Introducing
NET MAUI

Build and Deploy Cross-Platform
Applications Using C# and .NET 9.0
Multi-Platform App Ul

Second Edition

Shaun Lawrence

ApPress:

Introducing .NET MAUI

Build and Deploy
Cross-Platform Applications
Using C# and .NET 9.0
Multi-Platform App Ul

Second Edition

Shaun Lawrence

Apress’

Introducing .NET MAULI: Build and Deploy Cross-Platform Applications
Using C# and .NET 9.0 Multi-Platform App Ul, Second Edition

Shaun Lawrence
St Ives, UK

ISBN-13 (pbk): 979-8-8688-1188-3 ISBN-13 (electronic): 979-8-8688-1189-0
https://doi.org/10.1007/979-8-8688-1189-0

Copyright © 2025 by Shaun Lawrence

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Ryan Byrnes
Editorial Project Manager: Gryffin Winkler

Cover designed by eStudioCalamar
Cover Image by hmmunoz512 from Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1

New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub. For more detailed information, please visit https://www.apress.
com/gp/services/source-code.

If disposing of this product, please recycle the paper

https://doi.org/10.1007/979-8-8688-1189-0

This book is dedicated to Soco our beloved family dog who
sadly passed before this second edition was written.
Boy, you helped me throughout the first edition and I know
how you always loved a good book with the girls at
bedtime. Rest well my friend.

Table of Contents

About the AUthOrcccsnimmnmmnssns s ————— Xix
About the Technical REVIEWETccusseesssssnsssssnsssssnsssssnsssssnsssssasssssnnss xxi
Acknowledgments.......cccueemmmisssmnnmmssssssnnmssssssnmssssssnssssssnssessssnnnnenns Xxiii
INtroductioncuccmniemmmsssnsmsssnnmsssssssssnnssssnsssssnnssssnsssssnnssssnnnnssnnnnsnns XXV
Chapter 1: Introduction to .NET MAUL...........coosvmmmmmmmmnssssssssssssnsssssssssnns 1
ADSTFACT...... oo e 1
What IS INET MAUI? ... sssssssssssssssssssanes 1
Digging @ Bit DEEPET.......cccvverviererirer s e 4
Where Did It COme From?........cooiieinnnssssssss s sesssssssssesens 5

How It Differs from the Competition ... 6

Why USE .NET MAUI?......ccooeeeinssrsrsnsinrsssssssssssssesese e e s sssssssssssssssssssssssssssssssssas 7
SUPPOrtEd PlatfOrmS......coivverrerrereresesrereresessese s ssesessessessessssessessesassassessessens 7

T (=T - T o 8
Developer FIEBAOMccvcrierererer s s sn e re e n 9
001101101 9

Fast Development CYCIEccvvveereverrerrereressesserereesessessessessssessessessssessessesaes 10
PEIrfOIMANCE..... ot 10
Strong Commercial OffEriNgSccvvrerverierererrersererss s sessese e ssssesessenes 11

TABLE OF CONTENTS

Limitations of .NET MAUL..........ccoinrnrne s s 12
No WebAssembly (WASM) SUPPOIL........ccoeveververierenensersessessssessessessesessessesaes 13

NO CAMEIA APL........oceiiiririsesese s 13
Apps Won’t Look Identical on Each Platform...........cccccocvvnvnnininsnsennenienne 13
Lack of Media Playback Out of the BOX........cccveerernrenseniennnessensesesessessensenes 14
The Glass Is Half Full, TROUGN ... 15
How to Build .NET MAUI Applications..........ccccvivrnininennsninens s ssesessesesnens 15
LT LIS (1o P 15
21T T T 16
Visual STUdio COUE........oeereerieerereerese e 16
SUMMANY....ceeiecerrrisere s s e e s e e e nre e s 17
Chapter 2: Building Our First Application........cocccmmmmmmmnnsssssssssssssnnnns 19
ADSTFACT.......cceeeiecer e e 19
Setting Up Your ENVIrONMENTcccoevevninene s se e se s sseenes 20
MACOS ... s 20
WINAOWS ... s s 25
Visual Studio 10 MacOS ... 27
Troubleshooting Installation ISSUES..........ccccvvrvrnrinin s 31
NET MAUI Workload IS MiSSiNg.........ccccvrurrerieminnennensensensesssesessessesssessessenns 31
Creating Your First Application...........ccocuecrrcrnenencscrnce e sens 33
Creating in Visual StUIO..........cccccrrrerrerernrc s 33
Creating in the Command LiNecccceoeeerrvernrenennscrs st seses e seseenes 36
Building and Running Your First Applicationccccovnnernnscnnsenesesereneens 37
Getting to Know Your Application..........ccccvnninininnnnsene s 39
WidgetBOoard.........ccoveererererenerrssesesesesese s sessese s sessssessesessssssesssssnsenens 40
SUMMANY....eitieerrertre et p e e 4
SOUICE COURcovreeerreerrneressese e sr s e nr e 41

TABLE OF CONTENTS

Chapter 3: The Fundamentals of .NET MAUIccoccemnmnsssnnnnsssssnnnns 43
0L T 43
ProjeCt SErUCIUNE ... 43

[PIAHFOrMS/ FOIUEN ... 46
TRESOUICES/ FOIART ... 49
WHEre 10 BEGIN......cccoereereesese s se s s sessssesnsnens 54
Generic HOSt BUIIAET ... 55
What Is Dependency INJECLION?ccouevevrnrennesenese s sessesessenens 55
Registering DEPendencCies.........cuouururernsesrnesesesesssessssessss s sessessssesessnnes 59
Application LIfECYCIEcvvererertrrere et sere e sese e sr s sne s 61
Application STAteS........ccvcrervrrrerere s 61
LIfeCyCle EVENTS.......ccccverererrere s se e se s sns e ssesassessesne s 62
Handling LifeCyCle EVENTS........cccvevrrrieriern e sesese s sese s ssesessessesees 63
Cross-Platform Mappings to Platform Lifecycle Eventsccccevevvrercernne 65
Platform-Specific Lifecycle EVENtS........cccccovvrvrierennsnie s sessesaennes 66
1] 4= 7 71

Chapter 4: An Architecture to Suit YOUccoccemnnnssennnmnssssnsssssssnnnns 73
0L T 73
A ME@SUNNG STCK......cccoereerecrersererese e 74
PrereqUISITESccicrere e 74
Model View ViewModel (MVVM)........ccoocrnereninmmnnesssessssessssssessssesssssssssssessssesenns 75

10T OSSR 76
L1 S 77
VIEWIMOUELceiveerrrerireseee e nnanens 78
Model View Update (MVU)........covrrierennrirreness s sesessesessesessessssessessessessssessessens 80
Getting Started with MauUiREACTOrcccceververiererr e 81
Overview of the MVU Project Format............cccevivvvvncninnnnsensenesessensenens 82
Adding Your MVU Implementationc.ccocevvrvienenensensensesesessessesesessessessens 83

TABLE OF CONTENTS

DT 0 1 1 o 85
o 1L T 86

CH MAFKUD ..veveeeerresseseressessesessessessessssessessesssssssessessesssssssessesssssssessessesssssssesseses 87
Chosen Architecture for ThiS BOOK.........ccouuenerereressssnsseseresssssssesesesssssesesesessans 88
Adding the ViewMOdelscccrierinnnnicniennsnsenese s sessessens 89
AdAING VIBWS ..ot srs s s sn e sss e snens 9
Viewing Your Widget........ccovimrnininnnnc s ses s ssessssessesnens 97
MVVM ENRAnCEemMENtS.........c.coeemrerereecrercnerene e 99
SUMMANY.....eieeereeereree e s e se s e re e e e e 103
SOUICE COUE ... e e 104
Chapter 5: User Interface Essentialsccccusssmmnmmssssnnnnmssssnnsnnsssnnns 105
0L 1 T TSR 105
PrEr@UISITESveueeereeriee s s 105
MOGEBIS ... e nnen 106
PGS ... e e nne 107
VIEWMOUEIScrvierereirese s e 108

LY o o B (0] SRS 109
Adding YOUr OWN ICON......cccrererirrerererre s s e se s e e ssesaesessessesnens 110
Platform DifferenCes........coouiermrnrnnisnisss s 111

LS 02T TR =TT o RO 112
XAML....ocoititrerereseseseesesessssssssssssssssssssssssssss s e e e e e sess e s s s s s sssssssssnsssssasasnsns 113
Dissecting @ XAML Fileccoucririininicne s ssssessesnens 114
Building Your First XAML Pageccccvvrennnmnnnennsinsesess s sessessessssessessens 116
LAYOULS......ceeceercecee s e 118
ADSOIUTELAYOUL ... e 118
FIBXLAYOUL ... 121
67 PP OSRN 122

viii

TABLE OF CONTENTS

HorizontalStackLayoUt...........cccvrererennerieresessenesessssessessesaessssessessessssessessens 125
VerticalStackLayoul.........c.ccvveveverrenierenesessese e ssssessesessessssessessessesessessessens 126
Data Binding.........cccveviininnnrrsn s 129
BINGING ..o e e e 129
Applying the Remaining Bindings........c.cccuuvirienninnnnninsnsnsessesesessessessens 134
MURIBINGINGoveeieicirceee e nnens 135
COMMEANG ... s 138
Compiled BiNAINGS.......ccocoerriererenirerernsesene s ses e ses e sesennes 141
Make Use of the BoardDetailSPage............cccoveererenerenernsenenesesese e 142
Taking Your Application for @ Spin........c.cccvvnrnninnn e 143
SUMMANY....ceiviertnerirese e r e e e s nr e 144
SOUICE COURcovreerrreerieerree s 144
Chapter 6: Shell.........ccoccccmnnnnmnnmnnmsnnnmmmsssnmsss——————————— 145
ADSIFACT.......ciici e ————————— 145
g (] €0 [T (<SSR 145
PAQES. ... —————— 145
VIEWMOGEIS ... s 147
SHEIL....eeecceece e 149
SHEllCONTENT ..o s 150
NaVIgALION.......cieee e 151
FIVOUL....o e r e e nnen 157
L= 13T 166
SBAMCH ... 172
TOOIDAITEEMS ... e 177
Add a Toolbarltem to a ContentPage’s Toolbarltemsccovecverercrnccnene 178
Changing the PresentationMode of a ContentPage.........cccceriervvercenene. 179

ix

TABLE OF CONTENTS

SUMMAIY.c.veitetrerere e sere e se s s sa e e s ssesaese s e saesaese s e saesaesae e s e saesae s eensessens 187
SOUICE COUEcocerrrerrceererisrs s 188
Extra ASSIGNMENT ..o e s 189
SOUMCE COURceererreneerereres e 189
Chapter 7: Creating Our Own Layoutcccusssemnnrsssssnssssssssssssssssnns 191
0L 1 T TR 191
gV 10 o T SRR 192
ILAYOUIMANAGETcveeeererer e s 194
BOoArdLaYOUL........coccvieereririr e e 195
BoardLayout.Xaml...........ccocrvniinininnsre e 196
BoardLayout.XamL.CSccvvvriineririrsre e 198
FixedLayoutManager........c.cccvrrinninnin st se s s sse e s sseas 203
Accepting the Number of Rows and Columns for a Boardccceeeveernns 205
Providing Tap/Click Support Through a Commandccceeevrerierevensenienaens 207
Building the Board Layout ... 209
Setting the Correct Row/Column Position for Each Widgetcccccvveruene. 211
USING YOUF LayOULcocevceiiresirsere s s s sn s s 213
Adding a Factory That Will Create Instances of Your Widgetscccveeruene 213
WidgetTemplateSelector..........ccvieernccrresirr e 218
Updating FixedBoardPageViewModel.............cccervnrsniniennsnscnenesensenennns 220
Finally Using the Layoutcccviinininennsncne s sese s s 222
SUMMANY.....eieeereeereree e s e se s e re e e e e 224
SOUICE COUE ... e e 224
EXtra ASSIgNMENTcceeererirereserrssesese s s srenes 225
SOUICE COURovreeerreerreereseresse e s n e nennis 225

TABLE OF CONTENTS

Chapter 8: AccesSibility.....cccusmmmrmmsmmnmmmssssnnnssssnnsssssssnssssssssnsnssssnnns 227
8L 1 T TR 227
What IS ACCESSIDIlITY?ceeeeereeerr e 227
Why Make Your Applications Accessible? ..o 228
What to Consider When Making Your Applications Accessible..........ccccovvenuenee. 228
How to Make Your Application AcCesSIbIE.........ccvvriervvrininie e 229

Screen Reader SUPPOITccocvevererreriene s s e sss e s sassessesaesnes 230
Suitable Contrast ... ——— 238
Dynamic TeXt SiZiNG......ccecevvrririeresirsire e ses e ssesnens 240
Testing Your Application’s ACCeSSIDIlitY........covveririnrnnenienien s 245
ANAIOId ... ———————— 245
TS e ————————————————— 245
12T O 246
WINAOWS ... s 246
USETUI RESOUICES ... esesse e se e 247
Accessibility ChecKIiSt..........cccorerrirrricrre e 247
A Guide for Making Apps ACCESSIDIEcccveereccrrierrerere e 248
SUMIMANY.....eeeerercreree e s e se e s e s re e e e e 249
SOUICE COUE ... 250
EXtra ASSIgNMENTccecerererereerrsse s s srens 250

Chapter 9: Advanced Ul Concepts......ccccuussemmmmmssssnnnssssssnnsssssssnssssssnnns 251
ADSTFACT.......coeceeere e e 251
Adding the Ability to Add a Widget to a Board..........cccceevvrverernnnsenienenensensennns 252

Possible Ways of Achieving YOUr GOalccucerverenenreriernnensensesesessensensens 252
The Chosen APProach........cccvevvvrienenenensene s s s e sessessesnens 254
£ 47T S 261
Examining the Default StyleS.......cccvvvvierernsnierienssessesese s sessessessssesessens 263

TABLE OF CONTENTS

Creating @ SIYIEcvvcvere e 265
AppThemeBindingccoevvrvninnrrrr s 267
Further Reading.........ccucvverrinsinnenersrses s s s seas 268
L1 =T £SO SO S 268
Creating a DataTrigger......ccccvvrerererernierire et 269
EnterActions and EXitACLIONS.........ccovoeirerrercrnesesee e 270
Creating a THQQErACHIONccovveeececer e 271
Further Reading.........cccviniinnnisesrsne s se s 273
BasiC ANIMALIONSc..coceereereeree e 274
Combining Basic ANIMations...........cccovvvnernesnnse e 275
Cancelling ANIMALIONScccccvreireccrr e 276
EASINGS ..ottt e e 277
Complex ANIMALIONSccoverereierercrr e 278
Combining Triggers and ANIMAtioNnsccccoverrnrernnenesese e 283
BERAVIOLSceceveeerreeriee s 284
Creating Qur BENAVIONccccvvererenernsesesesese s se s sennes 285
Attaching Our BENAVIOL..........ccovererenernsesenesese s s sessesenns 287
Taking the Application for @ Spin........cccvvvnininnnr e 288
FONES . e 290
EMDed the FONt ... 291
Configure the FONL ... s 291
USE the FONL ..o s 291
Taking the Application for @ SPin........ccccovesnisrnns s 291
SUMMAIY.c.ueiteirerere e s e s s s e e s e s s sae e e e s aeeaesae e s e s aesaene e e naennees 292
SOUCE COUER ... s 294
EXtra ASSIGNMENTcceiiriirrie s s 294
Animate the BOXVIEW OVEFIAY........ccererrererrerserersssessessessessssessessesssssssessessens 294

xii

TABLE OF CONTENTS

Animate the New Widget ... 294
SOUICE COUEcocvrrrrrrceerere i 294
Chapter 10: Local Dataccccrnrmsssmnnmmsssssnnsmsssssnsssssssssssssssssnsssssssnns 295
0L 1 T TR 295
What IS LOCal DALA? ..o 295
File SYSTEM ..o s 296
L2 T3 T D1 (T (0] S 296
App Data DIreClory ..o s snens 297
DAtADASEcoveerereresier e 298
RepoSitory Pattern.........couccvivrernnennessesessse s s sessessssenens 299

RS 0 R 311
0=] R 319
Database SUMMArY ... 326
Application Settings (PreferenCes).......cuovvrrerierinrerserienessensesesse s s e sessessesses 327
What Can Be Stored in Preferences?..........ccocovminncnnnnnsnssssessssssssssenens 327
Setting a Value in PreferenCes.......ccvvvevererseneresessessesessssessesessessssesessenes 328
Getting a Value in PrefErenCescccvverevesenvenesiesessessesesessessessessssessessesees 329
Checking If a Key EXists in Preferencesccccveevevevnevierenssensesensesessessenses 332
Removing @ PrefereNCeccvvverererserieresisseresessssessesse e sessessessessssessessens 332
Displaying Our PreferenCeSccuovvrerrrierenessenseseseesessessessesessessessessssessessens 332
Lo U =T (0] = Vo RS 336
Storing aValue SECUEY......ccverererrerrere e sae s 338
Reading @ SECUIE VAIUE........ccoceverererierieresesseressessssessessesaessssessessessssessensens 339
Removing @ SECUIe ValUE........ccveveverreriererenseresessssessessesaessssessessessssessessens 339
Platform SPECITICS ..vvvveererrrrerrerererersere s s se s e saesnens 339
Viewing the ReSUlt ... 341

xiii

TABLE OF CONTENTS

SUMMAIY.c.veitetrerere e sere e se s s sa e e s ssesaese s e saesaese s e saesaesae e s e saesae s eensessens 343
SOUICE COUEcocerrrerrceererisrs s 344
Extra ASSIGNMENT ..o e s 345
SOUMCE COURceererreneerereres e 345
Chapter 11: Remote Data.........ccccvvssmmmnmsssssnnnmmsssssnnmssssssssessssssssessssnns 347
0L 1 T TR 347
What Is Remote Data?..........ccovermrernnenesenmsnsesessesesese s sessesessssessssesessssssssnens 347
Considerations When Handling Remote Data.........c.cccocvrvnernnernsesesnnenennes 348
WED SEIVICES ..oveereeerrrresnrreserrs s sr s sn s 350
The 0pen Weather AP ... 350
Adding Some State.........cccvvvrniris e —————— 369
Simplifying WeD SErviCe ACCESSuvrvrerrererrrenserersesessessessessssessessessessssessessens 378
Prebuilt LIDraries ... sessssssss 379
Code Generation LiDraries ... sssssssssas 379
Further REAdINGccoveriirierrie s 381
StateContainer from CommunityToolKit.Maui...........cerrervrrrerierienensersenenns 381
31011117 OO 382
SOUMCE COURceceererrceeereres e e 383
EXtra ASSIgNMENT ..o 383
TODO WIdGEL......cceeuerernrrrnrsrssssnssssesesesesesesesesesesesesssssssssssssssssssssssssssssnsnsnenes 383
Quote of the Day Widget.........cccovrerernrernnesesereses e sessssssens 383
NASA Space Image of the Day Widget..........c.ccoreerrrenrnennienereserseneneens 384
SOUICE COUE ... e e 384
Chapter 12: Getting SPecifiC.....c.ccuusmmmmmmsssnnnmmsssssnnsmsssssnsssssssannnsssssnns 385
0L 1 T TSR 385
NET MAUI ESSENLIEIScovveeirrierinesessesesrs e ssess e s s ssssssessnses 385
PEIMISSIONSccitirierresesiseseee s sr e nn s 386

Xiv

TABLE OF CONTENTS

Using the Geolocation APL..........ccoevvrvrereveesensesesssesseressessssesessesssssssessesses 391
Configuring Platform-Specific Components.........ccocvvvverevvrnserserenensensenes 397
Platform-Specific APl ACCESS......couvererererrererinieresesese e sesesesse s e sessesessssessens 403
Platform-Specific Code with Compiler Directivescccccoveeereccrnccneneens 403
Platform-Specific Code in Platform Folderscccocvvvnrienreccrnicneneens 405
Overriding the Platform-Specific Ul ..o 407
L0410 T 407
HANAIBES ... 410
SUMMANY....ceiveereneresese e s e e sr s e s e se e nesssnenns 417
SOUICE COURovreeerreerreeresesesse e se s nennis 417
EXtra ASSIgNMENTcoeceirierirese e 418
Barometer Widget.........ccovverrrenernnernesinsse s sssse e s snssenens 418
GEOCOUING LOOKUP ...veeeveerreeriseserre s ss s 418
SOUICE COURcovreerrreerieerree s 418
Chapter 13: Testing.......ccouusanmmssansssssnsssssnssssansssssnsssssnsssssnnssssnnssssnnssss 419
ADSIFACT.......ciici e ————————— 419
UNIETESTING .oevecerer e s s 419
Unit Testing in .NET MAULI ... 420
Adding Your OWn Unit TESTS.....cuvvceviererrrenseresersssessesessessssessessesssssssessessens 421
Testing Your View MOGEIS ..o sesessee e ssessssssessessenns 426
Testing Asynchronous OPerationsccveveerevessensersesiessssessessessesessessessens 428
TeSting YOUN VIBWScccueieririrrie s s sse e sse s s s s sesssssnesaessens 436
DeViCe TESHING ..o 438
Creating a Device Test Project..........ccvvvrevrescrnccnnse s ses e 438
Adding a Device-SpecifiC TESt.......cccccvrvrrienrinrcrnre e 441
Running Device-SPecifiC TESEScccvverrerrnccrre s seeneens 443

TABLE OF CONTENTS

SNAPSNOL TESTING....cveitererererrrrerrere et s e e sa e e sne e e e naennens 444
Snapshot Testing Your Application..........ccccvvvrerevnnnsensenssessessesesessesessenes 445
Passing THOUGNESccoceverrirrir s 449

311111117 OO 449
SOUICE COURcererrrreeeereres e 450

Chapter 14: Automation Testingccccvvsseensrssssnnnmsssssnssssssssnsssssssnns 451

0L 1 T TR 451

What Is Automation TeSting?........cccvvrermresmrnsesnsesesesessse s sessssessenens 451

Automation Testing in .NET MAULL........cc.occoriirinnnesnnesersse e sessesssseens 452
INStalliNg APPILUM ..ot 453

Creating the Automation Test Project........cccoovvvvrvrennnncenenn s sesessenennens 459
Add the Appium NUGet Package..........coevrerreriererennensersenesessessesessesessessessens 461
Creating an APPIUM SEIVEN.......ccvivvrrrierierieserrere e s sse s saesessesaesnes 461
Creating the Appium Platform DIiVErS.........ccvcvrerennsenienens s e sessessenaes 463
Parameterizing the TESTSccvvvirierirrrie e se e snens 469

Writing the Automation TESTSccccvvrvvnrininse e 472
Testing the Add New Board Button............ccccvvrinnenininsnneniensen s seesenenns 473
Adding a Test to Create Boardsc.ccoevvevreriereressensessessensssessessessessssessessens 476
Adding a Test to Interact with a CollectionViewc.ccocevvvrveriernnensensennens 478

31011117 OO 479
SOUICE COURcererrrreeeereres e 480

Chapter 15: Let’s Get Graphicalc.cocccsvssemmmssmssssssssssssssssssssssssnsnas 481

0L 1 T TR 481

NET MAUI GraphiCscccovverrernninsensernsnnsessesessssssse e sssssssessesssssssessessessssessessenes 481
Drawing on the SCreeN........ccvcrvrrrrerre e 482
Further REading........cooceevvererenmrrnsesenesessssesssesese s sessesesssssssssesesssssnsenens 485

TABLE OF CONTENTS

Building @ SKetCh Widget.........cccvvrrererenrniererensessesessssessessessessssessessessssessessenes 485
Creating the SketchWidgetViewModelccoeevvvnrrierennsensesenssensensenees 485
Representing a User Interaction........c.ccccvvrinvnvnnncnsensen s senenens 486
Creating the SKetCchWidgetVieWcccvvvvrrreniennnnseniese s sessesseseesessesseenes 487
Registering Your Widget ..o sessesses e ssessessens 492
Taking Your Widget for a TeSt Drawccccocvvrinnnininsnsensesses s sesenenns 492

Building an Analog CloCK Widgetcccceeeerrvernenenese e sesse e 493
Creating the AnalogClockWidgetView..........cccceerncernieneresennseseneseseserenaes 494
Creating the AnalogClockWidgetViewModel...........ccccuverrierernsernrenerenerenne, 497
Registering Your Widget ..o s s 502
Taking Your Widget for a Test Drawccccveerievvinsniennesnsnsessesessssessensens 502

3101111 T 503
SOUICE COUE ... 504

EXtra ASSIgNMENTcceeererirerene s s srnnis 504
SOUICE COURovrueerreerreeresesese e nennis 504

Chapter 16: Releasing Our Application..........ccuuscmmmnsssnnnnmsssssnsnnssssnns 505

ADSTFACT.......coeceeeere e e s 505

Distributing Your Application.........ccceevevrrienievnsensene s sessese s sesessesessessesse s 506
MACOS ... 506
WINAOWScociiiiiiciise e s 507
ANAFOId ... 507
H0S e 511
MACOS ... 516
WINAOWScociiiiiiciise e s 517

Optimizing Your AppliCatioNccvcevvvevrerierers s ses s sesses e ssessessssessessens 519
Following GO0 PracliCeSc.ccvrerererserieressnseneressssessessesssssssessessessssessessens 520
PerfOrMANCE......ce it 521

xvii

TABLE OF CONTENTS

THMMING e s 524
Ahead-of-Time Compilation..........ccevievvrninierienrrrrre e 531
When Libraries Don’t Support Trimming or AQTcccvrvverrnrerieresessersensens 536
RESUILS......oceriicirce s 537
Crashes/ANAIVEICScvceverrrreriere e s aese e saennes 537
ODFUSCALION ... s 538
Distributing TeSt VEISIONS.........cccreecrerirerenereresesese e 541
SUMMANY.....eieeereeereree e s e se s e re e e e e 541
Chapter 17: ConcClUSION.......ccucemmmmmsssnnnmmssssssnmmsssssnnssssssssnnsssssnnnnssssnnns 543
0L 1 T TSR 543
Looking at the Final Productccoveeeverrniennesnese e 543
Taking the Project FUrther ... 546
USETUI RESOUICEScveeciiririssscse e 547
STACKOVEITIOW ... s 547
GITHUD ... 548
YOUTUDE ...ttt s 548
SOCIAl MEIa........cceiererrrriiciri s 548

Yet MOre GOOANESS........cueeerereriseesise s 549
LOOKING FOrWAIcovveririercie s se s sne s s s snesne s s 549
1T - 551

xviii

About the Author

Shaun Lawrence is an experienced software
engineer who has been specializing in building
mobile and desktop applications for the past
20 years. He is a recognized Microsoft MVP

in Development Technologies for his work
helping the community learn and build with
Xamarin.Forms and .NET MAUI. His recent
discovery of the value he can add by sharing
his experience with others has thrust him on to
the path of wanting to find any way possible to

continue it.

Shaun actively maintains several open source projects within the NET
community. A key project for the scope of this book is the .NET MAUI
Community Toolkit where he predominantly focuses on building good
quality documentation for developers to consume. Shaun lives in the UK
with his wife, two children, and their dog.

Xix

About the Technical Reviewer

Gerald Versluis is a Senior Software Engineer
at Microsoft working on .NET MAUI. Since
2009, Gerald has been working on a variety of
projects, ranging from front end to back end
and anything in between that involve C#, .NET,
Azure, ASP.NET, and all kinds of other .NET
technologies. At some point, he fell in love

with cross-platform and mobile development
with Xamarin, now .NET MAUI. Since that
time, he has become an active community member, producing content
online and presenting about all things tech on conferences all around the
world.

Acknowledgments

I have a few people that I would like to thank for their assistance.

Firstly, Gerald: Not only have you reviewed this book, but you have
been there to help me overcome some tricky obstacles with either one of
your many YouTube videos or just general experience to guide me to a
sensible solution.

Secondly, Bailey, our family cockerpoo: Forcing me out on those
lengthy walks come rain or shine really helped me to clear my head and
provide some time for my brain to catch up. I can’t tell you how many
solutions we came up with and had to rush home to jot them down!

Thirdly, the team at Apress: You have all helped me to keep on track
and provide great support whenever I got stuck.

Finally, my family - my wife Levinia and daughters Zoey and Hollie:
Without your encouragement I would not have been brave enough to
take on the challenge to write this book. I am so grateful for the help and
sacrifices you have each made to help me get this book finished and even
the little slots of time waiting for you to finish dance class.

xxiii

Introduction

Welcome to Introducing .NET MAUL

This book has been written for developers who are new to .NET MAUI
and cross-platform development. You should have basic knowledge of C#
but require no prior knowledge of using .NET MAUI. The content ranges
from beginner through to more advanced topics and is therefore tailored
to meet a wide range of experiences. In fact, my intention is to allow you
to learn different levels of content upon multiple reads of this book; you
can feel free to skip past the more complex scenarios and just apply the
results at the end of the chapter if you do not feel ready for it. Then upon
subsequent read-throughs, I expect more and more to make sense.

This book provides an in-depth explanation of each key concept in
.NET MAUI, and you will then use these concepts in practical examples
while building a cross-platform application. The content has been
designed to primarily flow with the building of this application; however,
there is a secondary theme that involves grouping as many related
concepts as possible. The idea behind this is to both learn as you go and to
have content that closely resembles reference information, which makes
returning to this book as easy as possible.

All code examples in this book, unless otherwise stated, are applied
directly to the application you are building. Once key concepts have been
established, the book will offer improvements or alternatives to simplify
your future experiences as you build production-worthy applications.
This book does not rely upon these simplifications for all the practical
examples, and the reason for this is simple: I strongly believe that you need
to understand the concepts before you start to use them or use libraries
that do it for you.

INTRODUCTION

The application that we will build together throughout the course
of this book will be created using the default template provided by .NET
MAUIL This means that the project will have Nullable Reference Types
turned on; therefore, I would strongly recommend reading up on them if
you are unfamiliar before undertaking this book. Microsoft provides some
good documentation at https://learn.microsoft.com/dotnet/csharp/
nullable-references. Also note that we will aim to build an application
that is free of build warnings; don’t worry too much at this early stage, but
you will gain an understanding of why this is extremely important by the
time we reach the end of this book.

Finally, all chapters that involve adding code into the application
project contain a link to the resulting source code repository. This is to
show the final product and for you to use as a comparison if anything goes
wrong during your building of the application.

XxXVi

https://learn.microsoft.com/dotnet/csharp/nullable-references
https://learn.microsoft.com/dotnet/csharp/nullable-references

CHAPTER 1

Introduction to
NET MAUI

Abstract

In this chapter, you will gain an understanding of what exactly .NET
MAUI is, how it differs from other frameworks, and what it offers you as a
developer wishing to build a cross-platform application that can run on
both mobile and desktop environments. I will also cover the reasons why
you should consider it for your next project by weighing the possibilities
and limitations of the framework as well as the rich array of tooling
options.

What Is .NET MAUI?

.NET Multi-platform App UI, or NET MAUI for short, is a cross-

platform framework that allows developers to build mobile and desktop
applications primarily written in C# and XAML. It allows developers to
target both mobile (Android and i0S) and desktop (macOS and Windows)
platforms from a single code base. Figure 1-1 shows the platforms officially
supported by .NET MAUI and Microsoft.

© Shaun Lawrence 2025 1
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/979-8-8688-1189-0_1

https://doi.org/10.1007/979-8-8688-1189-0_1#DOI

CHAPTER 1 INTRODUCTION TO .NET MAUI

.NET MAUI

{ our code } ﬂ []

i0S

Figure 1-1. .NET MAUI platform support

.NET MAUI provides a single API that allows developers to write code
once and run it anywhere. When building a .NET MAUI application, you
write code that interacts with this single cross-platform API, and .NET MAUI
provides the bridge between your code and the platform-specific layer.

Ifyou take a look inside the prism in Figure 1-1, you can start to
understand the components that NET MAUI both uses and offers.

Figure 1-2 shows how an Android application is compiled. We can make
the statement that when compiling our application for Android, Your code
is compiled against NET MAUI and in turn .NET for Android.

{ our code }

|

.NET MAUI

.NET for iOS .NET for macOS J.NET for Windows

Figure 1-2. Interacting with .NET MAUI APIs

.NET for Android

Figure 1-2 shows how our code only directly makes use of the .NET
MAUI APIs, but then under the hood, .NET MAUI makes use of the .NET
for Android APIs. It is through this approach that we as developers can
make the most of code sharing - by making the most of the API surface that
is provided to us by .NET MAUIL

2

CHAPTER 1 INTRODUCTION TO .NET MAUI

There will be times when the API surface of NET MAUI does not
provide everything that you need; for this, you will need to directly access
a platform feature. . NET MAUI provides enough flexibility that you can
achieve this by interacting directly with the platform-specific APIs:

e .NET for Android

e .NET foriOS

e .NET for macOS

e Windows UI Library (WinUT) 3

Figure 1-3 shows how the code bypasses the .NET MAUI APIs and
interacts directly with the .NET for Android APIs.

{ our code }

.NET MAUI

.NET for iOS .NET for macOS J.NET for Windows

Figure 1-3. Interacting with platform-specific APIs

.NET for Android

This book focuses on building applications with .NET MAUI; we have
covered how .NET MAUTI is built on top of the .NET frameworks for each
platform (e.g., .NET for Android). This means that if you wished to only
ever build an application to target Android, you can do that through the
.NET for Android framework. This allows you to still build an application
that targets Android and make use of .NET and C#.

CHAPTER 1 INTRODUCTION TO .NET MAUI

Digging a Bit Deeper

There are some extra steps that the tooling will perform under the hood
to get your application built and ultimately ready for use on each of the
possible platforms.

When building a .NET application, even if it is not using .NET MAUI,
you will very likely hear the term BCL, which is short for the base class
library. This is the foundation of all .NET applications, and in the same way
that .NET MAUI abstracts away the platforms you wish to build for, the BCL
abstracts away what that platform implements when your application runs.

To run your application on your desired platform, you need a .NET
runtime. For Android, iOS, and macOS, this is the Mono runtime. The
Mono runtime provides the ability to run .NET code on many different
platforms. For Windows, this is .NET CoreCLR. Each of these runtimes
provides the functionality required for the BCL and therefore a consistent
working environment across all supported platforms. I have opted to avoid
telling the history of the Mono runtime, not because I don’t believe it is
important - without it, this book wouldn’t be possible - but I feel many
others have told it well already and I don’t want to distract from the topic
athand.

Ilike to think of the BCL as the contract between what we are
compiling against and what we are running that compiled code with.

Figure 1-4 shows all of the layers involved in compiling and running a
.NET MAUI application.

CHAPTER 1 INTRODUCTION TO .NET MAUI

Figure 1-4. The full breakdown

Runtime

To continue with the example of building for Android in the previous
diagrams and taking note of the diagram in Figure 1-4, the following can
be said.

Your code is compiled against .NET MAUI, .NET for Android, and the
base class library. It then runs on the Mono runtime, which provides a
full implementation of the base class library on the Android platform.

Looking at the above statement, you can replace the parts that are
platform specific with another platform (e.g., swapping Android for iOS)
and the statement will still be true.

Where Did It Come From?

.NET MAUI is the evolution of Xamarin.Forms, which itself has a rich
history of providing developers with a great way to build cross-platform
applications. Of course, no framework is perfect, and Xamarin.Forms
certainly had its limitations. Thankfully the team at Microsoft decided
to take the pragmatic approach of taking a step back and evaluating all
the pain points that existed for themselves as maintainers and (more
importantly) for us as developers using the framework.

Not only do we therefore gain improvements from the Xamarin
framework as part of this evolution, but we also get all the goodies that
come with .NET such as powerful built-in dependency injection, better

CHAPTER 1 INTRODUCTION TO .NET MAUI

performance, and other topics that I will touch on throughout this book.
This makes me believe that this mature cross-platform framework has
finally become a first-class citizen of the .NET and Microsoft ecosystems. I
guess the clue is in the first part of its new name.

On the topic of its name, .NET MAUI implies that it is a UI framework,
and while this is true, this is not all that the framework has to offer.
Through the .NET and the .NET MAUI platform APIs, we are provided with
ways of achieving common application tasks such as file access, accessing
media from the device gallery, using the accelerometer, and more. The
.NET MAUI platform APIs were previously known as Xamarin Essentials,
so if you are coming in with some Xamarin Forms experience, they should
feel familiar but note that they have evolved to fit within .NET MAUI. I will
touch on much more of this functionality as you progress through this
book with the key chapters being Chapters 10 and 12.

How It Differs from the Competition

.NET MAUI provides its own abstractions of types like controls (e.g., a
Button) and then maps them to the relevant implementation on each
platform. To continue with the example of a button, this is a UIButton
from UIKit on iOS and macOS, an AppCompatButton from AndroidX.
AppCompat.Widget on Android, and a Button from Microsoft.UI.Xaml.
Controls on Windows. Figure 1-5 shows how a .NET MAUI Button control
is mapped to each platform-specific implementation.

4 4 4

’
@ UButton 2% AppCompatButton H Button

Figure 1-5. How a Button control is mapped to the platform-specific
implementations

CHAPTER 1 INTRODUCTION TO .NET MAUI

This gives a great level of coverage in terms of providing a common
implementation that works across all platforms. With the introduction of
the .NET MAUI handler architecture (which we will be looking at in more
detail in Chapter 12), we truly gain the power to tweak the smallest of
implementation details on a per-platform basis. This is especially useful
when the common API provided by .NET MAUI may be limited down to
the least amount of crossover between each platform and doesn’t provide
everything we need. It is worth noting that your application will render
differently on each platform as it utilizes the platform-specific controls and
therefore their look and feel.

Other frameworks such as Flutter opt to render their own types directly
rather than mapping across to the implementations provided by each
platform. These frameworks provide a common look and feel across each
platform. This is a hotly contested topic, but I personally believe that making
applications fit in with the platform they are running on is a big benefit.

Why Use .NET MAUI?

There are several reasons why you should consider using .NET MAUI for
your next application: a large number of supported platforms, increased
code sharing capabilities, an emphasis on allowing developers to build
applications that fit their style, great performance, and many more. Let’s
take a look at them.

Supported Platforms

.NET MAUI provides official support for all of the following platforms:
e Android 5.0 (APIlevel 21) and above

¢ 10S12.2 and above

http://dx.doi.org/10.1007/978-1-4842-9234-1_12

CHAPTER 1 INTRODUCTION TO .NET MAUI

e macOS 12 and above (using Mac Catalyst) **

e Windows 11 and Windows 10 version 1809 desktop
and above

** Mac Catalyst allows native Mac apps to be built and share code with
iPad apps. This is an Apple technology that allows developers to share code
between Mac and iPad. For further reference, go to the Apple documentation
athttps://developer.apple.com/mac-catalyst/.

.NET MAUI provides community-driven support for Tizen - the
implementation is provided by Samsung so while it isn’t directly provided
by Microsoft, Samsung is no small company.

I thoroughly recommend checking out the documented list of
supported platforms in case it has changed since the time of writing.

The list can be found at https://learn.microsoft.com/dotnet/maui/
supported-platforms.

Code Sharing

A fundamental goal of all cross-platform frameworks is to enable
developers to focus on achieving their main goals by reducing the effort
required to support multiple platforms. This is achieved by sharing
common code across all platforms. Where I believe .NET MAUI excels over
alternative frameworks is in the first four characters of its name; Microsoft
has pushed hard to produce a single .NET that can run anywhere.

Being a full stack developer myself, I typically need to work on web-
based back ends as well as mobile applications; .NET allows me to write
code that can be compiled into a single library. This library can then be
shared between the web and client applications, further increasing the
code sharing possibilities and ultimately reducing the maintenance effort.

https://developer.apple.com/mac-catalyst/
https://learn.microsoft.com/dotnet/maui/supported-platforms
https://learn.microsoft.com/dotnet/maui/supported-platforms
https://learn.microsoft.com/dotnet/maui/supported-platforms
https://learn.microsoft.com/dotnet/maui/supported-platforms

CHAPTER 1 INTRODUCTION TO .NET MAUI

I have given talks based on a mobile game (www. superwordsearch.com)
I built using Xamarin.Forms with a friend, where I boasted that we were
able to write 96% of our code in our shared project. We have recently
migrated from Xamarin.Forms to .NET MAUI and can confirm that the
shared code percentage has now increased to 99%)

There are further possibilities for sharing code between web and client,
such as the use of NET MAUI Blazor Hybrid, which provides the use of
web-based technologies inside a .NET MAUI application. While I won’t be
covering .NET MAUI Blazor Hybrid in detail in this book, Microsoft does
provide some really great documentation and guides on what it is and
how to build your first application with the technology at https://learn.
microsoft.com/aspnet/core/blazor/hybrid/tutorials/maui. The team
has also built a full and free workshop template designed for all levels of
developers to work through at https://aka.ms/blazor-hybrid-workshop.

Developer Freedom

.NET MAUI offers many ways to build the same thing. Where Xamarin.
Forms was largely designed to support a specific application architecture
(such as MVVM, which I will talk all about in Chapter 4), NET MAUI is
different. One key benefit of the rewrite by the team at Microsoft is it now
allows the use of other architectures such as MVU (Chapter 4). This allows
us as developers to build applications that suit our preferences, from
different architectural styles to different ways of building Uls and even
different ways of styling an application.

Community

Xamarin has always had a wonderful community. From bloggers to open
source maintainers, there is a vast amount of information and useful
packages available to help any developer build a great mobile application.
One thing that has really struck me is the number of Microsoft employees

http://www.superwordsearch.com
https://learn.microsoft.com/aspnet/core/blazor/hybrid/tutorials/maui
https://learn.microsoft.com/aspnet/core/blazor/hybrid/tutorials/maui
https://aka.ms/blazor-hybrid-workshop
http://dx.doi.org/10.1007/978-1-4842-9234-1_4
http://dx.doi.org/10.1007/978-1-4842-9234-1_4

CHAPTER 1 INTRODUCTION TO .NET MAUI

who are part of this community; they are clearly passionate about the
technology and dedicate their own free time to contributing to this
community. The evolution to .NET MAUI brings this community with it;
Chapter 17 includes a set of resources that make discovering members
within the community and guidance on how to get involved.

Fast Development Cycle

.NET MAUI offers two great ways to boost a developer’s productivity.

.NET Hot Reload

.NET Hot Reload allows you to modify your managed source code while
the application is running, without the need to manually pause or hit a
breakpoint. Then, your code edits can be applied to your running app
without the need to recompile. It is worth noting that this feature is not
specific to .NET MAUI but is yet another great example of all the goodness
that comes with the framework being part of the .NET ecosystem.

XAML Hot Reload

XAML Hot Reload allows you to edit the Ul in your XAML files, save the
changes, and observe those changes in your running application without
the need to recompile. This is a fantastic feature that really shines when
you need to tweak some controls.

Performance

.NET MAUI applications are compiled into native packages for each of the
supported platforms, which means that they can be built to perform well.
Android has always been the slowest platform when dealing with
Xamarin.Forms, and the team at Microsoft has been working hard and
showing off the improvements. The team has provided some really great

10

CHAPTER 1 INTRODUCTION TO .NET MAUI

resources in the form of blog posts covering the progress that has been
made to bring the startup times of Android applications to well below
one second. These posts cover metrics plus tips on how to make your
applications really fly.(https://devblogs.microsoft.com/dotnet/
dotnet-9-performance-improvements-in-dotnet-maui/)

Android apps built using .NET MAUI compile from C# into
intermediate language (IL), which is then just-in-time (JIT) compiled to a
native assembly when the app launches.

iOS and macOS apps built using .NET MAUI are fully ahead-of-time
(AOT) compiled from C# into native ARM assembly code.

Windows apps built using .NET MAUI use Windows UI Library
(WinUI) 3 to create native apps that target the Windows desktop.

Strong Commercial Offerings

There are several commercial options that provide additional UI elements
and other integrations such as Office document editing or PDF viewing in
your .NET MAUI applications. Some options (at the time of writing) are

e Syncfusion

“The feature-rich/flexible/fast .NET MAUI controls for
building cross-platform mobile and desktop apps with
C# and XAML”

www.syncfusion.com/maui-controls
o Telerik UI for .NET MAUI

“Kickstart your multiplatform application development
with a Preview version of Telerik UI for .NET MAUI
controls!”

www.telerik.com/maui-ui

11

https://devblogs.microsoft.com/dotnet/dotnet-9-performance-improvements-in-dotnet-maui/
https://devblogs.microsoft.com/dotnet/dotnet-9-performance-improvements-in-dotnet-maui/
http://www.syncfusion.com/maui-controls
http://www.telerik.com/maui-ui

CHAPTER 1 INTRODUCTION TO .NET MAUI

o DevExpress

“Our .NET Multi-platform App UI Component Library
ships with high-performance Ul components for
Android and iOS mobile development (WinUI desktop
support is coming in 2022). The library includes a Data
Grid, Chart, Scheduler, Data Editors, CollectionView,
Tabs, and Drawer components.”

www . devexpress.com/maui/
e Grial UI Kit

“Grial offers a set of beautiful XAML Ul pages, templates,
controls and helpers made for Xamarin.Forms and .NET
MAUI These cover the most typical Mobile UI patterns
and are crafted by developers, for developers.”

https://grialkit.com/

Note that while these are commercial products, several of them
provide free licenses for smaller companies or independent developers so
I recommend checking out their products.

Limitations of .NET MAUI

I hope this doesn’t get me in too much trouble with the wonderful team
over at Microsoft ©. This section is not aimed at slating the technology (I
wouldn’t be writing a book about something I didn’t believe in); it is purely
aimed at making clear what cannot be achieved or at least what is not
provided out of the box, to help you as a reader best decide whether this is
the right technology for your next project. Of course, I hope it is, but let’s
look at what I feel are its main limitations.

12

http://www.devexpress.com/maui/
https://grialkit.com/

CHAPTER 1 INTRODUCTION TO .NET MAUI

No WebAssembly (WASM) Support

.NET MAUI does not provide support for targeting WebAssembly. This
means that you cannot target the web directly from a .NET MAUI project,
but you can still run Blazor inside your .NET MAUI application. This opens
the door for further code sharing; as discussed earlier, it is entirely possible
to build Blazor components that can be shared between .NET MAUI Blazor
Hybrid and .NET Blazor applications using the .NET MAUI Blazor Hybrid
and Web App template.

If you do require direct WASM support, then a good alternative to .NET
MAUI is the Uno Platform.

No Camera API

This has been a pain point for a lot of developers throughout the life

of Xamarin.Forms and continues to be an initial pain point for NET
MAUIL There are some good arguments as to why it hasn’t happened.
Building a camera API against the Android Camera offering has not been
an easy task, as I am sure most developers who have embarked on that
journey can attest to. The sheer fact that Google has recently rewritten the
entire API for a third time shows the inherent challenges.

Apps Won’t Look Identical on Each Platform

Controls in NET MAUI make use of the platform implementations;
therefore, an entry control on iOS will render differently to one on Android.
This approach quite often divides opinions - applications will look and feel
common to the platform that they are running on. Figure 1-6 shows how

a simple user interface consisting of Entry fields, a multi-line Editor, and a
Button renders on each of the supported platforms.

13

CHAPTER 1 INTRODUCTION TO .NET MAUI

o D - = ogtonCupates o

sl Customer Name

o R . ([

Addeess ’ Address shaur|

ddres
[-]
——— hope Han
ios macOS Android Windows

Figure 1-6. Simple user interface renders on each of the supported
platforms

There are investigations into providing a way to avoid this and have
controls render exactly the same on all platforms, but this is still at an
early stage.

Lack of Media Playback Out of the Box

Playing media has become a very common task. So many apps these days
offer the ability to play video or audio. I suspect this is also due to the vast
differences between platforms in how they provide playback support.

While this functionality is not officially provided by .NET MAUI, this
does not mean the functionality is not possible.

14

CHAPTER 1 INTRODUCTION TO .NET MAUI

The Glass Is Half Full, Though

I believe that limitations are not a bad thing. Doing some things well is

a far better achievement than doing everything badly! I expect the list of
limitations will reduce as .NET MAUI matures. Thanks to the fact that
.NET MAUI is open source, we as consumers have the ability to suggest
improvements and even provide them directly to further enhance this
framework. I must also add that the .NET MAUI Community Toolkit is
great (of course, I am biased because I currently help to maintain it). It
provides value for the NET MAUI community, and it is also maintained by
that community. Another huge advantage is that concepts in this toolkit
can and have been promoted to .NET MAUT itself.

The .NET MAUI Community Toolkit also offers both APIs for
interacting with a camera connected to a device and media playback. This
gives me hope that one day there will be a solid choice for both camera
and media playback APIs in NET MAUI.

How to Build .NET MAUI Applications

There are several different ways to build an application with .NET MAUI. I
will look at each in turn, covering some details that will hopefully help you
decide which is the best fit for you.

Visual Studio

Visual Studio is a comprehensive integrated development environment or IDE

that provides a great development experience. I have been using this tool for

years and I can happily say that it continues to improve with each new version.
To build .NET MAUI apps, you must use at least Visual Studio 2022.

15

CHAPTER 1 INTRODUCTION TO .NET MAUI

In Visual Studio (Windows), it is possible to build applications

that target
e Android
o iOS*

¢ Windows

*A networked Mac with Xcode 13.0 or above is required for iOS
development and deployment. This is due to limitations in place by Apple.

Note that Visual Studio comes with three different pricing options, but
I would like to draw your attention to the Community edition, which is free
for use by small teams and for educational purposes. In fact, everything in
this book can be achieved using the free Community edition.

Rider

JetBrains Rider is an impressive cross-platform IDE that can run on
Windows, macOS, and Linux. JetBrains has a history of producing great
tools to help developers achieve their goals. One highlight is ReSharper,
which assists with inspecting and analyzing code. With Rider, the
functionality provided by ReSharper is built in.

JetBrains offers Rider for free but only for educational use and open
source projects.

I will be using Rider as I build the application alongside this book.

Visual Studio Code

Visual Studio Code is a very popular lightweight code editor also provided
by Microsoft. Using the .NET MAUI extension and the .NET CLI, it is
entirely possible to build .NET MAUI applications using no other tools.

It is worth noting that while the tooling within Visual Studio Code does

16

CHAPTER 1 INTRODUCTION TO .NET MAUI

improve with each release, I find it leaves me feeling like I am missing out
some of the great pieces of functionality that come from a fully fledged
IDE. If you are new to development or new to .NET MAUI, I would
thoroughly recommend using Visual Studio or Rider.

You may find references to Visual Studio for Mac online; sadly this
tool has been recently discontinued; therefore, it doesn’t make it into
this section officially.

Summary

Throughout the course of this book, you will primarily be using Visual
Studio as the tool to build your application. I will refer to Rider and Visual
Studio Code in the later parts when I cover how to deploy and test macOS
applications.

In this chapter, you have learned the following:

e« What .NET MAUI is
e What it offers and what it does not offer
e Reasons why you should consider using it

e The tooling options available to build a .NET MAUI
application

In the next chapter, you will

e Getto know the application we will be building
together

e Learn how to set up the environment to build the
application

17

CHAPTER 2

Building Our First
Application

Abstract

In this chapter, you will learn how to set up your development
environment across all of the required platforms. You will then use

that environment to create, build, and run your very first NET MAUI
application. Finally, you will take a look at the application you will build as
you progress through this book.

It is worth noting that before setting up your environment, you cannot
support all platforms from a single environment. On Windows, you can
build for Windows and Android; you can also build for iOS, but you need to
connect Visual Studio to a Mac. On macOS, you can build for iOS, Android,
and macOS but not Windows. You can also develop on Linux and build
for Android; however, we won’t be covering how to configure a Linux
development environment in this book. Table 2-1 shows the compatibility
between development environment operating systems and which
platforms can be built for.

© Shaun Lawrence 2025 19
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/979-8-8688-1189-0_2

https://doi.org/10.1007/979-8-8688-1189-0_2#DOI

CHAPTER 2 BUILDING OUR FIRST APPLICATION

Table 2-1. The breakdown of which platform can be built on each

operating system
Environment Can build for platform

Android i0S mac0S Windows
Windows Yes Yes* No Yes
mac0S Yes Yes Yes No
Linux Yes No No No

*Through the use of a Mac connected to Visual Studio

Setting Up Your Environment

Before you get into creating and building the application, you must make
sure you have an environment set up.

mac0S

There are several tools that you must install on macOS to allow support for
building Mac Catalyst applications and to provide the ability to build i0OS
applications from a Windows environment.

This is required if you wish to develop on macOS or deploy to a Mac
or iOS device (even from a Windows machine). If you are happy with only
deploying to Windows or Android from a Windows machine, then you can
skip this part or just read it for reference.

Xcode

Xcode is Apple’s IDE for building applications for iOS and macOS. You
don’t need to use Xcode directly, but Visual Studio needs it in order to
compile your iOS and macOS applications.

20

CHAPTER 2 BUILDING OUR FIRST APPLICATION

Thankfully this install is straightforward despite it being a rather large

download.

1. Open the App Store application.

2. Enter Xcode into the Search box and press return.

3. Click Get. Figure 2-1 shows Xcode available on the

Apple App Store.

e ® Results for “Xcode”
DY Py Mac Apps Filters v
& Create

<7 Work

& Play

2 Develop
B8 Categories

@ Updates

. Shaun Lawrence I

A STORY
@ Xcode
What's Xcode? @ OPEN

SEONSEONSNES - AFEREERONE

Swift Playgrounds = DevCleaner for Xcode
o GET M k 55 P

Figure 2-1. Xcode on the App Store

Once downloaded, open Xcode and wait for it to
install the command-line tools. Note that this is
usually required to be performed after each major

update to Xcode, too.

21

CHAPTER 2 BUILDING OUR FIRST APPLICATION

I suggest using caution when applying updates to the whole suite
of applications that you are installing today. Typically, when a new, big
release of NET MAUI comes out, it likely requires an update of Xcode. I
personally like to keep these expected versions in sync so I recommend
checking for the updates within Visual Studio first and verifying that it
expects a new version of Xcode before proceeding to update that.

To aid the effort in maintaining the version of Xcode installed on your
system, I would also thoroughly recommend the Xcodes tool which can be
found at https://github.com/XcodesOrg/XcodesApp. This tool allows you
to easily control which version is installed and even have multiple versions
installed and select the default for use. This can be especially useful when
wanting to investigate beta features while still working on production

versions.

Remote Access

The final step to set up the macOS environment is to enable remote login
so that Visual Studio (Windows) can communicate to the Mac to build and
run iOS and macOS applications.

1. Open System Settings (macOS Ventura 13.0+) or
System Preferences on older macOS versions.

2. Select General on the left-hand panel and then
Sharing, as highlighted in Figure 2-2. This image
shows the macOS System Settings dialog with the
Sharing menu option highlighted.

22

https://github.com/XcodesOrg/XcodesApp
https://github.com/XcodesOrg/XcodesApp

CHAPTER 2 BUILDING OUR FIRST APPLICATION

o0 e General
Q Search u About

Shaun Lawrence :
‘ Apple ID 4] Software Update
= Family O Storags
Wi-Fi)

@) AirDrop & Handoff

Bluetooth
Network (& Login Items
VPN

Language & Region
g Notifications

Sound Date & Time
Focus

€3 screen Time \iJ sharing
§ et
@ Rpepacane w Transfer or Reset
Accessibility

L= Control Centre) Startup Disk

@ siri & spotlight
0 Privacy & Security

fﬂ Nacktan & Nack

Figure 2-2. macOS system settings

3. Enable Remote Login. Figure 2-3 shows the Remote
Login option enabled.

23

CHAPTER 2

= Family

& wi-Fi
Bluetooth
Network
VPN

Q Notifications
Sound

Focus

8 Screen Time

@ Appearance
Accessibility

3 Control Centre
@ siri & spotlight
0 Privacy & Security

M Nacktan & Nack

[

Q Searct
Shaun Lawrence
Apple ID

BUILDING OUR FIRST APPLICATION

< Sharing

Screen Sharing

Off

File Sharing
off

Printer Sharing
off

Remote Login
® On

Remote Management
off

Remote Apple Events
off

Internet Sharing
off

Content Caching
off

Media Sharing
off

Bluetooth Sharing
Off

Hostname

Figure 2-3. macOS sharing options

24

4. Add your user to the list of allowed users for

@1 e| @ 6| @ e| el | @| &

Shauns-MacBook-Pro.local

Remote Login. My user is an Administrator so the

Administrators user group enables remote login

access for this user. Figure 2-4 shows the Remote

Login editor to enable access for users on macOS.

CHAPTER 2 BUILDING OUR FIRST APPLICATION

® Remote Login: On
To log in to this computer remotely, type “ssh shaunlawrence@192.168.163.204".

Allow full disk access for remote users

Allow access for: All users
© Only these users:

22 Administrators

Figure 2-4. macOS remote login options

5. That’s it! Your Mac should now be ready to use.

Windows
Visual Studio

First, you must install Visual Studio 2022. These steps will guide you
through getting it ready to build .NET MAUI applications:

1. Download and install Visual Studio 2022. This
can be accessed from https://visualstudio.
microsoft.com/downloads/.

25

https://visualstudio.microsoft.com/downloads
https://visualstudio.microsoft.com/downloads

CHAPTER 2 BUILDING OUR FIRST APPLICATION

2. Run the installer and you will see the workload
selection screen. Select the Mobile development
with .NET workload. Figure 2-5 shows the Visual
Studio Windows installer with the required .NET
MAUI workloads checked.

Workloads Individual components Language packs Installation locations

@ Need help choosing what to install? More info S

Web & Cloud (4)

@ ASP.NET and web development A Azure development

Build web applications using ASP.NET Core, ASP.NET, Azure SDKs, tools, and projects for developing cloud apps
HTML/JavaScript, and Containers including Docker supp. and creating resources using .NET and .NET Framework

p Python development Node.js development
Editing, debugging, interactive development and source Build scalable network applications using Node js, an
control for Python. asynchronous event-driven JavaScript runtime.

Desktop & Mobile (5)

gg NET Multi-platf App Ul | n .NET desktop development
Build Android, iOS, Windows, and Mac apps from a single ‘—_r—] Build WPF, Windows Forms, and console applications
codebase using C# with NET MAUI using C#, Visual Basic, and F# with NET and .NET Frame.

Figure 2-5. Visual Studio Windows installation options

Please refer to the Microsoft documentation page at https://learn.

microsoft.com/dotnet/maui/get-started/installation?tabs=vswin if
any of the installation options have changed.

Enable Developer Mode

In

order to run your .NET MAUI application on your Windows machine

through Visual Studio, you will first need to enable Developer Mode. This
can be done by the following steps:

26

1. Open the Settings application.

2. Type Developer in the search bar.

https://learn.microsoft.com/dotnet/maui/get-started/installation?tabs=vswin
https://learn.microsoft.com/dotnet/maui/get-started/installation?tabs=vswin

CHAPTER 2 BUILDING OUR FIRST APPLICATION

3. Select Developer Settings.
4. Enable the Developer Mode switch (see Figure 2-6).

5. Read and accept the dialog that pops up.

For developers
These settings are intended for development use only.

Learn more

Developer Mode

Install apps from any source, including loose files.

@ o

Figure 2-6. The Developer Mode option in settings

Visual Studio to mac0S

The final item to configure in your Windows environment is to set up the
connection between Visual Studio and your macOS so that iOS and macOS
builds can be compiled.

1. Inside Visual Studio, select the Tools menu item.
2. SelectiOS » Pair to Mac.

3. Check and confirm the firewall access. Figure 2-7
shows the firewall request dialog that is presented
when first running Visual Studio on Windows.

27

CHAPTER 2 BUILDING OUR FIRST APPLICATION

ﬂ Windows Security Alert

@ Windows Defender Firewall has blocked some features of this
app

Windows Defender Firewal has blocked some features of Microsoft Visual Studio 2022 Preview
on all public and private networks.

“ﬂ Name: Microsoft Visual Studio 2022 Preview|
PRE Publisher: Microsoft Corporation
Path: C:\program files\microsoft visual studio\2022\preview
\common7\ide\devenv.exe

Allow Microsoft Visual Studio 2022 Preview to communicate on these networks:
[A Private networks, such as my home or work network

[[]Public networks, such as those in airports and coffee shops (not recommended
because these networks often have littie or no security)

What are the risks of allowing an app through a firewall?

L;oAlowm | | Cancel

Figure 2-7. Windows firewall request

28

Select your Mac from the list.

Click Connect. Figure 2-8 shows the Pair to Mac
dialog that allows you to connect your Visual Studio
running on Windows to your macOS machine.

CHAPTER 2 BUILDING OUR FIRST APPLICATION

04 Pair to Mac ? X

Select a Mac: DJ

192.168.0.19
192.1680.19

192.168.0.35
192.168.0.35

Shaun’s Mac mini

4 O

192168163219
|
Add Mac.. | aicto Mac

Figure 2-8. Pair to Mac screen

6.

7.

Enter the username and password that you use to

log into your Mac.

Wait for the tooling to connect and make sure that
everything is configured on the Mac.

When you see the symbol shown in Figure 2-9, your
setup is complete. Figure 2-9 shows the Pair to Mac
dialog with the connected symbol against your

macOS machine.

29

CHAPTER 2 BUILDING OUR FIRST APPLICATION

02! Pair to Mac ? X

Select a Mac: L - ,OJ
g 192.168.0.19
= 192.1680.19
g 192.168.0.35
= 192168035

Shaun’s Mac mini
g 192.168.163.219 S

Figure 2-9. Pair to Mac screen with confirmation

9. Visual Studio should now connect automatically
when you open a .NET MAUI solution. Figure 2-10
shows the Pair to Mac button in Visual Studio on
Windows.

Debug - AnyCPU - B Windows Machine = [> B E. 9 CaAmD. A O

% R

i

Figure 2-10. Visual Studio toolbar with Pair to Mac buttons

30

CHAPTER 2 BUILDING OUR FIRST APPLICATION

Troubleshooting Installation Issues

Given that there are several moving parts in the development ecosystem
when building .NET MAUI applications, there is room for things to go
wrong. In this section, I will go over a few common issues and how to
check that things are correctly set up.

.NET MAUI Workload Is Missing

In order to check whether the .NET MAUI workload has been installed, you
can check either in Visual Studio Installer or through the command line.

Visual Studio Installer

This currently only works on Windows, but you can follow these steps.
1. Open the Start menu.
2. Type in Visual Studio Installer.
3. Open the installer.
4. Select Modify on the Visual Studio 2022 installation.

5. View the workloads and check that the Mobile
development with .NET workload is ticked.

Command Line

The command that we wish to run has the benefit of working on both
Windows and macOS, but opening a command prompt or terminal session
is different on each operating system. Let’s take a look at each in turn.

31

CHAPTER 2 BUILDING OUR FIRST APPLICATION

mac0S

1. Open the Terminal application.

2. Enter the following command and then press return:

dotnet workload list

Windows

1. Open the Command Prompt application.

2. Enter the following command and then press return:

dotnet workload list

Results for Both

Both operating systems and applications will report the same results:

Installed Workload Id Manifest Version Installation Source

maui 9.0.%X/9.0.X SDK 9.0.X

You should verify that the results include maui and that they are of the
expected version. For example, the current version is .NET MAUI 9.0 so we
are looking for the Manifest and Version to start with 9.0. If you are working
with a different major version, then confirm that it is installed.

If the version is not installed, you can then enter the following
command in your Command Prompt or Terminal application and

press return:
dotnet workload install maui --sdk-version=9.0.X

where the X above is the version you wish to install.

32

CHAPTER 2 BUILDING OUR FIRST APPLICATION

Creating Your First Application

You will be using the user interface in order to create your application,
build, and run it. I will also be including the dotnet command-line
commands because I find they can be quite helpful when building and
debugging.

Creating in Visual Studio

1. Launch Visual Studio 2022. In the window that
opens, select the Create a new project option.
Figure 2-11 shows the initial starting screen in Visual
Studio running on Windows with the Create a new
project option highlighted.

Visual Studio 2022

Open recent Get started

hat you open will show up here for quick é Clone a repository
d," Open a project or solution

E’; Open a local folder

@ Create a new project

Figure 2-11. Creating a project in Visual Studio

33

CHAPTER 2 BUILDING OUR FIRST APPLICATION

2. Inthe window that follows, type .NET MAUI in the
Search for templates box. Then select the .NET
MAUI App option and click Next. Figure 2-12 shows
the project creation screen with the .NET MAUI App
project selected.

- O x
Create a new pl’OJeCt Search for templates (Alt+S) p- Clearall
Recent project templates All languages - All platforms - MAUI
NETMAUI Blazor Hybrid and Web App O3
38 NETMAUI App ce A multi-project app for creating a .NET MAUI Blazor Hybrid application with a

Blazor Web project with a shared user interface,
C# Android Blazor BlazorHybrid i0S Mac Catalyst
macOs MAUI Mobile Tizen Windows

NET MAUI App

A project for creating a NET MAUI application for i0S, Android, Mac Catalyst, WinUl

and Tizen

C# Android i0S MacCatalyst ~ macOS ~ MAUI Mobile
Tizen Windows

NET MAUI Blazor Hybrid App
A project for creating a .NET MAU! application for i0S, Android, Mac Catalyst, WinUI,
and Tizen using Blazor Hybrid

C# Android Blazor BlazorHybrid iOS Mac Catalyst
macOS MAUI Mobile Tizen Windows

NET MAUI Class Library
A project for creating a .NET MAUI class library

C# Android i0S MacCatalyst ~ macOS ~ MAUI Mobile
Tizen Windows

Back Next

Figure 2-12. Selecting a .NET MAUI App project type

3. Inthe next window, enter a name for your project. I
chose WidgetBoard. Choose a location if you would
like to store it somewhere different from the default
location, and click Create. Figure 2-13 shows the
Configure your new project screen in Visual Studio.

34

CHAPTER 2 BUILDING OUR FIRST APPLICATION

Configure your new project

.NET MAUI App ¢ Android i0S MacCatalyst ~macOS ~ MAUI Mobile Tizen Windows
Project name

WidgetBoard
Location

Ci\Users\Shaun Lawrence\source\repos

Solution name ®

[WidgetBoard

[] Place solution and project in the same directory

Project will be created in "C:\Users\Shaun Lawrence\source\repos\WidgetBoard\WidgetBoard\"

Back Next

Figure 2-13. The Configure your new project dialog

Please bear in mind that Windows has a limitation
on the length of the location path. If the path is
longer than 255 characters, then strange behavior
will follow. Visual Studio will fail to build perfectly
valid code and so on. This can be rectified

by disabling the path limit (https://learn.
microsoft.com/windows/win32/fileio/maximum-
file-path-limitation?tabs=cmd#enable-long-
paths-in-windows-10-version-1607-and-later).

4. Select the version of .NET you wish to use. At the
time of writing this book, .NET 9.0 is the current
version so I am using this version. Figure 2-14
shows the Additional information dialog where you
can choose the .NET Framework version for your
application.

35

https://learn.microsoft.com/windows/win32/fileio/maximum-file-path-limitation?tabsxyscmd#enable-long-paths-in-windows-10-version-1607-and-later
https://learn.microsoft.com/windows/win32/fileio/maximum-file-path-limitation?tabsxyscmd#enable-long-paths-in-windows-10-version-1607-and-later
https://learn.microsoft.com/windows/win32/fileio/maximum-file-path-limitation?tabsxyscmd#enable-long-paths-in-windows-10-version-1607-and-later
https://learn.microsoft.com/windows/win32/fileio/maximum-file-path-limitation?tabsxyscmd#enable-long-paths-in-windows-10-version-1607-and-later

CHAPTER 2 BUILDING OUR FIRST APPLICATION

Additional information

.NET MAUI App ¢ Android i0S MacCatalyst ~macOS ~ MAUI Mobile Tizen Windows

[NET 9.0 (Standard Term Support) [-]

[Include sample content @

Figure 2-14. The .NET Framework selection dialog

5. Wait for the project to be created and any
background restore and build tasks to be completed.

Now admire the very first NET MAUI application that we have created
together. Note that we didn’t tick the Include sample content check box on
the last page; this is because the sample content doesn’t fit our scenario
and we would end up deleting most of it. would recommend creating
a project with this option ticked to gain an understanding of what they
provide as an example of how to build a good-looking application.

Creating in the Command Line

While the command line might feel more complicated, at times there are
actually fewer steps required than when using Visual Studio.

36

CHAPTER 2 BUILDING OUR FIRST APPLICATION

Open a Terminal/command-line session.
¢ OnmacOS, open the Terminal application.

e On Windows, open the Command Prompt
application.

cd to the location you want to create your
application:

cd c:\work\

Create the application, giving the project a name:
dotnet new maui --name WidgetBoard

cd to the new folder, WidgetBoard:

cd WidgetBoard

Pull in all dependencies for the application:

dotnet restore

You now have a .NET MAUI application. Let’s proceed to learning how

to build and ultimately run it.

Building and Running Your First Application

Now that you have your project created, let’s go ahead and build and run it

in order to get familiar with the tooling. If this is the first time that you are

building and running a .NET MAUI application for Android, you will likely

see a prompt helping you to create an Android emulator. Please proceed

through this before you try to run the application on Android.

37

CHAPTER 2 BUILDING OUR FIRST APPLICATION

The introduction of the single project approach for .NET MAUI
applications may bend your way of thinking when it comes to building
applications. In the past, a solution containing .NET projects would
typically have a single start-up project, but these projects would have a
single output. Now that a single project actually has multiple outputs, you
need to learn how to configure that for your builds. In fact, this is done by
clicking the down arrow, which can be seen in Figure 2-15.

O File Edit View Git Project Build Debug Test Analyze Tools Extensions Window Help 0 - Wid..oard - o 3¢
i - &5 B Debug ~ AnyCPU Bl » Windows Machine ~ b B 8- o207 & GitHub Copilot (& &
P Windows Machine o
e
[WidgetBoard (net.0-android) - %3 WidgetBoard.MainPage Framework (net9.0-windows10.0.19041.0) ¥ ctsender, EventArgse) - & §
{& 1 v namespace WidgetBoard Android Emulators > Al @
3 <
2 € i0S Local Devices » 5
B 3 v public partial class MainPage : Contentf iOSRemote Devices 4 -
il { i0S Simulators , s
5 int count = @; & WidgetBoard Debug Properties g
° € Configure Startup Projects... B
7 v public MainPage()
8
9 InitializeComponent();
10 }
1
12 v private void OnCounterClicked(object sender, EventArgs e) —
y count++;
5
16 if (count == 1)
17 CounterBtn.Text = $"Clicked {count} time";
18 else
19 CounterBtn.Text = $"Clicked {count} times";
20
21 SemanticScreenReader.Announce(CounterBtn.Text);
22 }
23 }
24
25 }
26
100% - @ @ Noissues found &~ 26 Ch:1 SPC CRIF
Output
] Ready /N Addto Source Control + i SelectRepository «

Figure 2-15. Build target selection drop-down in Visual Studio

You may also notice the drop-down in the above image that currently
says WidgetBoard (net9.0-android). This allows you to show in the visible
file what applies to that specific target, but it does not affect what you are
currently compiling. Figure 2-16 shows this a little clearer.

1. This is where you set the current target to compile
for and run.

38

CHAPTER 2 BUILDING OUR FIRST APPLICATION

2. This is highlighting in the code file what will compile
for the target chosen in the drop-down. Notice here
that you are compiling for Windows but showing
what would compile for Android.
0 File Edit View Git Project Build Debug Test Analyze Tools Extensions Window Help 0 - Wid..oard = o

H-2Ba Debug - AnyCPU - | P Windows Machine - {> B E. D C.C & GitHub Copilot 12

MainPagexaml.cs + X
[WidgetBoard (net9.0-android) l g WidgetBoard.MainPage - ©30nCounterClicked(object sender, EventArgs €)
[idgetBoard (netd.0-android) |) |

WidgetBoard (netd.0-ios)

[WidgetBoard (net9.0-maccatalyst) MainPage : ContentPage

[WidgetBoard (net9.0-windows10.0.19041.0)
5 int count = ©;

public MainPage()
{
InitializeComponent();

}

> b

sabueyy g smsojbquonnjos 0] X

private void OnCounterClicked(object sender, EventArgs e)
count++;

#if WINDOWS

CounterBtn.Text = $"Windows count: {count}";
#elif ANDROID

CounterBtn.Text = $"Android count: {count}";

#elif IOS
CounterBtn.Text = $"i0S count: {count}";
#elif MACCATALYST
CounterBtn.Text = §"MacCatalyst count: {count}"
#tendif
26 SemanticScreenReader.Announce(CounterBtn.Text);
27 }
28 } v
100% ~ & @ Noissuesfound K Ln:23 Chi44 SPC CRIF
Output
[item(s) Saved / Addto Source Control [Select Repository « Q0

Figure 2-16. The differences between what target is being compiled
and what target is being shown in the current editor

Figure 2-16 highlights items 1 and 2 from the above list to highlight
what is compiled vs. what is targeted in Visual Studio.

Getting to Know Your Application

Together we will be building an application from the very initial stages
through to deploying it to stores for public consumption. Given that the
application will play such a pivotal role in this book, I want to introduce
you to the concept first.

39

CHAPTER 2 BUILDING OUR FIRST APPLICATION

I want to try something a little bit different from the normal types of
apps that are built as part of a book or course. Something that requires a
fair amount of functionality that a lot of real-world applications also need.
Something that can help to make use of potentially older hardware so we
can give them a new lease on life.

WidgetBoard

The application that we will be building together will allow users to turn
old tablets or computers into their own unique digital board. Figure 2-17
shows a sketch of how it could look once a user has configured it.

150c |
cony | hssamanegy | 11230
: mage of; :
e the day 24 May
L P 2022
Today
Quote of the day [weiteabook

Figure 2-17. Sketch prototype of the application we will be building

We will build “widgets” that can be positioned on the screen. These
widgets will range from showing the current time to pulling weather
information from a web API to displaying images from your library.

The user will also be able to customize the color, among other options, and
ultimately save these changes so that they will be remembered when the
user next opens the application.

40

CHAPTER 2 BUILDING OUR FIRST APPLICATION

I am planning for this to provide a digital calendar/photo frame for our
home. I would love to hear or see what you are able to build.

Summary

In this chapter, you have

e Setup your development environment so that you are
capable of creating, building, and ultimately running/
deploying the application

e Created, built, and run your very first NET MAUI
application

e Met the application that we will be building together
In the next chapter, you will
o Dissect the application you just created

e Gain an understanding of the key components of a
.NET MAUI application

o Learn about the life cycle of a .NET MAUI application

Source Code

The resulting source code for this chapter can be found on the GitHub
repository at https://github.com/Apress/Introducing-.NET-MAUI-2nd-
ed/tree/main/cho2.

41

https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch02
https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch02

CHAPTER 3

The Fundamentals
of .NET MAUI

Abstract

In this chapter, you will dissect the project you created in Chapter 2
and dive into the details of each key area. The focus is to provide a good
overview of what a .NET MAUI single project looks like, where each of the

key components are located, and some common ways of enhancing them.

Project Structure

.NET MAUI provides support for multiple platforms from within a single
project. The focus is to allow us as developers to share as much code and
as many resources as possible.

You will likely hear the term single project a lot during your time
working with .NET MAUIL. It is a concept that is relatively new to the .NET
world, introduced as part of .NET MAUL. Its key feature is that you can
build applications for multiple different targets from, you guessed it, a
single project. If you have ever built .NET applications that aim to share
code, you will have noticed that each application you wanted to build and

© Shaun Lawrence 2025 43
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/979-8-8688-1189-0_3

https://doi.org/10.1007/979-8-8688-1189-0_3#DOI

CHAPTER 3 THE FUNDAMENTALS OF .NET MAUI

deploy required its own project. The same was true with Xamarin.Forms in
that you would have at least one project with your common code and then
one project per platform. The single project now houses both the shared
code and the platform-specific bits of code.

Figure 3-1 shows a comparison between the old separate project
approach in Xamarin.Forms and the new .NET MAUI project format. The
squares represent a project file.

Xamarin.Forms .NET MAUI
W K-W\
() widgetBoard » (] WidgetBoard

D WidgetBoard.Android Platforms
D WidgetBoard.iOS \ D Android
\ D ioS

Figure 3-1. Comparison of Xamarin.Forms projects to a .NET
MAUI project

Let’s inspect the project you created in Chapter 2 so that you can
start to get an understanding of how .NET MAUI supports the multiple
platforms and how they relate to shared code.

The new project has the following structure:

e Platforms/: This folder contains all the platform-
specific code. Inside this folder is a set of folders, each
with a name that relates to the platform that it supports.
Thus, Platforms/Android supports the Android
platform, Platforms/i0S supports the iOS platform,
and so on.

44

CHAPTER 3 THE FUNDAMENTALS OF .NET MAUI

o Resources/: This folder is where you store all your
resources for the application. A resource is typically
anything you wish to embed in the application that
isn’t strictly code, such as an image, a font file, or even
an audio or video file.

e MauiProgram.cs: This class is where you initialize your
.NET MAUI application. It makes use of the Generic
Host Builder, which is the Microsoft approach to
encapsulating the requirements of an application.
These requirements include but are not limited to
dependency injection, logging, and configuration.

o App.xaml.cs: This is the main entry point to the cross-
platform application. Note this line of code from the
MauiProgram.cs file includes our App class:

builder.UseMauiApp<App>();

e App.xaml: This file includes common Ul resources
that can be used throughout the application. I will
cover these types of resources in much more detail in
Chapters 5 and 8.

e MainPage.xaml and MainPage.xaml.cs: These two files
combine to make up your application’s first page.

o AppShell.xaml and AppShell.xaml.cs: These two files
enable you to define how your application will be laid
out through the use of the .NET MAUI concept called
Shell. T will cover Shell extensively in Chapter 5.

Note that wherever you see a . xaml file, there will typically be an
associated .xaml.cs file. This is due to limitations in what XAML can
provide; it requires an associated C# file to cover the parts that XAML does
not support. I will cover XAML much more extensively in Chapter 5.

45

http://dx.doi.org/10.1007/978-1-4842-9234-1_5
http://dx.doi.org/10.1007/978-1-4842-9234-1_8

CHAPTER 3 THE FUNDAMENTALS OF .NET MAUI

It is also worth noting that you do not have to write any XAML. Sure,
.NET MAUI and its predecessor, Xamarin.Forms, have a deep connection
to XAML, but because the XAML is ultimately compiled down to C#,
anything that is possible to create in XAML is also possible in C#. The next
chapter (Chapter 4) will take you through the different possibilities for
architecting your applications.

/Platforms/ Folder

I mentioned that the platform-specific code lives in the Platforms folder.
While cross-platform applications provide a nice abstraction from the
platforms we wish to support, I still believe it is extremely valuable to know
how these platforms behave. Let’s dive in and look at each of the platform
folders to understand what is happening.

Android

Inside the Android platform folder, you will see the following files:

o Resources/values/colors.xml: This contains color
information used for the Android platform. If you
wish to change some of the colors used within your
application, you will need to update this file.

e MainApplication.cs: This is the main entry point for
the Android platform. Initially you should note that
it does very little. The bit it does is rather important,
though; it is responsible for creating the MauiApp using
the MauiProgram class. This is the bridge between the
Android application and your cross-platform .NET
MAUI code.

46

10S

CHAPTER 3 THE FUNDAMENTALS OF .NET MAUI

MainActivity.cs: An activity in Android development
is a type of app component that provides a user
interface. The MainActivity starts when your app is
loaded. This is typically done by tapping the app icon;
however, it can also be triggered by a notification or
other source.

AndroidManifest.xml: This file is extremely important.
It is how you define the components that make up your
application, any permissions it requires, the application
version information, the minimum and target SDK
versions, and any hardware or software features that it

requires.

Inside the iOS platform folder, you will see the following files:

AppDelegate.cs: This class allows you to respond to all
platform-specific parts of the application lifecycle.

Info.plist: This file contains configuration about

the application. It is like the AndroidManifest.xml file
discussed in the “Android” section. You can change
the application’s version and include reasons why your

application requires permission to use certain features.

Program. cs: This is the main entry point.

47

CHAPTER 3 THE FUNDAMENTALS OF .NET MAUI

MacCatalyst

Inside the MacCatalyst platform folder, you will see the following files.
It is worth noting that this section is nearly identical to the previous iOS
section. It’s been kept separate to provide an easy reference to what the
platform folder consists of for MacCatalyst.

o AppDelegate.cs: This class allows you to respond to all
platform-specific parts of the application lifecycle.

o Entitlements.plist: This file contains a key-value
pair list of capabilities that your macOS application
requires.

o Info.plist: This file contains configuration about
the application. It is like the AndroidManifest.xml file
discussed in the “Android” section; you can change
the application version and include reasons why your

application requires permission to use certain features.

o Program.cs: This is the main entry point.

Tizen

Inside the Tizen platform folder, you will see the following files:

e Main.cs: This is the main entry point for your Tizen
application.

e tizen-manifest.xml: This file is very similar to the
AndroidManifest.xml file. It is how you define the
components that make up your application, any
permissions it requires, the application version
information, the Tizen API version, and any hardware
or software features it requires.

48

CHAPTER 3 THE FUNDAMENTALS OF .NET MAUI

Windows

Inside the Windows platform folder, you will see the following files:

app.manifest: The package manifest is an XML
document that contains the info the system needs to
deploy, display, or update a Windows app. This info
includes package identity, package dependencies,
required capabilities, visual elements, and extensibility
points. Every app package must include one package

manifest.

Package.appxmanifest: An application manifest is an
XML file that describes and identifies the shared and
private side-by-side assemblies that an application
should bind to at runtime. They should be the

same assembly versions that were used to test the
application. Application manifests may also describe
metadata for files that are private to the application.

Summary

Phew! That felt like a lot to take in! I think I need to take a tea break! Don’t
worry, though; while this gives an overview of what each of the files is

responsible for, you will be modifying most of them throughout this book

with some practical examples, so if there are any points that aren’t clear, or

you feel you will need to revisit them, you certainly will be.

/Resources/ Folder

The Resources folder is where you store anything you want to include in

your application that is not strictly code. Let’s look through each of the

subfolders and key types of resource.

49

CHAPTER 3 THE FUNDAMENTALS OF .NET MAUI

Applcon

This aptly named folder is responsible for housing the icon image files
used to generate our application’s icon. The default project that is created
provides us with two images in this folder. In Chapter 5, you will learn how
to replace the defaults and how the app icons are structured. This type of
resource is called a MauiIcon.

Fonts

.NET MAUI allows you to embed your own custom fonts. This is especially
handy if you are building an app for a specific brand, or you want to make
sure that you render the same font on each platform. You can embed either
True Type Fonts (.ttf files) or Open Type Fonts (.otf files).

A word of warning around fonts. I strongly recommend that you check
the licensing rules around fonts before including them in your application.
While there are sites that make it possible to download fonts freely, a very
large percentage of those fonts usually require paying to use them.

There are two parts to embedding a font so that it can be used within
your application.

1. The font file should be placed in this folder
(Resources/Fonts).

By default, the font will be automatically included
as a font file based on the following line that can be
found inside the project file (WidgetBoard.csproj):

<MauiFont Include="Resources\Fonts*" />

What the above line does is set the build action of
the file you just included to be of type MauiFont.

If you want to perform this manually, you can right-
click the file inside Visual Studio, click Properties,
and inside the Properties panel, set the Build Action

to MauiFont.
50

CHAPTER 3 THE FUNDAMENTALS OF .NET MAUI

2. Configure the font.

When bootstrapping your application, you need
to specify which fonts you wish to load. This is
performed with the following lines inside your
MauiProgram. cs file:

.ConfigureFonts(fonts =>

{
fonts.AddFont("Lobster-Regular.ttf", "Lobster");

};

In the above example, you add the font file Lobster-Regular.ttf to
the collection of fonts and give it an alias of Lobster. This means you can
just use the name of Lobster when referring to the file in your application.

Images

Practically every application you build will include some images. Each
platform that you wish to support has its own rules on the image sizes that
you need to supply to make the image render as sharp and clear on the
many devices they run. Take iOS, for example. In order to supply a 24x24
pixel image in your app, you must provide three different image sizes:
24x24, 48x48, and 72x72. This is due to the different DPIs for the devices
Apple builds. Android devices follow a similar pattern, but the DPIs are not
the same. This is similar for Windows.

Figure 3-2 shows an example image that would be rendered at 24x24
pixels. Note that while Windows shows the three sizes, this is just based on
recommendations for trying to cover the most common settings. In truth,
Windows devices can have their DPIs vary much more. Figure 3-2 shows
the required image sizes needed for all supported platforms in order to
render a 24x24 pixel image.

51

CHAPTER 3 THE FUNDAMENTALS OF .NET MAUI
Android

1x 1.5x 2x 3x 4x
" . H H H
= =

iIOS and MacCatalyst

1x 2X 3x
5 ()
= B (&
Windows
1x 2x 4x

é

¢
[;
= 8
Figure 3-2. Required image sizes across the various platforms

You can see from the figure above that it can become painful very
quickly if you have a lot of images in your application each requiring at
least five different sizes to be maintained. Thankfully NET MAUI gives
us the ability to provide a single Scalable Vector Graphics (SVG) image,

52

CHAPTER 3 THE FUNDAMENTALS OF .NET MAUI

and it will generate the required images for all the platforms when the
application is compiled. I cannot tell you how happy all of us Xamarin.
Forms old timers are at this new piece of functionality!

As it currently stands, if the SVG image is of the correct original size,
you can simply drop the image into the /Resources/Images/ folder and it
will just begin to work in your application. In a similar way to how the fonts
are automatically picked up, you can see how the images are also handled
by looking inside your project file and observing the line <MauiImage
Include="Resources\Images*" />.

.NET MAUI doesn’t render SVGs directly but generates PNG images
from the SVGs at compile time. This means that when you are referring
to the image you wish, it needs to have the .png extension. For example,
when embedding an image called image. svg, in code, you refer to it as
image.png.

If the contents of the SVG are not of the desired size, then you can add
some configuration to tell the tooling what size the image should be. For
this, the image should not be added to the /Resources/Images/ folder as
the tooling will end up generating duplicates and there is no telling which
one will win. Instead, you can simply add the image to the /Resources/
folder and then add the following line to your project file:

<MauiImage Include="Resources\image.svg" BaseSize="24,24" />

The above code will treat the contents of the image. svg file as being
24x24 pixels and then scale for each platform based on that size.

Raw

The next type of resource to embed is raw files. This essentially means that
what is embedded can be loaded at runtime. A typical example of this is to
provide some data to preload into the application when first starting. This
type of resource is called a MauiAsset.

53

CHAPTER 3 THE FUNDAMENTALS OF .NET MAUI

Splash

This folder is created by default to show how a splash screen can be added
to a .NET MAUI application. In Chapter 5, you will learn how to customize
the defaults and provide your own splash screen along with the many
ways a splash screen can be customized. This type of resource is called a
MauiSplashScreen.

Styles

The Styles folder is where developers are encouraged to create style-
related resources; these could be control styles, color palettes, or even CSS
styles. We will cover these items throughout the book with the main focus
being in Chapter 5. There isn’t a single type of resource for the contents
of this folder but the two defaults created for us; Colors.xaml and Styles.
xaml are of type MauiXaml, and these will be the most common type of
resources that you will create here.

This concludes the section on the /Resources/ folder. Let’s proceed to
covering where an application begins its life.

Where to Begin?

.NET MAUI applications have a single main entry point that is common

across all platforms. This provides us with a way to centralize much of the

initialization process for our applications and therefore only write it once.
You will have noticed that in each of the platform-specific main

entry points covered in the previous section, they all call MauiProgram.

CreateMauiApp() ;. This is the main entry point into your .NET MAUI and

shared application.

54

CHAPTER 3 THE FUNDAMENTALS OF .NET MAUI

The CreateMauiApp method allows you to bootstrap your application.
Bootstrapping refers to a self-starting process that is supposed to continue
or grow without external input (Wikipedia quote). This means that
your implementation in this method is responsible for configuring the
application from setting up logging, general application configuration, and
registering implementations to be handled with dependency injection.
This is one of the big improvements in .NET MAUI over Xamarin.Formes.
This is done through the Generic Host Builder.

Generic Host Builder

I mentioned back in Chapter 1 that one of the benefits that comes with the
evolution to .NET MAUTI is powerful dependency injection. The Generic
Host Builder is tried and tested through other .NET frameworks such as
ASP.NET Core, and it has thankfully become available to all application
types now.

Before we jump into how the Generic Host Builder works, let’s look at
what exactly dependency injection is and why you should use it.

What Is Dependency Injection?

Dependency injection (DI) is a software design pattern aimed at reducing
hard-coded dependencies in a software application. A dependency is

an object that another object depends on. This hard-coded dependency
approach is referred to as being tightly coupled. Let’s work through an
example to show how and why it’s named so and how you can remove the
need for the hard-coded dependencies, thus making your design loosely
coupled.

55

CHAPTER 3 THE FUNDAMENTALS OF .NET MAUI

So, my wife is a fantastic baker. She bakes these beautiful, delicious
cakes, and this is the main reason I have gained so much weight recently.
I am going to use the process of her baking a cake to show this concept of
dependencies.

public class Baker

{
public Cake Bake()
{
}

}

The above code looks relatively straightforward, right? She bakes a
cake. Now let’s consider how she might go about making the cake. She
needs a way of sourcing the ingredients, weighing them, mixing them, and
finally baking them. We end up with something like

public class Baker

{
private readonly WeighingScale weighingScale = new
WeighingScale();
private readonly Oven oven = new Oven();
private readonly MixingMachine mixingMachine = new
MixingMachine();
private readonly IngredientsProvider ingredientsProvider =
new IngredientsProvider();
public Cake Bake()
{
Ingredient ingredient = ingredientsProvider.Provide();
weighingScale.Weigh(ingredient);
}
}

56

CHAPTER 3 THE FUNDAMENTALS OF .NET MAUI

We can see that for the Baker to do their job, they need to know
about all these different pieces of equipment. Now imagine that the
WeighingScale breaks, and a replacement is provided. The Baker will
still need to weigh the ingredients but won’t care how that weighing
is performed. Imagine that the new WeighingScale is digital and now
requires batteries. There are a few reasons why we want to move away from
having hard-coded dependencies as in our Baker example.

o Ifwe did replace the WeighingScale with a different
implementation, we would have to modify the
Baker class.

o IftheWeighingScale has dependencies (e.g., batteries
in our new digital scale), they must also be configured
in the Baker class.

o This becomes more difficult to unit test because the
Baker is creating dependencies and therefore a unit test
would result in having to test far more than a unit test is
designed to.

Dependency injection can help us to address the above issues by
allowing us to achieve Inversion of Control (IoC). Inversion of Control
essentially means that we are inverting the knowledge of the dependency
from the Baker knowing about a WeighingScale to them knowing about
something that can weigh ingredients but not an actual implementation.
This is done through the introduction of an interface which we will call
IWeighingScale.

public class Baker

{
private readonly IWeighingScale weighingScale;
private readonly Oven oven = new Oven();
private readonly MixingMachine mixingMachine = new
MixingMachine();

57

CHAPTER 3 THE FUNDAMENTALS OF .NET MAUI

private readonly IngredientsProvider ingredientsProvider =
new IngredientsProvider();
public Baker(

IWeighingScale weighingScale)

{
this.weighingScale = weighingScale;

}

public Cake Bake()

{
Ingredient ingredient = ingredientsProvider.Provide();
this.weighingScale.Weigh(ingredient);

}

Now our Baker knows about an interface for something that can weigh
their ingredients but not the actual thing that does the weighing. This
means that in the scenario where the weighing scale breaks and a new
one is supplied, there is no change to the Baker class in order to handle
this new scale. Instead, it is registered as part of the application startup or
bootstrapping process. Of course, we could and should follow the same
approach for our other dependencies.

One additional concept I have introduced here is the use of constructor
injection. Constructor injection is the process of providing the registered
dependencies when creating an instance of our Baker. So, when our Baker
is created, it is passed an instance of WeighingScale.

If you have a background with Xamarin.Forms, you will have come
across the DependencyService. This provided a mechanism for managing
dependency injection within an application; however, it received criticism
in the past for not supporting constructor injection. This doesn’t mean
it wasn’t possible to achieve constructor injection in Xamarin.Forms
applications, but it required the use of a third-party package and there are
a lot of great packages out there! Now it is all baked into .NET MAUI.

58

CHAPTER 3 THE FUNDAMENTALS OF .NET MAUI

Registering Dependencies

In the previous section, I discussed how to minimize concrete
dependencies in your code base. Now let’s look through how to configure
those dependencies so that the dependents are given the correct
implementations.

Implementations that you register in the generic host builder are
referred to as services, and the work of providing the implementations out
to dependents is referred to as the ServiceProvider. You can register your
services using the following.

AddSingleton

A singleton registration means that there will only ever be one instance
of the object. So, based on the example of our Baker needing to use an
IWeighingScale, we register it as follows:

builder.Services.AddSingleton<IWeighingScale, WeighingScale>();

Then every time that an INeighingScale is resolved, we will be
provided with the same instance. This suits the weighing scale example
because we use the same one throughout our baking process.

It is extremely unlikely that you will ever need to register a view
model as a singleton. Doing so can introduce bits of behavior that you
are most likely not expecting on top of the fact that you can run the
risk of leaking memory.

59

CHAPTER 3 THE FUNDAMENTALS OF .NET MAUI

AddTransient

A transient registration is the opposite of a singleton. Every time an
implementation is resolved, a new instance is created and provided. So
based on the example of our Baker needing to use an INeighingScale, we
register it as follows:

builder.Services.AddTransient<IWeighingScale, WeighingScale>();

As mentioned, every time an INeighingScale is resolved, we will
be provided with a new instance. A better example here might be the
greaseproof paper that lines the cake tins. They are used once and
thrown away.

AddScoped

A scoped registration is somewhere in the middle of a singleton and
transient. A single instance will be provided for a “scope,” and then when
a new scope is created, a new instance will be provided for the life of
that scope.

builder.Services.AddScoped<IWeighingScale, WeighingScale>();

This type of registration feels much better suited to a web application
where requests come in and a scope will represent a single request. In the
mobile and desktop world, your application typically has a single state and
therefore is less likely to need scoped registrations. Currently .NET MAUI
does not provide any automatic creations of scopes, but you have the
power to create your own using the IServiceScopeFactory interface and
ultimately its implementation.

This concludes the section on the Generic Host Builder and
dependency injection. Let’s proceed onto learning about the lifecycle of an
application.

60

CHAPTER 3 THE FUNDAMENTALS OF .NET MAUI

Application Lifecycle

Sadly, no two platforms provide the same set of behaviors or lifecycle

events such as when an application is started, backgrounded, or closed.

This is where cross-platform frameworks provide us with a solid set

of encapsulated events to cover most scenarios. There are four main

application states in a .NET MAUI application.

Application States

These are the application states:

Not running: This means that the application has not
been started and is not loaded into memory. This is
typically when the application has been installed,

the device has been powered on, the application

was closed by the user, or the operating system has
terminated the application to free up some resources.

Running: This means that the application is visible and
is focused.

Deactivated: This means that the application is no
longer focused but may still be visible. On mobile, this
could mean that the operating system is showing a
permission request alert (e.g., an application asking for
permission to use the camera) or similar.

Stopped: This means that the application is no longer
visible.

You can now see how a .NET MAUI application moves between the

above four states and the events that are triggered to an application.

Figure 3-3 shows the possible states that a .NET MAUI application can take

during its lifetime and how it transitions between those states.

61

CHAPTER 3 THE FUNDAMENTALS OF .NET MAUI

Created,
Destroying Activated Not loaded

h Not running ﬁ into memory

v

Resumed

Loaded
into memory

Stopped Deactivated

Figure 3-3. Application state lifecycle chart

Before we dive into the details of each of the events that are fired
between the state transitions, I need to give you some background on
how they can be accessed and why. In order to access these events, you
must access the Window class. It certainly isn’t a common concept to have
a window in a mobile application, but you must appreciate that you are
dealing with a cross-platform framework and therefore an approach that
fits desktop as well as mobile. I see it as follows: a mobile application is a
single window application, and a desktop is likely to be multi-window.

Lifecycle Events

Now on to the events that move an application between states. These are
the annotations on the arrows from Figure 3-3:

o Created: This event is raised after the platform window
has been created. Note that the window may not be
visible yet.

e Activated: This event is raised when the window is the
focused window.

62

CHAPTER 3 THE FUNDAMENTALS OF .NET MAUI

o Deactivated: This event is raised when the window is
no longer the focused window. Note that the window
may still be visible.

o Stopped: This event is raised when the window is no
longer visible. The application may resume from this
state but it is not guaranteed, so it is recommended that
you cancel any long-running processes or anything
that may consume resources on the device. Mobile
operating systems are much stricter on what can
happen in the background.

e Resumed: This event is raised when an application
resumes from the Stopped state. It is recommended
to prepare your application for full use again (e.g.,
subscribe to events or messages, refresh any visible
content).

o Destroying: This event is raised when the platform
window is being destroyed and removed from memory.
It is recommended that you unsubscribe from events or
messages.

Handling Lifecycle Events

By default, a .NET MAUI application won't give you access to the lifecycle
events; this is something you must opt in for. In order to opt in, you must
modify your App class.

63

CHAPTER 3 THE FUNDAMENTALS OF .NET MAUI

Open Visual Studio. You need to add a new class to your project and
call it StateAwareWindow. Your new class will need to be modified so it
looks as follows:

public class StateAwareWindow: Window

{
public StateAwareWindow() : base()
{
}
public StateAwareWindow(Page page) : base(page)
{
}

protected override void OnCreated()

{

// Initialise our application

Inside of your application, you can override all methods that will
be executed when the specific event occurs. Each override method
follows the naming of the events, as described previously, with a prefix
of On. Therefore, to handle the Activated event, you override the
OnActivated method.

The final step is to make use of the new class, so inside your App.xaml.
cs file, add the following:

protected override Window CreateWindow(IActivationState
activationState)

{

return new StateAwareWindow(MainPage);

64

CHAPTER 3 THE FUNDAMENTALS OF .NET MAUI

This will create a new instance of StateAwareWindow and pass it a
reference to the application’s MainPage. If you do not pass in a reference
to a Page to the Window implementation, you will experience exceptions
being thrown.

Cross-Platform Mappings to Platform
Lifecycle Events

I strongly believe that despite the fact that NET MAUI provides us
with these unified events, you should understand how they map to the
underlying platforms. If you understand what is being called on the
platform-specific side, it can really help to diagnose things when they go
wrong or perhaps point you in the direction of a better approach for your
scenarios.

Let’s break down how the .NET MAUI lifecycle events map to the
platform-specific events and then show off the bits that are not mapped if
you ever need to use them. See Table 3-1.

Table 3-1. Cross-platform lifecycle events mapped to the
platform-specific events

Event Android i0S/Mac Catalyst Windows

Created OnPostCreate FinishedlLaunching Created

Activated OnResume OnActivated Activated(Code
Activated and
PointerActivated)

Deactivated OnPause OnResignActivation Activated
(Deactivated)

Stopped OnStop DidEnterBackground VisibilityChanged

Resumed OnRestart WillEnterForeground Resumed

Destroying OnDestroy WillTerminate Closed

65

CHAPTER 3 THE FUNDAMENTALS OF .NET MAUI

This list may not provide too much meaning right now, and I wouldn’t
worry yourself with needing to know this. The aim here is to provide you
with a quick look-up to be able to then research if any lifecycle events are
going wrong or possibly not the right fit for your solution. I can safely say
that a large number of the issues I have helped clients with in the past
are around how the lifecycle of an application differs on each platform
supported by .NET MAUI.

Platform-Specific Lifecycle Events

There are actually many platform-specific lifecycle events that NET MAUI
does not map to. What .NET MAUI does provide is a set of lifecycle events
that map consistently across all platforms. The rest in this section are really
specific to each individual platform. I won’t be covering all of the details of
each individual event; however, I will cover how to make use of one so that
you will know how to make use of an event that better suits your use case.

When searching for information around a platform-specific event,
don’t feel constrained to searching for .NET MAUI-specific documentation.
You have the power to leverage the platform APIs. You should be able
to search for information in the context of Android or iOS, and the code
should be relatively easy to translate into C#.

In order to register for a platform-specific event, you need to make use
of the ConfigurelifecycleEvents method on the MauiAppBuilder class.
Let’s look at a concrete example for each platform. The code in each of the
following examples is largely the same, but the duplication has been kept
to show the bigger picture. I have highlighted the differences in bold to
show the key differences.

66

CHAPTER 3 THE FUNDAMENTALS OF .NET MAUI

Android

To receive a notification for an Android lifecycle event, you call the
ConfigurelifecycleEvents method on the MauiAppBuilder object. You
can then make use of the AddAndroid method and specify the events you
wish to handle and how you wish to handle them.

using Microsoft.Maui.lLifecycleEvents;
namespace WidgetBoard;
public static class MauiProgram

{
public static MauiApp CreateMauiApp()
{
var builder = MauiApp.CreateBuilder();
builder
.UseMauiApp<App>()
.ConfigurelLifecycleEvents(events =>
{

#if ANDROID
events.AddAndroid(lifecycle=>
lifecycle.OnStart((activity) =>
OnStart(activity)));
static void OnStart(Activity activity)

{
// Perform your OnStart logic

}

#endif

D
return builder.Build();
}
}

67

CHAPTER 3 THE FUNDAMENTALS OF .NET MAUI

For more information on the available lifecycle events, I recommend
checking out the following documentation pages:

Microsoft: https://learn.microsoft.com/dotnet/maui/
fundamentals/app-lifecyclettandroid

Android: https://developer.android.com/guide/components/
activities/activity-lifecycle

i0S and MacCatalyst

To receive a notification for an iOS lifecycle event, you call the
ConfigurelLifecycleEvents method on the MauiAppBuilder object. You
can then make use of the Addi0S method and specify the events you wish
to handle and how you wish to handle them.

using Microsoft.Maui.LifecycleEvents;
namespace WidgetBoard;
public static class MauiProgram

{
public static MauiApp CreateMauiApp()
{
var builder = MauiApp.CreateBuilder();
builder
.UseMauiApp<App>()

.ConfigurelLifecycleEvents(events =>
{
#if I0S || MACCATALYST
events.AddiOS(lifecycle =>
lifecycle.OnActivated((app) =>
OnActivated(app)));
static void OnActivated(UIKit.UIApplication
application)

68

https://learn.microsoft.com/dotnet/maui/fundamentals/app-lifecycle#android
https://learn.microsoft.com/dotnet/maui/fundamentals/app-lifecycle#android
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/guide/components/activities/activity-lifecycle

CHAPTER 3 THE FUNDAMENTALS OF .NET MAUI

{
// Perform your OnActivated logic

}

flendif

}s
return builder.Build();
}
}

For more information on the available lifecycle events, I recommend
checking out the following documentation pages:

Microsoft: https://learn.microsoft.com/dotnet/maui/
fundamentals/app-lifecycle#ios

iOS: https://developer.apple.com/documentation/uikit/app and
environment/managing your app s life cycle?language=objc

Windows

To receive a notification for a Windows lifecycle event, you call the
ConfigurelifecycleEvents method on the MauiAppBuilder object. You
can then make use of the AddWindows method and specify the events you
wish to handle and how you wish to handle them.

using Microsoft.Maui.LifecycleEvents;
namespace WidgetBoard;
public static class MauiProgram

{
public static MauiApp CreateMauiApp()
{
var builder = MauiApp.CreateBuilder();
builder
.UseMauiApp<App>()

.ConfigurelLifecycleEvents(events =>

69

https://learn.microsoft.com/dotnet/maui/fundamentals/app-lifecycle#ios
https://learn.microsoft.com/dotnet/maui/fundamentals/app-lifecycle#ios
https://developer.apple.com/documentation/uikit/app_and_environment/managing_your_app_s_life_cycle?language=objc
https://developer.apple.com/documentation/uikit/app_and_environment/managing_your_app_s_life_cycle?language=objc

CHAPTER 3 THE FUNDAMENTALS OF .NET MAUI

{
#if WINDOWS

events.AddWindows (lifecycle =>
lifecycle.OnActivated((window, args) =>
OnActivated(window, args)));

static void OnActivated(Microsoft.

UI.Xaml.Window window, Microsoft.UI.Xaml.

WindowActivatedEventArgs args)

{
// Perform your OnActivated logic

}

#endif

1
return builder.Build();
}
}

For more information on the available lifecycle events, I recommend
checking out the following documentation page:

Microsoft: https://learn.microsoft.com/dotnet/maui/
fundamentals/app-lifecycle#twindows

You may have noticed the usage of #if statements. Due to the nature of
compiling for multiple platforms in a single project, you will need to write
platform-specific code. If, like me, you do not like the #if statement or you
would like to keep its usage to a minimum, then fear not; we will be taking
a closer look at minimizing it in Chapter 13.

70

https://learn.microsoft.com/dotnet/maui/fundamentals/app-lifecycle
https://learn.microsoft.com/dotnet/maui/fundamentals/app-lifecycle

CHAPTER 3 THE FUNDAMENTALS OF .NET MAUI

Summary

In this chapter, you have

Walked through the main components of a . NET MAUI
application

Earned a tea break
Learned about the startup process

Learned about the life of a .NET MAUI application

In the next chapter, you will

Learn about the different possibilities you have to
architect your applications

Decide on what architecture to use

Walk through a concrete example by creating your
ClockWidget

Learn how to further optimize your implementation
using NuGet packages

71

CHAPTER 4

An Architecture
to Suit You

Abstract

In this chapter, you will look through some possible architectural patterns
that can be used to build .NET MAUI applications. The objective is to
provide you with enough detail to help you find the architecture that best
fits you. I want to point out that there are no right answers concerning
which architecture to choose. The best option is to go with one that you
feel will benefit you and your team.

I aim to quash the following myths throughout the course of this
chapter:

“You are forced to use XAML.”
“You are forced to use MVVM.”

There seems to be a common misconception that .NET MAUI (and
previously Xamarin.Forms) is built largely around using only XAML and
MVVM. While this is the most common approach taken by developers, it is
not forced upon us.

In order to compare some of the available architecture options, we will
need something to compare; this leads us onto our measuring stick.

© Shaun Lawrence 2025 73
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/979-8-8688-1189-0_4

https://doi.org/10.1007/979-8-8688-1189-0_4#DOI

CHAPTER 4 AN ARCHITECTURE TO SUIT YOU

A Measuring Stick

You will build the same control with each of the options to provide a way to
compare the differences. The control you will be building is a ClockWidget.
The purpose of this control is to do the following:

o Display the current time in your app.
e Update the time every minute.

Figure 4-1 shows a very rough layout of the control with the current date
and time. You will tidy this up later with the ability to format the date and time
information in Chapter 5, but for now, let’s just focus on a limited example to
highlight the differences in options. Figure 4-1 shows how the ClockWidget
will render in your application when you have finished with this chapter.

24/05/2022 11:30

Figure 4-1. Sketch of how the ClockWidget control will render

Prerequisites

Before you get started with each of the architectures you will be reviewing
in this chapter, you need to do a little bit of background setup to prepare.

You need to add a single new class. This implementation will allow
your widgets to schedule an action of work to be performed after a specific
period of time. In your scenario of the ClockWidget, you can schedule an
update of the UL Let’s add this Scheduler class into your project.

o Right-click the WidgetBoard project.
¢ Select Add » Class.
e Give it the name of Scheduler.

e C(lick Add.

74

CHAPTER 4 AN ARCHITECTURE TO SUIT YOU

You want to modify the contents of the file to look as follows:
namespace WidgetBoard;

public class Scheduler

{
public void ScheduleAction(TimeSpan timeSpan,
Action action)
{
Task.Run(async () =>
{
await Task.Delay(timeSpan);
action.Invoke();
1
}
}

In the following sections, you will be looking at code examples rather
than implementing them directly. This is aimed at providing some

comparisons to allow you to find out what will be a good fit for you as you

build your applications and grow as a cross-platform developer. At the end

of the chapter, you will take your chosen approach and add it into your
application so you can see the final result of your ClockiWidget.

Model View ViewModel (MVVM)

Model View ViewModel is a software design pattern that focuses on
separating the user interface (View) from the business logic (Model). It
achieves this with the use of a layer in between (ViewModel). MVVM
allows a clean separation of presentation and business logic. Figure 4-2
shows the clean separation between the components of the MVVM
architecture.

CHAPTER 4 AN ARCHITECTURE TO SUIT YOU

ViewModel

Data binding

v

Presentation logic Business logic

‘.--

Figure 4-2. An overview of the MVVM pattern
The result of creating this separation between UI and business logic
brings several benefits:
e Makes unit testing easier

e Allows for Views to be swapped out or even rewritten
without impacting the other parts

» Encourages code reuse

e Provides the ability to separate UI development from
the business logic development

A key part to any design pattern is knowing where to locate parts of
your code to make it fit and abide by the rules. Let’s take a deeper look at
each of the three key parts of this pattern.

Model

The Model is where you keep your business logic. It is typically loaded
from a database/web service among many other things.

For your business logic, you are going to rely on the Scheduler class
that you created earlier in the “Prerequisites” section of this chapter.

76

CHAPTER 4 AN ARCHITECTURE TO SUITYOU
View

The View defines the layout and appearance of the application. It is what
the user will see and interact with. In .NET MAUI, a View is typically
written in XAML where possible, but there will be occasions when logic
in the code-behind will need to be written. You will learn this later in this
chapter; you don’t have to use XAML at all, so if you don’t feel XAML is
right for you, fear not.

A View in .NET MAUI is typically a ContentPage or an implementation
that will inherit from ContentPage or ContentView. You use a ContentPage
if you want to render a full page in your application (basically a view that
will fill the application). You use a ContentView for something smaller
(like a widget!). For your implementation, you will be inheriting from a
ContentView.

I discussed in Chapter 2 that the majority of XAML files come with an
associated C# file. A XAML-based view is no exception to this rule. With
this in mind, let’s take a look at the contents you need to place in each of
the files.

XAML

<?xml version="1.0" encoding="utf-8" ?>

<ContentView
xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
xmlns:viewmodels="clr-namespace:WidgetBoard.ViewModels"
x:Class="WidgetBoard.ClockWidget">
<ContentView.BindingContext>

<viewmodels:ClockWidgetViewModel />

</ContentView.BindingContext>
<Label Text="{Binding Time}"

77

CHAPTER 4 AN ARCHITECTURE TO SUIT YOU

FontSize="80"

VerticalOptions="Center"

HorizontalOptions="Center" />
</ContentView>

C# (Code-Behind)

The following code will have already been created for you by the NET
MAUI template. It is included for reference.

namespace WidgetBoard;
public partial class ClockWidget : ContentView

{
public Clockwidget()

{

InitializeComponent();

The InitializeComponent method call above is essential when
building XAML-based views. It results in the XAML being loaded and
parsed into an instance of the controls that have been defined in the
XAML file.

ViewModel

The ViewModel acts as the bridge between the View and the Model. You
expose properties and commands on the ViewModel that the View will
bind to. To make a comparison to building applications with just code-
behind, we could state that properties basically map to references of
controls and commands are events. A binding provides a mechanism for
both the View and ViewModel to send and receive updates.

78

CHAPTER 4 AN ARCHITECTURE TO SUIT YOU

For your ViewModel to notify the View that a property has changed
and therefore the View will refresh the value displayed on screen, you
need to make use of the INotifyPropertyChanged interface. This offers
a single PropertyChanged event that you must implement and ultimately
raise when your data-bound value has changed. This is all handled by the
XAML binding engine, which you will look at in much more detail in the
next chapter. Let’s create your ViewModel class and then break down what
is going on.

public class ClockWidgetViewModel : INotifyPropertyChanged

{
public event PropertyChangedEventHandler PropertyChanged;

private readonly Scheduler scheduler = new();
private DateTime time;

public DateTime Time

{
get
{
return time;
}
set
{
if (time != value)
{
time = value;
PropertyChanged?.Invoke(this, new Property
ChangedEventArgs (nameof(Time)));
}
}
}

79

CHAPTER 4 AN ARCHITECTURE TO SUIT YOU

public ClockWigetViewModel()

{
SetTime(DateTime.Now);
}
public void SetTime(DateTime dateTime)
{
Time = dateTime;
scheduler.ScheduleAction(
TimeSpan.FromSeconds(1),
() => SetTime(DateTime.Now));
}
}
You have

o Created a class called ClockWidgetViewModel
o Implemented the INotifyPropertyChanged interface

e Added a property that when set will check whether
its value really has changed, and if it has, raise the
PropertyChanged event with the name of the property
that has changed

e Added a method to set the Time property and repeat
every second so that the widget looks like a clock
counting

Model View Update (MVU)

Model View Update is a software design pattern for building interactive
applications. The concept originates from the Elm programming language.
As the name suggests, there are three key parts to MVU:

80

CHAPTER 4 AN ARCHITECTURE TO SUIT YOU

e Model: This is the state of your application.
o View: This is a visual representation of your state.
o Update: This is a mechanism to update your state.

Figure 4-3 shows how each of these components relates and interacts
with each other.

ﬁ ﬁ Update
State Bindings/
Commands

t

State changes

Figure 4-3. An overview of the MVU pattern

This pattern offers several benefits:

e Clearly defined rules around where state is allowed to
be updated

o Ease of testing

A key part to any design pattern is knowing where to locate parts of
your code to make it fit and abide by the rules. Let’s take a deeper look at
each of the three key parts of this pattern.

Getting Started with MauiReactor

It is worth noting that the MVU library that we will be using is not directly
provided by Microsoft; instead, it is a community-based project called
MauiReactor. The project can be found on GitHub at https://github.
com/adospace/reactorui-maui.

81

https://github.com/adospace/reactorui-maui
https://github.com/adospace/reactorui-maui

CHAPTER 4 AN ARCHITECTURE TO SUIT YOU

First, you must install the MauiReactor project templates. To do this,
open a terminal window and run the following command.

mac0S

1. Open the Terminal application.

2. Enter the following command and then press return:

dotnet new --install Reactor.Maui.TemplatePack

Windows

1. Open the Command Prompt application.
2. Enter the following command and then press return:
dotnet new --install Reactor.Maui.TemplatePack

This will install the template so that you can create a new project.
Sadly, this is different enough to the WidgetBoard project that you have
been working with so far.

Next, you need to create the project. This is again done via the terminal
for now:

dotnet new maui-reactor-startup --name WidgetBoard.Mvu

This will create a new project that you can start modifying.

Overview of the MVU Project Format

Let’s have a quick overview of the project structure of the MVU-based
project that was just created in order to become familiar. If you open the
project you just created in Visual Studio or Rider, you will notice that

82

CHAPTER 4 AN ARCHITECTURE TO SUIT YOU

the structure looks similar to a standard .NET MAUI project. One key
difference is that there are very few (only two) XAML files; the bulk of the
applications written in MVU will be through using C#.

The next key detail is how a View is represented. Views in MauiReactor
are referred to as Components; the aim of building components is to create
small reusable components that can make up the building blocks on an
application or multiple applications. The Views are considered immutable
in MVU, which means they will never update; instead, when the state
(model) is updated, the view will be redrawn in order to visually represent
the changes to the state. With this detail in mind, it is essential to build
small components in order to limit the amount of the application that
needs to be redrawn when some state changes.

Let’s proceed to making some changes in order to see MVU in action in
.NET MAUI. The template will have created a single MainPage.cs file under
the /Pages folder. This is the file that we are going to want to modify for the
purpose of creating a ClockWidget.

Adding Your MVU Implementation
Go ahead and open the MainPage.cs file and make the following changes:

class MainPage : Component

{
public override VisualNode Render()
=> ContentPage(
new ClockWidget()
)5
}
The result of the above change will be to present a page with a single
component inside.

83

CHAPTER 4 AN ARCHITECTURE TO SUIT YOU

Finally, go ahead and create your ClockWidget class:

public class ClockState

{
public DateTime Time { get; set; }

}

public class ClockWidget : Component<ClockState>
{

public override VisualNode Render()

{
return new VerticalStackLayout
{
Label(State.Time.ToString())
.FontSize(80)
.HCenter()
.VCenter(),
new Timer(interval: TimeSpan.FromSeconds(1), () =>
SetState(s => s.Time = DateTime.Now))
.IsEnabled(true)
};
}
}
Now that you have added a load of code, let’s summarize what you
have done.

e You have created your state (model) class ClockState.

¢ You have created a new component named
ClockWidget.

¢ You have defined your state type as ClockState.

84

CHAPTER 4 AN ARCHITECTURE TO SUIT YOU

¢ You have initialized (known as init in the MVU
pattern) your model field clock.

e You have defined the visuals of your component with
the Render () function.

e You have added a Timer component that will update
your state every second with the current date/time.

Note that there are two common scenarios when an update is called:
when there is user interaction (e.g., a click/tap of a button) and around
asynchronous background work. Your example here applies to the second
scenario.

As I mentioned earlier, we can see how our clock widget can be
achieved using MVU; this is a relatively simple example so I would strongly
recommend checking out the more in-depth examples provided by the
MauiReactor team at https://github.com/adospace/reactorui-maui.

XAML vs. C# Markup

XAML has proven to be a big part of building application Uls in .NET
MAUI, but I want to make it clear that you do not have to use it. So if
like some friends and colleagues, the verbosity of XAML makes you feel
queasy, there is a solution!

Anything that you can create in XAML can ultimately be created in
C#. Furthermore, there are ways to improve on the readability of the C#
required to build Uls.

Some benefits of building user interfaces solely with C# are

o Asingle file for a view. No pairing of .xaml.cs
and .xaml files.

o Better refactoring options so renaming properties or
commands in XAML won’t update the C#.

85

https://github.com/adospace/reactorui-maui

CHAPTER 4 AN ARCHITECTURE TO SUIT YOU

Let’s work through how you can build your ClockWidget in C# in all its
verbosity, and then I will show how you can simplify it using C# Markup. (I
must add this is an open source package that you need to bring in.) Also,
these examples are still built using MVVM.

Plain C#

As mentioned, anything you can build in XAML can also be built in C#.
The following code shows how the exact same XAML definition of your
ClockWidget can be built using just C#:

using WidgetBoard.ViewModels;
namespace WidgetBoard.Views;

public class ClockWidget : ContentView

{
public Clockwidget()
{
BindingContext = new ClockWidgetViewModel();
var label = new Label
{
FontSize = 80,
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.Center
};
label.SetBinding(
Label.TextProperty,
nameof (ClockWidgetViewModel.Time));
Content = label;
}
}

86

CHAPTER 4 AN ARCHITECTURE TO SUIT YOU

The code above does the following things:
o Creates a single file representing your ClockiWidget

o Points your widget’s BindingContext to the
ClockWidgetViewModel

o Creates a label and sets its Text property to be bound to
the view model’s Time property

o Assigns the label to the content of the view

C# Markup

I have recently come to appreciate the value of being able to fluently
build Uls. I don’t tend to do it often because I personally feel comfortable
building with XAML or perhaps it is Stockholm syndrome kicking in ©
(I've been working with XAML for well over ten years now). When I do, it
needs to be as easy to read and build as possible given it is not something I
do often.

As a maintainer on the NET MAUI Community Toolkit, one of the
packages we provide is CommunityToolkit.Maui.Markup. It provides a set
of extension methods and helpers to build Uls fluently.

using CommunityToolkit.Maui.Markup;
using WidgetBoard.ViewModels;

namespace WidgetBoard.Views;

public class ClockWidget : ContentView

{
public Clockwidget()

{
BindingContext = new ClockWidgetViewModel();

Content = new Label()

87

CHAPTER 4 AN ARCHITECTURE TO SUIT YOU

.Font(size: 80)

.CenterHorizontal()

.CenterVertical()
.Bind(Label.TextProperty, getter: static
(ClockWidgetViewModel viewModel) =>
viewModel.Time);

This code performs the same steps as the plain C# example; however,
the code is much easier to read. I am sure you can imagine that when the

complexity of the Ul increases, this fluent approach can really start to

benefit you.

Chosen Architecture for This Book

Throughout this book, we will be using the MVVM-based architecture

while building the UI through XAML.
My reasons for choosing MVVM are as follows:

88

I have spent the last 10+ years using this architecture so

it certainly feels natural to me.

It has been a very common way of building applications
over the past decade so there is an abundance of
resources online to assist in overcoming issues

around it.

It is a common pattern in all Microsoft products and

has a proven track record.

CHAPTER 4 AN ARCHITECTURE TO SUIT YOU

Now that I have covered the various architecture options and decided
on using MVVM, let’s proceed to adding in the specific Views and
ViewModels so that they can be used inside the application. Then I will
show how to start simplifying the implementation so that the code really
only needs to include the core logic by avoiding having to add a lot of the
boilerplate code.

Adding the ViewModels

First, add a new folder to your project.
o Right-click the WidgetBoard project.
e Select Add » New Folder.
o Enter the name ViewModels.
e C(lick Add.

This folder will house your application’s view models. Let’s proceed to
adding the first one.

Adding IWidgetViewModel

The first item you need to add is an interface. It will represent all widget
view models that you create in your application.

o Right-click the ViewModels folder.

o Select Add » New Item.

e Select the Interface type.

o Enter the name IWidgetViewModel.
o Click Add.

89

CHAPTER 4 AN ARCHITECTURE TO SUIT YOU
Modify this file to the following:

namespace WidgetBoard.ViewModels;
public interface IWidgetViewModel

{
int Position { get; set; }
string Type { get; }

}

Adding BaseViewModel

This will serve as the base class for all of your view models so that you only
have to write some boilerplate code once. Don’t worry; you will see how to
optimize this even further!

o Right-click the ViewModels folder.
o Select Add » Class.

o Enter the name BaseViewModel.

e C(lick Add.

You can replace the contents of the class file with the following code:
namespace WidgetBoard.ViewModels;

public abstract class BaseViewModel : INotifyPropertyChanged

{
public event PropertyChangedEventHandler? PropertyChanged;

protected void OnPropertyChanged([CallerMemberName] string
propertyName = "")

{
PropertyChanged?.Invoke(this, new PropertyChangedEvent

Args(propertyName));

90

CHAPTER 4 AN ARCHITECTURE TO SUIT YOU

protected bool SetProperty<TValue>(ref TValue backingField,

TValue value, [CallerMemberName] string propertyName = "")
{
if (Comparer<TValue>.Default.Compare(backingField,
value) == 0)
{

return false;
}
backingField = value;
OnPropertyChanged(propertyName);
return true;

You should be familiar with the first line inside the class:
public event PropertyChangedEventHandler PropertyChanged;

This is the event definition that you must add as part of implementing
the INotifyPropertyChanged interface, and it serves as the mechanism for
your view model to update the view.

The next method provides a mechanism to easily raise the
PropertyChanged event:

protected void OnPropertyChanged([CallerMemberName] string
propertyName = "")
{

PropertyChanged?.Invoke(this, new
PropertyChangedEventArgs (propertyName));

}

The OnPropertyChanged method can be called with or without
passing in a value for propertyName. By passing a value in, you are
indicating which property name on your view model has changed.

91

CHAPTER 4 AN ARCHITECTURE TO SUIT YOU

If you do not, then the [CallerMemberName] attribute indicates that the
name of the caller will be used. Don’t worry if this is a little unclear right
now; it will become much clearer when you add your property into your
ClockWidgetViewModel so just bear with me.

The final method adds a lot of value:

protected bool SetProperty<TValue>(
ref TValue backingField,
TValue value,
[CallerMemberName] string propertyName = "")

{
if (Comparer<TValue>.Default.Compare(backingField,
value) == 0)
{
return false;
}
backingField = value;
OnPropertyChanged(propertyName);
return true;
}

The SetProperty method does the following:

e Allows you to call it from a property setter, passing in
the field and value being set.

e Checks whether the value is different from the backing
field, basically determining whether the property has
really changed.

o Ifit has changed, it fires the PropertyChanged event
using your new OnPropertyChanged method.

o Returns a Boolean indicating whether the value did
really change. This can be really useful when needing
to update other properties or commands!

92

CHAPTER 4 AN ARCHITECTURE TO SUIT YOU

This concludes the base view model implementation. Let’s proceed to
using it as the base for the ClockWidgetViewModel to really appreciate the
value it is providing.

Adding ClockWidgetViewModel

Let’s add a new class file into your ViewModels folder as you did for the
BaseViewModel.cs file. Call this file ClockWidgetViewModel and modify
the contents to the following:

using System;
using System.ComponentModel;

namespace WidgetBoard.ViewModels;

public class ClockWidgetViewModel : BaseViewModel,
IWidgetViewModel

{
private readonly Scheduler scheduler = new();
private DateTime time;

public DateTime Time

{
get => time;
set => SetProperty(ref time, value);

}

public int Position { get; set; }
public string Type => "Clock";

public ClockWidgetViewModel()

{
SetTime(DateTime.Now);

93

CHAPTER 4 AN ARCHITECTURE TO SUIT YOU

private void SetTime(DateTime dateTime)

{
Time = dateTime;
scheduler.ScheduleAction(
TimeSpan.FromSeconds(1),
() => SetTime(DateTime.Now));
}

The above code should be familiar. You saw it when reviewing
MVVM. The optimization made here is to reduce the size of the Time
property down to just 5 lines where the original example was 16 lines
of code.

Adding Views
First, add a new folder to your project.
» Right-click the WidgetBoard project.
e Select Add » New Folder.
o Enter the name Views.
e Click Add.

This folder will house your application’s views. Let’s proceed to adding

your first one.

Adding IWidgetView

The first item you need to add is an interface to represent all widget view
models that you create in your application.

o Right-click the Views folder.

¢ Select Add » New Item.

94

CHAPTER 4 AN ARCHITECTURE TO SUIT YOU

e Select the Interface type.
o Enter the name IWidgetView.
o Click Add.

Modify the contents of this file to the following:
using WidgetBoard.ViewModels;
namespace WidgetBoard.Views;

public interface IWidgetView

{
int Position
{
get => WidgetViewModel.Position;
set => WidgetViewModel.Position = value;
}
IWidgetViewModel WidgetViewModel { get; set; }
}

Adding ClockWidgetView

The next item you need to add is a ContentView. This is the first time you
are doing this, so use the following steps:

o Right-click the Views folder.

e Select Add » New Item.

e Select the NET MAUI tab.

e Select the .NET MAUI ContentView (XAML) option.
o Enter the name ClockWidgetView.

o Click Add.

95

CHAPTER 4 AN ARCHITECTURE TO SUIT YOU

Observe that two new files have been added to your project:
ClockWidgetView.xaml and ClockiWidgetView.xaml.cs. You may
notice that the ClockWidgetView.xaml.cs file is hidden in the Solution
Explorer panel and that you need to expand the arrow to the left of the
ClockWidgetView.xaml file

Let’s update both files to match what was in the original examples.

Open the ClockWidgetView.xaml file and modify the contents to the
following:

<?xml version="1.0" encoding="utf-8" ?>

<Label
xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
xmlns:viewModels="clr-namespace:WidgetBoard.ViewModels"
x:Class="WidgetBoard.Views.ClockWidgetView"
FontSize="80"
VerticalOptions="Center"
HorizontalOptions="Center"
x:DataType="viewModels:ClockWidgetViewModel"
Text="{Binding Time}">

</Label>

Open the ClockWidgetView.xaml.cs file and modify the contents to
the following:

using WidgetBoard.ViewModels;
namespace WidgetBoard.Views;

public partial class ClockWidgetView : Label, IWidgetView

{
public ClockWidgetView()

{

InitializeComponent();

96

CHAPTER 4 AN ARCHITECTURE TO SUIT YOU

WidgetViewModel = new ClockWidgetViewModel();
BindingContext = WidgetViewModel;

}
public IWidgetViewModel WidgetViewModel { get; set; }

This completes the work to add the ClockWidget into your code base.
Now you need to modify your application so that you can see this widget
in action!

Viewing Your Widget

In order to view your widget in your application, you need to make some
changes to the MainPage.xaml and MainPage.xaml.cs files that were
generated when you first created your project.

Modifying MainPage.xaml
Simply replace the contents of the file with the following:

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage
xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
xmlns:views="clr-namespace:WidgetBoard.Views"
x:Class="WidgetBoard.MainPage">
<views:ClockWidgetView />

</ContentPage>

The original file had a basic example that ships with the . NET MAUI
template, but it wasn’t of much use in this application.

97

CHAPTER 4 AN ARCHITECTURE TO SUIT YOU

Modifying MainPage.xaml.cs

You need to modify the contents of this file because you deleted some
controls from the MainPage.xaml file. If you don’t update this file, Visual
Studio will report compilation errors. You can replace the entire contents
of the MainPage.xaml.cs file with the following to remove references to the
controls you deleted from the XAML file:

namespace WidgetBoard;

public partial class MainPage : ContentPage

{
public MainPage()
{
InitializeComponent();
}
}

This concludes the changes that you need to make in your application.
Let’s see what your application looks like now!

Taking the Application for a Spin

If you build and run your application just like you learned to in Chapter 2,
you can see that it renders the ClockWidget just as I originally designed.
Figure 4-4 shows the clock widget rendered in the application running

on macOS.

98

CHAPTER 4 AN ARCHITECTURE TO SUIT YOU

e e WidgetBoard

22[12/2022 21:23:55

Figure 4-4. The clock widget rendered in the application running
on macOS

You have looked at ways to optimize your code base when using MVVM,
but I would like to provide some further details on how you can leverage the

power of the community in order to further improve your experience.

MVVM Enhancements

There are two key parts I will cover regarding how you can utilize existing
packages to reduce the amount of code you are required to write.

MVVM Frameworks

There are several MVVM frameworks that can expand on this by providing
a base class implementation for you with varying levels of other extra
features. To list a few:

e CommunityToolkit. Mvvm
e FreshMVVM
e Prism

e ReactiveUI

99

CHAPTER 4 AN ARCHITECTURE TO SUIT YOU

These packages will ultimately provide you with a base class very
similar to the BaseViewModel class that you created earlier. For example,
the Prism library provides the BindableBase class that you could use. It
offers yet another optimization in terms of less code that you need to write
and ultimately maintain.

You can go a step further, but you need to believe.

Magic

Yes, that’s right: magic is real! These approaches involve auto-generating
the required boilerplate code so that we as developers do not have to do it.
There are two main packages that offer this functionality. They provide it
through different mechanisms, but they work equally well.

o Fody: IL generation, https://github.com/Fody/Home

e CommunityToolkit. Mvvm: Source generators (yes, this
gets a second mention), https://learn.microsoft.
com/dotnet/communitytoolkit/mvvm/

In the past, I was skeptical of using such packages. I felt like I was
losing control of parts that I needed to hold on to. Now I can appreciate
that I was naive, and this is impressive.

Let’s look at how these packages can help to further reduce the
code. This example uses CommunityToolkit. Mvvm, which provides the
ObservableObject base class and a wonderful way of adding attributes
([ObservableProperty]) to the fields you wish to trigger PropertyChanged
events when their value changes. This will then generate a property with
the same name as the field but with a capitalized first character, so time
becomes Time.

public partial class ClockWidgetViewModel : ObservableObject

{
[ObservableProperty]

private DateTime time;

100

https://github.com/Fody/Home
https://learn.microsoft.com/dotnet/communitytoolkit/mvvm/
https://learn.microsoft.com/dotnet/communitytoolkit/mvvm/

CHAPTER 4 AN ARCHITECTURE TO SUIT YOU

public ClockWigetViewModel()

{
SetTime(DateTime.Now);
}
public void SetTime(DateTime dateTime)
{
Time = dateTime;
scheduler.ScheduleAction(
TimeSpan.FromSeconds(1),
() => SetTime(DateTime.Now));
}

That’s 17 lines down to 2 from the original example! The part that I
really like is that it reduces all the noise of the boilerplate code so there is a
bigger emphasis on the code that we need to write as developers.

You may have noticed that you are still referring to the Time property
in the code but you haven’t supplied the definition for this property. This
is where the magic comes in! If you right-click the Time property and select
Go to Definition..., it will open the following source code so you can view
what the toolkit has created for you:

// <auto-generated/>

#ipragma warning disable
#nullable enable

namespace WidgetBoard.ViewModels

{
partial class ClockWidgetViewModel

{

/// <inheritdoc cref="time"/>

101

CHAPTER 4 AN ARCHITECTURE TO SUIT YOU

[global::System.CodeDom.Compiler.GeneratedCode
("CommunityToolkit.Mvvm.SourceGenerators.
ObservablePropertyGenerator", "8.0.0.0")]
[global::System.Diagnostics.CodeAnalysis.
ExcludeFromCodeCoverage]
public global::System.DateTime Time
{
get => time;
set
{
if (!global::System.Collections.Generic.
EqualityComparer<global: :System.DateTime>.
Default.Equals(time, value))
{
OnTimeChanging(value);
OnPropertyChanging(global: : Community
Toolkit.Mvvm.ComponentModel._Internals.__
KnownINotifyPropertyChangingArgs.Time);
time = value;
OnTimeChanged(value);
OnPropertyChanged(global: : CommunityTool
kit.Mvvm.ComponentModel. Internals. _
KnownINotifyPropertyChangedArgs.Time);

}

/// <summary>Executes the logic for when <see
cref="Time"/> is changing.</summary>
[global::System.CodeDom.Compiler.GeneratedCode
("CommunityToolkit.Mvvm.SourceGenerators.
ObservablePropertyGenerator”, "8.0.0.0")]

102

CHAPTER 4 AN ARCHITECTURE TO SUIT YOU

partial void OnTimeChanging(global::System.
DateTime value);

/// <summary>Executes the logic for when

<see cref="Time"/> just changed.</summary>
[global::System.CodeDom.Compiler.GeneratedCode
("CommunityToolkit.Mvvm.SourceGenerators.
ObservablePropertyGenerator”, "8.0.0.0")]
partial void OnTimeChanged(global::System.
DateTime value);

You can see that the generated source code looks a little noisy, but it
does in fact generate the property you need. View the section highlighted
in bold above.

I have only really scratched the surface regarding the functionality
that the CommunityToolkit. Mvvm offers. I strongly urge you to refer
to the documentation at https://learn.microsoft.com/dotnet/
communitytoolkit/mvvm/ to learn how it can further aid your application
development because this will not be looked into any deeper in this book
so we can focus on the fundamentals.

Summary

I'hope I have made it clear that there is no single right way to do things or
build applications. You should pick and choose what approaches will best
suit your environment. With this point in mind, the goal of this chapter was
to give you a good overview of several different approaches to architecting
your application. There are always a lot of opinions floating around to
indicate which architectures people prefer, but I strongly urge you to
evaluate which will help you to achieve your goals best.

103

https://learn.microsoft.com/dotnet/communitytoolkit/mvvm/
https://learn.microsoft.com/dotnet/communitytoolkit/mvvm/

CHAPTER 4 AN ARCHITECTURE TO SUIT YOU

In this chapter, you have

e Learned about the different possibilities you have to
architect your applications

¢ Decided on what architecture to use

o Walked through a concrete example by creating the
ClockWidget

e Learned how to further optimize your implementation
using NuGet packages

In the next chapter, you will
e Create and apply an icon in your application
e Add some placeholder pages and view models

o Fill your first page with some UI and set up bindings to
the view model

o Explore data binding and its many uses
e Gain an understanding of XAML

e Learn about the possible layouts you can use to group
other controls

e Gain an understanding of Shell and apply this to
building your application’s structure

e Apply the Shell navigation to allow you to navigate

e Build your flyout menu

Source Code

The resulting source code for this chapter can be found on the GitHub
repository at https://github.com/Apress/Introducing- .NET-MAUI-2nd-
ed/tree/main/cho4.

104

https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch04
https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch04

CHAPTER 5

User Interface
Essentials

Abstract

In this chapter, you are going to investigate the fundamental parts of
building a .NET MAUI application. You are going to apply an icon and
splash screen, add in some pages and their associated view models, and
configure some bindings between your page and the view model. You will
also gain an understanding of what XAML is and what it has to offer as you
build the pages of your application.

Prerequisites

You need to do some setup before you can jump into using Shell. If Shell is
still feeling like an unknown concept, fear not. I will be covering it a little
bit later in this chapter under the “Shell” section.

Let’s go ahead and add the following folders to your project.

© Shaun Lawrence 2025 105
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/979-8-8688-1189-0_5

https://doi.org/10.1007/979-8-8688-1189-0_5#DOI

CHAPTER 5 USER INTERFACE ESSENTIALS

Models

This will house all of your Model classes. If you recall from Chapter 4, these
are where some of your business logic is located. In your Models folder, you
need to create one class.

e Right-click the Models folder.
e Select Add » New Class.
e Click Add.

Board.cs

This will serve as a base class for the layout options you provide. In
this book, you will only be building fixed layout boards, but I wanted to
lay some groundwork so if you are feeling adventurous, you can go off
and build alternative layout options without having to restructure the
application. In fact, I would love to hear where you take it!

Your fixed layout will offer the user of the app the ability to choose a
number of rows and columns and then position their widgets in them.

namespace WidgetBoard.Models;

public class Board

{
public string Name { get; init; } = string.Empty;
public int NumberOfColumns { get; init; }
public int NumberOfRows { get; init; }

}

This is the first time that we have used the init keyword in this book.
I wanted to explain its use in case you are not familiar with it; the init
keyword allows us to define a property that can be set only when a new
instance is initialized. This means that the following is allowed:

106

CHAPTER 5 USER INTERFACE ESSENTIALS

var board = new Board

{
Name = "Fixed Board";
NumberOfColumns = 3;
NumberOfRows = 3;

};

To highlight the value of the init keyword, the following code will
generate three compiler errors, one compiler per property that hasn’t been
assigned a value.

var board = new Board();

Pages

This will house the pages in your application. I am distinguishing between
a page and a view because they do behave differently in . NET MAUI You
can think of a page as a screen that you are seeing whereas a view is a
smaller component. A page can contain multiple views.

Let’s go ahead and create the following files under the Pages folder.
The following steps show how to add the new pages.

o Right-click the Pages folder.

¢ Select Add » New Item.

e Select the NET MAUI tab.

e Select NET MAUI ContentPage (XAML).

e C(lick Add.

107

CHAPTER 5 USER INTERFACE ESSENTIALS

BoardDetailsPage

This is the page that lets you both create and edit your boards. For now,
you will not touch the contents of this file. Note that you should see
BoardDetailsPage.xaml and BoardDetailsPage.xaml.cs files created.

You also need to jump over to the MauiProgram.cs file and register this
page with the Services inside the CreateMauiApp method just before the
return builder.Build(); line.

builder.Services.AddTransient<BoardDetailsPage>();

ViewModels

This houses your ViewModels that are the backing for both your Pages and
Views. You created this folder in the previous chapter, but you need to add
a number of classes. The following steps show how to add the new pages:

e Right-click the ViewModels folder.
e Select Add » New Class.
e Click Add.

BoardDetailsPageViewModel
This serves as the view model for the BoardDetailsPage file you created.
namespace WidgetBoard.ViewModels;

public class BoardDetailsPageViewModel : BaseViewModel

{
}

You also need to jump over to the MauiProgram.cs file and register this
page with the Services inside the CreateMauiApp method as you did above.

builder.Services.AddTransient<BoardDetailsPageViewModel>();

108

CHAPTER 5 USER INTERFACE ESSENTIALS

You should start to notice a common pattern with the creation of these
files and the need to add them to the MauiProgram. cs file. This is to allow
you to fully utilize the dependency injection provided by the framework,
which you learned about in Chapter 3.

This concludes the prerequisite work required for this chapter, so let’s
proceed to covering the user interface essentials.

App Icons

Every application needs an icon, and for many people, this will be how
they obtain their first impression. Thankfully these days device screens
allow for bigger icon sizes and therefore more detail to be included
in them.

As with general image resources, each platform requires different sizes
and many more combinations to be provided. For example, iOS expects
the following:

o Five different sizes of the app icon

o Three different sizes for the Spotlight feature
o Three different sizes for Notifications

e Three different sizes for Settings

That'’s up to 14 different image sizes required just for your application
icon on i0S alone. See https://developer.apple.com/design/human-
interface-guidelines/ios/icons-and-images/app-icon/.

.NET MAUI manages the process of generating all the required images
for you. All you need to do is provide an SVG image file. Since SVGs are
vector based, they can scale to each required size.

109

https://developer.apple.com/design/human-interface-guidelines/ios/icons-and-images/app-icon/
https://developer.apple.com/design/human-interface-guidelines/ios/icons-and-images/app-icon/

CHAPTER 5 USER INTERFACE ESSENTIALS

Adding Your Own Icon

Figure 5-1 shows the icon that you will be using for your application. You
can grab a copy of the files that you will be using from https://github.
com/bijington/introducing-dotnet-maui/tree/main/chapteros and
place them in the Resources/AppIcon folder. You should notice that they
replace two existing files.

Figure 5-1. Your application icon

Ifyou look in the contents of your project file, you will see the
following entry:

<MauiIcon Include="Resources\AppIcon\appicon.svg" />

This tells the tooling to use the file appicon.svg and convert it into all
the required sizes for each platform when building. Note you only want
one MauiIcon in your project file. If you have multiple, the first one will
be used.

110

https://github.com/bijington/introducing-dotnet-maui/tree/main/chapter05
https://github.com/bijington/introducing-dotnet-maui/tree/main/chapter05

CHAPTER 5 USER INTERFACE ESSENTIALS

You do not need to replace the above entry as the file you should
have downloaded should have the name appicon.svg. If the file name is
different, either rename it or update the name in the project file.

Platform Differences

It is worth noting that some platforms apply different rules to app icons
and also can provide rather different outputs.

Android

App icons on Android can take many different shapes due to the different
device manufacturers and their own flavor of the Android operating
system. To cater for this, Google introduced the adaptive icon. This allows
a developer to define two layers in their icon:

e The background: This is typically a single color or
consistent pattern. It is the appicon.svg file that you
downloaded.

e The foreground: This includes the main detail. It is the
appiconfig.svg file that you downloaded.

.NET MAUI allows you to support the adaptive icon using the
IncludeFile and the ForegroundFile properties on the MauiIcon
element. You can see the IncludeFile is already defined in your project.
This represents the background. You can split your application icon into
two parts and then provide the detail to the ForegroundFile. Note that this
can be applied to all platforms and is my recommended way to ship an
application icon.

111

CHAPTER 5 USER INTERFACE ESSENTIALS

i0S and mac0S

Apple does not allow for any transparency in an app icon. You can either
make sure that you supply an image with no transparent pixels or you can
use the Color property on the MauiIcon element, which will fill in any
transparent pixels with that defined color.

Splash Screen

A splash screen is the first thing a user sees when they start your
application. It gives you as a developer a way of showing the user
something while the application is launching. Once everything has
finished loading, the splash screen will be hidden and your main page will
be shown.

In a similar manner to how the app icon is managed, the splash screen
also has an entry in the project file and can generate a screen based on an
SVG file. In fact, you will be using the same image to save effort.

<MauiSplashScreen Include="Resources\Splash\splash.svg"
Color="#512BD4" BaseSize="128,128" />

Note that splash screens built in this manner must be static. You can’t
have any animations running to show progress.

The Color property enables you to define a background color for the
splash screen.

I have designed a splash screen image that you are free to use in your
application, you can find a copy at https://github.com/bijington/
introducing-dotnet-maui/tree/main/chapteros/splash and place
them in the Resources/Splash folder.

112

https://github.com/bijington/introducing-dotnet-maui/tree/main/chapter05/splash
https://github.com/bijington/introducing-dotnet-maui/tree/main/chapter05/splash

CHAPTER 5 USER INTERFACE ESSENTIALS

Figure 5-2. Your application splash screen

XAML

As a .NET MAUI developer, you will hear XAML mentioned many times;
XAML stands for eXtensible Application Markup Language. It is an XML-
based language used for defining user interfaces. It originates from WPF
and Silverlight, but the .NET MAUI version has its differences.

There are two different types of XAML files that you will encounter
when building your application:

e AResourceDictionary: This is a single file that
contains resources that can easily be used throughout
your application. Resources/Styles/Styles.xaml
is a perfect example of this. The Styles.xaml file is a
default set of styles that is provided when you create
anew .NET MAUI application. If you wish to modify
some built-in styling, this is a very good place to do so.

e AView-based file: This contains both a .xaml and
.xaml.cs file. They are paired together using the
partial class keyword.

113

CHAPTER 5 USER INTERFACE ESSENTIALS

When dealing with this second item, you have to make sure that the
InitializeComponent line is called inside the constructor; otherwise,
the XAML will not be interpreted correctly, and you will see an
exception thrown.

It is worth noting that XAML does not provide a rich set of features
like C# does, and for this reason, there is almost always a xaml.cs file that
goes alongside the XAML file. This C# file provides the ability to use the
rich feature set of the C# language when XAML does not. For example,
handling a button interaction event would have to be done within the C#
code file.

Dissecting a XAML File

In the “Prerequisites” section of this chapter, you created the
BoardDetailsPage.xaml file. Now you are going to modify it and add some
meaningful content so you can start to see your application take shape.
The code you should see in this file is shown below:

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage
xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
x:Class="WidgetBoard.Pages.BoardDetailsPage"
Title="BoardDetailsPage">
<VerticalStackLayout>
<Label
Text="Welcome to .NET MAUI!"
VerticalOptions="Center"
HorizontalOptions="Center" />
</VerticalStackLayout>
</ContentPage>

114

CHAPTER 5 USER INTERFACE ESSENTIALS

If you break this down into small chunks, you can start to understand

not only what makes up the UI of your application but also some of the

fundamentals of how XAML represents it.
The root element is a ContentPage. As mentioned, a typical view in
.NET MAULI is either a ContentPage or ContentView. As the name implies,

itis a page that presents its content, and this will be a single view as its

content.

As mentioned, XAML is an XML-based language, and there are the

following key parts to understanding XAML.:

1.

Properties are set by attributes on your element, so
<Label Text="Welcome to .NET MAUI!" />
is effectively the same as writing

new Label

{
Text = "Welcome to .NET MAUI!"

};

XAML represents the visual hierarchy in the file
structure. You can work out that ContentPage

has a child of VerticalStackLayout and it has a
child of Label. This can be especially helpful. A
complex XAML file will result in a complex visual
tree, and you want to try your best to avoid this
because the greater the complexity results in poorer
performance because the device will ultimately have
to render more things on screen.

115

CHAPTER 5

3.

USER INTERFACE ESSENTIALS

The xmlns tag works like a using statement in C#.
This allows you to refer to other functionality that
might not be available out of the box. For example,
you can add the line xmlns:views="clr-
namespace:WidgetBoard.Views" and itis the
equivalent of adding using WidgetBoard.Views; in
a C# file. This allows you to refer to the views in your
code base.

The content of your ContentPage in your XAMLis a
VerticalStackLayout. I will cover layouts a little bit later in this chapter,

but as a very brief overview, they allow you to have multiple child views as

content and therefore open up the possibilities of creating your Uls. It is

worth noting that a ContentPage can only have a single child, which makes

layouts really important controls for use when building user interfaces.

Now that you have covered some of the key concepts around XAML,

let’s go ahead and start building your application’s first page.

Building Your First XAML Page

I always like to work with a clear definition of what needs to be achieved so

let’s define what your page needs to do. It needs to do the following:

116

Allow the user to create a new board.

Fit on a variety of screen sizes.

Allow the user to provide a name for the board.
Allow the user to choose the layout type.

Apply any valid properties for the specific layout
type chosen.

CHAPTER 5 USER INTERFACE ESSENTIALS

Now that you know what needs to be achieved, let’s go ahead and do

it. You need to delete the existing contents of the page and replace them
with a Border. A Border is similar to a ContentView in that it can only have

a single child, but it offers you some extra properties that allow you to

provide a nice looking UL In particular, you care about the StrokeShape

and Stroke properties. You may notice that you are not actually setting
these properties in the XAML and you would be correct! There are two

main reasons for this:

You have suitable defaults defined in the Resources/
Styles/Styles.xaml file that was created for you. Note
that if you want to override these, it’s perfectly fine. I
will be covering this a little bit later in this chapter in
the “Styling” section.

Itis considered good practice to only define the
properties that you need to supply, which is basically
anything that changes from the defaults. While the
XAML compiler does a decent job of generating a

Ul that is defined at compile time, some bits are still
potentially interpreted at runtime and this has a
performance impact.

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage
xmlns="http://schemas.microsoft.com/
dotnet/2021/maui"
xmlns:x="http://schemas.microsoft.com/
winfx/2009/xaml"
x:Class="WidgetBoard.Pages.BoardDetailsPage">
<Border

MinimumWidthRequest="300"

117

CHAPTER 5 USER INTERFACE ESSENTIALS

HorizontalOptions="Center"
VerticalOptions="Center"
Padding="0">
</Border>
</ContentPage>

The most important parts of the properties that you are setting are the
HorizontalOptions and VerticalOptions. They allow you to define where
in the parent this view will be displayed. By default, a view will fill its
parent’s content, but you are going to make it float in the center. The main
reason is so it will stay there regardless of the screen size it is running on.
Of course, there are more in-depth ways of handling different screen sizes
and you will explore them in the coming chapters.

While you have much more content to add to this XAML file, you are going
to do so in the context of the following topics. Your next step is to add multiple
child views. For this, you are going to need to choose a suitable Layout.

Layouts

.NET MAUI provides you with a set of prebuilt layout classes that allow you
to group and arrange views in your application. The aim of this section is to
explore each layout control and how it might be used for your application.
I strongly recommend playing around with each of the layouts to see what
will fit best for each individual use case and always remember to keep the
visual tree as simple as possible.

AbsoluteLayout

As the name suggests, the Absolutelayout allows the positioning of its
children with absolute values. The x, y, width, and height of a child are
controlled through the LayoutBounds attached property. This means you
use as follows

118

CHAPTER 5 USER INTERFACE ESSENTIALS

<Absolutelayout>
<Label
AbsoluteLayout.LayoutBounds="0,0,600,200"/>
</Absolutelayout>

Figure 5-3 shows how a control is positioned inside an Absolutelayout.

rheight

width

Figure 5-3. AbsoluteLayout overview

There is also the option to define layout bounds that are
proportional to the AbsolutelLayout itself. You can control this with the
Absolutelayout.LayoutFlags attached property.

<AbsoluteLayout>
<Label
Absolutelayout.LayoutBounds="0,0,0.5,0.2"
Absolutelayout.LayoutFlags="A11"/>
</Absolutelayout>

This will result in the Label being positioned at 0,0, but the width will
be 50% of the AbsolutelLayout and the height will be 20%. This provides
a lot of power when defining a user interface that can grow as the size of a
device also increases.

119

CHAPTER 5 USER INTERFACE ESSENTIALS

The LayoutFlags option provides you with a lot of power. You can

choose which part of the LayoutBounds is applied absolutely and which is

applied proportionally. Here are the possible values for LayoutFlags and

what they impact:

Value Description

None All values are absolute.

XProportional The X property is proportional to the
Absolutelayout dimensions.

YProportional The Y property is proportional to the
Absolutelayout dimensions.

WidthProportional The Width property is proportional to the
Absolutelayout dimensions.

HeightProportional The Height property is proportional to the
Absolutelayout dimensions.

PositionProportional The X and Y properties are proportional to the
Absolutelayout dimensions.

SizeProportional The Width and Height properties are proportional
to the AbsoluteLayout dimensions.

All All properties are proportional to the

Absolutelayout dimensions.

The Absolutelayout can be an incredibly powerful layout when used

in the right scenario. For your scenario, it offers more complexities than I

really think you need to handle.

120

CHAPTER 5 USER INTERFACE ESSENTIALS

FlexLayout

The FlexLayout comes with a large number of properties to configure
how its children are positioned. If you want your controls to wrap, this is
the control for you! A good example for using the FlexLayout is a media

gallery.
Figure 5-4 shows how controls can be positioned inside a FlexLayout.

Figure 5-4. FlexLayout overview

The above layout can be achieved with the following code example:

<FlexLayout

AlignItems="Start"

Wrap="Wrap"

Margin="30"

JustifyContent="SpaceEvenly">

<Border
BackgroundColor="LightGray"
WidthRequest="100"
HeightRequest="100" />

<Border
BackgroundColor="LightCGray"

121

CHAPTER 5 USER INTERFACE ESSENTIALS

WidthRequest="100"
HeightRequest="100" />
<Border
BackgroundColor="LightGray"
WidthRequest="100"
HeightRequest="100" />
<Border
BackgroundColor="LightGray'
WidthRequest="100"
HeightRequest="100" />
</FlexLayout>

Each of the properties you are using allows you to customize where
each item is positioned during the rendering process and how it will
move around in the application if it is resized. For further information
on the possible ways of configuring the FlexLayout, read the Microsoft
documentation at https://learn.microsoft.com/dotnet/maui/user-
interface/layouts/flexlayout.

Your BoardDetailsPage only needs controls positioned vertically so a
FlexLayout feels like an overly complicated layout for this purpose.

Grid

I'love Grids. They are usually my go-to layout option, mainly because

I have become used to thinking about how they lay out controls and
because they tend to allow you to keep your visual tree depth shallow.

The layout essentially works by allowing you to define a set of rows and
columns and then define which control should be displayed in which row/
column combination.

Figure 5-5 shows how controls can be positioned inside a Grid.

122

https://learn.microsoft.com/dotnet/maui/user-interface/layouts/flexlayout
https://learn.microsoft.com/dotnet/maui/user-interface/layouts/flexlayout

CHAPTER 5 USER INTERFACE ESSENTIALS

Figure 5-5. Grid layout overview

Controls inside a Grid are allowed to overlay each other, which can
provide an extra tool in a developer’s toolbelt when needing to show/
hide controls. Controls in the Grid are arranged by first defining the
ColumnDefinitions and RowDefinitions. Let’s take a look at how to create
the above layout with a Grid.

<Grid

ColumnDefinitions ="*,2*,250,Auto"

ColumnSpacing="20"

Margin="30"

RowDefinitions="%* *"

RowSpacing="20">

<Border
BackgroundColor="LightGray"
Grid.Column="0"
Grid.Row="0" />

<Border
BackgroundColor="LightGray"
Grid.Column="1"

123

CHAPTER 5

USER INTERFACE ESSENTIALS

Grid.Row="1" />

<Border

BackgroundColor="LightGray"
Grid.Column="2"
Grid.Row="0" />

<Border

</Grid>

BackgroundColor="LightGray"
Grid.Column="3"
Grid.Row="1"
WidthRequest="30"
HeightRequest="30" />

You can see that you have created columns using a variety of different

options:
[]

250: This is a fixed width of 250.

Auto: This means that the column will grow in width
based on its contents. It is recommended to use this
option sparingly as it will result in the Grid control
having to measure its children and force a rerender of
itself and the other children.

*: This is proportional and will result in the leftover
space being allocated out. In this example, two
columns use the * notation. This results in those two
columns being allocated one-third and two-thirds of
the remaining width, respectively. This is because * is
actually considered 1*.

In your scenario, you are going to need multiple groups of controls.

For this reason, I believe Grids will just make it slightly more complicated

for you.

124

CHAPTER 5 USER INTERFACE ESSENTIALS

HorizontalStackLayout

The name really gives this away. It positions its children horizontally.
The HorizontalStackLayout is not responsible for providing sizing
information to its children, so the children are responsible for calculating
their own size.

Figure 5-6 shows how controls can be positioned inside a
HorizontalStackLayout.

Figure 5-6. HorizontalStackLayout overview

The above layout can be achieved with the following code example:

<HorizontalStackLayout

Spacing="20"
Margin="30">
<Border

BackgroundColor="LightCGray"

WidthRequest="100" />
<Border

BackgroundColor="LightGray"

WidthRequest="100" />
<Border

125

CHAPTER 5 USER INTERFACE ESSENTIALS

BackgroundColor="LightGray"
WidthRequest="100" />
</HorizontalStackLayout>

You wish to layout your controls vertically so you can guess where this
is going, although you will actually use one to group some of your inner
controls.

VerticalStackLayout

The name really gives this away. It positions its children vertically.
The VerticalStackLayout follows the same sizing rules as the
HorizontalStackLayout, so the children are responsible for calculating
their own size.

And there you have it: something that arranges its children vertically,
which is exactly what you need!

Figure 5-7 shows how controls can be positioned inside a
VerticalStackLayout.

Figure 5-7. VerticalStackLayout overview

126

CHAPTER 5 USER INTERFACE ESSENTIALS
The above layout can be achieved with the following code example:

<VerticalStackLayout
Spacing="20"
Margin="30">
<Border
BackgroundColor="LightGray"
HeightRequest="100" />
<Border
BackgroundColor="LightGray"
HeightRequest="100" />
<Border
BackgroundColor="LightGray"
HeightRequest="100" />
</VerticalStackLayout>

We mentioned that this is the layout that you will want to use in your
page; let’s go ahead and use it. Inside the Border you added earlier, add the
following to your BoardDetailsPage. xaml file.

<VerticalStackLayout>

<VerticalStackLayout
Padding="20">
<Label
Text="Name"
FontAttributes="Bold" />
<Entry />
<Label

Text="Layout"
FontAttributes="Bold" />
<HorizontalStacklLayout>
<RadioButton
x:Name="FixedRadioButton"

127

CHAPTER 5 USER INTERFACE ESSENTIALS

Content="Fixed" />
</HorizontalStackLayout>
<VerticalStackLayout>

<Label
Text="Number of Columns"
FontAttributes="Bold" />
<Entry Keyboard="Numeric" />
<Label
Text="Number of Rows"
FontAttributes="Bold" />
<Entry Keyboard="Numeric" />
</VerticalStackLayout>
</VerticalStackLayout>
<Button
Text="Save"
HorizontalOptions="End" />
</VerticalStackLayout>

Yes, I know! I spoke about keeping the visual tree simple and here
you are nesting quite a few layouts. I find there is typically some level of
pragmatism that needs to be applied. This page is still relatively simple in
terms of what is being rendered on screen so I will argue that it is fine. If
you were to repeat this layout multiple times, you would need to be a little
more strict and find the best way to lay it all out. Quite often you will find
that there can be a balancing act between defining something to give the
best performance and making it easier to maintain as a developer.

So you have now built your UI, but you will notice that it doesn’t do
anything other than let the user type in the entry fields. You need to bind
the view up to your view model.

128

CHAPTER 5 USER INTERFACE ESSENTIALS

This is not strictly part of layouts, but it is worth noting how you apply
the Keyboard property to your Entry controls. This allows you to inform
the operating system what soft keyboard to display and therefore limit
the type of data the user can enter. Note that this only applies to mobile
applications and it only really helps if a hardware keyboard is not used; if a
user does connect a hardware keyboard, they will be able to enter invalid
characters; therefore, it will still be up to us as developers to validate that
the correct data has been entered. We will cover how to validate datain a
reusable way in Chapter 9.

Data Binding

Ul-based applications, as their name suggests, involve presenting

an interface to the users. This Ul is rarely ever just a static view and
therefore needs to be updated, drive updates into the application, or

both. This process is typically an event-driven one as either side of this
synchronization needs to be notified when the other side changes. .NET
MAUI wraps this process up for you through a concept called data binding.
Data binding provides the ability to link the properties from two objects so
that changes in one property are automatically updated in the second.

Binding
The most common type of bindings that you create is between a single
value at the source and a single value at the target. The target is the owner
of the bindable property. I use the terms target and source because you
do not have to solely bind between a view and a view model. There are
scenarios where you may wish to bind one control to another.

Before you jump into creating your first binding, you need to first
create something to bind to. Open your BoardDetailsPageViewModel
class, which is the view model for your view, and add the following:

129

CHAPTER 5 USER INTERFACE ESSENTIALS

private string boardName = string.Empty;
public string BoardName
{

get => boardName;

set => SetProperty(ref boardName, value);

It is worth noting that a Binding must be created against a property
(e.g., the BoardName definition from the code above). Binding to a field
(e.g., boardName) will not work.

BindingContext

And finally the crucial step is to set the BindingContext of your page to this
view model. In Chapter 4, you did this by setting it in the XAML directly,
but because you have registered your view model with the dependency
injection layer, you can make the most of that and have it create the

view model and whatever dependencies it has for you. Open your
BoardDetailsPage.xaml.cs file and change the constructor to

public BoardDetailsPage(BoardDetailsPageViewModel
boardDetailsPageViewModel)
{

InitializeComponent();

BindingContext = boardDetailsPageViewModel;

The above code allows you to rely on the constructor injection
functionality that NET MAUI and Shell provide.

The act of setting the BindingContext property means that any
bindings created in the page/view and any child views will be by default
against this BindingContext.

130

CHAPTER 5 USER INTERFACE ESSENTIALS

Now if you jump into the BoardDetailsPage.xaml file, you can apply
the binding to your new BoardName property in your view model. You want
to modify the first Entry that you added to look like

<Entry Text="{Binding BoardName}" />

This is a relatively small change and will look like the bindings you
created back in Chapter 4 when exploring the MVVM pattern. There isn’t
much detail to this, but there is a fair amount of implicit behavior that I feel
I must highlight. Let’s cover what it tells you first and then what it doesn’t.

You are creating a binding between the BoardName property (which
exists on your BoardDetailsPageViewModel) and the Text property on the
Entry control.

Now on to what this code doesn’t tell you.

Path
The binding could also be written as
Text="{Binding Path=BoardName}"

The Path element of the binding is implied if you do not explicitly
provide it but only as the first part of the binding definition. Why am
I telling you this? There are times when you will need to supply the
Path= part.

Mode

I mentioned that bindings keep two properties in sync with each other.
When you create a binding, you can define which direction the updates
flow. In your example, you have not provided one, which then relies on

131

CHAPTER 5 USER INTERFACE ESSENTIALS

the default Mode for the bindable property that you are binding to. In this
case, it is the Text property of the Entry, which has a default binding
mode of TwolWay. I strongly urge you to make sure you are aware of both
these defaults and your expectation when creating a binding. Choosing
the correct Mode can also boost performance. For example, the OneTime
binding mode means that no updates need to be monitored for. In your
scenario, you don’t currently need to allow the view model to update the
Entry Text property; however, as you progress, this page will also allow
for the editing of a board so you will leave it alone. If you didn’t need

to edit, you could in theory modify your binding to be Text="{Binding
Path=BoardName, Mode=OneWay}".

There are several variations for binding modes:

e Default: As the name suggests, it uses the default,
which is defined in the target property.

o TwoWay: It allows for updates to flow both ways
between source and target. A typical example is
binding to the Text property of an Entry where you
want to both receive input from the user and update
the UI, such as your scenario that you just added with
the Entry and its Text property as Text="{Binding
Path=BoardName}".

e OneWay: It allows for updates to flow from the source
to the target. An example of this is your ClockWidget
where you only want updates to flow from your source
to your target.

e OneWayToSource: It allows for updates to flow from the
target to the source. An example of this is binding the
SelectedItem property on the ListView to a value in
your view model.

132

CHAPTER 5 USER INTERFACE ESSENTIALS

e OneTime: It only updates the target once when the
binding context changes.

Source

As mentioned, a binding does not have to be created against something
defined in your code (e.g., a property on a view model). It can, in fact, be
created against another control. If you look back at the XAML you created
for this page, you will notice that you gave the RadioButton the name of
FixedRadioButton. This was actually setting you up for this moment: you
can now bind your innermost VerticalStackLayouts visibility to the value
of this RadioButton.

<VerticalStackLayout
IsVisible="{Binding IsChecked, Source={x:Reference
FixedRadioButton}}">

If you just wanted to allow the user to optionally turn a setting
on in your U, you could use a Switch control instead. I opted for the
RadioButton as this will play very well with your extra assignment at the
end of this chapter.

Bindings can start to look complicated quickly and this is a good
example, but if you break it down, it can become much easier to follow.
You are binding the IsVisible property on your VerticalStackLayout
to the IsChecked property from the Source, which is a Reference to the
RadioButton called FixedRadioButton.

133

CHAPTER 5 USER INTERFACE ESSENTIALS

Applying the Remaining Bindings

Let’s apply the remaining bindings to your page and view model so that all
fields now update your view model.

In your BoardDetailsPageViewModel class, you need to add the
backing fields and properties to bind to

private bool isFixed = true;
private int numberOfColumns = 3;
private int numberOfRows = 2;
public bool IsFixed

{
get => isFixed;
set => SetProperty(ref isFixed, value);
}
public int NumberOfColumns
{
get => numberOfColumns;
set => SetProperty(ref numberOfColumns, value);
}
public int NumberOfRows
{
get => numberOfRows;
set => SetProperty(ref numberOfRows, value);
}

Then in your BoardDetailsPage.xaml file, you need to bind to those
new properties with the bold sections below highlighting your additions.
Change the first RadioButton to be

<RadioButton
Content="Fixed"

134

CHAPTER 5 USER INTERFACE ESSENTIALS

x:Name="FixedRadioButton"
IsChecked="{Binding IsFixed}" />

Then change the Entry that follows after the RadioButton to be

<Entry
Text="{Binding NumberOfColumns}"
Keyboard="Numeric" />
And finally change the Entry that follows that to be
<Entry
Text="{Binding NumberOfRows}"
Keyboard="Numeric" />

MultiBinding

There can be occasions when you wish to bind multiple source properties
to a single target property in a view. To take a minor detour, let’s rework
your ClockWidgetViewModel to have two properties: one with the date and
one with the time. You should end up with the following code (the bold
highlights the new parts):

namespace WidgetBoard.ViewModels;
public class ClockWidgetViewModel : ViewModelBase
{
private readonly Scheduler scheduler = new();
private DateOnly date;
private TimeOnly time;
public ClockWidgetViewModel()

{
SetTime(DateTime.Now);
}
public DateOnly Date
{

135

CHAPTER 5 USER INTERFACE ESSENTIALS

get => date;
set => SetProperty(ref date, value);

}
public TimeOnly Time
{
get => time;
set => SetProperty(ref time, value);
}
private void SetTime(DateTime dateTime)
{
Date = DateOnly.FromDateTime(dateTime);
Time = TimeOnly.FromDateTime(dateTime);
scheduler.ScheduleAction(
TimeSpan.FromSeconds(1),
()=
{
SetTime(DateTime.Now);
D;
}

The change in the view model actually opens up a number of
possibilities for you. You could

e Add separate Labels to render the information in
different locations

o Make use of aMultiBinding and render both pieces of
information in a single Label

It is the latter you will be using here. Open your ClockWidgetView.
xaml file and make the changes you see in bold.

<?xml version="1.0" encoding="utf-8" ?>

136

CHAPTER 5 USER INTERFACE ESSENTIALS

<Label
xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
xmlns:viewmodels="clr-namespace:WidgetBoard.ViewModels"
x:Class="WidgetBoard.Views.ClockWidgetView"
FontSize="80"
VerticalOptions="Center"
HorizontalOptions="Center">
<Label.Text>
<MultiBinding StringFormat="{}{0} {1}">
<Binding Path="Date" />
<Binding Path="Time" />
</MultiBinding>
</Label.Text»
</Label>

To list what you have done here, you have
o Removed the Text="{Binding Time}" line

e Moved the above functionality into the
MultiBinding section

You should notice a slightly different syntax to the single binding
approach. In fact, you can write a single binding in a similar way, such as

<Label.Text»
<Binding Path="Time" />
</Label.Text»

However, I am sure you can appreciate that the original
Text="{Binding Time}" is a lot more concise and easier to read. Each of
the properties that you covered under the “Binding” section applies to
each of the Binding elements under MultiBinding.

137

CHAPTER 5 USER INTERFACE ESSENTIALS

You must supply either a StringFormat or a Converter in a
MultiBinding or an exception will be thrown. The reason for this is to
allow for the multiple values to be mapped down to the single value on
the target.

Command

Very often you will need your applications to respond to user interaction.
This can be by tapping or clicking on a button or selecting something
in a list. This interaction is recorded in your view, but you usually
require that the logic to handle this interaction be performed in the view
model. This comes in the form of a Command and an optional associated
CommandParameter set of properties. A command works in a similar way to
an event; you can provide a method that will be executed when an event
happens; commands are suited to the MVVM architecture because it
enables you to bind the command to an instance in the view model, which
is where you want your business logic to reside. The Command property
itself can be bound from the view to the view model and allows the view
model to not only handle the interaction but also to determine whether
the interaction can be performed in the first place. You already added a
Button to your BoardDetailsPage.xaml file but you didn’t hook it, so let’s
do exactly that!

You just need to modify your button to be (changes in bold)

<Button
Text="Save"
HorizontalOptions="End"
Command="{Binding SaveCommand}" />

Based on the binding content that you have explored, you can say that
this Buttons Command property is now bound to a property on your view
model called SaveCommand. You haven'’t actually created this property
yet. If you are thinking it would be great if the tooling could know this

138

CHAPTER 5 USER INTERFACE ESSENTIALS

and report it to me, then the next section has got you covered. “Compiled
Bindings” will show you how to inform the tooling of how to report it to
you. First, though, open your BoardDetailsPageViewModel.cs file and add
your command implementation.

Your implementation comes in multiple parts.

1. You define the property itself:
public Command SaveCommand { get; }

You typically define a command as a read-only
property as you rarely want it to change. You will likely
come across commands being defined with the use of
the ICommand interface rather than the Command class.
The reason you are using the latter is so that you can
make use of a specific method (see number 3 in this
list) to update some of your views.

2. You define what action will be performed when the
command is executed (basically when the Button is
tapped/clicked in this scenario).

public BoardDetailsPageViewModel()

{
SaveCommand = new Command(
() => save(),
() => Istring.IsNullOriWhiteSpace(BoardName));
}
private void Save()
{

var board = new Board

{

139

CHAPTER 5 USER INTERFACE ESSENTIALS

Name = BoardName,
NumberOfColumns = NumberOfColumns,
NumberOfRows = NumberOfRows
b
}

The Command class takes two parameters. The first
is the action to perform when the command is
executed, and the second, which is optional, is

a way of defining whether the command can be
executed. A good use case for this is if you wish to
make sure that the user has entered all the required
information. In your scenario, you will make sure
that the user has entered a name for the board.

3. You notify the view when the status of whether the
command can be executed changes. To be clear, you
don’t have to know that the status has changed; you
can simply inform the view that it should re-query
the status. This is where the Command class and
its ChangeCanExecute method come in. For this,
you need to tweak your BoardName property to the
following:

public string BoardName

{
get => boardName;
set
{
SetProperty(ref boardName, value);
SaveCommand.ChangeCanExecute();
}
}

140

CHAPTER 5 USER INTERFACE ESSENTIALS

This change means that every time the BoardName property changes
(and this will be done via the binding from the view), the Button that is
bound to the SaveCommand will re-query to check whether the command
can be executed. If it can, the Button will be enabled and the user can
interact with it; if not, it will be disabled.

Compiled Bindings

Compiled bindings are a great feature that you should in almost all cases
turn on! They help to speed up your applications because they help the
compiler know what the bindings will be set to and reduce the amount of
reflection that is required. Reflection is notoriously bad for performance
so wherever possible it is highly recommended to avoid using it. Bindings
by default do use an amount of reflection in order to handle the value
changes between source and target. Compiled bindings, as just discussed,
help to reduce this, so let’s learn how to turn them on.

Compiled bindings also provide design-time validation. If you set a
binding to a property on your view model that doesn’t exist (imagine you
made a typo, which I do a lot!), without compiled bindings, the application
would still build but your binding won’t do anything. With a compiled
binding, the application will fail to build and the tooling will report that the
property you mistyped doesn'’t exist.

<ContentPage
xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
xmlns:viewModels="clr-namespace:WidgetBoard.ViewModels"
x:Class="WidgetBoard.Pages.BoardDetailsPage"
x:DataType="viewModels:BoardDetailsPageViewModel">

Now that you have set up your BoardDetailsPage to allow user entry
and even perform an action when the Save button is interacted with, you
need to structure your application so that you can see this happen.

141

CHAPTER 5 USER INTERFACE ESSENTIALS

Note that since .NET 9.0, you will see warnings reported if you do not
use compiled bindings; this was implemented by the team at Microsoft in
an effort to make sure developers are making the most of the performance
and compile time safety that they offer.

Make Use of the BoardDetailsPage

In order to see the BoardDetailsPage in action, we will first need to modify
the contents of the AppShell.xaml file to point to the new page. Note that
we will only be tweaking this file in order to see the result of the changes
we have introduced in this chapter. The next chapter will delve into much
further detail on Shell.

Proceed by opening the AppShell.xaml file and modify the contents to
match the following (note that the actual changes from the original content
are shown in bold):

<?xml version="1.0" encoding="UTF-8" ?>

<Shell
x:Class="WidgetBoard.AppShell"
xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
xmlns:pages="clr-namespace:WidgetBoard.Pages"
Shell.FlyoutBehavior="Disabled"
Title="WidgetBoard">

<ShellContent
Title="Home"
ContentTemplate="{DataTemplate
pages:BoardDetailsPage}" />

</Shell>

142

CHAPTER 5 USER INTERFACE ESSENTIALS

This will result in the new BoardDetailsPage being shown when we
open the application.

Taking Your Application for a Spin

If you run the application, you will see that you are first presented with the
screen to create a new board. You can enter the details and press Save.
Figure 5-8 shows how your application looks when it is first loaded.

L) WidgetBoard

Figure 5-8. The application home page

It is worth noting that the Save button will not do anything just yet.
Adding the handling of this button will be the topic of the next chapter
when we dig deep into Shell and how to allow users to navigate around our
applications.

143

CHAPTER 5 USER INTERFACE ESSENTIALS

Summary

In this chapter, you have
e C(Created and applied an icon for your application
e Added some placeholder pages and view models

» Filled your first page with some Ul and setup bindings
to the view model

e Covered data binding and its many uses
e Gained an understanding of XAML

e Learned about the possible layouts you can use to
group other controls

In the next chapter, you will

e Gain an understanding of Shell and apply this to
building your application’s structure

e Apply the Shell navigation to allow you to navigate to
your next page and the next chapter

o Make use of Shell tabs and search functionality

e Build your flyout menu using all the learnings in
this chapter

e Add tabs into the application

e Add the ability to search for tabs

Source Code

The resulting source code for this chapter can be found on the GitHub
repository at https://github.com/Apress/Introducing-.NET-MAUI-2nd-
ed/tree/main/chos.

144

https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch05
https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch05

CHAPTER 6

Shell

Abstract

In this chapter, you are going to learn how to define the visual hierarchy of
your .NET MAUI application and handle common concepts like navigation
and search functionality - all through a concept called Shell.

Prerequisites

You need to do some setup before you can jump into using Shell. If Shell
is still feeling like an unknown concept, fear not; we will be covering it in
depth within this chapter.

Let’s go ahead and add the following folders to your project.

Pages

Let’s go ahead and create the following files under the Pages folder. The
following steps show how to add the new pages:

o Right-click the Pages folder.

¢ Select Add » New Item.

© Shaun Lawrence 2025 145
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/979-8-8688-1189-0_6

https://doi.org/10.1007/979-8-8688-1189-0_6#DOI

CHAPTER6 SHELL

e Select the .NET MAUI tab.
e Select NET MAUI ContentPage (XAML).

e Click Add.

BoardListPage

This is the page that will render a list of boards that users will create within
your application. For now, you will not touch the contents of this file. Note
that you should see BoardListPage.xaml and BoardListPage.xaml.cs
files created.

You will also need to jump over to the MauiProgram. cs file and register
this page with the Services inside the CreateMauiApp method.

builder.Services.AddTransient<BoardListPage>();

FixedBoardPage

This is the page that will render the boards you create in the page created
in the previous chapter. For now, you will not touch the contents of this
file. Note that you should see FixedBoardPage.xaml and FixedBoardPage.
xaml.cs files created.

You will also need to jump over to the MauiProgram.cs file and register
this page with the Services inside the CreateMauiApp method.

builder.Services.AddTransient<FixedBoardPage>();

SettingsPage

This is the page that will render any settings that the user can modify,
for example, how frequently to refresh the widgets. For now, you will not
touch the contents of this file. Note that you should see SettingsPage.
xaml and SettingsPage.xaml.cs files created.

146

CHAPTER6 SHELL

You will also need to jump over to the MauiProgram.cs file and register
this page with the Services inside the CreateMauiApp method.

builder.Services.AddTransient<SettingsPage>();

ViewModels

This houses your ViewModels that are the backing for both your Pages and
Views. You created this folder in the previous chapter, but you need to add
a number of classes. The following steps show how to add the new pages:

e Right-click the ViewModels folder.
e Select Add » New Class.

AppShellViewModel

This serves as the view model for the AppShell file that is created for you
by the tooling.

namespace WidgetBoard.ViewModels;

public class AppShellViewModel : BaseViewModel

{
}

You also need to jump over to the MauiProgram.cs file and register this
page with the Services inside the CreateMauiApp method.

builder.Services.AddTransient<AppShellViewModel>();

147

CHAPTER6 SHELL

BoardListPageViewModel

This serves as the view model for the BoardListPage file that will be
responsible for displaying all available boards within the application to
the user.

namespace WidgetBoard.ViewModels;

public class BoardListPageViewModel : BaseViewModel

{
}

You also need to jump over to the MauiProgram.cs file and register this
page with the Services inside the CreateMauiApp method.

builder.Services.AddTransient<BoardListPageViewModel>();

FixedBoardPageViewModel
This serves as the view model for the FixedBoardPage file you created.
namespace WidgetBoard.ViewModels;

public class FixedBoardPageViewModel : BaseViewModel

{
}

You also need to jump over to the MauiProgram.cs file and register this
page with the Services inside the CreateMauiApp method.

builder.Services.AddTransient<FixedBoardPageViewModel>();

You should have noticed a common pattern with the creation of these
files and the need to add them to the MauiProgram. cs file. This is to allow
you to fully utilize the dependency injection provided by the framework,
which you learned about in Chapter 3.

148

CHAPTER6 SHELL

SettingsPageViewModel
This serves as the view model for the SettingsPage file you created.
namespace WidgetBoard.ViewModels;

public class SettingsPageViewModel : BaseViewModel

{
}

You also need to jump over to the MauiProgram.cs file and register this
page with the Services inside the CreateMauiApp method.

builder.Services.AddTransient<SettingsPageViewModel>();

With that concluding the prerequisites required for this chapter, let’s
proceed onto learning all about Shell and how we can define the structure
of NET MAUI applications.

Shell

Shell in .NET MAUI enables you to define how your application will be
laid out, not in terms of actual visuals but by defining things like whether
you want your pages viewed in tabs or just a single page at a time. It also
enables you to define a flyout, which is a side menu in your application.
You can choose to have it always visible or toggle it to slide in/out, and this
can also vary based on the type of device you are running on. Typically
a desktop has more visual real estate, so you may wish to keep the flyout
always open then.

For your application, you are going to make use of the flyout to allow
you to define multiple boards that you can configure and load. I really
like the idea of having one board for when I work and then swapping to

something else when working on a side project or even for gaming.

149

CHAPTER6 SHELL

To save having to return to this area and change bits, you are going to
jump straight into the more in-depth option and feature-rich outcome.
Don’t worry, though; as you discover each new concept, you will dive into
some detail to cover what it is and why you are using it along with then
applying that concept to your application.

ShellContent

If you take a look at your AppShell. xaml file, you should see very little
inside. Currently it has the following line:

<ShellContent
ContentTemplate="{DataTemplate pages:BoardDetailsPage}" />

You will recall that in the previous chapter we modified the contents to
the above in order to show our progress when running the application. We
didn’t dig into the details of the change in order to keep that detail within
the Shell chapter, so let’s explore what it means.

Your application’s main content will now be an instance of your
recently created BoardDetailsPage. You don’t need the Title or Route
options anymore as you will be controlling them in different ways.

The Title property will be set based on the page that is shown, so you
will learn about this a little later on.

The Route property you will control as part of the next section,
“Navigation.”

Finally, you added xmlns:pages="clr-namespace:WidgetBoard.
Pages" to the top of the file in order to be able to refer to the
BoardDetailsPage.

150

CHAPTER6 SHELL

Navigation

I am personally a fan of simplifying the code I write so long as it continues
to make it easy to read. With this in mind, I would like to suggest you
improve on the registration of your pages and their view models already.

Registering Pages for Navigation

Therefore, I suggest that you create a new method into your MauiProgram.
cs file.

private static void AddPage<TPage, TViewModel>(
IServiceCollection services,
string route)
where TPage : Page
where TViewModel : BaseViewModel

{
services
.AddTransient(typeof(TPage))
.AddTransient(typeof(TViewModel));
Routing.RegisterRoute(route, typeof(TPage));
}

Notice the line Routing.RegisterRoute(route, typeof(TPage));.
This serves as a very important part in this topic of navigation. It means
that when you tell Shell to navigate to a specific route, it will create a new
instance of the TPage type you passed in and navigate to it. Of course,
because you have registered these types with the dependency injection
layer, it means that any dependencies that are defined as parameters to the
constructor will be created and passed in for you.

151

CHAPTER6 SHELL
The above then means that rather than writing

services.AddTransient<BoardDetailsPage> ()
services.AddTransient<BoardDetailsPageViewModel> ()
Routing.RegisterRoute(route, typeof(TPage));

you can now write

AddPage<BoardDetailsPage, BoardDetailsPageViewModel>(builder.
Services, "boarddetails");

with the added change that you now define this route. So let’s go and
delete your old registrations and replace with

AddPage<BoardDetailsPage, BoardDetailsPageViewModel>(

builder.Services, RouteNames.BoardDetails);

AddPage<BoardListPage, BoardListPageViewModel>(
builder.Services, RouteNames.BoardlList);

AddPage<FixedBoardPage, FixedBoardPageViewModel>(
builder.Services, RouteNames.FixedBoard);

AddPage<SettingsPage, SettingsPageViewModel>(
builder.Services, RouteNames.Settings);

I also recommend defining the routes as constant strings somewhere
in your code base to avoid typos when wanting to navigate to them -
which is why the last parameter in all of the calls you just added refers
to something called RouteNames; this class does not exist, so let’s create
this now.

Add a new class file and call it RouteNames.cs and then modify the
contents to the following:

namespace WidgetBoard;

public static class RouteNames

{

public const string BoardDetails = "boarddetails";

152

CHAPTER6 SHELL

public const string BoardlList = "boards";
public const string FixedBoard = "fixedboard";
public const string Settings = "settings";

This means you can save one line of code per page and view model
pair that you had registered as well as the code to register the route for
navigation. The added benefit of introducing the RouteNames class means
that you reduce the risk of a typo being introduced because the string only
needs to be defined in a single place. In fact, this means that even if there is
a typo the code will still likely work because the typo will apply everywhere
itis used within the app.

Note that as a further enhancement, if you are making use of the
.NET MAUI Community Toolkit — which | would thoroughly recommend
you do. You can make use of the AddTransientWithShellRoute
method; this would remove the need to write your own AddPage
method that we did in this section and therefore give you less code to
maintain.

Now that you have registered your pages, let’s take a look at how you
can actually perform navigation.

Performing Navigation

There are multiple ways to specify the route for navigation, but they all use
the Shell.Current.GoToAsync method.

So, for example, you could navigate to your FixedBoardPage with the
following:

await Shell.Current.GoToAsync(RouteNames.FixedBoard);

153

CHAPTER6 SHELL

This will result in a FixedBoardPage being created and pushed onto the
navigation stack. This is precisely the behavior that you need at the end of
your SaveCommand execution in your BoardDetailsPagesViewModel class.

Navigating Backward

You can also pop pages off the navigation stack by navigating backward.
This can be achieved by the following:

await Shell.Current.GoToAsync("..");

with the .. component telling Shell that it needs to go backward. In fact,
backward and forward navigation can be performed together:

await Shell.Current.GoToAsync($"../{RouteNames.BoardList}");

Passing Data When Navigating

One key thing that you really need to do as part of creating your board
and navigating to the page that will render the board is to pass the context
across to that page so it knows what to render. There are multiple ways to
both send the data and also to receive it.

Let’s start with sending.

* You can pass primitive data through the query string
itself, for example:

await Shell.Current.GoToAsync($"{RouteNames.
FixedBoard}?boardid=1234");

By providing the boardid, you put the responsibility on
the receiving page (or page view model) to retrieve the
right board by using the specified ID.

154

CHAPTER6 SHELL

e More complex data can be sent as an
IDictionary<string, object> parameter in the
GoToAsync method, such as

await Shell.Current.GoToAsync(
RouteNames.FixedBoard,
new Dictionary<string, object>

{
{ "Board", board }

};

You can also send a complex object like the above, which means the
originating page (or page view model) is responsible for retrieving or
constructing the board and you send the whole thing to the receiving page.

There are two main ways to handle sending complex data when
navigating with Shell. Let’s take a look at each in turn.

IQueryAttributable

To receive data, you can implement the IQueryAttributable interface
provided with .NET MAUI. Shell will either call this on the page you are
navigating to, or if the BindingContext (your view model) implements the
interface, it will call it there. Add this to your FixedBoardPageViewModel
class because you are going to need to process the data. You will be going
with the complex object option because you have already loaded the Board
in your AppShellViewModel class.

public void ApplyQueryAttributes(IDictionary<string,
object> query)
{

var board = query["Board"] as FixedBoard;

155

CHAPTER6 SHELL

You aren’t going to do anything with this data just yet, but it is ready
for when you start to build your board layout view in the next chapter.
For now, you will continue on with the theme of Shell and define your
flyout menu.

You will also need to make your FixedBoardPageViewModel implement
the IQueryAttributable interface. Change the class definition from

public class FixedBoardPageViewModel : BaseViewModel
to the following (changes in bold):

public class FixedBoardPageViewModel : BaseViewModel,
IQueryAttributable

Note that you will also need to add the following using statement to the
top of your FixedBoardPageViewModel.cs file:

using WidgetBoard.Models;

QueryProperty

An alternative to using the IQueryAttributable interface is to make use
of the QueryProperty in your receiving class. Making use of the same
example from the “Passing Data When Navigating” section, we could
(but we won’t so don’t worry to apply any of these changes) change the
FixedBoardPageViewModel class to the following:

using WidgetBoard.Models;
namespace WidgetBoard.ViewModels;

[QueryProperty(nameof(CurrentBoard), "Board")]
public class FixedBoardPageViewModel : BaseViewModel

{
public Board CurrentBoard { get; set; }

156

CHAPTER6 SHELL

You can see from the changes above in bold that we have created a
property called CurrentBoard and then added the QueryProperty attribute
to the class. This attribute instructs Shell to set the CurrentBoard property
(first parameter) when a value is received in the query string with the key
of “Board”.

The main reason why I prefer IQueryAttributable over
QueryProperty is that NET MAUI will call the method for us during
navigation; if we wanted to handle the navigation in our view model
without this interface implementation, we would have to add additional
boilerplate code to do so.

Let’s proceed to learning about the next Shell feature in order to
connect all the dots and have a working application with navigation by the
end of this chapter.

Flyout

A flyout is a menu for a Shell application that is accessible through an
icon or by swiping from the side of the screen. The flyout can consist of an
optional header, flyout items, optional menu items, and an optional footer.

For your application, you are going to provide a basic header, and then
the main content will be a dynamic list of all the boards your user creates.
This means that you are going to have to override the main content, but
thankfully Shell makes this an easy task.

The first thing I like to do when working on a new XAML file is to turn
on compiled bindings, which I covered earlier. If you recall, this is by
specifying the x:DataType attribute to tell the compiler the type that your
view will be binding to. Let’s do that now; first, open up the AppShell.xaml
file and make the following changes (in bold):

<?xml version="1.0" encoding="UTF-8" ?>
<Shell
x:Class="WidgetBoard.AppShell"

157

CHAPTER6 SHELL

xmlns="http://schemas.microsoft.com/dotnet/2021/maui"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

x:DataType="viewmodels:AppShellViewModel"
Shell.FlyoutBehavior="Flyout">

This helps you as you build the view to see what doesn’t exist in your
view model. Of course, if you prefer to build the view model first, then this
also helps.

Finally, you need to add xmlns:viewModels="clr-
namespace:WidgetBoard.ViewModels" to the top of the file.

Now we want to proceed to defining how our Flyout menu will
be presented. This can be customized with the FlyoutHeader and
FlyoutContent, so let’s take a look at each one in turn.

FlyoutHeader

The FlyoutHeader can be given any control or layout, and therefore, you
can build a really good-looking header option. For your application, you
are just going to add a title Label.

Below your ShellContent element, you want to add the following:

<Shell.FlyoutHeader>
<Label
Text="My boards"
FontSize="20"
HorizontalTextAlignment="Center" />
</Shell.FlyoutHeader>

Hopefully the above is self-explanatory, but to cover the parts I
haven’t already covered, you have the ability to specify different layout
information in a Label so you can make the text centered. It is usually
recommended that you use the HorizontalOptions property over the
HorizontalTextAlignment property for performance reasons; however, if
you try that here, you will see that it doesn’t center the Label.

Now let’s add in the main part of your menu.

158

CHAPTER6 SHELL

FlyoutContent

First, if you want to use a static set of items in your menu, you can simply
add FlyoutItems to the content. This can work well when you have a fixed
set of pages such as Settings, Home, and so on. You will be showing the
boards that the user creates, so you will need something dynamic. For this,
you need to supply the FlyoutContent. More importantly, it’s your first
introduction to the CollectionView control.

The CollectionView allows you to define how an item will look and
then have it repeated for each item in a collection that is bound to it.
Additionally, the CollectionView provides the ability to allow the user
to select items in the collection, and you can define behavior that will
be performed when that selection happens. Let’s add the following to

your Shell:

<Shell.FlyoutContent>
<CollectionView
ItemsSource="{Binding Boards}"
SelectionMode="Single"
SelectedItem="{Binding CurrentBoard}">
<CollectionView.ItemTemplate>
<DataTemplate x:DataType="models:Board">
<Label
Text="{Binding Name}"
FontSize="20"
Padding="10,0,0,0" />
</DataTemplate>
</CollectionView.ItemTemplate>
</CollectionView>
</Shell.FlyoutContent>

You also need to add xmIns:models="“clr-namespace:WidgetBoard.
Models” to the top of the file.

159

CHAPTER6 SHELL

If we deconstruct the XAML that was just added, we can make the
following statements. Your FlyoutContent will display a collection of
items; each item will be presented as a Label set to the Name of each item.
The items will be Board instances in the collection of Boards in your view
model. Additionally, the CurrentBoard property on your view model will
be updated when the user selects one of the Labels in this collection.

If you have added all of the parts I have discussed, you will likely
notice that the tooling is reporting that you haven’t added the Boards or
CurrentBoard properties that you are binding to over in your view model.
Let’s jump over to your AppShellViewModel.cs file and add the following.

Collection of Boards
public ObservableCollection<Board> Boards { get; } = [];

The ObservableCollection is a special type of collection that
implements INotifyCollectionChanged. This means that anything bound
to it will monitor changes to the collection and update its contents on
screen. Note that the use of ObservableCollection above means that
the UI will only respond to changes inside the collection; if you were to
assign a new value to the Boards property, then this would not update
the UI unless you implement INotifyPropertyChanged and raise the
PropertyChanged event.

Additionally, for now, you will add a fixed entry into this Boards
collection to make it possible to interact with. Later you will be saving to
and loading from a database.

public AppShellViewModel()

{
Boards.Add(

new Board

{

Name = "My first board",

160

CHAPTER6 SHELL

NumberOfColumns = 3,
NumberOfRows = 2

1);
}
Note that you will also need to add the following using statements to
the top of your file:

using System.Collections.ObjectModel;
using WidgetBoard.Models;

Selected Board

You bound the SelectedItem property from the CollectionView to your
CurrentBoard property. When your property changes, you can navigate to
the board that was selected.

private Board? currentBoard;
public Board? CurrentBoard

{
get => currentBoard;
set
{
if (SetProperty(ref currentBoard, value) &&
value is not null)
{
BoardSelected(value);
}
}
}

You may recall that I discussed in Chapter 4 the potential value of
SetProperty returning a Boolean value. You have finally found a use for
it! You only want to handle a board selection change if the CurrentBoard
property really has changed.

161

CHAPTER6 SHELL

Navigation to the Selected Board

Following on from the “Navigation” section earlier, you will navigate to the
route “fixedboard” which your FixedBoardPage is configured to. You will
also pass in the selected board so that it can be presented on screen.

private async void BoardSelected(Board board)

{
await Shell.Current.GoToAsync(
RouteNames.FixedBoard,
new Dictionary<string, object>
{
{ "Board", board }
D;
}
Before your bindings will work, you need to make some further
changes.

Setting the BindingContext of Your AppShell

Let’s change the constructor of your AppShell.xaml.cs file to set the
BindingContext.

public AppShell(AppShellViewModel appShellViewModel)
{

InitializeComponent();
BindingContext = appShellViewModel;

Note that you will also need to add the following using statement to

the top of your file:

using WidgetBoard.ViewModels;

162

CHAPTER6 SHELL

You should recall that you added the AppShellViewModel as a transient
in the MauiProgram.cs file, meaning that you will be provided with a
new instance when your AppShell class is created for you. You will also
need to do the same for the AppShell class because we have given it a
dependency now.

Register AppShell with the MAUI App Builder

Let’s register AppShell in your MauiProgram.cs file

builder.Services.AddTransient<AppShell>();

Resolve the AppShell Instead of Creating It

Change the contents of your App.xaml.cs file to be as follows (changes
in bold):

namespace WidgetBoard;

public partial class App : Application

{
private readonly AppShell appShell;

public App(AppShell appShell)

{
this.appShell = appShell;

InitializeComponent();

}

protected override Window CreateWindow(IActivationState?
activationState)

{
return new Window(this.appShell);

163

CHAPTER 6 SHELL
All of the above changes allow you to use AppShell just like any other
page and not have to create an instance manually.

Taking Your Application for a Spin

If you run the application, you will see that you are first presented with the
screen to create a new board. You can enter the details and press Save.
Figure 6-1 shows how your application looks when it is first loaded.

L) WidgetBoard

Figure 6-1. The application home page

Or you can slide out the menu from the left-hand side. Figure 6-2
shows the flyout menu in your application.

164

CHAPTER6 SHELL

ene WidgetBoard

My first board

Figure 6-2. The application flyout menu

By either selecting the board or pressing Save, you will be navigated to
your FixedBoardPage. Figure 6-3 shows your FixedBoardPage displaying
the default content. This is because you haven’t wired up the board object
that you are receiving, but it proves that your navigation and Shell setup is
working.

165

CHAPTER6 SHELL

® @ WidgetBoard

< FixedBoardPage

Welcome to .NET MAUI!

Figure 6-3. The fixed board page after navigating

Tabs

Shell offers many different ways to build the structure of your application;
if a Flyout menu doesn'’t fit your application, then you might opt to use
tabs instead, or even in combination. We are going to do the latter to show
how you can also make use of tabs.

You will have noticed that when the application was first run, we saw
the BoardDetailsPage which lets a user create a new board. While this
might be useful on the first ever use of the application, it is not likely to
be a common place where a user will want to land in our application. For
this, we are going to make two key changes: introduce tabs and change the
landing page for our users.

Let’s first open up the AppShell.xaml file and make the
following changes

166

CHAPTER6 SHELL

We can replace these lines

<ShellContent
ContentTemplate="{DataTemplate pages:BoardDetailsPage}" />

with the following:

<TabBar>
<Tab Title="Boards"»>
<ShellContent ContentTemplate="{DataTemplate pages:
BoardListPage}" />
</Tab>

<Tab Title="Settings">
<ShellContent ContentTemplate="{DataTemplate pages:
SettingsPage}" />
</Tab>
</TabBar>

This now means that we will see a tab bar at the bottom of the
application; the first tab is labelled Boards and will present the
BoardListPage, and the second tab will be called Settings and present the
SettingsPage. We won't add any content to the SettingsPage yet as that
will be the subject of future chapters; we added two tabs now to highlight
that Shell will only present the tab bar if there is more than one tab within
the bar.

We will now apply the same approach that was added to displaying the
user’s boards in the flyout menu. First, let’s open up the BoardListPage.
xaml file and make the following changes.

Modify the ContentPage element to look as follows (changes in bold):

<ContentPage
xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
xmlns:viewModels="clr-namespace:WidgetBoard.ViewModels"

167

CHAPTER6 SHELL

xmlns :models="clr-namespace:WidgetBoard.Models"
x:Class="WidgetBoard.Pages.BoardListPage"
x:DataType="viewModels:BoardListPageViewModel"
Title="My boards">

Inside the ContentPage element, add

<CollectionView
ItemsSource="{Binding Boards}"
SelectionMode="Single"
SelectedItem="{Binding CurrentBoard}">
<CollectionView.ItemTemplate>
<DataTemplate x:DataType="models:Board">
<Label
Text="{Binding Name}"
FontSize="20"
Padding="10,0,0,0" />
</DataTemplate>
</CollectionView.ItemTemplate>
</CollectionView>

This is the same as we added to AppShell.xaml so we won’t cover what
this does again.

Now let’s open the BoardListPageViewModel.cs file and make the
following addition.

Collection of Boards
Add a collection of boards and populate it.
public ObservableCollection<Board> Boards { get; } = [];

public BoardlListPageViewModel()

{
Boards.Add(

168

CHAPTER6 SHELL

new Board

{
Name = "My first board",
NumberOfColumns = 3,
NumberOfRows = 2

1);
}
Note that you will also need to add the following using statements to
the top of your file:

using System.Collections.ObjectModel;
using WidgetBoard.Models;

Selected Board

You bound the SelectedItem property from the CollectionView to your
CurrentBoard property. When your property changes, you can navigate to
the board that was selected.

private Board? currentBoard;
public Board? CurrentBoard

{
get => currentBoard;
set
{
if (SetProperty(ref currentBoard, value) &&
value is not null)
{
BoardSelected(value);
}
}
}

169

CHAPTER6 SHELL

Navigation to the Selected Board

Following on from the “Navigation” section earlier, you will navigate to the
route “fixedboard” which your FixedBoardPage is configured to. You will
also pass in the selected board so that it can be presented on screen.

private async void BoardSelected(Board board)

{
await Shell.Current.GoToAsync(
RouteNames.FixedBoard,
new Dictionary<string, object>
{
{ "Board", board}
D;
}
Before your bindings will work, you need to make some further
changes.

Setting the BindingContext of Your BoardListPage

Let’s change the constructor of your BoardListPage.xaml.cs file to set the
BindingContext.

public BoardlListPage(BoardListPageViewModel
boardListPageViewModel)

{
InitializeComponent();
BindingContext = boardListPageViewModel;
}
Note that you will also need to add the following using statement to
the top of your file:

using WidgetBoard.ViewModels;

170

CHAPTER6 SHELL

This concludes the changes to add a set of tabs to our application. Let’s
have a look at how it presents.

Taking Your Application for a Spin

If you run the application, you will see that you are presented with two tabs
at the bottom of the application. The main content will present the fixed
list of “My first board”. Figure 6-4 shows the application presenting a list of
boards and the option to switch tabs at the bottom. You can click/tap on
the “My first board” item, which will navigate to the page for that board.

[NN] WidgetBoard
My boards

My first board

Figure 6-4. The application with tabs

One final feature to cover in this chapter is the ability to provide the
user the ability to search for boards.

171

CHAPTER6 SHELL

Search

Shell allows you to create your own SearchHandler, which means you can
define how the results are met with the values entered in the search box
that is automatically provided. If we imagine that the user has created a
lot of boards, they will need a quick way to find the board that they wish to
display.

Let’s give the users the ability to search for their boards in the
application. First, we need to create our SearchHandler implementation.
Let’s do this by adding a new class to the root of the project.

o Right-click the WidgetBoard project.

o Select Add » New Class.

» Enter the name BoardSearchHandler.
e Click Add.

Now let’s incrementally add our changes to this file.

Add Our Data

Again we are faking the data until we reach a later chapter, but let’s add the
following into the class:

private readonly IList<Board> boards =

[

new Board
{

Name = "My first board"
}s
new Board
{

Name = "My second board"
}s

172

CHAPTER6 SHELL

new Board

{
Name = "My third board",

15

This gives us a list of three boards that we will be able to search against.

Inherit from SearchHandler

The next step is to make our BoardSearchHandler class inherit from
SearchHandler. Let’s make the following bold change:

public class BoardSearchHandler : SearchHandler

Handling the OnQueryChanged Method

The OnQueryChanged allows us to provide the search results back to Shell
so that it can present them to the user. To do this, we override the method
as follows:

protected override void OnQueryChanged(string oldValue, string
newValue)

{
base.OnQueryChanged(oldvValue, newValue);

if (string.IsNullOrWhiteSpace(newValue))
{

ItemsSource = null;

}

else

{

ItemsSource = boards

173

CHAPTER6 SHELL

.Where(board => board.Name.Contains(newValue,
StringComparison.CurrentCultureIgnoreCase))
.TolList<Board>();

The method accepts an oldValue and a newValue parameter; for
our scenario, we only care about the newValue parameter. We will
check whether the user has entered anything; if they haven'’t, we set the
ItemsSource to null, meaning that Shell will hide any results. If the user
has entered a value, then we check our boards field and whether any of
the names contains the entered text; we then assign the results to the
ItemsSource property so that Shell can present them.

Handling the OnltemSelected Method

The final change in this class is to override the OnItemSelected method to
handle when the user selects a result.

protected override async void OnItemSelected(object item)

{
base.OnItemSelected(item);

// Let the animation complete
await Task.Delay(1000);

await Shell.Current.GoToAsync(
RouteNames.FixedBoard,
new Dictionary<string, object>

{
{ "Board", (Board)item}

D

174

CHAPTER6 SHELL

We will wait for one second to allow for the Shell navigation to finish
before we then navigate to the FixedBoardPage. The navigation code
should look very similar to the other navigation code that we added
throughout this chapter.

Using the BoardSearchHandler

The final change in this section is to add the newly created
BoardSearchHandler class into the BoardListPage.xaml file in order to
instruct Shell on how to provide search functionality to the user.

Open the BoardListPage.xaml file and add the following code above
the CollectionView entry:

<Shell.SearchHandler>
<widgetBoard:BoardSearchHandler
Placeholder="Enter board name"
ShowsResults="True">
<SearchHandler.ItemTemplate>
<DataTemplate x:DataType="models:Board">
<Label
Text="{Binding Name}"
FontSize="20"
Padding="10,0,0,0" />
</DataTemplate>
</SearchHandler.ItemTemplate>
</widgetBoard:BoardSearchHandler>
</Shell.SearchHandler>

The first two properties that we are setting should be self-explanatory;
the third may not - because the BoardSearchHandler class is setting the
ItemsSource property to a list of Board instances, we need to tell Shell
which property on the Board class should be used to present text to the
user. The ItemTemplate property provides a template that will be created
and displayed for each search result returned.

175

CHAPTER6 SHELL

Note that you will also need to add the namespace xmlns :widget
Board="clr-namespace:WidgetBoard" into the ContentPage element.

This concludes the changes for searching and also this chapter; let’s
proceed to running the application for a final time.

Taking Your Application for a Spin

If you run the application, you will see that there is a search box in the
title bar with the placeholder of “Enter board name”. Figure 6-5 shows the
application with the search box in the title bar.

WidgetBoard

= My boards

4 Enter board name

My first board

sssssss

Figure 6-5. The application showing the search box

176

CHAPTER6 SHELL

The user will be presented with search results based on the text
entered within the search box. Figure 6-6 shows the application matching
the entered text of “ir” to both “My first board” and “My third board”.

WidgetBoard

= My boards

L (]
My first board

My third board

sssssss

Figure 6-6. The application showing the search box with
search results

Toolbarltems

This feature might not strictly belong to Shell, but it fits into the shell of
the application. We have already added a search bar to the title bar of
our application; we can also add buttons to that bar in order to provide
the user with quick ways of achieving tasks. We have the perfect scenario
in our application - there is currently no way to add a board, which will
become a little frustrating for users if we don’t fix that.

177

CHAPTER6 SHELL

The changes in this section will actually teach us three new concepts:
how to add buttons onto the title bar, how to present a page without
navigating to it, and how to show a page and wait for a result to be
returned. Let’s proceed to doing this.

Add a Toolbarltem to a ContentPage’s
Toolbarltems

The ContentPage class provides us with the ToolbarItems property; this
makes it possible for all pages in an application to define buttons on the
title bar and assign specific actions that can be performed based on when
they are interacted with.

In order to introduce an add button, you need to open the
BoardlListPage.xaml file and add the following code above the <Shell.
SearchHandler> element:

<ContentPage.ToolbarItems>
<ToolbarItem Text="Add" Command="{Binding AddBoardCommand}" />
</ContentPage.ToolbarItems>

You can see that we have added a single ToolbarIteminto the
ToolbarItems collection. Our item has the Text of Add; you could also add
an image icon if you wanted to. Finally, we set the Command property by
binding it to a property called AddBoardCommand on the view model behind
this page. Based on that last part, we now need to add that property to the
view model; let’s do that now.

Open up the BoardListPageViewModel.cs file and make the following
changes.

Introduce the AddBoardCommand property.

public ICommand AddBoardCommand { get; }

178

CHAPTER6 SHELL

Initialize the AddBoardCommand property; inside the constructor, add
the following line:

AddBoardCommand = new Command(OnAddBoard);

This means that the OnAddBoard method will be executed when the
button is interacted with.

Add the method that will be executed when the AddBoardCommand is
executed.

private async void OnAddBoard()

{
await Shell.Current.GoToAsync(RouteNames.BoardDetails);

This doesn’t do anything new just yet; it will navigate the user to the
BoardDetailsPage because we registered the BoardDetails route to that
page in our MauiProgram.cs file earlier on in the book. One thing I would
like to highlight is that we are awaiting the call to GoToAsync; this means
that the application will only wait for the page to be navigated to and then
continue executing. This behavior is not quite what we want - we want to
show a page and have it return the board that was created so we can add it
to the Boards property and have it presented to the user. This leads us onto
the next new concept.

Changing the PresentationMode of a
ContentPage

By default the GoToAsync method in Shell will result in the new
ContentPage that the application goes to will be navigated to - this means
it will be added to the navigation stack and a back button added to the title
bar to allow the user to navigate back. This behavior doesn'’t really fit with

179

CHAPTER6 SHELL

our scenario of showing a page to create something and then have it close.
Shell provides us with the PresentationMode property for just these types
of scenarios.

Let’s proceed to making use of this PresentationMode property and
customize our BoardDetailsPage.xaml file. Open the file and make the
following changes.

Add the PresentationMode property.

Modify the ContentPage element to look as follows (changes in bold):

<ContentPage
xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
xmlns:viewModels="clr-namespace:WidgetBoard.ViewModels"
x:Class="WidgetBoard.Pages.BoardDetailsPage"
Shell.PresentationMode="ModalAnimated"
x:DataType="viewModels:BoardDetailsPageViewModel">

The use of the ModalAnimated property means that when Shell
presents the BoardDetailsPage, it will present the page on top of the
current page outside of the navigation stack. This means the title bar will
be hidden; this means that currently the user will not have a way to leave
our page, so let’s also add in a cancel button.

Add in a cancel button.

You will want to replace the current save button code

<Button
Text="Save"
HorizontalOptions="End"
Command="{Binding SaveCommand}" />

180

CHAPTER6 SHELL
with a grid that contains a cancel and save button.

<Grid ColumnDefinitions="* * *">
<Button
Text="Cancel"
Command="{Binding CancelCommand}" />

<Button
Text="Save"
Grid.Column="2"
Command="{Binding SaveCommand}" />
</Grid>

The above layout means that we will have three equal spaced columns
in our Grid with the cancel Button filling the first column and the save
Button filling the third column. We won’t add in the CancelCommand to the
view model just yet; we will save it for the next section.

Show a page and wait for a result.

This can be a common scenario in applications with multiple screens,
and in our application, it is perfect! We want to show a page to allow a user
to create a new board and then return to the screen that shows the list
of boards.

The previous sections all led up to this point! We have two final
changes to make in order to complete the ability to add a new board into
the application.

Wait for a result to be returned from a ContentPage.

In order to do this, you need to open the BoardListPageViewModel.
cs file that you modified earlier and update the OnAddBoard method to the
following (with changes in bold):

181

CHAPTER6 SHELL

private async void OnAddBoard()

{
TaskCompletionSource<Board?> boardCreated = new();
await Shell.Current.GoToAsync(
RouteNames .BoardDetails,
new Dictionary
{
{ "Created", boardCreated }
D3
var newBoard = await boardCreated.Task;
if (newBoard is not null)
{
Boards .Add(newBoard);
}
await Shell.Current.GoToAsync(RouteNames.BoardDetails);
}

This is our first use of the TaskCompletionSource class; if it is your
first introduction to it, let me provide some context. This class allows
a developer to perform an asynchronous operation and when it has
completed return a result back to the part of the application which was
waiting for it. So to explain our scenario:

1. We declare a TaskCompletionSource<Board?>,
meaning that we expect to receive a return result of
type Board and the ? means that it could be null.

2. We pass the boardCreated variable as a parameter
when requesting that Shell goes to the RouteNames.
BoardDetails section of the application.

3. We await the result of boardCreated and act on the
result if it is not null.

182

CHAPTER6 SHELL

This concludes the first change; now let’s proceed to providing a result
back from the BoardDetailsPage.

Returning a Result from a ContentPage

The final change that we need to make is inside the
BoardDetailsPageViewModel.cs file, so let’s open it and make the following
changes.

Add the following properties:

public ICommand CancelCommand { get; }
public TaskCompletionSource<Board?>?
BoardCreatedCompletionSource { get; set; }

Add a QueryProperty attribute to the class to point Shell to the
property to set during navigation. Changes are in bold:

[QueryProperty(nameof (BoardCreatedCompletionSource), "Created")]
public class BoardDetailsPageViewModel : BaseViewModel

The above means that when a parameter named Created is
provided during a Shell.Current.GoToAsync call, the property named
BoardCreatedCompletionSource will be populated with the value.

Next you need to assign the CancelCommand property in the
constructor as follows (changes in bold):

public BoardDetailsPageViewModel()
{

CancelCommand = new Command(
async () =>

{

await Shell.Current.GoToAsync("..");

BoardCreatedCompletionSource?.SetResult(null);

}s;

183

CHAPTER6 SHELL

SaveCommand = new Command (

() => Save(),
() => !string.IsNullOriWhiteSpace(BoardName));

The standout change here is the line
BoardCreatedCompletionSource?.SetResult(null); this means that
when the cancel button is actioned, the OnAddBoard method will be
returned a null result to indicate that no boards was created.

The final change in this section and in fact this chapter is to set the
result in the Save method (changes in bold):

private void Save()

{

var board = new Board

{

Name = BoardName,
NumberOfColumns = NumberOfColumns,
NumberOfRows = NumberOfRows

};
Shell.Current.GoToAsync("..");

BoardCreatedCompletionSource?.SetResult(board);

The first new line means that the current page will be hidden, and the
second line means that the newly created board will be returned to the
OnAddBoard method.

Taking Your Application for a Spin

This now concludes how to show a ContentPage in a .NET MAUI
application and wait for it to return a result. Let’s take the application for a
final spin and observe the functionality that was just introduced. Figure 6-7
shows the application with the Add button in the title bar.

184

CHAPTER6 SHELL

WidgetBoard
= My boards Add

4 Enter board name

My first board

ssssssss

Figure 6-7. The application showing the add button

When you click the Add button, the application will present the
BoardDetailsPage. Figure 6-8 shows the application presenting the ability
to create a board by supplying a name, number of columns, and number
of rows.

185

CHAPTER6 SHELL

[] [] WidgetBoard

Name
Resulf]

Layout
@ Fixed

Number of Columns
6
Number of Rows

a

“

Figure 6-8. The application showing the create a board page

Finally, when the Save button is pressed, the user is then returned to
the list of boards with the new board added to the list. Figure 6-9 shows
the application presenting a list of boards including the new board named
“Result”.

186

CHAPTER6 SHELL

WidgetBoard
= My boards Add

4 Enter board name

My first board
Result

ssssssss

Figure 6-9. The application showing the list of boards

This concludes our chapter on Shell. I really hope each of the carefully
crafted examples shows how you can achieve a variety of different
scenarios.

Summary

It is worth stating that anything you do with Shell is built out of
components in the .NET MAUI box. Shell puts them together in an
opinionated way, but you can use all of those things separately, outside of
Shell as well if that’s what you want.

187

CHAPTER6 SHELL

In this chapter, you have
e Added some placeholder pages and view models

e Gained an understanding of Shell and applied this to
building your application’s structure

e Applied the Shell navigation to allow you to navigate to
your next page and the next chapter

e Built your flyout menu using all the learnings in
this chapter

e Added tabs into the application
e Added the ability to search for boards

e Introduced the ability to add a new board by showing a
page and waiting for a result

In the next chapter, you will
e Create your own layout

e Make use of a variety of options when adding bindable
properties

e Provide command support from your layout

e Use your layout in your application

Source Code

The resulting source code for this chapter can be found on the GitHub
repository at https://github.com/Apress/Introducing-.NET-MAUI-2nd-
ed/tree/main/choé.

188

https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch06
https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch06

CHAPTER6 SHELL

Extra Assignment

This extra assignment is a culmination of the last two chapters combined. I
would like you to consider how you might add a second layout type (e.g., a
board where widgets could be placed anywhere) given that you

o Have a single layout type on your BoardDetailsPage
o Have options displayed when this type is selected

o PassaFixedLayout instance over as data to your
FixedBoardPage

I would love to see what concepts you come up with.

Source Code

I'would love for you to have an attempt at this extra assignment, but I have
also provided the source code. The source code for this extra assignment
can be found on the GitHub repository at https://github.com/Apress/
Introducing- .NET-MAUI-2nd-ed/tree/main/cho6-extra.

189

https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch06-extra
https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch06-extra

CHAPTER 7

Creating Our Own
Layout

Abstract

In Chapter 5, you learned a lot of the fundamentals of building and binding
your user interfaces. In this chapter, you will create your own layout, make
use of a variety of options when adding bindable properties, provide
command support from your layout, and make use of your layout in your
application. This will serve as the basis for adding much more functionality
as we cover a variety of different topics in future chapters.

Let’s recap what you achieved in the last chapter: you provided the
ability for a user to create a board and supply a number of columns and
rows. You now need to lay out your board with the number of columns
and rows the user has configured and populate widgets onto the board.
Figure 7-1 is a mock-up of what you will achieve by the end of this chapter.

© Shaun Lawrence 2025 191
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/979-8-8688-1189-0_7

https://doi.org/10.1007/979-8-8688-1189-0_7#DOI

CHAPTER 7 CREATING OUR OWN LAYOUT

Tap to add widget Tap to add widget Tap to add widget

Number of rows

Tap to add widget Tap to add widget Tap to add widget

| S

Number of columns

Figure 7-1. Mockup of a board

At the end of the last chapter, I discussed the idea of having a second
type of layout in the “Extra Assignment” section. To continue with this
theme, I have structured the architecture of the layout to aid in this journey.
I'am a fan of taking an approach like this because it allows you to potentially
replace one part of the implementation without impacting the others.

BoardLayout will be responsible for displaying the widgets. It will be
assigned an ILayoutManager implementation, which will decide where
to place the widgets. You will be adding a FixedLayoutManager to decide
this part.

Placeholder

The first item that you need to create is the placeholder to show where a
widget will be placed. There isn’t too much to this control, but creating it
allows you to group all of the related bits and pieces together. Figure 7-2
shows what your Placeholder control will look like when rendered inside
the application.

192

CHAPTER 7 CREATING OUR OWN LAYOUT

Ve

{
|

Tap to add widget

4

Figure 7-2. Mock-up of the Placeholder control

In order to achieve the above look, you are going to make use of the
Border control. This is a really useful control. It allows you to provide
borders, custom corner radius, shadows, and other styling options. It also
behaves much like the ContentView in that it can contain a single child
control.

Create a folder called Controls in your main project. It will house the
Placeholder control and potentially more as you build your application.

Next, add a new class to the folder and call it P1aceholder. Note that
you are opting to create the control purely in C# without XAML; the main
reason is that it results in less code. I always find there is never a single
way to build things, and even if you like XAML, at times it doesn’t add any
value, just like in this scenario. Of course, if you prefer to build your UI with
XAML, you can do so.

namespace WidgetBoard.Controls;

public class Placeholder : Border

{
public Placeholder()

{

Content = new Label

193

CHAPTER 7 CREATING OUR OWN LAYOUT

}

{

};

Text = "Tap to add widget",
FontAttributes = FontAttributes.Italic,
HorizontalOptions = LayoutOptions.Center,
VerticalOptions = LayoutOptions.Center

public int Position { get; set; }

As discussed, there isn’t too much to this implementation, but let’s still

break it down. Here you have

Created a control that inherits from Border

Set the content of your control to be a Label showing

fixed text in an italic font and the text is centered both

horizontally and vertically

Added a Position property to know where in the layout

it will be positioned

Now you can start building the layout that will display the placeholders

and ultimately your widgets.

ILayoutManager

You have a slight chicken-and-egg scenario here. You need to create a

board and a layout manager, both of which need to know about the other;

therefore, let’s add in the LayoutManager parts first.
The purpose of the ILayoutManager interface is to define how the

BoardLayout will interact with a layout manager implementation.

Create a folder called Layouts in your main project. It will house the

ILayoutManager interface and more as you build your application.

194

CHAPTER 7 CREATING OUR OWN LAYOUT
Next, add a new class to the folder and call it ILayoutManager.
namespace WidgetBoard.Layouts;

public interface ILayoutManager

{

object BindingContext { get; set; }

BoardLayout? Board { get; set; }

void SetPosition(BindableObject bindableObject,

int position);
}

Let’s break it down so you have a clear definition of what you just
created:

o TheBindingContext property allows you to pass
the context down from the BoardLayout later. This is
important for allowing bindings on the layout manager.

e The Board property allows the manager to interact
directly with the board it is intended to assist.

e The SetPosition method allows the manager to use
the position parameter and set the appropriate layout
settings on the widget/placeholder.

BoardLayout

Your BoardLayout will be the parent of your widgets. Create the layout
inside your Layouts folder.

o Right-click the Layouts folder.
e Select Add » New Item.

e Select the NET MAUI tab.

195

CHAPTER 7 CREATING OUR OWN LAYOUT

e Select the .NET MAUI ContentView (XAML) option.
o Enter the name BoardLayout.
e Click Add.

This will give you two files. You'll modify each one individually.

BoardLayout.xaml

Modify the existing contents to the following:

<?xml version="1.0" encoding="utf-8" ?>

<Grid
xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
x:Class="WidgetBoard.Layouts.BoardLayout"
x:Name="Self">

<Grid
x:Name="PlaceholderGrid" />

<Grid

x:Name="WidgetGrid"
ChildAdded="0nWidgetsChildAdded"
Bindablelayout.ItemsSource="{Binding ItemsSource,
Source={x:Reference Self}}"
BindablelLayout.ItemTemplateSelector="{Binding
TtemTemplateSelector, Source={x:Reference Self}}"
InputTransparent="True"
CascadeInputTransparent="False" />

</Grid>

You have added quite a bit to this that might not feel familiar, so again
let’s break it down.

196

CHAPTER 7 CREATING OUR OWN LAYOUT

Your main layout is a Grid, and inside of it are two more Grids.

The first inner Grid (PlaceholderGrid) is where you add the
Placeholder control you created earlier in this chapter.

The second inner Grid (WidgetGrid) is where you add widgets. The
reason you have built the control this way is mainly so you can utilize a
really impressive piece of functionality that drastically reduces the amount
of code you have to write: BindablelLayout.

You have not supplied a Grid.Row or Grid.Column to either of your
inner Grids. This results in both controls filling the space of the parent
Grid and the second one overlapping the first. This behavior can provide
some real power when building rather complex Uls.

BindableLayout

BindablelLayout allows you to turn a layout control into a control that
can be populated by a collection of data. BindableLayout is not a control
itself, but it provides the ability to enhance layout controls by adding an
ItemsSource property for bindings. This means that all of the layouts
you learned about in the previous chapter (e.g., Grid, Absolutelayout,
FlexLayout, HorizontalStackLayout, VerticalStackLayout) can be
turned into a layout that can show a specific set of controls for each item
that is provided. For this, you need to set two properties:

o Bindablelayout.ItemsSource: This is the collection of
items that you wish to represent in the UL

o Bindablelayout.ItemTemplate or BindablelLayout.
ItemTemplateSelector: This allows you to define
how the item will be represented. In most scenarios,
ItemTemplate is enough, but this only works when you
have one type of item to display in your collection. If
you have multiple types, each widget will be a separate
type in your application, so you need to use the
ItemTemplateSelector.

197

CHAPTER 7 CREATING OUR OWN LAYOUT

I won’t actually be providing the source for these bindings just yet; this
will be done in Chapter 8. For now, you just need to make it possible to
bind them.

BoardLayout.xaml.cs

Now that you have created your XAML representation, you need to add in
the code-behind, which will work with it. We are going to follow a slightly
different approach for this and the next section; you have a lot of code
to add now so you will add it in stages and we will talk around what you
are adding.

The initial code should look as follows:

namespace WidgetBoard.Layouts;

public partial class BoardlLayout

{
public BoardLayout()
{
InitializeComponent();
}
}

Adding the LayoutManager Property

You want to allow the consumer of your BoardLayout control to be able to
supply a LayoutManager that will control where the widgets are placed. For
this, you need to add the following:

private ILayoutManager? layoutManager;

public ILayoutManager? LayoutManager

{
get => layoutManager;
set

198

CHAPTER 7 CREATING OUR OWN LAYOUT

{
layoutManager = value;
if (layoutManager is not null)
{
layoutManager.Board = this;
}
}

The key detail of this implementation is how it assigns the Board
property on the LayoutManager to your BoardLayout control. This is to
allow the manager to interact with the layout.

One very important thing to consider is that when you create
properties that can be set in XAML, their se