Tell us about your PDF experience.

OVERVIEW
.NET Aspire overview

Explore various aspects of .NET Aspire, including getting started, storage, database, messaging, caching,
frameworks, deployment, and troubleshooting.

https://learn.microsoft.com/en-us/dotnet/aspire/whats-new/
https://learn.microsoft.com/en-us/samples/dotnet/aspire-samples/aspire-volume-mount/
https://aka.ms/learn-pdf-feedback

NET Aspire setup and
tooling

{8 .NET Aspire service
discovery

{8 NET Aspire and launch
profiles

&1 .NET Aspire service defaults

[@] .NET Aspire dashboard

[NET Aspire local
networking

.

Messaging integrations

B Implement Messaging with
.NET Aspire

o~
\CI\
=7

Azure Event Hubs

o~
ﬁ
=7

Azure Service Bus
Azure Web PubSub
RabbitMQ

Apache Kafka

NATs

B O S

[

Deployment

Overview
Deploy to Azure Container
Apps

Deploy using the Azure
Developer CLI

Integrate with Application
Insights

81 .NET Aspire deployment
manifest format

Persist volume mount
sample

Caching integrations

B Improve app caching with
.NET Aspire

®l Stack Exchange Redis
caching overview

"

Redis caching

s

Redis output caching

&

Redis distributed caching

Troubleshooting

Allow unsecure transport
Unable to install workload

Untrusted localhost
certificate

The specified name is
already in use

Container runtime appears
to be unhealthy

The connection string is

missing
(1 Ask questions on Discord &
(31 Stack Overflow — .NET

Aspire @

Azure Cosmos DB with EF
Core

SQL Database
SQL Database with EF Core

Entity Framework Core
migrations

MySglConnector Database

MongoDB Database

Framework
integrations

Use Orleans with .NET
Aspire

Orleans voting sample

Use Dapr with .NET Aspire

Dapr integration sample &

Training

& Introduction to .NET Aspire

& Create a .NET Aspire
project

& Use telemetry in a .NET
Aspire project

& Use databases in a .NET
Aspire project

& Improve performance with
a cache in a .NET Aspire
project

&) Send messages with
RabbitMQ in a .NET Aspire
project

https://learn.microsoft.com/en-us/samples/dotnet/aspire-samples/aspire-volume-mount/
https://learn.microsoft.com/en-us/samples/dotnet/aspire-samples/orleans-voting-sample-app-on-aspire/
https://github.com/CommunityToolkit/Aspire/tree/main/examples/dapr
https://aka.ms/aspire/discord
https://stackoverflow.com/questions/tagged/dotnet-aspire
https://learn.microsoft.com/en-us/training/modules/introduction-dotnet-aspire
https://learn.microsoft.com/en-us/training/modules/create-aspire-applications
https://learn.microsoft.com/en-us/training/modules/use-telemetry-dotnet-aspire
https://learn.microsoft.com/en-us/training/modules/use-databases-dotnet-aspire-app/
https://learn.microsoft.com/en-us/training/modules/improve-performance-cache-aspire/
https://learn.microsoft.com/en-us/training/modules/send-messages-rabbitmq-dotnet-aspire-app/

.NET extensions

Learn about .NET extensions, including logging, dependency injection, configuration, and more. All of
which are fundamental in .NET Aspire.

Fundamentals Telemetry Resiliency

Logging .NET observability with Introduction to resilient app

Dependency injection OpenTelemetry dev

Configuration Networking telemetry Build resilient HTTP apps
.NET SDK telemetry Implement resiliency in a

Make HTTP t
axe requests cloud-native ASP.NET Core

microservice

Observability

.NET app health checks in C#

App health checks in ASP.NET
Core

Diagnostic tools in .NET

Diagnostic resource
monitoring in .NET

.NET community resources

Find community resources for .NET, including webcasts, shows, open-source projects, and more.

.NET Webcasts and shows Open source
.NET documentation Azure Friday & .NET Aspire @

.NET Aspire samples browser The Cloud Native Show .NET Aspire samples @
ASP.NET documentation On .NET .NET samples &

Azure documentation On .NET Live& .NET Platform

C# documentation .NET Community Standup & .NET Runtime &

.NET Discord & Welcome to .NET Aspire & ASP.NET Core &

Official .NET Aspire Collection

Community

https://learn.microsoft.com/en-us/dotnet/core/extensions/logging
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/core/extensions/configuration
https://learn.microsoft.com/en-us/dotnet/fundamentals/networking/http/httpclient
https://learn.microsoft.com/en-us/dotnet/core/diagnostics/observability-with-otel
https://learn.microsoft.com/en-us/dotnet/core/diagnostics/observability-with-otel
https://learn.microsoft.com/en-us/dotnet/fundamentals/networking/networking-telemetry
https://learn.microsoft.com/en-us/dotnet/core/tools/telemetry
https://learn.microsoft.com/en-us/dotnet/core/resilience
https://learn.microsoft.com/en-us/dotnet/core/resilience
https://learn.microsoft.com/en-us/dotnet/core/resilience/http-resilience
https://learn.microsoft.com/en-us/training/modules/microservices-resiliency-aspnet-core
https://learn.microsoft.com/en-us/training/modules/microservices-resiliency-aspnet-core
https://learn.microsoft.com/en-us/training/modules/microservices-resiliency-aspnet-core
https://learn.microsoft.com/en-us/dotnet/core/diagnostics/diagnostic-health-checks
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks
https://learn.microsoft.com/en-us/dotnet/core/diagnostics
https://learn.microsoft.com/en-us/dotnet/core/diagnostics/diagnostic-resource-monitoring
https://learn.microsoft.com/en-us/dotnet/core/diagnostics/diagnostic-resource-monitoring
https://learn.microsoft.com/en-us/dotnet
https://learn.microsoft.com/en-us/samples/browse/?expanded=dotnet&terms=aspire
https://learn.microsoft.com/en-us/aspnet
https://learn.microsoft.com/en-us/azure
https://learn.microsoft.com/en-us/dotnet/csharp
https://aka.ms/aspire/discord
https://aka.ms/aspire/discord
https://learn.microsoft.com/en-us/collections/2203hjxnnrop11
https://azure.microsoft.com/resources/videos/azure-friday
https://azure.microsoft.com/resources/videos/azure-friday
https://learn.microsoft.com/en-us/shows/the-cloud-native-show
https://learn.microsoft.com/en-us/shows/on-net
https://dotnet.microsoft.com/live/on-dotnet-live
https://dotnet.microsoft.com/live/on-dotnet-live
https://dotnet.microsoft.com/platform/community/standup
https://dotnet.microsoft.com/platform/community/standup
https://www.youtube.com/playlist?list=PLdo4fOcmZ0oUfIayQMrRqaSL55Rkck-GD
https://www.youtube.com/playlist?list=PLdo4fOcmZ0oUfIayQMrRqaSL55Rkck-GD
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire-samples
https://github.com/dotnet/aspire-samples
https://github.com/dotnet/samples
https://github.com/dotnet/samples
https://github.com/dotnet
https://github.com/dotnet
https://github.com/dotnet/runtime
https://github.com/dotnet/runtime
https://github.com/dotnet/aspnetcore
https://github.com/dotnet/aspnetcore
https://x.com/intent/follow?screen_name=dotnet
https://x.com/intent/follow?screen_name=dotnet

Follow @dotnet on X &

Follow @dotnet on Mastodon &
.NET Foundation&

We Are .NET &

.NET Aspire YouTube playlist &
.NET Aspire on YouTube @

API and language reference

Search the .NET API and language reference documentation.

.NET Aspire API reference .NET API reference ASP.NET Core API
API reference documentation API reference documentation reference
for .NET Aspire for NET API reference documentation

for ASP.NET Core

Are you interested in contributing to the .NET Aspire docs? For more information, see our contributor guide.
Interested in the official support policy, see .NET Aspire Support Policy .

https://learn.microsoft.com/en-us/contribute/dotnet/dotnet-contribute
https://dotnet.microsoft.com/platform/support/policy/aspire
https://dotnet.microsoft.com/platform/support/policy/aspire
https://x.com/intent/follow?screen_name=dotnet
https://x.com/intent/follow?screen_name=dotnet
https://dotnet.social/@dotnet
https://dotnet.social/@dotnet
https://dotnetfoundation.org/
https://dotnetfoundation.org/
https://www.wearedotnet.io/
https://www.wearedotnet.io/
https://www.youtube.com/playlist?list=PLdo4fOcmZ0oWTWWbWXqhn2w8NM3sQ_qDz
https://www.youtube.com/playlist?list=PLdo4fOcmZ0oWTWWbWXqhn2w8NM3sQ_qDz
https://www.youtube.com/results?search_query=.NET+Aspire
https://www.youtube.com/results?search_query=.NET+Aspire
https://learn.microsoft.com/en-us/dotnet/api?view=dotnet-aspire-9.1&preserve-view=true
https://learn.microsoft.com/en-us/dotnet/api?view=net-9.0&preserve-view=true
https://learn.microsoft.com/en-us/dotnet/api?view=aspnetcore-9.0&preserve-view=true
https://learn.microsoft.com/en-us/dotnet/api?view=aspnetcore-9.0&preserve-view=true

.NET Aspire overview

Article « 01/26/2025

.NET Aspire is a set of tools, templates, and packages for building observable,
production ready apps. .NET Aspire is delivered through a collection of NuGet packages
that bootstrap or improve specific challenges with modern app development. Today's
apps generally consume a large number of services, such as databases, messaging, and
caching, many of which are supported via .NET Aspire Integrations. For information on
support, see the .NET Aspire Support Policy.

Why .NET Aspire?

.NET Aspire improves the experience of building apps that have a variety of projects and
resources. With dev-time productivity enhancements that emulate deployed scenarios,
you can quickly develop interconnected apps. Designed for flexibility, .NET Aspire allows
you to replace or extend parts with your preferred tools and workflows. Key features

include:

e Dev-Time Orchestration: .NET Aspire provides features for running and connecting
multi-project applications, container resources, and other dependencies for local
development environments.

¢ Integrations: .NET Aspire integrations are NuGet packages for commonly used
services, such as Redis or Postgres, with standardized interfaces ensuring they
connect consistently and seamlessly with your app.

e Tooling: .NET Aspire comes with project templates and tooling experiences for
Visual Studio, Visual Studio Code, and the .NET CLI to help you create and interact
with .NET Aspire projects.

Dev-time orchestration

In .NET Aspire, "orchestration" primarily focuses on enhancing the local development
experience by simplifying the management of your app's configuration and
interconnections. It's important to note that .NET Aspire's orchestration isn't intended to

https://dotnet.microsoft.com/platform/support/policy/aspire
https://learn.microsoft.com/en-us/dotnet/core/tools/

replace the robust systems used in production environments, such as Kubernetes.
Instead, it's a set of abstractions that streamline the setup of service discovery,
environment variables, and container configurations, eliminating the need to deal with
low-level implementation details. With .NET Aspire, your code has a consistent
bootstrapping experience on any dev machine without the need for complex manual

steps, making it easier to manage during the development phase.

.NET Aspire orchestration assists with the following concerns:

e App composition: Specify the .NET projects, containers, executables, and cloud
resources that make up the application.

e Service discovery and connection string management: The app host injects the

right connection strings, network configurations, and service discovery information

to simplify the developer experience.

For example, using .NET Aspire, the following code creates a local Redis container

resource, waits for it to become available, and then configures the appropriate
connection string in the "frontend" project with a few helper method calls:

C#

// Create a distributed application builder given the command line
arguments.

var builder = DistributedApplication.CreateBuilder(args);

// Add a Redis server to the application.
var cache = builder.AddRedis("cache");

// Add the frontend project to the application and configure it to use the
// Redis server, defined as a referenced dependency.
builder.AddProject<Projects.MyFrontend>("frontend")

.WithReference(cache)

.WaitFor(cache);

For more information, see .NET Aspire orchestration overview.

~

@ Important

The call to AddRedis creates a new Redis container in your local dev environment.
If you'd rather use an existing Redis instance, you can use the
AddConnectionString method to reference an existing connection string. For more

information, see Reference existing resources.

.NET Aspire integrations

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redisbuilderextensions.addredis
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

NET Aspire integrations are NuGet packages designed to simplify connections to
popular services and platforms, such as Redis or PostgreSQL. .NET Aspire integrations
handle cloud resource setup and interaction for you through standardized patterns,
such as adding health checks and telemetry. Integrations are two-fold - "hosting"
integrations represents the service you're connecting to, and "client" integrations
represents the client or consumer of that service. In other words, for many hosting
packages there's a corresponding client package that handles the service connection
within your code.

Each integration is designed to work with the .NET Aspire app host, and their
configurations are injected automatically by referencing named resources. In other
words, if Example.ServiceFoo references Example.ServiceBar, Example.ServiceFoo inherits
the integration's required configurations to allow them to communicate with each other
automatically.

For example, consider the following code using the .NET Aspire Service Bus integration:

C#

builder.AddAzureServiceBusClient("servicebus");

The AddAzureServiceBusClient method handles the following concerns:

e Registers a ServiceBusClient as a singleton in the DI container for connecting to
Azure Service Bus.

e Applies ServiceBusClient configurations either inline through code or through
configuration.

e Enables corresponding health checks, logging, and telemetry specific to the Azure

Service Bus usage.

A full list of available integrations is detailed on the .NET Aspire integrations overview
page.

Project templates and tooling

.NET Aspire provides a set of project templates and tooling experiences for Visual
Studio, Visual Studio Code, and the .NET CLI. These templates are designed to help you
create and interact with .NET Aspire projects, or add .NET Aspire into your existing
codebase. The templates include a set of opinionated defaults to help you get started
quickly - for example, it has boilerplate code for turning on health checks and logging in
.NET apps. These defaults are fully customizable, so you can edit and adapt them to suit

your needs.

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireservicebusextensions.addazureservicebusclient
https://learn.microsoft.com/en-us/dotnet/api/azure.messaging.servicebus.servicebusclient
https://learn.microsoft.com/en-us/dotnet/api/azure.messaging.servicebus.servicebusclient
https://learn.microsoft.com/en-us/dotnet/core/tools/

.NET Aspire templates also include boilerplate extension methods that handle common
service configurations for you:

C#

builder.AddServiceDefaults();

For more information on what AddServiceDefaults does, see .NET Aspire service

defaults.

When added to your Program.cs file, the preceding code handles the following

concerns:

e OpenTelemetry: Sets up formatted logging, runtime metrics, built-in meters, and
tracing for ASP.NET Core, gRPC, and HTTP. For more information, see .NET Aspire
telemetry.

e Default health checks: Adds default health check endpoints that tools can query to
monitor your app. For more information, see .NET app health checks in C#.

e Service discovery: Enables service discovery for the app and configures HttpClient
accordingly.

Next steps

Quickstart: Build your first .NET Aspire project

https://learn.microsoft.com/en-us/dotnet/core/diagnostics/diagnostic-health-checks
https://learn.microsoft.com/en-us/dotnet/api/system.net.http.httpclient

Quickstart: Build your first .NET Aspire
solution

Article < 11/07/2024

Cloud-native apps often require connections to various services such as databases,
storage and caching solutions, messaging providers, or other web services. .NET Aspire
is designed to streamline connections and configurations between these types of
services. This quickstart shows how to create a .NET Aspire Starter Application template
solution.

In this quickstart, you explore the following tasks:

v/ Create a basic .NET app that is set up to use .NET Aspire.

v Add and configure a .NET Aspire integration to implement caching at project
creation time.

v Create an APl and use service discovery to connect to it.

v Orchestrate communication between a front end Ul, a back end API, and a local
Redis cache.

Prerequisites

To work with .NET Aspire, you need the following installed locally:

e NET80% or NET9.0&
e An OCl compliant container runtime, such as:

o Docker Desktop & or Podman &'. For more information, see Container runtime.
e An Integrated Developer Environment (IDE) or code editor, such as:

o Visual Studio 2022 2 version 17.9 or higher (Optional)

o Visual Studio Code & (Optional)

o C# Dev Kit: Extension@ (Optional)
o JetBrains Rider with .NET Aspire plugin @ (Optional)

For more information, see .NET Aspire setup and tooling, and .NET Aspire SDK.

Create the .NET Aspire template

To create a new .NET Aspire Starter Application, you can use either Visual Studio, Visual
Studio Code, or the .NET CLI.

https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://podman.io/
https://podman.io/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/

Visual Studio provides .NET Aspire templates that handle some initial setup
configurations for you. Complete the following steps to create a project for this
quickstart:

1. At the top of Visual Studio, navigate to File > New > Project.

2. In the dialog window, search for Aspire and select .NET Aspire Starter App. Select
Next.

7

o x
x Clear all

Recent project templates All languages - All platforms ~ All project types -

Create a new project

3. On the Configure your new project screen:

e Enter a Project Name of AspireSample.
e Leave the rest of the values at their defaults and select Next.

4. On the Additional information screen:

e Make sure .NET 9.0 (Standard Term Support) is selected.

https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/aspire-templates.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/aspire-templates.png#lightbox

e Ensure that Use Redis for caching (requires a supported container runtime)
is checked and select Create.

e Optionally, you can select Create a tests project. For more information, see
Write your first NET Aspire test.

Visual Studio creates a new solution that is structured to use .NET Aspire.

For more information on the available templates, see .NET Aspire templates.

Test the app locally

The sample app includes a frontend Blazor app that communicates with a Minimal API
project. The API project is used to provide fake weather data to the frontend. The
frontend app is configured to use service discovery to connect to the API project. The
API project is configured to use output caching with Redis. The sample app is now ready
for testing. You want to verify the following conditions:

e Weather data is retrieved from the API project using service discovery and
displayed on the weather page.

e Subsequent requests are handled via the output caching configured by the .NET
Aspire Redis integration.

In Visual Studio, set the AspireSample.AppHost project as the startup project by right-
clicking on the project in the Solution Explorer and selecting Set as Startup Project. It
might already have been automatically set as the startup project. Once set, press Fs or (
ctrl + F5 to run without debugging) to run the app.

1. The app displays the .NET Aspire dashboard in the browser. You look at the
dashboard in more detail later. For now, find the webfrontend project in the list of

resources and select the project's localhost endpoint.

AspireSample

B Resources

Type Name

The home page of the webfrontend app displays "Hello, world!"

2. Navigate from the home page to the weather page in the using the left side
navigation. The weather page displays weather data. Make a mental note of some

of the values represented in the forecast table.

https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/aspire-dashboard-webfrontend.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/aspire-dashboard-webfrontend.png#lightbox

3. Continue occasionally refreshing the page for 10 seconds. Within 10 seconds, the
cached data is returned. Eventually, a different set of weather data appears, since
the data is randomly generated and the cache is updated.

AspireSample About
o Weather
This component demonstrates showing data loaded from a backend API service.

Counter

Date Temp. (C) Temp. (F) Summary
= Weather 11/1/2023 43 109 Hot

11/2/2023 5 40 Mild

11/3/2023 -15 6 Balmy

11/4/2023 50 121 Bracing

11/5/2023 0 32 Warm @\

&) Congratulations! You created and ran your first NET Aspire solution! To stop the

app, close the browser window.
To stop the app in Visual Studio, select the Stop Debugging from the Debug menu.

Next, investigate the structure and other features of your new .NET Aspire solution.

Explore the .NET Aspire dashboard

When you run a .NET Aspire project, a dashboard launches that you use to monitor
various parts of your app. The dashboard resembles the following screenshot:

&% AspireSample

Resources

Running

webfrontend Running

Visit each page using the left navigation to view different information about the .NET

Aspire resources:

e Resources: Lists basic information for all of the individual .NET projects in your
.NET Aspire project, such as the app state, endpoint addresses, and the

environment variables that were loaded in.

https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/weather-page.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/weather-page.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/aspire-dashboard.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/aspire-dashboard.png#lightbox

e Console: Displays the console output from each of the projects in your app.

e Structured: Displays structured logs in table format. These logs support basic
filtering, free-form search, and log level filtering as well. You should see logs from
the apiservice and the webfrontend. You can expand the details of each log entry

by selecting the View button on the right end of the row.

e Traces: Displays the traces for your application, which can track request paths
through your apps. Locate a request for /weather and select View on the right side
of the page. The dashboard should display the request in stages as it travels

through the different parts of your app.

e Metrics: Displays various instruments and meters that are exposed and their
corresponding dimensions for your app. Metrics conditionally expose filters based

on their available dimensions.

https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/aspire-dashboard-trace.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/aspire-dashboard-trace.png#lightbox

&, AspireSample

B Metrics

webfrontend - D Last5 minutes

LU LS L B VS AL

http.client.open_connections

kestrel.active_connections
s Number of outbound HTTP connections that are currently active or idle on the client.
kestrel.connection.duration
kestrel.queued_connections
1 Graph { Table
~ OpenTelemetry.Instrumentation.Process —

process.cpu.count 2

process.memory.virtual
process.threads
~ OpenTelemetry.Instrumentation.Runtime
time.dotnet.assemblies.count
time.dotnet.exceptions.count
ntime.dotnet.gc.allc
time.dotnet.gc.collections.count
s.runtime.dotnet.gc.committed_memory.size

o
4:07:00 PM 4:08:00 PM 4:00:00 PM 4:10:00 PM 4:11:00 PM

Connections

Filters
ntime.dotnetjit.compilation_time
http.connection.state active idle
time.dotnet jitil_compiled size
network.peer.: sl (Empt
time.dotnetjitmethods_compiled.count F (Empty)
itime.dotnetmonitor.lock_contention.count network.protocol.version 1.1 2

process.runtime.dotnet.thread_pool.completed_items.col
server.address localhost
process.runtime.dotnetthread_pool.queve.length
process.runtime.dotnet.thread_pool.threads.count server.port 16000 5467 57387
process.untime.dotnet.timer.count
url.scheme hitp
System.Net.Hitp
http.client.active_requests
http.client.connection.duration
http.client.open_connections
http.client.request.duration

http.client.request.time_in_gueue

< System Net.MameResolution

dns.jookup.duration

For more information, see .NET Aspire dashboard overview.

Understand the .NET Aspire solution structure

The solution consists of the following projects:

e AspireSample.ApiService: An ASP.NET Core Minimal API project is used to provide
data to the front end. This project depends on the shared
AspireSample.ServiceDefaults project.

e AspireSample.AppHost: An orchestrator project designed to connect and
configure the different projects and services of your app. The orchestrator should
be set as the Startup project, and it depends on the AspireSample.ApiService and
AspireSample.Web projects.

e AspireSample.ServiceDefaults: A NET Aspire shared project to manage
configurations that are reused across the projects in your solution related to
resilience, service discovery, and telemetry.

https://learn.microsoft.com/en-us/dotnet/core/resilience/http-resilience
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/aspire-dashboard-metrics.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/aspire-dashboard-metrics.png#lightbox

e AspireSample.Web: An ASP.NET Core Blazor App project with default .NET Aspire
service configurations, this project depends on the AspireSample.ServiceDefaults
project. For more information, see .NET Aspire service defaults.

Your AspireSample directory should resemble the following structure:

Directory

L—r7 AspireSample
f———[] AspireSample.ApiService
| 7 Properties
| | L— launchSettings.json
| F——— appsettings.Development.json
| F——— appsettings.json
| F——— AspireSample.ApiService.csproj
| L— Program.cs
—r7 AspireSample.AppHost
| -7 Properties
| | L— launchSettings.json
| — appsettings.Development.json
| — appsettings.json
| F——— AspireSample.AppHost.csproj
| L— Program.cs
f———[? AspireSample.ServiceDefaults
| I AspireSample.ServiceDefaults.csproj
| L— Extensions.cs
7 AspireSample.Web
7 components
F—r7 Layout
| — MainLayout.razor
— MainLayout.razor.css
F——— NavMenu.razor
L— NavMenu.razor.css
7 Pages
F——— Counter.razor
F——— Error.razor
F——— Home.razor
L— wWeather.razor
_Imports.razor
F——— App.razor
L— Routes.razor
-7 Properties
| L— JlaunchSettings.json
F—r7 wwwroot
| 7 bootstrap
| — bootstrap.min.css
| L— bootstrap.min.css.map
F— app.css
— favicon.png
appsettings.Development.json

|

|

|

|

F___

F——— appsettings.json
F___

F___

|
|
I
.
I
T
B
.
I

I —
|

AspireSample.Web.csproj
Program.cs

L— wWeatherApiClient.cs
L— AspireSample.sln

Explore the starter projects

Each project in an .NET Aspire solution plays a role in the composition of your app. The
* Web project is a standard ASP.NET Core Blazor App that provides a front end Ul. For
more information, see What's new in ASP.NET Core 9.0: Blazor. The *ApiService project
is a standard ASP.NET Core Minimal API template project. Both of these projects depend
on the *ServiceDefaults project, which is a shared project that's used to manage

configurations that are reused across projects in your solution.

The two projects of interest in this quickstart are the *AppHost and * ServiceDefaults

projects detailed in the following sections.

.NET Aspire host project

The *AppHost project is responsible for acting as the orchestrator, and sets the

IsAspireHost property of the project file to true:

XML
<Project Sdk="Microsoft.NET.Sdk">
<Sdk Name="Aspire.AppHost.Sdk" Version="9.1.0" />

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net9.0</TargetFramework>
<ImplicitUsings>enable</ImplicitUsings>
<Nullable>enable</Nullable>
<IsAspireHost>true</IsAspireHost>
<UserSecretsId>2aa31fdb-0078-4b71-b953-d23432af8a36</UserSecretsId>
</PropertyGroup>

<ItemGroup>
<ProjectReference
Include="..\AspireSample.ApiService\AspireSample.ApiService.csproj" />
<ProjectReference Include="..\AspireSample.Web\AspireSample.Web.csproj'
/>
</ItemGroup>

<ItemGroup>
<PackageReference Include="Aspire.Hosting.AppHost" Version="9.1.0" />
<PackageReference Include="Aspire.Hosting.Redis" Version="9.1.0" />
</ItemGroup>

https://learn.microsoft.com/en-us/aspnet/core/release-notes/aspnetcore-9.0?view=aspnetcore-9.0&preserve-view=true#blazor

</Project>

For more information, see .NET Aspire orchestration overview and .NET Aspire SDK.
Consider the Program.cs file of the AspireSample.AppHost project:
C#

var builder = DistributedApplication.CreateBuilder(args);
var cache = builder.AddRedis("cache");

var apiService = builder.AddProject<Projects.AspireSample_ApiService>
("apiservice");

builder.AddProject<Projects.AspireSample Web>("webfrontend")
.WithExternalHttpEndpoints()
.WithReference(cache)
.WaitFor(cache)
.WithReference(apiService)
.WaitFor(apiService);

builder.Build().Run();

If you've used either the .NET Generic Host or the ASP.NET Core Web Host before, the
app host programming model and builder pattern should be familiar to you. The
preceding code:

e Creates an IDistributedApplicationBuilder instance from calling
DistributedApplication.CreateBuilder().

e (Calls AddRedis with the name "cache" to add a Redis server to the app, assigning
the returned value to a variable named cache, which is of type
IResourceBuilder<RedisResource> .

e Calls AddProject given the generic-type parameter with the project's details,
adding the Aspiresample.ApiService project to the application model. This is one
of the fundamental building blocks of .NET Aspire, and it's used to configure
service discovery and communication between the projects in your app. The name
argument "apiservice" is used to identify the project in the application model,
and used later by projects that want to communicate with it.

e (Calls AddProject again, this time adding the Aspiresample.web project to the
application model. It also chains multiple calls to WithReference passing the cache
and apiService variables. The withReference API is another fundamental APl of
.NET Aspire, which injects either service discovery information or connection string
configuration into the project being added to the application model. Additionally,

https://learn.microsoft.com/en-us/dotnet/core/extensions/generic-host
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/host/web-host
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilder
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplication.createbuilder#aspire-hosting-distributedapplication-createbuilder
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redisbuilderextensions.addredis
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.projectresourcebuilderextensions.addproject
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference

calls to the waitFor API are used to ensure that the cache and apiService
resources are available before the AspireSample.Web project is started. For more

information, see .NET Aspire orchestration: Waiting for resources.

Finally, the app is built and run. The DistributedApplication.Run() method is responsible
for starting the app and all of its dependencies. For more information, see .NET Aspire

orchestration overview.

Q Tip

The call to AddRedis creates a local Redis container for the app to use. If you'd
rather simply point to an existing Redis instance, you can use the
AddConnectionstring method to reference an existing connection string. For more

information, see Reference existing_resources.

.NET Aspire service defaults project

The *ServiceDefaults project is a shared project that's used to manage configurations
that are reused across the projects in your solution. This project ensures that all
dependent services share the same resilience, service discovery, and OpenTelemetry
configuration. A shared .NET Aspire project file contains the IsAspireSharedProject

property set as true:

XML
<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<TargetFramework>net9.0</TargetFramework>
<ImplicitUsings>enable</ImplicitUsings>
<Nullable>enable</Nullable>
<IsAspireSharedProject>true</IsAspireSharedProject>
</PropertyGroup>

<ItemGroup>
<FrameworkReference Include="Microsoft.AspNetCore.App" />

<PackageReference Include="Microsoft.Extensions.Http.Resilience"
Version="9.3.0" />

<PackageReference Include="Microsoft.Extensions.ServiceDiscovery"
Version="9.1.0" />

<PackageReference Include="OpenTelemetry.Exporter.OpenTelemetryProtocol”
Version="1.11.2" />

<PackageReference Include="OpenTelemetry.Extensions.Hosting"
Version="1.11.2" />

<PackageReference Include="OpenTelemetry.Instrumentation.AspNetCore"

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplication.run#aspire-hosting-distributedapplication-run
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redisbuilderextensions.addredis

Version="1.11.1" />
<PackageReference Include="OpenTelemetry.Instrumentation.Http"
Version="1.11.1" />
<PackageReference Include="OpenTelemetry.Instrumentation.Runtime"
Version="1.11.1" />
</ItemGroup>

</Project>

The service defaults project exposes an extension method on the
IHostApplicationBuilder type, named AddServiceDefaults. The service defaults project
from the template is a starting point, and you can customize it to meet your needs. For
more information, see .NET Aspire service defaults.

Orchestrate service communication

.NET Aspire provides orchestration features to assist with configuring connections and
communication between the different parts of your app. The AspireSample.AppHost
project added the AspireSample.ApiService and AspireSample.Web projects to the
application model. It also declared their names as "webfrontend" for Blazor front end,
"apiservice" for the API project reference. Additionally, a Redis server resource labeled
"cache" was added. These names are used to configure service discovery and

communication between the projects in your app.

The front end app defines a typed HttpClient that's used to communicate with the API
project.

C#

namespace AspireSample.Web;

public class WeatherApiClient(HttpClient httpClient)

{
public async Task<WeatherForecast[]> GetWeatherAsync(
int maxItems = 10,
CancellationToken cancellationToken = default)

List<WeatherForecast>? forecasts = null;

await foreach (var forecast in
httpClient.GetFromJsonAsAsyncEnumerable<WeatherForecast>(
"/weatherforecast™, cancellationToken))

if (forecasts?.Count >= maxItems)

{

break;

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder
https://learn.microsoft.com/en-us/dotnet/api/system.net.http.httpclient

if (forecast is not null)

{
forecasts ??= [];
forecasts.Add(forecast);
}
}
return forecasts?.ToArray() ?? [];
}
}
public record WeatherForecast(DateOnly Date, int TemperatureC, string?
Summary)
{

public int TemperatureF => 32 + (int)(TemperatureC / 0.5556);

The HttpClient is configured to use service discovery. Consider the following code from

the Program.cs file of the AspireSample.Web project:

C#

using AspireSample.Web;
using AspireSample.Web.Components;

var builder = WebApplication.CreateBuilder(args);

// Add service defaults & Aspire client integrations.
builder.AddServiceDefaults();
builder.AddRedisOutputCache("cache");

// Add services to the container.
builder.Services.AddRazorComponents()
.AddInteractiveServerComponents();

builder.Services.AddHttpClient<WeatherApiClient>(client =>
{
// This URL uses "https+http://" to indicate HTTPS is preferred over
HTTP.
// Learn more about service discovery scheme resolution at
https://aka.ms/dotnet/sdschemes.
client.BaseAddress = new("https+http://apiservice");

1)

var app = builder.Build();

if (lapp.Environment.IsDevelopment())
{

app.UseExceptionHandler("/Error", createScopeForErrors: true);

// The default HSTS value is 30 days. You may want to change this for
production scenarios, see https://aka.ms/aspnetcore-hsts.

app.UseHsts();

app.UseHttpsRedirection();
app.UseAntiforgery();
app.UseOutputCache();
app.MapStaticAssets();

app .MapRazorComponents<App>()
.AddInteractiveServerRenderMode();

app .MapDefaultEndpoints();

app.Run();

The preceding code:

e (Calls addservicebefaults, configuring the shared defaults for the app.

e (Calls AddRedisOutputCache with the same connectionName that was used when
adding the Redis container "cache" to the application model. This configures the
app to use Redis for output caching.

e (Calls AddHttpClient and configures the HttpClient.BaseAddress to be
"https+http://apiservice" . This is the name that was used when adding the API

project to the application model, and with service discovery configured, it

automatically resolves to the correct address to the API project.

For more information, see Make HTTP requests with the HttpClient class.

See also

.NET Aspire integrations overview

Service discovery in .NET Aspire

.NET Aspire service defaults
Health checks in .NET Aspire
.NET Aspire telemetry

Troubleshoot untrusted localhost certificate in .NET Aspire

Next steps

Tutorial: Add .NET Aspire to an existing .NET app

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireredisoutputcacheextensions.addredisoutputcache
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.httpclientfactoryservicecollectionextensions.addhttpclient
https://learn.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.baseaddress#system-net-http-httpclient-baseaddress
https://learn.microsoft.com/en-us/dotnet/fundamentals/networking/http/httpclient
https://learn.microsoft.com/en-us/dotnet/fundamentals/networking/http/httpclient

Tutorial: Add .NET Aspire to an existing
.NET app

Article « 03/03/2025

If you have existing microservices and .NET web app, you can add .NET Aspire to it and
get all the included features and benefits. In this article, you add .NET Aspire

orchestration to a simple, preexisting .NET 9 project. You learn how to:

v Understand the structure of the existing microservices app.
v/ Enroll existing projects in .NET Aspire orchestration.

v/ Understand the changes enrollment makes in the projects.
v Start the .NET Aspire project.

Prerequisites

To work with .NET Aspire, you need the following installed locally:

e NET80Z or NET9.0&
e An OCl compliant container runtime, such as:

o Docker Desktop @ or Podman &'. For more information, see Container runtime.
e An Integrated Developer Environment (IDE) or code editor, such as:

o Visual Studio 2022 2 version 17.9 or higher (Optional)

o Visual Studio Code & (Optional)

o C# Dev Kit: Extension @ (Optional)
o JetBrains Rider with .NET Aspire plugin @ (Optional)

For more information, see .NET Aspire setup and tooling, and .NET Aspire SDK.

Get started

Let's start by obtaining the code for the solution:

1. Open a command prompt and change directories to where you want to store the
code.

2. To clone to .NET 9 example solution, use the following git clone command:

Bash

git clone https://github.com/MicrosoftDocs/mslearn-dotnet-cloudnative-

https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://podman.io/
https://podman.io/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/

devops.git eShopLite

Explore the sample app

This article uses a .NET 9 solution with three projects:

Data Entities: This project is an example class library. It defines the Product class
used in the Web App and Web API.

Products: This example Web API returns a list of products in the catalog and their
properties.

Store: This example Blazor Web App displays the product catalog to website

visitors.

Open and start debugging the project to examine its default behavior:

1.

2.

Start Visual Studio and then select File > Open > Project/Solution.

Navigate to the top level folder of the solution you cloned, select eShoplLite.sln,
and then select Open.

. In the Solution Explorer, right-click the eShoplLite solution, and then select

Configure Startup Projects.

. Select Multiple startup projects.

. In the Action column, select Start for both the Products and Store projects.
. Select OK.

. To start debugging the solution, press s or select Start.

. Two pages open in the browser:

e A page displays products in JSON format from a call to the Products Web API.
e A page displays the homepage of the website. In the menu on the left, select
Products to see the catalog obtained from the Web API.

. To stop debugging, close the browser.

Add .NET Aspire to the Store web app

Now, let's enroll the Store project, which implements the web user interface, in .NET

Aspire orchestration:

1. In Visual Studio, in the Solution Explorer, right-click the Store project, select Add,
and then select .NET Aspire Orchestrator Support.

2. In the Add .NET Aspire Orchestrator Support dialog, select OK.

This 1s going to add two new projects to your solution.
Specify the project name prefix and location of the new
projects.

Aspire version

9.0

Project name prefix

eShoplite

Location
\eShoplite Browse...

The following projects will be created:
- eShoplite.AppHost.csproj @

- eShoplite.ServiceDefaults.csproj ©

Cancel

You should now have two new projects, both added to the solution:

e eShoplLite.AppHost: An orchestrator project designed to connect and configure
the different projects and services of your app. The orchestrator is set as the
Startup project, and it depends on the eShoplLite.Store project.

e eShoplLite.ServiceDefaults: A .NET Aspire shared project to manage configurations
that are reused across the projects in your solution related to resilience, service

discovery, and telemetry.

In the eShopLite.AppHost project, open the Program.cs file. Notice this line of code,
which registers the Store project in the .NET Aspire orchestration:

C#

builder.AddProject<Projects.Store>("store");

https://learn.microsoft.com/en-us/dotnet/core/resilience/http-resilience

For more information, see AddProject.
To add the Products project to .NET Aspire:

1. In Visual Studio, in the Solution Explorer, right-click the Products project, select
Add, and then select .NET Aspire Orchestrator Support.

2. A dialog indicating that .NET Aspire Orchestrator project already exists, select OK.

licrosoft Visual Studio

solution: esShoplite. AppHost, Visual Studio will update it to

o A MET Aspire orchestrator project already exists in the
add Products to its archestration.

OK Cancel

In the eShopLite.AppHost project, open the Program.cs file. Notice this line of code,
which registers the Products project in the .NET Aspire orchestration:

C#

builder.AddProject<Projects.Products>("products");

Also notice that the eShopLite.AppHost project, now depends on both the Store and
Products projects.

Service Discovery

At this point, both projects are part of .NET Aspire orchestration, but the Store project
needs to rely on the Products backend address through .NET Aspire's service discovery.
To enable service discovery, open the Program.cs file in eShopLite.AppHost project and
update the code so that the builder adds a reference to the Products project:

C#

var builder = DistributedApplication.CreateBuilder(args);

var products = builder.AddProject<Projects.Products>("products");

builder.AddProject<Projects.Store>("store")
.WithExternalHttpEndpoints()

.WithReference(products);

builder.Build().Run();

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.projectresourcebuilderextensions.addproject

The preceding code expresses that the Store project depends on the Products project.

For more information, see .NET Aspire app host: Reference resources. This reference is
used to discover the address of the Products project at run time. Additionally, the Store
project is configured to use external HTTP endpoints. If you later choose to deploy this
app, you'd need the call to WithExternalHttpEndpoints to ensure that it's public to the
outside world.

Next, update the appsettings.json in the Store project with the following JSON:
JSON

{

"DetailedErrors”: true,
"Logging": {
"LoglLevel": {
"Default": "Information",
"Microsoft.AspNetCore": "Warning"
}

s
"AllowedHosts": "*",

"ProductEndpoint": "http://products",
"ProductEndpointHttps": "https://products"”

}

The addresses for both the endpoints now uses the "products” name that was added to
the orchestrator in the app host. These names are used to discover the address of the
Products project.

Explore the enrolled app

Let's start the solution and examine the new behavior that .NET Aspire provides.

O Note

Notice that the eShopLite.AppHost project is the new startup project.

1. In Visual Studio, to start debugging, press rs Visual Studio builds the projects.

2. If the Start Docker Desktop dialog appears, select Yes. Visual Studio starts the
Docker engine and creates the necessary containers. When the deployment is
complete, the .NET Aspire dashboard is displayed.

3. In the dashboard, select the endpoint for the products project. A new browser tab
appears and displays the product catalog in JSON format.

4. In the dashboard, select the endpoint for the store project. A new browser tab
appears and displays the home page for the web app.

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withexternalhttpendpoints

5. In the menu on the left, select Products. The product catalog is displayed.
6. To stop debugging, close the browser.

Congratulations, you added .NET Aspire orchestration to your pre-existing web app. You
can now add .NET Aspire integrations and use the .NET Aspire tooling to streamline your
cloud-native web app development.

.NET Aspire setup and tooling

Article « 03/15/2025

.NET Aspire includes tooling to help you create and configure cloud-native apps. The
tooling includes useful starter project templates and other features to streamline getting
started with .NET Aspire for Visual Studio, Visual Studio Code, and CLI workflows. In the
sections ahead, you learn how to work with .NET Aspire tooling and explore the
following tasks:

v Install .NET Aspire and its dependencies

v Create starter project templates using Visual Studio, Visual Studio Code, or the .NET
CLI

v Install .NET Aspire integrations

v/ Work with the .NET Aspire dashboard

Install .NET Aspire prerequisites

To work with .NET Aspire, you need the following installed locally:

e NET 8.0 or NET9.0%.
e An OCl compliant container runtime, such as:

o Docker Desktop @ or Podman &'. For more information, see Container runtime.
¢ An Integrated Developer Environment (IDE) or code editor, such as:

o Visual Studio 2022 & version 17.9 or higher (Optional)

o Visual Studio Code & (Optional)

o C# Dev Kit: Extension@ (Optional)
o JetBrains Rider with .NET Aspire plugin & (Optional)

Q Tip

Alternatively, you can develop .NET Aspire solutions using GitHub Codespaces or

Dev Containers.

& J

Visual Studio 2022 17.9 or higher includes the latest .NET Aspire SDK by default when
you install the Web & Cloud workload. If you have an earlier version of Visual Studio
2022, you can either upgrade to Visual Studio 2022 17.9 or you can install the .NET
Aspire SDK using the following steps:

To install the .NET Aspire workload in Visual Studio 2022, use the Visual Studio installer.

1. Open the Visual Studio Installer.

https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://podman.io/
https://podman.io/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/

2. Select Modify next to Visual Studio 2022.
3. Select the ASP.NET and web development workload.
4. On the Installation details panel, select .NET Aspire SDK.

5. Select Modify to install the .NET Aspire integration.

Installation details

~ ASPNET and web development

sl

with WiL

m@ngle

Desktop development with C=+

.NET Aspire templates

.NET Aspire provides a set of solution and project templates. These templates are
available in your favorite .NET developer integrated environment. You can use these
templates to create full .NET Aspire solutions, or add individual projects to existing .NET

Aspire solutions.

Install the .NET Aspire templates

To install the .NET Aspire templates in Visual Studio, you need to manually install them
unless you're using Visual Studio 17.12 or later. For Visual Studio 17.9 to 17.11, follow

these steps:

1. Open Visual Studio.
2. Go to Tools > NuGet Package Manager > Package Manager Console.

3. Run the following command to install the templates:

.NET CLI

dotnet new install Aspire.ProjectTemplates

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/setup-tooling/web-workload-with-aspire.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/setup-tooling/web-workload-with-aspire.png#lightbox

For Visual Studio 17.12 or later, the .NET Aspire templates are installed automatically.

List the .NET Aspire templates

The .NET Aspire templates are installed automatically when you install Visual Studio 17.9
or later. To see what .NET Aspire templates are available, select File > New > Project in
Visual Studio, and search for "Aspire" in the search bar (a1t + s). You'll see a list of
available .NET Aspire project templates:

O

Create a new project A

Clear all

Recent project tem p|ates All languages < All platforms @ All project types

.NET Aspire Starter App

A project template for creating a .NET Aspire app with a Blazor
web frontend and web API backend service, optionally using

oo e o _

.NET Aspire Starter App

ey a3 W)

For more information, see .NET Aspire templates.

Container runtime

.NET Aspire projects are designed to run in containers. You can use either Docker
Desktop or Podman as your container runtime. Docker Desktop @' is the most common
container runtime. Podman &' is an open-source daemonless alternative to Docker, that
can build and run Open Container Initiative (OCl) containers. If your host environment
has both Docker and Podman installed, .NET Aspire defaults to using Docker. You can
instruct .NET Aspire to use Podman instead, by setting the
DOTNET_ASPIRE_CONTAINER_RUNTIME environment variable to podman:

Windows

PowerShell

https://www.docker.com/products/docker-desktop/
https://www.docker.com/products/docker-desktop/
https://podman.io/docs/installation
https://podman.io/docs/installation
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/vs-create-dotnet-aspire-proj.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/vs-create-dotnet-aspire-proj.png#lightbox

[System.Environment]::SetEnvironmentVariable("DOTNET_ASPIRE_ CONTAINER RU
NTIME", "podman", "User")

For more information, see Install Podman on Windows .

.NET Aspire dashboard

.NET Aspire templates that expose the app host project also include a useful developer
dashboard that's used to monitor and inspect various aspects of your app, such as logs,
traces, and environment configurations. This dashboard is designed to improve the local
development experience and provides an overview of the overall state and structure of
your app.

The .NET Aspire dashboard is only visible while the app is running and starts
automatically when you start the * AppHost project. Visual Studio and Visual Studio
Code launch both your app and the .NET Aspire dashboard for you automatically in your
browser. If you start the app using the .NET CLI, copy and paste the dashboard URL from
the output into your browser, or hold ctr1 and select the link (if your terminal supports
hyperlinks).

startedysnippetsiquickstart\aspireSamplerAspireSample, AppHost

cd36a93Fbe?7 b5

The left navigation provides links to the different parts of the dashboard, each of which
you explore in the following sections.

AspireSample
Resources

Type MName State Start time Source Endpeints

Container cache Running 2 I docks

Praject apiservice Running 1 Aspiresa

Praject wel e Running AspireSample A

The .NET Aspire dashboard is also available in a standalone mode. For more information,
see Standalone .NET Aspire dashboard.

Visual Studio tooling

https://podman.io/docs/installation#installing-on-mac--windows
https://podman.io/docs/installation#installing-on-mac--windows
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/dotnet-run-login-url.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/dotnet-run-login-url.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/aspire-dashboard.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/aspire-dashboard.png#lightbox

Visual Studio provides additional features for working with .NET Aspire integrations and
the App Host orchestrator project. Not all of these features are currently available in
Visual Studio Code or through the CLI.

Add an integration package

You add .NET Aspire integrations to your app like any other NuGet package using Visual
Studio. However, Visual Studio also provides Ul options to add .NET Aspire integrations

directly.

1. In Visual Studio, right select on the project you want to add an .NET Aspire
integration to and select Add > .NET Aspire package....

] New ltem...

il Existing Item... Shift+Alt+A
New Scaffolded Item...

1 New Folder

"2 Application Insights Telemetry...

NET Aspire package...
.NET Aspire Orchestrator Support...

Container Orchestrator Support...
Docker Support...

Machine Learning Model...

D & aa

Client-Side Library...

New Azure Weblob Project
Existing Project as Azure WebJob

Project Reference...
Shared Project Reference...
COM Reference...

Service Reference...

Connected Service

Class... Shift+Alt+C

O & 9

New EditorConfig

@
New EditorConfig (IntelliCode)

https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/visual-studio-add-aspire-package.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/visual-studio-add-aspire-package.png#lightbox

2. The package manager opens with search results preconfigured (populating filter
criteria) for .NET Aspire integrations, allowing you to easily browse and select the

desired integration.

For more information on .NET Aspire integrations, see .NET Aspire integrations overview.

Add hosting packages

.NET Aspire hosting packages are used to configure various resources and dependencies
an app may depend on or consume. Hosting packages are differentiated from other
integration packages in that they're added to the *AppHost project. To add a hosting
package to your app, follow these steps:

1. In Visual Studio, right select on the *AppHost project and select Add > .NET Aspire
package....

https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/visual-studio-add-aspire-comp-nuget.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/visual-studio-add-aspire-comp-nuget.png#lightbox

] New Item... Ctrl+Shift+A
1] Existing ltem... Shift+Alt+A

':‘- New Folder

NET Aspire package...

<% Machine Learning Model...

Project Reference...
Shared Project Reference...
COM Reference...

Service Reference...

e Class... Shift+Alt+C

) New EditorConfig

New EditorConfig (IntelliCode)

-]

2. The package manager opens with search results preconfigured (populating filter
criteria) for .NET Aspire hosting packages, allowing you to easily browse and select

the desired package.

Browse Installed Updates NuGet Package Manager: AspireSample.AppHost

ownerAspine tagshosting % = 1 [Include prerelease

& Aspire.Hosting by Microsoft, 163K downloads 800
Core abstrackions for the NET Aspire application modal.

A Aspire.Hosting.Sdk by Microsoft, 86.3K downloads 204
MNET Aspire Hosting SDK, Fnabled via <lsAspireHosts e </lsAspiraHost>

A Aspire.Hosting.AppHost by Microsoft, 35.5K downloads 800
Core library and M3Huild logic for NET Aspire AppHost projects.

Package source: Al - &

A Aspire.Hosting

Version: .0.0 & Install

@ Package source mapping is off. Configure

(v) Options

Description

https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/visual-studio-add-aspire-hosting-package.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/visual-studio-add-aspire-hosting-package.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/visual-studio-add-aspire-hosting-nuget.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/visual-studio-add-aspire-hosting-nuget.png#lightbox

Add orchestration projects

You can add .NET Aspire orchestration projects to an existing app using the following
steps:

1. In Visual Studio, right select on an existing project and select Add > .NET Aspire
Orchestrator Support...

] New ltem...

1] Existing Item... Shift+Alt+A
New Scaffolded Item...

1 New Folder

*@ Application Insights Telemetry...
NET Aspire package...

NET Aspire Orchestrator Support...

Container Orchestrator Support...
Docker Support...

Machine Learning Model...

@ ¢« @

Client-Side Library...

New Azure WebJob Project
Existing Project as Azure WebJob

Project Reference...
Shared Project Reference...
COM Reference...

Service Reference...

Connected Service

Class... Shift+Alt+C

O & @

New EditorConfig

@
New EditorConfig (IntelliCode)

2. A dialog window opens with a summary of the * AppHost and * ServiceDefaults
projects that are added to your solution.

https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/visual-studio-add-aspire-orchestrator.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/visual-studio-add-aspire-orchestrator.png#lightbox

Add JMEL Aspire Lirchestrator >Upport

This is going to add two new projects to your solution.
Specify the project name prefix and location of the new projects.

Project name prefix

ExampleProject

Location
ChlUsers\ ‘source\repos\ExampleProject Browse...

The following projects will be created:
- ExampleProject. AppHost.ceproj @
- ExampleProject.ServiceDefaults.csproj @&

QK Cancel

3. Select OK and the following changes are applied:

e The *AppHost and *ServiceDefaults orchestration projects are added to your
solution.

e A call to builder.AddServiceDefaults will be added to the Program.cs file of
your original project.

e A reference to your original project will be added to the Program.cs file of the
* AppHost project.

For more information on .NET Aspire orchestration, see .NET Aspire orchestration
overview.

Enlist in orchestration

Visual Studio provides the option to Enlist in Aspire orchestration during the new
project workflow. Select this option to have Visual Studio create *AppHost and

* ServiceDefaults projects alongside your selected project template.

Additional information

Blazor Web App C# Llinux mac0S Windows Blazor Cloud Web

Framework O

NET 8.0 {Long Terrm Support) -|

Authentication type @

Mone 2 |

[¥] Configure for HTTPS @
nteractive render mode @

Server =

nteractivity location @

Per page/component = |

ﬂ Inchude sarmple pages @

L | Do not use top-level statements @

| Enlist in Aspire archestration @

Back Cregte }

Create test project

When you're using Visual Studio, and you select the .NET Aspire Start Application
template, you have the option to include a test project. This test project is an xUnit

project that includes a sample test that you can use as a starting point for your tests.

Additional information

INET Aspire Starter App C# NET Aspire APl Blazor Cloud Common Service ~Web Web API

Framework @
.NET 9.0 (Preview)
“| Configure for HTTPS ®
¥| Use Redis for caching (requires a supported container runtime) @

Create a test project @

None o

None
MSTest
NUnit
xUnit.net

Create

For more information, see Write your first NET Aspire test.

https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/aspire-enlist-orchestration.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/aspire-enlist-orchestration.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/setup-tooling/create-test-projects-template.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/setup-tooling/create-test-projects-template.png#lightbox

See also

e Unable to install .NET Aspire workload
e Use Dev Proxy with .NET Aspire project

https://learn.microsoft.com/en-us/microsoft-cloud/dev/dev-proxy/how-to/use-dev-proxy-with-dotnet-aspire

.NET Aspire SDK

Article « 02/25/2025

The .NET Aspire SDK is intended for * AppHost projects, which serve as the .NET Aspire
orchestrator. These projects are designated using the

<IsAspireHost>true</IsAspireHost> property, as well as specifying the
Aspire.AppHost.Sdk in the project file. The SDK provides a set of features that simplify
the development of .NET Aspire apps.

Overview

The @ Aspire. AppHost.Sdk & is an additive MSBuild project SDK for building .NET
Aspire apps. The Aspire.AppHost.Sdk is defined with a top-level Project/sdk:

XML

<Project Sdk="Microsoft.NET.Sdk">
<Sdk Name="Aspire.AppHost.Sdk" Version="9.1.0" />

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net9.0</TargetFramework>
<IsAspireHost>true</IsAspireHost>
<!-- Omitted for brevity -->
</PropertyGroup>

<ItemGroup>
<PackageReference Include="Aspire.Hosting.AppHost" Version="9.1.0"
/>
</ItemGroup>

<l-- Omitted for brevity -->
</Project>

The preceding example project defines the top-level SDK as Microsoft.NET.Sdk and the
Aspire.AppHost.Sdk as an additive SDK. The IsAspireHost property is setto true to
indicate that this project is an .NET Aspire app host. The project also references the
Aspire.Hosting.AppHost package which brings in a number of Aspire-related

dependencies.

SDK Features

https://www.nuget.org/packages/Aspire.AppHost.Sdk
https://www.nuget.org/packages/Aspire.AppHost.Sdk
https://learn.microsoft.com/en-us/visualstudio/msbuild/how-to-use-project-sdk

The .NET Aspire SDK provides several key features.

Project references

Each ProjectReference in the .NET Aspire app host project isn't treated as standard
project references. Instead, they enable the app host to execute these projects as part of
its orchestration. Each project reference triggers a generator to create a class that
represents the project as an IProjectMetadata. This metadata is used to populate the
named projects in the generated Projects namespace. When you call the
Aspire.Hosting.ProjectResourceBuilderExtensions.AddProject API, the Projects
namespace is used to reference the project—passing the generated class as a generic-

type parameter.

Q Tip

If you need to reference a project in the tranditional way within the app host, set

the IsAspireProjectResource attribute on the ProjectReference element to false,

as shown in the following example:

XML

<ProjectReference Include="..\MyProject\MyProject.csproj"
IsAspireProjectResource="false" />

Orchestrator dependencies

The .NET Aspire SDK dynamically adds references to the .NET Aspire dashboard and
other app host dependencies, such as the developer control plane (DCP) packages.

These dependencies are specific to the platform that the app host is built on.

When the app host project runs, the orchestrator relies on these dependencies to
provide the necessary functionality to the app host. For more information, see .NET
Aspire orchestration overview.

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.iprojectmetadata
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.projectresourcebuilderextensions.addproject

.NET Aspire templates

Article « 03/15/2025

There are a number of .NET Aspire project templates available to you. You can use these
templates to create full .NET Aspire solutions, or add individual projects to existing .NET

Aspire solutions.

The .NET Aspire templates are available in the [Aspire.ProjectTemplates @ NuGet
package.

Available templates

The .NET Aspire templates allow you to create new apps pre-configured with the .NET
Aspire solutions structure and default settings. These projects also provide a unified
debugging experience across the different resources of your app.

.NET Aspire templates are available in two categories: solution templates and project
templates. Solution templates create a new .NET Aspire solution with multiple projects,
while project templates create individual projects that can be added to an existing .NET

Aspire solution.

Solution templates

The following .NET Aspire solution templates are available, assume the solution is

named AspireSample:

e .NET Aspire Empty App: A minimal .NET Aspire project that includes the following:
o AspireSample.AppHost: An orchestrator project designed to connect and
configure the different projects and services of your app.
o AspireSample.ServiceDefaults: A .NET Aspire shared project to manage
configurations that are reused across the projects in your solution related to
resilience, service discovery, and telemetry.

e .NET Aspire Starter App: In addition to the .AppHost and .ServiceDefaults
projects, the .NET Aspire Starter App also includes the following:

o AspireSample.ApiService: An ASP.NET Core Minimal API project is used to
provide data to the frontend. This project depends on the shared
AspireSample.ServiceDefaults project.

o AspireSample.Web: An ASP.NET Core Blazor App project with default .NET
Aspire service configurations, this project depends on the
AspireSample.ServiceDefaults project.

https://www.nuget.org/packages/Aspire.ProjectTemplates
https://www.nuget.org/packages/Aspire.ProjectTemplates
https://learn.microsoft.com/en-us/dotnet/core/resilience/http-resilience
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/minimal-apis
https://learn.microsoft.com/en-us/aspnet/core/blazor

o AspireSample.Test: Either an MSTest, NUnit, or xUnit test project with project
references to the AspireSample.AppHost and an example WebTests.cs file
demonstrating an integration test.

The following .NET Aspire project templates are available:

e NET Aspire App Host: A standalone .AppHost project that can be used to
orchestrate and manage the different projects and services of your app.

e .NET Aspire Test projects: These project templates are used to create test projects
for your .NET Aspire app, and they're intended to represent functional and
integration tests. The test projects include the following templates:

o MSTest: A project that contains MSTest integration of a .NET Aspire AppHost
project.

o NUnit: A project that contains NUnit integration of a .NET Aspire AppHost
project.

https://learn.microsoft.com/en-us/dotnet/aspire/fundamentals/testing
https://learn.microsoft.com/en-us/dotnet/core/resilience/http-resilience
https://github.com/dotnet/aspire-samples
https://github.com/dotnet/aspire-samples

Create a new project Aspire

Clear all

Recent project tem plates All languages = All platforms - All project types

.NET Aspire Starter App

A project template for creating a .NET Aspire app with a Blazor
web frontend and web API backend service, optionally using

oo e o

.NET Aspire Starter App

R R

Follow the prompts to configure your project or solution from the template, and then

select Create.

See also

e NET Aspire SDK
e NET Aspire setup and tooling
e Testing in .NET Aspire

https://learn.microsoft.com/en-us/dotnet/aspire/fundamentals/testing
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/vs-create-dotnet-aspire-proj.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/vs-create-dotnet-aspire-proj.png#lightbox

.NET Aspire and GitHub Codespaces

Article « 02/25/2025

GitHub Codespaces® offers a cloud-hosted development environment based on Visual
Studio Code. It can be accessed directly from a web browser or through Visual Studio
Code locally, where Visual Studio Code acts as a client connecting to a cloud-hosted
backend. With .NET Aspire 9.1, comes logic to better support GitHub Codespaces
including:

e Automatically configure port forwarding with the correct protocol.
e Automatically translate URLs in the .NET Aspire dashboard.

Before .NET Aspire 9.1 it was still possible to use .NET Aspire within a GitHub Codespace,

however more manual configuration was required.

GitHub Codespaces vs. Dev Containers

GitHub Codespaces builds upon Visual Studio Code and the Dev Containers
specification@'. In addition to supporting GitHub Codespaces, .NET Aspire 9.1 enhances
support for using Visual Studio Code and locally hosted Dev Containers. While the
experiences are similar, there are some differences. For more information, see .NET

Aspire and Visual Studio Code Dev Containers.

Quick start using template repository

To configure GitHub Codespaces for .NET Aspire, use the .devcontainer/devcontainer,json
file in your repository. The simplest way to get started is by creating a new repository
from our template repository . Consider the following steps:

1. Create a new repository @ using our template.

https://github.com/features/codespaces
https://github.com/features/codespaces
https://containers.dev/implementors/spec/
https://containers.dev/implementors/spec/
https://containers.dev/implementors/spec/
https://github.com/dotnet/aspire-devcontainer
https://github.com/dotnet/aspire-devcontainer
https://github.com/new?template_name=aspire-devcontainer&template_owner=dotnet
https://github.com/new?template_name=aspire-devcontainer&template_owner=dotnet

Once you provide the details and select Create repository, the repository is

created and shown in GitHub.

2. From the new repository, select on the Code button and select the Codespaces tab
and then select Create codespace on main.

https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/new-repository-from-template.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/new-repository-from-template.png#lightbox

Go to file + <> Code ~

Local Codespaces Copilot

Codespaces

Your workspaces in the cloud

No codespaces

You don't have any codespaces with this

repository checked out

Learn more about codespaces...

@

Codespace usage for this repository is paid for by mitchdenny.

After you select Create codespace on main, you navigate to a web-based version
of Visual Studio Code. Before you use the Codespace, the containerized
development environment needs to be prepared. This process happens
automatically on the server and you can review progress by selecting the Building

codespace link on the notification in the bottom right of the browser window.

@

(i) setting up remote connection: Building codespace...

When the container image has finished being built the Terminal prompt appears
which signals that the environment is ready to be interacted with.

PROBLEMS QUTPUT DEBUG COMSOLE TERMIMNAL PORTS ==~ @ bash +-~ M mw -- ~

lelcome to Codespaces! You are on a custom image defined in your devcontainer.json file.

At this point, the .NET Aspire templates have been installed and the ASP.NET Core
developer certificate has been added and accepted.

3. Create a new .NET Aspire project using the starter template.

https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/create-codespace-from-repository.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/create-codespace-from-repository.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/building-codespace-image.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/building-codespace-image.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/codespace-terminal.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/codespace-terminal.png#lightbox

.NET CLI

dotnet new aspire-starter --name HelloAspire

This results in many files and folders being created in the repository, which are

visible in the Explorer panel on the left side of the window.

> @ B v & o DI

EXPLORER

gitignore

LICEMSE

» .devcontainer

£ nuget.config
(i) README.md
¥ SECURITY.md

HelloAspire ApiService
HelloAspire AppHost

* HELLO-ASPIRE [CODESPACES: ANIMATED DOLLOP]

>

>

» HelloAspire ServiceDefaults
HelloAspire Web
L1
¥

CODE_OF_CONDUCT.md
HelloAspiresin

Y

4. Launch the app host via the HelloAspire.AppHost/Program.cs file, by selecting the

Run project button near the top-right corner of the Tab bar.

EXPLORER

» .devcontainer
? HelloAspire.ApiService
 HelloAspire.AppHost
¥ bin
> obj
» Properties
{1 appsettings.Cevelopmentjson
{} appsettings,json

“ HELLO-ASPIRE [CODESPACES: A... [0 BT 00 &

« o] hello-aspire [Codespaces: animated dellop] &8~
[Preview] README.md € program.cs U X =3 o S I
HelloAspire.AppHost > € Program.cs

L = e e e e o L)

€ Program.cs

¢ > @ =B Y& obhin s

Hallofonite Sonicalafaulic

? HelloAspire.Web

© .gitignore

CODE_OF_CONDUCT.md
HelloAspire.sin

R LICENSE

£ nuget.config

(@ READMEmd

¥ SECURITY.md

var builder = DistributedApplication.CreateBuilder(args);

var apiService = builder.AddProject<Projects.HelloAspire ApiService>("

builder.AddProject<Projects.HelloAspire_Web»("webfrontend”)
.WithExternalHttpEndpoints()
.WithReference(apiService)
.WaitFor(apiService);

builder.Build{).Run();

https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/codespaces-explorer-panel.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/codespaces-explorer-panel.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/codespace-launch-apphost.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/codespace-launch-apphost.png#lightbox

After a few moments the Debug Console panel is displayed, and it includes a link
to the .NET Aspire dashboard exposed on a GitHub Codespaces endpoint with the
authentication token.

DEBUG CONSOLE -~ Filter {e.g. text, lexcluds, ... £ c# HelloaspireAppHo: » =~ X

not be persisted outside of the container. Protected data will be unavailable when co
ntainer is destroyed. For more information go to https://aka.ms/aspnet/dataprotection
warning

warn: Microsoft.AspMetCore.DataProtection.KeyManagement.XmlKeyManager([35]

No XML encryptor configured. Key {edc3ebfBc-72ce-4739-bb13-bd42@4245ddd} may be
persisted to storage in unencrypted form.
info: Aspire.Hosting.DistributedApplication[@]

Now listening on: https://animated-dollop-xgrvgxquecbgdp-17897.app.github.dev
info: Aspire.Hosting.DistributedApplication[@]

Login to the dashboard at https://animated-dollop-xqrvgxqvecegdp-17897.2pp.gith
ub.dev/login?t=1198799707297d4d9f2dacblbtledaab C)\
info: Aspire.Hosting.DistributedApplication[@]

Distributed application started. Press Ctrl+C to shut down.

5. Open the .NET Aspire dashboard by selecting the dashboard URL in the Debug
Console. This opens the .NET Aspire dashboard in a separate tab within your

browser.

You notice on the dashboard that all HTTP/HTTPS endpoints defined on resources
have had their typical localhost address translated to a unique fully qualified

subdomain on the app.github.dev domain.

fanimated doflap xgns 17097 apg github.dew

HelloAspire

Resources
State Type Endpaints
Running AT1TF Project

webfrontand Funning 9PM Project

Traffic to each of these endpoints is automatically forwarded to the underlying
process or container running within the Codespace. This includes development

time tools such as PgAdmin and Redis Insight.

()

(O Note

In addition to the authentication token embedded within the URL of the
dashboard link of the Debug Console, endpoints also require authentication
via your GitHub identity to avoid port forwarded endpoints being accessible
to everyone. For more information on port forwarding in GitHub Codespaces,
see Forwarding_ports in your codespace

https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/codespaces-debug-console.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/codespaces-debug-console.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/codespaces-translated-urls.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/codespaces-translated-urls.png#lightbox
https://docs.github.com/codespaces/developing-in-a-codespace/forwarding-ports-in-your-codespace?tool=webui
https://docs.github.com/codespaces/developing-in-a-codespace/forwarding-ports-in-your-codespace?tool=webui

6. Commit changes to the GitHub repository.

GitHub Codespaces doesn't automatically commit your changes to the branch
you're working on in GitHub. You have to use the Source Control panel to stage

and commit the changes and push them back to the repository.

Working in a GitHub Codespace is similar to working with Visual Studio Code on
your own machine. You can checkout different branches and push changes just like
you normally would. In addition, you can easily spin up multiple Codespaces
simultaneously if you want to quickly work on another branch without disrupting
your existing debug session. For more information, see Developing in a

codespace &,

7. Clean up your Codespace.

GitHub Codespaces are temporary development environments and while you
might use one for an extended period of time, they should be considered a
disposable resource that you recreate as needed (with all of the
customization/setup contained within the devcontainerjson and associated

configuration files).

To delete your GitHub Codespace, visit the GitHub Codespaces page. This shows
you a list of all of your Codespaces. From here you can perform management

operations on each Codespace, including deleting them.

GitHub charges for the use of Codespaces. For more information, see Managing

the cost of GitHub Codespaces in your organization®'.

4 A

(O Note

.NET Aspire supports the use of Dev Containers in Visual Studio Code
independent of GitHub Codespaces. For more information on how to use Dev
Containers locally, see .NET Aspire and Dev Containers in Visual Studio
Code.

Manually configuring devcontainer.json

The preceding walkthrough demonstrates the streamlined process of creating a GitHub
Codespace using the .NET Aspire Devcontainer template. If you already have an existing
repository and wish to utilize Devcontainer functionality with .NET Aspire, add a

devcontainer,json file to the .devcontainer folder within your repository:

https://docs.github.com/codespaces/developing-in-a-codespace/developing-in-a-codespace?tool=webui
https://docs.github.com/codespaces/developing-in-a-codespace/developing-in-a-codespace?tool=webui
https://docs.github.com/codespaces/developing-in-a-codespace/developing-in-a-codespace?tool=webui
https://docs.github.com/codespaces/managing-codespaces-for-your-organization/choosing-who-owns-and-pays-for-codespaces-in-your-organization
https://docs.github.com/codespaces/managing-codespaces-for-your-organization/choosing-who-owns-and-pays-for-codespaces-in-your-organization
https://docs.github.com/codespaces/managing-codespaces-for-your-organization/choosing-who-owns-and-pays-for-codespaces-in-your-organization

Directory

L—pr7 .devcontainer
L— devcontainer.json

The template repository @ contains a copy of the devcontainer,json file that you can use
as a starting point, which should be sufficient for .NET Aspire. The following JSON
represents the latest version of the .devcontainer/devcontainer,json file from the
template:

JSON

// For format details, see https://aka.ms/devcontainer.json. For config
options, see the
// README at:
https://github.com/devcontainers/templates/tree/main/src/dotnet
{
"name": ".NET Aspire",
// Or use a Dockerfile or Docker Compose file. More info:
https://containers.dev/guide/dockerfile
"image": "mcr.microsoft.com/devcontainers/dotnet:9.0-bookworm",
"features": {
"ghcr.io/devcontainers/features/docker-in-docker:2": {},
"ghcr.io/devcontainers/features/powershell:1": {},

}s

"hostRequirements”: {
"cpus": 8,
"memory": "32gb",
"storage": "64gb"

s

// Use 'forwardPorts' to make a list of ports inside the container
available locally.

// "forwardPorts": [5000, 5001],

// "portsAttributes": {

// "5001": {

// "protocol": "https"
// }

/1 }

// Use 'postCreateCommand' to run commands after the container is
created.
// "postCreateCommand": "dotnet restore",
"onCreateCommand": "dotnet new install Aspire.ProjectTemplates::9.1.0 --
force",
"postStartCommand"”: "dotnet dev-certs https --trust",
"customizations": {
"vscode": {
"extensions": [
"ms-dotnettools.csdevkit",
"GitHub.copilot-chat",

https://github.com/dotnet/aspire-devcontainer
https://github.com/dotnet/aspire-devcontainer

"GitHub.copilot™

}
}

// Configure tool-specific properties.
// "customizations": {},

// Uncomment to connect as root instead. More info: https://aka.ms/dev-
containers-non-root.
// "remoteUser": "root"

Speed up Codespace creation

Creating a GitHub Codespace can take some time as it prepares the underlying
container image. To expedite this process, you can utilize prebuilds to significantly
reduce the creation time to approximately 30-60 seconds (exact timing might vary). For
more information on GitHub Codespaces prebuilds, see GitHub Codespaces prebuilds .

https://docs.github.com/codespaces/prebuilding-your-codespaces/about-github-codespaces-prebuilds
https://docs.github.com/codespaces/prebuilding-your-codespaces/about-github-codespaces-prebuilds

.NET Aspire and Visual Studio Code Dev
Containers

Article « 02/25/2025

The Dev Containers Visual Studio Code extension® provides a way for development
teams to develop within a containerized environment where all dependencies are
preconfigured. With .NET Aspire 9.1, there's added logic to better support working with
.NET Aspire within a Dev Container environment by automatically configuring port
forwarding.

Before .NET Aspire 9.1, it possible to use .NET Aspire within a Dev Container, however

more manual configuration was required.

Dev Containers vs. GitHub Codespaces

Using Dev Containers in Visual Studio Code is similar to using GitHub Codespaces. With
the release of .NET Aspire 9.1, support for both Dev Containers in Visual Studio Code
and GitHub Codespaces was enhanced. Although the experiences are similar, there are
some differences. For more information on using .NET Aspire with GitHub Codespaces,
see .NET Aspire and GitHub Codespaces.

Quick start using template repository

To configure Dev Containers in Visual Studio Code, use the
_.devcontainer/devcontainer.json file in your repository. The simplest way to get started
is by creating a new repository from our template repository . Consider the following

steps:

1. Create a new repository @ using our template.

https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers
https://github.com/dotnet/aspire-devcontainer
https://github.com/dotnet/aspire-devcontainer
https://github.com/new?template_name=aspire-devcontainer&template_owner=dotnet
https://github.com/new?template_name=aspire-devcontainer&template_owner=dotnet

Once you provide the details and select Create repository, the repository is

created and shown in GitHub.

2. Clone the repository to your local developer workstation using the following
command:

.NET CLI

git clone https://github.com/<org>/<username>/<repository>

3. Open the repository in Visual Studio Code. After a few moments Visual Studio
Code detects the .devcontainer/devcontainer,json file and prompt to open the
repository inside a container. Select whichever option is most appropriate for your

workflow.

https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/new-repository-from-template.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/new-repository-from-template.png#lightbox

Folder contains a Dev Container configuration file. Reopen &3 X

folder to develop in a container (learn more). Or: Clone

repository in Docker volume for better /O performance

Sourc... Reopen in Container Clone in Volume Don't Show Again

After a few moments, the list of files become visible and the local build of the dev
container will be completed.

® Learn the Fundamentals
& Get Started with WL Upsited

@ GitHub Copilot [ipdatas

TERMIMAL

Common, .MET &sp;

3 Dey Container, NET Aspire (Nighthd @ d.. | 3% main % @

4. Open a new terminal window in Visual Studio Code (ctr1 + shift + °) and create a

new .NET Aspire project using the dotnet command-line.

.NET CLI

dotnet new aspire-starter -n HelloAspire

After a few moments, the project will be created and initial dependencies restored.

5. Open the ProjectName.AppHost/Program.cs file in the editor and select the run
button on the top right corner of the editor window.

Visual Studio Code builds and starts the .NET Aspire app host and automatically

opens the .NET Aspire Dashboard. Because the endpoints hosted in the container

https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/reopen-in-container.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/reopen-in-container.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/devcontainer-build-completed.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/devcontainer-build-completed.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/vscode-run-button.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/vscode-run-button.png#lightbox

are using a self-signed certificate the first time, you access an endpoint for a

specific Dev Container you're presented with a certificate error.

The certificate error is expected. Once you've confirmed that the URL being

requested corresponds to the dashboard in the Dev Container you can ignore this
warning.

.NET Aspire automatically configures forwarded ports so that when you select on
the endpoints in the .NET Aspire dashboard they're tunneled to processes and
nested containers within the Dev Container.

6. Commit changes to the GitHub repository

After successfully creating the .NET Aspire project and verifying that it launches
and you can access the dashboard, it's a good idea to commit the changes to the
repository.

https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/browser-certificate-error.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/browser-certificate-error.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/aspire-dashboard-in-devcontainer.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/aspire-dashboard-in-devcontainer.png#lightbox

The preceding walkthrough demonstrates the streamlined process of creating a Dev
Container using the .NET Aspire Dev Container template. If you already have an existing
repository and wish to utilize Dev Container functionality with .NET Aspire, add a

devcontainerjson file to the .devcontainer folder within your repository:

Directory

L—r7 .devcontainer
L— devcontainer.json

The template repository @ contains a copy of the devcontainer,json file that you can use
as a starting point, which should be sufficient for .NET Aspire. The following JSON
represents the latest version of the .devcontainer/devcontainerjson file from the
template:

JSON

// For format details, see https://aka.ms/devcontainer.json. For config
options, see the
// README at:
https://github.com/devcontainers/templates/tree/main/src/dotnet
{
"name": ".NET Aspire",
// Or use a Dockerfile or Docker Compose file. More info:
https://containers.dev/guide/dockerfile
"image": "mcr.microsoft.com/devcontainers/dotnet:9.0-bookworm",
"features": {
"ghcr.io/devcontainers/features/docker-in-docker:2": {},
"ghcr.io/devcontainers/features/powershell:1": {},

}s

"hostRequirements": {
"cpus": 8,
"memory": "32gb",
"storage": "64gb"

¥

// Use 'forwardPorts' to make a list of ports inside the container
available locally.

// "forwardPorts": [5000, 5001],

// "portsAttributes": {

// "5001": {

// "protocol": "https"
// }

/1 }

// Use 'postCreateCommand' to run commands after the container is
created.

// "postCreateCommand": "dotnet restore",

"onCreateCommand": "dotnet new install Aspire.ProjectTemplates::9.1.0 --

https://github.com/dotnet/aspire-devcontainer
https://github.com/dotnet/aspire-devcontainer

force",

"postStartCommand"”: "dotnet dev-certs https --trust",

"customizations": {
"vscode": {

"extensions": [
"ms-dotnettools.csdevkit",
"GitHub.copilot-chat",
"GitHub.copilot™

}

// Configure tool-specific properties.
// "customizations": {},

// Uncomment to connect as root instead. More info:

containers-non-root.
// "remoteUser": "root"

https://aka

.ms/dev-

What's new in .NET Aspire 9.1

Article « 02/25/2025

&« .NET Aspire 9.1 is the next minor version release of .NET Aspire; it supports both:

e NET 8.0 Long Term Support (LTS) or
e .NET 9.0 Standard Term Support (STS).

O Note

You're able to use .NET Aspire 9.1 with either .NET 8 or .NET 9!

As always, we focused on highly requested features and pain points from the
community. Our theme for 9.1 was "polish, polish, polish"—so you see quality of life
fixes throughout the whole platform. Some highlights from this release are resource
relationships in the dashboard, support for working in GitHub Codespaces, and

publishing resources as a Dockerfile.

If you have feedback, questions, or want to contribute to .NET Aspire, collaborate with
us on © GitHub Z or join us on ® Discord # to chat with team members.

Whether you're new to .NET Aspire or have been with us since the preview, it's
important to note that .NET Aspire releases out-of-band from .NET releases. While major
versions of .NET Aspire align with .NET major versions, minor versions are released more
frequently. For more details on .NET and .NET Aspire version support, see:

e NET support policy @ : Definitions for LTS and STS.

e NET Aspire support policy Z: Important unique product life cycle details.

Upgrade to .NET Aspire 9.1

Moving between minor releases of .NET Aspire is simple:

1. In your app host project file (that is, MyApp.AppHost.csproj), update the (@)
Aspire. AppHost.Sdk® NuGet package to version 9.1.0:

XML

<Project Sdk="Microsoft.NET.Sdk">
<Sdk Name="Aspire.AppHost.Sdk" Version="9.1.0" />

<!-- Omitted for brevity -->

https://github.com/dotnet/aspire
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire
https://discord.com/invite/h87kDAHQgJ
https://discord.com/invite/h87kDAHQgJ
https://discord.com/invite/h87kDAHQgJ
https://dotnet.microsoft.com/platform/support/policy
https://dotnet.microsoft.com/platform/support/policy
https://dotnet.microsoft.com/platform/support/policy/aspire
https://dotnet.microsoft.com/platform/support/policy/aspire
https://www.nuget.org/packages/Aspire.AppHost.Sdk
https://www.nuget.org/packages/Aspire.AppHost.Sdk
https://www.nuget.org/packages/Aspire.AppHost.Sdk

</Project>

For more information, see .NET Aspire SDK.

2. Check for any NuGet package updates, either using the NuGet Package Manager
in Visual Studio or the Update NuGet Package command in VS Code.

3. Update to the latest .NET Aspire templates by running the following .NET
command line:

.NET CLI

dotnet new update

(O Note

The dotnet new update command updates all of your templates to the latest

version.

¢ J

If your app host project file doesn't have the Aspire.AppHost.Sdk reference, you might
still be using .NET Aspire 8. To upgrade to 9.0, you can follow the documentation from

last release.

Improved onboarding experience

The onboarding experience for .NET Aspire is improved with 9.1. The team worked on
creating a GitHub Codespaces template that installs all the necessary dependencies for
.NET Aspire, making it easier to get started, including the templates and the ASP.NET
Core developer certificate. Additionally, there's support for Dev Containers. For more

information, see:

e NET Aspire and GitHub Codespaces
e NET Aspire and Visual Studio Code Dev Containers

Dashboard UX and customization

With every release of .NET Aspire, the dashboard gets more powerful and customizable,
this release is no exception. The following features were added to the dashboard in .NET

Aspire 9.1:

Resource relationships

The dashboard now supports "parent" and "child" resource relationships. For instance,
when you create a Postgres instance with multiple databases, these databases are

nested under the same instance on the Resource page.

4 TestShop resources

https://localhost

an TestShop

Resources

Name State Endpoints Actions

messaging =2 Running http://localhost:59608
v postgres Running tep://localhost:59604
catalogdb Running
postgres-pgadmin Runniny
apigateway Running

aspire-dashboard Running

hacketservice

View filters

For more information, see Explore the .NET Aspire dashboard.

Localization overrides

The dashboard defaults to the language set in your browser. This release introduces the
ability to override this setting and change the dashboard language independently from
the browser language. Consider the following screen capture that demonstrates the
addition of the language dropdown in the dashboard:

https://learn.microsoft.com/en-us/dotnet/aspire/docs/whats-new/media/dashboard-parentchild.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/whats-new/media/dashboard-parentchild.png#lightbox

55} rrﬂ D & TestShop resources

el) httpsy/localhost 15887

TestSho :
i Settings

o RESOUrCES

Theme

o System
() Light
) Dark

Source

basketcache Running 8:54:32 ... Contai... docker.iuftibrary/redis:7.4
Language
basketcache-con Running 8:53:58 ... Contai... docker.io/rediscomman... :
English

basketcache-insic Running 8:53:56 ... Contai... docker.io/redis/redisinsi... L
Cestina

messaging Running 8:53:48 .. Contai... docker.io/library/rabbit... hitp:/, Deutsch
| English

? posigres Running 3:53:59 ... Contai... docker.io/library/postgr... tep//l
Espaniol

postgres-pgadmi Running - Contai... docker.io/dpage/pgad... hitp: Frangais

- : 4 e = . Italiano
apigateway Running 5353 .. Project ApiGateway.csproj

! : Close
aspire-dashboarc Running . Project Aspire.Dashboard.csproj -

Clear logs and telemetry from the dashboard

New buttons were added to the Console logs, Structured logs, Traces and Metrics
pages to clear data. There's also a "Remove all" button in the settings popup to remove
everything with one action.

Now you use this feature to reset the dashboard to a blank slate, test your app, view

only the relevant logs and telemetry, and repeat.

& TestShop

RE. Traces

&

Console Resource (All) Q Filter... Filters No filters =

=+
E Timest... Name Spans Duration A..
Structured

i 10:18:28.2... catalogdbapp: Migrating catalog dat... catalogdbapp (9) O 2a43s

Traces

CDI' 10:18:394... I orderprocessor: rabbitmg connect ... orderprocessor (2) " 163.5ms

Metrics

Total: 2 results found

We @ love the developer community and thrive on its feedback, collaboration, and
contributions. This feature is a community contribution from @Daluur . Join us in

https://github.com/Daluur
https://github.com/Daluur
https://learn.microsoft.com/en-us/dotnet/aspire/docs/whats-new/media/dashboard-language.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/whats-new/media/dashboard-language.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/whats-new/media/dashboard-remove-telemetry.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/whats-new/media/dashboard-remove-telemetry.png#lightbox

celebrating their contribution by using the feature!

Q Tip

If you're interested in contributing to .NET Aspire, look for issues labeled with good

first issue @ and follow the contributor guide .

New filtering

You can now filter what you see in the Resource page by Resource type, State, and
Health state. Consider the following screen capture, which demonstrates the addition of
the filter options in the dashboard:

& TestShop

R@ Resources

= Resource types
Name Start... . Source Endpo

2 (All)
Shictured basketcache. 11:31:40... Conta... docker.io/library/... tep://N Container

G2 PostgresDatabaseResource
basketcache: 1131300 Conta... docker.iofredisco... http://
Project

Traces

Gl basketcache: 11:31:42... docker.io/redis/r... http:
Metrics / / _M State

messaging * 11:31:26... docker.io/library/... http:// (All)

Running
> postgres 11:31:39... docker.io/library/... tep://N
Health state

postgres-pgi 11:31:35... - docker.io/dpage... http:// (All)

Healthy
apigateway:-- 11:31:38... ApiGateway.csproj https:/

aspire-dashk 11:31:28... Aspire.Dashboar...

More resource details

When you select a resource in the dashboard, the details pane now displays new data
points, including References, Back references, and Volumes with their mount types. This
enhancement provides a clearer and more comprehensive view of your resources,

improving the overall user experience by making relevant details more accessible.

https://github.com/dotnet/aspire/issues?q=is%3Aissue%20state%3Aopen%20label%3A%22good%20first%20issue%22
https://github.com/dotnet/aspire/issues?q=is%3Aissue%20state%3Aopen%20label%3A%22good%20first%20issue%22
https://github.com/dotnet/aspire/issues?q=is%3Aissue%20state%3Aopen%20label%3A%22good%20first%20issue%22
https://github.com/dotnet/aspire/blob/main/docs/contributing.md
https://github.com/dotnet/aspire/blob/main/docs/contributing.md
https://learn.microsoft.com/en-us/dotnet/aspire/docs/whats-new/media/dashboard-filter.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/whats-new/media/dashboard-filter.png#lightbox

&

]

Resources

&

Console

%

Structured

@

Traces

Ga

Metrics

TestShop

Resources

Name State

catalogdb

postgres-pgadmi

apigateway

aspire-dashboarc

basketservice

catalogdbapp

catalogservice-be

catalogservice-de

frontend

Running

Running

Running

Running

Running

Running

Running

Running

Running

Endpoints

http://localhost:56790

https://localho...

https://localho...
https://localho...
https://localho...
https://localho...

https://localho...

Project: basketservice

View console logs

References

Resource

basketcache

messaging

Back references

Resource

apigateway

frontend

Type

Reference

Reference, WaitFor

Type

Reference

Reference

orderprocessor--- Running

For more information, see .NET Aspire dashboard: Resources page.

CORS support for custom local domains

You can now set the DOTNET_DASHBOARD_CORS_ALLOWED_ORIGINS environment variable to

allow the dashboard to receive telemetry from other browser apps, such as if you have

resources running on custom localhost domains.

For more information, see .NET Aspire app host: Dashboard configuration.

O Flexibility with console logs

The console log page has two new options. You're now able to download your logs so
you can view them in your own diagnostics tools. Plus, you can turn timestamps on or

off to reduce visual clutter when needed.

https://learn.microsoft.com/en-us/dotnet/aspire/docs/whats-new/media/dashboard-resourcedetails.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/whats-new/media/dashboard-resourcedetails.png#lightbox

4. TestShop console logs (basketcac X -+

localhost: 1

TestShop

2. Console logs

Resource basketcache " - Watching logs... £33

3 Download logs
3f3fbl5e43U4d+18d20d0@bcebalddd8+8a6781656+320+167bcca855f5ebd2566
1:C 28 Jan 2025 12:33:27.738 * 0080000000800 Redis is starting 008000
1:C 28 Jan 2025 12:33:27.738 * Redis version=7.4.0, bits=64, commit=00000000, modified=0, p
id=1, just started
1:C 28 Jan 2025 12:33:27.738 * Configuration loaded

f@ Show timestamps

For more information, see .NET Aspire dashboard: Console logs page.

Various UX improvements

Several new features in .NET Aspire 9.1 enhance and streamline the following popular

tasks:

e [Resource commands, such as Start and Stop buttons, are now available on the
Console logs page.

e Q Single selection to open in the text visualizer.

e @ URLs within logs are now automatically clickable, with commas removed from

endpoints.

Additionally, the () scroll position resets when switching between different resources—

this helps to visually reset the current resource view.

For more details on the latest dashboard enhancements, check out James Newton-King
on % Bluesky @, where he's been sharing new features daily.

Local development enhancements

In .NET Aspire 9.1, several improvements to streamline your local development

experience were an emphasis. These enhancements are designed to provide greater

https://bsky.app/profile/james.newtonking.com
https://bsky.app/profile/james.newtonking.com
https://bsky.app/profile/james.newtonking.com
https://bsky.app/profile/james.newtonking.com
https://learn.microsoft.com/en-us/dotnet/aspire/docs/whats-new/media/consolelogs-download.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/whats-new/media/consolelogs-download.png#lightbox

flexibility, better integration with Docker, and more efficient resource management.
Here are some of the key updates:

Start resources on demand

You can now tell resources not to start with the rest of your app by using
WithExplicitStart on the resource in your app host. Then, you can start it whenever
you're ready from inside the dashboard.

For more information, see Configure explicit resource start.

Better Docker integration

The publishAsbDockerfile() feature was introduced for all projects and executable

resources. This enhancement allows for complete customization of the Docker container

and Dockerfile used during the publish process.

While this APl was available in previous versions, it couldn't be used with

ProjectResource or ExecutableResource types.

Cleaning up Docker networks

In 9.1, we addressed a persistent issue where Docker networks created by .NET Aspire
would remain active even after the application was stopped. This bug, tracked in .NET
Aspire GitHub issue #6504 2, is resolved. Now, Docker networks are properly cleaned

up, ensuring a more efficient and tidy development environment.

Socket address issues fixed

Several users reported issues (#6693 £, #6704 2, #7095 &) with restarting the .NET
Aspire app host, including reconciliation errors and "address already in use" messages.

This release introduces a more robust approach to managing socket addresses, ensuring
only one instance of each address is used at a time. Additionally, improvements were
made to ensure proper project restarts and resource releases, preventing hanging
issues. These changes enhance the stability and reliability of the app host, especially
during development and testing.

Integration updates

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withexplicitstart
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.projectresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.executableresource
https://github.com/dotnet/aspire/issues/6504
https://github.com/dotnet/aspire/issues/6504
https://github.com/dotnet/aspire/issues/6504
https://github.com/dotnet/aspire/issues/6693
https://github.com/dotnet/aspire/issues/6693
https://github.com/dotnet/aspire/issues/6704
https://github.com/dotnet/aspire/issues/6704
https://github.com/dotnet/aspire/issues/7095
https://github.com/dotnet/aspire/issues/7095

.NET Aspire continues to excel through its integrations with various platforms. This
release includes numerous updates to existing integrations and details about ownership
migrations, enhancing the overall functionality and user experience.

Azure updates

This release also focused on improving various Azure integrations:

New emulators

We're excited to bring new emulators for making local development easier. The

following integrations got new emulators in this release:

e Azure Service Bus
e Azure Cosmos DB Linux-based (preview)

e Azure SignalR

C#

var serviceBus = builder.AddAzureServiceBus("servicebus")
.RunAsEmulator();

#pragma warning disable ASPIRECOSMOSDB00O1

var cosmosDb = builder.AddAzureCosmosDB("cosmosdb")
.RunAsPreviewEmulator();

var signalr = builder.AddAzureSignalR("signalr",

AzureSignalRServiceMode.Serverless)
.RunAsEmulator();

These new emulators work side-by-side with the existing emulators for:

e Azure Storage
e Azure Event Hubs
e Azure Cosmos DB

Cosmos DB

Along with support for the new emulator, Cosmos DB added the following features.

Support for Entra ID authentication by default

Previously, the Cosmos DB integration used access keys and a Key Vault secret to

connect to the service. .NET Aspire 9.1 added support for using more secure

https://learn.microsoft.com/en-us/azure/azure-signalr/signalr-howto-emulator

authentication using managed identities by default. If you need to keep using access
key authentication, you can get back to the previous behavior by calling
WithAccessKeyAuthentication.

Support for modeling Database and Containers in the app host

You can define a Cosmos DB database and containers in the app host and these
resources are available when you run the application in both the emulator and in Azure.
This allows you to define these resources up front and no longer need to create them

from the application, which might not have permission to create them.

For example API usage to add database and containers, see the following related
articles:

e NET Aspire Azure Cosmos DB integration

e NET Aspire Cosmos DB Entity Framework Core integration

Support for Cosmos DB-based triggers in Azure Functions

The AzureCosmosDBResource was modified to support consumption in Azure Functions
applications that uses the Cosmos DB trigger. A Cosmos DB resource can be initialized

and added as a reference to an Azure Functions resource with the following code:
C#

var cosmosDb

builder.AddAzureCosmosDB("cosmosdb")
.RunAsEmulator();

var database = cosmosDb.AddCosmosDatabase("mydatabase");

database.AddContainer("mycontainer™, "/id");

var funcApp =
builder.AddAzureFunctionsProject<Projects.AzureFunctionsEndToEnd Functions>
("funcapp")

.WithReference(cosmosDb)

.WaitFor(cosmosDb);

The resource can be used in the Azure Functions trigger as follows:
C#

public class MyCosmosDbTrigger(ILogger<MyCosmosDbTrigger> logger)
{
[Function(nameof (MyCosmosDbTrigger))]
public void Run([CosmosDBTrigger(
databaseName: "mydatabase",
containerName: "mycontainer",

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecosmosextensions.withaccesskeyauthentication
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecosmosdbresource

CreatelLeaseContainerIfNotExists = true,

Connection = "cosmosdb")] IReadOnlyList<Document> input)
{
logger.LogInformation(
"C# cosmosdb trigger function processed: {Count} messages",
input.Count);
}

For more information using Azure Functions with .NET Aspire, see .NET Aspire Azure

Functions integration (Preview).

Service Bus and Event Hubs

Similar to Cosmos DB, the Service Bus and Event Hubs integrations now allow you to
define Azure Service Bus queues, topics, subscriptions, and Azure Event Hubs instances
and consumer groups directly in your app host code. This enhancement simplifies your
application logic by enabling the creation and management of these resources outside
the application itself.

For more information, see the following updated articles:

e NET Aspire Azure Service Bus integration

e .NET Aspire Azure Event Hubs integration

Working with existing resources

There's consistent feedback about making it easier to connect to existing Azure
resources in .NET Aspire. With 9.1, you can now easily connect to an existing Azure
resource either directly by string name, or with app model parameters which can be
changed at deployment time. For example to connect to an Azure Service Bus account,
we can use the following code:

C#

var existingServiceBusName = builder.AddParameter("serviceBusName");
var existingServiceBusResourceGroup =
builder.AddParameter("serviceBusResourceGroup");

var serviceBus = builder.AddAzureServiceBus("messaging")
.AsExisting(existingServiceBusName,
existingServiceBusResourceGroup);

The preceding code reads the name and resource group from the parameters, and
connects to the existing resource when the application is run or deployed. For more

information, see use existing Azure resources.

Azure Container Apps

Experimental support for configuring custom domains in Azure Container Apps (ACA)
was added. For example:

C#

#pragma warning disable ASPIREACADOMAINS©01

var customDomain = builder.AddParameter("customDomain");
var certificateName = builder.AddParameter("certificateName");

builder.AddProject<Projects.AzureContainerApps_ApiService>("api")
.WithExternalHttpEndpoints()
.PublishAsAzureContainerApp((infra, app) =>

{

app.ConfigureCustombDomain(custombDomain, certificateName);

1)

For more information, see .NET Aspire diagnostics overview.

Even more integration updates

e OpenAl now supports the [@ Microsoft.Extensions.Al % NuGet package.

e RabbitMQ updated to version 7, and MongoDB to version 3. These updates
introduced breaking changes, leading to the release of new packages with version-
specific suffixes. The original packages continue to use the previous versions, while
the new packages are as follows:

o [@ Aspire.RabbitMQ.Client.v7 Z NuGet package. For more information, see the
NET Aspire RabbitMQ client integration documentation.

o [@ Aspire.MongoDB.Driver.v3 Z NuGet package. For more information, see the
NET Aspire MongoDB client integration documentation.

e Dapr migrated to the CommunityToolkitZ to facilitate faster innovation.

e Numerous other integrations received updates, fixes, and new features. For
detailed information, refer to our GitHub release notes @'.

The @ Aspire.Hosting. AWS NuGet package and source code migrated under Amazon
Web Services (AWS)) ownership &'. This migration happened as part of .NET Aspire 9.0,
we're just restating that change here.

Testing in .NET Aspire

https://www.nuget.org/packages/Microsoft.Extensions.AI
https://www.nuget.org/packages/Microsoft.Extensions.AI
https://www.nuget.org/packages/Aspire.RabbitMQ.Client.v7
https://www.nuget.org/packages/Aspire.RabbitMQ.Client.v7
https://www.nuget.org/packages/Aspire.MongoDB.Driver.v3
https://www.nuget.org/packages/Aspire.MongoDB.Driver.v3
https://github.com/CommunityToolkit/Aspire/tree/main/src/CommunityToolkit.Aspire.Hosting.Dapr
https://github.com/CommunityToolkit/Aspire/tree/main/src/CommunityToolkit.Aspire.Hosting.Dapr
https://github.com/dotnet/aspire/releases
https://github.com/dotnet/aspire/releases
https://www.nuget.org/packages/Aspire.Hosting.AWS
https://www.nuget.org/packages/Aspire.Hosting.AWS
https://github.com/aws/integrations-on-dotnet-aspire-for-aws
https://github.com/aws/integrations-on-dotnet-aspire-for-aws
https://github.com/aws/integrations-on-dotnet-aspire-for-aws

.NET Aspire 9.1 simplifies writing cross-functional integration tests with a robust
approach. The app host allows you to create, evaluate, and manage containerized
environments seamlessly within a test run. This functionality supports popular testing
frameworks like xUnit, NUnit, and MSTest, enhancing your testing capabilities and
efficiency.

Now, you're able to disable port randomization or enable the dashboard. For more
information, see .NET Aspire testing overview. Additionally, you can now Pass arguments
to your app host.

Some of these enhancements were introduced as a result of stability issues that were
reported, such as .NET Aspire GitHub issue #6678 & —where some resources failed to

start do to "address in use" errors.

Deployment

Significant improvements to the Azure Container Apps (ACA) deployment process are
included in .NET Aspire 9.1, enhancing both the azd CLI and app host options. One of
the most requested features—support for deploying npm applications to ACA—is now
implemented. This new capability allows npm apps to be deployed to ACA just like other
resources, streamlining the deployment process and providing greater flexibility for
developers.

We recognize there's more work to be done in the area of deployment. Future releases
will continue to address these opportunities for improvement. For more information on
deploying .NET Aspire to ACA, see Deploy a .NET Aspire project to Azure Container

Apps.

Breaking changes

.NET Aspire is moving quickly, and with that comes breaking changes. Breaking are
categorized as either:

e Binary incompatible: The assembly version has changed, and you need to
recompile your code.

e Source incompatible: The source code has changed, and you need to change your
code.

e Behavioral change: The code behaves differently, and you need to change your
code.

https://github.com/dotnet/aspire/issues/6678
https://github.com/dotnet/aspire/issues/6678

Typically APIs are decorated with the ObsoleteAttribute giving you a warning when you
compile, and an opportunity to adjust your code. For an overview of breaking changes
in .NET Aspire 9.1, see Breaking changes in .NET Aspire 9.1.

Upgrade today

Follow the directions outlined in the Upgrade to .NET Aspire 9.1 section to make the
switch to 9.1 and take advantage of all these new features today! As always, we're
listening for your feedback on GitHub ' -and looking out for what you want to see in 9.2
©.

For a complete list of issues addressed in this release, see .NET Aspire GitHub repository
—9.1 milestone .

https://learn.microsoft.com/en-us/dotnet/api/system.obsoleteattribute
https://learn.microsoft.com/en-us/dotnet/aspire/compatibility/9.1/
https://github.com/dotnet/aspire/issues
https://github.com/dotnet/aspire/issues
https://github.com/dotnet/aspire/issues?q=is%3Aissue%20state%3Aclosed%20milestone%3A9.1%20
https://github.com/dotnet/aspire/issues?q=is%3Aissue%20state%3Aclosed%20milestone%3A9.1%20
https://github.com/dotnet/aspire/issues?q=is%3Aissue%20state%3Aclosed%20milestone%3A9.1%20

Upgrade to .NET Aspire 9.0

Article « 11/12/2024

.NET Aspire 9.0 is now generally available. In this article, you learn the steps involved in
updating your existing .NET Aspire 8.x projects to .NET Aspire 9.0. There are a few ways
in which you can update your projects to .NET Aspire 9.0:

e Manually upgrade your projects to .NET Aspire 9.0.
e Use the Upgrade Assistant to upgrade your projects to .NET Aspire 9.0.

Q Tip

If you're new to .NET Aspire, there's no reason to upgrade anything. For more

information, see .NET Aspire setup and tooling.

Prerequisites

Before you upgrade your projects to .NET Aspire 9.0, ensure that you have the following

prerequisites:

e Install the latest tooling.
e Use the .NET Aspire SDK.

O Note

Feel free to uninstall the .NET Aspire workload as you'll no longer need it.

.NET CL

dotnet workload uninstall aspire

For more information, see dotnet workload uninstall.

"

If you don't uninstall the .NET Aspire workload, and you're using the new .NET Aspire
SDK and templates, you see both .NET Aspire 8.0 and .NET Aspire 9.0 templates.

Manually upgrade to .NET Aspire 9.0

https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-workload-uninstall

To upgrade your projects to .NET Aspire 9.0, you need to update your project files. The

following steps guide you through the process:

e Edit your app host project file to use the new .NET Aspire 9.0 SDK
(Aspire.AppHost.Sdk).

e Update the NuGet packages in your project files to the latest versions.

e Adjust your Program.cs file to use the new APIs and remove any obsolete APIs.

Edit your app host project file

To upgrade your app host project to .NET Aspire 9.0, you need to update your project
file to use the new [@ Aspire. AppHost.Sdk

diff
<Project Sdk="Microsoft.NET.Sdk">

+ <Sdk Name="Aspire.AppHost.Sdk" Version="9.0.0" />

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net8.0</TargetFramework>
<ImplicitUsings>enable</ImplicitUsings>
<Nullable>enable</Nullable>
<IsAspireHost>true</IsAspireHost>
<UserSecretsId>@afc20a6-cd99-4bf7-aael-1359b0d45189</UserSecretsid>

</PropertyGroup>
<ItemGroup>
<PackageReference Include="Aspire.Hosting.AppHost" Version="8.0.0" />

</ItemGroup>

</Project>

Optionally upgrade the target framework moniker (TFM)

.NET Aspire 9.0 runs on .NET 9.0, but you can also run it on .NET 8.0. In other words, just
because you're using the .NET Aspire SDK, and pointing to version 9.0 packages, you
can still target .NET 8.0. If you want to run your .NET Aspire 9.0 project on .NET 9.0, you

need to update the TargetFramework property in your project file:
diff
<Project Sdk="Microsoft.NET.Sdk">

<Sdk Name="Aspire.AppHost.Sdk" Version="9.0.0" />

https://www.nuget.org/packages/Aspire.AppHost.Sdk
https://www.nuget.org/packages/Aspire.AppHost.Sdk

<PropertyGroup>
<OutputType>Exe</OutputType>
- <TargetFramework>net8.0</TargetFramework>
+ <TargetFramework>net9.0</TargetFramework>
<ImplicitUsings>enable</ImplicitUsings>
<Nullable>enable</Nullable>
<IsAspireHost>true</IsAspireHost>
<UserSecretsId>@afc20a6-cd99-4bf7-aael-1359b0d45189</UserSecretsid>
</PropertyGroup>

<ItemGroup>
<PackageReference Include="Aspire.Hosting.AppHost" Version="9.1.0" />
</ItemGroup>

</Project>

For more information on TFMs, see Target frameworks in SDK-style projects: Latest
versions.

Overall app host project differences

If you followed all of the preceding steps, your app host project file should look like this:
diff
<Project Sdk="Microsoft.NET.Sdk">

+ <Sdk Name="Aspire.AppHost.Sdk" Version="9.0.0" />

<PropertyGroup>
<OutputType>Exe</OutputType>
- <TargetFramework>net8.0</TargetFramework>
+ <TargetFramework>net9.0</TargetFramework>
<ImplicitUsings>enable</ImplicitUsings>
<Nullable>enable</Nullable>
<IsAspireHost>true</IsAspireHost>
<UserSecretsId>@afc20a6-cd99-4bf7-aael-1359b0d45189</UserSecretsId>
</PropertyGroup>

<ItemGroup>
- <PackageReference Include="Aspire.Hosting.AppHost" Version="8.0.0" />
+ <PackageReference Include="Aspire.Hosting.AppHost" Version="9.1.0" />
</ItemGroup>

</Project>

The changes include the addition of the Aspire.AppHost.Sdk, the update of the

TargetFramework property to net9.0, and the update of the Aspire.Hosting.AppHost

https://learn.microsoft.com/en-us/dotnet/standard/frameworks#latest-versions
https://learn.microsoft.com/en-us/dotnet/standard/frameworks#latest-versions

package to version 9.0.0.

Adjust your Program.cs file

With the introduction of .NET Aspire 9.0, there are some breaking changes. Some APIs
were originally marked as experimental (with the ExperimentalAttribute) and are now
removed, while other APIs are now attributed as ObsoleteAttribute with details on new
replacement APIs. You need to adjust your Program.cs file (and potentially other affected
APIs) to use the new APIs. If you're using the Upgrade Assistant to upgrade your
projects, it automatically adjusts your Program.cs file in most cases.

For the complete list of breaking changes in .NET Aspire 9.0, see Breaking changes in
NET Aspire 9.0.

Use the Upgrade Assistant

The Upgrade Assistant is a tool that helps upgrade targeted projects to the latest
version. If you're new to the Upgrade Assistant, there's two modalities to choose from:

e The Visual Studio extension version.
e The .NET CLI global tool version.

Regardless of how you install the Upgrade Assistant, you can use it to upgrade your
.NET Aspire 8.x projects to .NET Aspire 9.0.

To upgrade the .NET Aspire app host project to .NET Aspire 9.0 with Visual Studio, right-
click the project in Solution Explorer and select Upgrade.

@ Important

If the Upgrade Assistant isn't already installed, you'll be prompted to install it.

The Upgrade Assistant displays a welcome package. Select the Aspire upgrades option:

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.experimentalattribute
https://learn.microsoft.com/en-us/dotnet/api/system.obsoleteattribute
https://learn.microsoft.com/en-us/dotnet/aspire/compatibility/9.0/
https://learn.microsoft.com/en-us/dotnet/aspire/compatibility/9.0/
https://learn.microsoft.com/en-us/dotnet/core/porting/upgrade-assistant-overview
https://learn.microsoft.com/en-us/dotnet/core/porting/upgrade-assistant-install#visual-studio-extension
https://learn.microsoft.com/en-us/dotnet/core/porting/upgrade-assistant-install#net-global-tool

4-—‘- File it View Git Project Build Debug Test Analyze Tools Extensions Window Help B Search - AspireSample

Debug = Any CPU - i AspireSample AppHost = # https - [=g 50
AspireSa...: Upgrade & x U

P

3 o-EIE
= | AspireSampleAppllost

Search Solution Cxplorer {Clele) Fa
Chllsershdavidisourceyeposidoos aspirchdocs\gel started\snippetsiquickstar AspireSampletAspireSample Appliost 6= Cllation AspaSamnple (4 013 projects)
AspireSampleApiService
5 71 AspireSample.AppHost
I |
Welcome to the Upgrade Assistant! 13 AspireSample ServiceDetaults
£1 AspireSample.Wel

Thiz experience will guide you through the process of upgrading your project towards newer technologies, |

Heady for upgrade? Select how you want to upgrade AspireSample AppHost

Aspire upgrades

Iﬁ Upgrade to latest .NET Aspire version
Upgrade your NET Aspire AppHost and projects to latest packages and AFls

+ Upgrade project to a newer NET version

n-place project upgrade

Upgrades project and its components in place using transformations applicable for the project,

~ NuGet upgrades

'e NuGet central package management {CPM)

Convert selected projects to use MuGet central package management {CPM) feature to simplity managing commaon
dependencies across all projects

With the Aspire upgrades option selected, the Upgrade Assistant displays the selectable

upgrade target components. Leave all the options checked and select Upgrade
selection:

Project Buil Debug Test Analy: fools Extensions Window Help

Debug = Any CPU Asp AppHost - & hittps - & GitHub Copilot 15

shdocs-aspiretdocsig \snippetsiquickstart\AspireSample)\ AspireSample.Ap AspireSample’ (4.0 4 projects)
ey o
b a™ AspireSample.AppHost
b A sample.ServiceDefaults

! b o &l Asp wple Wek
Select components to upgrade Upgrade selection =Sample Web

4.« 18 fspireSample AppHost.csproj
1+ B8 Dependencies
b« @ Propal
| appset evelopment json
#| [appsettingsjson

#1 6% Pragram.cs

Finally, after selecting the components to upgrade, the Upgrade Assistant displays the

results of the upgrade process. If everything was successful, you see green check marks
next to each component:

https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/upgrade-assistant-welcome-aspire.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/upgrade-assistant-welcome-aspire.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/upgrade-assistant-aspire-app-host-comps.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/upgrade-assistant-aspire-app-host-comps.png#lightbox

AspireSample

1ts - Upgrade

ed components

To take advantage of the latest updates in your .NET Aspire solution, update all NuGet
packages to version 9.0.0.

With the app host project updated, your project file should look like this:

diff

https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/upgrade-assistant-aspire-upgraded.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/upgrade-assistant-aspire-upgraded.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/visual-studio-update-nuget.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/visual-studio-update-nuget.png#lightbox

<TargetFramework>net8.0</TargetFramework>

<ImplicitUsings>enable</ImplicitUsings>

<Nullable>enable</Nullable>

<IsAspireHost>true</IsAspireHost>

<UserSecretsId>@afc20a6-cd99-4bf7-aael-1359b0d45189</UserSecretsId>
</PropertyGroup>

<ItemGroup>
- <PackageReference Include="Aspire.Hosting.AppHost" Version="8.0.0" />
+ <PackageReference Include="Aspire.Hosting.AppHost" Version="9.1.0" />
</ItemGroup>

</Project>

Q Tip

You'll want to also update the NuGet packages in your other projects to the latest

versions.

Verify the upgrade

As with any upgrade, ensure that the app runs as expected and that all tests pass. Build
the solution and look for suggestions, warnings, or errors in the output window—
address anything that wasn't an issue before. If you encounter any issues, let us know by

filing a GitHub issue®@'.

https://github.com/dotnet/aspire/issues/new/choose
https://github.com/dotnet/aspire/issues/new/choose

.NET Aspire orchestration overview

Article « 03/14/2025

.NET Aspire provides APIs for expressing resources and dependencies within your
distributed application. In addition to these APIs, there's tooling that enables several
compelling scenarios. The orchestrator is intended for local development purposes and
isn't supported in production environments.

Before continuing, consider some common terminology used in .NET Aspire:

e App model: A collection of resources that make up your distributed application
(DistributedApplication), defined within the Aspire.Hosting.ApplicationModel
namespace. For a more formal definition, see Define the app model.

e App host/Orchestrator project: The .NET project that orchestrates the app model,
named with the * AppHost suffix (by convention).

e Resource: A resource is a dependent part of an application, such as a .NET project,
container, executable, database, cache, or cloud service. It represents any part of
the application that can be managed or referenced.

¢ Integration: An integration is a NuGet package for either the app host that models
a resource or a package that configures a client for use in a consuming app. For
more information, see .NET Aspire integrations overview.

o Reference: A reference defines a connection between resources, expressed as a
dependency using the WithReference API. For more information, see Reference
resources or Reference existing resources.

O Note

.NET Aspire's orchestration is designed to enhance your local development
experience by simplifying the management of your cloud-native app's
configuration and interconnections. While it's an invaluable tool for development,
it's not intended to replace production environment systems like Kubernetes,
which are specifically designed to excel in that context.

Define the app model

.NET Aspire empowers you to seamlessly build, provision, deploy, configure, test, run,
and observe your distributed applications. All of these capabilities are achieved through
the utilization of an app model that outlines the resources in your .NET Aspire solution

and their relationships. These resources encompass projects, executables, containers,

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplication
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference

and external services and cloud resources that your app depends on. Within every .NET
Aspire solution, there's a designated App host project, where the app model is precisely
defined using methods available on the IDistributedApplicationBuilder. This builder is
obtained by invoking DistributedApplication.CreateBuilder.

C#

// Create a new app model builder
var builder = DistributedApplication.CreateBuilder(args);

// TODO:
// Add resources to the app model
// Express dependencies between resources

builder.Build().Run();

App host project

The app host project handles running all of the projects that are part of the .NET Aspire
project. In other words, it's responsible for orchestrating all apps within the app model.
The project itself is a .NET executable project that references the (@
Aspire.Hosting.AppHost @ NuGet package, sets the IsAspireHost property to true, and
references the .NET Aspire SDK:

XML

<Project Sdk="Microsoft.NET.Sdk">
<Sdk Name="Aspire.AppHost.Sdk" Version="9.1.0" />

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net9.0</TargetFramework>
<IsAspireHost>true</IsAspireHost>
<!-- Omitted for brevity -->
</PropertyGroup>

<ItemGroup>
<PackageReference Include="Aspire.Hosting.AppHost" Version="9.1.0"
/>
</ItemGroup>

<!-- Omitted for brevity -->

</Project>

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilder
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplication.createbuilder
https://www.nuget.org/packages/Aspire.Hosting.AppHost
https://www.nuget.org/packages/Aspire.Hosting.AppHost
https://www.nuget.org/packages/Aspire.Hosting.AppHost

The following code describes an app host Program with two project references and a

Redis cache:
c#

var builder = DistributedApplication.CreateBuilder(args);
var cache = builder.AddRedis("cache");

var apiservice = builder.AddProject<Projects.AspireApp_ApiService>
("apiservice");

builder.AddProject<Projects.AspireApp_Web>("webfrontend")
.WithExternalHttpEndpoints()
.WithReference(cache)
.WaitFor(cache)
.WithReference(apiService)
.WaitFor(apiService);

builder.Build().Run();

The preceding code:

e Creates a new app model builder using the CreateBuilder method.
e Adds a Redis cache resource named "cache" using the AddRedis method.
e Adds a project resource named "apiservice" using the AddProject method.
e Adds a project resource named "webfrontend" using the AddProject method.
o Specifies that the project has external HTTP endpoints using the
WithExternalHttpEndpoints method.
o Adds a reference to the cache resource and waits for it to be ready using the
WithReference and WaitFor methods.
o Adds a reference to the apiservice resource and waits for it to be ready using
the WithReference and WaitFor methods.
e Builds and runs the app model using the Build and Run methods.

The example code uses the .NET Aspire Redis hosting integration.

To help visualize the relationship between the app host project and the resources it
describes, consider the following diagram:

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplication.createbuilder
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redisbuilderextensions.addredis
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.projectresourcebuilderextensions.addproject
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.projectresourcebuilderextensions.addproject
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withexternalhttpendpoints
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.waitfor
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.waitfor
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplicationbuilder.build
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplication.run

(:]
AppHost project
(" L J)

Container resource Project resource Project resource
["cache" J ["apiservice”) ["webfrontend” }
| Connection Strings | | Service Endpoints | —‘7
|
. /

Each resource must be uniquely named. This diagram shows each resource and the
relationships between them. The container resource is named "cache" and the project
resources are named "apiservice" and "webfrontend". The web frontend project
references the cache and API service projects. When you're expressing references in this
way, the web frontend project is saying that it depends on these two resources, the
"cache" and "apiservice" respectively.

Built-in resource types

.NET Aspire projects are made up of a set of resources. The primary base resource types
in the (@ Aspire.Hosting.AppHost @ NuGet package are described in the following
table:

. Expand table

Method Resource type Description

AddProject ProjectResource A NET project, for example, an ASP.NET Core web app.
AddContainer ContainerResource A container image, such as a Docker image.
AddExecutable ExecutableResource An executable file, such as a Node.js app.

AddParameter ParameterResource A parameter resource that can be used to express external
parameters.

Project resources represent .NET projects that are part of the app model. When you add
a project reference to the app host project, the .NET Aspire SDK generates a type in the
Projects namespace for each referenced project. For more information, see .NET Aspire

SDK: Project references.

To add a project to the app model, use the AddProject method:

https://www.nuget.org/packages/Aspire.Hosting.AppHost
https://www.nuget.org/packages/Aspire.Hosting.AppHost
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.projectresourcebuilderextensions.addproject
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.projectresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.addcontainer
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.containerresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.executableresourcebuilderextensions.addexecutable
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.executableresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addparameter
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.parameterresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.projectresourcebuilderextensions.addproject
https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/app-host-resource-diagram.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/app-host-resource-diagram.png#lightbox

C#

var builder = DistributedApplication.CreateBuilder(args);

// Adds the project "apiservice" of type "Projects.AspireApp_ ApiService".
var apiservice = builder.AddProject<Projects.AspireApp ApiService>
("apiservice");

Projects can be replicated and scaled out by adding multiple instances of the same
project to the app model. To configure replicas, use the WithReplicas method:

C#

var builder = DistributedApplication.CreateBuilder(args);

// Adds the project "apiservice" of type "Projects.AspireApp_ApiService".
var apiservice = builder.AddProject<Projects.AspireApp_ApiService>
("apiservice")

.WithReplicas(3);

The preceding code adds three replicas of the "apiservice" project resource to the app
model. For more information, see .NET Aspire dashboard: Resource replicas.

Configure explicit resource start

Project, executable and container resources are automatically started with your
distributed application by default. A resource can be configured to wait for an explicit
startup instruction with the WithExplicitStart method. A resource configured with
WithExplicitStart is initialized with KnownResourceStates.NotStarted.

C#

var builder = DistributedApplication.CreateBuilder(args);

var postgres = builder.AddPostgres("postgres");
var postgresdb = postgres.AddDatabase("postgresdb");

builder.AddProject<Projects.AspireApp DbMigration>("dbmigration")
.WithReference(postgresdb)
WithExplicitStart();

In the preceeding code the "dbmigration” resource is configured to not automatically
start with the distributed application.

Resources with explicit start can be started from the .NET Aspire dashboard by clicking
the "Start" command. For more information, see .NET Aspire dashboard: Stop or Start a

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.projectresourcebuilderextensions.withreplicas
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withexplicitstart
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withexplicitstart
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.knownresourcestates.notstarted#aspire-hosting-applicationmodel-knownresourcestates-notstarted

resource.

Reference resources

A reference represents a dependency between resources. For example, you can probably
imagine a scenario where you a web frontend depends on a Redis cache. Consider the
following example app host program C# code:

C#

var builder = DistributedApplication.CreateBuilder(args);
var cache = builder.AddRedis("cache");

builder.AddProject<Projects.AspireApp_Web>("webfrontend")
.WithReference(cache);

The "webfrontend" project resource uses WithReference to add a dependency on the
"cache" container resource. These dependencies can represent connection strings or
service discovery information. In the preceding example, an environment variable is
injected into the "webfrontend" resource with the name ConnectionStrings__cache. This
environment variable contains a connection string that the webfrontend uses to connect
to Redis via the .NET Aspire Redis integration, for example,

ConnectionStrings_cache="localhost:62354".

Waiting for resources

In some cases, you might want to wait for a resource to be ready before starting another
resource. For example, you might want to wait for a database to be ready before

starting an API that depends on it. To express this dependency, use the WaitFor method:
C#

var builder = DistributedApplication.CreateBuilder(args);

var postgres = builder.AddPostgres("postgres"”);
var postgresdb = postgres.AddDatabase("postgresdb");

builder.AddProject<Projects.AspireApp_ ApiService>("apiservice")
.WithReference(postgresdb)
.WaitFor(postgresdb);

In the preceding code, the "apiservice" project resource waits for the "postgresdb”
database resource to enter the KnownResourceStates.Running. The example code shows

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.waitfor
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.knownresourcestates.running#aspire-hosting-applicationmodel-knownresourcestates-running

the .NET Aspire PostgreSQL integration, but the same pattern can be applied to other

resources.

Other cases might warrant waiting for a resource to run to completion, either
KnownResourceStates.Exited or KnownResourceStates.Finished before the dependent
resource starts. To wait for a resource to run to completion, use the WaitForCompletion

method:

C#

var builder = DistributedApplication.CreateBuilder(args);

var postgres = builder.AddPostgres("postgres");
var postgresdb = postgres.AddDatabase("postgresdb");

var migration = builder.AddProject<Projects.AspireApp Migration>
("migration")
.WithReference(postgresdb)
.WaitFor(postgresdb);

builder.AddProject<Projects.AspireApp_ApiService>("apiservice")
.WithReference(postgresdb)
.WaitForCompletion(migration);

In the preceding code, the "apiservice" project resource waits for the "migration” project
resource to run to completion before starting. The "migration” project resource waits for
the "postgresdb” database resource to enter the KnownResourceStates.Running. This
can be useful in scenarios where you want to run a database migration before starting

the API service, for example.

Forcing resource start in the dashboard

Waiting for a resource can be bypassed using the "Start" command in the dashboard.
Clicking "Start" on a waiting resource in the dashboard instructs it to start immediately
without waiting for the resource to be healthy or completed. This can be useful when
you want to test a resource immediately and don't want to wait for the app to be in the
right state.

APIs for adding and expressing resources

.NET Aspire hosting integrations and client integrations are both delivered as NuGet
packages, but they serve different purposes. While client integrations provide client

library configuration for consuming apps outside the scope of the app host, hosting
integrations provide APIs for expressing resources and dependencies within the app

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.knownresourcestates.exited#aspire-hosting-applicationmodel-knownresourcestates-exited
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.knownresourcestates.finished#aspire-hosting-applicationmodel-knownresourcestates-finished
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.waitforcompletion
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.knownresourcestates.running#aspire-hosting-applicationmodel-knownresourcestates-running

host. For more information, see .NET Aspire integrations overview: Integration

responsibilities.

Express container resources

To express a ContainerResource you add it to an IDistributedApplicationBuilder instance
by calling the AddContainer method:

Docker

C#

var builder = DistributedApplication.CreateBuilder(args);

var ollama = builder.AddContainer("ollama", "ollama/ollama")
.WithBindMount("ollama", "/root/.ollama")
.WithBindMount("./ollamaconfig", "/usr/config")
WithHttpEndpoint(port: 11434, targetPort: 11434, name: "ollama")
.WithEntrypoint("/usr/config/entrypoint.sh")
.WithContainerRuntimeArgs("--gpus=all");

For more information, see GPU support in Docker Desktop &'

The preceding code adds a container resource named "ollama" with the image
ollama/ollama. The container resource is configured with multiple bind mounts, a

named HTTP endpoint, an entrypoint that resolves to Unix shell script, and container run
arguments with the WithContainerRuntimeArgs method.

Customize container resources

All ContainerResource subclasses can be customized to meet your specific requirements.
This can be useful when using a hosting integration that models a container resource,
but requires modifications. When you have an IResourceBuilder<ContainerResource>
you can chain calls to any of the available APIs to modify the container resource. .NET
Aspire container resources typically point to pinned tags, but you might want to use the
latest tag instead.

To help exemplify this, imagine a scenario where you're using the .NET Aspire Redis
integration. If the Redis integration relies on the 7.4 tag and you want to use the

latest tag instead, you can chain a call to the WithimageTag API:

C#

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.containerresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilder
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.addcontainer
https://docs.docker.com/desktop/gpu/
https://docs.docker.com/desktop/gpu/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.withcontainerruntimeargs
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.containerresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.withimagetag

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddRedis("cache")
.WithImageTag("latest");

// Instead of using the "7.4" tag, the "cache"
// container resource now uses the "latest" tag.

For more information and additional APIs available, see
ContainerResourceBuilderExtensions.

Container resource lifecycle

When the app host is run, the ContainerResource is used to determine what container
image to create and start. Under the hood, .NET Aspire runs the container using the
defined container image by delegating calls to the appropriate OCl-compliant container
runtime, either Docker or Podman. The following commands are used:

Docker

First, the container is created using the docker container create command. Then,

the container is started using the docker container start command.

e docker container create @ : Creates a new container from the specified image,
without starting it.

e docker container start': Start one or more stopped containers.

These commands are used instead of docker run to manage attached container
networks, volumes, and ports. Calling these commands in this order allows any IP

(network configuration) to already be present at initial startup.

Beyond the base resource types, ProjectResource, ContainerResource, and
ExecutableResource, .NET Aspire provides extension methods to add common resources
to your app model. For more information, see Hosting integrations.

Container resource lifetime

By default, container resources use the session container lifetime. This means that every
time the app host process is started, the container is created and started. When the app
host stops, the container is stopped and removed. Container resources can opt-in to a
persistent lifetime to avoid unnecessary restarts and use persisted container state. To

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions#methods
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.containerresource
https://docs.docker.com/reference/cli/docker/container/create/
https://docs.docker.com/reference/cli/docker/container/create/
https://docs.docker.com/reference/cli/docker/container/start/
https://docs.docker.com/reference/cli/docker/container/start/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.projectresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.containerresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.executableresource

achieve this, chain a call the ContainerResourceBuilderExtensions.WithLifetime APl and
pass ContainerLifetime.Persistent:

C#

var builder = DistributedApplication.CreateBuilder(args);
var ollama = builder.AddContainer("ollama", "ollama/ollama™)

WithLifetime(ContainerLifetime.Persistent);

The preceding code adds a container resource named "ollama" with the image
"ollama/ollama" and a persistent lifetime.

Connection string and endpoint references

It's common to express dependencies between project resources. Consider the following
example code:

C#
var builder = DistributedApplication.CreateBuilder(args);
var cache = builder.AddRedis("cache");

var apiservice = builder.AddProject<Projects.AspireApp_ApiService>
("apiservice");

builder.AddProject<Projects.AspireApp Web>("webfrontend")
.WithReference(cache)
.WithReference(apiservice);

Project-to-project references are handled differently than resources that have well-
defined connection strings. Instead of connection string being injected into the

"webfrontend" resource, environment variables to support service discovery are injected.

.. Expand table

Method Environment variable
WithReference(cache) ConnectionStrings_cache="localhost:62354"
WithReference(apiservice) services__apiservice__ http__ @="http://localhost:5455"

services__apiservice__https_ @="https://localhost:7356"

Adding a reference to the "apiservice" project results in service discovery environment
variables being added to the frontend. This is because typically, project-to-project

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.withlifetime
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.containerlifetime#aspire-hosting-applicationmodel-containerlifetime-persistent

communication occurs over HTTP/gRPC. For more information, see .NET Aspire service

discovery.

To get specific endpoints from a ContainerResource or an ExecutableResource, use one
of the following endpoint APIs:

e WithEndpoint
e WithHttpEndpoint
e WithHttpsEndpoint

Then call the GetEndpoint API to get the endpoint which can be used to reference the
endpoint in the WithReference method:

C#

var builder = DistributedApplication.CreateBuilder(args);

var customContainer = builder.AddContainer("myapp", "mycustomcontainer™)
.WithHttpEndpoint(port: 9043, name:

"endpoint");

var endpoint = customContainer.GetEndpoint("endpoint");

var apiservice = builder.AddProject<Projects.AspireApp ApiService>

("apiservice")
.WithReference(endpoint);

. Expand table

Method Environment variable

WithReference(endpoint) services__myapp__endpoint__@=https://localhost:9043

The port parameter is the port that the container is listening on. For more information
on container ports, see Container ports. For more information on service discovery, see

NET Aspire service discovery.

Service endpoint environment variable format

In the preceding section, the WithReference method is used to express dependencies
between resources. When service endpoints result in environment variables being
injected into the dependent resource, the format might not be obvious. This section
provides details on this format.

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.containerresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.executableresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withendpoint
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withhttpendpoint
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withhttpsendpoint
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.getendpoint
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference

When one resource depends on another resource, the app host injects environment
variables into the dependent resource. These environment variables configure the
dependent resource to connect to the resource it depends on. The format of the
environment variables is specific to .NET Aspire and expresses service endpoints in a way
that is compatible with Service Discovery.

Service endpoint environment variable names are prefixed with services__ (double

underscore), then the service name, the endpoint name, and finally the index. The index
supports multiple endpoints for a single service, starting with @ for the first endpoint

and incrementing for each endpoint.

Consider the following environment variable examples:

Environment

services__apiservice_http o

The preceding environment variable expresses the first HTTP endpoint for the
apiservice service. The value of the environment variable is the URL of the service

endpoint. A named endpoint might be expressed as follows:

Environment

services apiservice myendpoint 0

In the preceding example, the apiservice service has a named endpoint called

myendpoint . The value of the environment variable is the URL of the service endpoint.

Reference existing resources

Some situations warrant that you reference an existing resource, perhaps one that is
deployed to a cloud provider. For example, you might want to reference an Azure
database. In this case, you'd rely on the Execution context to dynamically determine
whether the app host is running in "run" mode or "publish" mode. If you're running
locally and want to rely on a cloud resource, you can use the IsRunMode property to
conditionally add the reference. You might choose to instead create the resource in
publish mode. Some hosting integrations support providing a connection string directly,

which can be used to reference an existing resource.

Likewise, there might be use cases where you want to integrate .NET Aspire into an
existing solution. One common approach is to add the .NET Aspire app host project to
an existing solution. Within your app host, you express dependencies by adding project

references to the app host and building out the app model. For example, one project
might depend on another. These dependencies are expressed using the WithReference
method. For more information, see Add .NET Aspire to an existing .NET app.

App host life cycles

The .NET Aspire app host exposes several life cycles that you can hook into by
implementing the IDistributedApplicationLifecycleHook interface. The following lifecycle
methods are available:

. Expand table

Order Method Description
1 BeforeStartAsync Executes before the distributed application starts.
2 AfterEndpointsAllocatedAsync Executes after the orchestrator allocates endpoints for

resources in the application model.

3 AfterResourcesCreatedAsync Executes after the resource was created by the
orchestrator.

While the app host provides life cycle hooks, you might want to register custom events.
For more information, see Eventing in .NET Aspire.

Register a life cycle hook

To register a life cycle hook, implement the IDistributedApplicationLifecycleHook
interface and register the hook with the app host using the AddLifecycleHook API:

C#

using Aspire.Hosting.Lifecycle;
using Microsoft.Extensions.Logging;

var builder = DistributedApplication.CreateBuilder(args);
builder.Services.AddLifecycleHook<LifecycleLogger>();
builder.Build().Run();

internal sealed class Lifecyclelogger(ILogger<LifecyclelLogger> logger)
: IDistributedApplicationLifecycleHook
{
public Task BeforeStartAsync(
DistributedApplicationModel appModel, CancellationToken
cancellationToken = default)

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.lifecycle.idistributedapplicationlifecyclehook
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.lifecycle.idistributedapplicationlifecyclehook.beforestartasync
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.lifecycle.idistributedapplicationlifecyclehook.afterendpointsallocatedasync
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.lifecycle.idistributedapplicationlifecyclehook.afterresourcescreatedasync
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.lifecycle.idistributedapplicationlifecyclehook
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.lifecycle.lifecyclehookservicecollectionextensions.addlifecyclehook

logger.LogInformation("BeforeStartAsync");
return Task.CompletedTask;

public Task AfterEndpointsAllocatedAsync(
DistributedApplicationModel appModel, CancellationToken
cancellationToken = default)
{
logger.LogInformation("AfterEndpointsAllocatedAsync");
return Task.CompletedTask;

public Task AfterResourcesCreatedAsync(
DistributedApplicationModel appModel, CancellationToken
cancellationToken = default)
{
logger.LogInformation("AfterResourcesCreatedAsync");
return Task.CompletedTask;

The preceding code:

e Implements the IDistributedApplicationLifecycleHook interface as a
LifecyclelLogger.
e Registers the life cycle hook with the app host using the AddLifecycleHook API.

e Logs a message for all the events.

When this app host is run, the life cycle hook is executed for each event. The following
output is generated:

Output

info: Lifecyclelogger[9]
BeforeStartAsync
info: Aspire.Hosting.DistributedApplication[@]
Aspire version: 9.0.0
info: Aspire.Hosting.DistributedApplication[@]
Distributed application starting.
info: Aspire.Hosting.DistributedApplication[@]
Application host directory is: ..\AspireApp\AspireApp.AppHost
info: Lifecyclelogger[9]
AfterEndpointsAllocatedAsync
info: Aspire.Hosting.DistributedApplication[@]
Now listening on: https://localhost:17043
info: Aspire.Hosting.DistributedApplication[@]
Login to the dashboard at https://localhost:17043/login?
t=d80+598bc8ab4c7ee97328alcbd55d72
info: Lifecyclelogger[Q]
AfterResourcesCreatedAsync

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.lifecycle.idistributedapplicationlifecyclehook
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.lifecycle.lifecyclehookservicecollectionextensions.addlifecyclehook

info: Aspire.Hosting.DistributedApplication[@]
Distributed application started. Press Ctrl+C to shut down.

The preferred way to hook into the app host life cycle is to use the eventing API. For
more information, see Eventing in .NET Aspire.

Execution context

The IDistributedApplicationBuilder exposes an execution context
(DistributedApplicationExecutionContext), which provides information about the current
execution of the app host. This context can be used to evaluate whether or not the app
host is executing as "run" mode, or as part of a publish operation. Consider the
following properties:

e |sRunMode: Returns true if the current operation is running.

e |sPublishMode: Returns true if the current operation is publishing.

This information can be useful when you want to conditionally execute code based on
the current operation. Consider the following example that demonstrates using the

IsRunMode property. In this case, an extension method is used to generate a stable node

name for RabbitMQ for local development runs.
C#

private static IResourceBuilder<RabbitMQServerResource>
RunWithStableNodeName (
this IResourceBuilder<RabbitMQServerResource> builder)

{
if (builder.ApplicationBuilder.ExecutionContext.IsRunMode)
{
builder.WithEnvironment(context =>
{
// Set a stable node name so queue storage is consistent between
sessions
var nodeName = $"{builder.Resource.Name}@localhost";
context.EnvironmentVariables["RABBITMQ NODENAME"] = nodeName;
1)
}
return builder;
¥

The execution context is often used to conditionally add resources or connection strings
that point to existing resources. Consider the following example that demonstrates
conditionally adding Redis or a connection string based on the execution context:

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilder
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplicationexecutioncontext
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplicationexecutioncontext.isrunmode
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplicationexecutioncontext.ispublishmode

C#

var builder = DistributedApplication.CreateBuilder(args);
var redis = builder.ExecutionContext.IsRunMode
? builder.AddRedis("redis")

: builder.AddConnectionString("redis");

builder.AddProject<Projects.WebApplication>("api™)
.WithReference(redis);

builder.Build().Run();

In the preceding code:

e If the app host is running in "run" mode, a Redis container resource is added.

e If the app host is running in "publish" mode, a connection string is added.

This logic can easily be inverted to connect to an existing Redis resource when you're

running locally, and create a new Redis resource when you're publishing.

. 1\

@ Important

.NET Aspire provides common APIs to control the modality of resource builders,
allowing resources to behave differently based on the execution mode. The fluent
APIs are prefixed with RunAs* and PublishAs*. The RunAs* APIs influence the local
development (or run mode) behavior, whereas the PublishAs* APls influence the
publishing of the resource. For more information on how the Azure resources use
these APIs, see Use existing_Azure resources.

Resource relationships

Resource relationships link resources together. Relationships are informational and don't
impact an app's runtime behavior. Instead, they're used when displaying details about
resources in the dashboard. For example, relationships are visible in the dashboard's

resource details, and parent relationships control resource nesting on the resources

page.
Relationships are automatically created by some app model APIs. For example:

e WithReference adds a relationship to the target resource with the type Reference.

e WaitFor adds a relationship to the target resource with the type waitFor.

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.waitfor

e Adding a database to a DB container creates a relationship from the database to
the container with the type Parent.

Relationships can also be explicitly added to the app model using WithRelationship and
WithParentRelationship.

C#
var builder = DistributedApplication.CreateBuilder(args);

var catalogDb = builder.AddPostgres("postgres")
.WithDataVolume()
.AddDatabase("catalogdb");

builder.AddProject<Projects.AspireApp_CatalogDbMigration>("migration™)
.WithReference(catalogDb)
.WithParentRelationship(catalogDb);

builder.Build().Run();

The preceding example uses WithParentRelationship to configure catalogdb database
as the migration project's parent. The Parent relationship is special because it controls
resource nesting on the resource page. In this example, migration is nested under

catalogdb.

-~

(O Note

There's validation for parent relationships to prevent a resource from having
multiple parents or creating a circular reference. These configurations can't be
rendered in the Ul, and the app model will throw an error.

See also

e NET Aspire integrations overview
.NET Aspire SDK
Eventing in .NET Aspire

Service discovery in .NET Aspire

.NET Aspire service defaults

Expressing external parameters

.NET Aspire inner-loop networking overview

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withrelationship
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withparentrelationship
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withparentrelationship

Orchestrate Node.js apps in .NET Aspire

Article « 03/04/2025

In this article, you learn how to use Node.js and Node Package Manager (npm) apps in a
.NET Aspire project. The sample app in this article demonstrates Angular , React , and
Vue client experiences. The following .NET Aspire APIs exist to support these scenarios

—and they're part of the Aspire.Hosting.NodeJS NuGet package:

e Nodejs :AddNodeApp.
e npmapps :AddNpmApp.

The difference between these two APIs is that the former is used to host Node.js apps,
while the latter is used to host apps that execute from a package.json file's scripts

section—and the corresponding npm run <script-name> command.

To work with .NET Aspire, you need the following installed locally:

e NET 8.0 or.NET9.0
e An OCl compliant container runtime, such as:

o Docker Desktop

https://angular.io/
https://angular.io/
https://react.dev/
https://react.dev/
https://vuejs.org/
https://vuejs.org/
https://nuget.org/packages/Aspire.Hosting.NodeJS
https://nuget.org/packages/Aspire.Hosting.NodeJS
https://nodejs.org/
https://nodejs.org/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.nodeapphostingextension.addnodeapp
https://docs.npmjs.com/cli/using-npm/scripts
https://docs.npmjs.com/cli/using-npm/scripts
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.nodeapphostingextension.addnpmapp
https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://podman.io/
https://podman.io/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://github.com/dotnet/aspire-samples/tree/main/samples/AspireWithJavaScript
https://github.com/dotnet/aspire-samples/tree/main/samples/AspireWithJavaScript
https://learn.microsoft.com/en-us/samples/dotnet/aspire-samples/aspire-angular-react-vue
https://learn.microsoft.com/en-us/samples/dotnet/aspire-samples/aspire-nodejs
https://learn.microsoft.com/en-us/samples/dotnet/aspire-samples/aspire-nodejs
https://expressjs.com/
https://expressjs.com/

o JetBrains Rider with .NET Aspire plugin & (Optional)
For more information, see .NET Aspire setup and tooling, and .NET Aspire SDK.

Additionally, you need to install Node.js on your machine. The sample app in this
article was built with Node.js version 20.12.2 and npm version 10.5.1. To verify your
Node.js and npm versions, run the following commands:

Node.js

node --version

Node.js

npm --version

To download Node,js (including npm), see the Node.js download page®'.

Clone sample source code
To clone the sample source code from GitHub &, run the following command:

Bash

git clone https://github.com/dotnet/aspire-samples.git

After cloning the repository, navigate to the samples/AspireWithJavaScript folder:
Bash

cd samples/AspireWithJavaScript

From this directory, there are six child directories described in the following list:

e AspireJavaScript.Angular: An Angular app that consumes the weather forecast API
and displays the data in a table.

e AspireJavaScript.AppHost: A .NET Aspire project that orchestrates the other apps
in this sample. For more information, see .NET Aspire orchestration overview.

e AspireJavaScript.MinimalApi: An HTTP API that returns randomly generated
weather forecast data.

e AspireJavaScript.React: A React app that consumes the weather forecast APl and
displays the data in a table.

https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://nodejs.org/en/download/package-manager
https://nodejs.org/en/download/package-manager
https://nodejs.org/en/download/package-manager
https://nodejs.org/en/download/package-manager
https://github.com/dotnet/aspire-samples/tree/main/samples/AspireWithJavaScript
https://github.com/dotnet/aspire-samples/tree/main/samples/AspireWithJavaScript

e AspireJavaScript.ServiceDefaults: The default shared project for .NET Aspire
projects. For more information, see .NET Aspire service defaults.
e AspireJavaScript.Vue: A Vue app that consumes the weather forecast APl and

displays the data in a table.

Install client dependencies

The sample app demonstrates how to use JavaScript client apps that are built on top of
Node,js. Each client app was written either using a npm create template command or

manually. The following table lists the template commands used to create each client
app, along with the default port:

. Expand table

App type Create template command Default port
Angular & npm create @angular@latest 4200
React @ Didn't use a template. PORT env var
Vue & npm create vue@latest 5173

Q Tip

You don't need to run any of these commands, since the sample app already
includes the clients. Instead, this is a point of reference from which the clients were
created. For more information, see npm-init'.

To run the app, you first need to install the dependencies for each client. To do so,
navigate to each client folder and run npm install (or the install alias npm i)

commands .

Install Angular dependencies

Node.js

npm i ./AspireJavaScript.Angular/
For more information on the Angular app, see explore the Angular client.

Install React dependencies

https://angular.dev/
https://angular.dev/
https://react.dev/
https://react.dev/
https://vuejs.org/
https://vuejs.org/
https://docs.npmjs.com/cli/v10/commands/npm-install
https://docs.npmjs.com/cli/v10/commands/npm-install
https://docs.npmjs.com/cli/v10/commands/npm-install
https://docs.npmjs.com/cli/commands/npm-init
https://docs.npmjs.com/cli/commands/npm-init

Node.js

npm i ./AspireJavaScript.React/

For more information on the React app, see explore the React client.

Install Vue dependencies

Node.js

npm i ./AspireJavaScript.Vue/

For more information on the Vue app, see explore the Vue client.

Run the sample app

To run the sample app, call the dotnet run command given the orchestrator app host
AspireJavaScript. AppHost.csproj as the --project switch:

.NET CL
dotnet run --project

./AspireJavaScript.AppHost/AspireJavaScript.AppHost.csproj

The .NET Aspire dashboard launches in your default browser, and each client app
endpoint displays under the Endpoints column of the Resources page. The following

image depicts the dashboard for this sample app:

AspirelavaScript

¥ _ Resources

Type

The weatherapi service endpoint resolves to a Swagger Ul page that documents the
HTTP API. Each client app consumes this service to display the weather forecast data.
You can view each client app by navigating to the corresponding endpoint in the .NET
Aspire dashboard. Their screenshots and the modifications made from the template
starting point are detailed in the following sections.

https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-run
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/aspire-dashboard-with-nodejs.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/aspire-dashboard-with-nodejs.png#lightbox

In the same terminal session that you used to run the app, press ctrl +

https://nuget.org/packages/Aspire.Hosting.NodeJS
https://nuget.org/packages/Aspire.Hosting.NodeJS

The project file also defines a build target that ensures that the npm dependencies are
installed before the app host is built. The app host code (Program.cs) declares the client
app resources using the AddNpmApp(IDistributedApplicationBuilder, String, String,
String, String([]) API.

C#
var builder = DistributedApplication.CreateBuilder(args);

var weatherApi = builder.AddProject<Projects.AspireJavaScript MinimalApi>
("weatherapi™)
.WithExternalHttpEndpoints();

builder.AddNpmApp("angular"”, "../AspirelavaScript.Angular")
.WithReference(weatherApi)
.WaitFor(weatherApi)
.WithHttpEndpoint(env: "PORT")
.WithExternalHttpEndpoints()
.PublishAsDockerFile();

builder.AddNpmApp(“react", "../AspireJavaScript.React")

.WithReference(weatherApi)

.WaitFor(weatherApi)

.WithEnvironment("BROWSER", "none") // Disable opening browser on npm
start

.WithHttpEndpoint(env: "PORT")

.WithExternalHttpEndpoints()

.PublishAsDockerFile();

builder.AddNpmApp(“vue", "../AspireJavaScript.Vue")
.WithReference(weatherApi)
.WaitFor(weatherApi)
.WithHttpEndpoint(env: "PORT")
.WithExternalHttpEndpoints()
.PublishAsDockerFile();

builder.AddNpmApp(“reactvite", "../AspireJavaScript.vite")
.WithReference(weatherApi)
.WithEnvironment("BROWSER", "none"
.WithHttpEndpoint(env: "VITE_PORT")
.WithExternalHttpEndpoints()
.PublishAsDockerFile();

builder.Build().Run();

The preceding code:

e Creates a DistributedApplicationBuilder.
e Adds the "weatherapi” service as a project to the app host.

o Marks the HTTP endpoints as external.

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.nodeapphostingextension.addnpmapp#aspire-hosting-nodeapphostingextension-addnpmapp(aspire-hosting-idistributedapplicationbuilder-system-string-system-string-system-string-system-string())
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.nodeapphostingextension.addnpmapp#aspire-hosting-nodeapphostingextension-addnpmapp(aspire-hosting-idistributedapplicationbuilder-system-string-system-string-system-string-system-string())
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplicationbuilder

e With a reference to the "weatherapi” service, adds the "angular”, "react", and "vue"
client apps as npm apps.
o Each client app is configured to run on a different container port, and uses the
PORT environment variable to determine the port.
o All client apps also rely on a Dockerfile to build their container image and are
configured to express themselves in the publishing manifest as a container from
the PublishAsDockerFile API.

For more information on inner-loop networking, see .NET Aspire inner-loop networking
overview. For more information on deploying apps, see .NET Aspire manifest format for

deployment tool builders.

When the app host orchestrates the launch of each client app, it uses the npm run start
command. This command is defined in the scripts section of the package.json file for
each client app. The start script is used to start the client app on the specified port.

Each client app relies on a proxy to request the "weatherapi” service.
The proxy is configured in:

e The proxy.confjs file for the Angular client.
e The webpack.config.js file for the React client.
e The vite.config.ts file for the Vue client.

Explore the Angular client

There are several key modifications from the original Angular template. The first is the
addition of a proxy.confs file. This file is used to proxy requests from the Angular client

to the "weatherapi" service.

JavaScript

module.exports = {
"/api": {
target:
process.env["services weatherapi_ https_0"] ||
process.env["services_ _weatherapi__ http_ 0"],

secure: process.env["NODE_ENV"] !== "development",
pathRewrite: {
"Afapit: "™,
¥
¥

};

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.executableresourcebuilderextensions.publishasdockerfile

The .NET Aspire app host sets the services_ weatherapi__http__@ environment variable,

which is used to resolve the "weatherapi" service endpoint. The preceding configuration
proxies HTTP requests that start with /api to the target URL specified in the

environment variable.

Then include the proxy file to in the angular,son file. Update the serve target to include
the proxyConfig option, referencing to the created proxy.confjs file. The Angular CLI will

now use the proxy configuration while serving the Angular client app.

JavaScript
"serve": {
"builder": "@angular-devkit/build-angular:dev-server",

"configurations": {
"production”: {
"pbuildTarget": "weather:build:production"
s
"development": {
"buildTarget": "weather:build:development"
}
s
"defaultConfiguration"”: "development",
"options": {
"proxyConfig": "proxy.conf.js"
}
}J

The third update is to the package.json file. This file is used to configure the Angular
client to run on a different port than the default port. This is achieved by using the PORT

environment variable, and the run-script-os npm package to set the port.

JSON

{
"name": "angular-weather",
"version": "0.0.0",

"engines": {
"node": ">=20.12"

¥
"scripts": {
"ng": "ng",
"start": "run-script-os",
"start:win32": "ng serve --port %PORT%",
"start:default": "ng serve --port $PORT",
"build": "ng build",
"watch": "ng build --watch --configuration development",
"test": "ng test"
¥

"private": true,

"dependencies": {
"@angular/animations": "~19.2.1",
"@angular/common": "~19.2.1",
"@angular/compiler": "719.2.1",
"@angular/core": "7219.2.1",
"@angular/forms": "719.2.1",
"@angular/platform-browser": "~19.2.1",
"@angular/platform-browser-dynamic": "~19.2.1",
"@angular/router": "719.2.1",
"rxjs": "~7.8.2",
"tslib": "~2.8.1",
"zone.js": "~0.15.0"

¥

"devDependencies": {
"@angular-devkit/build-angular": "~19.2.1",
"@angular/cli": "~19.2.1",
"@angular/compiler-cli": "~19.2.1",
"@types/jasmine": "~5.1.7",
"jasmine-core": "~5.6.0",
"karma": "~6.4.4",
"karma-chrome-launcher": "~3.2.0",
"karma-coverage": "~2.2.1",
"karma-jasmine": "~5.1.0",
"karma-jasmine-html-reporter": "~2.1.0",
"typescript": "~5.8.2",
"run-script-os": "~1.1.6"

}

}

The scripts section of the package.json file is used to define the start script. This script
is used by the npm start command to start the Angular client app. The start script is
configured to use the run-script-os package to set the port, which delegates to the ng
serve command passing the appropriate --port switch based on the OS-appropriate

syntax.

In order to make HTTP calls to the "weatherapi" service, the Angular client app needs to
be configured to provide the Angular HttpClient for dependency injection. This is

achieved by using the provideHttpClient helper function while configuring the

application in the app.config.ts file.

TypeScript

import { ApplicationConfig } from '@angular/core’;

import { provideHttpClient } from '@angular/common/http’;
import { provideRouter } from '@angular/router’;

import { routes } from './app.routes';

export const appConfig: ApplicationConfig = {
providers: [

provideRouter(routes),
provideHttpClient()
]
}s

Finally, the Angular client app needs to call the /api/WeatherForecast endpoint to

retrieve the weather forecast data. There are several HTML, CSS, and TypeScript updates,
all of which are made to the following files:

e app.component.css: Update the CSS to style the table. @

e app.component.html: Update the HTML to display the weather forecast data in a
table. @

e app.component.ts: Update the TypeScript to call the /api/WeatherForecast endpoint
and display the data in the table. @

TypeScript

import { Component, Injectable } from '@angular/core’;
import { CommonModule } from '@angular/common’;

import { RouterOutlet } from '@angular/router’;

import { HttpClient } from ‘@angular/common/http’;

import { WeatherForecasts } from '../types/weatherForecast';

@Injectable()
@Component ({
selector: 'app-root',
standalone: true,
imports: [CommonModule, RouterOutlet],
templateUrl: './app.component.html',
styleUrl: './app.component.css'
})
export class AppComponent {
title = 'weather';
forecasts: WeatherForecasts = [];

constructor(private http: HttpClient) {
http.get<WeatherForecasts>('api/weatherforecast"').subscribe({
next: result => this.forecasts = result,
error: console.error
}s
}
¥

Angular app running

To visualize the Angular client app, navigate to the "angular" endpoint in the .NET Aspire

dashboard. The following image depicts the Angular client app:

https://github.com/dotnet/aspire-samples/blob/ef6868b0999c6eea3d42a10f2b20433c5ea93720/samples/AspireWithJavaScript/AspireJavaScript.Angular/src/app/app.component.css
https://github.com/dotnet/aspire-samples/blob/ef6868b0999c6eea3d42a10f2b20433c5ea93720/samples/AspireWithJavaScript/AspireJavaScript.Angular/src/app/app.component.css
https://github.com/dotnet/aspire-samples/blob/ef6868b0999c6eea3d42a10f2b20433c5ea93720/samples/AspireWithJavaScript/AspireJavaScript.Angular/src/app/app.component.html
https://github.com/dotnet/aspire-samples/blob/ef6868b0999c6eea3d42a10f2b20433c5ea93720/samples/AspireWithJavaScript/AspireJavaScript.Angular/src/app/app.component.html
https://github.com/dotnet/aspire-samples/blob/ef6868b0999c6eea3d42a10f2b20433c5ea93720/samples/AspireWithJavaScript/AspireJavaScript.Angular/src/app/app.component.html
https://github.com/dotnet/aspire-samples/blob/ef6868b0999c6eea3d42a10f2b20433c5ea93720/samples/AspireWithJavaScript/AspireJavaScript.Angular/src/app/app.component.ts
https://github.com/dotnet/aspire-samples/blob/ef6868b0999c6eea3d42a10f2b20433c5ea93720/samples/AspireWithJavaScript/AspireJavaScript.Angular/src/app/app.component.ts
https://github.com/dotnet/aspire-samples/blob/ef6868b0999c6eea3d42a10f2b20433c5ea93720/samples/AspireWithJavaScript/AspireJavaScript.Angular/src/app/app.component.ts

TN Angular
Hello, weather

Dt Temp. (G} Temg, {F) Summar ¥

EL LR £ "2

Explore the React client

The React app wasn't written using a template, and instead was written manually. The
complete source code can be found in the dotnet/aspire-samples repository ©'. Some of
the key points of interest are found in the src/Apps file:

JavaScript

import { useEffect, useState } from "react";
import "./App.css”;

function App() {
const [forecasts, setForecasts] = useState([]);

const requestWeather = async () => {
const weather = await fetch("api/weatherforecast");
console.log(weather);

const weatherJson = await weather.json();
console.log(weatherJson);

setForecasts(weatherJson);

}s

useEffect(() => {
requestWeather();

b [Ds

return (
<div className="App">
<header className="App-header">
<h1>React Weather</hl>
<table>
<thead>

https://github.com/dotnet/aspire-samples/tree/main/samples/AspireWithJavaScript/AspireJavaScript.React
https://github.com/dotnet/aspire-samples/tree/main/samples/AspireWithJavaScript/AspireJavaScript.React
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/angular-app.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/angular-app.png#lightbox

<tr>
<th>Date</th>
<th>Temp. (C)</th>
<th>Temp. (F)</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
{«(

forecasts ?? [
{
date: "N/A",
temperatureC: "",
temperatureF: "",
summary: "No forecasts",
}J
]
).map((w) => {
return (
<tr key={w.date}>
<td>{w.date}</td>
<td>{w.temperatureC}</td>
<td>{w.temperatureF}</td>
<td>{w.summary}</td>
</tr>
)
H}
</tbody>
</table>
</header>
</div>
)
¥

export default App;

The app function is the entry point for the React client app. It uses the useState and
useEffect hooks to manage the state of the weather forecast data. The fetch APl is
used to make an HTTP request to the /api/WeatherForecast endpoint. The response is

then converted to JSON and set as the state of the weather forecast data.
JavaScript

const HTMLWebpackPlugin = require("html-webpack-plugin™);

module.exports = (env) => {
return {
entry: "./src/index.js",
devServer: {
port: env.PORT || 4001,
allowedHosts: "all",

proxy: [

context: ["/api"],

target:
process.env.services weatherapi_ https_ 0 ||
process.env.services__weatherapi__ http_ 0,

pathRewrite: { "~/api": "" },
secure: false,
s
1,
s
output: {

path: “${_dirname}/dist",
filename: "bundle.js",
¥
plugins: [
new HTMLWebpackPlugin({
template: "./src/index.html",
favicon: "./src/favicon.ico",

1
1,

module: {
rules: [
{
test: /\.js$/,
exclude: /node modules/,
use: {
loader: "babel-loader",
options: {
presets: [
"@babel/preset-env",
["@babel/preset-react"”, { runtime: "automatic" }],

Is

¥
}s

{
test: /\.css$/,

exclude: /node_modules/,
use: ["style-loader", "css-loader"],

}s
1s
}s
}s
}s

The preceding code defines the module.exports as follows:

e The entry property is set to the src/indexs file.
e The devServer relies on a proxy to forward requests to the "weatherapi” service,
sets the port to the PORT environment variable, and allows all hosts.

e The output results in a dist folder with a bundle s file.

e The plugins set the sr¢/index.html file as the template, and expose the favicon.ico
file.

The final updates are to the following files:

e App.css: Update the CSS to style the table. @
e App.js: Update the JavaScript to call the /api/WeatherForecast endpoint and display
the data in the table. &

React app running

To visualize the React client app, navigate to the "react” endpoint in the .NET Aspire

dashboard. The following image depicts the React client app:

React Weather

Date Temp. (C) Temp. (F) Summary
2024-04-25 212 Freezing
2024-04-26 3 3 Sweltering
2024-04-27 6 12 Balmy
2024-04-28 / Bracing

2024-04-29 21 69 Chilly

Explore the Vue client

There are several key modifications from the original Vue template. The primary updates
were the addition of the fetch call in the TheWelcome.vue file to retrieve the weather
forecast data from the /api/wWeatherForecast endpoint. The following code snippet

demonstrates the fetch call:

HTML

<script lang="ts">

interface WeatherForecast {
date: string
temperatureC: number
temperatureF: number
summary: string

}s

https://github.com/dotnet/aspire-samples/blob/ef6868b0999c6eea3d42a10f2b20433c5ea93720/samples/AspireWithJavaScript/AspireJavaScript.React/src/App.css
https://github.com/dotnet/aspire-samples/blob/ef6868b0999c6eea3d42a10f2b20433c5ea93720/samples/AspireWithJavaScript/AspireJavaScript.React/src/App.css
https://github.com/dotnet/aspire-samples/blob/ef6868b0999c6eea3d42a10f2b20433c5ea93720/samples/AspireWithJavaScript/AspireJavaScript.React/src/App.js
https://github.com/dotnet/aspire-samples/blob/ef6868b0999c6eea3d42a10f2b20433c5ea93720/samples/AspireWithJavaScript/AspireJavaScript.React/src/App.js
https://github.com/dotnet/aspire-samples/blob/ef6868b0999c6eea3d42a10f2b20433c5ea93720/samples/AspireWithJavaScript/AspireJavaScript.React/src/App.js
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/react-app.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/react-app.png#lightbox

type Forecasts = WeatherForecast[];

export default {
name: 'TheWelcome',
data() {
return {
forecasts: [],
loading: true,
error: null
}
s
mounted() {
fetch('api/weatherforecast")
.then(response => response.json())
.then(data => {
this.forecasts = data
})
.catch(error => {
this.error = error
})
.finally(() => (this.loading = false))
}
}

</script>

<template>
<table>
<thead>
<tr>
<th>Date</th>
<th>Temp. (C)</th>
<th>Temp. (F)</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr v-for="forecast in (forecasts as Forecasts)">
<td>{{ forecast.date }}</td>
<td>{{ forecast.temperatureC }}</td>
<td>{{ forecast.temperatureF }}</td>
<td>{{ forecast.summary }}</td>
</tr>
</tbody>
</table>
</template>

<style>

table {
border: none;
border-collapse: collapse;

}

th {
font-size: x-large;

font-weight: bold;
border-bottom: solid .2rem hsla(160, 100%, 37%, 1);

}

th,

td {
padding: 1rem;

}

td {
text-align: center;
font-size: large;

}

tr:nth-child(even) {
background-color: var(--vt-c-black-soft);

}
</style>

As the TheWelcome integration is mounted, it calls the /api/weatherforecast endpoint to
retrieve the weather forecast data. The response is then set as the forecasts data
property. To set the server port, the Vue client app uses the PORT environment variable.

This is achieved by updating the vite.config.ts file:
TypeScript

import { fileURLToPath, URL } from 'node:url’

import { defineConfig } from 'vite'
import vue from '@vitejs/plugin-vue'

// https://vitejs.dev/config/
export default defineConfig({

plugins: [
Vue())
1s
resolve: {
alias: {
'@': fileURLToPath(new URL('./src', import.meta.url))
}
s
server: {

host: true,
port: parseInt(process.env.PORT ?? "5173"),
proxy: {
"Japi': {
target: process.env.services weatherapi_ https_ 0 ||
process.env.services__weatherapi__ http_ 0,
changeOrigin: true,
rewrite: path => path.replace(/*\/api/, ''),
secure: false

}
}
1)

Additionally, the Vite config specifies the server.proxy property to forward requests to
the "weatherapi” service. This is achieved by using the services__weatherapi__http_ o

environment variable, which is set by the .NET Aspire app host.

The final update from the template is made to the TheWelcome.vue file. This file calls the
/api/WeatherForecast endpoint to retrieve the weather forecast data, and displays the

data in a table. It includes CSS, HTML, and TypeScript updates & .

Vue app running

To visualize the Vue client app, navigate to the "vue" endpoint in the .NET Aspire

dashboard. The following image depicts the Vue client app:

Date Temp. (C) Temp.(F} Summary

Deployment considerations

The sample source code for this article is designed to run locally. Each client app
deploys as a container image. The Dockerfile for each client app is used to build the
container image. Each Dockerfile is identical, using a multistage build to create a
production-ready container image.

Dockerfile

FROM node:20 as build

WORKDIR /app

https://github.com/dotnet/aspire-samples/blob/ef6868b0999c6eea3d42a10f2b20433c5ea93720/samples/AspireWithJavaScript/AspireJavaScript.Vue/src/components/TheWelcome.vue
https://github.com/dotnet/aspire-samples/blob/ef6868b0999c6eea3d42a10f2b20433c5ea93720/samples/AspireWithJavaScript/AspireJavaScript.Vue/src/components/TheWelcome.vue
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/vue-app.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/vue-app.png#lightbox

COPY package.json package.json
COPY package-lock.json package-lock.json

RUN npm install
COPY .

RUN npm run build
FROM nginx:alpine

COPY --from=build /app/default.conf.template
/etc/nginx/templates/default.conf.template
COPY --from=build /app/dist/weather/browser /usr/share/nginx/html

Expose the default nginx port
EXPOSE 80

CMD ["nginx", "-g", "daemon off;"]

The client apps are currently configured to run as true SPA apps, and aren't configured
to run in a server-side rendered (SSR) mode. They sit behind nginx, which is used to
serve the static files. They use a default.conf.template file to configure nginx to proxy
requests to the client app.

nginx

server {
listen ${PORT};
listen [::]:${PORT};
server_name localhost;

access_log /var/log/nginx/server.access.log main;

location / {
root /usr/share/nginx/html;
try files $uri $uri/ /index.html;

location /api/ {
proxy pass ${services__weatherapi__https_ 0};
proxy_http_version 1.1;
proxy ssl server_name on;
proxy_ set header X-Forwarded-For $proxy_add x_forwarded for;
rewrite ~/api(/.*)$ $1 break;

Node.js server app considerations

While this article focuses on client apps, you might have scenarios where you need to
host a Node.js server app. The same semantics are required to host a Node.js server app
as a SPA client app. The .NET Aspire app host requires a package reference to the
Aspire.Hosting.NodeJS Z NuGet package and the code needs to call either AddNodeApp
or AddNpmApp . These APIs are useful for adding existing JavaScript apps to the .NET

Aspire app host.

When configuring secrets and passing environment variables to JavaScript-based apps,
whether they are client or server apps, use parameters. For more information, see .NET
Aspire: External parameters—secrets.

Use the OpenTelemetry JavaScript SDK

To export OpenTelemetry logs, traces, and metrics from a Node.js server app, you use
the OpenTelemetry JavaScript SDK =,

For a complete example of a Node.js server app using the OpenTelemetry JavaScript
SDK, you can refer to the Code Samples: .NET Aspire Node.js sample page. Consider the
sample's instrumentation.js file, which demonstrates how to configure the
OpenTelemetry JavaScript SDK to export logs, traces, and metrics:

JavaScript

import { env } from 'node:process’;

import { NodeSDK } from ‘@opentelemetry/sdk-node’;

import { OTLPTraceExporter } from '@opentelemetry/exporter-trace-otlp-grpc’;
import { OTLPMetricExporter } from '@opentelemetry/exporter-metrics-otlp-
grpc’;

import { OTLPLogExporter } from '@opentelemetry/exporter-logs-otlp-grpc';
import { SimplelLogRecordProcessor } from '@opentelemetry/sdk-logs’;

import { PeriodicExportingMetricReader } from '@opentelemetry/sdk-metrics';
import { HttpInstrumentation } from '@opentelemetry/instrumentation-http’;
import { ExpressInstrumentation } from '@opentelemetry/instrumentation-
express';

import { RedisInstrumentation } from '@opentelemetry/instrumentation-redis-
4';

import { diag, DiagConsolelLogger, DiaglLoglLevel } from '@opentelemetry/api';
import { credentials } from '@grpc/grpc-js’';

const environment = process.env.NODE_ENV || 'development';

// For troubleshooting, set the log level to DiaglLoglevel.DEBUG
//diag.setLogger(new DiagConsolelLogger(), environment === 'development' ?
DiaglLoglevel.INFO : DiaglLoglLevel.WARN);

const otlpServer = env.OTEL_EXPORTER_OTLP_ENDPOINT;

if (otlpServer) {

https://nuget.org/packages/Aspire.Hosting.NodeJS
https://nuget.org/packages/Aspire.Hosting.NodeJS
https://opentelemetry.io/docs/languages/js/
https://opentelemetry.io/docs/languages/js/
https://learn.microsoft.com/en-us/samples/dotnet/aspire-samples/aspire-nodejs

console.log(OTLP endpoint: ${otlpServer});

const isHttps = otlpServer.startsWith('https://");
const collectorOptions = {
credentials: !isHttps
? credentials.createInsecure()
: credentials.createSsl()

}s

const sdk = new NodeSDK({
traceExporter: new OTLPTraceExporter(collectorOptions),
metricReader: new PeriodicExportingMetricReader({
exportIntervalMillis: environment === ‘'development' ? 5000 :
10000,
exporter: new OTLPMetricExporter(collectorOptions),
1)
logRecordProcessor: new SimplelLogRecordProcessor({
exporter: new OTLPLogExporter(collectorOptions)
3
instrumentations: [
new HttpInstrumentation(),
new ExpressInstrumentation(),
new RedisInstrumentation()
1,
1

sdk.start();

Q Tip

To configure the .NET Aspire dashboard OTEL CORS settings, see the .NET Aspire
dashboard OTEL CORS settings page.

Summary

While there are several considerations that are beyond the scope of this article, you
learned how to build .NET Aspire projects that use Node.js and Node Package Manager
(npm). You also learned how to use the AddNpmApp APIs to host Node.js apps and apps

that execute from a package.json file, respectively. Finally, you learned how to use the
npm CLI to create Angular, React, and Vue client apps, and how to configure them to run

on different ports.

See also

e Code Samples: .NET Aspire with Angular, React, and Vue

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.nodeapphostingextension.addnpmapp
https://learn.microsoft.com/en-us/samples/dotnet/aspire-samples/aspire-angular-react-vue

e Code Samples: .NET Aspire Node.js App

https://learn.microsoft.com/en-us/samples/dotnet/aspire-samples/aspire-nodejs

Orchestrate Python apps in .NET Aspire

Article « 11/12/2024

In this article, you learn how to use Python apps in a .NET Aspire app host. The sample
app in this article demonstrates launching a Python application. The Python extension

for .NET Aspire requires the use of virtual environments.

Prerequisites

To work with .NET Aspire, you need the following installed locally:

e NET8.0Z or NET9.0&
e An OCI compliant container runtime, such as:

o Docker Desktop @ or Podman &. For more information, see Container runtime.
e An Integrated Developer Environment (IDE) or code editor, such as:

o Visual Studio 2022 & version 17.9 or higher (Optional)

o Visual Studio Code @ (Optional)

o C# Dev Kit: Extension@ (Optional)
o JetBrains Rider with .NET Aspire plugin & (Optional)

For more information, see .NET Aspire setup and tooling, and .NET Aspire SDK.

Additionally, you need to install Python @ on your machine. The sample app in this
article was built with Python version 3.12.4 and pip version 24.1.2. To verify your Python

and pip versions, run the following commands:

Python

python --version

Python

pip --version

To download Python (including pip), see the Python download page®'.

Create a .NET Aspire project using the template

To get started launching a Python project in .NET Aspire first use the starter template to
create a .NET Aspire application host:

https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://podman.io/
https://podman.io/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads

.NET CL

dotnet new aspire -o PythonSample

In the same terminal session, change directories into the newly created project:

.NET CL

cd PythonSample

Once the template has been created launch the app host with the following command

to ensure that the app host and the .NET Aspire dashboard launches successfully:

.NET CL

dotnet run --project PythonSample.AppHost/PythonSample.AppHost.csproj

Once the app host starts it should be possible to click on the dashboard link in the
console output. At this point the dashboard will not show any resources. Stop the app

host by pressing ctr1 + c in the terminal.

Prepare a Python app

From your previous terminal session where you created the .NET Aspire solution, create
a new directory to contain the Python source code.

Console

mkdir hello-python

Change directories into the newly created hello-python directory:

Console

cd hello-python

Initialize the Python virtual environment

To work with Python apps, they need to be within a virtual environment. To create a

virtual environment, run the following command:

Python

python -m venv .venv

For more information on virtual environments, see the Python: Install packages in a

virtual environment using pip and venv#'.

To activate the virtual environment, enabling installation and usage of packages, run the

following command:

Unix/macOS

Bash

source .venv/bin/activate

Ensure that pip within the virtual environment is up-to-date by running the following

command:

Python

python -m pip install --upgrade pip

Install Python packages

Install the Flask package by creating a requirements.txt file in the hello-python directory
and adding the following line:

Python

Flask==3.0.3

Then, install the Flask package by running the following command:

Python

python -m pip install -r requirements.txt

After Flask is installed, create a new file named main.py in the hello-python directory and

add the following code:

Python

https://packaging.python.org/en/latest/guides/installing-using-pip-and-virtual-environments/
https://packaging.python.org/en/latest/guides/installing-using-pip-and-virtual-environments/
https://packaging.python.org/en/latest/guides/installing-using-pip-and-virtual-environments/

import os
import flask

app = flask.Flask(__name_)

@app.route('/', methods=["'GET'])
def hello world():
return 'Hello, World!'

if _name__ == "' _main__ ':
port = int(os.environ.get('PORT', 8111))
app.run(host='0.0.0.0", port=port)

The preceding code creates a simple Flask app that listens on port 8111 and returns the
message "Hello, World!" when the root endpoint is accessed.

Update the app host project

Install the Python hosting package by running the following command:
NET CLI

dotnet add ../PythonSample.AppHost/PythonSample.AppHost.csproj package
Aspire.Hosting.Python --version 9.0.0

After the package is installed, the project XML should have a new package reference

similar to the following:
XML

<Project Sdk="Microsoft.NET.Sdk">
<Sdk Name="Aspire.AppHost.Sdk" Version="9.1.0" />

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net9.0</TargetFramework>
<ImplicitUsings>enable</ImplicitUsings>
<Nullable>enable</Nullable>
<IsAspireHost>true</IsAspireHost>
<UserSecretsId>5fd92a87-fff8-4a09-9f6e-2c0d656e25ba</UserSecretsId>
</PropertyGroup>

<ItemGroup>
<PackageReference Include="Aspire.Hosting.AppHost" Version="9.1.0" />
<PackageReference Include="Aspire.Hosting.Python" Version="9.1.0" />
</ItemGroup>

</Project>

Update the app host Program.cs file to include the Python project, by calling the
AddPythonApp API and specifying the project name, project path, and the entry point file:

C#

using Microsoft.Extensions.Hosting;
var builder = DistributedApplication.CreateBuilder(args);

#pragma warning disable ASPIREHOSTINGPYTHON©O1
var pythonapp = builder.AddPythonApp("hello-python", "../hello-python",
"main.py")
.WithHttpEndpoint(env: "PORT")
.WithExternalHttpEndpoints()
.WithOtlpExporter();
#pragma warning restore ASPIREHOSTINGPYTHON©O1

if (builder.ExecutionContext.IsRunMode &&
builder.Environment.IsDevelopment())

{
pythonapp.WithEnvironment("DEBUG", "True");

}

builder.Build().Run();

@ Important

The AddpythonApp APl is experimental and may change in future releases. For more
information, see ASPIREHOSTINGPYTHONOOT.

Run the app

Now that you've added the Python hosting package, updated the app host Program.cs

file, and created a Python project, you can run the app host:

.NET CL

dotnet run --project ../PythonSample.AppHost/PythonSample.AppHost.csproj

Launch the dashboard by clicking the link in the console output. The dashboard should

display the Python project as a resource.

PythonSample

Resources

Type Name State Start time Source

Executable hello-python Running 10:33:25 AM python.exe i1

Select the Endpoints link to open the hello-python endpointin a new browser tab. The

browser should display the message "Hello, World!":

r al

Hello, World!

Stop the app host by pressing ctrl1 + c in the terminal.

Add telemetry support.

To add a bit of observability, add telemetry to help monitor the dependant Python app.
In the Python project, add the following OpenTelemetry package as a dependency in the

requirements.txt file:

Python

Flask==3.0.3

opentelemetry-distro
opentelemetry-exporter-otlp-proto-grpc
opentelemetry-instrumentation-flask
gunicorn

The preceding requirement update, adds the OpenTelemetry package and the OTLP
exporter. Next, re-install the Python app requirements into the virtual environment by
running the following command:

https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/python-dashboard.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/python-dashboard.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/python-hello-world.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/python-hello-world.png#lightbox

Python

python -m pip install -r requirements.txt

The preceding command installs the OpenTelemetry package and the OTLP exporter, in

the virtual environment. Update the Python app to include the OpenTelemetry code, by

replacing the existing main.py code with the following:

Python

import os

import logging

import flask

from opentelemetry import trace

from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import
OTLPSpanExporter

from opentelemetry.sdk.trace import TracerProvider

from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.instrumentation.flask import FlaskInstrumentor

app = flask.Flask(__name_)

trace.set_tracer_provider(TracerProvider())

otlpExporter

= OTLPSpanExporter()

processor = BatchSpanProcessor(otlpExporter)
trace.get_tracer_provider().add_span_processor(processor)

FlaskInstrumentor().instrument app(app)

logging.basicConfig(level=1logging.INFO)
logger = logging.getlLogger(__name_)

@app.route('/', methods=["'GET'])

def hello world():
logger.info("request received!")
return 'Hello, World!'

if _ _name__ ==

__main__"':

port = int(os.environ.get('PORT', 8111))
debug = bool(os.environ.get('DEBUG', False))
host = os.environ.get('HOST', '127.0.0.1")
app.run(port=port, debug=debug, host=host)

Update the app host project's launchSettings.json file to include the

ASPIRE_ALLOW_UNSECURED_TRANSPORT environment variable:

JSON

{

"$schema":

"https://json.schemastore.org/launchsettings.json",

The ASPIRE_ALLOW_UNSECURED_TRANSPORT variable is required because when running
locally the OpenTelemetry client in Python rejects the local development certificate.

Launch the app host again:

.NET CLI

https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/python-telemetry-in-dashboard.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/python-telemetry-in-dashboard.png#lightbox

Summary

While there are several considerations that are beyond the scope of this article, you
learned how to build .NET Aspire solution that integrates with Python. You also learned
how to use the AddPythonApp API to host Python apps.

See also

e GitHub: .NET Aspire Samples—Python hosting integration &

https://github.com/dotnet/aspire-samples/tree/main/samples/AspireWithPython
https://github.com/dotnet/aspire-samples/tree/main/samples/AspireWithPython

App host configuration

Article « 11/22/2024

The app host project configures and starts your distributed application (DistributedApplication). When a
DistributedApplication runs it reads configuration from the app host. Configuration is loaded from environment

variables that are set on the app host and DistributedApplicationOptions.

Configuration includes:

e Settings for hosting the resource service, such as the address and authentication options.
e Settings used to start the .NET Aspire dashboard, such the dashboard's frontend and OpenTelemetry
Protocol (OTLP) addresses.

e Internal settings that .NET Aspire uses to run the app host. These are set internally but can be accessed by
integrations that extend .NET Aspire.

App host configuration is provided by the app host launch profile. The app host has a launch settings file call
launchSettings.json which has a list of launch profiles. Each launch profile is a collection of related options which
defines how you would like dotnet to start your application.

JSON
{
"$schema": "https://json.schemastore.org/launchsettings.json",
"profiles": {
"https": {
"commandName": "Project",
"dotnetRunMessages": true,
"launchBrowser": true,
"applicationUrl": "https://localhost:17134;http://localhost:15170",
"environmentVariables": {
"ASPNETCORE_ENVIRONMENT": "Development",
"DOTNET_ENVIRONMENT": "Development",
"DOTNET_DASHBOARD_OTLP_ENDPOINT URL": "https://localhost:21030",
"DOTNET_RESOURCE_SERVICE_ENDPOINT_ URL": "https://localhost:22057"
}
}
}
}

The preceding launch settings file:

e Has one launch profile named https.

e Configures an .NET Aspire app host project:
o The applicationurl property configures the dashboard launch address (ASPNETCORE_URLS).
o Environment variables such as DOTNET_DASHBOARD_OTLP_ENDPOINT_URL and

DOTNET_RESOURCE_SERVICE_ENDPOINT_URL are set on the app host.

For more information, see .NET Aspire and launch profiles.

e

O Note

Configuration described on this page is for .NET Aspire app host project. To configure the standalone
dashboard, see dashboard configuration.

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplication
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplicationoptions

Common configuration

<> Expand table

Option Default Description
value
ASPIRE_ALLOW_UNSECURED_TRANSPORT false Allows communication with the app host without https. ASPNETCORE_URLS

(dashboard address) and DOTNET_RESOURCE_SERVICE_ENDPOINT_URL (app host
resource service address) must be secured with HTTPS unless true.

DOTNET_ASPIRE_CONTAINER_RUNTIME docker Allows the user of alternative container runtimes for resources backed by
containers. Possible values are docker (default) or podman. See Setup and
tooling overview for more details.

Resource service

A resource service is hosted by the app host. The resource service is used by the dashboard to fetch information

about resources which are being orchestrated by .NET Aspire.

<> Expand table

Option Default value Description

DOTNET_RESOURCE_SERVICE_ENDPOINT_URL null Configures the address of the resource service hosted by the
app host. Automatically generated with launchSettings.json to
have a random port on localhost. For example,
https://localhost:17037.

DOTNET_DASHBOARD_RESOURCESERVICE_APIKEY Automatically The API key used to authenticate requests made to the app
generated 128- host's resource service. The API key is required if the app host
bit entropy is in run mode, the dashboard isn't disabled, and the
token. dashboard isn't configured to allow anonymous access with

DOTNET_DASHBOARD_UNSECURED_ALLOW_ANONYMOUS .

Dashboard

By default, the dashboard is automatically started by the app host. The dashboard supports its own set of
configuration, and some settings can be configured from the app host.

<> Expand table

Option Default value Description

ASPNETCORE_URLS null Dashboard address. Must be https unless
ASPIRE_ALLOW_UNSECURED_TRANSPORT OF
DistributedApplicationOptions.AllowUnsecuredTransport
is true. Automatically generated with launchSettings.json
to have a random port on localhost. The value in launch
settings is set on the applicationurls property.

ASPNETCORE_ENVIRONMENT Production Configures the environment the dashboard runs as. For
more information, see Use multiple environments in
ASP.NET Core.

https://learn.microsoft.com/en-us/aspnet/core/fundamentals/environments
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/environments

Option Default value Description

DOTNET_DASHBOARD_OTLP_ENDPOINT_URL http://localhost:18889 Configures the dashboard OTLP gRPC address. Used by
if no gRPC endpoint is the dashboard to receive telemetry over OTLP. Set on
configured. resources as the OTEL_EXPORTER_OTLP_ENDPOINT env var.

The OTEL_EXPORTER_OTLP_PROTOCOL €nv var is grpc.
Automatically generated with launchSettings.json to have
a random port on localhost.

DOTNET_DASHBOARD_OTLP_HTTP_ENDPOINT _URL null Configures the dashboard OTLP HTTP address. Used by
the dashboard to receive telemetry over OTLP. If only
DOTNET_DASHBOARD_OTLP_HTTP_ENDPOINT_URL is configured
then it is set on resources as the
OTEL_EXPORTER_OTLP_ENDPOINT env var. The
OTEL_EXPORTER_OTLP_PROTOCOL env var is http/protobuf.

DOTNET_DASHBOARD_CORS_ALLOWED_ORIGINS null Overrides the CORS allowed origins configured in the
dashboard. This setting replaces the default behavior of
calculating allowed origins based on resource endpoints.

DOTNET_DASHBOARD_FRONTEND_BROWSERTOKEN ~ Automatically Configures the frontend browser token. This is the value
generated 128-bit that must be entered to access the dashboard when the
entropy token. auth mode is BrowserToken. If no browser token is

specified then a new token is generated each time the
app host is launched.

Internal

Internal settings are used by the app host and integrations. Internal settings aren't designed to be configured

directly.
.. Expand table

Option Default value Description

AppHost:Directory The content root if there's no project. Directory of the project where the app host is

located. Accessible from the
IDistributedApplicationBuilder.AppHostDirectory.

AppHost:Path The directory combined with the application The path to the app host. It combines the
name. directory with the application name.

AppHost :Sha256 It is created from the app host name when Hex encoded hash for the current application.
the app host is in publish mode. Otherwise it The hash is based on the location of the app on
is created from the app host path. the current machine so it is stable between

launches of the app host.

AppHost :0t1pApiKey Automatically generated 128-bit entropy The API key used to authenticate requests sent
token. to the dashboard OTLP service. The value is

present if needed: the app host is in run mode,

the dashboard isn't disabled, and the dashboard

isn't configured to allow anonymous access with

DOTNET_DASHBOARD_UNSECURED_ALLOW_ANONYMOUS .
AppHost :BrowserToken Automatically generated 128-bit entropy The browser token used to authenticate

token. browsing to the dashboard when it is launched
by the app host. The browser token can be set
by DOTNET_DASHBOARD_FRONTEND_BROWSERTOKEN . The
value is present if needed: the app host is in run
mode, the dashboard isn't disabled, and the

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilder.apphostdirectory#aspire-hosting-idistributedapplicationbuilder-apphostdirectory

Option

AppHost:ResourceService:AuthMode

AppHost:ResourceService:ApiKey

Default value

Apikey . If
DOTNET_DASHBOARD_UNSECURED_ALLOW_ANONYMOUS
is true then the value is Unsecured.

Automatically generated 128-bit entropy
token.

Description

dashboard isn't configured to allow anonymous
access with
DOTNET_DASHBOARD_UNSECURED_ALLOW_ANONYMOUS .

The authentication mode used to access the
resource service. The value is present if needed:
the app host is in run mode and the dashboard
isn't disabled.

The API key used to authenticate requests made
to the app host's resource service. The API key
can be set by
DOTNET_DASHBOARD_RESOURCESERVICE_APIKEY. The
value is present if needed: the app host is in run
mode, the dashboard isn't disabled, and the
dashboard isn't configured to allow anonymous
access with
DOTNET_DASHBOARD_UNSECURED_ALLOW_ANONYMOUS .

Custom resource commands in .NET
Aspire

Article « 11/12/2024

Each resource in the .NET Aspire app model is represented as an IResource and when
added to the distributed application builder, it's the generic-type parameter of the
IResourceBuilder<T> interface. You use the resource builder API to chain calls,
configuring the underlying resource, and in some situations, you might want to add
custom commands to the resource. Some common scenario for creating a custom
command might be running database migrations or seeding/resetting a database. In
this article, you learn how to add a custom command to a Redis resource that clears the

cache.

e

@ Important

These .NET Aspire dashboard commands are only available when running the

dashboard locally. They're not available when running the dashboard in Azure
Container Apps.

Add custom commands to a resource

Start by creating a new .NET Aspire Starter App from the available templates. To create
the solution from this template, follow the Quickstart: Build your first .NET Aspire
solution. After creating this solution, add a new class named
RedisResourceBuilderExtensions.cs to the app host project. Replace the contents of the

file with the following code:

C#

using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Diagnostics.HealthChecks;
using Microsoft.Extensions.Logging;

using StackExchange.Redis;

namespace Aspire.Hosting;

internal static class RedisResourceBuilderExtensions
{
public static IResourceBuilder<RedisResource> WithClearCommand(
this IResourceBuilder<RedisResource> builder)

{
builder.WithCommand(

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.iresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilder
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.iresourcebuilder-1

name: "clear-cache",

displayName: "Clear Cache",

executeCommand: context => OnRunClearCacheCommandAsync(builder,
context),

updateState: OnUpdateResourceState,

iconName: "AnimalRabbitOff",

iconVariant: IconVariant.Filled);

return builder;
private static async Task<ExecuteCommandResult>

OnRunClearCacheCommandAsync(

IResourceBuilder<RedisResource> builder,

ExecuteCommandContext context)

var connectionString = await
builder.Resource.GetConnectionStringAsync() ??

throw new InvalidOperationException(
$"Unable to get the '{context.ResourceName}' connection

string.");

await using var connection =
ConnectionMultiplexer.Connect(connectionString);

var database = connection.GetDatabase();
await database.ExecuteAsync("FLUSHALL");
return CommandResults.Success();
private static ResourceCommandState OnUpdateResourceState(
UpdateCommandStateContext context)

var logger =
context.ServiceProvider.GetRequiredService<ILogger<Program>>();

if (logger.IsEnabled(LoglLevel.Information))

{
logger.LogInformation(
"Updating resource state: {ResourceSnapshot}",
context.ResourceSnapshot);
}

return context.ResourceSnapshot.HealthStatus is HealthStatus.Healthy
? ResourceCommandState.Enabled
: ResourceCommandState.Disabled;

The preceding code:

e Shares the Aspire.Hosting namespace so that it's visible to the app host project.

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting
https://www.fluentui-blazor.net/Icon#explorer
https://www.fluentui-blazor.net/Icon#explorer
https://learn.microsoft.com/en-us/dotnet/api/system.threading.cancellationtoken

In the preceding example, the executeCommand delegate is implemented as an async

method that clears the cache of the Redis resource. It delegates out to a private class-
scoped function named onRunClearCacheCommandAsync to perform the actual cache

clearing. Consider the following code:

C#

private static async Task<ExecuteCommandResult> OnRunClearCacheCommandAsync(
IResourceBuilder<RedisResource> builder,
ExecuteCommandContext context)

var connectionString = await builder.Resource.GetConnectionStringAsync()
??
throw new InvalidOperationException(
$"Unable to get the '{context.ResourceName}' connection
string.");

await using var connection =
ConnectionMultiplexer.Connect(connectionString);

var database = connection.GetDatabase();
await database.ExecuteAsync("FLUSHALL");

return CommandResults.Success();

The preceding code:

e Retrieves the connection string from the Redis resource.
e Connects to the Redis instance.

e Gets the database instance.

e Executes the FLUSHALL command to clear the cache.

e Returns a CommandResults.Success() instance to indicate that the command was

successful.

Update command state logic

The updateState delegate is where the command state is determined. This parameter is
defined as a Func<UpdateCommandStateContext, ResourceCommandState>. The

UpdateCommandStateContext provides the following properties:

e UpdateCommandStateContext.ServiceProvider: The IServiceProvider instance that's

used to resolve services.

® UpdateCommandStateContext.ResourceSnapshot: The snapshot of the resource

instance that the command is being executed on.

The immutable snapshot is an instance of CustomResourceSnapshot, which exposes all

sorts of valuable details about the resource instance. Consider the following code:

C#

private static ResourceCommandState OnUpdateResourceState(
UpdateCommandStateContext context)

var logger =
context.ServiceProvider.GetRequiredService<ILogger<Program>>();

if (logger.IsEnabled(LogLevel.Information))

{
logger.LogInformation(
"Updating resource state: {ResourceSnapshot}",
context.ResourceSnapshot);
}

return context.ResourceSnapshot.HealthStatus is HealthStatus.Healthy
? ResourceCommandState.Enabled
: ResourceCommandState.Disabled;

The preceding code:

e Retrieves the logger instance from the service provider.
e Logs the resource snapshot details.
e Returns ResourceCommandState.Enabled if the resource is healthy; otherwise, it

returns ResourceCommandState.Disabled.

Test the custom command

To test the custom command, update your app host project's Program.cs file to include
the following code:

C#

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddRedis("cache")
.WithClearCommand();

var apiService = builder.AddProject<Projects.AspireApp_ ApiService>
("apiservice");

builder.AddProject<Projects.AspireApp_Web>("webfrontend")
.WithExternalHttpEndpoints()
.WithReference(cache)
.WaitFor(cache)
.WithReference(apiService)
.WaitFor(apiService);

builder.Build().Run();

The preceding code calls the withClearCommand extension method to add the custom
command to the Redis resource. Run the app and navigate to the .NET Aspire
dashboard. You should see the custom command listed under the Redis resource. On

the Resources page of the dashboard, select the ellipsis button under the Actions
column:

AspireApp

Resources

Type MName State Start time Source Endpoints

Container cache Running T:52:57 AM docker.io/library/redis:7.4 tcpy/flocalhost:64735
Praject apiservice Running] AspireApp.

Project webfrontend Running -52:59 AM AspireAppWeb.csproj

Clear Cache

The preceding image shows the Clear cache command that was added to the Redis
resource. The icon displays as a rabbit crosses out to indicate that the speed of the
dependant resource is being cleared.

Select the Clear cache command to clear the cache of the Redis resource. The command
should execute successfully, and the cache should be cleared:

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/custom-clear-cache-command.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/custom-clear-cache-command.png#lightbox

AspireApp O0®

cache “Clear Cache” succeeded

Resources

Type MName State Start time

Endpoints Actions

Container cacha Running 82801 AM docker.io/library, tep:/flocalhost:50702

Praject api Running 82758 AM AspireApp.A

Project webfrontend Running H28:02 AM Aspirefpp Web.csproj

See also

e NET Aspire orchestration overview

e NET Aspire dashboard: Resource submenu actions

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/custom-clear-cache-command-succeeded.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/custom-clear-cache-command-succeeded.png#lightbox

Add Dockerfiles to your .NET app model

Article « 07/23/2024

With .NET Aspire it's possible to specify a Dockerfile to build when the app host is
started using either the AddDockerfile or WithDockerfile extension methods.

Add a Dockerfile to the app model

In the following example the AddDockerfile extension method is used to specify a

container by referencing the context path for the container build.

C#

var builder = DistributedApplication.CreateBuilder(args);

var container = builder.AddDockerfile(
"mycontainer", "relative/context/path");

Unless the context path argument is a rooted path the context path is interpreted as
being relative to the app host projects directory (where the AppHost *.csproj folder is

located).

By default the name of the Dockerfile which is used is Dockerfile and is expected to be
within the context path directory. It's possible to explicitly specify the Dockerfile name

either as an absolute path or a relative path to the context path.

This is useful if you wish to modify the specific Dockerfile being used when running

locally or when the app host is deploying.

C#
var builder = DistributedApplication.CreateBuilder(args);

var container = builder.ExecutionContext.IsRunMode
? builder.AddDockerfile(
"mycontainer"”, "relative/context/path", "Dockerfile.debug")
: builder.AddDockerfile(
"mycontainer"”, "relative/context/path", "Dockerfile.release");

Customize existing container resources

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.adddockerfile
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.withdockerfile
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.adddockerfile

When using AddDockerfile the return value is an IResourceBuilder<ContainerResource> .

.NET Aspire includes many custom resource types that are derived from
ContainerResource.

Using the WithDockerfile extension method it's possible to continue using these
strongly typed resource types and customize the underlying container that is used.

C#

var builder = DistributedApplication.CreateBuilder(args);
var pgsql = builder.AddPostgres("pgsql")

.WithDockerfile("path/to/context")
.WithPgAdmin();

Pass build arguments

The WithBuildArg method can be used to pass arguments into the container image
build.

C#

var builder = DistributedApplication.CreateBuilder(args);
var container = builder.AddDockerfile("mygoapp", "relative/context/path")

.WithBuildArg("GO_VERSION", "1.22");

The value parameter on the WithBuildArg method can be a literal value (boolean,
string, int) or it can be a resource builder for a parameter resource. The following
code replaces the GO_VERSION with a parameter value that can be specified at

deployment time.
C#

var builder = DistributedApplication.CreateBuilder(args);

var goVersion

builder.AddParameter("goversion");

var container = builder.AddDockerfile("mygoapp", "relative/context/path™)
.WithBuildArg("GO_VERSION", goVersion);

Build arguments correspond to the ARG command &' in Dockerfiles. Expanding the
preceding example, this is a multi-stage Dockerfile which specifies specific container

image version to use as a parameter.

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.adddockerfile
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.containerresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.withdockerfile
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.withbuildarg
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.withbuildarg
https://docs.docker.com/build/guide/build-args/
https://docs.docker.com/build/guide/build-args/

Dockerfile

Stage 1: Build the Go program

ARG GO_VERSION=1.22

FROM golang:${GO_VERSION} AS builder
WORKDIR /build

COPY .

RUN go build mygoapp.go

Stage 2: Run the Go program

FROM mcr.microsoft.com/cbl-mariner/base/core:2.0
WORKDIR /app

COPY --from=builder /build/mygoapp .

CMD ["./mygoapp"]

O Note

Instead of hardcoding values into the container image, it's recommended to use
environment variables for values that frequently change. This avoids the need to

rebuild the container image whenever a change is required.

Pass build secrets

In addition to build arguments it's possible to specify build secrets using
WithBuildSecret which are made selectively available to individual commands in the

Dockerfile using the --mount=type=secret syntax on RUN commands.

C#

var builder = DistributedApplication.CreateBuilder(args);

var accessToken = builder.AddParameter("accesstoken"”, secret: true);
var container = builder.AddDockerfile("myapp", "relative/context/path")

.WithBuildSecret("ACCESS TOKEN", accessToken);

For example, consider the RuN command in a Dockerfile which exposes the specified

secret to the specific command:

Dockerfile

The helloworld command can read the secret from /run/secrets/ACCESS_TOKEN
RUN --mount=type=secret,id=ACCESS TOKEN helloworld

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.withbuildsecret

X Caution

Caution should be exercised when passing secrets in build environments. This is
often done when using a token to retrieve dependencies from private repositories
or feeds before a build. It is important to ensure that the injected secrets are not
copied into the final or intermediate images.

.NET Aspire inner-loop networking
overview

Article « 11/12/2024

One of the advantages of developing with .NET Aspire is that it enables you to develop,
test, and debug cloud-native apps locally. Inner-loop networking is a key aspect of .NET
Aspire that allows your apps to communicate with each other in your development
environment. In this article, you learn how .NET Aspire handles various networking
scenarios with proxies, endpoints, endpoint configurations, and launch profiles.

Networking in the inner loop

The inner loop is the process of developing and testing your app locally before
deploying it to a target environment. .NET Aspire provides several tools and features to

simplify and enhance the networking experience in the inner loop, such as:

¢ Launch profiles: Launch profiles are configuration files that specify how to run your
app locally. You can use launch profiles (such as the launchSettings.json file) to
define the endpoints, environment variables, and launch settings for your app.

e Kestrel configuration: Kestrel configuration allows you to specify the endpoints
that the Kestrel web server listens on. You can configure Kestrel endpoints in your
app settings, and .NET Aspire automatically uses these settings to create
endpoints.

e Endpoints/Endpoint configurations: Endpoints are the connections between your
app and the services it depends on, such as databases, message queues, or APIs.
Endpoints provide information such as the service name, host port, scheme, and
environment variable. You can add endpoints to your app either implicitly (via
launch profiles) or explicitly by calling WithEndpoint.

e Proxies: .NET Aspire automatically launches a proxy for each service binding you
add to your app, and assigns a port for the proxy to listen on. The proxy then
forwards the requests to the port that your app listens on, which might be different
from the proxy port. This way, you can avoid port conflicts and access your app

and services using consistent and predictable URLs.

How endpoints work

A service binding in .NET Aspire involves two integrations: a service representing an
external resource your app requires (for example, a database, message queue, or API),

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withendpoint

and a binding that establishes a connection between your app and the service and

provides necessary information.

.NET Aspire supports two service binding types: implicit, automatically created based on
specified launch profiles defining app behavior in different environments, and explicit,
manually created using WithEndpoint.

Upon creating a binding, whether implicit or explicit, .NET Aspire launches a lightweight
reverse proxy on a specified port, handling routing and load balancing for requests from
your app to the service. The proxy is a .NET Aspire implementation detail, requiring no

configuration or management concern.

To help visualize how endpoints work, consider the .NET Aspire starter templates inner-

loop networking diagram:

Browser

localhost: 5005 localhost:5006 localhost:65003
(launchSettings.json) (LaunchSettings. json) (random port)

Frontend API Redis
Proxy Proxy Proxy
localhost:65001 W (localhost:65002 7 l
[Crandom=port) Y, C ('r*anrlm: port)) [r —

“apiscrvice™ "redis” “franicnd”

dockar host

Launch profiles

When you call AddProject, the app host looks for Properties/launchSettings.json to
determine the default set of endpoints. The app host selects a specific launch profile

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withendpoint
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.projectresourcebuilderextensions.addproject
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/networking/networking-proxies.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/networking/networking-proxies.png#lightbox

using the following rules:

1. An explicit launchProfileName argument passed when calling AddProject.
2. The DOTNET_LAUNCH_PROFILE environment variable. For more information, see .NET

environment variables.
3. The first launch profile defined in launchSettings.json.

Consider the following launchSettings.json file:

JSON
{
"$schema": "http://json.schemastore.org/launchsettings.json",
"profiles": {
"http": {

"commandName": "Project",
"dotnetRunMessages": true,

"launchBrowser": false,

"inspectUri": "{wsProtocol}://{url.hostname}:

{url.port}/ framework/debug/ws-proxy?browser={browserInspectUri}",
"environmentVariables": {

"ASPNETCORE_ENVIRONMENT": "Development"
}
s
"https": {
"commandName": "Project",
"dotnetRunMessages": true,
"launchBrowser": true,
"inspectUri": "{wsProtocol}://{url.hostname}:

{url.port}/ framework/debug/ws-proxy?browser={browserInspectUri}",
"applicationUrl": "https://localhost:7239;http://localhost:5066",
"environmentVariables": {

"ASPNETCORE_ENVIRONMENT": "Development"
}
}
}
}

For the remainder of this article, imagine that you've created an
IDistributedApplicationBuilder assigned to a variable named builder with the
CreateBuilder() API:

C#

var builder = DistributedApplication.CreateBuilder(args);

To specify the http and https launch profiles, configure the applicationurl values for

both in the launchSettings.json file. These URLs are used to create endpoints for this

https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-environment-variables
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-environment-variables
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilder
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplication.createbuilder#aspire-hosting-distributedapplication-createbuilder

project. This is the equivalent of:
C#

builder.AddProject<Projects.Networking_ Frontend>("frontend")
.WithHttpEndpoint(port: 5066)
.WithHttpsEndpoint(port: 7239);

@ Important

If there's no launchSettings.json (or launch profile), there are no bindings by default.

For more information, see .NET Aspire and launch profiles.

Kestrel configured endpoints

.NET Aspire supports Kestrel endpoint configuration. For example, consider an
appsettings.json file for a project that defines a Kestrel endpoint with the HTTPS scheme
and port 5271:

JSON

{
"Logging": {
"LoglLevel": {
"Default": "Information",
"Microsoft.AspNetCore": "Warning"
}

}s
"Kestrel": {

"Endpoints": {
"Https": {
"Url": "https://*:5271"
}
}
}
}

The preceding configuration specifies an Https endpoint. The url property is set to
https://*:5271, which means the endpoint listens on all interfaces on port 5271. For

more information, see Configure endpoints for the ASP.NET Core Kestrel web server.

With the Kestrel endpoint configured, the project should remove any configured
applicationUrl from the launchSettings.json file.

https://learn.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel/endpoints

O Note

If the applicationUrl is present in the launchSettings.json file and the Kestrel

endpoint is configured, the app host will throw an exception.

.

When you add a project resource, there's an overload that lets you specify that the
Kestrel endpoint should be used instead of the launchSettings.json file:

C#

builder.AddProject<Projects.Networking ApiService>(
name: "apiservice",
configure: static project =>

{
project.ExcludeLaunchProfile = true;
project.ExcludeKestrelEndpoints = false;
})
.WithHttpsEndpoint();

For more information, see AddProject.

Ports and proxies

When defining a service binding, the host port is always given to the proxy that sits in
front of the service. This allows single or multiple replicas of a service to behave
similarly. Additionally, all resource dependencies that use the WithReference API rely of

the proxy endpoint from the environment variable.

Consider the following method chain that calls AddProject, WithHttpEndpoint, and then
WithReplicas:

C#

builder.AddProject<Projects.Networking Frontend>("frontend")
.WithHttpEndpoint(port: 5066)
.WithReplicas(2);

The preceding code results in the following networking diagram:

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.projectresourcebuilderextensions.addproject
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.projectresourcebuilderextensions.addproject
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withhttpendpoint
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.projectresourcebuilderextensions.withreplicas

Browser

localhost:5066
(host port)

localhost: 65001 localhost:65002
(random port) (random port)

“frontend 1"

"frontend 0"

The preceding diagram depicts the following:

e A web browser as an entry point to the app.
e A host port of 5066.
e The frontend proxy sitting between the web browser and the frontend service

replicas, listening on port 5066.

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/networking/proxy-with-replicas.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/networking/proxy-with-replicas.png#lightbox

e The frontend_e frontend service replica listening on the randomly assigned port
65001.

e The frontend_1 frontend service replica listening on the randomly assigned port
65002.

Without the call to withReplicas, there's only one frontend service. The proxy still listens

on port 5066, but the frontend service listens on a random port:
C#

builder.AddProject<Projects.Networking Frontend>("frontend")
.WithHttpEndpoint(port: 5066);

There are two ports defined:

e A host port of 5066.

e A random proxy port that the underlying service will be bound to.

Browser

———

localhost:5066
(host port)

W e s o
e

The preceding diagram depicts the following:

e A web browser as an entry point to the app.

e A host port of 5066.

e The frontend proxy sitting between the web browser and the frontend service,
listening on port 5066.

e The frontend service listening on random port of 65001.

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/networking/proxy-host-port-and-random-port.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/networking/proxy-host-port-and-random-port.png#lightbox

The underlying service is fed this port via ASPNETCORE_URLS for project resources. Other

resources access to this port by specifying an environment variable on the service
binding:

C#

builder.AddNpmApp("frontend", "../NodeFrontend", "watch")
.WithHttpEndpoint(port: 5067, env: "PORT");

The previous code makes the random port available in the PORT environment variable.
The app uses this port to listen to incoming connections from the proxy. Consider the

following diagram:

Browser

———

localhost:5067
(host port)

localhost:65001
(env var PORT=65001)

"frontend”

The preceding diagram depicts the following:

e A web browser as an entry point to the app.

¢ A host port of 5067.

e The frontend proxy sitting between the web browser and the frontend service,
listening on port 5067.

e The frontend service listening on an environment 65001.

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/networking/proxy-with-env-var-port.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/networking/proxy-with-env-var-port.png#lightbox

Q Tip

To avoid an endpoint being proxied, set the IsProxied property to false when
calling the withEndpoint extension method. For more information, see Endpoint

extensions: additional considerations.

Omit the host port

When you omit the host port, .NET Aspire generates a random port for both host and
service port. This is useful when you want to avoid port conflicts and don't care about

the host or service port. Consider the following code:

C#

builder.AddProject<Projects.Networking Frontend>("frontend")
.WithHttpEndpoint();

In this scenario, both the host and service ports are random, as shown in the following
diagram:

Browser

———

localhost:65000
(random host port)

localhost:65001
(random port)

"frontend”

The preceding diagram depicts the following:

e A web browser as an entry point to the app.

e A random host port of 65000.

e The frontend proxy sitting between the web browser and the frontend service,
listening on port 65000.

e The frontend service listening on a random port of 65001.

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/networking/proxy-with-random-ports.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/networking/proxy-with-random-ports.png#lightbox

Container ports

When you add a container resource, .NET Aspire automatically assigns a random port to
the container. To specify a container port, configure the container resource with the
desired port:

C#

builder.AddContainer("frontend”, "mcr.microsoft.com/dotnet/samples”,
"aspnetapp")
.WithHttpEndpoint(port: 8000, targetPort: 8080);

The preceding code:

e Creates a container resource named frontend, from the
mcr.microsoft.com/dotnet/samples:aspnetapp image.
e Exposes an http endpoint by binding the host to port 8000 and mapping it to the

container's port 8080.

Consider the following diagram:

Browser

localhost: 8000
(host port)

Port
mapping

localhost:65001
(random port)

localhost:8080
(container port)

"frontend"

docker host

Endpoint extension methods

Any resource that implements the IResourceWithEndpoints interface can use the
WithEndpoint extension methods. There are several overloads of this extension, allowing

you to specify the scheme, container port, host port, environment variable name, and

whether the endpoint is proxied.

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.iresourcewithendpoints

There's also an overload that allows you to specify a delegate to configure the endpoint.
This is useful when you need to configure the endpoint based on the environment or
other factors. Consider the following code:

C#

builder.AddProject<Projects.Networking ApiService>("apiService")
.WithEndpoint(
endpointName: "admin",
callback: static endpoint =>

{
endpoint.Port = 17003;
endpoint.UriScheme = "http";
endpoint.Transport = "http";
1

The preceding code provides a callback delegate to configure the endpoint. The
endpoint is named admin and configured to use the http scheme and transport, as well

as the 17003 host port. The consumer references this endpoint by name, consider the
following AddHttpclient call:

C#

builder.Services.AddHttpClient<WeatherApiClient>(
client => client.BaseAddress = new Uri("http://_admin.apiservice"));

The uri is constructed using the admin endpoint name prefixed with the _ sentinel.
This is a convention to indicate that the admin segment is the endpoint name belonging

to the apiservice service. For more information, see .NET Aspire service discovery.

Additional considerations

When calling the WithEndpoint extension method, the callback overload exposes the
raw EndpointAnnotation, which allows the consumer to customize many aspects of the
endpoint.

The AllocatedEndpoint property allows you to get or set the endpoint for a service. The
IsExternal and IsProxied properties determine how the endpointis managed and
exposed: Iskxternal decides if it should be publicly accessible, while IsProxied ensures

DCP manages it, allowing for internal port differences and replication.

Q Tip

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.endpointannotation

If you're hosting an external executable that runs its own proxy and encounters
port binding issues due to DCP already binding the port, try setting the IsProxied
property to false. This prevents DCP from managing the proxy, allowing your

executable to bind the port successfully.

\.

The Name property identifies the service, whereas the port and TargetPort properties

specify the desired and listening ports, respectively.

For network communication, the Protocol property supports TCP and UDP, with
potential for more in the future, and the Transport property indicates the transport
protocol (HTTP, HTTP2, HTTP3). Lastly, if the service is URI-addressable, the UriScheme

property provides the URI scheme for constructing the service URI.

For more information, see the available properties of the EndpointAnnotation

properties.

Endpoint filtering

All .NET Aspire project resource endpoints follow a set of default heuristics. Some
endpoints are included in ASPNETCORE_URLS at runtime, some are published as
HTTP/HTTPS_PORTS, and some configurations are resolved from Kestrel configuration.
Regardless of the default behavior, you can filter the endpoints that are included in

environment variables by using the WithEndpointsinEnvironment extension method:
C#

builder.AddProject<Projects.Networking_ ApiService>("apiservice")
.WithHttpsEndpoint() // Adds a default "https" endpoint
.WithHttpsEndpoint(port: 19227, name: "admin")
.WithEndpointsInEnvironment(
filter: static endpoint =>

{

return endpoint.Name is not "admin";

s

The preceding code adds a default HTTPS endpoint, as well as an admin endpoint on
port 19227. However, the admin endpoint is excluded from the environment variables.

This is useful when you want to expose an endpoint for internal use only.

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.endpointannotation#properties
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.endpointannotation#properties
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.projectresourcebuilderextensions.withendpointsinenvironment

Eventing in .NET Aspire

Article « 11/13/2024

In .NET Aspire, eventing allows you to publish and subscribe to events during various
app host life cycles. Eventing is more flexible than life cycle events. Both let you run
arbitrary code during event callbacks, but eventing offers finer control of event timing,

publishing, and provides supports for custom events.

The eventing mechanisms in .NET Aspire are part of the (@ Aspire.HostingZ NuGet
package. This package provides a set of interfaces and classes in the
Aspire.Hosting.Eventing namespace that you use to publish and subscribe to events in
your .NET Aspire app host project. Eventing is scoped to the app host itself and the

resources within.

In this article, you learn how to use the eventing features in .NET Aspire.

App host eventing
The following events are available in the app host and occur in the following order:

1. BeforeStartEvent: This event is raised before the app host starts.

2. AfterEndpointsAllocatedEvent: This event is raised after the app host allocated
endpoints.

3. AfterResourcesCreatedEvent: This event is raised after the app host created

resources.

All of the preceding events are analogous to the app host life cycles. That is, an
implementation of the IDistributedApplicationLifecycleHook could handle these events
just the same. With the eventing API, however, you can run arbitrary code when these
events are raised and event define custom events—any event that implements the
IDistributedApplicationEvent interface.

Subscribe to app host events

To subscribe to the built-in app host events, use the eventing API. After you have a
distributed application builder instance, walk up to the
IDistributedApplicationBuilder.Eventing property and call the Subscribe<T>
(Func<T,CancellationToken,Task>) API. Consider the following sample app host

Program.cs file:

C#

https://www.nuget.org/packages/Aspire.Hosting
https://www.nuget.org/packages/Aspire.Hosting
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.eventing
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.beforestartevent
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.afterendpointsallocatedevent
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.afterresourcescreatedevent
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.lifecycle.idistributedapplicationlifecyclehook
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.eventing.idistributedapplicationevent
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilder.eventing#aspire-hosting-idistributedapplicationbuilder-eventing
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.eventing.idistributedapplicationeventing.subscribe#aspire-hosting-eventing-idistributedapplicationeventing-subscribe-1(system-func((-0-system-threading-cancellationtoken-system-threading-tasks-task)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.eventing.idistributedapplicationeventing.subscribe#aspire-hosting-eventing-idistributedapplicationeventing-subscribe-1(system-func((-0-system-threading-cancellationtoken-system-threading-tasks-task)))

using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;

var builder = DistributedApplication.CreateBuilder(args);
var cache = builder.AddRedis("cache");

var apiService = builder.AddProject<Projects.AspireApp ApiService>
("apiservice");

builder.AddProject<Projects.AspireApp_Web>("webfrontend")
.WithExternalHttpEndpoints()
.WithReference(cache)
.WaitFor(cache)
.WithReference(apiService)
.WaitFor(apiService);

builder.Eventing.Subscribe<BeforeStartEvent>(
static (@event, cancellationToken) =>

{
var logger = @event.Services.GetRequiredService<ILogger<Program>>();
logger.LogInformation("1. BeforeStartEvent");
return Task.CompletedTask;

})s

builder.Eventing.Subscribe<AfterEndpointsAllocatedEvent>(
static (@event, cancellationToken) =>

{
var logger = @event.Services.GetRequiredService<ILogger<Program>>();
logger.LogInformation("2. AfterEndpointsAllocatedEvent");
return Task.CompletedTask;

1)

builder.Eventing.Subscribe<AfterResourcesCreatedEvent>(
static (@event, cancellationToken) =>

{
var logger = @event.Services.GetRequiredService<ILogger<Program>>();
logger.LogInformation("3. AfterResourcesCreatedEvent");
return Task.CompletedTask;

1)

builder.Build().Run();

The preceding code is based on the starter template with the addition of the calls to the
Subscribe API. The Subscribe<T> API returns a DistributedApplicationEventSubscription

instance that you can use to unsubscribe from the event. It's common to discard the

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.eventing.distributedapplicationeventsubscription

returned subscriptions, as you don't usually need to unsubscribe from events as the

entire app is torn down when the app host is shut down.

When the app host is run, by the time the .NET Aspire dashboard is displayed, you

should see the following log output in the console:

Plaintext

info: Program[Q]
1. BeforeStartEvent
info: Aspire.Hosting.DistributedApplication[@]
Aspire version: 9.0.0
info: Aspire.Hosting.DistributedApplication[@]
Distributed application starting.
info: Aspire.Hosting.DistributedApplication[@]
Application host directory is: ..\AspireApp\AspireApp.AppHost
info: Program[@]
2. AfterEndpointsAllocatedEvent
info: Aspire.Hosting.DistributedApplication[@]
Now listening on: https://localhost:17178
info: Aspire.Hosting.DistributedApplication[@]
Login to the dashboard at https://localhost:17178/login?t=<YOUR_TOKEN>
info: Program[Q]
3. AfterResourcesCreatedEvent
info: Aspire.Hosting.DistributedApplication[@]
Distributed application started. Press Ctrl+C to shut down.

The log output confirms that event handlers are executed in the order of the app host
life cycle events. The subscription order doesn't affect execution order. The
BeforeStartEvent is triggered first, followed by AfterEndpointsAllocatedEvent, and

finally AfterResourcesCreatedEvent.

Resource eventing

In addition to the app host events, you can also subscribe to resource events. Resource
events are raised specific to an individual resource. Resource events are defined as
implementations of the IDistributedApplicationResourceEvent interface. The following

resource events are available in the listed order:

1. ConnectionStringAvailableEvent: Raised when a connection string becomes
available for a resource.

2. BeforeResourceStartedEvent: Raised before the orchestrator starts a new resource.

3. ResourceReadyEvent: Raised when a resource initially transitions to a ready state.

Subscribe to resource events

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.eventing.idistributedapplicationresourceevent
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.connectionstringavailableevent
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.beforeresourcestartedevent
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.resourcereadyevent

To subscribe to resource events, use the eventing API. After you have a distributed
application builder instance, walk up to the IDistributedApplicationBuilder.Eventing
property and call the Subscribe<T>(IResource, Func<T,CancellationToken,Task>) API.

Consider the following sample app host Program.cs file:
C#

using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;

var builder = DistributedApplication.CreateBuilder(args);
var cache = builder.AddRedis("cache");
builder.Eventing.Subscribe<ResourceReadyEvent>(

cache.Resource,
static (@event, cancellationToken) =>

{
var logger = @event.Services.GetRequiredService<ILogger<Program>>();
logger.LogInformation("3. ResourceReadyEvent");
return Task.CompletedTask;

})s

builder.Eventing.Subscribe<BeforeResourceStartedEvent>(
cache.Resource,
static (@event, cancellationToken) =>

{
var logger = @event.Services.GetRequiredService<ILogger<Program>>();
logger.LogInformation("2. BeforeResourceStartedEvent");
return Task.CompletedTask;

1)

builder.Eventing.Subscribe<ConnectionStringAvailableEvent>(
cache.Resource,
static (@event, cancellationToken) =>

{
var logger = @event.Services.GetRequiredService<ILogger<Program>>();
logger.LogInformation("1. ConnectionStringAvailableEvent");
return Task.CompletedTask;

}s

var apiService = builder.AddProject<Projects.AspireApp ApiService>
("apiservice");

builder.AddProject<Projects.AspireApp_Web>("webfrontend")
.WithExternalHttpEndpoints()
.WithReference(cache)

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilder.eventing#aspire-hosting-idistributedapplicationbuilder-eventing
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.eventing.idistributedapplicationeventing.subscribe#aspire-hosting-eventing-idistributedapplicationeventing-subscribe-1(aspire-hosting-applicationmodel-iresource-system-func((-0-system-threading-cancellationtoken-system-threading-tasks-task)))

.WaitFor(cache)
.WithReference(apiService)
.WaitFor(apiService);

builder.Build().Run();

The preceding code subscribes to the ResourceReadyEvent,
ConnectionStringAvailableEvent, and BeforeResourceStartedEvent events on the cache
resource. When AddRedis is called, it returns an IResourceBuilder<T> where T is a

RedisResource. The resource builder exposes the resource as the
IResourceBuilder<T>.Resource property. The resource in question is then passed to the

Subscribe API to subscribe to the events on the resource.

When the app host is run, by the time the .NET Aspire dashboard is displayed, you

should see the following log output in the console:

Plaintext

info: Aspire.Hosting.DistributedApplication[@]
Aspire version: 9.0.0
info: Aspire.Hosting.DistributedApplication[@]
Distributed application starting.
info: Aspire.Hosting.DistributedApplication[@]
Application host directory is: ..\AspireApp\AspireApp.AppHost
info: Program[Q]
1. ConnectionStringAvailableEvent
info: Program[@]
2. BeforeResourceStartedEvent
info: Program[@]
3. ResourceReadyEvent
info: Aspire.Hosting.DistributedApplication[@]
Now listening on: https://localhost:17222
info: Aspire.Hosting.DistributedApplication[@]
Login to the dashboard at https://localhost:17222/1ogin?t=<YOUR_TOKEN>
info: Aspire.Hosting.DistributedApplication[@]
Distributed application started. Press Ctrl+C to shut down.

O Note

Some events are blocking. For example, when the BeforeResourceStartEvent is
published, the startup of the resource will be blocked until all subscriptions for that
event on a given resource have completed executing. Whether an event is blocking

or not depends on how it is published (see the following section).

Publish events

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redisbuilderextensions.addredis
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.iresourcebuilder-1
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.redisresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.iresourcebuilder-1.resource#aspire-hosting-applicationmodel-iresourcebuilder-1-resource

When subscribing to any of the built-in ev

yourself as the app host orchestrator ma
However, you can publish custom even
have to first define an event as an im
IDistributedApplicationEvent or IDis
need to determine which interface

app host event or a resource-sp
Then, you can subscribe and

e PublishAsync<T>(T,
specific event type.
e PublishAsync<T>

When events
subscribers.

enum. Th

entDispatchBe

ntil they're all process

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.eventing.idistributedapplicationevent
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.eventing.idistributedapplicationresourceevent
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.eventing.idistributedapplicationeventing.publishasync#aspire-hosting-eventing-idistributedapplicationeventing-publishasync-1(-0-system-threading-cancellationtoken)
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.eventing.idistributedapplicationeventing.publishasync#aspire-hosting-eventing-idistributedapplicationeventing-publishasync-1(-0-aspire-hosting-eventing-eventdispatchbehavior-system-threading-cancellationtoken)
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.eventing.eventdispatchbehavior#aspire-hosting-eventing-eventdispatchbehavior-blockingsequential
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.eventing.eventdispatchbehavior#aspire-hosting-eventing-eventdispatchbehavior-blockingconcurrent
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.eventing.eventdispatchbehavior#aspire-hosting-eventing-eventdispatchbehavior-nonblockingsequential
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.eventing.eventdispatchbehavior#aspire-hosting-eventing-eventdispatchbehavior-nonblockingconcurrent
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.eventing.idistributedapplicationeventing.publishasync

External parameters

Article « 12/06/2024

Environments provide context for the application to run in. Parameters express the
ability to ask for an external value when running the app. Parameters can be used to
provide values to the app when running locally, or to prompt for values when deploying.
They can be used to model a wide range of scenarios including secrets, connection
strings, and other configuration values that might vary between environments.

Parameter values

Parameter values are read from the Parameters section of the app host's configuration

and are used to provide values to the app while running locally. When you publish the
app, if the value isn't configured you're prompted to provide it.

Consider the following example app host Program.cs file:

C#

var builder = DistributedApplication.CreateBuilder(args);

// Add a parameter named "value"
var value = builder.AddParameter(“value");

builder.AddProject<Projects.ApiService>("api")

.WithEnvironment("EXAMPLE_VALUE", value);

The preceding code adds a parameter named value to the app host. The parameter is
then passed to the Projects.ApiService project as an environment variable named

EXAMPLE_VALUE .

Configure parameter values

Adding parameters to the builder is only one aspect of the configuration. You must also
provide the value for the parameter. The value can be provided in the app host
configuration file, set as a user secret, or configured in any other standard configuration.

When parameter values aren't found, they're prompted for when publishing the app.
Consider the following app host configuration file appsettings.json:

JSON

https://learn.microsoft.com/en-us/dotnet/core/extensions/configuration

"Parameters": {
"value": "local-value"

}

The preceding JSON configures a parameter in the Parameters section of the app host

configuration. In other words, that app host is able to find the parameter as its
configured. For example, you could walk up to the
IDistributedApplicationBuilder.Configuration and access the value using the

Parameters:value key:

C#

var builder = DistributedApplication.CreateBuilder(args);

var key = $"Parameters:value";
var value = builder.Configuration[key]; // value = "local-value"

@ Important

However, you don't need to access this configuration value yourself in the app

host. Instead, the ParameterResource is used to pass the parameter value to

dependent resources. Most often as an environment variable.

Parameter representation in the manifest

.NET Aspire uses a deployment manifest to represent the app's resources and their
relationships. Parameters are represented in the manifest as a new primitive called

parameter.vo:

JSON
{
"resources": {
"value": {
"type": "parameter.vo",
"value": "{value.inputs.value}",
"inputs": {
"value": {
"type": "string"
¥
}

}

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilder.configuration#aspire-hosting-idistributedapplicationbuilder-configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.parameterresource

Secret values

Parameters can be used to model secrets. When a parameter is marked as a secret, it
serves as a hint to the manifest that the value should be treated as a secret. When you
publish the app, the value is prompted for and stored in a secure location. When you
run the app locally, the value is read from the parameters section of the app host

configuration.
Consider the following example app host Program.cs file:
C#

var builder = DistributedApplication.CreateBuilder(args);

// Add a secret parameter named "secret"
var secret = builder.AddParameter("secret", secret: true);

builder.AddProject<Projects.ApiService>("api")
.WithEnvironment("SECRET", secret);

builder.Build().Run();

Now consider the following app host configuration file appsettings.json:

JSON

"Parameters": {
"secret": "local-secret"

The manifest representation is as follows:

JSON
{
"resources": {
"value": {
"type": "parameter.vo",
"value": "{value.inputs.value}",
"inputs": {
"value": {

"type": "string",

"secret": true

Connection string values

Parameters can be used to model connection strings. When you publish the app, the
value is prompted for and stored in a secure location. When you run the app locally, the

value is read from the ConnectionStrings section of the app host configuration.

e

O Note

Connection strings are used to represent a wide range of connection information,
including database connections, message brokers, endpoint URIs, and other
services. In .NET Aspire nomenclature, the term "connection string" is used to

represent any kind of connection information.

.

Consider the following example app host Program.cs file:

C#
var builder = DistributedApplication.CreateBuilder(args);

var redis = builder.AddConnectionString("redis");

builder.AddProject<Projects.WebApplication>("api™)
.WithReference(redis);

builder.Build().Run();

Now consider the following app host configuration file appsettings.json:

JSON

"ConnectionStrings": {
"redis": "local-connection-string"

For more information pertaining to connection strings and their representation in the

deployment manifest, see Connection string and binding references.

Parameter example

To express a parameter, consider the following example code:

C#
var builder = DistributedApplication.CreateBuilder(args);

var db = builder.AddSqlServer("sql")
.PublishAsConnectionString()
.AddDatabase("db");

var insertionRows = builder.AddParameter("insertionRows");

builder.AddProject<Projects.Parameters_ApiService>("api")
.WithEnvironment("InsertionRows", insertionRows)
.WithReference(db);

builder.Build().Run();

The following steps are performed:

e Adds a SQL Server resource named sql and publishes it as a connection string.

e Adds a database named db.

e Adds a parameter named insertionRows .

e Adds a project named api and associates it with the
Projects.Parameters_ApiService project resource type-parameter.

e Passes the insertionRows parameter to the api project.

e References the db database.

The value for the insertionRows parameter is read from the Parameters section of the

app host configuration file appsettings.json:

JSON
{
"Logging": {
"LoglLevel": {
"Default": "Information",
"Microsoft.AspNetCore": "Warning",
"Aspire.Hosting.Dcp": "Warning"
}
s

"Parameters": {

"insertionRows": "1"

The Parameters_ApiService project consumes the insertionRows parameter. Consider

the Program.cs example file:
C#
using Microsoft.EntityFrameworkCore;
var builder = WebApplication.CreateBuilder(args);
int insertionRows = builder.Configuration.GetValue<int>("InsertionRows", 1);
builder.AddServiceDefaults();
builder.AddSqlServerDbContext<MyDbContext>("db");
var app = builder.Build();
app.MapGet("/", async (MyDbContext context) =>

{

// You wouldn't normally do this on every call,
// but doing it here just to make this simple.
context.Database.EnsureCreated();

for (var i = @; i < insertionRows; i++)

{

var entry = new Entry();

await context.Entries.AddAsync(entry);
await context.SaveChangesAsync();
var entries = await context.Entries.TolListAsync();
return new

{

totalEntries = entries.Count,
entries

};
IBE

app.Run();

See also

e NET Aspire manifest format for deployment tool builders

e Tutorial: Connect an ASP.NET Core app to SQL Server using .NET Aspire and Entity

Framework Core

Persist .NET Aspire project data using
volumes or bind mounts

Article « 04/02/2025

Every time you start and stop a .NET Aspire project, the app also creates and destroys
the app resource containers. Any data or files stored in those containers during a
debugging session is lost for subsequent sessions. Many development teams prefer to
keep this data across debugging sessions so that, for example, they don't have to
repopulate a database with sample data for each run.

In this article, you learn how to configure .NET Aspire projects to persist data across app
launches. A continuous set of data during local development is useful in many scenarios.
Various .NET Aspire resource container types are able to leverage volumes and bind
mounts, such as PostgreSQL, Redis and Azure Storage.

When to persist project data

Suppose you have a .NET Aspire solution with a database resource. By default, data is
saved in the container for that resource. Because all the resource containers are
destroyed when you stop your app, you lose that data and won't see it the next time
you run the solution. This setup creates problems when you want to persist data in a
database or storage services between app launches for testing or debugging. For

example, you may want to:

e Work with a continuous set of data in a database during an extended development
session across multiple restarts.
e Test or debug a changing set of files in an Azure Blob Storage emulator.

e Maintain cached data or messages in a Redis instance across app launches.

You can accomplish these goals using volumes or bind mounts. These objects store data
outside the container in a directory on the container host, so it's not destroyed with the
container. This way, you decide which services retain data between launches of your
.NET Aspire project.

. N\

O Note

Volumes and bind mounts are features of your container runtime: Docker or
Podman. .NET Aspire includes methods that make it easy to work with those
features.

Compare volumes and bind mounts

Both volumes and bind mounts store data in a directory on the container host. Because
this directory is outside the container, data isn't destroyed when the container stops.
Volumes and bind mounts, however behave differently:

e Volumes: The container runtime creates and controls volumes. Volumes are
isolated from the core functionality of the container host.

¢ Bind mounts: The container runtime mounts a file or directory on the host
machine. Both the container and the host machine can access the contents of the
bind mount.

Volumes are more secure and portable than bind mounts. They also perform better and

you should use them wherever possible. Use bind mounts only if you need to access or
modify the data from your host machine.

Use volumes

Volumes are the recommended way to persist data generated by containers and they're
supported on both Windows and Linux. Volumes can store data from multiple

containers at a time, offer high performance, and are easy to back up or migrate. With
.NET Aspire, you configure a volume for each resource container using the
ContainerResourceBuilderExtensions.WithVolume method, which accepts three

parameters:

e name: An optional name for the volume.
e target: The target path in the container of the data you want to persist.
e isReadonly: A Boolean flag that indicates whether the data in the volume can be

changed. The default value is false.

For the remainder of this article, imagine that you're exploring a Program class in a .NET

Aspire app host project that's already defined the distributed app builder bits:
C#

var builder = DistributedApplication.CreateBuilder(args);

// TODO:
// Consider various code snippets for configuring
// volumes here and persistent passwords.

builder.Build().Run();

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.withvolume

The first code snippet to consider uses the
ContainerResourceBuilderExtensions.WithVolume API to configure a volume for a SQL
Server resource. The following code demonstrates how to configure a volume for a SQL

Server resource in a .NET Aspire app host project:

C#

var sql = builder.AddSqlServer("sql")
.WithVolume(target: "/var/opt/mssql™)
.AddDatabase("sqldb");

In this example /var/opt/mssql sets the path to the database files in the container.

All .NET Aspire container resources can utilize volumes, and some provide convenient
APIs for adding named volumes derived from resources. Using the WithDataVolume
method as an example, the following code is functionally equivalent to the previous

example but more succinct:

C#

var sql = builder.AddSqlServer("sql")
.WithDataVolume()
.AddDatabase("sqldb");

With the app host project being named volumeMount.AppHost, the wWithDataVolume
method automatically creates a named volume as VolumeMount.AppHost-sql-data and is
mounted to the /var/opt/mssql path in the SQL Server container. The naming

convention is as follows:

e {appHostProjectName}-{resourceName}-data: The volume name is derived from the

app host project name and the resource name.

Use bind mounts

Bind mounts enable access to the data from both within the container and from
processes on the host machine. For example, once a bind mount is established, you can
copy a file into it on your host computer. The file is then available at the bound path
within the container for your resource. With .NET Aspire, you configure a bind mount for
each resource container using the WithBindMount method, which accepts three
parameters:

e source: The path to the folder on the host machine to mount in the container.

e target: The target path in the container for the folder.

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.withvolume
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.sqlserverbuilderextensions.withdatavolume
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.withbindmount

e isReadonly: A Boolean flag that indicates whether the data in the bind mount can

be changed. The default value is false.

Consider this code snippet, which uses the WithBindMount API to configure a bind

mount for a SQL Server resource:

C#

var sql = builder.AddSqlServer("sql")

.WithBindMount(source: @"C:\SqlServer\Data", target:
"/var/opt/mssql")

.AddDatabase("sqldb");

In this example:

® source: @"C:\SgqlServer\Data" sets the folder on the host computer that will be

bound.
® target: "/var/opt/mssql" sets the path to the database files in the container.

As for volumes, some .NET Aspire container resources provide convenient APIs for
adding bind mounts. Using the WithDataBindMount method as an example, the
following code is functionally equivalent to the previous example but more succinct:

C#

var sql = builder.AddSqlServer("sql")
.WithDataBindMount(source: @"C:\SqlServer\Data")
.AddDatabase("sqldb");

Create persistent passwords

Named volumes require a consistent password between app launches. .NET Aspire
conveniently provides random password generation functionality. Consider the previous
example once more, where a password is generated automatically:

C#

var sql = builder.AddSqlServer("sql")
.WithDataVolume()
.AddDatabase("sqldb");

Since the password parameter isn't provided when calling AddsqlServer, .NET Aspire

automatically generates a password for the SQL Server resource.

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.withbindmount
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.sqlserverbuilderextensions.withdatabindmount

@ Important

This isn't a persistent password! Instead, it changes every time the app host runs.

To create a persistent password, you must override the generated password. To do this,
run the following command in your app host project directory to set a local password in
your .NET user secrets:

.NET CLI
dotnet user-secrets set Parameters:sql-password <password>
The naming convention for these secrets is important to understand. The password is

stored in configuration with the Parameters:sql-password key. The naming convention

follows this pattern:

e Parameters:{resourceName}-password: In the case of the SQL Server resource (which
was named "sql"), the password is stored in the configuration with the key

Parameters:sql-password.

The same pattern applies to the other server-based resource types, such as those shown
in the following table:

. Expand table

Resource Hosting package Example Override key

type resource name

MySQL @ Aspire.Hosting.MySql mysql Parameters:mysql-password

Oracle @ Aspire.Hosting.Oracle oracle Parameters:oracle-
password

PostgreSQL @ Aspire.Hosting.PostgreSQLZ postgresql Parameters:postgresql-
password

RabbitMQ @ Aspire.Hosting.RabbitMq® rabbitmg Parameters:rabbitmg-
password

SQL Server @ Aspire.Hosting.SqlServer# sql Parameters:sql-password

By overriding the generated password, you can ensure that the password remains

consistent between app launches. An alternative approach is to use the AddParameter

https://www.nuget.org/packages/Aspire.Hosting.MySql
https://www.nuget.org/packages/Aspire.Hosting.MySql
https://www.nuget.org/packages/Aspire.Hosting.Oracle
https://www.nuget.org/packages/Aspire.Hosting.Oracle
https://www.nuget.org/packages/Aspire.Hosting.PostgreSQL
https://www.nuget.org/packages/Aspire.Hosting.PostgreSQL
https://www.nuget.org/packages/Aspire.Hosting.RabbitMq
https://www.nuget.org/packages/Aspire.Hosting.RabbitMq
https://www.nuget.org/packages/Aspire.Hosting.SqlServer
https://www.nuget.org/packages/Aspire.Hosting.SqlServer
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addparameter

method to create a parameter that can be used as a password. The following code

demonstrates how to create a persistent password for a SQL Server resource:
C#

var sqlPassword = builder.AddParameter("sql-password”, secret: true);

var sql = builder.AddSqlServer("sql", password: sqlPassword)
.WithDataVolume()
.AddDatabase("sqldb");

The AddParameter method is used to create a parameter named sql-password that's
considered a secret. The AddsqlServer method is then called with the password
parameter to set the password for the SQL Server resource. For more information, see

External parameters.

Next steps

You can apply the volume concepts in the preceding code to a variety of services,
including seeding a database with data that will persist across app launches. Try
combining these techniques with the resource implementations demonstrated in the

following tutorials:

e Tutorial: Connect an ASP.NET Core app to .NET Aspire storage integrations

e Tutorial: Connect an ASP.NET Core app to SQL Server using .NET Aspire and Entity
Framework Core

e _NET Aspire orchestration overview

.NET Aspire dashboard overview

Article « 11/12/2024

NET Aspire project templates offer a sophisticated dashboard for comprehensive app
monitoring and inspection, and it's also available in standalone mode. This dashboard
allows you to closely track various aspects of your app, including logs, traces, and
environment configurations, in real-time. It's purpose-built to enhance the development
experience, providing an insightful overview of your app's state and structure. The
dashboard exposes the ability to stop, start, and restart resources, as well as view and
interact with logs and telemetry.

Use the dashboard with .NET Aspire projects

The dashboard is integrated into the .NET Aspire *AppHost. During development the
dashboard is automatically launched when you start the project. It's configured to

display the .NET Aspire project's resources and telemetry.

&n AspireSample

Resources

For more information about using the dashboard during .NET Aspire development, see
Explore dashboard features.

Standalone mode

The .NET Aspire dashboard is also shipped as a Docker image and can be used
standalone, without the rest of .NET Aspire. The standalone dashboard provides a great
Ul for viewing telemetry and can be used by any application.

Bash

docker run --rm -it -p 18888:18888 -p 4317:18889 -d --name aspire-
dashboard \
mcr.microsoft.com/dotnet/aspire-dashboard:9.0

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/projects.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/projects.png#lightbox

The preceding Docker command:

e Starts a container from the mcr.microsoft.com/dotnet/aspire-dashboard:9.0 image.
e The container instance exposing two ports:

o Maps the dashboard's OTLP port 18889 to the host's port 4317. Port 4317
receives OpenTelemetry data from apps. Apps send data using OpenTelemetry
Protocol (OTLP) &.

o Maps the dashboard's port 18888 to the host's port 18888. Port 18888 has the
dashboard Ul. Navigate to http://localhost:18888 in the browser to view the
dashboard.

For more information, see the Standalone .NET Aspire dashboard.

Configuration

The dashboard is configured when it starts up. Configuration includes frontend and
OTLP addresses, the resource service endpoint, authentication, telemetry limits and

more.

For more information, see .NET Aspire dashboard configuration.

Architecture

The dashboard user experience is built with a variety of technologies. The frontend is
built with [@ Grpc.AspNetCore) NuGet package @ NuGet package) to the resource
server. Consider the following diagram that illustrates the architecture of the .NET Aspire
dashboard:

https://opentelemetry.io/docs/specs/otlp/
https://opentelemetry.io/docs/specs/otlp/
https://opentelemetry.io/docs/specs/otlp/
https://www.nuget.org/packages/Grpc.AspNetCore
https://www.nuget.org/packages/Grpc.AspNetCore

Dashboard

Security

The .NET Aspire dashboard offers powerful insights to your apps. The Ul displays
information about resources, including their configuration, console logs and in-depth
telemetry.

Data displayed in the dashboard can be sensitive. For example, configuration can
include secrets in environment variables, and telemetry can include sensitive runtime
data. Care should be taken to secure access to the dashboard.

For more information, see .NET Aspire dashboard security considerations.

Next steps

Explore the .NET Aspire dashboard

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/architecture-diagram.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/architecture-diagram.png#lightbox

Explore the .NET Aspire dashboard

Article « 11/12/2024

In the upcoming sections, you discover how to create a .NET Aspire project and embark
on the following tasks:

v Investigate the dashboard's capabilities by using the app generated from the
project template as explained in the Quickstart: Build your first NET Aspire project.

v Delve into the features of the .NET Aspire dashboard app.

The screenshots featured in this article showcase the dark theme. For more information
on theme selection, see Theme selection.

Dashboard authentication

When you run a .NET Aspire app host, the orchestrator starts up all the app's dependent
resources and then opens a browser window to the dashboard. The .NET Aspire
dashboard requires token-based authentication for its users because it displays

environment variables and other sensitive information.

When the dashboard is launched from Visual Studio or Visual Studio Code (with the C#
Dev Kit extension @), the browser is automatically logged in, and the dashboard opens
directly. This is the typical developer fs experience, and the authentication login flow is
automated by the .NET Aspire tooling.

However, if you start the app host from the command line, you're presented with the
login page. The console window displays a URL that you can select on to open the
dashboard in your browser.

wget-startedisnippetsiquickstart\aspireSamplerAspireSample, AppHost

Distributed sta C shut down.

The URL contains a token query string (with the token value mapped to the t name
part) that's used to log in to the dashboard. If your console supports it, you can hold the
ctrl key and then select the link to open the dashboard in your browser. This method
is easier than copying the token from the console and pasting it into the login page. If
you end up on the dashboard login page without either of the previously described
methods, you can always return to the console to copy the token.

https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/dotnet-run-login-url.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/dotnet-run-login-url.png#lightbox

AspireApp dashboard

Enter

Where do | find the token?

The login page accepts a token and provides helpful instructions on how to obtain the
token, as shown in the following screenshot:

AspireApp dashboard

Where do | find the token?

: Aspire.Hosting.DistributedApplication[@]

Now listening on: https:!/l.ocal.host'flssa"!
: Aspire.Hosting.DistributedApplication[e]

Login to the dashboard at https://localhost:15887/login?t=087fe5119b2aaca5f3a53f63a8c29uscf
: Aspire.Hosting.DistributedApplication[e]

Distributed application started. Press Ctrl+C to shut down.

Copy the highlighted token from the console to the login page and log in.

Alternatively, click on the console link to automatically log in. The address might not be correct when
the dashboard is running in a container and the external port is mapped to a different value.

More information

After copying the token from the console and pasting it into the login page, select the
Log in button.

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/aspire-login.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/aspire-login.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/aspire-login-help.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/aspire-login-help.png#lightbox

AspireApp dashboard

Where do | find the token?

The dashboard persists the token as a browser persistent cookie, which remains valid for
three days. Persistent cookies have an expiration date and remain valid even after
closing the browser. This means that users don't need to log in again if they close and
reopen the browser. For more information, see the Security considerations for running
the .NET Aspire dashboard documentation.

Resources page

The Resources page is the default home page of the .NET Aspire dashboard. This page
lists all of the .NET projects, containers, and executables included in your .NET Aspire
solution. For example, the starter application includes two projects:

e apiservice: A back-end API project built using Minimal APIs.
e webfrontend: The front-end Ul project built using Blazor.

The dashboard also provides essential details about each resource:

e Type: Displays whether the resource is a project, container, or executable.
e Name: The name of the resource.
e State: Displays whether or not the resource is currently running.
o Errors: Within the State column, errors are displayed as a badge with the error
count. It's useful to understand quickly what resources are reporting errors.

Selecting the badge takes you to the semantic logs for that resource with the
filter at an error level.

e Start time: When the resource started running.

e Source: The location of the resource on the device.

e Endpoints: One or more URLs to reach the running resource directly.

e Logs: A link to the resource logs page.

e Actions: A set of actions that can be performed on the resource:

o Stop / Start: Stop (or Start) the resource—depending on the current State.

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/aspire-login-filled.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/aspire-login-filled.png#lightbox

o Console logs: Navigate to the resource's console logs.
o Ellipsis: A submenu with extra resource specific actions:
o View details: View the resource details.
o Console log: Navigate to the resource's console logs.
o Structured logs: Navigate to the resource's structured logs.
o Traces: Navigate to the resource's traces.
o Metrics: Navigate to the resource's metrics.
o Restart: Stop and then start the resource.

Consider the following screenshot of the resources page:

Aspiresample

. Resources

Type Name Slate Endpoints

Running

Running

Project webfrontend Running E:40:38 AN

Resource actions

Each resource has a set of available actions that are conditionally enabled based on the
resource's current state. For example, if a resource is running, the Stop action is enabled.
If the resource is stopped, the Start action is enabled. Likewise, some actions are
disabled when they're unavailable, for example, some resources don't have structured

logs. In these situations, the Structured logs action is disabled.

Stop or Start a resource

The .NET Aspire dashboard allows you to stop or start a resource by selecting the Stop
or Start button in the Actions column. Consider the following screenshot of the

resources page with the Stop button selected:

& AspireSample

Fiinme..

eaehity

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/projects.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/projects.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/resource-stop-action.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/resource-stop-action.png#lightbox

When you select Stop, the resource stops running, and the State column updates to
reflect the change.

O Note

For project resources, when the debugger is attached, it's reattached on restart.

The Start button is then enabled, allowing you to start the resource again. Additionally,
the dashboard displays a toast notification of the result of the action:

AspireSample 0 (

. Resources cache “Stop” succeeded

Type Marne Start time Source Endpaints

9:51:25 A

Running 9:51:22 A

Running 2 95125 AN

When a resource is in a non-running state, the Start button is enabled. Selecting Start
starts the resource, and the State column updates to reflect the change. The Stop
button is then enabled, allowing you to stop the resource again. The dashboard displays

a toast notification of the result of the action:

AspireSample 00
Resources cache "Start" succeeded

Marme

Runmning

Running &

Q Tip

Resources that depend on other resources that are stopped, or restarted, might
experience temporary errors. This is expected behavior and is typically resolved
when the dependent resources are in a Running state once again.

Resource submenu actions

Selecting the horizontal ellipsis icon in the Actions column opens a submenu with
additional resource-specific actions. In addition to the built-in resource submenu
actions, you can also define custom resource actions by defining custom commands. For

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/resource-stopped-action.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/resource-stopped-action.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/resource-started-action.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/resource-started-action.png#lightbox

more information, see Custom resource commands in .NET Aspire. For the built-in

resource submenu actions, consider the following screenshot:

AspireSample

. Resources

Name

‘webfrantend 9:51:25 AM AspireSample.Web.cspraj

The following submenu actions are available:

e View details: View the resource details.

e Console log: Navigate to the resource's console logs.

e Structured logs: Navigate to the resource's structured logs.
e Traces: Navigate to the resource's traces.

e Metrics: Navigate to the resource's metrics.

e Restart: Stop and then start the resource.

® Important

There might be resources with disabled submenu actions. They're greyed out when

they're disabled. For example, the following screenshot shows the submenu actions
disabled:

() View details

= Console logs

) Restart

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/resource-actions.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/resource-actions.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/resource-submenu-actions.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/resource-submenu-actions.png#lightbox

Copy or Open in text visualizer

To view a text visualizer of certain columns, on hover you see a vertical ellipsis icon.

Select the icon to display the available options:

e Copy to clipboard
e Open in text visualizer

Consider the following screenshot of the ellipsis menu options:

& AspireSample

When you select the Open in text visualizer option, a modal dialog opens with the text
displayed in a larger format. Consider the following screenshot of the text visualizer

modal dialog:

AspireSample
Y . Resources
&l Source

dacker. da/1ihrary/radis:7.4

Some values are formatted as JSON or XML. In these cases, the text visualizer enables

the Select format dropdown to switch between the different formats.

Resource details

You can obtain full details about each resource by selecting the ellipsis button in the
Actions column and then selecting View details. The Details page provides a

comprehensive view of the resource:

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/text-visualizer-selection-menu.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/text-visualizer-selection-menu.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/text-visualizer-resources.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/text-visualizer-resources.png#lightbox

AspireSample

Resources

im

Type

;@

Containgr cache

@

Projact wabfrartans

z

Project: apiservice

Resource

Name
Displey namma
State

Start time.
Health state
Project gath
Frocess 1D

Frdnainte

The search bar in the upper right of the dashboard also provides the option to filter the

Praject apserice

State

Running

Furing

Rinning

Start tima

12:2510 FM

122510 PM

122512 PM

Sourca

dockerio/library/redis? A

fspireSample. ApiServic csproj

AspireSampleliieh cspr)

Value
BEBISErVICE
Rurviiri
11/7/2024 12:25:10 PR

Heafthy

Endpaints

tepiiflocalhest:h3721

hitzsacalheat7525, [

httesacathosr 700, (NN

View consie logs T @

Actlons
B =
= o [-]
i View details
= Console lags

18 Structured logs
5 Treces
5 Metrics

) Reswart

list, which is useful for .NET Aspire projects with many resources. To select the types of

resources that are displayed, drop down the arrow to the left of the filter textbox:

e AspireSample
.2 _ Resources

Type

Container

Container: cache

Resource

Narme

Display name

State

Start time

Health state
Container miage
Container 0
Container arguments
Cantainer ports

Containar Fatime
Endpoints

Name

In this example, only containers are displayed in the list. For example, if you enable Use

Redis for caching when creating a .NET Aspire project, you should see a Redis container
listed:

State

Running

Start time

4036 AM

Source

dockeriofbrary/redisT 4

Value

cache

Running

10/25/2024 54036 AM

Healthy

docker.iofibrary/redi=7 4

2530b128afad

16379}

Session

Endpolnts

trpufiocalhostSa667

T

Resource types
— | (Al
Project

ﬂ Container

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/resource-details.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/resource-details.png#lightbox

AspireSample

Resources

Type State Start time Source Endpoints

Container Running B:40:36 AM docker.io/library/redis:7.4

Executables are stand-alone processes. You can configure a .NET Aspire project to run a

stand-alone executable during startup, though the default starter templates don't
include any executables by default.

The following screenshot shows an example of a project that has errors:

AspireSample
. Resources

Type Mame State Start time Endpoints
Container cache Runriing
Projoct e Running 4 B5E:51 AM

Praject wiabfrantend Running 3 85854 AM

Selecting the error count badge navigates to the Structured logs page with a filter

applied to show only the logs relevant to the resource:

AspireSample

Structured logs

Resource apiservice v C1,. Filter Level Emar ~ Filters Mo filtars

Resource g Timaestamp Message I Actions

| apisenice 8:59: AM Anunhandled exception has ocosmed while
An unhandled
An unhanle

An unhance:

Total: 4 results found

To see the log entry in detail for the error, select the View button to open a window
below the list with the structured log entry details:

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/resources-filtered-containers.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/resources-filtered-containers.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/projects-errors.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/projects-errors.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/structured-logs-errors.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/structured-logs-errors.png#lightbox

AspireSample

- Structured logs

Respurce apiservice QL Filke ~ Filters Mo filters =
Resource Level Timestamp Message e Actions
| apiscrvice Error &50:24 437 AM An unhandled exception has ccourred while executing the request.
| apisarvice Error ; An unhandled exception haz ocourred while executing the request.
| apisarvice Frror I Anunhandled exception hazs ocourred while executing the request.

apiservice Error 850933604 AM An unhandled exception has ocourred while executing the request.

UnhandledException i

Resource apiservice Timestamp 8:59:24.437 AM
Log entry

Name Value
Level Frrar
Message An unhandled exception has occurred while executing the request.
Connectionld OHNTOSTHIAPHN
Requestid OHNTOATHTAPHN-DOODO0D2
RequestPath fweatherforocast
Context

Exception

Resource

For more information and examples of Structured logs, see the Structured logs page

section.

O Note

The resources page isn't available if the dashboard is started without a configured
resource service. The dashboard starts on the Structured logs page instead. This is
the default experience when the dashboard is run in standalone mode without
additional configuration.

For more information about configuring a resource service, see Dashboard

configuration.

Monitoring pages

The .NET Aspire dashboard provides various ways to view logs, traces, and metrics for
your app. This information enables you to track the behavior and performance of your
app and to diagnose any issues that arise.

Console logs page

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/structured-logs-errors-view.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/structured-logs-errors-view.png#lightbox

The Console logs page displays text that each resource in your app has sent to standard
output. Logs are a useful way to monitor the health of your app and diagnose issues.
Logs are displayed differently depending on the source, such as project, container, or
executable.

When you open the Console logs page, you must select a source in the Select a

resource drop-down list.

If you select a project, the live logs are rendered with a stylized set of colors that
correspond to the severity of the log; green for information as an example. Consider the

following example screenshot of project logs with the apiservice project selected:

& AspireSample

B _ Console logs

« Walching logs.

When errors occur, they're styled in the logs such that they're easy to identify. Consider

the following example screenshot of project logs with errors:

AspireSample 003
Console logs
apiservice v Watching logs..

Srictired 1 4 o ting. Lifetine[14]

i)

Trares

ndlerMiddlenare[1]

If you select a container or executable, formatting is different from a project but verbose

behavior information is still available. Consider the following example screenshot of a

container log with the cache container selected:

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/project-logs.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/project-logs.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/project-logs-error.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/project-logs-error.png#lightbox

AspireSample

Console logs

cadhe

config file us

Resource replicas

When project resources are replicated using the WithReplicas API, they're represented in
the resource selector under a top-level named resource entry with an icon to indicator.
Each replicated resource is listed under the top-level resource entry, with its
corresponding unique name. Consider the following example screenshot of a replicated
project resource:

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.projectresourcebuilderextensions.withreplicas
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/container-logs.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/container-logs.png#lightbox

& TestShop

Console logs

= Resource (None) v No resource selected

+ | (N -
B (None)
apigateway
i aspire-dashboard
basketcache-commander
basketcache

basketservice

catalogdb

catalogdbapp (FailedToStart)

5= catalogservice (application)
catalogservice-2bpj2qdq6k
catalogservice-6ljdinOhc0

frontend

messaging

orderprocessor

postgres-pgadmin

The preceding screenshot shows the catalogservice (application) project with two
replicas, catalogservice-2bpj2qdq6k and catalogservice-61jdinehce. Each replica has its

own set of logs that can be viewed by selecting the replica name.

Structured logs page

.NET Aspire automatically configures your projects with logging using OpenTelemetry.
Navigate to the Structured logs page to view the semantic logs for your .NET Aspire
project. Semantic, or structured logging @ makes it easier to store and query log-events,

https://github.com/NLog/NLog/wiki/How-to-use-structured-logging
https://github.com/NLog/NLog/wiki/How-to-use-structured-logging
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/console-logs-with-replicas.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/console-logs-with-replicas.png#lightbox

as the log-event message-template and message-parameters are preserved, instead of
just transforming them into a formatted message. You notice a clean structure for the
different logs displayed on the page using columns:

e Resource: The resource the log originated from.

e Level: The log level of the entry, such as information, warning, or error.
e Timestamp: The time that the log occurred.

e Message: The details of the log.

e Trace: A link to the relevant trace for the log, if applicable.

e Details: Additional details or metadata about the log entry.

Consider the following example screenshot of semantic logs:

AspireSample

Structured logs

Informatios

Intarmation

Infarmation

Intarmation q; 0 AM loca

Infarmation oL A 1 unique na

Total: 116 results found

Filter structured logs

The structured logs page also provides a search bar to filter the logs by service, level, or
message. You use the Level drop down to filter by log level. You can also filter by any

log property by selecting the filter icon button, which opens the advanced filter dialog.

Consider the following screenshots showing the structured logs, filtered to display items
with "Hosting" in the message text:

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/structured-logs.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/structured-logs.png#lightbox

Add filter

Message
cantaing
Hosting

Appy filles

Total: 2 results found

Traces page

Navigate to the Traces page to view all of the traces for your app. .NET Aspire
automatically configures tracing for the different projects in your app. Distributed
tracing is a diagnostic technique that helps engineers localize failures and performance
issues within applications, especially those that might be distributed across multiple
machines or processes. For more information, see .NET distributed tracing. This
technique tracks requests through an application and correlates work done by different
application integrations. Traces also help identify how long different stages of the
request took to complete. The traces page displays the following information:

e Timestamp: When the trace completed.

e Name: The name of the trace, prefixed with the project name.

e Spans: The resources involved in the request.

e Duration: The time it took to complete the request. This column includes a radial
icon that illustrates the duration of the request in comparison with the others in
the list.

https://learn.microsoft.com/en-us/dotnet/core/diagnostics/distributed-tracing
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/structured-logs-filtered.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/structured-logs-filtered.png#lightbox

AspireSample

Traces

tesource (Al

ET fweatherforecast

ET fweat

| webfront
| webfrontendt: GET

| webfrontend: GET fcounter

| webfrontend: GET foounter

| webfrontend: GET fweather

Filter traces

Spans

B reric=
|

s Nofiters <

17.6bms

The traces page also provides a search bar to filter the traces by name or span. Apply a

filter, and notice the trace results are updated immediately. Consider the following

screenshot of traces with a filter applied to weather and notice how the search term is

highlighted in the results:

AspireSample

ET /iy forecast

GET /i forecast
| webirontend: GeT /TR
I He W cathe
| webfrontend: GET /EENE

| webirontend: GET 4
tend: GET /R
tend: GET /SN

: GeT /I

: GET (k]

I wetifrcritend (3}

l wehfronend (3)

webifrontend (3

l webifrontend (3

Duration

1.45ms

When filtering traces in the Add filter dialog, after selecting a Parameter and

corresponding Condition, the Value selection is pre-populated with the available values

for the selected parameter. Consider the following screenshot of the Add filter dialog

with the http.route parameter selected:

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/traces.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/traces.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/trace-view-filter.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/trace-view-filter.png#lightbox

Add filter

Parameter

http.route

Condition

contains

Value

/weather 39 oly filter
/weatherforecast 4

|

fcounter 2

/ blazor 2

/ blazor/disconnect/ 2

/ blazor/initializers/ 2

/_blazor/negotiate 2

Combine telemetry from multiple resources

When a resource has multiple replicas, you can filter telemetry to view data from all
instances at once. Select the parent resource, labeled (application), as shown in the

following screenshot:

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/traces-filtering.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/traces-filtering.png#lightbox

Traces

Resource catalogservice (application)

Timestarr (All) Spans
apigateway

11:01:24." ges/{id} 056351 P fontend 2 | B :

basketservice

11:01:24." catalogdbapp ges/fid} 809258c B frontend (2) | catalogservice-jhsumbijx (2)

11:01:2¢.° I i= Guloartne teppicaon) gos/fid} 2943924 frontend (2) | catalogservice-jhsumbjx (2)

catalogservice-dwgcuvyz
V194 ¢ AGAY 00 > by -
e catalogservice-jhsumbijx ges/{id} 8edcf e i)

11:01:24." frontend ges/{id} 61d2ae7 " frontend (2) catalogservice-jhsumbjx (2)

orderprocessor _
11:01:24.151 am Hulenu. Oei /eawaioyynnages/{id} dioee? frontend (2) catalogservice-jhsumbjx (2)

After selecting the parent resource, the traces page displays telemetry from all instances
of the resource.

Trace details
The trace details page contains various details pertinent to the request, including:

e Trace Detail: When the trace started.

e Duration: The time it took to complete the request.

e Resources: The number of resources involved in the request.
e Depth: The number of layers involved in the request.

e Total Spans: The total number of spans involved in the request.

Each span is represented as a row in the table, and contains a Name. Spans also display
the error icon if an error occurred within that particular span of the trace. Spans that

have a type of client/consumer, but don't have a span on the server, show an arrow icon
and then the destination address. This represents a client call to a system outside of the

.NET Aspire project. For example, an HTTP request an external web API, or a database
call.

Within the trace details page, there's a View Logs button that takes you to the
structured logs page with a filter applied to show only the logs relevant to the request.
Consider an example screenshot depicting the structured logs page with a filter applied
to show only the logs relevant to the trace:

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/telemetry-resource-filter.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/telemetry-resource-filter.png#lightbox

. AspireSample

Structured logs

L] Q T Lewed el ~ Filters: Traceld =
Resource
| webfrantend

I weblrantend Il rmiation

The structured logs page is discussed in more detail in the Structured logs page section.

Trace examples

Each trace has a color, which is generated to help differentiate between spans—one
color for each resource. The colors are reflected in both the traces page and the trace
detail page. When traces depict an arrow icon, those icons are colorized as well to match

the span of the target trace. Consider the following example screenshot of traces:

AspireSample
Traces
Resource (All)

Timestamp Name Spans.

| apisenvice: GET jweatherforecas B orerie

weatherforecas!

| webfrontend: GET
T fcounters

: GET /.

| webfrontand:

| webiront

| webfrontend: GET fweather

You can also select the View button to navigate to a detailed view of the request and
the duration of time it spent traveling through each application layer. Consider an
example selection of a trace to view its details:

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/structured-logs-trace-errors.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/structured-logs-trace-errors.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/traces.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/traces.png#lightbox

HiHing b

Sample

webfrontend: GET fweather -

webfrontend: GET /westher 40

ontend [Lrati 5 Stwt time s

Links.

Backlinks

Scroll down in the span details pain to see full information. At the bottom of the span
details pane, some span types, such as this call to a cache, show span event timings:

webfrontend: DATA redis GET

webfrontend [Lrabon B0 Ape St time 1558me

Bt ettt ool

Links.

Backlinks

When errors are present, the page renders an error icon next to the trace name.
Consider an example screenshot of traces with errors:

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/trace.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/trace.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/trace-span-details.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/trace-span-details.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/trace-span-event-details.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/trace-span-event-details.png#lightbox

AspireSample
. Traces

(A

wehfrontend (1}

wehfrontend (1}

wehfrontend (1}

AspireSample

. webfrontend: GET /weather

Trace detail 3/11/2024 9:52:08.922 AM Duration 1.16s R 2 Depth3 Total spans 8

Dps 289.62ms

Metrics page

Navigate to the Metrics page to view the metrics for your app. .NET Aspire automatically
configures metrics for the different projects in your app. Metrics are a way to measure
the health of your application and can be used to monitor the performance of your app
over time.

Each metric-publishing project in your app has its own metrics. The metrics page
displays a selection pane for each top-level meter and the corresponding instruments
that you can select to view the metric.

Consider the following example screenshot of the metrics page, with the webfrontend
project selected and the System.Net.Http meter's http.client.request.duration metric

selected:

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/traces-errors.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/traces-errors.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/trace-view-errors.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/trace-view-errors.png#lightbox

AspireSample

Metrics

Rewo wrbdrontand ¥ ast & mintas

OCESE, UNTME J0TNETQC el pITagmenti " s
* http.client.request.duration

oo nintime dntnatqe heapsiva

Turatinn of HTTF dirt ragursts
prowessunbenedulml geobjels sie
prowssnfmedotnet it ompkation tin i
b Graph 3 Tabde
provess unbene duled il compiled siee =
Filters
process untene dotret it methods_comp b
processmintme drmotmanitnclnd ront hilgzrequesLmtbod

oo nintmadamat thraad_paolenmep
hito,responsa status_code
g unfmedoinet thiced_ ponlguen

provessuntEnedolie hisad poolilees - netveoe b probucubession
process Nt dofnat imercatnt
servnradidrass
w0 Systenn, Met Hito
HpLcRant.Acive_rrniest: serverpuil

It et coraectonduration ! b A T urlscheene

Abapen_ponnodiong
S Options
il Lieyuest duralion
Show count
it chent sequest time, in_queue o
00000 A W00 AM 0EL AM A0 A L0 AM
< Sysrm.Net Mamefirsalution
#20 Seconds B Setorcs P secongs
e uokup.duralion

In addition to the metrics chart, the metrics page includes an option to view the data as

a table instead. Consider the following screenshot of the metrics page with the table

view selected:

& AspireSample

REN,S Metrics

& Resource webfrontend Last 5 minutes
Console

% - OpenTelematryinstument * http.client.request.duration

Structured .
process.runtime.dotnet Duration of HTTP dlient requests.

[-El process.runtime.dotnet
Traces

L

Metrics process.runtime.dotnet

process.runtime.dotnet 1 Graph ﬁEble

Time P50 Seconds P90 Seconds P93 Seconds

process.runtime.dotnet
10:05:21 AM .00: X 0.005 ¢
process.runtime.dotnet

pmcess.mntime.dmnet 10:05:01 AM m QAN ﬂ

process.runtime.dotnet 10:04:21 AM 0.005 X £ .005 ¢

process.runtime.dotnet

process.runtime.dotnet QUL IEAM 0.005

process.runtime.dotnet 10:03:51 AM 0.005
process.runtime.dotnet

10:03:41 AM 0.005
process.runtime.dotnet

process.runtime.dotnet 10:03:21 AM 0.005
process.runtime.dotnet 10:03:11 AM 0.005
process.runtime.dotnet
process.runtime.dotnet Only show value updates ‘)
~ System.Net Http Filters
http.clientactive_reque
http.request method

http.client.connection.d

http.client.open_conne http.response.status_code
i network.protocol.version
hitp.clientrequest.time.
.add localhost
v System.Net.NameResolutic server.address LT LB

dns.lookup.duration server.port 21171 58684 7352

Under the chart, there's a list of filters you can apply to focus on the data that interests
you. For example, in the following screenshot, the http.request.method field is filtered

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/metrics-view.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/metrics-view.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/metrics-table-view.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/metrics-table-view.png#lightbox

to show only GET requests:

AspireSample

Metrics

Resource webfrantend = Last 30 minutes

~ OpenlelemetryinstumentationRunlirne ht‘tp‘client.request.duration
process.runtimedotnet.assemblies.count Duration of HTTP client requests.
processruntimedolnelexceptions.court
process.untimedotnet. g allocations size
provcess.nantimedamet.gorollections.coent
process nuntimedotnetgecommitiod_maemony.size
process.untime.datnet.ge.duration

PIDLESSL Ly heap.|

process.runtime dotnet.ge heapsize

process. untime dotnet.qo.objects size
process.runtime dotnet jitcompilation_time

process untimedaomet jitil_compiled.size
processuntimedatnet Jitmethads_compiled.oount
processruntimedotnelmonitorock contentivn.count

process runtimedotnet thiesd_ pool leted flemscount

processruntimedotnel thiead pool queue length
process.runtime.dotnet thread_pool threads.count FAD:00 AM F:A45:00 &M 9:50:00 AM 9:55:00 AM 10:00:00 A0 10:05:00 AM
process nintimedathet fimer.rount P50 Seconds = P Seconds v9y seconds @ Exemplars
~ Systemn.Met Hity "
W 5 Filters
hitpuclient.active_requests
2] i http.request method
httpeclient. connection.duration
http.elient.open_connections hitp respes LT
hltpalientregquesLduration
network protocol version
hitp.client.requesttime in queus

~ Symtam Met MameResolution senaeaddress Incathnst

dns ockupduration

You can also choose to select the count of the displayed metric on the vertical access,

instead of its values:

AspireSample

Metrics
Resource webirontend Last 30 minutes

~ Openlelemetryinstrumentation Buntimes
process.runtime.datnet.assemblies.count
process.untimedotnet exceptions.count
process.untimedamet.ge.allocations size
processnuntimedotnet.ge.collsctions.count
processruntimedotnelycoommilled memonysie
processuntime dotreLgcduration
process.untimedotnet.gec heap. fragmentation.size
process.runtime.datnet.ge heap size
process.untimedamet.ge.ohjects.size

process.untime domet jit.oompilation_time

processruntime dotrct Jitl_compiled.size
94000 AM FA5:.00 AM E50:00 AM F5500 AM T0:U0:00 AM 100500 AM
prowess.runtimedotneljibmethods compiled.count
Count
process.runtime.dotnet. manitor.lack_contention.count

process.runtimedotnet thread pool.completed items count Filters

process.nuntime.dotmet thread_poal.queue length hitprequest method

process unfime.domet thread_poal threads.count
hitpresponse.status_code

provess.rantimedatnel lmercounl
~ Systom, et Hitp network protocol version

hilpelientactive requests
serveraddress Incalhast
hittpclienteonnection.duration

hitpclientopen connections serverport 21171 5BeE4 7IS2

hittp.client request. duration url.scheme http hatps

hittpolisnt request time_in_iueue

 SysternMel NameResolulion Options

Sk it
dnslockup.duration I CIL

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/metrics-view-filtered.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/metrics-view-filtered.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/metrics-view-count.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/metrics-view-count.png#lightbox

For more information about metrics, see Built-in Metrics in .NET.

Exemplars

The .NET Aspire dashboard supports and displays OpenTelemetry Exemplars. An
exemplar links a metric data point to the operation that recorded it, serving as a bridge

between metrics and traces.

Exemplars are useful because they provide additional context about why a specific
metric value was recorded. For example, if you notice a spike in latency in the
http.client.request.duration metric, an exemplar could point to a specific trace or

span that caused the spike, helping you understand the root cause.

Exemplars are displayed in the metrics chart as a small round dot next to the data point.
When you hover over the indicator, a tooltip displays the exemplar details as shown in

the following screenshot:

AspireSample

Last 30 minutes

Filters

hitp.dient request. duration
http.disntrequest time in_queue

System:Net.NameResalution

dnslookup.duration

The preceding screenshot shows the exemplar details for the

http.client.request.duration metric. The exemplar details include the:

e Resource name.
e Operation performed, in this case an HTTP GET to the /catalog/images/{id}.

e Corresponding value and the time stamp.

https://learn.microsoft.com/en-us/dotnet/core/diagnostics/built-in-metrics
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/metrics-page-exemplars.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/metrics-page-exemplars.png#lightbox

Selecting the exemplar indicator opens the trace details page, where you can view the

trace associated, for example consider the following screenshot:

For more information, see OpenTelemetry Docs: Exemplars .

Theme selection

By default, the theme is set to follow the System theme, which means the dashboard
uses the same theme as your operating system. You can also select the Light or Dark
theme to override the system theme. Theme selections are persisted.

The following screenshot shows the theme selection dialog, with the default System
theme selected:

AspireSample ,
Settings

Resources .
o System

Light
Dark

Type Mame State Start time Source Endpoints

Container cache Running

Running

Running Version: 9.0.0

If you prefer the Light theme, you can select it from the theme selection dialog:

https://opentelemetry.io/docs/specs/otel/metrics/data-model/#exemplars
https://opentelemetry.io/docs/specs/otel/metrics/data-model/#exemplars
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/trace-page-from-exemplars.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/trace-page-from-exemplars.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/theme-selection.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/theme-selection.png#lightbox

A AspireSample Settings ><
nﬂﬁs Resources Theme

: El "\:- System

o Ty Name State Start time Source Endlp O uoht

Dashboard shortcuts

The .NET Aspire dashboard provides various shortcuts to help you navigate and control
different parts of the dashboard. To display the keyboard shortcuts, press shift + 2, or
select the question mark icon in the top-right corner of the dashboard:

AspireSample

Resources
Help

Go to Microsoft Learn documentation

Keyboard Shortcuts

Panels Page navigation
Increase panel size Go to Resources
Decrease panel size Go to Console Logs
Reset panel sizes : - Go to Structured Logs
Toggle panel orientation £ Go to Traces

Close panel 3 Go to Metrics

Site-wide navigation

Go to Help

Go to Settings

The following shortcuts are available:

Panels:

+ : Increase panel size.

e _ :Decrease panel size.

e shift + r:Reset panel size.

e shift + t:Joggle panel orientation.

e shift + x:Close panel.

Page navigation:

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/theme-selection-light.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/theme-selection-light.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/dashboard-help.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/dashboard-help.png#lightbox

e r:Go to Resources.

e ¢ :Go to Console Logs.

e 5 :Go to Structured Logs.
e +t:Go to Traces.

e n:Go to Metrics.

Site-wide navigation:

e ::Got to Help.
e shift + s:Go to Settings.

Next steps

Standalone .NET Aspire dashboard

Standalone .NET Aspire dashboard

Article » 10/29/2024

The .NET Aspire dashboard provides a great Ul for viewing telemetry. The dashboard:

e Ships as a container image that can be used with any OpenTelemetry enabled app.

e Can be used standalone, without the rest of .NET Aspire.

Aspire

4+
a Telemetry endpoint is unsecured Untrusted apps can send telemetry to the dashboard. More information
Structured

@ Structured logs

Traces

(EI (All) ~ Level: (All) v Filters: No filters =

Metrics

Resource Timestamp Message Trace Details

E: No structured logs found

Total: 0 results found

Start the dashboard

The dashboard is started using the Docker command line.

Bash

Bash

docker run --rm -it -d \
-p 18888:18888 \
-p 4317:18889 \
--name aspire-dashboard \
mcr.microsoft.com/dotnet/aspire-dashboard:9.0

The preceding Docker command:

e Starts a container from the mcr.microsoft.com/dotnet/aspire-dashboard:9.0 image.
e The container expose two ports:
o Mapping the dashboard's OTLP port 18889 to the host's port 4317. Port 4317
receives OpenTelemetry data from apps. Apps send data using OpenTelemetry
Protocol (OTLP) &.

https://opentelemetry.io/docs/specs/otlp/
https://opentelemetry.io/docs/specs/otlp/
https://opentelemetry.io/docs/specs/otlp/
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/standalone/standalone-mode.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/standalone/standalone-mode.png#lightbox

o Mapping the dashboard's port 18888 to the host's port 18888. Port 18888 has
the dashboard Ul. Navigate to http://localhost:18888 in the browser to view
the dashboard.

Login to the dashboard

Data displayed in the dashboard can be sensitive. By default, the dashboard is secured

with authentication that requires a token to login.

When the dashboard is run from a standalone container, the login token is printed to
the container logs. After copying the highlighted token into the login page, select the
Login button.

aspire-dashboard

ﬂ cr.microsoft.