

Practical Serverless and
Microservices with C#

Build resilient and secure microservices with the .NET stack and
embrace serverless development in Azure

Gabriel Baptista

Francesco Abbruzzese

Practical Serverless and Microservices with C#

Copyright © 2025 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in

any form or by any means, without the prior written permission of the publisher, except in the case of brief

quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information

presented. However, the information contained in this book is sold without warranty, either express or

implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any

damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products

mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee

the accuracy of this information.

Portfolio Director: Ashwin Nair

Relationship Lead: Nitin Nainani

Project Manager: Ruvika Rao

Content Engineer: Kinnari Chohan

Technical Editor: Sweety Pagaria

Copy Editor: Safis Editing
Indexer: Pratik Shirodkar

Proofreader: Kinnari Chohan

Production Designer: Vijay Kamble

Growth Lead: Anamika Singh

First published: June 2025

Production reference: 1260525

Published by Packt Publishing Ltd.

Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.

ISBN 978-1-83664-201-5

www.packtpub.com

http://www.packtpub.com

Contributors

About the authors
Gabriel Baptista is a seasoned technology professional with over two decades of experience in

software development and team leadership. He currently leads a team focused on building appli-

cation software for retail and industry. In parallel, he serves as a member of a technical advisory

board, teaches computer engineering at the undergraduate level, and has co-founded technology

start-ups in the fields of industrial automation and intelligent logistics. Throughout his career,
he has contributed extensively to academia, teaching subjects related to software engineering

and information technology at various educational institutions.

To my beloved family - Denise, Murilo, and Heitor - who are always by my side.

To my colleagues at Toledo do Brasil, especially Aecio Carvalho, whose support and example have been a

source of inspiration over the years.

Francesco Abbruzzese is the author of the MVC Controls Toolkit and Blazor Controls Toolkit
libraries. He has contributed to the diffusion and evangelization of the Microsoft web stack since
the first version of ASP.NET MVC. His company, Mvcct Team, offers web applications, tools, and
services for web technologies. He moved from AI systems, where he implemented one of the first
decision support systems for financial institutions, to top-10 video game titles such as Puma
Street Soccer.

To my beloved parents to whom I owe everything. To all colleagues that shared various projects with me, and

that contributed to the success of my company products. Their examples and suggestions were fundamental

for the development of this book. To all reviewers and to the entire Packt team whose suggestions improved

the book quality noticeably.

About the reviewer
Moien Tajik is a Principal Software Engineer with deep expertise in .NET, C#, and cloud-na-

tive architectures. With over 9 years of professional experience, he has led the development of

scalable software systems for both enterprise and consumer-facing applications. He currently

works at AIHR in the Netherlands and previously served as a Technical Fellow at Alibaba Travels,
one of Iran’s largest tech companies. He frequently mentors other engineers and enjoys contrib-

uting to open source and personal projects. When he’s not coding, he explores new technolo-

gies, builds start-ups like MenuDish, and shares his learnings with the tech community on the

@ProgrammingTip Telegram channel. You can connect with him on GitHub, LinkedIn, and
Twitter: @MoienTajik.

Tomasz Pęczek is a seasoned staff+ engineer dedicated to crafting solutions that power com-

panies across various sectors, including healthcare, banking, e-learning, and e-discovery.

Throughout his career, Tomasz has transitioned between developer, architect, and con-

sultant roles. Over the past few years, his primary focus has been on leveraging Azure to fa-

cilitate cloud adoption and building solutions tailored to meet the true needs of his clients.

Tomasz participates in the community through speaking engagements at conferences and user
groups. Additionally, he shares technical articles on his blog at tpeczek.com. His commitment to
sharing his knowledge has earned him a Microsoft MVP title in the Azure and Developer Tech-

nologies categories.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/PSMCSharp

https://packt.link/PSMCSharp

Table of Contents

Preface xvii

Chapter 1: Demystifying Serverless Applications 1

Technical requirements �� 2

What is serverless? �� 2

Is serverless a way to deliver microservices? ��� 3

How does Microsoft Azure present serverless? �� 3

Creating your first serverless app in Azure �� 5

Understanding the triggers available in Azure Functions �� 9

Coding with Azure Functions �� 10

Coding Azure functions using VS Code �� 10

Coding Azure functions using Visual Studio ��� 18

Summary �� 22

Questions �� 22

Further reading ��� 23

Chapter 2: Demystifying Microservices Applications 25

The rise of Service-Oriented Architectures (SOAs) and microservices ������������������������������� 26

The rise of SOA • 26

Toward microservices architectures • 27

Table of Contentsviii

The definition and organization of microservices architectures ��������������������������������������� 30

A definition of microservices architectures • 30

Domain of expertise and microservices • 31

Replicable microservices • 32

Splitting microservices development among different teams • 32

Microservices, interfaces, and communication protocols • 32

Just the interfaces of the logical microservices are public • 33

Microservices organization • 33

Car-sharing example • 39

When is it worth adopting microservices architectures? ��� 40

Microservices common patterns ��� 42

Resilient task execution • 42

Efficacious handling of asynchronous communication • 44

Event-based communications • 46

Interfacing the external world • 47

Summary �� 49

Questions �� 49

Further reading ��� 50

Chapter 3: Setup and Theory: Docker and Onion Architecture 53

Technical requirements �� 54

The Onion Architecture ��� 55

The Domain layer • 57

Application services • 63

Queries • 63

Commands • 64

Domain events • 67

A solution template based on the Onion Architecture ��� 70

Matching aggregates and ORM entities • 77

A complete solution based on the Onion Architecture • 80

Table of Contents ix

Containers and Docker ��� 84

Docker Desktop: a simple example • 89

A few more Docker commands and options • 92

Visual Studio support for Docker • 94

Summary �� 97

Questions �� 97

Further reading ��� 98

Chapter 4: Azure Functions and Triggers Available 99

Technical requirements �� 99

HTTP trigger ��� 100

Advantages, disadvantages, and when to use the HTTP trigger �������������������������������������� 100

Car-sharing HTTP trigger example • 102

Advantages, disadvantages, and when to use the Azure SQL trigger ������������������������������� 103

Car-sharing SQL trigger example • 103

Advantages, disadvantages, and when to use the Cosmos DB trigger ������������������������������ 106

Car-sharing Cosmos DB trigger example • 107

Azure Service Bus trigger �� 111

Comparison with the Kafka trigger and the RabbitMQ trigger • 112

Car-sharing example with the Azure Service Bus trigger • 112

Summary ��� 114

Questions ��� 115

Further reading �� 117

Chapter 5: Background Functions in Practice 119

Technical requirements ��� 119

Timer trigger �� 120

Publishing your functions �� 122

Table of Contentsx

Monitoring your functions ��� 127

Advantages, disadvantages, and when to use Azure timer triggers • 129

Car-sharing timer trigger example • 129

Blob trigger �� 131

Advantages, disadvantages, and when to use Blob storage triggers • 132

Blob trigger implementation using Event Grid �� 133

Car-sharing Blob storage trigger example • 138

Queue storage trigger �� 140

Advantages, disadvantages, and when to use queue storage triggers • 140

Car-sharing queue storage trigger example • 141

Summary ��� 143

Questions ��� 143

Further reading �� 145

Chapter 6: IoT Functions in Practice 147

Technical requirements ��� 147

Enabling IoT in Azure �� 147

Connecting IoT Hub with Azure Functions �� 153

Car-sharing IoT example ��� 156

Summary ��� 163

Questions �� 164

Further reading ��� 166

Chapter 7: Microservices in Practice 167

Technical requirements �� 168

The route-planning microservice of the car-sharing application ����������������������������������� 168

Microservice specifications • 169

Handling security and authorization • 170

Creating the Visual Studio solution • 172

Table of Contents xi

Microservice basic design �� 174

The message broker: RabbitMQ • 174

Input communication • 177

Output communication • 182

Ensuring that messages are processed in the proper order • 184

Designing Docker image environment parameters • 186

The microservice main service • 189

EasyNetQ’s RPC facilities • 195

Other required hosted services • 196

Ensuring resilient task execution with Polly �� 201

The Polly library • 201

Adding Polly to our project • 203

From abstraction to implementation details �� 204

The domain layer • 204

The route request aggregate • 206

The route offer aggregate • 208

The output queue item aggregate • 211

The database driver • 212

The IOutputQueueRepository implementation • 214

The IRouteRequestRepositoryimplementation • 216

The IRouteOfferRepository implementation • 219

Creating migrations and databases • 220

The application services: Defining all command and event handlers • 222

Coding all event handlers • 229

Summary ��� 231

Questions �� 232

Further reading ��� 233

Table of Contentsxii

Chapter 8: Practical Microservices Organization with Kubernetes 235

Technical requirements �� 236

Introduction to orchestrators and their configuration �� 237

.yaml files • 238

Kubernetes basics ��� 240

Interacting with Kubernetes: Kubectl, Minikube, and AKS ��� 243

Creating an Azure Kubernetes cluster • 246

Configuring your application in Kubernetes ��� 249

Dynamic provisioning of permanent disk space • 257

ReplicaSets, Deployments, and their services • 261

StatefulSets and Headless Services • 268

Scaling and autoscaling • 272

Resource metrics • 274

Pod metrics • 275

Object metrics • 275

Running your microservices on Kubernetes �� 276

Organizing all deployment environments • 277

Database engine and database installation • 278

Container registries • 279

Message broker installation • 281

Debugging techniques • 283

Testing the route-matching worker microservice • 286

Advanced Kubernetes configuration ��� 297

Secrets • 297

Readiness, liveness, and startup probes • 300

Ingresses • 302

Testing Ingresses with Minikube • 306

Using an NGNIX-based Ingress in AKS • 308

Table of Contents xiii

Summary �� 310

Questions ��� 310

Further reading �� 311

Chapter 9: Simplifying Containers and Kubernetes: Azure Container Apps,

and Othert Tools 313

Technical requirements ��� 314

Tools for simplifying Kubernetes clusters usage and administration ������������������������������� 315

Helm and Helm charts • 315

Kubernetes graphic UIs • 318

Kubernetes administrative tools • 321

Development environments based on Kubernetes • 326

Azure Container Apps basics and plans ��� 326

Consumption-only and workload profiles • 329

Application versioning • 330

Interacting with Azure Container Apps • 332

Deploying your microservice application with Azure Container Apps ���������������������������� 332

Basic commands and operativity • 332

Application configuration options and the .yaml format • 338

Container configuration • 341

The ingress configuration • 342

Volume definition and allocation • 345

Associating an Azure identity to your application • 347

Summary �� 349

Questions �� 349

Further reading ��� 350

Table of Contentsxiv

Chapter 10: Security and Observability for Serverless and Microservices

Applications 353

Application Security Best Practices ��� 354

Network Security • 354

Data Security • 355

Authentication and Authorization • 357

JSON Web Tokens • 357

OAuth 2.0 and OpenID Connect (OIDC) • 361

Securing Dependencies • 365

Kubernetes and Azure Container Apps Security �� 366

Kubernetes network security • 366

Azure Container Apps Network Security • 372

Kubernetes User Security • 372

Azure Container Apps User Security • 378

Threat Detection and Mitigation �� 378

Threats • 378

Event Injection • 378

Privilege Escalation • 379

Denial of Service (DoS) Attacks • 379

Man-in-the-Middle (MitM) Attacks • 379

Code Injection • 380

Detection and Mitigation with Web Application Firewalls • 380

Observability for Serverless and Microservices ��� 382

Logging • 382

Metrics • 383

Tracing • 384

Centralized Observability with Azure Monitor • 385

Summary ��� 387

Questions �� 388

Further reading ��� 392

Table of Contents xv

Chapter 11: The Car Sharing App 395

General architecture description ��� 395

Microservices involved • 396

Authorization microservice • 397

CarSharer microservice • 397

CarRequests microservice • 398

RoutesPlanning microservice • 398

Email microservice • 398

The demonstration code ��� 399

Summary �� 401

Further reading ��� 401

Chapter 12: Simplifying Microservices with .NET Aspire 403

Technical requirements ��� 404

�NET Aspire features and services ��� 404

Service discovery and its role in .NET Aspire. • 408

Resource integration and automatic resource configuration • 412

Application telemetry • 415

Configuring microservices and resources �� 416

Azure Functions integration • 419

Using �NET Aspire in practice ��� 421

RabbitMQ integration • 427

Deploying a �NET Aspire project �� 428

Summary �� 430

Questions �� 430

Further reading �� 431

Other Books You May Enjoy 435

Index 439

Preface

When we started writing this book, our main goal was to deliver hands-on experience on the main

approach for developing cloud-native solutions: distributed applications. We decided to describe

various options to build microservices architecture, which span from serverless implementation

to Kubernetes orchestration.

Since our main technical background is .NET and Azure, we decided to focus on these, bringing
an opportunity for developers to understand how and when serverless and microservices are the

best ways to rapidly and consistently create enterprise solutions, thus enabling .NET developers
to perform a career jump by entering the world of modern cloud-native and distributed applica-

tions. With this book, you will do the following:

• Learn how to create serverless environments for developing and debugging in Azure

• Implement reliable microservices communication and computation

• Optimize microservices applications with the help of orchestrators such as Kubernetes

• Explore Azure Functions in depth along with triggers for IoT and background activities

• Use Azure Container Apps to simplify creating and managing containers

• Learn how to properly secure a microservices application

• Take costs and usage limits seriously and calculate them in the correct way

We believe that by reading this book, you will find great tips and practical examples that will help
you write your own applications. We hope this focused material can leverage your knowledge

about this important software development subject.

Who this book is for
This book is for engineers and senior software developers aspiring to move toward modern cloud
development and distributed applications, evolving their knowledge about microservices and

serverless to get the best out of these architectural models.

Prefacexviii

What this book covers
Chapter 1, Demystifying Serverless Applications, introduces serverless applications, discussing the

advantages and disadvantages and the underlying theory.

Chapter 2, Demystifying Microservices Applications, introduces microservices applications, discussing

their advantages and disadvantages, basic principles, definitions, and design techniques.

Chapter 3, Setup and Theory: Docker and Onion Architecture, describes prerequisite technologies,

such as Docker and Onion architecture, to implement modern distributed applications.

Chapter 4, Azure Functions and Triggers Available, discusses the possible settings related to Azure
Functions and the triggers available for creating serverless applications.

Chapter 5, Background Functions in Practice, implements Azure Functions triggers that enable
background processing. Timer, Blob, and Queue triggers are detailed, with their advantages,
disadvantages, and opportunities to use.

Chapter 6, IoT Functions in Practice, discusses the importance of Azure Functions for IoT solutions.

Chapter 7, Microservices in Practice, describes the implementation of a microservice with .NET in
detail.

Chapter 8, Practical Microservices Organization with Kubernetes, describes Kubernetes in detail and

how to use it to orchestrate your microservices applications.

Chapter 9, Simplifying Containers and Kubernetes: Azure Container Apps and Other Tools, describes

tools that simplify the usage of Kubernetes, and introduces Azure Container Apps as a simplified
option for microservices orchestration, discussing its costs, advantages, and disadvantages.

Chapter 10, Security and Observability for Serverless and Microservices Applications, discusses secu-

rity and observability for microservice scenarios, presenting the main options and techniques

available for these two important aspects of modern software development.

Chapter 11, The Car Sharing App, presents the sample application of the book, using both server-

less and microservices applications for understanding how an event-driven application works.

Chapter 12, Simplifying Microservices with .NET Aspire, describes Microsoft Aspire as a good option

for testing microservices during their development.

Preface xix

To get the most out of this book
Prior experience with C#/.NET and the Microsoft stack (Entity Framework and ASP.NET Core) is
required to get the most out of this book.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/
Practical-Serverless-and-Microservices-with-Csharp. We also have other code bundles

from our rich catalog of books and videos available at https://github.com/PacktPublishing.

Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book.
You can download it here: https://packt.link/gbp/9781836642015.

Conventions used
There are several text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and X/Twitter handles. For example: “Execute
the docker build command.”

A block of code is set as follows:

public class TownBasicInfoMessage

{

 public Guid Id { get; set; }

 public string? Name { get; set; }

 public GeoLocalizationMessage? Location { get; set; }

}

When we wish to draw your attention to a particular part of a code block, the relevant lines or

items are set in bold:

FROM eclipse-temurin:11

COPY . /var/www/java

WORKDIR /var/www/java

RUN javac Hello.java

CMD ["java", "Hello"]

https://github.com/PacktPublishing/Practical-Serverless-and-Microservices-with-Csharp
https://github.com/PacktPublishing/Practical-Serverless-and-Microservices-with-Csharp
https://github.com/PacktPublishing
https://packt.link/gbp/9781836642015

Prefacexx

Any command-line input or output is written as follows:

docker run --name myfirstcontainer simpleexample

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,

words on menus or dialog boxes appear in the text like this. For example: “Select System info

from the Administration panel.”

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of

your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you have found a mistake in this book, we would be grateful if you reported this to us.

Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would

be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit http://authors.packtpub.

com/.

 Warnings or important notes appear like this.

 Tips and tricks appear like this.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
http://authors.packtpub.com/

Preface xxi

Share your thoughts
Now you’ve finished Practical Serverless and Microservices with C#, we’d love to hear your

thoughts! If you purchased the book from Amazon, please click here to go straight to the Am-

azon review page for this book and share your feedback or leave a review on the site that you

purchased it from.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

https://packt.link/r/1836642016
https://packt.link/r/1836642016

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free
content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781836642015

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781836642015

1
Demystifying Serverless
Applications

When it comes to software development, we are living in incredible times. With the evolution

of cloud platforms and the rise of modern technologies, being a developer nowadays is both a

wonderful way to live and a challenging profession to follow. There are so many ways to deliver
an application and so many innovative technologies to explore that we may fall into a vicious

circle where we focus more on the technologies rather than the actual solution.

This chapter aims to present the serverless architecture and explore how you can use this ap-

proach to implement a microservices application. To achieve this, it covers the theory behind
serverless and provides an understanding of how it can be a viable alternative for microservices

implementation.

The chapter also explores how Microsoft implements Function as a Service (FaaS), using Azure
Functions as one of the options for building microservices. Two alternative development plat-

forms will be presented: Visual Studio Code and Visual Studio.

By the end of this chapter, you will understand the different triggers available in Azure Functions
and be ready to create your first function.

Demystifying Serverless Applications2

Technical requirements
This chapter requires Visual Studio 2022 free Community edition or Visual Studio Code. During

the chapter, the details about how to debug Azure Functions for each development environment
will be presented in the topics. You will also need an Azure account to create the sample environ-

ment. You can find the sample code for this chapter at https://github.com/PacktPublishing/
Practical-Serverless-and-Microservices-with-Csharp.

What is serverless?
When someone asks you to develop a solution, the last thing they usually care about is how the

infrastructure will work. The truth is, even for developers, the most important thing about in-

frastructure is that it simply works well.

Considering this reality, the possibility of having a cloud provider that dynamically manages

server allocation and provisioning, leaving the underlying infrastructure to the provider, might

be the best scenario.

That is what serverless architecture promises: a model we can use to build and run applications
and services without having to manage the underlying infrastructure ourselves! This approach
abstracts server management entirely, allowing developers to focus on their code.

The first cloud solution provider that presented this concept was Amazon, with the launch of
AWS Lambda in 2014. After that, Microsoft and Google also provided similar solutions with Mi-

crosoft Azure Functions and Google Cloud Functions. As we mentioned before, the focus of this
book will be Azure Functions.

There are many advantages that we can consider for using serverless computing. The fact that
you do not have to worry about scaling can be considered the main one. Additionally, the cloud

solution provider maintains the reliability and security of the environment. Besides that, with

this approach, you have the option to pay as you go, so you only pay for what you use, enabling

a sustainable model of growth.

Serverless can also be considered a good approach for accelerating software development since

you only focus on the code needed to deliver that program. On the other hand, you may have

difficulty overseeing a considerable number of functions, so this organization needs to be well
handed to not cause problems while creating a solution with many functions.

https://github.com/PacktPublishing/Practical-Serverless-and-Microservices-with-Csharp
https://github.com/PacktPublishing/Practical-Serverless-and-Microservices-with-Csharp

Chapter 1 3

Since the introduction of serverless, various kinds of functions have been created. These functions
act as triggers that are used to start processing. As soon as the function is triggered, the execution

can be done in different programming languages.

Now, let us check whether functions can be considered microservices or not.

Is serverless a way to deliver microservices?
If you look at the definition of microservices, you will find the concept of delivering an applica-

tion as loosely coupled components that represent the implementation of a business capability.

You can build something like that with a couple of functions, so yes, serverless is a way to deliver
microservices.

Some specialists even consider serverless architecture an evolution of microservices, since the

focus of serverless architecture is to deliver scalability in a safe environment, enabling the pos-

sibility of a set of functions to independently be developed, tested, and deployed, which brings a

lot of flexibility to the software architecture. That is exactly the main philosophy of microservices.

Let us imagine, as an example, a microservice responsible for authenticating users. You may create

specific functions for registering, logging, and resetting passwords. Considering that this set of
functions can be created in a single serverless project, you have both the flexibility of creating
separated functions and the possibility of defining the purpose of the microservice.

The serverless project will naturally support integration with databases, messaging queues,
OpenAPI specifications, and other APIs, enabling the design patterns typically needed for a ro-

bust microservice architecture. It is also important to mention that keeping microservices isolated,

small, and preferably reusable is a best practice worth following.

Now that you understand that you can write microservices using serverless approaches, let us

understand how Microsoft Azure presents serverless in its platform.

How does Microsoft Azure present serverless?
In 2016, Microsoft introduced Azure Functions as a Platform-as-a-Service (PaaS) offering designed
to deliver FaaS capabilities. This option enables innovation at a scale for business transforma-

tion. Today, Azure Functions gives us the opportunity to power up applications using multiple
programming languages, including C#, JavaScript, F#, Java, and Python.

Demystifying Serverless Applications4

One of the standout features of Azure Functions is its seamless integration with other Azure ser-

vices and third-party APIs. For instance, it can easily connect to different Azure databases (from
Azure SQL Server to Azure Cosmos DB), Azure Event Grid for event-based architecture, and Azure
Logic Apps for workflow automation. This connectivity simplifies the process of building complex,
enterprise-grade applications that leverage multiple services.

Over the years, the possibilities with Azure Functions have evolved. Today, we can even manage
stateful workflows and long-running operations, using Azure Durable Functions. With this, you
can orchestrate complex processes that can be executed in multiple function executions.

But Microsoft has not only created an environment for coding functions. They have also created a
complete pipeline for developers, following the DevSecOps process that’s now widely discussed

and used in enterprise solutions. Developers can use tools such as Azure Pipelines, GitHub Ac-

tions, and other CI/CD services to automate the deployment process. You can also monitor and
diagnose events in these functions using Azure Monitor and Application Insights, which facilitate
troubleshooting and optimization.

The PaaS solution also enables different setups to adjust scalability and security aspects. De-

pending on the hosting plan you decide to set, you can have different scaling opportunities, as

you can check here:

• Consumption plan: The basic and most cost-effective option to get started with Azure
Functions. Ideal for event-driven workloads with automatic scaling.

• Flex Consumption plan: Offers rapid, elastic scaling combined with support for private

networking (VNet integration).

• Dedicated plan (App Service plan): Suitable for long-running functions and scenarios
requiring more predictable performance and resource allocation.

• Azure Container Apps plan: A solid choice for microservices-based architectures that use
multiple technology stacks or require greater flexibility.

• Premium plan: Designed for high-performance scenarios with the ability to scale on de-

mand, providing support for advanced features such as VNet, longer execution times, and

pre-warmed instances.

In summary, Microsoft Azure delivers serverless FaaS through Azure Functions, offering a powerful,
flexible, and scalable platform that enhances the development and deployment of serverless ap-

plications. By using Azure Functions, developers can build and maintain responsive, cost-effective
solutions. Now, let us explore how to create an Azure function in the Azure portal.

Chapter 1 5

Creating your first serverless app in Azure
There are not many steps for creating your first serverless app in Azure. You can do it in a straight-

forward process when using the Azure portal. Follow these steps to get started:

1. Log in to the Azure portal. To do so, open your web browser and navigate to the Azure
portal at https://portal.azure.com/. Sign in with your Azure account credentials.

2. In the Azure portal, click on the Create a resource button located in the upper-left corner.

Figure 1.1: Creating a resource in the Azure portal

3. In the Search services and marketplace window, search for Function App and select it

from the search results. This service will also be presented in the Popular Azure services

section.

4. Click the Create button to start the creation process.

 Figure 1.2: Selecting Function App for creation

https://portal.azure.com/

Demystifying Serverless Applications6

As soon as you select Function App, you will be prompted to select the required hosting

plan. Today, we have five options for hosting plans using Azure Functions. These plans
vary according to the scaling behavior, cold start, the possibility of usage of a virtual net-

work, and, obviously, pricing. The Consumption plan is exactly what serverless is all about,

where you have no idea of where and how your code is running, and you only pay for the

execution of the code. On the other hand, when you select the App Service or Container

Apps environment plans, you will have more control over the hardware and consumption

of resources, which means you get the flexibility of using Azure Functions in your solution,
along with the management needed for larger applications.

The following screen will be presented to you as soon as you select to create an Azure
function app. As we described previously, you will need to decide on the hosting plan

according to your needs.

Figure 1.3: Function App hosting plans

For the purpose of this chapter, we will select the Consumption plan. Once you select

this option, you will find a wizard to help you create the service. In this service, you will

need to fill in the following information:

Chapter 1 7

• Basics: Fill in the required fields such as Subscription, Resource Group, Function

App name, Region, and Operating System. Ensure that the name you choose is

unique. In Runtime stack, select the programming language of your functions.

We will select �NET 8 Isolated worker model, but there are other options, as we

presented before. It is worth mentioning that in-process models will be retired in

2026, so do not start projects using this approach.

• Storage: The function app needs an Azure storage account by default.

• Networking: This is where you will define whether the Azure function will be
available for public access or not.

• Monitoring: Enable Application Insights to monitor your Function App for better

diagnostics and performance tracking. Don’t forget that Azure Monitor logs will
cause a cost increase.

• Deployment: It is also possible to initiate the setup of the deployment desired for

the function app. This is interesting for enabling continuous deployment using
GitHub Actions as default.

• Tags: Tagging the function app is considered a good practice for facilitating FinOps

activity in professional environments.

Once you click on Review and create, you will be able to check all the settings. Review

your configuration and click the Create button again to deploy your function app:

In Chapter 2, Demystifying Microservices Applications, we will discuss the best

way to interface microservices with the external world. For security reasons,

it is not recommended that you provide functions directly to the public. You
may decide to deliver them using an application gateway, such as Azure
Application Gateway, or you can use Azure API Management as the entry
for the APIs you develop using Azure Functions.

Demystifying Serverless Applications8

Figure 1.4: Reviewing the function app setup

Once the deployment is complete, navigate to your new function app by clicking on the Go to

resource button. You will find the function app running properly there:

Chapter 1 9

Figure 1.5: Function app running

Now, it is time to understand the possibilities for development using Azure Functions and start
coding.

Understanding the triggers available in Azure
Functions
The basic idea of Azure Functions is that each function requires a trigger to start its execution.

Once the trigger is fired, the execution of your code will start shortly afterward. However, the time
it takes for execution to begin can vary depending on the selected hosting plan. For instance, in

the Consumption plan, functions may experience cold starts – that is, a delay that occurs when

the platform needs to initialize resources. It is also important to understand that the function
can trigger more than once at the same time, which enables execution in parallel.

Azure Functions offers a variety of triggers that allow developers to execute code in response to
different events. Here we have the most used triggers:

• HTTP Trigger: This trigger allows the function to be executed via an HTTP request. It is

useful for creating APIs and webhooks, where the function can be called using standard

HTTP methods.

Demystifying Serverless Applications10

• Timer Trigger: This trigger runs the function on a schedule based on the NCRONTAB
model. It is ideal for tasks that need to be performed at regular intervals, such as cleanup

operations, data processing, or sending out periodic reports. It is important to mention

that the same timer trigger function does not run again until its first execution is done.
This behavior helps prevent overlapping executions and potential conflicts.

• Blob Storage Trigger: This trigger runs the function when a new blob is created or updated

in an Azure Blob Storage container. It is useful for processing or transforming files, such
as images or logs, as they are uploaded.

• Queue Storage Trigger: This trigger runs the function in response to messages added to

Azure Queue Storage. It is useful for building scalable and reliable background processing
systems.

• Event Grid Trigger: This trigger runs the function in response to events published to Azure
Event Grid. It is useful for reacting to events from various Azure services, such as resource
creation, modification, or deletion.

• Service Bus Trigger: This trigger runs the function when messages are received in an
Azure Service Bus queue or topic. It is ideal for handling inter-application messaging and

building complex workflows.

• Cosmos DB Trigger: This trigger runs the function in response to creation and updates in

Azure Cosmos DB. It is useful for processing data changes in real time, such as updating

a search index or triggering additional data processing.

These triggers offer flexibility and scalability, allowing developers to build event-driven appli-
cations that can respond to distinct types of events seamlessly. It is important to say that there

are other triggers available in Azure Functions, and we will discuss them in more detail in the
next chapters.

Coding with Azure Functions
The focus of this topic is to rapidly present some ways to develop Azure functions. During the
other chapters of the book, we will present a use case related to car sharing. As you will see in

detail in Chapter 2, Demystifying Microservices Applications, each microservice must have a health

check endpoint. Let us develop a sample of this health check API.

Coding Azure functions using VS Code
Creating an HTTP trigger Azure function using VS Code involves several well-defined steps. Here
is a detailed guide to help you through the process.

Chapter 1 11

There are some prerequisites to enable the development of Azure functions using VS Code, as
follows:

• Ensure you have VS Code installed on your machine. The use of VS Code will help you
not only develop the Azure functions needed but also manage your Azure account using
the Azure Tools extension.

• It is recommended that you sign in to your Azure account to create the new function. The
C# Dev Kit may also be installed.

• The GitHub Copilot extension can also be installed to help you solve coding problems

and, at the same time, guide you while writing code.

• Install the Azure Functions extension for VS Code. This VS Code extension will facilitate

the development of functions, giving you wizards for each function trigger desired.

• Install the Azurite extension for VS Code. This VS Code extension is an open source Azure
Storage API-compatible server for debugging Azure Functions locally.

• Make sure you have the Azure Functions Core Tools, and the �NET SDK installed if you

are using C#.

Once you have set up your environment, you will have something like the following figure:

Figure 1.6: VS Code ready to write Azure functions

Demystifying Serverless Applications12

• Once all the prerequisites are set, in the Azure tab, go to WORKSPACE and select Create

Function Project…. Next, perform the following steps:

1. Choose a location for your project and select your preferred programming language.

2. Follow the prompts to create a new HTTP trigger function. You can name it Health

and call the namespace CarShare.Function.

3. You will need to decide on the access rights for this function. For this example,

you can choose Anonymous. We will discuss each of the security options later.

4. Open the newly created function file. You will see a template code for an HTTP
trigger function.

5. Modify the function to meet your specific requirements, which, in this case, means
to respond if the function is working properly. Notice that this is a GET and POST

function. For the purpose we have defined, you can change the code to only be
an HTTP GET function.

6. Save your changes.

For running and debugging locally, you just need to press F5 or navigate to Run > Start Debug-

ging. VS Code will start the Azure Functions host, and you will see the function URL in the output
window. Then, you can use tools such as Postman or your browser to send HTTP requests to your
function endpoint.

Once the function is running, you can consider it the same as when you work on other types of

software projects, and even the debugging will work properly. The trigger will depend on the
function you set. The following figure shows the code of the function program, where you can
see the response to the caller with a status of 200 by using OkObjectResult with the message

“Yes! The function is live!” and the UTC time.

 It is worth mentioning that for running Azure Functions locally, you will need to
allow PowerShell scripts to run without being digitally signed. This can be a problem
depending on the security policies provided by your company.

Chapter 1 13

Figure 1.7: Azure Functions running locally

As you have created a function app connected to a GitHub repository with the deployment process

handled by GitHub Actions, once you commit and pull the code to GitHub, GitHub Actions will

automatically build the function and deploy it as a function app.

Demystifying Serverless Applications14

Figure 1.8: Function app deployed using GitHub Actions

It is not the purpose of this book to discuss CI/CD strategies, but you will certainly need to think

about them when it comes to professional development.

Chapter 1 15

The result of this deployment can be checked in the Azure portal, where the function developed
will be available in the list of functions. It is worth noting that a function app can handle more

than one function at the same time.

Figure 1.9: Health function available in the function app

The function can be executed as soon as it is published to Azure. As a result of the sample func-

tion, as this was developed as a GET HTTP trigger, we can check that the function is working by
accessing the API in the web browser.

Figure 1.10: Health function running properly

As you don’t have a live CI/CD pipeline, you can also publish your Azure function directly from
the VS Code IDE. To do so, you may use the Azure Functions extension provided by VS Code.

Demystifying Serverless Applications16

There are a few steps to follow in this case. The first one is to select the action to deploy the func-

tion in the VS Code prompt:

Figure 1.11: Deploying to Azure using VS Code

After that, you will need to select the corresponding subscription and the name of the new func-

tion app you want to deploy, considering a new function:

Figure 1.12: Creating a new function app

Chapter 1 17

The current process proposed by the extension is to deploy an Azure function in the Flex Con-

sumption plan. There are some specific locations where this option is available:

Figure 1.13: Defining the location for the new function app

The definition of the runtime stack is also important to get the most out of your Azure function.
In the case of the Flex Consumption plan, you will also be asked for the memory usage in the

instance and the maximum number of instances available for parallel calls.

Figure 1.14: Defining the runtime stack for the new function app

Demystifying Serverless Applications18

Once these sets are defined, your Azure function will be deployed correctly. You can also redeploy
functions using the same technique later, without needing to recreate the Azure function app
every single time.

Figure 1.15: Function app properly deployed

Last, but not least, the Azure portal also gives you the possibility to monitor and manage the

functions deployed. Once this process is done, you can monitor your function’s performance and

log. By using the Monitoring section of your function app, you can view execution details, track

failures, and analyze performance metrics.

Coding Azure functions using Visual Studio
Visual Studio is one of the best options for developing Azure functions. To do so, you must set

Azure Development Workload, which will help enable Azure functions development natively
on the platform.

Chapter 1 19

Once you have done this, the same project you created using VS Code will be available for you to

use at Visual Studio. The difference between VS Code and Visual Studio in this case is that Visual
Studio will provide an easier setup environment for debugging and a lot of visual dialogs that

can facilitate your decisions.

Figure 1.16: Creating a new Azure function for the function app

Demystifying Serverless Applications20

These dialogs simplify the development process, so if you have the opportunity to use Visual

Studio, this will be the best option.

Figure 1.17: Defining the Azure function trigger type

Once again, when you create a Function Apps project, you can add more than one function to this

project, which is extremely useful for microservices solutions. In the following example, we have

added a second HTTP trigger function called Status to help you understand this possibility and

to let you see how these functions work together in a single function app.

Chapter 1 21

Figure 1.18: Function app with more than one function

It is important to mention that the same code developed initially using VS Code can continue to

be maintained using Visual Studio, and vice versa. This is great because you can have different
developers in the same team using the two environments and this will not cause a problem, at

least not with Function Apps projects.

Visual Studio is an excellent option for developing Azure functions due to its compre-

hensive setup environment for debugging and integrated visual dialogs, which make

development easier. Developers can switch between VS Code and Visual Studio without

compatibility issues, facilitating team collaboration. Multiple functions, such as HTTP
triggers, can be in a single Function Apps project, supporting microservices solutions.

Demystifying Serverless Applications22

Summary
This chapter explored the evolution of cloud platforms and the rise of modern technologies,
emphasizing the importance of focusing on solutions rather than just technologies. The chapter
highlighted the advantages of serverless computing, such as scalability, reliability, security, and

cost-effectiveness, while also addressing potential challenges. It discussed how serverless archi-

tecture can deliver microservices and the benefits of using Microsoft Azure Functions for building
and deploying serverless applications. The chapter also provided practical guidance on creating
and managing Azure functions using tools such as VS Code and Visual Studio.

In the next chapter, we will discuss how microservices applications can be defined and designed
in enterprise scenarios.

Questions
1. What are the main advantages of using serverless computing as mentioned in the chapter?

Serverless computing provides several advantages, including automatic scaling, cost-ef-

ficiency through a pay-as-you-go model, and reduced infrastructure management. De-

velopers do not need to worry about provisioning or maintaining servers, which allows

them to focus on delivering solutions faster and more efficiently.

It also promotes software development acceleration by letting developers focus solely

on the code. Additionally, the environment’s reliability and security are managed by the

cloud provider, enabling scalable and sustainable solutions without sacrificing perfor-

mance or safety.

2. How can serverless architecture be used to deliver microservices?

Serverless architecture supports the microservices model by allowing developers to create

independent, small, and reusable functions that represent distinct business capabilities.

These functions can be deployed, tested, and scaled independently, following the core
principles of microservices.

The chapter gave an example of a user authentication microservice, where separate func-

tions such as registration, login, and password reset were implemented within a single

serverless project. This flexibility enhances the modularity and maintainability of appli-
cations built using microservices principles.

Chapter 1 23

3. What are the key triggers available in Azure Functions and their purposes?

Azure Functions can be triggered by a variety of events. The main triggers are HTTP trigger
(for web requests), timer trigger (scheduled tasks), Blob Storage trigger (file uploads or
changes), Queue Storage trigger (message processing), Event Grid trigger (event handling
from Azure services), Service Bus trigger (messaging between applications), and Cosmos
DB trigger (database change processing).

Each trigger allows developers to build event-driven applications with flexibility and
scalability. For example, timer triggers are ideal for recurring tasks, while HTTP triggers
are commonly used for APIs and webhooks. This variety of triggers supports the devel-
opment of diverse and responsive solutions.

4. What steps are necessary to create a serverless application in the Azure portal?

To create a serverless application in Azure, the developer must log in to the Azure portal
and create a new Function App resource. During the setup, they need to choose the host-

ing plan (e.g., Consumption plan), define project details such as region, runtime stack,
storage account, and networking options, and enable monitoring via Application Insights.

After reviewing the configurations, the developer clicks Create to deploy the function app.

Once deployed, they can navigate to the resource, start coding, and manage it directly

from the portal or via development tools such as Visual Studio or VS Code.

5. How does Azure Functions integrate with other Azure services and third-party APIs?

Azure Functions integrates seamlessly with various Azure services such as Azure SQL,
Cosmos DB, Event Grid, Service Bus, and Logic Apps. This enables developers to build
complex workflows, automate tasks, and create highly responsive applications using
existing Azure infrastructure.

Additionally, Azure Functions can connect to third-party APIs and services, supporting
hybrid architectures. This integration capability allows developers to extend their applica-

tions across platforms, enhancing the flexibility and scalability of cloud-native solutions.

Further reading
• Azure Functions documentation: https://learn.microsoft.com/en-us/azure/azure-

functions/

• Azure API Management documentation: https://learn.microsoft.com/en-us/azure/
api-management/

• Azure Application Gateway documentation: https://learn.microsoft.com/en-us/
azure/application-gateway/overview

https://learn.microsoft.com/en-us/azure/azure-functions/
https://learn.microsoft.com/en-us/azure/azure-functions/
https://learn.microsoft.com/en-us/azure/api-management/
https://learn.microsoft.com/en-us/azure/api-management/
https://learn.microsoft.com/en-us/azure/application-gateway/overview
https://learn.microsoft.com/en-us/azure/application-gateway/overview

Demystifying Serverless Applications24

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/PSMCSharp

https://packt.link/PSMCSharp

2
Demystifying Microservices
Applications

Over the last decade, microservices architecture has taken a central role in modern software de-

velopment. In this chapter, we will define what microservices architecture is. You will learn the
reasons behind the success of microservices, their pros and cons, and when it is worth adopting

them. Starting with the problems that led to their conception, we will discuss typical scenarios

of when to use them, the impact of their adoption on overall project costs, and the returns you

might expect.

You will get insights into the organization of microservices, discovering how it differs from the
usual monolithic application by resembling more of an assembly line than user-requests-driven

processing. This newly conceived organization brings with it new challenges that require ad hoc
techniques to enforce coherence, coordination, and reliability.

Moreover, new patterns and best practices have been created to tackle challenges with micro-

services and optimize their advantages. We will introduce and summarize some fundamental
patterns here, while their practical implementation, together with more specific patterns, will
be detailed throughout the remainder of the book.

More specifically, this chapter covers the following:

• The rise of Service-Oriented Architectures (SOAs) and microservices

• The definition and organization of microservices architecture

• When is it worth adopting microservices architectures?

• Microservices common patterns

Demystifying Microservices Applications26

The rise of Service-Oriented Architectures (SOAs)
and microservices
Briefly defined, microservices are chunks of software deployed on computer networks that com-

municate through network protocols. However, this is not all; they must also obey a set of further

constraints.

Before giving a more detailed definition of what a microservices architecture is, we must under-

stand how the idea of microservices evolved and what kind of problems it was called to solve. We

will describe the two main steps of this evolution across two separate subsections.

The rise of SOA
The first step in the direction of microservices was taken by the so-called service-oriented archi-

tectures, or SOAs, that is, architectures based on networks of communicating processes. Initially,

SOAs were implemented as web services similar to the ones you might have already experienced

in ASP.NET Core.

In an SOA, different macro-modules that implement different features or roles in software appli-

cations are exposed as separate processes that communicate with each other through standard

protocols. The first SOA implementation was web services communicating through the XML-
based SOAP protocol. Then, most web services architectures moved toward JSON-based web
APIs, which you might already know about since REST web services are available as standard
ASP.NET project templates. The Further reading section contains useful links that provide more

details on REST web services.

SOAs were conceived during the boom in the creation of software for business applications as

one of the ways to integrate the various preexisting applications used by different branches and

divisions into a unique company information system. Since the preexisting applications were

implemented with different technologies, and the software expertise available in the various

branches and divisions was heterogeneous, SOA was the answer to the following compelling needs:

1. Enabling software communication between modules implemented with different technol-

ogies and running on different platforms (Linux + Apache, Linux + NGINX, or Windows +
IIS). In fact, software based on different technologies is not binary compatible, but it can
still cooperate with others if each of them is implemented as a web service that communi-

cates with the others through a technology-independent standard protocol. Among them,

it is worth mentioning the text-based HTTP REST protocol and the binary gRPC protocol.
Worth mentioning also is that the HTTP REST protocol is an actual standard while at the

Chapter 2 27

moment, gRPC is just a de facto standard proposed by Google. The Further reading section

contains useful links for getting more details about these protocols.

2. Enabling the versioning of each macro-module to evolve independently from the others.

For instance, you might decide to move some web service toward the new .NET 9 version
to take advantage of new .NET features or new, available libraries, while leaving other
web services that don’t need modifications with a previous version, say, .NET 8.

3. Promoting public web services that offer services to other applications. As an example,

think of the various public services offered by Google, such as Google Maps, or the artificial
intelligence services offered by Microsoft, such as language translation services.

4. Below is a diagram that summarizes classical SOA.

Figure 2.1: SOA

5. Over time, the company information system and other complex SOA applications con-

quered more markets and users, so new needs and constraints appeared. We will discuss

them in the next subsection.

Toward microservices architectures
As application users and traffic increased up to a different order of magnitude, the optimization
of performance and the optimal balancing of hardware resources among the various software

modules became a must. This led to a new requirement:

Demystifying Microservices Applications28

As the company information system gained a central role, its continuous operation, that is, almost

zero downtime, became a must, leading to another important constraint:

Moreover, to adapt each application to a rapidly evolving market, the requirements on the devel-

opment times became more compelling. Accordingly, more developers were needed to develop

and maintain each application with the given strict milestones.

Unfortunately, handling software projects involving more than around four people to the required

quality proved to be substantially impossible. So, a new constraint was added to SOAs:

However, the maintenance effort also needed to be optimized, yielding another important con-

straint:

 Each software module must be scalable independently from the others so that we

can allocate to each module the optimal quantity of resources it needs.

 Microservices architecture must be redundant. Each software module must have

several replicas running on different hardware nodes to resist software crashes and

hardware failures.

 The services composing an application must be completely independent of each
other so that they can be implemented by loosely interacting separate teams.

 Modifications to a service must not propagate to other services. Accordingly, each
service must have a well-defined interface that doesn’t change with software mainte-

nance (or that, at least, rarely changes). For the same reason, design choices adopted
in the implementation of a service must not constrain any other application service.

Chapter 2 29

The first and second requirements can be satisfied by implementing each software module as a
separate service so that we might allocate more hardware resources to it by simply replicating it

in N different instances as needed to optimize the overall performance and ensure redundancy.

1. We also need a new actor, something that decides how many copies of each service to

use and on what hardware to place them. There are similar entities called orchestrators.

It is worth pointing out that we might also have several orchestrators, each taking care

of a subset of the services, or no orchestrator at all!

2. Summing up, we moved from applications made of coarse-grained coupled web services

to fine-grained and loosely coupled microservices, each implemented by a different de-

veloper team, as shown in the following figure.

Figure 2.2: Microservices architecture

Demystifying Microservices Applications30

3. The diagram shows fine-grained microservices assigned to different loosely coupled teams.
It is worth pointing out that while loose coupling was also an initial target for the pri-

mordial web services architectures, it took time to improve to a good level, till reaching

its peak with the advent of microservices techniques.

4. The preceding diagram and requirements do not define exactly what microservices are;
they just explain the start of the microservices era. In the next section, we will give a more

formal definition of microservices that reflects their current stage of evolution.

The definition and organization of microservices
architectures
In this section, we will give a definition of microservices and detail their immediate consequenc-

es on an organization, distinguishing between the microservices definition, which is expected to

change gradually over time, and microservices practical organization, which might evolve at a faster

rate as new technologies appear.

In the first subsection, we will focus on the definition and its immediate consequences.

A definition of microservices architectures
Let’s first list all the microservices requirements. Then, we will discuss each of them in a separate
subsection.

A microservices architecture is an architecture based on SOA that satisfies all the constraints below:

• Module boundaries are defined according to the domain of expertise they require. As we
will discuss in the subsections below, this should ensure they are loosely coupled.

• Each module is implemented as a replicable service, called a microservice, where rep-

licable means one can create several instances of each service to enforce scalability and

redundancy.

• Each service can be implemented and maintained by a different team, where all teams

are loosely coupled.

• Each service has a well-defined interface known to all teams involved in the development
project.

• Communication protocols are decided at the project start and are known by all teams.

• Each service must depend just on the interface exposed by the others and on the com-

munication protocols adopted. In particular, no design choice adopted for a service can

impose constraints on the implementation of the others.

Chapter 2 31

You are encouraged to compare each of the above constraints with the requirements that led to
the conception of microservices architecture discussed in the previous section. In fact, each of

these constraints is the immediate result of one or more of the previous requirements.

Let’s discuss each constraint in detail.

Domain of expertise and microservices

This constraint has the purpose of providing a practical rule for defining the boundary of each micro-

service so that microservices are kept loosely coupled and can be handled by loosely coupled teams.

It is based on the theory of domain-driven design developed by Eric Evans (see Domain-Driven

Design: https://www.amazon.com/exec/obidos/ASIN/0321125215/domainlanguag-20). Here, we
will go over just a few essential concepts of this theory, but if you’re interested in reading more,

refer to the Further reading section for more details.

Basically, each domain of expertise uses a typical language. Therefore, during the analysis, it is
enough to detect changes in the language used by the experts you speak with to understand what

is included in and excluded from each microservice.

The rationale behind this technique is that toughly interacting people always develop a specific
language recognized by others who share the same domain of expertise, while the absence of
such a common language is a signal of loose interaction.

This way, the application domain or an application subdomain is split into so-called bounded

contexts, each characterized by the usage of a common language. It is worth pointing out that

domain, subdomain, and bounded context are all core concepts of DDD. For more details on

them and DDD, you may refer to the Further reading section, but our simple description should

suffice for getting started with microservices.

Thus, we get the first division of the application into bounded contexts. Each is assigned to a

team and a formal interface for each of them is defined. This interface becomes the specification
of a microservice, and it is also everything the other teams must know about the microservice.

Then, each team that has been assigned a microservice can split it further into smaller microser-

vices to scale each of them independently from the others, checking that each resulting micros-

ervice exchanges an acceptable quantity of messages with the others (loose coupling).

The first division is used to split the work among the teams, while the second division is designed
to optimize performance in various ways, which we will detail in the Microservices organization

subsection.

https://www.amazon.com/exec/obidos/ASIN/0321125215/domainlanguag-20

Demystifying Microservices Applications32

Replicable microservices
There should be a way to create several instances of the same microservice and place them on the
available hardware to allocate more hardware resources to the most critical microservices. For

some applications or single microservices, this can be done manually; but, more often, dedicated

software tools called orchestrators are adopted. In this book, we will describe two orchestrators:

Kubernetes, in Chapter 8, Practical Microservices Organization with Kubernetes, and Azure Contain-

er Apps, in Chapter 9, Simplifying Containers and Kubernetes: Azure Container Apps and other Tools.

Splitting microservices development among different teams

The way microservices are defined, so that they can be assigned to different loosely coupled teams,
has already been explained in the Domain of expertise and microservices subsection. Here, it is worth

pointing out that the microservices defined at this stage are called logical microservices, and then

each team can decide to split each logical microservice into one or more physical microservices

for various practical reasons.

Microservices, interfaces, and communication protocols

Once microservices are assigned to different teams, it is time to define their interfaces and the
communication protocol used for each kind of message. This information is shared among all
teams so that each team knows how to communicate with the microservices handled by the

other teams.

Only the interfaces of all logical microservices and the associated communication protocols must

be shared among all teams, while the division of each logical microservice into physical micros-

ervices is just shared within each team.

The coordination of the various teams, and the documentation and monitoring of all services, is
achieved with various tools. Below are the main tools used:

• Context maps are a graphical representation of the organizational relationships among
the various teams working on all application-bounded contexts.

• Service catalogs collect information about all microservice requirements, teams, costs, and

other properties. Tools like Datadog (https://docs.datadoghq.com/service_catalog/)
and Backstage (https://backstage.io/docs/features/software-catalog/) perform
various types of monitoring, while tools like Postman (https://www.postman.com/) and
Swagger (https://swagger.io/) are mainly focused on formal requirements, such as the

testing and automatic generation of clients for interacting with the services.

https://docs.datadoghq.com/service_catalog/
https://backstage.io/docs/features/software-catalog/
https://www.postman.com/
https://swagger.io/

Chapter 2 33

Just the interfaces of the logical microservices are public

The code of each microservice can’t make any assumptions about how the public interface of

all other logical microservices is implemented. Nothing can be assumed about the technologies

used (.NET, Python, Java, and so on) and their versions, and nothing can be assumed about the
algorithms and data architectures used by other microservices.

Having analyzed the definition of microservices architecture, and its immediate consequences,
we can move to the current most practical way to organize them.

Microservices organization
The first consequence of the independence of microservices design choices is that each microser-

vice must have private storage because a shared database would cause dependencies among the

microservices sharing it. Suppose microservices A and B both access the same database table, T.
Now, we’re modifying microservice A to meet a new user’s requirements. As part of this update,

the solution for A will require us to replace table T with two new tables, T1 and T2.

In a similar situation, we would be forced to also change the code of B to adapt it to the replacement

of T with T1 and T2. Clearly, the same limitation doesn’t apply to different instances of the same
microservice, so they can both share the same database. To summarize, we can state the following:

Unfortunately, moving away from a single-application database inevitably leads to data duplica-

tion and coordination challenges. More specifically, the same chunk of data must be duplicated in
several microservices, so when it changes, the change must be communicated to all microservices

that are using a duplicated copy of it.

Thus, we may state another organizational constraint:

 Instances of different microservices can’t share a common database.

Microservices must be designed in a way that minimizes the duplication of data,
or stated differently, duplications should involve as few microservices as possible.

Demystifying Microservices Applications34

As has been said in the previous section, if we define microservices according to the domain of
expertise, the last constraint should be ensured automatically because different domains of ex-

pertise usually share just a little data.

No other constraints descend immediately from the definition of microservices, but it is enough
to add a trivial performance constraint on the response time to force the organization of micros-

ervices in a way that it more closely resembles an assembly line than a usual user-request-driven

software. Let’s see why.

A user request coming to microservice A might cause, in turn, a long chain of requests issued to

other microservices, as shown in the following figure:

Figure 2.3: Chain of synchronous request-responses

Messages 1-6 are triggered by a request to microservice A and are sent in sequence, so their pro-

cessing times sum up to the response time. Moreover, microservice A, after having sent message

1, remains blocked, waiting for a response, until it receives the last message (6); that is, it remains
blocked for the whole lifetime of the overall chained communication process.

Microservice B remains blocked twice, waiting for an answer to a request it issued. The first time
is during the 2-3 communication and then the second is during the 4-5 communication. To sum
up, a naive request-response pattern to microservices communication implies high response

times and a waste of microservices computation time.

The only ways to overcome the above problems are either avoiding complete dependencies among
microservices or caching all information needed to satisfy any user request into the first micros-

ervice, A. Since reaching total independence is basically impossible, the usual solution is caching

in A whatever data it needs to answer requests without asking for further information about

other microservices.

Chapter 2 35

To achieve this goal, microservices are proactive and adopt the so-called asynchronous data-shar-

ing approach. Whenever they update data, they send the updated information to all other micro-

services that need it for their responses. Put simply, in the example above, tree nodes, instead of

waiting for requests from their parent nodes, send pre-processed data to all their possible callers

each time their private data changes, as shown in the figure below.

Figure 2.4: Data-driven communication

Both communications labeled 1 are triggered when the data of the C/D microservices changes,

and they may occur in parallel. Moreover, once communication is sent, each microservice can

return to its job without waiting for a response. Finally, when a request arrives at microservice

A, it already has all the data it needs to build the response with no need to interact with other

microservices. In general, microservices based on asynchronous data sharing pre-process data

and send it to whichever other service might need it as soon as their data changes. This way, each
microservice already contains precomputed data that it can use to respond immediately to user

requests with no need for further request-specific communications.

This time, we can’t speak of requests and responses but simply of messages exchanged. People
working with classical web applications will be accustomed to request/response communications
where a client issues a request and a server processes that request and sends back a response.

Demystifying Microservices Applications36

Returning to asynchronous data sharing, as new data becomes available, each microservice does

its job and then sends the results to all interested microservices, and then it continues performing

its job without waiting for a response from its recipients.

Each sender just waits for an acknowledgment from its immediate recipient, so wait times do

not add up like in the initial chained request/response example.

What about message acknowledgments? They also cause small delays. Is it possible to also remove
this smaller inefficiency? Of course, with the help of asynchronous communication!

Asynchronous communication is more effective in microservices because it completely avoids wait

times. However, the necessity to perform corrective actions in case of possible errors complicates

the overall message-sending action. More specifically, all sent messages must be added to a queue,
and each time an acknowledgment arrives, the message is marked as correctly sent and removed

from this queue. Otherwise, if no acknowledgment arrives within a configurable timeout time,

or if an error is raised, the message is marked to be re-sent according to some retry policies.

In general, in a request/response communication, one of the involved actors, say,
A, sends a message containing a request to perform some specific processing to
another actor, say, B, then B performs the required processing and returns a result

(the response), which may also be an error notification.

However, we may also have communications that are not request/response-based.
In this case, we simply speak of messages. In this case, there are not responses but

just acknowledgments that the messages have been correctly received by either the

final target or an intermediate actor. Differently from responses, acknowledgments
are sent before completing the processing of the messages.

In synchronous communication, the sender waits for the message acknowledgment

before continuing its processing. This way, if the acknowledgment times out or is
replaced by an error notification, the sender can perform corrective actions, such
as resending the message.

In asynchronous communication, the sender doesn’t wait for either an acknowl-

edgment or an error notification but continues its processing, immediately after the
message is sent, while acknowledgments or error notifications are sent to a callback.

Chapter 2 37

The microservices asynchronous data-sharing approach is often accompanied by the so-called

Command Query Responsibility Segregation (CQRS) pattern. According to CQRS, microser-

vices are split into updates microservices, which perform the usual CRUD operations, and query

microservices, which are specialized in answering queries that aggregate data from several other
microservices, as shown in the following figure:

Figure 2.5: Updates and query microservices

According to the asynchronous data-sharing approach, each update microservice sends all its

modifications to the query services that need them, while query microservices precompute all

queries to ensure short response times. It is worth pointing out that data-driven updates resemble

a factory assembly line that builds all possible query results.

Both updates and query microservices are called frontend microservices because they are involved

in the usual request-response pattern with the user. However, data updates in their path may also

encounter microservices that do not interact at all with a user. They are called worker microser-

vices. The following figure shows the relationship between worker and frontend microservices.

Demystifying Microservices Applications38

Figure 2.6: Frontend and worker microservices

While frontend microservices usually respond to several user requests in parallel by creating a

thread for each request, worker microservices are involved only in data updates, so they don’t

need to parallelize requests to ensure low response times to the user.

Accordingly, their operation is completely analogous to the one of the stations that compose an

assembly line. They extract their input messages from an input queue and process them one after
the other. Output data is sent to all interested microservices as soon as they are available. This
kind of processing is called data-driven.

One might object that worker microservices are not necessary since their job might be taken care

of by the frontend services that consume their outputs. This is not the case! For instance, let’s
imagine accounting data that needs to be consolidated over a period of time before being used

as fields of complex queries. Of course, each query microservice that needs the consolidated data
might take care of consolidating it. However, this would result in the duplication of the processing

effort and the storage needed to hold the partial sums.

Moreover, embedding the consolidation processing in other microservices would enable its in-

dependent scaling, with better optimization of the overall performance.

The next subsection shows an example that exemplifies all the concepts learned so far.

Chapter 2 39

Car-sharing example
The following figure shows a communication diagram of the routes-handling part of a car-shar-

ing application. Dashed lines surround all physical microservices belonging to the same logical

microservice. Query microservices are at the top of the image, updates microservices are at the

bottom, and worker microservices are in the middle (with gray shading).

Figure 2.7: Route-handling subsystem of a car-sharing application

The language analysis detected two logical microservices. The first one speaks the language of
the car sharer and is made of six physical microservices. The second one is focused on topolo-

gy since it finds the best routes between a source and a destination and matches intermediate
source-destination pairs with existing routes.

Car holders handle their requests with CRUD operations on the Car-Holding-Requests updates

microservice, while users looking for a car interact with the Car-Seeking-Requests updates mi-

croservice in a similar way. The Routes-Listing microservice lists all available trips with empty

slots for new passengers to help car seekers choose the date of their trip. Once the date is chosen,

the request is submitted through the Car-Seeking-Requests microservice.

Demystifying Microservices Applications40

Both car holders and car seekers interact with the Route-Choosing updates microservice. Car

seekers choose one of several available routes for both the source and destination, while car

holders accept car seekers by selecting the routes that fit their sources and destinations. Once a
route is selected by a car seeker and accepted by the car holder, all other incompatible options

are deleted from the best matches of both the car holder and the car seeker.

All available routes for both car seekers and car holders are listed by the My-Best-Matches micro-

service. The Routes-Planner worker microservice computes the best routes that fit for the source
and destination of a car holder that contains also sources and destinations for some car seekers. It

stores unmatched car-seeker requests until a route passing at an acceptable distance from them

is added. When this happens, the Routes-Planner microservice creates a new alternative route

for the same trip that contains the new source-destination pair. All routes’ changes are sent to

both the My-Best-Matches and Route-Choosing microservices.

The Locations-Listing microservice handles a database of known locations, and it is used in

various kinds of user suggestions, such as autocomplete of user sources and destinations and

suggestions for interesting trips based on user preferences statistics. It takes its input from all

car-holder and car-seeker requests.

We have seen what kind of problems microservices were conceived to solve and how their adop-

tion adds complexity to the application design. Moreover, it is not difficult to imagine that testing
and maintaining an application that runs on several different machines and relies on complex

data-driven communication patterns should be a complex and time-consuming task.

Therefore, it is important to assess the impact of using microservices architecture in our appli-
cation to verify that the cost is affordable and that the advantages of the adoption outweigh the

disadvantages and extra costs. In the next section, we will cover some criteria for facing this kind

of assessment.

When is it worth adopting microservices
architectures?
An application that requires more than five developers is certainly a good target for a microservices
architecture since logical microservices help split the workforce into small, loosely coupled teams.

A high-traffic application with several time-consuming modules is also a good target for micro-

services architecture since it needs module-level performance optimizations.

Chapter 2 41

Low-traffic applications that require just a small team of less than five people for their imple-

mentation are not a good target for a microservices architecture.

Deciding when to adopt microservices in all other situations that fall between the above extreme

cases is not easy. In general, it requires a detailed analysis of costs and returns.

Considering costs, using a microservices architecture requires a development effort of about five
times that of a usual monolithic application. We got this scale as an average on 7 total rewrites

of monolithic applications with a Microservices architecture.

This is in part due to the extra effort needed to handle reliable communications, coordination, and
detailed resource management. However, most of the costs come from the difficulties of testing,
debugging, and monitoring a distributed application.

Later in the book, we will describe tools and methodologies for efficaciously handling all of the
above problems, but the extra cost brought on by microservices remains.

Considering expected returns, the most significant advantage is the capability of focusing mainte-

nance on just the critical modules, since if the interface of a microservice doesn’t change also the

more drastic changes in its implementation, such as moving to a different operating system, or

to a different development stack, or simply to a newer version of the same stack, will not require

any change to all other Microservices.

We may decide to reduce the maintenance of modules that do not require several market-critique

changes to a minimum while focusing on just the market-critique modules that either increase

the perceived value of the application or require changes to adapt them to a quickly evolving

market. To summarize, we may focus on just the important changes required by the users, leaving
all modules that are not involved in these changes unchanged.

Focusing on just a few modules ensures a low time to market, so we can satisfy market opportu-

nities as soon as they appear without the risk of releasing a new version too late.

We are also able to fine-tune performance quickly when the traffic on some specific functional-
ities increases by scaling just the involved microservices. It is worth pointing out that the capa-

bility of fine-tuning each specific building block of our application allows for better usage of the
available hardware, thus reducing the overall hardware costs. Moreover, the ability to fine-tune
and monitor specific microservices simplifies achieving better response times and, in general,
performance goals.

Demystifying Microservices Applications42

Having analyzed the evolution that led to the microservices architecture, as well as its very nature
and basic organization, we can move on to patterns that, while not specific to microservices, are
common in microservices architectures.

Microservices common patterns
In this section, we will analyze the fundamental patterns used in all microservices architectures
whose description is not tied to a specific programming language or tool. Most of them concern

microservice communication. Let’s start with common retry strategies.

Resilient task execution
Microservices can be moved from one machine to another to achieve better load balancing. They
can also be restarted to reset some possible memory leaks or to solve other performance issues.

During these operations, they may miss some messages sent to them, or they may abort some

ongoing computation. Moreover, failure due to software bugs or hardware faults may occur, too.

Since microservices architectures are required to be reliable (almost zero downtime), they are
usually redundant, and particular care is needed to detect faults and apply corrective actions.

Therefore, all microservices architectures must provide mechanisms to both detect failures, such
as simple timeouts, and correct failed operations.

Failures are detected through the detection of either unexpected exceptions or timeouts. Since

the code can always be arranged in a way to turn timeouts into exceptions, failure detection can

always be reduced to adequate exception handling.

To resolve this problem, the community of microservices developers defined useful retry policies

one can attach to specific exceptions. They are usually implemented through specific libraries
together with other reliability patterns, but sometimes they are offered out of the box by cloud

providers.

Below are the standard reliability patterns used in microservices architectures:

• Exponentials retry: It has been designed to overcome temporary faults, such as a failure

due to a microservice instance restart. After each failure, the operation is retried with a

delay that increases exponentially with the number of attempts, until a maximum num-

ber of attempts is reached. For instance, first, we would retry after 10 milliseconds, and if
this retry operation results in a new failure, a new attempt is made after 20 milliseconds,

then after 40 milliseconds, and so on. If the maximum number of attempts is reached, an

exception is thrown, where it can find another retry policy or some other exception-han-

dling strategy.

Chapter 2 43

• Circuit break: It has been designed to handle long-term failures and it is usually triggered

after an exponential retry reaches its maximum number of retries. When a long-term fail-

ure is assumed, access to the resource is interdicted for a fixed amount of time by returning
an immediate exception without attempting all the required operations. The interdiction
time must be sufficient to allow human intervention or any other kind of manual fix.

• Bulkhead isolation: Bulkhead isolation has been designed to prevent failure and con-

gestion propagation. The basic idea is to organize services and/or resources into isolated
partitions so that failures or congestions originating in a partition remain confined to that
partition, and the remainder of the system continues working properly.

Suppose, for instance, that several microservice replicas use the same database (as is
common). Due to a failure, a replica might start opening too many database connections,
thus also congesting all other replicas that need to access the same database.

In this case, we recognize that database connections are critical resources that need bulk-

head isolation. Thus, we compute the maximum number of connections the database can
properly handle and partition them among all replicas, assigning, for instance, a maximum

of five simultaneous connections to each microservice replica.

This way, a failure in a replica doesn’t affect the proper access of other replicas to the da-

tabase. Moreover, if the application is properly organized, requests that fail to be served
because of the failed replica will eventually be retried on a properly working replica so

that the overall application can continue working properly. In general, if we would like

to partition all requests to a shared resource, we can proceed as follows:

1. Only a maximum number of similar pending simultaneous outbound requests

to the shared resource is allowed; let’s say 5, as in the previous database example.

This is like putting an upper bound on thread creation.

2. Requests exceeding the previous bound are queued.

3. If a maximum queue length is reached, any further requests result in exceptions

being thrown to abort them.

It is worth pointing out that the requests partitioning and throttling pattern previously shown

is a common way of applying bulkhead isolation, but it is not the only way. Any partition plus

isolation strategy can be classified as bulkhead isolation. For instance, one might split the replicas
of two interacting microservices into two isolated partitions such that only replicas belonging to

the same partition might interact. This way, a failure in a partition can’t affect the other partition.

Demystifying Microservices Applications44

Together with the actions and strategies for handling failures exposed above, microservices ar-

chitectures also offer failure prevention strategies. Failure prevention is achieved by monitoring

anomalous consumptions of hardware resources and performing periodic hardware and software

health checks. For this purpose, orchestrators monitor the usage of memory and CPU resources

and restart a microservice instance or add a new instance when they fall out of a developer-de-

fined range. Moreover, they offer the possibility of declaring periodic software checks that the
orchestrator can perform to verify if the microservice is working properly. The most common of
such health checks is a call to a health REST endpoint exposed by the microservice. Again, if the

microservice fails a health check, it is restarted.

When a hardware node fails a health check, all of its microservices are moved to a different hard-

ware node.

Efficacious handling of asynchronous communication
Asynchronous communication with associated asynchronous acknowledgment causes three

important problems:

1. Since after the communication the sending microservice moves to serving other requests

without waiting for the acknowledgment, it must keep a copy of all messages it sent until

an acknowledgment or a communication failure, such as a timeout, is detected, so that

it can retry the operation (with an exponential retry, for instance), or it can take another
kind of corrective action.

2. Since in case of a timeout a message may be re-sent, the intended recipient can receive

several copies of the same message.

3. Messages can reach a recipient in an order that is different from the one they were sent.

For instance, if two messages that instruct the recipient to modify the name of a product

are sent in the order M1, M2, we expect the final name to be the one contained in M2.
However, if the recipient receives the two messages in the wrong order, M2, M1, the final
product name will be the one contained in M1, thus causing an error.

The first problem is handled by keeping all messages in a queue, as shown in the following figure:

Chapter 2 45

Figure 2.8: Output message queue

When an acknowledgment is received, the involved message is removed from the queue. If, on

the contrary, a failure or timeout is detected, the message is added to the end of the queue to be

retried. If a retry must be handled with an exponential retry, each queue entry must contain both

the number of the current attempt and the minimum time when the message can be re-sent.

The second and third problems require that each received message has a unique identifier and
a sequence number. The unique identifier helps recognize and discard duplicates, while the se-

quence number helps the recipient to reconstruct the right message order. The following figure
shows a possible implementation.

Figure 2.9: Input message queue

Messages can be read from the input queue only after all sequence holes before them have been

filled and read, while duplicates are easily recognized and discarded.

Demystifying Microservices Applications46

Event-based communications
Suppose we add a new microservice to the car-sharing application in Figure 2.7, say, a worker

microservice that computes statistics about user trips. We would be forced to modify all micro-

services it needs input from, because all these microservices must also send some messages to

the newly added microservice.

The main constraint of microservices architectures is that modifications to a microservice must
not propagate to other microservices, but by simply adding a new microservice, we have already

violated this basic principle.

To overcome this problem, messages that might also interest newly added microservices are
handled with the publisher-subscriber pattern. That is, the sender sends the message to a pub-

lisher endpoint instead of sending it directly to the final recipients. Then, each microservice
that is interested in that message simply subscribes to this endpoint, so that the subscription

endpoint will automatically send to it all messages it receives. The following figure shows how
the publisher-subscriber pattern works.

Figure 2.10: Publisher-subscriber pattern

Once a publish endpoint receives a message, it resends it to all subscribers that added themselves

to its subscriptions queue. This way, if we add a new microservice, no modification is required
for all message senders since they need just to continue sending their messages to the adequate

publish endpoints. It is up to the newly added microservice to register itself to the proper publish

endpoints.

Chapter 2 47

Publish endpoints are handled by applications called message brokers that offer this service

together with other message-delivering services. Message brokers can be deployed themselves

as replicable microservices, but they are typically offered as standard services by all main cloud

providers.

Among them, it is worth mentioning RabbitMQ, which must be installed as a microservice, and

Azure Service Bus, which is available as a cloud service in Azure. We will say more about them
throughout the rest of the book, but interested readers may find links with more details in the
Further reading section.

Interfacing the external world
Microservices applications are usually confined to a private network and expose their services
through public or private IP addresses by means of gateways, load balancers, and web servers.

These components may route external addresses to internal microservices. However, it is hard to
leave to the user client-application the choice of the microservice to send each of their requests to.

Typically, input requests are all handled by a unique endpoint called an API gateway that analyzes
them and translates the request to an appropriate request for internal microservices. This way,
the user client application doesn’t need any knowledge of how the microservices application

is organized internally. Therefore, we are free to change the application organization during its
maintenance without affecting the clients that use it, since the needed translations are performed

by the application API gateway. This process is known as web API interface translation.

The following figure summarizes the API gateway operation:

Figure 2.11: API gateway

Demystifying Microservices Applications48

API gateways can also handle application versioning by sending all requests to the microservices

that belong to the version required by the client application.

Moreover, they typically also handle authentication tokens; that is, they have the keys to decode

them and to verify all user information they contain, such as user ID and its access privileges.

Please do not confuse authentication with login. Login is performed once per session when the

user starts interacting with the application, and it is performed by a dedicated microservice. The
result of a successful login is an authentication token that encodes information about the user

and that must be included in all subsequent requests.

Summing up, API gateways offer the following services:

• Web API interface translation

• Versioning

• Authentication

However, they often also offer other services, such as:

• API documentation endpoints, that is, endpoints that offer a formal description of the

services offered by the application and how to request them. In the case of REST com-

munication, API documentation is based on the OpenAPI standard (see Further reading).

• Caching, that is, adding the right HTTP headers to handle appropriate caching of all re-

sponses in both the user client and the web intermediate nodes.

It is worth pointing out that the above services are just common examples of the services available

in commercial or open-source API gateways that usually offer a wide range of services.

API gateways can be implemented as ad hoc microservices using libraries like YARP (https://
microsoft.github.io/reverse-proxy/index.html), or they can use preexisting configurable
applications, for instance, the open-source Ocelot (https://github.com/ThreeMammals/Ocelot).
All main providers offer powerful configurable API gateways, called API management systems

(for Azure, see https://azure.microsoft.com/en-us/products/api-management). However,
there are also independent cloud-native offers, like Kong (https://docs.konghq.com/gateway/
latest/).

https://microsoft.github.io/reverse-proxy/index.html
https://microsoft.github.io/reverse-proxy/index.html
https://github.com/ThreeMammals/Ocelot
https://azure.microsoft.com/en-us/products/api-management
https://docs.konghq.com/gateway/latest/
https://docs.konghq.com/gateway/latest/

Chapter 2 49

Summary
In this chapter, we described the basics of microservices, starting from their evolution and con-

tinuing on to their definition, organization, and main patterns.

We described the main features and requirements of a microservices-based application, how its

organization resembles more of an assembly line than a user-requests-driven application, how
to make microservices reliable, and how to handle efficaciously both failures and all problems
caused by efficient asynchronous communication.

Finally, we described how to make all microservices more independent from each other with

publisher-subscriber-based communication and how to interface a microservices application

with the external word.

The next chapter describes two important building blocks for building enterprise-level micros-

ervices: Docker and Onion architectures.

Questions
1. What is the main difference between a hold-style SOA and a modern microservices ar-

chitecture?

In Microservices architectures are fine-grained. Moreover, each Microservices must not
depend on the design choices of other Microservices. Furthermore, microservices must

be redundant, replicable, and resilient.

2. Why are loosely coupled teams so important?

Because it is quite easy to coordinate loosely coupled teams.

3. Why must each logical microservice have dedicated storage?

This is an immediate consequence of the independence of the design choices of a Microser-

vice from the design choices adopted in all other Microservices. In fact, sharing a common

database would force common design choices on the database structure.

4. Why is data-driven communication needed?

This is the only way to avoid long chains of recursive request and answers that would
cause unacceptable overall response times.

Demystifying Microservices Applications50

5. Why is event-driven communication so important?

Because event-driven communication completely decouples Microservices, so that devel-

opers can add a new Microservice without modifying any of the preexisting Microservices.

6. Do API gateways usually offer login services?

No login services are offered by specific Microservices called Authentication Servers.

7. What is exponential retry?

A retry policy that exponentially increases the delay between failures and retries after

each failure.

Further reading
• Eric Evans, Domain-Driven Design: https://www.amazon.com/exec/obidos/

ASIN/0321125215/domainlanguag-20

• More resources on DDD can be found here: https://www.domainlanguage.com/ddd/

• A detailed discussion of CQRS design principles can be found here: https://udidahan.

com/2009/12/09/clarified-cqrs/

• ASP.NET Core REST API: https://docs.microsoft.com/en-US/aspnet/core/web-api/

• Datadog: https://docs.datadoghq.com/service_catalog/

• Backstage: https://backstage.io/docs/features/software-catalog/

• OpenAPI (REST API specifications): https://swagger.io/docs/specification/v3_0/
about/

• Postman: https://www.postman.com/

• gRPC: https://grpc.io/

• RabbitMQ: https://www.rabbitmq.com/

• Azure Service Bus: https://azure.microsoft.com/en-us/products/service-bus/

• Ocelot: https://github.com/ThreeMammals/Ocelot

• YARP: https://microsoft.github.io/reverse-proxy/index.html

• Kong: https://docs.konghq.com/gateway/latest/

• Azure API Management: https://azure.microsoft.com/en-us/products/api-

management

https://www.amazon.com/exec/obidos/ASIN/0321125215/domainlanguag-20

https://www.amazon.com/exec/obidos/ASIN/0321125215/domainlanguag-20

https://www.domainlanguage.com/ddd/
https://domainlanguage.com/ddd/

https://udidahan.com/2009/12/09/clarified-cqrs/
https://udidahan.com/2009/12/09/clarified-cqrs/
http://udidahan.com/2009/12/09/clarified-cqrs/

https://docs.microsoft.com/en-US/aspnet/core/web-api/
https://docs.microsoft.com/en-US/aspnet/core/web-api/

https://docs.datadoghq.com/service_catalog/
https://docs.datadoghq.com/service_catalog/

https://backstage.io/docs/features/software-catalog/
https://swagger.io/docs/specification/v3_0/about/
https://swagger.io/docs/specification/v3_0/about/
https://swagger.io/docs/specification/

https://www.postman.com/
https://www.postman.com/

https://grpc.io/

https://www.rabbitmq.com/
https://azure.microsoft.com/en-us/products/service-bus/
https://github.com/ThreeMammals/Ocelot
https://microsoft.github.io/reverse-proxy/index.html
https://microsoft.github.io/reverse-proxy/index.html

https://docs.konghq.com/gateway/latest/
https://azure.microsoft.com/en-us/products/api-management
https://azure.microsoft.com/en-us/products/api-management

Chapter 2 51

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/PSMCSharp

https://packt.link/PSMCSharp

3
Setup and Theory: Docker and
Onion Architecture

This chapter discusses two important building blocks of modern microservices architectures,
which will be used in most of the book’s examples, as follows:

• Docker Containers: Docker containers are a virtualization tool that enables your micro-

services to run on a wide range of hardware platforms, preventing compatibility issues.

• The Onion Architecture: The Onion Architecture confines dependencies from both the
user interface (UI) and from the deployment platform in drivers so that the software

modules that encode the whole business knowledge are completely independent of the

chosen UI, tools, and runtime environment. Moreover, in order to optimize the interaction
between domain experts and developers, all domain entities are implemented as classes

in the following way:

1. Each entity interacts with the remainder of the code only through methods that

represent the behavior of all actual domain entities.

2. Names of entities and entity members are taken from the vocabulary of the appli-

cation domain. The purpose is to build up a common language between developers
and users called the ubiquitous language.

Setup and Theory: Docker and Onion Architecture54

While Docker containers are roughly tied to microservice performance optimization, the Onion
Architecture is not specific for microservices. However, the Onion Architecture described here
was designed specifically for use with microservices, as it makes wide use of some of the micros-

ervice-specific patterns we described in Chapter 2, Demystifying Microservices Applications, such as

publisher-subscriber events, to maximize the independence of software modules and to ensure
separation between update and query software modules.

In this chapter, we will introduce a Visual Studio solution template based on the Onion Archi-

tecture along with code snippets that we will use throughout the remainder of the book for

implementing any kind of microservice. We will discuss both the theory behind it and its pros.

More specifically, this chapter covers the following:

• The Onion Architecture

• A solution template based on the Onion Architecture

• Containers and Docker

By the end of the chapter, you should be able to create an application based on the Onion Archi-

tecture and work with Docker containers, which are the building blocks of complex microservices

applications.

Technical requirements
This chapter requires the following:

1. At a minimum, the Visual Studio 2022 free Community edition.

2. Docker Desktop for Windows (https://www.docker.com/products/docker-desktop)

3. Docker Desktop, in turn, requires Windows Subsystem for Linux (WSL), which can be

installed by following these steps:

1. Type powershell in the Windows 10/11 search bar.

2. When Windows PowerShell is proposed as a search result, click on Run as an

administrator.

3. In the Windows PowerShell administrative console that appears, run the wsl

--install command.

You can find the sample code for this chapter at https://github.com/PacktPublishing/
Practical-Serverless-and-Microservices-with-Csharp.

https://www.docker.com/products/docker-desktop
https://github.com/PacktPublishing/Practical-Serverless-and-Microservices-with-Csharp
https://github.com/PacktPublishing/Practical-Serverless-and-Microservices-with-Csharp

Chapter 3 55

The Onion Architecture
The Onion Architecture makes a clear distinction between domain-specific code and the tech-

nical code that handles the UI, storage interaction, and hardware resources. This keeps the do-

main-specific code completely independent of technical tools, such as the operating system, web
technology, database, and database interaction tools.

The whole application is organized into layers, with the outermost layer having the sole purpose
of providing all the necessary infrastructure (i.e., drivers), UI, and test suites, as shown in the
following figure:

Figure 3.1: Basic Onion Architecture

In turn, the application-specific code is organized into several more nested layers. All layers must
satisfy the following constraint:

So, for instance, in the preceding figure, the outermost layer may reference all application-specific
libraries, plus all libraries that implement all the required drivers.

 Each layer may reference only inner layers. The way this constraint is implemented
depends on the underlying language and stack. For instance, layers can be imple-

mented as packages, namespaces, or libraries. We will implement layers with .NET
library projects that can be easily turned into NuGet packages, too.

Setup and Theory: Docker and Onion Architecture56

The application-specific code references the functionalities implemented in the outermost layer’s
drivers through interfaces, while the outermost layer has the main function of providing a de-

pendency injection engine that couples each of these interfaces with a driver that implements it:

...

builder.Services.AddScoped<IMyFunctionalityInterface1,

MyFunctionalityImplementation1>();

builder.Services.AddScoped<IMyFunctionalityInterface2,

MyFunctionalityImplementation2>();

...

The application-specific layer, in turn, is composed of at least two main layers: a layer that contains

all domain entity definitions, called the Domain layer, and a layer that contains the definition of
all application operations, called the Application Services layer, as shown in the following figure:

Figure 3.2: Complete Onion Architecture

If needed, the Application Services layer can be split into more sublayers, and more layers can be

placed between the Application Services and Domain layers, but this is rarely done.

The Domain layer is often split into two sublayers: the Model layer, which contains the actual

domain entity definitions, and the Domain Services layer, which contains further business rules.

Chapter 3 57

Throughout this book, we will use just the Application Services and Domain layers. We will dis-

cuss each of them in a separate subsection.

The Domain layer
The Domain layer contains the class representation of each domain entity with its behavior en-

coded in the public method of such classes.

Moreover, domain entities can be modified just with methods that represent actual domain
operations. Thus, for instance, we can’t directly access and modify all fields of a purchase order;
we are limited to manipulating it just through methods that represent actual domain operations,

such as adding or deleting an item, applying a discount, or modifying the delivery date.

The names of all public methods and properties must be built with the actual language used by

the domain experts, the previously mentioned ubiquitous language.

All the preceding constraints have the purpose of optimizing communication between developers
and experts. In this way, domain experts and developers can discuss the public interface of the

entity since it uses the same vocabulary and actual domain operations.

The following is a part of a hypothetical PurchaseOrder entity:

 public class PurchaseOrder

 {

 …

 #region private members

 private IList<PurchaseOrderItem> items;

 private DateTime _deliveryTime;

 #endregion

 public PurchaseOrder(DateTime creationTime, DateTime deliveryTime)

 {

 CreationTime = creationTime;

 _deliveryTime = deliveryTime;

 items=new List<PurchaseOrderItem>();

 }

 public DateTime CreationTime {get; init;}

 public DateTime DeliveryTime => _deliveryTime;

 public IEnumerable<PurchaseOrderItem> Items => items;

 public bool DelayDelyveryTime(DateTime newDeliveryTime)

 {

Setup and Theory: Docker and Onion Architecture58

 if(_deliveryTime< newDeliveryTime)

 {

 _deliveryTime = newDeliveryTime;

 return true;

 }

 else return false;

 }

 public void AddItem (PurchaseOrderItem x)

 { items.Add(x); }

 public void RemoveItem(PurchaseOrderItem x)

 { items.Remove(x); }

 …

 }

Once taken from the constructor, CreationTime cannot be modified anymore, so it is implement-

ed as a {get; init;} property. The list of all items can be modified through the AddItem and

RemoveItem methods, which are understandable by all domain experts. Finally, we can delay the

delivery date but we can’t anticipate it. This automatically encodes a domain business rule by
enforcing the use of the DelayDeliveryTime method.

We can improve the PurchaseOrder entity by adding a PurchaseTotal get property that returns

the total amount of the purchase, and by adding an ApplyDiscount method.

Summing up, we can state the following rule:

These entities differ a lot from the usual Entity Framework Core entities we are used to for the

following reasons:

• Entity Framework Core entities are record-like classes with no methods. That is, they are
just a set of property-value pairs.

• Each Entity Framework Core entity corresponds to a single object related somehow to

other entities, while domain entities are often trees of nested objects. That is why domain
entities are usually called aggregates.

 Domain entity states can only be changed through methods that encode actual

domain operations and that automatically enforce all business rules.

Chapter 3 59

Thus, for instance, the PurchaseOrder aggregate contains a main entity and a PurchaseOrderItem

collection. It is worth pointing out that PurchaseOrderItem cannot be considered a separate

domain entity since there are no domain operations that involve a single PurchaseOrderItem,

but PurchaseOrderItem can be manipulated just as a part of PurchaseOrder.

A similar phenomenon doesn’t occur with flat Entity Framework entities, as they lack the concept
of domain operations. We may conclude the following:

For the remainder of this book, we will refer to domain entities as aggregates.

So far, we have given entities a strong application domain semantic together with the concept

of aggregation. These aggregates differ a lot from database tuples and also from their object rep-

resentation provided by ORMS such as Entity Framework Core, so we have a mismatch between

aggregates and the structures used to persist them. This mismatch could be solved in several
ways, but all solutions must conform to the persistence ignorance principle:

We now observe another phenomenon: entities without an identity!

Two purchase orders with exactly the same dates and items remain two different entities; in fact,
they must have a different delivery for each of them.

However, what happens with two addresses containing exactly the same fields? If we consider
the semantics of an address, can we say they are two different entities?

Each address denotes a place, and if two addresses have the same fields, they denote exactly the
same place. Thus, addresses are just like numbers: even though we may replicate them several
times, each copy always denotes the same abstract entity.

Therefore, we may conclude that addresses with the same fields are indistinguishable. Relational
databases use principal keys to verify when two tuples reference the same abstract entity, so we

may conclude that the principal key of an address should be the set of all its fields.

 Domain operations on domain entities can force them to merge with dependent

entities, thus becoming a complex tree of objects called aggregates.

 Aggregates must not be impacted by how they might be persisted. They must be
completely decoupled from the persistence code, and the persistence technique

must not impose any constraint on the aggregate design.

Setup and Theory: Docker and Onion Architecture60

In the theory of domain entities, objects similar to addresses are called value objects, and their

in-memory representation must not contain explicit principal keys. An equality operator applied

to two instances of them must return true if and only if all their fields are equal. Moreover, they
must be immutable – that is, once created, their properties cannot be changed, so the only way

to modify a value object is to create a new object with some property value changed.

In C#, value objects are easily represented with records:

public record Address

{

 public string Country {get; init;}

 public string Town {get; init;}

 public string Street {get; init;}

}

The init keyword is what makes record-type properties immutable since it means they can only be

initialized. A modified copy of a record can be created as follows:

var modifiedAddress = myAddress with {Street = "new street"};

If we pass all the properties in the constructor instead of using initializers, the preceding defini-
tion can be simplified as follows:

public record Address(string Country, string Town, string Street) ;

Typical value objects include costs (represented as a number and a currency symbol), locations
(represented as longitude and latitude), addresses, and contact information.

In practice, value objects can be represented in databases with the usual tuple with a principal

key (for instance, an autoincremented integer). Then, a new copy of each tuple can be created
differently for each occurrence of the same address. It is also possible to enforce a unique database

copy by defining complex composite keys.

 Since aggregates and value objects differ a lot from the entities used by all main

ORMs such as Entity Framework, when we use ORMS to interact with databases,

we must translate ORM entities into aggregates and value objects, and vice versa,

each time we exchange data with an ORM.

Chapter 3 61

According to general Onion Architecture rules, the Domain layer interacts with the actual im-

plementation provided by an ORM through an interface. This is usually done with the so-called
repository pattern.

This means the Domain layer must contain a different interface for each aggregate, which takes
care of retrieving, saving, and deleting the whole aggregate. The repository pattern helps keep
the code modular and easy to search and update since we know we must have one and only one

repository interface for each aggregate, so we can organize the whole aggregate-related code in
a single folder.

The actual implementation of each repository is contained in the Infrastructure layer of the Onion
Architecture in a kind of database (or persistence) driver, together with various other drivers that
virtualize the interaction with the infrastructure.

Each aggregate repository interface contains methods that return aggregates, delete aggregates,

and make any other kind of persistency-related operations on aggregates.

In complex applications, it is best practice to split the Domain layer into a Model layer, which

contains just aggregates, and an outer Domain Services layer, which contains the repository in-

terfaces and the definition of domain operations that can’t be implemented as aggregate methods.

In particular, Domain Services interfaces handle the tuples used to encode the results returned

by query microservices. These tuples are not aggregates but a mix of data taken from different
data tables, so they conform to a completely different design pattern. They are returned as re-

cord-like objects with no methods and just properties that correspond to the database tuples

fields. Further Domain Services interfaces are implemented in the persistence driver of the in-

frastructure layer, too.

Handling queries and modifications separately and with different design patterns is known as
the Command Query Responsibility Segregation (CQRS) pattern.

 According to the repository pattern, a storage service must be provided through one

separate interface for each aggregate.

Setup and Theory: Docker and Onion Architecture62

Let’s look at some examples of a repository interface. The PurchaseOrder aggregate might have

an associated repository interface that looks as follows:

 public interface IPurchaseOrderRepository

 {

 PurchaseOrder New(DateTime creationTime, DateTime deliveryTime);

 Task<PurchaseOrder> GetAsync(long id);

 Task DeleteAsync(long id);

 Task DeleteAsync(PurchaseOrder order);

 Task<IEnumerable<OrderBasicInfoDTO>> GetMany(DateTime? startPeriod,

 DateTime? endPeriod, int? customerId

);

 ...

 }

There is no update method since updates are implemented by directly calling the aggregate
methods. The last method in the code shown returns a collection of record-like DTOs called
OrderBasicInfoDTO.

Several changes to different aggregates can be dealt with in a transactional way thanks to the

Unit Of Work pattern, which will be described later on in the Command subsection.

More details on how Entity Framework Core supports the implementation of repository interfac-

es and on how domain objects are tied and translated back and forth to Entity Framework Core

entities will be given in the A solution template based on the Onion Architecture section.

 Since, the microservices described in this book are quite simple, in our code exam-

ples, we will not split the domain layer into the model and domain services layers.

Therefore, the repository and other domain services interfaces will be mixed with
aggregates in the same Visual Studio project. However, when implementing more

complex applications, you should use the division of the domain layer into the model

and domain services layers.

 It is worth pointing out that there are no repository interfaces associated with val-

ue objects since value objects are handled just as primitive types, such as integers,

decimals, or strings.

Chapter 3 63

Having understood the in-memory representation of domain objects, we can move on to the way

a microservices-oriented Onion Architecture represents all business transactions/operations.

Application services
In the Microservices organization subsection of Chapter 2, Demystifying Microservices Applications,

we saw that microservices architectures often use the CQRS pattern, which is where some mi-

croservices specialize in queries and others specialize in updates. That is the strong version of the
CQRS pattern, but there is also a weaker version that simply requires that queries and updates be

organized into different modules, possibly belonging to the same microservice.

While it is not always convenient to apply CQRS in its stronger form, its weaker form is a must

when implementing microservices, as updates involve aggregates while queries involve just

record-like DTOs, so they require completely different types of processing.

Accordingly, the operations defined in the application services layer of a microservice are split
into two different types: queries and commands. As we will see, the execution of commands can

trigger events, so together with commands and queries, application services must also handle

so-called domain events. We will discuss all these different operations in the dedicated subsec-

tions that follow.

Queries

A query object represents one or several similar queries, so it usually has one or several methods

that take some inputs and return the query results. Most query methods just call a single repos-

itory method that implements the needed query, but in some cases, they may execute several

repository methods and then they may somehow merge their results.

During system testing, actual query implementations must be replaced by fake implementations,

so, usually, each query has an associated interface that is coupled with the actual implementa-

tion in the dependency injection engine. This way, the UI may just require the interface in some
constructor, thus enabling testing with a fake implementation of the query.

The following is a possible definition of a query that returns all purchase orders emitted after a

given date, together with its associated interface:

public interface IPurchaseOrderByStartDateQuery: IQuery

{

 Task<IEnumerable<OrderBasicInfoDTO>> Execute(DateTime startDate);

}

Setup and Theory: Docker and Onion Architecture64

public class PurchaseOrderByStartDateQuery(IPurchaseOrderRepository repo):

 IPurchaseOrderByStartDateQuery

{

 public async Task<IEnumerable<OrderBasicInfoDTO>> Execute(DateTime

startDate)

 {

 return await repo.GetMany(startDate, null, null);

 }

}

The interface inherits from an empty interface whose unique purpose is to mark both the interface
and its implementation as queries. This way, all queries and their associated implementation can
be automatically found with the help of reflection and added to the dependency injection engine.
We will provide the code that discovers all queries in the A solution template based on the Onion

Architecture section together with a complete solution template.

As mentioned, the implementation just calls a repository method and passes it adequate pa-

rameters. An implementation of the repository is passed in the principal constructor of the class

by the same dependency injection engine that will inject the query itself in the constructor of a

presentation layer object (a controller, in the case of an ASP.NET Core website).

Commands

Commands work in a slightly different way because, for better code readability, each command

represents a single application operation. For this reason, each command instance represents

both the abstract operation and its input. The actual operation implementation is contained in
a command handler object. The following is the code of a hypothetical command that applies a
discount to a purchase order:

public record ApplyDiscountCommand(decimal discount, long orderId):

ICommand;

Commands must be immutable; that’s why we implanted them as records. In fact, the only oper-

ation allowed on them is their execution. Similar to queries, commands also implement an empty

interface that marks them as commands (in this case, ICommand).

Command handlers are implementations of the following interface:

 public interface ICommandHandler {}

 public interface ICommandHandler<T>: ICommandHandler

 where T: ICommand

Chapter 3 65

 {

 Task HandleAsync(T command);

 }

As you can, see all command handlers implement the same HandleAsync method that accepts the

command as its single input. Thus, for instance, the handler associated with ApplyDiscountCommand

is something like the following class:

public class ApplyDiscountCommandHandler(

IPackageRepository repo):ICommandHandler<ApplyDiscountCommand>

 {

 public async Task HandleAsync(ApplyDiscountCommand command)

 {

 var purchaseOrder = await repo.GetAsync(command.OrderId);

 //call adequate aggregate methods to apply the required update

 //possibly modify other aggregates by getting them with other

 //injected repositories

 ...

 }

 }

All handlers must be added to the dependency injection engine, as shown in the following example:

builder.Services.AddScoped<ICommandHandler<ApplyDiscountCommand>,

 ApplyDiscountCommandHandler>();

This can be done automatically by scanning the application services assembly with reflection.
We will provide the code that discovers all command handlers in the A solution template based on

the Onion Architecture section.

Each command handler gets or creates aggregates, modifies them by calling their methods, and
then executes a save instruction to persist all modifications in the underlying storage.

The save operation must be implemented in the storage driver (for instance, Entity Framework
Core), so, as usual for all Onion Architecture drivers’ operations, it is mediated by an interface. The
interface that performs the save operations and other transaction-related operations is usually

called IUnitOfWork. A possible definition of this interface is as follows:

public interface IUnitOfWork

 {

 Task<bool> SaveEntitiesAsync();

Setup and Theory: Docker and Onion Architecture66

 Task StartAsync();

 Task CommitAsync();

 Task RollbackAsync();

 }

Let’s break this down:

• SaveEntitiesAsync saves all updaters performed so far in a single transaction. It returns

true if the storage engine actually changed after the save operation, and false otherwise.

• StartAsync starts a transaction.

• CommitAsync and RollbackAsync respectively commit and roll back an opened transaction.

All methods that explicitly control the start and end of a transaction are useful for enclosing both

a get operation and the final SaveEntitiesAsync save in the same transaction, as in the following

simplified flight reservation snippet:

await unitOfWork.StartAsync();

var flight = await repo.GetFlightAsync(flightId);

flight.Seats--;

if(flight.Seats < 0)

{

 await unitOfWork.RollBackAsync();

 return;

}

...

await unitOfWork.SaveEntitiesAsync();

await unitOfWork.CommitAsync();

If there are no more available seats, the transaction is aborted, but if there are available seats,

we are sure that no other passenger can take the available seat because both the query and the

update are performed in the same transaction, thus preventing interference from other reserva-

tion operations.

Of course, the preceding code works if the transaction has an adequate isolation level and if the

database supports that isolation level. We can use a high enough isolation level for all operations

in our microservice; otherwise, we are forced to pass the isolation level as a StartAsync argument.

Now, we are ready to explain why domain events are needed, and how they are handled.

Chapter 3 67

Domain events

We may define domain events as follows:

Therefore, they must not be confused with the events involved in the communications between
different microservices, which are called integration events to distinguish them from domain

events.

Why use events inside the boundaries of a microservice? The reason is always the same: to en-

sure a better decoupling between parts. Here, the parts involved are aggregates. The code of
each aggregate must be completely independent of other aggregates to ensure modularity and

modifiability, so relations between aggregates are either mediated by command handlers or by
some publisher-subscriber pattern.

Accordingly, if the interaction between two aggregates is somehow decided by the code of a com-

mand handler, the same command handler might take care of processing the data of both of them

and then somehow update them. However, if the interaction is tied to the processing within an

aggregate method, we are forced to use events because we can’t make an aggregate aware of all

the other aggregates that need to be informed about some of its data changes. Summing up, we

may state the following principle:

Another important principle is the following:

 Domain events are events originating from something happening in the microser-

vice domain and are handled within the boundaries of the microservice itself. This
means they involve communications based on the publisher-subscriber pattern

between two chunks of code of the same microservice.

 Domain events are triggered just inside aggregate methods because other kinds of

interactions are better handled by command handlers’ code.

 Events triggered inside an aggregate method must not interfere with the ongoing

method processing because these might undermine the contract between the ag-

gregate and the command handlers that manipulate it.

Setup and Theory: Docker and Onion Architecture68

Accordingly, each aggregate stores all events inside of it in an events list, and then the command

handler decides when to execute these handlers. Typically, all events of all aggregates processed by
a command handler are executed just before the handler saves all changes by calling unitOfWork.

SaveEntitiesAsync(). However, this is not a general rule.

Events are handled in a similar way to commands, the only difference being that each command

has just one associated handler, while each event may have several subscriptions attached to it.

Luckily, this difficulty can be easily handled with some advanced features of the .NET dependency
injection engine.

More specifically, events are classes marked with the empty IEventNotification interface, while

event handlers are an implementation of the following interface:

public interface IEventHandler

{

}

public interface IEventHandler<T>: IEventHandler

 where T: IEventNotification

 {

 Task HandleAsync(T ev);

 }

All data structures involved are completely analogous to the ones needed to handle commands.

However, now we must add some enhancements to associate each event with all its handlers.

The following generic class does the trick:

public class EventTrigger<T>

 where T: IEventNotification

 {

 private readonly IEnumerable<IEventHandler<T>> _handlers;

 public EventTrigger(IEnumerable<IEventHandler<T>> handlers)

 {

 _handlers = handlers;

 }

Chapter 3 69

 public async Task Trigger(T ev)

 {

 foreach (var handler in _handlers)

 await handler.HandleAsync(ev);

 }

 }

Here, IEventNotification is an empty interface used just to mark a class as representing an event.

If we add the preceding generic class to the dependency injection engine with service.AddSco

ped(typeof(EventTrigge<>)), then whenever we require a specific instance of this class (say,
for the MyEvent event generic argument), the dependency injection engine will automatically
retrieve all IEventHandler<MyEvent> implementations and will pass it in the constructor of

the EventTrigger<MyEvent> instance being returned. After that, we may launch all subscribed

handlers with something like the following:

public class MyCommandHandler(EventTrigger<MyEvent> myEventHandlers): …

{

 public async Task HandleAsync(MytCommand command)

 {

 …

 await myEventHandlers.Trigger(myEvent)

 …

 }

}

It is worth pointing out that the IEventNotification interface must be defined in the domain
layer since it must use aggregates, while all other interfaces and classes connected to events are

defined in the application services DLL.

As an example of an event, let’s consider a purchase order aggregate of an e-commerce application.

When the purchase order is finalized by calling its Finalize method, if the purchase is greater

than a given threshold, then an event must be created for adding some scores to the user profiles
that the user can spend to get discounts on further purchases.

Setup and Theory: Docker and Onion Architecture70

The following figure exemplifies what happens:

Figure 3.3: Domain event example

As in the case of command handlers, all event handlers defined in the application services DLL
can be automatically discovered and added to the dependency injection engine through reflec-

tion. We will show how to do it in the next section, which will propose a general .NET solution
template for the Onion Architecture.

A solution template based on the Onion Architecture
In this section, we describe a solution template based on the Onion Architecture that we will

use throughout the remainder of the book, which you can find in the ch03 folder of the book’s

GitHub repository (https://github.com/PacktPublishing/Practical-Serverless-and-
Microservices-with-Csharp). This template shows how to put into practice what you have
learned about the Onion Architecture.

The solution contains two .NET library projects, called ApplicationServices and DomainLayer,

which implement, respectively, the application services and domain layers of an Onion Archi-

tecture:

https://github.com/PacktPublishing/Practical-Serverless-and-Microservices-with-Csharp
https://github.com/PacktPublishing/Practical-Serverless-and-Microservices-with-Csharp

Chapter 3 71

Figure 3.4: Solution template based on the Onion Architecture

As prescribed by the Onion Architecture, the ApplicationServices project has a reference to the

DomainLayer architecture project.

In ApplicationServices, we added the following folders:

• Queries to place all queries and query interfaces

• Commands to place all command classes

• CommandHandlers to place all command handlers

• EventHandlers to place all event handlers

• Tools, which contains all Onion Architecture-related interfaces used by the application

services we described in the previous section

• Extensions, which contains the HandlersDIExtensions.AddApplicationServices()

extension method that adds all queries, event handlers, and command handlers defined
in the project to the dependency injection engine

All the preceding folders can be organized into subfolders to increase the code readability.

Setup and Theory: Docker and Onion Architecture72

In the DomainLayer project, we added the following folders:

• Models to place all aggregates and value objects

• Events to place all events that may be raised by the aggregates

• Tools, which contains all Onion Architecture-related interfaces used by the domain we

described in the previous section, and some further utility classes

The Extensions folder of the ApplicationServices project contains just one file:

Figure 3.5: ApplicationServices extensions

The HandlersDIExtensions static class contains two overloads of an extension method, which

adds all queries, command handlers, event handlers, and the EventMediator class to the depen-

dency injection engine:

public static IServiceCollection AddApplicationServices

 (this IServiceCollection services, Assembly assembly)

{

 AddAllQueries(services, assembly);

 AddAllCommandHandlers(services, assembly);

 AddAllEventHandlers(services, assembly);

 services.AddScoped<EventMediator>();

 return services;

}

public static IServiceCollection AddApplicationServices

 (this IServiceCollection services)

{

 return AddApplicationServices(services,

 typeof(HandlersDIExtensions).Assembly);

}

It uses three different private methods that scan the assembly with reflection, looking respectively
for queries, command handlers, and event handlers. The full code is available in the ch03 folder of

the GitHub repository associated with the book. Here, we analyze just AddAllCommandHandlers

to show the basic ideas exploited by all three methods:

Chapter 3 73

private static IServiceCollection AddAllCommandHandlers

 (this IServiceCollection services, Assembly assembly)

{

 var handlers = assembly.GetTypes()

 .Where(x => !x.IsAbstract && x.IsClass

 && typeof(ICommandHandler).IsAssignableFrom(x));

 …

First of all, we collect all nonabstract classes that implement the ICommandHandler empty inter-

face. This interface was specifically added to all command handlers to retrieve all of them with
reflection. Then, for each of them, we retrieve the ICommandHandler<T> that it implements:

foreach (var handler in handlers)

{

 var handlerInterface = handler.GetInterfaces()

 .Where(i => i.IsGenericType &&typeof(

 ICommandHandler).IsAssignableFrom(i))

 .SingleOrDefault();

Finally, if we find such an interface, we add the pair to the dependency injection engine:

foreach (var handler in handlers)

{

 …

 if (handlerInterface != null)

 {

 services.AddScoped(handlerInterface, handler);

 }

}

The Tools folder of the ApplicationServices project contains the files shown here:

Figure 3.6: ApplicationServices tools

Setup and Theory: Docker and Onion Architecture74

We already analyzed all interfaces and classes contained in the preceding Tools folder, except

EventMediator in the previous section. Let’s recall them:

• IQuery and ICommand are empty interfaces that mark, respectively, queries and commands

• ICommandHandler<T> and IEventHandler<T> are the interfaces that must be imple-

mented, respectively, by command handlers and event handlers

• EventTrigger<T> is the class that does the magic of collecting all event handlers asso-

ciated with the same event, T

EventMediator is a utility class that solves a practical problem. A command handler that needs

to trigger all event handlers associated with an event, T, must inject EventTrigger<T> in its

constructor. However, the point is that a command discovers that it needs to trigger the T event

just when it finds the T event in the event lists of an aggregate, so it should inject all possible

EventTrigger<T> in its constructor.

To overcome this problem, the EventMediator class uses IServiceProvider to require the event

handlers associated with a list of events it is passed in its TriggerEvents(IEnumerable<IEvent

Notification> events) method.

Accordingly, it is enough to inject EventMediator in the constructor of each command handler so

that whenever it finds a nonempty event list, L, in an aggregate, it can simply call the following:

await eventMediator.TriggerEvents(L);

Once EventMediator receives the preceding call, it scans the event list to discover all the events

contained in it, then for each of them, it requires the corresponding EventTrigger<T> to get all

associated event handlers, and finally, it executes all retrieved handlers, passing them the cor-

responding events.

To perform its job, the EventMediator class requires IServiceProvider in its constructor:

public class EventMediator

{

 readonly IServiceProvider services;

 public EventMediator(IServiceProvider services)

 {

 this.services = services;

 }

 ...

Chapter 3 75

Then, it uses this service provider to require each needed EventTrigger<T>:

public async Task TriggerEvents(IEnumerable<IEventNotification> events)

 {

 if (events == null) return;

 foreach(var ev in events)

 {

 var triggerType = typeof(EventTrigger<>).MakeGenericType(

 ev.GetType());

 var trigger = services.GetService(triggerType);

Finally, it invokes the EventTrigger<T>.Trigger methods with reflection:

var task = (Task)triggerType.GetMethod(nameof(

 EventTrigger<IEventNotification>.Trigger))

 .Invoke(trigger, new object[] { ev });

await task.ConfigureAwait(false);

The following is the full code of the EventMediator class:

public class EventMediator

{

 readonly IServiceProvider services;

 public EventMediator(IServiceProvider services)

 {

 this.services = services;

 }

 public async Task TriggerEvents(IEnumerable<IEventNotification> events)

 {

 if (events == null) return;

 foreach(var ev in events)

 {

 var triggerType = typeof(EventTrigger<>).MakeGenericType(

 ev.GetType());

 var trigger = services.GetService(triggerType);

 var task = (Task)triggerType.GetMethod(nameof(

 EventTrigger<IEventNotification>.Trigger))

 .Invoke(trigger, new object[] { ev });

 await task;

Setup and Theory: Docker and Onion Architecture76

 }

 }

}

The Tools folder of the DomainLayer project contains the following files:

Figure 3.7: DomainLayer tools

IEventNotification and IRepository are empty interfaces that mark, respectively, events and

repository interfaces. We already discussed them in the previous section. We also already dis-

cussed IUnitOfWork, which is the interface needed by command handlers to persist changes and

handle transactions.

Entity<T> is a class that all aggregates must inherit from:

public abstract class Entity<K>

 where K: IEquatable<K>

{

 public virtual K Id {get; protected set; } = default!;

 public bool IsTransient()

 {

 return Object.Equals(Id, default(K));

 }

 >Domain events handling region

 >Override Equal region

}

The preceding class contains two minimized code regions. The K generic parameter is the type

of the aggregate’s Id principal key.

The IsTransient() method returns true if the aggregate has not been assigned a principal key yet.

Override Equal region contains the code that overrides the Equal method and defines equality
and inequality operators. The redefined Equal method considers equal two instances if and only

if they have the same principal key.

Chapter 3 77

Domain events handling region handles the list of events triggered during all calls to the ag-

gregate methods. The exploded code is shown here:

#region domain events handling

public List<IEventNotification> DomainEvents { get; private set; } =

null!;

public void AddDomainEvent(IEventNotification evt)

{

 DomainEvents ??= new List<IEventNotification>();

 DomainEvents.Add(evt);

}

public void RemoveDomainEvent(IEventNotification evt)

{

 DomainEvents?.Remove(evt);

}

#endregion

We don’t need an abstract class for value objects because, as discussed in the previous section,

the .NET record type perfectly represents all value type features.

Before discussing in more detail how to connect the two library projects of the template with the

actual storage drivers and with an actual UI, we need to understand how to handle the mismatch

between aggregates and record-like ORM classes. We will do this in the dedicated subsection

that follows.

Matching aggregates and ORM entities
There are several techniques to match ORM entities and aggregates. The simplest one consists
of implementing the aggregates with the ORM entities themselves. The main difficulty with this
approach is that aggregates do not expose the properties that must match the database fields as
public properties. However, since they usually expose them as private fields, we may try to use
these private fields for the database field mapping if the chosen ORM supports mapping with
private properties.

Entity Framework Core supports the mapping with private fields, but if we are looking for com-

plete independence from the database driver, we can’t rely on this peculiarity of Entity Framework

Core. Moreover, this approach forces us to define the ORM entities in the domain layer since they
are also aggregates. This means that we can’t decorate the class member with ORM-specific at-

tributes and that we need to worry about how the class will be used by the ORM while defining
each aggregate, thus undermining independence from a specific storage driver.

Setup and Theory: Docker and Onion Architecture78

A better approach is the state object approach:

1. We associate each aggregate with an interface that stores the state of the aggregate in

its properties. This way, instead of using private backing fields, the aggregate uses the
properties of this interface.

2. The state interface is passed in the constructor of the aggregate and then stored in a
private readonly property.

3. The ORM entity associated with the aggregate implements this interface. This way, the
database driver adapts to the aggregates and not vice versa, thus achieving the required

independence of the Domain layer from the database driver.

4. When the domain layer requires either a new fresh aggregate or an aggregate already

stored in the database through a repository interface method, the database implemen-

tation of the repository method creates or retrieves the corresponding ORM entity and

then creates a new aggregate, passing this ORM entity in its constructor as a state object.

5. When the aggregates are modified, all their modifications are reflected on their state
objects, which, being ORM entities, are tracked by the ORM. Therefore, when we instruct
the ORM to save all changes, all aggregates’ changes are automatically passed to the un-

derlying database because these changes are stored in tracked objects.

The following figure shows the preceding flow:

Figure 3.8: Aggregates lifecycle

Chapter 3 79

Let’s try to modify our previous PurchaseOrder aggregate by using the following state interface:

public interface IPurchaseOrderState

{

 public DateTime CreationTime { get; set; }

 public DateTime DeliveryTime { get; set; }

 public ICollection<PurchaseOrderItem> Items { get; set; }

 …

}

Modifications are straightforward and do not increase the complexity of the code:

public class PurchaseOrder

{

 private readonly IPurchaseOrderState _state;

 public PurchaseOrder(IPurchaseOrderState state)

 {

 _state = state;

 }

 public DateTime CreationTime => _state.CreationTime;

 public DateTime DeliveryTime => _state.DeliveryTime;

 public IEnumerable<PurchaseOrderItem> Items => _state.Items;

 public bool DelayDelyveryTime(DateTime newDeliveryTime)

 {

 if(_state.DeliveryTime < newDeliveryTime)

 {

 _state.DeliveryTime = newDeliveryTime;

 return true;

 }

 else return false;

 }

 public void AddItem (PurchaseOrderItem x)

 { _state.Items.Add(x); }

 public void RemoveItem(PurchaseOrderItem x)

 { _state.Items.Remove(x); }

}

Now, we are ready to understand how to connect the two projects of our template with an actual

database driver and an actual UI.

Setup and Theory: Docker and Onion Architecture80

A complete solution based on the Onion Architecture
The ch03 folder of the book’s GitHub repository (https://github.com/PacktPublishing/
Practical-Serverless-and-Microservices-with-Csharp) contains a complete solution, which,

together with the application services and domain layer libraries, also features a database driver

based on Entity Framework Core and a presentation layer based on an ASP.NET Core Web API
project.

The purpose of this project is to show how to use the general Onion Architecture template de-

scribed in this section in an actual solution.

The following figure shows the complete solution:

Figure 3.9: A complete solution based on the Onion Architecture

The DBDriver project is a .NET library project where we added a dependency on the following
Nuget packages:

• Microsoft.EntityFrameworkCore.SqlServer: This package loads both Entity Framework
Core and its SQL Server provider

• Microsoft.EntityFrameworkCore.Tools: This package provides all tools for scaffolding
and handling database migrations

The WebApi project is an ASP.NET Core Web API project. It works as the outermost layer of the
Onion Architecture.

 Since the DBDriver project must provide a storage driver, it also has a dependency

on the domain library project.

The outermost layer of the Onion Architecture (in our example, WebApi) must have
a dependency on the application services directory and all drivers’ projects (in our
example, just DBDriver).

https://github.com/PacktPublishing/Practical-Serverless-and-Microservices-with-Csharp
https://github.com/PacktPublishing/Practical-Serverless-and-Microservices-with-Csharp

Chapter 3 81

We added some folders and classes to the DBDriver project that should be used in all drivers based

on Entity Framework Core. The following figure shows the project structure:

Figure 3.10: DBDriver project structure

Here is the description of all the folders:

• Entities: Put all your Entity Framework Core entities here, possibly organized in sub-

folders.

• Repositories: Put all repository implementations here, possibly organized in subfolders.

• MainDbContext: This is the skeleton of the project Entity Framework DB context, which
also contains the implementation of the IUnitOfWork interface.

• Extensions: This folder contains two extension classes. RepositoryExtensions just pro-

vides the AddAllRepositories extension method, which discovers all repository imple-

mentations and adds them to the dependency injection engine. Its code is similar to one

of the AddAllCommandHandlers extension methods that we described in the previous

subsection, so we will not describe it here. DBExtension contains just the AddDbDriver

extension method, which adds all implementations provided by DBDriver to the depen-

dency injection engine.

The implementation of the AddDbDriver extension method is straightforward:

public static IServiceCollection AddDbDriver(

 this IServiceCollection services,

 string connectionString)

{

 services.AddDbContext<IUnitOfWork, MainDbContext>(options =>

 options.UseSqlServer(connectionString,

 b => b.MigrationsAssembly("DBDriver")));

Setup and Theory: Docker and Onion Architecture82

 services.AddAllRepositories(typeof(DBExtensions).Assembly);

 return services;

}

It accepts the database connection string as its only input and adds the MainDbContext Entity

Framework context as implementation for the IUnitOfWork interface with the usual AddDbContext

Entity Framework Core extension method. Then, it calls the AddAllRepositories method to add

all repository implementations provided by DBDriver.

Here is the MainDbContext class:

internal class MainDbContext : DbContext, IUnitOfWork

{

 public MainDbContext(DbContextOptions options)

 : base(options)

 {

 }

 protected override void OnModelCreating(ModelBuilder builder)

 {

 }

 region IUnitOfWork Implementation

}

The class is defined as internal since it must not be visible outside of the database driver. All entity
configurations must be placed inside the OnModelCreating method as usual.

The implementation of IUnitOfWork is minimized. The exploded code is shown here:

#region IUnitOfWork Implementation

public async Task<bool> SaveEntitiesAsync()

{

 return await SaveChangesAsync() > 0; ;

}

public async Task StartAsync()

{

 await Database.BeginTransactionAsync();

}

public Task CommitAsync()

{

Chapter 3 83

 return Database.CommitTransactionAsync();

}

public Task RollbackAsync()

{

 return Database.RollbackTransactionAsync();

}

#endregion

The IUnitOfWork implementation is straightforward since it consists of a one-to-one coupling

with DBContext methods.

Having discussed what we need to know about DBDriver, let’s move to the Web API project.

In our case, we need to add just two calls to Program.cs:

..

builder.Services.AddControllers();

builder.Services.AddEndpointsApiExplorer();

builder.Services.AddSwaggerGen();

builder.Services.AddApplicationServices();

builder.Services.AddDbDriver(

 builder.Configuration?.GetConnectionString(

 "DefaultConnection") ?? string.Empty);

..

 Since we expose just IUnitOfWork in the dependency injection engine, all repos-

itories that need MainDbContext for their job must require IUnitOfWork in their

constructors, and then they must cast it to MainDbContext.

 Connecting the outermost project of an Onion Architecture is easy. We just need

to call the extension method exposed by the application services, which injects all

application services implementations in the dependency injection engine, and we

need to call the extension methods of all drivers.

Setup and Theory: Docker and Onion Architecture84

At this point, in the case of the ASP.NET Core project, all that remains is to acquire the command
handlers for the commands that we need in the constructors of our controllers. After that, each

action method must just use the input that it received to build adequate commands, and then it

must invoke the handler associated with each command.

The short description of how to handle the outermost layer of an Onion Architecture completes
our short introduction to this architecture, but we will find examples throughout the remainder
of the book since we will use them for most of our code examples.

Let’s move on to another important building block of microservices architecture: containers!

Containers and Docker
We’ve already discussed the advantages of having microservices that don’t depend on the en-

vironment where they run; microservices can be moved from busy nodes to idle nodes without

constraints, thus achieving a better load balance and, consequently, better usage of the available

hardware.

However, if we need to mix legacy software with newer modules or if we would like to use the best

stack for each module, with the ability to mix several development stack implementations, we are

faced with the problem that each different stack has different hardware/software prerequisites. In
these cases, the independence of each microservice from the hosting environment can be restored

by deploying each microservice, together with all its dependencies, on a private virtual machine.

However, starting a virtual machine with its private copy of the operating system takes a lot of

time, and microservices must be started and stopped quickly to reduce load-balancing and fault

recovery costs. Luckily, microservices can rely on a lighter form of virtualization technology: con-

tainers. Containers provide a lightweight and efficient form of virtualization. Unlike traditional
virtual machines that virtualize an entire machine, including the operating system, containers
virtualize at the operating system’s filesystem level, sitting on top of the host operating system
kernel. They use the operating system of the host machine (kernel, DLLs, and drivers) and use
the operating system’s native features to isolate processes and resources, creating an isolated

environment for the images they run.

Chapter 3 85

The following figure shows how containers work:

Figure 3.11: Container basic principles

Containers are run by the containers’ runtime from images that encode their content. The same
image can create several identical containers. Images are stored in image registries that identify

them through both an image name and an image version. In turn, images are created by com-

mands in a text file that specify both the container’s content and properties.

More specifically, names are URLs whose domain part is the registry domain, and the path part
is composed of a namespace that includes related images and a repository name. The version is
attached to this URL with a colon and is called tag since it can be any string. Summing up, the

name and version are encoded as shown here:

<registry domain>/<namespace>/<repository name>:<tag>

Thus, for instance, the ASP.NET CORE 9.0 runtime Docker image’s full URL is as follows:

mcr.microsoft.com/dotnet/aspnet:9.0

Here, mcr.microsoft.com is the registry domain, dotnet is the namespace, asp.net is the repos-

itory name, and 9.0 is the tag.

Setup and Theory: Docker and Onion Architecture86

Any runtime that needs to create containers downloads its image from a registry, possibly pro-

viding credentials, and then uses the downloaded images to create the containers. The following
figure shows the whole process of container creation:

Figure 3.12: Containers/images lifecycle

In the remainder of the book, we will use Docker containers as a de facto standard. Each Docker

image is generated by specifying changes to apply to another preexisting image with the Docker

containers description language. The instructions for creating a Docker image are contained in

a file that must be named Dockerfile (without any file extension).

Each Dockerfile usually starts with a FROM instruction that specifies the preexisting image to
modify, as shown here:

FROM mcr.microsoft.com/dotnet/aspnet:9.0

...

The tag with the ASP.NET CORE version to use is specified after the image URL, preceded by a colon,
as shown in the preceding code. Images taken from private repositories must be specified with
their complete URL, which starts with the domain of the registry. Images without their complete

URL are allowed only when they are hosted on the Docker free public registry, hub.docker.com/r/.

Chapter 3 87

The following figure shows the hierarchical organization of Docker images:

Figure 3.13: Hierarchy of images and containers

The FROM statement specifies the environment you are in, called the build stage. After that, you

can deal with the image as if it were a filesystem by copying files from your computer into it and
by executing shell commands:

Figure 3.14: Building the image

 In all copy operations, you can use relative paths on your computer. They are as-

sumed to be relative to the directory that contains the Dockerfile file.

Setup and Theory: Docker and Onion Architecture88

Here are the main Dockerfile commands:

• WORKDIR <path in the image file system>

This instruction defines the current directory in the image filesystem. If the directory
doesn’t exist, it is created. After that, you can use relative paths also in the image filesystem.

• COPY <path in your computer> <path in the image>

Copy one or more files into the image filesystem. If the source path denotes a folder, the
whole folder is recursively copied; otherwise, a single file is copied. In any case, the di-
rectory or file copied takes the name specified in the image path.

• Copy <path1> <path2> … ./ (or [<path1>, <path2>, …, ./]

The content specified by all source paths is copied into the image’s current directory.
Source file names are not changed.

• Copy –-from=<image name or url>:<version> …

This works like the previous copy commands but files are taken from the image specified
by the name/URL after from=. A name can be specified instead of a URL only if the image
is contained in your computer or the Docker public repository. If no version is specified,
latest is assumed as the default version name.

• RUN <command> <arg1> <arg2> ...

This executes the specified shell command with the specified arguments in the current
directory of the image.

• CMD [<command>, <arg1>, <arg2>, ...]

ENTRYPOINT [<command>, <arg1>, <arg2>, ...]

This specifies what happens when the container is executed. More specifically, it declares
both the command and arguments to run when the container is executed.

• EXPOSE <port1> <port2>

This declares all ports supported by the container. Network traffic should be redirected
into the container only through the ports declared here, but traffic directed to other ports
is not blocked.

Chapter 3 89

A Dockerfile can also build intermediary images as a step to define the final image. For instance,
an image containing the whole .NET SDK can be created with the only purpose of compiling a

.NET solution. Then, the final binaries will be copied with the Copy –-from=… instruction in the

final image, which contains just the .NET runtime. We will analyze this possibility in more detail
when discussing Visual Studio support for Docker.

Let’s move on to a very simple example to familiarize ourselves with both Dockerfile instructions
and the shell commands that manipulate Docker images and containers.

Docker Desktop: a simple example
In order to operate with Docker on a client computer, you need to install Doker Desktop. Please

refer to the instructions in the Technical requirements section for its installation. As described in

the Technical requirements section, all examples suppose a Windows machine with WSL installed

and Docker Desktop configured for Linux containers.

Once you have installed Docker Desktop, you will have the following:

• The Docker runtime, so you can instantiate containers from images, and run them on

your computer.

• A Docker client, so you can compile Dockerfiles into images, and execute other Docker-re-

lated shell commands.

• A Docker local registry. All images compiled on your computer will be placed here. From

here, you can move them to other registries. Moreover, before creating containers on your

machine, you need to download their images here.

In order to show the power of Docker, we will start with a simple Java example. You will see that
you don’t need either the Java runtime or Java SDK to compile and run a simple Java program

because everything needed is downloaded into the image being built.

Let’s start by creating a folder in which to place all the files needed to build the image. Let’s call
it SimpleExample.

In this folder, place a Hello.java file containing the following simple code:

class Hello{

 public static void main(String[] args){

 System.out.println("This program runs in a Docker container");

 }

}

Setup and Theory: Docker and Onion Architecture90

Now, in the same folder, we need just a Dockerfile with the following content:

FROM eclipse-temurin:11

COPY . /var/www/java

WORKDIR /var/www/java

RUN javac Hello.java

CMD ["java", "Hello"]

eclipse-temurin is a Java SDK. This will enable us both to compile and execute Java code in our
image and our containers. Then, the code copies everything in our folder into the newly created
/var/www/java path in the image being built. Please remember that relative paths on the source

are evaluated with respect to the position of the Dockerfile.

Finally, we move to the var/www/java folder and run the Java compiler, which will create a .jar

file in the same folder. The CMD instruction specifies invoking the Java command on the previously
created .jar file when a container based on this image will be executed.

Now, we need a Linux shell opened in our SimpleExample folder to execute Docker commands.

Right-click on the image of the SimpleExample folder by simultaneously pressing the shift key,

and choose the option to open a Linux shell from the menu that appears.

As a first step, we need to build our Dockerfile instructions to create an image. This is done with
the build command, as follows:

docker build ./ -t simpleexample

The first argument specifies the location of the Dockerfile, while the -t option specifies a tag (an
image URL) to attach to the image, in our case, simpleexample. Since the image will be placed in

our local Docker Desktop registry, it is enough to specify the repository part of the URL, but if you

have several local images, you can also add a namespace to better classify your images. Usually,

at this stage, no version tag is added, and Docker assumes the latest default tag.

The compilation might take a few seconds. If you look at the console while it is compiling, you
can see that other images are recursively downloaded, because each image is built upon other

images, and so on.

 Remember: all image names must be lowercase!

Chapter 3 91

Now, issue the docker images command to see all images defined on your local registry. You
should see simpleexample among them. Images are also listed in the UI that appears when you

double-click on the Docker Desktop icon on your desktop.

Now, let’s create a container based on the newly created images. The run command creates a

container based on a given image and immediately executes it:

docker run --name myfirstcontainer simpleexample

The --name option specifies a name for the container while the other argument is the name of
the image we want to use to create the container. The container prints the string we put in our
Java class and then exits quickly.

Let’s list all executing containers with docker ps. No container has been listed since our container

finished its execution. However, we can see also all non-running containers with the --all option:

docker ps --all

Let’s re-execute our container. If we re-execute the run command, we will create another container,

so the right way to re-execute a sleeping container is as follows:

docker restart myfirstcontainer

However, in this case, no string is printed on the console because restart runs the container

into another process. You might find this strange but it is not, because containers usually run a
never-ending loop that might block your shell.

Neverending containers can be stopped with something like this:

docker stop myfirstcontainer

When you have finished with your container, you can remove it with the following:

docker rm myfirstcontainer

Now, you can remove also the image used to create the container with the following:

docker rmi simpleexample

You have learned a lot of useful Docker shell commands. The next section is dedicated to the
description of some more advanced useful commands.

Setup and Theory: Docker and Onion Architecture92

A few more Docker commands and options
During microservice operations, Docker containers are moved from one hardware node to another

to balance the load. Unfortunately, when a container is removed to create it elsewhere, all files
saved in its filesystem are lost. For this reason, some portions of the container’s filesystem are
mapped to external storage, typically provided by network disk units.

This is possible because the run command has the option to map a directory in the host machine

(say, S) to a directory in the container’s internal storage space (say, D) so that files written to D are

actually saved in S, and remain safe also after the container has been removed. This operation is
called bind mount, and the option to add it to the run command is as follows:

docker run -v <host machine path>:<container path> ...

Another option allows the mapping of each port exposed by the container to an actual port on

the host computer:

docker run -p <host machine port>:<container port> ...

This option can be repeated several times to map more than one port. Without this option, it
would be impossible to redirect network traffic inside the container.

The -e option passes operating system environment variables to the container. The code running
in the container can easily ask the values of these variables to the operating system, so they are

the preferred way to configure an application:

docker run -e mayvariable1=mayvalue1 -e mayvariable2=mayvalue2. ..

Another useful option of the run command is the -d option (d stands for detached):

docker run -d ...

When this option is provided, the container is launched detached from the current shell prompt,

that is, in a different process. This way, a container that hosts a never-ending program, such as
a web server, doesn’t block the shell prompt.

Each image can be attached to an indefinite number of tags that can be used as alternative names:

docker tag <image name> <tag>

Chapter 3 93

Tagging is the first step for pushing a local image into a public registry. Suppose we have an image
called myimage that we would like to push to a private registry we have on Azure, say, myregistry.
azurecr.io/. Suppose we would like to place this image in the mypath/mymage path of this registry,

that is, to myregistry.azurecr.io/mypath/mymage.

As a first step, we tag our image with its final URL:

docker tag myimage myregistry.azurecr.io/mypath/mymage

Then, it is enough to execute a push operation that uses the new tag attached to the image:

docker push myregistry.azurecr.io/mypath/mymage:<version>

Pulling public registry images to our local registry instead is straightforward:

docker pull myregistry.azurecr.io/mypath/myotherimage:<version>

The simplest way to log in to an Azure registry is by using the Azure CLI. You can download its
installer here: https://aka.ms/installazurecliwindows.

As a first step, log in to your Azure account with the following:

az login

This command should start your default browser and should drive you through the manual login

procedure in your Azure account. Once logged in to your Azure account, you can log in to your
private registry by typing the following command:

az acr login --name <registryname>

Here, <registryname> is the unique name of your Azure registry, not its complete URL. After
logging in, you can freely work with your Azure registry.

Visual Studio has native support for Docker. Let’s analyze all the possibilities offered by this
support.

 Before interacting with a registry that requires a login, we must perform a login

operation. Each registry has its own login procedure.

https://aka.ms/installazurecliwindows

Setup and Theory: Docker and Onion Architecture94

Visual Studio support for Docker
Visual Studio support for Docker can be enabled by simply selecting the Enable container sup-

port checkbox in the appropriate Visual Studio project options. Let’s experiment with an ASP.

NET Core MVC project. After the project selection and after having chosen the project name, say,
DockerTest, you should arrive at the following option page:

Figure 3.15: Enabling Docker support

Please check the Enable container support checkbox.

If you forgot to enable Docker support here, you can always right-click on the project icon in

Visual Studio Solution Explorer and then select Add -> Docker support.

The project contains a Dockerfile:

Figure 3.16: Visual Studio Dockerfile

Click on the Dockerfile; it should contain the definition of four images. In fact, the final image is
built in four stages.

Chapter 3 95

The first stage defines the .NET runtime and the ports used by the application in the final image:

FROM mcr.microsoft.com/dotnet/aspnet:8.0 AS base

WORKDIR /app

EXPOSE 8080

EXPOSE 8081

The name base after AS will be called by other FROM instructions in the same file. The second stage

performs the project build by using the dotnet SDK:

FROM mcr.microsoft.com/dotnet/sdk:8.0 AS build

ARG BUILD_CONFIGURATION=Release

WORKDIR /src

COPY ["DockerTest/DockerTest.csproj", "DockerTest/"]

RUN dotnet restore "./DockerTest/DockerTest.csproj"

COPY . .

WORKDIR "/src/DockerTest"

RUN dotnet build "./DockerTest.csproj" -c $BUILD_CONFIGURATION -o /app/

build

The ARG instruction defines a variable that can be recalled as $BUILD_CONFIGURATION in other

instructions. Here, it is used to define the chosen configuration for the build. You can replace its
value with Debug to compile in Debug mode.

The first Copy instruction just copies the project file in the /src/DockerTest directory of the image.

Then, Nuget packages are restored and all source files are copied from the directory containing
the Dockerfile to the current image directory, /src. Finally, we move into /src/DockerTest and

perform a build. The build output files are placed in the /app/build directory in the image.

The third stage is built on top of the build image and simply publishes the project files in the /
app/publish folder:

FROM build AS publish

ARG BUILD_CONFIGURATION=Release

RUN dotnet publish "./DockerTest.csproj" -c $BUILD_CONFIGURATION -o /app/

publish /p:UseAppHost=false

We could have merged stages 2 and 3 into a single stage but it is convenient to split stages into

smaller stages because intermediary images are cached, so in subsequent builds, when the image

input does not change, cached images are used instead of recomputing them.

Setup and Theory: Docker and Onion Architecture96

Finally, the fourth and last stage is built on top of the first stage since it just needs the .NET run-

time, and simply copies the published files from the image created in the third stage:

FROM base AS final

WORKDIR /app

COPY --from=publish /app/publish .

ENTRYPOINT ["dotnet", "DockerTest.dll"]

Now, place a breakpoint in the Index method of the HomeController.cs file and run the solution.
Visual Studio automatically builds the Dockerfile and runs the image.

The breakpoint will be hit since Visual Studio is able to perform debugging inside the container
images!

While the application is running, for each container, Visual Studio shows logs, environment

variables, bind mounts, and other information:

Figure 3.17: Visual Studio Containers console

 You can get also an interactive shell inside each container where you can explore
the container’s filesystem, execute shell commands, and perform diagnostics and
performance measurement operations, by simply opening a Linux shell and issuing

the following command:

docker exec -it <container-name-or-id> /bin/bash

Chapter 3 97

In our case, let’s list all running containers with docker ps to get our container ID:

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

f6ca4537e060 dockertest "dotnet --roll-forwa…" 17 minutes ago Up

17 minutes 0.0.0.0:49154->8080/tcp, 0.0.0.0:49153->8081/tcp DockerTest

Then, run the following:

docker exec -it DockerTest /bin/bash

Now, you are in the container filesystem! Let’s try some shell commands, such as Is, for instance.

When you have finished with the container, it is enough to run exit to return to your host com-

puter console.

Summary
This chapter described two important building blocks of microservices architectures: the Onion
Architecture and Docker containers. The chapter described the basic principles of the Onion
Architecture and how both the Application Services and Domain layers are organized. More spe-

cifically, we described commands, queries, events, and their handlers together with aggregates
and value objects.

Moreover, you learned how to use the preceding concepts in a Visual Studio solution thanks to

the Visual Studio solution templates provided.

The chapter explained the importance of containers, how to build a Dockerfile, and how to use
Docker shell commands in practice. Finally, the chapter described Visual Studio support for Docker.

The next chapter focuses on Azure functions and their main triggers.

Questions
1. Is it true that the Domain layer project must have a reference to the database driver project?

No, it is false. References to drivers must be added to the infrastructure layer.

2. Which solution projects are among the application services references?

Only those projects that are part of the Domain Layer.

3. Which solution projects are among the references of the outermost layer project of an

Onion Architecture?

Application Services, Db Drivers, and all infrastructure drivers.

Setup and Theory: Docker and Onion Architecture98

4. Is it true that an aggregate always corresponds to a unique database table?

No, it is false.

5. Why are domain events needed?

They are needed to decouple the code of different aggregates.

6. What is the purpose of the WORKDIR Dockerfile instruction?

To set the image current directory.

7. How is it possible to pass environment variables to a container?

Through the -e options of the docker run command.

8. What is the right way to persist the storage of Docker containers?

Volume binds is the way to persist the storage of Docker containers.

Further reading
• More on queries, commands, and the domain layer can be found here: https://udidahan.

com/2009/12/09/clarified-cqrs/

• More information on Docker can be found on Docker’s official website: https://docs.
docker.com/

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/PSMCSharp

https://udidahan.com/2009/12/09/clarified-cqrs/
https://udidahan.com/2009/12/09/clarified-cqrs/
https://docs.docker.com/
https://docs.docker.com/
https://packt.link/PSMCSharp

4
Azure Functions and
Triggers Available

The first three chapters of the book covered the background of serverless and microservices, fo-

cusing on how to use these technologies to design an application that works with a microser-

vice-based architecture. This and the following chapters will go deep into the options you have
for writing code for this, using the car-sharing example presented in Chapter 2, Demystifying

Microservices Applications.

To do so, in this chapter, we will present the different triggers available in Azure Functions. The
point here is not just to write about it, but to also test it with each of the triggers presented. In

Chapter 1, Demystifying Serverless Application, we covered its basis, but we did not have the oppor-

tunity to implement them.

In this chapter, we will focus on three important triggers that we can use when implementing

Azure Functions – the HTTP, SQL, and Cosmos DB triggers. Together with their implementation,
we will discuss their advantages, disadvantages, and when they are a good approach to be used.

We will also see how they work using the car-sharing example as a basis for understanding the

purpose of each trigger better. Let’s start!

Technical requirements
This chapter requires the free Community edition of Visual Studio 2022, or Visual Studio Code.

You will also need an Azure account to create the sample environment. You can find the sample
code for this chapter at https://github.com/PacktPublishing/Practical-Serverless-and-

Microservices-with-Csharp.

https://github.com/PacktPublishing/Practical-Serverless-and-Microservices-with-Csharp
https://github.com/PacktPublishing/Practical-Serverless-and-Microservices-with-Csharp

Azure Functions and Triggers Available100

HTTP trigger
The most used trigger in Azure Functions is certainly the HTTP trigger. The basis of this option is
to enable you to have HTTP requests, so you can build APIs, webhooks, and integrations in a very
fast way. The idea is that a method in Azure Functions is triggered as soon as an HTTP request is
made, enabling the appropriate function to return the corresponding response.

Advantages, disadvantages, and when to use the
HTTP trigger
The main advantage of the HTTP trigger is its ease of use. It is straightforward to implement and
can be set up quickly. So, even if you are new to Azure Functions, you can get started with it quickly.

Besides that, it supports multiple HTTP methods, such as GET, POST, PUT, and DELETE, allowing

you to handle a variety of web requests and actions. You can also have more than one function
running on the same application, so it is a great way of delivering a microservice.

Another great advantage of HTTP triggers is that they can integrate with other Azure services and
third-party APIs, so you can handle complex logic. All these benefits come on top of the scalability
and cost-effectiveness delivered by Azure Functions, so your application will remain responsive
under high traffic and you will only pay for the executions that you carry out.

When it comes to security, HTTP triggers enable us to implement different levels of authori-
zation. These levels range from anonymous access up to the admin level, as described in the
AuthorizationLevel enum:

Figure 4.1: Authorization level – source: Microsoft Learn

Chapter 4 101

It is worth mentioning that these keys are managed inside an Azure Functions app, as we can
see in the following figure.

Figure 4.2: Azure Functions – App keys

When it comes to the disadvantages of HTTP triggers, there is what is called cold-start latency,

where there must be a delay the first time the function is invoked after a period of inactivity.
Also, you must consider that the idea of this kind of application is to deliver stateless solutions,

so handling stateful operations or long-running processes can be more challenging with HTTP
triggers alone. For this, you may consider using Azure Durable Functions.

You may also encounter some resource limits, such as execution timeouts and memory used, but
these limits usually mean that you are encountering a design issue.

Considering all the information provided, the HTTP trigger is best used in scenarios where you
need to create lightweight, stateless functions that respond to web requests. This may include
RESTful APIs to expose an application’s functionality or a microservice, webhooks for handling
real-time notifications, or even drive integrations. HTTP triggers can also be great for rapidly
testing a scenario, using it as a prototype.

Azure Functions and Triggers Available102

Car-sharing HTTP trigger example
As we discussed in Chapter 2, Demystifying Microservices Applications, the carholders’ requests

can be called by a user throughout CRUD operations. The sample code provided in this chapter
will give you an Azure Functions project with four HTTP trigger functions that represent these
CRUD operations. Also, it is important to mention that today it is good practice to deliver APIs

with OpenAPI documentation attached. To do so, this example will make use of the OpenAPI

extension for Azure Functions. The result can be seen in the following figure, where we have
described each Azure Functions HTTP trigger created.

Figure 4.3: Car Holding API sample

The great thing about delivering APIs with this pattern is that you will be following the most
common scenarios of APIs that the current industry is requesting. Also, delivering versioned APIs

is considered a great practice to follow, so you can guarantee compatibility with other systems.

Chapter 4 103

Advantages, disadvantages, and when to use the
Azure SQL trigger
Imagine the possibility of having a function trigger as soon as an Azure SQL Database change
happens. This is where the Azure SQL trigger can help you. With the possibility of monitoring
rows that are inserted, updated, or deleted, this function is invoked as soon as the event happens,

enabling real-time data processing and integration.

It is important to mention that this trigger is only available if you have SQL Server change tracking

enabled in your database and in the table that you define to monitor.

Considering this possibility, real-time processing using this functionality is a great advantage.

Since Azure Functions in general is a great way of achieving scalability only when needed, this
functionality also gives us great architecture with great cost-efficiency, allowing us to integrate
different scenarios and applications with it.

On the other hand, you need to pay attention to the complexity of setting these triggers. You
must consider what will be easier to design, a timer trigger monitoring your data or the option

provided by this kind of trigger. Latency can also be a problem, so be careful with that.

Certainly, the Azure SQL trigger is great to use in real-time data processing, where database
changes can be critical to some operations. If you want to synchronize, audit, or even transform
data, this can also be useful.

Car-sharing SQL trigger example
For this demo, an Azure SQL database was created called CarShareDB. In addition, a table called

Carholder was also created, and both the database and table were enabled to track their changes,

as you can see in the following script:

ALTER DATABASE [CarShareDB]

SET CHANGE_TRACKING = ON

(CHANGE_RETENTION = 2 DAYS, AUTO_CLEANUP = ON);

CREATE TABLE [dbo].[Carholder](

 [Id] [int] NOT NULL,

 [Name] [varchar](50) NOT NULL,

Azure Functions and Triggers Available104

 CONSTRAINT [PK_Carholder] PRIMARY KEY CLUSTERED

(

 [Id] ASC

)WITH (STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, OPTIMIZE_FOR_

SEQUENTIAL_KEY = OFF) ON [PRIMARY]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[Carholder]

ENABLE CHANGE_TRACKING;

The idea behind this kind of Azure function is to be able to audit the changes made in the table
that is being tracked. So, an Azure function with a SQL trigger was created.

using Microsoft.Azure.Functions.Worker;

using Microsoft.Azure.Functions.Worker.Extensions.Sql;

using Microsoft.Extensions.Logging;

using Newtonsoft.Json;

namespace AuditService

{

 public class Audit

 {

 private readonly ILogger _logger;

 public Audit(ILoggerFactory loggerFactory)

 {

 _logger = loggerFactory.CreateLogger<Audit>();

 }

 [Function(“Audit”)]

 public void Run(

 [SqlTrigger(“[dbo].[Carholder]”, “CarShareConnectionString”)]

IReadOnlyList<SqlChange<Carholder>> changes,

 FunctionContext context)

 {

 _logger.LogInformation(“SQL Changes: “ + JsonConvert.

SerializeObject(changes));

Chapter 4 105

 }

 }

 public class Carholder

 {

 public int Id { get; set; }

 public string Name { get; set; }

 }

}

There are three important things to observe in this code. The first one is that this Functions
app needs a variable called WEBSITE_SITE_NAME. This variable needs to be placed in the local.
settings.json file for debugging locally and will be stored in the environment variables of the
app when published. The code block shown below is the content of the json file we have men-

tioned, defining the WEBSITE_SITE_NAME variable:

{

 “IsEncrypted”: false,

 “Values”: {

 “AzureWebJobsStorage”: “UseDevelopmentStorage=true”,

 “FUNCTIONS_WORKER_RUNTIME”: “dotnet-isolated”,

 “WEBSITE_SITE_NAME”: “AuditApp”

 }

}

Second, there is a connection between the code and SQL Server using the CarShareConnectionString

variable, which is stored in the local user secret, as we can see in the following figure.

Figure 4.4: Managing user secrets locally

Azure Functions and Triggers Available106

The last thing to observe is that you need to define the class that represents the entity that is
monitored so that every single change made in the table will be triggered and the data related

to the change will be available for usage. In the example that we are presenting, the class was

named Carholder.

Figure 4.5: Function trigger

The result of each trigger can be checked above. Notice that inserts and updates are sent with the
object totally filled, while deletes returns only the ID of an object.

Advantages, disadvantages, and when to use the
Cosmos DB trigger
In the same way that we have discussed the benefits and downsides when using Azure SQL trig-

gers, we can also discuss Cosmos DB triggers. This is a powerful feature that allows you to execute
serverless functions in response to changes in your Cosmos DB data. Regardless of whether the

items are added, updated, or deleted in a Cosmos DB collection, the trigger will automatically

invoke your function, which enables real-time data processing and integration.

Considering this scenario, it is important to mention that Azure Cosmos DB gives you more flex-

ibility with the data you are handling since it enables non-structured data. For instance, suppose

you want to process telemetry sent by the car that is being shared. This kind of data would be a
bit strange to be handled in Azure SQL Database. On the other hand, using this data in Cosmos
DB can be a good approach.

These great advantages can be analyzed together with some concerns that you may have while
developing a solution using a Cosmos DB trigger. The most important one to consider is cost since
Cosmos DB applications can be extremely expensive depending on the solution that is developed.

Chapter 4 107

Car-sharing Cosmos DB trigger example
For high performance and globally distributed data storage, suppose the car-sharing app uses

Cosmos DB to store real-time car telemetry data, with user activity logs and location information.

The following figure shows how an Azure Functions app was created to enable the connection
to Azure Cosmos DB.

Figure 4.6: Creating an Azure Cosmos DB trigger function

It is great to mention that there is an Azure Cosmos DB emulator that you can use to test and
debug your solution, saving costs for this step of development. For that, you will need to install

Docker. It is important to remember that this is an alternative for testing only; production envi-

ronments must use Azure Cosmos DB itself.

Azure Functions and Triggers Available108

However, it should also be noted that Visual Studio can also help you create your Azure Cosmos
DB. As you can see in the following figure, there is a wizard where you can set the common vari-
ables needed to create the resource in your Azure account inside the Visual Studio environment.

Figure 4.7: Creating Azure Cosmos DB

It takes a while to create Azure Cosmos DB. Once this step is done, it is time to analyze exactly
how the function trigger works. Notice that it also works based on the connecting string to the

database and the information you want to monitor. In the case of the example, car-telemetry

is being monitored:

using Microsoft.Azure.Functions.Worker;

using Microsoft.Extensions.Logging;

namespace TemeletryService

{

 public class Telemetry

 {

Chapter 4 109

 private readonly ILogger _logger;

 public Telemetry(ILoggerFactory loggerFactory)

 {

 _logger = loggerFactory.CreateLogger<Telemetry>();

 }

 [Function(“Telemetry”)]

 public void Run([CosmosDBTrigger(

 databaseName: “carshare-db”,

 containerName: “car-telemetry”,

 Connection = “CosmosDBConnection”,

 LeaseContainerName = “leases”,

 CreateLeaseContainerIfNotExists = true)] IReadOnlyList<CarTelemetry>

 input)

 {

 if (input != null && input.Count > 0)

 {

 _logger.LogInformation(“Documents modified: “ + input.Count);

 _logger.LogInformation(“First document Id: “ + input[0].carid);

 }

 }

 }

 public class CarTelemetry

 {

 public string carid { get; set; }

 public DateTime Date { get; set; }

 public string Data { get; set; }

 }

}

Azure Functions and Triggers Available110

To test the function, you can use the user interface provided by Azure Cosmos DB in the Azure
portal.

Figure 4.8: Inserting data into Azure Cosmos DB

The result can be checked by inserting a breakpoint in the code of the Azure function, where we
can check that the data sent can be seen in the code.

Figure 4.9: Azure Cosmos DB trigger

Although the Azure Cosmos DB trigger is very similar to the Azure SQL trigger, it is important to
mention that the Azure Cosmos DB trigger only monitors inserts and updates in Cosmos DB. So,

if you need to monitor deletions, you will not have this option in this kind of trigger.

Chapter 4 111

Azure Service Bus trigger
One of the most important components in a microservices solution is a service bus for enabling

communication between the microservices. Azure Service Bus is one of the options presented
on the market to do so.

Azure Functions provides two ways of connecting to Azure Service Bus. You can monitor a specific
queue or a general topic. The concept behind the Azure Service Bus queue service is to deliver a
solution that enables reliable communication between distributed applications and services. It

operates on a first-in, first-out (FIFO) basis, ensuring that messages are processed in the order
they were sent. If you need to decouple an application, enhance scalability, and maintain high

availability by buffering messages during peak loads, you may decide to use it. It is important to

remember that messages sent to the queue are stored until they are retrieved and processed by

the receiving application, guaranteeing delivery even in the face of transient failures. It is great

to mention that the Service Bus queue supports features such as message sessions for ordered

processing, dead-letter queues for handling message failures, and duplicate detection to prevent

the processing of duplicate messages.

On the other hand, Azure Service Bus topics are designed for scenarios that require a publish/
subscribe model. This feature enables multiple subscribers to receive copies of the same message,
allowing for greater flexibility and scalability in your messaging infrastructure. With topics, you
can filter messages based on specific criteria, ensuring that each subscriber only receives the
messages relevant to them. This is particularly useful in complex workflows where different
components or services need to react to different types of events.

The Azure Service Bus trigger also enables scalability, reliability, integration, and flexibility for
your solution, since this is something delivered by default for any Azure function. As a point of
concern, again, the cost must be considered. It is worth noting that queues are cheaper than

topics, so you may analyze if topics are really needed for your solution. Also, do not forget to
check that the performance you need for your application will not be degraded with the service

bus you have selected.

The Azure Service Bus trigger can be used when you are developing an event-driven solution
and you want to process messages or even design a workflow automation. For instance, in the
car-sharing example, we will use the trigger to represent when someone is searching for a car.

Azure Functions and Triggers Available112

Comparison with the Kafka trigger and the RabbitMQ
trigger
The Azure Functions Service Bus trigger, Kafka trigger, and RabbitMQ trigger all serve similar

purposes. However, depending on the scenario you are working on, you may decide to select a

different bus.

For example, Kafka is well known for scenarios where distributed streaming is required, and

where you will have high throughput with real-time data processing.

On the other hand, RabbitMQ is easier to use, and it is better for lightweight and flexible messages,
especially if you need compatibility with multiple messaging protocols.

Azure Service Bus is well integrated with Azure services, although it supports various message
patterns. If you need reliable delivery and processing, this may be the best option.

As you can see, each of these buses has its advantages and is suited for different types of applica-

tions. The triggers available in Azure Functions for them are very similar, so choosing the right
trigger depends more on the specific requirements of the application you are designing.

Car-sharing example with the Azure Service Bus trigger
The Azure Service Bus trigger is used in our example for the subscription of the message that

indicates a car-seeking request. The idea behind using a topic here is that many microservices of
the solution may want to know that a car-seeking request is being made. The service that we are
simulating in the example is the one that will start the route planner for the car that is needed,

as we can see in the following figure.

Figure 4.10: Route handling subsystem of a car-sharing application

Chapter 4 113

To do so, an Azure function for monitoring the Service Bus trigger in the topic car-seeking-
requests is created. The messages that are subscribed from this topic are the ones named routes:

using Azure.Messaging.ServiceBus;

using Microsoft.Azure.Functions.Worker;

using Microsoft.Extensions.Logging;

namespace RoutesPlanner

{

 public class CarSeeking

 {

 private readonly ILogger<CarSeeking> _logger;

 public CarSeeking(ILogger<CarSeeking> logger)

 {

 _logger = logger;

 }

 [Function(nameof(CarSeeking))]

 public async Task Run(

 [ServiceBusTrigger(“car-seeking-requests”, “routes”,

 Connection = “car-share-bus”)]

 ServiceBusReceivedMessage message,

 ServiceBusMessageActions messageActions)

 {

 _logger.LogInformation(“Message ID: {id}”, message.MessageId);

 _logger.LogInformation(“Message Body: {body}”, message.Body);

 _logger.LogInformation(“Message Content-Type: {contentType}”,

 message.ContentType);

 // Complete the message

 await messageActions.CompleteMessageAsync(message);

 }

 }

 }

}

Azure Functions and Triggers Available114

Once a message is sent for a route, the function is automatically triggered, and all the information

presented in the body of the message, together with information about the content type of the

message and its ID, is available in the Azure function.

Figure 4.11: Message triggered after Azure Service Bus received the content

It is important to note that once the message is processed by the Azure function, since there is
no other subscriber, the message is cleared from the bus. It is also necessary to remember that if

the function is not running, the bus service will retain them according to the settings configured
in Azure Service Bus.

Summary
This chapter provided a comprehensive overview of various triggers available in Azure Functions,
focusing on their advantages, disadvantages, and practical use cases. It then delved into specific
triggers, starting with the HTTP trigger, which was highlighted for its ease of use and versatility
in handling web requests. The support for multiple HTTP methods and integration with other
Azure services were also advantages presented in the chapter.

The chapter also covered Azure SQL triggers, emphasizing their real-time data processing capa-

bilities and the requirement for SQL Server change tracking. Similarly, the Cosmos DB trigger was

explained, with its benefits in handling non-structured data and real-time processing presented.

To finish, the chapter compared the Azure Service Bus, Kafka, and RabbitMQ services, presenting
a demo using an Azure Service Bus trigger for the car-sharing application presented in the book.

Chapter 4 115

Questions
1. What are the main advantages of using HTTP triggers in Azure Functions?

HTTP triggers offer a straightforward and standardized way of exposing your functions
as web endpoints, making it easy to create APIs and webhooks. They allow rapid develop-

ment and integration with other web services and client applications, leveraging familiar

HTTP methods and status codes for communication.

In addition, HTTP triggers enable automatic scaling, so your functions can handle varying
loads efficiently. This helps ensure that your applications remain responsive under fluc-

tuating traffic while benefiting from a pay-as-you-go pricing model that optimizes costs.

2. What are some potential disadvantages of using HTTP triggers, and how can they be
mitigated?

One potential disadvantage is the occurrence of cold starts, particularly on the Consump-

tion plan, which may cause delays during initial HTTP requests. Additionally, exposing
functions via HTTP requires careful attention to security, as misconfigured endpoints
could become vulnerable to unauthorized access or abuse.

These concerns can be mitigated by implementing strategies such as using Premium or
Dedicated plans to reduce cold start delays, adding warm-up triggers, or enforcing robust

authentication and authorization policies. Leveraging API Management or other gateway
solutions can also help secure and manage HTTP-triggered functions effectively.

3. How does the Azure SQL trigger enable real-time data processing, and what are its re-

quirements?

Although Azure Functions does not include a native SQL trigger, real-time data processing
can be achieved by combining database change detection (using SQL change tracking or
change data capture) with a function that polls or listens for changes. This approach en-

ables the system to react to data modifications almost immediately, triggering processing
workflows as soon as a change is detected.

To implement this, your Azure SQL database must have change tracking or CDC enabled,
and you need to configure a reliable mechanism for querying changes at regular intervals.
Proper connectivity, efficient query design, and handling of potential latency issues are
key requirements for ensuring that real-time processing is both accurate and performant.

Azure Functions and Triggers Available116

4. What are the benefits and concerns associated with using Cosmos DB triggers in Azure
Functions?

Cosmos DB triggers provide near real-time processing of data changes by leveraging the

Cosmos DB change feed. This integration allows your functions to automatically respond
to new or updated documents, enabling event-driven workflows and scalable data pro-

cessing without requiring manual polling.

However, there are concerns such as potential throttling and cost implications if the

throughput is not properly managed. Moreover, ensuring data consistency and handling

high-volume change feeds can be challenging. These issues can be addressed through
careful planning of request units (RUs), partitioning strategies, and monitoring the per-

formance and load of your Cosmos DB account.

5. How do Azure Service Bus triggers compare with Kafka and RabbitMQ triggers, and in
what scenarios are they best used?

Azure Service Bus triggers are part of a fully managed messaging service that offers features
like reliable message delivery, dead-lettering, sessions, and auto-scaling. They integrate
seamlessly with the Azure ecosystem, making them ideal for enterprise scenarios where
robust, secure, and managed message processing is required.

In contrast, Kafka and RabbitMQ are often chosen for their high throughput (Kafka) or
lightweight, flexible messaging (RabbitMQ) in environments where you might require
more control over the infrastructure. Azure Service Bus triggers are best suited for scenarios
that benefit from a managed service with deep integration into Azure, particularly when
the application requires enterprise-level messaging reliability and scalability without the

overhead of managing the messaging infrastructure.

Chapter 4 117

Further reading
• Azure Function HTTP trigger: https://learn.microsoft.com/en-us/azure/azure-

functions/functions-bindings-http-webhook-trigger

• Azure Function SQL trigger: https://learn.microsoft.com/en-us/azure/azure-
functions/functions-bindings-azure-sql

• SQL Server change tracking: https://learn.microsoft.com/en-us/sql/relational-

databases/track-changes/about-change-tracking-sql-server

• Azure Functions Cosmos DB trigger: https://learn.microsoft.com/en-us/azure/
azure-functions/functions-bindings-cosmosdb

• Azure Functions Service Bus trigger: https://learn.microsoft.com/en-us/azure/
azure-functions/functions-bindings-service-bus

• Queue design pattern: https://learn.microsoft.com/en-us/azure/architecture/

patterns/queue-based-load-leveling

• Publisher-Subscriber design pattern: https://learn.microsoft.com/en-us/azure/

architecture/patterns/publisher-subscriber

• Storing secrets: https://learn.microsoft.com/en-us/aspnet/core/security/app-

secrets

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/PSMCSharp

https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-http-webhook-trigger
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-http-webhook-trigger
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-azure-sql
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-azure-sql
https://learn.microsoft.com/en-us/sql/relational-databases/track-changes/about-change-tracking-sql-server
https://learn.microsoft.com/en-us/sql/relational-databases/track-changes/about-change-tracking-sql-server
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-cosmosdb
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-cosmosdb
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-service-bus
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-service-bus
https://learn.microsoft.com/en-us/azure/architecture/patterns/queue-based-load-leveling
https://learn.microsoft.com/en-us/azure/architecture/patterns/queue-based-load-leveling
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://packt.link/PSMCSharp

5
Background Functions
in Practice

When you start working with cloud computing, especially while working with Platform as a

Service (PaaS), one of the challenges you may encounter is how to enable background work if
your solution is based on instances that require a request before processing. One of the answers

to this problem is the use of serverless to process this background job. In Azure, you will find
Azure Functions triggers that can help you with this.

In this chapter, we will discuss three of them: the timer trigger, Blob storage trigger, and queue

storage trigger. It is important to mention that we covered their basics in Chapter 1, Demystifying

Serverless Applications, but we will start to implement them now.

Together with their implementation, we will present an alternative to the publication of Azure
Functions inside Visual Studio. We will also check how to monitor these functions. Understanding

the advantages and disadvantages and when these functions are a good approach to be used will

be discussed in the chapter. We will also see them working using the car-sharing example as a

basis for understanding the purpose of each trigger better. Let’s go!

Technical requirements
This chapter requires the Visual Studio 2022 free Community edition or Visual Studio Code. You
will also need an Azure account to create the sample environment. You can find the sample
code for this chapter at https://github.com/PacktPublishing/Practical-Serverless-and-

Microservices-with-Csharp.

https://github.com/PacktPublishing/Practical-Serverless-and-Microservices-with-Csharp
https://github.com/PacktPublishing/Practical-Serverless-and-Microservices-with-Csharp

Background Functions in Practice120

Timer trigger
It is not uncommon to need to process a task from time to time, at a specific moment of the day. A
timer trigger will certainly help you with this. This function is based on the NCRONTAB expression,

which is like a CRON expression:

{second} {minute} {hour} {day} {month} {day-of-week}

If you consider this expression, you will be able to schedule different moments to trigger the

function. Let’s check the following table to understand it better:

Second Minute Hour Day Month Day of the Week Result Meaning

* * * * * * * * * * * * Every second

0 * * * * * 0 * * * * * Every minute

*/5 * * * * * */5 * * * * * Every five
seconds

0 0 1 * * 1-5 0 0 1 * * 1-5 At 1:00 AM,

from Monday

to Friday

5,10,20 * * * * * 5,10,20 * *

* * *

At 5, 10, and 20

seconds past

the minute

There are some important tips related to the NCRONTAB expression. First, you may consider days

of the week from Sunday (0) to Saturday (6). The * operator represents all values at the moment

defined, while - is the range operator. If you want to express an interval, you may use the / op-

erator, and if you want to define a set of values, the , operator must be used.

The following code is an example of a timer trigger and the way you define its schedule:

public class SampleFunction

{

 private readonly ILogger _logger;

 public SampleFunction(ILoggerFactory loggerFactory)

 {

Chapter 5 121

 _logger = loggerFactory.CreateLogger<SampleFunction>();

 }

 [Function(“SampleFunction”)]

 public void Run([TimerTrigger(“*/5 * * * * *”)] TimerInfo myTimer)

 {

 _logger.LogInformation($”C# Timer trigger function executed at:

 {DateTime.Now}”);

 if (myTimer.ScheduleStatus is not null)

 {

 _logger.LogInformation($”Next timer schedule at:

 {myTimer.ScheduleStatus.Next}”);

 }

 }

}

There are some websites where you can interpret the NCRONTAB expression you have designed.

You can check this out at https://crontab.cronhub.io/.

The following figure shows the result of the preceding timer trigger code.

Figure 5.1: Timer trigger function in execution

Background Functions in Practice122

This flexibility enables you to define a solid structure of jobs to run your microservices. On the
other hand, if you want to debug a specific function, you may use the RunOnStartup parameter set

to true. It is important to mention, though, that this parameter must not be used in production

Now you understand how timer trigger functions work, let’s check a way you can publish them

using Visual Studio.

Publishing your functions
As you are developing your Azure functions in Visual Studio, it is useful to know that the IDE
enables you to publish your code to Azure in small steps. Let’s check how to do so.

The first step is to right-click the project you want to publish. As soon as you do this, you will find
the Publish… action to start the process.

Figure 5.2: Publishing an Azure function project

Once you decide to publish, you will be prompted to decide where to publish the function. Besides

Azure, you might want to publish the function in a Docker container registry or a folder. You may
also want to use a pre-made profile, so there is also an option to import the profile. For this demo,
the Azure option will be selected.

There is a possibility to manually trigger non-HTTP functions. Please check this
link to do so: https://learn.microsoft.com/en-us/azure/azure-functions/

functions-manually-run-non-http.

https://learn.microsoft.com/en-us/azure/azure-functions/functions-manually-run-non-http
https://learn.microsoft.com/en-us/azure/azure-functions/functions-manually-run-non-http

Chapter 5 123

Figure 5.3: Publishing on Azure

After the selection of Azure, you need to decide where in Azure you will have your function running. As
we saw in Chapter 1, Demystifying Serverless Applications, Azure functions can run in different operating
systems and different container solutions. For this demo, we will select the Windows operating system.

Figure 5.4: Selecting Azure Function App for Windows

Background Functions in Practice124

After connecting Visual Studio to your Azure account, all the function instances available for
deployment will be presented to you. However, if you don’t have any instances, you will also be

given the opportunity to create a new instance, by selecting the Create new button.

Figure 5.5: Creating the Azure Function App on the Visual Studio interface

Chapter 5 125

The creation will take a few minutes, but then your Azure function can be published on Azure.

Figure 5.6: Azure Function App ready

The current wizard available in Visual Studio is very useful. It not only helps you publish in a

single step but also creates a YML file for you, to be used together with GitHub Actions. For this
demo, we will use the basic option that generates a .pubxml file, but you may consider GitHub
Actions as the best opportunity for real-life scenarios.

Figure 5.7: Methods available for publishing

Background Functions in Practice126

Once you finish the wizard, you will have the publishing profile ready to start publishing the
application.

Figure 5.8: Publishing profiler

By clicking the Publish button, the process will start running and, after a few moments, your

Azure Function App will be published.

Figure 5.9: Function App published

Chapter 5 127

It is important to mention that you will need to do this complete process only once. After that,

the new deployments needed will be a lot easier.

Monitoring your functions
The process for deploying functions presented in the last section is not exclusive to timer trigger

functions. The same happens when it comes to monitoring your functions. In Azure, there are some
alternative ways to check whether your Azure function is running properly. Let’s explore them.

The easiest way to monitor whether a function is running properly is by checking the number of
invocations made by it. The Invocations tab is available in the Function App, and it will give you

basic details about the execution.

Figure 5.10: Function invocations

However, you may want to obtain detailed information about each execution. In this case, the

best option to get this kind of information is by accessing the logs retained by Azure Monitor.

Background Functions in Practice128

Figure 5.11: Azure Monitor logs

Using Azure Monitor logs will result in a cost increase. Please check the best alternative for storing

logs at https://docs.azure.cn/en-us/azure-monitor/logs/cost-logs.

The logs stored by Azure Monitor will also give you two other views. The Application Insights
Performance view helps you analyze performance and errors that may happen in the Azure
functions you develop.

Figure 5.12: Application Insights Performance view

https://docs.azure.cn/en-us/azure-monitor/logs/cost-logs

Chapter 5 129

There is also a Live metrics view of the function running, which may be useful for debugging or

understanding behaviors in production.

Figure 5.13: Application Insights Live metrics view

These options make Azure Functions an excellent alternative for processing your background
work, as the observability provided is very good.

Advantages, disadvantages, and when to use Azure timer
triggers
As we saw before, Azure timer triggers provide a great way to execute functions at regular intervals
without the need for manual intervention. Their simplicity in setup and configuration helps you
create functions that will run regularly, such as data synchronization, cleanup operations, and
scheduled reports.

However, since the function will run exactly when you schedule it, if there is no job to be done

at that moment, this execution will result in resource wastage, which basically means spending

money unnecessarily. So, you must properly define the execution of the timer trigger function.

Based on the preceding information, scheduled actions that cannot depend on human manual

intervention, such as backups, routine maintenance tasks, and periodic data processing, are great

use cases for this kind of function. Even though it is important to define a way to monitor and
report these executions, you can still make the most of this option.

Car-sharing timer trigger example
The car-sharing solution is an event-driven application. This means that there is no need for a
timer trigger for this application when it comes to its basic flow of work. However, let’s imagine
a routine for processing billing. Considering the business rules of this company, there is no way

to process bills on Sundays, and considering the cash flow on the other days, the billing can be
processed once an hour.

Background Functions in Practice130

Based on this scenario, a timer trigger function can be a great choice to solve this problem, as

follows:

public class ProcessBilling

{

 private readonly ILogger _logger;

 public ProcessBilling(ILoggerFactory loggerFactory)

 {

 _logger = loggerFactory.CreateLogger<ProcessBilling>();

 }

 /// <summary>

 /// Every hour, between 08:00 AM and 05:59 PM, Monday through Saturday

 /// </summary>

 /// <param name=”myTimer”></param>

 [Function(“ProcessBilling”)]

 public void Run([TimerTrigger(“0 0 8-17 * * 1-6”)] TimerInfo myTimer)

 {

 _logger.LogInformation($”Time to process billing!”);

 _logger.LogInformation($”Execution started at: {DateTime.Now}.”);

 // TODO - Code for processing billing

 _logger.LogInformation($”Process billing done: {DateTime.Now}.”);

 }

}

Notice that no matter whether you have billing to process or not, the execution of the function

will happen every single hour, between 8:00 AM and 5:59 PM, from Monday through Saturday.

It is important to mention that Azure Functions will respect UTC time, so you should consider
your location when defining the correct CRON expression to be used.

Chapter 5 131

Blob trigger
Azure Blob Storage is a service provided by Microsoft Azure for storing large amounts of unstruc-

tured data, such as images, videos, logs, and backups. It is optimized for storing binary data in
a highly scalable and cost-effective way. Blob stands for Binary Large Object, highlighting its

ability to handle massive volumes of data efficiently, making it an ideal solution for applications
that require durable, scalable storage.

The great thing about this service is that it is highly scalable, secure, and accessible from anywhere
in the world via HTTP or HTTPS. Also, it enables integration with other Azure services, such as
Azure Functions. This connector enables a variety of possible solutions for automating processes
since it is possible to execute a function for each change made in a specific blob storage.

The focus of this book is not to go further into Blob Storage options, but it is useful to know that

the service provides different access tiers, such as hot, cool, and archive, which vary according

to access needs, each with its own pricing.

When you start creating a Blob storage trigger function, one of the things that you will be asked

to define is where the storage will run. For debugging, you will have the possibility to use Storage

Azurite emulator, which is a local emulator for Azure Storage. Azurite is available with Visual
Studio. Based on your edition of Vision Studio, it will be placed in a specific folder. After you find
the executable, you may run it using Admin access.

Figure 5.14: Azurite execution

Another important tool to be used while creating Blob storage trigger functions is Microsoft Azure
Storage Explorer. With these two tools, the process of creating Blob storage trigger functions will

be very easy. The following figure shows how Visual Studio enables you to select Azurite as the
default emulator for your project.

Background Functions in Practice132

Figure 5.15: Connecting a Blob storage trigger to Azure

Advantages, disadvantages, and when to use Blob storage
triggers
When it comes to advantages regarding the usage of Blob storage triggers, the possibility of

handling large volumes of data efficiently can surely be mentioned. Besides that, the possibility
to scale the processing no matter the number of incoming triggers is also a good reason why you

should consider this kind of trigger to process data.

On the other hand, pricing can be a problem since, in some cases, the pricing model is based on

the number of executions and the amount of data processed, so do not forget to analyze the best
way to allocate this kind of Azure function.

It is also important to mention that, depending on the app plan you have defined for the Azure
function, you may experience some delay between the uploading or updating of the file and the
function processing. To avoid it, you may consider an App Service plan with Always On enabled,

although this will obviously increase the cost of the solution.

To finish, it is important to mention that the initial Blob storage trigger function implementation
was based on pooling. Pooling refers to a periodic scan of the entire container, typically processing

up to 10,000 blobs per batch. In this approach, each file has up to five retry attempts by default. If

Chapter 5 133

all retries fail, the function creates a poison message and moves it to the webjobs-blobtrigger-

poison queue. To avoid such scenarios and improve reliability, you can implement a Blob storage
trigger using Event Grid instead. We will cover this in the next section.

Based on this information, you can use a Blob storage trigger in applications where you have software

requirements such as image processing, data analysis, and real-time or batch processing. In this

kind of application, you generally need to react quickly and automatically to new or updated blobs.

In these cases, the scalability and adaptability of Azure Functions will help you meet your demands.

Blob trigger implementation using Event Grid
The idea behind using Event Grid to implement Blob trigger events is to reduce latency. Besides,

if you decide to define your functions using the Flex Consumption plan, this is the only option
you will have.

To do so, while creating the function, select the Blob Trigger (using Event Grid) option. With

this option, Visual Studio will create a different code for the Azure function.

Figure 5.16: Creating a Blob trigger function using Event Grid

Background Functions in Practice134

It is important to mention that this function will run better on Azure than locally. For this, you need
to create a general-purpose v2 storage account, which is mandatory for the event subscription.

Figure 5.17: Review of the creation of the storage account

In the same way that we have the prerequisite for Azure Storage, the function app for running this
kind of trigger should consider using the Flex Consumption plan, as we can see in the following

figure. The advantage of this Consumption plan, according to Microsoft, is that it reduces cold
starts with always-ready instances, supports VNets, and scales automatically, even in high load

periods. On the other hand, at the time of writing this book, this option was not available in all

regions.

Chapter 5 135

Figure 5.18: Flex Consumption plan

After the creation of the Azure function app, you may use the steps presented previously to publish
the function. The name used for the function app in this example was flexfunction. It is worth

noting that Flex Consumption plans are for Linux-based operating systems.

The following code shows the published function. Notice that the Connection parameter

is "ConnectionStringName" in this example. Also, notice that the name of the function is

SampleFunction:

public class SampleFunction

{

 private readonly ILogger<SampleFunction> _logger;

 public SampleFunction(ILogger<SampleFunction> logger)

 {

 _logger = logger;

 }

 [Function(nameof(SampleFunction))]

 public async Task Run([BlobTrigger(“event-grid-samples/{name}”,

Background Functions in Practice136

 Source = BlobTriggerSource.EventGrid,

 Connection = “ConnectionStringName”)] Stream stream, string name)

 {

 using var blobStreamReader = new StreamReader(stream);

 var content = await blobStreamReader.ReadToEndAsync();

 _logger.LogInformation($”C# Blob Trigger (using Event Grid) processed

 blob\n Name: {name} \n Data: {content}”);

 }

}

You will need this information to set the Azure function. "ConnectionStringName" needs to be de-

fined in the settings of the function app as an environment variable, as you can see in the following
figure. The content of this configuration is the connection string of the created storage account.

Figure 5.19: Defining the connection between the function app and the storage account

After that, you will have all the information needed to define the event that will be triggered in the
function app. Notice that the event happens in the storage account and Event Grid triggers the func-

tion. To do this, a webhook is created. The definition of the URL of the webhook can be seen here:

Part Template

Base function app URL https://<FUNCTION_APP_NAME>.azurewebsites.net

Blob-specific path /runtime/webhooks/blobs

Function query string ?functionName=Host.Functions.<FUNCTION_NAME>

Blob extension access key &code=<BLOB_EXTENSION_KEY>

Chapter 5 137

The blob extension access key can be found in the App Keys section of the function app. There is
a specific system key for blobs_extension. Once you have the key, you can use it to create a new

event in Azure Storage, as you can see in the next figure.

Figure 5.20: Subscribing to an event in Blob Storage

It is important to mention that your Azure subscription may not have enabled the resource pro-

vider for Event Grid and an error may occur with this disabled while creating the subscription.

To enable the resource provider, you need to go to your subscription account and register it.

Figure 5.21: Registering the Microsoft.EventGrid resource provider

Background Functions in Practice138

After this configuration, by simply uploading files to the defined container, the function will be
triggered for each file uploaded, in a low-latency model. You can monitor each trigger using the
function’s Invocations panel. Notice, in the figure, that the function was triggered four times in
the same second in the last calls, showing the capacity of the trigger function to handle a greater

number of files at the same time.

Figure 5.22: Monitoring triggers

It is worth noting that this example requires different components that may create additional

costs. So, you must pay attention not to let this demo run in your Azure account if you are just
trying this option. On the other hand, this will decrease the latency between the arrival of a file
and its processing, so you may consider it a good approach for real-life applications.

Car-sharing Blob storage trigger example
Considering the car-sharing use case that we are presenting in this book, it is worth mentioning

that one of the services that may be included in this solution is to analyze the driver’s license.
To do so, in the frontend application, there will be a user interface to upload this important
document to the business logic of the application. However, as this file is important, storing

Chapter 5 139

information like this needs to be well designed. A good option is to only extract the information

needed with the uploaded image and then create a hash of this information, so you can delete

the file uploaded by the user.

To do so, you may create a function dedicated to processing driver’s license photos. Using a Blob
storage trigger to do so may be a good idea.

It is important to mention that this example needs to update the Program.cs file. Instead of
directly using the FunctionsApplication class, we will use HostBuilder here, configuring the
Azure Functions application with the ConfigureFunctionsWebApplication method. It is worth

mentioning that in Azure Functions with .NET 8, ConfigureFunctionsWebApplication() en-

ables ASP.NET Core integration, while the default ConfigureFunctionsWorkerDefaults() is

used for the isolated worker model, offering greater flexibility and control over .NET versions
and dependencies:

using Microsoft.Extensions.Hosting;

using Microsoft.Extensions.Configuration;

using CarShareBackground;

var host = new HostBuilder()

 .ConfigureFunctionsWebApplication()

 .ConfigureAppConfiguration(config =>

 {

 config.AddUserSecrets<ProcessDriversLicensePhoto>(optional: true,

 reloadOnChange: false);

 })

 .Build();

host.Run();

The AddUserSecrets method adds user secrets to the configuration, which is useful for storing
sensitive information such as API keys or connection strings. In this case, we are storing the

connection with Blob Storage. The ProcessDriversLicensePhoto type is used to identify the

assembly containing the user secrets. The optional: true parameter means that the application

will not fail if the user secrets file is not found, and reloadOnChange: false indicates that the

configuration will not automatically reload if the user secrets file changes.

Background Functions in Practice140

Once you have defined Program.cs, you may create the Azure function to process Blob Storage.
The function itself is quite simple to define, as you can see in the following code:

[Function(nameof(ProcessDriversLicensePhoto))]

public async Task Run([BlobTrigger(“drivers-license/{name}”,

 Connection = “CarShareStorage”)] Stream myBlob, string name)

{

 StreamReader reader = new StreamReader(myBlob);

 var message = reader.ReadToEnd();

 _logger.LogInformation(“File detected”);

}

The BlobTrigger attribute defines where in Blob Storage the files will be uploaded, in this case,
in the drivers-license folder, where {name} is a placeholder for the blob’s name, which will

be passed as a string in the name parameter. The stream of the file will be obtained by the myBlob

parameter.

Queue storage trigger
The principle of a queue is fairly well known since this is a data structure where you want to

control the data so that first in will be first out. When we talk about the queue storage trigger in
Azure Functions, we have the possibility to manage queues asynchronously and totally decoupled,
making its usage extremely powerful.

The great power that we have in this scenario is the ability to handle large amounts of messages
efficiently. Azure Functions has the capability to scale automatically, and it guarantees that each
task will be processed properly with reliability and fault tolerance.

Considering this approach, it is worth noting that serverless applications will always focus the

development on what is essentially needed – the business logic to make that service work. That
is why serverless applications are a great way to implement microservices since the necessity of

handling infrastructure will be less needed.

Advantages, disadvantages, and when to use queue storage
triggers
If you have a use case where you must control a queue of data, a queue storage trigger function

will be one of the good options to select. The fact that this approach can handle large volumes
of messages efficiently is truly an advantage. In this case, you only need to focus on the business
logic for the service that will be implemented.

Chapter 5 141

However, the pricing model is based on the number of executions and the amount of data pro-

cessed, so you must be aware of it and not be surprised by the costs related to the solution. It

is also worth noting that high load or transient errors may occur and, as a developer, you must

implement retries and error-handling mechanisms to ensure your solution is well implemented.

Queue storage triggers may be a good solution when you must deliver a reliable and efficient
solution for processing queued tasks, considering all we have discussed. For instance, if you need

order processing, background job scheduling, or event event-driven notifications, this kind of
solution can be a good approach. Now, let’s check a scenario in the car-sharing example where

a queue storage trigger could be a good solution.

Car-sharing queue storage trigger example
Considering the car-sharing use case, one of the services that may be created using a queue storage

trigger is the My_Best_Matches microservice. According to the car-sharing example specification
described in Chapter 2, Demystifying Microservices Applications, all routes’ changes are sent to both

the My_Best_Matches and Route-Choosing microservices.

Considering this scenario, let’s suppose that the routes’ changes are queued as JSON components

in an Azure Storage queue. This JSON will indicate that there is a new match to be processed by
My_Best_Matches microservice:

using Azure.Storage.Queues.Models;

using Microsoft.Azure.Functions.Worker;

using Microsoft.Extensions.Logging;

namespace My_Best_Matches

{

 public class NewMatchTrigger

 {

 private readonly ILogger<NewMatchTrigger> _logger;

 public NewMatchTrigger(ILogger<NewMatchTrigger> logger)

 {

 _logger = logger;

 }

 [Function(nameof(NewMatchTrigger))]

 public void Run([QueueTrigger(“new-match”,

Background Functions in Practice142

 Connection = “CarSharingStorage”)] QueueMessage message)

 {

 _logger.LogInformation($”C# Queue trigger function processed:

 {message.MessageText}”);

 }

 }

}

Once you have this code running, using the local storage emulator, you can place a message in

the new-match queue.

Figure 5.23: Placing a message in the queue

The message placed in the queue will be automatically processed by the function and then de-

leted from the storage.

Chapter 5 143

Figure 5.24: Azure function output

Considering this scenario, this message could be used to send an email to both the car holder

and car seeker, indicating that there is a new match for them and that they can interact with the

system to define whether or not they will accept the proposed route.

Summary
This chapter discussed the implementation of three important Azure trigger functions to im-

plement background services – timer triggers, Blob storage triggers, and queue storage triggers.

Tasks such as processing routines, images, data, and orders can be easily implemented using this
serverless technology.

While presenting these kinds of functions, the chapter explained how to publish and monitor

functions. It also presented a more efficient way to implement blob trigger functions, using Event
Grid as a basis, and reducing the latency between the file upload and the start of the processing.

The chapter also explained how Azure Functions can be a great approach to implementing mi-
croservices. To do so, it presented three examples related to the car-sharing use case where the
usage of this kind of solution will let developers focus on what really matters when it comes to

software development – coding the business logic of the solution that is being developed.

Now, let’s move on to the next chapter, which will discuss how to enable IoT solutions using
Azure Functions as a basis.

Questions
1. What is the purpose of the timer trigger function?

The timer trigger function is designed to execute code on a schedule, defined using
NCRONTAB expressions. It allows developers to run background jobs at regular intervals

without requiring manual initiation or HTTP requests.

This is useful for scenarios such as data synchronization, cleanup operations, report
generation, and periodic billing. It helps automate repetitive tasks, especially those that

shouldn’t depend on human interaction to be performed.

Background Functions in Practice144

2. What is the purpose of the blob trigger function?

The blob trigger function responds automatically whenever a file is added or modified in a
specific Azure Blob Storage container. It enables event-driven processing for unstructured
data such as images, logs, or documents.

This trigger is ideal for automating workflows involving data ingestion, file processing,
image analysis, or document transformation. It supports scalability and integration with

Event Grid to reduce latency in high-performance scenarios.

3. What is the purpose of the queue trigger function?

The queue trigger function executes when a new message is added to Azure Queue Storage.
It enables the asynchronous processing of tasks, decoupling producers from consumers

in distributed systems.

This approach ensures reliable and scalable handling of queued tasks such as background
processing, order handling, or notifications, allowing developers to focus on business
logic while Azure Functions handles infrastructure concerns.

4. What is the difference between the blob and queue trigger functions?

The blob trigger function reacts to file changes in Azure Blob Storage, typically processing
binary or unstructured data. It is event-driven and suited for scenarios such as file uploads,
media processing, or document handling.

In contrast, the queue trigger function is designed to process text-based messages from

Azure Queue Storage. It is better suited for managing workflows, job scheduling, and mes-

sage-driven integrations, where you need explicit control over task order and execution.

5. How can we reduce the latency between the file upload and the start of processing in a
blob trigger function?

To reduce latency in a blob trigger function, it’s recommended to use Event Grid-based blob
triggers instead of polling-based triggers. Event Grid enables near-real-time processing

by pushing events as they occur.

Additionally, using the Flex Consumption plan or an App Service plan with Always On

enabled helps minimize cold start times. However, these approaches may increase cost,
so they should be evaluated based on application requirements.

Chapter 5 145

6. List different ways to monitor an Azure function.

Azure functions can be monitored using several built-in tools. The Invocation tab in the

Azure portal provides basic metrics, such as the number of executions and execution status.

For deeper insights, Azure Monitor logs and Application Insights (Performance and Live

Metrics views) offer advanced telemetry, performance tracking, and real-time diagnostics.
These tools help identify errors, analyze trends, and debug runtime behavior effectively.

Further reading
• Azure Functions timer trigger: https://learn.microsoft.com/en-us/azure/azure-

functions/functions-bindings-timer

• Azurite: https://learn.microsoft.com/en-us/azure/storage/common/storage-use-
azurite

• Microsoft Azure Storage Explorer: https://learn.microsoft.com/en-us/azure/
storage/storage-explorer/vs-azure-tools-storage-manage-with-storage-explorer

• Azure Functions blob trigger: https://learn.microsoft.com/en-us/azure/azure-
functions/functions-bindings-storage-blob-trigger

• Azure Functions blob trigger with Event-Grid: https://learn.microsoft.com/en-us/
azure/azure-functions/functions-event-grid-blob-trigger

• Azure Queue storage trigger: https://learn.microsoft.com/en-us/azure/azure-
functions/functions-bindings-storage-queue

• Azure storage considerations: https://learn.microsoft.com/en-us/azure/azure-
functions/storage-considerations

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/PSMCSharp

https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer
https://learn.microsoft.com/en-us/azure/storage/common/storage-use-azurite
https://learn.microsoft.com/en-us/azure/storage/common/storage-use-azurite
https://learn.microsoft.com/en-us/azure/storage/storage-explorer/vs-azure-tools-storage-manage-with-storage-explorer
https://learn.microsoft.com/en-us/azure/storage/storage-explorer/vs-azure-tools-storage-manage-with-storage-explorer
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-blob-trigger
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-blob-trigger
https://learn.microsoft.com/en-us/azure/azure-functions/functions-event-grid-blob-trigger
https://learn.microsoft.com/en-us/azure/azure-functions/functions-event-grid-blob-trigger
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue
https://learn.microsoft.com/en-us/azure/azure-functions/storage-considerations
https://learn.microsoft.com/en-us/azure/azure-functions/storage-considerations
https://packt.link/PSMCSharp

6
IoT Functions in Practice

The implementation of the Internet of Things certainly is changing the way we interact with the
world. Although we have a lot of solutions delivered, IoT is still challenging to deliver, especially
if you want to focus on a scalable solution.

The idea of this chapter is to present Event Grid, Event Hubs, and IoT Hub triggers that will be
good options to start a microservice connected to devices. Besides that, we will discuss how to

enable IoT using Azure.

This chapter will help you to create an IoT environment using Azure. Besides that, it will guide
you on connecting this environment through Azure IoT Function triggers. To finish, it will present
the car-sharing example case for IoT. Let’s check how to do it.

Technical requirements
This chapter requires Visual Studio 2022 free community edition or Visual Studio Code. You will
also need an Azure account to create the sample environment. You can find the sample code
for this chapter at https://github.com/PacktPublishing/Practical-Serverless-and-

Microservices-with-Csharp.

Enabling IoT in Azure
When we think about IoT, one of the greatest worries is the scalability of the solution. Consid-

ering that we are designing a solution to facilitate connection with a great number of devices,

the best way to enable IoT in Azure is by using IoT Hub. IoT Hub creates a great environment for
connecting, monitoring, and managing your IoT devices, offering a Platform as a Service (PaaS)
solution that will make you focus on the application you are working on.

https://github.com/PacktPublishing/Practical-Serverless-and-Microservices-with-Csharp
https://github.com/PacktPublishing/Practical-Serverless-and-Microservices-with-Csharp

IoT Functions in Practice148

There are two tiers of pricing for IoT Hub in Azure and the Free Edition of it. The Free Edition en-

ables up to 8,000 messages of 0.5KB a day and it has the same features we have in the Standard

tier. If you go for the Basic or Standard tiers, this can be increased to up to 3 billion messages of

4KB a day! The standard tier also offers device management, cloud-to-device messaging, and IoT
Edge. Besides that, the Standard tier has a layer of security managed by Defender, called Defender

for IoT. This information gives us an idea of how scalable the platform is.

For our purposes in this book and to help you understand the following examples, we suggest

that you create a free tier IoT Hub component. The next topics will discuss how to get messages
from this IoT Hub so you can create a microservice based on it.

The process of doing so is quite simple. You must go to Create Resource in Azure and type IoT
Hub in Azure Marketplace.

Figure 6.1: Creating an IoT Hub using Azure Marketplace

For Free Tier, you only need to fill in the information related to the Basics tab, so after this, you

can move on to the Review + create tab.

Chapter 6 149

Figure 6.2: Azure IoT Hub Free Tier setup

As soon as the resource is created, you will be able to create devices in the Azure IoT Hub Device

management area.

IoT Functions in Practice150

Figure 6.3: Azure IoT Hub Device management

First, the device will only need Device ID information, which represents the uniqueness of the

device that will be handled.

Figure 6.4: Creating a device in IoT Hub

Chapter 6 151

IoT Hub also provides the possibility to connect devices on the edge, by using IoT Edge devices.
This is not the focus of this book, but you will find information about it in the Further reading

section. For the book’s purpose, devices created in Azure are good to go.

Considering we have the devices created, we need to understand how to simulate them. The
code below shows how we can do it using the .NET Microsoft.Azure.Devices.Client library:

// <summary>

// Simulates a device by creating a DeviceClient and sending a message.

// </summary>

// <param name=”connectionString”>The connection string of the //device.</

param>

// <param name=”message”>The message to be sent by the device.</param>

private static async Task SimulateDeviceAsync(string connectionString,

string message)

{

 var deviceClient = DeviceClient.CreateFromConnectionString(

 connectionString, TransportType.Mqtt);

 await SendMessageAsync(deviceClient, message);

}

// <summary>

// Sends a message to the IoT hub using the provided DeviceClient.

// </summary>

// <param name=”deviceClient”>The DeviceClient used to send the //

message.</param>

/// <param name=”message”>The message to be sent.</param>

private static async Task SendMessageAsync(DeviceClient deviceClient,

string message)

{

 var messageBytes = Encoding.UTF8.GetBytes(message);

 var iotMessage = new Message(messageBytes);

 await deviceClient.SendEventAsync(iotMessage);

}

The connectionString argument in the method above is specific to each IoT device. You can get
it using the Azure portal, but it is great to mention that there is a very useful tool for Azure IoT
Hub called Azure IoT Explorer.

IoT Functions in Practice152

With Azure IoT Explorer, we can manage devices connected to IoT Hub in a graphical tool that
facilitates diagnosing and testing. For instance, to get the connection string of a specific device,
you can check the Device identity information available.

Figure 6.5: Getting device connection string

Chapter 6 153

Now that we have understood how to simulate devices, let’s learn how to receive data from these

devices using Azure Functions.

Connecting IoT Hub with Azure Functions
By default, IoT Hub offers a built-in service that delivers device-to-cloud messages to a compatible
EventHubs endpoint at messages/events. This means that you can easily connect IoT Hub device
messages to an Event Hubs trigger function:

[Function(nameof(IoTFunction))]

public void Run([EventHubTrigger(“messages/events”, Connection =

“EventHubConnection”)] EventData[] events)

{

foreach (EventData @event in events)

 {

 _logger.LogInformation(“Event Body: {body}”, @event.EventBody);

 }

}

This option is certainly very useful since you can develop a solution very fast where you connect
different devices using IoT Hub and Azure Functions. So, this can be considered the simplest way
to directly integrate message processing.

In the code above, we are just defining the default endpoint messages/events and defining the
variable that will give us the connection string for the Event Hub. The EventHubConnection
variable can be found in Built-in endpoints in IoT Hub. There will be only shared access policies
that enable us to receive data from devices (ServiceConnect permissions). It is recommended
that you share the policy with the least access, considering the purpose of this connection is just

reading the information.

IoT Functions in Practice154

Figure 6.6: Obtaining Event Hubs connection string to receive data from IoT Hub

It is also worth noting that these messages can be retained for a maximum of seven days, according

to the tier you have selected in Azure IoT Hub.

Although the built-in option is very easy and fast to implement, you may want to apply different

IoT scenarios where other alternatives can be applied. There are several ways to trigger data
coming from devices using Events in Azure IoT Hub, as we can see in the following screenshot.

Chapter 6 155

Figure 6.7: Azure IoT Hub Events alternatives to receive data from devices

Each approach certainly will give you the versatility to implement event driven and scalable

solutions. Besides that, you need to analyze exactly the data you are going to send from devices
to the cloud to define the best alternative. It is worth noting that only IoT Hub triggers aims at
direct integration between IoT Hub and Azure Functions. The other triggers are visible under
the Events blade.

Approach When to use

IoT Hub Trigger Simplest, direct integration for message processing.

Event Grid Trigger Best for event-driven systems and scalable architecture.

Service Bus Trigger When you need intermediate buffering or message priority handling.

Blob Storage Trigger When you want to store and process telemetry data as files.

HTTP Trigger (Direct) When you need fine-grained control over function invocation.

IoT Functions in Practice156

Approach When to use

Logic Apps For no-code/low-code integration with IoT Hub and Functions.

Stream Analytics Output When you need to perform real-time analytics before invoking the

function.

Queue Trigger For lightweight, simple queue-based message processing.

We have already covered how to implement some of these alternatives in the last three chapters,

so we will not explore them again.

Car-sharing IoT example
The car-sharing example that we are covering in the book enables interaction between car-seek-

ing and car-holding users. But let’s suppose we have the possibility to deliver a special plan for

car-holders who apply for a specific IoT device from the platform we are designing. Another option
would be to integrate the car-sharing app in the central car cockpit. In this scenario, users could

track the location, speed, and status of the available vehicles. It would also be possible to monitor

vehicle health parameters such as battery life, tire pressure, and fuel levels.

In the alternatives presented before, a new vehicle-tracking microservice could be implemented

and its data would probably be shared with the existing Routes-Listing and Routes-Planner

microservices. For the first one, it would be possible to provide up-to-date information on car
availability and estimated arrival times. For the planner, it would facilitate the decision of the

best car to suggest a new hide.

But considering the scenario above, which would be a great architectural approach? In Chapter

7, Microservices in Practice, we will present the RabbitMQ message broker, which will be very use-

ful for this scenario, and the complete example of Routes-Planner microservices. The diagram
below shows how the IoT solution and the Vehicle-Tracking microservice will be connected to
the main solution.

Azure IoT Hub is the component responsible for managing multiple cars (devices) and it will
send tracking data received from each car to the Vehicle-Tracking microservice using Azure Event
Hubs messages. This microservice will be responsible for processing vehicle health parameters,
as presented above, and this information will be stored in the Cosmos DB database, considering

the volume of data received. To finish, it will publish only the data needed for the RoutesPlanning
microservice using a RabbitMQ principal bus.

Chapter 6 157

Figure 6.8: IoT solution connected to a microservice solution

The tracking data that is sent from the car could have a structure like the one below. It is also
great to mention that, if you are running .NET from a device to the cloud, this structure can be
reused if you work in a class library dedicated to defining SharedMessages:

using SharedMessages.BasicTypes;

using System;

namespace SharedMessages.VehicleTracking

{

 public class VehicleTrackingMessage : TimedMessage

 {

 public Guid VehicleId { get; set; }

 public GeoLocalizationMessage? Location { get; set; }

 public double Speed { get; set; }

 public double CarStatus { get; set; }

 public double BatteryLevel { get; set; }

 public double FuelLevel { get; set; }

 public double TirePressure { get; set; }

 }

}

IoT Functions in Practice158

It is worth noting that the Location property is defined by another shared class, called GeoLo-

calizationMessage:

using System;

using System.Collections.Generic;

using System.Text;

namespace SharedMessages.BasicTypes

{

 public class GeoLocalizationMessage

 {

 public double Latitude { get; set; }

 public double Longitude { get; set; }

 }

}

Considering this scenario, the following code is an emulation of a car collecting data and sending

data using IoT Hub as the front door:

using System.Text;

using System.Text.Json;

using Microsoft.Azure.Devices.Client;

using SharedMessages.BasicTypes;

using SharedMessages.VehicleTracking;

// <summary>

// The main class for the Car Simulator program.

// </summary>

class Program

{

 // <summary>

 // The connection string for the car device.

 // </summary>

 private static string carConnectionString = “[device connection

string]”;

 // <summary>

 // The main entry point for the program.

 // </summary>

Chapter 6 159

 static async Task Main()

 {

 while (true)

 {

 // Create a new vehicle tracking message with random data

 VehicleTrackingMessage vehicleTrackingMessage = new

 VehicleTrackingMessage

 {

 VehicleId = Guid.NewGuid(),

 Location = new GeoLocalizationMessage

 {

 Latitude = 47.6426,

 Longitude = -122.1301

 },

 Speed = 60 + DateTime.Now.Second,

 CarStatus = 1,

 BatteryLevel = 100 - DateTime.Now.Second,

 FuelLevel = 100,

 TirePressure = 32

 };

 // Simulate sending the device message

 await SimulateDeviceAsync(carConnectionString,

 vehicleTrackingMessage);

 Console.WriteLine(“Vehicle tracking sent!”);

 await Task.Delay(new Random().Next(10000, 20000));

 }

 }

 // <summary>

 // Simulates sending a device message to the IoT hub.

 // </summary>

 // <param name=”connectionString”>The connection string for the

 //device.</param>

 // <param name=”message”>The vehicle tracking message to send.</param>

 private static async Task SimulateDeviceAsync(string connectionString,

 VehicleTrackingMessage message)

IoT Functions in Practice160

 {

 var deviceClient = DeviceClient.CreateFromConnectionString(

 connectionString, TransportType.Mqtt);

 string jsonMessage = JsonSerializer.Serialize(message);

 await SendMessageAsync(deviceClient, jsonMessage);

 }

 // <summary>

 // Sends a message to the IoT hub.

 // </summary>

 // <param name=”deviceClient”>The device client to use for sending the

 //message.</param>

 // <param name=”message”>The message to send.</param>

 private static async Task SendMessageAsync(DeviceClient deviceClient,

 string message)

 {

 var messageBytes = Encoding.UTF8.GetBytes(message);

 var iotMessage = new Message(messageBytes);

 await deviceClient.SendEventAsync(iotMessage);

 }

}

It is worth noting that we are just creating data here with random information. However, the

process itself exactly represents the output of data from a device to the cloud.

On the other hand, the following code represents the function that will process the vehicle tracking

message, storing its data in Cosmos DB and, at the same time, alerting all the microservices via

RabbitMQ that there is a new message from a car, so other microservices, like RoutesPlanning,

can make use of it to run their business rules:

using System;

using System.Text.Json;

using Azure.Messaging.EventHubs;

Depending on the device you have, you may need to change the protocol used with

Azure IoT Hub. You may check https://learn.microsoft.com/en-us/azure/iot-hub/
iot-hub-devguide-protocols for more information.

Chapter 6 161

using Microsoft.Azure.Functions.Worker;

using Microsoft.Extensions.Logging;

using SharedMessages.VehicleTracking;

namespace VehicleTrackingFunction

{

 // <summary>

 // Azure Function to process vehicle tracking messages from Event Hub.

 // </summary>

 public class VehicleTracking

 {

 private readonly ILogger<VehicleTracking> _logger;

 // <summary>

 // Initializes a new instance of the <see cref=”VehicleTracking”/>

 //class.

 // </summary>

 // <param name=”logger”>The logger instance.</param>

 public VehicleTracking(ILogger<VehicleTracking> logger)

 {

 _logger = logger;

 }

 // <summary>

 // Function triggered by Event Hub messages.

 // </summary>

 // <param name=”events”>Array of EventData received from Event

 //Hub.</param>

 [Function(nameof(VehicleTracking))]

 public async Task Run([EventHubTrigger(“messages/events”,

 Connection = “CarSharingIoTEventHub”)] EventData[] events)

 {

 foreach (EventData @event in events)

 {

 var jsonString = @event.EventBody.ToString();

 if (!string.IsNullOrEmpty(jsonString))

 {

IoT Functions in Practice162

 VehicleTrackingMessage? vehicleTrackingMessage = JsonSerializer.

Deserialize<VehicleTrackingMessage>(jsonString);

 if (vehicleTrackingMessage != null)

 {

 await SaveDataToDatabase(vehicleTrackingMessage);

 await AlertDataToRabbitMQ(vehicleTrackingMessage);

 }

 }

 }

 }

 // <summary>

 // Sends vehicle tracking data to RabbitMQ.

 // </summary>

 // <param name=”vehicleTrackingMessage”>The vehicle tracking

 //message.</param>

 private async Task AlertDataToRabbitMQ(

 VehicleTrackingMessage vehicleTrackingMessage)

 {

 // Implementation for alerting data to RabbitMQ

 Console.WriteLine($”Vehicle tracking data alerted to RabbitMQ: ID =

 {vehicleTrackingMessage.VehicleId};

 Speed = {vehicleTrackingMessage.Speed}”);

 }

 // <summary>

 // Saves vehicle tracking data to CosmosDB database.

 // </summary>

 // <param name=”vehicleTrackingMessage”>The vehicle tracking

 //message.</param>

 private async Task SaveDataToDatabase(VehicleTrackingMessage

 vehicleTrackingMessage)

 {

 // Implementation for saving data to the database CosmosDB

 Console.WriteLine($”Vehicle tracking data saved to database: ID =

 {vehicleTrackingMessage.VehicleId};

 Speed = {vehicleTrackingMessage.Speed}”);

Chapter 6 163

 }

 }

}

Some great things about this approach justify why microservices are a good way to work with big

products. First, the implementation of the IoT solution is totally decoupled from the implementa-

tion of the rest of the application, which enables developers to define the technology used and the
deployment pipeline. Second, the usage of the information provided by the IoT solution is optional
and can be spread to each microservice that is required. Besides that, one point of attention is

the contract defined in the Shared Messages. You must be careful not to create an incompatibility
between the systems. A good approach to avoid this is to version the message content.

Summary
This chapter discussed how Internet of Things solutions can be handled in Azure, especially with
the help of Azure IoT Hub and Azure Functions. It also presented an extension of the car-sharing
example using an IoT service, which demonstrates how useful microservices architecture can be.

Microservices offer several strategic advantages in the development of large-scale applications,

especially when it comes to implementing IoT solutions. By decoupling the IoT solution from the
rest of the application, developers have the flexibility to choose the appropriate technologies and
pipelines for deployment independently. This modular approach not only enhances scalability
and maintainability but also allows different teams to work on various parts of the application

without interference.

Another significant benefit of microservices is their optional and distributed usage of information.
The data provided by the IoT solution can be utilized by any microservice that requires it, ensuring
efficient data handling and processing. However, it is crucial to maintain compatibility across dif-

ferent systems by carefully managing contracts. Versioning message content is an effective strategy

to avoid incompatibility issues, ensuring smooth communication between microservices. In the

next chapter, we will start discussing the usage of microservices in practice with more emphasis.

IoT Functions in Practice164

Questions
1. What is the purpose of reading device-to-cloud messages from the built-in endpoint in

IoT applications?

The built-in endpoint in IoT Hub allows you to read device-to-cloud messages easily and
directly, making it ideal for quick integration between devices and backend applications.

It simplifies the process of connecting IoT devices to services like Azure Functions using
standard Event Hub-compatible endpoints.

This approach is useful for scenarios where rapid prototyping or lightweight integration is
needed, as it requires minimal configuration and supports scalable, event-driven solutions.

2. How can you read device-to-cloud messages from the built-in endpoint?

To read messages from the built-in endpoint, you can create an Azure function using an
Event Hub trigger and point it to the default messages/events endpoint of IoT Hub. The
connection string with read permissions (typically from the service policy) is used to
access the messages.

This method enables a fast and straightforward implementation of serverless message
processing, allowing the Azure Function to automatically execute whenever a device
sends data to IoT Hub.

3. What are the advantages of using the Azure IoT explorer for managing IoT devices?

The Azure IoT explorer is a graphical tool that simplifies device management in IoT Hub.
It allows you to register new devices, view connection strings, send test messages, and

monitor device status without writing any code.

This tool is especially helpful during the development and testing phases, as it accelerates
diagnostics and gives developers a user-friendly interface to interact with and configure
IoT devices.

4. How does Queue Trigger facilitate lightweight, simple queue-based message processing?

Queue triggers enable Azure Functions to respond to messages placed in Azure Storage
Queues. This pattern provides a lightweight and decoupled way to process tasks asyn-

chronously, making it easy to implement background job handling or message workflows.

It is particularly effective in scenarios where simplicity, scalability, and fault tolerance

are desired without the need for complex messaging infrastructure.

Chapter 6 165

5. What are the key differences between IoT Hub and Event Hubs?

IoT Hub is specifically designed for secure and scalable communication with IoT devices,
offering device management, bidirectional messaging, and integration with IoT Edge.
Event Hubs, on the other hand, is a high-throughput, general-purpose event ingestion

service mainly used for telemetry and logging.

While both support massive data ingestion, IoT Hub provides device-centric features like
twin properties, direct methods, and security credentials per device, whereas Event Hubs

focuses on data streaming and integration into analytics pipelines.

6. What are the benefits of decoupling the IoT solution from the rest of the application?

Decoupling the IoT solution allows independent development, scaling, and deployment
of the device communication layer. Each microservice can process only the data it needs,

leading to better performance, flexibility, and maintainability.

Additionally, this separation enables teams to adopt different technologies or deployment

strategies as needed, while keeping the core application architecture clean and modular.

7. How can versioning message content help prevent incompatibility issues in shared mes-

sages?

Versioning message content ensures that changes to data structures don’t break function-

ality in microservices that consume these messages. Each service can process the version

it understands, allowing smooth evolution of the system.

By maintaining compatibility across versions, developers can update and deploy com-

ponents independently without risking integration failures or data misinterpretation

between services.

8. What role does the pipeline of deployment play in the implementation of microservices

in IoT solutions?

A well-defined deployment pipeline allows each microservice, including those related to
IoT, to be built, tested, and deployed independently. This supports continuous integration
and delivery, reducing time to market and minimizing risks during updates.

For IoT scenarios, where data ingestion and processing are critical, automated pipelines
ensure reliability, version control, and traceability across the distributed system—en-

hancing overall application robustness.

IoT Functions in Practice166

Further reading
• Azurite: https://learn.microsoft.com/en-us/azure/storage/common/storage-use-

azurite

• Microsoft Azure Storage Explorer: https://learn.microsoft.com/en-us/azure/
storage/storage-explorer/vs-azure-tools-storage-manage-with-storage-explorer

• Azure IoT Edge Documentation: https://learn.microsoft.com/en-us/azure/iot-edge

• Read device-to-cloud messages from the built-in endpoint: https://learn.microsoft.

com/en-us/azure/iot-hub/iot-hub-devguide-messages-read-builtin

• Azure IoT explorer: https://learn.microsoft.com/en-us/azure/iot/howto-use-iot-
explorer

• Comparison between IoT Hub and Event Hubs: https://learn.microsoft.com/en-us/
azure/iot-hub/iot-hub-compare-event-hubs

• Azure Functions Event Triggers: https://learn.microsoft.com/en-us/azure/azure-
functions/functions-bindings-event-iot

• Azure Functions IoT Triggers: https://learn.microsoft.com/en-us/azure/azure-
functions/functions-bindings-event-iot-trigger

• Azure Stream Analytics: https://azure.microsoft.com/en-us/products/stream-
analytics/

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/PSMCSharp

https://learn.microsoft.com/en-us/azure/storage/common/storage-use-azurite
https://learn.microsoft.com/en-us/azure/storage/common/storage-use-azurite
https://learn.microsoft.com/en-us/azure/storage/storage-explorer/vs-azure-tools-storage-manage-with-storage-explorer
https://learn.microsoft.com/en-us/azure/storage/storage-explorer/vs-azure-tools-storage-manage-with-storage-explorer
https://learn.microsoft.com/en-us/azure/iot-edge
https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-messages-read-builtin
https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-messages-read-builtin
https://learn.microsoft.com/en-us/azure/iot/howto-use-iot-explorer
https://learn.microsoft.com/en-us/azure/iot/howto-use-iot-explorer
https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-compare-event-hubs
https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-compare-event-hubs
https://packt.link/PSMCSharp

7
Microservices in Practice

This chapter is dedicated to the practical implementation of each microservice that exists after
the design of the general application architecture and after that all interfaces of all Microservices

have been defined. The interaction between, and orchestration of, microservices will be detailed
in the remaining chapters of this book.

All concepts will be illustrated with the example of a worker microservice taken from the book’s

case study application that we introduced in the Car-sharing example subsection of Chapter 2,

Demystifying Microservices Applications.

After a short description of the example worker microservice specifications, we will describe how
to design microservices’ input and output communication subsystems, and how to organize the
microservice request-serving logic.

Finally, we will discuss the details of how to implement a microservice with the Onion Architec-

ture project templates introduced in the A solution template based on the Onion Architecture section

of Chapter 3, Setup and Theory: Docker and Onion Architecture.

More specifically, this chapter covers the following:

• The route-planning microservice of the car-sharing application

• Microservice basic design

• Ensuring resilient communication with Polly

• From abstraction to implementation details

Microservices in Practice168

Technical requirements
This chapter requires the following:

1. Visual Studio 2022, at least the free Community edition.

2. A SQL instance that accepts TCP/IP requests and user/password authentication since it
must communicate with clients running inside Docker containers. Please note that the

SQL instance that comes with the Visual Studio installation doesn’t support TCP/IP, so
you need to either install SQL Express or use a cloud instance. For local installation, both

the installer and instructions are available here: https://www.microsoft.com/en-US/

download/details.aspx?id=104781. You may also run the SQL Server Developer edition
as a Docker image with the following code:

docker run -e "ACCEPT_EULA=Y" -e "MSSQL_SA_PASSWORD=yourStrong(!)

Password" -p 1433:1433 -d mcr.microsoft.com/mssql/server:2022-latest

3. The username corresponding to the chosen password will be sa.

4. Docker Desktop for Windows (https://www.docker.com/products/docker-desktop).

5. Docker Desktop, in turn, requires Windows Subsystem for Linux (WSL), which can be

installed by following these steps:

1. Type powershell in the Windows 10/11 search bar.

2. When Windows PowerShell is proposed as a search result, click on Run as an

administrator.

3. In the Windows PowerShell administrative console that appears, run the wsl

--install command.

You can find the sample code for this chapter at https://github.com/PacktPublishing/
Practical-Serverless-and-Microservices-with-Csharp.

The route-planning microservice of the car-sharing
application
In this section, we describe our example microservice, how to handle security, and how to prepare

the solution for its implementation into three separate subsections.

https://www.microsoft.com/en-US/download/details.aspx?id=104781
https://www.microsoft.com/en-US/download/details.aspx?id=104781
https://www.docker.com/products/docker-desktop
https://github.com/PacktPublishing/Practical-Serverless-and-Microservices-with-Csharp
https://github.com/PacktPublishing/Practical-Serverless-and-Microservices-with-Csharp

Chapter 7 169

Microservice specifications
The route-planning microservice stores and matches pending requests to move from one town

to another with existing routes that are still open to other participants.

When an opened route of a car owner is created, it is matched with requests whose start and end

towns are close to the car owner’s route and whose date constraints are compatible. If matches

are found, a proposal to modify the route to include them is created and sent to other interested

microservices. A symmetric operation is also done when a new request is inserted.

When a proposal to extend the route is accepted, the original route is extended.

After the initial match attempt, both requests and routes are stored for possible future matches.

Requests and routes are removed or modified under the following circumstances:

1. A route is removed from possible matches when it is closed to new participants or aborted.

2. A route is extended when it is merged with some requests. No new matches are attempted

as a consequence of this operation.

3. A request is removed from possible matches when it is merged with a route.

4. A request becomes available again when the route it was merged with is aborted. After

this operation, new matches are attempted.

5. Both requests and routes are deleted N days after their maximum travel day expires, where

N is a parameter to be provided.

Matches between routes and requests are done when the following circumstances are met:

1. The route date falls between the minimum and maximum dates associated with the
request.

2. Both the request start and end towns are close enough to the route.

We will implement most microservice-to-microservice communication with the publisher/sub-

scriber pattern in order to maximize microservice decoupling. This choice will also minimize
the overall communication-related code, since message handlers and their client libraries take

care of most of the asynchronous communication problems. Please refer to the Event-based com-

munications subsection of Chapter 2, Demystifying Microservices Applications, for more details on

event-based communication.

Microservices in Practice170

Moreover, in order to maximize application portability, we will use the RabbitMQ message bro-

ker, which is not tied to a specific platform or cloud but can be installed in any Kubernetes-based
network with an adjustable number of replicas. RabbitMQ will be described in a dedicated sub-

section of the next section.

Since the car-sharing application doesn’t exchange heavy messages, we may avoid non-standard

binary serializations such as gRPC Protobuf and opt for a simple JSON message serialization.

Finally, since our worker microservice in-out communication is based on message brokers and

not on the usual HTTP and gRPC ASP.NET Core protocols, we might consider the ad hoc Worker

service project template based on the so-called hosted services (hosted services will be discussed

in the next section). However, microservices best practices prescribe that each microservice should
expose an HTTP endpoint to verify its health status, so we will adopt a minimal API-based ASP.
NET Core Web API project since it also supports the hosted services that we need for receiving

message-broker-based communication.

Having clarified the microservice responsibilities, we can move on to security considerations.

Handling security and authorization
The authorization of requests coming from actual users is handled with the usual ASP.NET Web
API techniques, that is, with web tokens (typically a JSON bearer token) and Authorize attributes.

Web tokens are provided by the login and token-renew endpoints of a specialized microservice
that acts as the authorization server.

Requests coming from other services instead are usually secured with mTLS, that is, with certif-

icate-based client authentication. Client certificates are handled by the lower-level TCP/IP pro-

tocol together with the server certificate used for encrypting the HTTPS communication. Then,
the information extracted by the client certificate is passed to the ASP.NET Core authentication
middleware to create a ClaimsPrincipal (the usual ASP.NET Core User object). When the ap-

plication runs within an orchestrator, it is also possible to use orchestrator-specific authorization,
and when the application runs in the cloud, it is possible to use cloud-specific authorization.

Most web servers and communication libraries can be configured to automatically
compress JSON data. Web servers negotiate compression with the client.

Chapter 7 171

We will analyze the Kubernetes orchestrator in Chapter 8, Practical Microservices Organization with

Kubernetes, and its communication-securing facilities in Chapter 10, Security and Observability for

Serverless and Microservices Applications. Even in a private network, it is recommended to encrypt

internal communication using mTLS or other encryption methods to mitigate insider threats and
network attacks, but for the sake of simplicity in this book, we will only secure communication

with the outside world.

Therefore, if we adequately organize our private network, we need to secure just communica-

tion with the outside world, that is, communication with frontend microservices. However, as

discussed in the Interfacing the external world subsection of Chapter 2, Demystifying Microservices

Applications, microservices-based applications use API gateways to communicate with the ex-

ternal world. In the simplest case, the interface with the external world is just a load-balanced

web server that performs HTTPS termination, that is, that receives HTTPS communications from
the external world. While some architectures terminate HTTPS at the API gateway and use HTTP
internally, it is recommended to maintain encryption within the private network using mTLS or
re-encryption to ensure security within the microservices ecosystem. This way, we may use just
a single HTTPS certificate for the whole application, thus avoiding the whole certificate issuing
and renewal procedure for all microservices that compose the application.

Now we are ready to prepare the Visual Studio solution that will host the route-planning micro-

service!

Luckily, if both communicating microservices are exposed in a private network, or

better, in a private network handled by a microservices orchestrator, we may replace

user authentication with firewall rules and/or with other communication-securing
facilities offered by the orchestrator.

Summing up, if we use any kind of HTTPS-termination interface to access the micro-

service application, we may avoid using HTTPS communication in all microservices.

Microservices in Practice172

Creating the Visual Studio solution
Since we decided to implement the outermost layer of our worker microservice with an ASP.NET
Core Web API project, let’s create a CarSharing Visual Studio solution containing an ASP.NET
Core Web API project called RoutesPlanning. The ASP�NET Core Web API project can be easily

found by selecting C#, All platforms, and Web API from the dropdowns of the Visual Studio

project selection window, as shown here:

Figure 7.1: Project selection

As discussed previously, we may avoid HTTPS communication, and worker microservices do not
need authentication. However, we need Docker support since microservices are usually con-

tainerized.

Finally, we don’t need controllers but just a minimal API since we need to expose just a couple of

trivial endpoints for health checks:

Figure 7.2: Project settings

Chapter 7 173

We will use the Onion Architecture, so we need to also add a project for the application services

and domain layer. Therefore, let’s add two more Class Library projects, called RoutesPlanning

ApplicationServices and RoutesPlanningDomainLayer. We will adapt the Onion Architecture

template introduced in the A solution template based on the Onion Architecture section of Chapter 3,

Setup and Theory: Docker and Onion Architecture.

Let’s open the OnionArchitectureComplete project template, which you can find in the ch03 folder

of the book’s GitHub repository. In the RoutesPlanningDomainLayer project, delete the Class1�cs

file, select the three folders in the DomainLayer project of the ch03 project template, copy them,

and paste them into the RoutesPlanningDomainLayer project. If you have the latest Visual Studio

2022 version installed, you should be able to perform the copy operation from within Visual Studio

Solution Explorer. Also, add a reference to the Microsoft.Extensions.DependencyInjection.

Abstractions NuGet package to the RoutesPlanningDomainLayer project.

Then, perform the analogous operations on the RoutesPlanningApplicationServices and

ApplicationServices projects.

Now that you have all the Onion Architecture files in place, you need to add just a reference to
RoutesPlanningDomainLayer in RoutesPlanningApplicationServices and a reference to Rout

esPlanningApplicationServices in RoutesPlanning.

After the last operation, your solution should compile, but we have not finished preparing our
solution yet. We need to also add an Entity Framework Core-based library in order to provide

an implementation driver for our domain layer.

Let’s add a new class library project and call it RoutesPlanningDBDriver. Add references to the

Microsoft.EntityFrameworkCore.SqlServer and Microsoft.EntityFrameworkCore.Tools

Nuget packages, and to the RoutesPlanningDomainLayer project.

After that, delete the Class1�cs file and replace it with all code files and folders from the DBDriver

project of the ch03 project template.

Finally, add a reference to RoutesPlanningDBDriver in RoutesPlanning, and add the following

code snippet to the RoutesPlanning Program.cs file:

builder.Services.AddOpenApi();

//Code snippet start

builder.Services.AddApplicationServices();

builder.Services.AddDbDriver(

 builder.Configuration?.GetConnectionString("DefaultConnection") ??

Microservices in Practice174

string.Empty);

//Code snippet end

RoutesPlanning needs a reference to RoutesPlanningDBDriver because the outermost layer of an

Onion Architecture must reference all implementation-specific drivers. AddApplicationServices

adds all queries, commands, and event handlers to the dependency injection engine, while

AddDbDtiver adds all repository implementations and the IUnitOfWork implementation to the

dependency injection.

For more information on the Onion Architecture project template that we used to prepare our

solution, please refer to the A solution template based on the Onion Architecture section of Chapter

3, Setup and Theory: Docker and Onion Architecture.

Now, our solution is finally ready! We can start designing our worker microservice!

Microservice basic design
In this section, we will define all the main microservice abstractions, that is, the overall commu-

nication strategy, all Onion Architecture commands and events, and the top-level loops of the

required hosted services. We will start with a description of the chosen message broker: RabbitMQ.

The message broker: RabbitMQ
Natively, RabbitMQ supports the AMQP asynchronous message protocol, which is one of the

most used asynchronous protocols, the other being MQTT, which has a specific syntax for the

publisher/subscriber pattern. Support for MQTT can be added with a plugin, but RabbitMQ has

facilities for easily implementing a publisher/subscriber pattern on top of AMQP. Moreover, Rab-

bitMQ offers several tools to support scalability, disaster recovery, and redundancy, so it fulfills all
requirements to be a first-class actor in cloud and microservices environments. More specifically,
by defining a RabbitMQ cluster, we may achieve both load balancing and data replication which
is required in most SQL and NoSQL databases.

In this section, we will just describe RabbitMQ’s basic operation, while the installation and us-

age of RabbitMQ clusters in Kubernetes will be discussed in Chapter 8, Practical Microservices

Organization with Kubernetes. You can find more details in the tutorials and documentation on

the RabbitMQ official website: https://www.rabbitmq.com/.

https://www.rabbitmq.com/

Chapter 7 175

RabbitMQ messages must be prepared in binary format, since RabbitMQ messages must be just

an array of bytes. However, we will use the EasyNetQ client, which takes care of object serial-

ization and of most of the client-server wiring and error recovery. EasyNetQ is a NuGet package

built on top of RabbitMQ’s low-level RabbitMQ�Client NuGet client, which makes the usage of

RabbitMQ easy while reducing the communication-code overhead and enhancing its modularity

and modifiability.

Once sent to RabbitMQ, messages are placed in queues. More specifically, they are placed in one
or more queues by passing through other entities, called exchanges. The exchanges route the
messages to queues using a routing strategy that depends on the exchange type. Exchanges are

an AMQP-specific concept, and they are the RabbitMQ way to configure complex communication
protocols like the publishing/subscriber protocol, as shown in the following figure:

Figure 7.3: RabbitMQ exchanges

By adequately defining the exchange routing strategy, we can implement several patterns. More

specifically, the following apply:

• When we use a default exchange, the message is sent to a single queue and we can im-

plement asynchronous direct calls.

• When we use a fanout exchange, the exchange will send the messages to all queues that

subscribe to that exchange. This way, we can implement the publisher/subscriber pattern.

Microservices in Practice176

There is also a topic exchange, which enhances the publisher/subscriber pattern by enabling the
matching of named event subclasses called topics. Matching between receivers and topics also

supports wildcard chars. We will describe its practical usage with enterprise microservices in the

Ensuring that messages are processed in the proper order subsection.

Whenever several receivers are attached to the same queue, messages are equally distributed

among them according to a round-robin pattern. This is the case of N identical replicas of the

same microservice. Therefore, replicas are automatically load-balanced by RabbitMQ.

Luckily, EasyNetQ directly exposes the publish/subscribe protocol (possibly enriched with topics)
and the direct call protocol, together with a request/response asynchronous RPC protocol, taking
care of creating and connecting all needed queues and exchanges. Details on how to use EasyNetQ

will be provided when describing the code of our route-planning microservice.

The easiest way to install RabbitMQ is by using its Docker image. We will adopt this option since
all our microservices will also be containerized, and since in the final Kubernetes version of the
overall application, we will use containerized RabbitMQ clusters.

We can just run the following command in a Linux shell:

docker run -it --rm --name rabbitmq -p 5672:5672 -p 15672:15672

rabbitmq:4.0-management

Since we provided the -it flags, after the image is downloaded and the container is created and

started, the Linux shell remains blocked in the container filesystem. Moreover, since we also
added the –-rm option, the container is destroyed as soon as it is stopped with the following line:

docker stop rabbitmq

In order to verify that RabbitMQ is working properly, please navigate to http://localhost:15672.

The RabbitMQ management console should appear. You can log in with the startup credentials,
which are guest for both the username and password.

You don’t need to leave the container running; you can stop it and re-execute the run command

when you need RabbitMQ to test the microservice code.

The disk space needed by RabbitMQ is mounted as a Docker volume with the following volume
statement directly inserted in the Dockerfile image:

VOLUME /var/lib/rabbitmq

http://localhost:15672

Chapter 7 177

This means that the disk content is reset when the container is destroyed and run again. Therefore,
if you want to keep the disk content, avoid running the container with the –-rm option, so it will

not be destroyed when it is stopped.

If you need customized credentials, please add the following environment variables to the run

command:

-e RABBITMQ_DEFAULT_USER=my_user_name -e RABBITMQ_DEFAULT_PASS=my_password

Now, we can move on to designing the input and output messages of our worker microservices.

Input communication
Since classes that represent intra-microservices messages must be known to both clients and

servers, the best option is defining them during the initial microservices external interfaces design
and placing them in one or more shared libraries. Since our project contains a reasonably small

number of microservices, we may assume that all messages are visible to all microservices, so

we can use a single shared library.

However, in more complex scenarios containing hundreds or thousands of microservices, their

organization must be hierarchical, so we will have level 0 messages, known to all microservices;
level 1 messages, known just within level 1 groups of microservices, and so on.

Let’s add a new Class Library project called SharedMessages to our solution, and we’ll select

standard 2�1 for its version. Then, let’s add a reference to this new project to the RoutesPlannin
gApplicationServices project. We will place all application messages here.

From the specifications of the route-planning microservice, we have just four messages:

1. New request: It will contain a unique request identifier, an interval of acceptable travel
dates, and two unique identifiers for the start and arrival towns, their display names, and
their latitude and longitude. Moreover, it will contain a unique identifier representing
the user that issued the request and their display name.

2. New route: It will contain a unique route identifier, a travel date, and two unique identi-
fiers representing the start and arrival towns, their display names, and their latitude and
longitude. Moreover, it will contain a unique identifier representing the car owner that
issued the route proposal and their display name.

This is necessary when RabbitMQ is accessed outside of localhost, because in

this case, the default username and password are not accepted for security reasons.

Microservices in Practice178

3. Route closed/aborted: It will contain just the unique route identifier and a flag specifying
whether the route was successfully closed or aborted.

4. Route extension: It informs that the car owner accepted extending the route with the

start and ending towns of other requests. It contains the same information contained in

the new route message as well as new request messages.

It also contains a flag that specifies whether, after the extension, the route has been closed
to other participants.

The message content might appear redundant for the route-planning microservice. For in-

stance, most of the information contained in the route extension message is already known to

the route-planning microservice. As a matter of fact, the route-planning microservice needs just

the unique identifiers of the request and route to join.

However, messages sent with the publisher/subscriber pattern are used by several potentially
unknown subscribers, so they can’t assume specific a priori knowledge of the subscribers. For
instance, the route extension message will also be subscribed by the microservice that handles

all requests that don’t contain information about all existing route proposals, so all information

needed on the merged route must be received through this message.

On the contrary, the route closed/aborted message doesn’t need to convey the whole route in-

formation, since any service interested in the event must already know of this route and must

already have all the data it needs about it. It might lack this data if it has never interacted with

this route, but in this case, the event represented by the message can’t modify its state and must

simply be ignored.

An important question we must always ask about all microservices input is: what happens if the

messages arrive in the wrong order, that is, in a different order than they were sent? If the mes-

sage order matters, we either ensure that all messages arrive and are processed in the right order

or we reorder messages with the technique explained in the Efficacious handling of asynchronous
communication subsection of Chapter 2, Demystifying Microservices Applications. Unfortunately,

reordering input messages is not enough; we must also process them in the right order.

This is not a trivial task if several replicas of the same microservice process these input messages
concurrently. Luckily, no application needs a fixed ordering for all input messages. But some
related messages, for instance, all messages that contain the same route, must be processed in the

right order. Therefore, we can avoid just concurrent processing of related messages by passing all

Chapter 7 179

related messages to the same replica. We will analyze techniques for achieving a similar load-bal-
ancing strategy of all replicas in the Ensuring that messages are processed in the proper order section.

In our case, the order in which new route offers and route requests arrive is not an issue, since

we can correctly process out-of-order messages with simple tricks. We just need to add an up-

date version number to detect past updates. Update version numbers must be unique and must

correspond to the real order in which updates were applied to a given entity. When the entity is

created, it starts with version 0, and then this number is incremented at each new update.

In fact, we can recognize and apply an incoming modification only if it is more recent than the one
already applied. Moreover, we can always verify whether the entity mentioned in a modification
message has already been deleted and discard the modification. Finally, if an entity mentioned
in a modification has not already been created, we can always create it with the data contained
in the modification message, since each modification contains the entire entity data.

In our case, the order of the route extension messages doesn’t matter, because request merged

to a route simply sum up and it is enough to select the more recent list of towns of the one stored

in the route and the one contained in the message.

Inversions of route extensions and route closed/aborted messages do not cause problems, too,
since it is enough to ignore extensions of aborted routes, and to merge previous requests that

arrived after the closure.

Inversions of route creations and extensions can never take place, since only successfully created

routes can cause request-route matches that can subsequently cause route extensions.

Deleted routes do not cause problems since both route aborted and closed messages are de facto

logical deletes. We can delete them after the travel day has expired by N days, since at that point,

previous delayed messages can’t arrive (messages can be delayed by some hours or even a day
in the case of severe failures). This can be done with cron jobs.

Possible duplication of messages due to timeouts and resends also do not cause problems since

they can always be recognized and ignored. As an exercise, you can analyze all possibilities in detail.

As a general rule, if all modification and creation messages contain the entire entity
data, and if all deletes are logical, that is, entities are just marked as deleted, then

messages don’t need to be ordered.

Microservices in Practice180

All required messages can be easily defined in terms of some basic types that we will place in a
BasicTypes folder of the SharedMessages project. They are as follows:

public class GeoLocalizationMessage

{

 public double Latitude { get; set; }

 public double Longitude { get; set; }

}

public class TimeIntervalMessage

{

 public DateTime Start { get; set; }

 public DateTime End { get; set; }

}

public class UserBasicInfoMessage

{

 public Guid Id { get; set; }

 public string? DisplayName { get; set; }

}

public class TownBasicInfoMessage

{

 public Guid Id { get; set; }

 public string? Name { get; set; }

 public GeoLocalizationMessage? Location { get; set; }

}

Moreover, since all messages must contain an update time, we may let all of them inherit from

the following class:

public class TimedMessage

{

 public long TimeStamp { get; set; }

}

Let’s place this class in the BasicTypes folder, too.

Chapter 7 181

Now, all messages can be defined as follows:

1. New request:

public class RouteRequestMessage: TimedMessage

{

 public Guid Id { get; set; }

 public TownBasicInfoMessage? Source { get; set; }

 public TownBasicInfoMessage? Destination { get; set; }

 public TimeIntervalMessage? When { get; set; }

 public UserBasicInfoMessage? User { get; set; }

}

2. New route:

public class RouteOfferMessage: TimedMessage

{

 public Guid Id { get; set; }

 public IList<TownBasicInfoMessage>? Path { get; set; }

 public DateTime? When { get; set; }

 public UserBasicInfoMessage? User { get; set; }

}

3. Route closed/aborted:

public class RouteClosedAbortedMessage: TimedMessage

{

 public Guid RouteId { get; set; }

 public bool IsAborted { get; set; }

}

4. Route extension:

public class RouteExtendedMessage: TimedMessage

{

 public RouteOfferMessage? ExtendedRoute { get; set; }

 public IList<RouteRequestMessage>? AddedRequests { get; set; }

 public bool Closed { get; set; }

}

Place them in a SharedMessages project folder called RouteNegotiation.

Microservices in Practice182

We have just finished with the microservice input design! Let’s move on to the output.

Output communication
The output of the route-planning microservice consists of proposals to augment routes with
matching requests. These proposals must be accepted by the users that own the routes. A single

route extension message contains the unique identifier of the route and all its newly discovered
matching requests:

public class RouteExtensionProposalsMessage: TimedMessage

{

 public Guid RouteId { get; set; }

 public IList<RouteRequestMessage>? Proposals { get; set; }

}

Let’s place this class in the RouteNegotiation folder of the SharedMessages project.

Please notice that the timestamp associated with this message is the more recent timestamp as-

sociated with the route that this worker microservice received. In fact, this microservice doesn’t

perform actual route updates, but just computes update proposals, which might be turned into-

actual updates by another microservice.

Unfortunately, sometimes distributed transactions are unavoidable, but still, in these cases, a

single microservice replica proposes a new version number that is accepted by all microservices

involved in the transaction if the transaction succeeds.

Output messages can be placed in an internal queue implemented with permanent storage im-

mediately after their creation, as explained in the Efficacious handling of asynchronous communi-
cation section of Chapter 2, Demystifying Microservices Applications. However, if we use a broker,

As a rule of thumb, all updates to an entity must be performed on a single database

replica. This way, computing entity versions becomes a feasible task that requires
just a simple database transaction. Otherwise, each update should be coordinated

among N different microservices with a complex distributed transaction. Therefore,
if several microservices have different views of the same conceptual entity in their

databases, each of them can change the entity private data it uses without needing

to version them. But there should be a single microservice that is in charge of up-

dating all shared properties of the entity, versioning them, and sending them to all

interested microservices.

Chapter 7 183

that strategy needs to be modified a little bit. There, we applied an exponential retry strategy, by
retrying the failed messages after an exponentially increasing time, while continuing to send

other messages from the internal queue. When messages are not mediated by a message broker,

this strategy makes sense, since the failure is connected either to the destination or to some com-

ponent in the path between the source and destination. So, if the next message has a different

destination, it would probably succeed.

If we use a message broker, the failure depends on the message broker itself since the confirmation
simply states that the message broker successfully received the message, not that the message was

received and confirmed by the destination. Therefore, immediately attempting a new message
transmission would probably result in another failure.

We may conclude that when communication is mediated by a message broker, we don’t need to

delay the single faulty message; instead, we must stop sending messages to the message broker

applying both exponential retry and circuit break strategies. Moreover, since keeping too many

threads waiting for confirmations might congest the system, we must also apply a Bulkhead
Isolation strategy to limit the number of pending tasks.

At this point, you might ask: why do we need an internal queue if we already have the message

broker external queue? There are two reasons; the first one, in particular, is quite compelling:

1. The internal queue is implemented with a database table, so it is populated in the same
database transaction as the database update that triggered the output event. Therefore,
if something goes wrong, the whole transaction is aborted, thus giving the possibility to

retry it at a later time.

2. The performance cost for achieving the same result directly with the message broker queue
is higher: we should keep the database transaction open until we receive a confirmation,
an error, or a timeout from the message transmission to the message broker. This time
becomes several orders of magnitude higher if we use exponential retry.

3. Once the message is in the internal queue, in case of failures, we don’t need to undo the

database update but we need simply to retry the message transmission at a later time.

4. Due to the different ways databases and message brokers are implemented, and due to

the fact that the database is shared just by the microservice replicas, the confirmation
of the successful execution of the whole database transaction (required update plus reg-

istration of the output message in the internal queue) is faster than the message broker
confirmation.

Microservices in Practice184

Now that we have clarified how to handle both input and output messages, in general and for
our route-planning microservice, we can discuss how to recover and maintain the proper mes-

sage-processing order.

Ensuring that messages are processed in the proper order
As discussed in the previous subsections, our route-planning microservice doesn’t need to enforce

the correct message-processing order. However, there are cases where processing all messages in

the right order is unavoidable, so in this subsection, we will discuss how they are usually handled.

It is worth pointing out that strategies for enforcing the right message-processing order have a

non-negligible impact on performance and scalability, so any trick to avoid their usage is welcome.

Usually, order constraints must be enforced just within the same group of related messages, so

it is enough to ensure the following:

a. All messages belonging to the same group of related messages are processed by the same

microservice replica, so concurrence between replicas can’t shuffle the message-process-

ing order.

b. Each replica processes a message only after all previous messages have been successfully

processed.

Proper operation of the preceding technique requires that each message contains its sequence

number in its group.

Often, groups coincide with database entities, or better, with database aggregates. That is, two
messages belong to the same group if they represent different operations performed on the same

entity. Thus, in the case of our route-planning service, we might have a group for each request
and for each route.

Now suppose that that there are N microservice replicas, indexed by the integers from 1 to N. We

can define a hash function that, given a group identifier, returns a number between 1 and N. This
way, if we route each message to the replica indexed by the result of the hash function applied to

the group of the message, all messages in the same group will be processed by the same replica.

The following figure exemplifies the message-routing strategy:

Chapter 7 185

Figure 7.4: Message sharding

This technique is called sharding, and if the hash function is fair, each replica will receive the

same average load.

Sharding will also cause a loss of flexibility in scaling the number of replicas. In fact, changing
the number of replicas changes both the hash function and the group of messages received by

each replica. For these reasons, scaling operations will have a higher cost and consequently can

be performed less frequently. In practice, most orchestrators automatically scale non-indexed

replicas according to customizable criteria, but don’t offer the same service for replicas that
need to be indexed. We will analyze in more detail the difference between these different sets of
replicas and automating scaling in Chapter 8, Practical Microservices Organization with Kubernetes.

Sharding can be implemented with a single-replica microservice that receives all messages from

the message broker and routes them to the appropriate replicas by sending them to a replica-spe-

cific message broker queue. This technique is more complex and requires more coding, but it is
more flexible. In fact, for instance, if it is informed by changes in the number of replicas, it can

dynamically adapt its behavior to the number of replicas.

Thus, if we have no order constraints, we achieve exact load-balancing with a
round-robin strategy, while with order constraints, we can just achieve average

load-balancing with sharding. This means that probabilistic balancing fluctuations
will for sure cause temporary congestion.

Microservices in Practice186

Sharding can also be achieved with RabbitMQ topics. Basically, a topic is a string attached to a

message, and event subscribers can be enabled just for some topics. Therefore, if we attach the
result of the hash function to each message as a topic, then each replica can subscribe just to

the topic equal to its index, thus implementing sharding with no need for an extra component.

The disadvantage of the topic-based sharding technique is that the number of replicas must be
known to all senders and can be changed just by restarting the whole application. Moreover, since

the topic to assign to each message depends on both how the destination microservice defines
message groups and the destination microservice, the number of replicas technique can’t be used

with the publisher/subscriber pattern where messages are received by several heterogeneous
microservices.

RabbitMQ also has a sharding plugin (https://github.com/rabbitmq/rabbitmq-server/tree/
main/deps/rabbitmq_sharding) that computes a modulo N hash. This plugin defines a new type
of exchange with a sharding-based routing strategy that we can attach immediately before each

separate subscriber queue. Moreover, the plugin takes care of splitting the unique subscriber

queue into N different sharded queues and distributing all subscribers among the N sharded

queue. This technique is completely analogous to the single-replica routing microservice tech-

nique, but being integrated inside the message broker requires trading reduced flexibility for
better performance. This technique solves all the problems of the topics-based technique but

is not supported by the high-level EasyNetQ interface, so it increases the code complexity and

maintainability. Moreover, it requires a broker configuration that depends on the exact topology
of all subscribers, thus undermining the application’s extensibility.

Summing up, when using publisher/subscriber communication, the best option is almost always
the single-replica routing microservice technique.

Having discussed microservices input and output, we can now move on to the design of the

microservice container input parameters.

Designing Docker image environment parameters
As already hinted at in the A few more Docker commands and options subsection of Chapter 3, Setup

and Theory: Docker and Onion Architecture, containers usually adapt to their deployment environ-

ment by being passed as environment variables of the container’s virtual filesystem. In a .NET
environment, parameters are available through the IConfiguration interface together with all

parameters defined in the .NET configuration files, such as appsettings.json. Nested JSON paths

are represented in the IConfiguration dictionary arguments by separating all segments with

colons, as is the case for IConfiguration[“ConnectionStrings:DefaultConnection”], which

https://github.com/rabbitmq/rabbitmq-server/tree/main/deps/rabbitmq_sharding
https://github.com/rabbitmq/rabbitmq-server/tree/main/deps/rabbitmq_sharding

Chapter 7 187

represents the usual default database connection string. When nested paths are represented by

environment variables, colons are replaced with double underscores, in order to get valid envi-

ronment variables names. Therefore, ConnectionStrings:DefaultConnection must be defined
with an environment variable named ConnectionStrings__DefaultConnection. If environment

variable names are prefixed with ASPNETCORE_ or DOTNET_, these prefixes are removed; therefore,
ASPNETCORE_ENVIRONMENT can be accessed with IConfiguration[“ENVIRONMENT”]. These pre-

fixes are used to pass ASP.NET Core- and .NET-specific settings, such as staging, production, or
development environment, and ASPNETCORE_HTTP_PORTS is also used, which contains a semico-

lon-separated list of all ports that Kestrel must listen on.

You can also define your own custom prefix to apply to all your environment variables to avoid
name collisions. However, since each microservice has a private container, collisions between

environment variables used by different applications are impossible. Anyway, a new environment

variable’s custom prefix can be defined inside the application services definition section with
code analogous to the following:

builder.Configuration.AddEnvironmentVariables(prefix: "MyCustomPrefix_");

As we will see in Chapter 8, Practical Microservices Organization with Kubernetes, defining config-

uration settings with environment variables allows the easy specification of their values in the
code files for the chosen orchestrator.

During development, environment variable values can be specified in the Properties ->

launchSettings.json file of the top-level project of the Onion Architecture, which, in our case,
is the RoutesPlanning project. The following snippet shows where to place your environment
variable values:

"Container (Dockerfile)": {

 "commandName": "Docker",

 "launchUrl": "{Scheme}://{ServiceHost}:{ServicePort}",

 "environmentVariables": {

 "ASPNETCORE_HTTP_PORTS": "8080"

 //place here your application specific environment variables

 },

Microservices in Practice188

In our case, we need the following:

1. The database connection string

2. The RabbitMQ connection string.

3. The maximum distance for proposing a match between a request and a route, and the
maximum number of best matches to retrieve from the database.

4. The subscription ID prefix for all our microservice replicas. This string is used as a prefix
for all subscription queue names in our microservice replicas.

You don’t need to discover all the settings you need at this stage, just the ones that play a funda-

mental role in your microservice. Further settings can be easily added at a later time.

Therefore, let’s define all settings in the launchSettings.json file as follows:

"environmentVariables": {

 "ASPNETCORE_HTTP_PORTS": "8080",

 //place here your environment variables

 "ConnectionStrings__DefaultConnection": "",

 "ConnectionStrings__RabbitMQConnection":

"host=localhost:5672;username=guest;password=guest;publisherConfirms=true;

timeout=10",

 "Messages__SubscriptionIdPrefix": "routesPlanning",

 "Topology__MaxDistanceKm": "50",

 "Topology__MaxMatches": "5"

},

We left the database connection string empty. We will fill it once we have defined the SQL Server
development database.

The RabbitMQ connection string contains the server URL and the default credential. Note that
the default credentials are accepted just when RabbitMQ is accessed from localhost, so you are

encouraged to change them once you have installed the server. publisherConfirms=true informs

RabbitMQ that it must confirm that the message was safely received, and timeout=10 specifies
the connection timeout in seconds.

Chapter 7 189

The microservice main service
All modern .NET applications based on a host allow the definition of the so-called hosted services,

which are services similar to Windows services running for the entire application lifetime. They
can be defined by implementing the IHostedService interface and adding them to the services

definition section of the application with the following code:

builder.Services.AddHostedService<MyHostedService>();

In practice, hosted services are defined by inheriting from BackgroundService, which contains a

partial implementation of the service and exposes a single ExecuteAsync method that we must

override.

Our microservice needs three hosted services. The main one listens to all input messages arriving
from the message broker and processes them. Another hosted service extracts messages from the

output internal queue and sends them to the message broker. Finally, the third hosted service

performs housekeeping jobs, such as deleting expired requests and routes.

This subsection describes the main hosted service. The job of this hosted service is quite simple
it listens for all four input messages we defined, and once it has received a message, it will cre-

ate a command specific to that message and invoke the command handler associated with that
command. Commands and command handlers are Onion Architecture building blocks that were

discussed in the Commands subsection of Chapter 3, Setup and Theory: Docker and Onion Architecture.

Let’s create a HostedServices folder in the RoutesPlanning project. Then, add a class named
MainService that inherits from BackgroundService to it:

public class MainService() : BackgroundService

{

 protected override Task ExecuteAsync(CancellationToken stoppingToken)

 {

 throw new NotImplementedException();

 }

}

Microservices in Practice190

The class name is followed by a couple of parentheses since it is the principal constructor where
we will add parameters. In fact, all parameters of a hosted service constructor are automatically

taken from the dependency engine container, so we can put all services it needs to perform its job

there: an IConfiguration parameter, and an IServiceProvider interface that we will use to get

scoped services. In fact, command handlers are scoped services, so we need to create a request

scope before requiring them for the dependency injection container.

Summing up our principal constructor, it looks as follows:

public class MainService(IConfiguration configuration, IServiceProvider

services) : BackgroundService

Before proceeding, let’s add this hosted service to the dependency injection container, so it will

be immediately executed at the start of the program. We just need to add the following instruc-

tion to Program.cs:

builder.Services.AddHostedService<MainService>();

In the case of the worker microservice, there is a one-to-one mapping between messages and

commands, and all input needed by the command is contained in the message, so a unique ge-

neric command called MessageCommand<T> suffices. Let’s define it in the Commands folder of the

RoutesPlanningApplicationServices project:

public class MessageCommand<T>(T message): ICommand

{

 public T Message => message;

}

Now, let’s define a method that given a message of type T creates a scope, requires the appropriate

command handler, and executes it:

protected async Task ProcessMessage<T>(T message)

{

 using (var scope = services.CreateScope())

 {

 var handler=scope.ServiceProvider.GetRequiredService<ICommandHandler<

 MessageCommand<T>>>();

 await handler.HandleAsync(new MessageCommand<T>(message));

 }

}

Chapter 7 191

Errors, that is, exceptions thrown during a ProcessMessage<T> execution, are handled by counting

the number of consecutive errors and then rethrowing the exception. As we will see, rethrowing

the exception basically undoes the extraction of the messages from the message broker queue

so it can be processed again.

Error counting can be performed with a thread-safe critical region, as shown here:

private readonly Lock _countErrorsLock = new();

private static int _errorCount = 0;

public static int ErrorsCount => _errorCount;

private void DeclareSuccessFailure(bool isFailure=false)

{

 using (_countErrorsLock.EnterScope())

 {

 if (isFailure) _errorCount++;

 else _errorCount = 0;

 }

}

Consecutive error counts can be used to define the microservice health state. Now, we can define
an error-protected wrapper of ProcessMessage<T>:

protected async Task SafeProcessMessage<T>(T message)

{

 try

 {

 await ProcessMessage(message);

 DeclareSuccessFailure();

 }

 catch

 {

 DeclareSuccessFailure(true);

 throw;

 }

}

Microservices in Practice192

Let’s also define a small method that computes the subscription ID to use for each message:

string SubscriptionId<T>()

{

 return string.Format("{0}_{1}",

 configuration["Messages__SubscriptionIdPrefix"],

 typeof(T).Name);

}

Now, we are ready to define our main ExecuteAsync method; but before doing that, we must

add a reference to the EasyNetQ NuGet package. Please select a version greater than or equal

to 8, also if it is a prerelease. Once we have installed this package, we need to add its services to

dependency injection in Program.cs by calling the AddEasyNetQ extension method and passing

it the RabbitMQ connection string:

builder.Services.AddEasyNetQ(

 builder.Configuration?.GetConnectionString(

"RabbitMQConnection")??string.Empty)

 .UseAlwaysNackWithRequeueConsumerErrorStrategy();;

The chained call defines how to handle errors in the received message handlers. We decided to
requeue faulty messages so that they can be retried. If a microservice replica is faulty and gen-

erates an error on all messages, the message will eventually be processed by a healthy replica,

while the unhealthy replica will eventually be discovered thanks to the consecutive error count

that we will expose on a health endpoint. Unhealthy replicas are killed and recreated by all mi-

croservice orchestrators.

The requeue strategy is usually the best error-handling strategy for enterprise microservices.
Anyway, there are other strategies available. If no strategy is specified, faulty messages, that is,
messages whose handlers throw exceptions, are enqueued in a special error queue where they can

be handled manually with administrative tools (see https://github.com/EasyNetQ/EasyNetQ/
wiki/Re-Submitting-Error-Messages-With-EasyNetQ.Hosepipe).

Access to all EasyNetQ communication facilities is done through an IBus interface. Let’s add it

to our hosted service main constructor:

public class MainService(IConfiguration configuration, IBus bus,

IServiceProvider services): BackgroundService

https://github.com/EasyNetQ/EasyNetQ/wiki/Re-Submitting-Error-Messages-With-EasyNetQ.Hosepipe
https://github.com/EasyNetQ/EasyNetQ/wiki/Re-Submitting-Error-Messages-With-EasyNetQ.Hosepipe

Chapter 7 193

The IBus interface handles all communication with three properties:

• PubSub: This contains all methods for sending and receiving messages with the publisher/
subscriber pattern

• SendReceive: This contains all methods for sending and receiving messages with direct
communication

• Rpc: This contains all methods for issuing asynchronous remote procedure calls and re-

turning their responses

•

Here, we will describe PubSub, but SendReceive is completely analogous. The only difference is
that the Send method explicitly specifies the name of the destination queue, while Publish does

not. The Publish RabbitMQ exchange name is implicitly defined through the type of the message.

The following are the publish methods:

Task PublishAsync(T message, CancelationToken cancel = default)

Task PublishAsync(T message, string topic,

 CancelationToken cancel = default)

Task PublishAsync(T message, Action<IPublishConfiguration > configuration,

 CancelationToken cancel = default)

The second overload lets you specify a message topic, while the third lets you specify various

configuration settings that may also include the message topic.

The following are the subscribe methods:

SubscriptionResult Subscribe<T>(string subscriptionId,

Func<T, Task> messageHandler, CancelationToken cancel = default)

SubscriptionResult Subscribe<T>(string subscriptionId,

Func<T, CancelationToken , Task> messageHandler,

Action<IsubscriptionConfiguration> configuration,

 CancelationToken cancel = default)

The returned value must be disposed of to unsubscribe. The second overload accepts a
CancelationToken in the message handler, and also accepts a configuration action. The config-

uration of the receiver contains more useful settings, among them the following:

• conf => conf.WithTopic(“mytopic”).WithTopic(“anothertopic”): The consumer
will receive just the messages tagged with one of the selected topics.

Microservices in Practice194

• conf => conf.WithPrefetchCount(N): N is the maximum number of messages extracted

from the queue by the consumer and waiting to be processed. N defaults to 20.

• Conf => conf.WithDurable(durable): If durable is true, all consumer queue messages

are recorded on disk by RabbitMQ. The default is true.

If messages must be processed in the same order that they were inserted in the queue, the prefetch

count must be set to 1 and we must also apply one of the strategies described in the Ensuring that

messages are processed in the proper order subsection.

If we use Subscribe, all prefetched messages are put in an internal in-memory queue and processed

in a unique thread. However, there is also a completely analogous SubscribeAsync that creates

several parallel threads. Moreover, SubscribeAsync, as usual, returns Task<SubscriptionResult>.

We will use SubscribeAsync to better exploit processor cores, and parallelism between disk/
database operations and processor operations, but the simple fact of using several microservice

replicas already exploits parallelism. The advantage of using several threads is that creating a

thread costs less than creating another replica, so each replica should use several threads to

optimize performance.

Now, we are finally ready to write the main ExecuteAsync method. After our configuration and
preparation methods, it became straightforward:

protected override async Task ExecuteAsync(CancellationToken

stoppingToken)

{

 var routeOfferSubscription = await bus.PubSub.

 SubscribeAsync<RouteOfferMessage>(

 SubscriptionId<RouteOfferMessage>(),SafeProcessMessage,

 stoppingToken);

 var routeClosedAbortedSubscription = await bus.PubSub.SubscribeAsync<

 RouteClosedAbortedMessage>(

 SubscriptionId<RouteClosedAbortedMessage>(), SafeProcessMessage,

 stoppingToken);

When the message handler successfully completes the task, a confirmation is auto-

matically sent to RabbitMQ that deletes the message from the queue.

On the contrary, if the message handler throws an unhandled exception, the con-

figured consumer error strategy is applied. In our case, we requeue the message.

Chapter 7 195

 var routeExtendedSubscription =

 await bus.PubSub.SubscribeAsync<RouteExtendedMessage>(

 SubscriptionId<RouteExtendedMessage>(), SafeProcessMessage,

 stoppingToken);

 var routeRequestSubscription = await bus.PubSub.

 SubscribeAsync<RouteRequestMessage>(

 SubscriptionId<RouteRequestMessage>(), SafeProcessMessage,

 stoppingToken);

 stoppingToken.WaitHandle.WaitOne();

 routeRequestSubscription.Dispose();

 routeExtendedSubscription.Dispose();

 routeClosedAbortedSubscription.Dispose();

 routeOfferSubscription.Dispose();

}

We just subscribe to all messages using our unique generic message handler, and then wait for

the replica termination on the wait handle stoppingToken.WaitHandle. As soon as we receive

notification that the replica is being terminated through WaitOne(), the wait handle is unblocked

and we unsubscribe all messages by calling the Dispose methods of all SubscriptionResult.

Before moving on to the implementation of the two remaining hosted services, for completeness,

we will also describe the EasyNetQ RPC facilities.

EasyNetQ’s RPC facilities
An RPC request can be issued with the following methods:

Task<TResponse> bus.Rpc.RequestAsync<TRequest, TResponse>(

TRequest request, CancelationToken cancel = default)

Task<TResponse> bus.Rpc.RequestAsync<TRequest, TResponse>(

TRequest request, Action<IRequestConfiguration> configuration,

CancelationToken cancel = default)

Once the request is issued, the returned task will eventually provide the response. We can wait

it with await or specify a callback by calling Task<T>.ContinueWith.

Microservices in Practice196

The recipient can listen for requests and provide responses with the following:

Task<IDisposable> bus.Rpc.RequestAsync<TRequest, TResponse>(

 Func<TRequest, Task< TResponse >> handler,

 CancelationToken cancel = default);

Task<IDisposable> bus.Rpc.RequestAsync<TRequest, TResponse>(

 Func<TRequest, Task< TResponse >> handler,

 Action<IResponderConfiguration> configuration,

 CancelationToken cancel = default);

The recipient can stop handling requests by disposing of the IDisposable returned by the pre-

ceding methods.

Now, let’s move on to the remaining hosted services.

Other required hosted services
We will start with the housekeeping hosted service. Let’s call it HouseKeepingService and place

it in the HostedServices folder together with MainService:

public class HouseKeepingService(IConfiguration configuration, IBus bus,

 IServiceProvider services): BackgroundService

{

 protected override Task ExecuteAsync(CancellationToken stoppingToken)

 {

 throw new NotImplementedException();

 }

}

Before proceeding, let’s add the new hosted service to the dependency injection container, so it

will be immediately executed at program start. We just need to add the following instruction to

Program.cs:

builder.Services.AddHostedService<HouseKeepingService>();

We need a HouseKeepingCommand whose constructor specifies the number of days to wait after a
route or request expiration before deleting it. As usual, let’s define it in the Commands folder of Ro

utesPlanningApplicationServices:

public record HouseKeepingCommand(int DeleteDelay): ICommand;

Chapter 7 197

We also need to define the Timing__HousekeepingIntervalHours and Timing__

HousekeepingDelayDays environment variables in launchSettings.json:

"Topology__MaxDistanceKm": "50",

//new environment variables

"Timing__HousekeepingIntervalHours": "4",

"Timing__HousekeepingDelayDays": "10"

The ExecuteAsync method must execute a loop until the application signals termination.

Inside this loop, it executes the handler and then sleeps for the time specified by Timing__
HousekeepingIntervalHours or until the replica terminates:

protected override async Task ExecuteAsync(CancellationToken

stoppingToken)

{

 //update interval in milliseconds

 int updateInterval = configuration.GetValue<int>(

 "Timing:HousekeepingIntervalHours")*3600000;

 int deleteDelayDays = configuration.GetValue<int>(

 "Timing:HousekeepingDelayDays");

 while (!stoppingToken.IsCancellationRequested)

 {

 try

 {

 using (var scope = services.CreateScope())

 {

 var handler = scope.ServiceProvider

 .GetRequiredService<

 ICommandHandler<HouseKeepingCommand>>();

 await handler.HandleAsync(new HouseKeepingCommand(

 deleteDelayDays));

 }

 }

 catch {

 // actual production application should log the error

 }

 await Task.Delay(updateInterval, stoppingToken);

 }

}

Microservices in Practice198

In case of errors, we simply do nothing and repeat the operation at the next iteration. The Task.
Delay instruction at the end of the iteration leaves the thread sleeping until either the configured
interval expires or stoppingToken signals the replica termination.

Let’s move on to the last hosted service. Let’s repeat the same steps to create it and call it

OutputSendingService:

public class OutputSendingService(IConfiguration configuration, IBus bus,

 IServiceProvider services) : BackgroundService

{

 protected override Task ExecuteAsync(CancellationToken stoppingToken)

 {

 throw new NotImplementedException();

 }

}

As usual, let’s add the new hosted service to the dependency injection container:

builder.Services.AddHostedService<OutputSendingService>();

This time, we need a command that accepts Func<RouteExtensionProposalsMessage,Task> as

input. This input action wraps the code for sending RouteExtensionProposalsMessage to Rab-

bitMQ because commands can contain code that depends on a specific driver, which in our case
is the RabbitMQ client. It also needs a batchCount parameter, which specifies how many output
messages are simultaneously extracted from the output queue, and a requeueDelay parameter,

which specifies the overall timeout after which a message is requeued if it is not successfully

received by the message broker.

We can define a generic command that receives just Func<T,Task>, so we can reuse it with other

output messages; let’s call it OutputSendingCommand:

public class OutputSendingCommand<T>(Func<T, Task> sender,

int batchCount, TimeSpan requeueDelay): ICommand

{

 public Func<T, Task> Sender => sender;

 public int BatchCount => batchCount;

 public TimeSpan RequeueDelay => requeueDelay;

 public bool OutPutEmpty { get; set; } = false;

}

Chapter 7 199

The command contains a flag where its handler will signal whether the output queue was found
empty. We will use this flag to put the hosted service thread to sleep for a certain interval to avoid
wasting resources.

Again, we need a Timing__OutputEmptyDelayMS environment variable to configure the time to
wait when the output queue is empty. Let add it to launchSettings.json:

"Timing__OutputEmptyDelayMS": "500"

We need also the batchCount and requeueDelay values to pass to the command:

"Timing__OutputBatchCount": "10",

"Timing__OutputRequeueDelayMin": "5"

Suppose we have a SafeInvokeCommand we need to implement that also returns whether the

output queue is empty:

protected Task<bool> SafeInvokeCommand()

{

 throw new NotImplementedException();

}

Then, the ExetuteAsync method can be implemented as follows:

readonly int updateBatchCount =

 configuration.GetValue<int>("Timing:OutputBatchCount");

readonly TimeSpan requeueDelay = TimeSpan.FromMinutes(

 configuration.GetValue<int>("Timing:OutputRequeueDelayMin"));

protected override async Task ExecuteAsync(CancellationToken

stoppingToken)

{

 //update interval in milliseconds

 int updateInterval =

 configuration.GetValue<int>("Timing:HousekeepingIntervalHours") ;

 bool queueEmpty = false;

 while (!stoppingToken.IsCancellationRequested)

 {

 while (!queueEmpty && !stoppingToken.IsCancellationRequested)

 {

 queueEmpty=await SafeInvokeCommand();

 }

Microservices in Practice200

 await Task.Delay(updateInterval, stoppingToken);

 queueEmpty = false;

 }

}

An outermost loop that exits only when the replica is going to be terminated, and an inner loop

that reads the internal output queue and sends messages to the messages broker until the output

queue is empty. When the output queue is empty, the service sleeps to wait for new messages

being inserted in the internal output queue.

Before implementing SafeInvokeCommand, we must code the Func<T,Task> wrapper to pass to

the command:

protected Task SendMessage(RouteExtensionProposalsMessage message)

{

 return bus.PubSub.PublishAsync<

 RouteExtensionProposalsMessage>(message);

}

Now, the implementation is analogous to the command invoker of MainService:

protected async Task<bool> InvokeCommand()

{

 using (var scope = services.CreateScope())

 {

 var handler = scope.ServiceProvider.GetRequiredService<

 ICommandHandler<OutputSendingCommand<

 RouteExtensionProposalsMessage>>>();

 var command = new OutputSendingCommand<

 RouteExtensionProposalsMessage>(

 SendMessage,updateBatchCount, requeueDelay);

 await handler.HandleAsync(command);

 return command.OutPutEmpty;

 }

}

protected async Task<bool> SafeInvokeCommand()

{

 try

 {

 return await InvokeCommand();

Chapter 7 201

 }

 catch

 {

 return true;

 };

}

In case of exceptions, we simply return true to put the thread to sleep for some time. In the next

section, we will use the Polly library to define retry strategies.

Ensuring resilient task execution with Polly
Message sending should always be protected with at least exponential retry and the circuit break

strategies that we analyzed in the Resilient task execution subsection of Chapter 2, Demystifying

Microservices Applications. In this section, we will first describe the Polly library, which became a
kind of standard for handling resilient task execution, and then we will apply it to the SendMessage

method of OutputSendingService.

The Polly library
Resilient communication and, in general, resilient task execution can be implemented easily with

the help of a .NET library called Polly, whose project is a member of the .NET Foundation. Polly
is available through the Polly NuGet package.

In Polly, you define policies and then execute tasks in the context of those policies, as follows:

var myPolicy = Policy

 .Handle<HttpRequestException>()

 .Or<OperationCanceledException>()

 .RetryAsync(3);

....

....

await myPolicy.ExecuteAsync(()=>{

//your code here

});

Microservices in Practice202

The first part of each policy specifies the exceptions that must be handled. Then, you specify what
to do when one of those exceptions is captured. In the preceding code, the Execute method is

retried up to three times if a failure is reported by either an HttpRequestException exception or

an OperationCanceledException exception.

The following is the implementation of an exponential retry policy:

var retryPolicy= Policy

...

//Exceptions to handle here

.WaitAndRetryAsync(6,retryAttempt => TimeSpan.FromSeconds(Math.Pow(2,

retryAttempt)));

The first argument of WaitAndRetryAsync specifies that a maximum of six retries is performed in
the event of failure. The lambda function passed as the second argument specifies how much time
to wait before the next attempt. In this specific example, this time grows exponentially with the
number of attempts by a power of 2 (two seconds for the first retry, four seconds for the second
retry, and so on). The following is a simple circuit breaker policy:

var breakerPolicy =Policy

.Handle<SomeExceptionType>()

.CircuitBreakerAsync (6, TimeSpan.FromMinutes(1));

After six failures, the task can’t be executed for one minute since an exception is returned.

The following is the implementation of the Bulkhead Isolation policy:

Policy

.BulkheadAsync(10, 15)

A maximum of 10 parallel executions is allowed in the Execute method. Further tasks are inserted

in an execution queue. This has a limit of 15 tasks. If the queue limit is exceeded, an exception is
thrown. For the Bulkhead Isolation policy to work properly and, in general, for every strategy to

work properly, task executions must be triggered through the same policy instance; otherwise,

Polly is unable to count how many executions of a specific task are active.

Policies can be combined with the Wrap method:

var combinedPolicy = Policy

.WrapAsync(retryPolicy, breakerPolicy);

Chapter 7 203

Polly offers several more options, such as generic methods for tasks that return a specific type,
timeout policies, task result caching, the ability to define custom policies, and so on. It is also
possible to configure Polly as part of an HttpClient definition in the dependency injection sec-

tion of any ASP. NET Core and .NET application. This way, it is quite immediate to define resilient
HTTP clients. Finally, version 8 also introduced a new API based on creating pipelines of strategies.

Polly’s official documentation can be found in its GitHub repository here: https://github.com/
App-vNext/Polly.

In the next subsection, we will install and use Polly for a resilient transmission of the microservices

output messages to the message broker.

Adding Polly to our project
Using Polly in our project is straightforward. First of all, you must add a reference to the last

version of the Polly NuGet package in the RoutesPlanning project. Then, you must modify the
SendMessage method of the OutputSendingService class as follows:

protected Task SendMessage(RouteExtensionProposalsMessage message)

{

 var retryPolicy = Policy

 .Handle<Exception>()

 .WaitAndRetryAsync(4,

 retryAttempt => TimeSpan.FromSeconds(Math.Pow(1,

 retryAttempt)));

 var circuitBreakerPolicy = Policy

 .Handle<Exception>()

 .CircuitBreakerAsync(4, circuitBreakDelay);

 var combinedPolicy = Policy

 .WrapAsync(retryPolicy, circuitBreakerPolicy);

 return combinedPolicy.ExecuteAsync(

 async () => await bus.PubSub.PublishAsync<

RouteExtensionProposalsMessage>(message));

}

We first define an exponential retry policy, then a circuit breaker policy, and finally combine them
and execute the message sending inside combinedPolicy.ExecuteAsync.

https://github.com/App-vNext/Polly
https://github.com/App-vNext/Polly

Microservices in Practice204

All strategies’ parameters could be specified with environment variables, but for simplicity, we
left constant all values but circuitBreakDelay, that is, the time a circuit break should last. In

fact, this is the only critical parameter that might need to be tuned.

circuitBreakDelay can be configured in an environment variable in launchSettings.json as

follows:

"Timing:OutputCircuitBreakMin": "4"

Then, it can be defined as an OutputSendingService field with the following:

readonly TimeSpan circuitBreakDelay = TimeSpan.FromMinutes(

 configuration.GetValue<int>("Timing:OutputCircuitBreakMin"));

From abstraction to implementation details
In the previous sections, we defined the overall organization of the route-planning microservice.
In this final section, we will fill in all the details by first defining the domain layer and the database
driver, and then defining all commands.

The domain layer
We will define each aggregate in a separate folder that will contain the aggregate, the interface

that defines the aggregate state, and the repository interface associated with the aggregate.

However, before starting the definition of all aggregates, we need to add a famous library for
handling both geometric and GIS calculations: NetTopologySuite. It is available in both Java and

.NET and all its types conform to a standard recognized by all main databases.

The .NET version is available through the NetTopologySuite NuGet package. Therefore, let’s add
this package to the RoutesPlanningDomainLayer project. The meaning of GIS object coordinates
is defined in documents classified with integers called Spatial Reference Identifiers (SRIDs). Each
document specifies the meaning of the x and y coordinates, how to compute the distance between

two points, and the part of the Earth’s surface it applies to. Each GIS object must specify the SRID

used by its coordinates, and only objects with the same SRID can be used in the same computation.

We will use SRID 4326, which applies to the entire surface of the Earth. X is the longitude in degrees

and Y is the latitude in degrees; the distance is computed in meters by approximating the Earth’s

surface with an ellipsoid. More precise results can be obtained with SRIDs that apply to smaller

portions of the Earth’s surface, but SRID 4326 is supported by all main databases.

Chapter 7 205

Let’s define our overall default SRID in a static class defined in the root of the
RoutesPlanningDomainLayer project:

namespace RoutesPlanningDomainLayer

{

 public static class GeometryConstants

 {

 public static int DefaultSRID => 4326;

 }

}

As in the case of messages, we need intermediate types. Let’s define them in a

RoutesPlanningDomainLayer -> Models -> BasicTypes folder:

• Route status:

public enum RouteStatus { Open=0, Closed=1, Aborted=2 };

• Time interval:

public record TimeInterval

{

 public DateTime Start { get; init; }

 public DateTime End { get; init; }

}

• Town info:

public record TownBasicInfo

{

 public Guid Id { get; init; }

 public string Name { get; init; } = null!;

 public Point Location { get; init; } = null!;

}

• User info:

public record UserBasicInfo()

{

 public Guid Id { get; init; }

 public string DisplayName { get; init; } = null!;

}

Microservices in Practice206

Point is a NetTopologySuite type that specifies a point on the Earth’s surface. Please note that
all of the preceding types are what we called value objects in the The domain layer subsection

of Chapter 3, Setup and Theory: Docker and Onion Architecture. Therefore, as suggested there, we
defined them as .NET record types.

Now, we can start defining our aggregates. For each of them, we will first define its status interface,
then the aggregate, and finally, the associated repository interface. Usually, the definition of all
these data types is iterative; that is, we start with a first draft, and then, when we realize we need
another property or method, we add it.

The route request aggregate

Let’s create a Models -> Request folder for all types related to a user request. The status of a user
request can be represented as follows:

public interface IRouteRequestState

{

 Guid Id { get; }

 TownBasicInfo Source { get; }

 TownBasicInfo Destination { get; }

 DateTime WhenStart { get; }

 DateTime WhenEnd { get; }

 UserBasicInfo User { get; }

 Guid? RouteId { get; set; }

 public long TimeStamp { get; set; }

}

All properties that cannot be changed by aggregates have been defined as get-only properties.
Id uniquely identifies each request in the overall application. Source and Destination are, re-

spectively, the desired departure and arrival towns, while WhenStart and WhenEnd define the
acceptable days for travel. Then, we have information on the user that issued the request and the
current timestamp associated with the request. Finally, RouteId is the unique identifier of the
route that the request has been added to, if any. If the request is still open, this property is null.

The aggregate can be defined as follows:

public class RouteRequestAggregate(IRouteRequestState state):

 Entity<Guid>

{

 public override Guid Id => state.Id;

Chapter 7 207

 public TownBasicInfo Source => state.Source;

 public TownBasicInfo Destination => state.Destination;

 TimeInterval _When = null!;

 public TimeInterval When => _When ??

 (_When=new TimeInterval {Start = state.WhenStart, End = state.

 WhenEnd });

 public UserBasicInfo User => state.User;

 public bool Open => state.RouteId == null;

 public long TimeStamp => state.TimeStamp;

 public void DetachFromRoute() => state.RouteId = null;

 public void AttachToRoute(Guid routeId) => state.RouteId = routeId;

}

It is worth pointing out that once a request has been created, only its state.RouteId can be

changed. This is because once issued, each request cannot be modified but just matched with
existing routes.

The repository interface is as follows:

public interface IRouteRequestRepository : IRepository

{

 RouteRequestAggregate New(

 Guid id,

 TownBasicInfo source,

 TownBasicInfo destination,

 TimeInterval when,

 UserBasicInfo user

);

 Task<RouteRequestAggregate?> Get(Guid id);

 Task<IList<RouteRequestAggregate>> Get(Guid[] ids);

 Task<IList<RouteRequestAggregate>> GetInRoute(Guid routeId);

 Task<IList<RouteRequestAggregate>> GetMatch(IEnumerable<Coordinate>

 geometry,

 DateTime when, double distance, int maxResults);

 Task DeleteBefore(DateTime milestone);

}

Microservices in Practice208

The New method creates a new instance of the aggregate and its database-attached state. Then,
we have methods for getting a single or more existing aggregates from their Id, and all aggregates

that are served by the same route.

The GetMatch method returns all aggregates that are the best match with a route. The route is
specified by the coordinates of the towns it passes through (geometry), and by its date (When).
Coordinate is a NetTopologySuite type that contains just the X and Y coordinates of a location

without its SRID (the default SRID defined before is implicit). distance specifies the maximum
distance between the request and a route for a match to occur. All results are ordered according

to their distance from the route, and a maximum of maxResults requests is returned.

The DeleteBefore method is used to perform some housekeeping by deleting old, expired requests.

The route offer aggregate

Let’s create a Models -> Route folder for all types related to a user route offer. The status of a
user request can be represented as follows:

public interface IRouteOfferState

{

 Guid Id { get; }

 LineString Path { get; set; }

 DateTime When { get; }

 UserBasicInfo User { get; }

 RouteStatus Status { get; set; }

 public long TimeStamp { get; set; }

}

LineString is a NetTopologySuite type that represents a path made of consecutive segments

on the Earth’s surface. Basically, it is a sequence of coordinates with an attached SRID. Status is

the status of the route (open to other participants, closed, or aborted).

The aggregate can be defined as follows:

public class RouteOfferAggregate

 (IRouteOfferState state): Entity<Guid>

{

 public override Guid Id => state.Id;

 IReadOnlyList<Coordinate>? _Path=null;

 public IReadOnlyList<Coordinate> Path => _Path != null ? _Path : (

 _Path = state.Path.Coordinates.ToImmutableList());

Chapter 7 209

 public DateTime When => state.When;

 public UserBasicInfo User => state.User;

 public RouteStatus Status => state.Status;

 public long TimeStamp => state.TimeStamp;

 …

 …

}

Here, dots have been added in place of methods we will analyze shortly. The LineString path

contained in the aggregate state is exposed as an immutable list of its coordinates so that it can’t

be modified directly, and can’t have its SRID changed.

It contains an Extend method that is called when a message requiring the extension of the route

is received. The data contained in the message is passed as its parameters:

public void Extend(long timestamp,

IEnumerable<Guid> addedRequests,

Coordinate[] newRoute, bool closed)

{

 if (timestamp > TimeStamp)

 {

 state.Path = new LineString(newRoute)

 { SRID = GeometryConstants.DefaultSRID };

 _Path = null;

 state.TimeStamp = timestamp;

 }

 if(state.Status != RouteStatus.Aborted)

 AddDomainEvent(new AttachedRequestEvent {

 AddedRequests = addedRequests,

 RouteOffer = Id

 });

 Close();

}

The path is updated only if it is more recent than the path stored in the aggregate, while the re-

quests contained in the extension message are always attached to the route offer, because each

message doesn’t contain all matched requests but just the newly added ones, so they must also be

added if we received an old message. The only case when the requests must not be added is when
the route has already been aborted, because aborted routes release all their attached requests.

Microservices in Practice210

The task of attaching the requests to the aggregate is left to an event handler for better modularity.

Thus, the Extend method adds an AttachedRequestEvent event to the aggregate list of events.

The event definition must be placed in the Events folder and is defined as follows:

public class AttachedRequestEvent : IEventNotification

{

 public IEnumerable<Guid> AddedRequests { get; set; } = new

List<Guid>();

 public Guid RouteOffer { get; set; }

}

Finally, if the extension message declares the route closed, the Extend method closes it by calling

the Close() method, which is defined as follows:

public void Close()

{

 state.Status = RouteStatus.Closed;

}

There is also an Abort method, which declares the route aborted:

public void Abort()

{

 state.Status = RouteStatus.Aborted;

 AddDomainEvent(new ReleasedRequestsEvent

 {

 AbortedRoute = Id

 });

}

It sets the aggregate status to aborted and then leaves the task of releasing all attached requests

to an event handler for better modularity, with the ReleasedRequestsEvent event:

public class ReleasedRequestsEvent:IEventNotification

{

 public Guid AbortedRoute { get; set; }

}

Chapter 7 211

Let’s move on to the repository interface:

public interface IRouteOfferRepository : IRepository

{

 RouteOfferAggregate New(Guid id, Coordinate[] path, UserBasicInfo

 user, DateTime When);

 Task<RouteOfferAggregate?> Get(Guid id);

 Task<IList<RouteOfferAggregate>> GetMatch(

 Point source, Point destination, TimeInterval when,

 double distance, int maxResults);

 Task DeleteBefore(DateTime milestone);

}

The New method creates a new aggregate, then we have a method to get an aggregate from its

unique identifier. The GetMatch and DeleteBefore methods are completely analogous to the one

of requests, but in this case, GetMatch returns all route offers matching a given request.

The output queue item aggregate

This aggregate represents a generic output queue item. Files will be placed in a Models ->

OutputQueue folder. The aggregate state can be defined as follows:

public interface IQueueItemState

{

 Guid Id { get; }

 int MessageCode { get; }

 public string MessageContent { get; }

}

Each queue item has a unique ID and a message code that specifies which message type is stored
in the item. While the message content is the JSON representation of the output messages. The
aggregate is trivial:

public class QueueItem(IQueueItemState state): Entity<Guid>

{

 public override Guid Id => state.Id;

 public int MessageCode => state.MessageCode;

 public T? GetMessage<T>()

 {

 if (string.IsNullOrWhiteSpace(state.MessageContent))

 return default;

Microservices in Practice212

 return JsonSerializer.Deserialize<T>(state.MessageContent);

 }

}

The GetMessage method deserializes the message contained in the item.

Finally, the repository interface is as follows:

public interface IOutputQueueRepository: IRepository

{

 Task<IList<QueueItem>> Take(int N, TimeSpan requeueAfter);

 void Confirm(Guid[] ids);

 QueueItem New<T>(T item, int messageCode);

}

Each queue item has a time attached to it, and an item can be extracted by the queue only after

this time expires. Moreover, queue items are extracted in increasing time order.

The Take method extracts the first N items from the queue and then immediately requeues them by

replacing their time with the time of their extraction plus the requeueAfter TimeSpan. This way,
if messages are successfully sent before requeueAfter, they are removed from the queue; other-

wise, they become available for extraction from the queue again, and their transmission is retried.

The Confirm method deletes all successfully sent messages, while the New method adds a new

item to the output queue.

Now, we can move on to the implementation of all aggregate states with Entity Framework en-

tities and to the implementation of all repositories.

The database driver
Before getting started with the implementation of the RoutesPlanningDBDriver driver, we must

add a reference to the Microsoft.EntityFrameworkCore.SqlServer.NetTopologySuite NuGet

package, which adds support for all NetTopolgySuite types to Entity Framework Core. Then, we
must declare the usage of NetTopolgySuite in the Extensions -> DBExtensions.cs file:

options.UseSqlServer(connectionString,

 b => {

 b.MigrationsAssembly("DBDriver");

 // added code

 b.UseNetTopologySuite();

 }));

Chapter 7 213

Now, we can define all the entities we need in the Entities folder:

• Route offer:

internal class RouteOffer: IRouteOfferState

{

 public Guid Id { get; set; }

 public LineString Path { get; set; } = null!;

 public DateTime When { get; set; }

 public UserBasicInfo User { get; set; } = null!;

 public RouteStatus Status { get; set; }

 public ICollection<RouteRequest> Requests { get; set; } = null!;

 public long TimeStamp { get; set; }

}

• Route request:

internal class RouteRequest: IRouteRequestState

{

 public Guid Id { get; set; }

 public TownBasicInfo Source { get; set; }=null!;

 public TownBasicInfo Destination { get; set; } = null!;

 public DateTime WhenStart { get; set; }

 public DateTime WhenEnd { get; set; }

 public long TimeStamp { get; set; }

 public UserBasicInfo User { get; set; } = null!;

 public Guid? RouteId { get; set; }

 public RouteOffer? Route { get; set; }

}

• Queue item:

internal class OutputQueueItem: IQueueItemState

{

 public Guid Id { get; set; }

 public int MessageCode { get; set; }

 public string MessageContent { get; set; } = null!;

 public DateTime ReadyTime { get; set; }

}

Microservices in Practice214

Then, in the MainDBContext.cs file, we must add the corresponding collections:

public DbSet<RouteRequest> RouteRequests { get; set; } = null!;

public DbSet<RouteOffer> RouteOffers { get; set; } = null!;

public DbSet<OutputQueueItem> OutputQueueItems { get; set; } = null!;

Finally, in the OnModelCreating method of the same file, we must declare the relationship be-

tween RouteOffer and RouteRequest:

builder.Entity<RouteOffer>().HasMany(m => m.Requests)

 .WithOne(m => m.Route)

 .HasForeignKey(m => m.RouteId)

 .OnDelete(DeleteBehavior.Cascade);

We must also declare some indices and the usage of value objects (with their indices) with OwnsOne:

builder.Entity<RouteRequest>().OwnsOne(m => m.Source);

builder.Entity<RouteRequest>().OwnsOne(m => m.Destination);

builder.Entity<RouteRequest>().OwnsOne(m => m.User);

builder.Entity<RouteRequest>().HasIndex(m => m.WhenStart);

builder.Entity<RouteRequest>().HasIndex(m => m.WhenEnd);

builder.Entity<RouteOffer>().OwnsOne(m => m.User);

builder.Entity<RouteOffer>().HasIndex(m => m.When);

builder.Entity<RouteOffer>().HasIndex(m => m.Status);

builder.Entity<OutputQueueItem>().HasIndex(m => m.ReadyTime);

Let’s now move on to the implementation of all repositories.

The IOutputQueueRepository implementation

All repository implementations follow the same basic pattern:

internal class OutputQueueRepository(IUnitOfWork uow) :

IOutputQueueRepository

{

 readonly MainDbContext ctx = (uow as MainDbContext)!;

 public void Confirm(Guid[] ids)

 …

 public QueueItem New<T>(T item, int messageCode)

 …

 public async Task<IList<QueueItem>> Take(int N, TimeSpan requeueAfter)

 …

Chapter 7 215

 }

}

They take IUnitOfWork from their main constructor and cast it to the database context.

The New method implementation is as follows:

public QueueItem New<T>(T item, int messageCode)

{

 var entity = new OutputQueueItem()

 {

 Id = Guid.NewGuid(),

 MessageCode = messageCode,

 MessageContent = JsonSerializer.Serialize(item)

 };

 var res = new QueueItem(entity);

 ctx.OutputQueueItems.Add(entity);

 return res;

}

The implementation of Confirm is straightforward, too:

public void Confirm(Guid[] ids)

{

 var entities = ctx.ChangeTracker.Entries<OutputQueueItem>()

 .Where(m => ids.Contains(m.Entity.Id)).Select(m => m.Entity);

 ctx.OutputQueueItems.RemoveRange(entities);

}

It uses the changes tracker to get all already-loaded entities with the given IDs.

The Take implementation is a little bit more complex, because it requires a transaction to handle

the competition between the various microservice replicas, since they all use the same database:

public async Task<IList<QueueItem>> Take(int N, TimeSpan requeueAfter)

{

 List<OutputQueueItem> entities;

 using (var tx =

 await ctx.Database.BeginTransactionAsync(IsolationLevel.

 Serializable))

 {

Microservices in Practice216

 var now = DateTime.Now;

 entities = await ctx.OutputQueueItems.Where(m => m.ReadyTime <=

 now)

 .OrderBy(m => m.ReadyTime)

 .Take(N)

 .ToListAsync();

 if (entities.Count > 0)

 {

 foreach (var entity in entities)

 { entity.ReadyTime = now + requeueAfter; }

 await ctx.SaveChangesAsync();

 await tx.CommitAsync();

 }

 return entities.Select(m => new QueueItem(m)).ToList();

 }

}

Once all entities are extracted, ReadyTime is moved to a future time to prevent their usage from

other replicas till requeueAfter expires and they become available again if they were not removed

by Confirm. This way, if all retry and circuit break strategies fail in getting a successful transmis-

sion, the same operation can be retried after requeueAfter. Both read and update must be part

of the same serializable transaction to prevent interferences from other replicas.

The IRouteRequestRepositoryimplementation

The repository structure is completely analogous to the one of the previous repository:

internal class RouteRequestRepository(IUnitOfWork uow) :

IRouteRequestRepository

{

 readonly MainDbContext ctx = (uow as MainDbContext)!;

 public async Task DeleteBefore(DateTime milestone)

 …

 public async Task<RouteRequestAggregate?> Get(Guid id)

 …

 public async Task<IList<RouteRequestAggregate>> GetInRoute(Guid

 routeId)

 …

Chapter 7 217

 public async Task<IList<RouteRequestAggregate>> GetMatch(

 IEnumerable<Coordinate> geometry, DateTime when,

 double distance, int maxResults)

 …

 public RouteRequestAggregate New(Guid id,

 TownBasicInfo source, TownBasicInfo destination,

 TimeInterval when, UserBasicInfo user)

 …

}

The DeleteBefore method is easily implemented with the recent ExecuteDeleteAsync Entity

Framework Core extension:

public async Task DeleteBefore(DateTime milestone)

{

 await ctx.RouteRequests.Where(m => m.WhenEnd < milestone).

ExecuteDeleteAsync();

}

In the following code blocks, we can see the New method:

public RouteRequestAggregate New(Guid id, TownBasicInfo source,

TownBasicInfo destination, TimeInterval when, UserBasicInfo user)

{

 var entity = new RouteRequest()

 {

 Id = id,

 Source = source,

 Destination = destination,

 WhenStart = when.Start,

 WhenEnd = when.End,

 User = user

 };

 var res = new RouteRequestAggregate(entity);

 res.AddDomainEvent(new

NewMatchCandidateEvent<RouteRequestAggregate>(res));

 ctx.RouteRequests.Add(entity);

Microservices in Practice218

 return res;

}

It creates an Entity Framework Core entity, adds it to ctx.RouteRequests, and uses it as the state

to create RouteRequestAggregate. It adds also a NewMatchCandidateEvent<RouteRequestAggre

gate> event to the aggregate. The associated event handler will take care of finding all routes that
match the request and creating an output message for each of them. NewMatchCandidateEvent<T>

is defined in the Events folder of the RoutesPlanningDomainLayer project, as follows:

public class NewMatchCandidateEvent<T>(T matchCandidate):

 IEventNotification

{

 public T MatchCandidate => matchCandidate;

}

All other methods contain quite standard Entity Framework Core code, so we will describe here

just the GetMatch method since it uses the Entity Framework special queries extensions. The
code of all other methods is available in the ch07 folder of the book’s GitHub repository (https://
github.com/PacktPublishing/Practical-Serverless-and-Microservices-with-Csharp):

public async Task<IList<RouteRequestAggregate>> GetMatch(

 IEnumerable<Coordinate> geometry, DateTime when,

 double distance, int maxResults)

{

 var lineString = new LineString(geometry.ToArray())

 { SRID = GeometryConstants.DefaultSRID };

 var entities = await ctx.RouteRequests.Where(m =>

 m.RouteId == null &&

 when <= m.WhenEnd && when >= m.WhenStart &&

 lineString.Distance(m.Source.Location) < distance &&

 lineString.Distance(m.Destination.Location) < distance)

 .Select(m => new

 {

 Distance = lineString.Distance(m.Source.Location),

 Entity = m

 })

 .OrderBy(m => m.Distance)

https://github.com/PacktPublishing/Practical-Serverless-and-Microservices-with-Csharp
https://github.com/PacktPublishing/Practical-Serverless-and-Microservices-with-Csharp

Chapter 7 219

 .Take(maxResults).ToListAsync();

 return entities

 .Select(m => new RouteRequestAggregate(m.Entity))

 .ToList();

}

First of all, we create a LineString geometry from the route path, and then we start the query.

The Where clause first restricts the search to requests that are not already attached to other routes.
Then, it verifies time compatibility and, finally, distance compatibility by using the LineString.
Distance method. All geometry objects have a Distance method, so we can perform geometric

queries involving any kind of geometric object.

Finally, we return an anonymous object with both the distance and the retrieved entity. This way,
we can sort data by distance and extract the best maxResults matches.

The IRouteOfferRepository implementation

Again, the repository structure is the same as the one of all previous repositories:

internal class RouteOfferRepository(IUnitOfWork uow) :

IRouteOfferRepository

{

 readonly MainDbContext ctx = (uow as MainDbContext)!;

 public async Task DeleteBefore(DateTime milestone)

 …

 public async Task<RouteOfferAggregate?> Get(Guid id)

 …

 public async Task<IList<RouteOfferAggregate>> GetMatch(

 Point source, Point destination, TimeInterval when,

 double distance, int maxResults)

 …

 public RouteOfferAggregate New(Guid id, Coordinate[] path,

 UserBasicInfo user, DateTime When)

 …

}

Microservices in Practice220

The DeleteBefore method is analogous to the one of the previous repository:

public async Task DeleteBefore(DateTime milestone)

{

 await ctx.RouteOffers.Where(m => m.When < milestone).

ExecuteDeleteAsync();

}

The New method is also the same as the one of the requests repository, but it generates the

NewMatchCandidateEvent< RouteOfferAggregate> event, whose handler looks for matching

requests.

Again, we describe just the GetMatch method since all other methods are quite standard:

public async Task<IList<RouteOfferAggregate>> GetMatch(

 Point source, Point destination,

 TimeInterval when, double distance, int maxResults)

{

 var entities = await ctx.RouteOffers.Where(m =>

 m.Status == RouteStatus.Open &&

 m.When <= when.End && m.When >= when.Start &&

 source.Distance(m.Path) < distance)

 .Select(m => new

 {

 Distance = source.Distance(m.Path),

 Entity = m

 })

 .OrderBy(m => m.Distance)

 .Take(maxResults).ToListAsync();

 return entities

 .Select(m => new RouteOfferAggregate(m.Entity))

 .ToList();

}

The Where clause first restricts the search just to all open routes. Then, it verifies time and distance
constraints as in the same GetMatch method of the previous repository. Also, sorting is the same

as that in the previous repository.

Having defined everything, we can now move on to migration.

Chapter 7 221

Creating migrations and databases

Before generating database migrations, we must implement the IDesignTimeDbContextFactory

<MainDbContext> interface inside the database driver. All migration tools look for this implemen-

tation to create the instance of MainDbContext needed to get information on both the database

configuration and the database connection string. Therefore, let’s add a LibraryDesignTimeDbC
ontextFactory class to the root of the RoutesPlanningDBDriver project:

internal class LibraryDesignTimeDbContextFactory :

 IDesignTimeDbContextFactory<MainDbContext>

{

 private const string connectionString =

 @"Server=<your sql server instance name>;Database=RoutesPlanning;

 User Id=sa;Password=<your password>;Trust Server Certificate=True;

 MultipleActiveResultSets=true ";

 public MainDbContext CreateDbContext(string[] args)

 {

 var builder = new DbContextOptionsBuilder<MainDbContext>();

 builder.UseSqlServer(

 connectionString,

 x => x.UseNetTopologySuite());

 return new MainDbContext(builder.Options);

 }

}

Please replace the placeholders I left in the string with your SQL Server instance name and pass-

word. The simplest way to get a connection string is by connecting to the database from within
Visual Studio and then by copying the connection strings from the properties tab. Please don’t

forget you can’t use the SQL database installed with Visual Studio since it is not able to listen to

TCP/IP connections, so it cannot be accessed from within Docker images.

Now, we can also add the SQL Server connection string we left empty in launchSettings.json:

"ConnectionStrings__DefaultConnection":

 "Server=host.docker.internal;Database=RoutesPlanning;User Id=sa;

 Password=<our password>;Trust Server

Certificate=True;MultipleActiveResultSets=true"

Microservices in Practice222

Again, please add your password. host.docker.internal is the network name of your develop-

ment computer that hosts Docker or a local Kubernetes simulator. Use it if you performed a direct

installation on your machine or if you ran a SQL Server Docker image on your computer. Replace

it with the appropriate name if you are using a cloud or other network instance.

Now, let’s make RoutesPlanningDBDriver our Visual Studio startup project, and select it in the

Visual Studio Package Manager Console:

Figure 7.5: Selecting the project in Package Manager Console

We are ready to issue our first migration in Package Manager Console:

Add-Migration initial

If the previous command was successful, you can create the database with the following command:

Update-Database

Done! We can now move on to the implementation of all command and event handlers.

The application services: Defining all command and event
handlers
In this section, we will define all the required command and event handlers. Before starting,
we need to add a reference to the Microsoft.Extensions.Configuration.Abstractions and

Microsoft.Extensions.Configuration.Binder NuGet packages in the RoutesPlanningAppli

cationServices project. This way, we enable all handlers to receive configuration data from the
dependency injection engine through the IConfiguration interface.

All command handler constructors require some repository interfaces, IUnitofWork for finalizing
modifications and handling transactions, and an EventMediator instance for triggering all events

added to the aggregates.

Please note that if you copied the project from the GitHub repository associated with

the book, you don’t need to execute the preceding command since migrations have

already been created there. You just need to create the database with the following
command.

Chapter 7 223

We will not describe all handlers, just the ones with a didactic added value. You can find the entire
code in the ch07 folder of the book’s GitHub repository (https://github.com/PacktPublishing/
Practical-Serverless-and-Microservices-with-Csharp).

We will place all command handlers that process messages in a CommandHandlers -> Messages

folder.

Let’s start with the RouterOfferMessage handler:

internal class RouterOfferMessageHandler(

 IRouteOfferRepository repo,

 IUnitOfWork uow,

 EventMediator mediator

) : ICommandHandler<MessageCommand<RouteOfferMessage>>

{

 public async Task HandleAsync(MessageCommand<RouteOfferMessage>

 command)

 {

 var message = command.Message;

 var toCreate = repo.New(message.Id,

 message.Path!.Select(m =>

 new Coordinate(m.Location!.Longitude, m.Location.Latitude)).

 ToArray(),

 new UserBasicInfo { Id = message.User!.Id,

 DisplayName = message.User.DisplayName! },

 message.When!.Value

);

 if (toCreate.DomainEvents != null && toCreate.DomainEvents.Count >

 0)

 await mediator.TriggerEvents(toCreate.DomainEvents);

 try

 {

 await uow.SaveEntitiesAsync();

 }

 catch (ConstraintViolationException) { }

 }

}

https://github.com/PacktPublishing/Practical-Serverless-and-Microservices-with-Csharp
https://github.com/PacktPublishing/Practical-Serverless-and-Microservices-with-Csharp

Microservices in Practice224

The handler extracts all data needed to create a new aggregate from the message and then

passes it to the New repository method. Then, it verifies whether the created aggregate con-

tains events and uses the EventMediator instances to trigger all associated event handlers.

ConstraintViolationException is created by the IUnitOdWork implementation in case of

unique key violations. In our case, this exception can be thrown just when we receive a duplicate

RouterOfferMessage. Therefore, we simply capture it and do nothing, since duplicate messages
must be ignored.

RouteRequestMessageHandler is completely analogous, so we will not describe it.

Let’s move on to the RouteClosedAbortedMessage handler:

 public async Task HandleAsync(MessageCommand<RouteClosedAbortedMessage>

command)

 {

 var message = command.Message;

 await uow.StartAsync(System.Data.IsolationLevel.Serializable);

 try

 {

 var route = await repo.Get(message.RouteId);

 if (route is not null)

 {

 if(!message.IsAborted)

 {

 if(route.Status != RouteStatus.Open)

 {

 await uow.RollbackAsync();

 return;

 }

 else route.Close();

 }

 else

 {

 if(route.Status == RouteStatus.Aborted)

 {

 await uow.RollbackAsync();

 return;

 }

 else route.Abort();

 }

Chapter 7 225

 if (route.DomainEvents != null && route.DomainEvents.Count

 > 0)

 mediator.Equals(route.DomainEvents);

 await uow.SaveEntitiesAsync();

 await uow.CommitAsync();

 }

 else

 {

 await uow.RollbackAsync();

 return;

 }

 }

 catch

 {

 await uow.RollbackAsync();

 throw;

 }

 }

}

The whole operation is enclosed in a serializable transaction to avoid interferences with other
microservice replicas that might receive older or future messages concerning the same route offer.

In fact, they might modify the same entity after it has been read but before it has been modified.
The serializable transaction prevents this possibility.

If we don’t find the entity, we do nothing and simply abort the transaction. In fact, this even-

tuality might take place only if the route expires and is deleted. However, if entities are deleted

after enough time has passed since they expired, this should be a substantially impossible event.

If the message specifies that the route must be closed, we put the aggregate in the closed state by

calling Close() only if the aggregate is still open. In fact, if it is either already closed or aborted,

this will be an old message or a duplicate that must be ignored.

Similarly, if the message specifies that the route should be aborted, it is processed only if the
aggregate is not already in an aborted state.

Finally, in case of errors, we abort the transaction and rethrow the exception, so the message will

not be confirmed and the message will be processed again at a later time, possibly by a different
replica.

Microservices in Practice226

Now, let’s move on to the RouteExtendedMessage handler:

internal class RouteExtendedMessageHandler(

 IRouteOfferRepository repo,

 IUnitOfWork uow,

 EventMediator mediator

) : ICommandHandler<MessageCommand<RouteExtendedMessage>>

{

 public async Task HandleAsync(MessageCommand<RouteExtendedMessage>

command)

 {

 var message = command.Message;

 await uow.StartAsync(System.Data.IsolationLevel.Serializable);

 try

 {

 var route = await repo.Get(message.ExtendedRoute!.Id);

 if (route is not null && route.TimeStamp != message.TimeStamp)

 {

 route.Extend(message.TimeStamp,

 message.AddedRequests!.Select(m => m.Id),

 message.ExtendedRoute.Path!

 .Select(m => new Coordinate(m.Location!.Longitude,

 m.Location.Latitude)).ToArray(),message.

 Closed);

 if (route.DomainEvents != null && route.DomainEvents.Count

 > 0)

 mediator.Equals(route.DomainEvents);

 await uow.SaveEntitiesAsync();

 await uow.CommitAsync();

 }

 else

 {

 await uow.RollbackAsync();

 return;

 }

 }

 catch

 {

Chapter 7 227

 await uow.RollbackAsync();

 throw;

 }

 }

}

Also, in this case, since the command handler performs both a read and a modification, we need
an explicit transaction.

Again, if no entity is found, we do nothing for the same reasons explained for the previous han-

dler. We also do nothing if the message timestamp is identical to the one contained in the entity,

because in this case, the message is a duplicate. Otherwise, we simply call the aggregate Extend

method, and then trigger possible events generated by the Extend method.

Let’s now move on to handlers that are not related to messages. They are placed in the root of
the CommandHandlers folder.

Let’s start with HouseKeepingCommandHandler, which deletes old expired requests and routes:

internal class HouseKeepingCommandHandler(

 IRouteRequestRepository requestRepo,

 IRouteOfferRepository offerRepo

) : ICommandHandler<HouseKeepingCommand>

{

 public async Task HandleAsync(HouseKeepingCommand command)

 {

 var deleteTrigger = DateTime.Now.AddDays(-command.DeleteDelay);

 await offerRepo.DeleteBefore(deleteTrigger);

 await requestRepo.DeleteBefore(deleteTrigger);

 }

}

It is very simple, since it just subtracts the delay or the deletion of all expired entities from the

current time and then calls the repository methods for deleting routes and requests. It doesn’t

need to save changes since each of these methods already interacts with the database.

The OutputSendingCommandHandler that handles the output queue is a little bit more complex:

internal class OutputSendingCommandHandler(

 IOutputQueueRepository repo,

 IUnitOfWork uow

Microservices in Practice228

): ICommandHandler<

 OutputSendingCommand<RouteExtensionProposalsMessage>>

{

 public async Task HandleAsync(OutputSendingCommand<

 RouteExtensionProposalsMessage> command)

 {

 var aggregates =await repo.Take

 (command.BatchCount, command.RequeueDelay);

 if(aggregates.Count==0)

 {

 command.OutPutEmpty = true;

 return;

 }

 var allTasks = aggregates.Select(

 m => (m, command.Sender(m.GetMessage<

 RouteExtensionProposalsMessage>()!)))

 .ToDictionary(m => m.Item1!, m => m.Item2);

 try

 {

 await Task.WhenAll(allTasks.Values.ToArray());

 }

 catch

 {

 }

 repo.Confirm(aggregates

 .Where(m =>!allTasks[m].IsFaulted && !allTasks[m].IsFaulted)

 .Select(m => m.Id).ToArray());

 await uow.SaveEntitiesAsync();

 }

It tries to take command.BatchCount items from the output queue. If no item is found, it informs

the command that the queue is empty, which, in turn, informs the queue-handling hosted service

that it can sleep for a little while.

Chapter 7 229

Then, it deserializes all messages and passes them to the Sender delegate. However, instead of

awaiting each task returned by this method, it collects all of them, puts them in an array, and

awaits the whole array with Task.WhenAll. This way, all messages are sent concurrently, thus
improving performance. In case of exceptions, it simply does nothing, because unsent messages

are detected in the LINQ instruction inside repo.Confirm and their associated queue items are

excluded from the array of all items to confirm, so they will be retried at a later time.

We are done with all the command handlers. Let’s move on to the event handlers.

Coding all event handlers

Usually, event handlers do not create transactions and do not attempt to store modifications in
the database, since they are invoked by command handlers, which do this task for them; so, their

code tends to be a little bit simpler. We have four event handlers, which are all placed in the root

of the EventHandlers folder.

Let’s start with the AttachedRequestEvent handler:

internal class AttachedRequestEventHandler(

 IRouteRequestRepository repo

) : IEventHandler<AttachedRequestEvent>

{

 public async Task HandleAsync(AttachedRequestEvent ev)

 {

 var requests = await repo.Get(ev.AddedRequests.ToArray());

 foreach (var request in requests) request.AttachToRoute(

 ev.RouteOffer);

 }

}

This handler is responsible for attaching requests to a route. Its code is trivial: it just retrieves all
aggregates from their keys and then attaches them to the route referenced in the event.

The ReleasedRequestsEvent handler is responsible for releasing all requests attached to an

aborted route. Its code is trivial, too:

internal class ReleasedRequestsEventHandler(

 IRouteRequestRepository repo

) : IEventHandler<ReleasedRequestsEvent>

{

 public async Task HandleAsync(ReleasedRequestsEvent ev)

Microservices in Practice230

 {

 var requests=await repo.GetInRoute(ev.AbortedRoute);

 foreach(var request in requests) request.DetachFromRoute();

 }

}

It retrieves all requests attached to the route and simply detaches each of them.

Finally, we have two event handlers that discover route-request matches and add them to the

microservice output queue. The first one is triggered when a new request is added, while the
second one is triggered when a new offer is added. Since they are very similar, we will describe

just the first one:

internal class RequestMatchCandidateEventHandler(

 IRouteOfferRepository offerRepo,

 IOutputQueueRepository queueRepo,

 IConfiguration configuration) :

 IEventHandler<NewMatchCandidateEvent<RouteRequestAggregate>>

{

 private RouteRequestMessage PrepareMessage(RouteRequestAggregate m)

 => new RouteRequestMessage

 …

 …

 public async Task HandleAsync(

NewMatchCandidateEvent<RouteRequestAggregate> ev)

 {

 double maxDistance = configuration

 .GetValue<double>("Topology:MaxDistanceKm") * 1000d;

 int maxResults = configuration

 .GetValue<int>("Topology:MaxMatches");

 var offers = await offerRepo.GetMatch(

 ev.MatchCandidate.Source.Location,

 ev.MatchCandidate.Destination.Location,

 ev.MatchCandidate.When, maxDistance, maxResults);

 var proposals = Enumerable.Repeat(ev.MatchCandidate, 1)

 .Select(m => PrepareMessage(m)).ToList();

 foreach (var offer in offers)

 {

Chapter 7 231

 var message = new RouteExtensionProposalsMessage

 {

 RouteId = offer.Id,

 Proposals = proposals,

 };

 queueRepo.New<RouteExtensionProposalsMessage>(message, 1);

 }

 }

}

The PrepareMessage method just fills a RouteRequestMessage using data contained in the cor-

responding RouteRequest\regate. We will not describe it, since it is trivial.

The HandleAsync method first extracts the parameters needed for the search from configuration
data. Then, it calls the repository GetMatch method to find all matches. Finally, for each route
retrieved, it creates an output message and adds it to the internal queue. The request is turned
into a singleton list since the output message requires a list.

The code of our microservice is finished! We will test it in the next chapter after connecting it with
message sources and message receivers. There, we will also implement the microservice health
check endpoints and connect them to the orchestrator.

Summary
This chapter described in detail how to design and code a Dockerized microservice. In particular,

it described how to design its input and output messages and endpoints, as well as how to use

a message broker to implement event-based communication. It also described how to handle

out-of-order and duplicated messages, concurrent output production with several microservice

replicas, and transactional outputs with a database internal queue.

Then, it described how the organization of worker services is based on hosted services and how
in this case, commands are carried out in one-to-one correspondence with all input messages.

Finally, it described how to code all of the Onion Architecture levels of any microservice.

All concepts were explained through the practical example of the route-planning worker mi-

croservice of the book’s case study application. You should now understand the practical usage
of the RabbitMQ message broker and the NetTopologySuite library for implementing spatial

calculations and queries.

Microservices in Practice232

The next chapter describes orchestrators with a specific focus on Kubernetes. There, we will test
the microservice coded in this chapter by connecting it with other microservices, and by using

an orchestrator to manage all microservices.

Questions
1. Do worker microservices typically need authentication and authorization? What about

encrypted communication protocols?

They don’t need authentication because their processing is not connected to a specific
application user. Encrypted communication is advised but not always necessary since

they run in an isolated environment.

2. Where is it advised to place all microservices’ input and output messages?

In some kind of queues.

3. What is the name of the technique for maintaining the right processing order of messages

while using several microservice replicas?

Sharding.

4. Is it true that if modification messages contain the whole updated entities, and if deletes
are logical, then the order of messages doesn’t matter?

Yes, it is true.

5. Which library is typically used in .NET for handling failures with retry policies?

Polly is used in .NET for handling failures with retry policies.

6. Where are domain events created? Where are they before their handlers are fired?

In a list contained in the aggregates that created them.

7. Why do event handlers typically not use transactions and IUnitOfWork.SaveEntitiesAsync?

Because transactions are created and handled by the Command Handlers that caused

the events.

8. When sending several concurrent output messages, how can we discover which ones

succeeded, which ones failed, and which ones were canceled?

Through acknowledgments.

Chapter 7 233

9. What is an SRID?

Spatial Reference Identifiers. They name geographic coordinate systems.

10. Can the Distance method of all NetTopologySuite geometric objects be used in LINQ

queries to a SQL Server database?

Yes.

Further reading
• RabbitMQ official documentation: https://www.rabbitmq.com/.

• EasyNetQ official documentation: https://github.com/EasyNetQ/EasyNetQ/wiki/
Introduction.

• Polly documentation: https://github.com/App-vNext/Polly.

• RabbitMQ sharding plugin: https://github.com/rabbitmq/rabbitmq-server/tree/

main/deps/rabbitmq_sharding.

• Spatial data extensions for Entity Framework Core: https://learn.microsoft.com/en-

us/ef/core/modeling/spatial.

• NetTopologySuite: https://nettopologysuite.github.io/NetTopologySuite/.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/PSMCSharp

https://www.rabbitmq.com/
https://github.com/EasyNetQ/EasyNetQ/wiki/Introduction
https://github.com/EasyNetQ/EasyNetQ/wiki/Introduction
https://github.com/App-vNext/Polly
https://github.com/rabbitmq/rabbitmq-server/tree/main/deps/rabbitmq_sharding
https://github.com/rabbitmq/rabbitmq-server/tree/main/deps/rabbitmq_sharding
https://learn.microsoft.com/en-us/ef/core/modeling/spatial
https://learn.microsoft.com/en-us/ef/core/modeling/spatial
https://nettopologysuite.github.io/NetTopologySuite/
https://packt.link/PSMCSharp

8
Practical Microservices
Organization with Kubernetes

This chapter is dedicated to a fundamental building block of microservice applications: orchestra-

tors! The focus is on Kubernetes, but the concepts learned here are fundamental for understand-

ing other orchestration options. In particular, Azure Container Apps is a serverless alternative

to Kubernetes, implemented with Kubernetes itself, and uses simplified configuration options,
but the objects to configure and concepts involved are exactly the same. Azure Container Apps is
described in Chapter 9, Simplifying Containers and Kubernetes: Azure Container Apps and other Tools.

All concepts will be exemplified with small examples and with the car-sharing book case study
application. After a general description of orchestrators’ role and functionalities, we will describe

how to configure and interact in practice with a Kubernetes cluster. We will use Minikube, which

is a local simulator of a Kubernetes cluster, throughout the chapter. However, we will also explain

how to create and use a Kubernetes Azure cluster.

We will also describe how to test and debug the interaction of some microservices during devel-

opment with Docker first, and then the complete application running in a Kubernetes cluster. A

.NET-specific alternative for testing a microservices application in the development stage is �NET

Aspire, which will be described in Chapter 12, Simplifying Microservices with .NET Aspire.

Practical Microservices Organization with Kubernetes236

More specifically, this chapter covers:

• Introduction to orchestrators and their configuration

• Kubernetes basics

• Interacting with Kubernetes: Kubectl and Minikube

• Configuring your application in Kubernetes

• Running your microservices on Kubernetes

• Advanced Kubernetes configuration

Technical requirements
This chapter requires:

1. At least the Visual Studio 2022 free community edition.

2. An SQL instance accepting TCP/IP requests and user/password authentication, and Docker

Desktop for Windows, the installation for which was explained in the Technical require-

ments section of Chapter 7, Microservices in Practice.

3. If you would like to interact with a Kubernetes cluster on Azure, you need Azure CLI�

The page at https://learn.microsoft.com/bs-latn-ba/cli/azure/install-azure-

cli-windows?tabs=azure-cli contains the links to both the 32-bit and 64-bit Windows

installers�

4. Minikube: The easiest way to install Minikube is by using the Windows installer you
can find on the official installation page: https://minikube.sigs.k8s.io/docs/start/.

During the installation, you will be prompted on the kind of virtualization tool to use –
please specify Docker. The previous link also gives a PowerShell command for adding
minicube.exe to the Windows path.

5. Kubectl: First of all, verify if it is already installed by opening a Windows console and

issuing this command: Kubectl -h. If the response is the list of all Kubectl commands, it

is already installed. Otherwise, the simplest way to install it is through the Chocolatey

package installer:

choco install kubernetes-cli

https://learn.microsoft.com/bs-latn-ba/cli/azure/install-azure-cli-windows?tabs=azure-cli
https://learn.microsoft.com/bs-latn-ba/cli/azure/install-azure-cli-windows?tabs=azure-cli
https://minikube.sigs.k8s.io/docs/start/

Chapter 8 237

6. If Chocolatey is not already installed, you can install it by launching PowerShell in ad-

ministrative mode and then issuing the PowerShell command suggested on the official
Chocolatey page: https://chocolatey.org/install#individual. You can launch Pow-

erShell in administrative mode as follows:

a. Search PowerShell in the Windows search box.

b. Right-click on the PowerShell link and select to execute it as an administrator.

You can find the sample code for this chapter at https://github.com/PacktPublishing/
Practical-Serverless-and-Microservices-with-Csharp.

Introduction to orchestrators and their configuration
Orchestrators were mainly conceived for balancing microservices’ load. Therefore, one might ask
if they are necessary for all applications. I can’t say they are necessary, but, for sure, renouncing

them doesn’t mean just manually configuring where to place each replica of each microservice.
We should also find efficacious solutions for dynamically reconfiguring the number of replicas
and their locations, for balancing the load among several replicas allocated on different servers,

and for balancing the traffic among the various replicas of each microservice.

The above simple considerations show that an efficacious orchestrator should offer at least the
following services:

1. Accepting high-level specifications and translating them into actual allocations of micro-

service replicas on different servers of a given cluster.

2. Providing a unique virtual address for all replicas of the same microservices and auto-

matically splitting the traffic among them. This way, the code of each microservice can
reference just this unique virtual address without caring where each replica is.

3. Recognizing faulty replicas, killing them, and replacing them with newly created replicas.

4. Downloading microservices container images from container registries.

https://chocolatey.org/install#individual
https://github.com/PacktPublishing/Practical-Serverless-and-Microservices-with-Csharp
https://github.com/PacktPublishing/Practical-Serverless-and-Microservices-with-Csharp

Practical Microservices Organization with Kubernetes238

Moreover, since microservice replicas are ephemeral and can be destroyed and moved from one

server to another, they can’t use the disk storage of the servers that host them. Instead, they must

use network storage. Orchestrators must also provide simple ways to allocate disk storage and

mount it inside the containers where the microservices run. In general, they must provide easy

ways of projecting everything that can be projected inside a container, namely:

1. Disk storage

2. Environment variables

3. Communication ports

As a matter of fact, each orchestrator also offers other services, but the seven services listed above

are the starting point for learning and assessing any orchestrator.

The behavior of an orchestrator is controlled with tree-like settings coming from various sources:
configuration files, command arguments, and so on. Behind the curtain, all sources are packaged
by a client that communicates with an orchestrator web API.

All possible orchestrator settings are organized like .NET configuration settings in a tree data
structure. Therefore, analogously to .NET settings, they can be provided in JSON format or oth-

er equivalent formats. As a matter of fact, all orchestrators accept settings either in JSON or in

another equivalent format called .yaml. Some orchestrators accept both formats; others might

accept just one of them. The .yaml format is described in the next subsection.

.yaml files

.yaml files, like JSON files, can be used to describe nested objects and collections in a human-read-

able way, but they do it with a different syntax. You have objects and lists, but object properties
are not surrounded by {}, and lists are not surrounded by []. Instead, nested objects are declared

by simply indenting their content with spaces. The number of spaces can be freely chosen, but

once they’ve been chosen, they must be used consistently.

List items can be distinguished from object properties by preceding them with a hyphen (-). Below,
there is an example involving nested objects and collections:

Name: John

Surname: Smith

Spouse:

 Name: Mary

 Surname: Smith

Addresses:

Chapter 8 239

- Type: home

 Country: England # I am a comment

 Town: London

 Street: My home street

- Type: office

 Country: England

 Town: London

 Street: My home street

In each line, all characters following a # character are considered comments.

The previous Person object has a Spouse nested object and a nested collection of addresses. The
same example in JSON would be:

{

Name: John

Surname: Smith

Spouse:

{

 Name: Mary

 Surname: Smith

}

Addresses:

[

 {

 Type: home

 Country: England

 Town: London

 Street: My home street

 },

 {

 Type: office

 Country: England

 Town: London

 Street: My home street

 }

]

}

Practical Microservices Organization with Kubernetes240

As you can see, the .yaml syntax is more readable, since it avoids the overhead of parentheses.

.yaml files can contain several sections, each defining a different object, that are separated by a

line containing the --- string. Comments are preceded by a # symbol, which must be repeated
on each comment line.

With the basics of orchestrators and .yaml files, we are ready to learn about the most widespread
orchestrator: Kubernetes. At the moment, it is also the most complete. So, once you’ve learned

about it, learning about other orchestrators should be very easy.

Kubernetes basics
The Kubernetes orchestrator is distributed software that must be installed on all virtual servers

of a network. Most of the Kubernetes software is installed on just some machines that are called

master nodes, while all other machines run just interface software called Kubelet that connects

with the software running on the master nodes and locally executes tasks decided on by the

master nodes. All machines in a Kubernetes cluster are called nodes.

Actually, all nodes must also run a container runtime in order to be able to run containers. As we

will see later on, all nodes also run software that handles virtual addressing.

Kubernetes configuration units are abstract objects with properties, subparts, and references to
other objects. They are referred to as Kubernetes resources. We have resources that describe a

single microservice replica and other resources that describe a set of replicas. Resources describe

communication settings, disk storage, users, roles, and various kinds of security constraints.

Since spaces/tabs contribute to object semantics, YAML is space/tabs sensitive, so
attention must be paid to add the right number of spaces.

Small collections or small objects can also be specified in-line with the usual [] and

{} syntax, that is, after the colon in the same line of the property they are the value of.

Chapter 8 241

Cluster nodes and all resources they host are managed by master nodes that communicate with

human cluster administrators through an API server, as shown in the following diagram:

Figure 8.1: Kubernetes cluster

Kubectl is the client typically used to send commands and configuration data to the API server.
The scheduler allocates resources to nodes according to the administrator constraints, while
the controller manager groups several daemons that monitor the cluster’s actual state and try

to move it toward the desired state declared through the API server. There are controllers for
several Kubernetes resources, from Microservices replicas to communication facilities. In fact,

each resource has some target objectives to be maintained while the application runs, and the

controller verifies these objectives are actually achieved, possibly triggering corrective actions,
such as moving some pods running too slowly onto less crowded nodes.

Practical Microservices Organization with Kubernetes242

The deployment unit, that is, the unit that can be deployed on a server, started, killed, and/or
moved to another server, is not a single container, but a set of containers called a Pod

The concept of the Pod is fundamental since it enables very useful, strong cooperation patterns.
For instance, we may attach another container to our main container whose unique purpose

is to read the log files created by the main container and send them to a centralized log service.

In general, we put several containers together inside the same Pod when we need them to com-

municate through their node file system, or when we need each container replica to be somehow
associated with a specific replica of other containers.

In Kubernetes, communication between Pods is handled by resources called Services that are

assigned virtual addresses by the Kubernetes infrastructure and that forward their communica-

tions to sets of pods that satisfy some constraints. In short, Services are Kubernetes’ way to assign

constant virtual addresses to sets of Pods.

All Kubernetes resources may be assigned name-value pairs called labels that are used to reference

them through a pattern-matching mechanism. Thus, for instance, all Pods that receive traffic from
the same Service are selected by specifying labels that they must have in the Service definition.

Kubernetes clusters can be on-premises, that is, Kubernetes may be installed on any private

network. But, more often, they are offered as cloud services. For instance, Azure offers Azure

Kubernetes Service (AKS).

In the remainder of the book, we will use the Minikube Kubernetes simulator running on your

development machine, since an actual AKS service might quickly exhaust all your Azure free cred-

its. However, all operations in our examples can be replicated on an actual cluster, and whenever

there are differences, we will also describe how to perform operations on AKS.

Let’s start by interacting with a Kubernetes cluster.

A Pod is a set of containers that are constrained to run all together on the same server..

The Sidecar pattern consists of enhancing a main container with a secondary con-

tainer deployed on the same Pod and whose only purpose is to offer some services

to the main container.

Chapter 8 243

Interacting with Kubernetes: Kubectl, Minikube, and
AKS
Before interacting with a Kubernetes cluster with the Kubectl client, we must configure Kubectl
and furnish it with both the cluster URL and the necessary credentials.

Once installed, Kubectl creates a different JSON configuration file for each computer user, which
will contain configuration info for all Kubernetes clusters and their users. Kubectl has commands
for inserting new Kubernetes cluster configurations and for making a cluster configuration the
current one.

Each pair made of a Kubernetes cluster API URL plus a user credential is called a context. Contexts,

credentials, and cluster connections can be defined with various kubectl config subcommands.

Below are the most useful ones:

a. Viewing the overall configuration file:

kubectl config view

b. Adding a new Kubernetes cluster:

kubectl config set-cluster my-cluster --server=https://<your cluster

API server URL>

c. User credentials are based on client certificates. A valid certificate can be obtained by
creating a certificate request and submitting it to the Kubernetes cluster, which will cre-

ate an approved certificate. The detailed procedure will be shown in Chapter 10, Security

and Observability for Serverless and Microservices Applications. Once you get an approved

certificate, the user can be created with:

Kubectl config set-credentials newusername --client-key=

newusername.key --client-certificate=poweruser.crt --embed-

certs=true

Where newusername.key is the complete path to the private key you used to create the cer-

tificate request, and newusername.crt is the complete path of the approved certificate file.

d. Once you have both a server and a user, you can create a context for the connection of

that user to that server, with:

kubectl config set-context newcontext --cluster= my-cluster --user=

newusername

Practical Microservices Organization with Kubernetes244

e. Once all the contexts you need have been properly defined, you can switch to a given
context with:

kubectl config use-context newcontext

f. After having set a new current context, all Kubectl commands will use both the cluster

and the user defined in that context.

If you are the cluster administrator, your user already exists in the system, so you don’t need

to create it. However, you need to get the administrator user credentials and add them to your

configuration file. Each cloud service has a login procedure that does this job. For instance, in
the case of AKS, the procedure is:

1. Log in to Azure with Azure CLI:

az login

2. The default browser should open, and you should be prompted for your Azure credentials.

3. If not already installed, install the package for interacting with AKS:

az aks install-cli

4. Ask to add your AKS credentials to your Kubectl configuration file:

az aks get-credentials --resource-group <your AKS resource group

name> --name <your AKS name>

5. If the command is successful, a new cluster, new user, and new context will be added to

your Kubectl configuration, and the new context will be made the current one. Please run
kubectl config view to see all configuration file modifications.

Minikube comes with a default user, a default cluster name, and a default context, which are

all called minikube. When you start your Minikube cluster with minikube start, if not already

defined, all the above entities will be added to your Kubectl configuration file. Moreover, the
minikube context will be automatically made the current one, so no extra actions are needed after

you start your cluster. Of course, you may define other users and other contexts.

Minikube can be stopped with minikube stop, and paused with minikube pause. Both stopping

and pausing do not delete the cluster data and configuration. Other useful commands will be
shown later on while using Minikube in our examples.

Let’s try some Kubectl commands on Minikube (ensure Minikube has been started):

kubectl get nodes

Chapter 8 245

It should show all virtual network Kubernetes nodes. As the default, Minikube creates a cluster

with a single node called minikube, so you should see something like:

NAME STATUS ROLES AGE VERSION

minikube Ready control-plane,master 35m v1.22.3

Since we specified Docker as the virtualization tool, the whole cluster will be embedded in a
Docker container, as you can verify by listing all running containers with docker ps (remember
that all Docker commands must be issued in a Linux shell).

As the default, this unique node contains 2 CPUs and 4 gigabytes of RAM, but we can modify all

these parameters, and we can also create clusters with several nodes by passing some options

to minikube start:

• --nodes <n>: Specifies the number of nodes in the cluster. Please consider that nodes
are virtual machines that will run simultaneously, so a large number of nodes can be set

only on a powerful workstation with several cores and say 32-64 gigabytes of RAM. The
default is 1.

• --cpus <n or no-limits>: The number of CPUs allocated to Kubernetes, or no-limits,

to let Minikube allocate as many CPUs as needed. The default is 2.

• --memory <string>: The amount of RAM to be allocated to Kubernetes (format: <num-

ber>[<unit>], where unit = b, k, m, or g). Use “max” to use the maximum amount of
memory. Use “no-limit” to not specify a limit.

• --profile <string>: The name of the Minikube virtual machine (defaults to minikube).
Useful for having more than one Minikube virtual machine – for instance, one with one

node and another with two nodes.

• --disk-size <string>: The disk size allocated to the Minikube VM (format: <num-

ber>[<unit>], where unit = b, k, m, or g). The default is “20000mb”.

After this short parenthesis, let’s return to Kubectl! Let’s type:

kubectl get all

If you want to change one of the above settings after having created the Minikube

container with your first minikube start, you need either to delete the previous

container with minikube delete or create a new Minikube container with a custom

name with the --profile option.

Practical Microservices Organization with Kubernetes246

It lists all Kubernetes resources. If you have not created any resources, the cluster should contain

just a single resource of type ClusterIP, as shown below:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

AGE

service/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 87m

It is part of the Kubernetes infrastructure.

In general, kubectl get <resource type> lists all resources of a given type. Thus, for instance,
kubectl get pods lists all Pods, and kubectl get services lists all services.

 If, instead, we need more detailed information on a given object, we may use kubectl describe

<object type> <object name>. Thus, for instance, if we need more information on the Minikube
single node called minikube, we may issue the command below:

kubectl describe node minikube

Please try it!

You will see other Kubectl commands when learning how to define Pods, Services, and other Ku-

bernetes resources in other sections of this chapter. The next subsection explains how to create
an Azure Kubernetes cluster, so if at the moment you don’t plan to use Azure Kubernetes, feel
free to skip it. You can return to it when you need to create one.

Creating an Azure Kubernetes cluster
To create an AKS cluster, do the following:

1. Type AKS into the Azure search box.

2. Select Kubernetes services.

3. Then click the Create button.

4. Select Kubernetes Cluster.

After that, the following form will appear:

Chapter 8 247

Figure 8.2: AKS creation first form

Here, as usual, you can select one of your Azure subscriptions, an existing resource group, or you
can create a new one. Let’s move on to the AKS-specific configuration:

1. Cluster preset configuration: Here, you can choose among various preconfigured set-

tings that are a good starting point for various situations. In the preceding screenshot, I

have chosen Dev/Test, which is specific for development and learning, so it proposes the
cheapest options. However, you can also select a standard production or an economic

production initial setting.

2. Kubernetes cluster name: Here, you must select a unique name for your cluster.

Practical Microservices Organization with Kubernetes248

3. For all other settings, you can choose the proposed defaults. In particular, the Region field
should propose the most adequate region for you. AKS pricing tier should be set to Free,

meaning you will pay just for the virtual machines that make up the cluster. However,

you can also select paying options that include support and super-big clusters with up

to 5,000 nodes. The Availability zones field enables geographic redundancy in up to 3
different geographic zones.

If you selected Dev/Test, the cluster will include from 2 to 5 nodes with automatic scaling. That
is, the number of starting nodes is 2, but it can automatically increase up to 5 if the workload

increases. Let’s go to the node pools tab to customize both the node number and type:

Figure 8.3: AKS node pool configuration

If you selected Dev/Test, there should be a unique node pool that will be used for both Kubernetes

master nodes and standard nodes. Pay attention that the Dev/Test server type (D4ds-v5) has a
high monthly price, so please use the price calculator (https://azure.microsoft.com/en-us/
pricing/details/virtual-machines/linux/#pricing) to verify the cost of a machine before
choosing it.

The standard production selection, instead, would create two node pools – one for master nodes
and the other for standard nodes.

Anyway, you can change the node pools and edit each of them. In the case of the preceding screen-

shot, let’s click on agentpool. A new form will open. Here, you can change both the machine type

and the maximum number of nodes. A good option for experimenting without wasting too much

credit is choosing 3 nodes and an A family machine. When you have done either, click on update

or on cancel to return to the previous form.

https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/#pricing
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/#pricing

Chapter 8 249

Finally, you can associate Azure Container Registry with the cluster by going to the Integrations

tab:

Figure 8.4: Connect your cluster to ACR

If you already defined an Azure Container Registry for experimenting in the A few more Docker

commands and options subsection of Chapter 3, Setup and Theory: Docker and Onion Architecture,

select that registry; otherwise, you can create a new one in a new browser window and select it,

or you can associate a registry to your cluster at a later time.

When you’ve finished, select Review + Create.

Once you’ve created your cluster, you can connect to it with the login procedure we explained

earlier in this section.

Now that you have learned how to connect with both Minikube and AKS, let’s move on to exper-

imenting with Kubernetes resources.

Configuring your application in Kubernetes
As already mentioned, the simplest Kubernetes resource is the Pod. We will never create a single

Pod since we will always create several replicas of each microservice, but being able to configure
a Pod is also fundamental for creating more complex resources, so let’s start creating a single Pod.

A Pod can be defined through a .yaml file with the content below:

apiVersion: v1

kind: Pod

metadata:

When you associate a registry to your cluster, you enable the cluster to access and

download all its Docker images.

Practical Microservices Organization with Kubernetes250

 name: my-podname

 namespace: mypodnamespace

 labels:

 labenname1: labelvalue1

 labelname2: labelvalue2

spec:

 restartPolicy: Always #Optional. Possible values: Always (default),

OnFailure. Never.

 containers:

 …

 initContainers:

 …

All Kubernetes configuration files start with the name of the API where the resources being con-

figured are defined, and its version. In the case of Pods, we have just the version since they are
defined in the core API. Then, kind defines the type of resource to be configured – in our case, a Pod.

Like types in C#, Kubernetes resources are also organized in namespaces. Therefore, together with
any resource name, we must also specify a namespace. If no namespace is specified, a namespace
called default is assumed.

If the namespace used in a resource definition doesn’t exist yet, it must be defined with the
snippet below:

apiVersion: v1

kind: Namespace

metadata:

 name: my-namespace

The above snippet can be placed in a separate file, or in the same file before the resource definition
and separated by a --- row.

 Pay attention! While the intent of Kubernetes and C# namespaces is the same, there
are substantial differences between them. Namely, C# namespaces are hierarchical,
while Kubernetes namespaces are not. Moreover, namespaces are not applicable to

all Kubernetes resources since there are cluster-wide resources that belong to no

specific namespace.

Chapter 8 251

Name and namespace are specified as sub-properties of metadata, together with optional labels.

Labels are free name-value pairs we can use to classify the object. Typically, they specify infor-

mation such as the role of the resource in the application and the tier or module it belongs to.

As already mentioned in the previous section, other resources can use labels to select a set of

resources.

The spec property specifies the actual content of the Pod, that is, its containers and its restart
policy (restartPolicy). The restart policy specifies when to restart a Pod:

• restartPolicy: Always: This is the default. The Pod is restarted whenever all containers
terminate or a container terminates with a failure.

• restartPolicy: OnFailure: The Pod is restarted when at least one container exits with
a failure

• restartPolicy: Never: The Pod is never restarted.

Containers are split into two lists: containers and initContainers. The containers in the
containers list are started only after all containers in initContainers are successful, and each

container in the initContainers list is started only after the previous container is successful. In

turn, a container in the initContainers list is considered successful in the two circumstances:

1. If a container configuration has the restartPolicy property set to Always, then the con-

tainer is considered successful if it has been successfully started. This option is useful for
implementing sidecar containers. This way, we ensure that sidecars are ready before the

containers they enhance are started. Please refer to the Pod definition at the beginning of
the Kubernetes basics section for an explanation of what a sidecar is.

2. If a container configuration doesn’t have the restartPolicy property set to Always, then

the container is considered successful if it is successfully terminated. This option is use-

ful for performing some startup initialization – for instance, for waiting for a database
or a message broker to be ready. In a similar situation, the container code is a loop that

continuously tries a connection with the database/message broker, and terminates as
soon as it succeeds.

A failed initContainers doesn’t cause a whole Pod restart. Instead, it is retried

with an exponential retry several times before causing a whole Pod failure. For this

reason, they should be designed as idempotent since their actions might be executed

more than once.

Practical Microservices Organization with Kubernetes252

Each container in any of the two above lists is something like:

 - name: <container name>

 image: <container image URL>

 command: […] # square bracket contains all strings that compose the OS

command

 resources:

 requests:

 cpu: 100m

 memory: 128Mi

 limits:

 cpu: 250m

 memory: 256Mi

 ports:

 - containerPort: 80

 - containerPort: …

 …

 env:

 -name: env-name1

 value: env-value1

 …

 volumeMounts:

 - name: data

 mountPath: /mypath/mysubpath….

 subPath: /vsubpath #optional. If provided the path of data mounted

in mountPath

 …

We specify both a name for the container and the URL of its image in a container registry, which

accounts for point 4 of the minimal services any orchestrator should offer (see the beginning of
the Introduction to orchestrators and their configuration section). These two properties are obligatory,
while all other properties are optional. The command property, when provided, overwrites the CMD

instruction of the image Docker file.

Chapter 8 253

Then, we also account for points 5, 6, and 7 of the minimal services any orchestrator should offer,

that is, disk storage, environment variables, and communication ports. More specifically, we have:

• volumeMount specifies how a virtual storage volume specified by name is mapped to the

path specified by mountPath in the container file system. If the optional subPath is provided,

just that subpath of the volume specified by name is mounted. Virtual storage volumes

are described later on in this chapter (in the Dynamic provisioning of permanent disk space

subsection), together with other volumeMounts properties.

• env specifies all container’s environment variables as a list of name-value pairs.

• ports specifies the list of all ports exposed by the container we would like to use in our
application. These ports may be mapped to other ports in the actual communication be-

tween Pods. However, the port mapping is specified in other resources called services

that provide virtual Pod addresses and other communication-related options.

Finally, the resources section specifies both the minimal computational resources needed for
starting the container (requests) and the maximum computational resources it can waste
(limits).

The constraints in the requests property are used to choose the virtual machine to place a Pod.

limits, instead, are enforced by the operating system kernel as follows:

• CPU limits are enforced with throttling. That is, containers exceeding the CPU limit are
delayed, putting them in sleeping mode for enough time.

• Memory limits are enforced by throwing an exception when they are exceeded. In turn,

the exception causes the application of the Pod restart policy, which usually causes a

Pod restart.

With regard to units of measure, typical memory units of measure are Ti (terabytes), Gi (gigabytes),
Mi (megabytes), and Ki (kilobytes). CPU time, instead, can be measured either in millicores (mi)
or as a fractional number of cores (no unit of measure after the value).

Practical Microservices Organization with Kubernetes254

Let’s try a Pod with a sidecar container, which shows both the practical usage of the described

syntax and how a sidecar can help in building application-level monitoring. The main container
will be a fake microservice based on the Alpine Linux distribution Docker image, which just puts

log messages in a file located in a directory shared with the sidecar. In an actual application, the
log would be organized in several files (for instance, one for each day), and old files would be
periodically deleted. Moreover, the sidecar would read these files and send their content to a log
API. Our didactical sidecar, instead, will just periodically read the last 10 rows of the file and will
display them in its console.

The code is quite simple. First of all, we define a namespace that encloses our example:

apiVersion: v1

kind: Namespace

metadata:

 name: basic-examples

Then, after a --- row, we place the actual Pod definition:

apiVersion: v1

kind: Pod

metadata:

 name: pod-demo

 namespace: basic-examples

 labels:

 app: myapp

spec:

 containers:

 - name: myapp

 image: alpine:latest

 command: ['sh', '-c', 'while true; do echo $(date) >> /opt/logs.txt;

sleep 1; done']

 volumeMounts:

 - name: data

 mountPath: /opt

 initContainers:

 - name: logshipper

 image: alpine:latest

 restartPolicy: Always

Chapter 8 255

 command: ['sh', '-c', 'tail -F /opt/logs.txt']

 volumeMounts:

 - name: data

 mountPath: /opt

 volumes:

 - name: data

 emptyDir: {}

Both containers use a simple Alpine Linux distribution Docker image and confine the applica-

tion-specific code in the command, which is a Linux script. This technique is used for adapting
preexisting images or for very simple tasks such as the ones often performed by a sidecar. We

also used the same technique for the main container because the main container does nothing

and has a purely didactical purpose.

Accordingly, with the previously exposed syntax, the sidecar is defined in the initContaines list

with restartPolicy: Always.

The main container command executes an endless loop where it just writes the current date and
time in the /opt/logs.txt file and then sleeps for one second.

The sidecar container command uses sh -c to execute a single shell command, the tail command

with the -f option on the /opt/logs.txt file. This command shows the last 10 rows of the file
in the container console and updates them whenever new rows are added, so that the console

always contains the current last 10 rows of the file.

The file processed by both containers is the same because both containers mount the same data
volume in the same /opt directory on their filesystems with:

volumeMounts:

 - name: data

 mountPath: /opt

The data volume is defined in a volumes list that is a direct descendant of the spec property, as:

- name: data

 emptyDir: {}

emptyDir defines and allocates a volume that is specific to the Pod where it is defined. This means
that it can’t be accessed by any other Pod. The volume is implemented with the disk memory of
the node that hosts the Pod. This means that if the Pod is deleted or moved to a different node, the
volume is destroyed and its content is lost. EmptyDir is the preferred way to provide temporary

Practical Microservices Organization with Kubernetes256

disk storage that’s used somehow in the Pod computations. It has an optional sizeLimit property

that specifies a maximum disk space the Pod can use. For instance, we can set sizeLimit: 500Mi

to specify 500 mega of maximum disk space.

Since we have not specified any size limit, the emptyDir object has no properties, so we are forced

to add the empty object value {} to get a correct .yaml syntax (we can’t have a colon followed
by nothing).

Let’s create a folder for experimenting with .yaml files in Minikube, and let’s place the whole
example code in a file called SimplePOD.yaml inside that folder. This file is also available in the
ch08 folder of the book’s GitHub repository.

Now, right-click on the newly created folder and open a Windows console in that directory. After

having verified that Minikube is started by issuing a kubectl get all command, we can apply

all our definitions with the kubectl apply command:

kubectl apply -f SimplePOD.yaml

Now, if we issue the kubectl get pods command, we don’t see a new Pod! This is right because
that command just lists resources defined in the default namespace, while our Pod has been

defined in a new namespace called basic-examples, so if we would like to operate on a resource

in this namespace, we must add the -n basic-examples option to our commands:

kubectl get pods -n basic-examples

In order to access our sidecar console, we can use the Kubectl logs command. In fact, all console

output of all container Pods is automatically collected by Kubernetes and can be inspected with

this command. The command needs the Pod name and its namespace if different from default.

Moreover, if the Pod contains several containers, it also needs the name of the container we

would like to inspect, which can be provided with the -c option. Summing up, our command is:

kubectl logs -n basic-examples pod-demo -c logshipper

The command above will show just the current console content and then it will exit. If we would
like the content to update automatically as the console content changes, we must add the -f

option:

kubectl logs -f -n basic-examples pod-demo -c logshipper

This way, our window freezes on the command and automatically updates. The command can
be exited with ctrl-c.

Chapter 8 257

We can also have a console into the logshipper container with the Kubectl exec command. It

needs namespace, Pod, and container names, and after the – characters, the Linux command to

execute in the container file system. If you need a console, the Linux command is sh, and if we

would like to interact with that console, we need to also specify the -it options that stand for

“interactive tty.” Summing up, we have:

kubectl exec -it -n basic-examples pod-demo -c logshipper -- sh

Once in the container, we can move into the /opt directory with cd /opt, and verify if the logs.

txt file is there, with ls.

Once finished, you can exit the container console by issuing the exit command.

When you have finished with all resources created by a .yaml file, you can delete all of them
with kubectl deleted <file name>.yaml. Thus, in our case, we can destroy all our example
entities with:

kubectl delete -f SimplePOD.yaml

We have seen how to create temporary disk space with emptyDir. Now let’s see the typical way

of allocating permanent network disk space and sharing it between various Pods.

Dynamic provisioning of permanent disk space
Volume definitions similar to emptyDir are called in-tree definitions because the instruction
that creates the volume is inserted directly into the Pod definition. There is no way to share an
in-tree definition with other Pod definitions, so it is not easy to share in-tree volumes between
different Pods.

 The kubectl exec command is very useful for debugging applications, especially

when they are already in production or staging.

 kubectl apply can also be used for modifying previously created resources. It is

enough to edit the .yaml file used to create the resources and then repeat the apply

command on it.

Practical Microservices Organization with Kubernetes258

Actually, disk space sharing can also be achieved with in-tree definitions by adequately config-

uring the device that provides the disk space. For instance, suppose we are using an NFS server

connected to our Kubernetes cluster to furnish network disk space. We can connect a Pod with

it with the instruction below:

volumes

- nfs:

 server: my-nfs-server.example.com

 path: /my-nfs-volume

 readOnly: true # optional. If provided the volume is accessible as

read-only

Where server is a server name or an IP address, and path is the directory to share. In order to

share the same disk space between PodS, it is enough that they specify the same server and path.

However, this technique has two cons:

• The share is not explicitly declared, but it is indirect, thus it undermines code maintain-

ability and readability.

• Kubernetes is not informed about the Pods that are using a share, so it can’t be instructed

to release the share when it is not needed anymore.

Therefore, in-tree definitions are more adequate for temporary disk space that is not shared
among Pods. Luckily, the problem is not the NFS protocol itself, but just the in-tree syntax. For

this reason, Kubernetes also offers an out-of-tree syntax based on two separate objects: Persistent

Volume Claims (PVCs), which represent disk space needs, and Persistent Volumes (PVs), which
represent actual disk space.

The whole technique works this way:

1. We define the disk space specification in a PVC.

2. All Pods that need to share the same disk space reference the same PVC.

3. Kubernetes, somehow, tries to satisfy each PVC with a compatible PV that is then mounted

on all Pods sharing that PVC.

When all Pods that share the same PV are destroyed, we can instruct Kubernetes to keep the

allocated disk space or delete it.

The way a PVC catches the needed disk and returns a PV depends on the driver used to serve
the PVC. Drivers must be installed in the Kubernetes cluster, but all cloud providers furnish

predefined drivers.

Chapter 8 259

Driver names and related settings are organized in resources called Storage Classes (kind:
StorageClass). Together with predefined drivers, all cloud providers also offer predefined stor-

age classes based on those drivers. However, you can define new storage classes based on the
same driver but with different settings.

You can also install drivers and storage classes based on those drivers on on-premises Kubernetes
clusters (there are a lot of open-source drivers). Minikube has addons that install various storage
drivers and related storage classes, too.

Drivers that simply match PVCs with PVs that are manually predefined by the user are called
static. While drivers that dynamically create PV resources, taking the needed disk space from a

common pool of available disk space, are called dynamic.

In this section, we will focus just on dynamic storage allocation since it is the most relevant in

actual microservices applications. You may find more details on storage classes and how to de-

fine them in the official Kubernetes documentation: https://kubernetes.io/docs/concepts/
storage/storage-classes/.

The first step in creating a PVC is the verification of the available storage classes:

Kubectl get storageclasses

Then the details of a specific class can be obtained with kubectl describe. In Minikube, we obtain:

NAME PROVISIONER RECLAIMPOLICY

VOLUMEBINDINGMODE ...

standard (default) k8s.io/minikube-hostpath Delete Immediate

...

The “default” after the class name informs us that the standard class is the default storage class,

that is, the one used when no storage class is specified.

When using dynamic provisioning, a PVC needs to specify just:

• The storage needed

• The storage class

• The access modality: ReadWriteOnce (only a single node can read and write on the storage),
ReadOnlyMany (several nodes can read), ReadWriteMany (several nodes can both read and
write), ReadWriteOncePod (only a single Pod can read and write on the storage)

https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/

Practical Microservices Organization with Kubernetes260

In fact, all the information needed to get a PV is contained in the storage class. Since a PVC de-

scribes a Pod need and not a specific PV, the provisioned storage will provide at least the required
access mode, but it can support more accesses, too.

If the driver used by the storage class doesn’t support the required modality, the operation fails.

Therefore, before using a storage class, you must verify the operations supported by its driver.
ReadOnlyMany doesn’t make sense with dynamic provisioning, since allocated storage always

comes clean, so there is nothing to read.

In practice, drivers that support dynamic provisioning always support ReadWriteOnce, and some

of them also support ReadWriteMany. Therefore, if you need a volume that is shared among several
Pods, you must verify that the chosen driver supports ReadWriteMany; otherwise, all Pods that

share the volume will be allocated on the same node to ensure that all of them can access the

claimed ReadWriteOnce storage.

A PVC is defined as shown below:

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: myclaim

 namespace: a-namespace

spec:

 accessModes:

 - ReadWriteOnce # ReadWriteOnce, ReadOnlyMany, ReadWriteMany,

ReadWriteOncePod

 resources:

 requests:

 storage: 8Gi

 storageClassName: <my storage classname>

The needed storage is specified with the same syntax as the RAM required by a container. If the
storage class is not provided, Kubernetes uses a storage class that has been marked as the default

storage class, if any.

Once you’ve defined a PVC, the volume property of the Pod needs to reference it:

volumes:

- name: myvolume

 persistentVolumeClaim:

 claimName: myclaim

Chapter 8 261

However, the PVC and Pod must belong to the same namespace; otherwise, the operation fails.

Now that we have all the building blocks, we can move on to more complex resources built on top

of these blocks. Single Pods are not useful since we always need several replicas of each microser-

vice, but luckily, Kubernetes already has built-in resources for handling both undistinguishable

replicas and indexed replicas useful for implementing sharding strategies.

ReplicaSets, Deployments, and their services
ReplicaSets are resources that automatically create N replicas of a Pod. However, they are rarely

used because it is more convenient to use Deployments, which are built on top of ReplicaSets

and automatically handle a smooth transition when the number of replicas or other parameters

are modified.

The definition of a Deployment is:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: my-deployment-name

 namespace: my-namespace

 labels:

 app: my-app

spec:

 replicas: 3

 selector:

 matchLabels:

 my-pod-label-name: my-pod-label-value

 ...

 template:

Deployments are not contained in the API core, so their API name (apps) must be specified. The
metadata section is identical to that of a Pod. The spec section contains the desired number of

replicas (replicas) and a selector that specifies a condition for a Pod to belong to the deployment:
it must have all labels with the specified values.

template specifies how to create a Pod for the Deployment. If the cluster already contains some
Pods that satisfy the selector conditions, then the template is used to create just the Pods needed

to reach the replicas target number.

Practical Microservices Organization with Kubernetes262

The template is a complete Pod definition whose syntax is identical to the one we use for speci-
fying a single Pod. The only differences being:

• The Pod definition is not preceded by any API specification

• The Pod metadata section doesn’t contain a Pod name, since we are providing a template
for creating replica Pods. Pod names are automatically created by the Deployment.

• The Pod metadata section doesn’t contain a Pod namespace since Pods inherit the same
namespace as the Deployment.

Needless to say, the Pod template must specify labels that match the selector conditions. Below

is a complete example:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx

 namespace: basic-examples

 labels:

 app: webservers

spec:

 selector:

 matchLabels:

 app: webservers

 replicas: 2

 template:

 metadata:

 labels:

 app: webservers

 spec:

 containers:

 - image: nginx

 name: nginx

 ports:

 - containerPort: 80

 name: web

 volumeMounts:

 - mountPath: /usr/share/nginx/html

 name: website

 volumes:

Chapter 8 263

 - name: website

 persistentVolumeClaim:

 claimName: website

The Deployment creates two replicas of an nginx web server that share a common disk space.

More specifically, they share the /usr/share/nginx/html path that is mapped to a common PVC.

/usr/share/nginx/html is the folder where nginx looks for static web content, so if we place an

index.html file there, it should be accessible by both web servers.

The code above implements two load-balanced web servers that serve the same content. Let’s
place the Deployment in a WebServers.yaml file. We will use it in a short while, after having added
the missing code, that is, the PVC definition and a Service that forwards traffic from outside of
the Kubernetes cluster and load-balances it among the replicas.

Deployments can be connected to three kinds of services:

• ClusterIP, which forwards traffic from inside the network to the Deployment

• LoadBalancer, which forwards traffic from outside of the cluster to the Deployment

• NodePort, which is not fundamental for application developers and will not be described

The definition of a ClusterIP is:

apiVersion: v1

kind: Service

metadata:

 name: my-service

 namespace: my-namespace

spec:

 selector:

 my-selector-label: my-selector-value

 ...

 ports:

 - name: http

 protocol: TCP

 port: 80

 targetPort: 80

 - name: https

 protocol: TCP

 port: 443

 targetPort: 443

Practical Microservices Organization with Kubernetes264

selector defines the Pods that will receive the traffic from the service. The Pods must belong to
the same namespace as the service. The ports list defines the mapping from external ports (port)
to the ports inside the Pod containers (targetPort). Each map can also specify an optional name
and an optional protocol. If no protocol is specified, all protocols will be forwarded to the Pods.

A ClusterIP service is assigned the <service name>.<namespace>.svc.cluster.local domain

name, but it can also be accessed with <service name>.<namespace> (or simply <service name>

if the namespace is default).

Summing up, all traffic sent to either <service name>.<namespace>.svc.cluster.local or to

<service name>.<namespace> is forwarded to the Pods selected by the selector.

A LoadBalancer service is completely analogous, the only difference being the two sub-properties

of spec below:

spec:

 type: LoadBalancer

 loadBalancerIP: <yourpublic ip>

 selector:

 …

If you specify an IP address, that IP address must be a static IP address you bought somehow;

otherwise, in the case of cloud Kubernetes clusters, you can omit the loadBalancerIP property

and a dynamic IP address is automatically assigned to the service by the infrastructure. In AKS,

you must also specify the resource group where the IP address has been allocated in an annotation:

apiVersion: v1

kind: Service

metadata:

 annotations:

 service.beta.kubernetes.io/azure-load-balancer-resource-group: <IP

resource group name>

Moreover, you must give the “Network Contributor” role on the resource group where you defined
the static IP address to the managed identity associated to the AKS cluster (as a default, a managed
identity is automatically assigned to any newly created AKS cluster). See the detailed procedure for
performing this operation here: https://learn.microsoft.com/en-us/azure/aks/static-ip.

You can also specify an annotation with a label:

service.beta.kubernetes.io/azure-dns-label-name: <label >

https://learn.microsoft.com/en-us/azure/aks/static-ip

Chapter 8 265

In which case, Azure will automatically associate the <label>.<location>.cloudapp.azure.
com domain name to the LoadBalancer.

If you want to publish the service on a custom domain name, you need to buy a domain name,

and then you need to create an Azure DNS zone with appropriate DNS records. However, in this

case, it is better to use an Ingress instead of a simple LoadBalancer (see the Ingresses subsection).

Let’s go back to our nginx example and let’s create a LoadBalancer Service to expose our load-bal-

anced web servers on the internet:

apiVersion: v1

kind: Service

metadata:

 name: webservers-service

 namespace: basic-examples

spec:

 type: LoadBalancer

 selector:

 app: webservers

 ports:

 - name: http

 protocol: TCP

 port: 80

 targetPort: 80

We don’t specify an IP address since we are going to test the example in Minikube, a simulator

that uses a particular procedure to expose LoadBalancer Services.

Let’s place the Service definition in a file named WebServersService.yaml.

In a WebServersPVC.yaml file, let’s also place the missing PVC:

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 The loadBalancerIP property has been declared obsolete and will be removed in fu-

ture Kubernetes versions. It should be replaced by a platform-dependent annotation.

In the case of AKS, the annotation is: service.beta.kubernetes.io/azure-pip-

name: <your static IP address>

Practical Microservices Organization with Kubernetes266

 name: website

 namespace: basic-examples

spec:

 accessModes:

 - ReadWriteMany

 resources:

 requests:

 storage: 1Gi

We have not specified a storage class because we will use the default one.

Let’s also create a BasicExamples.yaml file for defining the basic-examples namespace:

apiVersion: v1

kind: Namespace

metadata:

 name: basic-examples

Now let’s copy the index.html file contained in the ch08 folder of the book’s GitHub repository, or

any other self-contained HTML page with no external references to other images/content, in the
same folder containing all the above .yaml files. We will use that page as experimental content
to be shown by the web servers.

Let’s start our experiment:

1. Open a console on the folder containing all .yaml files (right-click on the folder and select
the console option).

2. Ensure Minikube is running, and if not, start it with minikube start.

3. Deploy all files in the right sequence, that is, ensuring that all resources referenced in a
file have already been created.

kubectl apply -f BasicExamples.yaml

kubectl apply -f WebServersPVC.yaml

kubectl apply -f WebServers.yaml

kubectl apply -f WebServersService.yaml

Chapter 8 267

4. Now we need to copy the index.html files in the /usr/share/nginx/html folder of either

of the two created Pods. It will also be seen by the other Pod, since they share the same

disk storage. For this operation, we need a Pod name. Let’s get it with:

kubectl get pods -n Basic-Examples

5. A file can be copied in a Kubernetes Pod with the kubectl cp command:

kubectl cp <source path> <namesapace>/<pod name>:<destination

folder>

6. In our case, the cp command becomes:

kubectl cp Index.html basic-examples/<pod name>:/usr/share/nginx/

html

7. In Minikube, you can access the cluster through a LoadBalancer service by creating a

tunnel. Do the following:

a. Open a new console window

b. In this new window, issue the minikube tunnel command

c. The window will freeze on the command. As long as the window remains open,
the LoadBalancer is accessible through localhost. Anyway, you can verify the

external IP assigned to the LoadBalancer by issuing kubectl get services -n

Basic-Examples in the previous window.

8. Open your favourite browser and go to http://localhost. You should see the content
of the index.html page.

Once you’ve finished experimenting, let’s destroy all resources in reverse order (the opposite
order in which you created them):

kubectl delete -f WebServersService.yaml

kubectl delete -f WebServers.yaml

kubectl delete -f WebServersPVC.yaml

You can keep the namespace definition since we will use it in the next example.

Practical Microservices Organization with Kubernetes268

All Deployment replicas are identical; they have no identity, so there is no way to refer to a specific
replica from your code. If a replica goes down, for instance, because of a node crash, the system

might have a small performance issue, but will continue working properly since replicas are just

a way to improve performance, so no replica is indispensable.

Unfortunately, there are situations where identical copies can’t achieve the needed parallelism,

but we need non-identical sharded copies. If you don’t remember what sharding is and why it

is necessary in some situations, please refer to the Ensuring that messages are processed in proper

order section of Chapter 7, Microservices in Practice. StatefulSets furnish the kind of replication

needed for sharding.

StatefulSets and Headless Services
All replicas of a StatefulSet are assigned indexes that go from 0 to N-1, where N is the number

of replicas. Their Pod names are predictable, too, since they are built as <StatefulSet name>-
<replica index>. Their domain names also contain the Pod names, so that each Pod has its own
domain name: <POD name>.<service name>.<namespace>.svc.cluster.local, or simply <POD

name>.<service name>.<namespace>.

When a StatefulSet is created, all replicas are created in order of increasing index; while when it

is destroyed, all replicas are destroyed in decreasing index order. The same happens when the
number of replicas is changed.

Each StatefulSet must have an associated Service that must be declared in the serviceName prop-

erty of the StatefulSet. The definition of a StatefulSet is almost identical to that of a Deployment;

the only difference being that kind is StatefulSet and there is the serviceName:”<service

name>“ property immediately under the spec section.

The service associated to StatefulSet must be a so-called Headless service, which is defined as
a ClusterIP service but with a ClusterIP: None property under spec:

...

spec:

 It is worth pointing out that as soon as Kubernetes detects a node fault, it recreates

all Pods hosted on that node elsewhere. However, this operation might take time

since the fault might not be detected as soon as it takes place. In the meantime, appli-

cations might have malfunctions if a Pod hosted by the faulty node is indispensable,

which is why Deployments must be preferred whenever possible.

Chapter 8 269

 clusterIP: None

 selector:

 ...

It is also worth pointing out that, typically, each replica has its own private storage, so, usually,

StatefulSet definitions do not have a reference to a PVC, but instead use a PVC template that
attaches a different PVC to each created Pod:

volumeClaimTemplates:

- metadata

 ...

 spec:

 ...

Where both the metadata and spec properties are identical to those of a PVC resource.

Below is an example of a StatefulSet with its associated Headless Service. The Pod name is passed
to each container through an environment variable, so that the code is aware of its index and its

possible role in a sharding algorithm:

apiVersion: v1

kind: Service

metadata:

 name: podname

 namespace: basic-examples

 labels:

 app: podname

spec:

 ports:

 - port: 80

 clusterIP: None

 selector:

 app: podname

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: podname

 namespace: basic-examples

spec:

Practical Microservices Organization with Kubernetes270

 selector:

 matchLabels:

 app: podname

 serviceName: "podname"

 replicas: 3

 template:

 metadata:

 labels:

 app: podname

 spec:

 containers:

 - name: test

 image: alpine:latest

 command: ['sh', '-c', 'while true; do echo $(MY_POD_NAME); sleep

3; done']

 ports:

 - containerPort: 80

 env:

 - name: MY_POD_NAME

 valueFrom:

 fieldRef:

 fieldPath: metadata.name

 volumeClaimTemplates:

 - metadata:

 name: volumetest

 spec:

 accessModes: ["ReadWriteOnce"]

 resources:

 requests:

 storage: 1Gi

Each Pod contains just the Alpine Linux distribution, and the actual code is provided in command,

which just prints the MY_POD_NAME environment variable in an endless loop. In turn, the MY_POD_

NAME environment variable is set with:

- name: MY_POD_NAME

 valueFrom:

 fieldRef:

 fieldPath: metadata.name

Chapter 8 271

This code takes the value from the metadata.name field of the Pod. In fact, if we did not specify a
name in the Pod template metadata section, a name would automatically be created by the State-

fulSet and added to the resource internal representation of the Pod. The Kubernetes component
that makes the Pod fields available to environment variables definition is called the downward API.

The above StatefulSet does nothing useful but just shows how to pass the Pod name to your
containers.

Put the above code in a StateFulSetExample.yaml file and apply it!

If you issue the kubectl get pods -n basic-examples command, you can verify that all 3 rep-

licas were created with the right names based on the StatefulSet name and on your indexes. Now

let’s verify that podname-1 correctly received its name, by displaying its log:

kubectl logs podname-1 -n basic-examples

You should see several lines with the right Pod name. Great!

Now let’s verify that our code created 3 different PVCs:

kubectl get persistentvolume -n basic-examples

You should see three different claims.

When you finish experimenting with the example, you can delete everything with kubectl delete
-f StateFulSetExample.yaml. Unluckily, deleting everything does not also delete the PVC created

by templates, as you can verify at this point. The simplest way to delete them is by deleting the
basic-examples namespace with:

kubectl delete namespace basic-exampleswhole

Then, if you want, you can recreate it with:

kubectl create namespace basic-examples

Statefulsets are used to deploy RabbitMQ clusters and database clusters in Kubernetes. If a master

node is needed, then one with a specific index (usually 0) elects itself as a master. Each replica uses
its own disk storage so that both data sharding and data replication strategies can be enforced.

It’s likely that you won’t need to do this yourself, since the code for deploying clusters of the most

famous message-broker and database clusters is already available on the web.

Having learned how to create and maintain several replicas of a microservice, we have to learn

how to set and update the number of replicas, that is, how to scale our microservices.

Practical Microservices Organization with Kubernetes272

Scaling and autoscaling
Scaling is fundamental for application performance tuning. We must distinguish between scal-

ing the number of replicas of each microservice and scaling the number of nodes of the whole

Kubernetes cluster.

The number of nodes is usually tuned according to the average CPU busy percentage. For in-

stance, one might start with a 50% percentage when the initial application traffic is low. Then,
as the application traffic increases, we maintain the same number of nodes till we are able to
keep a good response time, possibly tuning the number of microservice replicas. Suppose that

performance starts to decrease when the CPU busy percentage is 80%. Then, we can target, say,
a 75% CPU busy time.

Automatic cluster scaling is possible just with cloud clusters, and each cloud provider offers some

kind of autoscaling.

With regard to AKS, in the Creating an Azure Kubernetes cluster section, we saw that we can specify

both a minimum and a maximum number of nodes, and AKS tries to optimize performance for us.
You can also fine-tune how AKS decides the number of nodes. More details on this customization
are given in the references in the Further reading section.

There are also automatic auto-scalers that integrate with various cloud providers (https://
kubernetes.io/docs/concepts/cluster-administration/cluster-autoscaling/). As a default,
auto-scalers increase the number of nodes when Kubernetes is not able to satisfy the resources

required by a Pod, which is the sum of the resource->request fields of all Pod containers.

Scaling microservice replicas, instead, is a more difficult task. You may calculate it by measuring
the average replica response time and then calculating:

<number of replicas> = <target throughput (requests per second)><average

response time in seconds>

Where the target throughput should be a raw estimate calculated with simple calculations. For

frontend microservices, it is just the number of requests you expect your application will receive

for each API call. For Worker services, it can depend on the number of requests expected on several

frontend services, but there is no standard way to compute it. Instead, you need to reason about

how the application works and how the requests directed to that Worker microservice are created.

https://kubernetes.io/docs/concepts/cluster-administration/cluster-autoscaling/
https://kubernetes.io/docs/concepts/cluster-administration/cluster-autoscaling/

Chapter 8 273

Then, you should monitor the system performance, looking for bottlenecks, according to the
following procedure:

1. Look for a microservice that is a bottleneck

2. Increase its number of replicas till it stops being a bottleneck

3. Repeat point 1 till there are no evident bottlenecks

4. Then optimize the number of cluster nodes to achieve good performance

5. Store the average CPU utilization memory occupation of all Deployments and StatefulSets,
and the average number of requests reaching the whole application. You may use this
data for setting auto-scalers.

While StatefulSets are difficult to scale automatically, Deployments can be automatically scaled
without causing problems. Therefore, you may use a Kubernetes Pod auto-scaler to scale them
automatically.

Pod auto-scaler targets are either average per Pod resource consumption or metrics somehow

connected with the traffic. In the first case, the auto-scaler chooses the number of replicas that

makes the resource consumption closest to a specified target. In the second case, the number of
replicas is set to the actual value of the traffic metric divided by the target value of the metric,
that is, the traffic target is interpreted as the target traffic sustained by each Deployment Pod.

If several target types are specified, the maximum number of replicas proposed by each of them
is taken.

An auto-scaler can be defined as follows:

apiVersion: autoscaling/v2

kind: HorizontalPodAutoscaler

metadata:

 name: myautoscalername

 namespace: mynamespace

spec:

 scaleTargetRef:

 apiVersion: apps/v1

 kind: Deployment

 name: mydeploymentname

 minReplicas: 1

 maxReplicas: 10

Practical Microservices Organization with Kubernetes274

 metrics:

 - type: <resource or pod or object>

 …

We specify the type of resource to control and the API where it is defined, and its name. Both the
controlled resource and the auto-scaler must be defined in the same namespace. You can set
scaleTargetRef->kind also to StatefulSet, but you need to verify that the change in the number

of replicas doesn’t break your sharding algorithm, both in the long run and during transitions

between different numbers of replicas.

Then, we specify the maximum and minimum number of replicas. If the computed number of

replicas exceeds this interval, it is cut to either minReplicas or maxReplicas.

Finally, we have the list of criteria, where each criterion may refer to three types of metrics:

resource, pod, or object. We will describe each of them in a separate subsection.

Resource metrics

Resource metrics are based on the average memory and CPU resources wasted by each Pod. The
target consumption may be an absolute value such as 100Mb, or 20mi (millicores), in which case

the number of replicas is computed as <actual average consumption>/<target consumption>.

Resource metrics based on absolute values are declared as:

- type: Resource

 resource:

 name: <memory or cpu>

 target:

 type: AverageValue

 averageValue: <target memory or cpu>

The target can also be specified as a percentage of the total Pod resource->request declared

(sum of all Pod containers). In this case, Kubernetes first computes:

<utilization> = 100*<actual average consumption>/<declared resource

request>

Then, the number of replicas is computed as <utilization>/<target utilization>. For instance,

if the target CPU utilization is 50 on average, each Pod must waste 50% of the CPU millicores
declared in the request. Therefore, if the average CPU wasted by all Pods of a Deployment is 30Mi,
while the CPU required by each Pod is 20mi, we compute the utilization as 100*30/20= 150. So,
the number of replicas is 150/50 = 3.

Chapter 8 275

In this case, the code is:

- type: Resource

 resource:

 name: <memory or cpu>

 target:

 type: Utilization

 averageUtilization: <target memory or cpu utilization>

Pod metrics

Pod metrics are not standard but depend on the metrics actually computed by each specific cloud
platform or on-premise installation. Pod metric constraints are declared as:

- type: Pods

 pods:

 metric:

 name: packets-per-second

 target:

 type: AverageValue

 averageValue: 1k

Where we suppose that the packets-per-second metric exists in the platform and computes the

average communication packets received per second by a Pod. The calculation of the number of
replicas is done as in the case of averageValue for resource metrics.

Object metrics

Object metrics refer to metrics computed on objects outside of the controlled Pods but inside

the Kubernetes cluster. Like Pod metrics, object metrics are also not standard but depend on the

metrics actually computed by each specific platform.

In the Advanced Kubernetes configuration section, we will describe Kubernetes resources called

Ingresses that interface the Kubernetes cluster with the external world. Typically, all Kuber-

netes input traffic transits through a single Ingress, so we can measure the total input traffic by
measuring the traffic inside that Ingress. Once a cluster has been empirically optimized, and we
need to just adapt it to temporary peaks, the easiest way to do it is by connecting the number of

Practical Microservices Organization with Kubernetes276

replicas of each frontend microservice and also of some Worker microservice to the total appli-

cation input traffic. This can be done with Object metric constraints that reference the unique
application Ingress:

- type: Object

 object:

 metric:

 name: requests-per-second

 describedObject:

 apiVersion: networking.k8s.io/v1

 kind: Ingress

 name: application-ingress

 target:

 type: Value

 value: 10k

In this case, we have a value since we don’t average on several objects, but the number of replicas

is computed as for the Pod metrics. Moreover, in this case, we must be sure that the requests-

per-second metric is actually computed by the infrastructure on all Ingresses.

Personally, I always use CPU and memory metrics since they are available on all platforms, and

since using the procedure sketched in this subsection, it is reasonably easy to find good target
values for them.

Though all cloud providers offer useful Kubernetes metrics, there are open-source metric servers

that can also be installed on on-premises Kubernetes clusters through .yaml files. See the Further

reading section for an example.

Minikube has a metrics-server addon that can be installed with minikube addons enable

metrics-server. You also need it to use standard resource metrics like CPU and memory.

In the next section, we will analyze how to test and deploy a microservice application and will put
these concepts into practice by running and debugging the Worker microservice we implemented

in Chapter 7, Microservices in Practice, on Minikube.

Running your microservices on Kubernetes
In this section, we will test the routes-matching worker microservice in Minikube, but we will

also describe how to organize the various environments your microservices application will be de-

ployed to: development, staging, and production. Each environment has its own peculiarities, such

as an easy way to test each change in development and maximizing performance in production.

Chapter 8 277

Organizing all deployment environments
It is also worth pointing out that the simplest test in Minikube requires a not-negligible setup

time. Therefore, most development simply uses Docker, that is, a few containerized microservices
organized into a unique Visual Studio solution that starts all of them when you launch the solution.

At this stage, we don’t test the whole application but just a few tightly interacting microservices,

possibly simulating the remainder of the application with stubs. If communication is handled

through a message broker, it is enough to launch all microservices and the message broker to

test everything; otherwise, if we rely on direct communication between microservices, we must

connect all microservices in a virtual network.

Docker offers the possibility to both create a virtual network and connect running containers to

it. The virtual network created by Docker also includes your development machine, which gets
the host�docker�internal hostname. Therefore, all microservices can use various services running
on the development machine, such as RabbitMQ, SQL Server, and Redis.

You can create a test virtual network in Docker with:

docker network create myvirtualnet

Then, attaching all running microservices to this network is super easy. It is enough to modify

their project files as follows:

<PropertyGroup>

 <TargetFramework>net9.0</TargetFramework>

 …

 <DockerfileRunArguments>--net myvirtualnet --name myhostname</

DockerfileRunArguments>

</PropertyGroup>

Then, you can also add other docker run arguments, such as a volume mount.

Testing on Minikube can be performed at the end of the working day or simply after the complete
implementation of a feature.

In the next subsections, we will compare all deployment environments on the following axes:

1. Database engine and database installation

2. Container registries

3. Message broker installation

4. Debugging techniques

Practical Microservices Organization with Kubernetes278

Database engine and database installation

Development tests with Docker or Minikube may all use a database engine running directly on

the development machine. You may use either an actual installation or an engine running as a

Docker container. The advantage is that the database is also accessible from Visual Studio, so you
can pass all migrations while you develop them.

You can also use fresh Docker containers running the database engine to start databases from
scratch and perform unit tests, or to test the overall migration set.

On both staging and production, you can use database cloud services that ensure good perfor-

mance, are scalable, and offer clustering, replication, geographic redundancy, and so on. It’s also

possible to deploy the database inside your Kubernetes cluster, but in this case, you must buy a

license, you should dedicate ad hoc Kubernetes nodes for the database (virtual machines that
ensure optimal database performance), and you should fine-tune the database configuration.
Therefore, if there are no compelling reasons for a different choice, it is more convenient to opt

for cloud services.

Moreover, both in production and staging, you can’t configure your Deployments to automatically
apply migrations when they start; otherwise, all replicas will attempt to apply them. It’s better to

extract a database script from your migrations and apply it with a database DBO user privilege,

while leaving the microservice replicas with a less privileged database user.

A database script can be extracted from all migrations with the migration command below:

Script-Migration -From <initial migration> -To <final migration> -Output

<name

of output file>

Let’s move on to container registries.

 If you installed Minikube with the Docker driver, a database running on your de-

velopment machine can be reached from inside your Minikube containers by using

either the host�minikube�internal or host�docker�internal hostnames. Therefore,
if you use host�docker�internal, you will be able to reach your host machine from

both Minikube and from your containerized applications directly launched by Vi-
sual Studio.

Chapter 8 279

Container registries

As far as staging and production are concerned, they can both use the same container registry

since containers are versioned. So, for instance, production can use v1.0, while staging can use

v2.0-beta1. It is better if registries belong to the same cloud subscription of the Kubernetes

cluster to simplify credential handling. For instance, in the case of AKS, it is enough to associate

a registry to an AKS cluster once and for all to grant access to the cluster to the registry (see the
Creating an Azure Kubernetes cluster subsection of this chapter).

As far as development is concerned, each developer can use the same registry used by the staging

environment for the containers they are not working on, but each developer should have a private

registry for the containers they are working on, so they can experiment with no risk of dirtying

the “official image” registries. Therefore, the simplest solution is to install a local registry in your
Docker Desktop. You can do this with:

docker run -d -p 5000:5000 --name registry registry:2

Once the container has been created with the instruction above, you can stop and restart it from

the Docker Desktop graphical user interface.

Unluckily, as a default, both Docker and Minikube do not accept interacting with insecure registries,

that is, with registries that do not support HTTPS with a certificate signed by a public authority, so
we must instruct both Docker and Minikube to accept insecure interaction with the local registry.

Let’s open the Docker Desktop graphical user interface and click on the settings image in the

top-right corner:

Figure 8.5: Docker settings

Then, select Docker Engine from the left menu, and edit the big text box that contains Docker

configuration information, and add the entry shown below to the existing JSON content:

 …….,

 "insecure-registries": [

 "host.docker.internal:5000",

 "host.minikube.internal:5000"

Practical Microservices Organization with Kubernetes280

The above settings add the 5000 ports of both hostnames that point to your host computer to
the allowed insecure registries. The result should be something like:

Figure 8.6: Adding a local registry to Docker allowed insecure registries

As far as Minikube is concerned, you have to destroy your current Minikube VM with:

minikube delete

Then, you need to create a new VM image with the right insecure registry settings:

minikube start --insecure-registry="host.docker.internal:5000" --insecure-

registry="host.minikube.internal:5000"

Please execute all the above steps because we will need a local registry for testing the route-plan-

ning microservice.

If Minikube also needs to access other password-protected registries, you must configure and
enable the registry-creds addon:

minikube addons configure registry-creds

Once you issue the above command, you will be asked to configure Google, AWS, Azure, or Docker
private registries and enter your credentials.

After a successful configuration, you can enable the credential usage with:

minikube addons enable registry-creds

Chapter 8 281

Let’s move on to the message broker.

Message broker installation

RabbitMQ can be installed both locally and in the cloud, and works on all clouds, so it really

is a good option. You can run a single RabbitMQ server or a server cluster. A RabbitMQ cluster
can also be installed on the Kubernetes cluster itself. During development, you may install it on

Minikube, but it is more convenient to run it outside of Minikube, so it can also be easily reached

by applications running outside of Minikube, which, in turn, facilitates application debugging,

as we will see in the next subsection.

In staging and production, the simplest way to install a RabbitMQ cluster is by installing the so-

called RabbitMQ Cluster Operator with:

kubectl apply -f https://raw.githubusercontent.com/rabbitmq/cluster-

operator/main/docs/examples/hello-world/rabbitmq.yaml

The RabbitMQ operator defines the RabbitmqCluster custom resource that represents a RabbitMQ

Cluster. You can create and configure RabbitmqCluster as you configure any other Kubernetes
resource:

apiVersion: rabbitmq.com/v1beta1

kind: RabbitmqCluster

metadata:

 name: <cluster name>

 namespace: <cluster namespace>

spec:

 replicas: 3 # default is 1. Replicas should be odd.

 persistence:

 storageClassName: <storage class name> # default is the default

storage class

 storage: 20Gi # default 10Gi

The persistence section specifies the options for persisting queues on persistent storage. If you
omit it, all default values will be taken. If you omit the number of replicas, a cluster with a single

server will be created. More options are available in the official documentation: https://www.
rabbitmq.com/kubernetes/operator/using-operator.

https://www.rabbitmq.com/kubernetes/operator/using-operator
https://www.rabbitmq.com/kubernetes/operator/using-operator

Practical Microservices Organization with Kubernetes282

You can get the username and password of your RabbitMQ cluster default user by printing the
<cluster name>-default-user secret where they are stored, as shown below:

kubectl get secret <cluster name>-default-user -n <cluster namespace> -o

yaml

Both username and password are base-64 encoded. The simplest way to decode them is by copying
each of them from the console output, opening a Linux console, and using the base64 command:

echo <string to decode> | base64 -d

If you want, you may also install the RabbitMQ cluster operator in Minikube, but in this case, it

is better to start Minikube with at least 4 CPUs and 6-8 gigabytes of run.

If you need to connect to the RabbitMQ cluster from outside of the Kubernetes cluster for debug-

ging purposes, you can use the kubectl port-forward command:

kubectl port-forward service/<cluster name> 5672:5672

The above instruction freezes the console and forwards port 5672 of the service/<cluster name>

ClusterIP service that is part of the RabbitMQ cluster to port 5672 of localhost. The port-forward-

ing remains active while the console window is open or ctrl-c is issued to abort the instruction.

The general kubectl port-forward syntax is:

kubectl port-forward service/<service name> <local host port>:<service

port>

In our case, the service name is equal to the cluster name.

You can also access the RabbitMQ management UI with your browser by forwarding the 15672 port:

kubectl port-forward service/<cluster name> 15672:15672

Then, the UI will be available at localhost:15672. There, you must use the credentials you pre-

viously extracted from the cluster name>-default-user secret.

 The service <cluster name> is the ClusterIP service you must use to access the Rab-

bitMQ cluster from inside the Kubernetes cluster. Therefore, the RabbitMQ hostname
to specify in the connection is <cluster name>.<cluster namespace>.

Chapter 8 283

The port forwarding is safe and doesn’t expose RabbitMQ to the outside world since the connec-

tion between localhost and the service is mediated by the Kubernetes API server. It can be safely

used to connect test code running on the development machine with the RabbitMQ cluster, as

we will see in more detail in the next subsection.

Debugging techniques

When you launch all containers from Visual Studio, you can debug your code without performing

any further configuration. However, if you need to debug some microservices running either in
Minikube, in staging, or in production, you need some supplementary configuration.

Instead of trying to attach the debugger inside of your Kubernetes cluster, a simpler approach

is to use the so-called bridge: you select a specific microservice to debug, and instead of debug-

ging it in Kubernetes, you redirect its traffic to a replica of your microservice running in Visual
Studio, then you redirect all local microservice output traffic again inside the cluster. This way,
you debug just a local copy that has been compiled in debug mode, overcoming both the need

to replace the release code with debug code, and the difficulty of attaching a debugger inside of
your Kubernetes cluster.

The image below exemplifies the bridge idea:

Figure 8.7: Bridging

Practical Microservices Organization with Kubernetes284

If both inputs and outputs are handled by a message broker, bridging is easy: it is enough to con-

nect the local copy to the same RabbitMQ queues of the in-cluster replicas. This way, part of the
traffic will be automatically forwarded to the local copy. If the RabbitMQ cluster runs inside the
Kubernetes cluster, you need to forward its ports on localhost as explained in the previous section.

Moreover, if the microservice is connected to a database, we must also connect the local copy to

the same database. If you are in production, this might require the definition of a firewall rule to
enable access of your development machine to the database.

If some input and output are handled by services instead of message brokers, bridging becomes

more complex. More specifically, forwarding the output to a service inside the Kubernetes cluster
is quite easy since it requires just port-forwarding the target service on localhost with kubectl

port-forward. However, forwarding traffic from a service to the local microservice copy requires
some kind of hack on the service.

Services compute the Pods they must route the traffic to and then create resources called
EndpointSlice containing the IP addresses where they must route the traffic. Therefore, in order
to route all service traffic to your local machine, you need to override the EndpointSlices of that

service. This can be done by removing the selector of the target service so that all EndpointSlices

will be deleted, and then manually adding an EndpointSlice that points to your development

machine.

You can do this as follows:

1. Get the target service definition with:

kubectl get service <service name> -n <service namespace> -o yaml

2. Remove the selector, and apply the new definition.

3. If you are working on a remote cluster, add the EndpointSlice below:

apiVersion: discovery.k8s.io/v1

kind: EndpointSlice

metadata:

 name: <service name>-1

 namespaces: <service namespace>

 labels:

 kubernetes.io/service-name: <service name>

addressType: IPv4

ports:

Chapter 8 285

 - name: http # should match with the name of the service port

 appProtocol: http

 protocol: TCP

 port: <target port>

endpoints:

 - addresses:

 - "<your development machine IP address>"

4. If, instead, you are working on a Minikube local cluster, add the EndpointSlice below:

apiVersion: discovery.k8s.io/v1

kind: EndpointSlice

metadata:

 name: <service name>-1

 namespaces: <service namespace>

 labels:

 kubernetes.io/service-name: <service name>

addressType: FQDN

ports:

 - name: http # should match with the name of the service port

 appProtocol: http

 protocol: TCP

 port: <target port>

endpoints:

 - addresses:

 - "host.minikube.local"

5. When you finish debugging, reapply the original service definition. Your custom
EndpointSlice will be automatically destroyed.

As you can see, using message brokers simplifies a lot of the debugging. It is the advised option
when implementing applications. Services are a better option when implementing tools, such

as database clusters, or message brokers that run inside your cluster.

There are tools that automatically handle all needed service hacking, such as Bridge to Kuberne-

tes (https://learn.microsoft.com/en-us/visualstudio/bridge/bridge-to-kubernetes-vs),
but unluckily, Microsoft announced that it will stop supporting it. Microsoft will advise a valid

alternative.

Now we are finally ready to test an actual Microservice on Minikube.

https://learn.microsoft.com/en-us/visualstudio/bridge/bridge-to-kubernetes-vs

Practical Microservices Organization with Kubernetes286

Testing the route-matching worker microservice
We will test the route-matching worker microservice implemented in Chapter 7, Microservices in

Practice, together with two stub microservices. The first one will send test input to it, while the

other will collect all its output and will write it in its console, so that we may access this output

with the kubectl logs command. This is a typical way to perform a preliminary test. Then, more
complex tests may also involve other application services.

Let’s create a copy of our route-matching worker microservice solution, then add two more Worker

service projects, and call them respectively FakeSource and FakeDestination. For each of them,

enable container support for Linux as shown in the following screenshot:

Figure 8.8: Worker services project settings

Then, let’s also add all needed EasyNetQ packages to enable both services to interact with a

RabbitMQ cluster:

1. EasyNetQ

2. EasyNetQ.Serialization.NewtonsoftJson

3. EasyNetQ.Serialization.SystemTextJson

Select at least version 8, also if it is still a prerelease.

Then you must add RabbitMQ to the services in the Program.cs of both projects:

builder.Services.AddEasyNetQ(

 builder.Configuration?.GetConnectionString("RabbitMQConnection") ??

 string.Empty);

Chapter 8 287

The RabbitMQ connection string must be added in the environment variables defined in
Properties->launchSettings.json, as shown below:

"Container (Dockerfile)": {

 "commandName": "Docker",

 "environmentVariables": {

 "ConnectionStrings__RabbitMQConnection":

 "host=host.docker.internal:5672;username=guest;password=_myguest;

 publisherConfirms=true;timeout=10"

 }

Finally, refer to the SharedMessages project from both FakeSource and FakeDestination, so

they can use all application communication messages.

At this point, we are ready to code our stub services. In the Worker.cs file scaffolded by Visual
Studio in the FakeDestination project, replace the existing class with:

public class Worker: BackgroundService

{

 private readonly ILogger<Worker> _logger;

 private readonly IBus _bus;

 public Worker(ILogger<Worker> logger, IBus bus)

 {

 _logger = logger;

 _bus= bus;

 }

 protected override async Task ExecuteAsync(CancellationToken

 stoppingToken)

 {

 var routeExtensionProposalSubscription = await _bus.PubSub.

 SubscribeAsync<

 RouteExtensionProposalsMessage>(

 "FakeDestination",

 m =>

 {

 var toPrint=JsonSerializer.Serialize(m);

 _logger.LogInformation("Message received: {0}",

 toPrint);

Practical Microservices Organization with Kubernetes288

 },

 stoppingToken);

 await Task.Delay(Timeout.Infinite, stoppingToken);

 routeExtensionProposalSubscription.Dispose();

 }

}

The hosted service adds a subscription named FakeDestination to the

RouteExtensionProposalsMessage event. This way, it receives all matching proposals between
an existing route and some requests. Once the subscription handler receives a proposal, it just logs

the message in JSON format, so we can verify that the right match proposal events are generated

by exploring the FakeDestination logs.

In the Worker.cs file scaffolded by Visual Studio in the FakeSource project, we will replace the
existing class with simple code that does the following:

1. Creates three town messages: Phoenix, Santa Fe, and Cheyenne.

2. Sends a request going from Phoenix to Santa Fe.

3. Sends a route offer passing from Phoenix, Santa Fe, and Cheyenne. As soon as this message

is received by the route planning worker microservice, it should create a proposal to match

this offer with the previous request. This proposal should be received by FakeDestination

and logged.

4. Sends a request going from Santa Fe to Cheyenne. As soon as this message is received by

the routes planning worker microservice, it should create a proposal to match this request

with the previous offer. This proposal should be received by FakeDestination and logged.

5. After 10 seconds, it simulates that both previous proposals have been accepted and creates

a route extension event based on the previous offer and containing both the matched

requests. As soon as this message is received by the route planning worker microservice,

it should both update the offer and should add the two requests to the offer. As a result,

the RouteId field of both requests should point to the offer Id.

Chapter 8 289

The code of the Worker.cs class is:

public class Worker : BackgroundService

{

 private readonly ILogger<Worker> _logger;

 private readonly IBus _bus;

 public Worker(ILogger<Worker> logger, IBus bus)

 {

 _logger = logger;

 _bus = bus;

 }

 protected override async Task ExecuteAsync(CancellationToken

 stoppingToken)

 {

 …

 …

 /* The code that defines all messages has been omitted */

 var delayInterval = 5000;

 await Task.Delay(delayInterval, stoppingToken);

 await _bus.PubSub.PublishAsync<RouteRequestMessage>(request1);

 await Task.Delay(delayInterval, stoppingToken);

 await _bus.PubSub.PublishAsync<RouteOfferMessage>(offerMessage);

 await Task.Delay(delayInterval, stoppingToken);

 await _bus.PubSub.PublishAsync<RouteRequestMessage>(request2);

 await Task.Delay(2*delayInterval, stoppingToken);

 await _bus.PubSub.PublishAsync<

RouteExtendedMessage>(extendedMessage);

 await Task.Delay(Timeout.Infinite, stoppingToken);

 }

The code that defines all messages has been omitted. You can find the full code in the ch08-
>CarSharing->FakeSource->Worker.cs file of the GitHub repository associated with the book.

Practical Microservices Organization with Kubernetes290

Now let’s prepare to execute all microservices in Docker by performing the following steps:

1. Right-click on the solution line in Visual Studio Solution Explorer and select Configure
Startup Projects….

2. Then select Multiple startup projects, and change the name of the launch option to

AllMicroservices.

3. Then, select all three FakeDestination, FakeSource, and RoutesPlanning projects, and

for each of them, choose Start for Action and Container (Docker file) for Debug Target,

as shown below:

Figure 8.9: Launch settings

Now you can launch all projects simultaneously by choosing AllMicroservices in Visual Studio

Debug Launcher.

Ensure that both the application’s SQL Server and the RabbitMQ server are running. Then, build
the project and launch it.

In the Containers tab that appears, select FakeDestination, so you can inspect its logs. After a

few seconds, you should see the two match proposal messages, as shown below:

Chapter 8 291

Figure 8.10: FakeDestination logs

Then, in the SQL Server Object Explorer pane, select the application database, if already there;
otherwise, connect to it, and then show its tables:

Figure 8.11: Application database

Right-click on both dbo�RouteOffers and dbo�RouteRequests and select View Data to see all

their data. You should see that the offer’s Timestamp changed to 2 because the offer was updated

once the two matching proposals were accepted:

Figure 8.12: Updated offer

Moreover, you should see that the two requests have been associated with the offer:

Figure 8.13: Updated requests

Practical Microservices Organization with Kubernetes292

Now let’s stop debugging and delete all records in the dbo�RouteOffers and dbo�RouteRequests

tables.

It’s time to deploy our Microservices in Minikube!

We will use the same RabbitMQ and SQL Servers running on the development machine. However,

there are some preliminary steps to perform before we start deploying our .yaml files in Minikube:

1. We must create adequate Docker images, since the debug images created by Visual Studio

can’t run outside of Visual Studio. They all have a dev version. Go to the Docker files of
the three FakeDestination, FakeSource, and RoutesPlanning projects in Visual Studio

Explorer, right-click on them, and select Build Docker Image. These actions will create
three Docker images with the latest version.

2. Launch the local registry container from inside the Docker UI. If you have not yet created

a registry container, please refer to the Container registries subsection for installation

instructions.

3. Push our newly created images in this registry so they can be downloaded by Minikube

(remember that you need a Linux console to issue the commands below):

docker tag fakesource:latest localhost:5000/fakesource:latest

docker push localhost:5000/fakesource:latest

docker tag fakedestination:latest localhost:5000/

fakedestination:latest

docker push localhost:5000/fakedestination:latest

docker tag routesplanning:latest localhost:5000/

routesplanning:latest

docker push localhost:5000/routesplanning:latest

We need to create 3 deployments, one for each of our three microservices. Let’s create a Kubernetes

folder in the CarSharing solution folder. We will place our deployment definitions there.

Below FakeSource.yaml:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: fakesource

 namespace: car-sharing

Chapter 8 293

 labels:

 app: car-sharing

 classification: stub

 role: fake-source

spec:

 selector:

 matchLabels:

 app: car-sharing

 role: fake-source

 replicas: 1

 template:

 metadata:

 labels:

 app: car-sharing

 classification: stub

 role: fake-source

 spec:

 containers:

 - image: host.docker.internal:5000/fakesource:latest

 name: fakesource

 resources:

 requests:

 cpu: 10m

 memory: 10Mi

 env:

 - name: ConnectionStrings__RabbitMQConnection

 value:

 "host=host.docker.internal:5672;username=guest;password=_

myguest;

 publisherConfirms=true;timeout=10"

It contains just a single environment variable for the RabbitMQ connection string – the same one

we defined in launchSettings.json. The resource request is minimal. Labels are a documentation

tool, too. Therefore, they define both the application name, the role in the application, and the
fact that this microservice is a stub.

We designed the car-sharing namespace to host the whole application.

Practical Microservices Organization with Kubernetes294

host.docker.internal:5000 is the hostname of our local registry as seen from inside Minikube.

Our deployments don’t need services since they communicate through RabbitMQ.

FakeDestination.yaml is completely analogous:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: fakedestination

 namespace: car-sharing

 labels:

 app: car-sharing

 classification: stub

 role: fake-destination

spec:

 selector:

 matchLabels:

 app: car-sharing

 role: fake-destination

 replicas: 1

 template:

 metadata:

 labels:

 app: car-sharing

 classification: stub

 role: fake-destination

 spec:

 containers:

 - image: host.docker.internal:5000/fakedestination:latest

 name: fakedestination

 resources:

 requests:

 cpu: 10m

 memory: 10Mi

 env:

 - name: ConnectionStrings__RabbitMQConnection

 value: "host=host.docker.internal:5672;username=guest;password=_

myguest;publisherConfirms=true;timeout=10"

Chapter 8 295

RoutesPlanning.yaml differs from the other just because it contains a lot more environment

variables and because it exposes the 8080 port, which we might exploit to check the service’s

health state (see the Readiness, liveness, and startup probes subsection in the next section).

apiVersion: apps/v1

kind: Deployment

metadata:

 name: routesplanning

 namespace: car-sharing

 labels:

 app: car-sharing

 classification: worker

 role: routes-planning

spec:

 selector:

 matchLabels:

 app: car-sharing

 role: routes-planning

 replicas: 1

 template:

 metadata:

 labels:

 app: car-sharing

 classification: worker

 role: routes-planning

 spec:

 containers:

 - image: host.docker.internal:5000/routesplanning:latest

 name: routesplanning

 ports:

 - containerPort: 8080

 resources:

 requests:

 cpu: 10m

 memory: 10Mi

 env:

 - name: ASPNETCORE_HTTP_PORTS

 value: "8080"

Practical Microservices Organization with Kubernetes296

 - name: ConnectionStrings__DefaultConnection

 value: "Server=host.docker.internal;Database=RoutesPlanning;User

 Id=sa;Password=Passw0rd_;Trust Server

 Certificate=True;MultipleActiveResultSets=true"

 - name: ConnectionStrings__RabbitMQConnection

 value: "host=host.docker.internal:5672;username=guest;password=_

 myguest;publisherConfirms=true;timeout=10"

 - name: Messages__SubscriptionIdPrefix

 value: "routesPlanning"

 - name: Topology__MaxDistanceKm

 value: "50"

 - name: Topology__MaxMatches

 value: "5"

 - name: Timing__HousekeepingIntervalHours

 value: "48"

 - name: Timing__HousekeepingDelayDays

 value: "10"

 - name: Timing__OutputEmptyDelayMS

 value: "500"

 - name: Timing__OutputBatchCount

 value: "10"

 - name: Timing__OutputRequeueDelayMin

 value: "5"

 - name: Timing__OutputCircuitBreakMin

 value: "4"

Let’s open a Windows console on the Kubernetes folder, and start deploying our application:

1. Let’s start Minikube with minikube start.

2. Let’s create the car-sharing namespace with kubectl create namespace car-sharing.

3. Let’s deploy FakeDestination.yaml first: kubectl apply -f FakeDestination.yaml.

4. Now let’s verify all Pods are okay and ready with kubectl get all -n car-sharing. If

they’re not ready, please repeat the command until they are ready.

5. Let’s copy the name of the created Pod. We need it to access its logs.

6. Then, let’s deploy RoutesPlanning.yaml: kubectl apply -f RoutesPlanning.yaml.

7. Again, let’s verify all Pods are okay and ready with kubectl get all -n car-sharing.

8. Then, let’s deploy FakeSource.yaml: kubectl apply -f FakeSource.yaml.

Chapter 8 297

9. Again, let’s verify all Pods are okay and ready with kubectl get all -n car-sharing.

10. Now let’s check the FakeDestination logs to verify it received the match proposals with:

kubectl logs <FakeDestination POD name> -n car-sharing. Where <FakeDestination

POD name> is the name that we got in step5.

11. Also check the database table to verify that the applications work properly.

12. When you’ve finished experimenting, delete everything by simply deleting the car-
sharing namespace: kubectl delete namespace car-sharing.

13. Also delete the records in the dbo�RouteOffers and dbo�RouteRequests database tables.

14. Stop Minikube with: minikube stop.

Now, if you would like to experiment with debugging with the bridge technique, repeat the above

steps, but replace points 6 and 7, which deploy the RoutePlanning microservice with the launch

of the single RoutePlanning project inside of Visual Studio (just replace AllMicroservices with

RoutePlanning in the Visual Studio debug widget, and then start the debugger).

Since all containers are attached to the same RabbitMQ server, the container running in Visual

Studio will receive all input messages created from within Minikube, and all its output messages

will be routed inside of Minikube. Let’s place a breakpoint wherever you would like to analyze
the code before continuing the Kubernetes deployment. A few seconds after the deployment of

the FakeSource.yaml file, the breakpoint should be hit!

Advanced Kubernetes configuration
This section describes advanced Kubernetes resources that play a fundamental role in application

design. Other advanced resources and configurations related specifically to security and observ-

ability will be described in Chapter 10, Security and Observability for Serverless and Microservices

Applications.

Let’s start with secrets.

Secrets
Kubernetes allows various kinds of Secrets. Here, we will describe just generic and tls secrets,

which are the ones used in the practical development of applications based on microservices.

Each generic Secret contains a collection of entry-name/entry-value pairs. Secrets can be defined
with .yaml files, but since it is not prudent to mix sensitive information with code, they are usually
defined with kubectl commands.

Practical Microservices Organization with Kubernetes298

Below is how to define a Secret, taking the entry values from file contents:

kubectl create secret generic credentials --from-file=username.txt --from-

file=password.txt

The file names become entry names (just the file name with its extension – the path information
is removed), while file contents become the associated entry values. Each entry is defined with
a different --from-file=… option.

Creates two files with the above names in a directory, put some content in them, then open a
console on that directory, and finally try the above command. Once created, you can see it in
.yaml format with:

kubectl get secret credentials -o yaml

In the data section, you will see the two entries, but the entry values appear encrypted. Actually,

they are not encrypted but just base64-encoded. Needless to say, you can prevent some Kubernetes

users from accessing Secret resources. We will see how in Chapter 10, Security and Observability

for Serverless and Microservices Applications.

A Secret can be deleted with:

kubectl delete secret credentials

Instead of using files, one can specify the entry values in line:

kubectl create secret generic credentials --from-literal=username=devuser

--from-literal=password='$dsd_weew1'

As usual, we can specify the Secret namespace with the -n option.

Once defined, generic Secrets can be mounted as volumes on Pods:

volumes:

- name: credentialsvolume

 secret:

 secretName: credentials

Each entry is seen as a file whose name is the entry name and whose content is the entry value.

Chapter 8 299

Secrets can also be passed as environment variables:

env:

- name: USERNAME

 valueFrom:

 secretKeyRef:

 name: credentials

 key: username

- name: PASSWORD

 valueFrom:

 secretKeyRef:

 name: credentials

 key: password

In this case, Secret values are automatically base64-decoded before passing them as environment

variables.

tls Secrets are designed for storing web servers’ certificates. We will see how to use them in the
Ingresses subsection. tls secrets take as input both the private key certificate (.key) and the public
key approved certificate (.crt):

kubectl create secret tls test-tls --key="tls.key" --cert="tls.crt"

The next important topic concerns how our container code may help Kubernetes verify both
whether each container is ready to interact with the remainder of the application and if it is in

good health.

 Do not forget that entry values are base64-encoded, so they must be decoded before

usage.

 Let’s try Secrets on the routes-matching worker microservices. Let’s

create a Kubernetes Secret that contains the RabbitMQ connection

string and correct FakeDestination.yaml, FakeSource.yaml, and

RoutesPlanning.yaml, to use this Secret.

Practical Microservices Organization with Kubernetes300

Readiness, liveness, and startup probes
Liveness probes inform Kubernetes when containers are in an unrecoverable faulty state, so Ku-

bernetes must kill and restart them. If a container has no liveness probe defined for it, Kubernetes
restarts it just in case it crashes due to some unpredictable exception or because it exceeded its

memory limits. Liveness probes must be carefully designed to detect actual unrecoverable error

situations; otherwise, the container might end up in an endless loop of restarts.

Temporary failures, instead, are connected to readiness probes. When a readiness probe fails, it
informs Kubernetes that the container is not able to receive traffic. Accordingly, Kubernetes re-

moves the failed container from all the lists of matching services that could send traffic to it. This
way, traffic is split only among the ready containers. The faulty container is not restarted and is
reinserted in the services list as soon as the readiness probe succeeds again.

Finally, a startup probe informs Kubernetes that the container has completed its startup proce-

dure. Its only purpose is avoiding Kubernetes killing and restarting the container during startup

because of liveness probe failures. In fact, similar occurrences might move the container into an

endless loop of restarts.

Put simply, Kubernetes starts liveness and readiness probes only after the startup probe succeeds.

Since both liveness and readiness probes already have initial delays, startup probes are necessary

only in case of very long startup procedures.

All probes have a probe operation that may either fail or succeed, with the following parameters:

1. failureThreshold: The number of consecutive times the probe operation must fail to

consider the probe as failed. If not provided, it defaults to 3.

2. successThreshold: Used only for readiness probes. This is the minimum number of con-

secutive successes for the probe to be considered successful after having failed. It defaults

to 1.

3. initialDelaySeconds: The time in seconds Kubernetes must wait after the container
starts before trying the first probe. The default value is 0.

4. periodSeconds: The time in seconds between two successive probes. The default is 10
seconds.

5. timeoutSeconds: The number of seconds after which the probe times out. The default
is 1 second.

Often, liveness and readiness probes are implemented with the same probe operation, but the

liveness probe has a greater failure threshold.

Chapter 8 301

Probes are container-level properties, that is, they are on the same level as container ports, and

name.

Probe operations may be based on shell commands, HTTP requests, or TCP/IP connection attempts.

Probes based on shell commands are defined as:

livenessProbe/readinessProbe/startupProbe:

 exec:

 command:

 - cat

 - /tmp/healthy

 initialDelaySeconds: 10

 periodSeconds: 5

 ...

The command list contains the command and all its arguments. The operation succeeds if it is
completed with a 0 status code, that is, if the command completes with no errors. In the example

above, the command succeeds if the /tmp/healthy file exists.

Probes based on TCP/IP connections are defined as:

livenessProbe/readinessProbe/startupProbe:

 tcpSocket:

 port: 8080

 initialDelaySeconds: 10

 periodSeconds: 5

The operation succeeds if a TCP/connection is successfully established.

Finally, probes based on HTTP requests are defined as:

livenessProbe/readinessProbe/startupProbe:

 httpGet:

 path: /healthz

 port: 8080

 httpHeaders:

 -name: Custom-Health-Header

 value: Kubernetes-probe

 initialDelaySeconds: 10

 periodSeconds: 5

Practical Microservices Organization with Kubernetes302

path and port specify the endpoint path and port. The optional httpHeaders section lists all

HTTP headers that Kubernetes must provide in its request. The operation succeeds if the response
returns a status code satisfying: 200<=status<400.

Let’s add a liveness probe to the RoutesPlanning.yaml deployment of the Testing the route-match-

ing worker microservice section. We don’t need a readiness probe, since readiness probes only affect

services, and we don’t use services since all communications are handled by RabbitMQ.

First of all, let’s define the following API in the Program.cs file of the RoutesPlanning project:

app.MapGet("/liveness", () =>

{

 if (MainService.ErrorsCount < 6) return Results.Ok();

 else return Results.InternalServerError();

})

.WithName("GetLiveness");

The code returns an error status if there were at least 6 consecutive failed attempts to commu-

nicate with RabbitMQ.

In the RoutesPlanning.yaml deployment, we must add the code below:

livenessProbe:

 httpGet:

 path: /liveness

 port: 8080

 initialDelaySeconds: 10

 periodSeconds: 5

After this change, if you want, you can retry the whole Minikube test from the Testing the

route-matching worker microservice section.

The next section describes a structured, modular, and efficient way to handle the interaction

between our cluster and the external world.

Ingresses
Most microservices applications have several frontend microservices, so exposing them with

LoadBalancer services would require a different IP address for each of them. Moreover, inside of

our Kubernetes cluster, we don’t need the burden of HTTPS and certificates for each microservice,

so the best solution is a unique entry point for the whole cluster with a unique IP address that takes

care of HTTPS communication with the external world while forwarding HTTP communication
to the services inside of the cluster. Both functionalities are typical of web servers.

Chapter 8 303

Typically, each IP address has several domain names attached, and a web server splits the traffic
between several applications according to both the domain name and the request path inside

each domain. This web server functionality is called virtual hosting.

The translation between HTTPS and HTTP is a peculiarity of web servers, too. It is called HTTPS

termination.

Finally, web servers furnish further services, such as request filtering to prevent various kinds of
attacks. More generally, they understand the HTTP protocol and offer HTTP-related services such
as access to static files, and various kinds of protocol and content negotiations with the client.

On the other hand, LoadBalancer services just handle the lower-level TCP/IP protocol and perform
some load balancing. Therefore, it would be great to use an actual web server to interface our
Kubernetes cluster with the external world instead of several LoadBalancer services.

Kubernetes offers the possibility to run actual web servers inside of resources called Ingresses.

Ingresses act as interfaces between an actual web server and the Kubernetes API, and enable us to

configure most web server services with a common interface that doesn’t depend on the specific
web server that is behind the Ingress.

The following diagram exemplifies how an Ingress splits traffic among all frontend microservices
inside a Kubernetes cluster:

Figure 8.14: Ingress

Practical Microservices Organization with Kubernetes304

Ingresses can be created in a cluster only after an Ingress controller has been installed in the

cluster. Each Ingress controller installation supplies both a specific web server, such as NGINX,
and the code that interfaces it with the Kubernetes API.

The information about the Ingress controller and its settings is provided in a resource called
IngressClass, which is referenced in the actual Ingress definition. However, often, Ingress con-

troller installations already define a default IngressClass class, so there is no need to specify its

name inside the ingress definition.

Below is how to define an IngressClass:

apiVersion: networking.k8s.io/v1

kind: IngressClass

metadata:

 labels:

 app.kubernetes.io/component: controller

 name: nginx-example

 annotations:

 ingressclass.kubernetes.io/is-default-class: "true"

spec:

 controller: k8s.io/ingress-nginx

 parameters: # optional parameters that depend on the installed

controller

Each class specifies just the controller’s name (controller), if it is the default class (…/is-
default-class annotation), and some optional parameters that depend on the specific controller.

Below is how to define an Ingress:

apiVersion: networking.k8s.io/v1

kind: Ingress

 metadata:

 name: my-example-ingress

 namespace: my-namespace

 # annotations used to configure the ingress

spec:

 ingressClassName: <IngressClass name> # Sometimes it is not needed

 tls: # HTTPS termination data

 ...

 rules: # virtual hosting rules

 ...

Chapter 8 305

Some controllers, such as the NGINX-based controller, use annotations placed in the metadata

section to configure the web server.

HTTPS termination rules (tls) are pairs made of a collection of domain names and an HTTPS
certificate associated to them, where each certificate must be packaged as a tls secret (see the
Secrets subsection):

tls:

- hosts:

 - www.mydomain.com

 secretName: my-certificate1

- hosts:

 - my-subdomain.anotherdomain.com

 secretName: my-certificate2

In the example above, each certificate applies just to a single domain, but if that domain has
subdomains that are secured by the same certificate, we may add them to the same certificate list.

There is a virtual hosting rule for each domain, and each of these rules has subrules for various
paths:

rules:

- host: *.mydomain.com # leave this field empty to catch all domains

 http:

 paths:

 - path: /

 pathType: Prefix # or Exact

 backend:

 service:

 name: my-service-name

 port:

 number: 80

- host: my-subdomain.anotherdomain.com

...

Domain segments may be replaced by wildcards (*). Each path subrule specifies a service name,

and all traffic matching that rule will be sent to that service, at the port specified in the rule. The
service, in turn, forwards the traffic to all matching Pods.

Practical Microservices Organization with Kubernetes306

If pathType is prefix, it will match all request paths that have the specified path as a subsegment.
Otherwise, a perfect match is required. In the example above, the first rule matches all paths since
all paths have the empty segment/as subsegment.

In the next subsection, we will put into practice what we have learned about Ingresses with a

very simple example in Minikube.

Testing Ingresses with Minikube

The easiest way to install an NGINX-based Ingress controller in Minikube is to enable the ingress

addon. Therefore, after having started Minikube, let’s enable this addon:

minikube addons enable ingress

As a result, some Pods are created in the ingress-nginx namespace. Let’s check it with kubectl

get pods -n ingress-nginx!

The addon installs the same NGINX-based ingress controller used by most Kubernetes environ-

ments (https://github.com/kubernetes/ingress-nginx?tab=readme-ov-file). The instal-
lation also automatically creates an IngressClass called nginx. The annotations supported by
this controller are listed here: https://kubernetes.github.io/ingress-nginx/user-guide/

nginx-configuration/annotations/.

The ch08 folder of the GitHub book repository contains IngressExampleDeployment.yaml and

the IngressExampleDeployment2.yaml files. They define two Deployments with their associat-

ed ClusterIP services. They deploy two different versions of a very simple web application that
creates a simple HTML page.

As usual, let’s copy the two .yaml files in a folder and open a console on that folder. As the first
step, let’s apply these files:

kubectl apply -f IngressExampleDeployment.yaml

kubectl apply -f IngressExampleDeployment2.yaml

 If an input request matches more paths, the more specific one (the one containing
more segments) is preferred.

https://github.com/kubernetes/ingress-nginx?tab=readme-ov-file
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/

Chapter 8 307

Now we will create an ingress that connects the first version of the application to / and the second

version of the application to /v2. The names of the ClusterIP services of the two deployments
are helloworldingress-service and helloworldingress2-service, and both receive on the

8080 port. Therefore, we need to bind the helloworldingress-service 8080 port to / and the

helloworldingress2-service 8080 port to /v2:

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: example-ingress

 namespace: basic-examples

spec:

 ingressClassName: nginx

 rules:

 - host:

 http:

 paths:

 - path: /

 pathType: Prefix

 backend:

 service:

 name: helloworldingress-service

 port:

 number: 8080

 - path: /v2

 pathType: Prefix

 backend:

 service:

 name: helloworldingress2-service

 port:

 number: 8080

It is worth pointing out that the host property is empty, so the Ingress doesn’t perform any se-

lection based on the domain name, but the microservice selection is based just on the path. This
was a forced choice since we are experimenting on an isolated development machine without

the support of a DNS, so we can’t associate domain names to IP addresses.

Practical Microservices Organization with Kubernetes308

Let’s put the above code in a file named IngressConfiguration.yaml and let’s apply it:

kubectl apply -f IngressConfiguration.yaml

In order to connect with the Ingress, we need to open a tunnel with the Minikube virtual machine.

As usual, open another console and issue the minikube tunnel command in it. Remember that

the tunnel works as long as this window remains open.

Now open the browser and go to http://localhost. You should see something like:

Hello, world!

Version: 1�0�0

Hostname: ……

Then go to http://localhost/v2. You should see something like:

Hello, world!

Version: 2�0�0

Hostname: ……

We were able to split the traffic between the two applications according to the request path!

When you have finished experimenting, let’s clean up the environment with:

kubectl delete -f IngressConfiguration.yaml

kubectl delete -f IngressExampleDeployment2.yaml

kubectl delete -f IngressExampleDeployment.yaml

Finally, let’s stop Minikube with: minikube stop.

The next subsection explains how to install the same Ingress controller on AKS.

Using an NGNIX-based Ingress in AKS

You can manually install the NGNIX-based Ingress on AKS either with a .yaml file or with a
package manager called Helm. However, then, you should handle complex permissions-related

configurations to associate a static IP and an Azure DNS zone to your AKS cluster. The interest-

ed reader can find the complete procedure here: https://medium.com/@anilbidary/domain-
name-based-routing-on-aks-azure-kubernetes-service-using-ingress-cert-manager-

and-9b4028d762ed.

https://medium.com/@anilbidary/domain-name-based-routing-on-aks-azure-kubernetes-service-using-ingress-cert-manager-and-9b4028d762ed
https://medium.com/@anilbidary/domain-name-based-routing-on-aks-azure-kubernetes-service-using-ingress-cert-manager-and-9b4028d762ed
https://medium.com/@anilbidary/domain-name-based-routing-on-aks-azure-kubernetes-service-using-ingress-cert-manager-and-9b4028d762ed

Chapter 8 309

Luckily, you can let Azure do all of this job for you, because Azure has an AKS application routing
addon that automatically installs the Ingress for you and facilitates all permission configuration.
This addon can be enabled on an existing cluster with:

az aks approuting enable --resource-group <ResourceGroupName> --name

<ClusterName>

The addon creates webapprouting.kubernetes.azure.com IngressClass, which you must ref-

erence in all your Ingresses.

An IP address is created whenever you create a new Ingress and remains allocated for the lifetime

of the Ingress. Moreover, if you create an Azure DNS zone and associate it to the addon, the addon
will automatically add all needed records for all domains defined in the rules of your Ingresses.

You just need to create an Azure DNS zone with:

az network dns zone create --resource-group <ResourceGroupName> --name

<ZoneName>

In order to associate this zone to the addon, you need the zone’s unique ID, which you can get with:

ZONEID=$(az network dns zone show --resource-group <ResourceGroupName>

--name <ZoneName> --query "id" --output tsv)

Now you can attach the zone with:

az aks approuting zone add --resource-group <ResourceGroupName> --name

<ClusterName> --ids=${ZONEID} --attach-zones

After this command, all domain names used in your Ingress’s rules will be automatically added

to the zone with adequate records. Obviously, you must update your domain data in the provider
where you bought your domain names. More specifically, you must force them to point to the
names of the Azure DNS servers that handle your zone. You can easily get these DNS server names

by going to the newly created DNS zone in the Azure portal.

We have finished our amazing Kubernetes trip. We will return to most of the concepts learned
about here in most of the remaining chapters, and in particular in Chapter 11, The Car Sharing App.

The next chapter shows how to start a new microservices application smoothly and with low
costs with the help of Azure Container Apps.

Practical Microservices Organization with Kubernetes310

Summary
In this chapter, you learned about the basics of orchestrators and then learned how to install and

configure a Kubernetes cluster. More specifically, you learned how to interact with a Kubernetes
cluster through Kubectl and Kubectl’s main commands. Then you learned how to deploy and main-

tain a microservices application, and how to test it locally with the help of Docker and Minikube.

You also learned how to interface your Kubernetes cluster with a LoadBalancer and with an In-

gress, and how to fine-tune it to optimize performance.

All concepts were put into practice with both simple examples and with a more complete example

taken from the car-sharing case study.

Questions
1. Why do Kubernetes applications need network disk storage?

Because PODs can’t rely on the disk storage of the nodes where they run, since they might

be moved to different nodes.

2. Is it true that if a node containing a Pod of a Deployment with 10 replicas crashes, your

application will continue running properly?

Yes.

3. Is it true that if a node containing a Pod of a StatefulSet with 10 replicas crashes, your

application will continue running properly?

Not necessarily.

4. Is it true that if a Pod crashes, it is always automatically restarted?

Yes.

5. Why do StatefulSets need persistent volume claim templates instead of persistent volume

claims?

Because each POD of the StatefulSet needs a different volume.

6. What is the utility of persistent volume claims?

They enable Kubernetes users to request and manage storage resources dynamically, de-

coupling storage provisioning from application deployment.

Chapter 8 311

7. What is more adequate for interfacing an application with three different frontend services,

a LoadBalancer or an ingress?

An Ingress. LoadBalancers are adequate just when there is an unique Frontend service.

8. What is the most adequate way of passing a connection string to a container running in

a Pod of a Kubernetes cluster?

By using a Kubernetes Secret since it contains sensitive information.

9. How are HTTPS certificates installed in Ingresses?

Through a specific type of secret.

10. Does standard Kubernetes syntax allow the installation of an HTTPS certificate on a Load-

Balancer service?

No.

Further reading
• Kubernetes official documentation: https://kubernetes.io/docs/home/.

• AKS official documentation: https://learn.microsoft.com/en-us/azure/aks/.

• Minikube official documentation: https://minikube.sigs.k8s.io/docs/.

• AKS autoscaling: https://learn.microsoft.com/en-us/azure/aks/cluster-

autoscaler?tabs=azure-cli

• Cloud-independent cluster auto-scalers: https://kubernetes.io/docs/concepts/

cluster-administration/cluster-autoscaling/

• Storage classes: https://kubernetes.io/docs/concepts/storage/storage-classes/.

• Assigning a static Azure IP address to a LoadBalancer: https://learn.microsoft.com/
en-us/azure/aks/static-ip

• Example metrics server: https://github.com/kubernetes-sigs/metrics-server.

• NGINX-based Ingress controller: https://github.com/kubernetes/ingress-

nginx?tab=readme-ov-file .

• Manual installation of NGINX-based Ingress of AKS: https://medium.com/@anilbidary/

• domain-name-based-routing-on-aks-azure-kubernetes-service-using-ingresscert-

manager-and-9b4028d762ed

• Using RabbitMQ Cluster operator: https://www.rabbitmq.com/kubernetes/operator/

using-operator

• Installing a RabbitMQ Cluster on Kubernetes: https://www.rabbitmq.com/kubernetes/

operator/install-operator.

https://kubernetes.io/docs/home/
https://learn.microsoft.com/en-us/azure/aks/
https://minikube.sigs.k8s.io/docs/
https://learn.microsoft.com/en-us/azure/aks/cluster-autoscaler?tabs=azure-cli

https://learn.microsoft.com/en-us/azure/aks/cluster-autoscaler?tabs=azure-cli

https://kubernetes.io/docs/concepts/cluster-administration/cluster-autoscaling/
https://kubernetes.io/docs/concepts/cluster-administration/cluster-autoscaling/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://learn.microsoft.com/en-us/azure/aks/static-ip
https://learn.microsoft.com/en-us/azure/aks/static-ip
https://github.com/kubernetes-sigs/metrics-server
https://github.com/kubernetes/ingress-nginx?tab=readme-ov-file
https://github.com/kubernetes/ingress-nginx?tab=readme-ov-file
mailto:https://medium.com/@anilbidary/ domain-name-based-routing-on-aks-azure-kubernetes-service-using-ingresscert-manager-and-9b4028d762ed
mailto:https://medium.com/@anilbidary/ domain-name-based-routing-on-aks-azure-kubernetes-service-using-ingresscert-manager-and-9b4028d762ed
mailto:https://medium.com/@anilbidary/ domain-name-based-routing-on-aks-azure-kubernetes-service-using-ingresscert-manager-and-9b4028d762ed
https://www.rabbitmq.com/kubernetes/operator/using-operator
https://www.rabbitmq.com/kubernetes/operator/using-operator
https://www.rabbitmq.com/kubernetes/operator/install-operator
https://www.rabbitmq.com/kubernetes/operator/install-operator

Practical Microservices Organization with Kubernetes312

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/PSMCSharp

https://packt.link/PSMCSharp

9
Simplifying Containers and
Kubernetes: Azure Container
Apps, and Othert Tools

While Kubernetes is probably the most complete orchestrator, any transition from monolithic

development to microservices on Kubernetes faces two hard difficulties.

The first difficulty is that the cost of a Kubernetes cluster often is not justified by the initial low
traffic of the application. In fact, a production-grade Kubernetes cluster typically requires mul-
tiple nodes for redundancy and reliability. While self-managed clusters may need at least two

master nodes and three worker nodes, managed Kubernetes services such as Amazon Elastic

Kubernetes Service (Amazon EKS), Azure Kubernetes Service (AKS), or Google Kubernetes

Engine (GKE) often handle control plane redundancy at a lower cost (Amazon EKS control plane

costs ~$72/month). Teams can start with smaller instance types and scale as needed, reducing

the initial burden.

Another difficulty is the learning curve of Kubernetes itself. Moving the whole team to discrete
Kubernetes knowledge/expertise might require time that we simply don’t have. Moreover, if we
are transitioning an existing monolithic application, at the beginning of the transition—when

the number of microservices is still low and their organization still resembles the same organi-
zation of the monolithic application—we simply don’t need all the opportunities and options
offered by Kubernetes.

Simplifying Containers and Kubernetes: Azure Container Apps, and Othert Tools314

The preceding considerations led to the conception of Azure Container Apps, which is a serverless

alternative to Kubernetes. Being a serverless option, you pay just for what you use and overcome

the problem of the initial cluster size threshold. Azure Container Apps also lowers the learning

curve thanks to the following features:

1. While Kubernetes offers all the building blocks for coding both tools and microservices,

Azure Container Apps building blocks are the microservices themselves, so the developer

can remain focused on the business logic without spending too much time on technical

details. Tools such as storage solutions, message brokers, and other performance and
security tools are taken from the hosting platform—that is, Azure.

2. There are acceptable defaults for everything, so deploying an application may become as
simple as deciding on the Docker images to deploy. Customizations can also be specified
at a later time.

After a short description of the various tools used to simplify the usage and administration of

Kubernetes clusters, this chapter describes Azure Container Apps in detail and how to use it in

practice. This chapter relies on preexisting knowledge of Kubernetes, so please read it after having
studied Chapter 8, Practical Microservices Organization with Kubernetes.

More specifically, this chapter covers the following:

• Tools for simplifying Kubernetes cluster usage and administration

• Azure Container Apps basics and plans

• Deploying your microservice application with Azure Container Apps

Technical requirements
This chapter requires the following:

1. Visual Studio 2022 free Community Edition, at least.

2. Azure CLI. Links for both the 32-bit and 64-bit Windows installers can be found
at https://learn.microsoft.com/bs-latn-ba/cli/azure/install-azure-cli-

windows?tabs=azure-cli�

3. An Azure subscription.

4. minikube and kubectl. Please refer to the Technical requirements section of Chapter 8, Prac-

tical Microservices Organization with Kubernetes.

https://learn.microsoft.com/bs-latn-ba/cli/azure/install-azure-cli-windows?tabs=azure-cli
https://learn.microsoft.com/bs-latn-ba/cli/azure/install-azure-cli-windows?tabs=azure-cli

Chapter 9 315

Tools for simplifying Kubernetes clusters usage and
administration
After the success of Kubernetes, a lot of products, services and open sources connected with it

appeared. In this section, we classify them and provide some relevant examples. The whole of-

fering related to Kubernetes can be classified as follows:

1. Tools for packaging libraries and applications.

2. Kubernetes graphic UIs.

3. Administrative tools for taking and presenting various cluster metrics, handling alarms,

and performing administrative actions.

4. Tools for handling the whole development and deployment of microservices-based ap-

plications that include Kubernetes as their target deployment platform.

5. Programming environments built on top of Kubernetes. These include both vertical appli-
cations, such as machine learning and big data tools, and general-purpose programming

environments, such as Azure Container Apps.

When it comes to packaging tools, the most relevant is Helm, which became a de facto standard for

packaging Kubernetes applications and libraries. We will analyze it in a dedicated subsection next.

Helm and Helm charts
Helm is a package manager, and the packages it manages are called Helm charts. Helm charts are

a way to organize the installation of complex Kubernetes applications that contain several .yaml

files. A Helm chart is a set of .yaml files organized into folders and subfolders. Here is a typical
folder structure of a Helm chart taken from the official documentation:

Figure 9.1: Folder structure of a Helm chart

Simplifying Containers and Kubernetes: Azure Container Apps, and Othert Tools316

The .yaml files specific to the application are placed in the top templates directory, while the

charts directory may contain other Helm charts used as helper libraries. The top-level Chart.
yaml file contains general information about the package (name and description), together with
both the application version and the Helm chart version. The following is a typical example:

apiVersion: v2

name: myhelmdemo

description: My Helm chart

type: application

version: 1.3.0

appVersion: 1.2.0

Here, type can be either application or library. Only application charts can be deployed,

while library charts are utilities for developing other charts. library charts are placed in the

charts folder of other Helm charts.

In order to configure each specific application installation, Helm chart .yaml files contain vari-
ables that are specified when Helm charts are installed. Moreover, Helm charts also provide a
simple templating language that allows some declarations to be included only if some conditions

depending on the input variables are satisfied. The top-level values.yaml file declares default
values for the input variables, meaning that the developer needs to specify just a few variables

for which they require different values from the defaults. We will not describe the Helm chart

templates language because it would be too extensive, but you can find it in the official Helm
documentation referred to in the Further reading section.

Helm charts are usually organized in public or private repositories in a way that is similar to Docker
images. There is a Helm client, which you can use to download packages from a remote repository
and install charts in Kubernetes clusters. The Helm client can be installed on any machine with
a kubectl installation through the Chocolatey package manager, as follows:

choco install kubernetes-helm

In turn, you may find the Chocolatey installation procedure in the Technical requirements section

of Chapter 8, Practical Microservices Organization with Kubernetes. Helm operates with the current

kubectl Kubernetes cluster and user.

A remote repository must be added before using its packages, as shown in the following example:

helm repo add <my-repo-local-name> https://mycharts.helm.sh/stable

Chapter 9 317

The previous command makes the package information of a remote repository available locally

and gives a local name to that remote repository. The information about all charts available in
one or more repositories can be refreshed with the following command:

helm repo update <my-repo-local-name 1> <my-repo-local-name 2>…

If no repository name is specified, all local repositories are updated.

After that, any package from the remote repository can be installed with a command such as the

following:

helm install <instance name> <my-repo-local-name>/<package name> -n

<namespace>

Here, <namespace> is the Kubernetes namespace where to install the application. As usual, if it’s

not provided, the default namespace is assumed. <package name> is the name of the package

you would like to install, and finally, <instance name> is the name that you give to the installed

application. You need this name to get information about the installed application with the
following command:

helm status <instance name>

You can get also information about all applications installed with Helm with the help of the
following command:

helm ls

The application name is also needed to delete the application from the cluster using the following
command:

helm delete <instance name>

When we install an application, we may also provide a .yaml file with all the default variable
values we want to override. We can also specify a specific version of the Helm chart; otherwise,
the most recent version is used. Here is an example with both the version and values overridden:

helm install <instance name> <my-repo-local-name>/<package name> -f

values.yaml --version <version>

Finally, default value overrides can also be provided in line with the --set option, as shown here:

...--set <variable1>=<value1>,<variable2>=<value2>...

Simplifying Containers and Kubernetes: Azure Container Apps, and Othert Tools318

We can also upgrade an existing installation with the upgrade command, as shown here:

helm upgrade <instance name> <my-repo-local-name>/<package name>...

The upgrade command may specify new value overrides with the –f option or with the --set

option, and it can also specify the new version to install with --version. If no version is specified,
the more recent version is installed.

More details on Helm can be found in the official documentation at https://helm.sh/. We will

show how to use Helm in practice in the later subsection about Kubernetes administrative tools.

Kubernetes graphic UIs
There are also tools that help the definition and deployment of Kubernetes resources through
user-friendly graphic interfaces. Among them, it is worth mentioning ArgoCD and Rancher UI.

ArgoCD handles a database of Kubernetes resources and automatically updates a Kubernetes

cluster whenever the code that defines a resource changes. ArgoCD simplifies a lot of Kubernetes
cluster handling but automatic re-deployment of resources may cause issues in production envi-

ronments that require zero downtime. We will not describe ArgoCD here, but interested readers
can find more details in the Further reading section.

Rancher UI enables users to interact with several Kubernetes clusters through a web-based UI.

It has also tools for handling the whole development process, such as the definition of projects.

The Rancher UI web application must be accessible from within each Kubernetes cluster it must

handle, and requires the installation software inside each of the Kubernetes clusters that it must

handle.

Rancher UI can also be installed on a developer’s local machine, where it can be used to interact

with minikube. The simplest way to perform a local installation is through Docker. Open a Linux
shell and enter the following code:

docker run -d \

 --restart unless-stopped \

 -p 80:80 \

 -p 443:443 \

 --privileged \

 --name rancher \

 rancher/rancher:stable

https://helm.sh/

Chapter 9 319

A few minutes after the installation is completed, Rancher UI is available at https://localhost.

If you can’t access it, wait a minute and retry.

Once the web interface appears for the first time, you need a temporary password. You can get
this password with the following Linux command:

docker logs rancher 2>&1 | grep "Bootstrap Password:"

Copy the temporary password in the Rancher UI initial page, and press Continue. The new page
that appears should propose a new definitive password for the admin user, and the URL to be
used by minikube to access Rancher UI. Fill this page as shown here:

Figure 9.2: Rancher initial settings

Accept the proposed password, copy it, and store it in a safe place. The host.docker.internal

hostname enables minikube to connect with our machine localhost.

On the dashboard, click the Import Existing button to start the process of connecting an existing

cluster with Rancher UI:

Figure 9.3: Importing an existing cluster

Simplifying Containers and Kubernetes: Azure Container Apps, and Othert Tools320

On the new page that appears, select the Generic cluster option:

Figure 9.4: Generic cluster option

Fill in just the cluster name and description on the page that appears, as shown here:

Figure 9.5: Filling in the cluster information

Then, click the Create button. A page with the code to run in your cluster should appear. You
should select the second code option since the local Rancher installation uses a self-signed cer-

tificate, which should be something like this:

curl --insecure -sfL https://host.docker.internal/v3/import/6rd2jg4nntmkkw

9z9mjhttrjfjj64cz9vl8zr6pr6tskbt6cc98zfz_c-2p47w.yaml | kubectl apply -f -

However, this code must be executed in a Linux shell, and kubectl is installed only on Windows.

Therefore, replace the preceding instruction with the following:

curl --insecure -sfL https://host.docker.internal/v3/import/6rd2jg4nntmkkw

9z9mjhttrjfjj64cz9vl8zr6pr6tskbt6cc98zfz_c-2p47w.yaml > install.yaml

Generic

Chapter 9 321

Then, execute it in a Linux shell. It will create the install.yaml file that contains our Kubernetes
code.

Now, we can install Rancher on minikube. Ensure that minikube is running, open a Windows

console, and execute the following command:

kubectl apply -f install.yaml

When the installation is complete, return to the dashboard; you should see the newly imported

minikube cluster:

Figure 9.6: Minikube cluster connected

Click on the minikube link and enjoy the power of interacting with Minikube through a graphic

UI! Here, you can see nodes, Pods, namespaces, and all types of Kubernetes resources, and can

also define new resources.

When you have finished experimenting, stop minikube and the Rancher container in the Docker UI.
If you don’t need to interact with minikube through Rancher anymore, just execute the following:

kubectl delete -f install.yaml

Kubernetes administrative tools
Each cloud provider offers administrative UIs together with the Kubernetes offering. These UIs
include the possibility to perform actions on the cluster, such as inspecting Kubernetes resources,

collecting various metrics, and both querying and plotting these metrics. We will analyze the
administrative tools offered by Azure in more detail in Chapter 10, Security and Observability for

Serverless and Microservices Applications.

Simplifying Containers and Kubernetes: Azure Container Apps, and Othert Tools322

However, there are also several tools offered by third parties and also several open source projects.

Among the open source projects, it is worth mentioning the metrics collector called Prometheus,

and the UI-based administrative console called Grafana. Usually, they are installed together

and Prometheus works as a metrics source for Grafana. They can be installed on any Kubernetes
cluster, including minikube.

A detailed description of these tools is beyond the purpose of the book, but since they are very

common and are also a prerequisite for other tools, we will describe how to install them.

If you would like to test these tools on minikube, you need a configuration with more memory,
and some other custom settings, so the the best option is to define a new profile while starting
minikube with the following:

minikube start --memory=6g --extra-config=kubelet.authentication-token-

webhook=true --extra-config=kubelet.authorization-mode=Webhook --extra-

config=scheduler.bind-address=0.0.0.0 --extra-config=controller-manager.

bind-address=0.0.0.0 -p <your profile name>

Here, the --extra-config option allows the configuration of various Kubernetes installation
options. If you don’t use minikube, you must be sure that the Kubernetes cluster is configured
with the options passed with --extra-config in the preceding instruction. These settings enable
Webhooks on the controller manager that Prometheus uses to collect its metrics and change

the IP addresses exposed by both the controller and scheduler on the master nodes to enforce

compatibility with Prometheus.

Once all these settings are fixed, we can install both Prometheus and Grafana with Helm:

helm repo add prometheus-community https://prometheus-community.github.io/

helm-charts

helm repo add grafana https://grafana.github.io/helm-charts

helm repo update

helm install prometheus prometheus-community/prometheus --namespace

monitoring --create-namespace

helm install grafana grafana/grafana --namespace monitoring

Chapter 9 323

The first two instructions add the repositories containing Prometheus and Grafana, respectively,
and the third instruction updates all repository local directories. The third instruction installs
Prometheus in the monitoring namespace, after having created this namespace, and finally, the
last instruction installs Grafana in the same namespace.

After the installation, we can inspect the monitoring namespace to verify that all resources are

ready:

kubectl get all -n monitoring

Finally, both the Prometheus and Grafana UIs can be accessed by port-forwarding adequate

services. Remember to use a different console window for each port-forward service, since the

console freezes while port-forwarding:

kubectl --namespace monitoring port-forward service/prometheus-server

9090:80

kubectl --namespace monitoring port-forward service/grafana 3000:80

After that, Prometheus will be available at http://localhost:9090 and Grafana at http://

localhost:3000. While Prometheus doesn’t require a login, the default user for Grafana is admin

and the password must be extracted from a Kubernetes secret, as shown here:

kubectl get secret --namespace monitoring grafana -o jsonpath="{.data.

admin-password}"

Copy the string returned by the preceding command; we need to Base64-decode it to get the

actual password. As usual, Base64-decoding can be performed by opening a Linux console and

using the base64 command:

echo -n <string to decode> | base64 -d

Once logged in to Grafana, we must declare Prometheus as its metrics data source. In the Grafana

left menu, go to Connections -> Data sources, and then select Add new data source. In the page

that appears, select Prometheus, as shown in the following figure:

http://localhost:9090

Simplifying Containers and Kubernetes: Azure Container Apps, and Othert Tools324

Figure 9.7: Selecting Prometheus as the data source

We need to configure Prometheus as the default data source and set the URL at which to retrieve

all metrics to http://prometheus-server:80, which corresponds to the address and port of the

same Prometheus service we have port-forwarded, as shown here:

Figure 9.8: Prometheus settings

http://prometheus-server:80

Chapter 9 325

You can keep all the other default settings; just click the Save and test button. After that, click

the Dashboards tab and import all proposed dashboards.

Then, go to Dashboards in the Grafana left menu and inspect all the imported dashboards by

clicking their links:

Figure 9.9: Available dashboards

If you click new and then import, you can import a dashboard from grafana.com. Just follow

the grafana.com/dashboards link, select a dashboard, take its ID, and copy it, as shown here:

Figure 9.10: Importing a dashboard from grafana.com

You might be required to subscribe to get a dashboard ID. Subscription is free. The dashboard
selection pages contain links to the documentation you might be interested in exploring.

Simplifying Containers and Kubernetes: Azure Container Apps, and Othert Tools326

If you stop minikube with minikube stop -p <profle name>, minikube will be stopped but all

your data will be saved, so you can continue experimenting with Grafana. If you want to uninstall

Grafana and Prometheus, you can do it with Helm, as shown here:

helm delete grafana

helm delete prometheus

Let’s close this section with the remaining tools.

Development environments based on Kubernetes
Among the complete development platforms based on Kubernetes, it is worth mentioning Open-

Shift (https://www.redhat.com/en/technologies/cloud-computing/openshift), which in-

cludes tools for the whole development process, including DevOps automation and cloud services.

OpenShift can be installed on-premises or it can be used as a PaaS service available in the main

cloud services, Azure included (https://azure.microsoft.com/it-it/products/openshift).

Big data and machine learning frameworks use Kubernetes, but we will not discuss them since

they are completely beyond the purpose of this book.

It is also worth mentioning simple code generators offered by some start-ups that create Kuber-

netes applications by combining containers with the help of graphic interfaces. Needless to say,

similar tools are just aimed at creating low-cost applications. We will not describe them because

the focus of the book is enterprise high-quality applications and, at the moment, there is neither

an emerging general pattern nor an emerging specific framework.

Instead, when it comes to higher-level abstraction alternatives to Kubernetes that are built on

top of Kubernetes, at the time this book was written, the most relevant option is Azure Container

Apps, which will be described in the remainder of the chapter.

Azure Container Apps basics and plans
Azure Container Apps is available as a serverless offering with consumption plans but has also

dedicated plans based on the horizontal scaling of virtual machines, called workload profiles.

Some advanced features are available only with workload profiles. We will talk more about plans

later on in this section.

While Kubernetes offers several kinds of independent building blocks, Azure Container Apps is
based on just two kinds of building blocks: applications/jobs and environments.

https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/it-it/products/openshift

Chapter 9 327

Applications map one-to-one with microservices, while jobs are useful for long-running tasks

and will not be discussed in this chapter.

Applications automatically handle replicas—that is, each application may have several identical

replicas exactly like a Kubernetes Deployment. Applications support the same configuration
options as Kubernetes Deployments, as follows:

• Environment variables

• Volume mounts

• Health probes

• CPU and memory resources configuration

• Automatic log collection

They also support communication configuration, secrets, and automatic scaling, but they are
not defined as separate objects as in Kubernetes but inside the application configuration itself.
Moreover, there is no equivalent of StatefulSets—that is, there is no way to implement sharding

algorithms.

The rationale behind these choices is that the developer must map each microservice into a single
resource instead of several coordinated resources, so they can concentrate mainly on business

business logic without being overwhelmed by orchestrator-specific configuration.

Coordination tools such as StatefulSets are simply omitted since they don’t include business

logic but are just used for solving coordination and parallel update issues. In fact, StatefulSets are

used mainly to implement tools such as storage engines and message brokers, so the basic idea is

that the developer should use resources already available in the cloud instead of implementing

customized solutions so they can concentrate all their efforts on the business logic.

Other resources, such as permissions, users, and roles, are taken from Azure, too. This way, your
microservice application is smoothly integrated into the hosting cloud instead of being a self-con-

tained deployment environment loosely coupled with the hosting cloud, such as Kubernetes.

Summing up, we can say that Azure Container Apps simplifies the implementation of a micros-

ervice application at the price of decreasing its portability. Once you implement your application

to run in Azure Container Apps and to use Azure cloud resources, the only option to migrate to
another cloud is to rewrite the whole orchestrator-related code.

Needless to say, if containers are carefully designed, they are not lost in the case of

migrations, but the whole logic around them is lost.

Simplifying Containers and Kubernetes: Azure Container Apps, and Othert Tools328

This is not a big issue if your application is small and consists of a few microservices, but for big
applications made of hundreds or thousands of microservices, a migration might imply an un-

acceptable cost both in terms of time and money.

Therefore, Azure Container Apps is a good option for small applications or when you plan to
deploy your application on a single cloud (Azure) and when you don’t need too many customi-
zations (custom tools, highly customized tools, complex custom distributed algorithms, and so
on). This makes it a good entry point in the world of distributed computing when you start the
conversion of a monolithic application.

The boundaries of a microservice application are defined by an environment. Inside each envi-

ronment, all applications can freely interact, but you can also decide to expose some endpoints

to the outside world. If you use a consumption plan, the outside world is necessarily the internet,

but with workload profiles, you can bypass this limitation by associating a subnet of an existing
Azure virtual network to your environment. In fact, in this case, the outside world would be the
remainder of the virtual network.

There is no equivalent of Kubernetes ingresses for routing communications from a single environ-

ment entry point to all frontend microservices inside the environment, but you can implement

a similar functionality by using an application as an API gateway (see the Interfacing the external

world subsection of Chapter 2, Demystifying Microservices Applications). For HTTP and HTTPS ter-

mination, you can configure any application for using HTTPS without the burden of creating and
handling HTTPS certificates, since Azure will take care of this for you.

The following figure illustrates what we said about applications and environments:

Figure 9.11: Azure Container Apps organization

Chapter 9 329

Take note of the following:

• Each environment can be defined as either consumption only or a workload profile.

• Each environment can have profiles added to it. Consumption-only environments can only
have the default consumption profile. Workload profile environments have the default
consumption profile but can also have customizable workload profiles added. Profiles
will be discussed more later on in this section.

• Each application associated with the environment can specify which of the profiles as-

sociated with the environment to run on.

• Each application is accessible with an http://<application name> URL from inside the

environment. We can also decide that an application is not accessible with a direct link

when we use a message broker.

• Some applications can be configured for access from outside of the environment, in which
case, they receive the https://<application name>.<environment name>.<zone>.

azurecontainerapps.io URL. Here, <zone> is the Azure geographic zone where you de-

fined your environment. HTTP traffic must be passed on the usual 80 and 443 ports. For pure

TCP traffic, the developer can specify different ports.

• Each environment has an associated virtual network. Only if the environment has a work-

load profile can you assign it a custom subnet of a virtual network.

• Environments and applications can access any Azure resources if they are granted the
necessary permissions or credentials.

The remainder of this section is organized into subsections that describe the following subjects:

1. Consumption-only and workload profiles

2. Application versioning

3. Interacting with Azure Container Apps

Consumption-only and workload profiles
Applications running in a consumption profile are billed as follows:

Kcpu*<virtual CPU seconds> + Kmem*<Gigabytes seconds> + Kreq*<requests per

seconds>

In a few words, the application is billed proportionally to its memory, CPU, and request consump-

tion. The actual constants for the various countries are available here: https://azure.microsoft.
com/en-us/pricing/details/container-apps/.

https://azure.microsoft.com/en-us/pricing/details/container-apps/.

https://azure.microsoft.com/en-us/pricing/details/container-apps/.

Simplifying Containers and Kubernetes: Azure Container Apps, and Othert Tools330

With workload profiles, you are billed according to the CPUs and gigabytes of each virtual ma-

chine in use and not for the CPU and memory allocated to the applications. Thus, for instance,
notwithstanding you use just 10% of a profile virtual machine, you are billed for the overall virtual
machine CPU and memory. However, for workload profiles, there is no billing quota correspond-

ing to the application requests. There is also an hourly profile-handling cost to add to the overall
cost of each profile. The actual constants for the various countries are available here: https://
azure.microsoft.com/en-us/pricing/details/container-apps/.

Each profile can be used by several applications, and the number of virtual machines allocated
to a profile is computed according to the CPU and memory requested by all applications that run
in that profile. That is, a new virtual machine is allocated whenever the total CPU or memory re-

quested by all applications exceeds the total CPUs and memory of the already allocated machines.

Needless to say, one can specify both a maximum number and a minimum number of machines

allocated to each profile. Since allocating a new virtual machine requires time, it is advised to
set the minimum number of instances to at least 1; otherwise, the first requests after a period of
inactivity would experience unacceptable response times.

The hourly CPU and memory costs of workload profiles are lower than the ones of consump-

tion-only profiles but workload profiles have an hourly management cost. Workload profiles
become convenient when the average workload exceeds 3–4 CPUs with 16 GB of memory. However,

certain features are only available with workload profiles. For instance, you need a workload profile
if you want to customize the virtual network underlying your environment by adding firewalls,
or by using a subnet of another virtual network.

All available workload profile types are listed on this page: https://learn.microsoft.com/en-
us/azure/container-apps/workload-profiles-overview.

Let’s move on to a useful feature of Azure Container Apps: automatic versioning support.

Application versioning
Azure Container Apps automatically versions your applications. Each time you modify the con-

tainers or scale configuration of your application, a new version is automatically created.

Each version is given a name and is called a revision of the application. As a default, only the last

revision is active and accessible through the application link.

However, any application may be put in multiple-revision mode, in which case, you may decide

manually which revisions are active and which revisions are connected to the application link.

https://azure.microsoft.com/en-us/pricing/details/container-apps/.

https://azure.microsoft.com/en-us/pricing/details/container-apps/.

https://learn.microsoft.com/en-us/azure/container-apps/workload-profiles-overview
https://learn.microsoft.com/en-us/azure/container-apps/workload-profiles-overview

Chapter 9 331

If more than one revision is connected to the application link, you must specify how to split the

traffic between them. If just one revision is attached to the application link but there are multiple
active revisions, you may reach each active revision that is not attached to the application URL

through its revision name, as follows:

<application name>-<revision name>.<environment>.<zone>.

azurecontainerapps.io

Since revision names are automatically generated and are not user-friendly, each revision may be

attached with friendly labels that can be used to reach the revision with links such as the following:

<application name>--<revision label>.<environment>.<zone>.

azurecontainerapps.io

Azure Container Apps revisions logic enables several deployment models, as follows:

• Staging/production: The newer revision is not attached to the application link but can be
reached just through its revision link, so it can be tested in staging. As soon as the new

revision is approved, it is attached to the application link and the previous revision is

deactivated.

• New features preview: The traffic is split among the last two revisions. Initially, the new
revision is passed a low percentage of the overall traffic, so that users can experiment with
new features. Then, gradually, the new version receives more traffic till it reaches 100%,
and the previous version is deactivated.

• During traffic splitting, session affinity is enabled, so that if a user request is served by a

revision, r, then all subsequent requests will continue being served by the same r revision.

This way, we avoid users walking randomly between the two revisions.

Revisions are useful mainly for frontend services, especially if internal communication relies on

message brokers. Testing a new version of a worker microservice requires a completely separate
staging environment.

We will provide more details on the practical usage of revisions at the end of the Deploying your

microservice application with Azure Container Apps section. The next subsection explains how to
interact with your microservice application in Azure Container Apps.

Simplifying Containers and Kubernetes: Azure Container Apps, and Othert Tools332

Interacting with Azure Container Apps
There is no equivalent of kubectl to interact with Azure Container Apps environments and appli-
cations. You may interact with them either through the Azure portal or with Azure CLI.

Application and environment settings can be specified either with command options or through
.yaml or JSON files. We will focus just on command options and .yaml files, describing just the

most practical alternatives.

The interaction with Azure Containers Apps requires the installation of the containerapp Azure

CLI extension. You can install it with the following command after you have logged in with az
login:

az upgrade

az extension add --name containerapp --upgrade

The first upgrade command ensures you have the latest Azure CLI version, while the upgrade

option in the second command updates the extension to the latest version. The preceding com-

mands are needed only once, or each time you would like to update to a new version.

Before starting any new session, you must register a couple of namespaces. Namespaces registra-

tion has the same semantics as C# using statements. Here are the required registration commands:

az provider register --namespace Microsoft.App

az provider register --namespace Microsoft.OperationalInsights

Now, we are ready to interact with Azure Container Apps. The next section explains in detail how
to deploy and configure your microservice application on Azure Container Apps.

Deploying your microservice application with Azure
Container Apps
In this section, we will see how to define and configure your applications in Azure Container Apps.
In the first subsection, we will describe the basic commands and operativity, while all configu-

ration options and the .yaml file configuration formats will be described in a later subsection.

Basic commands and operativity
All Azure Container Apps commands start with az containerapp. Then, there is the main com-

mand and various configuration options. Configuration options may be passed each with a dif-

ferent command option or organized in a .yaml or JSON file.

Chapter 9 333

The up command is the simplest way to define an application together with a new environment. It
is useful to perform a quick test of a container. The only obligatory parameters are the application
name and the container image URL. For all other options, reasonable defaults are assumed. If you

don’t specify a resource group and an environment, the command creates new ones:

az containerapp up '

 --name <CONTAINER_APP_NAME> '

 --image <REGISTRY_SERVER>/<IMAGE_NAME>:<IMAGE TAG> '

 --ingress external '

 --target-port <PORT NUMBER> '

 --registry-server <REGISTRY SERVER URL> '

 --registry-username <REGISTRY USERNAME> '

 --registry-password <REGISTRY PASSWORD>

Let’s break this down:

• name is the application name. It is obligatory.

• image is the container image URL. It is obligatory. As usual, the image tag is used for image

versioning, and if omitted, latest is assumed.

• ingress may be internal or external. In the first case, the application will be accessible
only from inside its environment, while in the second case, the application will be exposed

to the external world. If this parameter is omitted, the application will not be accessible

with a direct link (useful when internal communication relies on a message broker).

• target-port specifies the target port exposed by the container, if any. The application
traffic will be redirected to this container port. If there are several containers, there should
be just one that receives the application traffic, and you must specify its port. Application
HTTP/S traffic must be sent to the usual 80 and 443 ports.

In a PowerShell console, you can split a command into several lines with the help

of the ` (backquote) character, as shown in all the commands in this subsection.

Simplifying Containers and Kubernetes: Azure Container Apps, and Othert Tools334

• registry-server, registry-username, and registry-password are parameters that

specify the credentials associated with a specific image registry server, which should
be the same as used in the image parameter. If specified, these parameters are added to
the application configuration and will be used also in subsequent application updates.
Later on, we will see how assigning an Azure identity to an application allows it to access
Azure resources by simply granting adequate privileges to this identity with no need to
provide passwords.

The preexisting environment and resource group can be specified with the --environment and

--resource-group options.

The up commands can be used to update the application configuration or the application container
image, but in this case, you must always pass the --name, --environment, and --resource-group

parameters with the values of the preexisting application.

You can test the up command with the simple gcr.io/google-samples/hello-app:1.0 image

we used in the Testing ingresses with minikube subsection of Chapter 8, Practical Microservices Orga-

nization with Kubernetes. You don’t need to specify registry credentials since the registry is public.
The container port is 8080:

az group create '

 --name <resource group name> '

 --location centralus

az containerapp up --name <CONTAINER_APP_NAME> --image gcr.io/google-

samples/hello-app:1.0 '

 --resource-group <resource group name> '

 --location centralus '

 --environment <environment name> '

 --ingress external --target-port 8080 '

 --query properties.configuration.ingress.fqdn

We previously created a resource group in order to decide its name. We also specified the name
of the environment to create. The --query properties.configuration.ingress.fqdn option

lets the command return the application URL, which you might also compute manually with the

URL format we gave in the previous section. Once you have tested this simple single HTML page
application by going to the application URL with your favorite browser, you can also check all

Azure resources created on your Azure portal home page.

Chapter 9 335

You can get the whole .yaml configuration of the application created with the following:

az containerapp show '

 --name <CONTAINER_APP_NAME> '

 --resource-group <RESOURCE_GROUP_NAME> '

 -o yaml

A good way to arrive at a properly configured application is by starting with default configurations,
then getting the .yaml application configuration with the preceding command, modifying this
.yaml file, and finally, submitting the modified .yaml file with the update command, as shown here:

az containerapp update '

 --name <CONTAINER_APP_NAME> '

 --resource-group <RESOURCE_GROUP_NAME> '

 --yaml mymodified.yaml

The simplest way to clean up all resources after the experiment is by deleting the whole resource

group, as shown here:

az group delete --name <resource group name>

When you need to deploy several applications in the same environment, the best way to proceed

is to create the environment first with the following command:

az containerapp env create '

 --name <CONTAINERAPPS_ENVIRONMENT> '

 --resource-group <RESOURCE_GROUP> '

 --location "<AZURE LOCATION NAME>"

If you would like to enable workload profiles on the environment, you must also add the --enable-
workload-profiles option.

If you want to place all resources involved in your overall microservice application in a new re-

source group. you need to create it before creating the environment, as follows:

az group create '

 --name <RESOURCE_GROUP> '

 --location "<AZURE LOCATION NAME>"

Each application is univocally identified by both its name and its resource group, so
each update or delete command must specify both of them.

Simplifying Containers and Kubernetes: Azure Container Apps, and Othert Tools336

Workload profiles can be added to an environment with the following instruction:

az containerapp env workload-profile add '

 --resource-group <RESOURCE_GROUP> '

 --name <ENVIRONMENT_NAME> '

 --workload-profile-type <WORKLOAD_PROFILE_TYPE> '

 --workload-profile-name <WORKLOAD_PROFILE_NAME> '

 --min-nodes <MIN_INSTANCES> '

 --max-nodes <MAX_INSTANCES>

Here, --workload-profile-name is the name you give to the workload profile, while --workload-
profile-type is a profile type—that is, a type of virtual machine that you can select from the
ones listed here: https://learn.microsoft.com/en-us/azure/container-apps/workload-

profiles-overview. --min-nodes and --max-nodes are, respectively, the minimum and maximum

instances of the virtual machine that can be created.

Workload profiles can also be removed at a later time with the following:

az containerapp env workload-profile delete '

 --resource-group "<RESOURCE_GROUP>" '

 --name <ENVIRONMENT_NAME> '

 --workload-profile-name <WORKLOAD_PROFILE_NAME>

When the environment is set up, you can deploy all container images in a common registry, and

then you can start creating each application with the following:

az containerapp create '

 --name <CONTAINER_APP_NAME> '

 --image <REGISTRY_SERVER>/<IMAGE_NAME>:<TAG> '

 --resource-group <RESOURCE_GROUP_NAME> '

 --environment <ENVIRONMENT_NAME> '

 --ingress <external or internal or omit this option> '

 --target-port <PORT_NUMBER> '

 --registry-server <REGISTRY SERVER URL> '

 --registry-username <REGISTRY USERNAME> '

 --registry-password <REGISTRY PASSWORD>

The preceding command creates an application with a default configuration. If you want the
application to run in a workload profile instead of the default consumption profile, you must add
the --workload-profile-name <WORKLOAD_PROFILE_NAME> option.

https://learn.microsoft.com/en-us/azure/container-apps/workload-profiles-overview
https://learn.microsoft.com/en-us/azure/container-apps/workload-profiles-overview

Chapter 9 337

Then, you can extract its .yaml and modify it with the following:

 az containerapp show '

 --name <CONTAINER_APP_NAME> '

 --resource-group <RESOURCE_GROUP_NAME> '

 -o yaml

You will need to use the preceding code with this code, too:

az containerapp update '

 --name <CONTAINER_APP_NAME> '

 --resource-group <RESOURCE_GROUP_NAME> '

 --yaml mymodified.yaml

You can also opt in for immediately specifying a .yaml file during the application creation, as
shown here:

az containerapp create '

 --name <CONTAINER_APP_NAME> '

 --environment <ENVIRONMENT_NAME> '

 --resource-group <RESOURCE_GROUP_NAME> '

 --yaml myapp.yaml

You can get the list of all application revisions with the following:

az containerapp revision list '

 --name <CONTAINER_APP_NAME> '

 --resource-group <RESOURCE_GROUP>

You can get also all replicas of each revision with the following:

az containerapp replica list '

 --name <CONTAINER_APP_NAME> '

 --resource-group <RESOURCE_GROUP> '

 --revision <REVISIONNAME>

You can also get an interactive console in a container of a specific replica of a specific
revision, similar to how Kubernetes exec works:

Simplifying Containers and Kubernetes: Azure Container Apps, and Othert Tools338

az containerapp exec `

 --name <CONTAINER_APP_NAME> `

 --resource-group <RESOURCE_GROUP> `

 --revision <REVISION_NAME> `

 --replica <REPLICA_NAME>

You can delete an application with the following:

az containerapp delete '

 --name <CONTAINER_APP_NAME> '

 --resource-group <RESOURCE_GROUP_NAME>

You can delete a whole environment and all the applications it contains with the following:

az containerapp env delete '

 --name <ENVIRONMENT_NAME> '

 --resource-group <RESOURCE_GROUP_NAME>

These commands cover most of the practical use cases. Other options and commands can be

found in the official command reference at https://learn.microsoft.com/it-it/cli/azure/
containerapp?view=azure-cli-latest. In the next subsection, we will describe how to configure
your application with a .yaml file.

Application configuration options and the .yaml format
The simplest way to customize the application configuration is with a .yaml file passed to the
following command:

az containerapp update '

 --name <CONTAINER_APP_NAME> '

 --resource-group <RESOURCE_GROUP_NAME> '

 --yaml myappconfiguration.yaml

If there are several containers, you can specify the container name with the

--container option.

https://learn.microsoft.com/it-it/cli/azure/containerapp?view=azure-cli-latest
https://learn.microsoft.com/it-it/cli/azure/containerapp?view=azure-cli-latest

Chapter 9 339

The organization of an application .yaml file is shown here:

identity:

 ...

properties:

 environmentId: "/subscriptions/<subscription_id>/resourceGroups/….."

 workloadProfileName: My-GP-01

 configuration:

 ingress:

 …

 maxInactiveRevisions: 10

 secrets:

 - name: <nome>

 value: <valore>

 registries:

 - server: <server URL>

 username: <user name>

 passwordSecretRef: <name of the secret that contains the password>

 - server: <server URL>

 identity: <application identity resource id>

 template:

 containers:

 - …

 initContainers:

 - ...

 scale:

 minReplicas: 1

 maxReplicas: 5

 rules:

 - ...

 volumes:

 - ...

Simplifying Containers and Kubernetes: Azure Container Apps, and Othert Tools340

Let’s break this down:

• The identity section is present only if the application has been attached to an Azure
identity for handling its access to other resources without passwords.

• environmentId is the Azure unique ID of the environment the application is in (don’t
confuse it with the environment name). The simplest way to get this and other values is
by creating an application with default values and then showing its .yaml file.

• workloadProfileName is present only if the application is associated with a workload

profile and contains the workload profile name.

• The ingress section is present only if the application must be accessible with a direct link

from inside or outside its environment. It contains all its direct communication-related

properties, CORS settings, and traffic splitting between versions.

• maxInactiveRevisions is the number of previous revisions that are saved and can be

activated. The default is 100.

• The registries section contains information about registries that must be accessed with

credentials. Registries that are not private and don’t need credentials should not be listed

here. Each entry specifies either the registry username and password or an Azure identity
with permission to access the registry. The identity must be listed in the identity section.

For more details, see the Associating an Azure identity to your application section.

• secrets are name-value pairs that are stored safely. They are equivalent to Kubernetes
generic secrets.

• As in Kubernetes, we have containers and initContainers. initContainers work the

same as in Kubernetes, but there is no way to declare sidecar containers, so sidecar

containers must be included among the standard containers.

• The scale section contains the minimum and maximum number of application replicas

and rules for deciding the exact number of replicas. The most common rules decide the
number of replicas trying to maintain a target number of HTTP requests or TCP/IP con-

nections per replica:

- name: my-http-rule,

 http:

 metadata:

 concurrentRequests: 100

- name: my-tcp-rule,

Chapter 9 341

 tcp:

 metadata:

 concurrentConnections: 100

• Finally, we have a volumes section that declares all volumes mounted by containers. As in

Kubernetes, they are referred to by a volumeMounts section inside the container definitions.

All properties that were not fully specified in the previous .yaml file will be described in a separate
subsection. Let’s start with containers.

Container configuration

The configuration of each container is similar to the one in Kubernetes but there are some sim-

plifications. The schema is shown here:

 - image: <IMAGE URL>:<TAG>

 name: <CONTAINER NAME>

 env:

 - name: <variable name>

 value: <variable name>

 - name: <variable name>

 secretRef: <secret name>

 resources:

 cpu: 0.2

 memory: 100Mi

 probes:

 - type: liveness

 …

 - type: readiness

 …

 - type: startup

 …

 volumeMounts:

 - mountPath: /mypath

 volumeName: myvolume

image and name are identical to the Kubernetes configuration.

Simplifying Containers and Kubernetes: Azure Container Apps, and Othert Tools342

Environment variables can be defined either as name-value pairs or as name-secretRef pairs,

where secretRef contains the name of a secret defined in the secrets section. In the second case,

the variable value is the value of the secret.

volumeMounts is similar to Kubernetes, too. The only difference is that the volume name is called
name in Kubernetes while, here, it is called volumeName.

The Kubernetes resources property has two properties, requests and limits, while here we have

just a couple of values that correspond to the Kubernetes requests property. This means that
we cannot specify resources limits as in Kubernetes. The reason behind this choice is probably
connected to the serverless nature of Azure Container Apps. The meanings and units of measure
of both cpu and memory are the same as in Kubernetes.

As you can see, liveness, readiness, and startup probes are defined in slightly different ways but
their meaning is the same as in Kubernetes. The syntax and meaning of the properties after type:
liveness/readiness/startup is identical to the corresponding Kubernetes configuration.

Let’s move on to the ingress configuration.

The ingress configuration

The ingress configuration mixes some Kubernetes Service and Ingress settings with the traffic
splitting between various revisions, as shown here:

 ingress:

 external: true

 targetPort: 3000

only for TCP communication. HTTP/S always use 80 and 443 ports

 exposedPort: 5000

 allowInsecure: false # false or true

 clientCertificateMode: accept # accept required or ignore

 corsPolicy:

 allowCredentials: true

 maxAge: 5000 (pre-flight caching time in seconds)

 allowedOrigins:

 - "https://example.com"

 allowedMethods:

 - "GET"

 - "POST"

 …

Chapter 9 343

 allowedHeaders: []

 exposeHeaders: []

 traffic:

 - weight: 100

 revisionName: testcontainerApp0-ab1234

 label: production

 stickySessions:

 affinity: sticky

Let’s break this down:

• external must be set to true to expose the application to the outside world, otherwise,

to false.

• targetPort is the container port to which to route the application traffic.

• exposedPort must be used only in case of non-HTTP/S traffic. It sets the application
listening port. All traffic received on this port is routed to targetPort. The exposedPort

ports of applications exposed to the outside world must be unique inside the environment.

• HTTP/S traffic, instead, always uses the usual 80 and 443 ports with no customization
possibilities.

• If allowInsecure is false, HTTP traffic is automatically redirected to HTTPS. The default
is true.

• clientCertificateMode specifies whether TCP/IP client certificates are accepted for au-

thentication. This setting is completely analogous to a similar setting exposed by Kestrel.
If set to accept, client certificates are accepted and processed. If set to required, client

certificates are obligatory, and if not provided, the connection is refused. If set to ignore,

client certificates are completely ignored.

• corsPolicy contains standard web server CORS settings, which are the same as those

supported by ASP.NET Core. For completeness, we describe all the CORS settings here:

• If allowCredentials is set to false, CORS requests containing credentials are

refused. The default is false.

• maxAge specifies the caching time of the pre-flight request. The pre-flight request
has the only purpose of verifying whether a CORS request will be accepted before

sending actual data.

Simplifying Containers and Kubernetes: Azure Container Apps, and Othert Tools344

• allowedOrigins and allowedMethods specify, respectively, the origin domains

from which to accept CORS requests and the accepted HTTP verbs.

• Regarding allowedHeaders, as a default, only some safe requests headers are

allowed. This setting adds further requests headers to the ones accepted.

• Regarding exposeHeaders, as a default, only some safe response headers are ex-

posed in the responses to CORS requests. This setting adds further headers to the
ones allowed.

• traffic specifies the traffic splitting among various revisions. If a revision is listed with
a 0 split, it will receive no application traffic but it will be set to active—that is, it can be
reached with its revision-specific links. All labels added to an active revision must be
specified here.

While revision handling can be done by modifying the traffic section, it is more practical to

handle it with ad hoc commands.

The list of all revisions in table format for a given application can be obtained with the following
command:

az containerapp revision list '

 --name <APPLICATION_NAME> '

 --resource-group <RESOURCE_GROUP_NAME> '

 -o table

Details about a specific revision can be obtained with the following:

az containerapp revision show '

 --name <APPLICATION_NAME> '

 --revision <REVISION_NAME> '

 --resource-group <RESOURCE_GROUP_NAME>

Labels can be attached or detached from a specific revision with the following commands:

az containerapp revision label <add or remove> '

 --revision <REVISION_NAME> '

 --resource-group <RESOURCE_GROUP_NAME> '

 --label <LABEL_NAME>

Chapter 9 345

An application can be switched from single revision mode to multiple revision mode, and vice

versa, with the following command:

az containerapp revision set-mode '

 --name <APPLICATION_NAME> '

 --resource-group <RESOURCE_GROUP_NAME> '

 --mode <single or multiple>

A given revision can be activated, deactivated, or restarted with the following commands:

az containerapp revision <activate or deactivate or restart> '

 --revision <REVISION_NAME> '

 --resource-group <RESOURCE_GROUP_NAME>

Finally, traffic splitting between revisions can be changed with the following command:

az containerapp ingress traffic set \

 --name <APP_NAME> \

 --resource-group <RESOURCE_GROUP> \

 --label-weight <LABEL_1>=80 <LABEL_2>=20 …

The next section focuses on how to define volumes in the volumes section.

Volume definition and allocation

Volumes can be either EmptyDir (which works in the same way as Kubernetes EmptyDir) or file
shares taken from Azure Files, as shown here:

 volumes:

 - name: myempty

 storageType: EmptyDir

 - name: my-azure-files-volume

 storageType: AzureFile

 storageName: mystorage

Here, mystorage is the name of a file share you created and attached to the environment. Therefore,
you must execute the following steps to get mystorage:

1. Define a storage account if you don’t have it:

az storage account create '

 --resource-group <RESOURCE GROUP > '

 --name <STORAGE ACCOUNT NAME> '

Simplifying Containers and Kubernetes: Azure Container Apps, and Othert Tools346

 --location <AZURE LOCATION > '

 --kind StorageV2 ' 🡨 type (generic usage type)

 --sku Standard_LRS ' 🡨 performance level (this is a standard

level)

 --enable-large-file-share '

 --query provisioningState 🡨 returns the provisioning state

2. Define a file share:

az storage share-rm create '

 --resource-group <RESOURCE GROUP> '

 --storage-account <STORAGE ACCOUNT NAME>'

 --name <STORAGE SHARE NAME> '

 --quota 1024 ' 🡨 megabyte to share

 --enabled-protocols SMB ' 🡨 SMB or NFS, SMB is usually better

 --output table 🡨 return information on the created share in table

format

3. Get the credentials to access the storage account:

STORAGE_ACCOUNT_KEY='az storage account keys list -n <STORAGE

ACCOUNT NAME> --query "[0].value" -o tsv'

4. Add a file share name to the environment:

az containerapp env storage set '

 --access-mode ReadWrite '

 --azure-file-account-name <STORAGE ACCOUNT NAME> '

 --azure-file-account-key $STORAGE_ACCOUNT_KEY '

 --azure-file-share-name <STORAGE SHARE NAME> '

 --storage-name <STORAGE_MOUNT_NAME> '

 --name <ENVIRONMENT NAME> '

 --resource-group <RESOURCE GROUP> '

 --output table 🡨 return details in table format

Now, you can define the volume in your application using the --storage-name value passed to

the last command, as shown here:

 - name: my-azure-files-volume

 storageType: AzureFile

 storageName: <STORAGE MOUNT NAME>

Chapter 9 347

The next subsection explains how to associate an Azure identity to an application, thus enabling
it to access Azure resources.

Associating an Azure identity to your application
The Azure identity to associate with an application can be automatically generated and handled
by Azure or can be defined manually. The main advantage of using a user-defined identity is that
you can add the same identity to several applications.

Adding a system-assigned identity to an application is very easy:

az containerapp identity assign '

--name my-container-app '

--resource-group my-container-app-rg '

--system-assigned

The preceding command returns the Azure resource ID of the created identity. A system-assigned
identity can be associated with the application also by adding type: SystemAssigned to the

identity section of the application’s .yaml file, as shown here:

identity:

 type: SystemAssigned

A user-defined identity must be created first and then assigned to the application, so adding a
user-defined identity requires two steps.

The identity can be created with the simple command shown here:

az identity create --resource-group <GROUP_NAME> --name <IDENTITY_NAME>

--output json

The --output json option forces the command to return information about the created identity

in JSON format. The returned JSON object contains the Azure resource ID of the created identity.
You need it to associate the identity with your applications using the following command:

Az containerapp identity assign --resource-group <GROUP_NAME> --name <APP_

NAME> '

--user-assigned <IDENTITY RESOURCE ID>

Simplifying Containers and Kubernetes: Azure Container Apps, and Othert Tools348

The last step can be performed by adding the resource ID of one or more identities directly to the
identity section of the application’s .yaml files, as shown here:

identity:

 type: UserAssigned

 userAssignedIdentities:

 <IDENTITY1_RESOURCE_ID>: {}

 <IDENTITY2_RESOURCE_ID>: {}

As an example, let’s see how to enable a created identity to access an Azure container registry.
This way, we can avoid storing registry credentials in the application’s .yaml file.

First of all, we need the container registry resource ID. We can get it with the following command:

az acr show --name <REGISTRY NAME> --query id --output tsv

Then, we can assign the AcrPull role on our container registry to our identity with the following

command:

az role assignment create '

--assignee <IDENTITY RESOURCE ID> '

--role AcrPull '

--scope <ACR_RESOURCE_ID>

Finally, we must inform the application that it can use its system-assigned or user-assigned

identity to access the registry:

az containerapp registry set '

--name my-container-app '

--resource-group my-container-app-rg '

--server <ACR_NAME>.azurecr.io '

--identity system 🡨 system if system assigned or the id of the user

defined identity

The last step can also be performed by adding an entry to the registries section of the applica-

tion’s .yaml files, as shown here:

- server: <server URL>

 identity: <application identity resource id>

Chapter 9 349

We have finished our Azure Container Apps trip. We will return to Azure Container Apps in Chapter

12, Simplifying Microservices with .NET Aspire, where we will see how to automatically create all

instructions to deploy a whole microservice application to Azure Container Apps, and we will
use the book case study application as an example.

Our description of Azure Container Apps is fundamentally complete and covers 95% of practical
Azure Container Apps operativity. More details can be found in the official documentation at
https://learn.microsoft.com/en-us/azure/container-apps/.

The next chapter focuses on the security and observability of the microservice application.

Summary
This chapter described Kubernetes-related tools that facilitate the administration and coding of
distributed applications and then focused on Azure Container Apps.

We described the basic ideas behind the Azure Container Apps offering, including its fundamental
concepts and principles. Then, we described the available plans and how to interact with Azure
Container Apps through the Azure portal.

In particular, we described the main commands and the.yaml format that defines a whole ap-

plication. We showed how all resources in Kubernetes are implemented in Azure Container Apps
and compared the two approaches.

Questions
1. Is it true that environments are equivalent to Kubernetes namespaces?

They are similar but not equivalent.

2. How does Helm simplify the deployment of Kubernetes applications and tools?

Because it allows the simultaneous deployment of several yaml files which can be con-

figured according to selected options and parameters.

3. What are Prometheus and Grafana?

They’re administrative tools that collect metrics, and other information and present them
to the user.

4. Can you describe the URL composition of an Azure Container Apps application exposed
to the external world?

<application name>.<Environment name>.<zone>.azurecontainerapps.io

https://learn.microsoft.com/en-us/azure/container-apps/

Simplifying Containers and Kubernetes: Azure Container Apps, and Othert Tools350

5. Do environments provide access to all properties of their underlying networks?

No.

6. Which kinds of Azure identities can be associated with Azure Container Apps?

User defined and System Assigned.

7. Is it true that, in Azure Container Apps, Azure file storage allocation is automatic (as in
Kubernetes) and requires just the declaration of volumes in the volumes section of the

application’s .yaml file?

No.

8. Is it possible to deploy an Azure Container Apps application with a single Azure console
command without filling in any configuration file?

Yes, in several ways.

9. In which section of an Azure Container Apps .yaml file can you define traffic splitting
between revisions?

ingress->traffic

10. Can the port where an Azure Container Apps application listens to HTTP/S requests be
customized?

No.

Further reading
• More information on Helm and Helm charts can be found in the official documentation.

This is extremely well written and contains some good tutorials: https://helm.sh/.

• Grafana dashboards: https://grafana.com/grafana/dashboards/.

• ArgoCD: https://argo-cd.readthedocs.io/en/stable/

• Rancher UI: https://ranchermanager.docs.rancher.com/

• OpenShift: https://www.redhat.com/en/technologies/cloud-computing/openshift.

• Azure OpenShift: https://azure.microsoft.com/it-it/products/openshift.

• Azure Container Apps pricing: https://azure.microsoft.com/en-us/pricing/details/
container-apps/.

https://helm.sh/
https://grafana.com/grafana/dashboards/
https://argo-cd.readthedocs.io/en/stable/
https://ranchermanager.docs.rancher.com/

https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/it-it/products/openshift
https://azure.microsoft.com/en-us/pricing/details/container-apps/
https://azure.microsoft.com/en-us/pricing/details/container-apps/

Chapter 9 351

• Azure Container Apps custom profiles: https://learn.microsoft.com/en-us/azure/
container-apps/workload-profiles-overview

• Azure Container Apps official documentation: https://learn.microsoft.com/en-us/
azure/container-apps/.

• Azure Container Apps commands reference: https://learn.microsoft.com/it-it/cli/
azure/containerapp?view=azure-cli-latest.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/PSMCSharp

https://learn.microsoft.com/en-us/azure/container-apps/workload-profiles-overview
https://learn.microsoft.com/en-us/azure/container-apps/workload-profiles-overview
https://learn.microsoft.com/en-us/azure/container-apps/
https://learn.microsoft.com/en-us/azure/container-apps/
https://learn.microsoft.com/it-it/cli/azure/containerapp?view=azure-cli-latest
https://learn.microsoft.com/it-it/cli/azure/containerapp?view=azure-cli-latest
https://packt.link/PSMCSharp

10
Security and Observability for
Serverless and Microservices
Applications

There are studies that indicate that cybercrime can be considered the third economy in the world.
Besides that, the investment made in many companies in cyber security has increased a lot in

the last few years. When we talk about serverless and microservices, we cannot ignore this topic.

In fact, the area of attack of a distributed system is bigger than a simple monolith application.

Considering this challenging scenario, security and observability cannot be discussed in a single

moment of the development process. The approach of security and privacy by design indicates
that you will only achieve success and reduce risk in cyber security if you start thinking about it

just after you start thinking about your solution.

The goal of this chapter is to discuss how to secure applications, enable monitoring for both
performance and security, and improve incident response, considering the tools and techniques

we currently have.

Security and Observability for Serverless and Microservices Applications354

Application Security Best Practices
A good approach to thinking about security in an application is to define it as an onion – with
different layers of protection. The most important thing about any application is the data that is
stored and processed by it. Considering this, the databases of an application must be designed to

have the correct access and protection. However, securing the database is not enough to deliver a

good solution, so you must also think about the security of the application itself, defining authen-

tication and authorization for any user who will access it. Besides that, you need to understand
that your application will probably use third-party components that must also be protected.

Infrastructure also needs to be monitored and secure, and there are sophisticated ways to do so

nowadays. Last, but not least, there are alternative solutions that can monitor our applications

by intercepting the traffic that arrives at it, guaranteeing another layer of security. Let’s check

each layers of security in detail.

Network Security
It can be a little confusing for developers to think about managing a network in the cloud, since

you might imagine that any resource provided must be public. The point is exactly this – we
cannot consider any component as public when we are using public cloud providers. To do so,
you must design a proper network that will safeguard applications. For this, a Virtual Private

Cloud (VPC) must be provided.

A VPC provides a logically isolated section within a public cloud, where you can launch resourc-

es in a virtual network that you define. This isolation ensures that your resources are protected
from external threats and unauthorized access. The focus of this is to reduce the attack surface.

With VPC configurations, you will have fine-grained network control. By defining subnets, route
tables, and network gateways, you can control the flow of traffic to and from your serverless
functions and microservices. With this, only trusted sources can access your resources, and only

exactly what you want will be exposed to the public internet.

When you think about microservices, there is no direct need to have them exposed to the internet.

So, this protection is crucial for sensitive data and critical applications, minimizing the risk of
external attacks.

In Azure, there are two great services that can help you set the private architecture of your sub-

systems, guaranteeing that only the surfaces that really need to be exposed. The first one is Azure
Virtual Network, which is the component that will enable you to design a VPC according to the

configuration you decide. The second one is Azure Private Link, which will enable your services to
connect over a private endpoint in a virtual network. This will give you the opportunity to reduce
the need to expose a service to the public internet, using the Microsoft backbone network to do so.

Chapter 10 355

Obviously, if you have a better network design, you will be able to monitor and protect your solu-

tion with more efficiency. For instance, you can define Azure network security groups to define
specific rules according to a group. You have the option of monitoring the traffic of the network
by enabling Virtual Network flow logs. You can also define inbound and outbound traffic and
prohibitions using Azure Firewall. In summary, Azure Virtual Network and its components are
a powerful tool for securing communication between services in the cloud, ensuring data confi-

dentiality, integrity, and availability.

Data Security
The data that arrives at a database generally comes from a user or a system. This means that
the transmission of this data needs to be guaranteed, and we must consider ways to protect the

interception and eventual changing of this data. The best way to do so is to encrypt data from
the client to the server. Hyper Text Transfer Protocol Secure (HTTPS) is the alternative that,

generally, all web servers use to do so. Together with the Transport Layer Security (TLS) protocol,

we enable a secure channel to transfer data.

In a function app, for instance, HTTPS is the only protocol accepted by default. This means that
any HTTP (which is not secure) request will be redirected to HTTPS, providing better security for
the transfer of data. You can check it in the configuration of App Service.

Figure 10.1: HTTPS Only in App Service

Besides that, you may also want to increase the security of this transfer layer by defining a specific
certificate for your service. In Azure, you can do this by defining a domain for your app.

By default, Azure delivers to you a certificate created by Microsoft, where the domain used is
azurewebsites.net. However, you can buy a custom domain outside Azure, or even inside it, which
is much easier to manage.

Security and Observability for Serverless and Microservices Applications356

In the same way as you need to secure the transfer layer, you must secure your environment

variables and secrets. Azure provides three services to do so. The first one is called Azure Man-

aged Identities and it will let you access data in Azure SQL, Cosmos DB, Azure Storage, and so
on without the need for a credential. On the other hand, if you do need to manage variables

and secrets, Azure Key Vault is the correct service to store client application secrets, connection

strings, passwords, shared access keys, and SSH keys. However, access to Azure Key Vault may
cause performance issues for the application’s startup. That is why you should use Azure App

Configuration to store non-secrets, such as client IDs, endpoints, and application parameters.

Another important resource that you must consider while protecting data is the options you have

for data encryption in the database service. For instance, in SQL databases, there is the possibility

to use the Transparent data encryption setting.

Figure 10.2: Transparent data encryption setting

With this setting, you will prevent situations where a stolen database file can be restored on a
different server from yours. Besides that, in general, database servers also have firewall rules that

will restrict direct access to them, which is a very important approach to not expose the database

server to the public cloud.

 Custom domains will represent a cost to your Azure account. You can get more
details about custom domains at https://learn.microsoft.com/en-us/azure/

app-service/tutorial-secure-domain-certificate

https://learn.microsoft.com/en-us/azure/app-service/tutorial-secure-domain-certificate
https://learn.microsoft.com/en-us/azure/app-service/tutorial-secure-domain-certificate

Chapter 10 357

Authentication and Authorization
When you are creating an application, it is essential that you know the actor that will access it. To
do so, you must provide an authentication method, that is, the process of verifying the identity

of a user or system, ensuring that the entity requesting access is indeed who or what it claims to

be. To do so, you must use credentials such as passwords, tokens, or biometric data.

Once you have the user or system identified, there is another process that will let this actor ac-

cess resources or execute activities in the system you are designing. The process that enables it
is called authorization.

There are some alternatives to deliver authentication and authorization. We will discuss three of
them in this topic: JSON Web Tokens (JWTs), OAuth 2.0, and OpenID Connect. They are useful
techniques to provide access to websites and APIs, guaranteeing security for the system you are

designing.

JSON Web Tokens

JSON Web Token (JWT) enables security between the client and the server using an encoded

JSON object, called a token, that is transferred in the HTTP header in a compact and stateless
format. The token is created by the server as it verifies the authentication of the requestor. The
authorization is given to ensure that the requestor can access the resources. JWTs pertain to
industry standard RFC 7519.

The code provided in the chapter will give you an idea about how to implement JWTs using .NET. It
is worth noting that this code is not ready for use, since the authentication method is not resolved.

public class JWT

{

 // Private field to store the JWT token

 private JwtSecurityToken token;

 // Internal constructor to initialize the JWT with a given token

 internal JWT(JwtSecurityToken token)

 {

 this.token = token;

 }

 // Property to get the expiration date and time of the token

Security and Observability for Serverless and Microservices Applications358

 public DateTime ValidTo => token.ValidTo;

 // Property to get the string representation of the token

 public string Value =>

 new JwtSecurityTokenHandler().WriteToken(this.token);

}

internal class JWTBuilder

{

 public JWT Build() // Method to build the JWT. JWT is an object

{

 var claims = new List<Claim> // Creating a list of claims

 {

 new Claim(JwtRegisteredClaimNames.Sub,this.subject),

 new Claim(JwtRegisteredClaimNames.Jti, Guid.NewGuid().ToString())

 }.Union(this.claims.Select(item => new Claim(item.Key, item.Value)));

 var token = new JwtSecurityToken(

 issuer: this.issuer,

 audience: this.audience,

 claims: claims,

 expires: DateTime.UtcNow.AddMinutes(expiryInMinutes),

 signingCredentials: new SigningCredentials(

 this.securityKey,

 SecurityAlgorithms.HmacSha256)

);

 return new JWT(token);

 }

}

Chapter 10 359

The Build method in the JWTBuilder class is responsible for constructing a JWT based on the
properties and claims that have been configured in the builder. A List<Claim> is initialized with
two default claims: (1) sub (subject), which represents the subject of the token; (2) jti (JWT ID),
a unique identifier for the token, generated using Guid.NewGuid(). Additional claims from the

claims dictionary are appended using Union. Each key-value pair in the dictionary is converted

into a Claim object. A JwtSecurityToken object is created with the following parameters:

• issuer: The entity that issued the token.

• audience: The intended recipient of the token.

• claims: The list of claims created earlier.

• expires: The expiration time, calculated as the current UTC time plus the configured
expiryInMinutes.

• signingCredentials: Specifies how the token is signed. It uses the provided securityKey

and the HmacSha256 algorithm.

The method wraps the JwtSecurityToken in a custom JWT object and returns it. The JWT class

provides additional properties like ValidTo (expiration time) and Value (string representation
of the token).

As soon as the client requestor receives the token, it can be encapsulated in the following requests

to the server as authorization header information using the prefix Bearer. The server, when it
receives this header information, implements middleware software that analyzes whether the
request is appropriate for the requester. The great thing about it is that if the request path is
protected by the JWT process, and the request sent does not have the proper token, the request
does not arrive at the server for processing, only being processed by the middleware.

In the example presented in the chapter, you will find two APIs. The first one gives you a token for
usage. The second one is the WeatherForecast API generally available when you create an API app
using .NET. To make better use of the example, the Swagger documentation was implemented.

Security and Observability for Serverless and Microservices Applications360

Figure 10.3: JWT Swagger implementation

If you try to run the WeatherForecast API without delivering a Bearer token, the response will

be refused with a 401 error code, which means unauthorized. On the other hand, if you use the
Token API to generate the token needed and use this token for authorization with the padlock
icon available in the Swagger interface, the result of the API will be properly delivered.

Figure 10.4: Defining the Bearer token

Notice that the token provided respects the JWT standard and can be checked on the jwt.io web
page, confirming what you defined in your solution.

Chapter 10 361

Figure 10.5: Decoding JWT on the jwt.io web page

Based on the sample provided, you may consider JWT as a good way to implement a standard

method for Authorization.

OAuth 2.0 and OpenID Connect (OIDC)

OAuth 2.0 is an open standard that enables third-party providers to give applications Authoriza-

tion to access user resources without exposing their credentials. There are many great providers
that enable you to use this technique, such as Google, Microsoft, Facebook, and GitHub.

The simple use of logins with passwords for authorization is considered too risky for enterprises
nowadays. Besides that, transferring this kind of data via APIs is also very dangerous, considering

the potential cyberattacks that we need to deal with currently. For this reason, OpenID Connect

(OIDC) is a good option for Authentication, since it enables the confirmation of a user’s existence
without exposing passwords.

To do so, there are three important things to consider. The first one is that this is also an open
standard, which means that we have many servers offering this service. The second one is that
you will need to consider the usage of a third-party service, so the definition of a good provider
must be considered. The third, but not less important, is that OIDC is implemented above OAuth
2.0, which means that, with it, you will have an entire solution for authentication and authorizing
your users.

Security and Observability for Serverless and Microservices Applications362

In .NET, we have the possibility to use OAuth 2.0 and OIDC based on the Microsoft Authentica-

tion Library (MSAL). To do so using Azure, you first need to register an app in Microsoft Entra ID.

Figure 10.6: Registering an App in Microsoft Entra ID

Depending on the type of project you are developing, you will have different ways to get the

authentication of the users you want. The following code gets the user profile in a console app,
based on a prompt that will redirect the user to the browser.

private static async Task GetUserProfile()

{

 IPublicClientApplication clientApp = PublicClientApplicationBuilder

 .Create(clientId)

 .WithRedirectUri(redirectUri)

 .WithAuthority(AzureCloudInstance.AzurePublic, "common")

Chapter 10 363

 .Build();

 var resultadoAzureAd = await clientApp.AcquireTokenInteractive(scopes)

 .WithPrompt(Prompt.SelectAccount)

 .ExecuteAsync();

 if (resultadoAzureAd != null)

 {

 // Print the username of the authenticated user

 Console.WriteLine("User: " + resultadoAzureAd.Account.Username);

 }

}

The result will be the need to log in using Microsoft. In this case, OIDC is using Microsoft Entra
ID as the provider to identify the user.

Figure 10.7: Log in using Microsoft Entra ID

Security and Observability for Serverless and Microservices Applications364

Once you are logged in, Microsoft will ask if you allow it to share information about your account

with the desired application.

Figure 10.8: Authorizing app to read your data

There are two great things when you use this approach. The first one is that you don’t need to
worry about user management. This management will be held by Microsoft Entra ID, which means
that it will be centralized and customized using the expertise and experience of the provider, even
in aspects of different ways of authenticating, such as Multiple Factors for Authentication. The

second one, and more important, is the user will not need to remember another account, since

they will use the one that they already use in their common work, which makes OIDC a popular

choice for creating secure and user-friendly authentication mechanisms.

Chapter 10 365

Securing Dependencies
The Open Worldwide Application Security Project (OWASP) is a foundation that works to im-

prove the security of software in a nonprofit approach. One of their most well-known initiatives
is the Top 10 list, which presents the riskiest situations in relation to your software. This list
indicates situations such as injection attacks, broken authentication, sensitive data exposure,

and security misconfigurations.

When developing solutions, the usage of vulnerable and outdated components is considered one

of the Top 10 risks. Libraries, frameworks, and APIs play a significant role in modern web applica-

tion development, but these components can also introduce vulnerabilities into the application if

not carefully managed. The decision to use third-party components can provide attackers with a
vector to exploit the application, potentially leading to data breaches, unauthorized access, and
other security incidents.

Considering the .NET environment, the usage of components is always connected to NuGet.
Since NuGet is the package provider, in Visual Studio, it is quite simple to check if you are using

a library that is outdated.

Figure 10.9: Using NuGet to check outdated libraries

On the other hand, you must be aware that not only .NET packages need to be updated in a
solution. When it comes to microservices, depending on the approach decided on to implement

them, you will need to handle components that could be in the container or even in the infra-

structure that manages the containers of the solution, and these parts of the application must

also be continuously checked, evaluating whether there are any vulnerabilities that could cause

damage to your solution.

Security and Observability for Serverless and Microservices Applications366

If you are using GitHub as a repository, you may consider using GitHub Dependabot as a tool for

automatically scanning your GitHub projects for outdated dependencies and known vulnerabili-

ties, and then opening PRs to update them. Sonar and Sync are other tools that you may consider

in your pipeline to prevent third-party security issues.

The purpose of the CVE program (https://www.cve.org/) is to help us with that. CVE means Com-

mon Vulnerabilities and Exposures, and it is a list of publicly disclosed computer security issues.

Kubernetes and Azure Container Apps Security
Orchestrators’ security is twofold: on one side, we have user access security, and on the other

side, we have network security. Here, we refer to the users of the orchestrator, not the users of the

application hosted by the orchestrator, that is developers, administrators, and other operators

that maintain both the orchestrator installation and its applications.

The security of application users is taken care of by the application itself with the usual web appli-
cation tools that are not specific for microservices, that is security tokens such as authentication
cookies and bearer tokens, user claims, roles, and authorization policies.

Orchestrator network security refers to orchestrator tools for isolating both different applications

running in the same cluster and different parts of the same application.

This section discusses both the orchestrator user’s access security and network security for Ku-

bernetes and Azure Container Apps, each in a dedicated subsection. Let’s start with Kubernetes
network security.

Kubernetes network security
Kubernetes network security enriches the usual IP-based firewall rules with constraints on high-

er-level software entities like Kubernetes Pods and namespaces.

Thus, for instance, we may isolate two applications running in the same Kubernetes cluster by
placing them into two different namespaces and then forbidding any communication between

those two namespaces.

We may also run sensitive Microservices in a “militarized zone” implemented as a namespace that
exposes just a few filtering Pods to external communications. This way, the filtering Pods can

look for adequate credentials and potential threats before routing the incoming communication

to the microservices that must process them.

https://www.cve.org/

Chapter 10 367

Pod- and namespace-based network rules are more modular and flexible than IP-address-based rules
since they directly constrain application-level entities instead of hardware-related entities.

Network security rules are defined through NetworkPolicy resources defined with the .yaml

below:

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: example-network-policy

 namespace: example-namespace

spec:

 podSelector:

 matchLabels:

 myLabel: matValue

 myLabel1: matValue1

 policyTypes: # may be either Ingress, or Egress or both

 - Ingress

 - Egress

 ingress:

 - from:

 ….

 egress:

 - to:

The policy applies to all Pods selected by podSelector that are in the same namespace of the

NetworkPolicy resource.

If policyType contains the Ingress item, then the policy constrains input communications

through rules that must be listed in the ingress section. If Ingress is not listed in policyType,

the ingress section must be omitted.

If policyType contains the Egress item, then the policy constrains output communications

through rules that must be listed in the egress section. If Egress is not listed in policyType, the

egress section must be omitted.

Communication from/to each Pod must satisfy the constraints of all NetworkPolicy resources

that select it with their podSelector.

Security and Observability for Serverless and Microservices Applications368

Each from section selects possible sources of communication that sum up to the sources of com-

munication selected by all other from sections. Analogously, each to section selects possible

destinations of communication that sum up to the destinations of communication selected by

all other to sections.

Each from and each to contains a list of constraints that must be all satisfied by the allowed
sources or destinations. There are three kinds of constraints that can be added:

• Constraints on IP addresses:

 - ipBlock:

 cidr: 172.17.0.0/16

 except:

 - 172.17.1.0/24

• A selector expression that selects Pods of the same namespace of the NetworkPolicy

resource:

 - podSelector:

 matchLabels:

 podlabel1: podvalue1

 …

• A selector expression that selects other allowed namespaces:

 - namespaceSelector:

 matchLabels:

 namespacelabel1: namespacevalue1

 …

If you would like to receive or send communications just to some Pods of the selected namespaces,

you can also nest a podSelector inside the namespaceSelector based item as shown here:

- namespaceSelector:

 matchLabels:

 namespacelabel1: namespacevalue1

 podSelector:

 matchLabels:

 podlabel1: podvalue1

Chapter 10 369

Each from and to can also limit the allowed communication to a list of ports and port intervals

as shown here:

 ports:

 - protocol: TCP

 port: 6379

 …

 - protocol: TCP

 port: 8000

 endPort: 9000

If the item contains both port and endPort, it specifies a port interval. Otherwise, if it contains
just port, it specifies a single port.

Here is a policy that selects all Pods of the mysample namespace and accepts traffic from all Pods
of the same namespace and from all Pods of the mysafe namespace:

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: example-network-policy

 namespace: mysample

spec:

 podSelector: {}

 policyTypes:

 - Ingress

 ingress:

 - from:

 - podSelector:{}

 - namespaceSelector:

 matchExpressions:

 - key: namespace

 operator: In

 values: ["mysafe"]

Security and Observability for Serverless and Microservices Applications370

Here is a policy that selects all Pods of the mysample namespace, and accepts traffic from all Pods
of the same namespace and from all Pods of the mysafe namespace, but only on port 80:

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: example-network-policy

 namespace: mysample

spec:

 podSelector: {}

 policyTypes:

 - Ingress

 ingress:

 - from:

 - podSelector:{}

 - namespaceSelector:

 matchExpressions:

 - key: namespace

 operator: In

 values: ["mysafe"]

 ports:

 - protocol: TCP

 port: 80

Here is a policy that enables all input traffic of the militarized-zone namespace to pass through

the Pods labeled with role: access-control:

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: access-control

 namespace: militarized-zone

spec:

 podSelector:

 matchLabels:

 role: access-control

 policyTypes:

 - Ingress

 ingress:

Chapter 10 371

 - from:

 - podSelector:{}

 - namespaceSelector:{}

We can force all traffic to pass just through the Pods with role: access-control by adding

another rule that prevents traffic from external namespaces to all other Pods:

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: access-control

 namespace: militarized-zone

spec:

 podSelector:

 matchExpression:

 - key: role

 operator: NotIn

 values: ["access-control"]

 policyTypes:

 - Ingress

 ingress:

 - from:

 - podSelector:{}

NetworkPolicy entities constrain direct communication between Pods, that is communication

based on Kubernetes services. However, what happens to communication mediated by message

brokers?

We may use a different broker for each namespace we would like to isolate, so that we can use

NetworkPolicy entities to constrain access to the various message brokers, too. If the message

broker servers run outside of the Kubernetes cluster, we may use NetworkPolicy rules that filter
the message broker IP addresses. Otherwise, we can deploy each message broker in the same

namespace it serves, so that its Pods are also constrained by the same NetworkPolicy entities

that constrain direct communication between microservices.

If instead, we use a single message broker cluster, we are forced to use the message broker’s in-

ternal authorization policies to filter the access to the various message queues.

Azure Container Apps has simpler but less powerful network security.

Security and Observability for Serverless and Microservices Applications372

Azure Container Apps Network Security
To configure network security in Azure Container Apps, you must use a custom Azure Virtual

Network (VNET). This requirement introduces the need for specific configurations and profiles.
The setup typically follows these steps:

1. Define a custom Azure VNet.

2. Associate a dedicated subnet from the VNet to each Container Apps environment.

3. Assign a subnet from each environment to its respective application.

4. Express communication constraints between environments and applications as firewall
rules on the VNet subnets.

However, this approach has some limitations. Because network rules are defined using IP-ad-

dress-based constraints, rather than explicit software-level policies, the result is reduced mod-

ularity and limited scalability. This model may be sufficient for small-scale applications with a
few communication restrictions, but as your microservices ecosystem grows, the approach can

become too complicated.

If your system’s communication is handled through external message brokers, a simpler and

more scalable solution is to manage access via the broker’s authorization policies, controlling

which services can access specific message queues.

Kubernetes User Security
Kubernetes user security is based on four concepts:

1. User: This represents the user who logs in with Kubectl. Each user has a unique username
and authenticates with a client certificate. Both certificate and username must be added to
the user’s Kubectl configuration file as explained in the Interacting with Kubernetes: Kubectl,

Minikube, and AKS section of Chapter 8, Practical Microservices Organization with Kubernetes.

2. User Group: Each user group is just a name – a string that may be associated to each user

and inserted in its client certificate. User groups simplify the assignation of permissions
to users, since each privilege can be assigned to a single user or to a whole user group.

For detailed guidance on associating custom subnets with environments and applica-

tions, refer to the official documentation: https://learn.microsoft.com/en-us/
azure/container-apps/networking?tabs=workload-profiles-env%2Cazure-

cli.

https://learn.microsoft.com/en-us/azure/container-apps/networking?tabs=workload-profiles-env%2Cazure-cli
https://learn.microsoft.com/en-us/azure/container-apps/networking?tabs=workload-profiles-env%2Cazure-cli
https://learn.microsoft.com/en-us/azure/container-apps/networking?tabs=workload-profiles-env%2Cazure-cli

Chapter 10 373

3. Role: Each role represents a set of permissions.

4. Role bindings: Each role binding associates a role, that is a set of permissions, to several

users and user groups. Put simply, role bindings encode a one-to-many relationship be-

tween roles and both users and user groups.

Permissions can be scoped either to a single namespace or to the whole Kubernetes cluster. Role

and role bindings representing namespace-scoped permissions are encoded respectively in Role

and RoleBinding Kubernetes resources, while role and role bindings representing cluster-scoped

permissions are encoded respectively in ClusterRole and ClusterRoleBinding Kubernetes

resources.

A RoleBinding can only refer to a Role, while a ClusterRoleBinding can only refer to a ClusterRole.

Here are the definitions of a Role:

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 namespace: <namespace name>

 name: <role name>

rules:

- apiGroups: [""] # "" indicates the core API group

 resources: ["pods"]

 verbs: ["get", "watch", "list"] # also "create", "update", "patch",

"delete"

Each Role is identified by its name and by the namespace it applies to. Permissions are specified
as a list of rules, where each rule contains:

• apiGroups: The API that contains the operations and the resources involved in the per-

mission. For instance, the API group for Deployments is “apps,” while the API group for
Pods is the core API that is represented by the empty string. The API groups string corre-

sponds to the API name contained in each resource apiVersion property. Each rule can

specify several API groups.

• resources: The name of the resources that can be manipulated with permission (Pods,
Deployments, Services, etc.).

Security and Observability for Serverless and Microservices Applications374

• verbs: The operations allowed on the resources:

• get: Getting information on specific resource instances.

• watch: Observing resource instance properties as they change in time. That is, per-

forming a Kubectl get or a Kubectl describe with the –watch flag on the resource.

• list: Listing the resource in any list of results.

• create: Creating an instance of the resource.

• delete: Deleting an instance of the resource.

• update: Updating a resource instance by providing a new object that represents

the instance. This is a case of the resource being updated with Kubectl apply.

• patch: Updating a resource instance with Kubectl patch. In this case, we specify

an existing resource and then replace just a property with the value contained

in the -p option. The property may also be a complex object, in which case the
properties specified in the object tree recursively replace existing values, while
properties not specified in the object tree are left unchanged. Here’s an example:

kubectl patch pod <pod name> -p '{"spec":{"containers":[{"nam

e":"kubernetes-serve-hostname","image":"new image"}]}}'

Here’s a role that might be adequate for developers of an application that runs in the my-app

namespace:

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 namespace: my-app

 name: developer-user-role

rules:

- apiGroups: ["", "apps"]

 resources: ["pods", "services", "configmaps", "secrets", "deployments",

"replicasets"]

 verbs: ["get", "list", "watch", "create", "update", "delete"]

All of apiGroups, resources, and verbs accept the wildcard “*” string that matches everything.

A ClusterRole definition is completely analogous, the only difference being that no namespace
must be specified and that type: Role is replaced by type: ClusterRole.

Chapter 10 375

Here is the definition of a RoleBinding:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: <role binding name>

 namespace: <reference namespace>

subjects:

- kind: User # specific user

 name: jane # "name" is case sensitive

 apiGroup: rbac.authorization.k8s.io

- kind: Group #user group

 name: namespace:administrators # "name" is case sensitive

 apiGroup: rbac.authorization.k8s.io

…

roleRef:

 # "roleRef" specifies the binding to a Role

 kind: Role #this must be Role

 name: <role-name> # this must match the name of the Role you wish to

bind to

 apiGroup: rbac.authorization.k8s.io

A RoleBinding contains a name and the reference namespace and specifies the Role it is bound

to in its roleRef property. The subjects property contains a list of both users and users’ groups,

where each item specifies the user or group name and the kind of subject.

Here is a RoleBinding that matches the example developer-user-role Role we have seen before,

with all users belonging to the developers group:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: developers-binding

 namespace: my-app

subjects:

- kind: Group

 name: developers

 apiGroup: rbac.authorization.k8s.io

roleRef:

Security and Observability for Serverless and Microservices Applications376

 kind: Role

 name: developer-user-role

 apiGroup: rbac.authorization.k8s.io

A ClusterBindingRole definition is completely analogous, the only difference being that no
namespace must be specified, roleRef must refer a ClusterRole, and that type: BindingRole

is replaced by type: ClusterBindingRole.

Client certificates do not need to be issued by a public certification authority but need just to be
approved by the Kubernetes cluster. Here is the complete procedure for creating an approved

certificate:

a. As the first step, you must create the certificate key. This can be done by opening a Linux
console and using openssl:

 openssl genrsa -out mynewuser.key 2048

b. You must store the mynewuser.key file containing the certificate key since it is needed to
configure the Kubectl configuration file.

c. Now let’s extract the public part mynewuser.key in a certificate approval request. Again,
we can do it with openssl:

openssl req -new -key mynewuser.key -out mynewuser.csr -subj "/CN=

mynewuser /O=example:mygroup"

d. The above instruction generates the mynewuser.csr file, containing a certificate approval
request. mynewuser must be replaced by the actual username, while example:mygroup

must be replaced by the name of the user group you would like to add the user to.

e. Now you must encode the certificate request in base 64:

cat mynewuser.csr | base64 | tr -d "\n"

f. The previous command returns the base-64-encoded certificate in the Linux console.
Please select and copy it. You must insert it in a .yaml file that encodes the approval re-

quest for the Kubernetes cluster:

apiVersion: certificates.k8s.io/v1

kind: CertificateSigningRequest

metadata:

 name: mynewuserrequest

spec:

Chapter 10 377

 request: <base64 encoded csr>

 signerName: kubernetes.io/kube-apiserver-client

 expirationSeconds: <duration in seconds>

 usages:

 - client: auth

g. The only fields you must change are the name, that is the approval request name, and

expirationSeconds, which contains the certificate validity in seconds.

h. Now let’s open the Windows console to interact with Minikube. Let’s start Minikube if

it’s not started and then pass the previous .yaml file with:

Kubectl apply -f mynewuserrequest.yaml.

i. Now we can approve the certificate with:

kubectl certificate approve mynewuserrequest

j. After the approval, we can get the final certificate in base 64 format:

kubectl get csr mynewuserrequest -o jsonpath='{.status.

certificate}'> mytempfile.txt

k. Finally, we must base 64 – decode mytempfile.txt to get the certificate in binary format.
We can do it by opening a Linux console in the folder that contains mytempfile.txt, and

then issuing:

cat mytempfile.txt | base64 -d > mynewuser.crt

l. Now you can use both mynewuser.key and mynewuser.crt to update the Kubectl configu-

ration file of the new user as explained in the Interacting with Kubernetes: Kubectl, Minikube,

and AKS section of Chapter 8, Practical Microservices Organization with Kubernetes.

As an exercise, you can use the above procedure to define a new Minikube user belonging to the
developers user group, and then you can assign it developer privileges on the myapp namespace

with the example developer-user-role Role and developers-binding RoleBinding we de-

fined before.

That’s all! Let’s move on to Azure Container Apps user security.

Security and Observability for Serverless and Microservices Applications378

Azure Container Apps User Security
Azure Container Apps has no dedicated user security like Kubernetes but uses Azure security.
Roles can be assigned to specific users either through the Azure portal or with the Azure CLI with
this command:

az role assignment create `

--assignee <USER IDENTITY RESOURCE ID> `

--role <ROLE NAME> `

--scope <ENVIRONMENT OR APPLICATION_RESOURCE_ID>

All available roles can be inspected on the Environment and Application page of the Azure portal.
Both the application/environment resource ID and the user identity resource ID are available on
their respective pages.

Threat Detection and Mitigation
The number of threats we need to deal with in an application is quite huge and OWASP, as men-

tioned before, helps us with that. There are many common attacks that an application will need
to handle and not only the protection of its network, data, entrance, and dependencies will be

enough to deal with these attacks.

Threats
The most difficult point of this scenario is detecting a threat on the fly while an application is
running. But to detect them, we need to understand basically what they are, so let’s check out,

in the following topics, some of the common attacks.

Event Injection

When an attacker manipulates input data to execute unauthorized actions within an application,

leading to data breaches, service disruptions, or unauthorized access, we are under an event
injection attack.

There are several strategies of mitigation, which include validating and sanitizing the input, guar-

anteeing strict input data; using strong-validation libraries, to define well-established libraries
and framework connections; and restricting the privilege of users to the minimum necessary.

Chapter 10 379

Privilege Escalation

In an application where you have different levels of access, privilege escalation occurs when an

attacker gains access beyond what they need to have, accessing resources or functions that they

are not authorized to use. The result can be catastrophic, leading to unauthorized data access,
total system control, and further exploitation of the application.

Fine-grained access control to restrict users must be well implemented. Also, there is the pos-

sibility to use an Identity and Access Management (IAM) solution, which will enforce user

permissions. Regular audits and Multi-Factor Authentication (MFA) will also help to mitigate

possible scenarios where unauthorized users may access relevant data.

Denial of Service (DoS) Attacks

Let’s suppose you have massive and excessive traffic in your application caused by an attacker

who wants to disrupt the availability of your solution, making the site simply stop responding

accordingly. This is what we call a Denial of Service (DoS) attack. A DoS attack is caused by a

single attacker, from a single point. If you have an event where multiple origins of attacks are

observed, you must be experiencing a DDoS attack, which means that the attack is distributed.

Obviously, the main way to mitigate this kind of attack is by blocking the traffic generated by its
origin, so traffic filtering can be the best option. There is also the possibility of limiting the rate
of access from a specific client for a period, minimizing the impact of DDoS attacks.

Besides that, if you have a solution with great availability, focused on delivering high levels of

requests, you can suffer less with this kind of attack, especially if we are talking about DoS. So,

auto-scaling strategies, which automatically adjust the number of active instances of a service

based on the current load, are a good approach for that. Content delivery network (CDN) im-

plementations, which approximate content to the ones who are using it by implementing the

content across multiple geographically dispersed servers, can be also a good way to protect from

this kind of attack.

Man-in-the-Middle (MitM) Attacks

Man-in-the-Middle (MitM) attacks occur when you have an interception of communication

between two parts of a system, altering data, which can cause inconsistent information in the

solution you provide.

Security and Observability for Serverless and Microservices Applications380

As we have checked before, implementing a secure communication channel, using encryption

protocols to secure data in transit, is certainly the best way to reduce the risk of this threat. Au-

thentication mechanisms can also help in this case, especially if there is a way to verify the iden-

tities of communicating parties.

Code Injection

Software code is certainly one of the ways to cause an attack in an application, especially if the

code enables the injection of malicious code. Malicious code can be added in SQL commands that

do not properly restrict what is executed in the database, enabling leaks, changes, or even data

exclusion. In cases where your application enables the execution of scripts, the risk is also high,

and unauthorized actions can happen due to this. You can also have cases where code is injected
by attackers into web pages viewed by other users. This is called cross-site scripting (XSS).

Implementing a serious code review process, applying secure coding practices, is mandatory in

enterprises where the software is crucial for the business. To help with this, the usage of a static
analysis tool must be considered, based on the amount of code that is generated daily by the

company.

Detection and Mitigation with Web Application Firewalls
Since you now understand the number of threats available, it is reasonable to say that there is no

way to be entirely protected from them without a tool that can monitor the entire traffic, inspect
it according to the different known threats, and alert you to take action once you have something

suspicious. That is exactly what a Web Application Firewall (WAF) does.

SQL injection, XSS, and other common web exploits can be handled by WAFs, so you must consider

their use crucial for securing serverless and microservices applications. This is only possible be-

cause WAFs in general monitor HTTP/HTTPS traffic, giving you the possibility to block malicious
requests from a specific client, even before they reach your application.

They also provide a centralized panel for monitoring traffic and logging, which really simplifies
the administration and increases your knowledge about the attacks you are suffering. It is import-

ant to mention that if you are running a public cloud solution, you are constantly under attack.

The service Microsoft offers as a WAF is called Azure Web Application Firewall. It is worth noting
that Azure WAF works at Layer 7 (the application layer) of the OSI model and analyzes HTTP(S)
traffic. To do so, it will be necessary to check the requests and responses passing through a channel.
One of the alternatives for this channel is called Azure Application Gateway. This component is

a web traffic load balancer that also works on OSI Layer 7. It enables you to manage the traffic of

Chapter 10 381

your web applications. All the inspected traffic that suggests a threat is sent to Azure Monitor as
an alert so that an administrator of the application can analyze it and take action.

As you may imagine, a solution that monitors the entire traffic of your application is obviously
a concern when it comes to budget. So, this is certainly a point of discussion about investment

and the trade-off of it must be analyzed.

Figure 10.10: Sample solution architecture for enabling WAF

The preceding diagram represents a solution architecture using the components that were de-

scribed in this topic. As you can see, common users access the system via HTTPS, Azure Applica-

tion Gateway handles traffic routing, and Azure WAF protects the solution against web threats.
There is also the implementation of a Container Apps environment for scaling workloads using
containers, and the microservices are running inside a virtual network. Azure Monitor is being
used for the logging and observability of the system, so administrator access to Azure Monitor is
used for insights. Observability is exactly the next topic that we will discuss. Let’s have a look at it.

Security and Observability for Serverless and Microservices Applications382

Observability for Serverless and Microservices
As we have seen up to this point of the book, distributed systems contain a complexity that brings

to a solution some concerns that you can’t ignore. The implementation of a single microservice,
using techniques such as serverless or containerization, is generally quite simple, but observing
the entire solution is a difficult task and is certainly one of these concerns. The adoption of the
observability concept is a good answer to this problem.

Observability is defined by three primary signals: logs, metrics, and traces. A log is an immutable,
time-stamped record of an event. A metric is a numerical representation of system performance

over time. A trace represents the journey of a request across services in a distributed system. To-

gether, these three signals provide insight into system behavior, enabling proactive maintenance

and fast troubleshooting.

Different from traditional monitoring, which generally focuses on predefined metrics and system
health indicators, and is often reactive, observability defends a proactive approach, where the

monitoring is continuous to avoid critical problems, and fast root-cause detection is the goal.

There are several tools available to help implement observability in distributed systems. For logs,
tools like Seq and the ELK Stack offer powerful log aggregation and visualization capabilities. For
metrics, Prometheus is a widely used open-source monitoring solution, often paired with Grafa-

na for visualization. For distributed tracing, Jaeger and Zipkin are popular open-source options.

However, Application Performance Monitoring (APM) tools like Azure Monitor, Datadog, and
New Relic allow you to centralize logs, metrics, and traces in one place, providing a full picture
of system behavior. Choosing between them depends on your infrastructure, cloud provider, and

integration needs.

Let’s understand each signal of observability in detail to make it easier to understand.

Logging
Contextual-rich data is necessary to understand exactly where and when in the distributed sys-

tem the issue monitored started. For example, understanding the sequence of service calls and

the data passed between them can reveal whether an error originated from a specific service or
from the interaction between services. This level of detail is crucial for effective debugging and
for ensuring the resilience and reliability of distributed systems.

Chapter 10 383

So, to enhance the usability of logs, it is essential to adopt a structured format that is easy to

query and process. One of the most common approaches is to use JSON for log entries, as it offers

readability and broad compatibility across systems. However, structured logging goes beyond

using a structured format. It requires purposefully defining the meaning (semantics) of each log
field. This ensures consistency, improves observability, and enables better filtering, indexing, and
correlation across logs.

Besides that, effective logging needs the use of different logging categories to define the severity
and importance of log entries.

• Debug: Detailed information for technical internal purposes.

• Info: General information about the application.

• Warning: Alerts that may indicate potential issues, but that did not cause the halting of

the application.

• Error: Problems that impact the application’s operation and that need to be analyzed.

• Fatal: Critical errors that cause the application to terminate.

The correct usage of logging levels minimizes efforts in analyzing issues, focusing on critical ones
in an efficient and effective approach.

Metrics
When it comes to metrics that need to be monitored and evaluated for serverless and microser-

vices architectures, there are specific indicators that can be monitored.

For instance, Azure Functions measures the time it takes for a function to execute from start to
finish. This is called Function Execution Time. Shorter execution times generally indicate better

performance.

Azure Functions also measures the latency between a serverless function being triggered and the
moment the function essentially starts running. This is called Cold Start and reducing it causes

improvement of the user experience.

The number of invocations and the number of errors also illustrate how the function is working,

helping in the analysis of performance and possible problematic code.

On the other hand, when you have containerized environments, CPU and Memory Usage may

be good metrics to monitor. The first one can affect performance if it is too high, and scaling may
be considered. The second one can also impact performance, and the the cause of memory leaks
can be addressed.

Security and Observability for Serverless and Microservices Applications384

Network Traffic may also be a concern in containerized environments and can indicate issues
related to communication between microservices. Pod Health can help in identifying failing or

unhealthy Pods.

These and other metrics can not only be monitored but also alerted using threshold-based al-

gorithms and alerts. Today, in Azure, we also have some anomaly detection done by machine

models that generally detect deviation of behaviors in some situations, like time-response.

Once alerts are properly set, it is also important to have a clear protocol for responding to these

alerts. This is normally called the Incident Response Process. The process needs to determine
how to deal with the incident (alert), how to communicate it, and how to discover the root cause,
so the incident does not happen again.

Tracing
When you have a distributed application, understanding the complete path from a request to

its end is important to effectively diagnose situations across the microservices that are chained.

That is why tracing is so important, and .NET applications together with Azure have a very good
package of libraries to help you with it.

The usage of Azure Monitor here is crucial for success. Of course, there are other APM systems
that can be used to observe the traceability of an application, but Azure Monitor gives us facilities
that you may consider using. Besides that, the OpenTelemetry library will give you the versatility

needed for enterprise solutions. OpenTelemetry (OTel) is a cross-platform, open standard for
collecting and emitting telemetry data.

In .NET the OpenTelemetry implementation uses well-known platform APIs for instrumentation:

• Microsoft.Extensions.Logging.ILogger<TCategoryName> for logging

• System.Diagnostics.Metrics.Meter for metrics

• System.Diagnostics.ActivitySource and System.Diagnostics.Activity for distrib-

uted tracing

These APIs are used by OTel for collecting telemetry and exporting this data to an APM service
selected by the developer.

It is also important to notice that the implementation of trace propagation using OTel for .NET
and Azure Monitor is fully automated, which accelerates the process of observing the application’s

behavior in Azure Monitor.

Chapter 10 385

Centralized Observability with Azure Monitor
The following example will give you an idea of how powerful Azure Monitor is as an APM system
to centralize logging, metrics, and tracing as a professional observability tool, accelerating diag-

nosing and enabling proactive management with rapid troubleshooting.

The code provided in startup uses Azure Monitor for registering the telemetry collected by
OpenTelemetry libraries, as we can see here:

var builder = WebApplication.CreateBuilder(args);

// Retrieve Application Insights connection string from configuration

string appInsightsConnectionString = builder.Configuration[

 "AzureMonitor:ConnectionString"];

builder.Services.AddOpenTelemetry()

 .WithTracing(tracerProviderBuilder =>

 {

 tracerProviderBuilder

 // Set resource builder with application name

 .SetResourceBuilder(

 ResourceBuilder.CreateDefault().AddService(

 builder.Environment.ApplicationName))

 // Add ASP.NET Core instrumentation

 .AddAspNetCoreInstrumentation()

 // Add HTTP client instrumentation

 .AddHttpClientInstrumentation()

 // Add Azure Monitor Trace Exporter with connection string

 .AddAzureMonitorTraceExporter(options =>

 {

 options.ConnectionString = appInsightsConnectionString;

 });

 });

// Add Application Insights only for logging & metrics

// (without re-adding tracing)

builder.Services.AddApplicationInsightsTelemetry(options =>

{

 options.ConnectionString = appInsightsConnectionString;

Security and Observability for Serverless and Microservices Applications386

 // Disable AI's automatic trace sampling

 options.EnableAdaptiveSampling = false;

 // Prevents duplicate dependency tracking

 options.EnableDependencyTrackingTelemetryModule = false;

 // Prevents duplicate HTTP request tracking

 options.EnableRequestTrackingTelemetryModule = false;

});

var app = builder.Build();

The same code has two APIs. The APIs will obtain data via another route, but one of them will
try to access an unknown URL.

// Map GET request to /error endpoint

app.MapGet("/error", async (HttpContext context) =>

{

 var httpClient = new HttpClient();

 var response = await httpClient.GetAsync(

 "https://anyhost.sample.com/data");

 return "Hello Trace!";

});

Notice that the API that is working with a successful endpoint will try to access the Packt website.

// Map GET request to /success endpoint

app.MapGet("/success", async (HttpContext context) =>

{

 var httpClient = new HttpClient();

 var response = await httpClient.GetAsync("https://www.packtpub.com/");

 return "Hello Trace!";

});

Both results are impressive. The first one indicates the endpoint with an error can be tracked
entirely in the Azure Monitor End-to-end transaction view.

Chapter 10 387

Figure 10.11: Endpoint with an error in Azure Monitor End-to-end transaction view

This monitoring would be useful to detect this endpoint error, facilitating the correction of this bug.

The second result is also interesting because it detects a redirection that could improve the per-

formance of the request.

Figure 10.12: Endpoint with a successful result in Azure Monitor End-to-end transaction view

The point here is that every call will take 67.2 milliseconds only to redirect to the page that is

desired. Maybe an alternative solution would be to directly access the correct URL. We need to

understand this example as a hypothetical case, but in real-world cases, this can increase the

performance of the application.

Summary
In this chapter, we had the opportunity to discuss security and observability strategies for server-

less and microservices applications. We need to understand that the increase in threats posed

by cybercrime moves us to integrate security from the initial stages of product development. To
do so, we must apply, in our security by design approach, security best practices for databases,

implementing authentication and authorization mechanisms like JSON Web Tokens (JWTs),

OAuth 2.0, and OpenID Connect (OIDC), and using network protection methods like Virtual

Private Clouds (VPCs) and Azure Private Link. Encryption, HTTPS enforcement, and the use of
Azure Key Vault for managing secrets are also important for modern application development.

Security and Observability for Serverless and Microservices Applications388

Another focus of the chapter was network security, particularly in Kubernetes and Azure Container
Apps environments. That is why the chapter explained how Kubernetes network policies enhance
security through the isolation of applications and services using namespaces and Pod-based

network rules. Azure’s network security strategies involve virtual networks, firewalls, and private
links to limit exposure to public threats. The chapter also discussed user security, emphasizing
role-based access control (RBAC) in Kubernetes and Azure role assignments. It also addressed
securing dependencies by ensuring that third-party components, libraries, and containers are

regularly updated to prevent vulnerabilities.

The chapter also emphasized the importance of threat detection, using web application firewalls
(WAFs) and proactive security strategies to mitigate threats such as injection attacks, denial-of-ser-

vice (DoS) attacks, and privilege escalation.

To finish, observability was another critical topic presented, which was defined through three
primary signals: logs, metrics, and traces. The chapter explained how structured logging, cate-

gorized by severity levels, can help diagnose issues efficiently. It also covered key performance
metrics for both serverless functions and containerized applications, such as execution times,
resource consumption, and error rates. Tracing techniques, including OpenTelemetry and Azure
Monitor, were presented as solutions for tracking distributed transactions and enhancing system

monitoring.

Questions
1. Why is security a critical concern in serverless and microservices architectures com-

pared to monolithic applications?

Security is more critical in serverless and microservices architectures because they sig-

nificantly expand the attack surface. Unlike monolithic applications, distributed systems
involve multiple independent services communicating over networks, which increases

the potential entry points for cyberattacks. Each microservice, API, or function might

expose vulnerabilities, and the complexity of managing security across them demands a

more comprehensive and layered approach.

2. What are the key layers of security in an application, and why is the “onion model” a

useful analogy?

The key layers of security include:

• Data security (e.g., encryption, secure database access)

• Application security (e.g., authentication and authorization)

Chapter 10 389

• Third-party components (e.g., library updates)

• Infrastructure and network security (e.g., VPCs, firewalls)

• Traffic interception and monitoring (e.g., WAFs)

The “onion model” is useful because it emphasizes that security must be implemented
in multiple concentric layers. Each layer reinforces the others, reducing the likelihood of

a single point of failure.

3. How does a Virtual Private Cloud (VPC) improve security in cloud environments, and

what are its key benefits?

A VPC creates a logically isolated network within the public cloud, allowing you to define
custom subnets, routing rules, and gateways. Key benefits include:

• Reduced exposure to public threats

• Fine-grained traffic control

• Integration with services like Azure Private Link

• Enhanced monitoring and protection through network security groups and flow
logs

4. What is the difference between authentication and authorization, and what are some

commonly used authentication mechanisms?

• Authentication is the process of verifying the identity of a user or system.

• Authorization determines what an authenticated user is allowed to do.

• Common mechanisms include:

• JSON Web Tokens (JWTs)

• OAuth 2.0

• OpenID Connect (OIDC)

5. How does a JSON Web Token (JWT) ensure secure communication between a client

and a server?

A JWT encodes user claims in a signed JSON object transferred via HTTP headers. After
successful authentication, the server issues a token. This token is then included in subse-

quent requests by the client. Middleware on the server verifies the token before allowing
access. The stateless and signed nature of JWTs helps ensure message integrity and secure
access control.

Security and Observability for Serverless and Microservices Applications390

6. What are Kubernetes resources for handling network security?

Kubernetes handles network security using:

• Namespaces for isolating applications

• Pods with specific labels and rules

• NetworkPolicy resources to define ingress/egress rules based on:

• IP blocks

• Pod selectors

• Namespace selectors

• Ports and protocols

These policies constrain communication between services in a modular, application-cen-

tric way.

7. What are Kubernetes resources for handling users’ security?

User security in Kubernetes is managed through:

• Users and Groups

• Roles and RoleBindings (namespace-scoped)

• ClusterRoles and ClusterRoleBindings (cluster-wide)

Permissions are defined through verbs (get, list, create, delete, etc.) and bound to users/
groups via role bindings. Authentication typically uses client certificates.

8. Does Azure Container Apps have specific facilities for users and network security?

Yes:

• Network security is handled through Azure Virtual Networks and subnets.

• User access is managed via Azure Role-Based Access Control (RBAC), where roles
are assigned to users through the Azure portal or CLI.

• Azure does not have a dedicated user security model like Kubernetes but relies on
the broader Azure identity platform.

Chapter 10 391

9. What are some common cyber threats, such as privilege escalation and denial-of-ser-

vice attacks, and what strategies can be used to mitigate them?

Common threats:

• Event injection: Mitigated by input validation/sanitization.

• Privilege escalation: Mitigated by fine-grained access controls, IAM solutions,
audits, and MFA.

• DoS/DDoS attacks: Mitigated by rate limiting, traffic filtering, auto-scaling, and
CDNs.

• MitM attacks: Mitigated by HTTPS/TLS encryption and authentication.

• Code injection (e.g., SQL Injection, XSS): Mitigated by secure coding practices,
static analysis, and WAFs.

10. What role do Web Application Firewalls (WAFs) play in securing microservices appli-

cations, and what are their main advantages?

WAFs monitor and filter HTTP/HTTPS traffic, blocking malicious requests before they
reach the application. Advantages include:

• Protection against known web exploits (e.g., SQL injection, XSS)

• Centralized logging and alerting (e.g., via Azure Monitor)

• Ability to block specific clients

• Simplified security administration

Azure’s WAF integrates with Application Gateway and operates at OSI Layer 7.

11. What are the three primary signals of observability, and how do they contribute to

maintaining a secure and efficient system?

The three primary signals are:

• Logs: Immutable event records that help in debugging and auditing.

• Metrics: Quantitative performance indicators (e.g., execution time, memory us-

age).

• Traces: Visualize request paths across services for root-cause analysis.

Together, they allow proactive monitoring, help detect anomalies, and support rapid
incident response—crucial for secure and resilient systems.

Security and Observability for Serverless and Microservices Applications392

Further reading
• Azure Container Apps Networking: https://learn.microsoft.com/en-us/azure/

container-apps/networking?tabs=workload-profiles-env%2Cazure-cli.

• Buy a custom domain: https://learn.microsoft.com/en-us/azure/app-service/

manage-custom-dns-buy-domain

• Storing app secrets: https://learn.microsoft.com/en-us/samples/azure/azure-sdk-

for-net/app-secrets-configuration/

• Transparent Data Encryption: https://learn.microsoft.com/en-us/sql/relational-
databases/security/encryption/transparent-data-encryption

• JSON Web Tokens: https://jwt.io/

• OAuth 2.0: https://oauth.net/

• MSAL: https://learn.microsoft.com/en-us/entra/identity-platform/msal-

overview

• What is OIDC?: https://www.microsoft.com/en-us/security/business/security-101/

what-is-openid-connect-oidc

• OIDC: https://openid.net/

• OWASP: https://owasp.org/

• Azure Private Link: https://learn.microsoft.com/en-us/azure/private-link/
private-link-overview

• Network security groups: https://learn.microsoft.com/en-us/azure/virtual-

network/network-security-groups-overview

• Virtual Network flow logs: https://learn.microsoft.com/en-us/azure/network-
watcher/vnet-flow-logs-overview

• Azure Virtual Network: https://learn.microsoft.com/en-us/azure/virtual-network/
virtual-networks-overview

• Azure Managed Identities: https://learn.microsoft.com/en-us/entra/identity/
managed-identities-azure-resources/overview

• Azure Firewall: https://learn.microsoft.com/en-us/azure/firewall/overview

• Azure Web Application Firewall: https://azure.microsoft.com/en-us/products/web-
application-firewall

https://learn.microsoft.com/en-us/azure/container-apps/networking?tabs=workload-profiles-env%2Cazure-cli
https://learn.microsoft.com/en-us/azure/container-apps/networking?tabs=workload-profiles-env%2Cazure-cli
https://learn.microsoft.com/en-us/azure/app-service/manage-custom-dns-buy-domain
https://learn.microsoft.com/en-us/azure/app-service/manage-custom-dns-buy-domain
https://learn.microsoft.com/en-us/samples/azure/azure-sdk-for-net/app-secrets-configuration/
https://learn.microsoft.com/en-us/samples/azure/azure-sdk-for-net/app-secrets-configuration/
https://learn.microsoft.com/en-us/sql/relational-databases/security/encryption/transparent-data-encryption
https://learn.microsoft.com/en-us/sql/relational-databases/security/encryption/transparent-data-encryption
https://jwt.io/
https://oauth.net/
https://learn.microsoft.com/en-us/entra/identity-platform/msal-overview
https://learn.microsoft.com/en-us/entra/identity-platform/msal-overview
https://www.microsoft.com/en-us/security/business/security-101/what-is-openid-connect-oidc
https://www.microsoft.com/en-us/security/business/security-101/what-is-openid-connect-oidc
https://openid.net/
https://owasp.org/
https://learn.microsoft.com/en-us/azure/private-link/private-link-overview
https://learn.microsoft.com/en-us/azure/private-link/private-link-overview
https://learn.microsoft.com/en-us/azure/virtual-network/network-security-groups-overview
https://learn.microsoft.com/en-us/azure/virtual-network/network-security-groups-overview
https://learn.microsoft.com/en-us/azure/network-watcher/vnet-flow-logs-overview
https://learn.microsoft.com/en-us/azure/network-watcher/vnet-flow-logs-overview
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview
https://learn.microsoft.com/en-us/entra/identity/managed-identities-azure-resources/overview
https://learn.microsoft.com/en-us/entra/identity/managed-identities-azure-resources/overview
https://learn.microsoft.com/en-us/azure/firewall/overview
https://azure.microsoft.com/en-us/products/web-application-firewall
https://azure.microsoft.com/en-us/products/web-application-firewall

Chapter 10 393

• Azure Application Gateway: https://learn.microsoft.com/en-us/azure/application-
gateway/

• OpenTelemetry: https://learn.microsoft.com/en-us/dotnet/core/diagnostics/
observability-with-otel

• GitHub Dependabot: https://github.com/dependabot

• Sonar: https://www.sonarsource.com/

• Synk: https://snyk.io/

• Seq: https://datalust.co/seq

• ELK Stack: https://www.elastic.co/elastic-stack/

• Prometheus: https://prometheus.io/

• Grafana: https://grafana.com/

• Jaeger: https://www.jaegertracing.io/

• Zipkin: https://zipkin.io/

• Datadog: https://www.datadoghq.com/

• New Relic: https://newrelic.com/

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/PSMCSharp

https://learn.microsoft.com/en-us/azure/application-gateway/
https://learn.microsoft.com/en-us/azure/application-gateway/
https://learn.microsoft.com/en-us/dotnet/core/diagnostics/observability-with-otel
https://learn.microsoft.com/en-us/dotnet/core/diagnostics/observability-with-otel
https://github.com/dependabot
https://www.sonarsource.com/
https://snyk.io/
https://datalust.co/seq
https://www.elastic.co/elastic-stack/
https://prometheus.io/
https://grafana.com/
https://www.jaegertracing.io/
https://zipkin.io/
https://www.datadoghq.com/
https://newrelic.com/
https://packt.link/PSMCSharp

11
The Car Sharing App

The Car Sharing app was introduced in Chapter 2, Demystifying Microservices Applications. Regard-

less of the technology used to implement it, any microservice is either processing a user interface

request, processing a message from another microservice, or streaming a result to the communica-

tion bus defined for the solution. Therefore, we decided to dedicate a chapter to provide you with
more details about it. The idea of putting the description of the entire solution into one chapter
is to help you better understand the principles that we have covered throughout the book. Let’s

now understand the general architecture of the app.

General architecture description
The application that we will describe in more detail in this chapter is the Car Sharing app. The fol-
lowing figure presents the entire solution and the microservices involved in enabling the solution:

The Car Sharing App396

Figure 11.1: Car Sharing app

In Chapter 7, Microservices in Practice, we described some messages of this demo that are ex-

changed between the microservices. All classes that implement these messages are included in

the SharedMessages library project presented in the demo code. It is important to mention that

all microservices must add this library to facilitate communication between the services. It is

also worth noting that RabbitMQ is the message broker defined for this demonstration, which
has already been presented in the book.

Microservices involved
As you can see in the preceding figure, there are five microservices designed to demonstrate the

solution. There is also a service that simply deploys the user interface using Blazor as the basis
(Blazor UI). Its purpose is to host the user interface that interacts with the following microservices
via HTTP and RabbitMQ where applicable.

Chapter 11 397

Authorization microservice

In Chapter 10, Security and Observability for Serverless and Microservices Applications, we discussed

the importance of implementing security with different layers of protection. The Authorization

microservice is one of these layers, and it handles user logins and bearer token emissions. It also

contains user information. It intercepts the route extension-accepted message of each car shar-

er and allows the users whose requests were accepted to access the car-sharer profile. The user
who needs to car share can access the user profile of a car sharer who accepted their request by
providing the route ID of the route it was accepted in.

To implement this, the ASP.NET Core Web API was used. The same bearer token will be required
for all endpoints. These are the endpoints proposed for this microservice:

• Login – Accepts credentials and returns a JWT

• Renew – Accepts a token and returns a renewed JWT

• Change Password – Accepts current and new passwords to update user credentials

• Reset Password – Sends a temporary password to the user’s email

• Add User – Registers a new user

• User Profile – Provides user’s email and name for matched car-sharing trips

The purpose of managing user login, password updates, and token generation is common to all
applications. It is worth noting that, in the real world, many solutions will decide to have this

service done by identity providers from Microsoft, Google, or Meta.

CarSharer microservice

The CarSharer microservice interacts with the Blazor UI and contains the web API that imple-

ments all car-sharer operations. The car sharer inserts an initial route containing their departure
and destination towns and possible intermediary towns.

Then, they receive possible matchings with car-sharing requests by the RoutesPlanning micro-

service. Accordingly, it shows all possible extensions, and the car sharer can reject or accept each

extension. They can also close the route, meaning they reach an acceptable number of people for
the trip. Here, you have the routes imagined for the scenario of this sample:

• Create Route – Creates a new route with the date and all towns’ milestones

• Delete Route – Removes a specific route

• Close Route – Closes a route to prevent further matching

• Extend Route – Accepts user requests to an existing route

The Car Sharing App398

• Get Suggested Extensions – Lists compatible ride requests for a route

• Get Active Routes – Lists all active (not expired or deleted) routes for a specific user

Considering this is essentially a CRUD operation, this microservice can be implemented using

Azure Functions, as we discussed in Chapter 4, Azure Functions and Triggers Available.

CarRequests microservice

The CarRequests microservice also interacts with the Blazor UI. It contains the web API that

implements all car ride request operations. Requests to go from a source to a destination are

inserted by the user. Then, the user can verify whether a car sharer inserted their request in their
request. When a car sharer accepts the request, no other car sharer can select it, so just one option

is handled. We assume that the user automatically accepts the car-sharer proposal. Here, we have

the endpoints for this implementation:

• Add New Request – Inserts a ride request with source, destination, and date. It is important

to have confirmation of whether the request has been registered or not.

• Get My Requests – Lists active requests with matching car-sharer options. Matching

routes also contain the car owner’s details, which can be used to get user information

from the authentication server.

The Azure Functions technology here is, again, a good option.

RoutesPlanning microservice

The RoutesPlanning microservice matches car-sharer routes with car requests according to a

distance minimization criterion. Its behavior is fully described in Chapter 7, Microservices in Practice,

and the technology used here is the ASP.NET Core Web API. To facilitate the understanding, the
code that implements it is also available in this chapter.

Email microservice

To finish, the Email microservice intercepts the route extension-accepted event emitted by a car

sharer and informs all users included in the route that they were included via email. It works

in the background, as we checked some implementations in Chapter 5, Background Functions in

Practice. The route extension-accepted event emitted contains UserBasicInfoMessage, where

the user’s DisplayName in the example is supposed to be the email. These are the functions that
will be executed in this microservice:

Chapter 11 399

Listen to the RouteExtensionAccepted event and enqueue a request for sending an email

Process email, which is the routine that will dequeue the requests and send the email

The Azure Functions technology will be also used in this case. The idea of the microservice is not
to have the processing of the emails attached directly to the listening event. That is why a queue
is being used.

The demonstration code
You can find the sample code for this chapter at https://github.com/PacktPublishing/

Practical-Serverless-and-Microservices-with-Csharp/tree/main/ch11. This chapter will
require, at least, the Visual Studio 2022 free Community Edition.

Please note that the provided code is not fully functional. You, as the reader, are encouraged to
further develop it. Its main purpose is to offer a foundation for implementing different micros-

ervice approaches in a specific use case.

The following table summarizes the list of microservices proposed:

Microservice Technology Key Responsibility API/Event Highlights

Authorization ASP.NET Core
Web API

Manage user auth

and profiles
Login, Renew, AddUser,

GetProfile

CarSharer Azure
Functions

Manage car owner

routes

CreateRoute, ExtendRoute,

GetSuggestions

CarRequest Azure
Functions

Manage ride requests

from users

AddRequest, GetRequests

RoutesPlanning ASP.NET Core
Web API

Suggest optimal

route-request

matches

Event-driven logic, covered in

Chapter 7

Email Azure
Functions

Notify users via email RouteExtensionAccepted →

Queue → Email

https://github.com/PacktPublishing/Practical-Serverless-and-Microservices-with-Csharp/tree/main/ch11
https://github.com/PacktPublishing/Practical-Serverless-and-Microservices-with-Csharp/tree/main/ch11

The Car Sharing App400

A SQL instance accepts TCP/IP requests and user/password authentication since it must com-

municate with clients running inside Docker containers. Please note that the SQL instance that

comes with the Visual Studio installation doesn’t support TCP/IP, so you need either to install SQL
Server Express or use a cloud instance. For local installation, both the installer and instructions

are available here: https://www.microsoft.com/en-US/download/details.aspx?id=104781.

You may also run the SQL Server development edition as a Docker image with the following:

docker run -e "ACCEPT_EULA=Y" -e "MSSQL_SA_PASSWORD=yourStrong(!)Password"

-p 1433:1433 -d mcr.microsoft.com/mssql/server:2022-latest

1. The username corresponding to the chosen password will be sa.

2. To run Docker, use Docker Desktop for Windows (https://www.docker.com/products/
docker-desktop).

3. Docker Desktop, in turn, requires Windows Subsystem for Linux (WSL), which can be

installed by following these steps:

4. Type powershell in the Windows 10/11 search bar.

5. When Windows PowerShell is proposed as a search result, click on Run as an adminis-

trator.

6. In the Windows PowerShell administrative console that appears, run the wsl --install

command.

The following figure shows how the code structure is organized:

Figure 11.2: Car Sharing app code structure

https://www.microsoft.com/en-US/download/details.aspx?id=104781
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop

Chapter 11 401

As you can see, there is a Common library that shares messages that will be transferred between the

microservices. Authorization and RoutesPlanning were written using web API microservices

while CarRequests, CarSharer, and Email were written using Azure Functions as the basis. That
is why we showed both possibilities during the presentation of the book. According to what we

have presented, depending on the complexity of the microservices and the real need of the busi-

ness rules, we can choose between one of these alternatives for creating distributed applications.

Summary
In this chapter, we have presented a detailed demonstration of an event-driven application us-

ing microservices as the basis for connecting each message that is transferred from frontend to

backend. We hope that this demo will help you better understand all the principles that we have

presented throughout the book.

Further reading
• Cloud design patterns: https://learn.microsoft.com/en-us/azure/architecture/

patterns/

• Event-driven application: https://learn.microsoft.com/en-us/azure/architecture/

guide/architecture-styles/event-driven

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/PSMCSharp

https://learn.microsoft.com/en-us/azure/architecture/patterns/
https://learn.microsoft.com/en-us/azure/architecture/patterns/
https://learn.microsoft.com/en-us/azure/architecture/patterns/

https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/event-driven
https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/event-driven
https://packt.link/PSMCSharp

12
Simplifying Microservices
with .NET Aspire

.NET Aspire was conceived to simplify the testing of interacting microservices on development
machines. In the Running your microservices on Kubernetes section of Chapter 8, Practical Microservices

Organization with Kubernetes, we listed two testing techniques we can adopt on our development

machines:

• Testing the interacting microservices with minikube while debugging each single micro-

service with the bridge technique

• Exploiting Visual Studio native support for Docker to debug and test our microservices

while they interact through a Docker virtual network

While the minikube technique is complete and more realistic, it is time-consuming, so most of

the testing/debugging is performed with Docker virtual networks.

.NET Aspire provides a simpler alternative to the direct usage of Docker networks. Moreover, it
offers a simple way to configure the interaction between microservices and between each micro-

service and other resources. Finally, .NET Aspire projects can be compiled to produce instructions
to both deploy all microservices on Azure Container Apps and to create some of the resources that
they use on Azure. However, its main usage is in development and staging environments and it
should not be used for automatically setting up actual production environments since it doesn’t

handle all deployment options.

Simplifying Microservices with .NET Aspire404

In this chapter, we will describe the basics of .NET Aspire together with all the services and op-

portunities it offers. More specifically, this chapter covers the following:

• .NET Aspire features and services

• Configuring microservices and resources

• Using .NET Aspire in practice

• Deploying a .NET Aspire project

Technical requirements
This chapter requires the following:

1. Visual Studio 2022 free Community Edition, at least.

2. Docker Desktop for Windows (https://www.docker.com/products/docker-desktop),
which, in turn, requires Windows Subsystem for Linux (WSL), which can be installed by
following these steps:

3. Type powershell in the Windows 10/11 search bar.

4. When Windows PowerShell is proposed as a search result, click on Run as an adminis-

trator.

5. In the Windows PowerShell administrative console that appears, run the wsl --install

command.

You can find the sample code for this chapter at https://github.com/PacktPublishing/
Practical-Serverless-and-Microservices-with-Csharp.

.NET Aspire features and services
.NET Aspire takes care of the microservices interaction and offers other services, as follows:

• It handles the interaction with environment resources such as databases and message

brokers in a very simple way. You don’t need to specify a connection string that might
change when the microservice is deployed; it is enough that you declare the interaction

between a microservice and a resource together with some general configuration. This is
done with a .NET feature called local service discovery, which will be discussed in detail

in the Service discovery and its role in .NET Aspire subsection.

• It offers simulators of cloud services, together with common disk and in-memory data-

bases and message brokers.

https://www.docker.com/products/docker-desktop
https://github.com/PacktPublishing/Practical-Serverless-and-Microservices-with-Csharp
https://github.com/PacktPublishing/Practical-Serverless-and-Microservices-with-Csharp

Chapter 12 405

• The interaction between microservices and other resources is configured declaratively
in a dedicated .NET project, thus avoiding the usage of virtual addresses and connection
strings inside the microservices code.

• Once a .NET Aspire project is run, all microservices and resources are run, and interactions
among microservices and resources are automatically handled.

• While microservices are run in the development environment, both logs and statistics

are collected.

• As soon as a .NET Aspire project is run, a smart console appears in the browser that shows
all collected statistics and logs, together with the links to access all microservice endpoints.

Interactions between microservices and between microservices and other resources are declared

in a special type of project called App Host. You can find the App Host project and all other Aspire
templates by typing Aspire in the Visual Studio search box, as shown in the following figure:

Figure 12.1: Aspire projects and solution templates

Simplifying Microservices with .NET Aspire406

Another Aspire-specific project type is the .NET Aspire Service Defaults project, which provides
extension methods to configure various services. In order to ensure that some basic services are
configured in the same way in all microservices, we define them in this project and then call their
extension methods in the Program.cs configuration of all microservice projects. Accordingly, all
microservices must add a reference to this project.

As a default, all Aspire templates configure the following service defaults:

• HttpClient service discovery: In the App Host configuration, microservices and resources
are given names, and thanks to this configuration, HttpClient can use virtual URLs based

on these names instead of the actual resource URLs, which might depend on where the re-

sources are deployed in the various environments (development, staging, production, etc.).

• HttpClient resiliency: Each HttpClient call is automatically applied to all policies, as

discussed in the Resilient task execution subsection of Chapter 2, Demystifying Microservices

Applications. More specifically, retry, circuit break, timeout, and rate-limiting (bulkhead
isolation) strategies are automatically applied and can be configured once and for all in
the �NET Aspire Service Defaults project.

• OpenTelemetry, which will be discussed in a dedicated subsection.

• Public endpoints exposing microservice health conditions. Health checks are used both

by the App Host orchestrator and by staging and production orchestrators such as Ku-

bernetes (see the Readiness, liveness, and startup probes subsection of Chapter 8, Practical

Microservices Organization with Kubernetes). Two default endpoints are provided: /health,

which returns a 200 HTTP code and a “healthy” test response if the microservice is healthy,
and an /alive endpoint, which returns a 200 HTTP code and a “healthy” test response if
the microservice is running and has not crashed.

• As a default, both endpoints are exposed only during development for security reasons.

However, if the microservice is not accessible to external users, it can also be safely ex-

posed in production. You need just to remove the condition on the environment in the
MapDefaultEndpoints() extension defined in the the .NET Aspire Service Defaults project.

• If, instead, the microservice is a frontend, these endpoints can be exposed only if they

are protected by both authentication and a throttling strategy that prevents denial of

service attacks.

You don’t need to manually add all these configurations since they are automatically added when
the project is created. Most of the time, you will need to only change some parameters, such as

the parameters of the various resiliency strategies.

Chapter 12 407

Each microservice needs just to call builder.AddServiceDefaults() and app.

MapDefaultEndpoints() in order to apply all the configured defaults, as shown here:

var builder = WebApplication.CreateBuilder(args);

// Add service defaults & Aspire client integrations.

builder.AddServiceDefaults();

// Add application specific services

builder.Services…..

…

// Build application host

var app = builder.Build();

//Configure application

app….

…

//Add default endpoints

app.MapDefaultEndpoints();

app.Run();

There are also Aspire-specific testing projects based on xUnit, NUnit, and MSTest. They have
all the needed references to create an app host, launch the application, and communicate with

microservices through URLs based on their names (service discovery).

As soon as you add a test project, it contains an initial example test with the whole code for creating

the App Host and issuing a call to a microservice. This code is commented out, so you need just to
add a reference to your App Host project to uncomment the code, and to replace the fake App Host

project name and microservice name with your App Host project name and microservice name:

 // Arrange

 // var appHost = await DistributedApplicationTestingBuilder

.CreateAsync<Projects.MyAspireApp_AppHost>();

 // appHost.Services.ConfigureHttpClientDefaults(clientBuilder =>

 // {

 // clientBuilder.AddStandardResilienceHandler();

 // }); //

 // await using var app = await appHost.BuildAsync();

Simplifying Microservices with .NET Aspire408

 // var resourceNotificationService = app.Services.

 // GetRequiredService<ResourceNotificationService>();

 // await app.StartAsync();

 // // Act

 // var httpClient = app.CreateHttpClient("webfrontend");

 // await resourceNotificationService

 // .WaitForResourceAsync("webfrontend",

 // KnownResourceStates.Running).WaitAsync(TimeSpan.

FromSeconds(30));

 // var response = await httpClient.GetAsync("/");

In the preceding code, the fake names that must be replaced are highlighted.

A template called �NET Aspire Empty App is also available, which creates both the App Host

and Service Defaults projects, and a �NET Aspire Starter App template that adds some example

microservices and resources, together with their App Host configurations.

The �NET Aspire Starter App template has a great didactic value because it immediately shows

basic configurations, and how to configure and use HttpClient with service discovery. More-

over, it is a good way to explore the console that appears in the browser when the application is

launched with its statistics and logs, and the links to access all microservice endpoints. You are
encouraged to create, explore, and run this project.

Service discovery is not an Aspire-specific feature but is a general .NET feature. It relies on vari-
ous providers to map service names to actual URLs. We will discuss it in more detail in the next

subsection.

Service discovery and its role in .NET Aspire.
Service discovery is an HttpClient feature provided through extension methods defined in the
Microsoft.Extensions.ServiceDiscovery NuGet package.

Service names are mapped to actual URLs by using maps defined by providers. As a default, just
the .NET configuration provider is added to the list of providers.

Chapter 12 409

This provider tries to read these maps from the Services section of the project configuration,
where they must be defined as follows:

"Services": {

 "myservice": {

 "https": [

 "10.46.24.91:80"

],

 "http": [

 "10.46.24.91:443"

]

 }

 }

When the service is called with http://myservice, the endpoint specified in the http subsection is

chosen; otherwise, if it is called with https://myservice, the one in the https subsection is chosen.

The configuration-based provider is added with the following:

builder.Services.AddServiceDiscovery();

The preceding code also adds the pass-through provider, which simply resolves each service name

to the service name itself. In other words, the pass-through provider does nothing! It must be

used when deploying to Kubernetes since, in Kubernetes, names are resolved by services.

Therefore, when deploying to Kubernetes, each Microservice must have an associated service

whose name is identical to the microservice name.

For instance, if we have a microservice called routes_planning that is deployed in a Kuberne-

tes routes_planning Deployment, then communications to routes_planning must be passed

through a Kubernetes service called routes-planning.

If a service name is not resolved by the configuration-based provider, it is passed to the next
provider, which is the pass-through provider.

Suppose we would like to deploy on Kubernetes but, first, we need to test our application with
.NET Aspire. Do we need two different service discovery settings for these two environments?

The answer is no! In fact, .NET Aspire doesn’t use a configuration file to define the service maps.
Instead, when the App Host project launches a microservice, it injects all service resolution rules

it needs into environment variables that are then merged with all other microservice configura-

tion information.

Simplifying Microservices with .NET Aspire410

When the application is published to a Kubernetes cluster, there will be no App Host, so no

service resolution maps are injected in the configuration, and all resolutions are passed to the
pass-through provider.

One can also use AddServiceDiscoveryCore(), which doesn’t add any default provider instead

of AddServiceDiscovery(). In this case, providers must be added manually by calling

AddPassThroughServiceEndpointProvider() and AddConfigurationServiceEndpointProvi

der().

For instance, if we would like to add just the configuration-based provider, we can simply write
the following:

builder.Services.AddServiceDiscovery()

 .AddConfigurationServiceEndpointProvider();

Service discovery can be also customized by setting the properties of the ConfigurationServic
eEndPointResolverOptions option object. For instance, the following code changes the name

of the Services section in which to place all service name maps:

builder.Services.Configure<ConfigurationServiceEndPointResolverOptions>(

 static options =>

 {

 options.SectionName = "MyCustomResolverSection"

 });

Once we have added and configured service discovery, we must specify the HTTP clients that
must use it. The following code applies service discovery to all HTTP clients:

builder.Services.ConfigureHttpClientDefaults(http =>

{

 http.AddServiceDiscovery();

});

ConfigureHttpClientDefaults can also be used to add and configure the various resiliency
policies for all HTTP clients:

builder.Services.ConfigureHttpClientDefaults(http =>

{

 http.AddStandardResilienceHandler();

 http.AddServiceDiscovery();

});

Chapter 12 411

Service discovery can also be added to a specific HttpClient, as shown here:

builder.Services.AddHttpClient("myclient", static client =>

{

 client.BaseAddress = new("https://routes_planning");

})

.AddServiceDiscovery();

When service discovery is in place, we can also write URIs such as "https+http://routes_

planning" or "http+https://routes_planning". In this case, service discovery will attempt to

resolve the URI with the first protocol (https or http), and will move to the second protocol in
the case of failure.

This is useful when we use http during development and https in staging and production. For

this purpose, it is enough to define just http endpoints in the launch settings of all microservice

projects. In fact, the App Host uses each microservice’s launch settings to create the service dis-

covery maps that it injects into the environment variables. Therefore, only http maps would be

generated during development, so the https resolution will fail. After deployment, instead, just

the pass-through provider will work so the https resolution will succeed.

Up to this point, we supposed that each microservice has just a single endpoint, but sometimes,

some services might have several endpoints, each on a different port. When a microservice has

several endpoints, we must give names to all the endpoints except one (the default endpoint).
Endpoint names are given in the service definition and configuration that is in the App Host.
The following is the definition of a microservice with a default endpoint and a named endpoint
whose name is "aux":

var routesPlanning = builder.AddProject<Projects.

RoutesPlanningService>("routes_planning ")

 .WithHttpsEndpoint(hostPort: 9999, name: "aux");

In this case, the generated configuration map will associate two URLs to the service name, one
for the default endpoint and the other for the named endpoint, as shown here:

"Services": {

 "routes_planning": {

The preceding code is the default HttpClient configuration added in all �NET Aspire

Service Defaults projects.

Simplifying Microservices with .NET Aspire412

 "https": ["https://localhost:8080"],

 "aux": ["https://localhost:8090"]

 }

 }

The default endpoint can be accessed with "https://routes_planning", while, for the named

endpoint, we must add also the endpoint name to the URI, as shown here:

https://_aux.routes_planning

When using Aspire App Host, the preceding configuration is automatically created and injected
into all services that need it, so we don’t need to worry about it.

However, if we deploy on Kubernetes, we must define a Kubernetes service that correctly resolves
both "https://routes_planning" and "https://_aux.routes_planning". This result is easily
achieved with named ports, as shown here:

apiVersion: v1

kind: Service

metadata:

 name: routes_planning

spec:

 selector:

 name: routes_planning

 ports:

 - name: default

 port: 8080

 - name: aux

 port: 8090

The port associated with the default endpoint must be given the default name, while all ports

associated with named endpoints must be given the same name as the endpoint.

Now that we understand the magic behind actual service URL discovery, let’s move on to the

magic behind resource integration and automatic connection string handling.

Resource integration and automatic resource configuration
Resources needed for the various microservice projects can be simulated when the solution is

run. It is enough to add the corresponding Aspire NuGet packages and declare and configure the

resource in the App Host. There are extension methods for declaring the main databases, Redis,

Chapter 12 413

and the main message brokers such as RabbitMQ, Kafka, and even an Azure Service Bus simulator.
For a complete list of all resources that can be added to an Aspire project and configured in its
App Host, please refer to the official documentation on integration at https://learn.microsoft.
com/en-us/dotnet/aspire/fundamentals/integrations-overview.

Behind the curtain, all these resources are implemented with Docker images, so most extension

methods also allow you to choose a specific Docker image and a specific version. Furthermore,
since the App Host supports generic Docker images, one can implement extension methods for

a custom resource that is not yet supported. However, the list of supported resources is growing

quickly, so you should find all the resources you need already implemented.

In the Using .NET Aspire in practice section of this chapter, you will see in detail how to integrate

and configure SQL Server and RabbitMQ, and in the Configuring Microservices and Resources section,

we will explain how to declare and configure both microservices and resources in the App Host.

When you configure a resource, you give it a name, and if the resource supports a connection

string, that name is assumed to be the name of the connection string. Accordingly, when the App

Host creates a resource, it computes its connection string and passes it in the ConnectionStrings

section of the configuration of all microservices that use that resource. This is done by placing
the configuration string in an environment variable called ConnectionStrings__<name>, where

<name> is the name that we gave to the resource.

For instance, suppose our application needs a SQL Server instance containing a database called

"mydatabase". In the App Host, we may declare these resources with the following:

var builder = DistributedApplication.CreateBuilder(args);

var sql = builder.AddSqlServer("sql");

var db = sql.AddDatabase("mydatabase ");

Now, if a microservice defined in the MyExampleProject project must use the "mydatabase" da-

tabase, it must declare it as follows:

builder.AddProject<Projects.MyExampleProject>()

 .WithReference(db);

The WithReference(db) call causes the connection string for accessing "mydatabase" in the SQL

Server instance to be injected in the ConnectionStrings__mydatabase environment variable of

the MyExampleProject microservice.

Clearly, when we configure a resource, we can also specify the credentials to access it instead of
using the default credentials created by the extension method.

https://learn.microsoft.com/en-us/dotnet/aspire/fundamentals/integrations-overview
https://learn.microsoft.com/en-us/dotnet/aspire/fundamentals/integrations-overview

Simplifying Microservices with .NET Aspire414

More details on how to configure resources and microservices in the App Host will be given in
the next section.

Usually, together with the connection string, the App Host passes a whole configuration section
containing more details on the resources, such as username and password. The format of this
auxiliary data depends on the specific resource type. In the Using .NET Aspire in practice section of

this chapter, we will see the RabbitMQ auxiliary information format. The auxiliary information
format of all supported resources is available in the official documentation.

If we want to use an already existing resource, we don’t need to declare it in the App Host but we

need to declare its connection string with builder.AddConnectionString so that the App Host

can inject it into all the microservices that need it. For instance, if the SQL Server database of the

previous example already exists both in the development environment and in the deployment

environment, the code must be modified as follows:

var builder = DistributedApplication.CreateBuilder(args);

var db = builder.AddConnectionString("parameterName", "database");

Here, parameterName is the name of the parameter that contains the connection string in the App

Host configuration file in the "Parameters" section, as shown here:

{

 "Parameters": {

 " parameterName ": " SERVER=XXX.XXX.X.XX;DATABASE=DATABASENAME ……"

 }

}

Needless to say, we can use .NET environments to provide different configurations in different
environments.

The remainder of the code remains unchanged:

builder.AddProject<Projects.MyExampleProject>()

 .WithReference(db);

What happens to all the connection strings and the auxiliary resource data when the application

is deployed in production or staging?

Chapter 12 415

If deployment is manual, the same environment variable inserted by the App Host must be de-

fined in the configuration of the target orchestrator. Thus, for instance, if the target orchestrator
is Kubernetes, it must be defined in the env section of a Deployment. As we will see in more detail

in the Deploying a .NET Aspire project section, when we use automatic tools for configuring the
target orchestrator, there are two possibilities:

• If the automatic tool is capable of provisioning the required resources, it will also auto-

matically configure all the environment variables, taking all the required information
from the created resources

• If the automatic tool doesn’t generate the required resources but only generates the code

to configure all the microservices, it will ask the user for the environment variable values

The next subsection details how to handle telemetry during development and when the appli-
cation is deployed.

Application telemetry
Telemetry enables the monitoring of a microservices application as a whole by connecting ad-

equately related events taking place in different microservices. More specifically, it collects the
following data:

• Logging: Individual logs of all microservices and resources are collected and classified
according to their generation time and source.

• Tracing: Traces correlate log events that are part of the same logical activity (e.g., the
handling of a single request), even if they’re spread across multiple machines or processes.
Tracing is the starting point for diagnosing and debugging malfunctions.

• Metrics: Various microservice metrics are collected by each executing microservice and

are sent to a collection point.

When the application is run in the development environment and uses the App Host as an orches-

trator, each microservice’s telemetry is enabled by the ConfigureOpenTelemetry() call configured
in the �NET Aspire Service Defaults project. This call enables the collection of metrics and the
transmission of these metrics together with the microservice logs to an OpenTelemetry endpoint

that implements the OpenTelemetry Protocol (OTLP).

During development, the Aspire console that opens when the solution is run works as an Open-

Telemetry endpoint, and the data for connecting with this endpoint is injected as an environment
variable into all microservices by the App Host. Therefore, all the data we can see in this console
comes from telemetry.

Simplifying Microservices with .NET Aspire416

When the application is deployed, the same environment variables must contain the data of an

OpenTelemetry endpoint available in the deployment environment. Azure supports OTLP, so
if, for instance, the application is deployed to Azure Kubernetes, we must pass the data of the
telemetry endpoint that is created together with the Azure Kubernetes cluster. It is also possible
to pass OpenTelemetry data to tools such as Grafana, which was described in the Kubernetes ad-

ministrative tools subsection of Chapter 9, Simplifying Containers and Kubernetes: Azure Container

Apps and other Tools.

The environment variables automatically injected in each microservice by the App Host that we
must inject manually in the deployment environment are as follows:

• OTEL_EXPORTER_OTLP_ENDPOINT, which contains the URL of the OTLP endpoint.

• OTEL_SERVICE_NAME, which contains the service name that the microservice must add

to the data it sends. You should use the same name given to the microservice in the App
Host configuration.

• OTEL_RESOURCE_ATTRIBUTES, which contains a unique ID that univocally identifies each
service instance. It must be added to all data, too, and must have the following format:

service.instance.id=<unique name>. Typically, GUIDs are used as unique service names.

Once you have clarified all the services offered by Aspire, you need to learn how to configure the
App Host.

Configuring microservices and resources
The App Host handles services as follows:

1. .NET projects: These can be configured with var myService = builder.

AddProject<Projects.MyProjectName>("myservicename");

2. Containers stored in some registry: These can be configured with var myService =
builder.AddContainer("myservicename", "ContainerNameOrUri");

3. Executables: These can be configured with var myService = builder.

AddExecutable("myservicename", "<shell command>", "<executable working

directory>");

4. Dockerfiles to be built: These can be configured with var myService = builder.

AddDockerfile(

 "myservicename ", "relative/context/path");

where "relative/context/path" is the folder containing the Dockerfile and all files
needed to build the Dockerfile. This path must be relative to the directory that contains
the App Host project file.

Chapter 12 417

Each of the preceding commands can be followed by several configuration options, passed with
a fluent interface, as shown in this example:

var cache = builder.AddProject<Projects……

var apiService = builder.AddProject<Projects……

builder.AddProject<Projects.MyAspireProject>("webfrontend")

 .WithReference(cache)

 .WaitFor(cache)

 .WithReference(apiService)

 .WaitFor(apiService);

WithReference declares that the service communicates with the resource or service passed as

an argument. It causes the injection of all environment variables containing the data needed by

service discovery, connection strings, or other auxiliary resource information.

WaitFor declares that the microservice must be started after the service or resource passed as

the argument is running.

WithReplicas(int n) is another important method of the fluent interface configuration. It
declares that the microservice must be replicated n times. It is important if we plan to use an

automatic tool to compile the App Host configuration into Kubernetes or Azure Container Apps
configuration code.

Unfortunately, often, when in development mode, the limited power of our development machine

doesn’t allow the same number of replicas that we need in production. Therefore, we should
execute different configuration instructions in these cases.

The App Host configuration is executed both when we run the application on the development
machine and when we use App Host configuration to generate code for other platforms. In the
second case, we say that we are in publishing mode instead of running mode. Luckily, the builder

object contains information on the execution environment in the builder.ExecutionContext

property. In particular, we can use the builder.ExecutionContext.IsPublishMode and builder.

ExecutionContext.IsRunMode properties to differentiate between the configuration in running
mode and in publishing mode.

As already mentioned, in the Service discovery and its role in .NET Aspire subsection, we can also use

the WithEndpoint fluent interface method to declare auxiliary endpoints available on other ports:

var routesPlanning = builder.AddProject<Projects.

RoutesPlanningService>("routes_planning ")

 .WithEndpoint(hostPort: 9999, name: "aux");

Simplifying Microservices with .NET Aspire418

WithEndpoint can be replaced by WithHttpsEndpoint and WithHttpEndpoint to declare, respec-

tively, HTTPS-only and HTTP-only endpoints.

The WithExternalHttpEndpoints() fluent interface method declares that the microservice end-

point must be available outside of the application for application clients. These endpoints will be
exposed with Ingress or LoadBalancer services when publishing the application on Kubernetes

and with external ingresses when publishing the application on Azure Container Apps.

Resources used by microservices can be declared and configured with the same fluent interface.
Each resource type requires a dedicated NuGet package that provides the needed extension meth-

ods to the fluent interface. All these extension methods are built on the builder.AddContainer

method since they use Docker images to implement the resources. Therefore, if a resource we need
is not yet available, we can write the needed extension methods ourselves. However, as already

mentioned, there are resources for all the main databases, Redis, all the main message brokers, and

most Azure services. Some Azure resource configurators provision and use actual Azure resources,
while others use local simulators. There are simulators for Azure Storage and Azure Service Bus.

Refer to the official documentation for a list of all available resource integrations: https://learn.
microsoft.com/en-us/dotnet/aspire/fundamentals/integrations-overview.

As a default, when the App Host is shut down, all database data is lost since all Docker images

use temporary storage. However, we can use the WithDataVolume() fluent interface method to
force the usage of permanent Docker volume storage:

var sql = builder.AddSqlServer("sql")

 .WithDataVolume();

var db = sql.AddDatabase("database");

When this method is called, a Docker volume with an auto-generated name is created. For more

control over the volume name and the directory inside the container where it is mounted, you

can use WithBindMount:

var sql = builder.AddSqlServer("sql")

 .WithBindMount("MyVolumeName", "/var/opt/mssql");

var db = sql.AddDatabase("database");

Most resources use a default username, such as sa, and an auto-generated password. Both cre-

dentials are available through the resources information link of the App Host browser console.

However, if data is not persisted with a volume, this password may change at each run.

https://learn.microsoft.com/en-us/dotnet/aspire/fundamentals/integrations-overview
https://learn.microsoft.com/en-us/dotnet/aspire/fundamentals/integrations-overview

Chapter 12 419

Luckily, all resources provide the possibility to specify some parameters, and username and

password are always among them.

Needless to say, parameters are not inserted directly in the code, for obvious reasons. They are
taken from the "Parameter" section of the App Host configuration. Therefore, they can be inserted
in the App Host configuration file, so we can also provide a different value for each environment
by using the usual .NET environment-based configuration file override.

The first step is the definition of a parameter object with the name of the "Parameters" property

that contains the actual value:

var password = builder.AddParameter("sqlpassword", secret: true);

By setting secret to true, we enable the generation of a hint to store the parameter in a safe place

when we run Aspire in publishing mode.

Then, the parameter is placed in the right place of the resource extension method, which is re-

source-specific:

var sql = builder.AddSqlServer("sql", password)

 .WithBindMount("MyVolumeName", "/var/opt/mssql");

var db = sql.AddDatabase("database");

The actual value must be placed in the App Host project configuration file, as shown here:

{

 "Parameters": {

 "sqlpassword": "my_password_value",

 …

 },

 …

}

The next subsection describes how to integrate Azure Functions projects in .NET Aspire solutions.

Azure Functions integration
At the time of writing this book, the integration of Azure Functions projects in .NET Aspire solu-

tions is in preview. However, we will describe it briefly since it offers great opportunities.

At the moment, only Azure Functions with the following triggers are supported: Azure Event Hubs,
Azure Service Bus, Azure Blob storage, Azure Queue storage, Azure CosmosDB, HTTP, and Timer.

Simplifying Microservices with .NET Aspire420

In order to configure an Azure Functions project, the App Host must reference the Aspire.Hosting.
Azure.Functions NuGet package. Once this reference has been added, an Azure Functions project
can be configured, as shown here:

var myFunction = builder.AddAzureFunctionsProject<Projects.

MyFunctionsProject>(

 " MyFunction ");

The AddAzureFunctionsProject call can be chained with the usual configuration methods of all
other project types, such as WithExternalHttpEndpoints().

Once defined in this way, myFunction can be referred to by other projects with the usual methods:

builder.AddProject<Projects.MyOtherProject>()

 .WithReference(myFunction)

 .WaitFor(myFunction);

A local emulator of an Azure storage account may be added as follows:

var storage = builder.AddAzureStorage("storage")

 .RunAsEmulator();

var myFunction = builder.AddAzureFunctionsProject<Projects.

MyFunctionsProject>(

 " MyFunction ")

.WithHostStorage(storage)

The emulator relies on the Aspire.Hosting.Azure.Storage NuGet package, which must be

added to the App Host project.

References to other Azure resources can be added with WithReference, as usual. For instance,

an Azure function with a Blob storage trigger on an emulated blob may be defined as follows:

var storage = builder.AddAzureStorage("storage")

 .RunAsEmulator();

var blob = storage.AddBlobs("blob");

var myFunction = builder.AddAzureFunctionsProject<Projects.

MyFunctionsProject>(

 " MyFunction ")

.WithHostStorage(storage)

.WithReference(blob);

Chapter 12 421

This concludes our .NET Aspire description. In the next section, we will see how to translate the

Kubernetes example of Chapter 8, Practical Microservices Organization with Kubernetes, to run with

Aspire. Finally, the Deploying a .NET Aspire project section will discuss how to use Aspire to gener-

ate the code for our target orchestrators, either manually or with automatic code generator tools.

Using .NET Aspire in practice
In this section, we will adapt the Kubernetes example of Chapter 8, Practical Microservices Orga-

nization with Kubernetes, to run with Aspire. As a first step, let’s copy the whole solution folder
into another in a different location, so we can modify it without destroying the previous version.

Then, let’s execute the following steps to prepare the overall solution:

1. Add a new App Host project to the solution and call it CarSharingAppHost.

2. Add a new .NET Aspire Service Defaults project to the solution and call it
CarSharingServiceDefaults.

3. Add a reference to the FakeSource, FakeDestination, and RoutesPlanning projects to

the CarSharingAppHost project.

4. Add a reference to the CarSharingServiceDefaults project to the FakeSource,

FakeDestination, and RoutesPlanning projects.

5. Right-click on the CarSharingAppHost project and, in the menu that appears, select Set

as Startup Project.

The preceding steps prepare the solution for .NET Aspire. Now, let’s start modifying the code. As
a first step, we must add service defaults to all the microservices. Therefore, let’s add builder.
AddServiceDefaults(); to the program.cs file of the FakeSource, FakeDestination, and

RoutesPlanning projects. Then, we must add app.MapDefaultEndpoints(), which adds health

endpoints just to the program.cs file of the RoutesPlanning project, since it is the only web project

that we have among our microservices. It must be placed as shown here:

var app = builder.Build();

app.MapDefaultEndpoints();

Now, let’s remember that we added all the microservices parameters as environment variables

in their Properties/launcheSettings.json file. We placed them in the Docker launch settings.
Now, since these projects will not use Docker anymore while running in Aspire, we must copy all

these definitions into the other launch setting profile.

Simplifying Microservices with .NET Aspire422

This is the launch settings code of the RoutesPlanning project after this change:

{

 "profiles": {

 "http": {

 "commandName": "Project",

 "environmentVariables": {

 //place here your environment variables

 "ConnectionStrings__DefaultConnection": "Server=localhost;

 Database=RoutesPlanning;User Id=sa;Password=Passw0rd_;

 Trust Server Certificate=True;MultipleActiveResultSets=true",

 "ConnectionStrings__RabbitMQConnection": "host=localhost:5672;

 username=guest;password=_myguest;

publisherConfirms=true;timeout=10”,

 "Messages__SubscriptionIdPrefix": "routesPlanning",

 "Topology__MaxDistanceKm": "50",

 "Topology__MaxMatches": "5",

 "Timing__HousekeepingIntervalHours": "48",

 "Timing__HousekeepingDelayDays": "10",

 "Timing__OutputEmptyDelayMS": "500",

 "Timing__OutputBatchCount": "10",

 "Timing__OutputRequeueDelayMin": "5",

 "Timing__OutputCircuitBreakMin": "4"

 },

 "dotnetRunMessages": true,

 "applicationUrl": "http://localhost:5212"

 },

 "Container (Dockerfile)": {

…

…

We replaced host.docker.internal with localhost in all connection strings as, when running

in Aspire, our microservices will not access the SQL database and the RabbitMQ message broker

from inside a Docker container image but directly from the development machine.

Chapter 12 423

Similarly, the launch settings of FakeSource become the following:

{

 "profiles": {

 "FakeSource": {

 "commandName": "Project",

 "environmentVariables": {

 "DOTNET_ENVIRONMENT": "Development",

 "ConnectionStrings__RabbitMQConnection":

 "host=localhost:5672;username=guest;

 password=_myguest;publisherConfirms=true;timeout=10"

 },

 "dotnetRunMessages": true

 },

 "Container (Dockerfile)": {

 "commandName": "Docker",

 "environmentVariables": {

 "ConnectionStrings__RabbitMQConnection":

 “host=host.docker.internal:5672;

 username=guest;password=_myguest;

 publisherConfirms=true;timeout=10”

 }

 }

 },

 "$schema": "https://json.schemastore.org/launchsettings.json"

}

Finally, the launch settings of FakeDestination become the following:

{

 "profiles": {

 "FakeDestination": {

 "commandName": "Project",

 "environmentVariables": {

 "DOTNET_ENVIRONMENT": "Development",

 "ConnectionStrings__RabbitMQConnection":

 "host=localhost:5672;username=guest;

 password=_myguest;publisherConfirms=true;timeout=10"

 },

Simplifying Microservices with .NET Aspire424

 "dotnetRunMessages": true

 },

 "Container (Dockerfile)": {

 "commandName": "Docker",

 "environmentVariables": {

 "ConnectionStrings__RabbitMQConnection":

 “host=host.docker.internal:5672;

 username=guest;password=_myguest;

 publisherConfirms=true;timeout=10"

 }

 }

 },

 "$schema": "https://json.schemastore.org/launchsettings.json"

}

The content of both the RabbitMQ and SQL Server connection strings shows that we decided to
use pre-existing RabbitMQ and SQL instances that run outside of Aspire. This was the simplest
choice for this solution since the whole code was already organized to run this way. However, it
is often the best choice when we start a solution from scratch since instances that live when the

App Host is not running are simpler to handle during development.

In fact, we can pass database migrations to the database with no need to launch the App Host

while we are working with migrations. Similarly, we can inspect RabbitMQ from its browser

console when the App Host is not running.

Another alternative would be to split the whole App Host configuration code into two code zones.
The first code zone contains databases and message brokers that we need to manipulate when
the application is not running, and the second code zone contains all other resources and micro-

services configuration.

When we need to manipulate the resources defined in the first code zone, we comment out the
whole second zone code and run the App Host. After finishing working with migrations and in-

specting the RabbitMQ queue, we uncomment the second code zone that defines and configures
all other resources and microservices, and run the whole application.

The preceding methodology can be refined by defining a Boolean App Host environment variable
that selects the second configuration zone with an if statement.

After this premise, we can write our configuration code in the App Host program.cs file.

Chapter 12 425

Since, in our case, each microservice has multiple launch settings profiles, we must specify the
right profile to use with each microservice in the AddProject fluent interface method.

Moreover, since FakeSource sends data to the RoutesPlanning microservice, and the

RoutesPlanning microservice sends data to the FakeDestination service, we must ensure that

RoutesPlanning starts after FakeDestination has been started and FakeSource starts only after

RoutesPlanning has started. We don’t need WithReference since not all microservices commu-

nicate directly, but rather, communicate through a RabbitMQ instance, and WithReference is

only needed to inject information for communicating directly with a resource. We don’t need to

declare a reference to RabbitMQ either, since we are using an external RabbitMQ instance that

runs outside of the App Host, so we already have its connection string.

It is easy to fulfill all constraints with the following configuration code:

var builder = DistributedApplication.CreateBuilder(args);

var fakeDestination=builder.AddProject<Projects.

FakeDestination>("fakedestination",

"FakeDestination");

var routesPlanning = builder.AddProject<Projects.

RoutesPlanning>("routesplanning", "http")

 .WaitFor(fakeDestination);

builder.AddProject<Projects.FakeSource>("fakesource", "FakeSource")

 .WaitFor(routesPlanning);

builder.Build().Run();

Here, the second argument of each AddProject call is the name of the launch profile to use for
each microservice.

Let’s ensure that both the RabbitMQ and SQL Server external Docker containers are running, and

then launch our solution.

If everything is working properly, you should see something like the following figure in the Aspire
browser console:

Figure 12.2: App Host resources list

Simplifying Microservices with .NET Aspire426

Let’s click the Console icon in the left menu to inspect all microservice logs. Let’s choose fakedes-

tination; you should see something like the following figure:

Figure 12.3: The fakedestination console

Logs should contain information about the connection with RabbitMQ through EasyNetQ

and about the worker service start. Finally, you should see two messages coming from the

RoutesPlanning microservice that declare that two matches have been found.

Since all Microservices use the same RabbitMQ connection string, we can improve the whole code

organization by removing it from each microservice’s launch settings and factoring it out into the
App Host configuration with the help of AddConnectionString, as shown here:

builder.AddConnectionString("RabbitMQParameterName",

"RabbitMQConnection");

Here, RabbitMQParameterName is the name of the App Host configuration parameter that contains
the actual connection string:

{

 "Parameters": {

 "RabbitMQParameterName": "host=localhost:5672;username=guest;

 password=_myguest;

 publisherConfirms=true;timeout=10"

 }

}

In the next subsection, we will describe how to modify the code to run RabbitMQ inside the App

Host.

Chapter 12 427

RabbitMQ integration
RabbitMQ is supported by Aspire integration so we can run it also inside the App Host. The first
step for doing this is the addition of the Aspire.Hosting.RabbitMQ NuGet package.

Then, we need to configure the RabbitMQ instance:

var username = builder.AddParameter("rabbitmqusername", secret: true);

var password = builder.AddParameter("rabbitmqpassword", secret: true);

var rabbitmq = builder.AddRabbitMQ("RabbitMQConnection", username,

password)

 .WithManagementPlugin()

 .WithDataVolume(isReadOnly: false);

Here, we added a volume to persist data after the App Host is shut down and required the instal-

lation of the browser management console, so we can inspect all queues and can also configure
the instance. The actual username and password must be provided in the "Parameters" section

of the App Host configuration file:

{

 "Parameters": {

 "rabbitmqusername": "<username>",

 "rabbitmqpassword": "<password>"

 }

}

After that, we must declare a reference to this RabbitMQ instance in all microservices with

WithReference(rabbitmq).

At this point, we need to remove the RabbitMQ connection strings from all the launch settings of

our microservices since the same connection string will now be injected by the App Host.

Unfortunately, the injected connection string is not in the format needed by EasyNetQ but has

the following format:

amqp://username:password@<host url>:5672.

The simplest way to solve this problem is to write a string manipulation method that converts
this string and adds all other auxiliary information. We can define this method in the Service
Defaults project so it will be available to all microservices.

Simplifying Microservices with .NET Aspire428

We need just to extract the URL, username, and password and then we may use them to build the

connection string in the format needed by EasyNetQ. This can be done by splitting the string on
//, then on @, and finally, on : to get username and password.

In the last section, we will describe how to get the configuration needed by our target orchestrator
for an Aspire project.

Deploying a .NET Aspire project
.NET Aspire can be used to test an application or a small part of a complex microservice application

on the development machine, thus replacing minikube and Docker networks.

However, small applications can be completely implemented in Aspire and then the Aspire code

can be used to generate the configuration of the target orchestrator. This generation can be man-

ual or based on automatic tools.

Both manual generation and automatic tools rely on a JSON manifest that can be created auto-

matically and that describes the application configuration. The JSON manifest can be generated
by adding the following launch profile to the App Host project’s launchSettings.json file:

"profiles": {

 "generate-manifest": {

 "commandName": "Project",

 "launchBrowser": false,

 "dotnetRunMessages": true,

 "commandLineArgs": "--publisher manifest --output-path aspire-

 manifest.json"

 }

…

Once added to launchSettings.json, this profile appears in the Visual Studio profile selection
combo next to the Run button. It is enough to select the "generate-manifest" profile and run the
solution. When the solution runs, the application is compiled but, instead of running, it creates

the JSON manifest in the App Host project folder.

You can manually read this manifest and use the information it contains to configure your or-

chestrator, or you can use automatic tools that generate the manifest and use it to automatically

configure an orchestrator.

Chapter 12 429

Visual Studio natively supports the deployment of Azure Container Apps. Publishing to Azure
Container Apps is straightforward. It is enough to right-click on the solution’s App Host proj-

ect and select Publish. After that, you can select the Azure Container Apps publish target. The
procedure will drive you to connect to your Azure subscription and provide all the information
needed to publish the application,

The Publish wizard will publish all microservices as Azure Container Apps applications and

will provision all other resources defined in the App Host in Azure, such as databases and other
Azure resources.

An external tool called Aspir8 (https://prom3theu5.github.io/aspirational-manifests/
getting-started.html) is also available, which is capable of deploying the application on a

Kubernetes cluster. However, in this case, it will create just Kubernetes Deployments and Services.

Once installed, Aspir8 supports the following commands:

• aspirate init: Initializes the Aspir8 project in the current directory

• aspirate generate: Generates Kubernetes manifests based on the .NET Aspire app host
manifest

• aspirate apply: Applies the generated Kubernetes manifests to the Kubernetes cluster

• aspirate destroy: Deletes the resources created by the apply command

For a simple application, you can deploy directly on a Kubernetes cluster, and in the case of more

complex applications, you can use the Kubernetes manifest as a starting point for designing the

needed Kubernetes configuration.

The apply and destroy commands need a kubectl installation, and all operations are performed

using the current kubectl context. Please refer to the Interacting with Kubernetes: kubectl, minikube,

and AKS section of Chapter 8, Practical Microservices Organization with Kubernetes, for a definition
of the kubectl context.

If you would like to manually inspect the manifest generated by the App Host, please refer to

its official format documentation at https://learn.microsoft.com/en-us/dotnet/aspire/
deployment/manifest-format.

https://prom3theu5.github.io/aspirational-manifests/getting-started.html
https://prom3theu5.github.io/aspirational-manifests/getting-started.html
https://learn.microsoft.com/en-us/dotnet/aspire/deployment/manifest-format
https://learn.microsoft.com/en-us/dotnet/aspire/deployment/manifest-format

Simplifying Microservices with .NET Aspire430

Summary
In this chapter, we described the opportunities and services offered by .NET Aspire. We discussed
how to configure a complex application made of microservices and other resources in the App
Host project, and discussed in detail how service discovery works both in general and specifically
with .NET Aspire.

We described how environment variables containing all the information needed for the inter-

action between microservices and resources are automatically injected into all microservices by

the App Host.

Finally, we discussed how Aspire implements observability with the help of telemetry, and how

App Host configuration can be used to generate automatic configuration for the target orches-

trators.

This chapter concludes our amazing journey among the concepts and technologies of modern dis-

tributed computing. We hope that you enjoyed reading this book as much as we enjoyed writing it.

Questions
1. What are the Aspire-specific .NET SDK projects?

.NET Aspire Starter Project, .NET Aspire Empty Project, .NET Aspire App Host, .NET Aspire
Service Defaults, .and various NET Aspire Test projects.

2. Is service discovery an Aspire-specific feature?

No, it is a general .NET feature.

3. How many service discovery providers come with the Aspire default settings?

Just two.

4. What is the best way to handle pre-existing resources that are not defined with the App
Host but are shared by several microservices?

The usage of AddConnectionString.

5. Does Aspir8 provision Azure resources, too?

No, at moment it provisions just Kubernetes resources.

6. What is the purpose of the WithReference fluent interface method?

Declaring that a resource depends on another resource, meaning it needs information

such as, URLs, and connection string, of that resource.

Chapter 12 431

Further reading
• Official Aspire documentation: https://learn.microsoft.com/en-us/dotnet/aspire/

get-started/aspire-overview

• All available Aspire integrations: https://learn.microsoft.com/en-us/dotnet/aspire/

fundamentals/integrations-overview

• App Host configuration manifest format: https://learn.microsoft.com/en-us/dotnet/
aspire/deployment/manifest-format

• Aspir8: https://prom3theu5.github.io/aspirational-manifests/getting-started.

html

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/PSMCSharp

https://learn.microsoft.com/en-us/dotnet/aspire/get-started/aspire-overview
https://learn.microsoft.com/en-us/dotnet/aspire/get-started/aspire-overview
https://learn.microsoft.com/en-us/dotnet/aspire/fundamentals/integrations-overview
https://learn.microsoft.com/en-us/dotnet/aspire/fundamentals/integrations-overview
https://learn.microsoft.com/en-us/dotnet/aspire/deployment/manifest-format

https://learn.microsoft.com/en-us/dotnet/aspire/deployment/manifest-format

https://prom3theu5.github.io/aspirational-manifests/getting-started.html
https://prom3theu5.github.io/aspirational-manifests/getting-started.html
https://packt.link/PSMCSharp

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from

over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range

of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packtpub.com
http://www.packtpub.com

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

C# 13 and �NET 9 – Modern Cross-Platform Development Fundamentals

Mark J. Price

ISBN: 978-1-83588-123-1

• Discover the new features of .NET 9, including more flexible params and new LINQ like
CountBy and Index

• Leverage the new ASP.NET Core 9 features for optimized static assets, OpenAPI document
generation, and HybridCache

• Utilize the native AOT publish capability for faster startup and reduced memory footprint

• Build rich web user interface experiences using Blazor in ASP.NET Core 9

• Integrate and update databases in your applications using Entity Framework Core 9

models

• Query and manipulate data using LINQ

• Build powerful services using Minimal APIs

https://www.packtpub.com/en-in/product/c-13-and-net-9-modern-cross-platform-development-fundamentals-9781835881231

Other Books You May Enjoy

Software Architecture with C# 12 and �NET 8

Gabriel Baptista, Francesco Abbruzzese

ISBN: 978-1-80512-245-6

• Program and maintain Azure DevOps and explore GitHub Projects

• Manage software requirements to design functional and non-functional needs

• Apply architectural approaches such as layered architecture and domain-driven design

• Make effective choices between cloud-based and data storage solutions

• Implement resilient frontend microservices, worker microservices, and distributed

transactions

• Understand when to use test-driven development (TDD) and alternative approaches

• Choose the best option for cloud development, from IaaS to Serverless

https://www.packtpub.com/en-in/product/software-architecture-with-c-12-and-net-8-9781805122456

Other Books You May Enjoy 437

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and

apply today. We have worked with thousands of developers and tech professionals, just like you,

to help them share their insight with the global tech community. You can make a general appli-
cation, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Once you’ve read Practical Serverless and Microservices with C#, we’d love to hear your thoughts!

Please click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1836642016

Index

Symbols

.NET Aspire 235

RabbitMQ, integrating 427-429

using 421-426

.NET Aspire Empty App 408

.NET Aspire features and services 404-408

application telemetry 415, 416

automatic resource configuration 412-415

resource integration configuration 412-415

service discovery 408-412

.NET Aspire Service Defaults 406

.NET Aspire Starter App 408

.NET SDK 11

.yaml files 238, 240

A

access rights 12

advanced Kubernetes configuration 297

Ingresses 302-305

liveness probe 300-302

readiness probe 300, 302

secrets 297-299

startup probe 300-302

aggregates 58, 59

Amazon 2

Amazon Elastic Kubernetes Service

(Amazon EKS) 313

anomaly detection 384

API gateway 47

API management systems 48

App Host

Azure Functions, integrating 419, 421

microservices and resources,

configuring 416-419

application configuration options

container configuration 341, 342

ingress configuration 342-345

volume definition and allocation 345, 346

application security

authentication and authorization 357

best practices 354

data security 355, 356

dependencies, securing 365, 366

network security 354, 355

application services 222

Application Services layer

commands 64, 66

domain events 67-70

queries 63

application telemetry 415, 416

ArgoCD 318

Index440

Aspir8

reference link 429

asynchronous data sharing 35-37

asynchronous data sharing approach 35, 37

authentication 357

authorization 357

Authorization microservice 397

automatic resource configuration 412-415

AWS Lambda 2

Azure

serverless app, creating 5-8

Azure App Configuration 356

Azure CLI 332

Azure Container Apps 32, 235, 314

application configuration options 338, 340

application versioning 330, 331

Azure identity, associating 347-349

commands and operativity 332-338

consumption-only and workload

profiles 329, 330

interacting 332

network security 372

planning 326-329

reference link 349

used, for deploying microservice

application 332

user security 378

.yaml format 338, 340

Azure functions

coding, with Visual Studio 18-21

Azure Functions 2

coding, with VS Code 10-18

integrating 419, 421

IoT Hub, connecting with 153-156

triggers 9, 10

Azure Functions Core Tools 11

Azure IoT Explorer 152

Azure Key Vault 356

Azure Kubernetes Service (AKS) 242, 313

NGNIX-based Ingress, using 308, 309

Azure Managed Identities 356

Azure Monitor

centralized observability with 385-387

Azure Service Bus 47

Azure Service Bus trigger 111

using, for car-sharing example 112-114

versus Kafka trigger 112

versus RabbitMQ trigger 112

Azure SQL trigger

car-sharing SQL trigger example 103-106

cons 103

pros 103

Azure timer triggers

advantages 129

car-sharing timer trigger example 129, 130

disadvantages 129

Azure Tools extension 11

B

Backstage

reference link 32

Bearer 359

Binary Large Object (Blob) 131

bind mount 92

Blob Storage Trigger 10

Blob trigger 131

advantages 132

car-sharing example 138, 139

disadvantages 132

implementation, with Event Grid 133-138

bounded context 31

Index 441

Bridge to Kubernetes

reference link 285

build stage 87

C

CarRequests microservice 398

CarSharer microservice 397

Car Sharing app

architecture description 395, 396

demonstration code 399-401

microservices 396

car-sharing application, route-planning

microservice 168

microservice specifications 169, 170

security and authorization,

handling 170, 171

Visual Studio solution, creating 172, 173

car-sharing IoT example 156-163

C# Dev Kit 11

ClusterIP 263

ClusterIP service 264

code injection 380

Cold Start 383

cold-start latency 101

command handler

defining 222-229

Command Query Responsibility

Segregation (CQRS) 37, 61, 63

containerapp Azure CLI 332

container configuration 341, 342

container registries 279, 280

containers 84

working 85, 86

content delivery network (CDN) 379

context 243

context maps 32

Cosmos DB trigger

car-sharing Cosmos DB trigger

example 107-110

pros and cons 106

using 106

Cosmos DB Trigger 10

cross-site scripting (XSS) 380

CVE program

reference link 366

D

database driver 212-214

database migrations, creating 220-222

IOutputQueueRepository

implementation 214-216

IRouteOfferRepository

implementation 219, 220

IRouteRequestRepository

implementation 216-219

database migrations

creating 220-222

Datadog

reference link 32

data-driven 38

data security 355, 356

Defender for IoT 148

DeleteBefore method 217

demonstration code 399-401

Denial of Service (DoS) attack 379

deployment environments

container registries 279, 280

database engine, installing 278

database, installing 278

debugging techniques 283-285

Index442

message broker, installing 281, 282

organizing 277

Deployments 261

Docker 235

commands and options 92, 93

Visual Studio support 94-97

Docker client 89

Docker containers 53

Docker Desktop 89, 400, 404

example 90, 91

Dockerfile 86

commands 88

Docker image environment parameters

designing 186, 188

Docker images

hierarchical organization 87

Docker local registry 89

Docker runtime 89

domain 31

domain-driven design 31

domain events 67

domain layer 204, 206

output queue item aggregate 211, 212

route offer aggregate 208-211

route request aggregate 206, 208

Domain Services 61

downward API 271

E

EasyNetQ 175, 176, 186

EasyNetQ RPC facilities 195

Email microservice 398

emptyDir 255

Entity Framework Core entities 58

Event Grid Trigger 10

event handler

coding 229-231

defining 222-229

event injection 378

ExecuteAsync method 197

F

filtering Pods 366

firewall rules 356

first-in, first-out (FIFO) 111

frontend microservices 37

Function as a Service (FaaS) 1

Function Execution Time 383

functions

monitoring 127-129

publishing 122-127

G

GetMatch method 208

GetMessage method 212

GitHub Copilot extension 11

GitHub Dependabot 366

Google Kubernetes Engine (GKE) 313

Grafana 322

gRPC 170

gRPC Protobuf 170

H

HandleAsync method 231

Headless service 268-271

health REST endpoint 44

Helm 315, 317

Index 443

Helm charts 315, 317

hosted services 170, 189, 196-200

HTTP 170

HTTPS termination 303

HTTP trigger 9, 100

car-sharing HTTP trigger example 102

cons 101

pros 100

using 100, 101

Hyper Text Transfer Protocol Secure

(HTTPS) 355

I

Identity and Access Management (IAM) 379

image registries 85

images 85

Incident Response Process 384

ingress configuration 342-345

Ingress controller 304

Ingresses 275, 302-305

NGNIX-based Ingress, using in AKS 308, 309

testing, with Minikube 306, 307

input communication 177-182

integration events 67

IoT

enabling, in Azure 147-153

IoT Hub

connecting, with Azure Functions 153-156

IOutputQueueRepository

implementation 214-216

IRouteOfferRepository

implementation 219, 220

IRouteRequestRepository

implementation 216-219

J

JSON bearer token 170

JSON Web Tokens (JWTs) 357-361

K

Kafka trigger

versus Azure Service Bus trigger 112

Kubectl 243

kubectl exec command 257

Kubelet 240

Kubernetes 32, 235, 240, 241

network security 366-371

user security 372-377

Kubernetes administrative tools 321-325

Kubernetes application

configuring 249-256

Deployments 261-268

Headless service 268-271

permanent disk space, dynamic

provisioning 257-261

ReplicaSets 261-268

scaling 272-274

StatefulSet service 268-271

Kubernetes cluster

creating 246-249

interacting with 243-246

Kubernetes clusters, usage and

administration tools 315

Helm 315-317

Helm charts 315-317

Kubernetes administrative tools 321-325

Kubernetes development environments 326

Kubernetes graphic UIs 318-321

Kubernetes development environments 326

Index444

Kubernetes graphic UIs 318-321

Kubernetes resources 240

L

labels 242

liveness probe 300-302

LoadBalancer 263

LoadBalancer service 264

local service discovery 404

logical microservices 32

interfaces 33

M

Man-in-the-Middle (MitM) attacks 379

master nodes 240

message-processing order

ensuring 184, 185

metrics types

object metrics 275, 276

pod metrics 275

resource metrics 274

microservice application

deploying, with Azure Container Apps 332

microservice application, on Kubernetes

deployment environments, organizing 277

route-matching worker microservice,

testing 286-297

running 276

microservice design

Docker image environment parameters,

designing 186, 188

EasyNetQ RPC facilities 195

hosted services 196-200

input communication 177-181

message-processing order,

ensuring 184, 185

microservice main service 189-195

output communication 182, 183

RabbitMQ 174-176

microservice main service 189-195

microservices 3, 30, 84, 396

Authorization microservice 397

CarRequests microservice 398

CarSharer microservice 397

Email microservice 398

RoutesPlanning microservice 398

microservices application, on Kubernetes

deployment environments, organizing 277

microservices architectures

car-sharing example 39, 40

definition 30

domain of expertise 31

features 40, 41

organization 33-38

replicable microservices 32

standard reliability patterns 42, 43

microservices common patterns 42

asynchronous communication,

handling 44, 45

event-based communications 46

external world, interfacing 47, 48

resilient task execution 42, 44

Microsoft Authentication Library (MSAL) 362

Microsoft Azure

serverless 3, 4

Minikube 235, 242

used, for testing Ingresses 306, 307

Multi-Factor Authentication (MFA) 379

multiple-revision mode 330

Index 445

N

NetworkPolicy resources 367

network security 354, 355

Network Traffic 384

nginx 263

NGNIX-based Ingress

using, in AKS 308, 309

NodePort 263

nodes 240

O

OAuth 2.0 361-364

object metrics 275, 276

observability, for serverless and

microservices 382

centralized observability, with

Azure Monitor 385-387

logging 382, 383

metrics 383

tracing 384

Onion Architecture 53-56

aggregates and ORM entities,

matching 77-79

Application Services layer 56, 63

Domain layer 56-61

Domain Services layer 56

Model layer 56

solution 80-84

solution template 70-77

OnModelCreating method 214

OpenAPI extension for Azure Functions 102

OpenAPI standard 48

OpenID Connect (OIDC) 361-364

OpenShift

reference link 326

OpenTelemetry Protocol (OTLP) 415

Open Worldwide Application Security

Project (OWASP) 365

orchestrators 29, 237, 238

configuring 237

.yaml files 238, 240

output communication 182, 183

output queue item aggregate 211, 212

P

persistence ignorance principle 59

Persistent Volume Claims (PVCs) 258

Persistent Volumes (PVs) 258

physical microservices 32

Pod 242

Pod Health 384

pod metrics 275

Polly library 201, 202

adding, to resilient task execution 203

used, for ensuring resilient

task execution 201

Postman 12

reference link 32

PrepareMessage method 231

privilege escalation 379

probe operation 300

failureThreshold 300

initialDelaySeconds 300

periodSeconds 300

successThreshold 300

timeoutSeconds 300

Prometheus 322

publisher-subscriber pattern 46

Index446

Q

queue storage trigger 140

car-sharing queue storage trigger

example 141-143

pros and cons 141

using 141

Queue Storage Trigger 10

R

RabbitMQ 47, 170, 174-176

integrating 427-429

reference link 174

RabbitMQ auxiliary information format 414

RabbitMQ.Client 175

RabbitmqCluster 281

RabbitMQ Cluster Operator 281

RabbitMQ exchanges 175

RabbitMQ trigger

versus Azure Service Bus trigger 112

Rancher UI 318

readiness probe 300, 302

records 60

replicable microservices 32

development, splitting 32

ReplicaSets 261

repository pattern 61

request 36

resilient task execution

ensuring, with Polly library 201

resource integration configuration 412-415

resource metrics 274

response 36

route-matching worker microservice

testing 286-297

RouteNegotiation 181

route offer aggregate 208-211

route request aggregate 206, 208

RoutesPlanning microservice 398

S

scaling 272-274

secrets 297-299

serverless 2

for microservices 3

serverless app

creating, in Azure 5-8

Service Bus Trigger 10

service catalogs 32

service discovery

roles 408-412

Service-Oriented Architectures (SOAs) 25-27

microservices architectures 27-30

services 242

sharding 185

sharding plugin

reference link 186

Sidecar pattern 242

Sonar 366

Spatial Reference Identifiers (SRIDs) 204

startup probe 300-302

StatefulSets 327

StatefulSet service 268-271

Storage Azurite emulator 131

Storage Classes 259

subdomain 31

Index 447

Swagger

reference link 32

Sync 366

T

threats 378

code injection 380

Denial of Service (DoS) attacks 379

event injection 378

Man-in-the-Middle (MitM) attacks 379

privilege escalation 379

threshold-based 384

timer trigger 10, 120, 122

Transparent data encryption 356

Transport Layer Security (TLS) 355

triggers, Azure Functions 9

Blob Storage 10

Cosmos DB 10

Event Grid 10

HTTP 9

Queue Storage 10

Service Bus 10

Timer 10

U

ubiquitous language 53, 57

Union 359

Unit Of Work pattern 62

user interface (UI) 53

V

virtual hosting 303

Virtual Private Cloud (VPC) 354

Visual Studio

Azure functions, coding 18-21

Visual Studio support

for Docker 94-97

volume allocation 345

volume definition 345

VS Code

Azure Functions, coding 10-18

W

web API interface translation 47

Web Application Firewall (WAF) 380

detection and mitigation with 380, 381

Windows Subsystem for Linux

(WSL) 168, 400

worker microservices 37

workload profiles 326

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free
content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781836642015

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781836642015

	Cover
	Title Page
	Credit Page
	Contributors
	Table of Contents
	Preface
	Chapter 1: Demystifying Serverless Applications
	Technical requirements
	What is serverless?
	Is serverless a way to deliver microservices?
	How does Microsoft Azure present serverless?
	Creating your first serverless app in Azure
	Understanding the triggers available in Azure Functions
	Coding with Azure Functions
	Coding Azure functions using VS Code
	Coding Azure functions using Visual Studio
	Summary
	Questions
	Further reading

	Chapter 2: Demystifying Microservices Applications
	The rise of Service-Oriented Architectures (SOAs) and microservices
	The rise of SOA
	Toward microservices architectures

	The definition and organization of microservices architectures
	A definition of microservices architectures
	Domain of expertise and microservices

	Replicable microservices
	Splitting microservices development among different teams
	Microservices, interfaces, and communication protocols
	Just the interfaces of the logical microservices are public

	Microservices organization
	Car-sharing example

	When is it worth adopting microservices architectures?
	Microservices common patterns
	Resilient task execution
	Efficacious handling of asynchronous communication
	Event-based communications
	Interfacing the external world

	Summary
	Questions
	Further reading

	Chapter 3: Setup and Theory: Docker and Onion Architecture
	Technical requirements
	The Onion Architecture
	The Domain layer
	Application services
	Queries
	Commands
	Domain events

	A solution template based on the Onion Architecture
	Matching aggregates and ORM entities
	A complete solution based on the Onion Architecture

	Containers and Docker
	Docker Desktop: a simple example
	A few more Docker commands and options
	Visual Studio support for Docker

	Summary
	Questions
	Further reading

	Chapter 4: Azure Functions and Triggers Available
	Technical requirements
	HTTP trigger
	Advantages, disadvantages, and when to use the HTTP trigger
	Car-sharing HTTP trigger example

	Advantages, disadvantages, and when to use the Azure SQL trigger
	Car-sharing SQL trigger example

	Advantages, disadvantages, and when to use the Cosmos DB trigger
	Car-sharing Cosmos DB trigger example

	Azure Service Bus trigger
	Comparison with the Kafka trigger and the RabbitMQ trigger
	Car-sharing example with the Azure Service Bus trigger

	Summary
	Questions
	Further reading

	Chapter 5: Background Functions in Practice
	Technical requirements
	Timer trigger
	Publishing your functions
	Monitoring your functions
	Advantages, disadvantages, and when to use Azure timer triggers
	Car-sharing timer trigger example

	Blob trigger
	Advantages, disadvantages, and when to use Blob storage triggers

	Blob trigger implementation using Event Grid
	Car-sharing Blob storage trigger example

	Queue storage trigger
	Advantages, disadvantages, and when to use queue storage triggers
	Car-sharing queue storage trigger example

	Summary
	Questions
	Further reading

	Chapter 6: IoT Functions in Practice
	Technical requirements
	Enabling IoT in Azure
	Connecting IoT Hub with Azure Functions
	Car-sharing IoT example
	Summary
	Questions
	Further reading

	Chapter 7: Microservices in Practice
	Technical requirements
	The route-planning microservice of the car-sharing application
	Microservice specifications
	Handling security and authorization
	Creating the Visual Studio solution

	Microservice basic design
	The message broker: RabbitMQ
	Input communication
	Output communication
	Ensuring that messages are processed in the proper order
	Designing Docker image environment parameters
	The microservice main service
	EasyNetQ’s RPC facilities
	Other required hosted services

	Ensuring resilient task execution with Polly
	The Polly library
	Adding Polly to our project

	From abstraction to implementation details
	The domain layer
	The route request aggregate
	The route offer aggregate
	The output queue item aggregate

	The database driver
	The IOutputQueueRepository implementation
	The IRouteRequestRepositoryimplementation
	The IRouteOfferRepository implementation
	Creating migrations and databases

	The application services: Defining all command and event handlers
	Coding all event handlers

	Summary
	Questions
	Further reading

	Chapter 8: Practical Microservices Organization with Kubernetes
	Technical requirements
	Introduction to orchestrators and their configuration
	.yaml files

	Kubernetes basics
	Interacting with Kubernetes: Kubectl, Minikube, and AKS
	Creating an Azure Kubernetes cluster

	Configuring your application in Kubernetes
	Dynamic provisioning of permanent disk space
	ReplicaSets, Deployments, and their services
	StatefulSets and Headless Services
	Scaling and autoscaling
	Resource metrics
	Pod metrics
	Object metrics

	Running your microservices on Kubernetes
	Organizing all deployment environments
	Database engine and database installation
	Container registries
	Message broker installation
	Debugging techniques

	Testing the route-matching worker microservice

	Advanced Kubernetes configuration
	Secrets
	Readiness, liveness, and startup probes
	Ingresses
	Testing Ingresses with Minikube
	Using an NGNIX-based Ingress in AKS

	Summary
	Questions
	Further reading

	Chapter 9: Simplifying Containers and Kubernetes: Azure Container Apps, and Othert Tools
	Technical requirements
	Tools for simplifying Kubernetes clusters usage and administration
	Helm and Helm charts
	Kubernetes graphic UIs
	Kubernetes administrative tools
	Development environments based on Kubernetes

	Azure Container Apps basics and plans
	Consumption-only and workload profiles
	Application versioning
	Interacting with Azure Container Apps

	Deploying your microservice application with Azure Container Apps
	Basic commands and operativity
	Application configuration options and the .yaml format
	Container configuration
	The ingress configuration
	Volume definition and allocation

	Associating an Azure identity to your application

	Summary
	Questions
	Further reading

	Chapter 10: Security and Observability for Serverless and Microservices Applications
	Application Security Best Practices
	Network Security
	Data Security
	Authentication and Authorization
	JSON Web Tokens
	OAuth 2.0 and OpenID Connect (OIDC)

	Securing Dependencies

	Kubernetes and Azure Container Apps Security
	Kubernetes network security
	Azure Container Apps Network Security
	Kubernetes User Security
	Azure Container Apps User Security

	Threat Detection and Mitigation
	Threats
	Event Injection
	Privilege Escalation
	Denial of Service (DoS) Attacks
	Man-in-the-Middle (MitM) Attacks
	Code Injection

	Detection and Mitigation with Web Application Firewalls

	Observability for Serverless and Microservices
	Logging
	Metrics
	Tracing
	Centralized Observability with Azure Monitor

	Summary
	Questions
	Further reading

	Chapter 11: The Car Sharing App
	General architecture description
	Microservices involved
	Authorization microservice
	CarSharer microservice
	CarRequests microservice
	RoutesPlanning microservice
	Email microservice

	The demonstration code
	Summary
	Further reading

	Chapter 12: Simplifying Microservices with .NET Aspire
	Technical requirements
	.NET Aspire features and services
	Service discovery and its role in .NET Aspire.
	Resource integration and automatic resource configuration
	Application telemetry

	Configuring microservices and resources
	Azure Functions integration

	Using .NET Aspire in practice
	RabbitMQ integration

	Deploying a .NET Aspire project
	Summary
	Questions
	Further reading

	Other Books You May Enjoy
	Index
	Blank Page

