
Task
Programming
in C# and .NET

Modern Day Foundation for
Asynchronous Programming
 —
Vaskaran Sarcar

Apress Pocket Guides

​Apress Pocket Guides present concise summaries of cutting-edge

developments and working practices throughout the tech industry. Shorter

in length, books in this series aims to deliver quick-to-read guides that are

easy to absorb, perfect for the time-poor professional.

This series covers the full spectrum of topics relevant to the modern

industry, from security, AI, machine learning, cloud computing, web

development, product design, to programming techniques and business

topics too.

Typical topics might include:

•	 A concise guide to a particular topic, method, function

or framework

•	 Professional best practices and industry trends

•	 A snapshot of a hot or emerging topic

•	 Industry case studies

•	 Concise presentations of core concepts suited for

students and those interested in entering the tech

industry

•	 Short reference guides outlining ‘need-to-know’

concepts and practices.

More information about this series at https://link.springer.com/
bookseries/17385.

https://link.springer.com/bookseries/17385
https://link.springer.com/bookseries/17385

Task Programming
in C# and .NET

Modern Day Foundation
for Asynchronous

Programming

Vaskaran Sarcar

Task Programming in C# and .NET: Modern Day Foundation for

Asynchronous Programming

ISBN-13 (pbk): 979-8-8688-1278-1		 ISBN-13 (electronic): 979-8-8688-1279-8
https://doi.org/10.1007/979-8-8688-1279-8

Copyright © 2025 by Vaskaran Sarcar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava
Coordinating Editor: Kripa Joseph

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress/Task-Programming-in-C-and-.NET).
For more detailed information, please visit https://www.apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper

Vaskaran Sarcar
Kolkata, West Bengal, India

https://doi.org/10.1007/979-8-8688-1279-8

To my seniors, colleagues, and teachers including C#
and .NET community members who directly
and indirectly helped me to write better code.

In fact, I am still learning from them.

vii

Table of Contents

About the Author��xi

About the Technical Reviewer��xiii

Acknowledgments���xv

Introduction���xvii

Chapter 1: �Asynchronous Programming and Tasks�������������������������������1

Understanding Asynchronous Operations��1

How Does It Help?��2

Useful Scenarios���2

Programming Patterns���4

Recommended Pattern���5

Task Parallel Library (TPL)��5

How Does TPL Help?���6

Introducing Tasks���7

Useful Scenarios���7

Summary���9

Exercises��9

Solutions to Exercises��10

Chapter 2: �Task Creation and Execution��13

Creating and Executing a Task���13

Encapsulating Code Using Lambda Expression��15

Passing and Returning Values��18

viii

Discussion on Waiting��25

Why Do We Wait?��25

How Do We Wait?���27

Summary���36

Exercises��36

Solutions to Exercises��38

Chapter 3: �Continuation and Nested Tasks��41

Continuation Tasks���41

Simple Continuation���42

Conditional Continuations���45

Identifying a Task and Its Status���52

Nested Tasks��58

Detached Nested Task��58

Attached Nested Task���60

Forcing Parent Task to Wait��61

Unwrapping Nested Tasks��63

Summary���65

Exercises��66

Solutions to Exercises��68

Chapter 4: �Exception Handling��73

Understanding the Challenge���73

The Program That Does Not Show Exceptions���73

Introducing AggregateException��75

Strategies to Tackle Exceptions���79

Handling Exceptions in Single Location���80

Handling Exceptions in Multiple Locations���85

Table of Contents

ix

Summary���89

Exercises��90

Solutions to Exercises��94

Chapter 5: �Managing Cancellations���99

Prerequisites��100

User-Initiated Cancellations���102

Initial Approach���102

Alternative Approaches��106

Shortening The Code��108

Additional Case Studies��110

Timeout Cancellation���115

Monitoring Task Cancellation���116

Using Register��116

Using WaitHandle.WaitOne���117

Using Multiple Cancellation Tokens��120

Summary���124

Exercises��125

Solutions to Exercises��129

Chapter 6: �Bonus���133

Progress Reporting��133

Understanding the Need���133

Creating and Running Tasks Implicitly���138

Using Parallel.Invoke��139

Precomputed Tasks��142

Without Caching���142

Applying Caching Mechanism��144

Table of Contents

x

Using TaskCompletionSource���146

How to Use?���147

Summary���152

Exercises��153

Solutions to Exercises��154

�Appendix A: What’s Next?��157

�Appendix B: Other Books by the Author ���159

�Index��161

Table of Contents

xi

Vaskaran Sarcar obtained his Master of

Engineering degree in Software Engineering

from Jadavpur University, Kolkata (India),

and an MCA from Vidyasagar University,

Midnapore (India). He was a National Gate

Scholar (2007–2009) and has over 12 years of

experience in education and the IT industry.

He devoted his early years (2005–2007) to the

teaching profession at various engineering

colleges, and later, he joined HP India PPS R&D Hub in Bangalore. He

worked there until August 2019 and became a Senior Software Engineer

and Team Lead. After working for more than ten years at HP, he decided to

follow his passion completely. He is now an independent full-time author.

You can refer to the link amazon.com/author/vaskaran_sarcar (or

Appendix B) to find all his books. You can also find him on LinkedIn at

https://www.linkedin.com/in/vaskaransarcar.

About the Author

https://amazon.com/author/vaskaran_sarcar
https://www.linkedin.com/in/vaskaransarcar

xiii

Shekhar Kumar Maravi is a software

architect – design and development, whose

main interests are programming languages,

Linux system programming, Linux kernel,

algorithms, and data structures. He obtained

his master’s degree in Computer Science

and Engineering from Indian Institute of

Technology Bombay. After graduation, he

joined Hewlett Packard's R&D Hub in India

to work on printer firmware. Currently, he is a

Product and Solution Development Team Lead for automated pathology

lab diagnostic devices at Siemens Healthcare R&D division. He can

be reached by email at shekhar.maravi@gmail.com or via LinkedIn at

https://www.linkedin.com/in/shekharmaravi.  

About the Technical Reviewer

https://urldefense.com/v3/__https:/www.linkedin.com/in/shekhar-maravi-83827532__;!!NLFGqXoFfo8MMQ!vdsS52enlYQO1jk2J65c_9ReWQvoRRTWhnAeJnbArs8lVOOKypz8qQTQAQeWA_Euh7GvwXlUgTNnxNeZhY0fHbDB94iotPumU0c$

xv

Acknowledgments

At first, I thank the Almighty. I sincerely believe that with His blessings

only, I could complete this book. I extend my deepest gratitude and thanks

to the following people:

Shekhar: Whenever I was in need, he provided

support. He answered all my queries over phone

calls, WhatsApp, and emails. Thank you one

more time.

Smriti, Kripa, Celestin, and the Apress team: I

sincerely thank each of you for giving me another

opportunity to work with you and Apress.

Nirmal and the Production team: Thanks to each

of you for your exceptional support in beautifying

my work. Your efforts are extraordinary.

Finally, I thank those people from different online communities

(particularly, the C# developer community, .NET developer community,

and Stack Overflow community) who share their knowledge in various

forms. In fact, I thank everyone who directly or indirectly contributed to

this work.

xvii

Introduction

With the availability of multicore computers, asynchronous programming

and parallel programming are becoming increasingly important. Why not?

It is essential for building highly responsive software.

This is why playing with threads in a multithreaded environment is

inevitable. Undoubtedly, it is hard, but in earlier days, it was harder. To

simplify the overall coding experience, starting from the .NET Framework

4.0, Microsoft introduced Task Parallel Library (TPL) which was based on

the concept of tasks. Later, in C#5, we saw the revolutionary introduction

of the async and await keywords. Using them, we started passing the

heavy work(s) to the compiler. However, you need to remember that a

typical async method normally returns a task (in programming terms, a

Task or a Task<TResult>). So, there is no wonder that task programming

became the modern-day foundation for asynchronous programming. In

addition, the patterns used earlier to deal with asynchronous and parallel

programming are not recommended now.

This is why I decided to write a pocketbook series on asynchronous

and parallel programming. This pocketbook series will try to simplify

the concept using the modern C# features and libraries that Microsoft

recommends. Task Programming in C# and .NET: Modern Day Foundation

for Asynchronous Programming is the first book in this series. It focuses on

task programming without using the async and await keywords.

xviii

�How Is the Book Organized?
This book helps you to understand task programming using six chapters

with many Q&A sessions and exercises. To give you an idea about

the organization of the chapters and the contents of this book, let me

summarize the following points:

•	 Chapter 1 introduces asynchronous programming with

useful scenarios. It also provides an overview of Task

Parallel Library (TPL) and discusses tasks. These are

the foundation for the next chapters.

•	 Chapter 2 discusses the creation and execution of tasks.

Once you execute a task, most probably, you'd like to

see the result of the execution. It means that you need

to wait for the task to finish its execution. Implementing

a correct waiting mechanism in a multithreaded

environment is extremely important. This chapter

discusses different types of waiting mechanisms

as well.

•	 Chapter 3 talks about task continuation scenarios. It

also discusses nested tasks.

•	 Exception handling is an essential part of

programming. Chapter 4 covers this topic and shows

you different ways of exception handling mechanisms

in task programming.

•	 Normally, we do not like to wait for long-running

tasks. Also, if you identify a mistake early, you may

not continue running the tasks. So, task cancellations

are also common when you play with tasks. Chapter 5

covers this topic.

Introduction

xix

•	 In Chapter 6, you’ll find some extra materials that were

not discussed in the previous chapters.

•	 You can enjoy learning when you analyze case

studies, ask questions (about the doubts), and do

some exercises. So, throughout this book, you will see

interesting program segments, “Q&A Sessions”, and

exercises. By analyzing these Q&As and doing the

exercises, you can verify your progress. As said before,

these are presented to make your future learning easier

and enjoyable, but most importantly, they make you

confident as a developer.

•	 Each question in these Q&A sessions is marked with

<chapter_no>.<Question_no>. For example, Q2.1

means question number 1 from Chapter 2. At the end

of the chapter, you’ll see some exercises. You can use

them to evaluate your progress. Each question in these

exercises is marked with E<chapter_no>.<Question_
no>. For example, E5.3 means exercise number 3 from

Chapter 5.

•	 You can download all the source codes of the book

from the publisher’s website (https://github.com/
Apress/Task-Programming-in-C-and-.NET).

�Prerequisite Knowledge
I expect you to be very much familiar with C#. In fact, knowing about

some of the advanced concepts like delegates and lambda expressions

can accelerate your learning. I assume that you know how to compile or

run a C# application in Visual Studio. This book does not invest time in

easily available topics, such as how to install Visual Studio on your system

Introduction

https://github.com/Apress/Task-Programming-in-C-and-.NET
https://github.com/Apress/Task-Programming-in-C-and-.NET

xx

or how to write a “Hello World” program in C#. In short, the target readers

of this book are those who want to make the most out of C# by harnessing

the power of both object-oriented programming (OOP) and functional

programming (FP).

�Who This Book Is For
You can pick the book if the answer is “yes” to the following questions:

•	 Are you familiar with .NET, C#, and basic object-

oriented concepts like polymorphism, inheritance,

abstraction, and encapsulation?

•	 Are you familiar with some of the advanced concepts

in C# such as delegates, lambda expressions, and

generics?

•	 Do you know how to set up your coding environment?

•	 Are you interested to know how the modern-day

constructs of C# can help you in asynchronous and

parallel programming?

Probably you shouldn’t pick this book if the answer is "yes" to any of
the following questions:

•	 Are you looking for a C# tutorial or reference book?

•	 Are you not ready to experiment with asynchronous

programming using C# and .NET?

•	 “I do not like Windows, Visual Studio, and/or .NET. I

want to learn asynchronous and parallel programming

without them.” Is this statement true for you?

Introduction

xxi

�Useful Software
These are the important software/tools that I used for this book:

•	 All the programs were tested with C# 13 and .NET 9.

In this context, it is useful to know that nowadays the

C# language version is automatically selected based

on your project's target framework(s) so that you can

always get the highest compatible version by default.

In the latest versions, Visual Studio doesn't support

the UI to change the value, but you can change it by

editing the csproj file. If you are interested more in

the C# language versioning, you can follow the link

https://docs.microsoft.com/en-us/dotnet/csharp/
language-reference/configure-language-version.

•	 During the development of this book, software updates

kept coming, and I also kept updating. When I finished

my initial draft, I had the latest edition of Microsoft

Visual Studio Community 2022 (64-bit) – Preview

Version 17.12.0 Preview 3.0. When I submitted the final

draft, I had Microsoft Visual Studio Community 2022

(64-bit)-17.12.4.

•	 The good news for you is that this community edition

is free of cost. If you do not use the Windows operating

system, you can also use Visual Studio Code which

is also a source code editor developed by Microsoft

that runs on Windows or macOS and Linux operating

systems. This multiplatform IDE is also free. However,

I recommend that you check the license and privacy

statement as well. It is because this statement may

change in the future.

Introduction

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version

xxii

Author's note: I have tested my code only on Visual Studio. You may note

that “Visual Studio 2022 for Mac” was already scheduled for retirement

by August 31, 2024. To know more on this, you can refer to the online

link https://learn.microsoft.com/en-us/visualstudio/mac/what-
happened-to-vs-for-mac?view=vsmac-2022.

�Guidelines for Using This Book
Here are some suggestions so that you can get the most out of this book:

•	 This book suits you best if you are familiar with some

advanced features in C# such as delegates and lambda

expressions. If not, please read those topics before you

start reading this book.

•	 I believe that sequential reading of these chapters

can help you learn faster. So, I suggest you go through

the chapters sequentially. Another reason for this

suggestion is that some useful and related topics may

have already been discussed in a previous chapter,

and I have not repeated those discussions in the later

chapters.

•	 The programs in this book should give you the

expected output in the upcoming versions of C#/Visual

Studio as well. Though I believe that these results

should not vary in other environments, you know the

nature of software: it is naughty. So, I recommend that

if you want to see the same output, it will be better if

you can mimic the same environment.

•	 You can download and install the Visual Studio

IDE from https://visualstudio.microsoft.com/
downloads/. And you are expected to get Figure 1.

Introduction

https://learn.microsoft.com/en-us/visualstudio/mac/what-happened-to-vs-for-mac?view=vsmac-2022
https://learn.microsoft.com/en-us/visualstudio/mac/what-happened-to-vs-for-mac?view=vsmac-2022
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/

xxiii

Figure 1.  The download link for Visual Studio 2022 and Visual
Studio Code

Note A t the time of this writing, this link works fine, and the
information is correct. However, the link and policies may change in the
future. The same comment applies to all the mentioned links in this book.

�Conventions Used in This Book
Here, I mention only a few points: In some places, to avoid more typing, I

have used only the pronoun “he” to refer to a person when the context is

generic, for example, a customer, an executive, etc. Please treat it as “he” or

“she”, whichever applies to you.

Introduction

xxiv

Secondly, in many places, I have given you Microsoft’s documentation

links. Why? For me, as the creators, they are the authenticated source of

information to describe a feature.

Finally, all the programs, corresponding outputs, and important notes

of the book follow the same font and structure. To draw your attention, in

some places, I have made them bold. For example, consider the following

code fragment (taken from Chapter 6) where I discuss progress reporting

and want to draw your attention to the particular lines using the bold

letters as follows:

static void ProcessRecords(IProgress<int> progress)
{
 WriteLine($"Starts processing the records...");
 int progressPercentage = 0;
 for (int i = 1; i <=5; i++)
 {
 // Varying the delay
 Thread.Sleep(i * 300);
 progressPercentage += 20;
 progress.Report(progressPercentage);
 }
 WriteLine("All the records are processed.");

}
Sometimes, I needed to prefix some spaces at the beginning of a few

lines. It was required to indicate that you are reading a continuation of the

previous line (since ‘the line of code’ was long, it couldn’t be placed in a

single line). Here is a sample (taken from Chapter 6):

Action greet = new(() => WriteLine($"Task {Task.CurrentId}
 says: Hello reader!"));

Introduction

xxv

�Final Words
You are an intelligent person. You have chosen a topic that can assist

you throughout your career. As you learn and review these concepts, I

suggest you write your code; only then will you master this area. There is

no shortcut for this. Do you know the ancient story of Euclid and Ptolemy,

ruler of Egypt? Euclid’s approach to mathematics was based on logical

reasoning and rigorous proofs, and Ptolemy asked Euclid if there was an

easier way to learn mathematics. Euclid’s reply to the ruler? "There is no
royal road to geometry."

Though you are not studying geometry, the essence of this reply

applies here. You must study these concepts and code. Do not give

up when you face challenges. They are the indicators that you are

growing better.

Errata: I have tried my level best to ensure the accuracy of the content.

However, mistakes can happen. So, I have a plan to maintain the “Errata,”

and if required, I can also make some updates/announcements there. So,

I suggest that you visit those pages to receive any important corrections or

updates.

An Appeal: You can easily understand that any good quality work takes

many days and many months (even years!). Many authors like me invest

most of their time in writing and heavily depend on it. You can encourage

and help these authors by preventing piracy. If you come across any illegal

copies of our works in any form on the Internet, I would be grateful if you

would provide me/the Apress team with the location address or website

name. In this context, you can use the link https://www.apress.com/gp/
services/rights-permission/piracy as well.

Introduction

https://www.apress.com/gp/services/rights-permission/piracy
https://www.apress.com/gp/services/rights-permission/piracy

xxvi

Share Your Feedback: I believe that the book is designed for you in such

a way that upon its completion, you will develop an adequate knowledge

of parallel programming using C# and .NET. So, I hope that you will value

the effort. Once you finish reading this book, I request you to provide

your valuable feedback on the Amazon review page or any other platform

you like.

Introduction

1© Vaskaran Sarcar 2025
V. Sarcar, Task Programming in C# and .NET, Apress Pocket Guides,
https://doi.org/10.1007/979-8-8688-1279-8_1

CHAPTER 1

Asynchronous
Programming and
Tasks
Starting with an introduction to asynchronous programming, this chapter

quickly covers tasks and their importance.

�Understanding Asynchronous Operations
Psychologists often vote for one task at a time. This is recommended for

focused concentration. However, modern-day life is full of work. In our

busy world, it is tough to follow this advice. For example, consider those

working mothers who need to complete lots of work before they go to the

office. They start preparing breakfast, and then, they come back from the

kitchen to prepare the kids for school. They again go back to the kitchen

to check the status and again come out from the kitchen to prepare

themselves for the office. You can see that in this approach, they start a task

but do not wait for that task to complete; instead, they start a new task and

again go back to check the status of the old task. The process continues

until all these tasks are finished. These working mothers perform the

activities asynchronously.

https://doi.org/10.1007/979-8-8688-1279-8_1#DOI

2

�How Does It Help?
Even if you do not like this approach, there are situations when you cannot

avoid this. For example, if you wake up late in the morning but do not want

to be late for the office or school, probably you have only one option: doing

tasks asynchronously.

Let us talk about programming. Suppose you develop an application

where you use the main application thread to perform all kinds of work

including executing long-running tasks (e.g., downloading a big file from

the Internet). Since the main thread is busy while processing a long-

running task, the user cannot supply any new input to the application.

As a result, the application may appear blocked or frozen. From a user

perspective, it is a frustrating experience.

You can make the user happy by offloading the long-running task to a

background thread and making the main application thread available to

do any other task. As a result, the main application thread can respond to a

new user input, or it can resume the task that it was doing before invoking

the long-running task. In this way, asynchronous programming helps
you develop a highly responsive application.

You may also note that modern-day computers have multiple CPU

processing cores. Using the full potential of these computers with

asynchronous programming, you can make your application truly fast,

efficient, and user-friendly.

�Useful Scenarios
Every scenario is not suitable for asynchronous programming. For

example, if the kids are naughty, probably, a mother cannot do things

asynchronously. In this case, she may decide to first complete the

homework before she enters the kitchen (or vice versa). This means that

she needs to opt for synchronous executions only.

Chapter 1 Asynchronous Programming and Tasks

3

You may argue by saying that to reduce the work pressure, the working

mother can appoint a tutor to teach her kids or a cook to prepare breakfast

or meals. If this is the case, let me tell you that in such cases, she needs to

increase her expenses as well. However, if there is a budget constraint, she

may need to do all the work by herself. So, you can see that every scenario

is not suitable for asynchronous executions (or parallel operations).

Now the question is: when should you exercise asynchronous

programming? Here are some typical scenarios in which you can benefit

from asynchronous programming:

•	 To fulfill the I/O bound needs such as accessing

a database, reading or writing to a large file, and

requesting data through the Internet

•	 To fulfill the CPU-bound needs such as performing a

complex and time-consuming calculation

�Q&A Session

Q1.1 It appears to me that asynchronous programming can increase
the code complexity. Is this not a problem?

True. However, consider the case in which to make a more responsive

UI, you offload a long-running operation to a background thread. As a

result, you do not need to block the main UI thread to avoid frustrating

user experience. This is appreciable because, in the end, you are making

the users happy.

Q1.2 Are asynchronous and parallel programming the same?
Let us first consider some real-world examples. Suppose, you start

preparing rice for dinner. Typically, after cleaning the rice, you add

water and start boiling the combination over low-medium heat. Now,

you need to wait until the water is absorbed. In between, you decide to

give some tasks to your kids. So, you come back from the kitchen and

instruct your kids to do their homework. This is similar to asynchronous

Chapter 1 Asynchronous Programming and Tasks

4

programming because you can go back to the kitchen and again come

back to your kids until you complete these works. However, it is not

equivalent to parallel programming.

Now, consider a situation when you appoint a cook to make the dinner

for your family. In this case, the cook can prepare the rice, and you can

focus on your kid's homework at the same time. In this case, two different

people are doing two different tasks at the same time. This is equivalent to
parallel programming with a dual-core machine.

You understand that by combining these models, you can reap

benefits. For example, multiple people can be engaged in preparing the

meal (consider a cook with a helper), and multiple people can teach

your kids (each tutor can focus on one kid). We try to do this exactly

in programming. However, the terms asynchronous programming

and parallel programming are pretty close and related to each

other. The Visual Studio Magazine summarized this by saying (see

https://visualstudiomagazine.com/articles/2011/03/24/wccsp_
asynchronous-programming.aspx):

Asynchronous programming is a means of parallel
programming in which a unit of work runs separately from
the main application thread and notifies the calling thread of
its completion, failure or progress.

�Programming Patterns
Undoubtedly, asynchronous programming is hard, but in earlier days, it

was harder. In those days, developers had the following options:

•	 Direct use of threads

•	 Direct use of ThreadPool class

•	 Use of callback methods

Chapter 1 Asynchronous Programming and Tasks

https://visualstudiomagazine.com/articles/2011/03/24/wccsp_asynchronous-programming.aspx
https://visualstudiomagazine.com/articles/2011/03/24/wccsp_asynchronous-programming.aspx

5

•	 Use of event-based asynchrony

•	 Use of AsyncResult pattern

However, these are not recommended for the new developments.

�Recommended Pattern
Then, what is the recommended pattern? See the official link https://
learn.microsoft.com/en-us/dotnet/standard/asynchronous-
programming-patterns/task-based-asynchronous-pattern-tap that

states the following:

In .NET, the task-based asynchronous pattern is the
recommended asynchronous design pattern for new
development. It is based on the Task and Task<TResult> types
in the System.Threading.Tasks namespace, which are used to
represent asynchronous operations.

However, this book does not discuss task-based asynchronous

pattern (TAP) in detail. This is because most of the TAP implementations

involve the async and await keywords which will be discussed in another

pocketbook in this learning series. This book is purely focused on task

programming without using them. Understanding these topics will

immensely help when you deep dive into asynchronous programming and

start applying async and await in your programs.

�Task Parallel Library (TPL)
In task programming, you’ll often hear about the task parallel library

(TPL). Let me give you a quick overview of that. TPL provides a set of

public types and APIs which are available in the following namespaces:

•	 System.Threading

•	 System.Threading.Tasks

Chapter 1 Asynchronous Programming and Tasks

https://learn.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://learn.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://learn.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap

6

You may note that the System.Threading.Tasks namespace was

introduced in .NET 4 and Microsoft stated (see https://learn.
microsoft.com/en-us/dotnet/standard/parallel-programming/task-
parallel-library-tpl) the following:

TPL is the preferred API for writing multi-threaded,
asynchronous, and parallel code in .NET

This is why this book starts the discussion with tasks that are the

foundation of the Task Parallel Library (TPL).

Note I t is interesting to know that behind the scenes, tasks are
queued to the ThreadPool that determines and adjusts the number of
threads. The ThreadPool follows some algorithms to control the load
balancing to gain maximum throughput.

�How Does TPL Help?
TPL is useful in many different scenarios. For example, you can use TPL to

control any of the following scenarios:

•	 Managing a multithreaded environment efficiently

•	 Scaling the concurrency level

•	 Providing support for task cancellations

•	 State management

•	 Partitioning your work

For now, it will be sufficient for you to understand that TPL simplifies

the multithread scenarios and helps you write high-performance code

without worrying about the nitty-gritty of threading or other low-level

details. The following statement from Microsoft (see https://learn.

Chapter 1 Asynchronous Programming and Tasks

https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/task-parallel-library-tpl
https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/task-parallel-library-tpl
https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/task-parallel-library-tpl
https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/task-parallel-library-tpl

7

microsoft.com/en-us/dotnet/standard/parallel-programming/task-
parallel-library-tpl) nicely summarizes the usefulness of TPL:

The purpose of the TPL is to make developers more productive
by simplifying the process of adding parallelism and
concurrency to applications.

�Introducing Tasks
TPL is based on the concept of tasks. So, the question is: what is a task? You

can consider a task as a code block that represents a unit of work. You can

inform the scheduler that this code block can execute on a separate thread

while the main thread can continue its execution. For example, consider

the following code segment:

static void PrintNumbersTask()
{
 WriteLine("Starts printing the numbers.");
 // Continues the work
 WriteLine("The task is completed.");
}

This can be a unit of work that can be executed on a separate thread.

�Useful Scenarios
The following list includes some common scenarios where you can

use tasks:

•	 Performing a calculation and displaying the result

•	 Computing a value with/without a supplied input

Chapter 1 Asynchronous Programming and Tasks

https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/task-parallel-library-tpl
https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/task-parallel-library-tpl

8

•	 Asking for a network resource

•	 Checking the health of a website, for example, pinging

a website

�Q&A Session

Q1.3 What are the benefits of using tasks over threads?
Here are some common benefits:

•	 The tasks are relatively lightweight. They help you

achieve fine-grained parallelism.

•	 Later, you’ll see that by using the in-built API for tasks,

you easily exercise useful operations such as waiting,

cancellations, continuations, custom scheduling, or

robust exception handling. So, when you opt for tasks

instead of threads, you’ll have more programmatic
control.

Q1.4 What were the fundamental advances in task over the previous
programming models?

There are many benefits. Once you complete this book, these benefits

will be apparent to you. For now, you may note that while using tasks,

after you initiate the operation(s), you can easily connect the producer of

the task and consumer(s) of the task by providing a continuation of work.

More specifically, you do not need to provide the continuation work to

the method that invokes the operation. It is one of the primary benefits of

using tasks over the previous programming models.

Chapter 1 Asynchronous Programming and Tasks

9

�Summary
This chapter started with a discussion on asynchronous programming and

its usage in the current world. Then, it introduced TPL and the role of tasks in

asynchronous programming. In brief, it answered the following questions:

•	 What is asynchronous programming and why is it

important?

•	 What are the ideal scenarios for asynchronous

programming?

•	 What is TPL?

•	 What is a task and why is it beneficial over threads?

�Exercises
Check your understanding by attempting the following exercises:

E1.1 State True/False:

	 i)	 In .NET, the task-based asynchronous pattern is the

current recommended pattern for asynchronous

programming.

	 ii)	 Asynchronous executions are always faster than the

corresponding synchronous executions.

	 iii)	 Performing a time-consuming computation is an

example of CPU-bound operation that can benefit

from asynchronous programming.

	 iv)	 Downloading a large file from the Internet is a

common example of an I/O-bound operation that

can benefit from asynchronous programming.

Chapter 1 Asynchronous Programming and Tasks

10

E1.2 Can you mention at least two primary benefits of exercising

asynchronous programming?

�Solutions to Exercises
Here is a sample solution set for the exercises in this chapter.

�E1.1
The answers are shown inline in bold:

	 i)	 In .NET, the task-based asynchronous pattern is the

current recommended pattern for asynchronous

programming. [True]

	 ii)	 Asynchronous executions are always faster than the

corresponding synchronous executions. [False]

	 iii)	 Performing a time-consuming computation is an

example of CPU-bound operation that can benefit

from asynchronous programming. [True]

	 iv)	 Downloading a large file from the Internet

is a common example of an I/O-bound

operation that can benefit from asynchronous

programming. [True]

Chapter 1 Asynchronous Programming and Tasks

11

�E1.2
The following list includes two primary benefits of using an asynchronous

application:

•	 You can offload the long-running tasks to the

background threads. As a result, you can build more

responsive user interfaces.

•	 Using asynchronous programming, you can take full

advantage of modern-day hardware to speed up your

application.

Chapter 1 Asynchronous Programming and Tasks

13© Vaskaran Sarcar 2025
V. Sarcar, Task Programming in C# and .NET, Apress Pocket Guides,
https://doi.org/10.1007/979-8-8688-1279-8_2

CHAPTER 2

Task Creation
and Execution
This chapter helps you dive into task programming. Here, you’ll learn

different ways to create and execute tasks. Once you execute a task, you

may be interested to see the result. It means that you need to wait for

the task completion. This is why this chapter discusses different kinds of

waiting mechanisms as well.

�Creating and Executing a Task
You can create and execute tasks in different ways. Suppose you have the

following code:

static void DoSomeTask()
{
 // Some code
}

Given the following code, let me show you the common approaches for

task creation and execution:

https://doi.org/10.1007/979-8-8688-1279-8_2#DOI

14

Approach-1:
The Task.Run method is the recommended and most common to create

and start a task. This approach helps you automatically start the task after

creation. Here is a sample code:

Task task = Task.Run(DoSomeTask);

Approach-2:
To create a task and automatically start the execution, you can use the

Task.Factory.StartNew method as well. Using this approach, you can

exercise advanced options to configure tasks. Here is a sample code:

Task task = Task.Factory.StartNew(DoSomeTask);

Approach-3:
In addition, you can use the Task constructor to create a task. However, in

this case, you need to explicitly start it by calling the Start method. Here is

a sample code:

Task task = new Task(DoSomeTask);
task.Start();

C# 9 onward, you can use target-typed new expressions. So, the

previous code block can be further simplified as follows:

Task task = new(DoSomeTask);
task.Start();

Note  You have seen the approaches that explicitly create and
execute tasks. There are other approaches as well. For example,
you can implicitly create and execute tasks using Parallel.Invoke
method. In addition, TaskCompletionSource<TResult> class also
helps you create specialized tasks that are suitable for particular
scenarios. However, let us learn the concepts one at a time.

Chapter 2 Task Creation and Execution

15

�Encapsulating Code Using Lambda Expression
You can create a task by providing a delegate that encapsulates the

intended code. This delegate can be expressed as a named delegate, an

anonymous method, or a lambda expression. This is why I present you

another task example, where I encapsulate the necessary code inside a

lambda expression as follows:

Task task = Task.Run(
 () =>
 {
 // Some code to execute
 }
);

�Demonstration 1

Let us verify whether tasks help us perform asynchronous programming

using the following demonstration:

POINT TO REMEMBER

.NET 6 onward, you may notice the presence of implicit global directives for

new C# projects. This helps you use the types in these namespaces without

specifying the fully qualified names or manually adding a “using directive.” You

can learn more about this from the online link https://learn.microsoft.
com/en-us/dotnet/core/project-sdk/overview#implicit-using-
directives.

For the C# projects in this book, I did not change the default settings. As a

result, you will not see me mentioning the following namespaces that were

available by default:

Chapter 2 Task Creation and Execution

https://learn.microsoft.com/en-us/dotnet/core/project-sdk/overview#implicit-using-directives
https://learn.microsoft.com/en-us/dotnet/core/project-sdk/overview#implicit-using-directives
https://learn.microsoft.com/en-us/dotnet/core/project-sdk/overview#implicit-using-directives

16

System

System.Collections.Generic

System.IO

System.Linq

System.Net.Http

System.Threading

System.Threading.Tasks

using static System.Console;

WriteLine("The main thread starts executing.");

Task.Run(PrintNumbers);

WriteLine($"The main thread is doing some other work...");
// Simulating a delay
Thread.Sleep(10);

WriteLine($"The main thread is completed.");
ReadKey();

static void PrintNumbers()
{
 for (int i = 1; i <= 5; i++)
 {
 Write($" {i}\t");
 // Simulating a delay
 Thread.Sleep(2);
 }
}

Chapter 2 Task Creation and Execution

17

�Output

Here is a sample output of this program from my computer. It is obvious

that the output can vary in your system. You can see that the main thread

was not blocked during the execution of the printing task. There is a nice

mixture of output from all the different threads/tasks.

The main thread starts executing.
The main thread is doing some other work...
 1 2 3 The main thread is completed.
 4 5

�Q&A Session

Q2.1 To create and execute tasks you have shown me the use of
Run, Start, and StartNew methods. How can I decide which one is
best for me?

If you see the method definitions in Visual Studio, you will see the

following statement: “The Start method starts the System.Threading.
Tasks.Task, scheduling it for execution to the specified System.
Threading.Tasks.TaskScheduler.” This method is useful when you

manually execute the task depending on some condition.

The Run method queues the specified work to run on the thread pool

and returns a System.Threading.Tasks.Task object that represents that

work. This is a lightweight alternative to the StartNew method. It helps you

start a task with the default values. This indicates that the Run method uses

the default task scheduler, regardless of a task scheduler that is associated

with the current thread. This is why Microsoft (see https://learn.
microsoft.com/en-us/dotnet/standard/parallel-programming/task-
based-asynchronous-programming) provides the following suggestions:

•	 The Run methods are the preferred way to create and

start tasks when more control over the creation and

scheduling of the task isn’t needed.

Chapter 2 Task Creation and Execution

https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/task-based-asynchronous-programming
https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/task-based-asynchronous-programming
https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/task-based-asynchronous-programming
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.run

18

Microsoft further says (see the same link) that you can use the

StartNew method for the following situations (see the same link):

•	 Creation and scheduling don’t have to be separated,

and you require additional task creation options or the

use of a specific scheduler.

•	 You need to pass an additional state into the task that

you can retrieve through its Task.AsyncState property.

POINT TO NOTE

To give you a specific example, let me tell you that you’ll learn about

child tasks (or nested tasks) shortly. There you’ll see that using

TaskCreationOptions.AttachedToParent, you can attach a child

task to the parent task (if the parent task allows this activity). This option is

available in some of the overloads of the StartNew method. However, the Run

method does not provide a similar option.

�Passing and Returning Values
In this section, I’ll discuss how you can pass value(s) to a task or get back a

computed value from a task.

�Passing Values into Tasks

In Demonstration 1, the PrintNumber method printed the numbers from

1 to 5. Let us modify this function, so that it can accept arguments. Here is

the modified function with the key changes in bold:

Chapter 2 Task Creation and Execution

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.asyncstate

19

static void PrintNumbers(int limit)
{
 for (int i = 1; i <= limit; i++)
 {
 Write($" {i}\t");
 // Simulating a delay
 Thread.Sleep(2);
 }
}

If you want to execute this function on a separate thread, you need to

pass a valid argument (for the limit parameter) from the calling thread.

So, let us change the following line of Demonstration 1:

Task task = Task.Run(PrintNumbers);

with the following one:

Task task = Task.Run(()=>PrintNumbers(5));

Now, if you run the program again, you’ll see the similar output that

you already saw by running Demonstration 1.

I assume that I do not need to remind you that you can replace the

previous line of code with the following line:

Task task = Task.Factory.StartNew(() => PrintNumbers(5));

Or the following lines:

Task task = new (() => PrintNumbers(5));
task.Start();

Let us investigate an alternative approach. At the time of this writing,

the Task class has the following constructors (see Figure 2-1).

Chapter 2 Task Creation and Execution

20

Figure 2-1.  The partial snapshot shows the overloaded versions of
the Task constructors

Notice the following constructor that is already highlighted in

Figure 2-1:

public Task(Action<object?> action, object? state);

This constructor gives you the idea that you can pass an object

argument to them. So, let me introduce another function called

PrintNumbersVersion2 that takes an object parameter and does a similar

thing. It is as follows (notice the changes in bold):

static void PrintNumbersVersion2(object? state)
{
 int limit = Convert.ToInt32(state);
 for (int i = 0; i <= limit; i++)
 {
 Write($" {i}\t");
 // Doing remaining things, if any
 Thread.Sleep(2);
 }
}

Chapter 2 Task Creation and Execution

21

This time, you can write something like

Task task = new(PrintNumbersVersion2, 5);
task.Start();

Or

Task task = Task.Factory.StartNew(PrintNumbersVersion2, 5);

However, the Run method does not have any such constructor. So, you

cannot write something like

Task task4 = Task.Run(PrintNumbersVersion2, 5); // Error

Ok, you have already seen many different approaches while passing a

state so far. Let us summarize them:

// Approach-1:
var task1 = Task.Run(() => PrintNumbers(10));

// Approach-2:
var task2=Task.Factory.StartNew(() => PrintNumbers(10));

// Approach-3:
var task3 = new Task(() => PrintNumbers(10));
task3.Start();

// Approach-4:
var task4 = new Task(PrintNumbersVersion2,10);
task4.Start();

// Approach-5:
var task5 = Task.Factory.StartNew(PrintNumbersVersion2,10);

You can see that in each approach, I passed an int. However, in the last

two cases, the target method (PrintNumbersVersion2) expected an object.

As a result, these two approaches suffer from the impact of boxing and

unboxing. On the contrary, they look cleaner compared to approaches 1, 2,

or 3. In the end, it is up to you how you want to organize it.

Chapter 2 Task Creation and Execution

22

Note D ownload the project Chapter2_Demo2A_PassingValues to
experience the different approaches that you have seen till now.

�Returning Values from Tasks

When you execute a task, you may need to access the final value. In such

cases, you need to use the generic version of the Task class and the Result

property. Here is a sample:

var task = Task<string>.Run(() => "Hello");
var result = task.Result;
WriteLine(result);

However, the type argument can be inferred, and as a result, you can

further simplify this code as follows:

var task = Task.Run(() => "Hello");
var result = task.Result;
WriteLine(result);

POINT TO NOTE

In the previous code segments, I have used the var type to type less. Here is

an equivalent code that explicitly shows the types:

Task<string> task = Task.Run(() => "Hello");
string result = task.Result;
WriteLine(result);

Chapter 2 Task Creation and Execution

23

�Demonstration 2

Let us see a complete program that deals with some tasks, passes some

values into them, and finally, retrieves the computed result.

In the following demonstration, I create a task that adds two integers

(10 and 20). Once the task is completed, I retrieve the computed result and

display it in the console window. Let us see the complete program now:

using static System.Console;

static int Add(int number1, int number2) => number1 + number2;

WriteLine("Passing and returning values by executing tasks.");
int firstNumber = 10;
int SecondNumber = 20;

var addTask = Task.Run(() => Add(firstNumber, SecondNumber));
var result = addTask.Result;

WriteLine($"{firstNumber}+{SecondNumber}={result}");
WriteLine($"The main thread is completed.");

�Output

Here is the output:

Passing and returning values by executing tasks.
10+20=30
The main thread is completed.

Chapter 2 Task Creation and Execution

24

�Q&A Session

Q2.2 I can see that in the previous demonstration, you did not use the
ReadKey method to prevent the end of the console mode application.
Was it intentional?

When you want to get a result from a task, you need to wait until the

task finishes its execution. It means that you need to invoke a blocking

operation. Using the Result property, I did the same: I blocked the calling

thread until the invoked task finished its execution. As a result, I did not

need to use any more blocking constructs.

Author’s note: Task instances can use the Wait method as well for a task

to complete execution. Shortly, you’ll see a discussion on different kinds of

waiting mechanisms.

�Understanding the Problem in Demonstration 2

Notice that in the previous output, the line “The main thread is completed.”

appeared at the end of the output. If you execute the program several times,

you’ll always notice the same. It is because by calling the Result method, I

forced the main thread to wait for the addTask to complete. As a result, we

could not take full advantage of asynchronous programming. The same

problem occurs if you use the Wait method as well.

�Q&A Session

Q2.3 I understand that using the blocking calls like var result = addTask.
Result; or addTask.Wait(); you effectively make the code synchronous.
Then, why did you show me the program that uses the blocking calls?

I wanted you to be aware of it. In addition, there will be situations

where you cannot proceed until you get a result from an intended task.

In those cases, you cannot avoid blocking calls (Demonstration 3 will

Chapter 2 Task Creation and Execution

25

give you an idea about this). So, if you consider using it, try to do so after

running other code that can run asynchronously. However, do not worry!

Shortly, you’ll see the discussion on nonblocking calls as well.

�Discussion on Waiting
There are different built-in constructs for waiting. In this section, let me

show you the need for “waiting” and discuss some useful methods to

implement the idea.

Note  To get a result of a task execution, if you block the calling
thread, you are not taking advantage of asynchronous programming.
So, it is important to design your application accordingly.

�Why Do We Wait?
Once you execute a task, you may like to get the result. It means that

you need to wait for the task to finish its execution. The following

demonstration gives you the idea.

�Demonstration 3

In the following program, the calling thread (aka main thread) invokes

two different tasks. Let us execute the program and analyze some of the

possible outputs:

using static System.Console;

WriteLine("The main thread starts.");

var printLuckyNumberTask = Task.Run(
 () =>

Chapter 2 Task Creation and Execution

26

 {
 WriteLine("Wait for your lucky number...");
 // Simulating a delay
 Thread.Sleep(1);
 �WriteLine($"---Your lucky number is: {new Random().

Next(1,10)}");
 }
);

var processOrderTask = Task.Run(
 () =>
 {
 WriteLine("Processing an order...");
 // Simulating a delay
 Thread.Sleep(200);
 WriteLine($"---Your order is processed.");
 }
);
WriteLine("The end of main.");

�Output

Here I include some possible outputs from my computer:

Output 1:

The main thread starts.
The end of main.

Output 2:

The main thread starts.
The end of main.
Processing an order...
Wait for your lucky number...

Chapter 2 Task Creation and Execution

27

�Analysis

These outputs reflect the following characteristics:

•	 The main thread ends before printLuckyNumberTask

and processOrderTask finish their executions.

•	 None of these outputs reflect whether the invoked tasks

complete their job.

�How Do We Wait?
You understand that to see the final status of these tasks, you may need

to wait for some more time. How can you wait? There are different

approaches. Let me show you some of them in the following section.

�Using Sleep

Probably, one of the simplest solutions is to block the main thread until

other tasks are finished. Here is a sample where I block the main thread for

1000 milliseconds:

// The previous code is the same
Thread.Sleep(1000);
WriteLine("The end of main.");

Note  You can download the project Chapter2_DiscussionOnWaiting
from the Apress website to run and validate all the program segments
that are discussed in this section.

Chapter 2 Task Creation and Execution

28

This one line of additional code increases the probability of seeing an

output that reflects these two tasks completing their executions before the

control leaves the main thread. Here is a possible output:

The main thread starts.
Processing an order...
Wait for your lucky number...
---Your lucky number is: 3
---Your order is processed.
The end of main.

The advantage of using this approach is obvious. We can see that when

the main thread sleeps, other tasks could execute their job. It indicates that

during sleep, the scheduler can schedule other tasks.

On the contrary, this approach has an obvious problem: you may block

the thread unnecessarily for some additional time. For example, I can

see a similar output (I am saying “similar” instead of “same” because the

generated random number keeps varying which is an expected behavior

for this program) in my computer if I block the main thread for 500

milliseconds or less too. However, the problem is that since we cannot
predict the exact time for these tasks to be completed, I need to block
it for a reasonable amount of time. So, if any of these tasks take more

time to complete due to some other factors, you may not see the task’s

completion message in the output. This is a problem for sure!

Neither we want unnecessary waiting nor do we want to miss any key

information. From this point of view, it is an inefficient approach. In fact, the

situation can be worse if you work on an application that tries to block the

UI. This is why relying on the Sleep method may not always be a good idea.

�Using Delay

In the previous code, let me replace the statement, Thread.Sleep(1000);

with Task.Delay(1000); in the main thread as follows:

Chapter 2 Task Creation and Execution

29

// The previous code is the same
Task.Delay(1000);
WriteLine("The end of main.");

and run the program again. Again, my computer shows different possible

outputs, and one of them is as follows:

The main thread starts.
Processing an order...
The end of main.
Wait for your lucky number...

This output reflects that the calling thread was not blocked for the

printLuckyNumberTask and processOrderTask to complete their job. So,

you see the line “The end of main.” before the order was processed or

the lucky number was displayed. This gives you a clue that you should
use Sleep for the synchronous pauses, whereas you should prefer the
Delay method for nonblocking delays. This is why the use of the Delay
method can help you build a more responsive UI.

In fact, Visual Studio IDE will give you a clue about this. Let me explain

this: Once you learn more about asynchronous programming, you’ll

know that the use of async and await keywords simplifies asynchronous

programming. Then, you may write something like the following: await
Task.Delay(1000);. However, without using the await keyword, if you use

the line Task.Delay(1000); you’ll see the following warning message:

CS4014 Because this call is not awaited, execution of the current
method continues before the call is completed. Consider apply-
ing the ‘await’ operator to the result of the call.

Chapter 2 Task Creation and Execution

30

MORE ON SLEEP VS. DELAY

While using the Delay method, you can also assign it to a task and “await” at a

later point in time as follows:

Task task= Task.Delay(1000);
// Do something here
await task;

In addition, the Delay method has various overloads, and many of them accept

CancellationToken as a parameter (this is discussed in the next chapter). Using

this parameter, you can avoid aborting the thread and terminate it nicely.

�Using ReadKey() or ReadLine()

Sometimes, you see the presence of ReadKey(), Read(), or ReadLine()

in a program. The basic idea of using these methods is to block the control

of execution until the user provides the required input. For example, you

can wait for printLuckyNumberTask and processOrderTask to finish their

executions, and then, you can press a key from the keyboard to get the final

output. Here is a sample code:

// The previous code is the same
ReadKey();
WriteLine("The end of main");

�Using Wait

Demonstration 2 showed that by using the Result property, you can block the

calling thread until the specific task is finished. However, it is not necessary that

in every scenario, you analyze the outcome of task execution. In fact, a task may

not return a value as well. So, let me show you another waiting technique.

Chapter 2 Task Creation and Execution

31

Invoking the Wait method on a Task instance, you can wait for it to

complete. Here is a sample where I call Wait on printLuckyNumberTask

and processOrderTask separately:

// The previous code is the same
printLuckyNumberTask.Wait();
processOrderTask.Wait();
WriteLine("The end of main.");

This change allows both tasks to finish their executions.

�Using WaitAll

Instead of waiting for the individual tasks to be completed, you can wait for

a group of tasks. In such cases, you use the WaitAll method and provide

the task objects for which you want to wait as parameters. Here is a sample:

// The previous code is the same
Task.WaitAll(printLuckyNumberTask, processOrderTask);
WriteLine("The end of main.");

This change can also produce an output where you’ll see that both

tasks finished their executions.

�Using WaitAny

Suppose there are multiple tasks, but you’d like to wait for any of them to

complete. In such cases, you use the WaitAny method as follows:

// The previous code is the same
Task.WaitAny(printLuckyNumberTask, processOrderTask);
WriteLine("The end of main.");

Chapter 2 Task Creation and Execution

32

Here is a sample output:

The main thread starts.
Wait for your lucky number...
Processing an order...
---Your lucky number is: 2
The end of main.

This output shows that this time the main thread did not wait for the

processOrderTask to finish its execution.

POINTS TO NOTE

These methods have various overloads. For example, at the time of

this writing, the Wait method has six different overloads. Using these

overloaded versions, you can provide a maximum duration to wait, a

CancellationToken instance, or both of them to monitor while waiting.

�Using WhenAny

Notice the previous output once again. You can see that the line “The end
of main.” came after at least one of the tasks finished its execution. If you

execute the program repeatedly, you’ll never see that the mentioned line

appears before at least one task finishes its execution. It is because, in the
case of WaitAny, the calling thread is blocked till any of those tasks
finishes the execution. Interestingly, there is another method, called

WhenAny, that does not block the calling thread.

Consider the following code where I replace WaitAny with WhenAny:

// The previous code is the same
Task.WhenAny(printLuckyNumberTask, processOrderTask);
WriteLine("The end of main.");

Chapter 2 Task Creation and Execution

33

Here is a sample output after this change:

The main thread starts.
The end of main.
Processing an order...
Wait for your lucky number...

You can see that the main thread was not blocked in this case.

�Waiting For Cancellation

There will be situations when you need to be prepared for possible

cancellations of tasks. In those cases, you need to have a cancellation

token. Since the topic is important as well as big, I have discussed it in a

separate chapter (Chapter 5).

�Q&A Session

Q2.4 In some blogs/articles, I see the usage of Thread.SpinWait, instead
of Thread.Sleep. How do they differ?

The SpinWait method is useful for implementing locks but not for

ordinary applications. When you use spin waiting, the scheduler does

not pass the control to some other task, which means it avoids context

switching. The online link https://learn.microsoft.com/en-us/dotnet/
api/system.threading.thread.spinwait?view=net-9.0 states:

In the rare case where it is advantageous to avoid a context
switch, such as when you know that a state change is imminent,
make a call to the SpinWait method in your loop. The
code SpinWait executes is designed to prevent problems that
can occur on computers with multiple processors. For example,
on computers with multiple Intel processors employing
Hyper-Threading technology, SpinWait prevents processor star-
vation in certain situations.

Chapter 2 Task Creation and Execution

https://learn.microsoft.com/en-us/dotnet/api/system.threading.thread.spinwait?view=net-9.0
https://learn.microsoft.com/en-us/dotnet/api/system.threading.thread.spinwait?view=net-9.0

34

Note  The .NET Framework classes such as Monitor or
ReaderWriterLock internally use the SpinWait method. Still,
instead of using this method directly, Microsoft recommends that you
use the built-in synchronization classes to serve your purpose. I also
recommend not using this method for one typical reason: SpinWait
accepts an integer argument that represents the number of iterations
for the CPU loop to be performed. As a result, the waiting time
depends on the processor’s speed.

It is useful to note that you can use the SpinUntil method as well. At

the time of this writing, there are three overloaded versions of this method:

SpinUntil(Func<Boolean>)
SpinUntil(Func<Boolean>, Int32)
SpinUntil(Func<Boolean>, TimeSpan)

Let me show you a usage of the simplest version that spins until the

specified condition is fulfilled. Here is a sample for you where I wait until

printLuckyNumberTask completes its execution properly:

// Previous code is the same. You can see it by downloading
// the Chapter2_DiscussionOnWaiting project
SpinWait.SpinUntil(() =>
 printLuckyNumberTask.Status == TaskStatus.RanToCompletion);
WriteLine("The end of main.");

Here is a possible output after this change is made to this program:

The main thread starts.
Processing an order...
Wait for your lucky number...
---Your lucky number is: 8
The end of main.

Chapter 2 Task Creation and Execution

35

Note that this time the output shows that printLuckyNumberTask

completes the execution but it does not reflect whether processOrderTask

completes the execution. It is because I cared about the status of the

printLuckyNumberTask only.

POINT TO NOTE

The key takeaway is that there are different ways of waiting. You can use the

one which is more convenient for you. I am mentioning only those methods

that will be sufficient for you to understand the rest of this book. Remember

that these methods have various overloaded versions as well.

Q2.5 Give me an example where you’d like to use WhenAny or WaitAny.
Between these two methods, which one would you like to use?

Suppose you are working with two different tasks and each task works

with a different URL. Let us further assume that each URL can help you test

the current health of a website. You understand that any of these links will

be sufficient to check the current status of a website. So, your program can

execute the tasks and continue as soon as you get the data. In such a case,

you can use WhenAny or WaitAny.

Unless there are sufficient reasons, I’ll opt for WhenAny in such a case

for the following reasons:

•	 It is nonblocking.

•	 The previous point is important to avoid deadlocks as

well. For example, consider a situation when you deal with

multiple tasks. Let’s assume that the main application

thread waits to get a notification from another task,

say either from taskA or from taskB. However, if both

tasks (taskA and taskB) stop executing due to some

unpredictable circumstances, the main thread is blocked as

well. In fact, the use of WaitAny can cause deadlock as well.

Chapter 2 Task Creation and Execution

36

�Summary
This chapter gave you a quick overview of task creations and executions. It

also described different waiting mechanisms for task completions. In brief,

it answered the following questions:

•	 What is a task and how can you create a task?

•	 How can you pass values into tasks?

•	 How can you return a value from a task?

•	 How can you employ a waiting mechanism in task

programming?

�Exercises
Check your understanding by attempting the following exercises:

POINT TO REMEMBER

As said before, for all code examples, the “Implicit Global Usings” was enabled

in Visual Studio. This is why you’ll not see me mentioning the following

namespaces that were available by default:

System
System.Collections.Generic
System.IO
System.Linq
System.Net.Http
System.Threading
System.Threading.Tasks

The same comment applies to all exercises in this book as well.

Chapter 2 Task Creation and Execution

37

E2.1 If you execute the following code, can you predict the output?

using static System.Console;

Task printHelloTask = new(
 () => WriteLine("Hello!")
);
printHelloTask.Wait(1);
WriteLine("End.");

E2.2 Can you predict the output of the following program?

using static System.Console;
Task welcomeTask = Task.Run(
 () =>
 {
 Thread.Sleep(5);
 WriteLine("Welcome!");
 }
);
Thread.Sleep(2);
WriteLine("How are you doing?");

E2.3 Can you predict the output of the following program?

using static System.Console;
var sayHello = (string msg = "Hello, reader!") => msg;
var displayMsgTask = Task.Run(()=>WriteLine(sayHello()));
displayMsgTask.Wait();
WriteLine("Goodbye.");

E2.4 Write a function that accepts a number to calculate its factorial.

Execute the function with a background thread and display the result

on the console. (You do not need to consider typical input validations or

exceptional scenarios for this program.)

Chapter 2 Task Creation and Execution

38

E2.5 State True/False:

	 i)	 The WaitAny method blocks the calling thread,

but the WhenAny method does not block the

calling thread.

	 ii)	 To build a more responsive UI, you should prefer the

Sleep method over the Delay method.

�Solutions to Exercises
Here is a sample solution set for the exercises in this chapter.

�E2.1
Notice that you have created the task but you have not started this task. So,

the program will output the following:

End.

�E2.2
The program can show more than one possible output. However, notice

that you did not wait for the task to finish its execution. So, depending on

the computer’s speed, the order of the output statements can vary. Here is

one sample output:

How are you doing?
Welcome!

It is also possible that in the output, you see “How are you doing?”

only if the task takes some more time to start. To examine this, you can

run the following code in which by introducing some more delay inside

welcomeTask (see the bold line), I increase the probability of finishing the

main thread early:

Chapter 2 Task Creation and Execution

39

using static System.Console;
Task welcomeTask = Task.Run(
 () =>
 {
 //Thread.Sleep(5);
 Thread.Sleep(200);
 WriteLine("Welcome!");
 }
);
Thread.Sleep(2);
WriteLine("How are you doing?");

�E2.3
C#12 allows you to define default values for parameters on lambda

expressions. So the code can be compiled without any issues. In addition,

this time the output is also predictable because the main thread must wait

for the task to finish. So, you will see the following output:

Hello, reader!
Goodbye.

�E2.4
Here is a sample solution that calculates the factorial of 10 using a

background task:

using static System.Console;
WriteLine("The main thread initiates the task.");
var calculateFactorialTask = Task.Run(() =>
CalculateFactorial(10));

Chapter 2 Task Creation and Execution

40

WriteLine("The main thread resumes to do other things.");
Wr�it�eLine($"The factorial of 10 is: {calculateFactorialTask.

Result}");

static int CalculateFactorial(int number)
{
 int temp = 1;
 for (int i = 2; i <= number; i++)
 {
 temp *= i;
 }
 return temp;
}

Here is the sample output for your reference:

The main thread initiates the task.
The main thread resumes to do other things.
The factorial of 10 is: 3628800

�E2.5
The answers are shown inline in bold:

	 i)	 The WaitAny method blocks the calling thread,

but the WhenAny method does not block the calling

thread. [True]

	 ii)	 To build a more responsive UI, you should prefer the

Sleep method over the Delay method. [False]

Chapter 2 Task Creation and Execution

41© Vaskaran Sarcar 2025
V. Sarcar, Task Programming in C# and .NET, Apress Pocket Guides,
https://doi.org/10.1007/979-8-8688-1279-8_3

CHAPTER 3

Continuation
and Nested Tasks
This chapter will give you an overview of task continuations, nested tasks,

and related topics.

�Continuation Tasks
Suppose, there are two tasks, called Task A and Task B. If you want to start

executing Task B only after Task A, probably you’d like to use callbacks.

But TPL makes it easy. It provides the functionality through a continuation

task which is nothing but an asynchronous task. The idea is the same:

once an antecedent task finishes, it invokes the next task that you want to

continue. In our example, Task A is the antecedent task and Task B is
the continuation task. Let me summarize the important characteristics of

a continuation task:

•	 A continuation task is invoked by another task. It can

start when the prior task (i.e., the antecedent task) is

completed. It means continuations are nothing but

chaining tasks.

•	 Using this concept, you can pass data (as

well as exceptions) from an antecedent to the

continuation task.

https://doi.org/10.1007/979-8-8688-1279-8_3#DOI

42

•	 If an asynchronous task returns some data, you can

use the continuation to receive and/or process that

data without blocking the main thread. This makes

continuations very flexible.

•	 The continuations can be attached to one or more

antecedents.

•	 You can invoke single as well as multiple

continuation tasks.

•	 You can control the continuation. For example, if there

are three tasks, called Task A, Task B, and Task C, you

can decide that Task C should continue only after both

Task A and Task B finish their executions. Alternatively,

you may decide that Task C should not wait for both

Task A and Task B; instead, it should continue when

any of them finish the execution.

•	 You can also cancel a continuation task if you want.

This is often useful during an emergency or when

you find a typical bug that keeps occurring during the

execution of an application.

�Simple Continuation
Assume that a person, named Jack, wants to invite his friends to a dinner

party. At a high level, let us divide the overall activity into two different

tasks as follows:

•	 Inviting friends

•	 Ordering food

Let us assume that Jack first invites his friends over the phone. Once

the invitation is done, he has an idea of how many people are joining the

Chapter 3 Continuation and Nested Tasks

43

party. Based on that, now he orders the food. You can see that inviting

friends is the antecedent task and ordering food is the continuation task.

Let us develop a program to mimic the scenario.

For the continuation task, you’ll notice the use of the ContinueWith

method. This method creates a continuation that executes when the

target task is completed. There are many overloads of this method. In

this example, I use the simplest version of ContinueWith that accepts an

Action<Task> as the parameter. This is why you will see the following

code block:

var orderTask = inviteTask.ContinueWith(previousTask =>
 {
 WriteLine(previousTask.Result);
 // Simulating a delay to mimic a real-world situation
 Thread.Sleep(1000);
 WriteLine("Food is ordered now.");
 }
);

You can see that I inserted a one-second pause inside orderTask.

Though it was not required, I kept this line of code to mimic the delay

between the task of inviting friends and ordering food.

POINT TO NOTE

To show you the complete output, I use the ReadLine method in this example

to prevent the end of the console mode application. The same comment

applies whenever you see me using the ReadKey or ReadLine method in the

demonstrations of this book.

Chapter 3 Continuation and Nested Tasks

44

�Demonstration 1

Here is the complete demonstration:

using static System.Console;

WriteLine("The host is planning a party.");
var inviteTask = Task.Run(() => "Invitation is done.");
var orderTask = inviteTask.ContinueWith(previousTask =>
 {
 WriteLine(previousTask.Result);
 // Simulating a delay to mimic a real-world situation
 Thread.Sleep(1000);
 WriteLine("Food is ordered now.");
 }
);
WriteLine("The host is decorating the house.");
ReadLine();

�Output

Here is a sample output for you:

The host is planning a party.
The host is decorating the house.
Invitation is done.
Food is ordered now.

Chapter 3 Continuation and Nested Tasks

45

�Analysis

The previous output confirms the following characteristics:

•	 The main thread was not blocked while the

continuation task was running. This is why you see the

line “The host is decorating the house.” before

the line “Invitation is done.”

•	 You can also see that the continuation task started after

the antecedent task finished. In addition, it successfully

processed the data that was returned from the parent/

antecedent task.

•	 In this example, when the continuation task processed

the line WriteLine(previousTask.Result); it was
nonblocking. Why? Since the previous task was already

completed, its result was instantly available.

�Conditional Continuations
Demonstration 1 shows you a simple continuation example. However, you

can have more control over the continuation process. Let us examine this

concept with some case studies.

�Case Study 1

Even after inviting the guests, the host may need to shift the party due to

some unavoidable circumstances. In this case, instead of ordering the

food, let us assume that the host lets the guest know about the situation

and shifts the party date. Can you write a program to mimic the situation?

Chapter 3 Continuation and Nested Tasks

46

Surely, you can. However, let me show a technique that manages the

situation using the TaskContinuationOptions enumeration. The following

screenshot (see Figure 3-1) from Visual Studio shows you the different

members of TaskContinuationOptions:

Figure 3-1.  The members of TaskContinuationOptions

Note D iscussing all these members will make the book
unnecessarily fat. If interested, you can learn more about these
members by expanding them in Visual Studio or from the online
link https://learn.microsoft.com/en-us/dotnet/api/
system.threading.tasks.taskcontinuationoptions?vi
ew=net-8.0. However, I believe that you can get some idea about
these members by seeing their names as well.

Chapter 3 Continuation and Nested Tasks

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=net-8.0

47

Since our example deals with an exceptional situation, I am going to

use NotOnFaulted and OnlyOnFaulted options. You can safely assume that

the NotOnFaulted option will be used for the normal situation and the

other one will be used to deal with an exceptional situation.

Before you see the complete program, let me tell you that to generate

an exceptional situation, I have used a dummy logic. It is as follows: The

antecedent task (inviteTask) generates a number. If it is an even number,

it’ll raise the exception. Otherwise, it’ll send a message saying invitation

is done.

�Demonstration 2

Let us see the complete program now:

using static System.Console;

WriteLine("The host is planning a party.");
var inviteTask = Task.Run(() =>
{
 string msg= "Invitation is done.";
 // A dummy logic to generate an exception
 int random =new Random().Next(10);
 if (random % 2 == 0)
 {
 throw new Exception("Some problem occurs.");
 }
 return msg;
}
);

var orderTask = inviteTask.ContinueWith(previousTask =>
{
 WriteLine(previousTask.Result);

Chapter 3 Continuation and Nested Tasks

48

 // Simulating a delay to mimic real-world situation
 Thread.Sleep(1000);
 WriteLine("Food is ordered now.");
 }, TaskContinuationOptions.NotOnFaulted
);

var changePartyDateTask = inviteTask.ContinueWith(previousTask =>
 {
 �Writ�eLine("Party date is shifted due to some

unavoidable circumstances.");
 }, TaskContinuationOptions.OnlyOnFaulted
);
WriteLine("The host is decorating the house.");
ReadLine();

�Output

Here is a possible output when there is no exception:

The host is planning a party.
The host is decorating the house.
Invitation is done.
Food is ordered now.

Here is another possible output where the host needed to shift the

party date:

The host is planning a party.
The host is decorating the house.
Party date is shifted due to some unavoidable circumstances.

Chapter 3 Continuation and Nested Tasks

49

�Case Study 2

Task continuations help you deal with many different situations. Let

me show you one more case study on this topic. Earlier, I told you that

continuations can be attached to one or more antecedents. Let us see an

example.

This time, I’ll use the ContinueWhenAll method. As usual, there are

many overloads of this method. I am about to use the following one that

accepts only two parameters as follows:

public Task ContinueWhenAll<TAntecedentResult>
(
 Task<TAntecedentResult>[] tasks,
 Action<Task<TAntecedentResult>[]> continuationAction
)
{
 // Method body is not shown
}

Here, the first parameter accepts an array of antecedent tasks (it

means that these need to be finished before you continue), and the next

parameter is for the Action delegate that will execute when all tasks in the

array have been completed.

This is why you’ll see the following code that indicates that the

orderTask and the inviteTask must be completed before you start a

continuation task as follows:

var arrangeDinnerTask = Task.Factory.ContinueWhenAll(
 [orderTask,inviteTask],
 tasks =>
 {
 WriteLine("Arranging dinner.");
 }
);

Chapter 3 Continuation and Nested Tasks

50

POINT TO REMEMBER

You may note that the “Collection expressions” feature in C#12 allows us to

write arrangeDinnerTask in this way. If you are using an old version of C#,

you may need to write it as follows (notice the change in bold):

var arrangeDinnerTask = Task.Factory.ContinueWhenAll(
 new[] { orderTask,inviteTask },
 //[orderTask,inviteTask], // C#12 onwards
 tasks =>
 {
 WriteLine("Arranging dinner.");
 }
);

�Demonstration 3

Let us see the complete program now:

using static System.Console;

var orderTask = Task.Run(() => WriteLine("Food is ordered."));
var inviteTask = Task.Run(() => WriteLine("Invitation is done."));

var arrangeDinnerTask = Task.Factory.ContinueWhenAll(
 //new[] { orderTask,inviteTask },
 [orderTask,inviteTask], // C#12 onwards
 tasks =>
 {
 WriteLine("Arranging dinner.");
 }
);

ReadLine();

Chapter 3 Continuation and Nested Tasks

51

�Output

Here is a possible output where food is ordered at the beginning:

Food is ordered.
Invitation is done.
Arranging dinner.

Here is another possible output where the invitation is done at the

beginning:

Invitation is done.
Food is ordered.
Arranging dinner.

�Analysis

In every case, you can see that dinner has been arranged only after the task

of ordering food is completed and invitations are done.

�Case Study 3

Let us analyze one more case study where you continue a task if any one

of the previous tasks completes the execution. In this case, you can use

ContinueWhenAny (instead of ContinueWhenAll). For example, here is

a sample output that I received when I replaced the ContinueWhenAll

method with the ContinueWhenAny method in the previous code:

Food is ordered.
Arranging dinner.
Invitation is done.

This output shows that dinner was arranged even before the invitations

were completed. You may increase the probability of seeing this output by

introducing a sleep statement inside inviteTask as follows:

Chapter 3 Continuation and Nested Tasks

52

var inviteTask = Task.Run(() =>
{
 Thread.Sleep(3000);
 WriteLine("Invitation is done.");
}
);

Note  You can also download the Chapter3_Demo3_CaseStudy3
project to exercise this case study.

�Identifying a Task and Its Status
When you work with several tasks in a multithreaded environment,

it is necessary to identify the tasks along with the status. Using Task.
CurrentId, you can get the ID of the currently executing task.

POINT TO NOTE

CurrentId is used to get the identifier of the currently executing task from

the code that the task is executing. However, it is a static property, and it

differs from the Id property. Id returns the identifier of a particular Task

instance. Attempting to retrieve the CurrentId value from outside the code

that a task is executing results a null return.

The life cycle of a Task instance passes through various stages. The

Status property is used to verify the current state. On investigation, you’ll

see that it returns TaskStatus which is an enum type and it has many

members. Let me take a snapshot from Visual Studio to show them (see

Figure 3-2).

Chapter 3 Continuation and Nested Tasks

53

Figure 3-2.  Different possible states of a Task instance

In a concurrent environment, it is possible that by the time you
receive the value of a task status, the status is changed. However, the
interesting point is that once a state is reached, it does not go back to a
previous state. For example, once a task reaches a final state, it cannot go

back to the Created state. Interestingly, there are three possible final states

as follows:

•	 RanToCompletion

•	 Canceled

•	 Faulted

As per their names, these states have their usual meaning. For

example, RanToCompletion indicates that the task was completed

successfully. Similarly, Faulted indicates the task completed due to an

unhandled exception. I assume that I need not mention that Canceled

Chapter 3 Continuation and Nested Tasks

54

indicates that a task is canceled that can occur due to various reasons such

as user intervention, timeouts, or any other application logic. I’ll discuss

more about exceptions and cancellations in Chapter 4 and Chapter 5.

�Demonstration 4

In the following program, you’ll see two tasks. The first task

(doSomethingTask) can be completed successfully, or it can be

encountered with an exception. The second task (statusCheckerTask) is a

continuation task that checks the status of the parent task using the Status

property (it helps you retrieve the TaskStatus of the task). Here is the

complete program:

using static System.Console;

var doSomethingTask = Task.Run(
 () =>
 {
 �Wr�i�t�eLine($"The task [id:{Task.CurrentId}]

starts...");
 // Do Something else, if required
 int random = new Random().Next(2);
 WriteLine($"The random number is:{random}");
 // The random number 0 causes the exception
 if (random == 0)
 {
 throw new Exception("Got a zero");
 }
 �Wr�it�eLine($"The task [id:{Task.CurrentId}] has

finished.");
 }
);

Chapter 3 Continuation and Nested Tasks

55

var statusCheckerTask = doSomethingTask.
ContinueWith(previousTask =>
{
 �WriteLine($"The task {previousTask.Id}'s status is:

{previousTask.Status}");
}, TaskContinuationOptions.AttachedToParent
);

ReadKey();

�Output

Here is a sample output:

The task [id:8] starts...
The random number is:0
The task 8's status is: Faulted

Here is another sample output:

The task [id:8] starts...
The random number is:1
The task [id:8] has finished.
The task 8's status is: RanToCompletion

�Analysis

If needed, you can modify this program where you use separate branches

to handle different scenarios (similar to Demonstration 2). To illustrate the

previous line, let me replace the statusCheckerTask with the following blocks

of code that handle two possible branches (notice the key changes in bold)):

var normalHandlerTask = doSomethingTask.
ContinueWith(previousTask =>

Chapter 3 Continuation and Nested Tasks

56

{
 WriteLine($"The task {previousTask.Id}'s status is:
 {previousTask.Status}");
}, TaskContinuationOptions.AttachedToParent |
 TaskContinuationOptions.NotOnFaulted
);

var faultHandlerTask = doSomethingTask.
ContinueWith(previousTask =>
{
 �WriteLine($"The parent task was not completed due to an

exception.");
}, TaskContinuationOptions.AttachedToParent |
 TaskContinuationOptions.OnlyOnFaulted
);

Let’s run this modified program. This time, you’ll see separate

messages based on the task’s completion status. Here is the output when

the parent task encountered the exception:

The task [id:7] starts...
The random number is:0
The parent task was not completed due to an exception.

Here is another output when the parent task did not encounter the

exception:

The task [id:8] starts...
The random number is:1
The task [id:8] has finished.
The task 8's status is: RanToCompletion

Chapter 3 Continuation and Nested Tasks

57

�Q&A Session

Q3.1 In the previous outputs, I see the ID of the parent task is 7 or 8.
Looks like, many other tasks were also running along with it. Is this
correct?

Yes, I ran this code in VS2022 with the default settings in the debug

configuration where the hot reload was enabled. I asked the same question

at https://stackoverflow.com/questions/77726578/vs2022-versus-
vs2019-how-why-are-the-additional-tasks-being-created and

received the answer. If you run the same code in the release configuration

(or disable the “hot reload” setting), you can see the lower id as follows:

The task [id:1] started doing something...
The random number is:0
The task 1's status is: Faulted

Author's note: To choose your preferred configuration, you can follow

these steps: right-click the Solution Explorer ➤ Configuration Manager...
➤ choose Debug or Release configuration for the project(s).

POINT TO REMEMBER

I often execute my programs in debug mode. So, to see the lower task IDs

such as 1, 2, 3, and so forth in the output, I often run those programs with the

“hot reload” setting disabled.

Q3.2 Are the task identifiers unique?
Microsoft does not guarantee this. The online link https://learn.

microsoft.com/en-us/dotnet/api/system.threading.tasks.task.
currentid?view=net-9.0 states the following:

Note that although collisions are very rare, task identifiers are
not guaranteed to be unique.

Chapter 3 Continuation and Nested Tasks

https://stackoverflow.com/questions/77726578/vs2022-versus-vs2019-how-why-are-the-additional-tasks-being-created
https://stackoverflow.com/questions/77726578/vs2022-versus-vs2019-how-why-are-the-additional-tasks-being-created
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.currentid?view=net-9.0
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.currentid?view=net-9.0
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.currentid?view=net-9.0

58

�Nested Tasks
Tasks can be nested. It means that you can create a task in the user

delegate of another task. The outer task in which the child task is created

is often referred to as the parent task. A child task can be any of the

following types:

•	 Attached: Created with the TaskCreationOptions.
AttachedToParent option (if the parent task allows this

to be attached)

•	 Detached: Executes independently

�Detached Nested Task
Let us start our discussion with detached nested tasks.

�Demonstration 5

The following code creates two Task instances, called parent and child.

Notice that the child task is created inside the parent task. However,

I did not attach the child task to the parent. This is why you see the

line ,TaskCreationOptions.AttachedToParent is commented in the

following code.

POINT TO NOTE

The Task.Factory.StartNew method has the overload that accepts

TaskCreationOptions as a parameter. The same is not available for the

Task.Run method.

Chapter 3 Continuation and Nested Tasks

59

using static System.Console;

var parent = Task.Factory.StartNew(
 () =>
 {
 WriteLine($"The parent task has started.");

 var child = Task.Factory.StartNew(
 () =>
 {
 WriteLine("The child task has started.");
 // Forcing some delay
 Thread.Sleep(1000);
 WriteLine("The child task has finished.");
 }
 //,TaskCreationOptions.AttachedToParent
);
 }
);
Thread.Sleep(5);
parent.Wait();
WriteLine($"The parent task has finished now.");

�Output

Here is a sample output from my computer:

The parent task has started.
The child task has started.
The parent task has finished now.

You can see that this output reflects that the child task was started, but

it does not reflect whether it was finished. This is because I created the

child task without using TaskCreationOptions.AttachedToParent option.

Chapter 3 Continuation and Nested Tasks

60

So, it becomes a detached child task that executes independently of its

parent. This is why the parent task does not care whether the child task is

completed.

�Q&A Session

Q3.3 I understand that in the previous demonstration, you waited only
for the parent task to complete but not for the child task. So, if I replace
the line parent.Wait(); with the line Task.WaitAll(parent, child); I
can see whether the child task finishes its execution. Am I right?

No. In that code sample, the child task was nested. So, it was not in the

scope. So, your proposed code will cause the following compile-time error:

CS0103 The name 'child' does not exist in the current context

Q3.4 In the previous program, you used a Sleep statement in the main
thread. Was it necessary?

Nice catch. Indeed, it was not necessary. However, by placing this

Sleep statement, I increase the probability of showing the line "The child
task has started." in the output.

�Attached Nested Task
Let us uncomment the line //,TaskCreationOptions.AttachedToParent

in the previous code and execute the program again. This time, you must

see the completion status of the child task. Here is a sample output for you:

The parent task has started.
The child task has started.
The child task has finished.
The parent task has finished now.

Chapter 3 Continuation and Nested Tasks

61

POINTS TO NOTE

You can attach a child task to the parent task if and only if the parent task

allows you to do this. In this context, you can note the following two points

from the official documentation (see https://learn.microsoft.com/
en-us/dotnet/standard/parallel-programming/attached-and-
detached-child-tasks):

	1.	P arent tasks can explicitly prevent child tasks from attaching

to them by specifying the TaskCreationOptions.
DenyChildAttach option in the parent task's class

constructor or the TaskFactory.StartNew method.

	2.	P arent tasks implicitly prevent child tasks from attaching to

them if they are created by calling the Task.Run method.

�Q&A Session

Q3.5 I have a doubt: In the previous demonstration (Demonstration 5),
you have only written parent.Wait();. It means that you care about the
parent task to be finished, but the same is not true for the child task. As
a result, there is no guarantee that the output will reflect whether the
child task could finish its execution. Is this a correct understanding?

No. Microsoft has designed the architecture in such a way that if you

create a parent–child relationship, waiting on the parent task forces you to

wait for the child task to complete.

�Forcing Parent Task to Wait
You can force the parent task to wait for the child task to finish (even if it is

a detached nested task) by accessing the Task<TResult>.Result property

of the child task as well. Let us see an example that is placed next.

Chapter 3 Continuation and Nested Tasks

https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/attached-and-detached-child-tasks
https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/attached-and-detached-child-tasks
https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/attached-and-detached-child-tasks

62

�Demonstration 6

To demonstrate this, I have slightly modified the previous program. For

your reference, I have highlighted the new code in bold and commented

out the old code as follows:

using static System.Console;

var parent = Task.Factory.StartNew(
 () =>
 {
 WriteLine($"The parent task has started.");

 var child = Task.Factory.StartNew(
 () =>
 {
 WriteLine("The child task has started.");
 // Forcing some delay
 Thread.Sleep(1000);
 // WriteLine("The child task has finished.");
 return "the child task has finished.";
 }
 // , TaskCreationOptions.AttachedToParent
);
 // Parent task now waits for this detached child.
 return child.Result;

 }
);
// Thread.Sleep(5);
// parent.Wait();
// WriteLine($"The parent task has finished now.");
WriteLine($"The parent task confirms that {parent.Result}");

Chapter 3 Continuation and Nested Tasks

63

�Output

Here is the output of this program:

The parent task has started.
The child task has started.
The parent task confirms that the child task has finished.

�Unwrapping Nested Tasks
Let us discuss something more on nested tasks. Consider the

following code:

var someTask = Task.Factory.StartNew(
 () => Task.Factory.StartNew(() => 200)
);

You understand that in this code, someTask is of type Task<Task<int>>.

Given this code, if you now exercise the following code

WriteLine(someTask.Result);

you’ll see the output System.Threading.Tasks.Task`1[System.Int32].

Starting with .NET 4, you can use one of the Unwrap extension

methods to transform any Task<Task<TResult>> to a Task<TResult> (or
a Task<Task> to a Task). This new task will represent the inner nested task

and include the cancellation state along with the exceptions.

Chapter 3 Continuation and Nested Tasks

64

POINTS TO NOTE

The Unwrap method has two overloads:

public static Task Unwrap(this Task<Task> task);
pu�bl�ic static Task<TResult> Unwrap<TResult>(this

Task<Task<TResult>> task);

You can see that both of these are extension methods. When you unwrap a

Task<Task> (or Task<Task<TResult>>), you get a new task (often called

a proxy).

To illustrate, let us see the following code:

var someTask1 = Task.Factory.StartNew(
 () => Task.Factory.StartNew(() => 200)
).Unwrap();
WriteLine($"Received: {someTask1.Result}");

Once you execute this program, you’ll see the following output:

Received: 200

Interestingly, if you work with the Run method, it can do the same kind

of unwrapping for you. Here is an equivalent code:

var someTask2 = Task.Run(
 () => Task.Run(() => 200)
);
WriteLine($"Received: {someTask2.Result}");

If you execute this code, you’ll see the same output.

Chapter 3 Continuation and Nested Tasks

65

�Special Note

In this book, I did not discuss async and await keywords. However, in

this context, I’d like you to note that you can use the await keyword for

unwrapping a layer. For example, the following code will also compile and

produce the same output:

var someTask3 = Task.Factory.StartNew(
 () => Task.Factory.StartNew(() => 200)
);
WriteLine($"Received: {await someTask3.Result}");

Note D ownload the project Chapter3_Demo_UnwrappingNestedTasks
to experiment these code segments. You can find this project in the
Chapter3 folder.

�Summary
This chapter discussed task continuations and nested tasks. In brief, it

answered the following questions:

•	 How can you implement a simple task continuation

mechanism?

•	 How can you create branches to employ a conditional

continuation mechanism?

•	 How can you check the status of the current task?

•	 How can you create, manage, and unwrap a

nested task?

Chapter 3 Continuation and Nested Tasks

66

�Exercises
Check your understanding by attempting the following exercises (you do

not need to handle exceptions or cancellations for these exercises):

REMINDER

As said before, you can safely assume that all other necessary namespaces

are available for these code segments. The same comment applies to all

exercises in this book as well.

E3.1 Starting with C# 12, we can define a primary constructor as a part of

the class declaration. Here is an example:

class Employee (string name, int id)
{
 private string _name=name;
 private int _id = id;
 public override string ToString()
 {
 return $"Name:{_name} Id:{_id}";
 }
}

You can create an instance of the Employee class as follows:

Employee emp = new("Bob", 1);

Now, assume that there are two tasks where the first task will create an

Employee instance. The second task will follow the first task and perform

the following things: first, it will verify whether the first task completes the

process successfully. Next, it will print the current date and time. Can you

write a program fulfilling the criteria?

Chapter 3 Continuation and Nested Tasks

67

E3.2 Create a background task that pings a URL (say www.google.com).

Then, create a continuation task that shows the result to the console.

(Assume that your computer is already connected to the Internet.)

E3.3 Can you predict the output of the following program?

using static System.Console;

var helloTask = Task.Run(() =>
{
 WriteLine("Hello reader!");
 var aboutTask = Task.Factory.StartNew(() =>
 {
 Task.Delay(1000);
 WriteLine("How are you?");
 }, TaskCreationOptions.AttachedToParent);
});

helloTask.Wait();

E3.4 Can you compile the following code?

using static System.Console;
var someTask = Task.Factory.StartNew(
 () => Task.Run(() => 300)
).Unwrap();
WriteLine($"Received: {someTask.Result}");

E3.5 Can you predict the following output of the following program?

using static System.Console;
var getGift = Task.Factory.StartNew(() => "Sunny wins a book")
 .ContinueWith(previousTask =>
 Task.Run(() => previousTask.Result+" and a laptop."))
 .Unwrap();
WriteLine(getGift.Result);

Chapter 3 Continuation and Nested Tasks

http://www.google.com

68

Solutions to Exercises�
Here is a sample solution set for the exercises in this chapter.

�E3.1
Here is a sample program based on the features that you learned in this

chapter:

using static System.Console;

var createEmp = Task.Factory.StartNew(
 () =>
 {
 Employee emp = new("Bob", 1);
 WriteLine($"Created an employee with {emp}");
 }
)
 .ContinueWith(
 task =>
 {
 WriteLine($"Was the previous task completed?
 { task.IsCompletedSuccessfully} ");
 WriteLine($"Current time:{DateTime.Now}");
 }
);

createEmp.Wait();

class Employee (string name, int id)
{
 private string _name = name;
 private int _id = id;

Chapter 3 Continuation and Nested Tasks

69

 public override string ToString()
 {
 return $"Name: {_name} Id: {_id}";
 }
}

Here is a sample output:

Created an employee with Name: Bob Id: 1
Was the previous task completed? True
Current time:10/16/2024 9:58:08 AM

�E3.2
Here is a sample program that fulfills the criteria:

using static System.Console;
using System.Net.NetworkInformation;

string url ="www.google.com";
WriteLine($"The main thread initiates a task that starts
pinging {url}");
var pingTask = Task.Run(() => new Ping().Send(url));
var statusTask = pingTask.ContinueWith(previousTask =>
 {
 �WriteLine($"Ping Status of {url}: {pingTask.Result.

Status}");
 }
);
WriteLine($"The main thread is ready to do other work.");
statusTask.Wait();

Chapter 3 Continuation and Nested Tasks

70

Here is a sample output:

The main thread initiates a task that starts pinging
www.google.com
The main thread is ready to do other work.
Ping Status of www.google.com: Success

Alternative Code:
Let me show you one more solution where you can avoid using the

variable statusTask and write a compact version of the previous program

as follows:

// There is no change in the previous code
WriteLine($"The main thread initiates a task that starts
pinging {url}");

var pingTask = Task.Run(() => new Ping().Send(url))
 �.C�ontinueWith(previousTask => previousTask.Result.Status);
WriteLine($"The main thread is ready to do other work.");
WriteLine($"Ping Status of {url}: {pingTask.Result}");

Author’s note: You can see that the main thread was not blocked while

executing the background task. It was blocked at the end for displaying the

output of the program. However, by this time, it completed its remaining

job. Once you download the project Chapter3_Ex3.2, you can exercise

both solutions.

�E3.3
On my computer, this program often shows the following output:

Hello reader!

Chapter 3 Continuation and Nested Tasks

71

It is because the application terminated before the aboutTask finishes

its execution. Using the ReadKey() or ReadLine() method at the end of the

main thread, you can hold the control until you see the following output:

Hello reader!
How are you?

You may wonder about this. However, notice that to create the parent

task, I have used the Run method but not the StartNew method. So, if you

use the StartNew method instead of the Run method as follows:

using static System.Console;

//var helloTask = Task.Run(() =>
var helloTask = Task.Factory.StartNew(() =>
{
 // There is no change in the remaining code

you can expect to see the following output for sure:

Hello reader!
How are you?

In this context, I’d like you to remember that Task.Run(someAction) is

functionally equivalent to the following:

Task.Factory.StartNew(
someAction,
CancellationToken.None,
TaskCreationOptions.DenyChildAttach,
TaskScheduler.Default);

It means that Task.Run by default does not allow child tasks

to be attached to the parent task. However, StartNew(Action,
CancellationToken) allows this activity.

Chapter 3 Continuation and Nested Tasks

72

�E3.4
Yes. You should see the following output:

Received: 300

�E3.5
Here is the output:

Sunny wins a book and a laptop.

Chapter 3 Continuation and Nested Tasks

73© Vaskaran Sarcar 2025
V. Sarcar, Task Programming in C# and .NET, Apress Pocket Guides,
https://doi.org/10.1007/979-8-8688-1279-8_4

CHAPTER 4

Exception Handling
It is no surprise that tasks can encounter exceptions. It is also true that

different tasks may throw different exceptions. In a multithreaded

environment, handling these exceptions can be tricky as well as

challenging. Your application must respond to them gracefully to avoid

unwanted crashes and maintain stability. This is why exception handling is

essential for building reliable and robust applications. This chapter focuses

on this topic.

�Understanding the Challenge
Since you are reading the advanced concepts of programming, I assume

that you are familiar with the fundamentals of exceptions and how to

handle them in a C# program. This is why I’ll not discuss those basics in this

book. Instead, I’ll focus on possible exceptional scenarios that can be raised

when you perform task programming in a multithreaded environment.

�The Program That Does Not Show Exceptions
If the symptoms are prominent, the doctor can understand the problem of

the patient easily. However, unobserved problems are hard to detect. The

same is true for programming. An unobserved exception can cause lots of

problems. To illustrate, let’s see the following program in which the main

thread creates a task that raises an exception that does not appear in the

output. (Based on your Visual Studio settings, you may see the highlighted

https://doi.org/10.1007/979-8-8688-1279-8_4#DOI

74

line that raises the exception. However, if you continue the execution (by

pressing F5 or the Continue button), you’ll not see any information about

this exception in the output.

MICROSOFT’S NOTE FOR VISUAL STUDIO USERS

If you are a Visual Studio user and write programs that deal with multiple

cancellation requests, I want you to remember the following note from

Microsoft (https://learn.microsoft.com/en-us/dotnet/standard/
threading/how-to-listen-for-multiple-cancellation-requests):

When “Just My Code” is enabled, Visual Studio in some cases will break on

the line that throws the exception and display an error message that says

“exception not handled by user code.” This error is benign. You can press F5 to

continue from it.

It keeps saying the following:

To prevent Visual Studio from breaking on the first error, just uncheck the “Just

My Code” checkbox under Tools, Options, Debugging, General.

�Demonstration 1

Let us execute the program:

using static System.Console;

WriteLine("The main thread starts executing.");

try
{
 var validateUserTask = Task.Run(() =>
 throw new UnauthorizedAccessException("Unauthorized user.")
);
}

Chapter 4 Exception Handling

https://learn.microsoft.com/en-us/dotnet/standard/threading/how-to-listen-for-multiple-cancellation-requests
https://learn.microsoft.com/en-us/dotnet/standard/threading/how-to-listen-for-multiple-cancellation-requests

75

catch (Exception e)
{
 WriteLine($"Caught error: {e.Message}");
}

WriteLine("End of the program.");

�Output

Upon executing this program, you’ll see the following output:

The main thread starts executing.
End of the program.

The output does not show anything about the exception. Why? Notice

that in this program, the main thread did not encounter the exception;

it was encountered by validateUserTask which was created by this

main thread.

Since the unobserved exceptions can cause problems at a later stage,

you’d like to see and handle them as per the priority.

�Introducing AggregateException
How could you get the information about the exception? An obvious way

is handling the exception inside the task itself. For example, I can redefine

the task as follows:

 var validateUserTask = Task.Run(
 () =>
 {
 string msg = string.Empty;
 try

Chapter 4 Exception Handling

76

 {
 throw new UnauthorizedAccessException("Unauthorized
 user.");
 }
 catch (Exception e)
 {
 WriteLine($"Caught error inside the task: {
 e.Message} ");
 }
 return msg;
 });

How can you get the error detail if the task does not handle the

exceptions? Let us investigate the answer.

�Demonstration 2

In task-based programming, exceptions are stored in the task object and

are not thrown immediately when they occur. If an exception occurs within

a task, it is encapsulated within an AggregateException that contains all

the exceptions that were thrown during the task’s execution. This feature

allows you to handle the exceptions collectively or individually.

POINT TO NOTE

The AggregateException belongs to the System namespace. This class

inherits from the Exception class.

The AggregateException can be thrown in any of the following

scenarios:

•	 You try to access the task’s result.

•	 You explicitly call the Wait method on the task.

Chapter 4 Exception Handling

77

•	 You await the task. (Since this book does not discuss

async and await keywords, I am not discussing

this now.)

Now, you understand that in the previous demonstration if you

use any of the lines WriteLine(validateUserTask.Result); or

validateUserTask.Wait(); inside the try block, you can observe the

exception. Here is a sample demonstration where I use the statement

validateUserTask.Wait(); inside the try block as follows (notice the

change in bold):

// There is no change in the previous code

try
{
 var validateUserTask = Task.Run(() =>
 throw new UnauthorizedAccessException("Unauthorized user.")
);
 validateUserTask.Wait();
}
// There is no change in the remaining code as well

�Output

Once you execute the program again, you will see the following output:

The main thread starts executing.
Caught error: One or more errors occurred. (Unauthorized user.)
End of the program.

The output shows the error now. However, you can see that the error

information "Unauthorized user." is wrapped as an InnerException.

Chapter 4 Exception Handling

78

�Q&A Session

Q4.1 In the previous output, the error information “Unauthorized
user.” is wrapped as an InnerException. What is the reason behind it?

This program caught an AggregateException which is used to

consolidate multiple failures into a single, throwable exception object. You

see this kind of exception heavily in task programming.

To verify this, you can slightly modify the catch block in the previous

demonstration (Demonstration 2) as follows:

catch (Exception e)
{
 WriteLine($"Caught error: {e.Message}");
 WriteLine($"Exception name: {e.GetType().Name}");
}

If you execute the application again, you will see the following output:

The main thread starts executing.
Caught error: One or more errors occurred. (Unauthorized user.)
Exception name: AggregateException
End of the program.

Now, you can see that the program caught an AggregateException.

The official documentation (see https://learn.microsoft.com/en-us/
dotnet/standard/parallel-programming/exception-handling-task-
parallel-library) states the following about it:

To propagate all the exceptions back to the calling thread, the
Task infrastructure wraps them in an AggregateException
instance. The AggregateException exception has an
InnerExceptions property that can be enumerated to exam-
ine all the original exceptions that were thrown, and handle
(or not handle) each one individually.

Chapter 4 Exception Handling

https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/exception-handling-task-parallel-library
https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/exception-handling-task-parallel-library
https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/exception-handling-task-parallel-library

79

This is why you see the actual error (Unauthorized user.) was

wrapped as an inner exception in the previous output.

POINT TO NOTE

Since the AggregateException helps you to consolidate multiple failures

(or errors) in concurrent environments, they are frequently used in task

programming. Now onward, you will see me using the AggregateException

inside the catch blocks as well.

�Strategies to Tackle Exceptions
Till now, we have handled only one exception. It is obvious that your

program will deal with many different tasks and each of them can throw

different exceptions. So, let’s focus on how to handle exceptions that can

be caused by one or more tasks.

Before I start this discussion, let me tell you that different

programming models have different strategies for exception handling. For

example, if you follow object-oriented programming (OOP), you’d like to

use try, catch, and finally blocks. However, these are typically absent in

functional programming (FP). In my other book Introducing Functional

Programming Using C#, I had a detailed discussion on this topic. For now,

you do not need to investigate those details. Instead, let us concentrate on

OOP and simplify the overall strategies by making the following categories:

•	 Handling possible exceptions in a single location

•	 Handling possible exceptions in multiple locations

Chapter 4 Exception Handling

80

�Handling Exceptions in Single Location
Let us start our discussion with the first category, i.e., how to handle the

possible exceptions in one place.

�Demonstration 3

This program creates two different tasks inside the main thread. Each of

these tasks raises an exception. Here, I pass through the inner exceptions

and display the error details. Go through the complete program now:

using static System.Console;
WriteLine("Exception handling demo.");

try
{
 var validateUserTask = Task.Run(
 () =>
 {
 // Some other code, if any
 �throw new UnauthorizedAccessException("Unauthorized

user.");
 }
);
 var storeDataTask = Task.Run(
 () =>
 {
 // Some other code, if any
 �throw new InsufficientMemoryException("Insufficient

memory.");
 }
);

Chapter 4 Exception Handling

81

 Task.WaitAll(validateUserTask, storeDataTask);
}
catch (AggregateException ae)
{
 foreach (Exception e in ae.InnerExceptions)
 {
 WriteLine($"Caught error: {e.Message}");
 }
}

�Output

Here is a sample output from this program:

Exception handling demo.
Caught error: Unauthorized user.
Caught error: Insufficient memory.

This is a very common approach for exception handling in task

programming. Now, let me show you two more approaches that can be

used in a similar context.

�Alternative Approach-1

Notice the catch block in Demonstration 3. You can see that I used ae.
InnerExceptions to display the errors in the output. Here is an alternative

version where I flatten the inner instances and then start traversing the
exceptions as follows:

catch (AggregateException ae)
{
 // Alternative approach-1
 var exceptions = ae.Flatten().InnerExceptions;
 foreach (Exception e in exceptions)

Chapter 4 Exception Handling

82

 {
 WriteLine($"Caught error: {e.Message}");
 }
}

�Alternative Approach-2

In the AggregateException class, you can see a method called Handle

which has the following form:

public void Handle(Func<Exception, bool> predicate)
{
 // The method body is not shown
}

Using this method, you can invoke a handler on each exception

contained in an AggregateException. To illustrate, this time let me rewrite

the catch block in the previous demonstration as follows (I have kept other

approaches in the commented code for your immediate reference):

catch (AggregateException ae)
{
 //// Initial approach
 //foreach (Exception e in ae.InnerExceptions)
 //{
 // WriteLine($"Caught error: {e.Message}");
 //}

 //// Alternative approach-1
 //var exceptions = ae.Flatten().InnerExceptions;
 //foreach (Exception e in exceptions)
 //{
 // WriteLine($"Caught error: {e.Message}");
 //}

Chapter 4 Exception Handling

83

 // Alternative approach-2
 ae.Handle(e =>
 {
 WriteLine($"Caught error: {e.Message}");
 return true;
 });
}

By executing the program now, you can get the same output.

Note  In the Chapter4_Demo3 project, you will see all the different
approaches that I discussed so far. There you’ll see that alternative
codes are commented out for easy comparison. By downloading the
project, you can play with these approaches.

�Q&A Session

Q4.2 I can see that you have thrown two different exceptions from two
different tasks. How can I distinguish them?

It is easy. You can associate the task IDs or an appropriate message

with the exception’s Source property. Here is a sample program that

is created by slightly modifying Demonstration 3 (notice the changes

in bold):

using static System.Console;
WriteLine("Exception handling demo.");

try
{
 var validateUserTask = Task.Run(
 () =>

Chapter 4 Exception Handling

84

 {
 // Some other code, if any
 �throw new UnauthorizedAccessException("Unauthoriz

ed user.")
 { Source = "validateUserTask" };
 }
);
 var storeDataTask = Task.Run(
 () =>
 {
 // Some other code, if any
 �throw new InsufficientMemoryException("Insufficient

memory.")
 { Source = "storeDataTask" };
 }
);

 Task.WaitAll(validateUserTask, storeDataTask);
}
// Initial approach
catch (AggregateException ae)
{
 // Initial approach
 foreach (Exception e in ae.InnerExceptions)
 {
 // WriteLine($"Caught error: {e.Message}");
 WriteLine($"The task: {e.Source} raised {e.GetType()}:
 {e.Message}");
 }
}

Chapter 4 Exception Handling

85

Here is a sample output that I got by running this modified program:

Exception handling demo.
Th�e �task: validateUserTask raised System.

UnauthorizedAccessException: Unauthorized user.
Th�e �task: storeDataTask raised System.

InsufficientMemoryException: Insufficient memory.

Q4.3 It appears to me that I can follow the same approach if multiple
tasks throw the same exception as well. Is this correct?

Yes, you got it right.

�Handling Exceptions in Multiple Locations
I assume that you have got the idea of handling multiple exceptions. This

is OK and probably the most common approach. Next, I will show you

a mechanism where you handle one part of the aggregate exception in

one place and the remaining part in another place. More specifically, you

propagate the remaining part of the exception(s) up to the hierarchy and

handle it there. I am discussing this to show you the effectiveness of the

Handle method.

First, I want you to focus on the following code fragment (it is taken

from the upcoming demonstration). This code fragment says that you’d

like to handle only the InsufficientMemoryException but no other

exceptions in this location. This is why the if block returns true here:

// Some code before
catch (AggregateException ae)
{
 // �Handling only InsufficientMemoryException, other
 // exceptions will be propagated up to the hierarchy
 ae.Handle(
 e =>

Chapter 4 Exception Handling

86

 {
 if (e is InsufficientMemoryException)
 {
 �WriteLine($"Caught error inside InvokeTasks():

{e.Message}");
 return true;
 }
 else
 {
 return false;
 }
 }
);
}

�Demonstration 4

Let us see a complete program now. In the upcoming program, the main

thread calls the InvokeTasks method that in turn creates and runs three

tasks. The first two tasks (validateUserTask and storeDataTask) are

already shown in the previous demonstration. You know that these tasks

will raise exceptions. The third task, named useDllTask, is added for the

sake of discussion, so that you do not assume that you need to handle an

equal number of tasks in each location.

You’ll see that I catch all the possible sets of exceptions inside

InvokeTasks but handled only one of them: InsufficientMemoryException.

As a result, the remaining exceptions will be passed up to the calling

hierarchy. This is why you’ll see me handling them inside the main thread.

Let’s see the complete program now:

Chapter 4 Exception Handling

87

using static System.Console;

WriteLine("Exception handling demo.");
try
{
 InvokeTasks();
}
catch (AggregateException ae)
{
 ae.Handle(e =>
 {
 WriteLine($"Caught error inside Main(): {e.Message}");
 return true;
 });
}

static void InvokeTasks()
{
 try
 {
 var validateUserTask = Task.Run(
 () =>
 {
 // Some other code, if any
 �throw new UnauthorizedAccessException

("Unauthorized user.");
 }
);
 var storeDataTask = Task.Run(
 () =>

Chapter 4 Exception Handling

88

 {
 // Some other code, if any
 �throw new InsufficientMemoryException("Insufficient

memory.");
 }
);

 var useDllTask = Task.Run(
 () =>
 {
 // Some other code, if any
 �throw new DllNotFoundException("The required dll is

missing!");
 }
);

 �Task.WaitAll(validateUserTask, storeDataTask,
useDllTask);

 }
 // The catch block is placed here. To avoid repetitions,
 // it is not shown again.
}

Note  To avoid repetitions, I did not show you the catch block inside
the InvokeTasks method again. You can download the complete
program from the Apress website.

Chapter 4 Exception Handling

89

�Output

Here is a sample output from this program:

Exception handling demo.
Caught error inside InvokeTasks(): Insufficient memory.
Caught error inside Main(): Unauthorized user.
Caught error inside Main(): The required dll is missing!

�Q&A Session

Q4.4 I understand that I can handle exceptions in different ways.
However, I’d like to know whether there is any general guideline for
handling exceptions in a concurrent environment.

Normally, experts suggest that if you do not handle exceptions within

tasks, you should try to handle them as closely as possible, particularly, to

those places where you wait for the task completion or retrieve the result of

the task invocation. I try to follow this guideline as well.

�Summary
This chapter continued the discussion on task programming, but this time,

the focus was on handling exceptions with different examples and case

studies. In brief, it answered the following questions:

•	 What is AggregateException and why is it important in

task programming?

•	 How can you display the exceptions that can be thrown

by different tasks?

•	 How can you flatten the inner instances of exceptions?

Chapter 4 Exception Handling

90

•	 How can you handle all the possible exceptions

together?

•	 How can you handle possible exceptions in separate

locations?

�Exercises
Check your understanding by attempting the following exercises:

REMINDER

As said before, you can safely assume that all other necessary namespaces

are available for these code segments. The same comment applies to all

exercises in this book as well.

E4.1 If you execute the following code, can you predict the output?

using static System.Console;
WriteLine("Exercise 4.1");
try
{
 int b = 0;
 Task<int> value = Task.Run(() => 25 / b);
}
catch (Exception e)
{
 WriteLine($"Caught: {e.GetType()}, Message: {e.Message}");
}
WriteLine("End");

Chapter 4 Exception Handling

91

E4.2 If you execute the following code, can you predict the output?

using static System.Console;
WriteLine("Exercise 4.2 and Exercise 4.3");

try
{
 DoSomething();
}
catch (AggregateException ae)
{
 ae.Handle(
 e =>
 {
 WriteLine($"Caught inside main: {e.Message}");
 return true;
 }
);
}
static void DoSomething()
{
 try
 {
 var task1 = Task.Run(() => throw new
 InvalidDataException("invalid data"));
 var task2 = Task.Run(() => throw new
 OutOfMemoryException("insufficient memory"));
 // For Exercise 4.2
 Task.WaitAll(task1, task2);
 // For Exercise 4.3
 // task1.Wait();
 // task2.Wait();
 }

Chapter 4 Exception Handling

92

 catch (AggregateException ae)
 {
 ae.Handle(
 e =>
 {
 if (e is InvalidDataException)
 {
 �WriteLine($"The DoSomething method

encounters:
 {e.Message}");
 return true;
 }
 else
 {
 return false;
 }
 }
);
 }
}

E4.3 In the previous program, replace the line:

Task.WaitAll(task1, task2);

with the following lines:

task1.Wait();
task2.Wait();

Can you predict the output?

E4.4 If you execute the following code, can you predict the output?

using static System.Console;
WriteLine("Exercise 4.4");

Chapter 4 Exception Handling

93

try
{
 int b = 0;
 var task1 = Task.Run(() => throw new
 InvalidOperationException("invalid operation"));
 var task2 = Task.Run(() => 5/b);
 Task.WaitAny(task1, task2);
 WriteLine("End");
}
catch (AggregateException ae)
{
 ae.Handle(e =>
 {
 if (e is InvalidOperationException |
 e is DivideByZeroException)
 {
 WriteLine($"Caught error: {e.Message}");
 return true;
 }
 return false;
 }
);
}

E4.5 Can you predict the following output of the following program?

using static System.Console;
WriteLine("Exercise 4.5");
va�r �errorTask = Task.Run(() => throw new Exception("unwanted

situation"));
var outerTask = Task.Factory.StartNew(() => errorTask);
while (!outerTask.IsCompleted) { Thread.Sleep(10); }

Chapter 4 Exception Handling

94

Wr�it�eLine($"The status of the outer task is: {outerTask.
Status}");

while (!outerTask.Unwrap().IsCompleted) { Thread.Sleep(10); }
Wr�it�eLine($"The status of the inner task is: {outerTask.

Unwrap().Status}");

�Solutions to Exercises
Here is a sample solution set for the exercises in this chapter.

�E4.1
This program produces the following output:

Exercise 4.1
End

Author’s note: You do not observe the exception because the main thread

did not encounter the exception; it was encountered by the task that was

created by this main thread.

To see the exception, you can modify the try block as follows (the

change is shown in bold):

// There is no change in the previous code
try
{
 int b = 0;
 Task<int> value = Task.Run(() => 25 / b);
 WriteLine(value.Result);
}
// There is no change in the remaining code as well

Chapter 4 Exception Handling

95

You’ll see the following output:

Exercise 4.1
Ca�ug�ht: System.AggregateException, Message: One or more errors

occurred. (Attempted to divide by zero.)
End

Notice that instead of seeing the System.DivideByZeroException, you

are seeing the System.AggregateException in this output. You know that

this is the expected result of this program.

�E4.2
The program produces the following output:

Exercise 4.2 and Exercise 4.3
The DoSomething method encounters: invalid data
Caught inside main: insufficient memory

�E4.3
The call to the statement task1.Wait(); causes the

InvalidDataException. As a result, control leaves the try block and

produces the following output:

Exercise 4.2 and Exercise 4.3
The DoSomething method encounters: invalid data

�E4.4
This program produces the following output:

Exercise 4.4
End

Chapter 4 Exception Handling

96

You may be wondering why you are not seeing the task’s exception(s)

in the output. It is because when you use the WaitAny method, the task’s

exception does not propagate to the AggregateException. I encourage

you to read Stephen Clearly’s nice blog post (see https://blog.
stephencleary.com/2014/10/a-tour-of-task-part-5-wait.html) that

summarizes the difference between WaitAny and WaitAll (or Wait) as

follows:

The semantics of WaitAny are a bit different than WaitAll
and Wait: WaitAny merely waits for the first task to
complete. It will not propagate that task’s exception in an
AggregateException. Rather, any task failures will need to
be checked after WaitAny returns. WaitAny will return -1 on
timeout, and will throw OperationCanceledException if the
wait is cancelled.

Author’s note: Still, if you like to see the exception detail in the output,

you can slightly modify the try block as follows (the changes are shown

in bold):

// There is no change in the previous code
try
{
 int b = 0;
 va�r �task1 = Task.Run(() => throw new

InvalidOperationException("invalid operation"));
 var task2 = Task.Run(() => 5 / b);
 // Task.WaitAny(task1, task2);
 var tasks = new[]{ task1, task2 };
 int taskIndex = Task.WaitAny(tasks);
 tasks[taskIndex].Wait();
 WriteLine("End");
}

Chapter 4 Exception Handling

https://blog.stephencleary.com/2014/10/a-tour-of-task-part-5-wait.html
https://blog.stephencleary.com/2014/10/a-tour-of-task-part-5-wait.html

97

// There is no change in the remaining code

Here is a sample output once you run this modified program:

Exercise 4.4
Caught error: invalid operation

�E4.5
Here is the output:

Exercise 4.5
The status of the outer task is: RanToCompletion
The status of the inner task is: Faulted

Chapter 4 Exception Handling

99© Vaskaran Sarcar 2025
V. Sarcar, Task Programming in C# and .NET, Apress Pocket Guides,
https://doi.org/10.1007/979-8-8688-1279-8_5

CHAPTER 5

Managing
Cancellations
Cancellation is an essential mechanism in task programming. It is helpful

in any of the following scenarios:

•	 Stopping a running task gracefully when it is no

longer needed

•	 Freeing up a critical resource

•	 Improving the application’s responsiveness

This is why a long-running task may regularly check whether a

cancellation request has been raised. If so, it must respond to that request

accordingly.

However, having the task cancellation capability does not encourage

you to abruptly stop a task, as that can leave the application in an

inconsistent state. Instead, you make a cooperative model where the task

and the calling code (that initiates the cancellation) can work together.

This chapter focuses on this topic.

https://doi.org/10.1007/979-8-8688-1279-8_5#DOI

100

�Prerequisites
To manage task cancellations in C#, you must be familiar with the

following:

•	 CancellationTokenSource: This class is responsible

for signaling the cancellation. It generates a

CancellationToken that is passed to the task to

monitor the cancellation requests.

•	 CancellationToken: This is a struct that is passed to

the task and provides a way to check if cancellation has

been requested. This token is used to propagate the

notification for a task cancellation.

Let us see how to use them in your program. First, you use the

following lines of code:

CancellationTokenSource tokenSource = new();
CancellationToken token = tokenSource.Token;

Obviously, using the var keyword, you can write an equivalent code as

follows:

var tokenSource = new CancellationTokenSource();
var token = tokenSource.Token;

Next, you pass this token to the intended task. Earlier, you saw (in

Figure 2-1 in Chapter 2) that the Task constructor has several overloaded

versions. Some of them accept a CancellationToken instance as a method

parameter. Here is an example:

public Task(Action action, CancellationToken cancellationToken);

Chapter 5 Managing Cancellations

101

The StartNew method of the TaskFactory class and the Run method

of the Task class have similar overloads. Here are a few more examples for

your reference:

pu�bl�ic Task StartNew(Action action, CancellationToken
cancellationToken)

pu�bl�ic static Task Run(Action action, CancellationToken
cancellationToken)

public static Task<TResult> Run<TResult>(Func<TResult> function,
 CancellationToken cancellationToken)

These constructs give you a clue on how to pass a cancellation token to

a task. For your immediate reference, let me show you the following code

that is used in the upcoming example:

var printTask = Task.Run
 (
 () =>
 {
 // Some code not shown here
 }, token
);

However, you must remember the following guidelines from Microsoft

(see https://learn.microsoft.com/en-us/dotnet/standard/parallel-
programming/how-to-cancel-a-task-and-its-children):

The calling thread does not forcibly end the task; it only sig-
nals that cancellation is requested. If the task is already run-
ning, it is up to the user delegate to notice the request and
respond appropriately.

Chapter 5 Managing Cancellations

https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/how-to-cancel-a-task-and-its-children
https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/how-to-cancel-a-task-and-its-children

102

Note T his prior message indicates that it is possible that by the
time a calling thread raises a cancellation request, the running task
finishes its execution. So, if you want to cancel a running task, you
should raise the cancellation request as soon as possible.

�User-Initiated Cancellations
A cancellation request is often raised by users. You can also initiate an

automated cancellation after a certain time interval. Let us start our

discussion with the user-initiated cancellations.

�Initial Approach
In the first approach, you evaluate an if condition before raising the

cancellation request. If needed, you can do some additional work before

you cancel the task. For example, you can introduce a message saying

that this task is about to be canceled. You can also clean up the necessary

resources as well before you cancel the task. Finally, you put a break or

return statement to exit from the particular block of code. Probably, most

of us are aware of this kind of soft exit mechanism. Let me show you an

example.

�Demonstration 1

In the upcoming demonstration, I created a task that can keep printing the

numbers from 0 to 99. Since I’d like to provide support for cancellation,

you’ll see me instantiating a CancellationTokenSource object to generate

a cancellation token and pass it to the task to raise the cancellation

request. Here is the complete program:

Chapter 5 Managing Cancellations

103

Note N owadays, computer processors are very fast. So, this task
can finish its execution very fast. To prevent this, I impose a short
sleep after it prints a number.

using static System.Console;

WriteLine("Simple cancellation demonstration.");

var tokenSource = new CancellationTokenSource();
var token = tokenSource.Token;

var printTask = Task.Run
 (
 () =>
 {
 // A loop that runs 100 times
 for (int i = 0; i < 100; i++)
 {
 // Approach - 1
 if (token.IsCancellationRequested)
 {
 WriteLine("Cancelling the print activity.");
 // Do some cleanups, if required
 return;
 }

 WriteLine($"{i}");
 // Imposing the sleep to make some delay
 Thread.Sleep(500);
 }
 }, token
);

Chapter 5 Managing Cancellations

104

WriteLine("Enter c to cancel the task.");
char ch = ReadKey().KeyChar;
if (ch.Equals('c'))
{
 WriteLine("\nRaising the cancellation request.");
 tokenSource.Cancel();
}
try
{
 printTask.Wait();
 //printTask.Wait(token); // This line will be used later
}
catch (OperationCanceledException oce)
{
 WriteLine($"Operation canceled. Message: {oce.Message}");
}
catch (AggregateException ae)
{
 foreach (Exception e in ae.InnerExceptions)
 {
 �WriteLine($"Caught: {e.GetType()}, Message:

{e.Message}");
 }
}

WriteLine($"The final status of printTask is: {printTask.Status}");
WriteLine("End of the main thread.");

Chapter 5 Managing Cancellations

105

�Output

Here is a sample output when I triggered the cancellation request by

pressing “c” from my keyboard:

Simple cancellation demonstration.
Enter c to cancel the task.
0
1
2
3
c
Raising the cancellation request.
Cancelling the print activity.
The final status of printTask is: RanToCompletion
End of the main thread.

�Q&A Session

Q5.1 In the previous demonstration, you canceled the task, but in the
output, the final status of the task was displayed as RanToCompletion,
instead of Canceled. Is this a bug?

No. Let us see what Microsoft says about it. The online documentation

link https://learn.microsoft.com/en-us/dotnet/standard/parallel-
programming/task-cancellation states the following:

A successful cancellation involves the requesting code calling
the CancellationTokenSource.Cancel method and the user
delegate terminating the operation in a timely manner. You
can terminate the operation by using one of these options:

•	 By returning from the delegate. In many scenarios,

this option is sufficient. However, a task instance that’s

canceled in this way transitions to the TaskStatus.
RanToCompletion state, not to the TaskStatus.Canceled state.

Chapter 5 Managing Cancellations

https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/task-cancellation
https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/task-cancellation

106

•	 By throwing an OperationCanceledException and

passing it the token on which cancellation was

requested. The preferred way to perform this is to use

the ThrowIfCancellationRequested method. A task

that’s canceled in this way transitions to the Canceled

state, which the calling code can use to verify that the

task responded to its cancellation request.

The first bullet point is easy to understand and justifies the final
status of the canceled task (printTask) in the previous demonstration.

In the next section, I’ll show you the other approach where you will notice

the final status as Canceled.

�Alternative Approaches
Let us see the alternative ways of cancellations as well. In a similar

context, developers often like to throw the OperationCanceledException

exception.

�Demonstration 2

To demonstrate this, let me update the task definition in the previous

demonstration as follows (notice the key change in bold):

var printTask = Task.Run
 (
 () =>
 {
 // A loop that runs 100 times
 for (int i = 0; i < 100; i++)
 {
 // Approach-2
 if (token.IsCancellationRequested)

Chapter 5 Managing Cancellations

107

 {
 WriteLine("Cancelling the print activity.");
 // Do some cleanups, if required
 throw new OperationCanceledException(token);
 }

 WriteLine($"{i}");
 // Imposing the sleep to make some delay
 Thread.Sleep(500);
 }
 }, token
);

And execute the program again.

�Output

Here is a sample output when I triggered the cancellation request by

pressing “c” from my keyboard. Notice that in Demonstration 1, the final

status of the task was RanToCompletion, but in this demonstration, it

appears as Canceled.

Simple cancellation demonstration.
Enter c to cancel the task.
0
1
2
c
Raising the cancellation request.
Cancelling the print activity.
Ca�ug�ht: System.Threading.Tasks.TaskCanceledException, Message:

A task was canceled.
The final status of printTask is: Canceled
End of the main thread.

Chapter 5 Managing Cancellations

108

�Shortening The Code
Microsoft (see the online link https://learn.microsoft.com/en-us/
dotnet/api/system.threading.cancellationtoken.throwifcancellati
onrequested?view=net-8.0) says that the ThrowIfCancellationRequested

method is the functional equivalent of the following lines:

if (token.IsCancellationRequested)
 throw new OperationCanceledException(token);

It implies that you can use the ThrowIfCancellationRequested

method for the following two things:

•	 You can check whether a cancellation request is raised.

•	 Throw the OperationCanceledException exception

when such a request is raised.

This is why you can shorten the code as follows:

var printTask = Task.Run
 (
 () =>
 {
 // A loop that runs 100 times
 for (int i = 0; i < 100; i++)
 {
 // Approach-3
 token.ThrowIfCancellationRequested();

 WriteLine($"{i}");
 // Imposing the sleep to make some delay
 Thread.Sleep(500);
 }
 }, token
);

Chapter 5 Managing Cancellations

https://learn.microsoft.com/en-us/dotnet/api/system.threading.cancellationtoken.throwifcancellationrequested?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.threading.cancellationtoken.throwifcancellationrequested?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.threading.cancellationtoken.throwifcancellationrequested?view=net-8.0

109

This is a common and widely used approach.

Note O nce you download the project Chapter5_Demo2, you can
see the complete program. I’ve kept all the alternative approaches in
the comments for your ready reference.

�Q&A Session

Q5.2 In Demonstration 1, you simply did a soft exit and got the final
task status as RanToCompletion, whereas in Demonstration 2, the final
task status was canceled. I understand that this is a design decision, but
I’d like to know your thoughts on them.

Normally, I’d like to follow the approach that is shown in

Demonstration 2. This is because in an enterprise application, we

normally deal with several tasks and we often need to understand the

log/output. In those cases, I can go through the log to understand which

task was canceled. But if you simply exit from the method without doing

anything, there will be no such record left for you.

Q5.3 Before I cancel a task, I may need to do some cleanups (for
example, to release a resource). How can I handle the situation if I use
Approach-3?

In such a case, you can write something like the following:

 if (token.IsCancellationRequested)
 {
 // Do some cleanups, if required
 token.ThrowIfCancellationRequested();
 }

Chapter 5 Managing Cancellations

110

Author’s note: Microsoft suggests (see https://learn.microsoft.com/
en-us/dotnet/api/system.threading.cancellationtokensource.
dispose?view=net-9.0) the following:

Always call Dispose before you release your last reference to
the CancellationTokenSource. Otherwise, the resources it is
using will not be freed until the garbage collector calls the
CancellationTokenSource object’s Finalize method.

Since the CancellationTokenSource class implements the IDisposable

interface, once the demand is fulfilled, you can free up the resources by

invoking the Dispose method. However, while freeing up resources, you

need to be careful. To make the examples short and simple, I did not focus

on explicit garbage collection mechanisms in these programs.

�Additional Case Studies
The OperationCanceledException class has many overloaded

constructors that take a different number of parameters. You can use any

of them to initialize a new instance of OperationCanceledException as per

your need. Here, I include some of them for your instant reference:

•	 OperationCanceledException(CancellationToken) –

Initializes a new instance with a cancellation token

(Demonstration 2 used this form)

•	 OperationCanceledException(String) – Initializes a

new instance with a specified error message

•	 OperationCanceledException() – Initializes a new

instance with the system-supplied error message

See that you can avoid passing a CancellationToken instance to

initialize a new instance of OperationCanceledException, or you can

instantiate it with a different token. In such cases, you get the final status as

Faulted (instead of Canceled). Let us do some additional experiments:

Chapter 5 Managing Cancellations

https://learn.microsoft.com/en-us/dotnet/api/system.threading.cancellationtokensource.dispose?view=net-9.0
https://learn.microsoft.com/en-us/dotnet/api/system.threading.cancellationtokensource.dispose?view=net-9.0
https://learn.microsoft.com/en-us/dotnet/api/system.threading.cancellationtokensource.dispose?view=net-9.0
https://learn.microsoft.com/en-us/dotnet/api/system.operationcanceledexception.-ctor?view=net-7.0#system-operationcanceledexception-ctor(system-threading-cancellationtoken)
https://learn.microsoft.com/en-us/dotnet/api/system.operationcanceledexception.-ctor?view=net-7.0#system-operationcanceledexception-ctor(system-string)
https://learn.microsoft.com/en-us/dotnet/api/system.operationcanceledexception.-ctor?view=net-7.0#system-operationcanceledexception-ctor

111

�Case Study 1: Changing the Task Definition

In Demonstration 2, let us update Approach-2 as follows (changes are

in bold):

// Approach-2
if (token.IsCancellationRequested)
{
 WriteLine("Cancelling the print activity.");
 // Do some cleanups, if required
 �// throw new OperationCanceledException(token);
 �th�ro�w new OperationCanceledException("The operation is

canceled.");
}

Execute the program again. Notice that the final status appears as

Faulted but not Canceled. Here is a sample for you:

Simple cancellation demonstration.
Enter c to cancel the task.
0
1
2
c
Raising the cancellation request.
Cancelling the print activity.
Caught: System.OperationCanceledException, Message: The
operation is canceled.
The final status of printTask is: Faulted
End of the main thread.

Chapter 5 Managing Cancellations

112

Note  You can download the project Chapter5_Demo2_CaseStudy1
to see the complete program.

�Q&A Session

Q5.4 Why does the previous output show the final status Faulted
instead of Canceled?

It is a design decision. The online link https://learn.microsoft.
com/en-us/dotnet/standard/parallel-programming/task-
cancellation states:

If the token’s IsCancellationRequested property returns
false or if the exception’s token doesn’t match the Task’s
token, the OperationCanceledException is treated like a
normal exception, causing the Task to transition to the
Faulted state. The presence of other exceptions will also cause
the Task to transition to the Faulted state.

�Case Study 2: Changing the Caller

In Demonstration 2, let us use Wait(token) instead of Wait() in the try

block as follows:

// There is no change in the previous code
try
{
 // printTask.Wait();
 printTask.Wait(token);
}

// There is no change in the remaining code

Chapter 5 Managing Cancellations

https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/task-cancellation
https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/task-cancellation
https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/task-cancellation

113

Now, execute the program again. This time, you’ll see that the

OperationCanceledException is not wrapped inside the

AggregateException. So, the catch block for the

OperationCanceledException was necessary to handle the exception.

Here is a sample output from my computer:

Simple cancellation demonstration.
Enter c to cancel the task.
0
1
2
c
Raising the cancellation request.
Operation canceled. Message: The operation was canceled.
The final status of printTask is: Running
End of the main thread.

Note  You can download the project Chapter5_Demo2_CaseStudy2
to see the complete program.

�Q&A Session

Q5.5 Why does the previous output show the final status Running
instead of Canceled or Faulted?

The Wait(token) differs from Wait(). In the case of Wait(token),

the wait terminates if a cancellation token is canceled before the task is

completed. In this case, the main thread exited early. To see the final status

Chapter 5 Managing Cancellations

114

of the task, you can introduce the following code (shown in bold) in the

following location:

// There is no change in the previous code.

// Wait till the task finishes the execution
while (!printTask.IsCompleted) { }
Wr�it�eLine($"The final status of printTask is: {printTask.

Status}");

// There is no change in the remaining code.

Here is a sample output after this change:

Simple cancellation demonstration.
Enter c to cancel the task.
0
1
2
c
Raising the cancellation request.
Operation canceled. Message: The operation was canceled.
Cancelling the print activity.
The final status of printTask is: Faulted
End of the main thread.

POINTS TO NOTE

I want you to note the following points:

	1.	O n a detailed examination, you’ll see that Wait() can throw

only AggregateException, whereas Wait(CancellationToken

cancellationToken) is cancellable and can raise

OperationCanceledException. If interested, you can see our

Chapter 5 Managing Cancellations

115

online discussion on this topic at https://stackoverflow.
com/questions/77833724/why-the-catch-block-
of-aggregateexception-was-not-sufficient-to-
handle-cancellat/77833858#77833858.

	2.	T o answer Q5.5, I have answered your question using the line

while (!printTask.IsCompleted) { }. However, Microsoft suggests

(see the online link https://learn.microsoft.com/
en-us/dotnet/standard/parallel-programming/
exception-handling-task-parallel-library) that you

avoid this kind of polling in the production code as it is very

inefficient.

	3.	I n the previous output, you see the final status of the

task as Faulted. It is because I used the line throw new
OperationCanceledException(“The operation is canceled.”);
in that demonstration. However, if you replace this line with

throw new OperationCanceledException(token); you can see

the final status as Canceled but not Faulted.

�Timeout Cancellation
You can initiate a cancellation request after a specified time. For example,

for a typical network operation, you may not like to wait indefinitely. In

such a case, your program can automatically initiate the cancellation

request.

To implement the idea, you can use the line

tokenSource.CancelAfter(2000); in the previous demonstration

(Demonstration 2) as follows:

// There is no change in the previous code
var tokenSource = new CancellationTokenSource();
var token = tokenSource.Token;

Chapter 5 Managing Cancellations

https://stackoverflow.com/questions/77833724/why-the-catch-block-of-aggregateexception-was-not-sufficient-to-handle-cancellat/77833858#77833858
https://stackoverflow.com/questions/77833724/why-the-catch-block-of-aggregateexception-was-not-sufficient-to-handle-cancellat/77833858#77833858
https://stackoverflow.com/questions/77833724/why-the-catch-block-of-aggregateexception-was-not-sufficient-to-handle-cancellat/77833858#77833858
https://stackoverflow.com/questions/77833724/why-the-catch-block-of-aggregateexception-was-not-sufficient-to-handle-cancellat/77833858#77833858
https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/exception-handling-task-parallel-library
https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/exception-handling-task-parallel-library
https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/exception-handling-task-parallel-library

116

tokenSource.CancelAfter(2000);
// There is no change in the remaining code

Now while executing the modified program, the program can

automatically trigger the cancellation request after 2000 milliseconds.

Note S ince I am not changing the remaining code, this program can
respond to user-initiated cancellations as well. In that case, the user
needs to raise this request before this automatic cancellation triggers.
In fact, it will wait for a user input before it closes the application. You
can download the project Chapter5_TimeoutCancellation to see the
complete program from the Apress website.

�Monitoring Task Cancellation
In the output of some of the previous demonstrations (for example, see the

output of Demonstration2, Chapter5_Demo2_CaseStudy1, or the answer

to Q5.5), you saw the following line: Cancelling the print activity.

I used this line to monitor the canceled task before the cancellation

operation. Interestingly, there are alternative ways. Let us see some

of them.

�Using Register
You can subscribe to an event notification. For example, in the following

code, I register a delegate that will be called when the token is canceled:

token.Register(
 () =>
 {

Chapter 5 Managing Cancellations

117

 WriteLine("Cancelling the print activity.
 [Using event subscription]");
 // Do something else, if you want
 }
);

�Using WaitHandle.WaitOne
Let me show you one more approach that is relatively complicated

compared to the previous one. However, this can also give you an idea

about how to monitor task cancellation. The online link https://learn.
microsoft.com/en-us/dotnet/api/system.threading.waithandle.
waitone?view=net-8.0 describes WaitHandle’s WaitOne method as

follows:

Blocks the current thread until the current WaitHandle receives
a signal.

The WaitOne method has many overloads. In the upcoming

demonstration, I’ll show you the simplest form that does not require you to

pass any argument. The basic idea is that the current thread will consider

a token and wait until someone cancels this token. As soon as someone

invokes the cancellation, the blocking function call will be released. This is

why I can launch another task from the calling thread as follows:

Task.Run(
 () =>
 {
 token.WaitHandle.WaitOne();
 WriteLine("Cancelling the print activity.
 [Using WaitHandle]");
 // Do something else, if you want
 }
);

Chapter 5 Managing Cancellations

https://learn.microsoft.com/en-us/dotnet/api/system.threading.waithandle.waitone?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.threading.waithandle.waitone?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.threading.waithandle.waitone?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.threading.waithandle?view=net-7.0

118

Notice that it is very similar to subscribing to an event notification,

because here also you wait for the cancellation to occur. This is why I have

written a similar statement in this code block.

�Demonstration 3

It is time for another demonstration where I show you the discussed

approaches to monitor the cancellation operation. Notice the key changes

in bold:

using static System.Console;

WriteLine("Monitoring the cancellation operation.");

var tokenSource = new CancellationTokenSource();
var token = tokenSource.Token;

token.Register(
 () =>
 {
 WriteLine("Cancelling the print activity.[Using event
 subscription]");
 // Do something else, if you want
 }
);

var printTask = Task.Run
 (
 () =>
 {
 // A loop that runs 100 times
 for (int i = 0; i < 100; i++)
 {
 // Approach-3
 token.ThrowIfCancellationRequested();

Chapter 5 Managing Cancellations

119

 WriteLine($"{i}");
 // Imposing the sleep to make some delay
 Thread.Sleep(500);
 }
 }, token
);

Task.Run(
 () =>
 {
 token.WaitHandle.WaitOne();
 WriteLine("Cancelling the print activity.[Using
 WaitHandle]");
 // Do something else, if you want
 }
);

WriteLine("Enter c to cancel the task.");
char ch = ReadKey().KeyChar;
if (ch.Equals('c'))
{
 WriteLine("\nTask cancellation requested.");
 tokenSource.Cancel();
}
// Wait till the task finishes the execution
while (!printTask.IsCompleted) { }
WriteLine($"The final status of printTask is: {printTask.Status}");
WriteLine("End of the main thread.");

Chapter 5 Managing Cancellations

120

�Output

Here is one sample output. Notice the changes in bold.

Monitoring the cancellation operation.
Enter c to cancel the task.
0
1
2
c
Task cancellation requested.
Cancelling the print activity.[Using WaitHandle]
Cancelling the print activity.[Using event subscription]
The final status of printTask is: Canceled
End of the main thread.

�Using Multiple Cancellation Tokens
An application can indeed be canceled due to various reasons. In such a

case, you can use multiple tokens and provide the necessary logic. In this

context, you can use the CreateLinkedTokenSource method. Let us see an

example.

In the following demonstration, you’ll see two different tokens as

follows:

var normalCancellation = new CancellationTokenSource();
var tokenNormal = normalCancellation.Token;

var unexpectedCancellation = new CancellationTokenSource();
var tokenUnexpected = unexpectedCancellation.Token;

Chapter 5 Managing Cancellations

121

Once created, I pass them to the CreateLinkedTokenSource method as

follows:

var compositeToken = CancellationTokenSource.
 CreateLinkedTokenSource(tokenNormal,tokenUnexpected);

The idea is that you can cause a cancellation using either

normalCancellation or unexpectedCancellation.

You may note that the CreateLinkedTokenSource method has different

overloads and you can pass more tokens if required. Remember that the

core idea is the same: you can cancel any of these tokens to make the final

task status Canceled.

�Demonstration 4

In the following program, a user can trigger a normal cancellation.

However, you can also observe an unexpected/emergency cancellation.

To mimic an emergency cancellation, I rely on a random number generator.

If the random number is 5, the unexpected cancellation will be triggered.

Here is the complete program to demonstrate the idea:

using static System.Console;

WriteLine("Monitoring the cancellation operation.");

var normalCancellation = new CancellationTokenSource();
var tokenNormal = normalCancellation.Token;

var unexpectedCancellation = new CancellationTokenSource();
var tokenUnexpected = unexpectedCancellation.Token;

tokenNormal.Register(
 () =>
 {
 WriteLine("Processing a normal cancellation.");

Chapter 5 Managing Cancellations

122

 // Do something else, if you want
 }
);

tokenUnexpected.Register(
 () =>
 {
 WriteLine("Processing an unexpected cancellation.");
 // Do something else, if you want
 }
);

var compositeToken = CancellationTokenSource.
CreateLinkedTokenSource(
 tokenNormal,
 tokenUnexpected
);

var printTask = Task.Run
 (
 () =>
 {
 // A loop that runs 100 times
 for (int i = 0; i < 100; i++)
 {
 compositeToken.Token.ThrowIfCancellationRequested();
 WriteLine($"{i}");
 // Imposing sleep to make some delay
 Thread.Sleep(500);
 }
 }, compositeToken.Token
);

Chapter 5 Managing Cancellations

123

int random = new Random().Next(1, 6);
// A dummy logic to mimic an emergency cancellation
if (random == 5)
 unexpectedCancellation.Cancel();
else
{
 WriteLine("Enter a key (type c for a normal cancellation)");
 char ch = ReadKey().KeyChar;
 if (ch.Equals('c'))
 {
 WriteLine("\nTask cancellation requested.");
 normalCancellation.Cancel();
 }
}

// Wait till the task finishes the execution
while (!printTask.IsCompleted) { }
Wr�iteLine($"The final status of printTask is: {printTask.
Status}");

WriteLine("End of the main thread.");

�Output

Here is a sample output when a user pressed “c” to initiate a normal

cancellation:

Monitoring the cancellation operation.
Enter a key (type c for a normal cancellation)
0
1
2
c
Task cancellation requested.

Chapter 5 Managing Cancellations

124

Processing a normal cancellation.
The final status of printTask is: Canceled
End of the main thread.

Here is another sample output when an emergency cancellation was

triggered automatically:

Monitoring the cancellation operation.
Processing an unexpected cancellation.
The final status of printTask is: Canceled
End of the main thread.

�Summary
Cancellation is an essential mechanism in task programming. However,

instead of abruptly stopping a task, you make a cooperative model where

the task and the calling code (that initiates the cancellation) can work

together to maintain the health of your application. This chapter discussed

this topic and answered the following questions:

•	 How can you support user-initiated cancellations?

•	 How can you support the timeout cancellations?

•	 How can you monitor cancellations in your

application?

•	 How can you use multiple cancellation tokens in your

application?

Chapter 5 Managing Cancellations

125

�Exercises
Check your understanding by attempting the following exercises:

REMINDER

As said before, you can safely assume that all other necessary namespaces

are available for these code segments. The same comment applies to all

exercises in this book as well.

E5.1 If you execute the following code, can you predict the output?

using static System.Console;

var tokenSource = new CancellationTokenSource();
var token = tokenSource.Token;
var printTask = Task.Run
 (
 () =>
 {
 int i = 0;
 while (i != 10)
 {
 if (token.IsCancellationRequested)
 {
 WriteLine("Cancelling the print activity.");
 return;
 }
 // Do some work, if required.
 Thread.Sleep(1000);
 i++;
 }

Chapter 5 Managing Cancellations

126

 }, token
);

Thread.Sleep(500);
WriteLine("The cancellation is initiated.");
tokenSource.Cancel();
// Wait till the task finishes the execution
while (!printTask.IsCompleted) { }
WriteLine($"The final status of printTask is: {printTask.Status}");
WriteLine("End of the main thread.");

E5.2 In the previous exercise, replace the following code segment:

 if (token.IsCancellationRequested)
 {
 WriteLine("Cancelling the print activity.");
 return;
 }

with the following line:

token.ThrowIfCancellationRequested();

Will there be any change in the output?

E5.3 The following program creates a parent task and a nested task. It also

allows you to cancel these tasks if you press “c” from the keyboard. Check

whether you can predict the output.

using static System.Console;

WriteLine("Exercise 5.3");
var tokenSource = new CancellationTokenSource();
var token = tokenSource.Token;

Task child = null;
var parent = Task.Factory.StartNew(

Chapter 5 Managing Cancellations

127

() =>
{
 Thread.Sleep(1000);
 if (token.IsCancellationRequested)
 {
 WriteLine("The cancellation request is raised too early.");
 token.ThrowIfCancellationRequested();
 }
 WriteLine("The parent task is running.");
 // Creating a nested task
 child = Task.Factory.StartNew(
 () =>
 {
 WriteLine("The child task has started.");
 for (int i = 0; i < 10; i++)
 {
 token.ThrowIfCancellationRequested();
 WriteLine($"\tThe nested task prints:{i} ");
 Thread.Sleep(200);
 }
 return "The child task has finished too";
 },
 token,
 TaskCreationOptions.AttachedToParent,
 TaskScheduler.Default);
 child.Wait(token);
},token);
WriteLine("Enter c to cancel the nested task.");
char ch = ReadKey().KeyChar;

Chapter 5 Managing Cancellations

128

if (ch.Equals('c'))
{
 WriteLine("\nTask cancellation requested.");
 tokenSource.Cancel();
}
try
{
 parent.Wait();
}
catch (AggregateException ae)
{
 foreach (Exception e in ae.InnerExceptions)
 {
 WriteLine($"Caught error: {e.Message}");
 }
}
Wr�it�eLine($"The current state of the parent task: {parent.

Status}");
st�ri�ng childStatus = child != null ? child.Status.ToString() :

"not created";
WriteLine($"The current state of the child task: {childStatus}");
WriteLine("End of the main thread.");

E5.4 State True/False:

	 i)	 The CancellationTokenSource is a class that

implements the IDisposable interface.

	 ii)	 The Token property of the CancellationTokenSource

class is used to generate the CancellationToken

instance.

E5.5 In Chapter 3, you solved the exercise E3.2. Since you have learned

about implementing exception and cancellation scenarios, can you solve

that exercise considering these scenarios?

Chapter 5 Managing Cancellations

129

�Solutions to Exercises
Here is a sample solution set for the exercises in this chapter.

�E5.1
The program will automatically initiate a cancellation. Here is a possible

output (notice that the task status is RanToCompletion but not Canceled):

The cancellation is initiated.
Cancelling the print activity.
The final status of printTask is: RanToCompletion
End of the main thread.

�E5.2
This time the final task status should appear as Canceled. Here is a

sample output:

The cancellation is initiated.
The final status of printTask is: Canceled
End of the main thread.

�E5.3
You already know that this program creates a parent task and a nested task.

It also lets you cancel the nested task if you press “c” quickly. As a result,

depending on the situation, you may see a different output. For example,

if you do not initiate a cancellation and press the Enter key at the end, you

can see the following output:

Exercise 5.3
Enter c to cancel the nested task.

Chapter 5 Managing Cancellations

130

The parent task is running.
The child task has started.
 The nested task prints:0
 The nested task prints:1
 The nested task prints:2
 The nested task prints:3
 The nested task prints:4
 The nested task prints:5
 The nested task prints:6
 The nested task prints:7
 The nested task prints:8
 The nested task prints:9
The current state of the parent task: RanToCompletion
The current state of the child task: RanToCompletion
End of the main thread.

On the other hand, depending on the time of cancellation, you can get

different outputs. For example, if you press c almost at the beginning of the

application, you can see the following:

Exercise 5.3
Enter c to cancel the nested task.
c
Task cancellation requested.
The cancellation request is raised too early.
Caught error: A task was canceled.
The current state of the parent task: Canceled
The current state of the child task: not created
End of the main thread.

Otherwise, you may see a normal cancellation that is something like

the following:

Chapter 5 Managing Cancellations

131

Exercise 5.3
Enter c to cancel the nested task.
The parent task is running.
The child task has started.
 The nested task prints:0
 The nested task prints:1
c
Task cancellation requested.
Caught error: A task was canceled.
The current state of the parent task: Canceled
The current state of the child task: Canceled
End of the main thread.

�E5.4
The answers are shown inline in bold:

	 i)	 The CancellationTokenSource is a class that

implements the IDisposable interface. [True]

	 ii)	 The Token property of the CancellationTokenSource

class is used to generate the CancellationToken

instance. [True]

�E5.5
I leave this exercise to you now. Good luck!

Additional note: This time onward, while solving the exercises, you can

exercise applying cancellation and exception mechanisms. The same

comment applies to the exercises that you solved in the previous chapters.

Chapter 5 Managing Cancellations

133© Vaskaran Sarcar 2025
V. Sarcar, Task Programming in C# and .NET, Apress Pocket Guides,
https://doi.org/10.1007/979-8-8688-1279-8_6

CHAPTER 6

Bonus
This chapter discusses some additional topics on task programming.

�Progress Reporting
You can see the progress status while updating the operating system or

installing a new version of Visual Studio on a computer. Let’s see whether you

can create an application with a similar feature using task programming.

�Understanding the Need
Consider that you are processing many different records. To mimic the real

world, let us further assume that the processing time of these records varies as

well. Since the operation can be time-consuming, you do not want to block the

main thread. Instead, you decide to complete it through a background task.

�Demonstration 1

However, while processing those records, if you do not show the progress

status, the user can be confused. To make things simple, let’s see a sample

demonstration that deals with only five records as follows:

using static System.Console;

Wr�it�eLine("The main thread is initiating a task to process some
records.");

var recordProcessingTask = Task.Run(ProcessRecords);

https://doi.org/10.1007/979-8-8688-1279-8_6#DOI

134

WriteLine("The main thread is doing other work now.");
recordProcessingTask.Wait();

static void ProcessRecords()
{
 WriteLine($"Starts processing the records...");
 for (int i = 1; i <= 5; i++)
 {
 // Varying the delay
 Thread.Sleep(i * 500);
 }
 WriteLine("All the records are processed.");
}

�Output

Here is a sample output that should not cause any surprise for you:

The main thread is initiating a task to process some records.
The main thread is doing other work now.
Starts processing the records...
All the records are processed.

�Analysis

However, you’ll see that the line “All the records are processed.” has

appeared after a significant amount of time. From a user perspective, it is

a confusing behavior because after you see the line “Starts processing
the records...”, you do not know what is happening in the background.

You understand that progress reporting can help you in a similar
context, particularly when you execute a long-running task.

Now, the question is: how can you report the progress? Well, it’s up to

you. For example, you may simply try to print which record is currently

Chapter 6 Bonus

135

under process, or you may display the progress in terms of percentage

by printing something like “completed processing:60%”. In the upcoming

example, I’d like to show you a sample demonstration using the built-in

constructs for progress reporting. Let’s start discussion about it.

There is an interface, called IProgress, in the System namespace. It

contains a method, called Report, that can help you display the progress.

Visual Studio reveals its look as follows:

public interface IProgress<in T>
{
 //
 // Summary:
 // Reports a progress update.
 //
 // Parameters:
 // value:
 // The value of the updated progress.
 void Report(T value);
}

Using this interface, you can create a custom implementation to report

progress.

You may note that there is also a built-in class, called Progress<T>, that

already implements the IProgress interface. So, you can use this class to

serve your purpose. This class exposes a ProgressChanged event that can

be raised with every progress update sent from the asynchronous code.

There is an alternative option. Before you see this option, let me tell

you that this Progress class has two constructors and one of them is as

follows:

public Progress(Action<T> handler);

Chapter 6 Bonus

136

This gives you a clue that you can pass a delegate as a parameter to

the constructor of the Progress class. This delegate effectively acts as an
event handler that you can use to report the progress. Let me update the

previous code to demonstrate how it works.

First, I changed the ProcessRecords function, so that it can accept

IProgress<int> as a parameter. Let us see the modified function with the

key changes in bold.

POINTS TO NOTE

I want you to note the following points:

•	 To make things simple, I have considered the int parameter.

However, you can choose other types as well.

•	 Since there are five records, after processing a record, I

increase the progress percentage by 20%.

static void ProcessRecords(IProgress<int> progress)
{
 WriteLine($"Starts processing the records...");
 int progressPercentage = 0;
 for (int i = 1; i <=5; i++)
 {
 // Varying the delay
 Thread.Sleep(i * 500);
 progressPercentage += 20;
 progress.Report(progressPercentage);
 }
 WriteLine("All the records are processed.");
}

Chapter 6 Bonus

137

To use this modified function, I needed to update the calling code as

well. So, I replace the following line:

var recordProcessingTask = Task.Run(ProcessRecords);

with the following lines:

IProgress<int> reportProgress = new Progress<int>(
 i => WriteLine($"Completed: {i}%")
);
va�r �recordProcessingTask = Task.Run(() => ProcessRecords(report

Progress));

You can see that the Progress<int> constructor now accepts a

delegate that will receive the progress data as a parameter. It will be

executed every time a progress report is sent.

�Demonstration 2

Let us see the modified demonstration now:

using static System.Console;
Wr�it�eLine("The main thread is initiating a task to process some

records.");

IProgress<int> reportProgress = new Progress<int>(
 i => WriteLine($"Completed: {i}%")
);

va�r �recordProcessingTask = Task.Run(() => ProcessRecords(report
Progress));

WriteLine("The main thread is doing other work now.");
recordProcessingTask.Wait();

// The ProcessRecords function is placed here. It is not shown
// again to avoid repetition.

Chapter 6 Bonus

138

Note  Download Chapter6_Demo2 project to see the complete
demonstration.

�Output

Here is a sample output:

The main thread is initiating a task to process some records.
The main thread is doing other work now.
Starts processing the records...
Completed: 20%
Completed: 40%
Completed: 60%
Completed: 80%
All the records are processed.
Completed: 100%

You can see that the program can successfully print the update status.

�Creating and Running Tasks Implicitly
At a high level, TPL has the following parts:

•	 The task parallelism constructs

•	 The Parallel class

TPL supports data parallelism through the Parallel class. You

can exercise the parallel version of the for loop (using Parallel.
For) and foreach loop using this class (using Parallel.ForEach). The

detailed discussion on the Parallel class is beyond the scope of this

book. However, I’d like to mention that the Parallel class has a useful

Chapter 6 Bonus

139

method, called Invoke, that helps you create multiple tasks that can run

concurrently.

Author's note: Since the first part (i.e., the task parallelism constructs) is

already covered in this book, I’m not talking about it in this section.

�Using Parallel.Invoke
The online link https://learn.microsoft.com/en-us/previous-
versions/msp-n-p/ff963549(v=pandp.10)?redirectedfrom=MSDN states:

Parallel.Invoke is the simplest expression of the parallel task
pattern. It creates new parallel tasks for each delegate method
that is in its params array argument list. The Invoke method
returns when all the tasks are finished.

At the time of this writing, there are two overloads for the parallel

Invoke method. Let me consider the simplest one that has the

following look:

public static void Invoke (params Action[] actions);

You understand that while using this method, you can pass a variable

number of Action instances to the Invoke method. Let me create three

such instances and pass them in the following program.

�Demonstration 3

Here is the complete demonstration.

using static System.Console;

#region Parallel.Invoke
WriteLine("Using Parallel.Invoke method.");
Ac�ti�on greet = new(() => WriteLine($"Task {Task.CurrentId}

says: Hello reader!"));

Chapter 6 Bonus

https://learn.microsoft.com/en-us/previous-versions/msp-n-p/ff963549(v=pandp.10)?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/previous-versions/msp-n-p/ff963549(v=pandp.10)?redirectedfrom=MSDN

140

Ac�ti�on printMsg = new(() => WriteLine($"Task {Task.CurrentId}
says: This is a beautiful day."));

Ac�ti�on ask = new(() => WriteLine($"Task {Task.CurrentId} says:
How are you?"));

Parallel.Invoke(greet, printMsg, ask);
WriteLine("End Parallel.Invoke");
#endregion

�Output

Here is a sample output:

Using Parallel.Invoke method.
Task 3 says: Hello reader!
Task 1 says: This is a beautiful day.
Task 2 says: How are you?
End Parallel.Invoke

�Additional Suggestions

Before I finish this section, I have the following suggestions for you:

•	 To have greater control over task executions, you’d like

to create and execute tasks explicitly.

•	 Once you finish this book and learn more about

asynchronous programming, you can read the

online post comparing these approaches at https://
devblogs.microsoft.com/pfxteam/task-run-vs-
task-factory-startnew/. Though the article was

written a long time back, it is still useful. However, to

understand this material, you need to be familiar with

async and await keywords.

Chapter 6 Bonus

https://devblogs.microsoft.com/pfxteam/task-run-vs-task-factory-startnew/
https://devblogs.microsoft.com/pfxteam/task-run-vs-task-factory-startnew/
https://devblogs.microsoft.com/pfxteam/task-run-vs-task-factory-startnew/

141

�Q&A Session

Q6.1 I can see that task 2 finishes after task 3 in the previous output. Is
this an expected behavior? I can also see that you did not wait for the
tasks to be finished. Is this OK?

Yes. The online link https://learn.microsoft.com/en-us/dotnet/
api/system.threading.tasks.parallel.invoke?view=net-9.0 states:

This method can be used to execute a set of operations, poten-
tially in parallel. No guarantees are made about the order in
which the operations execute or whether they execute in par-
allel. This method does not return until each of the provided
operations has completed, regardless of whether completion
occurs due to normal or exceptional termination.

Q6.2 It appears to me that I could create separate tasks and wait for
them to finish their executions instead of using Parallel.Invoke. Is this
correct?

Nice observation. The online link https://learn.microsoft.com/
en-us/previous-versions/msp-n-p/ff963549(v=pandp.10)?redirected
from=MSDN confirms that by saying the following:

Internally, Parallel.Invoke creates new tasks and waits for
them. It uses methods of the Task class to do this.

If you study the mentioned link, you will understand that I could write

an equivalent program as follows:

using static System.Console;

Task greet2 = Task.Factory.StartNew(
() => WriteLine($"Task {Task.CurrentId} says: Hello reader!"));

Task printMsg2 = Task.Factory.StartNew(
()� =�> WriteLine($"Task {Task.CurrentId} says: This is a

beautiful day."));

Chapter 6 Bonus

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.parallel.invoke?view=net-9.0
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.parallel.invoke?view=net-9.0
https://learn.microsoft.com/en-us/previous-versions/msp-n-p/ff963549(v=pandp.10)?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/previous-versions/msp-n-p/ff963549(v=pandp.10)?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/previous-versions/msp-n-p/ff963549(v=pandp.10)?redirectedfrom=MSDN

142

Task ask2 = Task.Factory.StartNew(
() => WriteLine($"Task {Task.CurrentId} says: How are you?"));

Task.WaitAll(greet2, printMsg2, ask2);

However, notice that when you work with a large number of delegates,

creating separate tasks for each of those delegates and managing them is

not a good idea. The use of Parallel.Invoke can give you the relief! It will

work efficiently in those cases as well.

Q6.3 How does the data parallelism differ from the task parallelism?
Microsoft (https://learn.microsoft.com/en-us/previous-

versions/msp-n-p/ff963549(v=pandp.10)?redirectedfrom=MSDN)

summarizes the difference nicely by saying the following:

Data parallelism and task parallelism are two ends of a
spectrum. Data parallelism occurs when a single operation
is applied to many inputs. Task parallelism uses multiple
operations, each with its own input.

�Precomputed Tasks
One of the primary benefits of performing asynchronous operations

is faster executions. However, despite your best efforts, some of the

operations are indeed time-consuming. To tackle such a situation, you can

use the caching mechanism. Let’s explore it in more detail.

�Without Caching
The following program exercises a time-consuming method, named

TimeConsumingMethod. Each time you call this method, you need to

wait more than three seconds to get a random number. Let us exercise a

program that invokes this method multiple times.

Chapter 6 Bonus

https://learn.microsoft.com/en-us/previous-versions/msp-n-p/ff963549(v=pandp.10)?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/previous-versions/msp-n-p/ff963549(v=pandp.10)?redirectedfrom=MSDN

143

�Demonstration 4

Here is a sample demonstration.

using System.Diagnostics;
using static System.Console;

Stopwatch stopwatch = Stopwatch.StartNew();
WriteLine(Sample.TimeConsumingMethod().Result);
stopwatch.Stop();
Wr�it�eLine($"Elapsed time: {stopwatch.ElapsedMilliseconds}

milliseconds");

stopwatch.Restart();
// Subsequent calls
WriteLine(Sample.TimeConsumingMethod().Result);
stopwatch.Stop();
Wr�it�eLine($"Elapsed time: {stopwatch.ElapsedMilliseconds}

milliseconds");
class Sample
{
 static int flagValue = 0;
 public static Task<int> TimeConsumingMethod()
 {
 return Task.Run(
 () =>
 {
 WriteLine("Forming the value...");
 // Simulating a delay before forming the value
 Thread.Sleep(3000);
 flagValue = new Random().Next(0, 100);
 return flagValue;
 }

Chapter 6 Bonus

144

);
 }
}

�Output

Here is a sample output:

Forming the value...
87
Elapsed time: 3092 milliseconds
Forming the value...
45
Elapsed time: 3017 milliseconds

�Analysis

You can see that every time you invoke the time-consuming method, it

takes more than three seconds to return a number.

�Applying Caching Mechanism
You can apply the caching mechanism to improve the program. The idea

is that once the value is formed, you’ll hold the value in the cache. As a

result, the next time a user calls the method, you can supply the cached

value to him.

You can use Task.FromResult method in this context. This method will

help you return a finished Task<TResult> object that holds the provided

value as its Result property. In particular, this method is helpful when you

perform an asynchronous operation that returns a Task<TResult> object,

and the result of that object is already available.

Chapter 6 Bonus

145

�Demonstration 5

Let us modify the time-consuming method in the Sample class as follows:

// There is no other change in the previous code
class Sample
{
 static bool cacheFormed;
 static int flagValue = 0;
 public static Task<int> TimeConsumingMethod()
 {
 return Task.Run(() =>
 {
 if (!cacheFormed)
 {
 WriteLine("First call: forming the value…");
 // Simulating a delay before forming the value
 Thread.Sleep(3000);
 flagValue = new Random().Next(0, 100);
 cacheFormed = true;
 }
 else
 {
 �Writ�eLine("Subsequent call(s): getting the value
 from the cache.");
 Task.FromResult(flagValue);
 }
 return flagValue;
 }
);
 }
}

Chapter 6 Bonus

146

�Output

Here is a sample output:

First call: forming the value...
42
Elapsed time: 3026 milliseconds
Subsequent call(s): getting the value from the cache.
42
Elapsed time: 1 milliseconds

�Analysis

You can see that the caching mechanism improved response time

significantly in the subsequent calls.

�Q&A Session

Q6.4 Can you give me a real-world example where I can use
precomputed tasks?

Suppose, there is an application where a user provides a URL. Then

the application starts downloading the data from that URL for further

processing. In this case, to avoid repeated downloads, you can store the

URL and the corresponding data in a cache.

�Using TaskCompletionSource
You have seen that tasks can help you perform background work. They

are also useful for managing work items like performing continuation

works, managing child tasks, or handling exceptions. However, in

some cases, you may need to have more control over the tasks. The

TaskCompletionSource<TResult> class can be useful in those scenarios.

Let’s explore its usage.

Chapter 6 Bonus

147

The TaskCompletionSource<TResult> class allows you to create a task

out of any operation that will be completed in the future. In the online link

https://learn.microsoft.com/en-us/dotnet/api/system.threading.
tasks.taskcompletionsource-1?view=net-8.0 Microsoft describes this

class as follows:

Represents the producer side of a Task<TResult> unbound to a
delegate, providing access to the consumer side through the
Task property.

More specifically, behind the scenes, using this class, you get a "slave"

task that you can manually drive for completion. It can be ideal for such

type of I/O bound work where you reap all the benefits of using a task

without blocking the calling thread.

�How to Use?
Now the question is: how to use this class? First, you need to instantiate it.

Once you instantiate this class, you will get some built-in methods that can

serve your purpose. Here is a sample screenshot from Visual Studio that

shows the details of this class (see Figure 6-1).

Chapter 6 Bonus

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcompletionsource-1?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcompletionsource-1?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcompletionsource-1.task?view=net-8.0#system-threading-tasks-taskcompletionsource-1-task

148

Figure 6-1.  The TaskCompletionSource class details

From this screenshot, you can see that the method names start either

with “Set” or “TrySet”. The first category returns void, but the second

category returns bool. You can note the following points about these

methods:

•	 When you call any of these methods, the task moves

into any of the final states: RanToCompletion, Faulted,

or Canceled.

•	 You should call the first category (i.e., where the

method names start with the word "Set") exactly once;

otherwise, you’ll see exceptions. (The answer to Q6.5

discusses more on this.)

Chapter 6 Bonus

149

�Demonstration 6

Let’s see a demonstration. To understand the following program, read the

following points:

•	 At the beginning of the program, I created an instance

of TaskCompletionSource<string> class, called tcs. As

a result, I can use its Task property in a later stage.

•	 The user of this application can get the details of the

background activity by entering the character “y”. If the

user enters any other character, the program completes

execution without showing the details.

Let us see the complete program now:

using static System.Console;

WriteLine($"The TaskCompletionSource demo.");
TaskCompletionSource<string> tcs = new();
Task<string> collectInfoTask = tcs.Task;

// Starting a background task that will complete the work
var backgroundTask = Task.Run(
() =>
{
 WriteLine("Monitoring the activity before setting the result.");
 // Imposing some forced delay before setting the
 // result to mimic real-world
 Thread.Sleep(3000);
 bool isSuccess = tcs.TrySetResult("Everything went well.");
 if (isSuccess)
 {
 WriteLine("\nThe result is set successfully.");
 }
});

Chapter 6 Bonus

150

Wr�it�eLine("\nEnter a key (if interested, press 'y' to get the
details).");

var input = ReadKey();
if (input.KeyChar == 'y')
{
 WriteLine($"\nReceived: {collectInfoTask.Result}");
}
WriteLine("\nThank you!");

�Output

Here are some sample outputs.

Case 1 (the user opts for the detail):

The TaskCompletionSource demo.

Enter a key (if interested, press 'y' to get the details).
Monitoring the activity before setting the result.
y
The result is set successfully.

Received: Everything went well.

Thank you!

Case 2 (the user does not opt for the detail and types “n”):

The TaskCompletionSource demo.

Enter a key (if interested, press 'y' to get the details).
Monitoring the activity before setting the result.
n
Thank you!

Chapter 6 Bonus

151

�Q&A Session

Q6.5 Before Demonstration 6, you said the following: “You should call
the first category (i.e., where the method names start with the word
“Set”) exactly once; otherwise, you’ll see exceptions.” Can you please
elaborate?

If you use the following version of the backgroundTask :

var backgroundTask = Task.Run(
() =>
{
 �WriteLine("Monitoring the activity before setting the

result.");
 // Imposing some forced delay before setting the
 // result to mimic real-world
 Thread.Sleep(3000);
 tcs.SetResult("Everything went well.");
 //// The following line will cause an exception now
 //tcs.SetResult("The result is set for the second time.");
});

You can see an identical output. Let’s try to set the result one more

time as follows:

// There is no change in the previous code
tcs.SetResult("Everything went well.");
// The following line will cause an exception now
tcs.SetResult("The result is set for the second time.");
// There is no change in the remaining code

Now, wait for this task to finish (e.g., using the line backgroundTask.
Wait(); in the client code); you will see the following exception in the

final output:

Chapter 6 Bonus

152

Unhandled exception. System.AggregateException: One or more
errors occurred. (An attempt was made to transition a task to a
final state when it had already completed.)
// The remaining details are not shown

Note T o see a sample implementation, you can download the
Chapter6_Demo6_TCS_Q&A project, for your experimentation/
reference from the Apress website.

To avoid this kind of error, I prefer to use the TrySetResult method

instead of the SetResult method. The reason is obvious: it returns a

Boolean, i.e., either true or false, but not an exception.

Q6.6 Can you give a real-world example where I can benefit from using
the TaskCompletionSource class?

Consider an event-based application where a user needs to provide some

credentials. Let's assume that once these credentials are entered, an event is

raised. If the user provides valid credentials, the application stores his current

activity in a database. Otherwise, the application can raise an exception, and

the error details can be popped up on the screen. You can consider using the

TaskCompletionSource<TResult> class to make such an application.

�Summary
This chapter provides some supplementary material that can help you in

task programming. Upon completion of this chapter, you can answer the

following questions:

•	 How can you report progress while executing a long-

running task?

•	 How can you create tasks implicitly?

Chapter 6 Bonus

153

•	 How can you benefit from a precomputed task?

•	 How can TaskCompletionSource class help you

manage an I/O-bound task?

�Exercises
Check your understanding by attempting the following exercises:

REMINDER

As said before, you can safely assume that all other necessary namespaces

are available for these code segments. The same comment applies to all

exercises in this book as well.

E6.1 If you execute the following code, can you predict the output?

using static System.Console;
TaskCompletionSource<int> tcs = new();
int value = 10;
var task1=Task.Run(() => value++);
task1.Wait();
var task2=Task.Run(() =>
{
 tcs.SetResult(value*10);
}
);
WriteLine($"The final result is: {tcs.Task.Result}");

Chapter 6 Bonus

154

E6.2 Can you predict the following output of the following program?

using static System.Console;
var task = Task.Run(() => "Thanks God!");
st�ri�ng msg = string.Concat(task.Result, " What a beautiful

day!") ;
var task2 = Task.FromResult(msg);
WriteLine(task2.Result);

E6.3 Can you predict the following output of the following program?

using static System.Console;
try
{
 Action greet = new(() => WriteLine($"Hello reader!"));
 Action raiseError = new(
 () => throw new Exception("There is a problem."));
 Parallel.Invoke(greet, raiseError);
}
catch (AggregateException ae)
{
 foreach (Exception ex in ae.InnerExceptions)
 {
 WriteLine(ex.Message);
 }
}

�Solutions to Exercises
Here is the solution set for the exercises in this chapter.

Chapter 6 Bonus

155

�E6.1
You should see the following output:

The final result is: 110

[Clue: Notice that task1 updates the initial value to 11, but task2 further

sets it as 11*10=110. The Wait statement was placed to preserve the order

of evaluation.]

�E6.2
You should see the following output:

Thanks God! What a beautiful day!

�E6.3
Here is the output:

Hello reader!
There is a problem.

Author's note: This output is predictable. Why? You’ll always see the error

message "There is a problem" after the line "Hello reader!". The

online link https://learn.microsoft.com/en-us/previous-versions/
msp-n-p/ff963549(v=pandp.10)?redirectedfrom=MSDN confirms that by

saying the following:

Any exceptions that occur during the execution of Parallel.
Invoke are deferred and rethrown when all tasks finish. All
exceptions are rethrown as inner exceptions of an
AggregateException instance.

Chapter 6 Bonus

https://learn.microsoft.com/en-us/previous-versions/msp-n-p/ff963549(v=pandp.10)?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/previous-versions/msp-n-p/ff963549(v=pandp.10)?redirectedfrom=MSDN

157© Vaskaran Sarcar 2025
V. Sarcar, Task Programming in C# and .NET, Apress Pocket Guides,
https://doi.org/10.1007/979-8-8688-1279-8

�APPENDIX A

What’s Next?
Task programming is the foundation of modern-day asynchronous

programming. I hope that after completing this book, you get a fair idea

about it. Now I suggest you read the related topics from other books,

articles, or blogs. Most importantly, you should keep experimenting with

new code and learn more. We all know that practice makes a man perfect.

The next step is exercising async and await keywords in your program.

A dedicated pocketbook in this series will cover that topic. You may note

that I wrote a book on parallel programming (Parallel Programming with

C# and .NET (Apress, 2024)) which covers that topic as well. If you like

this book, you may want to learn more about asynchronous and parallel

programming from that book.

I always keep coding, practicing programs, and learning from others.

This is why in the following recommended list, you will see a few more

books, courses, and articles from which I got many new insights. I believe

that they will be equally effective for you. You can learn more from these

materials (or their updated editions) as well.

�Books
Here is my recommended list of books:

•	 C# 12 in a Nutshell by Joseph Albahari (O’Reilly Media,

first edition, December 2023)

https://doi.org/10.1007/979-8-8688-1279-8#DOI

158

•	 Pro .NET 4 Parallel Programming in C# by Adam

Freeman (Apress, first edition May 2010)

•	 Parallel Programming with C# and .NET (Apress, first

edition, September 2024)

In this list of books, the first one is my favorite. The second one is quite

old but still helpful. I’d also like to add that I have learned many things

from Stephen Cleary's blogs/articles. However, I have not read his book on

this topic yet. If interested, you may look at the following one as well:

•	 Concurrency in C# Cookbook: Asynchronous, Parallel,

and Multithreaded Programming (O'Reilly Media;

second edition (October 2019)

�Courses
The following list includes helpful online courses. These cover a wide

number of topics. At the time of this writing, none of them are free.

However, you may get a promotional discount occasionally on these

courses.

•	 https://www.udemy.com/course/parallel-dotnet/
learn/lecture/5645430#overview

•	 https://www.udemy.com/course/parallel-csharp/
learn/lecture/11126093#overview

�Other Resources
In each chapter, you have seen various online resources in the discussions

and the “Q&A Sessions.” You can have a detailed look at those resources to

learn more about them.

Appendix A What’s Next?

https://www.udemy.com/course/parallel-dotnet/learn/lecture/5645430#overview
https://www.udemy.com/course/parallel-dotnet/learn/lecture/5645430#overview
https://www.udemy.com/course/parallel-csharp/learn/lecture/11126093#overview
https://www.udemy.com/course/parallel-csharp/learn/lecture/11126093#overview

159© Vaskaran Sarcar 2025
V. Sarcar, Task Programming in C# and .NET, Apress Pocket Guides,
https://doi.org/10.1007/979-8-8688-1279-8

�APPENDIX B

Other Books
by the Author
The following list includes other Apress books by the author:

•	 Parallel Programming with C# and .NET (Apress, 2024)

•	 Introducing Functional Programming Using C#

(Apress, 2023)

•	 Simple and Efficient Programming in C# Second Edition

(Apress, 2022)

•	 Test Your Skills in C# Programming (Apress, 2022)

•	 Java Design Patterns Third Edition (Apress, 2022)

•	 Simple and Efficient Programming in C# (Apress, 2021)

•	 Design Patterns in C# Second Edition (Apress, 2020)

•	 Getting Started with Advanced C# (Apress, 2020)

•	 Interactive Object-Oriented Programming in Java

Second Edition (Apress, 2019)

•	 Java Design Patterns Second Edition (Apress, 2019)

https://doi.org/10.1007/979-8-8688-1279-8#DOI

160

•	 Design Patterns in C# (Apress, 2018)

•	 Interactive C# (Apress, 2017)

•	 Interactive Object-Oriented Programming in Java

(Apress, 2016)

•	 Java Design Patterns (Apress, 2016)

The following list includes his non-Apress books:

•	 Python Bookcamp (Amazon, 2021)

•	 Operating System: Computer Science Interview Series

(Createspace, 2014)

To learn more about these books, you can refer to any of the

following links:

•	 https://amazon.com/author/vaskaran_sarcar

•	 https://link.springer.com/search?newsearch=true
&query=vaskaran+sarcar&content-type=book&dateFr
om=&dateTo=&sortBy=newestFirst

Appendix B Other Books by the Author

https://amazon.com/author/vaskaran_sarcar
https://link.springer.com/search?newsearch=true&query=vaskaran+sarcar&content-type=book&dateFrom=&dateTo=&sortBy=newestFirst
https://link.springer.com/search?newsearch=true&query=vaskaran+sarcar&content-type=book&dateFrom=&dateTo=&sortBy=newestFirst
https://link.springer.com/search?newsearch=true&query=vaskaran+sarcar&content-type=book&dateFrom=&dateTo=&sortBy=newestFirst

161© Vaskaran Sarcar 2025
V. Sarcar, Task Programming in C# and .NET, Apress Pocket Guides,
https://doi.org/10.1007/979-8-8688-1279-8

Index

A, B
AggregateException, 75

demonstration, 76, 77
Q&A session, 78, 79

Asynchronous programming,
1, 24, 29

description, 2
modern-day computers, 2
patterns, 4, 5
Q&A session, 3, 4
recommended pattern, 5
scenarios, 2, 3

AsyncResult pattern, 5
Attached nested task, 60–61

C
Caching mechanism, 144

analysis, 146
demonstration, 145
Q&A session, 146

Callback methods, 4
Cancellations of tasks, 33, 116, See

also Task cancellation
OperationCanceledException

(CancellationToken),
111, 112

prerequisites, 100–102

requests, 99
shortening the code, 108–110
user-initiated, 102–106

CancellationToken, 32, 100, 110,
128, 131

CancellationTokenSource, 100,
102, 110, 128, 131

Collection expressions, 50
Conditional continuation tasks

analysis, 51
ContinueWhenAll method, 49
demonstration, 47, 48, 50
output, 48, 51
TaskContinuationOptions, 46–48

Continuation tasks, 41, 42
conditional continuations,

45–52
simple continuation, 42–45

ContinueWhenAll method, 49, 51
ContinueWhenAny method, 51, 52
CPU-bound needs, 3
CreateLinkedTokenSource

method, 120, 121

D
Data parallelism, 138, 142
Delay method, 28–30, 40

https://doi.org/10.1007/979-8-8688-1279-8#DOI

162

Detached nested task
demonstration, 58, 59
Q&A session, 60

Dual-core machine, 4

E
Encapsulating code

demonstration 1, 15, 16
Q&A session, 17, 18
sample output, 17

Event-based asynchrony, 5
Exception handling

demonstration, 74
in single location, 80–85
strategies, 79
task programming, 73

F, G, H
Fine-grained parallelism, 8
Forcing parent task, 61

demonstration, 62, 63
Functional programming

(FP), 1, 79

I, J, K
InsufficientMemory

Exception, 85, 86
InvokeTasks method,

86, 88
I/O bound needs, 3
IProgress, 135

L
Lambda expression, 15–18, 39

M
Multiple cancellation tokens, 120

demonstration, 121–123
output, 123, 124

Multiple locations
code fragment, 85
demonstration, 86–89
Q&A session, 89

N
Nested tasks, 58–65
.NET Framework classes, 34
NotOnFaulted option, 47

O
Object-oriented programming

(OOP), 1, 79
OperationCanceledException

(CancellationToken),
111, 112

orderTask, 43, 49

P, Q
Parallel.Invoke, 139

demonstration, 139
output, 140

Parallel programming, 1, 3, 4, 157

INDEX

163

Passing values, 18–22
demonstration, 23
Q&A session, 24, 25

Patterns, 1, 4, 5, 139
Pre-computed tasks, 142

analysis, 144
demonstration, 142, 143
time-consuming method, 142

Programmatic control, 8
Progress reporting, 133

analysis, 134–137
demonstration, 133, 134, 137, 138
Q&A session, 140–142
suggestions, 140
time-consuming, 133

public Task, 101
public Task StartNew, 101

R
RanToCompletion, 53, 107, 129
ReadKey(), 30, 71
ReadLine(), 30, 71
Returning values, 22

demonstration, 23
output, 23
Q&A session, 24, 25

Run method queues, 17

S
Simple continuation tasks

activity, 42
analysis, 45

demonstration, 43
Single location handling

alternative approach, 81–83
demonstration, 80, 81
multiple locations, 85–88
Q&A session, 83–85

Sleep method, 28, 29, 38
Soft exit mechanism, 102
SpinUntil method, 34
StartNew method, 17, 101
System.Threading, 5
System.Threading.Tasks, 5, 6, 17

T
Task-based asynchronous

pattern, 5
Task cancellation

multiple cancellation tokens,
120, 121

using register, 116
using WaitHandle.

WaitOne, 117–120
TaskCompletionSource, 146

demonstration, 149
Q&A session, 151, 152

Task constructor, 14, 20, 100
TaskContinuationOptions

enumeration, 46–48
Task creation

calling thread, 25–27
Cancellations, 33
creation and execution, 13, 14
Delay method, 28–30

INDEX

164

encapsulating code, 15–18
passing and returning

values, 18–25
Q&A session, 33–35
sleep approach, 27, 28
WaitAll method, 31
WaitAny, 31, 32
Wait method, 31
WhenAny, 32, 33

Task.CurrentId, 52
Task.Factory.StartNew

method, 14, 58
Task.FromResult method, 144
Task identification

analysis, 55–57
demonstration, 54, 55
detached, 58–60
ID, 52
Q&A session, 57
task instance, 53

Task Parallel Library (TPL), 138
high-performance code, 6
public types, 5
Q&A session, 8
scenarios, 6, 7

Task programming, 1, 5, 99,
133, 157

Task.Run method, 14, 58, 61
TaskStatus, 52, 54

TaskStatus.RanToCompletion, 105
ThreadPool class, 4, 6
ThrowIfCancellationRequested

method, 106, 108
Timeout cancellation, 115, 116

U
Unwrapping nested tasks, 63–65
User-initiated cancellations

alternative approaches, 106, 107
initial approach, 102
Q&A session, 105, 106

V
validateUserTask, 75, 86
validateUserTask.Wait(), 77
Visual Studio, 1, 17, 74, 135, 147
The Visual Studio Magazine, 4
Visual Studio user, 74

W, X, Y, Z
WaitAll method, 31, 96
WaitAny method, 31, 32, 35, 38
WaitHandle.WaitOne

method, 117–118
demonstration, 118, 119

Wait method, 24, 31–34
WhenAny method, 32, 33, 35, 38

Task creation (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Asynchronous Programming and Tasks
	Understanding Asynchronous Operations
	How Does It Help?
	Useful Scenarios
	Q&A Session

	Programming Patterns
	Recommended Pattern

	Task Parallel Library (TPL)
	How Does TPL Help?

	Introducing Tasks
	Useful Scenarios
	Q&A Session

	Summary
	Exercises
	Solutions to Exercises
	E1.1
	E1.2

	Chapter 2: Task Creation and Execution
	Creating and Executing a Task
	Encapsulating Code Using Lambda Expression
	Demonstration 1
	Output
	Q&A Session

	Passing and Returning Values
	Passing Values into Tasks
	Returning Values from Tasks
	Demonstration 2
	Output
	Q&A Session
	Understanding the Problem in Demonstration 2
	Q&A Session

	Discussion on Waiting
	Why Do We Wait?
	Demonstration 3
	Output
	Analysis

	How Do We Wait?
	Using Sleep
	Using Delay
	Using ReadKey() or ReadLine()
	Using Wait
	Using WaitAll
	Using WaitAny
	Using WhenAny
	Waiting For Cancellation
	Q&A Session

	Summary
	Exercises
	Solutions to Exercises
	E2.1
	E2.2
	E2.3
	E2.4
	E2.5

	Chapter 3: Continuation and Nested Tasks
	Continuation Tasks
	Simple Continuation
	Demonstration 1
	Output
	Analysis

	Conditional Continuations
	Case Study 1
	Demonstration 2
	Output
	Case Study 2
	Demonstration 3
	Output
	Analysis
	Case Study 3

	Identifying a Task and Its Status
	Demonstration 4
	Output
	Analysis
	Q&A Session

	Nested Tasks
	Detached Nested Task
	Demonstration 5
	Output
	Q&A Session

	Attached Nested Task
	Q&A Session

	Forcing Parent Task to Wait
	Demonstration 6
	Output

	Unwrapping Nested Tasks
	Special Note

	Summary
	Exercises
	Solutions to Exercises
	E3.1
	E3.2
	E3.3
	E3.4
	E3.5

	Chapter 4: Exception Handling
	Understanding the Challenge
	The Program That Does Not Show Exceptions
	Demonstration 1
	Output

	Introducing AggregateException
	Demonstration 2
	Output
	Q&A Session

	Strategies to Tackle Exceptions
	Handling Exceptions in Single Location
	Demonstration 3
	Output
	Alternative Approach-1
	Alternative Approach-2
	Q&A Session

	Handling Exceptions in Multiple Locations
	Demonstration 4
	Output
	Q&A Session

	Summary
	Exercises
	Solutions to Exercises
	E4.1
	E4.2
	E4.3
	E4.4
	E4.5

	Chapter 5: Managing Cancellations
	Prerequisites
	User-Initiated Cancellations
	Initial Approach
	Demonstration 1
	Output
	Q&A Session

	Alternative Approaches
	Demonstration 2
	Output

	Shortening The Code
	Q&A Session

	Additional Case Studies
	Case Study 1: Changing the Task Definition
	Q&A Session
	Case Study 2: Changing the Caller
	Q&A Session

	Timeout Cancellation
	Monitoring Task Cancellation
	Using Register
	Using WaitHandle.WaitOne
	Demonstration 3
	Output

	Using Multiple Cancellation Tokens
	Demonstration 4
	Output

	Summary
	Exercises
	Solutions to Exercises
	E5.1
	E5.2
	E5.3
	E5.4
	E5.5

	Chapter 6: Bonus
	Progress Reporting
	Understanding the Need
	Demonstration 1
	Output
	Analysis
	Demonstration 2
	Output

	Creating and Running Tasks Implicitly
	Using Parallel.Invoke
	Demonstration 3
	Output
	Additional Suggestions
	Q&A Session

	Precomputed Tasks
	Without Caching
	Demonstration 4
	Output
	Analysis

	Applying Caching Mechanism
	Demonstration 5
	Output
	Analysis
	Q&A Session

	Using TaskCompletionSource
	How to Use?
	Demonstration 6
	Output
	Q&A Session

	Summary
	Exercises
	Solutions to Exercises
	E6.1
	E6.2
	E6.3

	Appendix A: What’s Next?
	Books
	Courses
	Other Resources

	Appendix B: Other Books by the Author
	Index

