another element created automatically by the compiler will be the record’s canonical
constructor. This constructor has a parameter list that contains the same elements, in the same
order, as the component list in the record declaration. The values passed to the constructor are
automatically assigned to the corresponding fields in the record. In a record, the canonical
constructor takes the place of the default constructor used by a class.

A record is instantiated by use of new, just the way you create an instance of a class. For
example, this creates a new Item object, with the name "Hammer", the item identification
number 257, and a price of 10.99:

Item myItem = new Item("Hammer", 257, 10.99);

After this declaration executes, the private fields name, itemNum, and price for myItem
will contain the values "Hammer", 257, and 10.99, respectively. Therefore, you can use the
following statement to display the information associated with myItem:

System.out.println(myItem.name() + ", Item Number " + myItem.itemNum() + ", " +
 " Price: " + myItem.price());

The resulting output is shown here:

Hammer, Item Number 257, Price: 10.99

A key point about a record is that its data is held in private final fields and only getter
methods are provided. Thus, a record is immutable. In other words, once you construct a
record, its contents cannot be changed. However, if a record holds a reference to some object,
you can make a change to that object, but you cannot change to what object the reference
refers. Thus, in Java terms, records are said to be shallowly immutable.

The following program puts the preceding discussion into action. It creates a small array of
Item records. It then cycles through the array, displaying the contents of each record.

// A simple Record example.

// Declare an Item record. This automatically creates
// a record class with private, final fields called name, itemNum,
// and price, and with read-only accessors called name(), itemNum(),
// and price().
record Item(String name, int itemNum, double price) {}

class RecordDemo {
 public static void main(String[] args) {
 // Create an array of Item records.
 Item[] items = new Item[4];

 // Fill the array with items.
 // Notice how each record is constructed. The arguments
 // are automatically assigned to the name, itemNum, and
 // price fields in the record that is being created.
 items[0] = new Item("Hammer", 257, 10.99);

Declare a record.

Construct a record instance.

16-ch16.indd 575 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 16

 576 Java: A Beginner’s Guide

 items[1] = new Item("Wrench", 18, 19.29);
 items[2] = new Item("Drill", 903, 22.25);
 items[3] = new Item("Saw", 27, 34.59);

 // Use the record accessors to display the list of items
 for(Item i: items) {
 System.out.println(i.name() + ", Item Number " + i.itemNum() + ", " +
 " Price: " + i.price());
 }
 }
}

The output is shown here:

Hammer, Item Number 257, Price: 10.99
Wrench, Item Number 18, Price: 19.29
Drill, Item Number 903, Price: 22.25
Saw, Item Number 27, Price: 34.59

Before continuing, it is important to mention some key points related to records. First, a
record cannot inherit another class. However, a record implicitly inherits java.lang.Record,
which specifies abstract overrides of the equals(), hashCode(), and toString() methods
declared by Object. Implicit implementations of these methods are automatically created, based
on the record declaration. A record type cannot be extended. Thus, all record declarations
are considered final. Although a record cannot extend another class, it can implement one or
more interfaces. With the exception of equals, you cannot use the names of methods defined by
Object as names for a record’s components. Aside from the fields associated with a record’s
components, any other fields must be static. Finally, a record can be generic.

Create Record Constructors
Although you will often find that the automatically supplied canonical constructor is precisely
what you want, you can also declare one or more of your own constructors. You can also
define your own implementation of the canonical constructor. You might want to declare a
record constructor for a number of reasons. For example, the constructor could check that a
value is within a required range, ensure that an object is in the proper format, or confirm that
an argument is not null. For a record, there are two general types of constructors that you can
explicitly create: canonical and non-canonical, and there are some differences between the two.
The creation of each type is examined here, beginning with defining your own implementation
of the canonical constructor.

Declare a Canonical Constructor
Although the canonical constructor has a specific, predefined form, there are two ways that
you can code your own implementation. First, you can explicitly declare the full form of the
canonical constructor. Second, you can use what is called a compact canonical constructor.
Each approach is examined here, beginning with the full form.

To define your own implementation of a canonical constructor, simply do so as you would
with any other constructor, specifying the record’s name and its parameter list. It is important

Use accessor
methods to obtain
a record’s data.

16-ch16.indd 576 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 16

 Chapter 16: Switch Expressions, Records, and Other Recently Added Features 577

to emphasize that for the canonical constructor, the types and parameter names must be the
same as those specified by the record declaration. This is because the parameter names
are linked to the automatically created fields and accessor methods defined by the record
declaration. Thus, they must agree in both type and name. Furthermore, each component must
be fully initialized upon completion of the constructor. The following restrictions also apply:
the constructor must be at least as accessible as its record declaration. Thus, if the access
modifier for the record is public, the constructor must also be specified public. A constructor
cannot be generic, and it cannot include a throws clause. It also cannot invoke another
constructor defined for the record.

Here is an example of the Item record that explicitly defines the canonical constructor.
It uses the constructor to remove any leading and/or trailing spaces from the item’s name, thus
ensuring that the name is in a standardized form. This would make it easier for an item to be
found when searched for by name, for example.

// An explicitly declared canonical constructor for Item.
public Item(String name, int itemNum, double price) {
 // Remove leading and trailing spaces by use of the
 // trim() method defined by the String class.
 this.name = name.trim();

 // Set the other fields in Item.
 this.itemNum = itemNum;
 this.price = price;
}

In the constructor, any leading and/or trailing spaces in the string passed to name are removed.
This is done by a call to trim(), which is a method defined by the String class. It removes
leading and trailing space from the string on which it is called and returns the result. The
resulting string is assigned to the field this.name. Next, the values passed to the parameters
itemNum and price are assigned to their corresponding fields. Because the parameters name,
itemNum, and price are the same as their corresponding fields in Item, the field names must
be qualified by this.

Although there is certainly nothing wrong with creating a canonical constructor as just
shown, there is often an easier way: through the use of a compact canonical constructor.
A compact canonical constructor is declared by specifying the name of the record, but
without parameters. The compact constructor implicitly has parameters that are the same as
the record’s components, and its components are automatically assigned the values of the
arguments passed to the constructor. Within the compact constructor you can, however, alter
one or more of the arguments prior to their value being assigned to the components. You could
also throw an exception if an error condition is encountered, or perform some other procedure.

The following example converts the previous canonical constructor into its compact form:

// A compact canonical constructor
public Item {
 // Remove leading and trailing spaces by use of the
 // trim() method defined by the String class.
 name = name.trim();

A compact canonical
constructor does not
specify parameters.

16-ch16.indd 577 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 16

 578 Java: A Beginner’s Guide

 // The name, itemNum, and price fields are automatically
 // assigned the values of their corresponding parameters when
 // the constructor ends.
}

Here, the trimmed name string is assigned back to the name parameter. The name, itemNum,
and price fields are automatically set to the values of their corresponding parameters when
the constructor ends. There is no need to initialize these fields inside the compact constructor.
Moreover, it would not be legal to do so.

Here is a reworked version of the previous program that demonstrates the compact
canonical constructor:

// Use a compact canonical constructor for Item.
record Item(String name, int itemNum, double price) {

 public Item {
 // Remove leading and trailing spaces by use of the
 // trim() method defined by the String class.
 name = name.trim();

 // The name, itemNum, and price fields are automatically
 // assigned the values of their corresponding parameters when
 // the constructor ends.
 }
}

class RecordDemo2 {
 public static void main(String[] args) {
 // Create an array of Item records.
 Item[] items = new Item[4];

 // Notice how each record is constructed. Here, no leading
 // or trailing spaces are present in the name.
 items[0] = new Item("Hammer", 257, 10.99);

 // These entries have leading and/or trailing spaces in their
 // names. The canonical constructor will remove the spaces.
 items[1] = new Item(" Wrench", 18, 19.29);
 items[2] = new Item("Drill ", 903, 22.25);
 items[3] = new Item(" Saw ", 27, 34.59);

 // Use the record accessors to display the list of items
 for(Item i: items) {
 System.out.println(i.name() + ", Item Number " + i.itemNum() + ", " +
 " Price: " + i.price());
 }
 }
}

The output is shown here:

Hammer, Item Number 257, Price: 10.99
Wrench, Item Number 18, Price: 19.29
Drill, Item Number 903, Price: 22.25
Saw, Item Number 27, Price: 34.59

16-ch16.indd 578 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 16

 Chapter 16: Switch Expressions, Records, and Other Recently Added Features 579

As you can see, the leading and trailing spaces have been removed from the names. As an
experiment, try commenting-out the line in the constructor that trims the spaces. This will
result in the leading and trailing spaces remaining in the names.

Declare a Non-Canonical Constructor
Although the canonical constructor will often be sufficient, you can declare other constructors.
The key requirement is that any non-canonical constructor must first call another constructor
in the record via this(). (See Appendix E for a discussion of this technique.) The constructor
invoked will often be the canonical constructor. Doing this ultimately ensures that all fields are
assigned. Declaring a non-canonical constructor enables you to handle special-case situations.
For example, you might use such a constructor to create a record in which one or more of the
components is given a default, place-holder value. Another use is when an argument is not
in a form compatible with the canonical constructor. Whatever the reason, a non-canonical
constructor gives you added flexibility when constructing records.

The following program declares a non-canonical constructor for Item that handles a
situation in which the price of an item is given as a numeric string, rather than as a numeric
value. For example, "88.29" is used instead of the double value 88.29. The non-canonical
constructor shown here converts the numeric string into its double equivalent. To do so, it uses
the parseDouble() method supplied by the Double wrapper class, as described in Chapter 10.

// Use a non-canonical constructor.

// Declare a record that holds items.
record Item(String name, int itemNum, double price) {
 // Use a static field in a record.
 static double pricePending = -1;

 // This is a non-canonical constructor.
 // It creates a record in which the price of the item
 // is passed as a string instead of a double. Thus, it
 // must be converted to a double when passed to the
 // canonical constructor.
 public Item(String name, int itemNum, String price) {
 this(name, itemNum, Double.parseDouble(price));
 }
}

class RecordDemo3 {
 public static void main(String[] args) {
 // Create an array of Item records.
 Item[] items = new Item[4];

 // Create some item entries. These will use the implicit
 // canonical constructor.
 items[0] = new Item("Hammer", 257, 10.99);
 items[1] = new Item("Wrench", 18, 19.29);

 // These will use the non-canonical constructor because
 // the price is passed as a string, not a double.
 items[2] = new Item("Drill", 903, "22.25");
 items[3] = new Item("Saw", 27, "34.59");

16-ch16.indd 579 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 16

 580 Java: A Beginner’s Guide

 // Use the record accessors to display the list of items
 for(Item i: items)
 System.out.println(i.name() + ", Item Number " + i.itemNum() + ", " +
 " Price: " + i.price());
 }
}

Pay special attention to the way that the records for Drill and Saw are created by use of the
non-canonical constructor. In the call to this, the constructor passes the name and itemNum
arguments as-is, but converts the numeric string in price to its double form. Thus, the non-
canonical constructor converts the price into its required form. The output is the same as before.

Q: Can a record have both a user-defined canonical and non-canonical constructor?

A: Yes, you can declare both a canonical constructor and one or more non-canonical
constructors. For example, here is a version of Item in which the compact canonical
constructor throws an exception if the name component is an empty string. It also declares
the non-canonical constructor used by the preceding example.

// Declare an Item record that explicitly declares both
// a canonical and non-canonical constructor.
record Item(String name, int itemNum, double price) {

 // This compact canonical constructor throws an exception
 // if the name parameter is empty.
 public Item {
 if(name.length() == 0)
 throw new IllegalArgumentException("Item name is empty.");
 }

 // This is a non-canonical constructor.
 // It creates a record in which the price of the item
 // is passed as a string instead of a double. Thus, it
 // must be converted to a double when passed to the
 // canonical constructor.
 public Item(String name, int itemNum, String price) {
 this(name, itemNum, Double.parseDouble(price));
 }
}

In general, and within the constraints of a record, you can create constructors to meet
the needs of your program. As you work more with records, you will find that they are a
powerful, yet flexible feature.

Ask the Expert

16-ch16.indd 580 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 16

 Chapter 16: Switch Expressions, Records, and Other Recently Added Features 581

A Closer Look at Record Getter Methods
Although it is seldom necessary, it is possible to create your own implementation of a getter
method. When you declare the getter, the implicit version is no longer supplied. One possible
reason you might want to declare your own getter is to throw an exception if some condition
is not met. For example, if a record holds a filename and a URL, the getter for the filename
might throw a FileNotFoundException if the file is not present at the URL. There is a very
important requirement, however, that applies to creating your getters: they must adhere to the
principle that a record is immutable. Thus, a getter that returns an altered value is semantically
questionable and should be avoided even though such code would be syntactically correct.

If you do declare your own version of a built-in getter, there are a number of rules that
apply. A getter must have the same return type and name as the component that it obtains. It
must also be explicitly declared public. (Thus, default accessibility is not sufficient for a getter
declaration in a record.) No throws clause is allowed in a getter declaration. Finally, a getter
must be non-generic and non-static.

Often, rather than overriding a built-in getter, it is a better idea to simply create a method
that returns the value that you desire. For example, this version of Item defines a method
called discountPrice() that returns the price of an item discounted by a specified percentage.
With this approach the built-in price() getter is unchanged, thus preserving immutability. If a
discounted value is needed, discountPrice() is called instead.

record Item(String name, int itemNum, double price) {
 // ...

 double discountPrice(double percentage) {
 return price - (price * percentage / 100.0);
 }
}

Pattern Matching with instanceof
The traditional form of the instanceof operator was introduced in Chapter 7. As you learned
there, instanceof evaluates to true if and only if an object is of a specified type or can be cast
to that type. Beginning with JDK 16, a second form of instanceof has been added to Java
that supports the new pattern matching feature. In general terms, pattern matching defines a
mechanism that determines if a value fits a general form. As it relates to instanceof, pattern
matching is used to test the type of a value (which must be a reference type) against a specified
type. This kind of pattern is called a type pattern. If the pattern matches, a pattern variable will
receive a reference to the object matched by the pattern.

The pattern matching form of instanceof is shown here:

objref instanceof type pattern-var

If instanceof succeeds, pattern-var will be created and contain a reference to the object that
matches the pattern. If it fails, pattern-var is never created. This form of instanceof succeeds
if the object referred to by objref can be cast to type and the static type of objref is not a
subtype of type.

16-ch16.indd 581 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 16

 582 Java: A Beginner’s Guide

For example, the following fragment creates a Number reference called myOb that
refers to an Integer object. (Recall that Number is a superclass of all numeric primitive type
wrappers.) It then uses the instanceof operator to check if the object referred to by myOb is an
Integer, which it will be in this example. This results in an object called iObj of type Integer
being instantiated that contains the matched value.

Number myOb = Integer.valueOf(27);

// Use the pattern matching version of instanceof.
if(myOb instanceof Integer iObj) {
 // iObj is known and in scope here.
 System.out.println("iObj refers to an integer: " + iObj);
}
// iObj does not exist here

As the comments indicate, iObj is known only within the scope of the if clause. It is not
known outside of the if. It also would not be known within an else clause, should one have
been included. It is crucial to understand that the pattern variable iObj is created only if the
pattern matching succeeds.

The primary advantage of the pattern matching form of instanceof is that it reduces the
amount of code that was typically needed by its traditional form. For example, consider this
functionally equivalent version of the preceding example that uses the traditional approach:

// Use a traditional instanceof.
if(myOb instanceof Integer) {
 // Use an explicit cast to obtain iObj.
 Integer iObj = (Integer) myOb;
 System.out.println("iObj refers to an integer: " + iObj);
}

With the traditional form, a separate declaration statement and explicit cast are required to
create the iObj variable. The pattern matching form of instanceof streamlines the process.

iObj is created only if
instanceof succeeds.

Q: Can the pattern form of instanceof be used as part of an AND logical expression where
the pattern variable is also used within another part of the expression?

A: Yes, as long as you understand that the pattern variable is in scope only if the instanceof
expression succeeds. Consider the following example. The if succeeds only when myOb
refers to an Integer and its value is between 1 and 10, inclusive. Pay special attention to the
expression in the if:

if((myOb instanceof Integer iObj) && ((iObj > 0) && (iObj < 11))) {
 // myOb is both an Integer and between 1 and 10, inclusive.
 // ...
} (continued)

Ask the Expert

16-ch16.indd 582 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 16

 Chapter 16: Switch Expressions, Records, and Other Recently Added Features 583

Sealed Classes and Interfaces
Beginning with JDK 17, it is possible to declare a class that can be inherited by only specific
subclasses. Such a class is called sealed. Prior to sealed classes, inheritance was an “all or
nothing” situation. A class could either be extended by any subclass or marked as final, which
prevented its inheritance entirely. Sealed classes fall between these two extremes because they
enable you to specify precisely what subclasses a superclass will allow. In a similar fashion,
it is also possible to declare a sealed interface in which you specify only those classes that
implement the interface and/or those interfaces that extend the sealed interface. Together,
sealed classes and interfaces give you significantly greater control over inheritance.

It is important to state at the outset that sealed classes and interfaces constitute a rather
specialized feature. Arguably, their primary use is found when designing class libraries. It is,
therefore, a feature that not all Java programmers will use in their day-to-day coding. That
said, it is important to have a general understanding because sealed classes and interfaces
represent a significant addition to the Java language.

Sealed Classes
To declare a sealed class, precede the declaration with sealed. Then, after the class name,
include a permits clause that specifies the allowed subclasses. Both sealed and permits are
context-sensitive keywords and have special meaning only in a class or interface declaration.
Outside of a class or interface declaration, sealed and permits are unrestricted. Thus, no
preexisting code was broken by the addition of these two keywords.

The iObj pattern variable is created only if the left side of the first && (the part that
contains the instanceof operator) is true. However, notice that iObj is used by the right
side. This is possible because the short-circuit form of the AND logical operator is used,
and the right side is evaluated only if the left succeeds. Thus, if the right side operand is
evaluated, iObj will be in scope. However, if you tried to write the preceding if using the
& operator like this:

if((myOb instanceof Integer iObj) & ((iObj > 0) && (iObj < 11))) { // Wrong!

a compilation error would occur because iObj will not be in scope if the left side fails.
Recall that the & operator causes both sides of the expression to be evaluated, but iObj is
only in scope if the left side is true.

One other point: a logical expression cannot introduce the same pattern variable more
than once. For example, in a logical AND, it is an error if both operands create the same
pattern variable.

16-ch16.indd 583 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 16

 584 Java: A Beginner’s Guide

Here is a simple example of a sealed class:

public sealed class Fruit permits Apple, Pear, Grape {
 // ...
}

Here, the sealed class is called Fruit. It allows only three subclasses: Apple, Pear, and Grape.
If any other class attempts to inherit Fruit, a compile-time error will occur.

Here is an important point: a subclass of a sealed class must be declared as either final, sealed,
or non-sealed. Let’s look at each option in turn. Here, the Apple subclass is specified final:

public final class Apple extends Fruit {
 // ...
}

As you learned in Chapter 7, specifying a class final prevents it from having any subclasses. In
this case, it means that no subclasses of Apple are allowed.

To indicate that a subclass is itself sealed, it must be declared sealed and its permitted
subclasses must be specified. For example, this version of Apple permits two subclasses called
Fuji and Jonathan:

public sealed class Apple extends Fruit permits Fuji, Jonathan {
 // ...
}

Of course, the classes Fuji and Jonathan must then be declared either sealed, final, or
non-sealed.

By declaring a subclass non-sealed you can unseal a subclass of a sealed class. The context-
sensitive keyword non-sealed was added by JDK 17. It unlocks the subclass, enabling it to be
inherited by any other class. For example, Apple could be coded like this:

public non-sealed class Apple extends Fruit {
 // ...
}

Now, any class may inherit Apple. It is important to understand that even though Apple has
been declared non-sealed, the only direct subclasses of Fruit remain Apple, Pear, and Grape.
A primary reason for non-sealed is to enable a superclass to specify a limited set of direct
subclasses that provide a baseline of well-defined functionality, but allow those subclasses to
be freely extended.

If a class is specified in a permits clause for a sealed class, then that class must directly
extend the sealed class. Otherwise, a compile-time error will result. Thus, a sealed class and its
subclasses define a mutually dependent logical unit. Additionally, it is illegal to declare a class
that does not extend a sealed class as non-sealed.

16-ch16.indd 584 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 16

 Chapter 16: Switch Expressions, Records, and Other Recently Added Features 585

A key requirement of a sealed class is that every subclass that it permits must be
accessible. Furthermore, if a sealed class is contained in a named module, then each subclass
must also be in the same named module. In this case, a subclass can be in a different package
from the sealed class. If the sealed class is in the unnamed module, then the sealed class and all
permitted subclasses must be in the same package.

In the preceding discussion, notice that the superclass Fruit and its subclasses Apple,
Pear, and Grape are all public classes. Thus, each would have been stored in its own separate
file (formally, a compilation unit). However, if the subclasses have default package access
(rather than public access), it is possible for a sealed class and its subclasses to be stored in a
single file. In cases such as this, no permits clause is required for a sealed class. For example,
here all three subclassess are in the same file as Fruit:

// Because this is all in one file, Fruit does not require
// a permits clause.
public sealed class Fruit {
 // ...
}

final class Apple extends Fruit {
 // ...
}

final class Pear extends Fruit {
 // ...
}

final class Grape extends Fruit {
 // ...
}

In this case, the classes Apple, Pear, and Grape are implicitly permitted.

Q: Can an abstract class be sealed?

A: Yes. There is no restriction in this regard. For example, here Fruit is declared as an
abstract class:

public sealed abstract class Fruit permits Apple, Pear, Grape {
 // ...
}

Of course, at some point a concrete subclass of Fruit must occur. For example, assuming
that Apple is declared final, then Apple must be a concrete class.

Ask the Expert

16-ch16.indd 585 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 16

 586 Java: A Beginner’s Guide

Sealed Interfaces
A sealed interface is declared in the same way as a sealed class, by the use of sealed.
A sealed interface uses its permits clause to specify the classes allowed to implement it
and/or the interfaces allowed to extend it. Thus, a class that is not part of the permits clause
cannot implement a sealed interface, and an interface not included in the permits clause
cannot extend it.

Here is a simple example of a sealed interface that permits only the classes Apple, Pear,
and Grape to implement it:

public sealed interface FruitIF permits Apple, Pear, Grape {
 String type();
}

A class that implements a sealed interface must, itself, be specified as either final, sealed, or
non-sealed. For example, here Apple is marked non-sealed, Pear is specified as final, and
Grape is declared sealed:

public non-sealed class Apple implements FruitIF {
 public String type() { return "Apple is a tree fruit"; }
 // ...
}

public final class Pear implements FruitIF {
 public String type() { return "Pear is a tree fruit"; }
 // ...
}

public sealed class Grape implements FruitIF permits Concord {
 public String type() { return "Grape is a vine fruit"; }
 // ...
}

Here is a key point: any class specified in a sealed interface’s permits clause must implement
the interface. Therefore, a sealed interface and its implementing classes form a logical unit.

A sealed interface can also specify which other interfaces can extend the sealed interface.
For example, here the sealed PlantIF interface permits FruitIF:

public sealed interface PlantIF permits FruitIF {
 // ...
}

Because FruitIF is a permitted subinterface of PlantIF, it must extend PlantIF. For example,

public sealed interface FruitIF extends PlantIF permits Apple, Pear, Grape {
 // ...
}

Because FruitIF is permitted to extend PlantIF, the permitted subclasses of FruitIF also have
access to PlantIF.

16-ch16.indd 586 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 16

 Chapter 16: Switch Expressions, Records, and Other Recently Added Features 587

Three more points: First, an interface specified in a permits clause must extend the
permitting interface. Second, the permitted interface must be declared either non-sealed
or sealed. Third, it is possible for a class to inherit a sealed class and implement a sealed
interface, as does Grape in the foregoing example. There is no restriction in this regard.

In the preceding interface examples, each class and interface are declared public. Thus,
each one is in its own file. However, as is the case with sealed classes, it is also possible for a
sealed interface and its implementing classes (and extending interfaces) to be stored in a single
file as long as the classes and interfaces have default, package access. In cases such as this, no
permits clause is required for a sealed interface.

Future Directions
Beginning with JDK 12, Java releases may, and often do, include preview features. As
explained in Chapter 1, a preview feature is a new, fully developed enhancement to Java.
However, a preview feature is not yet formally part of Java. Instead, a feature is previewed
to allow programmers time to experiment with the feature and, if desired, communicate their
thoughts and opinions prior to the feature being made permanent. This process enables a new
feature to be improved or optimized based on actual developer use. As a result, a preview
feature is subject to change. It can even be withdrawn. This means that a preview feature
should not be used for code that you intend to publicly release That said, it is expected
that most preview features will ultimately become part of Java, possibly after a period of
refinement. Preview features chart the course of Java’s future direction.

JDK 17 includes one preview feature: Pattern Matching for switch (JEP 406). It adds
pattern matching capabilities to switch. As described earlier in this chapter, pattern matching
was first introduced by the enhancement of instanceof in JDK 16. Adding pattern matching to
switch continues the process. Because this is a preview feature that is subject to change, it is
not discussed further in this book.

Java releases may also include incubator modules, which preview a new API or tool that
is undergoing development. Like a preview feature, an incubator feature is subject to change.
Furthermore, an incubator feature can be removed in the future. Thus, there is no guarantee
that an incubating module will formally become part of Java in the future. Incubator features
give developers an opportunity to experiment with the API or tool and possibly supply
feedback. JDK 17 includes two incubator modules The first is Foreign Function and Memory
API (JEP 412). The second is Vector API (JEP 414).

It is important to emphasize that preview features and incubator modules can be introduced
in any Java release. Therefore, you will want to watch for them in each new version of Java.
They give you a chance to try a new enhancement before it potentially becomes a formal part
of Java. Perhaps more importantly, preview features and incubator modules give you advance
information on where Java’s development is headed.

16-ch16.indd 587 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 16

 588 Java: A Beginner’s Guide

 Chapter 16 Self Test
 1. Rewrite the following sequence so that it uses a constant list:

case 3: prime = true;
 break;
case 5: prime = true;
 break;
case 7: prime = true;
 break;

 2. When using an arrow case, does execution fall through to the next case?

 3. Given this switch, show the yield statement that returns the value 98.6:

double val = switch(x) {
 case "temp": // produce the value 98.6
// ...

 4. Assuming the switch in Question 3, show how to use an arrow case to yield the value 98.6.

 5. Can you mix an arrow case and a colon case in the same switch?

 6. Can the target of an arrow case be a block?

 7. A record is commonly referred to as a/an __________ type.

 8. Given this record declaration, what are its components? What elements are implicitly created?

record MyRec(Double highTemp, Double lowTemp, String location) { }

 9. Does a record have a default constructor? If not, what type of constructor does a record
automatically have?

 10. Given MyRec from Question 8, show the compact canonical constructor that removes
leading and trailing spaces from the location string.

 11. If you were to override a record getter method, in what way would you need to be
very careful?

 12. In Try This 13-1 you created a generic queue class. Can this class be used to store record
objects without any changes? If so, demonstrate its use to store the Item records used in the
record examples.

 13. Rework the Item record so that the price component is generic, with an upper bound
of Number.

 14. In the BlockArrowCaseDemo program, the switch expression yields the shipping method,
but the variable extraCharge is set separately inside each case. This program can be
improved by having the switch yield a record that contains both the shipping method and
the extraCharge value. In essence, the use of a record enables the switch to yield two
or more values when it returns its result. Rework the BlockArrowCaseDemo program to
demonstrate this approach.

✓

16-ch16.indd 588 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 16

 Chapter 16: Switch Expressions, Records, and Other Recently Added Features 589

 15. Show the general form of instanceof when using pattern matching.

 16. Given

Object myOb = "A test string";

 fill in the blank in the following if statement that uses instanceof to determine whether
myOb refers to a String.

if(myObj instanceof ________) System.out.println("Is a string: " + str);

 17. A sealed class explicitly specifies the subclasses that can inherit it. True or false?

 18. Given the following:

public sealed class MyClass permits Alpha, Beta, Gamma { // ...

 which of the follow declarations are legal?

 A. public final class Alpha extends MyClass { // ...

 B. public final class Beta { // ...

 C. public class Gamma extends MyClass { // ...

 D. public non-sealed SomeOtherClass extends MyClass { // ...

 19. Can an interface be sealed? If so, what effect does sealing an interface have?

 20. A preview feature is a new feature that is fully developed, but not yet formally part of Java.
True or False?

 21. A preview feature is subject to change or may even be withdrawn. True or False?

16-ch16.indd 589 12/11/21 9:22 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter
Blind Folio: xxiv

00-FM.indd 24 12/11/21 9:20 PM

This page intentionally left blank

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17
Blind Folio: 591

Chapter 17
Introducing Swing

17-ch17.indd 591 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 592 Java: A Beginner’s Guide

Key Skills & Concepts

● Know the origins and design philosophy of Swing

● Understand Swing components and containers

● Know layout manager basics

● Create, compile, and run a simple Swing application

● Learn event handling fundamentals

● Use JButton

● Work with JTextField

● Create a JCheckBox

● Work with JList

● Use anonymous inner classes or lambda expressions to handle events

So far, all of the programs in this book have been console-based. This means that they do not
make use of a graphical user interface (GUI). Although console-based programs are excellent

for teaching the basics of Java and for some types of programs, such as server-side code, most
real-world client applications will be GUI-based. At the time of this writing, the most widely
used Java GUI is Swing.

Swing defines a collection of classes and interfaces that support a rich set of visual
components, such as buttons, text fields, scroll panes, check boxes, trees, and tables, to
name a few. Collectively, these controls can be used to construct powerful, yet easy-to-use
graphical interfaces. Because of its widespread use, Swing is something with which all Java
programmers should be familiar. Therefore, this chapter provides an introduction to this
important GUI framework.

It is important to state at the outset that Swing is a very large topic that requires an entire
book of its own. This chapter can only scratch its surface. However, the material presented here
will give you a general understanding of Swing, including its history, basic concepts, and design
philosophy. It then introduces five commonly used Swing components: the label, push button,
text field, check box, and list. Although this chapter describes only a small part of Swing’s
features, after completing it, you will be able to begin writing simple GUI-based programs.
You will also have a foundation upon which to continue your study of Swing.

17-ch17.indd 592 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 Chapter 17: Introducing Swing 593

NOTE
For a comprehensive introduction to Swing, see Swing: A Beginner’s Guide
(McGraw Hill, 2007).

The Origins and Design Philosophy of Swing
Swing did not exist in the early days of Java. Rather, it was a response to deficiencies present
in Java’s original GUI subsystem: the Abstract Window Toolkit (AWT). The AWT defines
a basic set of components that support a usable, but limited, graphical interface. One reason
for the limited nature of the AWT is that it translates its various visual components into their
corresponding, platform-specific equivalents, or peers. This means that the look and feel of an
AWT component is defined by the platform, not by Java. Because the AWT components use
native code resources, they are referred to as heavyweight.

The use of native peers led to several problems. First, because of differences between
operating systems, a component might look, or even act, differently on different platforms.
This potential variability threatened the overarching philosophy of Java: write once, run
anywhere. Second, the look and feel of each component was fixed (because it is defined by the
platform) and could not be (easily) changed. Third, the use of heavyweight components caused
some frustrating restrictions. For example, a heavyweight component was always opaque.

Not long after Java’s original release, it became apparent that the limitations and
restrictions present in the AWT were sufficiently serious that a better approach was
needed. The solution was Swing. Introduced in 1997, Swing was included as part of the
Java Foundation Classes (JFC). Swing was initially available for use with Java 1.1 as a
separate library. However, beginning with Java 1.2, Swing (and the rest of JFC) was fully
integrated into Java.

Swing addresses the limitations associated with the AWT’s components through the use
of two key features: lightweight components and a pluggable look and feel. Although they
are largely transparent to the programmer, these two features are at the foundation of Swing’s
design philosophy and the reason for much of its power and flexibility. Let’s look at each.

With very few exceptions, Swing components are lightweight. This means that a component
is written entirely in Java. They do not rely on platform-specific peers. Lightweight components
have some important advantages, including efficiency and flexibility. Furthermore, because
lightweight components do not translate into platform-specific peers, the look and feel of each
component is determined by Swing, not by the underlying operating system. This means that
each component can work in a consistent manner across all platforms.

Because each Swing component is rendered by Java code rather than by platform-specific
peers, it is possible to separate the look and feel of a component from the logic of the component,
and this is what Swing does. Separating out the look and feel provides a significant advantage:
it becomes possible to change the way that a component is rendered without affecting any

17-ch17.indd 593 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 594 Java: A Beginner’s Guide

of its other aspects. In other words, it is possible to “plug in” a new look and feel for any given
component without creating any side effects in the code that uses that component.

Java provides look-and-feels, such as metal and Nimbus, that are available to all Swing
users. The metal look and feel is also called the Java look and feel. It is a platform-independent
look and feel that is available in all Java execution environments. It is also the default look and
feel. For this reason, the default Java look and feel (metal) is used by the examples in this chapter.

Swing’s pluggable look and feel is made possible because Swing uses a modified version
of the classic model-view-controller (MVC) architecture. In MVC terminology, the model
corresponds to the state information associated with the component. For example, in the case
of a check box, the model contains a field that indicates if the box is checked or unchecked.
The view determines how the component is displayed on the screen, including any aspects of
the view that are affected by the current state of the model. The controller determines how the
component reacts to the user. For example, when the user clicks a check box, the controller
reacts by changing the model to reflect the user’s choice (checked or unchecked). This then
results in the view being updated. By separating a component into a model, a view, and a
controller, the specific implementation of each can be changed without affecting the other two.
For instance, different view implementations can render the same component in different ways
without affecting the model or the controller.

Although the MVC architecture and the principles behind it are conceptually sound, the
high level of separation between the view and the controller was not beneficial for Swing
components. Instead, Swing uses a modified version of MVC that combines the view and the
controller into a single logical entity called the UI delegate. For this reason, Swing’s approach
is called either the model-delegate architecture or the separable model architecture. Therefore,
although Swing’s component architecture is based on MVC, it does not use a classical
implementation of it. Although you won’t work directly with models or UI delegates in this
chapter, they are, nevertheless, present behind the scene.

As you work through this chapter, you will see that even though Swing embodies very
sophisticated design concepts, it is easy to use. In fact, one could argue that Swing’s ease
of use is its most important advantage. Simply stated, Swing makes manageable the often
difficult task of developing your program’s user interface. This lets you concentrate on the
GUI itself, rather than on implementation details.

Q: You say that Swing defines a GUI that is superior to the AWT. Does this mean that
Swing replaces the AWT?

A: No, Swing does not replace the AWT. Rather, Swing builds upon the foundation provided
by aspects of the AWT. Thus, portions of the AWT are still a crucial part of Java.
Although knowledge of the AWT is not required by this chapter, you need a solid
understanding of its structure and features if you seek full Swing mastery.

Ask the Expert

17-ch17.indd 594 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 Chapter 17: Introducing Swing 595

Components and Containers
A Swing GUI consists of two key items: components and containers. However, this distinction
is mostly conceptual because all containers are also components. The difference between the
two is found in their intended purpose: As the term is commonly used, a component is an
independent visual control, such as a push button or text field. A container holds a group of
components. Thus, a container is a special type of component that is designed to hold other
components. Furthermore, in order for a component to be displayed, it must be held within
a container. Thus, all Swing GUIs will have at least one container. Because containers are
components, a container can also hold other containers. This enables Swing to define what is
called a containment hierarchy, at the top of which must be a top-level container.

Components
In general, Swing components are derived from the JComponent class. (The only exceptions
to this are the four top-level containers, described in the next section.) JComponent provides
the functionality that is common to all components. For example, JComponent supports the
pluggable look and feel. JComponent inherits the AWT classes Container and Component.
Thus, a Swing component is built on and compatible with an AWT component.

All of Swing’s components are represented by classes defined within the package
javax.swing. The following table shows the class names for Swing components (including
those used as containers):

JApplet (deprecated) JButton JCheckBox JCheckBoxMenuItem

JColorChooser JComboBox JComponent JDesktopPane

JDialog JEditorPane JFileChooser JFormattedTextField

JFrame JInternalFrame JLabel JLayer

JLayeredPane JList JMenu JMenuBar

JMenuItem JOptionPane JPanel JPasswordField

JPopupMenu JProgressBar JRadioButton JRadioButtonMenuItem

JRootPane JScrollBar JScrollPane JSeparator

JSlider JSpinner JSplitPane JTabbedPane

JTable JTextArea JTextField JTextPane

JTogglebutton JToolBar JToolTip JTree

JViewport JWindow

Notice that all component classes begin with the letter J. For example, the class for a label
is JLabel, the class for a push button is JButton, and the class for a check box is JCheckBox.

17-ch17.indd 595 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 596 Java: A Beginner’s Guide

This chapter introduces five commonly used components: JLabel, JButton, JTextField,
JCheckBox, and JList. Once you understand their basic operation, it will be easy for you to
learn to use the others.

Containers
Swing defines two types of containers. The first are top-level containers: JFrame, JApplet,
JWindow, and JDialog. (JApplet, which supports Swing-based applets, has been deprecated
since JDK 9, and is now deprecated for removal.) These containers do not inherit JComponent.
They do, however, inherit the AWT classes Component and Container. Unlike Swing’s other
components, which are lightweight, the top-level containers are heavyweight. This makes the
top-level containers a special case in the Swing component library.

As the name implies, a top-level container must be at the top of a containment hierarchy.
A top-level container is not contained within any other container. Furthermore, every
containment hierarchy must begin with a top-level container. The one most commonly used
for applications is JFrame.

The second type of container supported by Swing is the lightweight container. Lightweight
containers do inherit JComponent. Examples of lightweight containers are JPanel, JScrollPane,
and JRootPane. Lightweight containers are often used to collectively organize and manage
groups of related components because a lightweight container can be contained within another
container. Thus, you can use lightweight containers to create subgroups of related controls that
are contained within an outer container.

The Top-Level Container Panes
Each top-level container defines a set of panes. At the top of the hierarchy is an instance of
JRootPane. JRootPane is a lightweight container whose purpose is to manage the other
panes. It also helps manage the optional menu bar. The panes that compose the root pane are
called the glass pane, the content pane, and the layered pane.

The glass pane is the top-level pane. It sits above and completely covers all other panes.
The glass pane enables you to manage mouse events that affect the entire container (rather than
an individual control) or to paint over any other component, for example. In most cases, you
won’t need to use the glass pane directly. The layered pane allows components to be given a
depth value. This value determines which component overlays another. (Thus, the layered pane
lets you specify a Z-order for a component, although this is not something that you will usually
need to do.) The layered pane holds the content pane and the (optional) menu bar. Although the
glass pane and the layered panes are integral to the operation of a top-level container and serve
important purposes, much of what they provide occurs behind the scene.

The pane with which your application will interact the most is the content pane, because
this is the pane to which you will add visual components. In other words, when you add a
component, such as a button, to a top-level container, you will add it to the content pane.
Therefore, the content pane holds the components that the user interacts with.

17-ch17.indd 596 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 Chapter 17: Introducing Swing 597

Layout Managers
Before you begin writing a Swing program, there is one more thing that you need to be aware
of: the layout manager. The layout manager controls the position of components within a
container. Java offers several layout managers. Most are provided by the AWT (within
java.awt), but Swing adds a few of its own. All layout managers are instances of a class that
implements the LayoutManager interface. (Some will also implement the LayoutManager2
interface.) Here is a list of a few of the layout managers available to the Swing programmer:

FlowLayout A simple layout that positions components left-to-right, top-to-bottom.
(Positions components right-to-left for some cultural settings.)

BorderLayout Positions components within the center or the borders of the container.
This is the default layout for a content pane.

GridLayout Lays out components within a grid.

GridBagLayout Lays out different size components within a flexible grid.

BoxLayout Lays out components vertically or horizontally within a box.

SpringLayout Lays out components subject to a set of constraints.

Frankly, the topic of layout managers is quite large, and it is not possible to examine it in
detail in this book. Fortunately, this chapter uses only two layout managers—BorderLayout
and FlowLayout—and both are very easy to use.

BorderLayout is the default layout manager for the content pane. It implements a layout
style that defines five locations to which a component can be added. The first is the center. The
other four are the sides (i.e., borders), which are called north, south, east, and west. By default,
when you add a component to the content pane, you are adding the component to the center. To
add a component to one of the other regions, specify its name.

Although a border layout is useful in some situations, often another, more flexible layout
manager is needed. One of the simplest is FlowLayout. A flow layout lays out components one
row at a time, top to bottom. When one row is full, layout advances to the next row. Although
this scheme gives you little control over the placement of components, it is quite simple to use.
However, be aware that if you resize the frame, the position of the components will change.

A First Simple Swing Program
Swing programs differ from the console-based programs shown earlier in this book. Not only
do Swing programs use the Swing component set to handle user interaction, but they also have
special requirements that relate to threading. The best way to understand the structure of a
Swing program is to work through an example.

NOTE
The type of Swing programs shown in this chapter are desktop applications. In the past, Swing
was also used to create applets. However, applets have been deprecated since JDK 9 and are
not recommended for new code. For this reason, they are not discussed in this book.

17-ch17.indd 597 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 598 Java: A Beginner’s Guide

Although quite short, the following program shows one way to write a Swing application.
In the process it demonstrates several key features of Swing. It uses two Swing components:
JFrame and JLabel. JFrame is the top-level container that is commonly used for Swing
applications. JLabel is the Swing component that creates a label, which is a component that
displays information. The label is Swing’s simplest component because it is passive. That is,
a label does not respond to user input. It just displays output. The program uses a JFrame
container to hold an instance of a JLabel. The label displays a short text message.

// A simple Swing program.

import javax.swing.*;

public class SwingDemo {

 SwingDemo() {

 // Create a new JFrame container.
 JFrame jfrm = new JFrame("A Simple Swing Application");

 // Give the frame an initial size.
 jfrm.setSize(275, 100);

 // Terminate the program when the user closes the application.
 jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Create a text-based label.
 JLabel jlab = new JLabel(" GUI programming with Swing.");

 // Add the label to the content pane.
 jfrm.add(jlab);

 // Display the frame.
 jfrm.setVisible(true);
 }

 public static void main(String[] args) {
 // Create the frame on the event dispatching thread.
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new SwingDemo();
 }
 });
 }
}

Swing programs are compiled and run in the same way as other Java applications. Thus, to
compile this program, you can use this command line:

javac SwingDemo.java

Swing programs must import javax.swing.

Create a container.

Set the dimensions of the frame.

Terminate
on close.

Create a Swing label.
Add the label to the content pane.

Make the frame visible.

SwingDemo must be created on the event
dispatching thread.

17-ch17.indd 598 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 Chapter 17: Introducing Swing 599

To run the program, use this command line:

java SwingDemo

When the program is run, it will produce the window shown in Figure 17-1.

The First Swing Example Line by Line
Because the SwingDemo program illustrates several key Swing concepts, we will examine it
carefully, line by line. The program begins by importing the following package:

import javax.swing.*;

This javax.swing package contains the components and models defined by Swing. For example,
it defines classes that implement labels, buttons, edit controls, and menus. This package will be
included in all programs that use Swing. Beginning with JDK 9, javax.swing is in the java.desktop
module.

Next, the program declares the SwingDemo class and a constructor for that class. The
constructor is where most of the action of the program occurs. It begins by creating a JFrame,
using this line of code:

JFrame jfrm = new JFrame("A Simple Swing Application.");

This creates a container called jfrm that defines a rectangular window complete with a title bar;
close, minimize, maximize, and restore buttons; and a system menu. Thus, it creates a standard,
top-level window. The title of the window is passed to the constructor.

Next, the window is sized using this statement:

jfrm.setSize(275, 100);

The setSize() method sets the dimensions of the window, which are specified in pixels. Its
general form is shown here:

void setSize(int width, int height)

In this example, the width of the window is set to 275 and the height is set to 100.
By default, when a top-level window is closed (such as when the user clicks the close box),

the window is removed from the screen, but the application is not terminated. While this default
behavior is useful in some situations, it is not what is needed for most applications. Instead, you

Figure 17-1 The window produced by the SwingDemo program

17-ch17.indd 599 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 600 Java: A Beginner’s Guide

will usually want the entire application to terminate when its top-level window is closed. There
are a couple of ways to achieve this. The easiest way is to call setDefaultCloseOperation(), as
the program does:

jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

After this call executes, closing the window causes the entire application to terminate. The
general form of setDefaultCloseOperation() is shown here:

void setDefaultCloseOperation(int what)

The value passed in what determines what happens when the window is closed. There are
several other options in addition to JFrame.EXIT_ON_CLOSE. They are shown here:

JFrame.DISPOSE_ON_CLOSE

JFrame.HIDE_ON_CLOSE

JFrame.DO_NOTHING_ON_CLOSE

Their names reflect their actions. These constants are declared in WindowConstants, which is
an interface declared in javax.swing that is implemented by JFrame.

The next line of code creates a JLabel component:

JLabel jlab = new JLabel(" GUI programming with Swing.");

JLabel is the easiest-to-use Swing component because it does not accept user input. It simply
displays information, which can consist of text, an icon, or a combination of the two. The label
created by the program contains only text, which is passed to its constructor.

The next line of code adds the label to the content pane of the frame:

jfrm.add(jlab);

As explained earlier, all top-level containers have a content pane in which components are
stored. Thus, to add a component to a frame, you must add it to the frame’s content pane.
This is accomplished by calling add() on the JFrame reference (jfrm in this case). The
add() method has several versions. The general form of the one used by the program is
shown here:

Component add(Component comp)

By default, the content pane associated with a JFrame uses a border layout. This version
of add() adds the component (in this case, a label) to the center location. Other versions of
add() enable you to specify one of the border regions. When a component is added to the
center, its size is automatically adjusted to fit the size of the center.

The last statement in the SwingDemo constructor causes the window to become visible.

jfrm.setVisible(true);

17-ch17.indd 600 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 Chapter 17: Introducing Swing 601

The setVisible() method has this general form:

void setVisible(boolean flag)

If flag is true, the window will be displayed. Otherwise, it will be hidden. By default, a JFrame
is invisible, so setVisible(true) must be called to show it.

Inside main(), a SwingDemo object is created, which causes the window and the label to
be displayed. Notice that the SwingDemo constructor is invoked using these lines of code:

SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new SwingDemo();
 }
});

This sequence causes a SwingDemo object to be created on the event-dispatching thread
rather than on the main thread of the application. Here’s why. In general, Swing programs are
event-driven. For example, when a user interacts with a component, an event is generated.
An event is passed to the application by calling an event handler defined by the application.
However, the handler is executed on the event-dispatching thread provided by Swing and
not on the main thread of the application. Thus, although event handlers are defined by your
program, they are called on a thread that was not created by your program. To avoid problems
(such as two different threads trying to update the same component at the same time), all
Swing GUI components must be created and updated from the event-dispatching thread, not
the main thread of the application. However, main() is executed on the main thread. Thus, it
cannot directly instantiate a SwingDemo object. Instead, it must create a Runnable object that
executes on the event-dispatching thread, and have this object create the GUI.

To enable the GUI code to be created on the event-dispatching thread, you must use one of
two methods that are defined by the SwingUtilities class. These methods are invokeLater()
and invokeAndWait(). They are shown here:

static void invokeLater(Runnable obj)

static void invokeAndWait(Runnable obj)
 throws InterruptedException, InvocationTargetException

Here, obj is a Runnable object that will have its run() method called by the event-dispatching
thread. The difference between the two methods is that invokeLater() returns immediately,
but invokeAndWait() waits until obj.run() returns. You can use these methods to call a
method that constructs the GUI for your Swing application, or whenever you need to modify
the state of the GUI from code not executed by the event-dispatching thread. For the types
of programs shown in this chapter, you will normally want to use invokeLater(), as the
preceding program does.

One more point: The preceding program does not respond to any events, because JLabel
is a passive component. In other words, a JLabel does not generate any events. Therefore, the
preceding program does not include any event handlers. However, all other components generate
events to which your program must respond, as the subsequent examples in this chapter show.

17-ch17.indd 601 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 602 Java: A Beginner’s Guide

Swing Event Handling
As just explained, in general, Swing programs are event driven, with components interacting
with the program through events. For example, an event is generated when the user clicks
a button, moves the mouse, types a key, or selects an item from a list. Events can also be
generated in other ways. For example, an event is generated when a timer goes off. When an
event is sent to a program, the program responds to the event by use of an event handler. Thus,
event handling is an important part of nearly all Swing applications.

The event handling mechanism used by Swing is called the delegation event model.
Its concept is quite simple. An event source generates an event and sends it to one or more
listeners. With this approach, the listener simply waits until it receives an event. Once an event
arrives, the listener processes the event and then returns. The advantage of this design is that
the application logic that processes events is cleanly separated from the user interface logic
that generates the events. Therefore, a user interface element is able to “delegate” the handling
of an event to a separate piece of code. In the delegation event model, a listener must register
with a source in order to receive an event.

Let’s look at events, event sources, and listeners a bit more closely.

Q: You state that it is possible to add a component to the other regions of a border layout
by using an overloaded version of add(). Can you explain?

A: As explained, BorderLayout implements a layout style that defines five locations to which
a component can be added. The first is the center. The other four are the sides (i.e., borders),
which are called north, south, east, and west. By default, when you add a component to
the content pane, you are adding the component to the center. To specify one of the other
locations, use this form of add():

void add(Component comp, Object loc)

Here, comp is the component to add and loc specifies the location to which it is added. The
loc value is typically one of the following:

BorderLayout.CENTER BorderLayout.EAST BorderLayout.NORTH

BorderLayout.SOUTH BorderLayout.WEST

In general, BorderLayout is most useful when you are creating a JFrame that contains
a centered component (which might be a group of components held within one of Swing’s
lightweight containers) that has a header and/or footer component associated with it. In
other situations, one of Java’s other layout managers will be more appropriate.

Ask the Expert

17-ch17.indd 602 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 Chapter 17: Introducing Swing 603

Events
In Java, an event is an object that describes a state change in an event source. It can be generated
as a consequence of a person interacting with an element in a graphical user interface or
generated under program control. The superclass for all events is java.util.EventObject.
Many events are declared in java.awt.event. Events specifically related to Swing are found in
javax.swing.event.

Event Sources
An event source is an object that generates an event. When a source generates an event, it
sends that event to all registered listeners. Therefore, in order for a listener to receive an
event, it must register with the source of that event. In Swing, listeners register with a source
by calling a method on the event source object. Each type of event has its own registration
method. Typically, events use the following naming convention:

public void addTypeListener(TypeListener el)

Here, Type is the name of the event and el is a reference to the event listener. For example,
the method that registers a keyboard event listener is called addKeyListener(). The method
that registers a mouse motion listener is called addMouseMotionListener(). When an event
occurs, the event is passed to all registered listeners.

A source must also provide a method that allows a listener to unregister an interest in a
specific type of event. In Swing, the naming convention of such a method is this:

public void removeTypeListener(TypeListener el)

Again, Type is the name of the event and el is a reference to the event listener. For example, to
remove a keyboard listener, you would call removeKeyListener().

The methods that add or remove listeners are provided by the source that generates events.
For example, as you will soon see, the JButton class is a source of ActionEvents, which are
events that indicate that some action, such as a button press, has occurred. Thus, JButton
provides methods to add or remove an action listener.

Event Listeners
A listener is an object that is notified when an event occurs. It has two major requirements.
First, it must have registered with one or more sources to receive a specific type of event.
Second, it must implement a method to receive and process that event.

The methods that receive and process events applicable to Swing are defined in a set of
interfaces, such as those found in java.awt.event and javax.swing.event. For example, the
ActionListener interface defines a method that handles an ActionEvent. Any object may
receive and process this event if it provides an implementation of the ActionListener interface.

There is an important general principle that must be stated now. An event handler should
do its job quickly and then return. In most cases, it should not engage in a long operation
because doing so will slow down the entire application. If a time-consuming operation is
required, then a separate thread should be created for this purpose.

17-ch17.indd 603 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 604 Java: A Beginner’s Guide

Event Classes and Listener Interfaces
The classes that represent events are at the core of Swing’s event handling mechanism. At the
root of the event class hierarchy is EventObject, which is in java.util. It is the superclass for
all events in Java. The class AWTEvent, declared in the java.awt package, is a subclass of
EventObject. It is the superclass (either directly or indirectly) of all AWT-based events used
by the delegation event model. Although Swing uses the AWT events, it also adds several of
its own. As mentioned, these are in javax.swing.event. Thus, Swing supports a large number
of events. However, in this chapter only three are used. They are shown here, along with their
corresponding listener.

Event Class Description Corresponding Event Listener

ActionEvent Generated when an action occurs within
a control, such as when a button is clicked.

ActionListener

ItemEvent Generated when an item is selected,
such as when a check box is clicked.

ItemListener

ListSelectionEvent Generated when a list selection changes. ListSelectionListener

The examples that follow illustrate the general procedures that you will use to these handle
events. However, the same basic mechanism applies to Swing event handling in general. As
you will see, the process is both streamlined and easy to use.

Use JButton
One of the most commonly used Swing controls is the push button. A push button is an
instance of JButton. JButton inherits the abstract class AbstractButton, which defines the
functionality common to all buttons. Swing push buttons can contain text, an image, or both,
but this book uses only text-based buttons.

JButton supplies several constructors. The one used here is

JButton(String msg)

Here, msg specifies the string that will be displayed inside the button.
When a push button is pressed, it generates an ActionEvent. JButton provides the

following methods, which are used to add or remove an action listener:

void addActionListener(ActionListener al)

void removeActionListener(ActionListener al)

Here, al specifies an object that will receive event notifications. This object must be an
instance of a class that implements the ActionListener interface.

The ActionListener interface defines only one method: actionPerformed(). It is shown
here:

void actionPerformed(ActionEvent ae)

17-ch17.indd 604 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 Chapter 17: Introducing Swing 605

This method is called when a button is pressed. In other words, it is the event handler that is
called when a button press event has occurred. Your implementation of actionPerformed() must
quickly respond to that event and return. As explained earlier, as a general rule, event handlers
must not engage in long operations, because doing so will slow down the entire application.

Using the ActionEvent object passed to actionPerformed(), you can obtain several
useful pieces of information relating to the button-press event. The one used by this chapter is
the action command string associated with the button. By default, this is the string displayed
inside the button. The action command is obtained by calling getActionCommand() on the
event object. It is declared like this:

String getActionCommand()

The action command identifies the button. Thus, when using two or more buttons within the
same application, the action command gives you an easy way to determine which button was
pressed.

The following program demonstrates how to create a push button and respond to button-
press events. Figure 17-2 shows how the example appears on the screen.

// Demonstrate a push button and handle action events.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class ButtonDemo implements ActionListener {

 JLabel jlab;

 ButtonDemo() {

 // Create a new JFrame container.
 JFrame jfrm = new JFrame("A Button Example");

 // Specify FlowLayout for the layout manager.
 jfrm.setLayout(new FlowLayout());

 // Give the frame an initial size.
 jfrm.setSize(220, 90);

 // Terminate the program when the user closes the application.
 jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Make two buttons.
 JButton jbtnUp = new JButton("Up");
 JButton jbtnDown = new JButton("Down");

 // Add action listeners.
 jbtnUp.addActionListener(this);
 jbtnDown.addActionListener(this);

Create two push buttons.

Add action listeners for the buttons.

17-ch17.indd 605 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 606 Java: A Beginner’s Guide

 // Add the buttons to the content pane.
 jfrm.add(jbtnUp);
 jfrm.add(jbtnDown);

 // Create a label.
 jlab = new JLabel("Press a button.");

 // Add the label to the frame.
 jfrm.add(jlab);

 // Display the frame.
 jfrm.setVisible(true);
 }

 // Handle button events.
 public void actionPerformed(ActionEvent ae) {
 if(ae.getActionCommand().equals("Up"))
 jlab.setText("You pressed Up.");
 else
 jlab.setText("You pressed down. ");
 }

 public static void main(String[] args) {
 // Create the frame on the event dispatching thread.
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new ButtonDemo();
 }
 });
 }
}

Let’s take a close look at the new things in this program. First, notice that the program
now imports both the java.awt and java.awt.event packages. The java.awt package is
needed because it contains the FlowLayout class, which supports the flow layout manager.
The java.awt.event package is needed because it defines the ActionListener interface and the
ActionEvent class. Beginning with JDK 9, both packages are in the java.desktop module.

Next, the class ButtonDemo is declared. Notice that it implements ActionListener. This
means that ButtonDemo objects can be used to receive action events. Next, a JLabel reference

Add the buttons to the content pane.

Handle button events.

Use the action command to determine
which button was pressed.

Figure 17-2 Output from the ButtonDemo program

17-ch17.indd 606 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 Chapter 17: Introducing Swing 607

is declared. This reference will be used within the actionPerformed() method to display
which button has been pressed.

The ButtonDemo constructor begins by creating a JFrame called jfrm. It then sets the
layout manager for the content pane of jfrm to FlowLayout, as shown here:

jfrm.setLayout(new FlowLayout());

As explained earlier, by default, the content pane uses BorderLayout as its layout manager,
but for many applications, FlowLayout is more convenient. Recall that a flow layout lays out
components one row at a time, top to bottom. When one row is full, layout advances to the next
row. Although this scheme gives you little control over the placement of components, it is quite
simple to use. However, be aware that if you resize the frame, the position of the components
will change.

After setting the size and the default close operation, ButtonDemo() creates two buttons,
as shown here:

JButton jbtnUp = new JButton("Up");
JButton jbtnDown = new JButton("Down");

The first button will contain the text "Up", and the second will contain "Down".
Next, the instance of ButtonDemo referred to via this is added as an action listener for the

buttons by these two lines:

jbtnUp.addActionListener(this);
jbtnDown.addActionListener(this);

This approach means that the object that creates the buttons will also receive notifications
when a button is pressed.

Each time a button is pressed, it generates an action event and all registered listeners are
notified by calling the actionPerformed() method. The ActionEvent object representing the
button event is passed as a parameter. In the case of ButtonDemo, this event is passed to this
implementation of actionPerformed():

// Handle button events.
public void actionPerformed(ActionEvent ae) {
 if(ae.getActionCommand().equals("Up"))
 jlab.setText("You pressed Up.");
 else
 jlab.setText("You pressed down. ");
}

The event that occurred is passed via ae. Inside the method, the action command associated
with the button that generated the event is obtained by calling getActionCommand(). (Recall
that, by default, the action command is the same as the text displayed by the button.) Based on
the contents of that string, the text in the label is set to show which button was pressed.

One last point: Remember that actionPerformed() is called on the event-dispatching thread
as explained earlier. It must return quickly in order to avoid slowing down the application.

17-ch17.indd 607 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 608 Java: A Beginner’s Guide

Work with JTextField
Another commonly used control is JTextField. It enables the user to enter a line of text.
JTextField inherits the abstract class JTextComponent, which is the superclass of all text
components. JTextField defines several constructors. The one we will use is shown here:

JTextField(int cols)

Here, cols specifies the width of the text field in columns. It is important to understand that
you can enter a string that is longer than the number of columns. It’s just that the physical size
of the text field on the screen will be cols columns wide.

When you press enter when inputting into a text field, an ActionEvent is generated.
Therefore, JTextField provides the addActionListener() and removeActionListener()
methods. To handle action events, you must implement the actionPerformed() method defined
by the ActionListener interface. The process is similar to handling action events generated by
a button, as described earlier.

Like a JButton, a JTextField has an action command string associated with it. By default,
the action command is the current content of the text field. However, this default is seldom
used. Instead, you will usually set the action command to a fixed value of your own choosing
by calling the setActionCommand() method, shown here:

void setActionCommand(String cmd)

The string passed in cmd becomes the new action command. The text in the text field is
unaffected. Once you set the action command string, it remains the same no matter what is
entered into the text field. One reason that you might want to explicitly set the action command
is to provide a way to recognize the text field as the source of an action event. This is especially
important when another control in the same frame also generates action events and you want
to use the same event handler to process both events. Setting the action command gives you a
way to tell them apart. Also, if you don’t set the action command associated with a text field,
then by happenstance the contents of the text field might match the action command of another
component.

Q: You explained that the action command associated with a text field can be set by
calling setActionCommand(). Can I use this method to set the action command
associated with a push button?

A: Yes. As explained, by default the action command associated with a push button is the
name of the button. To set the action command to a different value, you can use the
setActionCommand() method. It works the same for JButton as it does for JTextField.

Ask the Expert

17-ch17.indd 608 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 Chapter 17: Introducing Swing 609

To obtain the string that is currently displayed in the text field, call getText() on the
JTextField instance. It is declared as shown here:

String getText()

You can set the text in a JTextField by calling setText(), shown next:

void setText(String text)

Here, text is the string that will be put into the text field.
The following program demonstrates JTextField. It contains one text field, one push

button, and two labels. One label prompts the user to enter text into the text field. When
the user presses ENTER while focus is within the text field, the contents of the text field are
obtained and displayed within a second label. The push button is called Reverse. When
pressed, it reverses the contents of the text field. Sample output is shown in Figure 17-3.

// Use a text field.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class TFDemo implements ActionListener {

 JTextField jtf;
 JButton jbtnRev;
 JLabel jlabPrompt, jlabContents;

 TFDemo() {

 // Create a new JFrame container.
 JFrame jfrm = new JFrame("Use a Text Field");

 // Specify FlowLayout for the layout manager.
 jfrm.setLayout(new FlowLayout());

 // Give the frame an initial size.
 jfrm.setSize(240, 120);

 // Terminate the program when the user closes the application.
 jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Create a text field.
 jtf = new JTextField(10);

 // Set the action commands for the text field.
 jtf.setActionCommand("myTF");

 // Create the Reverse button.
 JButton jbtnRev = new JButton("Reverse");

Create a text field that is 10 columns wide.

Set the action command for the text field.

17-ch17.indd 609 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 610 Java: A Beginner’s Guide

 // Add action listeners.
 jtf.addActionListener(this);
 jbtnRev.addActionListener(this);

 // Create the labels.
 jlabPrompt = new JLabel("Enter text: ");
 jlabContents = new JLabel("");

 // Add the components to the content pane.
 jfrm.add(jlabPrompt);
 jfrm.add(jtf);
 jfrm.add(jbtnRev);
 jfrm.add(jlabContents);

 // Display the frame.
 jfrm.setVisible(true);
 }

 // Handle action events.
 public void actionPerformed(ActionEvent ae) {

 if(ae.getActionCommand().equals("Reverse")) {
 // The Reverse button was pressed.
 String orgStr = jtf.getText();
 String resStr = "";

 // Reverse the string in the text field.
 for(int i=orgStr.length()-1; i >=0; i--)
 resStr += orgStr.charAt(i);

 // Store the reversed string in the text field.
 jtf.setText(resStr);
 } else
 // Enter was pressed while focus was in the
 // text field.
 jlabContents.setText("You pressed ENTER. Text is: " +
 jtf.getText());

 }

 public static void main(String[] args) {
 // Create the frame on the event dispatching thread.
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new TFDemo();
 }
 });
 }
}

Add action listeners for both
the text field and the button.

This method handles both
button and text field events.

Use the action command to
determine which component
generated the event.

17-ch17.indd 610 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 Chapter 17: Introducing Swing 611

Much of the program will be familiar, but a few parts warrant special attention. First,
notice that the action command associated with the text field is set to "myTF" by the
following line:

jtf.setActionCommand("myTF");

After this line executes, the action command string will always be "myTF" no matter what
text is currently held in the text field. Therefore, the action command generated by jtf will not
accidentally conflict with the action command associated with the Reverse push button. The
actionPerformed() method makes use of this fact to determine what event has occurred. If the
action command string is "Reverse", it can mean only one thing: that the Reverse push button
has been pressed. Otherwise, the action command was generated by the user pressing ENTER

while the text field had input focus.
Finally, notice this line from within the actionPerformed() method:

jlabContents.setText("You pressed ENTER. Text is: " +
 jtf.getText());

As explained, when the user presses ENTER while focus is inside the text field, an ActionEvent
is generated and sent to all registered action listeners, through the actionPerformed() method.
For TFDemo, this method simply obtains the text currently held in the text field by calling
getText() on jtf. It then displays the text through the label referred to by jlabContents.

Create a JCheckBox
After the push button, perhaps the next most widely used control is the check box. In Swing,
a check box is an object of type JCheckBox. JCheckBox inherits AbstractButton and
JToggleButton. Thus, a check box is, essentially, a special type of button.

JCheckBox defines several constructors. The one used here is

JCheckBox(String str)

It creates a check box that has the text specified by str as a label.
When a check box is selected or deselected (that is, checked or unchecked), an item event

is generated. Item events are represented by the ItemEvent class. Item events are handled by

Figure 17-3 Sample output from the TFDemo program

17-ch17.indd 611 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 612 Java: A Beginner’s Guide

classes that implement the ItemListener interface. This interface specifies only one method,
itemStateChanged(), which is shown here:

void itemStateChanged(ItemEvent ie)

The item event is received in ie.
To obtain a reference to the item that changed, call getItem() on the ItemEvent object.

This method is shown here:

Object getItem()

The reference returned must be cast to the component class being handled, which in this case
is JCheckBox.

You can obtain the text associated with a check box by calling getText(). You can set the
text after a check box is created by calling setText(). These methods work the same as they do
for JButton, described earlier.

The easiest way to determine the state of a check box is to call the isSelected() method. It
is shown here:

boolean isSelected()

It returns true if the check box is selected and false otherwise.
The following program demonstrates check boxes. It creates three check boxes called

Alpha, Beta, and Gamma. Each time the state of a box is changed, the current action is
displayed. Also, the list of all currently selected check boxes is displayed. Sample output is
shown in Figure 17-4.

// Demonstrate check boxes.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class CBDemo implements ItemListener {

 JLabel jlabSelected;
 JLabel jlabChanged;
 JCheckBox jcbAlpha;
 JCheckBox jcbBeta;
 JCheckBox jcbGamma;

 CBDemo() {
 // Create a new JFrame container.
 JFrame jfrm = new JFrame("Demonstrate Check Boxes");

 // Specify FlowLayout for the layout manager.
 jfrm.setLayout(new FlowLayout());

17-ch17.indd 612 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 Chapter 17: Introducing Swing 613

 // Give the frame an initial size.
 jfrm.setSize(280, 120);

 // Terminate the program when the user closes the application.
 jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Create empty labels.
 jlabSelected = new JLabel("");
 jlabChanged = new JLabel("");

 // Make check boxes.
 jcbAlpha = new JCheckBox("Alpha");
 jcbBeta = new JCheckBox("Beta");
 jcbGamma = new JCheckBox("Gamma");

 // Events generated by the check boxes
 // are handled in common by the itemStateChanged()
 // method implemented by CBDemo.
 jcbAlpha.addItemListener(this);
 jcbBeta.addItemListener(this);
 jcbGamma.addItemListener(this);

 // Add check boxes and labels to the content pane.
 jfrm.add(jcbAlpha);
 jfrm.add(jcbBeta);
 jfrm.add(jcbGamma);
 jfrm.add(jlabChanged);
 jfrm.add(jlabSelected);

 // Display the frame.
 jfrm.setVisible(true);
 }

 // This is the handler for the check boxes.
 public void itemStateChanged(ItemEvent ie) {
 String str = "";

 // Obtain a reference to the check box that
 // caused the event.
 JCheckBox cb = (JCheckBox) ie.getItem();

 // Report what check box changed.
 if(cb.isSelected())
 jlabChanged.setText(cb.getText() + " was just selected.");
 else
 jlabChanged.setText(cb.getText() + " was just cleared.");

Create the check boxes.

Handle check box item events.

Get a reference to the check
box that changed.

Determine what happened.

17-ch17.indd 613 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 614 Java: A Beginner’s Guide

 // Report all selected boxes.
 if(jcbAlpha.isSelected()) {
 str += "Alpha ";
 }
 if(jcbBeta.isSelected()) {
 str += "Beta ";
 }
 if(jcbGamma.isSelected()) {
 str += "Gamma";
 }

 jlabSelected.setText("Selected check boxes: " + str);
 }

 public static void main(String[] args) {
 // Create the frame on the event dispatching thread.
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new CBDemo();
 }
 });
 }
}

The main point of interest in this program is the item event handler, itemStateChanged().
It performs two functions. First, it reports whether the check box has been selected or cleared.
Second, it displays all selected check boxes. It begins by obtaining a reference to the check
box that generated the ItemEvent, as shown here:

JCheckBox cb = (JCheckBox) ie.getItem();

The cast to JCheckBox is necessary because getItem() returns a reference of type Object.
Next, itemStateChanged() calls isSelected() on cb to determine the current state of the check
box. If isSelected() returns true, it means that the user selected the check box. Otherwise, the
check box was cleared. It then sets the jlabChanged label to reflect what happened.

Finally, itemStateChanged() checks the selected state of each check box, building a string
that contains the names of those that are selected. It displays this string in the jlabSelected label.

Figure 17-4 Sample output from the CBDemo program

17-ch17.indd 614 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 Chapter 17: Introducing Swing 615

Work with JList
The last component that we will examine is JList. This is Swing’s basic list class. It supports
the selection of one or more items from a list. Although often the list consists of strings, it is
possible to create a list of just about any object that can be displayed. JList is so widely used
in Java that it is highly unlikely that you have not seen one before.

JList is a generic class that is declared as shown here:

class JList<E>

Here, E represents the type of the items in the list.
JList provides several constructors. The one used here is

JList(E[] items)

This creates a JList that contains the items in the array specified by items.
Although a JList will work properly by itself, most of the time you will wrap a JList

inside a JScrollPane, which is a container that automatically provides scrolling for its
contents. Here is the constructor that we will use:

JScrollPane(Component comp)

Here, comp specifies the component to be scrolled, which in this case will be a JList. When
you wrap a JList in a JScrollPane, long lists will automatically be scrollable. This simplifies
GUI design. It also makes it easy to change the number of entries in a list without having to
change the size of the JList component.

A JList generates a ListSelectionEvent when the user makes or changes a selection.
This event is also generated when the user deselects an item. It is handled by implementing
ListSelectionListener, which is packaged in javax.swing.event. This listener specifies only
one method, called valueChanged(), which is shown here:

void valueChanged(ListSelectionEvent le)

Here, le is a reference to the object that generated the event. Although ListSelectionEvent
does provide some methods of its own, often you will interrogate the JList object itself to
determine what has occurred. ListSelectionEvent is also packaged in javax.swing.event.

By default, a JList allows the user to select multiple ranges of items within the list, but
you can change this behavior by calling setSelectionMode(), which is defined by JList. It is
shown here:

void setSelectionMode(int mode)

17-ch17.indd 615 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 616 Java: A Beginner’s Guide

Here, mode specifies the selection mode. It must be one of these values defined by the
ListSelectionModel interface (which is packaged in javax.swing):

SINGLE_SELECTION

SINGLE_INTERVAL_SELECTION

MULTIPLE_INTERVAL_SELECTION

The default, multiple-interval selection lets the user select multiple ranges of items within a
list. With single-interval selection, the user can select one range of items. With single selection,
the user can select only a single item. Of course, a single item can be selected in the other two
modes, too. It’s just that they also allow a range to be selected.

You can obtain the index of the first item selected, which will also be the index of the only
selected item when using single-selection mode, by calling getSelectedIndex(), shown here:

int getSelectedIndex()

Indexing begins at zero. So, if the first item is selected, this method will return 0. If no item is
selected, –1 is returned.

You can obtain an array containing all selected items by calling getSelectedIndices(),
shown next:

int[] getSelectedIndices()

In the returned array, the indices are ordered from smallest to largest. If a zero-length array is
returned, it means that no items are selected.

The following program demonstrates a simple JList, which holds a list of names. Each
time a name is selected in the list, a ListSelectionEvent is generated, which is handled by
the valueChanged() method defined by ListSelectionListener. It responds by obtaining the
index of the selected item and displaying the corresponding name. Sample output is shown in
Figure 17-5.

// Demonstrate a simple JList.

import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;

public class ListDemo implements ListSelectionListener {

 JList<String> jlst;
 JLabel jlab;
 JScrollPane jscrlp;

17-ch17.indd 616 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 Chapter 17: Introducing Swing 617

 // Create an array of names.
 String[] names = { "Sherry", "Jon", "Rachel",
 "Sasha", "Josselyn", "Randy",
 "Tom", "Mary", "Ken",
 "Andrew", "Matt", "Todd" };

 ListDemo() {
 // Create a new JFrame container.
 JFrame jfrm = new JFrame("JList Demo");

 // Specify a flow Layout.
 jfrm.setLayout(new FlowLayout());

 // Give the frame an initial size.
 jfrm.setSize(200, 160);

 // Terminate the program when the user closes the application.
 jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Create a JList.
 jlst = new JList<String>(names);

 // Set the list selection mode to single-selection.
 jlst.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

 // Add list to a scroll pane.
 jscrlp = new JScrollPane(jlst);

 // Set the preferred size of the scroll pane.
 jscrlp.setPreferredSize(new Dimension(120, 90));

 // Make a label that displays the selection.
 jlab = new JLabel("Please choose a name");

 // Add list selection handler.
 jlst.addListSelectionListener(this);

 // Add the list and label to the content pane.
 jfrm.add(jscrlp);
 jfrm.add(jlab);

 // Display the frame.
 jfrm.setVisible(true);
 }

 // Handle list selection events.
 public void valueChanged(ListSelectionEvent le) {
 // Get the index of the changed item.
 int idx = jlst.getSelectedIndex();

This array will be
displayed in a JList.

Create the list.

Switch to single-selection mode.

Wrap the list in a scroll pane.

Listen for list selection events.

Handle list selection events.

Get the index of the selected/
deselected item.

17-ch17.indd 617 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 618 Java: A Beginner’s Guide

 // Display selection, if item was selected.
 if(idx != -1)
 jlab.setText("Current selection: " + names[idx]);
 else // Otherwise, reprompt.
 jlab.setText("Please choose a name");
 }

 public static void main(String[] args) {
 // Create the frame on the event dispatching thread.
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new ListDemo();
 }
 });
 }
}

Let’s look closely at this program. First, notice the names array near the top of the program.
It is initialized to a list of strings that contain various names. Inside ListDemo(), a JList called
jlst is constructed using the names array. As mentioned, when the array constructor is used (as
it is in this case), a JList instance is automatically created that contains the contents of the array.
Thus, the list will contain the names in names.

Next, the selection mode is set to single selection. This means that only one item in this list
can be selected at any one time. Then, jlst is wrapped inside a JScrollPane, and the preferred
size of the scroll pane is set to 120 by 90. This makes for a compact, but easy-to-use scroll
pane. In Swing, the setPreferredSize() method sets the ideal size of a component. Be aware
that some layout managers are free to ignore this request, but most often the preferred size
determines the size of the component.

A list selection event occurs whenever the user selects an item or changes the item
selected. Inside the valueChanged() event handler, the index of the item selected is obtained
by calling getSelectedIndex(). Because the list has been set to single-selection mode, this is
also the index of the only item selected. This index is then used to index the names array to
obtain the selected name. Notice that this index value is tested against –1. Recall that this is
the value returned if no item has been selected. This will be the case when the selection event
handler is called if the user has deselected an item. Remember: A selection event is generated
when the user selects or deselects an item.

Figure 17-5 Output from the ListDemo program

17-ch17.indd 618 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 Chapter 17: Introducing Swing 619

Try This 17-1 A Swing-Based File Comparison Utility
Although you know only a small amount about Swing, you can still put it to use
to create a practical application. In Try This 10-1, you created a console-based file

comparison utility. This project creates a Swing-based version of the program. As you will see,
giving this application a Swing-based user interface substantially improves its appearance and
makes it easier to use. Here is how the Swing version looks:

Because Swing streamlines the creation of GUI-based programs, you might be surprised
by how easy it is to create this program.

 1. Begin by creating a file called SwingFC.java and then enter the following comment and
import statements:

/*
 Try This 17-1

 A Swing-based file comparison utility.

*/

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.io.*;

 2. Next, begin the SwingFC class, as shown here:

public class SwingFC implements ActionListener {

 JTextField jtfFirst; // holds the first file name
 JTextField jtfSecond; // holds the second file name

 JButton jbtnComp; // button to compare the files

 JLabel jlabFirst, jlabSecond; // displays prompts
 JLabel jlabResult; // displays results and error messages

SwingFC.java

(continued)

17-ch17.indd 619 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 620 Java: A Beginner’s Guide

 The names of the files to compare are entered into the text fields defined by jtfFirst
and jtfSecond. To compare the files, the user presses the jbtnComp button. Prompting
messages are displayed in jlabFirst and jlabSecond. The results of the comparison, or any
error messages, are displayed in jlabResult.

 3. Code the SwingFC constructor like this:

SwingFC() {

 // Create a new JFrame container.
 JFrame jfrm = new JFrame("Compare Files");

 // Specify FlowLayout for the layout manager.
 jfrm.setLayout(new FlowLayout());

 // Give the frame an initial size.
 jfrm.setSize(200, 190);

 // Terminate the program when the user closes the application.
 jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Create the text fields for the file names.
 jtfFirst = new JTextField(14);
 jtfSecond = new JTextField(14);

 // Set the action commands for the text fields.
 jtfFirst.setActionCommand("fileA");
 jtfSecond.setActionCommand("fileB");

 // Create the Compare button.
 JButton jbtnComp = new JButton("Compare");

 // Add action listener for the Compare button.
 jbtnComp.addActionListener(this);

 // Create the labels.
 jlabFirst = new JLabel("First file: ");
 jlabSecond = new JLabel("Second file: ");
 jlabResult = new JLabel("");

 // Add the components to the content pane.
 jfrm.add(jlabFirst);
 jfrm.add(jtfFirst);
 jfrm.add(jlabSecond);
 jfrm.add(jtfSecond);
 jfrm.add(jbtnComp);
 jfrm.add(jlabResult);

17-ch17.indd 620 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 Chapter 17: Introducing Swing 621

 // Display the frame.
 jfrm.setVisible(true);
}

 Most of the code in this constructor should be familiar to you. However, notice one thing:
an action listener is added only to the push button jbtnCompare. Action listeners are not
added to the text fields. Here’s why: the contents of the text fields are needed only when the
Compare button is pushed. At no other time are their contents required. Thus, there is no
reason to respond to any text field events. As you begin to write more Swing programs, you
will find that this is often the case when using a text field.

 4. Begin creating the actionPerformed() event handler, as shown next. This method is called
when the Compare button is pressed.

// Compare the files when the Compare button is pressed.
public void actionPerformed(ActionEvent ae) {
 int i=0, j=0;

 // First, confirm that both file names have
 // been entered.
 if(jtfFirst.getText().equals("")) {
 jlabResult.setText("First file name missing.");
 return;
 }
 if(jtfSecond.getText().equals("")) {
 jlabResult.setText("Second file name missing.");
 return;
 }

 The method begins by confirming that the user has entered a file name into each of the text
fields. If this is not the case, the missing file name is reported and the handler returns.

 5. Now, finish actionPerformed() by adding the code that actually opens the files and then
compares them.

 // Compare files. Use try-with-resources to manage the files.
 try (FileInputStream f1 = new FileInputStream(jtfFirst.getText());
 FileInputStream f2 = new FileInputStream(jtfSecond.getText()))

 // Check the contents of each file.
 do {
 i = f1.read();
 j = f2.read();
 if(i != j) break;
 } while(i != -1 && j != -1);

 if(i != j)
 jlabResult.setText("Files are not the same.");

(continued)

17-ch17.indd 621 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 622 Java: A Beginner’s Guide

 else
 jlabResult.setText("Files compare equal.");
 } catch(IOException exc) {
 jlabResult.setText("File Error");
 }
}

 6. Finish SwingFC by adding the following main() method.

 public static void main(String[] args) {
 // Create the frame on the event dispatching thread.
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new SwingFC();
 }
 });
 }
}

 7. The entire Swing-based file comparison program is shown here:

/*
 Try This 17-1

 A Swing-based file comparison utility.

*/

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.io.*;

public class SwingFC implements ActionListener {

 JTextField jtfFirst; // holds the first file name
 JTextField jtfSecond; // holds the second file name

 JButton jbtnComp; // button to compare the files

 JLabel jlabFirst, jlabSecond; // displays prompts
 JLabel jlabResult; // displays results and error messages

 SwingFC() {

 // Create a new JFrame container.
 JFrame jfrm = new JFrame("Compare Files");

 // Specify FlowLayout for the layout manager.
 jfrm.setLayout(new FlowLayout());

 // Give the frame an initial size.
 jfrm.setSize(200, 190);

17-ch17.indd 622 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 Chapter 17: Introducing Swing 623

 // Terminate the program when the user closes the application.
 jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Create the text fields for the file names.
 jtfFirst = new JTextField(14);
 jtfSecond = new JTextField(14);

 // Set the action commands for the text fields.
 jtfFirst.setActionCommand("fileA");
 jtfSecond.setActionCommand("fileB");

 // Create the Compare button.
 JButton jbtnComp = new JButton("Compare");

 // Add action listener for the Compare button.
 jbtnComp.addActionListener(this);

 // Create the labels.
 jlabFirst = new JLabel("First file: ");
 jlabSecond = new JLabel("Second file: ");
 jlabResult = new JLabel("");

 // Add the components to the content pane.
 jfrm.add(jlabFirst);
 jfrm.add(jtfFirst);
 jfrm.add(jlabSecond);
 jfrm.add(jtfSecond);
 jfrm.add(jbtnComp);
 jfrm.add(jlabResult);

 // Display the frame.
 jfrm.setVisible(true);
 }

 // Compare the files when the Compare button is pressed.
 public void actionPerformed(ActionEvent ae) {
 int i=0, j=0;

 // First, confirm that both file names have
 // been entered.
 if(jtfFirst.getText().equals("")) {
 jlabResult.setText("First file name missing.");
 return;
 }
 if(jtfSecond.getText().equals("")) {
 jlabResult.setText("Second file name missing.");
 return;
 }

(continued)

17-ch17.indd 623 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 624 Java: A Beginner’s Guide

 // Compare files. Use try-with-resources to manage the files.
 try (FileInputStream f1 = new FileInputStream(jtfFirst.getText());
 FileInputStream f2 = new FileInputStream(jtfSecond.getText()))
 {
 // Check the contents of each file.
 do {
 i = f1.read();
 j = f2.read();
 if(i != j) break;
 } while(i != -1 && j != -1);

 if(i != j)
 jlabResult.setText("Files are not the same.");
 else
 jlabResult.setText("Files compare equal.");
 } catch(IOException exc) {
 jlabResult.setText("File Error");
 }
 }

 public static void main(String[] args) {
 // Create the frame on the event dispatching thread.
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new SwingFC();
 }
 });
 }
}

Use Anonymous Inner Classes
or Lambda Expressions to Handle Events

Up to this point, the programs in this chapter have used a simple, straightforward approach
to handling events in which the main class of the application has implemented the listener
interface itself and all events are sent to an instance of that class. While this is perfectly
acceptable, it is not the only way to handle events. For example, you could use separate listener
classes. Thus, different classes could handle different events and these classes would be
separate from the main class of the application. However, two other approaches offer powerful
alternatives. First, you can implement listeners through the use of anonymous inner classes.
Second, in some cases, you can use a lambda expression to handle an event. Let’s look at each
approach.

Anonymous inner classes are inner classes that don’t have a name. Instead, an instance
of the class is simply generated “on the fly” as needed. Anonymous inner classes make

17-ch17.indd 624 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 Chapter 17: Introducing Swing 625

implementing some types of event handlers much easier. For example, given a JButton called
jbtn, you could implement an action listener for it like this:

jbtn.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 // Handle action event here.
 }
});

Here, an anonymous inner class is created that implements the ActionListener interface.
Pay special attention to the syntax. The body of the inner class begins after the { that follows
new ActionListener(). Also notice that the call to addActionListener() ends with a) and a ;
just like normal. The same basic syntax and approach is used to create an anonymous inner class
for any event handler. Of course, for different events, you specify different event listeners and
implement different methods.

One advantage to using an anonymous inner class is that the component that invokes the
class’ methods is already known. For instance, in the preceding example, there is no need to
call getActionCommand() to determine what component generated the event, because this
implementation of actionPerformed() will only be called by events generated by jbtn.

In the case of an event whose listener defines a functional interface, you can handle the
event by use of a lambda expression. For example, action events can be handled with a lambda
expression because ActionListener defines only one abstract method, actionPerformed().
Using a lambda expression to implement ActionListener provides a compact alternative to
explicitly declaring an anonymous inner class. For example, again assuming a JButton called
jbtn, you could implement the action listener like this:

jbtn.addActionListener((ae) -> {
 // Handle action event here.
});

As was the case with the anonymous inner class approach, the object that generates the event is
known. In this case, the lambda expression applies only to the jbtn button.

Of course, in cases in which an event can be handled by use of a single expression, it is
not necessary to use a block lambda. For example, here is an action event handler for the Up
button in the ButtonDemo program shown earlier. It requires only an expression lambda.

jbtnUp.addActionListener((ae) -> jlab.setText("You pressed Up."));

Notice how much shorter this code is compared with the original approach. It is also shorter
than it would be if you explicitly used an anonymous inner class.

In general, you can use a lambda expression to handle an event when its listener defines
a functional interface. For example, ItemListener is also a functional interface. Of course,
whether you use the traditional approach, an anonymous inner class, or a lambda expression
will be determined by the precise nature of your application. To gain experience with each,
try converting the event handlers in the foregoing examples to lambda expressions or anonymous
inner classes.

17-ch17.indd 625 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Chapter 17

 626 Java: A Beginner’s Guide

 Chapter 17 Self Test
 1. In general, AWT components are heavyweight and Swing components are ____________.

 2. Can the look and feel of a Swing component be changed? If so, what feature enables this?

 3. What is the most commonly used top-level container for an application?

 4. Top-level containers have several panes. To what pane are components added?

 5. Show how to construct a label that contains the message "Select an entry from the list".

 6. All interaction with GUI components must take place on what thread?

 7. What is the default action command associated with a JButton? How can the action
command be changed?

 8. What event is generated when a push button is pressed?

 9. Show how to create a text field that has 32 columns.

 10. Can a JTextField have its action command set? If so, how?

 11. What Swing component creates a check box? What event is generated when a check box
is selected or deselected?

 12. JList displays a list of items from which the user can select. True or False?

 13. What event is generated when the user selects or deselects an item in a JList?

 14. What method sets the selection mode of a JList? What method obtains the index of the
first selected item?

 15. Add a check box to the file comparer developed in Try This 17-1 that has the following
text: Show position of mismatch. When this box is checked, have the program display the
location of the first point in the files at which a mismatch occurs.

 16. Change the ListDemo program so that it allows multiple items in the list to be selected.

 17. Bonus challenge: Convert the Help class developed in Try This 4-1 into a Swing-based GUI
program. Display the keywords (for, while, switch, and so on) in a JList. When the user
selects one, display the keyword’s syntax. To display multiple lines of text within a label,
you can use HTML. When doing so, you must begin the text with the sequence <html>.
When this is done, the text is automatically formatted as described by the markup. In
addition to other benefits, using HTML enables you to create labels that span two or more
lines. For example, this creates a label that displays two lines of text, with the string "Top"
over the string "Bottom".

JLabel jlabhtml = new JLabel("<html>Top
Bottom</html>");

 No answer is shown for this exercise. You have reached the point where you are ready to
apply your Java skills on your own!

✓

 Try This 15-1

17-ch17.indd 626 12/11/21 9:34 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A
Blind Folio: 627

Appendix A
Answers to Self Tests

18-AppA.indd 627 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 628 Java: A Beginner’s Guide

Chapter 1: Java Fundamentals
 1. What is bytecode and why is it important to Java’s use for Internet programming?

Bytecode is a highly optimized set of instructions that is executed by the Java Virtual Machine.
Bytecode helps Java achieve both portability and security.

 2. What are the three main principles of object-oriented programming?

Encapsulation, polymorphism, and inheritance.

 3. Where do Java programs begin execution?

Java programs begin execution at main().

 4. What is a variable?

A variable is a named memory location. The contents of a variable can be changed during the execution
of a program.

 5. Which of the following variable names is invalid?

The invalid variable is D. Variable names cannot begin with a digit.

 6. How do you create a single-line comment? How do you create a multiline comment?

A single-line comment begins with // and ends at the end of the line. A multiline comment begins with
/* and ends with */.

 7. Show the general form of the if statement. Show the general form of the for loop.

The general form of the if:

 if(condition) statement;

The general form of the for:

 for(initialization; condition; iteration) statement;

 8. How do you create a block of code?

A block of code is started with a { and ended with a }.

 9. The moon’s gravity is about 17 percent that of the earth’s. Write a program that computes
your effective weight on the moon.

/*
 Compute your weight on the moon.

 Call this file Moon.java.
*/
class Moon {
 public static void main(String[] args) {
 double earthweight; // weight on earth
 double moonweight; // weight on moon

18-AppA.indd 628 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 Appendix A: Answers to Self Tests 629

 earthweight = 165;

 moonweight = earthweight * 0.17;

 System.out.println(earthweight +
 " earth-pounds is equivalent to " +
 moonweight + " moon-pounds.");

 }
}

 10. Adapt Try This 1-2 so that it prints a conversion table of inches to meters. Display 12 feet
of conversions, inch by inch. Output a blank line every 12 inches. (One meter equals
approximately 39.37 inches.)

/*
 This program displays a conversion
 table of inches to meters.

 Call this program InchToMeterTable.java.
*/
class InchToMeterTable {
 public static void main(String[] args) {
 double inches, meters;
 int counter;

 counter = 0;
 for(inches = 1; inches <= 144; inches++) {
 meters = inches / 39.37; // convert to meters
 System.out.println(inches + " inches is " +
 meters + " meters.");

 counter++;
 // every 12th line, print a blank line
 if(counter == 12) {
 System.out.println();
 counter = 0; // reset the line counter
 }
 }
 }
}

 11. If you make a typing mistake when entering your program, what sort of error will result?

A syntax error.

 12. Does it matter where on a line you put a statement?

No, Java is a free-form language.

18-AppA.indd 629 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 630 Java: A Beginner’s Guide

Chapter 2: Introducing Data Types and Operators
 1. Why does Java strictly specify the range and behavior of its primitive types?

Java strictly specifies the range and behavior of its primitive types to ensure portability across platforms.

 2. What is Java’s character type, and how does it differ from the character type used by some
other programming languages?

Java’s character type is char. Java characters are Unicode rather than ASCII, which is used by some
other computer languages.

 3. A boolean value can have any value you like because any non-zero value is true. True or False?

False. A boolean value must be either true or false.

 4. Given this output,

One
Two
Three

use a single string to show the println() statement that produced it.

System.out.println("One\nTwo\nThree");

 5. What is wrong with this fragment?

for(i = 0; i < 10; i++) {
 int sum;

 sum = sum + i;
}
System.out.println("Sum is: " + sum);

There are two fundamental flaws in the fragment. First, sum is created each time the block defined by the
for loop is entered and destroyed on exit. Thus, it will not hold its value between iterations. Attempting to
use sum to hold a running sum of the iterations is pointless. Second, sum will not be known outside of the
block in which it is declared. Thus, the reference to it in the println() statement is invalid.

 6. Explain the difference between the prefix and postfix forms of the increment operator.

When the increment operator precedes its operand, Java will perform the increment prior to obtaining
the operand’s value for use by the rest of the expression. If the operator follows its operand, then Java
will obtain the operand’s value before incrementing.

 7. Show how a short-circuit AND can be used to prevent a divide-by-zero error.

if((b != 0) && (val / b)) ...

 8. In an expression, what type are byte and short promoted to?

In an expression, byte and short are promoted to int.

18-AppA.indd 630 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 Appendix A: Answers to Self Tests 631

 9. In general, when is a cast needed?

A cast is needed when converting between incompatible types or when a narrowing conversion is
occurring.

 10. Write a program that finds all of the prime numbers between 2 and 100.

// Find prime numbers between 2 and 100.
class Prime {
 public static void main(String[] args) {
 int i, j;
 boolean isprime;

 for(i=2; i < 100; i++) {
 isprime = true;

 // see if the number is evenly divisible
 for(j=2; j <= i/j; j++)
 // if it is, then it's not prime
 if((i%j) == 0) isprime = false;

 if(isprime)
 System.out.println(i + " is prime.");
 }
 }
}

 11. Does the use of redundant parentheses affect program performance?

No.

 12. Does a block define a scope?

Yes.

Chapter 3: Program Control Statements
 1. Write a program that reads characters from the keyboard until a period is received. Have the

program count the number of spaces. Report the total at the end of the program.

// Count spaces.
class Spaces {
 public static void main(String[] args)
 throws java.io.IOException {

 char ch;
 int spaces = 0;

 System.out.println("Enter a period to stop.");

18-AppA.indd 631 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 632 Java: A Beginner’s Guide

 do {
 ch = (char) System.in.read();
 if(ch == ' ') spaces++;
 } while(ch != '.');

 System.out.println("Spaces: " + spaces);
 }
}

 2. Show the general form of the if-else-if ladder.

if(condition)
 statement;
else if(condition)
 statement;
else if(condition)
 statement;
.
.
.
else
 statement;

 3. Given

if(x < 10)
 if(y > 100) {
 if(!done) x = z;
 else y = z;
 }
else System.out.println("error"); // what if?

to what if does the last else associate?

The last else associates with if(y > 100).

 4. Show the for statement for a loop that counts from 1000 to 0 by –2.

for(int i = 1000; i >= 0; i -= 2) // ...

 5. Is the following fragment valid?

for(int i = 0; i < num; i++)
 sum += i;

count = i;

No; i is not known outside of the for loop in which it is declared.

 6. Explain what break does. Be sure to explain both of its forms.

A break without a label causes termination of its immediately enclosing loop or switch statement.
A break with a label causes control to transfer to the end of the labeled block.

18-AppA.indd 632 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 Appendix A: Answers to Self Tests 633

 7. In the following fragment, after the break statement executes, what is displayed?

for(i = 0; i < 10; i++) {
 while(running) {
 if(x<y) break;
 // ...
 }
 System.out.println("after while");
}
System.out.println("After for");

After break executes, “after while” is displayed.

 8. What does the following fragment print?

for(int i = 0; i<10; i++) {
 System.out.print(i + " ");
 if((i%2) == 0) continue;
 System.out.println();
}

Here is the answer:

0 1
2 3
4 5
6 7
8 9

 9. The iteration expression in a for loop need not always alter the loop control variable by a
fixed amount. Instead, the loop control variable can change in any arbitrary way. Using this
concept, write a program that uses a for loop to generate and display the progression 1, 2, 4,
8, 16, 32, and so on.

/* Use a for loop to generate the progression

 1 2 4 8 16, ...
*/
class Progress {
 public static void main(String[] args) {

 for(int i = 1; i < 100; i += i)
 System.out.print(i + " ");

 }
}

 10. The ASCII lowercase letters are separated from the uppercase letters by 32. Thus, to convert
a lowercase letter to uppercase, subtract 32 from it. Use this information to write a program
that reads characters from the keyboard. Have it convert all lowercase letters to uppercase,

18-AppA.indd 633 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 634 Java: A Beginner’s Guide

and all uppercase letters to lowercase, displaying the result. Make no changes to any other
character. Have the program stop when the user enters a period. At the end, have the program
display the number of case changes that have taken place.

// Change case.
class CaseChg {
 public static void main(String[] args)
 throws java.io.IOException {
 char ch;
 int changes = 0;

 System.out.println("Enter period to stop.");

 do {
 ch = (char) System.in.read();
 if(ch >= 'a' & ch <= 'z') {
 ch -= 32;
 changes++;
 System.out.println(ch);
 }
 else if(ch >= 'A' & ch <= 'Z') {
 ch += 32;
 changes++;
 System.out.println(ch);
 }
 } while(ch != '.');
 System.out.println("Case changes: " + changes);
 }
}

 11. What is an infinite loop?

An infinite loop is a loop that runs indefinitely.

 12. When using break with a label, must the label be on a block that contains the break?

Yes.

Chapter 4: Introducing Classes,
Objects, and Methods
 1. What is the difference between a class and an object?

A class is a logical abstraction that describes the form and behavior of an object. An object is a
physical instance of the class.

 2. How is a class defined?

A class is defined by using the keyword class. Inside the class statement, you specify the code and
data that comprise the class.

18-AppA.indd 634 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 Appendix A: Answers to Self Tests 635

 3. What does each object have its own copy of?

Each object of a class has its own copy of the class’ instance variables.

 4. Using two separate statements, show how to declare an object called counter of a class
called MyCounter.

MyCounter counter;
counter = new MyCounter();

 5. Show how a method called myMeth() is declared if it has a return type of double and has
two int parameters called a and b.

double myMeth(int a, int b) { // ...

 6. How must a method return if it returns a value?

A method that returns a value must return via the return statement, passing back the return value in
the process.

 7. What name does a constructor have?

A constructor has the same name as its class.

 8. What does new do?

The new operator allocates memory for an object and initializes it using the object’s constructor.

 9. What is garbage collection and how does it work?

Garbage collection is the mechanism that recycles unused objects so that their memory can be reused.

 10. What is this?

The this keyword is a reference to the object on which a method is invoked. It is automatically passed
to a method.

 11. Can a constructor have one or more parameters?

Yes.

 12. If a method returns no value, what must its return type be?

void

Chapter 5: More Data Types and Operators
 1. Show two ways to declare a one-dimensional array of 12 doubles.

double x[] = new double[12];
double[] x = new double[12];

 2. Show how to initialize a one-dimensional array of integers to the values 1 through 5.

int[] x = { 1, 2, 3, 4, 5 };

18-AppA.indd 635 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 636 Java: A Beginner’s Guide

 3. Write a program that uses an array to find the average of ten double values. Use any ten
values you like.

// Average 10 double values.
class Avg {
 public static void main(String[] args) {
 double[] nums = { 1.1, 2.2, 3.3, 4.4, 5.5,
 6.6, 7.7, 8.8, 9.9, 10.1 };
 double sum = 0;

 for(int i=0; i < nums.length; i++)
 sum += nums[i];

 System.out.println("Average: " + sum / nums.length);
 }
}

 4. Change the sort in Try This 5-1 so that it sorts an array of strings. Demonstrate that it works.

// Demonstrate the Bubble sort with strings.
class StrBubble {
 public static void main(String[] args) {
 String[] strs = {
 "this", "is", "a", "test",
 "of", "a", "string", "sort"
 };
 int a, b;
 String t;
 int size;

 size = strs.length; // number of elements to sort

 // display original array
 System.out.print("Original array is:");
 for(int i=0; i < size; i++)
 System.out.print(" " + strs[i]);
 System.out.println();

 // This is the bubble sort for strings.
 for(a=1; a < size; a++)
 for(b=size-1; b >= a; b--) {
 if(strs[b-1].compareTo(strs[b]) > 0) { // if out of order
 // exchange elements
 t = strs[b-1];
 strs[b-1] = strs[b];
 strs[b] = t;
 }
 }

18-AppA.indd 636 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 Appendix A: Answers to Self Tests 637

 // display sorted array
 System.out.print("Sorted array is:");
 for(int i=0; i < size; i++)
 System.out.print(" " + strs[i]);
 System.out.println();
 }
}

 5. What is the difference between the String methods indexOf() and lastIndexOf()?

The indexOf() method finds the first occurrence of the specified substring. lastIndexOf() finds the
last occurrence.

 6. Since all strings are objects of type String, show how you can call the length() and charAt()
methods on this string literal: "I like Java".

As strange as it may look, this is a valid call to length():

System.out.println("I like Java".length());

The output displayed is 11. charAt() is called in a similar fashion.

 7. Expanding on the Encode cipher class, modify it so that it uses an eight-character string as
the key.

// An improved XOR cipher.
class Encode {
 public static void main(String[] args) {
 String msg = "This is a test";
 String encmsg = "";
 String decmsg = "";
 String key = "abcdefgi";
 int j;

 System.out.print("Original message: ");
 System.out.println(msg);

 // encode the message
 j = 0;
 for(int i=0; i < msg.length(); i++) {
 encmsg = encmsg + (char) (msg.charAt(i) ^ key.charAt(j));
 j++;
 if(j==8) j = 0;
 }

 System.out.print("Encoded message: ");
 System.out.println(encmsg);

 // decode the message
 j = 0;
 for(int i=0; i < msg.length(); i++) {
 decmsg = decmsg + (char) (encmsg.charAt(i) ^ key.charAt(j));

18-AppA.indd 637 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 638 Java: A Beginner’s Guide

 j++;
 if(j==8) j = 0;
 }

 System.out.print("Decoded message: ");
 System.out.println(decmsg);
 }
}

 8. Can the bitwise operators be applied to the double type?

No.

 9. Show how this sequence can be rewritten using the ? operator.

if(x < 0) y = 10;
else y = 20;

Here is the answer:

y = x < 0 ? 10 : 20;

 10. In the following fragment, is the & a bitwise or logical operator? Why?

boolean a, b;
// ...
if(a & b) ...

It is a logical operator because the operands are of type boolean.

 11. Is it an error to overrun the end of an array?

Yes.

Is it an error to index an array with a negative value?

Yes. All array indexes start at zero.

 12. What is the unsigned right-shift operator?

>>>

 13. Rewrite the MinMax class shown earlier in this chapter so that it uses a for-each style for loop.

// Find the minimum and maximum values in an array.
class MinMax {
 public static void main(String[] args) {
 int[] nums = new int[10];
 int min, max;

 nums[0] = 99;
 nums[1] = -10;
 nums[2] = 100123;
 nums[3] = 18;
 nums[4] = -978;
 nums[5] = 5623;

18-AppA.indd 638 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 Appendix A: Answers to Self Tests 639

 nums[6] = 463;
 nums[7] = -9;
 nums[8] = 287;
 nums[9] = 49;

 min = max = nums[0];
 for(int v : nums) {
 if(v < min) min = v;
 if(v > max) max = v;
 }
 System.out.println("min and max: " + min + " " + max);
 }
}

 14. Can the for loops that perform sorting in the Bubble class shown in Try This 5-1 be
converted into for-each style loops? If not, why not?

No, the for loops in the Bubble class that perform the sort cannot be converted into for-each style
loops. In the case of the outer loop, the current value of its loop counter is needed by the inner loop.
In the case of the inner loop, out-of-order values must be exchanged, which implies assignments.
Assignments to the underlying array cannot take place when using a for-each style loop.

 15. Can a String control a switch statement?

Yes.

 16. What keyword is reserved for use with local variable type inference?

The context-sensitive keyword var is reserved for use with local variable type inference.

 17. Show how to use local variable type inference to declare a boolean variable called done
that has an initial value of false.

var done = false;

 18. Can var be the name of a variable? Can var be the name of a class?

Yes, var can be the name of a variable. No, var cannot be the name of a class.

 19. Is the following declaration valid? If not, why not.

var[] avgTemps = new double[7];

No, it is not valid because array brackets are not allowed after var. Remember, the complete type is
inferred from the initializer.

 20. Is the following declaration valid? If not, why not?

var alpha = 10, beta = 20;

No, only one variable at a time can be declared when type inference is used.

 21. In the show() method of the ShowBits class developed in Try This 5-3, the local variable
mask is declared as shown here:

long mask = 1;

18-AppA.indd 639 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 640 Java: A Beginner’s Guide

Change this declaration so that it uses local variable type inference. When doing so, be sure
that mask is of type long (as it is here), and not of type int.

var mask = 1L; // Notice that the initial value is explicitly
 // specified as long so that mask will be inferred to
 // be long.

Chapter 6: A Closer Look at Methods and Classes
 1. Given this fragment,

class X {
 private int count;

 is the following fragment correct?

class Y {
 public static void main(String[] args) {
 X ob = new X();

 ob.count = 10;

No; a private member cannot be accessed outside of its class.

 2. An access modifier must __________ a member’s declaration.

precede

 3. The complement of a queue is a stack. It uses first-in, last-out accessing and is often likened
to a stack of plates. The first plate put on the table is the last plate used. Create a stack
class called Stack that can hold characters. Call the methods that access the stack push()
and pop(). Allow the user to specify the size of the stack when it is created. Keep all other
members of the Stack class private. (Hint: You can use the Queue class as a model; just
change the way that the data is accessed.)

// A stack class for characters.
class Stack {
 private char[] stck; // this array holds the stack
 private int tos; // top of stack

 // Construct an empty Stack given its size.
 Stack(int size) {
 stck = new char[size]; // allocate memory for stack
 tos = 0;
 }

 // Construct a Stack from a Stack.
 Stack(Stack ob) {
 tos = ob.tos;
 stck = new char[ob.stck.length];

18-AppA.indd 640 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 Appendix A: Answers to Self Tests 641

 // copy elements
 for(int i=0; i < tos; i++)
 stck[i] = ob.stck[i];
 }

 // Construct a stack with initial values.
 Stack(char[] a) {
 stck = new char[a.length];

 for(int i = 0; i < a.length; i++) {
 push(a[i]);
 }
 }

 // Push characters onto the stack.
 void push(char ch) {
 if(tos==stck.length) {
 System.out.println(" -- Stack is full.");
 return;
 }

 stck[tos] = ch;
 tos++;
 }

 // Pop a character from the stack.
 char pop() {
 if(tos==0) {
 System.out.println(" -- Stack is empty.");
 return (char) 0;
 }

 tos--;
 return stck[tos];
 }
}

// Demonstrate the Stack class.
class SDemo {
 public static void main(String[] args) {
 // construct 10-element empty stack
 Stack stk1 = new Stack(10);

 char[] name = {'T', 'o', 'm'};

 // construct stack from array
 Stack stk2 = new Stack(name);

18-AppA.indd 641 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 642 Java: A Beginner’s Guide

 char ch;
 int i;

 // put some characters into stk1
 for(i=0; i < 10; i++)
 stk1.push((char) ('A' + i));

 // construct stack from another stack
 Stack stk3 = new Stack(stk1);

 // show the stacks.
 System.out.print("Contents of stk1: ");
 for(i=0; i < 10; i++) {
 ch = stk1.pop();
 System.out.print(ch);
 }

 System.out.println("\n");

 System.out.print("Contents of stk2: ");
 for(i=0; i < 3; i++) {
 ch = stk2.pop();
 System.out.print(ch);
 }

 System.out.println("\n");
 System.out.print("Contents of stk3: ");
 for(i=0; i < 10; i++) {
 ch = stk3.pop();
 System.out.print(ch);
 }
 }
}

Here is the output from the program:

Contents of stk1: JIHGFEDCBA
Contents of stk2: moT
Contents of stk3: JIHGFEDCBA

 4. Given this class,

class Test {
 int a;
 Test(int i) { a = i; }
}

18-AppA.indd 642 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 Appendix A: Answers to Self Tests 643

 write a method called swap() that exchanges the contents of the objects referred to by two
Test object references.

void swap(Test ob1, Test ob2) {
 int t;

 t = ob1.a;
 ob1.a = ob2.a;
 ob2.a = t;
}

 5. Is the following fragment correct?

class X {
 int meth(int a, int b) { ... }
 String meth(int a, int b) { ... }

No. Overloaded methods can have different return types, but they do not play a role in overload
resolution. Overloaded methods must have different parameter lists.

 6. Write a recursive method that displays the contents of a string backwards.

// Display a string backwards using recursion.
class Backwards {
 String str;

 Backwards(String s) {
 str = s;
 }

 void backward(int idx) {
 if(idx != str.length()-1) backward(idx+1);

 System.out.print(str.charAt(idx));
 }
}

class BWDemo {
 public static void main(String[] args) {
 Backwards s = new Backwards("This is a test");

 s.backward(0);
 }
}

 7. If all objects of a class need to share the same variable, how must you declare that variable?

Shared variables are declared as static.

18-AppA.indd 643 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 644 Java: A Beginner’s Guide

 8. Why might you need to use a static block?

A static block is used to perform any initializations related to the class, before any objects are created.

 9. What is an inner class?

An inner class is a nonstatic nested class.

 10. To make a member accessible by only other members of its class, what access modifier
must be used?

private

 11. The name of a method plus its parameter list constitutes the method’s __________.

signature

 12. An int argument is passed to a method by using call-by-__________.

value

 13. Create a varargs method called sum() that sums the int values passed to it. Have it return
the result. Demonstrate its use.

There are many ways to craft the solution. Here is one:

class SumIt {
 int sum(int ... n) {
 int result = 0;

 for(int i = 0; i < n.length; i++)
 result += n[i];

 return result;
 }
}

class SumDemo {
 public static void main(String[] args) {

 SumIt siObj = new SumIt();

 int total = siObj.sum(1, 2, 3);
 System.out.println("Sum is " + total);

 total = siObj.sum(1, 2, 3, 4, 5);
 System.out.println("Sum is " + total);
 }
}

 14. Can a varargs method be overloaded?

Yes.

18-AppA.indd 644 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 Appendix A: Answers to Self Tests 645

 15. Show an example of an overloaded varargs method that is ambiguous.

Here is one example of an overloaded varargs method that is ambiguous:

double myMeth(double ... v) { // ...

double myMeth(double d, double ... v) { // ...

If you try to call myMeth() with one argument, like this,

myMeth(1.1);

the compiler can’t determine which version of the method to invoke.

Chapter 7: Inheritance
 1. Does a superclass have access to the members of a subclass? Does a subclass have access to

the members of a superclass?

No, a superclass has no knowledge of its subclasses. Yes, a subclass has access to all nonprivate
members of its superclass.

 2. Create a subclass of TwoDShape called Circle. Include an area() method that computes
the area of the circle and a constructor that uses super to initialize the TwoDShape portion.

// A subclass of TwoDShape for circles.
class Circle extends TwoDShape {
 // A default constructor.
 Circle() {
 super();
}

 // Construct Circle
 Circle(double x) {
 super(x, "circle"); // call superclass constructor
 }

 // Construct an object from an object.
 Circle(Circle ob) {
 super(ob); // pass object to TwoDShape constructor
 }

 double area() {
 return (getWidth() / 2) * (getWidth() / 2) * 3.1416;
 }
}

 3. How do you prevent a subclass from having access to a member of a superclass?

To prevent a subclass from having access to a superclass member, declare that member as private.

18-AppA.indd 645 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 646 Java: A Beginner’s Guide

 4. Describe the purpose and use of the two versions of super described in this chapter.

The super keyword has two forms. The first is used to call a superclass constructor. The general form
of this usage is

 super (param-list);

The second form of super is used to access a superclass member. It has this general form:

 super.member

 5. Given the following hierarchy, in what order do the constructors for these classes complete
their execution when a Gamma object is instantiated?

class Alpha { ...

class Beta extends Alpha { ...

Class Gamma extends Beta { ...

Constructors complete their execution in order of derivation. Thus, when a Gamma object is created,
the order is Alpha, Beta, Gamma.

 6. A superclass reference can refer to a subclass object. Explain why this is important as it is
related to method overriding.

When an overridden method is called through a superclass reference, it is the type of the object being
referred to that determines which version of the method is called.

 7. What is an abstract class?

An abstract class contains at least one abstract method.

 8. How do you prevent a method from being overridden? How do you prevent a class from
being inherited?

To prevent a method from being overridden, declare it as final. To prevent a class from being inherited,
declare it as final.

 9. Explain how inheritance, method overriding, and abstract classes are used to support
polymorphism.

Inheritance, method overriding, and abstract classes support polymorphism by enabling you to create
a generalized class structure that can be implemented by a variety of classes. Thus, the abstract class
defines a consistent interface that is shared by all implementing classes. This embodies the concept of
“one interface, multiple methods.”

 10. What class is a superclass of every other class?

The Object class.

 11. A class that contains at least one abstract method must, itself, be declared abstract. True
or False?

True.

18-AppA.indd 646 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 Appendix A: Answers to Self Tests 647

 12. What keyword is used to create a named constant?

final

 13. Assume that class B inherits class A. Further, assume a method called makeObj() that is
declared as shown here:

A makeObj(int which) {
 if(which == 0) return new A();
 else return new B();
}

Notice that makeObj() returns a reference to an object of either type A or B, depending on
the value of which. Notice, however, that the return type of makeObj() is A. (Recall that a
superclass reference can refer to a subclass object.) Given this situation and assuming that you
are using JDK 10 or later, what is the type of myRef in the following declaration and why?

var myRef = makeObj(1);

Even though a B object is created, the type of myRef will be A because that is the declared return
type of makeObj(). When using local variable type inference, the inferred type of a variable is based
on the declared type of its initializer. Therefore, if the initializer is of a superclass type (which is A in
this case), that will be the type of the variable. It does not matter if the actual object being referred to
by the initializer is an instance of a derived class.

 14. Assuming the situation described in Question 13, what will the type of myRef be given
this statement?

var myRef = (B) makeObj(1);

In this case, the cast to B specifies the type of the initializer, and myRef is of type B.

Chapter 8: Packages and Interfaces
 1. Using the code from Try This 8-1, put the ICharQ interface and its three implementations

into a package called qpack. Keeping the queue demonstration class IQDemo in the default
package, show how to import and use the classes in qpack.

To put ICharQ and its implementations into the qpack package, you must separate each into its own
file, make each implementation class public, and add this statement to the top of each file.

package qpack;

Once this has been done, you can use qpack by adding this import statement to IQDemo.

import qpack.*;

 2. What is a namespace? Why is it important that Java allows you to partition the namespace?

A namespace is a declarative region. By partitioning the namespace, you can prevent name collisions.

 3. Typically, packages are stored in __________.

directories

18-AppA.indd 647 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 648 Java: A Beginner’s Guide

 4. Explain the difference between protected and default access.

A member with protected access can be used within its package and by a subclass in other packages.

A member with default access can be used only within its package.

 5. Explain the two ways that the members of a package can be used by other packages.

To use a member of a package, you can either fully qualify its name, or you can import it using import.

 6. “One interface, multiple methods” is a key tenet of Java. What feature best exemplifies it?

The interface best exemplifies the one interface, multiple methods principle of OOP.

 7. How many classes can implement an interface? How many interfaces can a class
implement?

An interface can be implemented by an unlimited number of classes. A class can implement as many
interfaces as it chooses.

 8. Can interfaces be extended?

Yes, interfaces can be extended.

 9. Create an interface for the Vehicle class from Chapter 7. Call the interface IVehicle.

interface IVehicle {

 // Return the range.
 int range();

 // Compute fuel needed for a given distance.
 double fuelneeded(int miles);

 // Access methods for instance variables.
 int getPassengers();
 void setPassengers(int p);
 int getFuelcap();
 void setFuelcap(int f);
 int getMpg();
 void setMpg(int m);
}

 10. Variables declared in an interface are implicitly static and final. Can they be shared with
other parts of a program?

Yes, interface variables can be used as named constants that are shared by all files in a program.
They are brought into view by implementing their interface.

 11. A package is, in essence, a container for classes. True or False?

True.

18-AppA.indd 648 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 Appendix A: Answers to Self Tests 649

 12. What standard Java package is automatically imported into a program?

java.lang

 13. What keyword is used to declare a default interface method?

default

 14. Is it possible to define a static method in an interface?

Yes

 15. Assume that the ICharQ interface shown in Try This 8-1 has been in widespread use for
several years. Now, you want to add a method to it called reset(), which will be used to
reset the queue to its empty, starting condition. How can this be accomplished without
breaking preexisting code?

To avoid breaking preexisting code, you must use a default interface method. Because you can’t
know how to reset each queue implementation, the default reset() implementation will need to report
an error that indicates that it is not implemented. (The best way to do this is to use an exception.
Exceptions are examined in the following chapter.) Fortunately, since no preexisting code assumes
that ICharQ defines a reset() method, no preexisting code will encounter that error, and no
preexisting code will be broken.

 16. How is a static method in an interface called?

A static interface method is called through its interface name, by use of the dot operator.

 17. Can an interface have a private method?

Yes.

Chapter 9: Exception Handling
 1. What class is at the top of the exception hierarchy?

Throwable is at the top of the exception hierarchy.

 2. Briefly explain how to use try and catch.

The try and catch statements work together. Program statements that you want to monitor for exceptions
are contained within a try block. An exception is caught using catch.

 3. What is wrong with this fragment?

// ...
vals[18] = 10;
catch (ArrayIndexOutOfBoundsException exc) {
 // handle error
}

There is no try block preceding the catch statement.

18-AppA.indd 649 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 650 Java: A Beginner’s Guide

 4. What happens if an exception is not caught?

If an exception is not caught, abnormal program termination results.

 5. What is wrong with this fragment?

class A extends Exception { ...

class B extends A { ...

// ...

try {
 // ...
}
catch (A exc) { ... }
catch (B exc) { ... }

In the fragment, a superclass catch precedes a subclass catch. Since the superclass catch will catch
all subclasses too, unreachable code is created.

 6. Can an inner catch rethrow an exception to an outer catch?

Yes, an exception can be rethrown.

 7. The finally block is the last bit of code executed before your program ends. True or False?
Explain your answer.

False. The finally block is the code executed when a try block ends.

 8. What type of exceptions must be explicitly declared in a throws clause of a method?

All exceptions except those of type RuntimeException and Error must be declared in a throws clause.

 9. What is wrong with this fragment?

class MyClass { // ... }
// ...
throw new MyClass();

MyClass does not extend Throwable. Only subclasses of Throwable can be thrown by throw.

 10. In question 3 of the Chapter 6 Self Test, you created a Stack class. Add custom exceptions
to your class that report stack full and stack empty conditions.

// An exception for stack-full errors.
class StackFullException extends Exception {
 int size;

 StackFullException(int s) { size = s; }

 public String toString() {
 return "\nStack is full. Maximum size is " +
 size;
 }
}

18-AppA.indd 650 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 Appendix A: Answers to Self Tests 651

// An exception for stack-empty errors.
class StackEmptyException extends Exception {

 public String toString() {
 return "\nStack is empty.";
 }
}

// A stack class for characters.
class Stack {
 private char[] stck; // this array holds the stack
 private int tos; // top of stack

 // Construct an empty Stack given its size.
 Stack(int size) {
 stck = new char[size]; // allocate memory for stack
 tos = 0;
 }

 // Construct a Stack from a Stack.
 Stack(Stack ob) {
 tos = ob.tos;
 stck = new char[ob.stck.length];

 // copy elements
 for(int i=0; i < tos; i++)
 stck[i] = ob.stck[i];
 }

 // Construct a stack with initial values.
 Stack(char[] a) {
 stck = new char[a.length];

 for(int i = 0; i < a.length; i++) {
 try {
 push(a[i]);
 }
 catch(StackFullException exc) {
 System.out.println(exc);
 }
 }
 }

 // Push characters onto the stack.
 void push(char ch) throws StackFullException {
 if(tos==stck.length)
 throw new StackFullException(stck.length);

18-AppA.indd 651 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 652 Java: A Beginner’s Guide

 stck[tos] = ch;
 tos++;
 }

 // Pop a character from the stack.
 char pop() throws StackEmptyException {
 if(tos==0)
 throw new StackEmptyException();
 tos--;
 return stck[tos];
 }
}

 11. What are the three ways that an exception can be generated?

An exception can be generated by an error in the JVM, by an error in your program, or explicitly via
a throw statement.

 12. What are the two direct subclasses of Throwable?

Error and Exception

 13. What is the multi-catch feature?

The multi-catch feature allows one catch clause to catch two or more exceptions.

 14. Should your code typically catch exceptions of type Error?

No.

Chapter 10: Using I/O
 1. Why does Java define both byte and character streams?

The byte streams are the original streams defined by Java. They are especially useful for binary I/O,
and they support random-access files. The character streams are optimized for Unicode.

 2. Even though console input and output is text-based, why does Java still use byte streams for
this purpose?

The predefined streams, System.in, System.out, and System.err, were defined before Java added the
character streams.

 3. Show how to open a file for reading bytes.

Here is one way to open a file for byte input:

FileInputStream fin = new FileInputStream("test");

 4. Show how to open a file for reading characters.

Here is one way to open a file for reading characters:

FileReader fr = new FileReader("test");

18-AppA.indd 652 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 Appendix A: Answers to Self Tests 653

 5. Show how to open a file for random-access I/O.

Here is one way to open a file for random access:

randfile = new RandomAccessFile("test", "rw");

 6. How do you convert a numeric string such as "123.23" into its binary equivalent?

To convert numeric strings into their binary equivalents, use the parsing methods defined by the type
wrappers, such as Integer or Double.

 7. Write a program that copies a text file. In the process, have it convert all spaces into hyphens.
Use the byte stream file classes. Use the traditional approach to closing a file by explicitly
calling close().

/* Copy a text file, substituting hyphens for spaces.

 This version uses byte streams.

 To use this program, specify the name
 of the source file and the destination file.
 For example,

 java Hyphen source target
*/

import java.io.*;

class Hyphen {
 public static void main(String[] args)
 {
 int i;
 FileInputStream fin = null;
 FileOutputStream fout = null;

 // First make sure that both files have been specified.
 if(args.length !=2) {
 System.out.println("Usage: Hyphen From To");
 return;
 }

 // Copy file and substitute hyphens.
 try {
 fin = new FileInputStream(args[0]);
 fout = new FileOutputStream(args[1]);

 do {
 i = fin.read();

 // convert space to a hyphen
 if((char)i == ' ') i = '-';

18-AppA.indd 653 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 654 Java: A Beginner’s Guide

 if(i != -1) fout.write(i);
 } while(i != -1);
 } catch(IOException exc) {
 System.out.println("I/O Error: " + exc);
 } finally {
 try {
 if(fin != null) fin.close();
 } catch(IOException exc) {
 System.out.println("Error closing input file.");
 }

 try {
 if(fin != null) fout.close();
 } catch(IOException exc) {
 System.out.println("Error closing output file.");
 }
 }
 }
}

 8. Rewrite the program in question 7 so that it uses the character stream classes. This time, use
the try-with-resources statement to automatically close the file.

/* Copy a text file, substituting hyphens for spaces.

 This version uses character streams.

 To use this program, specify the name
 of the source file and the destination file.
 For example,

 java Hyphen2 source target

*/

import java.io.*;

class Hyphen2 {
 public static void main(String[] args)
 throws IOException
 {
 int i;

 // First make sure that both files have been specified.
 if(args.length !=2) {
 System.out.println("Usage: CopyFile From To");
 return;
 }

18-AppA.indd 654 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 Appendix A: Answers to Self Tests 655

 // Copy file and substitute hyphens.
 // Use the try-with-resources statement.
 try (FileReader fin = new FileReader(args[0]);
 FileWriter fout = new FileWriter(args[1]))
 {
 do {
 i = fin.read();

 // convert space to a hyphen
 if((char)i == ' ') i = '-';

 if(i != -1) fout.write(i);
 } while(i != -1);
 } catch(IOException exc) {
 System.out.println("I/O Error: " + exc);
 }
 }
}

 9. What type of stream is System.in?

InputStream

 10. What does the read() method of InputStream return when an attempt is made to read at the
end of the stream?

–1

 11. What type of stream is used to read binary data?

DataInputStream

 12. Reader and Writer are at the top of the ____________ class hierarchies.

character-based I/O

 13. The try-with-resources statement is used for ___________ ____________ ____________.

automatic resource management

 14. If you are using the traditional method of closing a file, then closing a file within a finally
block is generally a good approach. True or False?

True

 15. Can local variable type inference be used when declaring the resource in a try-with-
resources statement?

Yes.

18-AppA.indd 655 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 656 Java: A Beginner’s Guide

Chapter 11: Multithreaded Programming
 1. How does Java’s multithreading capability enable you to write more efficient programs?

Multithreading allows you to take advantage of the idle time that is present in nearly all programs.
When one thread can’t run, another can. In multicore systems, two or more threads can execute
simultaneously.

 2. Multithreading is supported by the __________ class and the __________ interface.

Multithreading is supported by the Thread class and the Runnable interface.

 3. When creating a runnable object, why might you want to extend Thread rather than
implement Runnable?

You will extend Thread when you want to override one or more of Thread’s methods other than run().

 4. Show how to use join() to wait for a thread object called MyThrd to end.

MyThrd.join();

 5. Show how to set a thread called MyThrd to three levels above normal priority.

MyThrd.setPriority(Thread.NORM_PRIORITY+3);

 6. What is the effect of adding the synchronized keyword to a method?

Adding synchronized to a method allows only one thread at a time to use the method for any given
object of its class.

 7. The wait() and notify() methods are used to perform ____________________.

interthread communication

 8. Change the TickTock class so that it actually keeps time. That is, have each tick take one
half second, and each tock take one half second. Thus, each tick-tock will take one second.
(Don’t worry about the time it takes to switch tasks, etc.)

To make the TickTock class actually keep time, simply add calls to sleep(), as shown here:

// Make the TickTock class actually keep time.

class TickTock {

 String state; // contains the state of the clock

 synchronized void tick(boolean running) {
 if(!running) { // stop the clock
 state = "ticked";
 notify(); // notify any waiting threads
 return;
 }

18-AppA.indd 656 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 Appendix A: Answers to Self Tests 657

 System.out.print("Tick ");

 // wait 1/2 second
 try {
 Thread.sleep(500);
 } catch(InterruptedException exc) {
 System.out.println("Thread interrupted.");
 }

 state = "ticked"; // set the current state to ticked

 notify(); // let tock() run
 try {
 while(!state.equals("tocked"))
 wait(); // wait for tock() to complete
 }
 catch(InterruptedException exc) {
 System.out.println("Thread interrupted.");
 }
 }

 synchronized void tock(boolean running) {
 if(!running) { // stop the clock
 state = "tocked";
 notify(); // notify any waiting threads
 return;
 }

 System.out.println("Tock");

 // wait 1/2 second
 try {
 Thread.sleep(500);
 } catch(InterruptedException exc) {
 System.out.println("Thread interrupted.");
 }

 state = "tocked"; // set the current state to tocked

 notify(); // let tick() run
 try {
 while(!state.equals("ticked"))
 wait(); // wait for tick to complete
 }
 catch(InterruptedException exc) {
 System.out.println("Thread interrupted.");
 }
 }
}

18-AppA.indd 657 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 658 Java: A Beginner’s Guide

 9. Why can’t you use suspend(), resume(), and stop() for new programs?

The suspend(), resume(), and stop() methods have been deprecated because they can cause serious
run-time problems.

 10. What method defined by Thread obtains the name of a thread?

getName()

 11. What does isAlive() return?

It returns true if the invoking thread is still running, and false if it has been terminated.

Chapter 12: Enumerations, Autoboxing,
Annotations, and More
 1. Enumeration constants are said to be self-typed. What does this mean?

In the term self-typed, the “self” refers to the type of the enumeration in which the constant is defined.
Thus, an enumeration constant is an object of the enumeration of which it is a part.

 2. What class do all enumerations automatically inherit?

The Enum class is automatically inherited by all enumerations.

 3. Given the following enumeration, write a program that uses values() to show a list of the
constants and their ordinal values.

enum Tools {
 SCREWDRIVER, WRENCH, HAMMER, PLIERS
}

 The solution is

enum Tools {
 SCREWDRIVER, WRENCH, HAMMER, PLIERS
}

class ShowEnum {
 public static void main(String[] args) {
 for(Tools d : Tools.values())
 System.out.print(d + " has ordinal value of " +
 d.ordinal() + '\n');
 }
}

 4. The traffic light simulation developed in Try This 12-1 can be improved with a few simple
changes that take advantage of an enumeration’s class features. In the version shown, the
duration of each color was controlled by the TrafficLightSimulator class by hard-coding
these values into the run() method. Change this so that the duration of each color is stored
by the constants in the TrafficLightColor enumeration. To do this, you will need to add
a constructor, a private instance variable, and a method called getDelay(). After making

18-AppA.indd 658 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 Appendix A: Answers to Self Tests 659

these changes, what improvements do you see? On your own, can you think of other
improvements? (Hint: Try using ordinal values to switch light colors rather than relying on
a switch statement.)

The improved version of the traffic light simulation is shown here. There are two major improvements.
First, a light’s delay is now linked with its enumeration value, which gives more structure to the code.
Second, the run() method no longer needs to use a switch statement to determine the length of the
delay. Instead, sleep() is passed tlc.getDelay(), which causes the delay associated with the current
color to be used automatically.

// An improved version of the traffic light simulation that
// stores the light delay in TrafficLightColor.

// An enumeration of the colors of a traffic light.
enum TrafficLightColor {
 RED(12000), GREEN(10000), YELLOW(2000);

 private int delay;

 TrafficLightColor(int d) {
 delay = d;
 }

 int getDelay() { return delay; }
}

// A computerized traffic light.
class TrafficLightSimulator implements Runnable {
 private TrafficLightColor tlc; // holds the current traffic light color
 private boolean stop = false; // set to true to stop the simulation
 private boolean changed = false; // true when the light has changed

 TrafficLightSimulator(TrafficLightColor init) {
 tlc = init;
 }

 TrafficLightSimulator() {
 tlc = TrafficLightColor.RED;
 }

 // Start up the light.
 public void run() {
 while(!stop) {
 // Notice how this code has been simplified!
 try {
 Thread.sleep(tlc.getDelay());
 } catch(InterruptedException exc) {
 System.out.println(exc);
 }

 changeColor();
 }
 }

18-AppA.indd 659 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 660 Java: A Beginner’s Guide

 // Change color.
 synchronized void changeColor() {
 switch(tlc) {
 case RED:
 tlc = TrafficLightColor.GREEN;
 break;
 case YELLOW:
 tlc = TrafficLightColor.RED;
 break;
 case GREEN:
 tlc = TrafficLightColor.YELLOW;
 }

 changed = true;
 notify(); // signal that the light has changed
 }

 // Wait until a light change occurs.
 synchronized void waitForChange() {
 try {
 while(!changed)
 wait(); // wait for light to change
 changed = false;
 } catch(InterruptedException exc) {
 System.out.println(exc);
 }
 }

 // Return current color.
 synchronized TrafficLightColor getColor() {
 return tlc;
 }

 // Stop the traffic light.
 synchronized void cancel() {
 stop = true;
 }
}

class TrafficLightDemo {
 public static void main(String[] args) {
 TrafficLightSimulator tl =
 new TrafficLightSimulator(TrafficLightColor.GREEN);

 Thread thrd = new Thread(tl);
 thrd.start();
 for(int i=0; i < 9; i++) {
 System.out.println(tl.getColor());
 tl.waitForChange();
 }

 tl.cancel();
 }
}

18-AppA.indd 660 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 Appendix A: Answers to Self Tests 661

 5. Define boxing and unboxing. How does autoboxing/unboxing affect these actions?

Boxing is the process of storing a primitive value in a type wrapper object. Unboxing is the process
of retrieving the primitive value from the type wrapper. Autoboxing automatically boxes a primitive
value without having to explicitly construct an object. Auto-unboxing automatically retrieves the
primitive value from a type wrapper without having to explicitly call a method, such as intValue().

 6. Change the following fragment so that it uses autoboxing.

Double val = Double.valueOf(123.0);

The solution is

Double val = 123.0;

 7. In your own words, what does static import do?

Static import brings into the current namespace the static members of a class or interface. This means
that static members can be used without having to be qualified by their class or interface name.

 8. What does this statement do?

import static java.lang.Integer.parseInt;

The statement brings into the current namespace the parseInt() method of the type wrapper Integer.

 9. Is static import designed for special-case situations, or is it good practice to bring all static
members of all classes into view?

Static import is designed for special cases. Bringing many static members into view will lead to
namespace collisions and destructure your code.

 10. An annotation is syntactically based on a/an ________________ .

interface

 11. What is a marker annotation?

A marker annotation is one that does not take arguments.

 12. An annotation can be applied only to methods. True or False?

False. Any type of declaration can have an annotation. Beginning with JDK 8, a type use can also have
an annotation.

 13. What operator determines if an object is of a specified type?

instanceof

 14. Will an invalid cast that occurs at run time result in an exception?

Yes

18-AppA.indd 661 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 662 Java: A Beginner’s Guide

Chapter 13: Generics
 1. Generics are important to Java because they enable the creation of code that is

 A. Type-safe

 B. Reusable

 C. Reliable

 D. All of the above

 D. All of the above

 2. Can a primitive type be used as a type argument?

No, type arguments must be object types.

 3. Show how to declare a class called FlightSched that takes two generic parameters.

The solution is

class FlightSched<T, V> {

 4. Beginning with your answer to question 3, change FlightSched’s second type parameter so
that it must extend Thread.

The solution is

class FlightSched<T, V extends Thread> {

 5. Now, change FlightSched so that its second type parameter must be a subclass of its first
type parameter.

The solution is

class FlightSched<T, V extends T> {

 6. As it relates to generics, what is the ? and what does it do?

The ? is the wildcard argument. It matches any valid type.

 7. Can the wildcard argument be bounded?

Yes, a wildcard can have either an upper or lower bound.

 8. A generic method called MyGen() has one type parameter. Furthermore, MyGen() has
one parameter whose type is that of the type parameter. It also returns an object of that type
parameter. Show how to declare MyGen().

The solution is

<T> T MyGen(T o) { // ...

18-AppA.indd 662 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 Appendix A: Answers to Self Tests 663

 9. Given this generic interface

interface IGenIF<T, V extends T> { // ...

show the declaration of a class called MyClass that implements IGenIF.

The solution is

class MyClass<T, V extends T> implements IGenIF<T, V> { // ...

 10. Given a generic class called Counter<T>, show how to create an object of its raw type.

To obtain Counter<T>’s raw type, simply use its name without any type specification, as shown here:

Counter x = new Counter();

 11. Do type parameters exist at run time?

No. All type parameters are erased during compilation, and appropriate casts are substituted. This
process is called erasure.

 12. Convert your solution to question 10 of the Self Test for Chapter 9 so that it is generic.
In the process, create a stack interface called IGenStack that generically defines the
operations push() and pop().

// A generic stack.

interface IGenStack<T> {
 void push(T obj) throws StackFullException;
 T pop() throws StackEmptyException;
}

// An exception for stack-full errors.
class StackFullException extends Exception {
 int size;

 StackFullException(int s) { size = s; }

 public String toString() {
 return "\nStack is full. Maximum size is " +
 size;
 }
}

// An exception for stack-empty errors.
class StackEmptyException extends Exception {

 public String toString() {
 return "\nStack is empty.";
 }
}

18-AppA.indd 663 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 664 Java: A Beginner’s Guide

// A stack class for characters.
class GenStack<T> implements IGenStack<T> {
 private T[] stck; // this array holds the stack
 private int tos; // top of stack

 // Construct an empty stack given its size.
 GenStack(T[] stckArray) {
 stck = stckArray;
 tos = 0;
 }

 // Construct a stack from a stack.
 GenStack(T[] stckArray, GenStack<T> ob) {
 tos = ob.tos;
 stck = stckArray;

 try {
 if(stck.length < ob.stck.length)
 throw new StackFullException(stck.length);
 }
 catch(StackFullException exc) {
 System.out.println(exc);
 }

 // Copy elements.
 for(int i=0; i < tos; i++)
 stck[i] = ob.stck[i];
 }

 // Construct a stack with initial values.
 GenStack(T[] stckArray, T[] a) {
 stck = stckArray;

 for(int i = 0; i < a.length; i++) {
 try {
 push(a[i]);
 }
 catch(StackFullException exc) {
 System.out.println(exc);
 }
 }
 }

 // Push objects onto the stack.
 public void push(T obj) throws StackFullException {
 if(tos==stck.length)
 throw new StackFullException(stck.length);

18-AppA.indd 664 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 Appendix A: Answers to Self Tests 665

 stck[tos] = obj;
 tos++;
 }

 // Pop an object from the stack.
 public T pop() throws StackEmptyException {
 if(tos==0)
 throw new StackEmptyException();

 tos--;
 return stck[tos];
 }
}

// Demonstrate the GenStack class.
class GenStackDemo {
 public static void main(String[] args) {
 // Construct 10-element empty Integer stack.
 Integer[] iStore = new Integer[10];
 GenStack<Integer> stk1 = new GenStack<Integer>(iStore);

 // Construct stack from array.
 String[] name = {"One", "Two", "Three"};
 String[] strStore = new String[3];
 GenStack<String> stk2 =
 new GenStack<String>(strStore, name);

 String str;
 int n;

 try {
 // Put some values into stk1.
 for(int i=0; i < 10; i++)
 stk1.push(i);
 } catch(StackFullException exc) {
 System.out.println(exc);
 }

 // Construct stack from another stack.
 String[] strStore2 = new String[3];
 GenStack<String> stk3 =
 new GenStack<String>(strStore2, stk2);

 try {
 // Show the stacks.
 System.out.print("Contents of stk1: ");
 for(int i=0; i < 10; i++) {
 n = stk1.pop();
 System.out.print(n + " ");
 }

18-AppA.indd 665 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 666 Java: A Beginner’s Guide

 System.out.println("\n");

 System.out.print("Contents of stk2: ");
 for(int i=0; i < 3; i++) {
 str = stk2.pop();
 System.out.print(str + " ");
 }

 System.out.println("\n");

 System.out.print("Contents of stk3: ");
 for(int i=0; i < 3; i++) {
 str = stk3.pop();
 System.out.print(str + " ");
 }

 } catch(StackEmptyException exc) {
 System.out.println(exc);
 }

 System.out.println();
 }
}

 13. What is < >?

The diamond operator.

 14. How can the following be simplified?

MyClass<Double,String> obj = new MyClass<Double,String>(1.1,"Hi");

It can be simplified by use of the diamond operator as shown here:

MyClass<Double,String> obj = new MyClass<>(1.1,"Hi");

Assuming a local variable declaration and beginning with JDK 10, it can also be simplified by use of
local variable type inference, like this:

var obj = new MyClass<Double, String>(1.1, "Hi");

Chapter 14: Lambda Expressions
and Method References
 1. What is the lambda operator?

The lambda operator is –>.

 2. What is a functional interface?

A functional interface is an interface that contains one and only one abstract method.

18-AppA.indd 666 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 Appendix A: Answers to Self Tests 667

 3. How do functional interfaces and lambda expressions relate?

A lambda expression provides the implementation for the abstract method defined by the functional
interface. The functional interface defines the target type.

 4. What are the two general types of lambda expressions?

The two types of lambda expressions are expression lambdas and block lambdas. An expression
lambda specifies a single expression, whose value is returned by the lambda. A block lambda contains
a block of code. Its value is specified by a return statement.

 5. Show a lambda expression that returns true if a number is between 10 and 20, inclusive.

(n) -> (n > 9 && n < 21)

 6. Create a functional interface that can support the lambda expression you created in question 5.
Call the interface MyTest and its abstract method testing().

interface MyTest {
 boolean testing(int n);
}

 7. Create a block lambda that computes the factorial of an integer value. Demonstrate its use.
Use NumericFunc, shown in this chapter, for the functional interface.

interface NumericFunc {
 int func(int n);
}

class FactorialLambdaDemo {
 public static void main(String[] args)
 {

 // This block lambda computes the factorial of an int value.
 NumericFunc factorial = (n) -> {
 int result = 1;

 for(int i=1; i <= n; i++)
 result = i * result;

 return result;
 };

 System.out.println("The factorial of 3 is " + factorial.func(3));
 System.out.println("The factorial of 5 is " + factorial.func(5));
 System.out.println("The factorial of 9 is " + factorial.func(9));
 }
}

18-AppA.indd 667 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 668 Java: A Beginner’s Guide

 8. Create a generic functional interface called MyFunc<T>. Call its abstract method func().
Have func() return a reference of type T. Have it take a parameter of type T. (Thus,
MyFunc will be a generic version of NumericFunc shown in the chapter.) Demonstrate its
use by rewriting your answer to 7 so it uses MyFunc<T> rather than NumericFunc.

interface MyFunc<T> {
 T func(T n);
}

class FactorialLambdaDemo {
 public static void main(String[] args)
 {

 // This block lambda computes the factorial of an int value.
 MyFunc<Integer> factorial = (n) -> {
 int result = 1;

 for(int i=1; i <= n; i++)
 result = i * result;

 return result;
 };

 System.out.println("The factorial of 3 is " + factorial.func(3));
 System.out.println("The factorial of 5 is " + factorial.func(5));
 System.out.println("The factorial of 9 is " + factorial.func(9));
 }
}

 9. Using the program shown in Try This 14-1, create a lambda expression that removes
all spaces from a string and returns the result. Demonstrate this method by passing it to
changeStr().

Here is the lambda expression that removes spaces. It is used to initialize the remove reference
variable.

StringFunc remove = (str) -> {
 String result = "";

 for(int i = 0; i < str.length(); i++)
 if(str.charAt(i) != ' ') result += str.charAt(i);

 return result;
};

Here is an example of its use:

outStr = changeStr(remove, inStr);

 10. Can a lambda expression use a local variable? If so, what constraint must be met?

Yes, but the variable must be effectively final.

18-AppA.indd 668 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 Appendix A: Answers to Self Tests 669

 11. If a lambda expression throws a checked exception, the abstract method in the functional
interface must have a throws clause that includes that exception. True or False?

True

 12. What is a method reference?

A method reference is a way to refer to a method without executing it.

 13. When evaluated, a method reference creates an instance of the ____________ ___________
supplied by its target context.

functional interface

 14. Given a class called MyClass that contains a static method called myStaticMethod(),
show how to specify a method reference to myStaticMethod().

MyClass::myStaticMethod

 15. Given a class called MyClass that contains an instance method called myInstMethod()
and assuming an object of MyClass called mcObj, show how to create a method reference
to myInstMethod() on mcObj.

mcObj::myInstMethod

 16. To the MethodRefDemo2 program, add a new method to MyIntNum called
hasCommonFactor(). Have it return true if its int argument and the value stored in the
invoking MyIntNum object have at least one factor in common. For example, 9 and 12
have a common factor, which is 3, but 9 and 16 have no common factor. Demonstrate
hasCommonFactor() via a method reference.

Here is MyIntNum with the hasCommonFactor() method added:

class MyIntNum {
 private int v;

 MyIntNum(int x) { v = x; }

 int getNum() { return v; }

 // Return true if n is a factor of v.
 boolean isFactor(int n) {
 return (v % n) == 0;
 }

 boolean hasCommonFactor(int n) {
 for(int i=2; i < v/i; i++)
 if(((v % i) == 0) && ((n % i) == 0)) return true;

 return false;
 }
}

18-AppA.indd 669 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 670 Java: A Beginner’s Guide

Here is an example of its use through a method reference:

ip = myNum::hasCommonFactor;
result = ip.test(9);
if(result) System.out.println("Common factor found.");

 17. How is a constructor reference specified?

A constructor reference is created by specifying the class name followed by :: followed by new.
For example, MyClass::new.

 18. Java defines several predefined functional interfaces in what package?

java.util.function

Chapter 15: Modules
 1. In general terms, modules give you a way to specify when one unit of code depends on

another. True or False?

True

 2. A module is declared using what keyword?

module

 3. The keywords that support modules are context sensitive. Explain what this means.

A context-sensitive keyword is recognized as a keyword only in specific situations that relate to its
use and not elsewhere. As it relates to the module keywords, they are recognized as keywords only
within a module declaration.

 4. What is module-info.java and why is it important?

A module-info.java file contains a module declaration.

 5. To declare that one module depends on another module, what keyword do you use?

requires

 6. To make the public members of a package accessible outside the module in which it is
contained, it must be specified in an _________ statement.

exports

 7. When compiling or running a module-based application, why is the module path important?

The module path specifies where the modules for the application will be found.

 8. What does requires transitive do?

By using requires transitive you enable one module to pass along its dependence on another module
so that any module that relies on the current module also relies on the one specified in the requires
transitive statement. This is called implied dependence or implied readability.

 9. Does an exports statement export another module, or does it export a package?

An exports statement exports a package.

18-AppA.indd 670 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 Appendix A: Answers to Self Tests 671

 10. In the first module example, if you remove

exports appfuncs.simplefuncs;

from the appfuncs module-info file and then attempt to compile the program, what error do
you see?

The compiler will report that the SimpleMathFuncs package does not exist. Since this package is
required by MyModAppDemo, it will not compile.

 11. Module-based services are supported by what keywords?

provides, uses, and with

 12. A service specifies the general form of a unit of program functionality using either an
interface or abstract class. True or False?

True

 13. A service provider ____________ a service.

implements

 14. To load a service, what class do you use?

ServiceLoader

 15. Can a module dependency be made optional at run time? If so, how?

Yes, by using an exports static statement.

 16. Briefly describe what open and opens do.

Modifying a module declaration with the keyword open enables access to its packages at run time,
including by reflection, whether or not they have been exported. An opens statement enables run-time
access to a package, including for the purposes of reflection.

Chapter 16: Switch Expressions, Records,
and Other Recently Added Features
 1. Rewrite the following sequence so that it uses a constant list:

case 3: prime = true;
 break;
case 5: prime = true;
 break;
case 7: prime = true;
 break;

 Here is the answer:

case 3, 5, 7: prime = true;
 break;

18-AppA.indd 671 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 672 Java: A Beginner’s Guide

 2. When using an arrow case, does execution fall through to the next case?

No.

 3. Given this switch, show the yield statement that returns the value 98.6:

double val = switch(x) {
 case "temp": // produce the value 98.6
// ...

case "temp": yield 98.6;

 4. Assuming the switch in Question 3, show how to use an arrow case to yield the value 98.6.

case "temp" -> 98.6;

 5. Can you mix an arrow case and a colon case in the same switch?

No.

 6. Can the target of an arrow case be a block?

Yes.

 7. A record is commonly referred to as a/an __________ type.

aggregate

 8. Given this record declaration, what are its components? What elements are implicitly created?

record MyRec(Double highTemp, Double lowTemp, String location) { }

 The components are highTemp, lowTemp, and location. Private final fields with the
same names are implicitly created. Getter methods called highTemp(), lowTemp(), and
location() are also implicitly created.

 9. Does a record have a default constructor? If not, what type of constructor does a record
automatically have?

No, a record does not have a default constructor. Instead, a record automatically defines a canonical
constructor.

 10. Given MyRec from Question 8, show the compact canonical constructor that removes leading
and trailing spaces from the location string.

public MyRec {
 // Remove leading and trailing spaces from location
 location = location.trim();
}

 11. If you were to override a record getter method, in what way would you need to be
very careful?

A record is immutable. Thus, to preserve the immutable semantics of a record, your getter must not
return a value other than that contained in the record.

18-AppA.indd 672 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 Appendix A: Answers to Self Tests 673

 12. In Try This 13-1 you created a generic queue class. Can this class be used to store record
objects without any changes? If so, demonstrate its use to store the Item records used in the
Item record examples.

class RecordQDemo {
 public static void main(String[] args) {
 // Create a queue for Item records.
 Item[] items = new Item[4];
 GenQueue<Item> q = new GenQueue<Item>(items);

 // Create some Item records.
 items[0] = new Item("Hammer", 257, 10.99);
 items[1] = new Item("Wrench", 18, 19.29);
 items[2] = new Item("Drill", 903, 22.25);
 items[3] = new Item("Saw", 27, 34.59);

 // Put records into the queue.
 try {
 for(int i=0; i < items.length; i++) {
 System.out.println("Adding " + items[i].name() + " to queue.");
 q.put(items[i]); // add record to q

 }
 }
 catch (QueueFullException exc) {
 System.out.println(exc);
 }
 System.out.println();

 // Retrieve records from the queue.
 try {
 Item r;

 for(int i=0; i < items.length; i++) {
 System.out.print("Getting next record from queue: ");
 r = q.get();
 System.out.println(r.name() + ", Item Number " + r.itemNum() +
 ", " + " Price: " + r.price());
 }
 }
 catch (QueueEmptyException exc) {
 System.out.println(exc);
 }
 }
}

 13. Rework the Item record so that the price component is generic, with an upper bound
of Number.

record Item<T extends Number>(String name, int itemNum, T price) {}

18-AppA.indd 673 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 674 Java: A Beginner’s Guide

 14. In the BlockArrowCaseDemo program, the switch expression yields the shipping
method, but the variable extraCharge is set separately inside each case. This program
can be improved by having the switch yield a record that contains both the shipping
method and the extraCharge value. In essence, the use of a record enables the switch to
yield two or more values when it returns its result. Rework the BlockArrowCaseDemo
program to demonstrate this approach.

Here is one way to code the improved BlockArrowCaseDemo program. It uses a record called
ShippingInfo that holds both the shipping method and the extraCharge value.

// Demonstrate a switch expression that yields a record.
class SwitchWithRecord {

 enum ShipMethod { STANDARD, TRUCK, AIR, OVERNIGHT }

 record ShippingInfo (ShipMethod how, boolean extraCharge) { }

 public static void main(String[] args) {

 int productID = 5099;

 // Here, the switch expression uses a record to efficiently
 // yield two values.
 ShippingInfo shipInfo = switch(productID) {
 case 1774, 8708, 6709 -> new ShippingInfo(ShipMethod.TRUCK, true);
 case 4657, 2195, 1887, 3621 ->
 new ShippingInfo(ShipMethod.AIR, true);
 case 2907, 5099 -> new ShippingInfo(ShipMethod.OVERNIGHT, true);
 default-> new ShippingInfo(ShipMethod.STANDARD, false);
 };

 System.out.println("Shipping method for product number " +
 productID + " is " + shipInfo.how());
 if(shipInfo.extraCharge())
 System.out.println("Extra charge required.");
 }
}

 15. Show the general form of instanceOf when using pattern matching.

objref instanceof type pattern-var

 16. Given:

Object myOb = "A test string";

fill in the blank in the following if statement that uses instanceof to determine whether myOb refers
to a String.

if(myObj instanceof String str) System.out.println("Is a string: " + str);

18-AppA.indd 674 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 Appendix A: Answers to Self Tests 675

 17. A sealed class explicitly specifies the subclasses that can inherit it. True or false?

True.

 18. Given the following:

public sealed class MyClass permits Alpha, Beta, Gamma { // ...

 which of the following declarations are legal?

 A. public final class Alpha extends MyClass { // ...

 B. public final class Beta { // ...

 C. public class Gamma extends MyClass { // ...

 D. public non-sealed SomeOtherClass extends MyClass { // ...

Only A is legal. B does not extend MyClass. C needs to be modified by either final, sealed, or
non-sealed. In D, SomeOtherClass is not permitted by MyClass.

 19. Can an interface be sealed? If so, what effect does sealing an interface have?

Yes, an interface can be sealed. Only those interfaces that are listed in its permits clause can extend a
sealed interface. Only those classes listed in its permits clause can implement the interface.

 20. A preview feature is a new feature that is fully developed, but not yet formally part of Java.
True or False?

True.

 21. A preview feature is subject to change or may even be withdrawn. True or False?

True.

Chapter 17: Introducing Swing
 1. In general, AWT components are heavyweight and Swing components are lightweight.

 2. Can the look and feel of a Swing component be changed? If so, what feature enables this?

Yes. Swing’s pluggable look and feel is the feature that enables this.

 3. What is the most commonly used top-level container for an application?

JFrame

 4. Top-level containers have several panes. To what pane are components added?

Content pane

 5. Show how to construct a label that contains the message "Select an entry from the list".

JLabel("Select an entry from the list")

18-AppA.indd 675 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 676 Java: A Beginner’s Guide

 6. All interaction with GUI components must take place on what thread?

event-dispatching thread

 7. What is the default action command associated with a JButton? How can the action
command be changed?

The default action command string is the text shown inside the button. It can be changed by calling
setActionCommand().

 8. What event is generated when a push button is pressed?

ActionEvent

 9. Show how to create a text field that has 32 columns.

JTextField(32)

 10. Can a JTextField have its action command set? If so, how?

Yes, by calling setActionCommand().

 11. What Swing component creates a check box? What event is generated when a check box is
selected or deselected?

JCheckBox creates a check box. An ItemEvent is generated when a check box is selected or deselected.

 12. JList displays a list of items from which the user can select. True or False?

True

 13. What event is generated when the user selects or deselects an item in a JList?

ListSelectionEvent

 14. What method sets the selection mode of a JList? What method obtains the index of the first
selected item?

setSelectionMode() sets the selection mode. getSelectedIndex() obtains the index of the first
selected item.

 15. Add a check box to the file comparer developed in Try This 17-1 that has the following text:
Show position of mismatch. When this box is checked, have the program display the location
of the first point in the files at which a mismatch occurs.

/*
 Try This 17-1

 A Swing-based file comparison utility.

 This version has a check box that causes the
 location of the first mismatch to be shown.

*/

18-AppA.indd 676 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 Appendix A: Answers to Self Tests 677

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.io.*;

public class SwingFC implements ActionListener {

 JTextField jtfFirst; // holds the first file name
 JTextField jtfSecond; // holds the second file name

 JButton jbtnComp; // button to compare the files

 JLabel jlabFirst, jlabSecond; // displays prompts
 JLabel jlabResult; // displays results and error messages

 JCheckBox jcbLoc; // check to display location of mismatch

 SwingFC() {

 // Create a new JFrame container.
 JFrame jfrm = new JFrame("Compare Files");

 // Specify FlowLayout for the layout manager.
 jfrm.setLayout(new FlowLayout());

 // Give the frame an initial size.
 jfrm.setSize(200, 220);

 // Terminate the program when the user closes the application.
 jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Create the text fields for the file names..
 jtfFirst = new JTextField(14);
 jtfSecond = new JTextField(14);

 // Set the action commands for the text fields.
 jtfFirst.setActionCommand("fileA");
 jtfSecond.setActionCommand("fileB");

 // Create the Compare button.
 JButton jbtnComp = new JButton("Compare");

 // Add action listener for the Compare button.
 jbtnComp.addActionListener(this);

 // Create the labels.
 jlabFirst = new JLabel("First file: ");

18-AppA.indd 677 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 678 Java: A Beginner’s Guide

 jlabSecond = new JLabel("Second file: ");
 jlabResult = new JLabel("");

 // Create check box.
 jcbLoc = new JCheckBox("Show position of mismatch");

 // Add the components to the content pane.
 jfrm.add(jlabFirst);
 jfrm.add(jtfFirst);
 jfrm.add(jlabSecond);
 jfrm.add(jtfSecond);
 jfrm.add(jcbLoc);
 jfrm.add(jbtnComp);
 jfrm.add(jlabResult);

 // Display the frame.
 jfrm.setVisible(true);
 }

 // Compare the files when the Compare button is pressed.
 public void actionPerformed(ActionEvent ae) {
 int i=0, j=0;
 int count = 0;

 // First, confirm that both file names have
 // been entered.
 if(jtfFirst.getText().equals("")) {
 jlabResult.setText("First file name missing.");
 return;
 }
 if(jtfSecond.getText().equals("")) {
 jlabResult.setText("Second file name missing.");
 return;
 }

 // Compare files. Use try-with-resources to manage the files.
 try (FileInputStream f1 = new FileInputStream(jtfFirst.getText());
 FileInputStream f2 = new FileInputStream(jtfSecond.getText()))
 {
 // Check the contents of each file.
 do {
 i = f1.read();
 j = f2.read();
 if(i != j) break;
 count++;
 } while(i != -1 && j != -1);

18-AppA.indd 678 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 Appendix A: Answers to Self Tests 679

 if(i != j) {
 if(jcbLoc.isSelected())
 jlabResult.setText("Files differ at location " + count);
 else
 jlabResult.setText("Files are not the same.");
 }
 else
 jlabResult.setText("Files compare equal.");

 } catch(IOException exc) {
 jlabResult.setText("File Error");
 }
 }

 public static void main(String[] args) {
 // Create the frame on the event dispatching thread.
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new SwingFC();
 }
 });
 }
}

 16. Change the ListDemo program so that it allows multiple items in the list to be selected.

// Demonstrate multiple selection in a JList.

import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;

public class ListDemo implements ListSelectionListener {

 JList<String> jlst;
 JLabel jlab;
 JScrollPane jscrlp;

 // Create an array of names.
 String[] names = { "Sherry", "Jon", "Rachel",
 "Sasha", "Josselyn", "Randy",
 "Tom", "Mary", "Ken",
 "Andrew", "Matt", "Todd" };

 ListDemo() {
 // Create a new JFrame container.
 JFrame jfrm = new JFrame("JList Demo");

18-AppA.indd 679 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 680 Java: A Beginner’s Guide

 // Specify a flow Layout.
 jfrm.setLayout(new FlowLayout());

 // Give the frame an initial size.
 jfrm.setSize(200, 160);

 // Terminate the program when the user closes the application.
 jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Create a JList.
 jlst = new JList<String>(names);

 // By removing the following line, multiple selection (which
 // is the default behavior of a JList) will be used.
// jlst.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

 // Add list to a scroll pane.
 jscrlp = new JScrollPane(jlst);

 // Set the preferred size of the scroll pane.
 jscrlp.setPreferredSize(new Dimension(120, 90));

 // Make a label that displays the selection.
 jlab = new JLabel("Please choose a name");

 // Add list selection handler.
 jlst.addListSelectionListener(this);

 // Add the list and label to the content pane.
 jfrm.add(jscrlp);
 jfrm.add(jlab);

 // Display the frame.
 jfrm.setVisible(true);
 }

 // Handle list selection events.
 public void valueChanged(ListSelectionEvent le) {
 // Get the indices of the changed item.
 int[] indices = jlst.getSelectedIndices();

 // Display the selections, if one or more items
 // were selected.
 if(indices.length != 0) {
 String who = "";

18-AppA.indd 680 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix A

 Appendix A: Answers to Self Tests 681

 // Construct a string of the names.
 for(int i : indices)
 who += names[i] + " ";

 jlab.setText("Current selections: " + who);
 }
 else // Otherwise, reprompt.
 jlab.setText("Please choose a name");
 }

 public static void main(String[] args) {
 // Create the frame on the event dispatching thread.
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new ListDemo();
 }
 });
 }
}

18-AppA.indd 681 12/11/21 9:38 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter
Blind Folio: xxiv

00-FM.indd 24 12/11/21 9:20 PM

This page intentionally left blank

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix B
Blind Folio: 683

Appendix B
Using Java’s
Documentation
Comments

19-AppB.indd 683 12/11/21 9:23 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix B

 684 Java: A Beginner’s Guide

A s explained in Chapter 1, Java supports three types of comments. The first two are the //
and the /* */. The third type is called a documentation comment. It begins with the

character sequence /**. It ends with */. Documentation comments allow you to embed
information about your program into the program itself. You can then use the javadoc utility
program (supplied with the JDK) to extract the information and put it into an HTML file.
Documentation comments make it convenient to document your programs. You have almost
certainly seen documentation that uses such comments, because that is the way the Java API
library was documented. Beginning with JDK 9, javadoc includes support for modules.

The javadoc Tags
The javadoc utility recognizes several tags, including those shown here:

Tag Meaning

@author Identifies the author.

{@code} Displays information as-is, without processing HTML styles, in code font.

@deprecated Specifies that a program element is deprecated.

{@docRoot} Specifies the path to the root directory of the current documentation.

@exception Identifies an exception thrown by a method or constructor.

@hidden Prevents an element from appearing in the documentation.

{@index} Specifies a term for indexing.

{@inheritDoc} Inherits a comment from the immediate superclass.

{@link} Inserts an in-line link to another topic.

{@linkplain} Inserts an in-line link to another topic, but the link is displayed in a plain-text font.

{@literal} Displays information as-is, without processing HTML styles.

@param Documents a parameter.

@provides Documents a service provided by a module.

@return Documents a method’s return value.

@see Specifies a link to another topic.

@serial Documents a default serializable field.

@serialData Documents the data written by the writeObject() or writeExternal() methods.

@serialField Documents an ObjectStreamField component.

@since States the release when a specific change was introduced.

{@summary} Documents a summary of an item.

{@systemProperty} States that a name is a system property.

@throws Same as @exception.

@uses Documents a service needed by a module.

{@value} Displays the value of a constant, which must be a static field.

@version Specifies the version of a program element.

19-AppB.indd 684 12/11/21 9:23 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix B

 Appendix B: Using Java’s Documentation Comments 685

Document tags that begin with an “at” sign (@) are called block tags (also called
stand-alone tags), and they must be used at the beginning of their own line. Tags that begin
with a brace, such as {@code}, are called inline tags, and they can be used within a larger
description. You may also use other, standard HTML tags in a documentation comment.
However, some tags such as headings should not be used, because they disrupt the look of
the HTML file produced by javadoc.

As it relates to documenting source code, you can use documentation comments to document
classes, interfaces, fields, constructors, methods, packages, and modules. In all cases, the
documentation comment must immediately precede the item being documented. Some tags,
such as @see, @since, and @deprecated, can be used to document any element. Other tags
apply to only the relevant elements. Several key tags are examined next.

NOTE
As one would expect, the capabilities of javadoc and the documentation comment tags
have evolved over time, often in response to new Java features. You will want to refer to
the javadoc documentation for information on the latest javadoc features.

@author
The @author tag documents the author of a program element. It has the following syntax:

@author description

Here, description will usually be the name of the author. You will need to specify the -author
option when executing javadoc in order for the @author field to be included in the HTML
documentation.

{@code}
The {@code} tag enables you to embed text, such as a snippet of code, into a comment. That text
is then displayed as-is in code font, without any further processing such as HTML rendering.
It has the following syntax:

{@code code-snippet}

@deprecated
The @deprecated tag specifies that a program element is deprecated. It is recommended that
you include @see or {@link} tags to inform the programmer about available alternatives. The
syntax is the following:

@deprecated description

Here, description is the message that describes the deprecation. The @deprecated tag can
be used in documentation for fields, methods, constructors, classes, modules, and interfaces.

{@docRoot}
{@docRoot} specifies the path to the root directory of the current documentation.

19-AppB.indd 685 12/11/21 9:23 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix B

 686 Java: A Beginner’s Guide

@exception
The @exception tag describes an exception to a method. Today, @throws is the preferred
alternative, but @exception is still supported. It has the following syntax:

@exception exception-name explanation

Here, the fully qualified name of the exception is specified by exception-name, and explanation
is a string that describes how the exception can occur. The @exception tag can be used only in
documentation for a method or constructor.

@hidden
The @hidden tag prevents an element from appearing in the documentation.

{@index}
The {@index} tag specifies an item that will be indexed, and thus found when using the search
feature. It has the following syntax:

{@index term usage-str }

Here, term is the item (which can be a quoted string) to be indexed. usage-str is optional. Thus,
in the following @throws tag, {@index} causes the term "error" to be added to the index:

@throws IOException On input {@index error}.

Note that the word “error” is still displayed as part of the description. It’s just that now it is
also indexed. If you include the optional usage-str, then that description will be shown in the
index and in the search box to indicate how the term is used. For example, {@index error
Serious execution failure} will show “Serious execution failure” under "error" in the index
and in the search box.

{@inheritDoc}
This tag inherits a comment from the immediate superclass.

{@link}
The {@link} tag provides an in-line link to additional information. It has the following syntax:

{@link mod-name/pkg-name.class-name#member-name text}

Here, mod-name/pkg-name.class-name#member-name specifies the name of a class or method
to which a link is added, and text is the string that is displayed. The text field is optional. If not
included, member-name is displayed as the link. Notice that the module name (if present) is
separated from the package name with a /. For example,

{@link java.base/java.io.Writer#write}

defines a link to the write() method of Writer in java.io, in the module java.base.

19-AppB.indd 686 12/11/21 9:23 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix B

 Appendix B: Using Java’s Documentation Comments 687

{@linkplain}
The {@linkplain} tag inserts an in-line link to another topic. The link is displayed in plain-text
font. Otherwise, it is similar to {@link}.

{@literal}
The {@literal} tag enables you to embed text into a comment. That text is then displayed as-is,
without any further processing such as HTML rendering. It has the following syntax:

{@literal description}

Here, description is the text that is embedded.

@param
The @param tag documents a parameter. It has the following syntax:

@param parameter-name explanation

Here, parameter-name specifies the name of a parameter. The meaning of that parameter is
described by explanation. The @param tag can be used only in documentation for a method,
a constructor, or a generic class or interface.

@provides
The @provides tag documents a service provided by a module. It has the following syntax:

@provides type explanation

Here, type specifies a service provider type and explanation describes the service provider.

@return
The @return tag describes the return value of a method. It has two forms. The first is the
block tag show here.

@return explanation

Here, explanation describes the type and meaning of the value returned by a method. Thus, the
tag can be used only in documentation for a method. JDK 16 added an inline tag version:

{@return explanation}

This form must be at the top of the method’s documentation comment.

@see
The @see tag provides a reference to additional information. Two commonly used forms are
shown here:

@see anchor

@see mod-name/pkg-name.class-name#member-name text

19-AppB.indd 687 12/11/21 9:23 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix B

 688 Java: A Beginner’s Guide

In the first form, anchor is a link to an absolute or relative URL. In the second form,
mod-name/pkg-name.class-name#member-name specifies the name of the item, and text is
the text displayed for that item. The text parameter is optional, and if not used, then the item
specified by mod-name/pkg-name.class-name#member-name is displayed. The member name,
too, is optional. Thus, you can specify a reference to a module, package, class, or interface
in addition to a reference to a specific method or field. The name can be fully qualified or
partially qualified. However, the dot that precedes the member name (if it exists) must be
replaced by a hash character. There is a third form of @see that lets you simply specify a
text-based description.

@since
The @since tag states that an element was introduced in a specific release. It has the following
syntax:

@since release

Here, release is a string that designates the release or version in which this feature became
available.

{@summary}
The {@summary} tag explicitly specifies a summary for an item. It must be the first tag in the
documentation for the item. It has the following syntax:

@summary explanation

Here, explanation provides a summary of the tagged item, which can span multiple lines.
Without the use of {@summary}, the first line in an item’s documentation comment is used
as the summary.

@throws
The @throws tag has the same meaning as the @exception tag, but is now the preferred form.

@uses
The @uses tag documents a service provider needed by a module. It has the following syntax:

@uses type explanation

Here, type specifies a service provider type and explanation describes the service.

{@value}
{@value} has two forms. The first displays the value of the constant that it precedes, which must
be a static field. It has this form:

{@value}

19-AppB.indd 688 12/11/21 9:23 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix B

 Appendix B: Using Java’s Documentation Comments 689

The second form displays the value of a specified static field. It has this form:

{@value pkg.class#field}

Here, pkg.class#field specifies the name of the static field.

@version
The @version tag specifies the version of a program element. It has the following syntax:

@version info

Here, info is a string that contains version information, typically a version number, such as 2.2.
You will need to specify the -version option when executing javadoc in order for the @version
field to be included in the HTML documentation.

The General Form of a Documentation Comment
After the beginning /**, the first line or lines become the main description of your class,
interface, field, constructor, method, or module. After that, you can include one or more of the
various @ tags. Each @ tag must start at the beginning of a new line or follow one or more
asterisks (*) that are at the start of a line. Multiple tags of the same type should be grouped
together. For example, if you have three @see tags, put them one after the other. In-line tags
(those that begin with a brace) can be used within any description.

Here is an example of a documentation comment for a class:

/**
 * This class draws a bar chart.
 * @author Herbert Schildt
 * @version 3.2
*/

What javadoc Outputs
The javadoc program takes as input your Java program’s source file and outputs several
HTML files that contain the program’s documentation. Information about each class will be
in its own HTML file. javadoc will also output an index and a hierarchy tree. Other HTML
files can be generated. Beginning with JDK 9, a search box feature is also included.

An Example That Uses Documentation Comments
Following is a sample program that uses documentation comments. Notice the way each
comment immediately precedes the item that it describes. After being processed by javadoc,
the documentation about the SquareNum class will be found in SquareNum.html.

import java.io.*;

/**
 * This class demonstrates documentation comments.
 * @author Herbert Schildt

19-AppB.indd 689 12/11/21 9:23 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix B

 690 Java: A Beginner’s Guide

 * @version 1.2
*/
public class SquareNum {
 /**
 * This method returns the square of num.
 * This is a multiline description. You can use
 * as many lines as you like.
 * @param num The value to be squared.
 * @return num squared.
 */
 public double square(double num) {
 return num * num;
 }

 /**
 * This method inputs a number from the user.
 * @return The value input as a double.
 * @throws IOException On input error.
 * @see IOException
 */
 public double getNumber() throws IOException {
 // create a BufferedReader using System.in
 InputStreamReader isr = new InputStreamReader(System.in);
 BufferedReader inData = new BufferedReader(isr);
 String str;

 str = inData.readLine();
 return (new Double(str)).doubleValue();
 }

 /**
 * This method demonstrates square().
 * @param args Unused.
 * @throws IOException On input error.
 * @see IOException
 */
 public static void main(String[] args)
 throws IOException
 {
 SquareNum ob = new SquareNum();
 double val;

 System.out.println("Enter value to be squared: ");
 val = ob.getNumber();
 val = ob.square(val);

 System.out.println("Squared value is " + val);
 }
}

19-AppB.indd 690 12/11/21 9:23 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix C
Blind Folio: 691

Appendix C
Compile and Run Simple
Single-File Programs
in One Step

20-AppC.indd 691 12/11/21 9:39 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix C

 692 Java: A Beginner’s Guide

In Chapter 1, you were shown how to compile a Java program into bytecode using the javac
compiler and then run the resulting .class file(s) using the Java launcher java. This is how Java
programs have been compiled and run since Java’s beginning, and it is the method that you will
use when developing applications. However, beginning with JDK 11, it is possible to compile
and run some types of simple Java programs directly from the source file without having to
first invoke javac. To do this, pass the name of the source file, using the .java file extension, to
java. This causes java to automatically invoke the compiler and execute the program.

For example, the following automatically compiles and runs the first example in this book:

java Example.java

In this case, the Example class is compiled and then run in a single step. There is no need to
use javac. Be aware, however, that no .class file is created. Instead, the compilation is done
behind the scenes. As a result, to rerun the program, you must execute the source file again.
You can’t execute its .class file, because one wasn’t created.

One use of the source-file launch capability is to facilitate the use of Java programs in
script files. It can also be useful for short one-time-use programs. In some cases, it makes it a
little easier to run simple example programs when you are experimenting with Java. It is not,
however, a general-purpose substitute for Java’s normal compilation/execution process.

Although this new ability to launch a Java program directly from its source file is appealing,
it comes with some restrictions. First, the entire program must be contained in a single source
file. However, most real-world programs use multiple source files. Second, it will always
execute the first class it finds in the file, and that class must contain a main() method. If the
first class in the file does not contain a main() method, the launch will fail. This means that
you must follow a strict organization for your code, even if you would prefer to organize it
otherwise. Third, because no .class files are created, using java to run a single-file program
does not result in a class file that can be reused, possibly by other programs. As a result of
these restrictions, using java to run a single-file source program can be useful, but it constitutes
what is, essentially, a special-case technique.

As it relates to this book, it is possible to use the single source-file launch feature to try
many of the examples; just be sure that the class with the main() method is first in your
file. That said, it is not, however, applicable or appropriate in all cases. Furthermore, the
discussions (and many of the examples) in the book assume that you are using the normal
compilation process of invoking javac to compile a source file into bytecode and then using
java to run that bytecode. This is the mechanism that is used for real-world development, and
understanding this process is an important part of learning Java. It is imperative that you are
thoroughly familiar with it. For these reasons, when trying the examples in this book, it is
strongly recommended that in all cases you use the normal approach to compiling and running
a Java program. Doing so ensures that you have a solid foundation in the way Java works. Of
course, you might find it fun to experiment with the single source-file launch option!

NOTE
It is possible to execute a single-file program from a file that does not use the
.java extension. To do so, you must specify the --source APIVer option, where
APIVer specifies the JDK version number.

20-AppC.indd 692 12/11/21 9:39 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix D
Blind Folio: 693

Appendix D
Introducing JShell

21-AppD.indd 693 12/11/21 9:39 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix D

 694 Java: A Beginner’s Guide

Beginning with JDK 9, Java has included a tool called JShell. It provides an interactive
environment that enables you to quickly and easily experiment with Java code. JShell

implements what is referred to as read-evaluate-print loop (REPL) execution. Using this
mechanism, you are prompted to enter a fragment of code. This fragment is then read and
evaluated. Next, JShell displays output related to the code, such as the output produced by a
println() statement, the result of an expression, or the current value of a variable. JShell then
prompts for the next piece of code, and the process continues (i.e., loops). In the language of
JShell, each code sequence you enter is called a snippet.

A key point to understand about JShell is that you do not need to enter a complete Java
program to use it. Each snippet you enter is simply evaluated as you enter it. This is possible
because JShell handles many of the details associated with a Java program for you automatically.
This lets you concentrate on a specific feature without having to write a complete program,
which makes JShell especially helpful when you are first learning Java.

As you might expect, JShell can also be useful to experienced programmers. Because
JShell stores state information, it is possible to enter multiline code sequences and run them
inside JShell. This makes JShell quite useful when you need to prototype a concept because
it lets you interactively experiment with your code without having to develop and compile a
complete program.

This appendix introduces JShell and explores several of its key features, with the primary
focus being on those features most useful to beginning Java programmers.

JShell Basics
JShell is a command-line tool. Thus, it runs in a command-prompt window. To start a JShell
session, execute jshell from the command line. After doing so, you will see the JShell prompt:

jshell>

When this prompt is displayed, you can enter a code snippet or a JShell command.
In its simplest form, JShell lets you enter an individual statement and immediately see the

result. To begin, think back to the first example Java program in this book. It is shown again here.

class Example {
 // A Java program begins with a call to main().
 public static void main(String[] args) {
 System.out.println("Java drives the Web.");
 }
}

In this program, only the println() statement actually performs an action, which is displaying
its message on the screen. The rest of the code simply provides the required class and method
declarations. In JShell, it is not necessary to explicitly specify the class or method in order to
execute the println() statement. JShell can execute it directly on its own. To see how, enter the
following line at the JShell prompt:

System.out.println("Java drives the Web.");

21-AppD.indd 694 12/11/21 9:39 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix D

 Appendix D: Introducing JShell 695

Then, press enter. This output is displayed:

Java drives the Web.

jshell>

As you can see, the call to println() is evaluated and its string argument is output. Then, the
prompt is redisplayed.

Before moving on it is useful to explain why JShell can execute a single statement, such
as the call to println(), when the Java compiler, javac, requires a complete program. JShell
is able to evaluate a single statement because JShell automatically provides the necessary
program framework for you, behind the scenes. This consists of a synthetic class and a synthetic
method. Thus, in this case, the println() statement is embedded in a synthetic method that is
part of a synthetic class. As a result, the preceding code is still part of a valid Java program
even though you don’t see all of the details. This approach provides a very fast and convenient
way to experiment with Java code.

Next, let’s look at how variables are supported. In JShell, you can declare a variable, assign
the variable a value, and use it in any valid expressions. For example, enter the following line
at the prompt:

int count;

After doing so you will see the following response:

count ==> 0

This indicates that count has been added to the synthetic class and initialized to zero.
Furthermore, it has been added as a static variable of the synthetic class.

Next, give count the value 10 by entering this statement:

count = 10;

You will see this response:

count ==> 10

As you can see, count’s value is now 10. Because count is static, it can be used without
reference to an object.

Now that count has been declared, it can be used in an expression. For example, enter this
println() statement:

System.out.println("Reciprocal of count: " + 1.0 / count);

JShell responds with

Reciprocal of count: 0.1

Here, the result of the expression 1.0 / count is 0.1 because count was previously assigned the
value 10.

21-AppD.indd 695 12/11/21 9:39 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix D

 696 Java: A Beginner’s Guide

In addition to demonstrating the use of a variable, the preceding example illustrates another
important aspect of JShell: it maintains state information. In this case, count is assigned the
value 10 in one statement, and then this value is used in the expression 1.0 / count in the
subsequent call to println() in a second statement. Between these two statements, JShell stores
count’s value. In general, JShell maintains the current state and effect of the code snippets that
you enter. This lets you experiment with larger code fragments that span multiple lines.

Before moving on, let’s try one more example. In this case, we will create a for loop that
uses the count variable. Begin by entering this line at the prompt:

for(count = 0; count < 5; count++)

At this point, JShell responds with the following prompt:

...>

This indicates that additional code is required to finish the statement. In this case, the target of
the for loop must be provided. Enter the following:

System.out.println(count);

After entering this line, the for statement is complete and both lines are executed. You will see
the following output:

0
1
2
3
4

In addition to statements and variable declarations, JShell lets you declare classes and
methods and use import statements. Examples are shown in the following sections. One other
point: Any code that is valid for JShell will also be valid for compilation by javac, assuming
the necessary framework is provided to create a complete program. Thus, if a code fragment
can be executed by JShell, then that fragment represents valid Java code. In other words, JShell
code is Java code.

List, Edit, and Rerun Code
JShell supports a large number of commands that let you control the operation of JShell.
At this point, three are of particular interest because they let you list the code that you have
entered, edit a line of code, and rerun a code snippet. As the subsequent examples become
longer, you will find these commands to be very helpful.

In JShell, all commands start with a / followed by the command. Perhaps the most commonly
used command is /list, which lists the code that you have entered. Assuming that you have followed
along with the examples shown in the preceding section, you can list your code by entering /list
at this time. Your JShell session will respond with a numbered list of the snippets you entered.
Pay special attention to the entry that shows the for loop. Although it consists of two lines, it
constitutes one statement. Thus, only one snippet number is used. In the language of JShell,

21-AppD.indd 696 12/11/21 9:39 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix D

 Appendix D: Introducing JShell 697

the snippet numbers are referred to as snippet IDs. In addition to the basic form of /list just
shown, other forms are supported, including those that let you list specific snippets by name or
number. For example, you can list the count declaration by using /list count.

You can edit a snippet by using the /edit command. This command causes an edit window
to open in which you can modify your code. Here are three forms of the /edit command that
you will find helpful at this time. First, if you specify /edit by itself, the edit window contains
all of the lines you have entered and lets you edit any part of it. Second, you can specify
a snippet to edit by using /edit n, where n specifies the snippet’s number. For example, to
edit snippet 3, use /edit 3. Finally, you can specify a named element, such as a variable. For
example, to change the value of count, use /edit count.

As you have seen, JShell executes code as you enter it. However, you can also rerun
what you have entered. To rerun the last fragment that you entered, use /!. To rerun a specific
snippet, specify its number using this form: /n, where n specifies the snippet to run. For example,
to rerun the fourth snippet, enter /4. You can rerun a snippet by specifying its position relative to
the current fragment by use of a negative offset. For example, to rerun a fragment that is three
snippets before the current one, use /-3.

Before moving on, it is helpful to point out that several commands, including those just
shown, allow you to specify a list of names or numbers. For example, to edit lines 2 and 4, you
could use /edit 2 4. For recent versions of JShell, several commands allow you specify a range
of snippets. These also include the /list, /edit, and /n commands just described. For example, to
list snippets 4 through 6, you would use /list 4-6.

There is one other important command that you need to know about now: /exit. This
terminates JShell.

Add a Method
You first learned about methods in Chapter 4. As you saw there, methods occur within classes.
However, when using JShell, it is possible to experiment with a method without having to
explicitly declare it within a class. As explained earlier, this is because JShell automatically
wraps code fragments within a synthetic class. As a result, you can easily and quickly write
a method without having to provide a class framework. You can also call the method without
having to create an object. This feature of JShell is especially beneficial when learning the
basics of methods in Java or when prototyping new code. To understand the process, we will
work through an example.

To begin, start a new JShell session and enter the following method at the prompt:

double reciprocal(double val) {
 return 1.0/val;
}

This creates a method that returns the reciprocal of its argument. After you enter this, JShell
responds with the following:

| created method reciprocal(double)

This indicates the method has been added to JShell’s synthetic class and is ready for use.

21-AppD.indd 697 12/11/21 9:39 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix D

 698 Java: A Beginner’s Guide

To call reciprocal(), simply specify its name, without any object or class reference. For
example, try this:

System.out.println(reciprocal(4.0));

JShell responds by displaying 0.25.
You might be wondering why you can call reciprocal() without using the dot operator

and an object reference. Here is the answer. When you create a stand-alone method in JShell,
such as reciprocal(), JShell automatically makes that method a static member of the synthetic
class. As you know from Chapter 5, static methods are called relative to their class, not on a
specific object. So, no object is required. This is similar to the way that stand-alone variables
become static variables of the synthetic class, as described earlier.

Another important aspect of JShell is its support for a forward reference inside a method.
This feature lets one method call another method, even if the second method has not yet been
defined. This enables you to enter a method that depends on another method without having to
worry about which one you enter first. Here is a simple example. Enter this line in JShell:

void myMeth() { myMeth2(); }

JShell responds with the following:

| created method myMeth(), however, it cannot be invoked until myMeth2()
 is declared

As you can see, JShell knows that myMeth2() has not yet been declared, but it still lets you
define myMeth(). As you would expect, if you try to call myMeth() at this time, you will see
an error message since myMeth2() is not yet defined, but you are still able to enter the code
for myMeth().

Next, define myMeth2() like this:

void myMeth2() { System.out.println("JShell is powerful."); }

Now that myMeth2() has been defined, you can call myMeth().
In addition to its use in a method, you can use a forward reference in a field initializer in a

class.

Create a Class
Although JShell automatically supplies a synthetic class that wraps code snippets, you can also
create your own class in JShell. Furthermore, you can instantiate objects of your class. This
allows you to experiment with classes inside JShell’s interactive environment. The following
example illustrates the process.

Start a new JShell session and enter the following class, line by line:

class MyClass {
 double v;

 MyClass(double d) { v = d; }

21-AppD.indd 698 12/11/21 9:39 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix D

 Appendix D: Introducing JShell 699

 // Return the reciprocal of v.
 double reciprocal() { return 1.0 / v; }
}

When you finish entering the code, JShell will respond with

| created class MyClass

Now that you have added MyClass, you can use it. For example, you can create a MyClass
object with the following line:

MyClass ob = new MyClass(10.0);

JShell will respond by telling you that it added ob as a variable of type MyClass. Next, try the
following line:

System.out.println(ob.reciprocal());

JShell responds by displaying the value 0.1.
As a point of interest, when you add a class to JShell, it becomes a static nested member

of a synthetic class.

Use an Interface
Interfaces are supported by JShell in the same way as classes. Therefore, you can declare an
interface and implement it by a class within JShell. Let’s work through a simple example.
Before beginning, start a new JShell session.

The interface that we will use declares a method called isLegalVal() that is used to determine
if a value is valid for some purpose. It returns true if the value is legal and false otherwise.
Of course, what constitutes a legal value will be determined by each class that implements the
interface. Begin by entering the following interface into JShell:

interface MyIF {
 boolean isLegalVal(double v);
}

JShell responds with

| created interface MyIf

Next, enter the following class, which implements MyIF:

class MyClass implements MyIF {

 double start;
 double end;

 MyClass(double a, double b) { start = a; end = b; }

21-AppD.indd 699 12/11/21 9:39 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix D

 700 Java: A Beginner’s Guide

 // Determine if v is within the range start to end, inclusive.
 public boolean isLegalVal(double v) {
 if((v >= start) && (v <= end)) return true;
 return false;
 }

}

JShell responds with

| created class MyClass

Notice that MyClass implements isLegalVal() by determining if the value v is within the range
(inclusive) of the values in the MyClass instance variables start and end.

Now that both MyIF and MyClass have been added, you can create a MyClass object and
call isLegalVal() on it, as shown here:

MyClass ob = new MyClass(0.0, 10.0);

System.out.println(ob.isLegalVal(5.0));

In this case, the value true is displayed because 5 is within the range 0 through 10.
Because MyIF has been added to JShell, you can also create a reference to an object of

type MyIF. For example, the following is also valid code:

MyIF ob2 = new MyClass(1.0, 3.0);
boolean result = ob2.isLegalVal(1.1);

In this case, the value of result will be true and will be reported as such by JShell.
One other point: Enumerations and annotations are supported in JShell in the same way as

classes and interfaces.

Evaluate Expressions and Use Built-in Variables
JShell includes the ability to directly evaluate an expression without it needing to be part of a
full Java statement. This is especially useful when you are experimenting with code and don’t
need to execute the expression in a larger context. Here is a simple example. Using a new JShell
session, enter the following at the prompt:

3.0 / 16.0

JShell responds with:

$1 ==> 0.1875

As you can see, the result of the expression is computed and displayed. However, note
that this value is also assigned to a temporary variable called $1. In general, each time an
expression is evaluated directly, its result is stored in a temporary variable of the proper type.
Temporary variable names all begin with a $ followed by a number, which is increased each

21-AppD.indd 700 12/11/21 9:39 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix D

 Appendix D: Introducing JShell 701

time a new temporary variable is needed. You can use these temporary variables like any other
variable. For example, the following displays the value of $1, which is 0.1875 in this case.

System.out.println($1);

Here is another example:

double v = $1 * 2;

Here, the value $1 times 2 is assigned to v. Thus, v will contain 0.375.
You can change the value of a temporary variable. For example, this reverses the sign of

$1:

$1 = -$1

JShell responds with

$1 ==> -0.1875

Expressions are not limited to numeric values. For example, here is one that concatenates a
String with the value returned by Math.abs($1).

"The absolute value of $1 is " + Math.abs($1)

This results in a temporary variable that contains the string

The absolute value of $1 is 0.1875

Importing Packages
As described in Chapter 8, an import statement is used to bring members of a package into
view. Furthermore, any time you use a package other than java.lang, you must import it. The
situation is much the same in JShell except that by default, JShell imports several commonly
used packages automatically. These include java.io and java.util, among several others. Since
these packages are already imported, no explicit import statement is required to use them.

For example, because java.io is automatically imported, the following statement can be
entered:

FileInputStream fin = new FileInputStream("myfile.txt");

Recall that FileInputStream is packaged in java.io. Since java.io is automatically imported, it
can be used without having to include an explicit import statement. Assuming that you actually
have a file called myfile.txt in the current directory, JShell will respond by adding the variable
fin and opening the file. You can then read and display the file by entering these statements:

int i;
do {
 i = fin.read();
 if(i != -1) System.out.print((char) i);
} while(i != -1);

21-AppD.indd 701 12/11/21 9:39 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix D

 702 Java: A Beginner’s Guide

This is the same basic code that was discussed in Chapter 10, but no explicit import java.io
statement is required.

Keep in mind that JShell automatically imports only a handful of packages. If you want to
use a package not automatically imported by JShell, then you must explicitly import it as you
do with a normal Java program. One other point: You can see a list of the current imports by
using the /imports command.

Exceptions
In the I/O example shown in the preceding section on imports, the code snippets also illustrate
another very important aspect of JShell. Notice that there are no try/catch blocks that handle
I/O exceptions. If you look back at the similar code in Chapter 10, the code that opens the file
catches a FileNotFoundException, and the code that reads the file watches for an IOException.
The reason that you don’t need to catch these exceptions in the snippets shown earlier is because
JShell automatically handles them for you. More generally, JShell will automatically handle
checked exceptions in many cases.

Some More JShell Commands
In addition to the commands discussed earlier, JShell supports several others. One command
that you will want to try immediately is /help. It displays a list of the commands. You can also
use /? to obtain help. Several other commonly used commands are examined here.

You can reset JShell by using the /reset command. This is especially useful when you want
to change to a new project. By use of /reset you avoid the need to exit and then restart JShell.
Be aware, however, that /reset resets the entire JShell environment, so all state information
is lost.

You can save a session by using /save. Its simplest form is shown here:

/save filename

Here, filename specifies the name of the file to save into. By default, /save saves your current
source code, but it supports several options, of which two are of particular interest. By
specifying -all you save all lines that you enter, including those that you entered incorrectly.
You can use the -history option to save your session history (i.e., the list of the commands that
you have entered).

You can load a saved session by using /open. Its form is shown next:

/open filename

Here, filename is the name of the file to load.

21-AppD.indd 702 12/11/21 9:39 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix D

 Appendix D: Introducing JShell 703

JShell provides several commands that let you list various elements of your work. They are
shown here:

Command Effect

/types Shows classes, interfaces, and enums.

/imports Shows import statements.

/methods Shows methods.

/vars Shows variables.

For example, if you entered the following lines:

int start = 0;
int end = 10;
int count = 5;

and then entered the /vars command, you would see

| int start = 0;
| int end = 10;
| int count = 5;

Another often useful command is /history. It lets you view the history of the current
session. The history contains a list of what you have typed at the command prompt.

Exploring JShell Further
The best way to get proficient with JShell is to work with it. Try entering several different
Java constructs and watching the way that JShell responds. As you experiment with JShell
you will find the usage patterns that work best for you. This will enable you to find effective
ways to integrate JShell into your learning or development process. Also, keep in mind
that JShell is not just for beginners. It also excels when prototyping code. Thus, as you
advance in your study of Java, you will still find JShell helpful whenever you need to explore
new areas. Simply put: JShell is an important tool that further enhances the overall Java
development experience.

21-AppD.indd 703 12/11/21 9:39 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter
Blind Folio: xxiv

00-FM.indd 24 12/11/21 9:20 PM

This page intentionally left blank

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix E
Blind Folio: 705

Appendix E
More Java Keywords

22-AppE.indd 705 12/11/21 9:23 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix E

 706 Java: A Beginner’s Guide

There are five Java keywords not discussed elsewhere in this book. They are:

● transient

● volatile

● native

● strictfp

● assert

These keywords are most often used in programs more advanced than those found in this book.
However, an overview of each is presented so that you will know their purpose. In addition,
another form of this is described.

The transient and volatile Modifiers
The transient and volatile keywords are type modifiers that handle somewhat specialized
situations. When an instance variable is declared as transient, then its value need not persist
when an object is stored. Thus, a transient field is one that does not affect the persisted state of
an object.

The volatile modifier tells the compiler that a variable can be changed unexpectedly
by other parts of your program. One of these situations involves multithreaded programs.
In a multithreaded program, sometimes two or more threads will share the same variable.
For efficiency considerations, each thread can keep its own, private copy of such a shared
variable, possibly in a register of the CPU. The real (or master) copy of the variable is updated
at various times, such as when a synchronized method is entered. While this approach works
fine, there may be times when it is inappropriate. In some cases, all that really matters is that the
master copy of a variable always reflects the current state, and that this current state is used by
all threads. To ensure this, declare the variable as volatile.

strictfp
One of the more esoteric keywords is strictfp. When Java 2 was released several years ago,
the floating-point computation model was relaxed slightly. Specifically, the new model did
not require the truncation of certain intermediate values that occur during a computation.
This prevented overflow or underflow in some cases. By modifying a class, method, or
interface with strictfp, you could ensure that floating-point calculations (and thus all
truncations) took place precisely as they did in earlier versions of Java. When a class was
modified by strictfp, all of the methods in the class were also strictfp automatically. However,
beginning with JDK 17, all floating-point computations are now strict and strictfp is obsolete
and no longer required. Its use will now generate a warning message.

22-AppE.indd 706 12/11/21 9:23 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix E

 Appendix E: More Java Keywords 707

REMEMBER
Beginning with JDK 17, the keyword strictfp is obsolete and its use will now generate a
warning message.

assert
The assert keyword is used during program development to create an assertion, which is a
condition that is expected to be true during the execution of the program. For example, you
might have a method that should always return a positive integer value. You might test this by
asserting that the return value is greater than zero using an assert statement. At run time, if
the condition actually is true, no other action takes place. However, if the condition is false,
then an AssertionError is thrown. Assertions are often used during testing to verify that some
expected condition is actually met. They are not usually used for released code.

The assert keyword has two forms. The first is shown here:

assert condition;

Here, condition is an expression that must evaluate to a Boolean result. If the result is true, then
the assertion is true and no other action takes place. If the condition is false, then the assertion
fails and a default AssertionError object is thrown. For example,

assert n > 0;

If n is less than or equal to zero, then an AssertionError is thrown. Otherwise, no action
takes place.

The second form of assert is shown here:

assert condition : expr;

In this version, expr is a value that is passed to the AssertionError constructor. This value is
converted to its string format and displayed if an assertion fails. Typically, you will specify a
string for expr, but any non-void expression is allowed as long as it defines a reasonable string
conversion.

To enable assertion checking at run time, you must specify the -ea option. For example, to
enable assertions for Sample, execute it using this line:

java -ea Sample

Assertions are quite useful during development because they streamline the type of error
checking that is common during testing. But be careful—you must not rely on an assertion to
perform any action actually required by the program. The reason is that normally, released code
will be run with assertions disabled and the expression in an assertion will not be evaluated.

22-AppE.indd 707 12/11/21 9:23 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix E

 708 Java: A Beginner’s Guide

Native Methods
Although rare, there may occasionally be times when you will want to call a subroutine that is
written in a language other than Java. Typically, such a subroutine will exist as executable code
for the CPU and environment in which you are working—that is, native code. For example, you
may wish to call a native code subroutine in order to achieve faster execution time. Or you may
want to use a specialized, third-party library, such as a statistical package. However, since Java
programs are compiled to bytecode, which is then interpreted (or compiled on the fly) by the
Java run-time system, it would seem impossible to call a native code subroutine from within
your Java program. Fortunately, this conclusion is false. Java provides the native keyword,
which is used to declare native code methods. Once declared, these methods can be called from
inside your Java program just as you call any other Java method.

To declare a native method, precede the method with the native modifier, but do not define
any body for the method. For example:

public native int meth() ;

Once you have declared a native method, you must provide the native method and follow a
rather complex series of steps in order to link it with your Java code.

Another Form of this
There is another form of this that enables one constructor to invoke another constructor within
the same class. You saw an example of this usage in Chapter 16 where it was required when
creating a non-canonical record constructor. Its use is, however, not limited to that situation.
It is often used to reduce code duplication. The general form of this use of this is shown here:

this(arg-list)

When this() is executed, the overloaded constructor that matches the parameter list
specified by arg-list is executed first. Then, if there are any statements inside the original
constructor, they are executed. The call to this() must be the first statement within the
constructor. Here is a simple example:

class MyClass {
 int a;
 int b;

 // Initialize a and b individually.
 MyClass(int i, int j) {
 a = i;
 b = j;
 }

 // Use this() to initialize a and b to the same value.
 MyClass(int i) {
 this(i, i); // invokes MyClass(i, i)
 }
}

22-AppE.indd 708 12/11/21 9:23 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Appendix E

 Appendix E: More Java Keywords 709

In MyClass, only the first constructor actually assigns a value to a and b. The second
constructor simply invokes the first. Therefore, when this statement executes:

MyClass mc = new MyClass(8);

the call to MyClass(8) causes this(8, 8) to be executed, which translates into a call to
MyClass(8, 8).

As mentioned, invoking overloaded constructors through this() can be useful because it can
prevent the unnecessary duplication of code. However, you need to be careful. Constructors that
call this() may execute a bit slower than those that contain all of their initialization code in-line.
This is because the call and return mechanism used when the second constructor is invoked adds
overhead. Remember that object creation affects all users of your class. If your class will be
used to create large numbers of objects, then you must carefully balance the benefits of smaller
code against the increased time it takes to create an object. As you gain more experience with
Java, you will find these types of decisions easier to make.

There are two restrictions you need to keep in mind when using this(). First, you cannot
use any instance variable of the constructor’s class in a call to this(). Second, you cannot use
super() and this() in the same constructor because each must be the first statement in the
constructor.

22-AppE.indd 709 12/11/21 9:23 PM

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Front Matter
Blind Folio: xxiv

00-FM.indd 24 12/11/21 9:20 PM

This page intentionally left blank

711

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Index

Index

& (bitwise AND), 172–174
& (Boolean logical AND), 50, 51, 52, 54
&& (short-circuit AND), 50, 52–53, 54
*

multiplication operator, 19, 48
used in a documentation comment, 689
used in import statement, 285, 449

@ (annotation syntax), 450
@ tags (javadoc), 684–689
\ used for character escape sequences

(backslash character constants), 42
| (bitwise OR), 172, 173, 174–175
| (Boolean logical OR), 50, 51, 52, 54
|| (short-circuit OR), 50, 52, 53, 54
[], 58, 137, 142, 145–146, 169
^ (bitwise exclusive OR), 172, 173, 175–176
^ (Boolean logical exclusive OR), 50, 51
:

used with case, 565, 570
used with a label, 92
used with the ? ternary operator, 183

::
constructor reference syntax, 522, 524
method reference syntax, 516, 518, 520,

521, 522

{ }, 16, 17, 26, 27, 28, 45, 85, 112, 113, 139, 144,
505, 531

$, 30
used in temporary variable names, 700–701

=, 19, 44, 53–55
= = (relational operator), 23, 50, 51, 427

versus equals(), 161
! (Boolean logical unary NOT), 50, 51
!=, 23, 50, 51
/

arithmetic operator, 19, 48
used for JShell commands, 696

/* */, 15, 684
/** */, 684, 689
//, 16, 684
<, 23, 40, 50, 51
< >

diamond operator (type inference), 488–489
generic type parameter syntax, 461, 462

<<, 172, 177, 178–179
<=, 23, 50, 51
–, 19, 48
– >

lambda (or arrow) operator, 497
used with a case statement, 561, 565–570

23-Index.indd 711 12/11/21 9:24 PM

 712 Java: A Beginner’s Guide

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Index

– –, 26, 48, 49–50
%, 48–49
(), 16, 58, 62, 112, 117, 118, 128, 130, 432,

498, 503
and casts, 56
and operator precedence, 40, 58, 60, 62
used with super, 239
used with this, 708–709

. (dot operator), 58, 108, 114, 148, 212, 244, 305

... (variable-length argument syntax), 223, 224, 227
+

addition, 19, 48
concatenation operator, 19, 161

++, 25, 48, 49–50
?

ternary operator, 182–184
wildcard argument specifier, 470, 474, 475

""", text block delimiter, 165
>, 23, 50, 51
>>, 172, 177–179
>>>, 172, 177, 179
>=, 23, 50, 51
; (semicolon), 17, 27, 78, 144, 355, 432, 565
~ (bitwise unary NOT), 172, 173, 176–177
_ (underscore)

used with integer or floating-point literals, 41
used as a keyword, 30

A
abs(), 204
Abstract method(s), 265–268, 286, 497, 498, 499

and lambda expressions, 498–499, 500,
501, 504, 514

abstract type modifier, 265, 268, 269, 498
Abstract Window Toolkit. See AWT

(Abstract Window Toolkit)
AbstractButton class, 604, 611
Access control, 188–193

and Java’s default access, 189, 280, 287
and interfaces, 287
and modules, 532, 538, 539, 555
and packages, 189, 276, 277, 280–284

Access modifiers, 16, 189–190
Accessor methods, 190, 236–238
Action command string, 605, 607, 608, 611

Action events, 603, 604–605, 606, 607, 608, 611
ActionEvent class, 603, 604, 605, 606, 607, 608, 611
ActionListener interface, 603, 604, 606, 608, 625
actionPerformed(), 604–605, 607, 608, 611, 625
add(), 600, 602
addActionListener(), 604, 608, 625
addKeyListener(), 603
addMouseMotionListener(), 603
addTypeListener(), 603
Ahead-of-time compilation, 7
AND expression, using instanceof in a logical,

582–583
AND operator

bitwise (&), 172–174
Boolean logical (&), 50, 51, 52, 54
short-circuit or conditional-and (&&),

50, 52–53, 54
Annotation interface, 450
Annotations, 426, 450–452

built-in, table of, 451
and JShell, 700
marker, 451
type use, 450

API (Application Programming Interface),
Java, 286, 310

and compact profiles, 539
concurrent, 411
and modules, 530, 538–539, 540
stream, 526

Applet
characteristics of an, 5
deprecated, 8, 597
and the Internet, 5, 8
phase-out of the, 5, 8

Application architecture, pluggable, 546–547,
548–549

Application launcher, 12
args parameter to main(), 16, 166–167
Arguments, 110, 115–117

command-line, 16, 166–167
passing, 196–198
type. See Type argument(s)
variable-length. See Varargs
wildcard. See Wildcard arguments

Arithmetic operators, 19, 48–50
ArithmeticException, 315–316, 329, 330

23-Index.indd 712 12/11/21 9:24 PM

 Index 713

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Index

Array(s), 16, 136–153
boundaries, 139–140, 190, 312, 315
constructor reference for creating an, 524
declaration syntax, alternative, 145–146
declaration using var, 169
“fail-soft”, example of a, 190–193
for-each for loop and, 153–158
and generics, 492–493
index, 137
initializing, 139, 144–145, 171–172
irregular, 143–144
length instance variable of, 147–149
multidimensional, 142–145, 156–157
as a lambda expression parameter,

using an, 515
as objects, implemented, 136, 137
one-dimensional, 137–140
searching an unsorted, 157–158
sorting, 140–141
of strings, 162
and varargs, 223–224, 227

Array reference variables
assigning, 146–147
declaring, 137

ArrayIndexOutOfBoundsException, 140, 312,
315–317, 319, 329

Arrow (–>) case statement, 565–570
and blocks of code, 566, 567–569

Arrow (or lambda) operator (–>), 497
ASCII character set, 37, 38, 173
Assembly language, 10
assert keyword, 707
Assertion, 707
AssertionError, 707
Assignment operator(s)

=, 19, 44, 53–55
bitwise shorthand, 179
compound, 55
shorthand arithmetic and logical (op=), 53–55

Assignment(s)
array reference variables and, 146–147
automatic type conversions in, 55–56
object reference variables and, 111–112

Autoboxing/unboxing, 426, 440, 442–446
definition of the terms, 442
and expressions, 445–446

and generics, 440, 463
and methods, 443–444
when to use, 446

AutoCloseable interface, 353
Automatic resource management, 312, 327, 353
AWT (Abstract Window Toolkit)

limitations of, 593
and Swing, 593, 594, 604

AWTEvent class, 604

B
Backslash character constants, 42
Binary to specify an integer literal, using, 42
BinaryOperator<T> predefined functional

interface, 525
Bitwise operators, 172–182
Blocks, code, 26–27, 45

labeled break to exit, using a, 92–93
static, 215–216
synchronized, 409–411
as target of an arrow case, 566, 567–569

Boolean class, 372, 440
boolean data type, 35, 39–40

and bitwise operators, 167
default value of a, 127
and logical operators, 50, 51
and relational operators, 40, 50, 51

Boolean expression, definition of the term, 23
Border layout, 597, 600, 602
BorderLayout, 597, 602, 607
Boxing, 444. See also Autoboxing/unboxing
break statement, 66, 71, 72–74, 81, 90–95, 563,

564, 565, 566, 567, 569
and the for-each for loop, 155
as a form of goto, 91–95

Bubble sort, 140–141
Buffer

and console I/O, 67, 86
file output, 351
and NIO, 371

BufferedReader class, 343, 363–366, 371
Buttons. See Push buttons, Swing
Buzzwords, Java, 9
Byte class, 198, 372, 440–441

23-Index.indd 713 12/11/21 9:24 PM

 714 Java: A Beginner’s Guide

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Index

byte data type, 35, 36, 41
Bytecode, 6–7, 14, 692, 708
byteValue(), 441

C
C, 10

and Java, 4
C++, 3

and Java, 4
C# and Java, 5
Call-by-reference versus call-by-value, 196–198
case constant(s), 71, 72, 73, 75, 561

and case stacking, 74, 563
list, 561, 563

Case sensitivity and Java, 14, 17, 30, 277
case statement, 71–74, 561

arrow. See Arrow (–>) case statement
colon, 565–566, 570
and switch expressions, 561, 563, 565

Casts, 56–58, 61
and generics, 459, 462, 463, 474, 490
using instanceof with, 453–455

catch statement(s), 311–314, 315–316, 322,
325, 353

and finally, 324–326
and the more-precise (final) rethrow feature,

327, 328–329
multi-catch feature of the, 327–328
using multiple, 317–319
and rethrown exceptions, 321–322

Channels, 371
char data type, 35, 37–38, 41

as an integral type, 36
Character class, 198, 372, 440, 511
Character escape sequences, 42–43

and text blocks, 165
Character(s), 37–39

constants (literals), 41, 42, 43
from the keyboard, inputting, 66–67,

345–346, 364–366
charAt(), 160–161, 163
Charset, 364–365, 367, 370
charset(), 365, 367
Check boxes, Swing, 611–614
Class class, 462, 547

.class file, 15, 109, 277, 278, 692
class keyword, 16, 107
Class(es), 14, 16, 106–110

abstract, 265–268, 269, 286, 291
anonymous inner, 222, 624–625
constructor. See Constructor(s)
data type, as a, 108, 195
definition of the term, 11, 106–107
event, 604
final, 269
general form of a, 107
generic. See Generic class
and generic interfaces, 478–480
that inherits a superclass, general form

of a, 235
inner, 219–222
instance of a, 106, 108
and interfaces, 287–291, 299–300, 301
in JShell, creating a, 698–699
libraries, 31, 286
literal, 547
member. See Member, class
name and source file name, 14, 15, 109
nested, 219–222
path, 540
record as a special-purpose, 573, 574
sealed, 30, 270, 561, 583–585
synthetic, 695, 697, 698
well-designed, 107, 120

CLASSPATH, 278
-classpath option, 278
Client/server relationships, Internet, 5, 7
clone(), 271
close(), 344, 345, 348, 349, 350, 351, 353, 354,

356, 362, 363
Closeable interface, 353
Closures (lambda expressions), 497
Code blocks. See Blocks, code
Code

native, 6, 7, 708
snippet, 694
unreachable, 318

Collections Framework, 154
Comments, 15, 16

documentation. See Documentation
comment(s)

23-Index.indd 714 12/11/21 9:24 PM

 Index 715

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Index

Compact profiles, 539
Comparable<T> interface, 476, 478
compareTo(), 160–161, 376, 435–436
Compilation unit, 14
Compiler, Java, 12, 14, 15, 489. See also javac
Component class, 595, 596
Components, 595–596

class names for Swing, table of, 595
and the event-dispatching thread, 601
heavyweight, 593
lightweight, 593, 596

Concurrency utilities, 411–412
Concurrent API, 411
Conditional-and operator, 53
Conditional-or operator, 53
Console class, 362, 367
Console I/O, 17, 66–67, 86, 340, 345–347, 362,

364–369
console(), 365, 367
const, 30
Constants, 41

enumeration, 427, 428, 429, 431, 432,
433, 435

using final to create named, 270–271
using an interface to define shared, 298–299

Constructor(s), 126–130, 238–244
in a class hierarchy, order of execution of,

250–251
default, 127, 130, 238, 251
enumeration, 429, 431–432
generic, 477–478
overloading, 205–210
record. See Record constructors
references, 522–525
and super(), 239–244, 250, 251, 256, 709
and this(), 708–709

Consumer<T> predefined interface, 525
Container class, 595, 596
Container(s), 595, 596

top-level, 595, 596
lightweight versus heavyweight, 596
panes, 596

Containment hierarchy, 595, 596
Content pane, 595, 596, 607

adding a component to a, 600
default layout manager for a, 597, 600, 607

continue statement, 66, 96–97
Control statements. See Statements, control
currentThread(), 424–425

D
Data engines, 149
Data structures, 149, 154
Data type(s), 20, 21, 34–35

class as a, 108, 197
See also Type(s); Types, primitive

DataInput interface, 357, 360, 361
DataInputStream class, 342, 356, 357–359

methods defined by, table of commonly
used, 357

DataOutput interface, 356, 360, 361
DataOutputStream class, 342, 356, 357–359

methods defined by, table of commonly
used, 356

Deadlock, 418, 419
Decrement operator (– –), 26, 48, 49–50
default statement, 71–73, 88, 301, 564, 569
Delegation event model, 602–604

event, 602, 603, 604
listener, 602, 603, 604

@Deprecated built-in annotation, 451, 452
Diamond operator (< >), 488–489
Directories and packages, 277, 278, 279
DISPOSE_ON_CLOSE, 600
do-while loop, 66, 84, 85–86, 96
DO_NOTHING_ON_CLOSE, 600
Documentation comment(s), 684–690

general form of a, 689
Dot operator (.), 58, 108, 114, 148, 212, 244, 305
Double class, 198, 374, 442–443, 579
double data type, 20–21, 35, 37, 41

and bitwise operators, 172
doubleValue(), 441
Dynamic method dispatch, 259–260

E
Eclipse, 13
else, 67–71
Encapsulation, 10, 11, 16, 45, 119, 188, 276

23-Index.indd 715 12/11/21 9:24 PM

 716 Java: A Beginner’s Guide

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Index

Enum class, 433
enum keyword, 427, 429
Enumeration(s), 426–440

= = relational operator and, 427
as a class type, 429, 432, 433
constants, 427, 428, 429, 431, 432, 433, 435
constructor, 429, 431–432
as a data type, 426
definition of the term, 426
final variables versus, 427, 429, 433
and inheritance, 433
and instance variables, 429, 431–432
and JShell, 700
and methods, 429, 431–432
ordinal value, 433
restrictions, 433
values in switch statements, using, 427–429
variable, declaring an, 427

equals(), 160–161, 271, 272, 374, 497, 574, 576
versus = =, 161

Erasure, 462, 489–491
and ambiguity errors, 490–491

err, 343. See also System.err standard error stream
Error class, 311, 326, 330
Errors

ambiguity, 490–491
boundary, 154
compile-time, causes of, 265, 326, 462,

466–467, 468, 477, 479, 499
raw types and run-time, 486–487
run-time, 310
syntax, 17–18
See also Exception; Exception handling;

Exceptions, standard built-in
Escape sequences. See Character escape sequences
Event classes, 604
Event handling

and action events, 603, 604, 605, 606, 607,
608, 611, 625

anonymous inner classes for, using, 624–625
and item events, 611–612, 614
lambda expressions for, using, 624, 625
and list selection events, 615, 616, 618
and mouse motion events, 603
using separate listener classes, 624
Swing, 601, 602–604
See also Delegation event model

Event listener interfaces, 604
EventObject class, 603, 604
Exception

conditions that generate an, 311
consequences of an uncaught, 314–316
definition of the term, 310
from a lambda expression, throwing an,

514–515
suppressed, 356

Exception class, 311, 319, 330, 331
Exception handling, 310–337

benefits of, 310, 316–317
block, general form of, 312, 324–325
and chained exceptions, 330–331
and creating custom exceptions, 331–336, 493
and the default exception handler, 314–315
and the final (more-precise) rethrow feature,

327, 328–329
and JShell, 702
versus error codes, 333, 351
when to use, 333

Exceptions, standard built-in, 310, 329–330
checked, table of, 330
unchecked, table of, 329

EXIT_ON_CLOSE, 600
exports

context-sensitive keyword, 30, 531, 532
and qualified export, 541–542
statement, 538, 555

Expressions, 60–62
and autoboxing/unboxing, 445–446
using JShell, directly evaluate, 700–701

extends, 232, 235, 288, 299
and bounded wildcard arguments, 473–474
to create a bounded type, using, 467,

468–469, 472

F
false, 30, 39, 51, 127
File comparison utility example

console-based, 359–360
Swing-based, 619–624

File(s)
close() to close a, using, 348, 349, 351,

353, 356
I/O, 340, 347–362, 369–371

23-Index.indd 716 12/11/21 9:24 PM

 Index 717

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Index

JAR. See JAR file
pointer, 360, 361
random-access, 360–362
source, 14, 15, 109
try-with-resources to automatically close a,

using, 353–356
FileInputStream class, 342, 347, 353, 357
FileNotFoundException, 347, 350, 351, 370
FileOutputStream, 342, 347, 351, 353, 357
FileReader class, 343, 369, 370–371
FileWriter class, 343, 369–370
final

to prevent class inheritance, 269, 583,
584, 586

to prevent method overriding, 269
variables, 270–271, 427, 429, 433, 513–514

finalize(), 271
finally block, 311, 324–326, 353

to close a file, using a, 349–350
Float class, 198, 372, 440–441
float data type, 20, 21, 35, 37, 41

and bitwise operators, 172
Floating-point literals, 41

hexadecimal, 42
Floating-point types, 20–21, 37

and strictfp, 706
floatValue(), 441
Flow layout, 597, 606, 607
FlowLayout, 597, 606, 607
for loop, 24–26, 66, 77–83, 84, 85, 96

enhanced. See For-each version of for loop
and local variable type inference, 171
variations, 79–83

For-each version of for loop, 83, 153–158
break statement and the, 155
and collections, 153, 154
general form, 153
and local variable type inference, 171
to search unsorted arrays, 157–158

Fork/Join Framework, 411–412
format(), 347
FORTRAN, 10
Frank, Ed, 3
Function<T, R> predefined functional interface, 525

Functional interface(s), 496, 497, 498–500,
501–503, 504, 516

generic, 506–508, 524
predefined, 525–527

G
Garbage collection, 130–131, 138, 166, 200

program demonstrating, 132–134
Generic class

casting one instance of a generic class into
another instance of a, 474

constructor, 461, 462–463
example program with one type parameter,

459–463
example program with two type parameters,

464–465
general form of a, 465
and raw types, 485–487
and static members, 491–492
and Throwable, 493

Generic constructors, 477–478
Generic interfaces, 478–480
Generic method, 459, 475–477, 492
Generics, 272, 458–494

and ambiguity errors, 490–491
and arrays, 492–493
and autoboxing/unboxing, 440, 463
and casts, 459, 462, 463, 474, 490
and compatibility with pre-generics (legacy)

code, 485–487, 490
and exception classes, 493
restrictions on using, 491–493
type safety and, 459, 462, 464

getActionCommand(), 605, 607, 625
getCause(), 331
getClass(), 271, 272, 462
getItem(), 612, 614
getName(), 385, 390, 394, 462
getPriority(), 385, 403
getSelectedIndex(), 616, 618
getSelectedIndices(), 616
getSuppressed(), 356

23-Index.indd 717 12/11/21 9:24 PM

 718 Java: A Beginner’s Guide

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Index

getText(), 609, 611, 612
Glass pane, 596
Gosling, James, 3
goto keyword, 30
goto statement, using labeled break as a form of

a, 91–95
Graphical user interface (GUI), 31, 340–341

and Swing, 592, 593, 594, 601

H
hashCode(), 271, 574, 576
hasNextX methods, Scanner’s, 380
Heavyweight

components, 593
containers, 596

Hexadecimal literals, 42
HIDE_ON_CLOSE, 600
Hierarchical classification, 12

and inheritance, 232
Hierarchy

containment, 595, 596
multilevel, 248–250

Hoare, C.A.R., 216
HotSpot, 7
HTML (Hypertext Markup Language) file and

javadoc, 684, 689

I
Identifiers, 30–369
if statement, 23–24, 26–27, 40, 66, 67–71

nested, 69–70
if-else-if ladder, 70–71

switch statement versus, 78, 163–164
implements clause, 287–288

and bounded types, 480
import statement, 281, 284–285, 701

and static import, 447, 448–449
in, 343. See also System.in standard input stream
Increment operator (++), 25, 48, 49–50
Incubator modules, 587
Indentation style, 28

Index, array, 137
indexOf(), 160–161, 504
Inheritance, 10, 12, 232–272

and abstract classes and methods, 265–268
basics of, 232–235
and constructors, 238–244, 250–251
and enumerations, 433
final and, 269
and interfaces, 299–300, 304–305
member access and, 235–238
multilevel, 235, 248–250
and multiple superclasses, 235
and sealed interfaces, 561, 583
and sealed classes, 270, 561, 583–585

initCause(), 331
InputMismatchException, 380
InputStream class, 341, 342, 343, 344–345, 357,

360, 364, 380
methods, table of, 344

InputStreamReader class, 343, 364, 365, 367, 370
Instance of a class, 106. See also Object(s)
Instance variables, 11

definition of the term, 107
dot operator to access, using the, 108, 114
enumeration, 429, 431–432
final, 270–271
hiding, 132–133
inheritance and private, 235–238
and lambda expressions, 513, 514
as unique to their object, 108, 109–110, 114
super to access hidden, using, 244
this to access hidden, using, 132–133
transient, 706

instanceof operator, 426, 453–455
and pattern matching, 560–561, 581–583

int data type, 18–19, 20–21, 35, 36, 41
Integer class, 198, 372, 440–442
Integer(s), 18, 21, 35–36

literals, 41, 42, 56
Integral types, 36
interface keyword, 286, 287

used in an annotation declaration, 450
Interface methods

default, 286–287, 300–305, 306–307,
496, 498

23-Index.indd 718 12/11/21 9:24 PM

 Index 719

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Index

private, 287, 306–307
static, 287, 305–306
traditional, 287

Interface(s), 276, 286–307
event listener. See Event listener interfaces
functional. See Functional interface(s)
general form of, 287
generic, 478–480
implementing, 287–291, 301
and inheritance, 299–300, 304–305
and JShell, 699–700
methods. See Interface methods
reference variables, 291–292
sealed, 561, 583, 586–587
variables, 287, 298–299, 301

Internet, 2, 3, 4–5, 9
client/server relationships, 5, 7
and portability, 3–4, 6, 7
and security, 4, 6, 7

Internet of Things (IoT), 530
Interpreter, Java, 12, 14
InterruptedException, 330, 388
intValue(), 441, 442
invokeAndWait(), 601
invokeLater(), 601
I/O, 340–380

binary data, 356–359
channel-based, 371
console, 16, 66–67, 86, 340, 345–347, 362,

364–369
file, 340, 347–362, 369–371
new (NIO), 371
random-access, 360–362
streams. See Stream(s), I/O

io package. See java.io package
IOException, 67, 326–327, 329, 345, 346, 347,

350, 351, 356, 357, 362, 365, 369, 514, 515
isAlive(), 385, 399–400
isSelected(), 612, 614
isUpperCase(), 511
Item events, 611–612, 614
ItemEvent class, 604, 612, 614
ItemListener interface, 604, 612, 625
itemStateChanged(), 612, 614
Iteration statements, 66, 77–86

J
JApplet container, 595, 596
JAR file, 556

modular, 556
jar tool, 556
Java

and ahead-of-time compilation, 7
API. See API (Application Programming

Interface), Java
and C, 4
and C++, 4
and C#, 5
compiler, 12, 14, 15
design features (buzzwords), 9
and dynamic compilation, 7
history of, 3–4
IDEs, 13
incubator modules, 587
and the Internet, 2, 3–4, 4–6, 9
as an interpreted language, 7
interpreter, 12, 14–15
keywords. See Keywords, Java
look and feel (metal), 594
and networking, 5
preview features, 587
release schedule, 8–9, 12
as a strongly typed language, 34, 252
and the World Wide Web, 3

java (Java interpreter, launcher), 12, 14, 278,
530, 556

-m option, 537
--module-path option, 537
and the single source-file launch

feature, 692
Java Development Kit (JDK), 12–13
.java filename extension, 14, 278, 692
Java Foundation Classes (JFC), 593
Java Network Launch Protocol (JNLP) file.

See JNLP (Java Network Launch Protocol) file
java package, 286
Java Runtime Environment (JRE), 6–7, 8, 538
Java Virtual Machine (JVM), 6–7, 14, 16, 35

default charset, 365
and exceptions, 311, 314–315

23-Index.indd 719 12/11/21 9:24 PM

 720 Java: A Beginner’s Guide

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Index

Java Web Start, 8
Java: The Complete Reference, Twelfth Edition,

154, 450, 493, 555
java.awt package, 286, 597, 604, 606
java.awt.event package, 603, 606
java.base module, 538, 539, 557
java.desktop module, 538, 599, 606
java.io package, 286, 327, 341, 342, 343, 353, 371

and JShell, 701
java.io.IOException, 67. See also IOException
java.lang package, 286, 329, 343, 353, 385, 440,

447, 451, 462, 476, 539, 701
java.lang.annotation package, 450, 451, 452
java.lang.Enum, 433
java.lang.Record, 576
java.net package, 286
java.nio package, 371
java.nio.channels package, 371
java.nio.charset package, 371
java.nio.file package, 371
java.nio.file.attribute package, 371
java.nio.file.spi package, 371
java.util package, 286, 379, 547, 604

and JShell, 701
java.util.concurrent package, 411
java.util.EventObject, 603
java.util.function package, 525
java.util.stream package, 526
java.xml module, 538
javac (Java compiler), 12, 14, 15, 109, 278, 487,

692, 695, 696
-d option, 536, 541
--module-path option, 537
--module-source-path option, 541
and modules, 530, 531, 536–537, 556
and multimodule mode, 541–542

javadoc utility program, 684, 689
tags, list of some, 684

javax.swing package, 595, 599, 600, 616
javax.swing.event package, 603, 604, 615
JButton component, 595, 596, 603, 604–607, 608.

See also Push buttons, Swing
JCheckBox component, 595, 596, 611–614
JComponent class, 595, 596
JDialog container, 595, 596
JDK (Java Development Kit), 11–12

JFrame container, 595, 596, 598, 599–602, 607
adding a component to a, 600, 602

JIT (just-in-time) compiler, 7
JLabel component, 595, 596, 598, 600, 601, 606–607
jlink tool, 8, 556
JList component, 595, 596, 615–618
join(), 385, 400–402
jpackage, 8
JPanel container, 595, 596
JRE (Java Runtime Environment), 6–7, 8, 538
JRootPane container, 595, 596
JScrollPane container, 595, 596, 615, 618
jshell, 694
JShell, 694–703

commands, 696–697, 702–703
and state information, 694, 696

JTextComponent class, 608
JTextField component, 595, 596, 608–611

action command string of a, 608, 611
JToggleButton class, 595, 611
Jump statements, 66, 90–97
Just-In-Time (JIT) compiler, 7
JVM. See Java Virtual Machine (JVM)
JWindow container, 595, 596

K
Keywords, Java, 29–30

module-related, 531

L
Label

with break, using a, 92–95
with continue, using a, 96–97
Swing, 598, 600

Lambda expression(s), 496–515
as arguments, passing, 508–512
block, 505–506
body, 497, 505
definition of the term, 497
event handling using, 624, 625
and exceptions, 514–515
expression, 505
and local variable type inference, 172, 500

23-Index.indd 720 12/11/21 9:24 PM

 Index 721

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Index

parameters, 497–498, 499–500, 503, 505, 515
target type, 497, 499, 510
target type context, 497, 499, 500, 508,

513, 515
and variable capture, 513–514

lastIndexOf(), 160–161
Layered pane, 595
Layout manager, 597

for a content pane, default, 597, 600, 607
LayoutManager interface, 597
LayoutManager2 interface, 597
length instance variable of arrays, 147–149
length(), 160–161
Libraries, class, 31, 286
Lightweight

components, 593, 596
containers, 596

List selection event, 615, 616, 618
Listener, delegation event model, 602, 603, 604
Lists, Swing, 615–618
ListSelectionEvent class, 604, 615, 616
ListSelectionListener interface, 604, 615, 616
ListSelectionModel interface, 616
Literals, 41–44
load(), 547, 552, 553
Lock, 406
Logical operators, 50–52
Long class, 198, 372, 440–441
long data type, 35, 36, 41
Long–term support (LTS) release, 9, 560
longValue(), 441
Look and feels, 593–594
Loop(s), 24

break to exit a, using, 90–91
criteria for choosing the right, 84
do-while, 66, 84, 85–86, 96
for. See for loop
infinite, 81, 90
nested, 90, 93–95, 96–97, 101
while, 66, 83–84, 85, 96

M
main(), 16–17, 107, 109, 112, 212

and command-line arguments, 16, 166–167
and the single source-file launch feature, 692
and Swing applications, 601

Math class, 37, 204, 214, 447, 449
MAX_PRIORITY, 403
Member, class, 11, 107

access and inheritance, 235–238
controlling access to a, 188–193, 276, 277,

280–284
dot operator to access a, 108
static, 212–215, 491–492
and static import, 449

Member, using super to access a superclass, 244
Memory

allocation using new, 111, 130
leaks, 348, 353

Menu bar, Swing, 596
Metadata, 450. See also Annotation(s)
Method references, 496, 516–522

to generic methods, 521
to instance methods, 518–522
and local variable type inference, 172
to static methods, 516–518
using super with, 522

Method(s), 11, 16–17, 112–120
abstract. See Abstract Method(s)
accessor, 192, 236–238
anonymous, lambda expression as an, 497
and autoboxing/unboxing, 443–444
body, 45
built-in, 31
calling, 112, 114
default interface, 287, 300–305, 306–307,

496, 498
dispatch, dynamic, 259–260
dot operator and, 108, 114
and enumerations, 429, 431–432
extension, 300
factory, 390, 392–393
final, 269
general form of, 112
generic, 459, 475–477, 492, 521
and interfaces, 286–288, 290, 291.

See also Interface methods
JShell to experiment with a, using, 697–698
lambda expressions to pass executable code

to, using, 508, 510
native, 708
overloading, 200–205, 226–228, 258–259
overriding. See Overriding, method

23-Index.indd 721 12/11/21 9:24 PM

 722 Java: A Beginner’s Guide

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Index

Method(s) (cont.)
and parameters, 112, 117–120.

See also Parameters
parsing, 372–373
passing objects to, 194–198
recursive, 210–212
reference. See Method references
returning from a, 114–115
returning objects from, 198–200
returning a value from, 112, 115–117
scope defined by, 45–47
signature, 205
static, 212, 214–215, 305–306, 492,

516–518, 698
using super to access hidden superclass,

239, 244, 257–258
synchronized, 406–409, 706
synthetic, 695
and the throws clause, 67, 310, 326–327, 329
and type parameters, 462, 475–477
varargs. See Varargs
variable-arity, 223

MIN_PRIORITY, 403
Model-Delegate architecture, Swing, 594
Model-View-Controller (MVC) architecture, 594
module, context-sensitive keyword, 30, 531
module statement, 531, 538

using the open modifier, 555
Module(s), 30, 530–557

basics, 531–538
compiling and running a, 536–537
declaration, 531–532
definition of the term, 531
descriptor, 531
example, 532–536
graph, 557
and implied dependence/readability, 542
and legacy code, 540
naming conventions, 532–533
open, 555
path, 537 540
platform, 538–539
services and service providers, example

application demonstrating, 548–555
unnamed, 540

module-info.class file, 536, 556
module-info.java file, 531, 536, 537, 538

Modulus operator (%), 48–49
Monitor, 406
Mouse motion events, handling, 603
Multicore systems, 385

and the Fork/Join Framework, 412
MULTIPLE_INTERVAL_SELECTION, 616
Multitasking

operating system implementation of,
402–403, 405

process-based versus thread-based, 384
Multithreaded programming, 384–424

and deadlock, 418, 419
and multicore versus single-core systems, 385
and synchronization. See Synchronization
and threads. See Thread(s)
effective use of, 422

MVC (Model-View-Controller) architecture, 594

N
Name hiding, 449
Namespace

default (global), 276–277
packages and, 276–277, 449
static import and, 449

Narrowing conversion, 57–58
native modifier, 708
Naughton, Patrick, 3
Negative numbers, representation of, 177–178
NetBeans, 13
nextX methods, Scanner’s, 380
new, 111, 127, 129, 130, 137, 139, 159, 206, 222,

321, 575
and abstract classes, 265
and type inference, 488

NIO (New I/O) system, 371
non-sealed, context-sensitive keyword, 30, 584,

586, 587
NORM_PRIORITY, 403
NOT operator

bitwise unary (~), 172, 173, 176–177
Boolean logical unary (!), 50, 51

notify(), 271, 272, 412, 413–417
notifyAll(), 271, 272, 412, 413
null, 30, 127, 171
Number class, 441
NumberFormatException, 329, 441

23-Index.indd 722 12/11/21 9:24 PM

 Index 723

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Index

O
Oak, 3
Object, 11, 106–107, 109–110

creating an, 108, 110–111
to a method, passing an, 194–198
monitor, 406
returning an, 198–200

Object class, 271–272, 368, 412, 440, 459, 462,
574, 576

and erasure, 490
and functional interfaces, public methods of

the, 497
Object initialization

with another object, 206–207
with a constructor, 126–130

Object reference variables
and assignment, 111–112, 146–147
and casting, 453–455
declaring, 111
and dynamic method dispatch, 259–260
to a method, effect of passing, 197–198
to superclass reference variables, assigning

subclass, 252–256, 259–260, 264
Object-oriented programming (OOP), 4, 10–12,

13, 106, 188, 193, 232
Octal literals, 42
One’s complement (bitwise unary NOT) operator,

172, 173, 176–177
open

context-sensitive keyword, 30, 531
modifier, 555

opens
context-sensitive keyword, 30, 531
statement, 555, 556

Operator(s), 48
? ternary, 182–184
arithmetic, 19, 48–50
assignment. See Assignment operator(s)
bitwise, 172–182
diamond (< >), 488–489
logical, 50–52
parentheses and, 40, 58, 60, 62
precedence, table of, 58
relational, 23, 40, 50–52

OR operator (|)
bitwise, 172, 173, 174–175
Boolean logical, 50, 51, 52, 54

OR operator, short-circuit or conditional-or (||),
50, 52, 53, 54

Ordinal value of enumeration constant, 433
ordinal(), 433, 434
out, 17, 343. See also System.out standard

output stream
OutputStream class, 341, 342, 344–345, 346, 357,

360, 368
methods, table of, 345

OutputStreamWriter class, 343, 369
Overloading

constructors, 205–210
methods, 200–205, 226–228, 258–259

Overriding, method, 256–259
and dynamic method dispatch, 259–260
using final to prevent, 269
and polymorphism, 259, 261

P
package statement, 277
Package(s), 189, 276–286, 307

and access control, 189, 276, 277, 280–284
default (global), 277
defining a, 277–278
and directories, 277, 278, 279
importing, 284–285
and JShell, 701–702

Panes, container, 596
Parameters, 16, 112, 117–120, 128

final, 271
lambda, 497–498, 499–500, 503, 505, 515
and overloaded constructors, 206
and overloaded methods, 200, 202–204, 227
type. See Type parameter(s)
variable-length, 224–225, 228

parseDouble(), 372–373, 579
parseInt(), 372–373
Pascal, 10
PATH environmental variable, 15
Peers, 593

23-Index.indd 723 12/11/21 9:24 PM

 724 Java: A Beginner’s Guide

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Index

permits
clause, 583, 584, 586–587
context-sensitive keyword, 30, 583

Pipeline for actions on stream API stream
data, 526

Plug-in and pluggable application architecture,
546–547, 548–549

Pluggable look and feel, 593–594, 595
Polymorphism, 10, 11–12

and dynamic method dispatch, run-time, 259
and interfaces, 286
and overloaded methods, 200, 204
and overridden methods, 259, 261

Portability problem, 3–4, 6–7, 35
pow(), 447–449
Predicate<T> predefined functional interface,

525–527
Preview features, Java, 587
print(), 19, 31, 346, 347, 368
printf(), 347, 367
println(), 17, 19, 21, 31, 38, 44, 272, 286, 323,

346, 347, 368, 372, 428, 442
printStackTrace(), 322–324
PrintStream class, 342, 343, 346, 347
PrintWriter class, 343, 368–369
private access modifier, 16, 189–194, 280

and inheritance, 235–238
and packages, 280

Programming
art of, 121
concurrent, 411
multithreaded. See Multithreaded

programming
object-oriented, 4, 10–12, 13, 106, 188,

193, 232
parallel, 412
structured, 10

protected access modifier, 189, 280
and packages, 280, 282–284

provides
context-sensitive keyword, 30, 531, 548
statement, 548, 555

public access modifier, 16, 189–193, 280
and interfaces, 287, 288
and packages, 280

Push buttons, Swing, 604–607
action command string of, 605, 607, 608

Q
Queue(s), 149–150

generic, creating a, 480–485
interface, creating a, 293–298

Quicksort algorithm, 141, 212, 216–219, 459

R
RandomAccessFile class, 360–362
Raw types, 485–487
Read-evaluate-print loop (REPL)

execution, 694
read(), 66–67, 86, 344, 345–346, 347, 348, 351,

361, 362–363, 365–366, 372
Reader class, 342, 343, 362, 364, 367, 370

methods defined by, table of,
362–363

readInt(), 357, 361
readLine(), 366, 367, 371, 372–373
readPassword(), 367
Record constructors, 574

canonical, 575, 576–579, 580
non-canonical, 576, 579–580

record, context-sensitive keyword, 30, 560, 574
Record(s), 560, 568, 573–581

component list, 574
getter methods, 574–575, 581
immutability of, 575, 581
rules for, 576

Recursion, 210–212
Reflection, 555
Relational operators, 23, 40, 50–52
Release cadence, 9–10
removeActionListener(), 604, 608
removeKeyListener(), 603
removeTypeListener(), 603
REPL execution, 694
replace(), 511
requires, context-sensitive keyword, 30, 531
requires statement, 532, 537–538, 539

using transitive with a, 542–546
requires static, 555, 556
resume(), 418–419
return statement, 66, 114–115, 116

and block lambdas, 505, 506

23-Index.indd 724 12/11/21 9:24 PM

 Index 725

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Index

Root pane, 596
run(), 385, 386, 497, 601

overriding, 393, 398
using a flag variable with, 419–422

Runnable interface, 385, 497, 601
implementing the, 386–392, 393, 398

Run-time
exception, 130, 139, 212, 310
system, Java, 6–7
type information, 453–455

RuntimeException class, 311, 326, 329, 330

S
SAM (Single Abstract Method) type, 497
Sandbox, 7
Scanner class, 379–380
Scientific notation, 41
Scopes, 45–47
Scroll panes, 615, 618
sealed, context-sensitive keyword, 30, 583, 586, 587
Security problem, 4, 6, 7
seek(), 361
Selection

event, 618
statements, 66, 67–74

Selectors (NIO), 371
Separable model architecture, Swing, 594
ServiceLoader class, 547, 552, 553
Services and service providers, 547–555

definition of the terms, 547
and modules, 548
module-based example, 548–555

Servlets, 7
setActionCommand(), 608
setCharAt(), 163
setDefaultCloseOperation(), 600
setName(), 390
setPreferredSize(), 618
setPriority(), 403
setSelectionMode(), 615–616
setSize(), 599
setText(), 609, 612
setVisible(), 600–601
Sheridan, Mike, 3
Shift operators, bitwise, 172, 177–182
Short class, 198, 372, 440–441

short data type, 35, 36, 41
shortValue(), 441
Sign bit, 177, 178
Signature of a method, 205
SINGLE_INTERVAL_SELECTION, 616
SINGLE_SELECTION, 616
sleep(), 385, 388
Snippet, code, 694, 696–697
Snippet ID, 697
Source

delegation event model, 602, 603
file, 14, 15, 109

Spurious wakeup, 413, 416
sqrt(), 37, 214, 447–449
Stacks, 149

and polymorphism, 11
start(), 385, 386, 388, 390, 392, 393, 396
Statements, 17

indentation practices for, 28
null, 81
positioning of, 27

Statements, control, 22
iteration, 66, 77–86
jump, 66, 90–97
selection, 66, 67–74

static, 16, 212–216, 219, 222, 271, 447, 448–449
and generics, 491–492
used in a requires statement, 556

Static import, 426, 447–449
stop(), deprecated Thread method, 418–419
Stream interface, 526
Stream, stream API, 526
Stream(s), I/O

definition of the term, 341
predefined, 343

Streams, byte, 341, 363, 364
classes, table of non-deprecated, 342
using, 344–360

Streams, character, 341, 342, 345, 346, 362
classes, table of, 343
using, 364–371

strictfp, 30, 706–707
String class, 16, 158–165, 169, 511

methods, some, 160–161
String(s)

arrays of, 162
concatenating, 161

23-Index.indd 725 12/11/21 9:24 PM

 726 Java: A Beginner’s Guide

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Index

String(s) (cont.)
constructing, 159
definition of the term, 43
immutability of, 162–163
length, obtaining, 160–161
literals, 43–44, 158. See also Text blocks
as objects, 158–159
reading, 366–367
representations of numbers into binary

format, converting, 198, 372–374,
379–380

searching, 160
switch, used to control a, 72, 163–164

StringBuffer class, 163
StringBuilder class, 163
Subclass, definition of, 232
substring(), 162–163
Sun Microsystems, 3
super

and bounded wildcard arguments, 475
default interface method implementation,

used to refer to a, 305
method reference, used with a, 522
and superclass members, 239, 244, 257–258

super()
and superclass constructors, 239–244, 250,

251, 256
and this(), 709

Superclass, definition of, 232
Supplier<T> predefined functional interface, 525
suspend(), 418–419
Swing, 592–625

application, example of a simple, 597–601
and the AWT, 593, 594, 604
components, table of class names for, 595
containers and components, relationship

between, 595
file comparison utility, 619–624
and MVC architecture, 594
programs, event-driven nature of, 601, 602

Swing: A Beginner’s Guide, 593
SwingUtilities class, 601
switch expression, 560, 561, 563–573

and the arrow case, 565–568, 569–570
and code blocks, 566, 567–568
and yield, 30, 561, 563–565

switch statement, traditional, 66, 71–75, 78, 91,
561, 562–563, 564

and the arrow case, 568–570
enumeration values in a, 71, 427–429
integer numeric objects to control a, 446
nested, 75
using a string to control a, 72, 163–164

Synchronization, 385, 406–411
and deadlock, 418, 419
race condition and, 418
via a synchronized block, 409–411
via a synchronized method, 406–409

synchronized keyword, 406
used with a block, 409–411
used with a method, 406–409

Syntax errors, 17–18
System class, 17, 31, 286, 343
System.console(), 365, 367
System.err standard error stream, 343
System.in standard input stream, 66, 67, 343, 345,

346, 364, 365, 367, 380
System.in.read(), 66–67
System.out standard output stream, 17, 31, 66,

343, 346, 367, 368, 369
and static import, 449

T
Templates, C++, 459
Text blocks, 44, 165

and escape sequences, 165
and leading whitespace, 165

Text field, Swing, 608–611
action command string, 608, 611
and action listeners, 621

this, 131–133, 215, 513
this(), 579, 708–709
Thread class, 385, 386, 403, 418, 419, 424

constructors, 386, 389, 393
extending the, 385, 386, 393–396, 398

Thread(s)
child, 396–399, 403
communication among, 412–417
creating, 386–399
and deadlock, 418, 419

23-Index.indd 726 12/11/21 9:24 PM

 Index 727

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Index

definition of the term, 384
event-dispatching, 601, 607
main, 386, 389, 422–424, 601
possible states of, 385
priorities, 402–405
race condition and, 418
and spurious wakeup, 413, 416
suspending, resuming, and stopping,

418–422
synchronization. See Synchronization
terminates, determining when a, 399–402

throw, 311, 320–322
Throwable class, 311, 318–319, 320, 322–324,

331, 356
and chained exceptions, 330–331
and generic classes, 493
methods defined by, table of commonly

used, 323
throws, 67, 311, 326–327, 329
to

clause, 541, 556
context-sensitive keyword, 30, 531

toString(), 271, 272, 322–324, 368, 442, 574, 576
toLowerCase(), 511
toUpperCase(), 511
transient modifier, 706
transitive, context-sensitive keyword, 30, 531, 543
trim(), 577
true, 30, 39, 51
True and false in Java, 39, 51
try block(s), 311–314, 317

and finally, 324–326
nested, 319–320

try-with-resources, 312, 327, 353–356
Two’s complement, 177–178
Type argument(s), 462, 463, 465, 485

and bounded types, 467, 469, 480
and generic functional interfaces, 507–508
type inference and, 488–489
and type safety, 464
See also Wildcard arguments

Type inference
and constructor references, 525
the diamond operator (< >) and, 488–489
and lambda expressions, 504, 505, 506, 515
and a method reference to a generic

method, 521

Type inference, local variable, 167–172
and generics, 489
and lambda expressions, 172, 500
restrictions on using, 171–172
and streamlining code, 167, 170
in a try-with-resources statement, 354–355

Type parameter(s), 459
and bounded types, 466–469, 480
and erasure, 490
instance of a, cannot create an, 491
names, conventions for, 461
and primitive types, 463
and static members, 491–492
used with a class, 461, 464, 465, 479
used with a generic interface, 479–480
used with a method, 462, 475–477

Type safety
and generics, 459, 462, 464
and raw types, 485–487
and wildcard arguments, 469

Type(s), 18–19, 20–21, 34–35
aggregate, 574
bounded, 466–469, 480
casting, 56–58, 61
checking, 34, 44, 55, 252, 462, 486
class as a data, 108, 195
conversion, automatic, 55, 202–204
enumeration as a, 426
inference. See Type inference
information, run-time, 453–455
numeric, default value of, 127
promotion in expressions, 60–61, 179
raw, 485–487
simple or elemental, 35

Type(s), primitive, 34–40, 41, 130, 196–198, 440,
443, 446

and binary I/O, 356–359
table of, 35
and type parameters, 463
wrappers, 198, 372–374, 426, 440–442,

446, 463
Type(s), reference

default value of, 127
and local variable type inference, 169–170

Types, parameterized, 272, 458–459
versus C++ templates, 459

23-Index.indd 727 12/11/21 9:24 PM

 728 Java: A Beginner’s Guide

BeginNew-Tight5.5 / Java: A Beginner’s Guide, Ninth Edition / Herbert Schildt / 355-9 / Index

U
UI delegate, 594
UnaryOperator<T> predefined functional

interface, 525
Unboxing, 442. See also Autoboxing/unboxing
Unchecked warnings and raw types, 487
Underscore

with integer and floating-point literals,
using an, 41

as a keyword, 29
Unicode, 37, 38, 39, 173, 341, 342, 369
uses

context-sensitive keyword, 30, 531, 548
statement, 548, 555

V
valueChanged(), 615, 616, 618
valueOf(), 429–430, 431, 441
values(), 429–431
var, context-sensitive keyword, 30, 167–172, 287,

354, 500
restrictions on using, 168, 171–172

Varargs, 222–228
and ambiguity, 227–228
methods, overloading, 226–228
parameter, declaring a, 223–224, 225

Variable(s)
capture, 513–514
character, 38
declaration, 18–19, 20, 24, 44, 45–47,

167, 168
definition of the term, 18
dynamic initialization of, 45
effectively final, 513–514
enumeration, 427
final, 270–271, 427, 429, 433
initializing, 44, 167
instance. See Instance variables
interface, 287, 298–299, 301
interface reference, 291–292
and JShell, 695–696
local, 45

member, 11
names, rules for, 30
object reference. See Object reference

variables
scope and lifetime of, 45–47
static, 212–214, 215, 271, 513, 695
transient, 706
volatile, 706

Virtual functions (C++), 260
void, 16

methods, 112, 115
volatile modifier, 706

W
wait(), 271, 272, 412–417
Warth, Chris, 3
Web browser, executing an applet in a, 5
while loop, 66, 83–84, 85, 96
Whitespace and text blocks, leading, 165
Widening conversion, 55–56
Wildcard arguments, 469–475

bounded, 472–475
WindowConstants interface, 600
with, context-sensitive keyword, 30, 531, 548
World Wide Web, 3
Wrappers, primitive type, 198, 372–374, 426,

440–442, 446, 463
write(), 345, 346–347, 351, 361, 364
Writer class, 342, 343, 362, 367, 369

methods defined by, table of, 363–364
writeDouble(), 356, 361

X
XOR (exclusive OR) operator (^)

bitwise, 172, 173, 175–176
Boolean logical, 50, 51

Y
yield

context-sensitive keyword, 30, 564
statement, 561, 563–565, 566, 567, 568, 570

23-Index.indd 728 12/11/21 9:24 PM

	Cover
	Title Page
	Copyright Page
	Contents
	INTRODUCTION
	1 Java Fundamentals
	The History and Philosophy of Java
	The Origins of Java
	Java’s Lineage: C and C++
	How Java Impacted the Internet
	Java’s Magic: The Bytecode
	Moving Beyond Applets
	A Faster Release Schedule
	The Java Buzzwords

	Object-Oriented Programming
	Encapsulation
	Polymorphism
	Inheritance

	The Java Development Kit
	A First Simple Program
	Entering the Program
	Compiling the Program
	The First Sample Program Line by Line

	Handling Syntax Errors
	A Second Simple Program
	Another Data Type
	Try This 1-1: Converting Gallons to Liters
	Two Control Statements
	The if Statement
	The for Loop

	Create Blocks of Code
	Semicolons and Positioning
	Indentation Practices
	Try This 1-2: Improving the Gallons-to-Liters Converter
	The Java Keywords
	Identifiers in Java
	The Java Class Libraries
	Chapter 1 Self Test

	2 Introducing Data Types and Operators
	Why Data Types Are Important
	Java’s Primitive Types
	Integers
	Floating-Point Types
	Characters

	The Boolean Type
	Try This 2-1: How Far Away Is the Lightning?
	Literals
	Hexadecimal, Octal, and Binary Literals
	Character Escape Sequences
	String Literals

	A Closer Look at Variables
	Initializing a Variable
	Dynamic Initialization

	The Scope and Lifetime of Variables
	Operators
	Arithmetic Operators
	Increment and Decrement

	Relational and Logical Operators
	Short-Circuit Logical Operators
	The Assignment Operator
	Shorthand Assignments
	Type Conversion in Assignments
	Casting Incompatible Types
	Operator Precedence
	Try This 2-2: Display a Truth Table for the Logical Operators
	Expressions
	Type Conversion in Expressions
	Spacing and Parentheses

	Chapter 2 Self Test

	3 Program Control Statements
	Input Characters from the Keyboard
	The if Statement
	Nested ifs
	The if-else-if Ladder
	The Traditional switch Statement
	Nested switch Statements
	Try This 3-1: Start Building a Java Help System
	The for Loop
	Some Variations on the for Loop
	Missing Pieces
	The Infinite Loop

	Loops with No Body
	Declaring Loop Control Variables Inside the for Loop
	The Enhanced for Loop
	The while Loop
	The do-while Loop
	Try This 3-2: Improve the Java Help System
	Use break to Exit a Loop
	Use break as a Form of goto
	Use continue
	Try This 3-3: Finish the Java Help System
	Nested Loops
	Chapter 3 Self Test

	4 Introducing Classes, Objects, and Methods
	Class Fundamentals
	The General Form of a Class
	Defining a Class

	How Objects Are Created
	Reference Variables and Assignment
	Methods
	Adding a Method to the Vehicle Class

	Returning from a Method
	Returning a Value
	Using Parameters
	Adding a Parameterized Method to Vehicle

	Try This 4-1: Creating a Help Class
	Constructors
	Parameterized Constructors
	Adding a Constructor to the Vehicle Class
	The new Operator Revisited
	Garbage Collection
	The this Keyword
	Chapter 4 Self Test

	5 More Data Types and Operators
	Arrays
	One-Dimensional Arrays

	Try This 5-1: Sorting an Array
	Multidimensional Arrays
	Two-Dimensional Arrays
	Irregular Arrays
	Arrays of Three or More Dimensions
	Initializing Multidimensional Arrays

	Alternative Array Declaration Syntax
	Assigning Array References
	Using the length Member
	Try This 5-2: A Queue Class
	The For-Each Style for Loop
	Iterating Over Multidimensional Arrays
	Applying the Enhanced for

	Strings
	Constructing Strings
	Operating on Strings
	Arrays of Strings
	Strings Are Immutable
	Using a String to Control a switch Statement

	Using Command-Line Arguments
	Using Type Inference with Local Variables
	Local Variable Type Inference with Reference Types
	Using Local Variable Type Inference in a for Loop
	Some var Restrictions

	The Bitwise Operators
	The Bitwise AND, OR, XOR, and NOT Operators
	The Shift Operators
	Bitwise Shorthand Assignments

	Try This 5-3: A ShowBits Class
	The ? Operator
	Chapter 5 Self Test

	6 A Closer Look at Methods and Classes
	Controlling Access to Class Members
	Java’s Access Modifiers

	Try This 6-1: Improving the Queue Class
	Pass Objects to Methods
	How Arguments Are Passed

	Returning Objects
	Method Overloading
	Overloading Constructors
	Try This 6-2: Overloading the Queue Constructor
	Recursion
	Understanding static
	Static Blocks

	Try This 6-3: The Quicksort
	Introducing Nested and Inner Classes
	Varargs: Variable-Length Arguments
	Varargs Basics
	Overloading Varargs Methods
	Varargs and Ambiguity

	Chapter 6 Self Test

	7 Inheritance
	Inheritance Basics
	Member Access and Inheritance
	Constructors and Inheritance
	Using super to Call Superclass Constructors
	Using super to Access Superclass Members
	Try This 7-1: Extending the Vehicle Class
	Creating a Multilevel Hierarchy
	When Are Constructors Executed?
	Superclass References and Subclass Objects
	Method Overriding
	Overridden Methods Support Polymorphism
	Why Overridden Methods?
	Applying Method Overriding to TwoDShape

	Using Abstract Classes
	Using final
	final Prevents Overriding
	final Prevents Inheritance
	Using final with Data Members

	The Object Class
	Chapter 7 Self Test

	8 Packages and Interfaces
	Packages
	Defining a Package
	Finding Packages and CLASSPATH
	A Short Package Example

	Packages and Member Access
	A Package Access Example

	Understanding Protected Members
	Importing Packages
	Java’s Class Library Is Contained in Packages
	Interfaces
	Implementing Interfaces
	Using Interface References
	Try This 8-1: Creating a Queue Interface
	Variables in Interfaces
	Interfaces Can Be Extended
	Default Interface Methods
	Default Method Fundamentals
	A More Practical Example of a Default Method
	Multiple Inheritance Issues

	Use static Methods in an Interface
	Private Interface Methods
	Final Thoughts on Packages and Interfaces
	Chapter 8 Self Test

	9 Exception Handling
	The Exception Hierarchy
	Exception Handling Fundamentals
	Using try and catch
	A Simple Exception Example

	The Consequences of an Uncaught Exception
	Exceptions Enable You to Handle Errors Gracefully

	Using Multiple catch Statements
	Catching Subclass Exceptions
	Try Blocks Can Be Nested
	Throwing an Exception
	Rethrowing an Exception

	A Closer Look at Throwable
	Using finally
	Using throws
	Three Additional Exception Features
	Java’s Built-in Exceptions
	Creating Exception Subclasses
	Try This 9-1: Adding Exceptions to the Queue Class
	Chapter 9 Self Test

	10 Using I/O
	Java’s I/O Is Built upon Streams
	Byte Streams and Character Streams
	The Byte Stream Classes
	The Character Stream Classes
	The Predefined Streams
	Using the Byte Streams
	Reading Console Input
	Writing Console Output

	Reading and Writing Files Using Byte Streams
	Inputting from a File
	Writing to a File

	Automatically Closing a File
	Reading and Writing Binary Data
	Try This 10-1: A File Comparison Utility
	Random-Access Files
	Using Java’s Character-Based Streams
	Console Input Using Character Streams
	Console Output Using Character Streams

	File I/O Using Character Streams
	Using a FileWriter
	Using a FileReader

	Using Java’s Type Wrappers to Convert Numeric Strings
	Try This 10-2: Creating a Disk-Based Help System
	Chapter 10 Self Test

	11 Multithreaded Programming
	Multithreading Fundamentals
	The Thread Class and Runnable Interface
	Creating a Thread
	One Improvement and Two Simple Variations

	Try This 11-1: Extending Thread
	Creating Multiple Threads
	Determining When a Thread Ends
	Thread Priorities
	Synchronization
	Using Synchronized Methods
	The synchronized Statement
	Thread Communication Using notify(), wait(), and notifyAll()
	An Example That Uses wait() and notify()

	Suspending, Resuming, and Stopping Threads
	Try This 11-2: Using the Main Thread
	Chapter 11 Self Test

	12 Enumerations, Autoboxing, Annotations, and More
	Enumerations
	Enumeration Fundamentals

	Java Enumerations Are Class Types
	The values() and valueOf() Methods
	Constructors, Methods, Instance Variables, and Enumerations
	Two Important Restrictions

	Enumerations Inherit Enum
	Try This 12-1: A Computer-Controlled Traffic Light
	Autoboxing
	Type Wrappers
	Autoboxing Fundamentals
	Autoboxing and Methods
	Autoboxing/Unboxing Occurs in Expressions
	A Word of Warning

	Static Import
	Annotations (Metadata)
	Introducing instanceof
	Chapter 12 Self Test

	13 Generics
	Generics Fundamentals
	A Simple Generics Example
	Generics Work Only with Reference Types
	Generic Types Differ Based on Their Type Arguments
	A Generic Class with Two Type Parameters
	The General Form of a Generic Class

	Bounded Types
	Using Wildcard Arguments
	Bounded Wildcards
	Generic Methods
	Generic Constructors
	Generic Interfaces
	Try This 13-1: Create a Generic Queue
	Raw Types and Legacy Code
	Type Inference with the Diamond Operator
	Local Variable Type Inference and Generics
	Erasure
	Ambiguity Errors
	Some Generic Restrictions
	Type Parameters Can’t Be Instantiated
	Restrictions on Static Members
	Generic Array Restrictions
	Generic Exception Restriction

	Continuing Your Study of Generics
	Chapter 13 Self Test

	14 Lambda Expressions and Method References
	Introducing Lambda Expressions
	Lambda Expression Fundamentals
	Functional Interfaces
	Lambda Expressions in Action

	Block Lambda Expressions
	Generic Functional Interfaces
	Try This 14-1: Pass a Lambda Expression as an Argument
	Lambda Expressions and Variable Capture
	Throw an Exception from Within a Lambda Expression
	Method References
	Method References to static Methods
	Method References to Instance Methods

	Constructor References
	Predefined Functional Interfaces
	Chapter 14 Self Test

	15 Modules
	Module Basics
	A Simple Module Example
	Compile and Run the First Module Example
	A Closer Look at requires and exports

	java.base and the Platform Modules
	Legacy Code and the Unnamed Module
	Exporting to a Specific Module
	Using requires transitive
	Try This 15-1: Experiment with requires transitive
	Use Services
	Service and Service Provider Basics
	The Service-Based Keywords
	A Module-Based Service Example

	Additional Module Features
	Open Modules
	The opens Statement
	requires static

	Continuing Your Study of Modules
	Chapter 15 Self Test

	16 Switch Expressions, Records, and Other Recently Added Features
	Enhancements to switch
	Use a List of case Constants
	Introducing the switch Expression and the yield Statement
	Introducing the Arrow in a case Statement
	A Closer Look at the Arrow case

	Try This 16-1: Use a switch Expression to Obtain a City’s Time Zone
	Records
	Record Basics
	Create Record Constructors
	A Closer Look at Record Getter Methods

	Pattern Matching with instanceof
	Sealed Classes and Interfaces
	Sealed Classes
	Sealed Interfaces

	Future Directions
	Chapter 16 Self Test

	17 Introducing Swing
	The Origins and Design Philosophy of Swing
	Components and Containers
	Components
	Containers
	The Top-Level Container Panes

	Layout Managers
	A First Simple Swing Program
	The First Swing Example Line by Line

	Swing Event Handling
	Events
	Event Sources
	Event Listeners
	Event Classes and Listener Interfaces

	Use JButton
	Work with JTextField
	Create a JCheckBox
	Work with JList
	Try This 17-1: A Swing-Based File Comparison Utility
	Use Anonymous Inner Classes or Lambda Expressions to Handle Events
	Chapter 17 Self Test

	A Answers to Self Tests
	Chapter 1: Java Fundamentals
	Chapter 2: Introducing Data Types and Operators
	Chapter 3: Program Control Statements
	Chapter 4: Introducing Classes, Objects, and Methods
	Chapter 5: More Data Types and Operators
	Chapter 6: A Closer Look at Methods and Classes
	Chapter 7: Inheritance
	Chapter 8: Packages and Interfaces
	Chapter 9: Exception Handling
	Chapter 10: Using I/O
	Chapter 11: Multithreaded Programming
	Chapter 12: Enumerations, Autoboxing, Annotations, and More
	Chapter 13: Generics
	Chapter 14: Lambda Expressions and Method References
	Chapter 15: Modules
	Chapter 16: Switch Expressions, Records, and Other Recently Added Features
	Chapter 17: Introducing Swing

	B Using Java’s Documentation Comments
	The javadoc Tags
	@author
	{@code}
	@deprecated
	{@docRoot}
	@exception
	@hidden
	{@index}
	{@inheritDoc}
	{@link}
	{@linkplain}
	{@literal}
	@param
	@provides
	@return
	@see
	@since
	{@summary}
	@throws
	@uses
	{@value}
	@version

	The General Form of a Documentation Comment
	What javadoc Outputs
	An Example That Uses Documentation Comments

	C Compile and Run Simple Single-File Programs in One Step
	D Introducing JShell
	JShell Basics
	List, Edit, and Rerun Code
	Add a Method
	Create a Class
	Use an Interface
	Evaluate Expressions and Use Built-in Variables
	Importing Packages
	Exceptions
	Some More JShell Commands
	Exploring JShell Further

	E More Java Keywords
	The transient and volatile Modifiers
	strictfp
	assert
	Native Methods
	Another Form of this

	Index

